
Developing Artix Applications
in C++

Version 1.3, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 19-Dec-2003

M 3 1 8 2

Contents

List of Tables vii

Preface ix

Chapter 1 Developing Artix Enabled Clients and Servers 1
Generating Stub and Skeleton Code 2
C++ Namespaces 5
Defining a WSDL Interface 6
Developing a Server 8
Developing a Client 12
Compiling and Linking an Artix Application 17
Building Artix Stub Libraries on Windows 19

Chapter 2 Artix Programming Considerations 21
Operations and Parameters 22
Exceptions 26

Non-Propagating Exceptions 27
Propagating Exceptions 29

Memory Management 33
Managing Parameters 34
Assignment and Copying 39
Deallocating 41
Smart Pointers 42

Implementing a Server Factory 46
Multi-Threading 51

Client Threading Issues 52
Server Threading Models 54
Changing the Server Threading Model 58

Chapter 3 Artix References 61
Introduction to References 62
The IT_Bus::Reference Class 65
Using the Artix Locator 66
iii

CONTENTS
Overview of the Locator 67
Locator WSDL 69
Registering Endpoints with the Locator 75
Reading a Reference from the Locator 76
Pausing and Resuming Endpoints 80

Chapter 4 Using Sessions in Artix 83
Introduction to Session Management in Artix 84
Registering a Server with the Session Manager 87
Working with Sessions 90

Chapter 5 Transactions in Artix 99
Introduction to Transactions 100
Transaction API 102
Client Example 104

Chapter 6 Message Attributes 107
Introduction to Message Attributes 108
Schemas 111
Name-Value API 113
Transport-Specific API 117
Using Message Attributes in a Client 120
Using Message Attributes in a Server 123

Chapter 7 Dynamic Configuration 127
Introduction to Dynamic Configuration 128
Dynamically Allocating IP Ports 130

Chapter 8 Artix Data Types 135
Simple Types 136

Atomic Types 137
String Type 138
QName Type 139
Date and Time Types 141
Decimal Type 142
Binary Types 144
Deriving Simple Types by Restriction 146
 iv

CONTENTS
Unsupported Simple Types 149
Complex Types 150

Sequence Complex Types 151
Choice Complex Types 154
All Complex Types 158
Attributes 161
Nesting Complex Types 163
Deriving a Complex Type from a Simple Type 167
Occurrence Constraints 170
Arrays 174

anyType Type 179
Nillable Types 184

Introduction to Nillable Types 185
Nillable Atomic Types 187
Nillable User-Defined Types 191
Nested Atomic Type Nillable Elements 194
Nested User-Defined Nillable Elements 198
Nillable Elements of an Array 202

SOAP Arrays 205
Introduction to SOAP Arrays 206
Multi-Dimensional Arrays 210
Sparse Arrays 213
Partially Transmitted Arrays 216

IT_Vector Template Class 217
Introduction to IT_Vector 218
Summary of IT_Vector Operations 221

Chapter 9 Artix IDL to C++ Mapping 225
Introduction to IDL Mapping 226
IDL Basic Type Mapping 228
IDL Complex Type Mapping 229
IDL Module and Interface Mapping 238

Index 243
v

CONTENTS
 vi

List of Tables

Table 1: Artix Import Libraries for Linking with an Application 17

Table 2: Artix Exception Error Codes 27

Table 3: Pattern of create_server() Calls in Various Threading Models 59

Table 4: Transport Schemas with Message Attributes 111

Table 5: Simple Schema Type to Simple Bus Type Mapping 137

Table 6: Member Fields of IT_Bus::DateTime 141

Table 7: Operators Supported by IT_Bus::Decimal 142

Table 8: Schema to Bus Mapping for the Binary Types 144

Table 9: Nillable Atomic Types 187

Table 10: Member Functions Not Defined in IT_Vector 218

Table 11: Member Types Defined in IT_Vector<T> 221

Table 12: Iterator Member Functions of IT_Vector<T> 222

Table 13: Element Access Operations for IT_Vector<T> 222

Table 14: Stack Operations for IT_Vector<T> 222

Table 15: List Operations for IT_Vector<T> 223

Table 16: Other Operations for IT_Vector<T> 223

Table 17: Artix Mapping of IDL Basic Types to C++ 228
vii

LIST OF TABLES
 viii

Preface
Audience This guide is intended for Artix C++ programmers. In addition to a

knowledge of C++, this guide assumes that the reader is familiar with
WSDL and XML schemas.

Related documentation The document set for Artix includes the following:

� Getting Started with Artix

� Deploying and Managing Artix Solutions

� Designing Artix Solutions

� Artix Tutorial Guide

The latest updates to the Artix documentation can be found at http://
iona.com/docs.

Reading path If you are new to Artix, you should read the documentation in the following
order:

1. Getting Started with Artix

The getting started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

2. Deploying and Managing Artix Solutions

This guide describes deploying Artix enabled systems. It provides
detailed examples for a number of typical use cases.

3. Designing Artix Solutions
ix

http://iona.com/docs
http://iona.com/docs

PREFACE
This guide describes the process of describing your systems and
integrations in an Artix contract.

4. Artix Tutorial Guide

The tutorial guides you through programming Artix applications against
all of the supported transports.

5. GUI Online Help

The Artix design tools have context sensitive on-line help the provides
information specific to the tools that you are using.

Help resources If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/
 x

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
mailto:support@iona.com

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
xi

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 xii

CHAPTER 1

Developing Artix
Enabled Clients
and Servers
Artix generates stub and skeleton code that provides a
developer with a simple model to develop transport
independent applications.

In this chapter This chapter discusses the following topics:

Generating Stub and Skeleton Code page 2

C++ Namespaces page 5

Developing a Server page 8

Developing a Client page 12

Compiling and Linking an Artix Application page 17

Building Artix Stub Libraries on Windows page 19
1

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code

Overview The Artix development tools include a utility to generate server skeleton and
client stub code from an Artix contract. The generated code is similar to
code generated by a CORBA IDL compiler. There are two major differences
between CORBA generated code and Artix generated code:

� Artix generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

� Artix maps WSDL types to C++ using a proprietary WSDL-to-C++
mapping. The resulting types are very different from those generated by
an IDL-to-C++ compiler.

Generated files The Artix code generator produces seven files from the Artix contract. They
are named according to the port type name specified in the logical portion of
the Artix contract. The files are as follows:

PortTypeName.h defines the superclass from which the client and server are
implemented. It represents the API used by the service defined in the
contract.

PortTypeNameTypes.h and PortTypeNameTypes.cxx define the complex
datatypes defined in the contract.

PortTypeNameService.h and PortTypeNameService.cxx are the server-side
skeleton code to implement the service defined in the contract.

PortTypeNameClient.h and PortTypeNameClient.cxx are the client-side
stubs for implementing a client to use the service defined by the contract.

If the contract specifies more than one port type, code will be generated for
each port type defined.
 2

Generating Stub and Skeleton Code
Generating code from the
command line

You can generate code at the command line using the command:

You must specify the location of a valid WSDL contract file, WSDL_URL, for
the code generator to work. You can also supply the following optional
parameters:

wsdltocpp WSDL_URL [-i port_type] [-e web_service_name] [-t port]
[-b binding_name] [-d output_dir] [-n namespace] [-impl [-m
{NMAKE | UNIX}]] [-f] [-sample] [-v] [-license] [-declspec
declspec] [-all] [-?] [-flags] [-nimport=namespace]

-i port_type Specifies the name of the port type for which the tool
will generate code. The default is to use the first port
type listed in the contract.

-e web_service_nameSpecifies the name of the service for which the tool
will generate code. The default is to use the first
service listed in the contract.

-t port Specifies the name of the port for which code is
generated. The default is to used the first port listed
in the contract.

-b binding_name Specifies the name of the binding to use when
generating code. The default is the first binding listed
in the contract.

-d output_dir Specifies the directory to which the generated code is
written. The default is the current working directory.

-n namespace Specifies the C++ namespace to use for the
generated code.

-impl Generates the skeleton code for implementing the
server defined by the contract.

-m {NMAKE | UNIX} Used in combination with -impl to generate a
makefile for the specified platform (NMAKE for
Windows or UNIX for UNIX). For example, the
options, -impl -m NMAKE, would generate a Windows
makefile.

-f Deprecated�No longer used (was needed to support
routing in earlier versions.

-sample Generates code for a sample implementation of a
client and a server.
3

CHAPTER 1 | Developing Artix Enabled Clients and Servers
-v Displays the version of the tool.

-license Displays the currently available licenses.

-declspec declspec Creates NT declaration specifiers for dllexport and
dllimport. This option makes it easier to package
Artix stubs in a DLL library. See �Building Artix Stub
Libraries on Windows� on page 19 for details.

-all Generate stub code for all of the port types and the
types that they use. This option is useful when
multiple port types are defined in a WSDL contract.

-? Displays help on using the command line tool.

-flags Displays detailed information about the options.

-nimport=namespace Specifies the namespace under which code from
imported schema is generated. If namespace is left
blank, the code for the imported schema will be
generated in the global namespace.
 4

C++ Namespaces
C++ Namespaces

Artix namespaces Two built-in C++ namespaces widely used by the Artix runtime
infrastructure are: IT_Bus, and IT_WSDL. The first namespace is used for the
callable APIs and declarations, and the second is used for the functions that
parse the WSDL at runtime; these are needed only by highly dynamic
applications.

Solution specific namespaces You can optionally instruct the C++ client proxy generator to put the proxy
classes and complex data types into a custom C++ namespace. This is
useful if you plan on using many Web services from a single client
application. Consider the following sample application, where the GroupB
service was put into a namespace called GroupB. Also note the use of the
IT_Bus namespace for the data types.

#include "GroupBClient.h"
#include "GroupBClientTypes.h"

int main(int argc, char* argv[])
{
 GroupB::GroupBClient bc; // declare the client proxy class

 GroupB::SOAPStruct ssSend;
 ssSend.setvarFloat(IT_Bus::Float(5.67));
 ssSend.setvarInt(1234);
 ssSend.setvarString(IT_Bus::String("Embedded struct string"));

 IT_Bus::Int intValue = 0;
 IT_Bus::Float floatValue = IT_Bus::Float(0.0);

 IT_StringPtr pstring(bc.echoStructAsSimpleTypes(ssSend,
 intValue, floatValue));
}

5

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Defining a WSDL Interface

Overview This section defines the HelloWorld port type, which is used as the basis for
the server and client examples appearing in this chapter. The code for the
HelloWorld demonstration is located in the following directory:

ArtixInstallDir/artix/1.0/demos/hello_world

Restrictions The following restrictions currently apply when defining a WSDL interface
for Artix applications:

� Some simple atomic types are not supported�see �Unsupported
Simple Types� on page 149.

