
Getting Started with
Artix Relay

Version 1.2, September 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Artix Relay,
Artix Encompass, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive
Runtime Technology, Transparent Enterprise Deployment, and Total Business Integra-
tion are trademarks or registered trademarks of IONA Technologies PLC and/or its sub-
sidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 22-Oct-2003

M 3 1 0 9

Contents

List of Figures v

Preface vii

Chapter 1 Artix Relay Concepts 1
Introduction to Artix Relay 2
The Elements of Artix 4

The Artix Bus 5
Artix Service Access Points 6
Artix Contracts 7

The Artix Designer 10

Chapter 2 Using Artix Designer to Develop an Integrated System 21
The Integration Project 23
Using Artix Designer 24
Starting Artix Designer 28
Creating an Artix Project 31
Describing the Server 36
Describing the CORBA Client 37

Adding the CORBA Binding and Type Mapping 38
Adding the CORBA Port 43

Developing the CORBA Interface 47
Describing the Artix Service 50
Deploying the Artix Service 56
Running the Integrated System 59

Chapter 3 Using Artix Command Line Tools to Develop an Integrated System61
The Integration Project 63
Using Artix 64
Adding the CORBA Information 68
Adding the Routing Information 70
Developing the CORBA Interface 71
Configuring the Artix Switch 72
iii

CONTENTS
Running the Integrated System 74

Appendix A Building the Widget Web Server 77
Using Artix Designer 79
Using the Command Line Tools 82
Server Implementation Code 84

Appendix B The CORBA Client Code 87

Glossary 95

Index 99
 iv

List of Figures

Figure 1: Artix High-Performance Architecture 2

Figure 2: The Artix Bus 4

Figure 3: Client-Server System Diagram 11

Figure 4: Artix Contract Editor 12

Figure 5: Editing a complexType 13

Figure 6: Adding Parts to a Message 14

Figure 7: Editing a PortType 15

Figure 8: Editing an Operation 16

Figure 9: Artix Service Editor 17

Figure 10: Editing the Properties of an HTTP Port 18

Figure 11: Development Tool 19

Figure 12: Deployment Tool 20

Figure 13: Welcome Screen 29

Figure 14: Artix Designer 30

Figure 15: Select Project Type 31

Figure 16: New project details 32

Figure 17: System Configuration 33

Figure 18: WSDL File Selection 34

Figure 19: Widget Service Starting Point 35

Figure 20: Binding Location Dialog 39

Figure 21: Select Binding Type 40

Figure 22: Interface Selection Screen 41

Figure 23: Binding review 42

Figure 24: Binding Location 44

Figure 25: Select Binding Dialog 45

Figure 26: Port Attributes 46
v

LIST OF FIGURES
Figure 27: Client Development Screen 48

Figure 28: Select Route WSDL 51

Figure 29: Route Source and Destinations 52

Figure 30: Select Routing Operations 53

Figure 31: Select Routing Port Attributes 54

Figure 32: Widget Route Summary 55

Figure 33: Deployment Screen 57

Figure 34: Widget Server Development Screen 80
 vi

Preface
Overview The Artix Getting Started Guide provides a brief overview of Artix Relay and

a simple example of how to use Artix Relay to solve a real world integration
problem.

Audience The Artix Getting Started Guide is for anyone who needs to understand the
concepts and terms used in the IONA Artix product, as well as anyone who
needs to maintain installed Artix systems.

Organization of this guide This guide is divided as follows:

• “Artix Relay Concepts” provides general information about Artix and
how it is used.

• “Using Artix Designer to Develop an Integrated System” presents a
walk through of how to solve an integration problem with the Artix
Designer.

• “Using Artix Command Line Tools to Develop an Integrated System”
presents a walk through of the same integration scenario using the
Artix command line tools.

• “Building the Widget Web Server” shows how to use Artix to build a
C++ Web service from an Artix contract.

Related documentation The document set for IONA Artix includes the following:

• Getting Started With Artix

• Artix User’s Guide
vii

PREFACE
• Artix Installation Guide

• Artix Tutorial

• Artix C++ Programming Guide

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs/artix/1.2/index.xml.

Online help Artix includes comprehensive online help, providing:

• Detailed step-by-step instructions on how to perform important tasks.

• A description of each screen.

• A comprehensive index and glossary.

• A full search feature.

• Context-sensitive help.

The Help menu of Artix Designer provides access to this online help.

Reading path If you are new to Artix, you should read the documentation in the following
order:

1. Getting Started with Artix

The Getting Started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

2. Artix Tutorial

The Tutorial guides you through programming Artix applications
against all of the supported transports.

3. The Artix User’s Guide

The User’s Guide describes the development pattern for designing and
deploying Artix enabled systems. It provides detailed examples for a
number of typical use cases.

4. GUI Online Help

The Artix design tools have context sensitive online help that provides
information specific to the tools that you are using.

5. Artix C++ Programmer’s Guide

The programmer’s guide discusses the technical aspects of
programming applications using the Artix C++ API.
 viii

http://www.iona.com/support/docs/artix/1.2/index.xml
http://www.iona.com/support/docs/artix/1.2/index.xml

PREFACE
Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about Artix
Relay and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
ix

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 x

CHAPTER 1

Artix Relay
Concepts
Artix Relay enables the seamless interoperability of diverse
middleware platforms without the use of messaging hubs or
intermediate message formats.

In this chapter This chapter discusses the following topics:

Introduction to Artix Relay page 2

The Elements of Artix page 4

The Artix Designer page 10
1

CHAPTER 1 | Artix Relay Concepts
Introduction to Artix Relay

Overview Artix Relay is a new approach to application integration, one that exploits
the middleware technologies and products already present within an
enterprise. It provides a rapid integration approach that increases
operational efficiencies and makes it easier for an enterprise to adopt or
extend a Service Oriented Architecture (SOA).

Benefits of Artix Relay The Artix Relay approach differs from the approach used by Enterprise
Application Integration (EAI) products. The EAI approach typically uses a
“canonical” format in an EAI hub. All messages are transformed from a
source application’s native format to this canonical format, and then
transformed again to the format of the target application. Each application
requires two adapters that translate to and from the canonical format.

However, requiring two translations for every message incurs high overhead.
Many enterprises prefer high-performance solutions that directly transform a
small set of message types over a more general solution with lower
performance.

Figure 1: Artix High-Performance Architecture

Tuxedo MQSeries

Transport of Choice

Artix

binding binding

No Canonical Format: Direct On-The-Wire Transformation
 2

Introduction to Artix Relay
Because Artix connects applications at the middleware transport level, Artix
connections resemble the way network switches connect telephones. Like
network switching, Artix hides the details of the connection and provides
very high performance.

Artix Relay Features Artix Relay has the following unique features:

• Extends enterprise quality of service features, such as security and
transactions, across middleware boundaries.

• Supports the linking of applications using asynchronous or
synchronous communication paradigms.

• Supports the linking of object-oriented and message-based
applications.

Supported transports Artix supports the following message transports:

• HTTP

• Tuxedo

• IBM WebSphere MQ

• TIBCO Rendezvous™

• IIOP

• IIOP Tunnel

Supported payload formats Artix can automatically transform between the following payload formats:

• G2++

• FML – Tuxedo format

• CORBA (GIOP) – CORBA format

• FRL – fixed record length

• VRL – variable record length

• SOAP

• TibrvMsg - TIBCO Rendezvous format

The mapping of logical data items between payload formats is supported by
Artix tools.
3

CHAPTER 1 | Artix Relay Concepts
The Elements of Artix

Overview Artix’s unique features are implemented by a number of plug-ins to IONA’s
Adaptive Runtime Technology (ART) platform. These plug-ins form the core
of Artix, the Artix Bus. Applications that make use of Artix connect to the
Bus using Artix Service Access Points (SAPs). SAPs are described by Artix
Contracts.

Figure 2 shows how all of the Artix elements fit together.

