
Deploying & Managing Artix
Solutions

Version 1.3, December 2003

IONA, IONA Technologies, the IONA logo, Artix Encompass, Artix Relay, Orbix, Orbix/E,
ORBacus, Artix, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive Runt-
ime Technology, Transparent Enterprise Deployment, and Total Business Integration are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001�2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 10-Dec-2003

M 3 1 8 1

Contents

List of Tables vii

List of Figures ix

Preface xi

Chapter 1 Introduction to Artix 1

Chapter 2 Configuration 5
Establishing the Host Computer Environment 6
Configuring Artix Runtime Behavior 9
Runtime Configuration Variables 13

ORB Plug-ins List 14
Policies 17
Binding Lists 18
Thread Pool Control 20

Artix Plug-in Configuration 22
Routing Plug-in 23
CORBA Plug-in 24
Tuxedo Plug-in 25
Locator Service Plug-in 26
Locator Service Endpoint Plug-in 27
Session Manager Plug-in 28
Session Manager Simple Policy Plug-in 29
Session Manager Endpoint Plug-in 30
WSDL Publishing Plug-in 31

Chapter 3 Artix Logging and SNMP Support 33
Artix Logging 34
Using Trace Macros 35

Application Server Platform Trace Macros 37
Using the SNMP Logging Plug-in 39
iii

CONTENTS
Using the XML Logging Plug-in 46
IT_Logging Overview 53
IT_Logging::LogStream Interface 57
Example 60

Using the Logging Functionality 61
Performance Logging 62

Chapter 4 Artix Standalone Service 67
The Artix Standalone Service 68
Configuring the Service 71
Starting and Stopping the Service 73
Installing the Service as a Windows Service 75
Contracts for the Standalone Service 77

Chapter 5 Using the Artix Locator Service 79
Overview of the Artix Locator Service 80
Deploying the Locator 83
Registering a Server with the Locator 88
Obtaining References from the Locator 90
Load Balancing 93
Controlling Server Workloads 94
Fault Tolerance 96

Chapter 6 Using the Artix Session Manager 97
Introduction to Session Management in Artix 98
Deploying the Session Manager Service 101
Registering a Server with the Session Manager 107
Working with Sessions 110
Fault Tolerance 118

Chapter 7 Using Artix in a CORBA Environment 119
Embedding Artix in a CORBA Application 120
Using the CORBA Naming Service 123
Load Balancing with CORBA 125

Chapter 8 Embedding Artix in a Tuxedo Container 131
 iv

CONTENTS
Index 133
v

CONTENTS
 vi

List of Tables

Table 1: Artix Transport Plug-ins 14

Table 2: Artix Payload Format Plug-ins 15

Table 3: Artix Service Plug-ins 15

Table 4: IT_Logging Common Data Types, Methods, and Macros 53

Table 5: Artix Standalone Service Configuration Variables 71

Table 6: itartix_service Parameters 73

Table 7: itartix_service Install Parameters 75

Table 8: itartix_service Uninstall Parameters 76
vii

LIST OF TABLES
 viii

List of Figures

Figure 1: Artix Message Transporting 2

Figure 2: Using Multiple Artix Daemons 69

Figure 3: Using a Single Artix Daemon 69

Figure 4: The Locator Plug-ins 81

Figure 5: Locator Load balancing 82

Figure 6: The Session Manager Plug-ins 99
ix

LIST OF FIGURES
 x

Preface
Audience This guide is intended for Artix system administrators. It assumes that the

reader has a working knowledge of the middleware transports that are being
used with Artix.

Organization of this guide This guide is divided as follows:

� Chapter 1 provides an overview of the concepts behind using Artix to
solve integration projects and how Artix fits into a software
environment.

� Chapter 2 describes how to configure Artix services to provide optimal
performance.

� Chapter 3 provides a detailed discussion of using the advanced logging
features of Artix.

� Chapter 4 describes how to deploy the Artix standalone service.

� Chapter 5 describes how to use the Artix Locator Service.

� Chapter 6 describes how to use the Artix Session Manager.

Online help Artix Designer includes comprehensive online help, providing:

� Detailed step-by-step instructions on how to perform important tasks.

� A description of each screen.

� A comprehensive index and glossary.

� A full search feature.

� Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.
xi

PREFACE
Related documentation The library for Artix includes the following:

� Getting Started with Artix

� Artix Tutorial

� Deploying and Managing Artix Solutions

� Designing Artix Solutions

� Developing Artix Appliations in C++

� Developing Artix Appliations in Java

� Artix Security Guide

� Artix Thread Library Reference

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Reading path If you are new to Artix, you should read the documentation in the following
order:

1. Getting Started with Artix

The getting started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

2. Artix Tutorial

The tutorial guides you through programming Artix applications against
all of the supported transports.

3. Artix Administration Guide

The administration guide provides details about the services and
capabilities of Artix and how to integrate them into your software
environment.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:
 xii

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
xiii

mailto:support@iona.com

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xiv

CHAPTER 1

Introduction to
Artix
Artix allows you to deploy integration solutions that are
middleware-neutral.

Overview Artix provides a middleware connectivity solution that minimizes
invasiveness and lets an organization avoid being locked into any one
middleware transport. For example, Artix can be used to connect a BEA
Tuxedo�-based server to a CORBA client. Artix transparently handles the
message mapping and transformation between them. The Tuxedo server is
unaware that its client is using CORBA. In fact, with Artix handling the
communication, the client could be changed to an IBM WebSphere MQ�
client without modifying the server.

Along with this functionality Artix provides a great deal of configurability by
being built on IONA�s Adaptive Runtime Architecture (ART). All of Artix�s
transport and payload format support is encapsulated in individual plug-ins
as are all of the services provided with Artix. This allows Artix to be scaled to
fit any environment.

Artix message transporting Artix shields applications from the details of the transports used by
applications with which they are communicating, by providing on-the-wire
message transformation and mapping. Unlike the approach taken by
1

CHAPTER 1 | Introduction to Artix
Enterprise Application Integration (EAI) products, Artix does not use an
intermediate canonical format; it transforms the messages once. Figure 1
shows a high level view of how a message passes through Artix.

The approach taken by Artix provides a high level of throughput by avoiding
the overhead of making two transformations for each message.

Supported message transports Artix supports the following message transports:

� HTTP

� BEA Tuxedo

� IBM WebSphere MQ

� IIOP

� TIBCO Rendezvous�

� IIOP Tunnel

Supported payload formats Artix can automatically transform between the following payload formats:

� G2++

� FML � Tuxedo format

� CORBA (GIOP) � CORBA format

� FRL � fixed record length

� VRL � variable record length

� SOAP

� TibrvMsg - TIBCO Rendezvous format

Figure 1: Artix Message Transporting

Artix
 2

Artix contracts An Artix contract defines the interaction of a Service Access Point (SAP) or
endpoint with Artix. Contracts are written using a superset of the standard
Web Service Definition Language (WSDL). Following the procedure
described by W3C, IONA has extended WSDL to support Artix�s advanced
functionality, and use of transports and formats other than HTTP and SOAP.

An Artix contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and
operations that the SAP exposes. This part of the contract is independent of
the underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the interface. It is made
up of the WSDL tags <message>, <operation>, and <portType>.

Physical

The physical portion of the contract defines the transports, wire formats,
and routing information used to deliver messages to and from SAPs, over
the bus. This portion of the contract also defines which messages use each
of the defined transports and bindings. The physical portion of the contract
is made up of the standard WSDL tags <binding>, <port>, and
<operation>. It is also the portion of the contract that may contain IONA
WSDL extensions.

Deployment models Applications that use Artix can be deployed in one of two ways:

Embedded mode is the most invasive use of Artix and provides the highest
performance. In embedded mode, an application is modified to invoke Artix
functions directly and locally, as opposed to invoking a standalone Artix
service. This approach is the most invasive to the application, but also
provides the highest performance. Embedded mode requires linking the
application with Artix-generated stubs and skeletons to connect client and
server (respectively) to Artix.

Standalone mode runs as a separate process invoked as a service. In
standalone mode, Artix provides a zero-touch integration solution on the
application side. When designing a system, you simply generate and deploy
the Artix contracts that specify each endpoint. Because a standalone switch
3

CHAPTER 1 | Introduction to Artix
is not linked directly with the applications that use it (as in embedded
mode), a contract for standalone mode deployment must specify routing
information. This is the least efficient of the two modes.

Advanced Features Artix also supports the following advanced functionality:

� Message routing based on the operation or the port, including routing
based on characteristics of the port.

� Transaction support over Tuxedo, WebSphere MQ, and CORBA.

� SSL and TLS support.

� Security support for Tuxedo and WebSphere MQ.

� Container based deployment with IONA�s Application Server Platform
6.0 and Tuxedo 7.1 or higher.

� Session Management

� Location Services

� Load Balancing
 4

CHAPTER 2

Configuration
Artix�s runtime configuration provides a great deal of control
over how Artix systems perform.

Overview There are several tasks involved in creating an environment in which Artix
applications can run:

� Establishing the host computer environment

� Establishing the common and application-specific Artix runtime
environments

� Configuring the plug-ins to provide optimal performance.

In this chapter This chapter discusses the following topics:

Establishing the Host Computer Environment page 6

Configuring Artix Runtime Behavior page 9

Runtime Configuration Variables page 13

Artix Plug-in Configuration page 22
5

CHAPTER 2 | Configuration
Establishing the Host Computer Environment

Overview To use the Artix design tools and the Artix runtime environment, the host
computer must have several IONA-specific environment variables set. These
can be configured during installation or set later by running the provided
artix_env script.

Environmental variables Artix requires that the following environment variables be set on your
system:

� JAVA_HOME

� IT_PRODUCT_DIR

� IT_CONFIG_FILE

� IT_IDL_CONFIG_FILE

� IT_CONFIG_DIR

� IT_CONFIG_DOMAINS_DIR

� IT_DOMAIN_NAME

� PATH

JAVA_HOME

The path to your system�s JDK is specified with the system environment
variable JAVA_HOME. This must be set if you wish to use the Artix Designer.

IT_PRODUCT_DIR

IT_PRODUCT_DIR points to the top level of your IONA product installation.
For example, if you install Artix into the C:\Program Files\IONA directory of
your Windows system, you would set IT_PRODUCT_DIR to point to that
directory.

You can override this variable using the -ORBproduct_dir command line
parameter when running your Artix applications.

Note: If you have other IONA products installed and you choose not to
install them into the same directory tree, you will need to reset
IT_PRODUCT_DIR each time you switch IONA products.
 6

Establishing the Host Computer Environment
IT_CONFIG_FILE

IT_CONFIG_FILE specifies the location of the configuration file Artix services
use by default. You can overide this setting by using the -ORBdomain_name
and -ORBconfig_domains_dir command line options.

IT_IDL_CONFIG_FILE

IT_IDL_CONFIG_FILE specifies the configuration used by the Artix IDL
compiler. If this variable is not set, you will be unable to run the IDL to
WSDL tools provided with Artix. The configuration file for the Artix IDL
compiler is set as follows.

UNIX

Defaults to INSTALL_DIR/artix/1.2/etc/idl.cfg.

Windows

Defaults to INSTALL_DIR\artix\1.2\etc\idl.cfg.

IT_CONFIG_DIR

IT_CONFIG_DIR specifies the root configuration directory. The default root
configuration directory is /etc/opt/iona on UNIX, and product-dir\etc on
Windows. You can override this variable using the -ORBconfig_dir
command line parameter.

IT_CONFIG_DOMAINS_DIR

IT_CONFIG_DOMAINS_DIR specifies the directory where Artix searches for its
configuration files. The configuration domain�s directory defaults to
ORBconfig_dir/domains on UNIX, and ORBconfig_dir\domains on
Windows. You can override this variable using the -ORBconfig_domains_dir
command line parameter.

IT_DOMAIN_NAME

IT_DOMAIN_NAME specifies the name of the configuration domain used by
Artix to locate its configuration information. This variable also specifies the
name of the file in which the configuration information is stored. For
example the configuration information for domain artix would be stored in
ORBconfig_dir\domains\atrix.cfg on Windows and
ORBconfig_dir/domains/artix.cfg on Unix. You can override this variable
with the -ORBdomain_name command line parameter.

Note: Do not modify the default IDL configuration file.
7

CHAPTER 2 | Configuration
PATH

The Artix bin directories should be placed first on the PATH to ensures that
the proper libraries, configuration files, and utility programs (for example,
the IDL compiler) are used. These settings avoid problems that might
otherwise occur if the Application Server Platform and/or Tuxedo (both of
which include IDL compilers and CORBA class libraries) are installed on the
same host computer.

The default Artix bin directory is:

UNIX
$IT_PRODUCT_DIR/artix/1.2/bin

Windows
%IT_PRODUCT_DIR%\artix\1.2\bin

Running the artix_env Script The installation process creates a script, artix_env, that captures the
default information for setting the host computer�s Artix environment.
Running this script will properly configure your system to use Artix. It is
located in the Artix bin directory.

IT_PRODUCT_DIR\artix\1.2\bin\artix_env
 8

Configuring Artix Runtime Behavior
Configuring Artix Runtime Behavior

Overview Artix is built upon IONA�s Adaptive Runtime Architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code may be run�and may exhibit different
capabilities�in different configuration environments.

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default configuration file is located in
%IT_PRODUCT_DIR%\artix\1.2\etc\domains\artix.cfg on Windows and
$IT_PRODUCT_DIR/artix/1.2/etc/domains/artix.cfg on Unix.

The contents of this file may need to be changed to modify Artix logging,
routing, and other behaviors.

You can also manually create new Artix configuration domains to
compartmentalize your applications. However, this is only recommended if
you are familiar with configuring IONA�s ART platform.

Configuration Scopes An Artix configuration domain is divided into scopes. These are typically
organized into a hierarchy of scopes, whose fully-qualified names map
directly to ORB names. By organizing configuration variables into various
scopes, you can provide different settings for individual services, or common
settings for groups of services.

Configuration scopes apply to a subset of services or to a specific service in
an environment. Instances of the Artix standalone service can each have
their own configuration scopes. A default Artix standalone service scope is
automatically created when you install Artix.

Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
(nameTag {…};).
9

CHAPTER 2 | Configuration
A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the artix.cfg file, there are several predefined configuration scopes. For
example, the demo configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

Note that the orb_plugins list is redefined within each configuration scope.

Example 1: Demo Configuration Scope

demo
{
 fml_plugin
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "G2", "tunnel",
 "mq", "ws_orb", "fml"];
 };
 telco
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop”, "iiop”, "G2", "tunnel"];
 plugins:tunnel:iiop:port = "55002";
 poa:MyTunnel:direct_persistent = "true";
 poa:MyTunnel:well_known_address = "plugins:tunnel";

 server
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop”, "ots", "soap", "http", "G2:,
 "tunnel"];
 plugins:tunnel:poa_name = "MyTunnel";
 };
 };
 tibrv
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "soap", "http", "tibrv"];

 event_log:filters = ["*=FATAL+ERROR"];
 };
};
 10

Configuring Artix Runtime Behavior
Mapping to a configuration scope To make an Artix process run under a configuration scope, you name that
scope using the -ORBname parameter. Configuration scope names are
specified using the for scope.subscope. For example, the scope for the telco
server demo shown in Example 1 on page 10 would be specified as
demo.telco.server. During process initialization, Artix searches for a
configuration scope with the same name as the -ORBname parameter.

There are two methods for supplying the -ORBname parameter to an Artix
process:

� Pass the argument on the command line.

� Specify the ORBname as the third parameter to IT_Bus::init().

For example, to start an Artix process using the configuration specified in the
demo.tibrv configuration scope, you could start the process use the
following syntax:

Alternately, you could use the following code fragment to initialize the Artix
bus:

If a corresponding configuration scope is not located, the process starts
under the highest level configuration scope that matches the specified cope
name. If there are no configuration scopes that correspond to the ORBname
parameter, the Artix process runs under the default global scope. For
example, if the nested configuration scope tibrv does not exist, the Artix
process uses the configuration specified in the demo configuration scope; if
the scope demo does not exist, the process runs under the default global
scope.