� Derived complex types are not supported, apart from the special case
of SOAP arrays.

WSDL example Example 1 shows the WSDL for a HelloWorld port type, which defines two
operations, greetMe and sayHi.

Example 1: WSDL Definition of the HelloWorld Port Type

// C++
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldService"

targetNamespace="http://xmlbus.com/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://xmlbus.com/HelloWorld"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <message name="greetMe">
 <part name="stringParam0" type="xsd:string"/>
 </message>
 <message name="greetMeResponse">
 <part name="return" type="xsd:string"/>
 </message>
 <message name="sayHi"/>
 <message name="sayHiResponse">
 <part name="return" type="xsd:string"/>
 </message>
 <portType name="HelloWorldPortType">
 <operation name="greetMe">
 6

Defining a WSDL Interface
 <input message="tns:greetMe" name="greetMe"/>
 <output message="tns:greetMeResponse"
 name="greetMeResponse"/>
 </operation>
 <operation name="sayHi">
 <input message="tns:sayHi" name="sayHi"/>
 <output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </operation>
 </portType>
 <binding ... >
 ...
 </binding>
 <service name="HelloWorldService">
 ...
 </service>
</definitions>

Example 1: WSDL Definition of the HelloWorld Port Type
7

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Developing a Server

Overview The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing a server
that uses the Artix Bus. This skeleton code hides the transport details from
the application developer, allowing them to focus on business logic.

Generating the server
implementation class

The Artix code generator utility, wsdltocpp, will generate an implementation
class for your server when passed the -impl command flag.

Generated code The implementation class code consists of two files:

PortTypeNameImpl.h contains the signatures and data types needed for the
server implementation.

PortTypeNameImpl.cxx contains empty shells for the methods that
implement the operations defined in the contract, as well as an empty
contstructor and destructor for the impl class. This file also contains a
factory class for the server implementation.

Completing the server
implementation

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in
PortTypeNameImpl.cxx. The generated impl class, HelloWorldImpl.cxx, for
the contract defined in this chapter would resemble Example 2. The
majority of the code in Example 2 is auto-generated by the WSDL-to-C++
compiler. Only the code portions highlighted in bold (in the bodies of the
greetMe() and sayHi() functions) must be inserted by the programmer.

Example 2: Implementation of the HelloWorld Port Type in the Server

// C++
#include "HelloWorldImpl.h"
#include <it_cal/cal.h>

IT_USING_NAMESPACE_STD
using namespace IT_Bus;
 8

Developing a Server
HelloWorldImpl::HelloWorldImpl(IT_Bus::Bus_ptr bus,
IT_Bus::Port* port)

 : HelloWorldServer(bus,port)
{
}

HelloWorldImpl::~HelloWorldImpl()
{
}

void
HelloWorldImpl::greetMe(
 const IT_Bus::String & stringParam0,
 IT_Bus::String & Response
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "HelloWorldImpl::greetMe called with message: "
 << stringParam0 << endl;
 Response = IT_Bus::String("Hello Artix User: ")+stringParam0;
}

void
HelloWorldImpl::sayHi(
 IT_Bus::String & Response
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "HelloWorldImpl::sayHi called" << endl;
 Response = IT_Bus::String("Greetings from the Artix

HelloWorld Server");
}

HelloWorldImplFactory global_HelloWorldImplFactory;

HelloWorldImplFactory::HelloWorldImplFactory()
{
 m_wsdl_location = IT_Bus::String("HelloWorld.wsdl");
 IT_Bus::QName service_name("", "HelloWorldService",

"http://xmlbus.com/HelloWorld");
 IT_Bus::Bus::register_server_factory(
 service_name,
 this
);
}

HelloWorldImplFactory::~HelloWorldImplFactory()

Example 2: Implementation of the HelloWorld Port Type in the Server
9

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Writing the server main() The server main() handles the initialization of the Artix Bus, the running of
the Artix Bus, and the shutdown of the Artix Bus.

Initializing the Bus

The Bus is initialized using IT_Bus::init(). The method has the following
signature:

The third parameter is optional and is used to identify the configuration
scope used by the Bus for this application.

{
 IT_Bus::QName service_name("", "HelloWorldService",

"http://xmlbus.com/HelloWorld");
 IT_Bus::Bus::deregister_server_factory(service_name);
 //cleanup();
}

IT_Bus::ServerStubBase*
HelloWorldImplFactory::create_server(IT_Bus::Bus_ptr bus,
IT_Bus::Port* port)

{
 return new HelloWorldImpl(bus, port);
}

const IT_Bus::String &
HelloWorldImplFactory::get_wsdl_location()
{
 return m_wsdl_location;
}

void
HelloWorldImplFactory::destroy_server(IT_Bus::ServerStubBase*
server)

{
 if (server != 0)
 {
 delete IT_DYNAMIC_CAST(HelloWorldImpl*, server);
 }
}

Example 2: Implementation of the HelloWorld Port Type in the Server

static Bus& init(int argc,
 char* argv[],
 const char* scope = "");
 10

Developing a Server
Running the Bus

After the Bus is initialized it is ready to listen for requests and pass them to
the server for processing. To start the Bus, you use IT_Bus::run(). Once
the Bus is started, it retains control of the process until it is shut down. The
server�s main() will be blocked until run() returns.

Shutting the Bus down

Because IT_Bus::run() never returns control to the server�s main(), you
must kill the server process (for example, using Ctrl-C) to shut down the
server.

Completed server main() Example 3 on page 11 shows how the main() for the server defined by the
Converter contract might look.

Example 3: ConverterServer main()

// C++
#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_bus/fault_exception.h>

IT_USING_NAMESPACE_STD
using namespace IT_Bus;

int main(int argc, char* argv[])
{

 try
 {
 IT_Bus::init(argc, argv);

 IT_Bus::run();
 }
 catch (IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.Error() << endl;
 return -1;
 }

 return 0;
}

11

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Developing a Client

Overview The stub code for a client implementation for the service defined by the
contract is contained in the files PortTypeNameClient.h and
PortTypeNameClient.cxx. You should never make any modifications to the
generated code in these files. You also need to reference the files
PortTypeName.h and PortTypeNameTypes.h in your client code.

To access the operations defined in the port type, the client initializes the
Artix bus, instantiates an object of the generated client proxy class,
PortTypeNameClient, and makes method calls on the object. When the
client is finished, it then shuts down the bus.

Initializing the Bus Client applications initialize the bus in the same manner as server
applications, by calling IT_Bus::init(). Client applications, however, do
not need to make a call to IT_Bus::run().

Instantiating the client object The generated HelloWorld client proxy object has three constructors as
shown in Example 4 on page 12.

No argument constructor

The first constructor for the client proxy class takes no parameters. When
using this constructor, the client requires that the contract defining its
behavior be located in the same directory as the executable. The client uses
the port and service specified at code generation time using the -t and -b
flags.

Example 4: Generated Client Constructors

HelloWorldClient();

HelloWorldClient(const IT_Bus::String & wsdl);

HelloWorldClient(const IT_Bus::String & wsdl,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name);
 12

Developing a Client
One argument constructor

The second constructor takes one argument that allows you to specify the
URL of the contract defining the client�s behavior. The client uses the port
and service specified at code generation time using the -t and -b flags. This
is useful for situations where the contracts are stored in a central location.

Three argument constructor

The third constructor provides you the most flexibility in determining how
the client connects to its server. It takes three arguments:

The client code is binding and transport neutral. Hence, the only restriction
in specifying the port to use is that it have the same portType as the
generated proxy. The port details are read in from the WSDL contract file at
runtime. For example, if the contract for the conversion service is modified
to include a service definition like the one shown in Example 5 on page 13,
you could instantiate the client proxy to use either HTTP or Tuxedo.

wsdl Specifies the URL of the contract defining the client�s
behavior.

service_name Specifies the name of the service, defined in the contract
with a <service> tag, to use when connecting to the
server.

port_name Specifies the name of the port, defined in the contract
with a <port> tag, to use when connecting to the server.
The port name given must be defined in the specified
<service> tag.

Example 5: Multiple Ports Defined for HelloWorld

 <service name="HelloWorldService2">
 <port name="HelloWorldHTTPPort"

binding="tns:HelloWorldBinding">
 <soap:address location="http:\\localhost:8081"/>
 </port>
 <port name="HelloWorldTuxedoPort"
 binding="tns:HelloWorldBinding">
 <tuxedo:address serviceName="TuxQueue"/>
 </port>
 </service>
13

CHAPTER 1 | Developing Artix Enabled Clients and Servers
To specify that the proxy client is to connect to the server using the Tuxedo
server TuxQueue, you would instantiate the client using the following
constructor:

Invoking the operations To invoke the operations offered by the service, the client calls the methods
of the client proxy object. The generated client proxy class contains one
method for each operation defined in the contract. The generated methods
all return void. Any response messages are passed by reference as a
parameter to the method. For example, the greetMe operation defined in
Example 1 generates a method with the following signature:

Shutting the bus down Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to IT_Bus::run() and can simply call
IT_Bus::shutdown() before the main thread exits. It is advisable to pass
TRUE to IT_Bus:shutdown() to ensure that the bus is fully shutdown before
exiting.

Full client code A client developed to access the service defined by the HelloWorldService
contract will look similar to Example 6.

HelloWorldClient proxy("HelloWorld.wsdl", "HelloWorldService2",
"HelloWorldTuxedoPort");

void greetMe(
 const IT_Bus::String & stringParam0,
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception));

Example 6: HelloWorld Client

// C++
#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>

1 #include "HelloWorldClient.h"

IT_USING_NAMESPACE_STD
using namespace IT_Bus;

using namespace HW;
 14

Developing a Client
The code does the following:

1. The PortNameClient.h header includes the definitions for the client
proxy class.

2. The IT_Bus::init() static function initializes the bus.

3. This line instantiates the proxy class using the no-argument form of the
proxy client constructor. When this client is deployed, a copy of the
contract defining its behavior must be deployed in the same directory.

int main(int argc, char* argv[])
{
 cout << "HelloWorld Client" << endl;

 try
 {

2 IT_Bus::init(argc, argv);
3 HelloWorldClient hw;

 String string_in;
 String string_out;

4 hw.sayHi(string_out);
 cout << "sayHi method returned: " << string_out << endl;

 if (argc > 1) {
 string_in = argv[1];
 } else {
 string_in = "Early Adopter";
 }
 hw.greetMe(string_in, string_out);
 cout << "greetMe method returned: " << string_out << endl;
 }

5 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
 }

 return 0;
}

Example 6: HelloWorld Client
15

CHAPTER 1 | Developing Artix Enabled Clients and Servers
4. Invoke the sayHi() operation on the client proxy.