In this Section This section discusses the following topics:

Figure 2: The Artix Bus

Artix Bus

Client Server

SAP
contract

SAP
contract

CORBASOAP/HTTP

The Artix Bus page 5

Artix Service Access Points page 6

Artix Contracts page 7
 4

The Elements of Artix
The Artix Bus

Overview The Artix Bus is a set of plug-ins that work in much the same way as the
simultaneous translators at the United Nations. The plug-ins read data that
can be in a number of disparate formats, the Bus directly translates the data
into another format, and the plug-ins write the data back out to the wire in
the new format. In this way Artix enables all of the applications in your
company to communicate over the Web without needing to understand
SOAP or HTTP. It also means that clients can contact Web services without
understanding the native language of the server handling requests.

Benefits While other Web service suites provide some ability to expose enterprise
applications as Web services, they frequently require a good deal of coding.
The Artix Bus eliminates the need to modify your applications or write code
by directly translating between the enterprise application’s native
communication protocol and SOAP over HTTP, the prevalent protocol for
Web services. For example, by deploying an Artix instance with a SOAP over
WebSphere MQ SAP and a SOAP over HTTP SAP, you can expose a
WebSphere MQ application directly as a Web service. The WebSphere MQ
application would not need to be altered or made aware that it was being
exposed using SOAP over HTTP.

The Artix Bus’ translation ability also makes it a powerful integration tool.
Unlike EAI applications, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing and increases the speed at which messages are transmitted
through the Bus.
5

CHAPTER 1 | Artix Relay Concepts
Artix Service Access Points

Overview An Artix Service Access Point (SAP) is where a service provider or service
consumer connects to the Artix Bus. SAPs are described by a contract
describing the services offered and the physical representation of the data
on the network.

Reconfigurable connection In essence, an SAP provides an abstract connection point between
applications. The benefit of using this abstract connection is that it allows
you to change the underlying communication mechanisms without recoding
any of your applications. You simply need to modify the contract describing
the SAP. For example, if one of your backend service providers is a Tuxedo
application and you want to swap out Tuxedo for a CORBA implementation,
you would simply change the SAP’s contract to contain a CORBA
connection to the Bus. The clients accessing the backend service provider
never need to be aware that the application has changed.
 6

The Elements of Artix
Artix Contracts

Overview The Web Services Definition Language (WSDL) is used to describe the
characteristics of the Service Access Points (SAPs) of an Artix connection.
By defining characteristics like service operations and messages in an
abstract way — independent of the actual transport or protocol used to
implement the SAP — these characteristics can be bound to a variety of a
specific protocols and formats. In fact, Artix allows an abstract definition to
be bound to multiple specific protocols and formats. This means that the
same definitions can be reused in multiple implementations of a service.

Artix contracts define the services exposed by a set of systems, the payload
formats and transports available to each system, and the rules governing
how the systems interact with each other. The most simple Artix contract
defines a set of systems with a shared interface, payload format, and
transport. Artix contracts, however, can define very complex integration
scenarios.

WSDL concepts Understanding Artix contracts requires some familiarity with WSDL,
including the definitions of the following terms:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated
and each part of a message is associated with defined types.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific protocol and data format for
operations defined in a portType.

A WSDL Port specifies a network address for a binding, and defines a single
communication endpoint.

A WSDL service specifies a set of related ports.
7

CHAPTER 1 | Artix Relay Concepts
The Artix contract An Artix contract is specified in WSDL and conceptually divided into logical
and physical components.

The logical contract specifies things that are independent of the underlying
transport and wire format; it fully specifies the data structure and the
possible operations or interactions with the interface. The logical contract
allows Artix to generate skeletons and stubs without having to define the
physical characteristics of the connection (wire format and transport).

The physical component of an Artix contract defines:

• The wire format, middleware transport, and service groupings

• The connection between the PortType ‘operations’ and wire formats

• Buffer layout for fixed formats

• Artix extensions to WSDL

Payload Formats A payload format controls the layout of a message delivered over a
transport. The WSDL definition of a Port and its binding together associate a
payload format with a transport. A binding can be specified in the logical

Example 1: Artix WSDL Contract Elements

Logical Contract:

<Schema>

<Type> (analogous to typedefs)

<Message> (analogous to parameter)

<PortType> (analogous to class or CORBA interface definition)

<Operations> (analogous to methods)

Physical Contract:

<Binding> (payload format)

<Services> (groups of ports)

<Port> (transport addressing information)

<Route> (rules governing system interaction)
 8

The Elements of Artix
portion of an Artix contract (portType), which allows for a logical contract to
have multiple bindings and thus allow multiple on-the-wire formats to use
the same contract.
9

CHAPTER 1 | Artix Relay Concepts
The Artix Designer

Overview The Artix Designer is a tool for creating and managing Artix contracts. It
provides editors for creating contracts from standard WSDL files as well as
from CORBA IDL files. The Designer also makes it easy to define new data
types, logical interfaces, payload bindings, and transports by providing
editors to walk you through each step.

The Artix Designer generates all of the Artix components you need to
complete your project. These components include:

• Artix contracts describing each of the services in your system.

• An Artix contract describing how Artix integrates your services.

• Any Artix stub and skeleton code needed to write Artix application
code.

• The needed configuration information to deploy your Artix instances.

In addition, the Artix Designer can also generate CORBA IDL from any
contracts that have a CORBA binding.

System Diagram The first screen you see when using the Artix Designer is the system
diagram. The system diagram displays all of the services in your system and
the Artix instances deployed to integrate the services. This diagram is
updated as you add services and Artix instances to your system. Figure 3
shows a system diagram containing a client and server being integrated
 10

The Artix Designer
using a standalone Artix instance.

Project Tree To the left of the Designer’s editor panel is the project tree. The project tree
lists all of the system diagram components with nodes for generating code,
generating deployment information, and, if you are using CORBA,
generating IDL. The project tree also lists all of the contracts imported into
your project.

The drop down list at the bottom of the project tree panel controls the
amount of detail shown in the tree at a time. The default is to show all the
information about the project. You can chose to view only the contracts
imported into the project or just the system components.

Figure 3: Client-Server System Diagram
11

CHAPTER 1 | Artix Relay Concepts
Contract Editor The contract editor of the Artix Designer is where most of the work is done
when developing an Artix project. As shown in Figure 4, the contract editor
presents you with a graphical representation of an Artix contract. By
selecting the different nodes in the diagram you bring up editors that allow
you to add to or edit each of the parts of an Artix contract.

Figure 4: Artix Contract Editor
 12

The Artix Designer
Type Editor The type editor is invoked from the contract editor and allows you to create
new logical types in your contract or modify existing types. When editing
existing types, the editor screen is tailored to match the kind of data type
you are editing. Figure 5 shows the screen for editing a complexType.

When adding a new type the editor walks you through the creation of your
data type.

Figure 5: Editing a complexType
13

CHAPTER 1 | Artix Relay Concepts
Message Editor The message editor is invoked from the contract editor and allows you to
add new messages to your contract and to edit existing messages. Using the
editor you can add new parts to existing messages from the types existing in
your contract and the editor ensures that there are no naming conflicts.
Figure 6 shows the message editor’s main dialog.

Figure 6: Adding Parts to a Message
 14

The Artix Designer
Interface Editor The interface editor is invoked from the contract editor and allows you to
edit existing logical interfaces or add new logical interfaces. Logical
interfaces are referred to as portTypes in a WSDL document and the editor
dialogs rely on WSDL terminology. The output of this editor will be entered
in a portType element in your contract. Figure 7 shows the interface editor.

Operation Editor The operation editor is part of the interface editor. It allows you to modify
existing operations defined on the interface or to add new operations to the
interface. When adding messages to an operation, the editor will only allow
you to select from messages already defined in the contract. The editor also

Figure 7: Editing a PortType
15

CHAPTER 1 | Artix Relay Concepts
checks for any naming conflicts. Figure 8 shows the operation editor.