Namespaces Most configuration variables are organized within namespaces, which serve
to group related variables. Namespaces can be nested, and are delimited by
colons (:). For example, configuration variables that control the behavior of
a plug-in begin with plugins: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts you would set the following variable:

<processName> [application parameters] -ORBname demo.tibrv

IT_Bus::init (argc, argv, “demo.tibrv”);

plugins:artix_service:iiop:port
11

CHAPTER 2 | Configuration
To set the location of the routing plug-in�s contract you would set the
following variable:

Variables Configuration data is stored in variables that are defined within each
namespace. In some instances variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
company.operations.orb_plugins variable would override a
company.orb_plugins variable. Plug-ins specified at the company scope
would apply to all processes in that scope, except those processes that
belong specifically to the company.operations scope and its child scopes.

Data types Each configuration variable has an associated data type that determines the
variable�s value.

Data types can be categorized into two types:

� Primitive types

� Constructed types

Primitive types

There are three primitive types: boolean, double, and long,.

Constructed types

Artix supports two constructed types: string and ConfigList (a sequence
of strings).

� In an Artix configuration file, the string character set is ASCII.

� The ConfigList type is simply a sequence of string types. For
example:

plugins:routing:wsdl_url

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];
 12

Runtime Configuration Variables
Runtime Configuration Variables

In this section The following topics are discussed in this section:

ORB Plug-ins List page 14

Binding Lists page 18

Thread Pool Control page 20
13

CHAPTER 2 | Configuration
ORB Plug-ins List

Overview The orb_plugins variable specifies the plug-ins that Artix processes load
during initialization. A plug-in is a class or code library that can be loaded
into an Artix application at runtime. These plug-ins provide the user the
ability to load network transports, payload format mappers, error logging
streams, and other features �on the fly.�

The default entry for the orb_plugins variable includes all of the logging and
transport plug-ins:

Artix plug-ins Each network transport and payload format that Artix is capable of
interoperating with uses its own plug-in. Many of the Artix features also use
plug-ins. The Artix transport plug-ins are listed in Table 1.

orb_plugins = ["xmlfile_log_stream",
 "iiop_profile",
 "giop",
 "iiop",
 "soap",
 "http",
 "tunnel",
 "mq",
 "ws_orb"];

Table 1: Artix Transport Plug-ins

Plug-in Transport

http Provides support for using HTTP and HTTPS.

ws_orb Provides support for CORBA interoperability.

tunnel Provides support for the IIOP transport using non-CORBA
payloads.

tuxedo Provides support for Tuxedo interoperability.

mq Provides support for WebSphere MQ interoperability.

tibrv Provides support for TIBCO Rendezvous interoperability.
 14

Runtime Configuration Variables
The Artix payload format plug-ins are listed in Table 2.

The Artix feature plug-ins are listed in Table 3.

Table 2: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the SOAP format.

G2 Decodes and encodes messages packaged using the G2++
format.

fml Decodes and encodes messages packaged in FML format.

tagged Decodes and encodes messages packed in variable record
length messages or another self-describing message format.

fixed Decode and encodes fixed record length messages.

Table 3: Artix Service Plug-ins

Plug-in Artix Feature

routing Enables Artix routing.

locator_endpoint Enables endpoints to use the Artix locator
service.

service_locator Enables the Artix locator. An Artix server
acting as the locator service must load
this plug-in.

artix_wsdl_publish Enables Artix endpoints to publish and
use Artix object references.

session_manager_service Enables the Artix Session Manager. An
Artix server acting as the session
manager must load this plug-in.

session_endpoint_manager Enables the Artix Session Manager.
Endpoints wishing to be managed by the
session manager must load this plug-in.
15

CHAPTER 2 | Configuration
sm_simple_policy Enables the policy mechanism for the
Artix Session Manager. Endpoints
wishing to be managed by the session
manager must load this plug-in.

Table 3: Artix Service Plug-ins

Plug-in Artix Feature
 16

Runtime Configuration Variables
Policies

Overview The policies namespace contains the following two variable for controlling
the publishing of server hostnames:

� http:server_address_mode_policy:publish_hostname

� soap:server_address_mode_policy:publish_hostname

If the policy corresponding to the transport used by the server, the
dynamically generated contract will be published with the original contents
of the address element.

http:server_address_mode_policy:publish_hostname

http:server_address_mode_policy:publish_hostname specifies how the
server�s address is published in dynamically generated Artix contracts.
When set this policy is set to false, the dynamically generated contract will
publish the IP address of the running server in the <http:address> element
describing the server�s location. When this policy is set to true, the
hostname of the machine hosting the running server is published in the
<http:address> element describing the server�s location.

soap:server_address_mode_policy:publish_hostname

soap:server_address_mode_policy:publish_hostname specifies how the
server�s address is published in dynamically generated Artix contracts.
When set this policy is set to false, the dynamically generated contract will
publish the IP address of the running server in the <soap:address> element
describing the server�s location. When this policy is set to true, the
hostname of the machine hosting the running server is published in the
<soap:address> element describing the server�s location.
17

CHAPTER 2 | Configuration
Binding Lists

Overview When using Artix�s CORBA functionality you need to configure how Artix
binds itself to message interceptors. The Artix binding namespace contains
variables that specify interceptor settings. An interceptor acts on a message
as it flows from sender to receiver. Computing concepts that fit the
interceptor abstraction include transports, marshaling streams, transaction
identifiers, encryption, session managers, message loggers, containers, and
data transformers. Interceptors are a form of the �Chain of Responsibility�
design pattern. Artix creates and manages chains of interceptors between
senders and receivers, and the interceptor metaphor is a means of creating a
�virtual connection� between a sender and a receiver.

The Artix binding namespace includes the following variables:

� client_binding_list

� server_binding_list

client_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and POA
collocation (where server and client are collocated in the same process), and
message-level interceptors used in client-side bindings for IIOP, SHMIOP
and GIOP.

The client_binding_list specifies a list of potential client-side bindings.
Each item is a string that describes one potential interceptor binding. For
example:

Interceptor names are separated by a plus (+) character. Interceptors to the
right are �closer to the wire� than those on the left. The syntax is as follows:

� Request-level interceptors, such as GIOP, must precede message-level
interceptors, such as IIOP.

� GIOP or POA_coloc must be included as the last request-level
interceptor.

binding:client_binding_list = ["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];
 18

Runtime Configuration Variables
� Message-level interceptors must follow the GIOP interceptor, which
requires at least one message-level interceptor.

� The last message-level interceptor must be a message-level transport
interceptor, such as IIOP or SHMIOP.

When a client-side binding is needed, the potential binding strings in the list
are tried in order, until one successfully establishes a binding. Any binding
string specifying an interceptor that is not loaded, or not initialized through
the orb_plugins variable, is rejected.

For example, if the ots plug-in is not configured, bindings that contain the
OTS request-level interceptor are rejected, leaving ["POA_Coloc",
"GIOP+IIOP", "GIOP+SHMIOP"]. This specifies that POA collocations should
be tried first; if that fails, (the server and client are not collocated), the GIOP
request-level interceptor and the IIOP message-level interceptor should be
used. If the ots plug-in is configured, bindings that contain the OTS request
interceptor are preferred to those without it.

server_binding_list

server_binding_list specifies interceptors included in request-level
binding on the server side. The POA request-level interceptor is implicitly
included in the binding.

The syntax is similar to client_binding_list. However, in contrast to the
client_binding_list, the left-most interceptors in the
server_binding_list are �closer to the wire�, and no message-level
interceptors can be included (for example, IIOP). For example:

An empty string ("") is a valid server-side binding string; this specifies that
no request-level interceptors are needed. A binding string is rejected if any
named interceptor is not loaded and initialized.

The default server_binding_list is ["OTS", ""]. If the ots plug-in is not
configured, the first potential binding is rejected, and the second potential
binding ("") is used, with no explicit interceptors added.

binding:server_binding_list = ["OTS",""];
19

CHAPTER 2 | Configuration
Thread Pool Control

Overview Variables in the thread_pool namespace set policies related to thread
control. They can be set globally for Artix instances in a configuration scope,
or they can be set on a per-service basis. The settings set on a per-service
basis override the global settings for the configuration scope.

To set the values globally, use the following syntax:

To set the values on a per-service basis you can specify either the service�s
name or the service�s fully qualified QName. The syntax is as follows:

For example, if an Artix instance�s contract has a service named
personalInfoService, you would specify its thread control settings as
follows:

The thread control settings specify the values for the thread pool on a
per-port basis. For instance, if personalInfoService describes three ports,
each port will have its own thread pool with values as specified by the
settings in the thread_pool:personalInfoService namespace.

The following variables are in this namespace:

� high_water_mark

� initial_threads

� low_water_mark

high_water_mark

high_water_mark sets the maximum number of threads allowed in each
port�s thread pool. Defaults to 25.

thread_pool:variable_name

thread_pool:service_name:variable_name
thread_pool:service_qname:variable_name

thread_pool:personalInfoService:variable_name
 20

Runtime Configuration Variables
initial_threads

initial_threads sets the number of initial threads in each port�s thread
pool. Defaults to 2.

low_water_mark

low_water_mark sets the minimum number of threads in each port�s thread
pool. Artix will terminate unused threads until only this number exists.
Defaults to 5.
21

CHAPTER 2 | Configuration
Artix Plug-in Configuration

Overview Each Artix transport, payload format, and service have properties which are
configurable. The variables used to configure plug-in behavior are specified
in the configuration scopes of each Artix runtime instance and follow the
same order of precedence. A plug-in setting specified in the global
configuration scope will be overridden in favor of a value set in a narrower
scope.

For example, if you set plugins:routing:use_type_factory to true in the
global configuration scope and set it to false in the scope widget_form, all
Artix runtimes, except for those running under the scope widget_form,
would use true for the value of use_type_factory. Any Artix instance using
the scope widget_form would use false for the value of use_type_factory.

In this section This section discusses the following topics:

Routing Plug-in page 23

CORBA Plug-in page 24

Tuxedo Plug-in page 25

Locator Service Plug-in page 26

Locator Service Endpoint Plug-in page 27

Session Manager Plug-in page 28

Session Manager Simple Policy Plug-in page 29

Session Manager Endpoint Plug-in page 30

WSDL Publishing Plug-in page 31
 22

Artix Plug-in Configuration
Routing Plug-in

Overview The routing plug-in uses the following variables:

� plugins:routing:routing_wsdl

� plugins:routing:use_type_factory

� plugins:routing:use_pass_through

plugins:routing:routing_wsdl

plugins:routing:routing_wsdl specifies the URL to search for Artix
contracts containing the routing rules for your application. This value can be
either a single URL or a list of URLs. If your application is using the routing
plug-in you must specify a value for this variable.

plugins:routing:use_type_factory

plugins:routing:use_type_factory specifies if the routing plug-in loads
user compiled type factories. The default setting is false.

plugins:routing:use_pass_through

plugins:routing:use_pass_through specifies if the routing plug-in uses the
pass-through routing optimization. This optimization allows the router to
copy the message buffer directly from the source endpoint to the destination
endpoint if both use the same binding. The default value is true.

Note: The use of type factories in routing is deprecated.

Note: A few attributes are carried in the message body, as opposed to by
the transport. Such attributes are always propagated when the
pass-through optimization is in effect, regardless of attribute propagation
rules.
23

CHAPTER 2 | Configuration
CORBA Plug-in

Overview In general, the Artix CORBA plug-in does not have any configuration
variables directly associated with it. However, the CORBA plug-in is
implemented using the same framework as IONA�s Application Server
Platform and it is affected by the same configuration settings as IONA�s
Application Server Platform.

For example, if you set the configuration variable:

This will impact the CORBA messages that Artix sends.

Or, if you remove the plug-in POA_Coloc from the client binding list, then
collocation will not work.

policies:giop:interop_policy:send_principal = "true";
 24

Artix Plug-in Configuration
Tuxedo Plug-in

Overview The Tuxedo plug-in has only one configuration variable:

� plugins:tuxedo:server

plugins:tuxedo:server

plugins:tuxedo:server is a boolean that specifies if the Artix process is a
Tuxedo server and must be started using tmboot. The default is false.
25

CHAPTER 2 | Configuration
Locator Service Plug-in

Overview The locator service plug-in, service_locator, has the following
configuration variables:

� plugins:locator:service_url

� plugins:locator:peer_timeout

plugins:locator:service_url

plugins:locator:service_url specifies the location of the Artix contract
defining the location service and configuring its address. A copy of this
contract, locator.wsdl, is located in the wsdl folder of your Artix
installation.

plugins:locator:peer_timeout

plugins:locator:peer_timeout specifies the amount of time, in
milliseconds, the locator plug-in waits between keep-alive pings of the
services registered with it. The default is 4000000 (4 sec.).
 26

Artix Plug-in Configuration
Locator Service Endpoint Plug-in

Overview The locator service endpoint plug-in, locator_endpoint, has the following
configuration variables:

� plugins:locator:wsdl_url

� plugins:session_endpoint_manager:peer_timout

plugins:locator:wsdl_url

plugins:locator:wsdl_url specifies the location of the Artix contract
defining the location service and specifying the address locator endpoints
use to communicate with the locator service. A copy of this contract,
locator.wsdl, is located in the wsdl folder of your Artix installation.

plugins:session_endpoint_manager:peer_timout

plugins:session_endpoint_manager:peer_timout specifies the amount of
time, in milliseconds, the server waits between keep-alive pings of the
locator service. The default is 4000000 (4 sec.).
27

CHAPTER 2 | Configuration
Session Manager Plug-in

Overview The session manager plug-in, session_manager_service, has the following
configuration variables:

� plugins:session_manager_service:service_url

� plugins:session_manager_service:peer_timeout

plugins:session_manager_service:service_url

plugins:session_manager_service:service_url specifies the location of
the Artix contract defining the session manager. A copy of this contract,
session-manager.wsdl, is located in the wsdl folder of your Artix
installation.

plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout specifies the amount of
time, in milliseconds, the session manager plug-in waits between keep-alive
pings of the services registered with it. The default is 4000000 (4 sec.).
 28

Artix Plug-in Configuration
Session Manager Simple Policy Plug-in

Overview The session manager�s simple policy plug-in, sm_simple_policy, has the
following configuration variables:

� plugins:sm_simple_policy:max_concurrent_sessions

� plugins:sm_simple_policy:min_session_timeout

� plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

plugins:sm_simple_policy:max_concurrent_sessions specifies the
maximum number of concurrent sessions the session manager will allocate.
Default value is 1.

plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:min_session_timeout specifies the minimum
amount of time, in seconds, allowed for a session�s timeout setting. Zero
means the unlimited. Default is 5.

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_session_timeout specifies the maximum
amount of time, in seconds, allowed for a session�s timesout setting. Zero
means the unlimited. Default is 600.
29

CHAPTER 2 | Configuration
Session Manager Endpoint Plug-in

Overview The session manager endpoint plug-in, session_endpoint_manager, has the
following configuration variables:

� plugins:session_endpoint_manager:wsdl_url

� plugins:session_endpoint_manager:endpoint_manager_url

� plugins:session_endpoint_manager:default_group

� plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:wsdl_url

plugins:session_endpoint_manager:wsdl_url specifies the location of the
contract defining the session management service the endpoint manager is
to contact.

plugins:session_endpoint_manager:endpoint_manager_url

plugins:session_endpoint_manager:endpoint_manager_url specifies the
location of the contract defining the endpoint manager. The contract
contains the contact information for the endpoint manager.

plugins:session_endpoint_manager:default_group

plugins:session_endpoint_manager:default_group specifies the default
group name for all endpoints that are instantiated using the configuration
scope.

plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:header_validation specifies whether
or not a server validates the session headers passed to it by clients. Default
value is true.
 30

Artix Plug-in Configuration
WSDL Publishing Plug-in

Overview The WSDL publishing plug-in, artix_wsdl_publishing, has the following
configuration variables:

� plugins:wsdl_publish:publish_port

plugins:wsdl_publish:publish_port

plugins:wsdl_publish:publish_port specifies the port on which the
WSDL publishing port can be contacted.
31

CHAPTER 2 | Configuration
 32

CHAPTER 3

Artix Logging and
SNMP Support
This chapter describes various Artix logging approaches,
including Artix support for SNMP (Simple Network
Management Protocol) and integration with third-party SNMP
management tools.

In this chapter This chapter includes the following sections:

Artix Logging page 34

Using Trace Macros page 35

Using the SNMP Logging Plug-in page 39

Using the XML Logging Plug-in page 46

IT_Logging Overview page 53

IT_Logging::LogStream Interface page 57

Example page 60

Performance Logging page 62
33

CHAPTER 3 | Artix Logging and SNMP Support
Artix Logging

Overview Artix provides the following IT_Logging::logstream plug-ins: the
xmlfile_logstream and snmp_logstream. In addition, IONA Application
Server Platform logging features such as local_logstream. are provided.