5. Catch any exceptions thrown by the bus. It is essential to enclose
remote operation invocations within a try/catch block which catches
the exception types derived from IT_Bus::Exception.
 16

Compiling and Linking an Artix Application
Compiling and Linking an Artix Application

Compiler Requirements An application built using Artix requires a number of IONA-supplied C++
header files in order to compile. The directory containing these include files
must be added to the include path for the compiler, so that when the
compiler processes the generated files, it is able to find the necessary
included infrastructure header files.

The following include path directives should be given to the compiler:

Linker Requirements A number of Artix libraries are required to link with an application built using
Artix. The following directives should be given to the linker:

Table 1 shows the libraries that are required for linking an Artix application
and their function.

-I"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\include"

-L"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\lib" it_bus.lib it_afc.lib it_art.lib it_ifc.lib

Table 1: Artix Import Libraries for Linking with an Application

Windows Libraries UNIX Libraries Description

it_bus.lib libit_bus.so

libit_bus.sl

libit_bus.a

The Bus library provides the functionality required to
access the Artix bus. Required for all applications that use
Artix functionality.

it_afc.lib libit_afc.so

libit_afc.sl

libit_afc.a

The Artix foundation classes provide Artix specific data
type extensions such as IT_Bus::Float, etc. Required for
all applications that use Artix functionality.

it_ifc.lib libit_ifc.so

libit_ifc.sl

libit_ifc.a

The IONA foundation classes provide IONA specific data
types and exceptions.

it_art.lib libit_art.so

libit_art.sl

libit_art.a

The ART library provides advanced programming
functionality that requires access to the Artix
infrastructure and the underlying ORB.
17

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Runtime Requirements The following directories need to be in the path, either by copying them into
a location already in the path, or by adding their locations to the path. The
following lists the required libraries and their location in the distribution files
(all paths are relative to the root directory of the distribution):

and

On some UNIX platforms you also have to update the SHLIB_PATH or
LD_LIBRARY_PATH variables to include the Artix shared library directory.

"$(IT_PRODUCT_DIR)\artix\$(IT_PRODUCT_VER)\bin"

"$(IT_PRODUCT_DIR)\bin"
 18

Building Artix Stub Libraries on Windows
Building Artix Stub Libraries on Windows

Overview The Artix WSDL-to-C++ compiler features an option, -declspec, that
simplifies the process of building Dynamic Linking Libraries (DLLs) on the
Windows platform. The -declspec option defines a macro that
automatically inserts export declarations into the stub header files.

Generating stubs with declaration
specifiers

To generate Artix stubs with declaration specifiers, use the -declspec option
to the WSDL-to-C++ compiler, as follows:

wsdltocpp -declspec MY_DECL_SPEC BaseService.wsdl

In this example, the -declspec option would add the following preprocessor
macro definition to the top of the generated header files:

#if !defined(MY_DECL_SPEC)
#if defined(MY_DECL_SPEC_EXPORT)
#define MY_DECL_SPEC IT_DECLSPEC_EXPORT
#else
#define MY_DECL_SPEC IT_DECLSPEC_IMPORT
#endif
#endif

Where the IT_DECLSPEC_EXPORT macro is defined as _declspec(dllexport)
and the IT_DECLSPEC_IMPORT macro is _declspec(dllimport).

Each class in the header file is declared as follows:

class MY_DECL_SPEC ClassName { ... };

Compiling stubs with declaration
specifiers

If you are about to package your stubs in a DLL library, compile your C++
stub files, StubFile.cxx, with a command like the following:

cl -DMY_DECLSPEC_EXPORT ... StubFile.cxx

By setting the MY_DECLSPEC_EXPORT macro on the command line,
_declspec(dllexport) declarations are inserted in front of the public class
declarations in the stub. This ensures that applications will be able to
import the public definitions from the stub DLL.
19

CHAPTER 1 | Developing Artix Enabled Clients and Servers
 20

CHAPTER 2

Artix Programming
Considerations
Several areas must be considered when programming complex
Artix applications.

In this chapter This chapter discusses the following topics:

Operations and Parameters page 22

Exceptions page 26

Memory Management page 33

Implementing a Server Factory page 46

Multi-Threading page 51
21

CHAPTER 2 | Artix Programming Considerations
Operations and Parameters

Overview This section describes how to declare a WSDL operation and how the
operation and its parameters are mapped to C++ by the Artix
WSDL-to-C++ compiler.

Parameter direction in WSDL WSDL operation parameters can be sent either as input parameters (that is,
in the client-to-server direction or as output parameters (that is, in the
server-to-client direction). Hence, the following kinds of parameter can be
defined:

� in parameter�declared as an input parameter, but not as an output
parameter.

� out parameter�declared as an output parameter, but not as an input
parameter.

� inout parameter�declared both as an input and as an output
parameter.

How to declare WSDL operations You can declare a WSDL operation as follows:

1. Declare a multi-part input message, including all of the in and inout
parameters for the new operation (for example, the testParams
message in Example 7 on page 22).

2. Declare a multi-part output message, including all of the out and inout
parameters for the operation (for example, the testParamsResponse
message in Example 7 on page 22).

3. Within the scope of <portType>, declare a single operation which
includes a single input message and a single output message.

WSDL declaration of testParams Example 7 shows an example of a simple operation, testParams, which
takes two input parameters, inInt and inoutInt, and two output
parameters, inoutInt and outFloat.

Example 7: WSDL Declaration of the testParams Operation

<?xml version="1.0" encoding="UTF-8"?>
 22

Operations and Parameters
C++ mapping of testParams Example 8 shows how the preceding WSDL testParams operation (from
Example 7 on page 22) maps to C++.

Mapped parameters When the testParams WSDL operation maps to C++, the resulting
testParams() C++ function signature starts with the in and inout
parameters, followed by the out parameters. The parameters are mapped as
follows:

� in parameters�are passed by value and declared const.

� inout parameters�are passed by reference.

� out parameters�are passed by reference.

<definitions ...>
 ...
 <message name="testParams">
 <part name="inInt" type="xsd:int"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 <message name="testParamsResponse">
 <part name="inoutInt" type="xsd:int"/>
 <part name="outFloat" type="xsd:float"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testParams">
 <input message="tns:testParams" name="testParams"/>
 <output message="tns:testParamsResponse"
 name="testParamsResponse"/>
 </operation>
 ...
</definitions>

Example 7: WSDL Declaration of the testParams Operation

Example 8: C++ Mapping of the testParams Operation

// C++
void testParams(
 const IT_Bus::Int inInt,
 IT_Bus::Int & inoutInt,
 IT_Bus::Float & outFloat
) IT_THROW_DECL((IT_Bus::Exception));
23

CHAPTER 2 | Artix Programming Considerations
WSDL declaration of
testReverseParams

Example 9 shows an example of an operation, testReverseParams, whose
parameters are listed in the opposite order to that of the preceding
testParams operation.

C++ mapping of
testReverseParams

Example 10 shows how the preceding WSDL testReverseParams operation
(from Example 9 on page 24) maps to C++.

Example 9: WSDL Declaration of the testReverseParams Operation

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 ...
 <message name="testReverseParams">
 <part name="inoutInt" type="xsd:int"/>
 <part name="inInt" type="xsd:int"/>
 </message>
 <message name="testReverseParamsResponse">
 <part name="outFloat" type="xsd:float"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testReverseParams">
 <output message="tns:testReverseParamsResponse"
 name="testReverseParamsResponse"/>
 <input message="tns:testReverseParams"
 name="testReverseParams"/>
 </operation>
 ...
</definitions>

Example 10:C++ Mapping of the testReverseParams Operation

// C++
void testReverseParams(
 IT_Bus::Int & inoutInt
 const IT_Bus::Int inInt,
 IT_Bus::Float & outFloat,
) IT_THROW_DECL((IT_Bus::Exception));
 24

Operations and Parameters
Order of in, inout and out
parameters

In C++, the order of the in and inout parameters in the function signature is
the same as the order of the parts in the input message. The order of the out
parameters in the function signature is the same as the order of the parts in
the output message.

Note: The parameter order is not affected by the relative order of the
<input> and <output> tags in the declaration of <operation>. In the
mapped C++ signature, the in and inout parameters always appear
before the out parameters.
25

CHAPTER 2 | Artix Programming Considerations
Exceptions

Overview Artix provides a variety of built-in exceptions, which can alert users to
problems with network connectivity, parameter marshalling, and so on. In
addition, Artix allows users to define their own exceptions, which can be
propagated across the network by declaring fault exceptions in WSDL.

In this section This section contains the following subsections:

Non-Propagating Exceptions page 27

Propagating Exceptions page 29
 26

Exceptions
Non-Propagating Exceptions

Overview The Artix libraries and generated code generate exceptions from classes
based on IT_Bus::Exception, defined in <it_bus/Exception.h>.
IT_Bus::Exception provides all Artix generated exceptions with two
methods for providing information back to the user:

IT_Bus::Exception::Message()

Message() returns an informative description of the error which generated
the exception. It has the following signature:

IT_Bus::Exception::Error()

Error() returns an error code, if one is assigned to the exception, that
identifies the exception. It has the following signature:

Currently only the following exceptions have been given error codes:

const char* Message() const;

IT_ULong Error() const;

Table 2: Artix Exception Error Codes

Error Code Description

IT_HTTP_E_COMM_ERROR A communication error occurred.

IT_HTTP_E_ACCESS_DENIED Username or password validation error by
the server.

IT_HTTP_E_BAD_CONFIG The configuration file is not valid.

IT_HTTP_E_NOT_FOUND The URL or file was not found.

IT_HTTP_E_SHUTTING_DOWN The system is entering a quiescent state.

IT_BUS_E_FAULT A SOAP fault was returned by the server.
27

CHAPTER 2 | Artix Programming Considerations
Exception types Artix defines the following exception types:

IT_Bus::ServiceException is thrown when there is a problem creating a
Service. It is defined in <it_bus/service_exception.h>.