Binding Editor The binding editor is invoked from the contract editor and allows you to map
any interface described in your contract to one of the payload formats
supported by Artix. The editor asks you to select the payload format and the
interface. It then performs the mapping automatically.

Service Editor The service editor is invoked from the contract editor and allows you to edit
existing WSDL service definitions in your contract and to add new WSDL
service definitions in your contract. As shown in Figure 9, the editor shows

Figure 8: Editing an Operation
 16

The Artix Designer
you the name of service, the ports defined as part of the service, the
transport used by the selected port, and any properties set on the selected
port.

Figure 9: Artix Service Editor
17

CHAPTER 1 | Artix Relay Concepts
Port Editor The port editor is part of the service editor and it allows you to modify the
properties of an existing port or add a new port to an existing service. It
provides you with a list of properties you can set on each type of port Artix
supports and ensures that the required values are supplied. Figure 10
shows the properties for an Artix HTTP port.

Routing Editor The routing editor is invoked from the contract editor and allows you to
create routes between compatible ports. For this editor to be used, your
contract must have more than one port defined and the ports must be
compatible. For a detailed discussion on port compatibility and routing see
the Artix Users’ Guide.

Figure 10: Editing the Properties of an HTTP Port
 18

The Artix Designer
Development Tool The development tool is invoked by selecting the Development icon under
one of the services in the project tree. Using this tool, shown in Figure 11,
you can generate Artix C++ stub and skeleton code for the interfaces
defined by the selected service’s contract. The tool will also generate a make
file and sample server and client mainlines for you.

If the service’s contract contains a CORBA binding, the development tool
will also generate IDL describing the service’s interfaces.

Figure 11: Development Tool
19

CHAPTER 1 | Artix Relay Concepts
Deployment Tool The deployment tool is invoked by selecting the Deployment icon under one
of the services in the project tree. The deployment tool, show in Figure 12,
generates an Artix configuration file that is optimized for the selected
service, a script for setting up your Artix runtime environment, and a
composite Artix contract that is suitable for deployment into a runtime
system. The generated configuration file contains all of the information
needed to deploy your service using Artix. In the case of a standalone Artix
service the deployment tool also generates start and stop scripts for the Artix
service.

Figure 12: Deployment Tool
 20

CHAPTER 2

Using Artix
Designer to
Develop an
Integrated System
The Artix Designer simplifies the work of creating integrated
software applications that use multiple transports and payload
formats.

In this chapter This chapter discusses the following topics:

The Integration Project page 23

Using Artix Designer page 24

Starting Artix Designer page 28

Creating an Artix Project page 31

Describing the Server page 36

Describing the CORBA Client page 37
21

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Developing the CORBA Interface page 47

Describing the Artix Service page 50

Deploying the Artix Service page 56

Running the Integrated System page 59
 22

The Integration Project
The Integration Project

The problem scenario Your company’s inventory control and just-in-time ordering system is
implemented using CORBA. When the manufacturing floor needs more
parts, the system generates a purchase order and e-mails it to the vendor.
When the vendor fulfills the order, they e-mail a bill to your company’s
billing department.

In order to cut labor costs, one of your company’s largest vendors has just
updated their ordering system to use a Web service front end, and has
provided a description of this Web service front end in a WSDL file. The
vendor still fulfills orders placed by e-mail but now charges a 10% premium
for any order that is not processed via the new Web service.

Your company has determined that it will cost too much to continue
e-mailing orders to this vendor, that there is no other vendor whose offerings
are competitive, and that it is far too expensive to develop an entirely new
inventory control and ordering system. Your company decides to modify the
existing ordering system to use the vendor’s Web service front end.

As the CORBA expert, you are given the task of integrating the two systems.
You are the only person assigned to the task and given two weeks to
complete it.

How Artix simplifies solving the
problem

Artix simplifies the solution to this problem by providing the following:

• Automated generation of the IDL that describes the CORBA
components of the project, from the WSDL provided by the vendor

• Automated generation of the binding information needed to map
CORBA constructs to Web services constructs

• A routing editor that simplifies the creation of the rule directing
messages to the proper interfaces

• Automated generation of the required configuration information

• The ability to implement the solution using a familiar programming
model

• A lightweight runtime service that provides high-speed translation
between the components of the integrated system
23

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Using Artix Designer

Overview Artix Designer lets you define and build many different types of integration
solutions. In this case, the problem is one of integrating with an existing
Web service, so the first step is obtaining a description of that service. A full
description includes:

• The structure of the data the service sends and receives

• The operations offered by the service

• The order in which the data is encoded

• The payload format the service uses

• The transport the service uses

• The location of the service.

An operating Web service is defined in a WSDL document, and a CORBA
application’s interfaces are described in IDL. Artix can import IDL and
WSDL directly, and convert them into Artix contracts (which are themselves
WSDL files that may include IONA’s extensions). Even if a service
description is less formal than an existing IDL or WSDL file (e.g., in the case
where a service is under development), Artix designer provides a series of
wizards to guide you through the process of creating an Artix contract based
on the information available.

Starting the integration project You contact the vendor’s IT department in order to obtain a description of
the Web service interface. The IT department might provide the Internet
address of the WSDL file that defines this service, or their e-mail reply might
include the file itself. In any case, the required WSDL document is shown in
Example 2.

Example 2: Vendor WSDL document

<?xml version="1.0" encoding="UTF-8"?>
 24

Using Artix Designer
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>

Example 2: Vendor WSDL document
25

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="widgetOrder">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </input>
 <output name="widgetOrderBill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <soap:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 2: Vendor WSDL document
 26

Using Artix Designer
This WSDL document completely describes how to interact with the
vendor’s ordering system by way of XML documents. Artix Designer can
import this file directly and use it in the Artix contract that describes the
entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

<types> Defines the complex data types used by the service. This
service uses an enumerated type, widgetSize, to
describe the widgets, a structure, Address, to hold the
shipping address, and two structures, widgetOrderInfo
and widgetOrderBillInfo, for the data needed to
process the order.

<message> Defines the messages by which the service
communicates.

<portType> Defines the operations offered by the service.

<binding> Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

<service> Defines the address where the service can be contacted.
27

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Starting Artix Designer

Overview Artix Designer is a suite of tools for developing Artix integration solutions and
managing Artix projects.

Windows On a Windows system you can start Artix Designer from the Start menu.
Select Programs|IONA|Artix|Artix Designer. You can also start Artix
Designer from the command line with the following command:

The executable for this command is installed in the following directory:

UNIX On a UNIX system you must start Artix Designer from the command line. To
start Designer, complete the following steps:

1. Run $IT_PRODUCT_DIR\artix\1.2\bin\artix_env to source the Artix
environment.

2. Run $IT_PRODUCT_DIR\artix\1.2\bin\start_designer to start the
GUI.

start_designer

%IT_PRODUCT_DIR%\artix\1.2\bin
 28

Starting Artix Designer
Once the GUI is running 1. Select Go straight to designer on the welcome screen shown in
Figure 13.

2. You will see a screen like Figure 14.

Figure 13: Welcome Screen
29

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Figure 14: Artix Designer
 30

Creating an Artix Project
Creating an Artix Project

Overview An Artix project consists of one or more Artix contracts, a system design
diagram, and a number of source code files. Artix Designer creates a special
directory and project structure to manage these artifacts.

Procedure To create a new Artix Designer project complete the following steps:

1. Create a new Artix project by selecting New|Project from the
designer’s File menu.

2. You will see a screen like Figure 15.

3. Select Integrate with an existing web service.

4. Click Next.

Figure 15: Select Project Type
31

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
5. You will see a screen like Figure 16.

6. Type Widgets in the Name field.

7. Click Change.

8. Using the file navigation dialog box, navigate to your home directory
and click Select Project Directory.

9. Click Next.

Figure 16: New project details
 32

Creating an Artix Project
10. A screen like that shown in Figure 17 appears:.