For information on configuring these plug-ins see �Configuration� on page 5.
 34

Using Trace Macros
Using Trace Macros

Artix Trace Macros In using Trace macros, the most important concept is the trace level. Trace
level is an enum, defined in it_bus/logging_support, that lets you filter
events:

The simplest trace statement emits a constant string at level IT_TRACE. For
example:

Several versions of the macro allow using a C printf format string, and
passing in some arguments. Because you cannot have variable argument
lists for macros, there are several defined according to how many arguments
are allowed:

Both the zero argument and the multi argument versions have a set that
allows a trace level to be passed in, instead of level IT_TRACE. For example:

const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL

const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR

const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING

const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH

const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED

const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW

const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

TRACELOG("Hello world");

TRACELOG1("My name is: %s", "Slim Shady");
TRACELOG2("At state number %d, this happened: %s", 44, "connection failure");

TRACELOG_WITH_LEVEL(IT_METHODS, "MyClass::MyClass()");
TRACELOG_WITH_LEVEL1(IT_TRACE_METHODS_INTERNAL, "Value of my_name_field was %s", my_name_field);
35

CHAPTER 3 | Artix Logging and SNMP Support
If you must create your own output using iostreams or another expensive
process that isn't supported by the macro, you use the trace guard block, so
that the trace level test will prevent your trace creation code from running
when it will not produce output. For example:

To create binary output (for instance, a hex dump of the buffer), use
TRACELOGBUFFER. For example:

If the trace statement issues at a level less than or equal to the process trace
level, then the entry is written to disk. The default log file name is
it_bus.log.

BEGIN_TRACE(IT_TRACE)
 String trace_message = "data elements: ";
 for(i = 0; i < data_count; i++)
 {
 trace_message = trace_message + data_item[i] + "

";
 }
 TRACELOG(trace_message.c_str());
END_TRACE

TRACELOGBUFFER(vvMQMessageData, vvMQMessageData.GetSize())
 36

Using Trace Macros
Application Server Platform Trace Macros

Overview <orbix\logging_support.h> defines ASP-style logging macros.

IT_LOG_MESSAGE Macros

IT_LOG_MESSAGE() Macro

// C++
#define IT_LOG_MESSAGE(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc \
) ...

A macro to use for reporting a log message.

Parameters

Examples Here is a simple example of usage:

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

...
IT_LOG_MESSAGE(
 event_log,
 IT_IIOP_Logging::SUBSYSTEM,
 IT_IIOP_Logging::SOCKET_CREATE_FAILED,
 IT_Logging::LOG_ERROR,
 SOCKET_CREATE_FAILED_MSG
);
37

CHAPTER 3 | Artix Logging and SNMP Support
IT_LOG_MESSAGE_1() Macro

// C++
#define IT_LOG_MESSAGE_1(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc, \
 param0 \
) ...

A macro to use for reporting a log message with one event parameter.

Parameters

In addition, the IT_LOG_MESSAGE_2(), IT_LOG_MESSAGE_3(),
IT_LOG_MESSAGE_4(), and IT_LOG_MESSAGE_5() macros, are provided for
reporting log messages with two, three, four, and five parameters,
respectively.

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 A single parameter for an EventParameters sequence.
 38

Using the SNMP Logging Plug-in
Using the SNMP Logging Plug-in

SNMP Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).

 The Artix SNMP LogStream plug-in uses the open source library net-snmp
(v.5.0.7) to emit SNMPv1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

the Artix Management
Information Base (MIB)

A MIB file is a database of objects that can be managed using SNMP. It has
a hierarchical structure, similar to a DOS or UNIX directory tree. It contains
both pre-defined values and values that can be customized. The Artix MIB is
shown below:

Example 2: Artix MIB

IONA-ARTIX-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Counter32,
 Unsigned32,
 NOTIFICATION-TYPE FROM SNMPv2-SMI
 DisplayString FROM RFC1213-MIB
;

-- v2 s/current/current

 iona OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) 3027 }

 ionaMib MODULE-IDENTITY
 LAST-UPDATED "200303210000Z"

 ORGANIZATION "IONA Technologies PLC"
39

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 3 | Artix Logging and SNMP Support
 CONTACT-INFO
 "
 Corporate Headquarters
 Dublin Office
 The IONA Building
 Shelbourne Road
 Ballsbridge
 Dublin 4 Ireland
 Phone: 353-1-662-5255
 Fax: 353-1-662-5244

 US Headquarters
 Waltham Office
 200 West Street 4th Floor
 Waltham, MA 02451
 Phone: 781-902-8000
 Fax: 781-902-8001

 Asia-Pacific Headquarters
 IONA Technologies Japan, Ltd
 Akasaka Sanchome Bldg.
 7F 3-21-16 Akasaka, Minato-ku,
 Tokyo, Japan 107-0052
 Tel: +81 3 3560 5611
 Fax: +81 3 3560 5612
 E-mail: support@iona.com
 "
 DESCRIPTION
 "This MIB module defines the objects used and format of SNMP traps that are generated
 from the Event Log for Artix based systems from IONA Technologies"

 ::= { iona 1 }

Example 2: Artix MIB
 40

Using the SNMP Logging Plug-in

-- iona(3027)

-- |
-- ionaMib(1)
-- |
-- __
-- | | |
-- orbix3(2) IONAAdmin (3) Artix (4)
- |
-- --------------------
-- | |
-- ArtixEventLogMibObjects(0) ArtixEventLogMibTraps (1)
-- | |
-- -- -----------------------
-- |- eventSource (1) |- ArtixbaseTrapDef (1)
-- |- eventId (2)
-- |- eventPriority (3)
-- |- timeStamp (4)
-- |- eventDescription (5)

 Artix OBJECT IDENTIFIER ::= { ionaMib 4 }
 ArtixEventLogMibObjects OBJECT IDENTIFIER ::= { Artix 0 }
 ArtixEventLogMibTraps OBJECT IDENTIFIER ::= { Artix 1 }
 ArtixBaseTrapDef OBJECT IDENTIFIER ::= { ArtixEventLogMibTraps 1 }

-- MIB variables used as varbinds
 eventSource OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component or subsystem which generated the event."
 ::= { ArtixEventLogMibObjects 1 }

Example 2: Artix MIB
41

CHAPTER 3 | Artix Logging and SNMP Support
 eventId OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The event id for the subsystem which generated the event."

 ::= { ArtixEventLogMibObjects 2 }

 eventPriority OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The severity level of this event. This maps to IT_Logging::EventPriority types. All
 priority types map to four general types: INFO (I), WARN (W), ERROR (E), FATAL_ERROR (F)"

 ::= { ArtixEventLogMibObjects 3 }

 timeStamp OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The time when this event occurred."

 ::= { ArtixEventLogMibObjects 4 }

 eventDescription OBJECT-TYPE
 SYNTAX DisplayString (SIZE(0..255))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The component/application description data included with event."

 ::= { ArtixEventLogMibObjects 5 }

-- SNMPv1 TRAP definitions
-- ArtixEventLogBaseTraps TRAP-TYPE
-- OBJECTS {
-- eventSource,
-- eventId,
-- eventPriority,

Example 2: Artix MIB
 42

Using the SNMP Logging Plug-in
IONA SNMP integration Events received from various Artix components are converted into SNMP
management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a logstream plug-in called snmp_log_stream. The shlib name
of the SNMP plug-in found in the artix.cfg file is:

-- timestamp,
-- eventDescription
-- }

-- STATUS current
-- ENTERPRISE iona
-- VARIABLES { ArtixEventLogMibObjects }
-- DESCRIPTION "The generic trap generated from an Artix Event Log."
-- ::= { ArtixBaseTrapDef 1 }

-- SNMPv2 Notification type

 ArtixEventLogNotif NOTIFICATION-TYPE
 OBJECTS {
 eventSource,
 eventId,
 eventPriority,
 timestamp,
 eventDescription
 }

 STATUS current
 ENTERPRISE iona
 DESCRIPTION "The generic trap generated from an Artix Event Log."
 ::= { ArtixBaseTrapDef 1 }

END

Example 2: Artix MIB

plugins:snmp_log_stream:shlib_name = "it_snmp"
43

CHAPTER 3 | Artix Logging and SNMP Support
The SNMP plug-in has five configuration variables, whose defaults can be
overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

The last plugin described, oid, is the Enterprise Object Identifier. This
identifier is assigned to specific enterprises by the Internet Assigned
Numbers Authority (IANA). The first six numbers correspond to the prefix:
"iso.org.dod.internet.private.enterprise" (1.3.6.1.4.1). Each enterprise is
assigned a unique number, and can provide additional numbers to further
specify the enterprise and product. For example, the oid for IONA is 3027.
IONA has added �1.4.1.0� for Artix. Thus the complete OID for IONA�s Artix
is �1.3.6.1.4.1.3027.1.4.1.0�. To find the number for your enterprise, visit
the IANA website at http://www.iana.org.

The SNMP plug-in implements the IT_Logging::LogStream interface and
hence, acts like the local_log_stream plug-in.

plugins:snmp_log_stream:community = "public";

plugins:snmp_log_stream:server = "localhost";

plugins:snmp_log_stream:port = "162";

plugins:snmp_log_stream:trap_type = "6";

plugins:snmp_log_stream:oid = "<your IANA number in dotted decimal notation>"
 44

http://www.iana.org

Using the XML Logging Plug-in
Using the XML Logging Plug-in

Using the XML Logging Plug-in You can modify your event log filters to enable or disable Artix tracing.

The out-of-the-box setting for event_log:filters is ["*=FATAL+ERROR"].

So, for example, to cause transport buffer events to be shown, update the
event_log:filters to include INFO_MED:

The following causes typical trace statement output:

In addition, you can:

� add xmlfile_log_stream to the orb_plugins list

� update the filename variable (default is it_bus.log):
 plugins:xmlfile_log_stream:filename = "artix_logfile.xml";

� modify the size element (default is 2MB):
 plugins:xmlfile_log_stream:max_file_size = "100000";

� add optional element (default is false):
 plugins:xmlfile_log_stream:use_pid = "false";

The Artix logging output from the TRACE macros now goes to the event log,
so local_log_stream, xmlfil_log_stream or SNMP_log_stream can be
used.

logging_support.h The following example shows the contents of logging_support.h:

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI"];
45

CHAPTER 3 | Artix Logging and SNMP Support
Example 3: Artix logging_support.h

#if !defined(_IT_BUS_LOGGING_)
#define _IT_BUS_LOGGING_
#include <stdio.h>
#include <stdarg.h>

#include <it_bus/API_Defines.h>

#define MAX_STACK_ALLOCATION 256
#define MAX_TRACE_SIZE 16384

typedef IT_UShort IT_TraceLevel;

//these are now equal to ART logging values, these are just for backward compatibility
 //value to put in event_log:filters
const IT_TraceLevel IT_TRACE_FATAL = 64; //FATAL
const IT_TraceLevel IT_TRACE_ERROR = 32; //ERROR
const IT_TraceLevel IT_TRACE_WARNING = 16; //WARNING
const IT_TraceLevel IT_TRACE = 4; //INFO_HIGH
const IT_TraceLevel IT_TRACE_BUFFER = 2; //INFO_MED
const IT_TraceLevel IT_TRACE_METHODS = 1; //INFO_LOW
const IT_TraceLevel IT_TRACE_METHODS_INTERNAL = 1; //INFO_LOW

extern IT_AFC_API IT_TraceLevel g_log_filter;

namespace CORBA
{
class ORB;
};

namespace IT_Logging
{
 class EventLog;
}

 46

Using the XML Logging Plug-in
extern "C"
{
 void IT_AFC_API set_global_log_filter(IT_TraceLevel trace_level);
 void IT_AFC_API set_logging_default_ORB(CORBA::ORB* orb);

 void IT_AFC_API write_log_record(IT_Logging::EventLog* event_log, IT_TraceLevel trace_level,
const char* description, ...);

 void IT_AFC_API write_log_record_with_CDATA(IT_Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* data_buffer, long buffer_size);

 void IT_AFC_API write_log_record_with_binary(IT_Logging::EventLog* event_log, IT_TraceLevel
trace_level, const char* description, const char* data_buffer, long buffer_size);

}

//These are for writing data buffers
//binary buffers are written in a hex dump format.
//to see output from these, include INFO_MED in your event_log:filters
#define IT_LOG_BUFFER(event_log, Entry, Length) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_TRACE_BUFFER, "Buffer Output", Entry, Length);

\
 }

#define IT_LOG_CDATA(event_log, description, Entry) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_TRACE_BUFFER, description, Entry, 0); \
 }

#define IT_LOG_CDATA_SIZE(event_log, description, Entry, Size) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(event_log, IT_TRACE_BUFFER, description, Entry, Size); \
 }

#define IT_LOG_CDATA_BINARY_BUFFER(event_log, description, bbData) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(event_log, IT_TRACE_BUFFER, description,

bbData.get_const_pointer(), bbData.get_size()); \
 }

Example 3: Artix logging_support.h
47

CHAPTER 3 | Artix Logging and SNMP Support
//these are used for controlled tracing operations. description is a printf format string
//they allow specifying the trace level so callers can control visibility
#define IT_LOG_GUARDED0(event_log, trace_level, description) \
 if ((g_log_filter & trace_level) != 0) \
 write_log_record(event_log, trace_level, description);

#define IT_LOG_GUARDED(event_log, trace_level, description) \
 IT_LOG_GUARDED0(event_log, trace_level, description)

#define IT_LOG_GUARDED1(event_log, trace_level, description, Arg1) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1); \
 }

#define IT_LOG_GUARDED2(event_log, trace_level, description, Arg1, Arg2) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2); \
 }

#define IT_LOG_GUARDED3(event_log, trace_level, description, Arg1, Arg2, Arg3) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2, Arg3); \
 }

#define IT_LOG_GUARDED4(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4); \
 }

#define IT_LOG_GUARDED5(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5) \
 if ((g_log_filter & trace_level) != 0) \
 { \
 write_log_record(event_log, trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5); \
 }

Example 3: Artix logging_support.h
 48

Using the XML Logging Plug-in
//these are used to guard a code block from executing when the purpose of the code
//block is solely for formatting a trace statement. It prevents the code from
//executing when the trace_level is filtered out and wouldn't be used anyway.
#define BEGIN_TRACE(trace_level) \
 if ((g_log_filter & trace_level) != 0) \
 {

#define END_TRACE \
 }

//all the macros that follow are just short hand for the previous ones, but they
//default the event_log to 0, which uses the first one that was loaded (usually
//the only one unless you are using multiple orb names in your cfg file

//These are for writing data buffers
//binary buffers are written in a hex dump format.
//to see output from these, include INFO_MED in your event_log:filters
#define TRACELOGBUFFER(Entry, Length) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(0, IT_TRACE_BUFFER, "Buffer Output", Entry, Length); \
 }

#define TRACELOG_CDATA(description, Entry) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(0, IT_TRACE_BUFFER, description, Entry, 0); \
 }

#define TRACELOG_CDATA_SIZE(description, Entry, Size) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_CDATA(0, IT_TRACE_BUFFER, description, Entry, Size); \
 }

#define TRACELOG_CDATA_BINARY_BUFFER(description, bbData) \
 if ((g_log_filter & IT_TRACE_BUFFER) != 0) \
 { \
 write_log_record_with_binary(0, IT_TRACE_BUFFER, description, bbData.get_const_pointer(),

bbData.get_size()); \
 }

Example 3: Artix logging_support.h
49

CHAPTER 3 | Artix Logging and SNMP Support
//These are used for method level tracing
//to see output from these, include INFO_LOW in your event_log:filters
#define BEGIN_INTERNAL_METHOD(Name) \
 const char *FuncName = Name; \
 if ((g_log_filter & IT_TRACE_METHODS_INTERNAL) != 0) \
 write_log_record(0, IT_TRACE_METHODS_INTERNAL, FuncName);

#define END_INTERNAL_METHOD

#define BEGIN_METHOD(Name) \
 const char *FuncName = Name; \
 if ((g_log_filter & IT_TRACE_METHODS_INTERNAL) != 0) \
 write_log_record(0, IT_TRACE_METHODS, FuncName);

#define END_METHOD

//these are used for controlled tracing operations. description is a printf format string
//they allow specifying the trace level so callers can control visibility
#define TRACELOG_WITH_LEVEL0(trace_level, description) \
 IT_LOG_GUARDED(0, trace_level, description)