IT_Bus::IOException is thrown if there is an error writing a wsdl model to a
stream. It is defined in <it_bus/io_exception.h>.

IT_Bus::TransportException is thrown if there is a communication failure. It
is defined in <it_bus/transport_exception.h>.

IT_Bus::ConnectException is thrown if there is a communication error. This
exception type is a specialization of a TransportException. It is defined in
<it_bus/connect_exception.h>.

IT_Bus::DeserializationException is thrown if there is a problem
unmarshaling data. Deserialization exceptions are propagated back to client
stub code. It is defined in <it_bus/deserialization_exception.h>.

IT_Bus::SerializationException is thrown if there is a problem marshaling
data. On the server-side if this is thrown as part of a dispatching an
invocation the runtime will catch this and propagate a Fault to the
client-side. On the client side these will get back to the application code. It
is defined in <it_bus/serialization_exception.h>.

IT_Routing::InvalidRouteException is thrown is a route is improperly
defined. It is defined in <it_bus/invalid_route_exception.h>.
 28

Exceptions
Propagating Exceptions

Overview Artix servers propagate certain exceptions, such as serialization and
deserialization exceptions, back to their clients so the client can handle the
error gracefully. This is done using the IT_Bus::FaultException class,
defined in <it_bus/fault_exception.h>. FaultException extends
Exception to provide connection awareness and serialization.

Artix propagates user-defined exceptions back to client processes. To specify
that an exception is to be propagated, you must declare the exception as a
fault in WSDL. The WSDL-to-C++ compiler then generates the stub code
that you need to raise and catch the exception.

Declaring a fault in WSDL Example 11 shows an example of a WSDL fault which can be raised on the
echoInteger operation. The format of the fault message is specified by the
tns:SampleFault message.

Example 11:Declaration of the SampleFault Fault

<?xml version="1.0" encoding="UTF-8"?>
<definitions ...>
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

1 <complexType name="SampleFaultData">
 <all>
 <element name="lowerBound" type="xsd:int"/>
 <element name="upperBound" type="xsd:int"/>
 </all>
 </complexType>
 ...
 </schema>
 </types>

2 <message name="SampleFault">
 <part name="exceptionData"
 type="xsd1:SampleFaultData"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="echoInteger">
 <input message="tns:echoInteger" name="echoInteger"/>
29

CHAPTER 2 | Artix Programming Considerations
The preceding WSDL extract can be explained as follows:

1. If the fault is to hold more than one piece of data, you must declare a
complex type for the fault data (in this case, SampleFaultData holds a
lower bound and an upper bound).

2. Declare a message for the fault, containing just a single part. The
WSDL specification allows only single-part messages in a fault�
multi-part messages are not allowed.

3. The <fault> tag must be added to the scope of the operation (or
operations) which can raise this particular type of fault.

Raising a fault exception in a
server

Example 12 shows how to raise the SampleFault fault in the server code.
The implementation of echoInteger now checks the input integer to see if it
exceeds the given bounds.

The WSDL maps to C++ as follows:

� The WSDL SampleFaultData type maps to a C++ SampleFaultData
class.

� The WSDL SampleFault message maps to a C++
SampleFaultException class. This follows the general pattern that
ExceptionMessage maps to ExceptionMessageException.

 <output message="tns:echoIntegerResponse"
 name="echoIntegerResponse"/>

3 <fault message="tns:SampleFault"
 name="SampleFault"/>
 </operation>
 </portType>
 ...
</definitions>

Example 11:Declaration of the SampleFault Fault

Note: There is no limit to the number of <fault> tags that can be
included in an <operation> element.

Example 12:Raising the SampleFault Fault in the Server

// C++
void BaseImpl::echoInteger(const IT_Bus::Int

inputInteger,IT_Bus::Int& Response)
 30

Exceptions
Catching a fault exception in a
client

Example 13 shows how to catch the SampleFault fault on the client side.
The client uses the proxy instance, bc, to call the echoInteger operation
remotely.

 IT_THROW_DECL((IT_Bus::Exception))
{
 if (inputInteger<0 || 100<inputInteger)
 {
 // Create and initialize the SampleFaultData
 SampleFaultData ex_data;
 ex_data.setlowerBound(0);
 ex_data.setupperBound(100);

 // Create and initialize the fault.
 SampleFaultException ex;
 ex.setexceptionData(ex_data);

 // Throw the fault exception back to the client.
 throw ex;
 }
 cout << "BaseImpl::echoInteger called" << endl;
 Response = inputInteger;
}

Example 12:Raising the SampleFault Fault in the Server

Example 13:Catching the SampleFault Fault in the Client

// C++
...
try {
 Int int_out = 0;
 bc.echoInteger(int_in,int_out);
 if (int_in != int_out)
 {
 cout << endl << "echoInteger PASSED" << endl;
 }
}
catch (SampleFaultException &ex)
{
 cout << "Bounds exceeded:" << endl;
 cout << "lower bound = "
 << ex.getexceptionData().getlowerBound() << endl;
 cout << "upper bound = "
 << ex.getexceptionData().getupperBound() << endl;
31

CHAPTER 2 | Artix Programming Considerations
}
catch (IT_Bus::FaultException &ex)
{
 /* Handle other fault exceptions ... */
}
catch (...)
{
 /* Handle all other exceptions ... */
}

Example 13:Catching the SampleFault Fault in the Client
 32

Memory Management
Memory Management

Overview This section discusses the memory management rules for Artix types,
particularly for generated complex types.

In this section This section contains the following subsections:

Managing Parameters page 34

Assignment and Copying page 39

Deallocating page 41

Smart Pointers page 42
33

CHAPTER 2 | Artix Programming Considerations
Managing Parameters

Overview This subsection discusses the guidelines for managing the memory for
parameters of complex type. In Artix, memory management of parameters is
relatively straightforward, because the Artix C++ mapping passes
parameters by reference.

Memory management rules There are just two important memory management rules to remember when
writing an Artix client or server:

1. The client is responsible for deallocating parameters.

2. If the server needs to keep a copy of parameter data, it must make a
copy of the parameter. In general, parameters are deallocated as soon
as an operation returns.

WSDL example Example 14 shows an example of a WSDL operation, testSeqParams, with
three parameters, inSeq, inoutSeq, and outSeq, of sequence type,
xsd1:SequenceType.

Note: If you use pointer types to reference operation parameters, see
�Smart Pointers� on page 42 for advice on memory management.

Example 14:WSDL Example with in, inout and out Parameters

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
 </schema>
 34

Memory Management
Client example Example 15 shows how to allocate, initialize, and deallocate parameters
when calling the testSeqParams operation.

 </types>
 ...
 <message name="testSeqParams">
 <part name="inSeq" type="xsd1:SequenceType"/>
 <part name="inoutSeq" type="xsd1:SequenceType"/>
 </message>
 <message name="testSeqParamsResponse">
 <part name="inoutSeq" type="xsd1:SequenceType"/>
 <part name="outSeq" type="xsd1:SequenceType"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testSeqParams">
 <input message="tns:testSeqParams"
 name="testSeqParams"/>
 <output message="tns:testSeqParamsResponse"
 name="testSeqParamsResponse"/>
 </operation>
 ...
 </portType>
 ...
</definitions>

Example 14:WSDL Example with in, inout and out Parameters

Example 15:Client Calling the testSeqParams Operation

// C++
try
{
 IT_Bus::init(argc, argv);

1 BaseClient bc;

2 // Allocate all parameters
 SequenceType inSeq, inoutSeq, outSeq;

3 // Initialize in and inout parameters
 inSeq.setvarFloat((IT_Bus::Float) 1.234);
 inSeq.setvarInt(54321);
 inSeq.setvarString("One, two, three");
 inoutSeq.setvarFloat((IT_Bus::Float) 4.321);
35

CHAPTER 2 | Artix Programming Considerations
The preceding client example can be explained as follows:

1. This line creates an instance of the client proxy, bc, which is used to
invoke the WSDL operations.

2. You must allocate memory for all kinds of parameter, in, inout, and
out. In this example, the parameters are created on the stack.

3. You initialize only the in and inout parameters. The server will initialize
the out parameters.

4. It is the responsibility of the client to deallocate all kinds of parameter.
In this example, the parameters are all deallocated at the end of the
current scope, because they have been allocated on the stack.

Server example Example 16 shows how the parameters are used on the server side, in the
C++ implementation of the testSeqParams operation.

 inoutSeq.setvarInt(12345);
 inoutSeq.setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(inSeq, inoutSeq, outSeq);

4 // End of scope:
 // Implicit deallocation of inSeq, inoutSeq, and outSeq.
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 15:Client Calling the testSeqParams Operation

Example 16:Server Calling the testSeqParams Operation

// C++
void
BaseImpl::testSeqParams(
 const SequenceType & inSeq,
 SequenceType & inoutSeq,
 SequenceType & outSeq
) IT_THROW_DECL((IT_Bus::Exception))
 36

Memory Management
The preceding server example can be explained as follows:

1. The server programmer has read-only access to the in parameters (they
are declared const in the operation signature).

2. If you want to access data from in or inout parameters after the
operation returns, you must copy them (deep copy). It would be an
error to use the & operator to obtain a pointer to the parameter data,
because the Artix server stub deallocates the parameters as soon as
the operation returns.

See �Assignment and Copying� on page 39 for details of how to copy
Artix data types.

3. You have read/write access to the inout parameters.

{
 cout << "BaseImpl::testSeqParams called" << endl;

1 // Print inSeq
 cout << "inSeq.varFloat = " << inSeq.getvarFloat() << endl;
 cout << "inSeq.varInt = " << inSeq.getvarInt() << endl;
 cout << "inSeq.varString = " << inSeq.getvarString() << endl;

2 // (Optionally) Copy in/inout parameters
 // ...

3 // Print and change inoutSeq
 cout << "inoutSeq.varFloat = "
 << inoutSeq.getvarFloat() << endl;
 cout << "inoutSeq.varInt = "
 << inoutSeq.getvarInt() << endl;
 cout << "inoutSeq.varString = "
 << inoutSeq.getvarString() << endl;
 inoutSeq.setvarFloat(2.0);
 inoutSeq.setvarInt(2);
 inoutSeq.setvarString("Two");

4 // Initialize outSeq
 outSeq.setvarFloat(3.0);
 outSeq.setvarInt(3);
 outSeq.setvarString("Three");
}

Example 16:Server Calling the testSeqParams Operation
37

CHAPTER 2 | Artix Programming Considerations
4. You should initialize each of the out parameters (otherwise they will be
returned with default initial values).
 38

Memory Management
Assignment and Copying

Overview The WSDL-to-C++ compiler generates copy constructors and assignment
operators for all complex types.