11. Select Standalone.

12. Click Next.

Figure 17: System Configuration
33

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
13. You will see a screen like Figure 18.

14. Click the Select button.

15. Using the file navigation dialog box, navigate to your Artix installation
directory.

16. Under your Artix installation directory, locate the demos/widgets
directory.

17. Select widgets.wsdl from the file selection box.

18. Click the Validate File button.

19. When Finish becomes available, click it to create your project.

20. The Designer screen now looks like Figure 19.

Figure 18: WSDL File Selection
 34

Creating an Artix Project
Figure 19: Widget Service Starting Point
35

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Describing the Server

Overview The WSDL file that was imported when you created the new project fully
describes the server process for your project. This is the web service your
CORBA system will need to send information to when placing an order for
widgets.

Procedure To describe the server in your Artix project complete the following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Server icon under the Configuration folder on
the project tree.

3. A copy of the contract will appear under the Server.
 36

Describing the CORBA Client
Describing the CORBA Client

Overview To describe the CORBA client you need to modify the WSDL document that
describes the server so that it includes the information needed to represent a
CORBA object capable of implementing the same logical interface as the
Web service. The needed information consists of a CORBA binding for the
Web service’s portType, a CORBA type map which maps the logical data
described in the contract to concrete CORBA data types, and a CORBA port
that defines the IOR used by the CORBA client to invoke on the server. In
this case however, the server is going to be an Artix instance mimicking a
CORBA server and passing the request on to the Web service.

In this section This section discusses the following topics:

Adding the CORBA Binding and Type Mapping page 38

Adding the CORBA Port page 43
37

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Adding the CORBA Binding and Type Mapping

Overview Artix Designer provides a tool to automatically generate a CORBA binding
and the associated type map from a logical interface defined in an imported
Artix contract. The Designer generates a new contract fragment, that
imports the original contract, to hold the CORBA information.

Procedure To add the CORBA binding and type map information to your CORBA client
complete the following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Client icon under the Configuration and drop
it on the icon.

3. The contract will appear under the Client.

4. Select the widgetOrderForm contract from under the Client icon.

5. Select Contract|New|Binding from the menu at the top of the
Designer.
 38

Describing the CORBA Client
6. You will see a screen like Figure 20.

7. Select Add to New WSDL.

8. Enter widgets-corba into the field provided for the new WSDL’s name.

9. Click Next to select the type of binding to add.

Figure 20: Binding Location Dialog
39

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
10. You will see a screen like Figure 21.

11. Select CORBA.

12. Click Next to select the interface to bind.

Figure 21: Select Binding Type
 40

Describing the CORBA Client
13. You will see a screen like Figure 22.

14. From the PortType pull-down list select orderWidgets.

15. Enter orderWidgetsCORBABinding for the Binding Name.

16. Click Next to review the binding and type map information

Figure 22: Interface Selection Screen
41

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
17. You will see a screen similar to Figure 23.

18. Click on the elements on the CORBA Binding tree to review how they
are mapped to a CORBA binding.

19. Click Finish to add the CORBA binding to your contract.

20. A new binding, widgets-corba, will be added under the Client node of
the project tree.

Figure 23: Binding review
 42

Describing the CORBA Client
Adding the CORBA Port

Overview Because CORBA is a unique protocol in that it specifies both a payload
format and a transport, you cannot create a CORBA port in an Artix contract
until it has a valid CORBA binding. After creating the CORBA binding and
type map, you can now add a CORBA port to your client.

In WSDL ports are described within service elements. You can either define
the new CORBA port inside the service describing the HTTP port. However,
because in this example the HTTP port and the CORBA port are part of
separate applications and are hosted by different organizations, it make
sense to describe the CORBA port in a separate service.

Procedure To add a new service containing a CORBA port to your client complete the
following steps:

1. Select the Client node on the project tree.

2. Select Contract|New|Service from the menu.
43

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
3. You will see a screen similar to Figure 24.

4. Select Add to new WSDL.

5. Enter widgets-corba-service in the field provided.

6. Click Next.

7. Enter orderWidgetsCORBAService in the Name field.

8. Click Next to define the port.

Figure 24: Binding Location
 44

Describing the CORBA Client
9. You will see a screen similar to Figure 25.

10. Enter orderWidgetsCORBAPort in the Name field.

11. Select orderWidgetsCORBABinding from the Binding pull-down list.

12. Click Next to enter the port attributes.

Figure 25: Select Binding Dialog
45

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
13. You will see a screen similar to Figure 26.

14. Select corba from the Transport Type pull-down list.

15. Enter file:\\objref.ior in the location field.

16. Click Next to review the port settings.

17. Click Next to review the service settings.

18. Click Finish the add the new service.

19. A new contract, widgets-corba-service, will be added under the Client
node of the project tree.

Figure 26: Port Attributes
 46

Developing the CORBA Interface
Developing the CORBA Interface

Overview Artix generates IDL describing the logical interfaces that are bound to a
CORBA binding. Once Artix has generated the IDL, you are responsible for
developing the application code to support the interface in your CORBA
application. The application code can be written using either the CORBA
model, as shown in this example, or using Artix generated stub and skeleton
code which is linked with the existing CORBA application.

Procedure To develop a simple CORBA client to implement the new interface complete
the following steps:
47

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
In Artix Designer

1. Select the Development icon under the Client node on the project tree.

2. You will see a screen similar to Figure 27.

3. Select IDL from the Development Environment pull-down list.

4. Enter widgets.idl in the IDL Location field.

5. Click OK to generate the IDL.

Figure 27: Client Development Screen
 48

Developing the CORBA Interface
In your development environment

6. Use the CORBA IDL compiler to generate the stub code from
widgets.idl.

If you have IONA’s Application Server Platform v6.0 or later installed
on your system use the following command:

7. Copy the client mainline code from Appendix B into a file called
client.cxx.

8. Build the simple CORBA client.

idl -base widgets.idl
49

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Describing the Artix Service

Overview The actual integration of your client and server are done by a standalone
instance of the Artix service. The service’s behavior is completely described
by an Artix contract. This contract needs to contain descriptions of all of the
services which will be integrated by this instance of the Artix service and the
routing rules describing how each of the services are integrated. The
Designer provides straightforward tools for describing the service integration
rules.

Procedure To describe your Artix service complete the following steps:

Adding the interface and service descriptions to the Artix service

1. Select the widgetOrderForm from under the Client node and drag it to
the Artix node of the project tree.

This adds the logical interfaces and the server’s SOAP over HTTP
service to the Artix service.

2. Select widgets-corba from under the Client node and drag it to the
Artix node of the project tree.

This adds the CORBA binding information for the client to the Artix
service.

3. Select widgets-corba-service from under the Client node and drag it to
the Artix node of the project tree.

This adds the client’s CORBA service and port information to the Artix
service.

Adding the routing information to the Artix service

4. Select the Artix node on the project tree.

5. Select Contract|New|Route from the menu at the top of the Designer.
 50

Describing the Artix Service
6. You will see a screen like Figure 28.

7. Select Add to new WSDL.

8. Enter widgets-route into the space provided.

9. Click Next.

Figure 28: Select Route WSDL
51

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
10. You will see a screen like Figure 29.

11. Select widgetOrderForm:OrderWidgets from the PortTypes pull-down
list.

12. Select orderWidgetsCORBAService:orderWidgetsCORBAPort in the
Source Endpoints field.

13. Select orderWidgetsService:widgetOrderPort in the Destinations
Endpoints field.

14. Select Next to name the route.

15. Enter widgetRoute in the Route Name field.

16. Click Next to select the operations to route between.

Figure 29: Route Source and Destinations
 52

Describing the Artix Service
17. You will see a screen like Figure 30.