#define TRACELOG_WITH_LEVEL(trace_level, description) \
 IT_LOG_GUARDED(0, trace_level, description)

#define TRACELOG_WITH_LEVEL1(trace_level, description, Arg1) \
 IT_LOG_GUARDED1(0, trace_level, description, Arg1)

#define TRACELOG_WITH_LEVEL2(trace_level, description, Arg1, Arg2) \
 IT_LOG_GUARDED2(0, trace_level, description, Arg1, Arg2)

#define TRACELOG_WITH_LEVEL3(trace_level, description, Arg1, Arg2, Arg3) \
 IT_LOG_GUARDED3(0, trace_level, description, Arg1, Arg2, Arg3)

#define TRACELOG_WITH_LEVEL4(trace_level, description, Arg1, Arg2, Arg3, Arg4) \
 IT_LOG_GUARDED4(0, trace_level, description, Arg1, Arg2, Arg3, Arg4)

#define TRACELOG_WITH_LEVEL5(trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5) \
 IT_LOG_GUARDED5(0, trace_level, description, Arg1, Arg2, Arg3, Arg4, Arg5)

Example 3: Artix logging_support.h
 50

Using the XML Logging Plug-in
//these are used for normal tracing operations. description is a printf format string
//they default the trace level to IT_TRACE, if you want to use another level see the previous set
#define TRACELOG(description) \
 IT_LOG_GUARDED(0, IT_TRACE, description)

#define TRACELOG0(description) \
 IT_LOG_GUARDED(0, IT_TRACE, description)

#define TRACELOG1(description, Arg1) \
 IT_LOG_GUARDED1(0, IT_TRACE, description, Arg1)

#define TRACELOG2(description, Arg1, Arg2) \
 IT_LOG_GUARDED2(0, IT_TRACE, description, Arg1, Arg2)

#define TRACELOG3(description, Arg1, Arg2, Arg3) \
 IT_LOG_GUARDED3(0, IT_TRACE, description, Arg1, Arg2, Arg3)

#define TRACELOG4(description, Arg1, Arg2, Arg3, Arg4) \
 IT_LOG_GUARDED4(0, IT_TRACE, description, Arg1, Arg2, Arg3, Arg4)

#define TRACELOG5(description, Arg1, Arg2, Arg3, Arg4, Arg5) \
 IT_LOG_GUARDED5(0, IT_TRACE, description, Arg1, Arg2, Arg3, Arg4, Arg5)

#endif

Example 3: Artix logging_support.h
51

CHAPTER 3 | Artix Logging and SNMP Support
IT_Logging Overview
The IT_Logging module is the centralized point for controlling all logging
methods. The LogStream interface controls how and where events are
received.

The IT_Logging module also uses the following common data types, static
method, and macros.

IT_Logging::ApplicationId Data Type

//IDL
typedef string ApplicationId;

An identifying string representing the application that logged the event.

For example, a Unix and Windows ApplicationId contains the host name
and process ID (PID) of the reporting process. Because this value can differ
from platform to platform, streams should only use it as informational text,
and should not attempt to interpret it.

IT_Logging::EventId Data Type

//IDL
typedef unsigned long EventId;

An identifier for the particular event.

Table 4: IT_Logging Common Data Types, Methods, and Macros

Common Data Types Methods and Macros

ApplicationId
EventId
EventParameters
EventPriority
SubsystemId
Timestamp

format_message()

IT_LOG_MESSAGE()
IT_LOG_MESSAGE_1()
IT_LOG_MESSAGE_2()
IT_LOG_MESSAGE_3()
IT_LOG_MESSAGE_4()
IT_LOG_MESSAGE_5()
 52

IT_Logging Overview
IT_Logging::EventParameters Data Type

//IDL
typedef CORBA::AnySeq EventParameters;

A sequence of locale-independent parameters encoded as a sequence of Any
values.

IT_Logging::EventPriority Data Type

//IDL
typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into the
following categories of priority.

The possible values for an EventPriority consist of the following:

LOG_NO_EVENTS
LOG_ALL_EVENTS
LOG_INFO_LOW
LOG_INFO_MED
LOG_INFO_HIGH
LOG_INFO (LOG_INFO_LOW)

Information A significant non-error event has occurred. Examples include
server startup/shutdown, object creation/deletion, and
information about administrative actions. Informational
messages provide a history of events that can be invaluable
in diagnosing problems.

Warning The subsystem has encountered an anomalous condition, but
can ignore it and continue functioning. Examples include
encountering an invalid parameter, but ignoring it in favor of
a default value.

Error An error has occurred. The subsystem will attempt to
recover, but may abandon the task at hand. Examples
include finding a resource (such as memory) temporarily
unavailable, or being unable to process a particular request
due to errors in the request.

Fatal Error An unrecoverable error has occurred. The subsystem or
process will terminate.
53

CHAPTER 3 | Artix Logging and SNMP Support
LOG_ALL_INFO
LOG_WARNING
LOG_ERROR
LOG_FATAL_ERROR

A single value is used for EventLog operations that report events or
LogStream operations that receive events. In filtering operations such as
set_filter(), these values can be combined as a filter mask to control
which events are logged at runtime.

IT_Logging::format_message()

// C++
static char* format_message(
 const char* description,
 const IT_Logging::EventParameters& params
);

Returns a formatted message based on a format description and a sequence
of parameters.

Parameters Messages are reported in two pieces for internationalization:

format_message() copies the description into an output string, interprets
each event parameter, and inserts the event parameters into the output
string where appropriate. Event parameters that are primitive and
SystemException parameters are converted to strings before insertion. For
all other types, question marks (?) are inserted.

IT_Logging::SubsystemId Data Type

//IDL
typedef string SubsystemId;

An identifying string representing the subsystem from which the event
originated. The constant _DEFAULT may be used to enable all subsystems.

description A locale-dependent string that describes of how to use the
sequence of parameters in params.

params A sequence of locale-dependent parameters.
 54

IT_Logging Overview
IT_Logging::Timestamp Data Type

//IDL
typedef unsigned long Timestamp;

The time of the logged event in seconds since January 1, 1970.
55

CHAPTER 3 | Artix Logging and SNMP Support
IT_Logging::LogStream Interface
Each of the Artix logging plug-ins implements the IT_Logging::LogStream
interface. The LogStream interface allows an application to intercept events
and write them to some concrete location via a stream.
IT_Logging::EventLog objects maintain a list of LogStream objects. You
register a LogStream object from an EventLog using register_stream().
The complete LogStream interface is as follows:

// IDL in module IT_Logging
interface LogStream {
 void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

 void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);
};

These operations are described in detail as follows:

LogStream::report_event()

// IDL
void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
 56

IT_Logging::LogStream Interface
);

Reports an event and its event-specific data to the log stream.

Parameters

See also IT_Logging::EventLog::report_event()

IT_Logging::LogStream::report_message()

LogStream::report_message()

// IDL
void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);

Reports an event and message to the log stream.

Parameters

See also IT_Logging::EventLog::report_message()

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.

event A unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

event_data Event-specific data.

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.

event The unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

description A string describing the format of parameters.

parameters A sequence of parameters for the log.
57

CHAPTER 3 | Artix Logging and SNMP Support
IT_Logging::LogStream::report_event()
 58

Example
Example

Controlling Application Logging This example shows application logging enable by including the
xmlfile_log_stream plugin in the orb_plugins list (this plugin is included
in the default orb_plugins list, though it is not included in the orb_plugins
lists within many of the demo program configuration scopes). If you want to
enable logging to an XML file for the applications you develop, include this
plugin in your orb_plugins list.

To enable usage of the xmlfile_log_stream plugin, several other
configuration variables must also be set. These variable are all set within the
default/global scope in the artix.cfg file:

plugins:xmlfile_log_stream:shlib_name =
 “it_xmlfile”;

plugins:xmlfile_log_stream:filename =
 “artix_logfile.xml”;
default: it_bus.log

plugins:xmlfile_log_stream:max_file_size =
 “2000000”;
default: 2 mb

plugins:xmlfile_log_stream:use_pid =
 “false”;
default: false

standard logging setting; logs errors and warnings
event_log:filters =
 [“*=FATAL+ERROR+WARNING”];

very detailed logging
#event_log:filters = [“*=*”];

transport buffer logging
#event_log:filters =
 [“*=FATAL+ERROR+WARNING+INFO_MED”];

high level informational logging
#event_log:filters =
 [“*=FATAL+ERROR+WARNING+INFO_HI”];
59

CHAPTER 3 | Artix Logging and SNMP Support
Using the Logging Functionality
The default configuration settings enable logging of only serious errors and
warnings. If you want more exhaustive information, you should either select
a different filter list at the default scope, or include a more expansive
event_log:filters configuration variable within your configuration scope.

If you have trouble running any of the demos, you should enable a high level
of logging, which requires adding the xmlfile_log_stream plugin to the
orb_plugins list and selecting the desired reporting level.
 60

Performance Logging
Performance Logging

Overview The performance logging plug-ins allow applications based on IONA
products to integrate effectively with Enterprise Management Systems
(EMSs). Currently artix support integration with IBM Tivoli�.

This section covers general Artix details. For information on integration with
a Tivoli installation, refer to the Tivoli Integration Guide.

Performance logging Performance logging lets you see how each server is responding to load.
These plug-ins log this data to file or syslog. Your EMS can read the
performance data from the logs and initiate appropriate actions. For
example, issuing a restart to a server that has become unresponsive, or
starting a new replica for an overloaded cluster.

Configuration The performance logging component consist of three plug-ins:

� The response time logger plugin

� The request counter plugin

� The collector plugin

The response time logger plugin monitors response times of requests as they
pass through ART binding chains. It can be used to collect response times
for CORBA, RMI-IIOP or HTTP calls in IONA�s CORBA and J2EE products.
The request counter plugin performs the same function for Artix.

The collector plugin periodically harvests data from the response time logger
and request counter plug-ins and logs the results. To monitor the
performance of CORBA or J2EE requests (made in the context of IONA�s
Application Server Platform), you must perform the following steps to
reconfigure the Application Server Platform:
61

CHAPTER 3 | Artix Logging and SNMP Support
Add it_response_time_logger to the orb_plugins list for the server you
wish to instrument. Add it_reponse_time_logger to the server and servlet
binding lists for that server. For example:

Configuring the collector plugin You can configure the collector plugin to log data either to a file or to syslog.
The following example results in performance data being logged to
/var/log/my_app/perf_logs/treasury_app.log every 90 seconds (if you
do not specify the period, it defaults to 60 seconds):

You can also configure the collector to log to a syslog daemon or Windows
Event Log:

binding:servlet_binding_list= [
"it_response_time_logger + it_servlet_context + it_character_encoding
+ it_locale + it_naming_context + it_exception_mapping + it_http_sessions
+ it_web_security + it_servlet_filters + it_web_redirector + it_web_app_activator "
];
binding:server_binding_list=[
"it_response_time_logger+it_naming_context+CSI+j2eecsi+OTS+it_security_role_mapping",
"it_response_time_logger+it_naming_context+OTS+it_security_role_mapping",
"it_response_time_logger+it_naming_context + CSI+j2eecsi+it_security_role_mapping",
"it_response_time_logger+it_naming_context+it_security_role_mapping",
"it_response_time_logger+it_naming_context",
"it_response_time_logger"
];

orb_plugins=[
"it_servlet_binding_manager", "it_servlet_context",
"it_http_sessions", "it_servlet_filters", "http",
"it_servlet_dispatch", "it_exception_mapping", "it_naming_context",
"it_web_security", "it_web_app_activator",
"it_default_servlet_binding", "it_security_service", "it_character_encoding",
"it_locale", "it_classloader_servlet","it_classloader_mapping",
"it_web_redirector", "it_deployer",
"it_response_time_logger"
];

plugins:it_response_time_collector:period = "90";

plugins:it_response_time_collector:filename =
 "/var/log/my_app/perf_logs/treasury_app.log";

plugins:it_response_time_collector:system_logging_enabled = "true";
plugins:it_response_time_collector:syslog_appid = "treasury";
 62

Performance Logging
syslog_appid lets you specify the application name, which is prepended to
all syslog messages. If you do not specify a syslog_appid, it defaults to
"iona".

You can cause your EMS to monitor a cluster of servers by configuring
multiple servers to log to the same file. If the servers are running on different
hosts, then the log file�s location must be on an NFS mounted or shared
directory.

Alternatively, you can use syslogd as a mechanism for monitoring a cluster,
by choosing one syslogd to act as the central logging server for the cluster.
For example, to use the host teddy as the central log server, edit the
/etc/syslog.conf file for each host that runs a server replica, and add:

Some syslog daemons do not accept log messages from other hosts by
default. In this case it may be necessary to restart the syslogd on teddy
with a special flag to allow remote log messages. Consult the man pages on
your system to determine whether this is necessary and what flags to use.

Logging Formats Performance data is logged in a well-defined format. For CORBA and J2EE
applications based on IONA�s Application Server Platform, this format is:

� operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

� count is the number of times this operation or URI was logged during
the last interval.

� avg is average response time (in milliseconds) for this operation or URI
during the last interval.

� max is the longest response time (in milliseconds) for this operation or
URI during the last interval.

� min is the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The format for Artix log messages is:

Substitute the name of your log server

user.info @teddy

YYYY-MM-DDTHH:MM:SS [operation=name] count=n avg=n max=n min=n

YYYY-MM-DDTHH:MM:SS [namespace=nnn service=sss port=ppp operation=name] count=n avg=n max=n min=n
63

CHAPTER 3 | Artix Logging and SNMP Support
� namespace is an Artix namespace.

� service is an Artix service.

� port is an Artix port.

� operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

� count is the number of times this operation or URI was logged during
the last interval.

� avg is average response time (in milliseconds) for this operation or URI
during the last interval.

� max is the longest response time (in milliseconds) for this operation or
URI during the last interval.

� min is the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The combination of namespace, service and port denote a unique Artix
Service Access Point.
 64

Performance Logging
65

CHAPTER 3 | Artix Logging and SNMP Support
 66

CHAPTER 4

Artix Standalone
Service
Artix lets you deploy middleware translation functions as a
standalone service external to both client and server
applications. The Artix standalone service can perform
transport switching, message routing, and middleware
bridging between non-Artix enabled applications.

In this chapter This chapter discusses the following topics:

The Artix Standalone Service page 68

Configuring the Service page 71

Starting and Stopping the Service page 73

Installing the Service as a Windows Service page 75

Contracts for the Standalone Service page 77
67

CHAPTER 4 | Artix Standalone Service
The Artix Standalone Service

Overview The Artix standalone service is a minimally invasive means of connecting
applications that use different communication transports and message
formats. It does not require that any Artix-specific code be compiled or
linked into existing applications.

How it works The Artix standalone service is a daemon that listens for traffic on access
points specified in the Artix contract. It re-directs messages based on the
routing rules you provide, and performs any transport switching and
message formatting needed for the receiving application. Neither application
is aware that its messages are being intercepted by Artix and no application
development is required.

The standalone service�s behavior is controlled by a combination of an Artix
contract and the Artix configuration file. For more information on Artix
contracts see the Artix Developer�s Guide. For more information on
configuring the Artix runtime see �Configuration� on page 5.

Deployment patterns An Artix standalone service can be deployed in a number of ways. Two
common deployment patterns are:

Note: Artix requires that services being integrated use equivalent
message layouts. For example, a service expecting a long cannot be sent a
float.
 68

The Artix Standalone Service
Deploying several daemons, each of which bridges between two distinct
applications.

This approach simplifies designing integration solutions and provides faster
processing of each message. Using this approach, the Artix contract
describing the interaction of the applications is simpler because it contains
only the logical interfaces shared by the two applications, the bindings for
each payload format, and the routing rules.

Because most applications use only one network transport, the number of
ports will be minimal and the routing rules will also be simple. The fact that
the contract is kept simple also enhances the performance of each
individual daemon because it has less processing to do. In this approach,
each daemon�s resource usage can also be limited by tailoring its
configuration to optimize the daemon for the particular integration task for
which it is responsible.

Deploying one daemon to bridge between all of the applications in a
particular domain.

Figure 2: Using Multiple Artix Daemons

Artix Artix Artix

App A App CApp B App D App E App F

Figure 3: Using a Single Artix Daemon

Artix

App A App CApp B App D App E App F
69

CHAPTER 4 | Artix Standalone Service
This approach limits the number of external services required in your
deployment environment. This can simplify monitoring and installation of
deployments. It also reduces the number of �moving parts� in an integration
solution.
 70

Configuring the Service
Configuring the Service

Overview Each instance of the Artix standalone service running on a host machine
needs its own configuration scope to specify the unique port on which its
administrative interface listens. Each instance also needs a corresponding
administrative interface configuration scope.