Copy constructor The WSDL-to-C++ compiler generates a copy constructor for complex
types. For example, the SequenceType type declared in Example 14 on
page 34 has the following copy constructor:

// C++
SequenceType(const SequenceType& copy);

This enables you to initialize SequenceType data as follows:

Assignment operator The WSDL-to-C++ compiler generates an assignment operator for complex
types. For example, the generated assignment operator enables you to
assign a SequenceType instance as follows:

// C++
SequenceType original;
original.setvarFloat(1.23);
original.setvarInt(321);
original.setvarString("One, two, three.");

SequenceType copy_1(original);
SequenceType copy_2 = original;

// C++
SequenceType original;
original.setvarFloat(1.23);
original.setvarInt(321);
original.setvarString("One, two, three.");

SequenceType assign_to;

assign_to = original;
39

CHAPTER 2 | Artix Programming Considerations
Recursive copying In WSDL, complex types can be nested inside each other to an arbitrary
degree. When such a nested complex type is mapped to C++ by Artix, the
copy constructor and assignment operators are designed to copy the nested
members recursively (deep copy).
 40

Memory Management
Deallocating

Using delete In C++, if you allocate a complex type on the heap (that is, using pointers
and new), you can generally delete the data instance using the delete
operator. It is usually better, however, to use smart pointers in this
context�see �Smart Pointers� on page 42.

Recursive deallocation The Artix C++ types are designed to support recursive deallocation.

That is, if you have an instance, T, of a complex type which has other
complex types nested inside it, the entire memory for the complex type
including its nested members would be deallocated when you delete T. This
works for complex types nested to an arbitrary degree.
41

CHAPTER 2 | Artix Programming Considerations
Smart Pointers

Overview To help you avoid memory leaks when using pointers, the WSDL-to-C++
compiler generates a smart pointer class, ComplexTypePtr, for every
generated complex type, ComplexType. The following aspects of smart
pointers are discussed here:

� What is a smart pointer?

� Artix smart pointers.

� Assignment semantics.

� Client example using simple pointers.

� Client example using smart pointers.

What is a smart pointer? A smart pointer class is a C++ class that overloads the * (dereferencing)
and -> (member access) operators, in order to imitate the syntax of an
ordinary C++ pointer.

Artix smart pointers Artix smart pointers are defined using a template class, IT_AutoPtr<T>,
which has the same API as the standard auto pointer template,
auto_ptr<T>, from the C++ standard template library. If the standard
library is supported on the platform, IT_AutoPtr is simply a typedef of
std::auto_ptr.

For example, the SequenceTypePtr smart pointer class is defined by the
following generated typedef:

The key feature that makes this pointer type smart is that the destructor
always deletes the memory the pointer is pointing at. This feature ensures
that you cannot leak memory when it is referenced by a smart pointer.

// C++
typedef IT_AutoPtr<SequenceType> SequenceTypePtr;
 42

Memory Management
Assignment semantics The auto_ptr smart pointer types have destructive copy semantics. For
example, consider the following assignment between smart pointers of
SequenceTypePtr type:

After the assignment, the following facts hold:

� assign_to now owns the data previously owned by assign_from.

� assign_from is reset to a nil pointer (equals 0).

� The data previously owned by assign_to has been deleted.

Client example using simple
pointers

Example 17 shows how to call the testSeqParams operation using
parameters that are allocated on the heap and referenced by simple
pointers

// C++
SequenceTypePtr assign_from = new SequenceType();
// Initialize assign_from (not shown) ...

SequenceTypePtr assign_to = new SequenceType();
// Initialize assign_to (not shown) ...

// Assignment Statement
assign_to = assign_from;

Note: If you are familiar with the CORBA IDL-to-C++ mapping, you
should note that these assignment semantics are different from the
CORBA _var types� assignment semantics.

Example 17:Client Calling testSeqParams Using Simple Pointers

// C++
try
{
 IT_Bus::init(argc, argv);

 BaseClient bc;

1 // Allocate all parameters
 SequenceType *inSeqP = new SequenceType();
 SequenceType *inoutSeqP = new SequenceType();
 SequenceType *outSeqP = new SequenceType();
43

CHAPTER 2 | Artix Programming Considerations
The preceding client example can be explained as follows:

1. The parameters are allocated on the heap.

2. Before you reach the end of the current scope, you must explicitly
delete the parameters or the memory will be leaked.

Client example using smart
pointers

Example 18 shows how to call the testSeqParams operation using
parameters that are allocated on the heap and referenced by smart pointers

 // Initialize in and inout parameters
 inSeqP->setvarFloat((IT_Bus::Float) 1.234);
 inSeqP->setvarInt(54321);
 inSeqP->setvarString("One, two, three");
 inoutSeqP->setvarFloat((IT_Bus::Float) 4.321);
 inoutSeqP->setvarInt(12345);
 inoutSeqP->setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(*inSeqP, *inoutSeqP, *outSeqP);

2 // End of scope:
 delete inSeqP;
 delete inoutSeqP;
 delete outSeqP;
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 17:Client Calling testSeqParams Using Simple Pointers

Example 18:Client Calling testSeqParams Using Smart Pointers

// C++
try
{
 IT_Bus::init(argc, argv);

 BaseClient bc;

 // Allocate all parameters
 44

Memory Management
The preceding client example can be explained as follows:

1. The parameters are allocated on the heap, using smart pointers of
SequenceTypePtr type.

2. In this case, there is no need to deallocate the parameter data
explicitly. The smart pointers, inSeqP, inoutSeqP, and outSeqP,
automatically delete the memory they are pointing at when they go out
of scope.

1 SequenceTypePtr inSeqP = new SequenceType();
 SequenceTypePtr inoutSeqP = new SequenceType();
 SequenceTypePtr outSeqP = new SequenceType();

 // Initialize in and inout parameters
 inSeqP->setvarFloat((IT_Bus::Float) 1.234);
 inSeqP->setvarInt(54321);
 inSeqP->setvarString("One, two, three");
 inoutSeqP->setvarFloat((IT_Bus::Float) 4.321);
 inoutSeqP->setvarInt(12345);
 inoutSeqP->setvarString("Four, five, six");

 // Call the 'testSeqParams' operation
 bc.testSeqParams(*inSeqP, *inoutSeqP, *outSeqP);

2 // End of scope:
 // Parameter data automatically deallocated by smart pointers
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 18:Client Calling testSeqParams Using Smart Pointers
45

CHAPTER 2 | Artix Programming Considerations
Implementing a Server Factory

Overview A server factory is responsible for managing the lifecycle of servant objects.
Although the WSDL-to-C++ compiler can provide a convenient default
implementation of the server factory class, in a realistic application you
would typically need to customize the default.

Server factory features By writing a custom server factory implementation, you can exploit the
following features of the server factory design:

� Override the WSDL location.

� Register a server factory against multiple services.

� Register multiple ports per service.

� Create multiple servants per port or share one servant between ports.

Default server factory When you run the wsdltocpp utility with the -impl flag, it generates a
default implementation of a servant class and a server factory class in the
files PortTypeImpl.h and PortTypeImpl.cxx.

The default server factory, generated by wsdltocpp, has the following
general characteristics:

� A global static instance of the server factory is declared in the
PortTypeImpl.cxx file.

� The server factory registers itself against a single service and a single
port (as specified by the -e and -t parameters of wsdltocpp).

� The threading model defaults to MULTI_INSTANCE.
 46

Implementing a Server Factory
Sample WSDL Example 19 shows an extract from a WSDL contract that defines multiple
services and ports for the HelloWorld port type. The
SOAPHelloWorldService service defines a single port that exposes
HelloWorld as a SOAP service and the HW.HelloWorldService service
defines two ports that expose HelloWorld as a CORBA service.

Server factory example Example 20 shows an example of a server factory class that is customized
to register multiple services and ports. This server factory implementation is
based on the WSDL contract from Example 19 on page 47.

Example 19:Sample WSDL with Multiple Services and Ports

<definitions ... >
 ...
 <service name="SOAPHelloWorldService">
 <port binding="tns:SOAPHelloWorldPortBinding"
 name="SOAPHelloWorldPort">
 <soap:address location="http://localhost:8080"/>
 </port>
 </service>
 <service name="HW.HelloWorldService">
 <port name="HW.HelloWorldPort"
 binding="tns:HW.HelloWorldBinding">
 <corba:address location="file://../HelloWorld.ior"/>
 </port>
 <port name="HW.ALTHelloWorldPort"
 binding="tns:HW.HelloWorldBinding">
 <corba:address
 location="corbaname:rir:/NameService#helloWorld"/>
 </port>
 </service>
</definitions>

Example 20:Example Implementation of a Server Factory Class

// C++
...

1 HW_HelloWorldImplFactory global_HW_HelloWorldImplFactory;

HW_HelloWorldImplFactory::HW_HelloWorldImplFactory()
{
 m_wsdl_location = IT_Bus::String("HelloWorld.wsdl");
47

CHAPTER 2 | Artix Programming Considerations
2 IT_Bus::QName service_nameSOAP("", "SOAPHelloWorldService",
"http://schemas.iona.com/idl/HelloWorld.idl");

 IT_Bus::Bus::register_server_factory(
 service_nameSOAP,
 this
);

 IT_Bus::QName service_name("", "HW.HelloWorldService",
"http://schemas.iona.com/idl/HelloWorld.idl");

3 IT_Bus::Bus::register_server_factory(
 service_name,
 this,
 "HW_HelloWorldPort"
);

4 IT_Bus::Bus::register_server_factory(
 service_name,
 this,
 "HW_ALTHelloWorldPort"
);

}

HW_HelloWorldImplFactory::~HW_HelloWorldImplFactory()
{
 IT_Bus::QName service_name("", "HW.HelloWorldService",

"http://schemas.iona.com/idl/HelloWorld.idl");
5 IT_Bus::Bus::deregister_server_factory(service_name);

}

6 IT_Bus::ServerStubBase* HW_HelloWorldImplFactory::create_server(
 IT_Bus::Bus_ptr bus, IT_Bus::Port* port)
{
 return new HW_HelloWorldImpl(bus, port);
}

const IT_Bus::String &
7 HW_HelloWorldImplFactory::get_wsdl_location()

{
 return m_wsdl_location;
}

IT_Bus::ThreadingModel
8 HW_HelloWorldImplFactory::get_threading_model() const

{

Example 20:Example Implementation of a Server Factory Class
 48

Implementing a Server Factory
The preceding server factory example can be explained as follows:

1. This line creates a global static instance of the server factory, which is
the default way of creating the server factory. This approach is not
mandatory, however. You could delete this line and create the server
factory instance at a different point in the server code.