18. Select placeWidgetOrder in the Routed Operations field.

19. Click Next to select the port attributes to use in routing.

Figure 30: Select Routing Operations
53

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
20. You will see a screen like Figure 31.

21. For this example port attributes are not used for routing, so click Next.

Figure 31: Select Routing Port Attributes
 54

Describing the Artix Service
22. You will see a screen like Figure 32 which summarizes the route you
added to the contract.

23. Select Finish to create the route.

24. A new contract called widgets-route will be added to the Artix node of
the project tree.

Figure 32: Widget Route Summary
55

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
Deploying the Artix Service

Overview The Artix standalone service requires some configuration information and
the assembled Artix contracts to run properly. Designer packages the
configuration, the composite Artix contract, and start and stop scripts for the
service into a deployment bundle for you. This bundle simply needs to be
unpacked and the service is ready to integrate your systems.
 56

Deploying the Artix Service
Procedure To deploy your Artix standalone service complete the following steps:

1. Select the Deployment icon under the Artix node in the project tree.

2. You will see a screen similar to Figure 33.

3. Enter widgets for the Domain Name.

4. Enter widgets.zip for the File Location.

5. Select Standard Output from the Logging Output pull-down list.

6. Select Errors Only from the Logging Level pull-down list.

7. Click OK to generate the configuration file.

Figure 33: Deployment Screen
57

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
8. An archive file containing the configuration for your Artix service, the
contracts describing its behavior, and start and stop scripts is placed in
your project directory.
 58

Running the Integrated System
Running the Integrated System

Overview Once all of the components are generated, your system is ready to be tested.
You will need to start the Artix service before starting the CORBA client
because the Artix service needs to generate the IOR for the CORBA client.

Procedure To test your Artix project complete the following steps:

1. Go to the widget project directory you created.

2. Unpack the widgets deployment bundle.

3. Run artix_env.

4. Start the Artix standalone service with the following command:

5. Go to the server directory.

If you built the server using Artix Designer, the server will be located in
the Server\src\cpp folder of your project directory.

If you built the server using the Artix command line tools, the server
will be located in %IT_PRODUCT_DIR%\artix\1.2\demos\widgets.

6. Start the server with the following command:

7. Go to the widgets project directory.

8. Go to the client directory, Client\src\cpp.

9. Start the client with the following command:

10. Answer the questions to complete the widget order form.

Note: The directions for building the Web service for this example are
shown in Appendix A.

start_artix_service

start server

client
59

CHAPTER 2 | Using Artix Designer to Develop an Integrated System
11. The server will return a bill containing the information you entered
along with a randomly generated order number and a price for the
widgets.

Sample output Example 3 shows the output from a sample run of the Artix project.

Example 3: Sample Widget Order

C:\IONA\artix\1.2\demos\widgets\corba>client
initializing ORB
narrowing CORBA::Object to orderWidgets

How many widgets do you want to order?123

What type of widgets do you want to order?
1 - Big
2 - Large
3 - Mungo
4 - Gargantuan
Selection [1-4]4

Enter Street Address:123 Elm Street
Enter Apt. or Suite Number:
Enter City:Walford
Enter State:CT
Enter ZIP Code:02343
Sending Widget Order
Bill for Your Widgets
Order Number: 23:12:4807/31/03
Date: 07/31/03
Quantity: 123
Type: Gargantuan
Amount Due: 123
Ship To:
123 Elm Street

Walford, CT
02343
Widget Order demo complete.
 60

CHAPTER 3

Using Artix
Command Line
Tools to Develop
an Integrated
System
Artix command line tools simplify the work of creating
integrated software applications that use multiple transports
and payload formats.

In this chapter This chapter discusses the following topics:

The Integration Project page 63

Using Artix page 64

Adding the CORBA Information page 68

Adding the Routing Information page 70
61

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
Developing the CORBA Interface page 71

Configuring the Artix Switch page 72

Running the Integrated System page 74
 62

The Integration Project
The Integration Project

The problem scenario Your company’s inventory control and just-in-time ordering system is
implemented using CORBA. When the manufacturing floor needs more
parts, the system generates a purchase order and e-mails it to the vendor.
When the vendor fulfills the order, they e-mail a bill to your company’s
billing department.

In order to cut labor costs, one of your company’s largest vendors has just
updated their ordering system to use a Web service front end, and has
provided a description of this Web service front end in a WSDL file. The
vendor still fulfills orders placed by e-mail but now charge a 10% premium
for any order that is not processed via the new Web service.

Your company has determined that it will cost too much to continue
e-mailing orders to this vendor, that there is no other vendor whose offerings
are competitive, and that it is far too expensive to develop an entirely new
inventory control and ordering system. Your company decides to modify the
existing ordering system to use the vendor’s Web service front end.

As the CORBA expert, you are given the task of integrating the two systems.
You are the only person assigned to the task and given two weeks to
complete it.

How Artix helps Artix simplifies the solution to this problem by providing the following:

• Automated generation of the IDL that describes the CORBA
components of the project, from the WSDL provided by the vendor

• Automated generation of the binding information needed to map
CORBA constructs to Web services constructs

• The ability to implement the solution using a familiar programming
model

• A lightweight runtime service that provides high-speed translation
between the components of the integrated system
63

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
Using Artix

Overview Artix lets you define and build many different types of integration solutions.
In this case, the problem is one of integrating with an existing Web service,
so the first step is obtaining a description of that service. A full description
includes:

• The structure of the data the service sends and receives

• The operations offered by the service

• The order in which the data is encoded

• The payload format the service uses

• The transport the service uses

• The location of the service.

An operating Web service is defined in a WSDL document, and a CORBA
application’s interfaces are described in IDL. Artix can import IDL and
WSDL directly, and convert them into Artix contracts (which are themselves
WSDL files that may include IONA’s extensions). Even if a service
description is less formal than an existing IDL or WSDL file (e.g., in the case
where a service is under development), Artix designer provides a series of
wizards to guide you through the process of creating an Artix contract based
on the information available.

Starting the integration project You contact the vendor’s IT department in order to obtain a description of
the Web service interface. The IT department might provide the Internet
address of WSDL file that defines this service, or their e-mail reply might
include the file itself. In any case, the required WSDL document is shown in
Example 4.

Example 4: Vendor WSDL document

<?xml version="1.0" encoding="UTF-8"?>
 64

Using Artix
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>

Example 4: Vendor WSDL document
65

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="widgetOrder">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </input>
 <output name="widgetOrderBill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <soap:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 4: Vendor WSDL document
 66

Using Artix
This WSDL document completely describes how to interact with the
vendor’s ordering system by way of XML documents. Artix Designer can
import this file directly and use it in the Artix contract that describes the
entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

<types> Defines the complex data types used by the service. This
service uses an enumerated type, widgetSize, to
describe the widgets, a structure, Address, to hold the
shipping address, and two structures, widgetOrderInfo
and widgetOrderBillInfo, for the data needed to
process the order.

<message> Defines the messages by which the service
communicates.

<portType> Defines the operations offered by the service.

<binding> Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

<service> Defines the address where the service can be contacted.
67

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
Adding the CORBA Information

Overview Artix provides the command line tool wsdltocorba to generate the
appropriate CORBA binding in your Artix contract. wsdltocorba also
generates the IDL needed to develop the CORBA components of your
system.

Procedure To generate the appropriate CORBA bindings and IDL file complete the
following steps:

1. Go to %IT_PRODUCT_DIR%\artix\bin.

2. Run the artix_env script to set up the Artix environment.

3. Go to %IT_PRODUCT_DIR%\artix\1.2\demos\widgets.

4. Run wsdltocorba using the following command:

5. The following files will be generated:

6. Edit widgets-corba.wsdl to include a CORBA port by adding the
portion of the code below in bold.

wsdltocorba -corba -idl -i orderWidgets
 -b orderWidgetsCORBABinding widgets.wsdl

widgets-corba.wsdl A modified version of the original contract that
includes the information needed to describe the
CORBA system.

widgets.idl The IDL file describing the interface for the CORBA
system.