Having separate configuration scopes for each instance of the service also
allows greater control over the resources the service uses. You can specify
that it only load the transport and payload format plug-ins it requires. You
can also control the services threading and time-out behaviors.

For more information on configuring Artix, see �Configuration� on page 5.

Orb plugins list In addition to the Artix plugins that provide support for the transports and
payload formats it will be working with, the Artix standalone service needs
to load the following plugins:

� iiop_profile

� iiop

� giop

 These need to be entered in its orb_plugins list.

Service plug-in settings The configuration variable that controls the behavior of the Artix standalone
service are in the plugins:artix_service namespace. Table 5 lists the
variables and their settings.

Table 5: Artix Standalone Service Configuration Variables

Variable Effect

shlib_name Specifies the name of the Artix
service�s shared library. This value
should always be set to
it_artix_service_svr.
71

CHAPTER 4 | Artix Standalone Service
Service admin interface Each instance of the Artix standalone service must have a corresponding
administrative interface configuration scope. This scope must contain an
entry for initial_references:IT_ArtixServiceAdmin:reference.
initial_references:IT_ArtixServiceAdmin:reference specifies the port
number of this admin interface�s corresponding Artix service. The port
number is specified using the corbaloc syntax:

hostname is the hostname of the computer on which the corresponding Artix
service is running. port is the port number on which the corresponding Artix
service is listening.

iiop:port Specifies the port number on
which the service listens for calls
from its administrative interface.
See �Service admin interface�.

iiop:host Specifies the name of the host
computer on which the service is
running. See �Service admin
interface�.

direct_persistence Specifies if the service�s object
reference is persistent across
multiple invocations.

Table 5: Artix Standalone Service Configuration Variables

Variable Effect

corbaloc:iiop:1.2@hostname:port/IT_ArtixServiceAdmin
 72

Starting and Stopping the Service
Starting and Stopping the Service

Starting the service To start the Artix standalone service, use the following script:

This script starts an instance of the Artix standalone service using the
default configuration scope of iona_services.artix_service.

Alternatively, you can start the service directly using the following
command:

Table 6 describes the parameters taken by itartix_service.

For more information about configuring Artix see �Configuration� on page 5.

start_artix_service

itartix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir run [-background]

Table 6: itartix_service Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
has the name domain_name.cfg.

For example, given domain name acmewidgets, the service will read
its configuration from acmewidgets.cfg.

-ORBconfig_domains_dir domain_dir Specifies the location of the service�s configuration file.

run Specifies that the service is to begin monitoring.

-background Specifies that the service is to run in the background. If this
parameter is not specified, the service runs in the foreground of the
active command window.
73

CHAPTER 4 | Artix Standalone Service
Stopping the service To stop the Artix standalone service use the following script:

This script will stop an instance of the Artix standalone service started using
the start script, start_artix_service.

Alternatively, you can manually call the service�s administrative interface to
stop the service. To do so use the following command:

The value passed with the -ORBname flag specifies the configuration scope
under which the administrative interface finds its configuration information.
The vital entry in the administrative interfaces configuration is the entry for
initial_references:IT_ArtixServiceAdmin:reference. This entry must
contain the corbaloc address of the Artix service instance you wish to
shutdown.

stop_artix_service

itartix_service_admin -ORBname orb_name
 74

Installing the Service as a Windows Service
Installing the Service as a Windows Service

Overview On Windows systems, you can install instances of the Artix standalone
service as a Windows service. This means the service starts at system boot
and that limited management functionality is provided through the Windows
service controls.

Installing the service To install the Artix standalone service as a Windows service, use the
following script:

This script installs the Artix standalone service using the default
configuration scope of iona_services.artix_service.

Alternatively, you can install an instance of the service directly using the
following command:

Table 7 describes the parameters taken by itartix_service.

install_artix_service

itartix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir install

Table 7: itartix_service Install Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
has the name domain_name.cfg.

For example, given domain name acmewidgets, the service will read
its configuration from acmewidgets.cfg.

-ORBconfig_domains_dir domain_dir Specifies the location of the service�s configuration file.

install Specifies that the service is to installed as a Windows service.
75

CHAPTER 4 | Artix Standalone Service
Uninstalling the service To uninstall the Artix standalone service as a Windows service use the
following script:

This script uninstalls the Artix standalone service using the default
configuration scope of iona_services.artix_service.

Alternatively, you can uninstall instances of the service directly using the
following command:

Table 7 describes the parameters taken by itartix_service.

uninstall_artix_service

itartix_service -ORBname orb_name -ORBdomain_name domain_name
-ORBconfig_domains_dir domain_dir uninstall

Table 8: itartix_service Uninstall Parameters

Parameter Description

-ORBname orb_name Specifies the scope under which the service finds its configuration
details.

-ORBdomain_name domain_name Specifies the service's configuration file name. The configuration file
has the name domain_name.cfg.

For example, given domain name acmewidgets, the service will read
its configuration from acmewidgets.cfg.

-ORBconfig_domains_dir domain_dir Specifies the location of the service�s configuration file.

uninstall Specifies that the service is to remove itself from the Windows
registry.
 76

Contracts for the Standalone Service
Contracts for the Standalone Service

Routing Contracts for instances of the Artix standalone service must have routing
rules to direct the flow of messages between the services defined within the
contract.

You must also ensure that the routing plug-in is loaded by the Artix
standalone service by placing the following entry in the orb_plugins list of
the instance�s configuration scope:

Locating the contracts The Artix standalone service loads the contract specified by the
plugins:routing:wsdl_url configuration variable. For example if an
instance of the Artix standalone service was designed to use a contract
called personalInfo.wsdl and the contract was located in /etc/contracts,
you would place the following in the instance�s configuration scope:

For more information For more information on Artix runtime configuration, see �Configuring Artix
Runtime Behavior� on page 9.

orb_plugins = [... "routing"];

plugins:routing:wsdl_url="/etc/contracts/personalInfo.wsdl";
77

CHAPTER 4 | Artix Standalone Service
 78

CHAPTER 5

Using the Artix
Locator Service
The Artix Locator allows Artix servers to publish their
references for dynamic discovery by Artix clients.

In this Chapter This chapter discusses the following topics:

Overview of the Artix Locator Service page 80

Deploying the Locator page 83

Registering a Server with the Locator page 88

Obtaining References from the Locator page 90

Load Balancing page 93

Controlling Server Workloads page 94

Fault Tolerance page 96
79

CHAPTER 5 | Using the Artix Locator Service
Overview of the Artix Locator Service

Overview A system with many servers cannot afford the overhead of manually
propagating each servers contact information to all off the clients that need
to contact them. Given the large number of clients and the distributed
nature of enterprise level deployments, the time required to accomplish this,
and the room for error, are too great. Also, over time hardware upgrades,
machine failures, or site reconfiguration require you to move servers and
repeat the exercise of propagating the server�s information to all clients.

The Artix locator service isolates clients from changes in a server�s contact
information. The Artix contract defining how the client contacts the server
contains the address for the Artix locator and it is the locator that provides
the client with a reference to the server. Servers are automatically registered
with the locator when they start-up.

Service components The Artix locator�s functionality is built into two plug-ins:

Locator Service Plug-in (service_locator) is the central service plug-in. It
accepts service registrations, performs service look-ups, hands out
references to clients who request them, and controls the load balancing of
service groups.

Locator Endpoint Manager Plug-in (locator_endpoint) is the portion of the
session manager that resides in a registered service. It registers its location
with the service plug-in and monitors the health of the service plug-in to
ensure fault tolerance.
 80

Overview of the Artix Locator Service
How do the plug-ins interact? Figure 4 shows a diagram of how the locator plug-ins are deployed in an
Artix System. While in this example, the locator service plug-in is deployed
into a standalone service, it can be deployed in any Artix process.

The endpoint manager plug-ins are deployed into the server processes
which contain services that are registered with the locator. A process can
host two services, like Service C and Service D in Figure 4, but the process
will have only one endpoint manager. The endpoint manager plug-ins are in
constant communication with the locator service plug-in to report on
endpoint health and to check on the health of the locator service.

Figure 4: The Locator Plug-ins

Client

Locator
Service
Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Service A

Service B

Service C Service D

Stand-alone Locator
81

CHAPTER 5 | Using the Artix Locator Service
Load Balancing The locator also provides load balancing functionality. When a group of
services register with the locator using the same service name, the locator
will consider the services as a single service and use a round-robin load
balance algorithm to hand out references to the separate instances. As
shown in Figure 5, as each client makes a request for widget_service, the
locator cycles through the pool of registered widget_service instances.
When the fourth client makes a request, the locator will start handing out
references from and the top of the pool, widget_servicea.

Services can also implement their own load balancing internally using calls
to the Artix locator service that temporarily removes them from the pool of
active references.

Figure 5: Locator Load balancing

Locator

client1

client2

client3

client4

widget_servicea

widget_serviceb

widget_servicec

widget_service
a

widg
et_

se
rvi

ce a

widget_serviceb

widget_
serv

ice c
 82

Deploying the Locator
Deploying the Locator

Overview The Artix locator is implemented as a group of ART plug-ins. This means
that any Artix application can host the locator service by loading the
service_locator plug-in. However, it is recommended that users generate
an Artix server that only hosts the locator service and deploy that service
into their Artix environment.

In either case, the locator service requires modifications to the Artix
configuration domain in which the locator is run. You also need to generate
a copy of locator.wsdl, the contract that describes the locator service,
containing the locator service�s contact information.

Building a standalone locator
service

To generate a standalone locator service you write a simple Artix server
mainline and link it with the Artix libraries. Example 4 shows an example of
the locator�s mainline.

Example 4: Artix Locator Mainline

include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

using namespace IT_Bus;

int main(int argc, char* argv[])
{
 try
 {
 IT_Bus::init(argc, argv, "locator_service");
 IT_Bus::run();
 IT_Bus::shutdown();
 }
 catch (IT_Bus::Exception& e)
 {
 printf("Exception occurred: %s", e.Message());
 return 1;
 }

 return 0;
}

83

CHAPTER 5 | Using the Artix Locator Service
The locator�s main() only needs to initialize the Artix bus with the name of
the locator�s configuration scope and call IT_Bus::run(). The configuration
scope�s name is the third parameter to IT_Bus::init(), locator.service.
The Artix bus will load the plug-ins for the locator service.

Example 5 shows a sample makefile for building the locator service.

The locator must be linked with the following Artix libraries:

� it_bus.lib

� it_afc.lib

� it_art.lib

� it_ifc.lib

Example 5: Locator Makefile

IT_PRODUCT_VER = 1.2

ART_BIN_DIR=$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\bin
ART_CXX_INCLUDE_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\i

nclude"
ART_LIB_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\lib"

CXX=cl
CXXFLAGS=-I$(ART_CXX_INCLUDE_DIR) -Zi -nologo -GR -GX -W3 -Zm250

-MD $(EXTRA_CXXFLAGS) $(CXXLOCAL_DEFINES)

LINK=link
LDFLAGS=/DEBUG /NOLOGO
LDLIBS=/LIBPATH:$(ART_LIB_DIR) $(EXTRA_LIB_PATH) $(LINK_WITH)

kernel32.lib ws2_32.lib advapi32.lib user32.lib

SHLIB_CXX_COMPILER_ID= vc60
SHLIBLDFLAGS=-dll -debug -incremental:no

OBJS=$(SOURCES:.cxx=.obj)

LINK_WITH=it_bus.lib it_afc.lib it_art.lib it_ifc.lib

SOURCES = locator.cxx
all: locator.exe

locator.exe:$(SOURCES) $(OBJS)
 if exist $@ del $@
 $(LINK) /out:$@ $(LDFLAGS) $(OBJS) $(LDLIBS)
 84

Deploying the Locator
Configuring the locator To run the locator you need to ensure that it loads the locator service
plug-in, service_locator. In addition, the locator must load the soap and
http plug-ins as all of its communication is done using SOAP over HTTP.

In the locator�s configuration scope specify that the service plug-in will read
the correct Artix contract for the locator by setting
plugins:locator:service_url to point to the copy of locator.wsdl
containing the address for this instance of the locator.

Example 6 shows the configuration scope used to start the locator.

For more information on Artix configuration see �Configuration� on page 5.

Generating the locator�s contact
information

You also need to configure the port on which the locator will run. To do this
you modify locator.wsdl, provided in the wsdl folder of your Artix
installation, to specify the HTTP address at which the locator service will
listen. This can be either done manually for deploying the locator on a
well-known fixed port, or automatically for deploying the locator on a
dynamically allocated port.

Example 6: Locator configuration scope

locator_service
{
 plugins:locator:service_url="locator.wsdl"
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "soap", "http", "service_locator"];
};
85

CHAPTER 5 | Using the Artix Locator Service
Fixed Port

To deploy the locator on a well-known fixed port, open locator.wsdl in any
text editor and edit the <soap:address> entry at the bottom of the contract
to specify the proper address. Example 7 shows a modified locator service
contract entry. The highlighted part has been modified to point to the
desired address.

Example 7: Locator Service Address

<service name="LocatorService">
 <port name="LocatorServicePort" binding="ls:LocatorServiceBinding">
 <soap:address location="http://localhost:8080/services/locator/LocatorService"/>
 </port>
</service>
 86

Deploying the Locator
Dynamic Port

To deploy the locator on a dynamically allocated port, configure the locator
to use the copy of locator.wsdl shipped with Artix. Once the locator
initializes the Artix bus, it will need to publish a new copy of its contract
with the actual contact information. Example 8 shows how to publish the
locator�s contract.

Starting the locator Once the locator has been generated and properly configured it can be
started just like any other application.

Example 8: Dynamically Located Locator Service

\\ C++
IT_Bus::Bus_var bus = IT_Bus::init(argc, argv,
 "locator_service");

// Now we write out the updated WSDL for the Locator Services

// Get the WSDL Defintions object.
IT_Bus::QName service_name("",
 "LocatorService",
 "http://ws.iona.com/locator");
IT_Bus::Service * service = bus->get_service(service_name);
const IT_WSDL::WSDLDefinitions & definitions =
 service->get_wsdl_definitions();

// Serialize the WSDL model to another wsdl file.
IT_Bus::FileOutputStream stream("active-locator.wsdl");
IT_Bus::XMLOutputStream xml_stream(stream, true);
definitions.write(xml_stream);
stream.close();

IT_Bus::run();
87

CHAPTER 5 | Using the Artix Locator Service
Registering a Server with the Locator

Overview A server does not need to have its implementation changed to work with the
Artix locator. All that is required is that the server be configured to load the
proper plug-ins and to reference the correct locator contract.

Configuring the server Any server that wishes to register itself with the locator must load the
following plug-ins in addition to the transport and payload plug-ins it
requires:

� soap

� http

� locator_endpoint

locator_endpoint allows the server to register with the running locator.

The server�s configuration also needs to set plugins:locator:wsdl_url to
point to the appropriate locator contract.

Example 9 shows the configuration scope of a server that registers with the
locator service.

rune_server provides its services using SOAP over IIOP so in addition to the
locator plug-ins it also loads the tunnel plug-in.

For more information on Artix configuration see �Configuration� on page 5.

Registration Once a properly configured server starts up, it automatically registers with
the locator specified by the contract pointed to by
plugins:locator:wsdl_url.

Example 9: Server Configuration Scope

rune_server
{
 plugins:locator:wsdl_url="locator.wsdl";
 orb_plugins = ["xmlfile_log_stream", "soap", "http", "tunnel",

"locator_endpoint"];
 };
 88

Registering a Server with the Locator
You can register multiple instances of the same server with a locator. The
locator will generate a pool of references for the server type. When clients
make a request for a server, the locator will supply references from this pool
using a round-robin algorithm. For more information on load balancing see
�Load Balancing� on page 93.
89

CHAPTER 5 | Using the Artix Locator Service
Obtaining References from the Locator

Overview Unlike servers, clients must be specifically written to work with the Artix
locator. There are three steps a client must take to obtain a server reference
from the Artix locator. They are:

1. Instantiate a proxy for the locator service.

2. Look up the desired server�s endpoint using the locator service proxy.

3. Create a proxy for the desired server using the returned endpoint.

Instantiating a locator service
proxy

Before a client can invoke any of the look up methods on the locator service,
it must create a proxy to forward requests to the running locator. To do this
the client creates an instance of LocatorServiceClient using the locator
service�s contract name, locator.wsdl, the locator service�s QName, and
the port name used in the locator service�s contract, LocatorServicePort.