2. The constructor is the usual place where a server factory registers itself
against particular services and ports. This line calls
IT_Bus::Bus::register_server_factory() to register the server
factory against the SOAPHelloWorldService service.

3. This line registers the server factory against the HW.HelloWorldService
service (CORBA service) and the HW_HelloWorldPort port. Note that
this form of register_server_factory() explicitly specifies the port
name.

4. This line registers the server factory against the HW.HelloWorldService
service (CORBA service) and the HW_ALTHelloWorldPort port.

5. You can deregister services in the server factory destructor.

6. The create_server() function is called by Artix whenever a servant
instance (of HW_HelloWorldImpl type) is needed. The pattern of calls to
create_server() is affected by the current threading model�see
�Server Threading Models� on page 54.

7. The get_wsdl_location() function is called by Artix to find the WSDL
contract to use with this server factory. By changing the return value of
this function, you can direct Artix to look for a different WSDL contract
to use with the server factory.

 return IT_Bus::MULTI_INSTANCE;
}

9 void HW_HelloWorldImplFactory::destroy_server(
 IT_Bus::ServerStubBase* server
)
{
 if (server != 0)
 {
 delete IT_DYNAMIC_CAST(HW_HelloWorldImpl*, server);
 }
}

Example 20:Example Implementation of a Server Factory Class
49

CHAPTER 2 | Artix Programming Considerations
8. The get_threading_model() function is called by Artix to determine
the threading model to use with this server factory. For more details,
see �Server Threading Models� on page 54.

9. The destroy_server() function is called by Artix to clean up servant
instances.
 50

Multi-Threading
Multi-Threading

Overview This section provides an overview of threading in Artix and describes the
issues affecting multi-threaded clients and servers in Artix.

In this section This section contains the following subsections:

Client Threading Issues page 52

Server Threading Models page 54

Changing the Server Threading Model page 58
51

CHAPTER 2 | Artix Programming Considerations
Client Threading Issues

Client threading The client proxy classes and the runtime library are thread-safe, in that
multi-threaded applications may safely use the library from multiple threads
simultaneously. However, a single client proxy instance should not be
shared among multiple threads without serializing access to the instance.

Single client proxy in two threads Example 21 below is a correctly written example featuring a single client
proxy instance called from two different threads (assume T1func and T2func
are called from two different threads):

Example 21:Single Client Proxy in Two Threads

#include <it_ts/mutex.h>
#include <it_ts/locker.h>

#include "BaseClient.h"
#include "BaseClientTypes.h"//nested inside BaseClient.h, may be

omitted

BaseClient g_bc;
IT_Mutex mutexBC;

T1func()
{
 IT_Locker<IT_Mutex> lock(mutexBC);
 g_bc.echoVoid();
}

T2func()
{
 IT_Locker<IT_Mutex> lock(mutexBC);
 g_bc.echoVoid();
}

 52

Multi-Threading
Two client proxies in two threads Example 22 below is another correctly written sample featuring two client
proxy instances called from two different threads (assume T1func and
T2func are called from two different threads):

Example 22:Two Client Proxies in Two Threads

#include "BaseClient.h"
#include "BaseClientTypes.h"
//nested inside BaseClient.h, may be omitted

T1func()
{
 BaseClient bc;
 bc.echoVoid();
}

T2func()
{
 BaseClient bc;
 bc.echoVoid();
}

53

CHAPTER 2 | Artix Programming Considerations
Server Threading Models

Overview Artix support a variety of different threading models on the server side. The
threading model that applies to a particular service can be specified by
programming (see �Changing the Server Threading Model� on page 58).
This subsection provides an overview of each of the server-side threading
models in Artix, as follows:

� MULTI_INSTANCE.

� MULTI_THREADED.

MULTI_INSTANCE The MULTI_INSTANCE threading model implies that a servant instance is
created per thread. This allows the servant objects to use thread-local
storage, resources with thread affinity (like MQ), and reduces
synchronization overhead.

Figure 1 shows an outline of the MULTI_INSTANCE threading model. An Artix
service can have multiple ports, and each of the ports is served by a work
queue that stores the incoming requests. A pool of threads is reserved for
each port, and each thread in the pool is associated with a distinct servant
instance.

Figure 1: Outline of the MULTI_INSTANCE Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2
 54

Multi-Threading
MULTI_THREADED The MULTI_THREADED threading model implies that a single instance is
created and shared on multiple threads. The servant object must expect to
be called from multiple threads simultaneously.

Figure 2 shows an outline of the MULTI_THREADED threading model. In this
case, the threads in a thread pool all share the same servant instance.

Default threading model The default threading model is IT_Bus::MULTI_INSTANCE.

Thread pool settings The thread pool for each port is controlled by the following parameters
(which can be set in the configuration):

� Initial threads�the number of threads initially created for each port.

� Low water mark�the size of the dynamically allocated pool of threads
will not fall below this level.

� High water mark�the size of the dynamically allocated pool of threads
will not rise above this level.

Thread pools are configured by adding to or editing the settings in the
ArtixInstallDir/artix/Version/etc/domains/artix.cfg configuration file. In
the following examples, it is assumed that the Artix application specifies its
configuration scope to be sample_config.

Figure 2: Outline of the MULTI_THREADED Threading Model

Port 2

Port 1

Thread pool for port 1

Thread pool for port 2

Servant

Service

R1 R2 RN...R3

Work Queue 1

R1 R2 RN...R3

Work Queue 2

Note: You can specify the configuration scope at the command line by
passing the switch -ORBname ConfigScopeName to the Artix executable.
Command-line arguments are normally passed to IT_Bus::init().
55

CHAPTER 2 | Artix Programming Considerations
Thread pool configuration levels Thread pools can be configured at several levels, where the more specific
configuration settings take precedence over the less specific, as follows:

� Global level.

� Service name level.

� Qualified service name level.

Global level The variables shown in Example 23 can be used to configure thread pools at
the global level; that is, these settings would apply to all services by default.

The default settings are as follows:

thread_pool:initial_threads = "2";
thread_pool:low_water_mark = "5";
thread_pool:high_water_mark = "25";

Service name level To configure thread pools at the service name level (that is, overriding the
global settings for a specific service only), set the following configuration
variables:

thread_pool:ServiceName:initial_threads
thread_pool:ServiceName:low_water_mark
thread_pool:ServiceName:high_water_mark

Where ServiceName is the name of the particular service to configure, as it
appears in the WSDL <service name="ServiceName"> tag.

Example 23:Thread Pool Settings at the Global Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at global level
 thread_pool:initial_threads = "3";
 thread_pool:low_water_mark = "5";
 thread_pool:high_water_mark = "10";
};
 56

Multi-Threading
For example, the settings in Example 24 show how to configure the thread
pool for a service named SessionManager.

Qualified service name level Occasionally, if the service names from two different namespaces clash, it
might be necessary to identify a service by its fully-qualified service name.
To configure thread pools at the qualified service name level, set the
following configuration variables:

thread_pool:NamespaceURI:ServiceName:initial_threads
thread_pool:NamespaceURI:ServiceName:low_water_mark
thread_pool:NamespaceURI:ServiceName:high_water_mark

Where NamespaceURI is the namespace URI in which ServiceName is
defined.

For example, the settings in Example 25 show how to configure the thread
pool for a service named SessionManager in the //my.tns1/ namespace
URI.

Example 24:Thread Pool Settings at the Service Name Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at Service name level
 thread_pool:SessionManager:initial_threads = "1";
 thread_pool:SessionManager:low_water_mark = "5";
 thread_pool:SessionManager:high_water_mark = "10";
};

Example 25:Thread Pool Settings at the Qualified Service Name Level

Artix configuration file

sample_config {
 ...
 # Thread pool settings at Service name level
 thread_pool:http://my.tns1/:SessionManager:initial_threads =

"1";
 thread_pool:http://my.tns1/:SessionManager:low_water_mark =

"5";
 thread_pool:http://my.tns1/:SessionManager:high_water_mark =

"10";
};
57

CHAPTER 2 | Artix Programming Considerations
Changing the Server Threading Model

Overview This subsection explains how to change the server threading model by
programming. The server threading model can be specified on a per-service
basis.

Threading model options The it_bus/threading_model.h header file defines the following threading
model options, as shown in Example 26.

ServerFactoryBase class The ServerFactoryBase class, as shown in Example 27, defines the server
factory API. All of the member functions are abstract, except for
get_threading_model(), which has a default implementation that returns
IT_Bus::MULTI_INSTANCE.

Example 26:Threading Model Options

namespace IT_Bus
{
 enum ThreadingModel
 {
 MULTI_INSTANCE = 0,
 MULTI_THREADED = 1,
 SINGLE_THREADED = 2
 };
};

Example 27:The ServerFactoryBase Class

// C++
class IT_BUS_API ServerFactoryBase
{
 public:
 ServerFactoryBase();
 virtual ~ServerFactoryBase();

 virtual ServerStubBase*
 create_server(Bus_ptr bus, Port* port) = 0;

 virtual const String & get_wsdl_location() = 0;

 virtual void destroy_server(ServerStubBase* server) = 0;
 58

Multi-Threading
get_threading_model() function Artix calls the get_threading_model() function at start-up time to
determine which threading model to use for this service. You can change the
threading model by returning a non-default value from this function.

create_server() function Artix calls the create_service() function whenever a new service instance
is needed. The pattern of create_server() calls depends on the chosen
threading model, as described in Table 3.

 virtual ThreadingModel
 get_threading_model() const;
};

Example 27:The ServerFactoryBase Class

Table 3: Pattern of create_server() Calls in Various Threading Models

Threading Model Pattern of create_server() Calls

MULTI_INSTANCE create_server() is called once for each thread
in the thread pool (see �Thread pool
configuration levels� on page 56).

MULTI_THREADED create_server() is called once only.
59

CHAPTER 2 | Artix Programming Considerations
Overriding get_threading_model() To change the threading model for a particular service, you should override
the default implementation of get_threading_model().