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 <types>
 ...
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 68

Adding the CORBA Information
 <portType name="orderWidgets">
 ...
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 ...
 </binding>
 <binding name="orderWidgetsCORBABinding" type="tns:orderWidgets">
 ...
 </binding>
 <service name="orderWidgetsService">
 <port binding="tns:orderWidgetsBinding" name="widgetOrderPort">
 <soap:address location="http://localhost:8080"/>
 </port>
 </service>
 <service name="orderWidgetCORBAService">
 <port binding=”tns:orderWidgetsCORBABinding” name=”widgetCORBAPort”>
 <corba:address location=”file://objref.ior” />
 </port>
 </service>
 <corba:typeMapping targetNamespace="http://www.iona.com/corba/typemap/orderWidgets.idl">
 ...
 </corba:typeMapping>
</definitions>
69

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
Adding the Routing Information

Overview The details of how Artix decides where to forward messages is defined using
IONA extensions to WSDL. These are defined within the namespace
http://schemas.iona.com/routing and the namespace is typically given
the short name routing. For all integrations using the Artix standalone
service, you need to specify at least one source and one destination.

Procedure To add the routing information to your Artix contract complete the following:

1. Add the following to the namespace declarations at the beginning of
widgets-corba.wsdl.

2. Add the highlighted code to the end of widgets-corba.wsdl.

xmlns:routing="http://schemas.iona.com/routing"

<definitions ...>
...
 <corba:typeMapping targetNamespace="http://www.iona.com/corba/typemap/orderWidgets.idl">
 ...
 </corba:typeMapping>
 <routing:route name="widgetRoute">
 <routing:source service="tns:orderWidgetCORBAService" port="tns:widgetCORBAPort" />
 <routing:destination service="tns:orderWidgetsService" port="tns:widgetOrderPort" />
 </routing:route>
</definitions>
 70

Developing the CORBA Interface
Developing the CORBA Interface

Overview Artix can generate the IDL describing the interface when it creates the
CORBA binding and type map information in your Artix contract. However,
you are responsible for developing the application code to support the
interface in your CORBA application. The application code can be written
using either the CORBA model, as shown in this example, or using
Artix-generated stub and skeleton code which is linked with the existing
CORBA application.

Procedure To develop a simple CORBA client to implement the new interface complete
the following steps:

1. Use the CORBA IDL compiler to generate the stub code from
widgets.idl.

If you have IONA’s Application Server Platform v6.0 or later installed
on your system use the following command:

2. Copy the client mainline code from Appendix B into a file called
client.cxx.

3. Build the simple CORBA client.

idl -base widgets.idl
71

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
Configuring the Artix Switch

Overview The Artix standalone service provides an easy and fast mechanism for
connecting two services that speak different languages. It reads the
contract, parses it, generates the ports needed for each service, intercepts
the messages, and performs the required translations. All it requires is the
Artix contract describing the services and their integration that you
generated in the previous steps. In addition the standalone service needs to
be configured to load the correct plugins and load the correct Artix contract.

To fully configure an instance of the Artix standalone service, you need to
create two configuration scopes. One for the service itself and one for the
process that stops the service. The most important values used in
configuring the standalone service are orb_plugins and
plugins:routing:wsdl_url. orb_plugins lists the plugins the service loads
when it starts up. For this example you need to load the plugins for CORBA,
HTTP, SOAP, and routing. plugins:routing:wsdl_url tells the service
where to find the Artix contract that defines its behavior. The path specified
is relative to the starting directory of the service.

Procedure To properly configure the Artix standalone service for your project complete
the following steps:

1. Locate the file the following file:

Windows

UNIX

2. Open the file in a text editor.

%IT_PRODUCT_DIR%\artix\1.2\etc\domains\artix.cfg

$IT_PRODUCT_DIR/artix/1.2/etc/domains/artix.cfg
 72

Configuring the Artix Switch
3. Add the configuration scopes shown Example 5 to the very end of the
file.

4. Save the file.

Example 5: Widget Artix Configuration Scope

widget_artix_service
{
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
 "iiop", "soap", "http", "ws_orb", "routing"];

 event_log:filters = ["*=ERROR+FATAL"];

 plugins:routing:wsdl_url="widgets-corba.wsdl";

 plugins:artix_service:shlib_name = "it_artix_service_svr";

 plugins:artix_service:iiop:port= "8900";

 plugins:artix_service:iiop:host= "localhost";

 plugins:artix_service:direct_persistence="true";

 policies:iiop:server_address_mode_policy:publish_hostname=
 "true";
};

widget_artix_service_admin
{
 orb_plugins = ["iiop_profile", "giop", "iiop"];

 initial_references:IT_ArtixServiceAdmin:reference=
 "corbaloc:iiop:1.2@localhost:8900/IT_ArtixServiceAdmin";
};
73

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
Running the Integrated System

Overview Once all of the components are generated, your system is ready to be tested.
You will need to start the Artix service before starting the CORBA client
because the Artix service needs to generate the IOR for the CORBA client.

Procedure To test your Artix project complete the following steps:

1. Go to the Artix bin directory.

UNIX

Windows

2. Run artix_env.

3. Go to the widgets demo directory.

UNIX

Windows

4. Start the Artix standalone service with the following command:

5. Go to the server directory.

If you built the server using the command line tools, the server will be
located at %IT_PRODUCT_DIR%\artix\1.2\demos\widgets.

Note: The directions for build the Web service for this example are shown
in Appendix A.

$IT_PRODUCT_DIR/artix/1.2/bin

%IT_PRODUCT_DIR%\artix\1.2\bin

$IT_PRODUCT_DIR/artix/1.2/demos/widgets

%IT_PRODUCT_DIR%\artix\1.2\demos\widgets

itartix_service -ORBname widget_artix_service run -background
 74

Running the Integrated System
If you built the server using Artix Designer, the server will be located in
the Server/src/cpp folder of your project directory.

6. Start the server with the following command:

7. Go back to the widgets demo directory.

8. Start the client with the following command:

9. Answer the questions to complete the widget order form.

10. The server will return a bill containing the information you entered
along with a randomly generated order number and a price for the
widgets.

Sample output Example 6 shows the output from a sample run of the Artix project.

start server

client

Example 6: Sample Widget Order

C:\IONA\artix\1.2\demos\widgets\corba>client
initializing ORB
narrowing CORBA::Object to orderWidgets

How many widgets do you want to order?123

What type of widgets do you want to order?
1 - Big
2 - Large
3 - Mungo
4 - Gargantuan
Selection [1-4]4

Enter Street Address:123 Elm Street
Enter Apt. or Suite Number:
Enter City:Walford
Enter State:CT
Enter ZIP Code:02343
Sending Widget Order
75

CHAPTER 3 | Using Artix Command Line Tools to Develop an Integrated System
Bill for Your Widgets
Order Number: 23:12:4807/31/03
Date: 07/31/03
Quantity: 123
Type: Gargantuan
Amount Due: 123
Ship To:
123 Elm Street

Walford, CT
02343
Widget Order demo complete.

Example 6: Sample Widget Order
 76

APPENDIX A

Building the
Widget Web
Server
In addition to providing middleware integration, Artix provides
the tools to create high-performance C++ Web services using
standard C++ programming techniques.

Overview Both the Artix Designer and the Artix command line tools can generate C++
server stub code and C++ client proxy code for the interfaces described in
an Artix contract. The Artix-generated code hides the complexity of the
underlying transport implementation from the application developer and
exposes the objects generated from the contract so that they are usable as if
they were standard C++ objects. This means that the application developer
can focus on implementing the application logic without worrying about how
the application communicates with the outside world.

For a detail description of programming with Artix read the Artix C++
Programmer’s Guide.