Example 10 shows how to instantiate a locator service proxy. The
parameters used to create the locator service�s QName, LocatorService
and http://ws.iona.com/locator, should never be modified.

Note: For more information on Artix proxy constructors, read the Artix
C++ Programmer�s Guide.

Example 10: Instantiating a Locator Service Proxy

// C++
QName locator_service_name("", "LocatorService",
 "http://ws.iona.com/locator");
locator_proxy = new LocatorServiceClient("locator.wsdl",
 locator_service_name,
 "LocatorServicePort");
 90

Obtaining References from the Locator
Looking up a server�s endpoint After instantiating a locator service proxy, a client can then look up servers
using the proxy�s lookup_endpoint() method. lookup_endpoint() has the
following signature:

input contains the QName of the server the client is looking up. The QName
is set using the setservice_qname() method. The QName of the service is
comprised of the service name specified in the Artix contract�s <service>
tag and the target namespace of the Artix contract.

output contains a reference to the server. If the locator cannot find a
registered instance of the requested server, lookup_endpoint() returns an
endpointNotExistFault exception.

Example 11 shows the client code to look up an instance of the widget
ordering service, orderWidgetService.

void lookup_endpoint(lookupEndpoint input,
 lookupEndpointResponse output);

Example 11:Looking up a Server Using the Locator Service

// C++
// Create the QName for the server
QName service_name("", "orderWidgetsService",
 "http://widgetVendor.com/widgetOrderForm");

// Create lookup input parameter
lookupEndpoint input;
input.setservice_qname(service_name);

// The output parameter is set by lookup_endpoint
lookupEndpointResponse output;

// call lookup_endpoint on the locator proxy
try
{
 locator_proxy->lookup_endpoint(input, output);
}
catch (IT_BusServices::endpointNotExistFault& e)
{
 // handle fault
}

91

CHAPTER 5 | Using the Artix Locator Service
Creating a server proxy The client uses the reference returned in the output parameter of
lookup_endpoint() to instantiate a server proxy for making requests on the
requested server. To instantiate the proxy use the correct proxy class for the
server you have requested and pass the return value of the returned
lookupEndpointResponse�s getservice_endpoint() method to the proxy
class� constructor.

Example 12 shows the client code for creating a proxy widget server from
the results of the look up performed in Example 11 on page 91.

For more information on writing Artix client code read the Artix C++
Programmer�s Guide.

Note: Because the Artix locator�s look up is only one level deep, it is
possible that the original look up can return a reference to a second Artix
locator. Clients running in an environment where multiple locator redirects
are possible must be explicitly designed to handle this situation.

Example 12: Instantiate a Proxy Server

// C++
orderWidgetsClient widget_proxy(output.getservice_endpoint());
 92

Load Balancing
Load Balancing

Overview The Artix locator provides a lightweight mechanism for balancing workloads
among a group of servers. When a number of servers with the same service
name register with the Artix locator, it automatically creates a list of the
references and hands out the references to clients using a round robin
algorithm. This process is invisible to both the clients and the servers.

Starting to load balance Once the locator is deployed and your servers are properly configured, you
need to bring up a number of instances of the same service. This can be
accomplished by one of two methods depending on your system topology:

1. Create an Artix contract with a number of ports for the same service
and have each server instance startup on a different port.

2. Create a number of copies of the Artix contract defining the service,
change the port information so each copy has a separate port address,
and then bring up each server instance using a different copy of the
Artix contract.

As each server starts up it will automatically register with the locator. The
locator will recognize that the servers all have the same service name
specified in their Artix contracts and will create a list of references for these
server instances.

As clients make requests for the service, the locator will cycle through the
list of server instances to hand out references.

Note: The locator uses the service name specified in the <service> tag of
the server�s Artix contract to determine if it is part of a group. It is
recommended that if you are using the Artix locator to load balance, your
services should be associated with the same binding and logical interface.
93

CHAPTER 5 | Using the Artix Locator Service
Controlling Server Workloads

Overview Services can request that they temporarily be taken off of the locator�s list of
active references. This is particularly useful for managing the workloads
placed on services. When they reach a certain capacity, a service can in
effect disappear from any new clients wishing to access it. When the
service�s workload is reduced it can then reappear and once again become
available to new clients.

Procedure To control the registered state of service you need to do the following three
things:

1. Obtain a handle for the service with which you intend to work.

2. Use the obtained handle to temporarily deregister the service from the
locator.

3. Use the obtained handle to reregister the service with the locator.

Get a service instance To get an instance of a service you need to use IT_Bus::get_service() on
a bus instance. get_service() takes the QName of the desired service and
returns a generic service handle, IT_Bus::Service*.

Example 13 shows how to obtain a handle for a service from the active bus.

For more information on using get_service() see the Artix C++
Programmer�s Guide.

Note: A bus instance can only return service handles for services that are
activated on that particular bus.

Example 13:Obtaining a Service Handle

//C++
// Build service QName
IT_Bus::QName service_name("", "MMService", "http://MM.com");

// Get the service handle from the active bus
IT_Bus::Service* = bus->get_service(service_name);
 94

Controlling Server Workloads
Deregistering a service To temporarily deregister a service, you use the reached_capacity()
method of the service handle returned by the active bus. This method
informs the service�s endpoint manager that the service is busy and does not
want to receive requests from any new clients. The endpoint manager will
then contact the locator and ask to be removed from the list of available
services.

Example 14 shows how to call reached_capacity().

Reregistering a service When the service is ready to be reregistered, you use the below_capacity()
method of the service handle used when deregistering the service.
below_capacity() informs the endpoint manager that the service is capable
of accepting requests from new clients. The endpoint manager then contacts
the locator and asks to be placed on the list of available services.

Example 15 shows how to call reached_capacity().

Note: Clients that already have a valid reference for the service will still
be able to make request on the service once it has been deregistered.

Example 14:Calling reached_capacity()

\\ C++
\\ Service otained previously
service->reached_capacity();

Example 15:Calling below_capacity()

\\ C++
\\ Service otained previously
service->below_capacity();
95

CHAPTER 5 | Using the Artix Locator Service
Fault Tolerance

Overview Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix locator is designed to recover from the
two most common failures faced by a look-up service:

� failure of a registered endpoint.

� failure of the look-up service itself.

Endpoint failure When an endpoint gracefully shuts down, it notifies the locator that it will no
longer be available and the locator removes the endpoint from its list so it
cannot give a client a reference to a dead endpoint. However, when an
endpoint fails unexpectedly, it cannot notify the locator and the locator can
unknowingly give a client an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the locator
service occasionally pings all of its registered endpoints to see if they are still
running. If an endpoint does not respond to a ping, the locator removes that
endpoint�s reference.

You can adjust the interval between locator service pings by setting the
configuration variable plugins:locator:peer_timeout. The default setting
is 4 seconds. For more information see �Configuration� on page 5.

Service failure When the locator service fails all of the references to the registered
endpoints are lost and the active endpoints are no longer registered with the
locator. To ensure that the active endpoints reregister with the locator when
it restarts, the endpoints, after the locator has missed its ping interval, will
periodically attempt to reregister with the locator until they are successful.

You can adjust the interval at which the endpoint pings the locator by
setting the configuration variable
plugins:session_endpoint_manager:peer_timout. The default setting is 4
seconds. For more information see �Configuration� on page 5.
 96

CHAPTER 6

Using the Artix
Session Manager
The Artix Session Manager helps you manage service
resources.

In this chapter This chapter discusses the following topics:

Introduction to Session Management in Artix page 98

Deploying the Session Manager Service page 101

Registering a Server with the Session Manager page 107

Working with Sessions page 110

Fault Tolerance page 118
97

CHAPTER 6 | Using the Artix Session Manager
Introduction to Session Management in Artix

Overview The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager plug-ins are:

Session Manager Service Plug-in (session_manager_service) is the central
service plug-in. It accepts and tracks service registration, hands out session
to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (session_endpoint_manager) is the
portion of the session manager that resides in a registered service. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,
sm_simple_policy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each
group.

How do the plug-ins interact? Figure 6 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service
 98

Introduction to Session Management in Artix
plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy
plug-in.

The endpoint manager plug-ins are deployed into the server processes
which contain session managed services. A process can host two services,
like Service C and Service D in Figure 6, but the process will have only one
endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on
endpoint health, to receive information on new sessions that have been
granted to the managed services, and to check on the health of the session
manager service.

Figure 6: The Session Manager Plug-ins

Client

Session
Manager
Service

Simple
Policy
Plug-in

Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Standalone Session Manager

Service A

Service B

Service C

Group 1

Group 2

Service D
99

CHAPTER 6 | Using the Artix Session Manager
What are sessions? The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the
water-slide group, it would ask the session manager for a session with the
water-slide group. The session manager would then check and see if the
water-slide group had an available session, and if so it would return a
session id and the list of water-slide service references to the client. The
session manager would then notify the endpoint managers in the water-slide
group that a new session had been issued, the new session�s id, and the
duration for which the session is valid. When the client then makes requests
on the services in the water-slide group, it must include the session
information as part of the request. The endpoint manager for the services
then check the session information to ensure it is valid. If it is, the request is
accepted. If it is not, the request is rejected.

If the client wants to continue using the water-slide services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client�s session has
expired, it will have to request a new one.

What are groups? The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group be related, it
is recommended that the endpoints have some relationship.

A service�s group affiliation is controlled by the configuration scope under
which it is run. To change a service�s group, you edit the value for
plugins:session_endpoint_manager:default_group in the process�
configuration scope. For more information on Artix configuration see
�Configuration� on page 5.
 100

Deploying the Session Manager Service
Deploying the Session Manager Service

Overview Because the Artix session manager is implemented as a group of ART
plug-ins, any Artix application can host the session manager�s core
functionality by loading the session_manager_service and
sm_simple_policy plug-ins. However, it is recommended that users
generate an Artix server that only hosts the session manager and deploy that
server into the Artix environment.

In either case, the session manager requires modifications to the Artix
configuration domain in which the session manager is run. You also need to
generate a copy of session-manager.wsdl, the contract that describes the
session manager, containing the session manager�s contact information.

Building a standalone session
manager

To generate a standalone instance of the session manager you need to write
a simple Artix server mainline and link it with the Artix libraries. Example 16
shows an example of the session manager�s mainline.

Example 16:Artix Session Manager Mainline

include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

using namespace IT_Bus;
101

CHAPTER 6 | Using the Artix Session Manager
The session manager�s main() only needs to initialize the Artix bus with the
name of the session manager�s configuration scope and call IT_Bus::run().
The configuration scope name is third parameter to IT_Bus::init(),
managed_sessions. The Artix bus will load the plug-ins for the session
manager.

Example 17 shows a sample makefile for building the session manager.

#int main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv,
 "managed_sessions");
 bus->run();
 bus->shutdown();
 }
 catch (IT_Bus::Exception& e)
 {
 printf("Exception occurred: %s", e.Message());
 return 1;
 }

 return 0;
}

Example 16:Artix Session Manager Mainline

Example 17:Session Manager Makefile

IT_PRODUCT_VER = 1.2

ART_BIN_DIR=$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\bin
ART_CXX_INCLUDE_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\i

nclude"
ART_LIB_DIR="$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\lib"

CXX=cl
CXXFLAGS=-I$(ART_CXX_INCLUDE_DIR) -Zi -nologo -GR -GX -W3 -Zm250

-MD $(EXTRA_CXXFLAGS) $(CXXLOCAL_DEFINES)
 102

Deploying the Session Manager Service
The session manager must be linked with the following Artix libraries:

� it_bus.lib

� it_afc.lib

� it_art.lib

� it_ifc.lib

Configuring the session manager To run the session manager you need to ensure that it loads the session
manager service plug-in, session_manager_service and the session
manager policy plug-in, sm_simple_policy. In addition, the session
manager must load the soap and http plug-ins as all of its communication
is done using SOAP over HTTP.

In the session manager�s configuration scope you will need to specify the
location for the session manager�s contract by setting
plugins:session_manager_service:service_url to point to the copy of
session-manager.wsdl containing the contact information for this session
manager.

LINK=link
LDFLAGS=/DEBUG /NOLOGO
LDLIBS=/LIBPATH:$(ART_LIB_DIR) $(EXTRA_LIB_PATH) $(LINK_WITH)

kernel32.lib ws2_32.lib advapi32.lib user32.lib

SHLIB_CXX_COMPILER_ID= vc60
SHLIBLDFLAGS=-dll -debug -incremental:no

OBJS=$(SOURCES:.cxx=.obj)

LINK_WITH=it_bus.lib it_afc.lib it_art.lib it_ifc.lib

SOURCES = session_manager.cxx
all: session_manager.exe

session_manager.exe:$(SOURCES) $(OBJS)
 if exist $@ del $@
 $(LINK) /out:$@ $(LDFLAGS) $(OBJS) $(LDLIBS)

Example 17:Session Manager Makefile
103

CHAPTER 6 | Using the Artix Session Manager
Example 18 shows the configuration scope used to start the session
manager.

For more information on Artix configuration see �Configuration� on page 5.

Generating the session manager�s
contact information

You also need to configure the port on which the session manager will run.
To do this you modify session-manager.wsdl, provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the session
manager will listen. This can be either done manually for deploying the
session manager on a well-known fixed port, or automatically for deploying
the session manager on a dynamically allocated port.

Fixed Port

To deploy the session manager on a well-known fixed port, open
session-manager.wsdl in any text editor and edit the <soap:address> entry
for the SessionManagerService to specify the proper address. Example 19
shows a modified session manager contract entry. The highlighted part has
been modified to point to the desired address.

Dynamic Port

To deploy the session manager on a dynamically allocated port, configure
the session manager to use the copy of session-manager.wsdl shipped with
Artix.

Example 18:Session Manager Configuration Scope

managed_sessions
{
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop", "iiop", "soap", "http",

"session_manager_service", "sm_simple_policy"];
 plugins:session_manager_service:service_url="session-namager.wsdl"
};

Example 19:Session Manager Address

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/sessionManagerService"/>
 </port>
</service>
 104

Deploying the Session Manager Service
You can limit the rang of ports on which the session manger will be
deployed by specifying a rang of ports for the session managers SOAP or
HTTP address. Example 20 shows a modified session manager contract
entry. The highlighted part has been modified to specify to the desired range
of ports.

Once the session manager initializes the Artix bus, it will need to publish a
new copy of its contract with the actual contact information. Example 21
shows how to publish the session manager�s contract.

Example 20:Session Manager Port Range

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:11000-11100/services/sessionManagement/sessionManagerService"/>
 </port>
</service>

Example 21:Dynamically Located Session Manager

IT_Bus::Bus_var bus = IT_Bus::init(argc, argv,
 "managed-sessions");

// Now we write out the updated WSDL for the session manager

// Get the WSDL Defintions object.
IT_Bus::QName service_name("",
 "SessionManagerService",
 "http://ws.iona.com/session-manager");
IT_Bus::Service * service = bus->get_service(service_name);
const IT_WSDL::WSDLDefinitions & definitions =
 service->get_wsdl_definitions();

// Serialize the WSDL model to another wsdl file.
IT_Bus::FileOutputStream stream("active-smservice.wsdl");
IT_Bus::XMLOutputStream xml_stream(stream, true);
definitions.write(xml_stream);
stream.close();

IT_Bus::run();
105

CHAPTER 6 | Using the Artix Session Manager
Starting the session manager Once the session manager has been generated and properly configured it
can be started just like any other application. The only caveat is that the
session manager must be started before any servers that need to register
with it.
 106

Registering a Server with the Session Manager
Registering a Server with the Session Manager

Overview Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Configuring the server Any server hosting services that are to be managed by the session manager
must load the following plug-ins in addition to the transport and payload
plug-ins it requires:

� soap

� http

� session_endpoint_manager

session_endpoint_manager allows the server to register with a running
session manager.

The server�s configuration also needs to set the following configuration
variables:

plugins:session_endpoint_manager:wsdl_url points to the contract
describing the contact information for the session manager that will be
managing the services.

plugins:session_endpoint_manager:endpoint_manager_url points to the
contract describing the contact information for the endpoint manager for this
server. This enables the session manager to contact the service to with
updated state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.
107

CHAPTER 6 | Using the Artix Session Manager
Example 22 shows the configuration scope of a server that hosts services
managed by the session manager.