For example, if you have a service of HelloWorld port type, the wsdltocpp
generates a default implementation of the server factory,
HelloWorldImplFactory, in the files HelloWorldImpl.h and
HelloWorldImpl.cxx. To change the threading model to MULTI_THREADED in
this case, perform the following steps:

1. Edit the HelloWorldImpl.h file, adding a declaration of the
get_threading_model() function to the HelloWorldImplFactory class:

2. Edit the HelloWorldImpl.cxx file, adding an implementation of the
get_threading_model() function as follows:

// C++
class HelloWorldImplFactory : public

IT_Bus::ServerFactoryBase
{
 public:
 ...
 virtual ThreadingModel get_threading_model() const;
};

// C++
IT_Bus::ThreadingModel
HelloWorldImplFactory::get_threading_model() const
{
 return IT_Bus::MULTI_THREADED;
}

 60

CHAPTER 3

Artix References
An Artix reference is a handle to a particular port on a
particular service. Because references can be passed around
as parameters, they provide a convenient and flexible way of
identifying and locating specific services.

In this chapter This chapter discusses the following topics:

Introduction to References page 62

The IT_Bus::Reference Class page 65

Using the Artix Locator page 66
61

CHAPTER 3 | Artix References
Introduction to References

Overview An Artix reference encapsulates the location information for a particular
WSDL port on a particular WSDL service. When compared with storing
location information in WSDL, references have the following advantages:

� References are more dynamic�that is, the information encapsulated
in a reference is only partially dependent on the WSDL contract.
Hence, reference details can change at runtime.

� References can be sent across the wire as parameters of or return
values from operations.

� References can be stored in a central repository, facilitating features
such as load balancing and directory enquiries.

Contents of an Artix reference An Artix reference encapsulates the following data:

� Binding QName�the qualified name of the binding with which this
reference is associated.

� Service QName�the qualified name of the service with which this
reference is associated.

� Port name�identifies the port with which this reference is associated.

� WSDL location�this data is included only as a backup, in case the
client does not already have access to the WSDL contract. In most
cases, the client would already have a local or cached copy of the
WSDL contract.

� Properties�a list of opaque properties, which makes the reference
type arbitrarily extensible. The properties list is typically used to hold
binding-specific data. In the future, properties might be used to flag
particular qualities of service as well.

XML representation of a reference The XML representation of a reference is defined by the following schema:

ArtixInstallDir/artix/Version/schemas/references.xsd

The XML representation is used when marshaling or unmarshaling a
reference as a WSDL parameter.
 62

Introduction to References
C++ representation of a
reference

In C++, an Artix reference is represented by an instance of the
IT_Bus::Reference class. For details of the IT_Bus::Reference API, see
�The IT_Bus::Reference Class� on page 65.

Static references A static reference is a reference for which all of the port and service details
appear explicitly in the WSDL contract. The static reference, therefore,
delegates most of the details to the WSDL contract. Figure 3 illustrates the
relationship between a static reference and the WSDL contract.

The typical contents of a static reference are as follows:

� Binding QName�a particular binding in the WSDL contract.

� Service QName�a particular service in the WSDL contract.

� Port name�the name of one of the ports, from the preceding service,
in the WSDL contract.

� WSDL location�the location of a backup copy of the WSDL contract.

� Properties�not required for static references. However, Artix normally
caches port addressing information in the properties. This optimization
can help clients to avoid parsing the WSDL contract, as long as the
client has already parsed the relevant binding.

Figure 3: A Static Reference

IT_Bus::Reference

...
 <binding>
 ...
 </binding>
 ...
 <service>
 <port>
 ...
 </port>
 ...
 </service>
...

WSDL Contract

Static Reference
63

CHAPTER 3 | Artix References
Transient references A transient reference stores all of its service and port attributes explicitly in
a properties list, rather than referring to the WSDL contract. Hence, a
transient reference is more flexible, because it can refer to endpoints created
at runtime. Figure 4 illustrates the relationship between a transient
reference and the WSDL contract.

The typical contents of a transient reference are as follows:

� Binding QName�a particular binding in the WSDL contract.

� WSDL location�the location of a backup copy of the WSDL contract.

� Properties�contains the kind of data you would normally find in a
<service> tag and a <port> tag. This data is binding-specific and it
enables the client to open a connection to an endpoint on the server.

The service QName and port name are not used by transient references;
they are initialized as empty strings.

Figure 4: A Transient Reference

Embedded properties

IT_Bus::Reference

Transient Reference

...
 <binding>
 ...
 </binding>
 ...
 <service>
 <port>
 ...
 </port>
 ...
 </service>
...

WSDL Contract
 64

The IT_Bus::Reference Class
The IT_Bus::Reference Class

Overview The IT_Bus::Reference class provides the following kinds of member
function:

� Setting and getting basic reference properties.

� Getting binding-specific properties.

Setting and getting basic
reference properties

The following IT_Bus::Reference member functions enable you to get and
set a reference�s service QName, port name, binding QName and WSDL file
location:

Getting binding-specific
properties

The following IT_Bus::Reference member function enables you to get a list
of binding-specific properties:

These binding-specific properties are usually needed only for transient
references. The properties are read and interpreted by the relevant binding
plug-in. Hence, you would not normally need to access these properties in
your application code.

IT_Bus::QName & get_service_qname();

IT_Bus::String & get_port_name();

IT_Bus::QName & get_binding_qname();

IT_Bus::String & get_wsdl_location();

void set_service_qname(const IT_Bus::QName & service_qname);

void set_port_name(const IT_Bus::String & port_name);

void set_binding_qname(const IT_Bus::QName & binding_qname);

void set_wsdl_location(const IT_Bus::String & wsdl_location);

IT_Bus::AnyHolderList & get_properties();
65

CHAPTER 3 | Artix References
Using the Artix Locator

Overview The Artix locator is a central repository for storing references to Artix
endpoints. If you set up your Artix servers to register their endpoints with the
locator, you can code your clients to open server connections by retrieving
endpoint references from the locator.

In this section This section contains the following subsections:

Overview of the Locator page 67

Locator WSDL page 69

Registering Endpoints with the Locator page 75

Reading a Reference from the Locator page 76

Pausing and Resuming Endpoints page 80
 66

Using the Artix Locator
Overview of the Locator

Overview The Artix locator is a service which can optionally be deployed for the
following purposes:

� Repository of endpoint references�endpoint references stored in the
locator enable clients to establish connections to Artix services.

� Load balancing�if multiple ports are registered against a single
service QName, the locator load balances over the service�s ports using
a round-robin algorithm.

Figure 5 gives a general overview of the locator architecture.

Locator demonstration The a locator demonstration, which forms the basis of the examples in this
section, is located in the following directory:

ArtixInstallDir/artix/Version/demos/locator

Figure 5: Artix Locator Overview

B1

locator_endpoint
plug-in

Artix Client Artix Server X

locator_endpoint
plug-in

Artix Server Y

Artix Locator

A1

A2

A3

B2

Service A

Service B

Ports

A4

A5
Service A

A1, A2, A3, A4, A5

B1, B2

Service A

Service B
67

CHAPTER 3 | Artix References
Locator service There are two basic options for deploying the locator service, as follows:

� Standalone deployment�the locator is deployed as an independent
server process (as shown in Figure 5). This approach is described in
detail in the �Using the Artix Locator Service� chapter from the Artix
User�s Guide. Sample source code for such a standalone locator
service is provided in the demos/locator demonstration.

� Embedded deployment�the locator is deployed by embedding it
within another Artix server process. This approach is possible because
the locator is implemented as a plug-in, which can be loaded into any
Artix application.

Registering endpoints An Artix endpoint is a particular WSDL port in a particular WSDL service. A
server registers its endpoints (that is, WSDL ports) with the locator in order
to make them accessible to Artix clients. When a server registers an
endpoint in the locator, it creates an entry in the locator that associates a
service QName with an Artix reference for that endpoint.

Looking up references An Artix client looks up a reference in the locator in order to find an endpoint
associated with a particular service. After retrieving the reference from the
locator, the client can then establish a remote connection to the relevant
server by instantiating a client proxy object. This procedure is independent
of the type of binding or transport protocol.

Load balancing with the locator If multiple ports are registered against a single service QName in the locator,
the locator will employ a round-robin algorithm to pick one of the ports.
Hence, the locator effectively load balances a service over all of its
registered ports.

For example, Figure 5 on page 67 shows the Service A service with five
ports registered against it, A1, A2, A3, A4, and A5. When the Artix client looks
up a reference for Service A, it obtains an Artix reference, Ax, to whichever
endpoint is next in the sequence.
 68

Using the Artix Locator
Locator WSDL

Overview The locator WSDL contract, locator.wsdl, defines the public interface of
the locator through which the service can be accessed either locally or
remotely. This section shows extracts from the locator WSDL that are
relevant to normal user applications. The following aspects of the locator
WSDL are described here:

� Binding and protocol.

� WSDL contract.

� C++ mapping.

Binding and protocol The locator service is normally accessed through the SOAP binding and over
the HTTP protocol.

WSDL contract Example 28 shows an extract from the locator WSDL contract that focuses
on the aspects of the contract relevant to an Artix application programmer.
There is just one WSDL operation, lookup_endpoint, that an Artix client
typically needs to call.

Note: Currently, the locator service is limited by the fact that most Artix
bindings do not support endpoint references. In future releases of Artix,
when the support for references is extended to other bindings, it should be
possible to use the locator with other bindings and transports.

Example 28:Extract from the Locator WSDL Contract

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ref="http://schemas.iona.com/references"
xmlns:ls="http://ws.iona.com/locator"
targetNamespace="http://ws.iona.com/locator">

 <types>
 <xs:schema targetNamespace="http://ws.iona.com/locator">

1 <xs:import
schemaLocation="../../../schemas/references.xsd"
namespace="http://schemas.iona.com/references"/>

 ...
69

CHAPTER 3 | Artix References
2 <xs:element name="lookupEndpoint">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="service_qname"
 type="xs:QName"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

3 <xs:element name="lookupEndpointResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="service_endpoint"
 type="ref:Reference"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType

name="EndpointNotExistFaultException">
 <xs:sequence>
 <xs:element name="error" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

4 <xs:element name="EndpointNotExistFault"
 type="ls:EndpointNotExistFaultException"/>
 </xs:schema>
 </types>
 ...
 <message name="lookupEndpointInput">
 <part name="parameters" element="ls:lookupEndpoint"/>
 </message>
 <message name="lookupEndpointOutput">
 <part name="parameters"

element="ls:lookupEndpointResponse"/>
 </message>
 <message name="endpointNotExistFault">
 <part name="parameters"

element="ls:EndpointNotExistFault"/>
 </message>

5 <portType name="LocatorService">
 ...