In this appendix This appendix discusses the following topics:

Using Artix Designer page 79
77

APPENDIX A | Building the Widget Web Server
Using the Command Line Tools page 82

Server Implementation Code page 84
 78

Using Artix Designer
Using Artix Designer

Overview Artix designer generates server stubs for any of the contracts used to
describe a component of your integration project. In addition, the designer
generates a sample server mainline, and generates a makefile to build the
server.

Once Artix generates the stub code, you must write the implementation logic
using the C++ development environment of your choice.

Procedure To develop the widget web server using Artix Designer complete the
following steps:

1. Start Artix Designer.

Windows

UNIX

2. Follow the directions for creating an Artix project shown in “Creating an
Artix Project” on page 31.

3. Follow the directions for describing the widget server shown in
“Describing the Server” on page 36.

4. Select the Development icon under the Server node in the project tree.

start_designer

artix_env
start_designer
79

APPENDIX A | Building the Widget Web Server
5. You will see a screen similar to Figure 34.

6. Select C++ from the Development Environment pull-down list.

7. Enter WidgetServer for the C++ Namespace.

8. Select the appropriate type of makefile generation for your platform.

9. Select orderWidgetsService from the Select Service pull-down list.

10. Select widgetOrderPort from the Select Port pull-down list.

11. Click OK.

12. The following files are generated in the Server/src/cpp directory of
your project folder:

Figure 34: Widget Server Development Screen

orderWidgets.h orderWidgetsClient.cxx

orderWidgetsClient.h orderWidgetsImpl.cxx

orderWidgetsImpl.h orderWidgetsServer.cxx

orderWidgetsServer.h SampleClient.cxx

SampleServer.cxx Makefile

Server_wsdlTypesFactory.cxx Server_wsdlTypesFactory.h
 80

Using Artix Designer
For the purposes of generating a Web server to implement the widget
ordering system, you do not need any of the client, *Client.*, source
files.

13. Insert the highlighted code shown in Example 7 on page 84, to
orderWidgetsImpl.cxx to add the application logic to the server.

14. Build the server.

UNIX

Windows

widgets_wsdlTypes.cxx widgets_wsdlTypes.h

make server.exe

nmake server.exe
81

APPENDIX A | Building the Widget Web Server
Using the Command Line Tools

Overview Artix has a command line tool, wsdltocpp, that generates server stubs and
client proxy code from Artix contracts. The benefit of this tool is that it can
be included in makefiles to help automate the building of applications that
incorporate Artix code and make migrating to newer versions of the product
easier.

Procedure To create the widget web server using wsdltocpp complete the following
steps:

1. Go to the Artix bin directory.

UNIX

Windows

2. Source the artix_env script.

3. Go to the widgets demo directory.

UNIX

Windows

4. Generate the server stubs from widget.wsdl using the wsdltocpp tool.

UNIX

$IT_PRODUCT_DIR/artix/1.2/bin

%IT_PRODUCT_DIR%\artix\1.2\bin

$IT_PRODUCT_DIR/artix/1.2/demos/widgets

%IT_PRODUCT_DIR%\artix\1.2\demos\widgets

wsdltocpp -sample -impl -m UNIX widgets.wsdl
 82

Using the Command Line Tools
Windows

5. The following files are generated:

For the purposes of generating a Web server to implement the widget
ordering system, you do not need any of the client, *Client.*, source
files.

6. Insert the highlighted code shown in Example 7 on page 84, to
orderWidgetsImpl.cxx to add the application logic to the server.

7. Build the server.

UNIX

Windows

wsdltocpp -sample -impl -m NMAKE widgets.wsdl

orderWidgets.h orderWidgetsClient.cxx

orderWidgetsClient.h orderWidgetsImpl.cxx

orderWidgetsImpl.h orderWidgetsServer.cxx

orderWidgetsServer.h SampleClient.cxx

Server_wsdlTypesFactory.cxx Server_wsdlTypesFactory.h

widgets_wsdlTypes.cxx widgets_wsdlTypes.h

SampleServer.cxx Makefile

make server.exe

nmake server.exe
83

APPENDIX A | Building the Widget Web Server
Server Implementation Code

Overview The logic of an Artix server is developed inside of an implementation class
generated by the Artix tools. This implementation code can typically be
written using standard C++. For more advanced functionality, like
transactions or security, you may need to use Artix-specific calls.

Code Example 7 shows the implementation code for the sample widget Web
service.

Example 7: Widget Server Implementation

#include <it_cal/iostream.h>
#include <it_cal/fstream.h>
#include <it_cal/cal.h>
#include <string.h>
#include <stdlib.h>
#include "orderWidgetsImpl.h"

IT_USING_NAMESPACE_STD

orderWidgetsImpl::orderWidgetsImpl(IT_Bus::Bus_ptr bus,
IT_Bus::Port* port) : orderWidgetsServer(bus, port)

{
}

orderWidgetsImpl::~orderWidgetsImpl()
{
}

void orderWidgetsImpl::placeWidgetOrder(
 const widgetOrderInfo & widgetOrderForm,
 widgetOrderBillInfo & widgetOrderConformation
) IT_THROW_DECL((IT_Bus::Exception))
{
 widgetOrderConfirmation.setamount(
 widgetOrderForm.getamount());

 widgetOrderConfirmation.setorder_date(
 widgetOrderForm.getorder_date());
 84

Server Implementation Code
 widgetOrderConfirmation.settype(widgetOrderForm.gettype());

 widgetOrderConfirmation.setshippingAddress(
 widgetOrderForm.getshippingAddress());

 IT_Bus::Float amtDue = widgetOrderForm.getamount() * 1.00;
 widgetOrderConfirmation.setamtDue(amtDue);

 char tempOrdNum[128], tempBuf[20];
 _strtime(tempOrdNum);
 _strdate(tempBuf);
 strcat(tempOrdNum, tempBuf);
 widgetOrderConfirmation.setorderNumber(tempOrdNum);
}

Example 7: Widget Server Implementation
85

APPENDIX A | Building the Widget Web Server
 86

APPENDIX B

The CORBA Client
Code
The mainline for the Demo CORBA client is pure CORBA code.

Overview The CORBA portion of the widgets example is intended to be a CORBA
client. As such it does not require any CORBA services to be running. The
Artix switch publishes the IOR to a file which the client reads. This can be
modified to take advantage of a CORBA naming service, but that is beyond
the scope of this demo.

Client source The mainline used in this demo is shown in Example 8.

Example 8: Widget CORBA client

#include <it_cal/iostream.h>
#include <it_cal/fstream.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <omg/orb.hh>

#include "widgets.hh"

IT_USING_NAMESPACE_STD

const char* const objref_file = "../objref.ior";
87

APPENDIX B | The CORBA Client Code
long get_amount()
{
 long amount;

 cout << endl;
 cout << "How many widgets do you want to order?" << flush;

 cin >> amount;

 return(amount);
}

widgetSize get_type()
{
 widgetSize type;
 char selection;

 cout << endl;
 cout << "What type of widgets do you want to order?" << endl;
 cout << "1 - Big" << endl;
 cout << "2 - Large" << endl;
 cout << "3 - Mungo" << endl;
 cout << "4 - Gargantuan" << endl;
 cout << "Selection [1-4]" << flush;