A server loaded into the qajaq_server configuration scope will be managed
by the session manager at the location specified in
session-manager-service.wsdl, its endpoint manager will come up at the
address specified in session-manager-endpoint.wsdl, and by default all
services instantiated by the server will belong to the session manager group
qajaq_group.

For more information on Artix configuration see �Configuration� on page 5.

You also need to configure the port on which the endpoint manager will run.
To do this you modify session-manager.wsdl, provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open
session-manager.wsdl and edit the <soap:address> entry for the
SessionEndpointManagerService to specify the proper address.
Example 23 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 22:Server Configuration Scope

qajaq_server
{
 orb_plugins = ["xmlfile_log_stream", "soap", "http", "fixed", "session_endpoint_manager"];
 plugins:session_endpoint_manager:wsdl_url="session-manager-service.wsdl";
 plugins:session_endpoint_manager:endpoint_manager_url="session-manager-endpoint.wsdl";
 plugins:session_endpoint_manager:deafult_group="qajaq_group";
 };

Example 23:Endpoint Manager Address

<service name="SessionEndpointManagerService">
 <port name="SessionEndpointManagerPort" binding="sm:SessionEndpointManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/sessionEndpointManager"/>
 </port>
</service>
 108

Registering a Server with the Session Manager
In the server�s configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting
plugins:session_endpoint_manager:endpoint_manager_url to point to the
copy of session-manager.wsdl containing the address for this instance of
the endpoint manager.

Registration Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
plugins:session_endpoint_manager:wsdl_url.
109

CHAPTER 6 | Using the Artix Session Manager
Working with Sessions

Overview Clients wishing to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service�s group using the session
manager proxy.

3. Obtain the list of endpoints available in the group.

4. Create a service proxy from one of the endpoints in the group.

5. Build a session header to pass to the service.

6. Invoke requests on the endpoint using the proxy.

7. Renew the session as needed.

8. End the session using the session manager proxy when finished with
the services.

Instantiating a session manager
proxy

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of SessionManagerClient using the
session manager�s contract name, session-manager.wsdl.

Example 24 shows how to instantiate a session manager proxy.

For more information on instantiating Artix proxies, see the Artix C++
Programmer�s Guide.

Example 24: Instantiating a Session Manager Proxy

// C++
SessionManagerClient session_manager_proxy = new

SessionManagerClient("session_manager.wsdl");
 110

Working with Sessions
Start a session After instantiating a session manager proxy, a client can then start a session
for the desired service�s group using the session manager�s
begin_session() method. begin_session() has the following signature:

input contains the name of the desired group and the desired duration of
the session. The group name is set using the setendpoint_group() method.
The group name can be any valid string and corresponds to the default
group name set in the service�s configuration scope as described in
�Configuring the server� on page 107.

The session duration is set using the setprefered_renew_timeout()
method. The duration is specified in seconds. If the specified duration is less
than the value specified by the session manager�s min_session_timeout
configuration setting, it will be set to the configured minimum value. If the
specified duration is higher than the value specified by the session
manager�s max_session_timeout configuration setting, it will be set the
configured max value. For more information see �Configuration� on page 5.

output contains the information needed to use the session.

Once a session is returned in output, you will need to extract the session ID
to work with the session. This is done using getsession_id().
getsession_id() returns the session ID as an
IT_Bus_Services::SessionID.

void begin_session(IT_Bus_Services::BeginSession input,
 IT_Bus_Services::BeginSessionResponse output);
111

CHAPTER 6 | Using the Artix Session Manager
Example 25 shows the client code to begin a session for qajaq_group.

Get a list of endpoints in the group The session manager hands out sessions for a group of services, so in order
to get an individual service upon which to make requests a client needs to
get a list of the services in the session�s group. The session manager proxy�s
get_all_endpoints() method returns a list of all endpoints registered to the
specified group. get_all_endpoints() has the following signature:

request contains the session ID for which you are requesting services. Set
the session ID using the setsession_id() method on request with the
session ID returned from the session manager.

response contains the list of services returned from get_all_endpoints().
If the group has no services, response will be empty.

Example 25:Beginning a Session

// C++
IT_Bus_Services::BeginSession begin_session_request;
IT_Bus_Services::BeginSessionResponse begin_session_response;

// set the group to request
begin_session_request.setendpoint_group("qajaq_group");
// set session renewal interval to 10 mins
begin_session_request.setpreferred_renew_timeout(600);

session_mgr.begin_session(begin_session_request,
 begin_session_response);

IT_Bus_Services::SessionId session;
session =

begin_session_response.getsession_info().getsession_id();

void get_all_endpoints(IT_Bus_Services::GetAllEndpoints request,
 IT_Bus_Services::GetAllEndpointsResponse response)
 112

Working with Sessions
Example 26 shows how to get the list of services for a group.

Create a proxy for the requested
service

The client can use any of the services returned by get_all_endpoints() to
instantiate a service proxy. To instantiate the proxy, you first need to narrow
down the list returned services to the desired one. GetAllEnpointsResponse
contains an array of references to active services that can be retrieved using
GetAllEndpointsResponse�s getendpoints() method. You can use simple
indexing to get one of the references. For example, to use the first service in
the list you would use the following:

Because the session manager simply returns the services in the order the
services registered with the session manager, the clients must be
responsible for circulating through the list or else they will all make requests
on only one service in the group. Also, because the session manager does
not force all members of a group to implement the same interface, you may

Example 26:Retrieving the List of Services in a Group

//C++
IT_Bus_Services::GetAllEndpoints request;
IT_Bus_Services::GetAllEndpointsResponse response;

// group session initialized above.
get_all_endpoints_request.setsession_id(session);

session_mgr.get_all_endpoints(request, response);

response.getendpoints()[0]
113

CHAPTER 6 | Using the Artix Session Manager
want to have your clients check each service to see if it implements the
correct interface by checking the reference�s service name as shown in
Example 27.

Example 28 shows the client code for creating a proxy qajaq server from a
group service.

Create a session header Services that are being managed by the session manager will only accept
requests that include a valid session header. The session header information
is passed to the server as part of the proxy�s input message attributes.
Creating the session header and putting into the input message attributes
takes three steps:

1. Set the proxy to use input message attributes.

2. Get a handle to the proxy�s input message attributes.

3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get_port(), that provides
access to the port information used by the client to connect the service. One
of an Artix proxy�s port properties is use_input_message_attributes.

Example 27:Checking the Service Reference for its Interface

//C++
IT_Bus::Reference endpoint = response.getendpoints()[0];
if (endpoint.get_service_name() ==
 QName("", "QajaqService", "http://qajaqs.com"))
 {
 // instantiate a QajaqService using endpoint
 }
else
 {
 // do something else
 }

Example 28: Instantiate a Proxy Server

// C++
QajaqClient qajaq_proxy(response.getendpoints()[0]);
 114

Working with Sessions
Setting this property to true tells the bus to ensure the input message
attributes are propagated through to the server. Example 29 shows how to
set the client proxy port�s use_input_message_attributes property to true.

Getting a handle to the input message attributes

A pointer to the proxy port�s input message attributes is returned by the
port�s get_input_message_attributes() method. Example 30 shows how
to get a handle to the input message attributes.

Setting the session information into the input message attributes

There are two attributes that need to be set to include the proper session
information in the input message:

SessionName specifies the name the session manager has given this
session. The session manager endpoints in the group will also be given this
name to validate session header�s against. The session name is returned by
invoking getname() of the session ID of the active session.

SessionGroup specifies the group name for which the session is valid. The
session endpoints also use to ensure that the session is for the correct
group. The session group is returned by invoking getendpoint_group() on
the session ID of the active session.

Example 29:Use Input Message Attributes

//C++
// Get the proxy’s port
IT_Bus::Port proxy_port = qajaq_proxy.get_port();

// set the port property
proxy_port.use_input_attributes(true);

Example 30:Getting the Input Message Attributes

MessageAttributes& input_attributes =
proxy_port().get_input_message_attributes();
115

CHAPTER 6 | Using the Artix Session Manager
The input message attributes are set using the message attribute handle�s
set_string() method. set_string() takes two attributes. The first is a
string specifying the name of the attribute being set. The second is the value
to be set for the attribute. Example 31 shows how to set the session
information in to the input message attributes.

Make requests on service proxy Once the session information is added to the proxy�s port information, the
client can invoke operations on the client as it would a non-managed
service. If the endpoint rejects the request because the client�s session is not
valid, an exception is raised.

Renewing a session If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy�s
renew_session() method. renew_session() has the following signature:

params contains the session ID of the session being renewed and the
duration, in seconds, of the renewal. The session ID is set using params�
setsession_id() method. The renewal duration is set using params�
setrenew_timeout() method.

If the renewal is successful, renewed will return containing the duration of
the renewal. The returned duration may be different if the requested renewal
duration was outside of the configured range for session timeouts.

If the renewal is unsuccessful, an
IT_Bus_Services::renewSessionFaultException is raised.

Example 31:Setting the Input Message Attributes

// C++
input_attributes.set_string("SessionName", session.getname());
input_attributes.set_string("SessionGroup",
 session.getendpoint_group());

void renew_session(IT_Bus_Services::RenewSession params,
 IT_Bus_Services::RenewSessionResponse renewed);
 116

Working with Sessions
Example 32 shows how to end a session.

End the session When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy�s
end_session() method. end_session() has the following signature:

params contains the session ID of the session being ended. The session ID is
set using params� setsession_id() method.

Example 33 shows how to end a session.

For more information on writing Artix client code read the Artix C++
Programmer�s Guide.

Example 32:Ending a Session

//C++
IT_Bus_Services::RenewSession params;
IT_Bus_Services::RenewSessionResponse renewed;
params.setsession_id(session);
parames.setrenewal_timeout(600);
try
{
 session_mgr.renew_session(params, renewed);
}
catch (IT_Bus_Services::renewSessionFaultException)
{
 // handle the exception
}

void end_session(IT_Bus_Services::EndSession params);

Example 33:Ending a Session

//C++
IT_Bus_Services::EndSession params;
params.setsession_id(session);
session_mgr.end_session(params);
117

CHAPTER 6 | Using the Artix Session Manager
Fault Tolerance

Overview Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix session manager is designed to recover
from the two most common failures:

� failure of a registered endpoint.

� failure of the session manager itself.

Endpoint failure When an endpoint gracefully shuts down, it notifies the session manager
that it will no longer be available and the session manager removes the
endpoint from its list so it cannot give a client a reference to a dead
endpoint. However, when an endpoint fails unexpectedly, it cannot notify
the session manager and the session manager can unknowingly give a client
an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the session
manager occasionally pings all of its registered endpoint managers to see if
they are still running. If an endpoint manager does not respond to a ping,
the session manager removes that endpoint manager�s references.

You can adjust the interval between session manager pings by setting the
configuration variable plugins:session_manager:peer_timeout. The
default setting is 4 seconds. For more information see �Configuration� on
page 5.

Service failure When the session manager fails all of the references to the registered
services are lost and the active services are no longer be registered. To
ensure that the active services reregister with the session manager when it
restarts, the endpoint managers, after the session manager has missed its
ping interval, will periodically attempt to reregister with the session manager
until they are successful.

You can adjust the interval between the endpoint manager�s pings of the
session manager by setting the configuration variable
plugins:session_endpoint_manager:peer_timout. The default setting is 4
seconds. For more information see �Configuration� on page 5.
 118

CHAPTER 7

Using Artix in a
CORBA
Environment
Artix can be run inside an existing CORBA environment and
leverage a number of its services.

In this chapter This chapter discusses the following topics:

Embedding Artix in a CORBA Application page 120

Using the CORBA Naming Service page 123

Load Balancing with CORBA page 125
119

CHAPTER 7 | Using Artix in a CORBA Environment
Embedding Artix in a CORBA Application

Overview Artix, because it is built on IONA�s flexible ART platform, can be embedded
within any CORBA application implemented using IONA�s Application Server
Platform 6.0 or later without modifying any of the CORBA application�s
code. Embedding Artix is done by altering the application�s configuration to
load the required Artix plug-ins.

Embedding Artix into your CORBA application has several advantages:

� You do not need a separate process to route messages to the
non-CORBA pieces of your application.

� You improve messaging performance over using the Artix standalone
service.

� You can still code using a familiar paradigm and realize the benefits of
using Artix.

� You can leverage all of the CORBA infrastructure to provide enterprise
level qualities of service and management.

CORBA client applications To embed Artix into a CORBA client application you need to do the
following:

1. Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

2. Edit the configuration scope for your CORBA client so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA client will be interacting with a sever using
SOAP over WebSphere MQ your ORB plug-in list would be similar to
the one in Example 34 on page 121. Note that the required Artix
plug-ins for the SOAP binding, the WebSphere MQ transport, CORBA,
and routing are highlighted.

3. Make an entry for plugins:routing:wsdl_url that specifies where the
Artix applications contract resides.
 120

Embedding Artix in a CORBA Application
In Example 34, the Artix contract describing the application is stored in
/artix/wsdlRepos/scoreBox.wsdl.

4. When you start your CORBA client ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a client that uses the configuration shown in Example 34, you
would start the client with the following command:

CORBA server applications To embed Artix into a CORBA server that uses the routing plug-in there are
two caveats:

� Your CORBA server must generate persistent object references.

� Your CORBA server must run one time to export the persistent
references and then be restarted for the Artix routing plug-in to work.

The routing plug-in requires valid object references to properly load itself
and when embedded into the CORBA server, the routing plug-in is loaded by
the ORB before any object references are generated. By using persistent
object references and pregenerating them before fully deploying the server,
as when using the naming service, you satisfy the routing plug-in.

Complete the following steps to configure a CORBA server to embed Artix:

1. Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

2. Edit the configuration scope for your CORBA server so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA server will be interacting with a client
using SOAP over WebSphere MQ your ORB plug-in list would be
similar to the one in Example 35 on page 122. Note that the required

Example 34:Embedded Artix orb_plugin list

corba_client.artix
{
 orb_plugins=["iiop_profile", "giop", "soap", "mq", "ws_orb",

"routing"];
 plugins:routing:wsdl_url="/artix/wsdlRepos/scoreBox.wsdl";
}

client -ORBname corba_client.artix
121

CHAPTER 7 | Using Artix in a CORBA Environment
Artix plug-ins for the SOAP binding, the WebSphere MQ transport,
CORBA, and routing are highlighted.

3. Make an entry for plugins:routing:wsdl_url that specifies where the
Artix applications contract resides.

In Example 35, the Artix contract describing the application is stored in
/artix/wsdlRepos/scoreBox.wsdl.

4. Edit the server�s client binding list, binding:client_binding_list, so
that none of the listed bindings use POA_Coloc.

The configuration scope in Example 35 shows a client binding list that
does not use POA_Coloc. The default client binding list includes entries
for "OTS+POA_Coloc" and "POA_Coloc".

5. When you start your CORBA server ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a server that uses the configuration shown in Example 35, you
would start the client with the following command:

Example 35:Embedded Artix Server Configuration

corba_server.artix
{
 orb_plugins=["iiop_profile", "giop", "soap", "mq", "ws_orb",

"routing"];
 plugins:routing:wsdl_url="/artix/wsdlRepos/scoreBox.wsdl";
 binding:client_binding_list=[“OTS+GIOP+IIOP”, “GIOP+IIOP”];
 binding:server_binding_list=["OTS"];
}

server -ORBname corba_server.artix
 122

Using the CORBA Naming Service
Using the CORBA Naming Service

Overview In order to fully integrate with deployed CORBA systems, Artix can use a
CORBA naming service that supports the CosNaming interface. Doing so
requires editing the port information in the service�s contract and modifying
the Artix configuration.

Servers To specify that an Artix instance (acting as proxy for a server) is to use the
CORBA naming service, you edit the <corba:address> element of the
CORBA port. In place of the file name used in the location attribute,
specify a corbaname. For example, to specify that the converter server
publishes its IOR to the CORBA naming service, specify the
<corba:address> as follows:

This registers the server in the name service under the name
personalInfoService.

Clients An Artix instance (acting as a proxy for a client) can also use the
<corba:address> element to specify what name to look up in the CORBA
name service. The name the client looks up in the name service is the string
after the # in the specified location. For example, a client using the
<corba:address> shown above in �Servers� looks up the IOR for an object
named personalInfoService.

Configuration Artix applications that wish to use a CORBA name service must be
configured to load a name resolver plug-in and have an initial reference for
the running name service.

<corba:address location=“corbaname:rir:/NameService#personalInfoService”/>
123

CHAPTER 7 | Using Artix in a CORBA Environment
To modify the Artix configuration do the following:

1. Open the Artix configuration file,
IT_PRODUCT_DIR\artix\1.2\etc\artix.cfg, in a text editor.

2. In the global scope, add the following lines:

portNumber is the number of the port on which the name service is
running.

For more information on configuring Artix, see �Configuration� on page 5.

initial_references:NameService:reference="corbaloc::localhost:portNumber/NameService";
url_resolvers:corbaname:plugin="naming_resolver";
plugins:naming_resolver:shlib_name="it_naming";
 124

Load Balancing with CORBA
Load Balancing with CORBA

Overview If an Artix SAP is mapped to a CORBA service, and that CORBA service is
accessible via IONA�s Application Server Platform 6.0 Service Pack 1 (or
later), the implementation of that service can be load balanced using the
Application Server Platform�s locator service. In order to accomplish this,
the Artix configuration file must duplicate some of the information from the
Application Server Platform configuration domain, as described in the
following steps.

For information on the load balancing feature of the Application Server
Platform�s load balancing features read the Application Server Platform
Administrator�s Guide.

Configuration Steps The following steps work with an Application Server Platform installation
that uses either file-based configuration or a configuration repository.
However, because Artix supports only file-based configuration, the relevant
configuration information must be inserted into the artix.cfg file. The
following configuration example assumes that an Application Server
Platform domain exists, and that the locator service is run from this domain:

1. From the domain.cfg file, obtain the following configuration
information and add it to artix.cfg file.

2. Create an ORBname for each Artix SAP that participates in load
balancing. For example:

initial_references:IT_NodeDaemon:reference =
"IOR:000000000000002149444c3a49545f4e6f64654461656d6f6e2f4e6f64654461656d6f6e3a312e3000000000
0000000100000000000000760001020000000008686f726174696f00782800000000001d3a3e0233310c6e6f64655
f6461656d6f6e000a4e6f64654461656d6f6e00000000000003000000010000001800000000000100010000000000
01010400000001000101090000001a00000004010000000000000600000006000000000011";

itadmin orbname create demos.clustering.server_1
itadmin orbname create demos.clustering.server_2
itadmin orbname create demos.clustering.server_3
125

CHAPTER 7 | Using Artix in a CORBA Environment
3. Create a POA that declares these ORBnames as replicas, and specify
either round-robin or random load balancing. For example:

The POA name (ClusterDemo) is expressed in WSDL as:

You can choose any POA name; however, the POA name you register using
itadmin must be the same name you declare in the WSDL file.

When corba:policy persistent=true is specified, you must also specify
serviceid. Failure to specify serviceid will either result in an IOR that
cannot be used for load balancing, or a process that outlives the POA.

To run such a ClusterDemo, you start the CORBA servers that underlie the
Artix SAP as follows:

When you run a client to connect to the Artix SAP, the first request goes to
the first server (because round_robin load balancing was declared). If a
second client is started, its request goes to the second server, and a third
client�s request goes to the third server.

Replicated Application Server
Platform services

If your Application Server Platform services are replicated, and if Artix is
deployed on each of the machines on which those services are replicated,
then the Artix SAPs themselves can be replicated and load-balanced. For
example,

1. On the �master� machine (e.g., the machine that hosts the
configuration repository), create an ORBname for each Artix SAP that
participates in load balancing. For example:

itadmin poa create -replicas
demos.clustering.server_1,demos.clustering.server_2,demos.clustering.server_3
-load_balancer round_robin ClusterDemo

<corba:policy persistent="true" serviceid="service_id" poaname="ClusterDemo"/>

Server -ORBname demos.clustering.server_1
Server -ORBname demos.clustering.server_2
Server -ORBname demos.clustering.server_3

itadmin orbname create demos.clustering.server_1
itadmin orbname create demos.clustering.server_2
itadmin orbname create demos.clustering.server_3
 126

Load Balancing with CORBA
2. Create a POA that declares these ORBnames as replicas, and specify
either round-robin or random load balancing. For example:

3. On each machine that replicates the service, obtain the Node
Daemon�s initial reference and add it to the artix.cfg file on that
machine.

4. Start a server on each machine, passing one of the three specified
ORBnames to it (clustering.server_1, demos.clustering.server_2,
or demos.clustering.server_3).

This service is now load balanced among the three replicated Artix SAPs. If
one or two of these SAPs is killed, the client invocation is directed to the
remaining machine(s).

Creating the load-balanced
environment dynamically

It is possible to create a load balance environment without creating the POA
or manually registering ORB names. To accomplish this:

1. On the master machine, obtain the Node Daemon initial reference and
put it in the artix.cfg file.

2. Start the CORBA service, passing the same ORB name as that
specified in the Artix client�s WSDL contract. This ORB name is
received by the Node Daemon, which creates a POA with that name. If
you do not specify an ORB name, the name WSORB is used.

3. On the master machine, issue the following command in the
Application Server Platform environment with the name you chose:

4. On each of the slave machines where the service is replicated, obtain
the Node Daemon initial reference from the Application Server
Platform domain configuration and put it in the artix.cfg file.

5. On each of the slave machines where the service is replicated, start the
CORBA service, using a different ORBname each time.

itadmin poa create -replicas
demos.clustering.server_1,demos.clustering.server_2,demos.clustering.server_3
-load_balancer round_robin ClusterDemo

itadmin poa modify -allowdynreplicas yes POA_Name
127

CHAPTER 7 | Using Artix in a CORBA Environment
6. On the master machine, issue the following command in the
Application Server Platform environment (inserting the type of load
balancing and the ORBnames you have chosen):

7. Start the Artix SAP.

Other load balancing features In addition to POA name, the Application Server Platform configuration file
can also affect load balancing by specifying:

1. Persistent or Transient POA policy

2. Object ID

These load-balancing-related configuration values can be specified in an
Artix WSDL contract using WSDL extensions for CORBA ports:

The POA name can be specified as follows:

The default POA name is WSORB.

The POA persistence policy can be set as follows:

If this value is set to true, the POA policy is persistent. The default
persistence value is false.

The Service ID can be set as follows:

Object ID is provided by the POA if the POA Policy SYSTEM_ID is set. Setting
this to any string sets the POA policy USER_ID and uses the value provided
as the object_id. If this is not set, the POA policy is SYSTEM_ID.

The following WSDL examples illustrate these points.

The contract fragment in Example 36 results in the following POA policy
settings:

� PERSISTENT

� USER_ID

� POAName="master1"

itadmin poa modify -l <round_robin | random> POA_name

<corba:policy poaname="my_poa_name"/>

 <corba:policy persistent="true | false"/>

<corba:policy serviceid="ncname"/>
 128

Load Balancing with CORBA
� ObjectID="master1"

The contract fragment in Example 37 results in the following POA policy
settings:

� TRANSIENT (Default)

� SYSTEM_ID (Default)

� POAName="master1"

The contract fragment in Example 38 results in a POA with the following
policy settings:

� TRANSIENT (Default)
� USER_ID

� POAName="WSORB" (Default)

� ObjectID="master1"

Example 36:Setting the PERSISTENT POA policy

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy persistent="true" poaname="master1" serviceID="master1"/>
 </port>
</service>

Example 37:Setting the POAName POA policy

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy poaname="master1"/>
 </port>
</service>

Example 38:Setting the USER_ID POA policy

 <service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 <corba:policy poaname="master1" serviceID="master1"/>
 </port>
 </service>
129

CHAPTER 7 | Using Artix in a CORBA Environment
The contract fragment in Example 39 results in a POA with all default
policies.

Example 39:Default POA policies

<service name="BaseService">
 <port binding="tns:BasePortCorbaBinding" name="BasePortCorba">
 <corba:address location="file://master.ref"/>
 </port>
</service>
 130

CHAPTER 8

Embedding Artix
in a Tuxedo
Container
Artix can be run and managed by Tuxedo like a native Tuxedo
application.

Overview In order to have Artix interact properly with native Tuxedo applications, you
need to embed Artix into the Tuxedo container. At a minimum this involves
adding information about Artix to your Tuxedo configuration file and
registering your Artix processes with the Tuxedo bulletin board. You can also
have Tuxedo bring up your Artix process as a Tuxedo server when running
tmboot.

Procedure To embed an Artix process into a Tuxedo container complete the following
steps:

1. Ensure that your environment is properly configured for Tuxedo.

2. Add the Tuxedo plug-in, tuxedo, to your Artix process�s orb_plugins
list. See �ORB Plug-ins List� on page 14.

3. Set plugins:tuxedo:server to true in your Artix configuration scope.

orb_plugins=["iiop_profile", "giop", "iiop", "tuxedo"];
131

CHAPTER 8 | Embedding Artix in a Tuxedo Container
4. Ensure that the executable for your Artix process is placed into the
directory specified in the APPDIR entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration�s SERVERS section to include an entry for
your Artix process.

For example, if the executable of your Artix process is boingo, you
make the following entry in the SERVERS section:

This associates boingo with the Tuxedo group called OINGO in your
configuration and assigns boingo a server ID of 1. You can modify the
server�s properties as needed.

6. Edit your Tuxedo configuration�s SERVICES section to include an entry
for your Artix process.

While standard Tuxedo servers only require a SERVICES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry even if no optional runtime properties are
being set. The name entered for the Artix process is the name specified
in the serviceName attribute of the Tuxedo port defined in the process�
Artix contract.

For example, given the port definition shown in Example 40, the
SERVICES entry would be personalInfoService.

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBCONFIG, reload the TUXCONFIG with tmload.

Once you have properly configured Tuxedo, it will manage your Artix process
as if it were a regular Tuxedo server.

boingo SVRGRP=OINGO SVRID=1

Example 40:Sample Service Entry

<service name="personalInfoService">
 <port binding="tns:personalInfoBinding" name="tuxInfoPort">
 <tuxedo:server serviceName="personalInfoService" />
 </port>
</service>
 132

Index

A
Adaptive Runtime Architecture 9
ApplicationId data type 53
ART 9
Artix contracts 3

B
begin_session() 111
below_capacity() 95
bindings

client-side 18

C
configuration variables

data type 12
constructed 12

D
_DEFAULT in logging 55

E
Embedded mode 3
endpointNotExistFault 91
end_session() 117
EventId data type 53
EventParameters data type 54
EventPriority data type 54

F
format_message() 55

G
get_all_endpoints() 112
getendpoints() 113
get_input_message_attributes() 115
get_port() 114
getservice_endpoint() 92
getsession_id() 111
H
high_water_mark 20
http:server_address_mode_policy:publish_hostname

17

I
initial_threads 21
interceptors

client request-level 18
IT_Bus::get_service() 94
IT_Bus_Services::renewSessionFaultException 116
IT_Bus_Services::SessionID 111
IT_LOG_MESSAGE() macro 37
IT_LOG_MESSAGE_1() macro 38

L
LocatorServiceClient 90
LOG_ALL_EVENTS 54
LOG_ALL_INFO 55
LOG_ERROR 55
LOG_FATAL_ERROR 55
logical portion 3
LOG_INFO 54
LOG_INFO_HIGH 54
LOG_INFO_LOW 54
LOG_INFO_MED 54
LOG_NO_EVENTS 54
LOG_WARNING 55
lookup_endpoint() 91
low_water_mark 21

M
MIB

definition 39

O
orb_plugins 14

P
physical portion 3
plugins
133

INDEX
corba 14
fixed 15
fml 15
G2 15
http 14
mq 14
soap 15
tagged 15
tibrv 14
tunnel 14
tuxedo 14
ws_orb 14

plugins:locator:peer_timeout 26, 96
plugins:locator:service_url 26
plugins:locator:wsdl_url 27
plugins:routing:use_pass_through 23
plugins:session_endpoint_manager:default_group 3

0
plugins:session_endpoint_manager:endpoint_manag

er_url 30
plugins:session_endpoint_manager:header_validatio

n 30
plugins:session_endpoint_manager:peer_timout 27,

96, 118
plugins:session_endpoint_manager:wsdl_url 30
plugins:session_manager:peer_timeout 118
plugins:session_manager_service:peer_timeout 28
plugins:session_manager_service:service_url 28
plugins:sm_simple_policy:max_concurrent_sessions

29
plugins:sm_simple_policy:max_session_timeout 29,

111
plugins:sm_simple_policy:min_session_timeout 29,

111
plugins:tuxedo:server 25
plugins:wsdl_publish:publish_port 31

R
reached_capacity() 95
renew_session() 116
report_event() 57
report_message() 58

S
service access point 125
SessionManagerClient 110
setendpoint_group() 111
setprefered_renew_timeout() 111
 134
setservice_qname() 91
setsession_id() 112
SNMP

definition 39
Management Information Base 39

snmp_log_stream 44
soap:server_address_mode_policy:publish_hostnam

e 17
Standalone mode 3
SubsystemId data type 55

T
thread_pool:high_water_mark 20
thread_pool:initial_threads 21
thread_pool:low_water_mark 21
thread pool policies 20

initial number of threads 21
maximum threads 20
minimum threads 21

Timestamp data type 56

U
use_input_message_attributes 114

W
Web Service Definition Language 3
WSDL 3

INDEX
135

INDEX
 136

INDEX
137

INDEX
 138

	List of Tables
	List of Figures
	Preface
	Introduction to Artix
	Configuration
	Establishing the Host Computer Environment
	Configuring Artix Runtime Behavior
	Runtime Configuration Variables
	ORB Plug-ins List
	Policies
	http:server_address_mode_policy:publish_hostname
	soap:server_address_mode_policy:publish_hostname

	Binding Lists
	client_binding_list
	server_binding_list

	Thread Pool Control
	high_water_mark
	initial_threads
	low_water_mark

	Artix Plug-in Configuration
	Routing Plug-in
	plugins:routing:routing_wsdl
	plugins:routing:use_type_factory
	plugins:routing:use_pass_through

	CORBA Plug-in
	Tuxedo Plug-in
	plugins:tuxedo:server

	Locator Service Plug-in
	plugins:locator:service_url
	plugins:locator:peer_timeout

	Locator Service Endpoint Plug-in
	plugins:locator:wsdl_url
	plugins:session_endpoint_manager:peer_timout

	Session Manager Plug-in
	plugins:session_manager_service:service_url
	plugins:session_manager_service:peer_timeout

	Session Manager Simple Policy Plug-in
	plugins:sm_simple_policy:max_concurrent_sessions
	plugins:sm_simple_policy:min_session_timeout
	plugins:sm_simple_policy:max_session_timeout

	Session Manager Endpoint Plug-in
	plugins:session_endpoint_manager:wsdl_url
	plugins:session_endpoint_manager:endpoint_manager_url
	plugins:session_endpoint_manager:default_group
	plugins:session_endpoint_manager:header_validation

	WSDL Publishing Plug-in
	plugins:wsdl_publish:publish_port

	Artix Logging and SNMP Support
	Artix Logging
	Using Trace Macros
	Application Server Platform Trace Macros
	IT_LOG_MESSAGE() Macro
	IT_LOG_MESSAGE_1() Macro

	Using the SNMP Logging Plug-in
	Using the XML Logging Plug-in
	IT_Logging Overview
	IT_Logging::ApplicationId Data Type
	IT_Logging::EventId Data Type
	IT_Logging::EventParameters Data Type
	IT_Logging::EventPriority Data Type
	IT_Logging::format_message()
	IT_Logging::SubsystemId Data Type
	IT_Logging::Timestamp Data Type

	IT_Logging::LogStream Interface
	LogStream::report_event()
	LogStream::report_message()

	Example
	Using the Logging Functionality

	Performance Logging

	Artix Standalone Service
	The Artix Standalone Service
	Configuring the Service
	Starting and Stopping the Service
	Installing the Service as a Windows Service
	Contracts for the Standalone Service

	Using the Artix Locator Service
	Overview of the Artix Locator Service
	Deploying the Locator
	Registering a Server with the Locator
	Obtaining References from the Locator
	Load Balancing
	Controlling Server Workloads
	Fault Tolerance

	Using the Artix Session Manager
	Introduction to Session Management in Artix
	Deploying the Session Manager Service
	Registering a Server with the Session Manager
	Working with Sessions
	Fault Tolerance

	Using Artix in a CORBA Environment
	Embedding Artix in a CORBA Application
	Using the CORBA Naming Service
	Load Balancing with CORBA

	Embedding Artix in a Tuxedo Container
	Index