Example 8: Widget CORBA client
 88

 cin >> selection;

 switch (selection)
 {
 case '1':
 {
 type = big;
 break;
 }
 case '2':
 {
 type = large;
 break;
 }
 case '3':
 {
 type = mungo;
 break;
 }
 case '4':
 {
 type = gargantuan;
 break;
 }
 default : type = mungo;
 }

 return(type);
}

Example 8: Widget CORBA client
89

APPENDIX B | The CORBA Client Code
Address get_address()
{
 Address address;
 char temp[256];

 cout << endl;
 cout << "Enter Street Address:" << flush;
 gets(temp); // clears the buffer
 gets(temp);
 address.street1 = CORBA::string_dup(temp);

 cout << "Enter Apt. or Suite Number:" << flush;
 gets(temp);
 address.street2 = CORBA::string_dup(temp);

 cout << "Enter City:" << flush;
 gets(temp);
 address.city = CORBA::string_dup(temp);

 cout << "Enter State:" << flush;
 cin >> temp;
 address.state = CORBA::string_dup(temp);

 cout << "Enter ZIP Code:" << flush;
 cin >> temp;
 address.zipCode = CORBA::string_dup(temp);

 return(address);
}

void print_bill(widgetOrderBillInfo *bill)
{
 cout << "Bill for Your Widgets" << endl;
 cout << "Order Number: " << bill->orderNumber << endl;
 cout << "Date: " << bill->order_date << endl;
 cout << "Quantity: " << bill->amount << endl;

Example 8: Widget CORBA client
 90

 switch(bill->type)
 {
 case big:
 {
 cout << "Type: Big" << endl;
 break;
 }
 case large:
 {
 cout << "Type: Large" << endl;
 break;
 }
 case mungo:
 {
 cout << "Type: Mungo" << endl;
 break;
 }
 case gargantuan: cout << "Type: Gargantuan" << endl;
 }

 cout << "Amount Due: " << bill->amtDue << endl;

 cout << "Ship To:" << endl;
 cout << bill->shippingAddress.street1 << endl;
 cout << bill->shippingAddress.street2 << endl;
 cout << bill->shippingAddress.city << ", " <<

bill->shippingAddress.state << endl;
 cout << bill->shippingAddress.zipCode << endl;
}

Example 8: Widget CORBA client
91

APPENDIX B | The CORBA Client Code
int main(int argc, char** argv)
{
 // Initialize the ORB.
 CORBA::ORB_var orb;
 try
 {
 cout << "initializing ORB" << endl;
 orb = CORBA::ORB_init(argc, argv);
 }
 catch (CORBA::SystemException& se)
 {
 cerr << "ORB_init failed: " << se << endl;
 return 1;
 }
 if (CORBA::is_nil(orb))
 {
 cerr << "ORB_init returned nil object reference\n";
 return 1;
 }

 // Obtain stringified object reference from file.
 CORBA::String_var objref_string;
 {
 const char* filename = objref_file;
 IT_ifstream is(filename);
 if (!is.good())
 {
 cerr << "error opening " << filename << endl;
 return 1;
 }
 is >> objref_string;
 if (objref_string.in() == 0 || strlen(objref_string.in()) == 0)
 {
 cerr << "object reference string has zero length\n";
 return 1;
 }
 }

Example 8: Widget CORBA client
 92

 // Destringify the object reference.
 CORBA::Object_var tobj;
 try
 {
 tobj = orb->string_to_object(objref_string.in());
 }
 catch (CORBA::SystemException& se)
 {
 cerr << "string_to_object failed: " << se << endl;
 return 1;
 }

 // Narrow the object reference.
 orderWidgets_var proxy;
 try
 {
 cout << "narrowing CORBA::Object to orderWidgets" << endl;
 proxy = orderWidgets::_narrow(tobj);
 }
 catch (CORBA::SystemException& se)
 {
 cerr << "orderWidgets::_narrow failed: " << se << endl;
 return 1;
 }
 if (CORBA::is_nil(proxy.in()))
 {
 cerr << "orderWidgets::_narrow returned a nil object

reference\n";
 return 1;
 }

 try
 {
 widgetOrderInfo order_form;

 order_form.amount = get_amount();
 char date[10];
 _strdate(date);
 order_form.order_date = CORBA::string_dup(date);
 order_form.type = get_type();
 order_form.shippingAddress = get_address();

Example 8: Widget CORBA client
93

APPENDIX B | The CORBA Client Code
 widgetOrderBillInfo *bill;

 cout << "Sending Widget Order" << endl;
 bill = proxy->placeWidgetOrder(order_form);

 print_bill(bill);

 CORBA::string_free(order_form.order_date);
 }
 catch (CORBA::SystemException& se)
 {
 cerr << "orderWidgets failed: " << se << endl;
 return 1;
 }

 try
 {
 orb->shutdown(IT_TRUE);
 }
 catch (CORBA::SystemException& se)
 {
 cerr << "CORBA::ORB::shutdown failed: " << se << endl;
 return 1;
 }

 cout << "Widget Order demo complete." << endl;
 return 0;
}

Example 8: Widget CORBA client
 94

Glossary
A Artix Designer

A suite of GUI tools for creating and deploying Artix integration solutions.

B Binding
A binding associates a specific transport/protocol and data format with the
operations defined in a <portType>.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

C Connection
An established communication link between any two Artix endpoints.

Contract
An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical. The logical contract defines things that are
independent of the underlying transport and wire format, and is specified in
the <portType>, <operation>, <message>, <type>, and <schema> WSDL tags.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
‘operations.’ The physical contract is specified in the <port>, <binding> and
<service> WSDL tags.

Contract Editor
A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.
95

GLOSSARY
D Deployment Mode
One of two ways in which an Artix application can be deployed: Embedded
and Standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

E Embedded Mode
Operational mode in which an application creates a Service Access Point,
either by invoking Artix APIs directly, or by compiling and linking
Artix-generated stubs and skeletons to connect client and server to the service
bus.

End-point
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application). Contrast with Service.

H Host
The network node on which a particular service resides.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

P Payload Format
The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL via the binding
definition.

Protocol
A protocol is a transport whose format is defined by an open standard.
 96

R Routing
The redirection of a message from one WSDL binding to another. Routing
rules are specified in a contract and apply to both end-points and standalone
services. Artix supports port-based routing and operation-based routing
defined in WSDL contracts. Content-based routing is supported at the
application level.

Router
A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

S Service
An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but with no generated language bindings. The service has no
compile-time dependencies. A service is dynamically configured by deploying
one or more contracts on it.

Service Access Point
The mechanism, and the points at which individual service providers and
consumers connect to the service bus.

Service Bus
The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.

Standalone Mode
An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch
A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.
97

GLOSSARY
T Transport
An on-the-wire format for messages.

Transport Plug-In
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the <port> element of a contract.
 98

Index

A
Artix 64
Artix Bus 5
Artix contract 8
Artix Designer 24, 28

binding editor 16
contract editor 12
interface editor 15
message editor 14
operation editor 15
port editor 18
project tree 11
service editor 16
system diagram 10
type editor 13

B
binding 7, 27, 67

C
contract 7
contract editor

binding editor 16
interface editor 15
message editor 14
service editor 16
type editor 13

I
interface editor 15

operation editor 15

M
message 27, 67

O
operation 7

P
payload format 3, 8
portType 7, 27, 67
S
service 27, 67
Service Access Point 6, 7
Service Oriented Architecture 2

T
types 27, 67

W
Web Services Definition Language 7
WSDL 24, 64
99

INDEX
 100

	List of Figures
	Preface
	Artix Relay Concepts
	Introduction to Artix Relay
	The Elements of Artix
	The Artix Bus
	Artix Service Access Points
	Artix Contracts

	The Artix Designer

	Using Artix Designer to Develop an Integrated System
	The Integration Project
	Using Artix Designer
	Starting Artix Designer
	Creating an Artix Project
	Describing the Server
	Describing the CORBA Client
	Adding the CORBA Binding and Type Mapping
	Adding the CORBA Port

	Developing the CORBA Interface
	Describing the Artix Service
	Deploying the Artix Service
	Running the Integrated System

	Using Artix Command Line Tools to Develop an Integrated System
	The Integration Project
	Using Artix
	Adding the CORBA Information
	Adding the Routing Information
	Developing the CORBA Interface
	Configuring the Artix Switch
	Running the Integrated System

	Building the Widget Web Server
	Using Artix Designer
	Using the Command Line Tools
	Server Implementation Code

	The CORBA Client Code
	Glossary
	Index