6 <operation name="lookup_endpoint">
 <input message="ls:lookupEndpointInput"/>
 <output message="ls:lookupEndpointOutput"/>
 <fault name="fault"

Example 28:Extract from the Locator WSDL Contract
 70

Using the Artix Locator
The preceding locator WSDL extract can be explained as follows:

1. This line imports the schema definition of the ref:Reference type. You
might have to edit the value of the schemaLocation attribute, if the
references.xsd schema file is stored in a different location relative to
the locator.wsdl file.

2. The lookupEndpoint type is the input parameter type for the
lookup_endpoint operation. It contains just the QName (qualified
name) of a particular WSDL service.

3. The lookupEndpointResponse type is the output parameter type for the
lookup_endpoint operation. It contains an Artix reference for the
specified service. If more than one port is registered against a
particular service name, the locator picks one of the ports using a
round-robin algorithm.

4. The EndpointNotExist fault would be thrown if the lookup_endpoint
operation fails to find an endpoint registered against the requested
service type.

5. The LocatorService port type defines the public interface of the Artix
locator service.

 message="ls:endpointNotExistFault"/>
 </operation>
 </portType>
 <binding name="LocatorServiceBinding"
 type="ls:LocatorService">
 ...
 </binding>
 <service name="LocatorService">
 <port name="LocatorServicePort"
 binding="ls:LocatorServiceBinding">
 <soap:address

7 location="http://localhost:0/services/locator/LocatorService"/>
 </port>
 </service>
</definitions>

Example 28:Extract from the Locator WSDL Contract

Note: Currently, it is not possible to specify a particular port in the
lookup query.
71

CHAPTER 3 | Artix References
6. The lookup_endpoint operation, which is called by Artix clients to
retrieve endpoint references, is the only operation from the
LocatorService port type that user applications would typically need.

7. The SOAP location attribute specifies the host and IP port for the
locator service. If you want the locator to run on a different host and
listen on a different IP port, you should edit this setting.

C++ mapping Example 29 shows an extract from the C++ mapping of the
LocatorService port type. This extract shows only the lookup_endpoint
WSDL operation�the other WSDL operations in this class are normally not
needed by user applications.

Example 29:C++ Mapping of the LocatorService Port Type

// C++
#include "LocatorService.h"
#include <it_bus/service.h>
#include <it_bus/bus.h>
#include <it_bus/reference.h>
#include <it_bus/types.h>
#include <it_bus/operation.h>

namespace IT_Bus_Services
{
 class LocatorServiceClient : public LocatorService, public

IT_Bus::ClientProxyBase
 {

 private:

 public:
 LocatorServiceClient(
 IT_Bus::Bus_ptr bus = 0
);

 LocatorServiceClient(
 const IT_Bus::String & wsdl,
 IT_Bus::Bus_ptr bus = 0
);

 LocatorServiceClient(
 const IT_Bus::String & wsdl,
 const IT_Bus::QName & service_name,
 const IT_Bus::String & port_name,
 72

Using the Artix Locator
The lookupEndpoint type The input parameter for the lookup_endpoint operation is of
lookupEndpoint type, which maps to C++ as follows:

 IT_Bus::Bus_ptr bus = 0
);

 LocatorServiceClient(
 IT_Bus::Reference & reference,
 IT_Bus::Bus_ptr bus = 0
);

 ~LocatorServiceClient();
 ...
 virtual void
 lookup_endpoint(
 const IT_Bus_Services::lookupEndpoint &
 lookupEndpoint_in,
 IT_Bus_Services::lookupEndpointResponse &
 lookupEndpointResponse_out
) IT_THROW_DECL((IT_Bus::Exception));
 };
};

Example 29:C++ Mapping of the LocatorService Port Type

// C++
namespace IT_Bus_Services
{
 class lookupEndpoint : public IT_Bus::SequenceComplexType
 {
 public:
 lookupEndpoint();
 lookupEndpoint(const lookupEndpoint& copy);
 virtual ~lookupEndpoint();

 const IT_Bus::QName & getservice_qname() const;
 IT_Bus::QName & getservice_qname();
 void setservice_qname(const IT_Bus::QName & val);
 ...
 };
};
73

CHAPTER 3 | Artix References
The lookupEndpointResponse
type

The output parameter for the lookup_endpoint operation is of
lookupEndpointResponse type, which maps to C++ as follows:

// C++
namespace IT_Bus_Services
{
 class lookupEndpointResponse
 : public IT_Bus::SequenceComplexType
 {
 public:
 lookupEndpointResponse();
 lookupEndpointResponse(const lookupEndpointResponse&

copy);
 virtual ~lookupEndpointResponse();
 ...
 const IT_Bus::Reference & getservice_endpoint() const;
 IT_Bus::Reference & getservice_endpoint();
 void setservice_endpoint(const IT_Bus::Reference & val);
 ...
 };
};
 74

Using the Artix Locator
Registering Endpoints with the Locator

Overview To register a server�s endpoints with the locator, you must configure the
server to load a specific set of plug-ins. Once the appropriate plug-ins are
loaded, the server will automatically register every endpoint (that is,
service/port combination) that is created on the server side.

There is currently no programming API for registering endpoints explicitly.

Configuring a server to register
endpoints

A server that is to register its endpoints with the locator must be configured
to include the soap, http, and locator_endpoint plug-ins, as shown in the
following demo.locator.server configuration scope from artix.cfg:

When running the server, remember to select the appropriate configuration
scope by passing it as the -ORBname command-line parameter. For example,
the preceding configuration would be picked up by a MyArtixServer
executable, if the server is launched with the following command:

MyArtixServer -ORBname demo.locator.server

References For more details about configuring a server to register endpoints, see the
following references:

� �Using the Artix Locator Service� chapter from the Artix User�s Guide.

� The Artix locator demonstration in artix/Version/demos/locator.

Artix Configuration File (artix.cfg)
...
demo {
 locator {
 server
 {
 plugins:locator:wsdl_url="../wsdl/locator.wsdl";
 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop", "soap", "http", "tunnel", "ots", "fixed",
"ws_orb", "locator_endpoint"];

 };
 };
 ...
};
75

CHAPTER 3 | Artix References
Reading a Reference from the Locator

Overview After the target server (in this example, the SimpleService server) has
started up and registered its endpoints with the locator, an Artix client can
then bootstrap a connection to the target server by reading one of its
endpoint references from the locator. Figure 6 shows an outline of how a
client bootstraps a connection in this way.

Programming steps The main programming steps needed to read a reference from the locator,
as shown in Figure 6, are as follows:

1. Construct a locator service proxy.

2. Use the locator proxy to invoke the lookup_reference operation.

3. Use the reference returned from lookup_reference to construct a
SimpleService proxy.

4. Invoke an operation using the SimpleService proxy.

Figure 6: Steps to Read a Reference from the Locator

locator_endpoint
plug-in

Artix Client
Artix

SimpleService
Server

Artix Locator
P1

...

SOAPHTTPService

...

P1

lookup_endpoint()

SOAPHTTPService

1

2

3

4

Locator proxy

SimpleService proxy

Invoke operation
 76

Using the Artix Locator
Example Example 30 shows an example of the code for an Artix client that retrieves a
reference to a SimpleService service from the Artix locator.

Example 30:Example of Reading a Reference from the Locator Service

// C++
#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>

#include "SimpleServiceClient.h"
#include "LocatorServiceClient.h"

IT_USING_NAMESPACE_STD
using namespace IT_Bus;
using namespace IT_Bus_Services;
using namespace SimpleServiceNS;

int
main(int argc, char* argv[])
{
 cout << " SimpleService Client" << endl;

 try
 {
 int my_argc = 2;
 const char * my_argv [] = {
 "-ORBname",
 "demo.locator.client"
 };

1 IT_Bus::init(my_argc, (char **)my_argv);

2 QName service_name(
 "","LocatorService", "http://ws.iona.com/locator"
);

3 QName sh_service_name(
 "","SOAPHTTPService", "http://www.iona.com/bus/tests"
);

4 String port_name("LocatorServicePort");

 // 1. Construct a locator service proxy
5 IT_Bus_Services::LocatorServiceClient*

 m_locator_client = new LocatorServiceClient(
 "../wsdl/locator.wsdl", service_name, port_name
77

CHAPTER 3 | Artix References
);

 // Setup input and output parameters to locator
 lookupEndpoint sh_input;
 sh_input.setservice_qname(sh_service_name);
 lookupEndpointResponse sh_output;

 // 2. Invoke on locator
6 m_locator_client->lookup_endpoint(

 sh_input,
 sh_output
);

 // 3. Construct a new proxy to your target service with
 // the result from the locator

7 SimpleServiceClient sh_simple_client(
 sh_output.getservice_endpoint()
);

 // 4. Use your new proxy
8 String sh_my_greeting("SOAPHTTP ENDPOINT GREETING");

 String result;
 sh_simple_client.say_hello(sh_my_greeting, result);
 cout << "say_hello method returned: " << result << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
 }
 return 0;
}

Example 30:Example of Reading a Reference from the Locator Service
 78

Using the Artix Locator
The preceding C++ example can be explained as follows:

1. You should ensure that the client picks up the correct configuration by
passing the appropriate value of the -ORBname parameter. In this
example, the -ORBname parameter is hard-coded, but you might prefer
to take this parameter from the command line instead.

2. This line constructs a qualified name, service_name, that identifies the
<service name="LocatorService"> tag from the locator WSDL. See
the listing of the locator WSDL in Example 28 on page 69.

3. This line constructs a qualified name, sh_service_name, that identifies
the SOAPHTTPService service from the SimpleService WSDL.

4. This port name refers to the <port name="LocatorServicePort" ...>
tag in the locator WSDL (see Example 28 on page 69).

5. The locator service proxy is created by calling the three-argument
constructor for the LocatorServiceClient class. The three arguments
passed (locator WSDL, service name, and port name) specify the
locator endpoint exactly.

6. The lookup_endpoint() operation is invoked on the locator to find an
endpoint of SOAPHTTPService type (specified in the sh_input
parameter).

7. The call to sh_output.getservice_endpoint() extracts the returned
SimpleService reference which is then passed to a simple client proxy
constructor. The constructor is a special form that takes an
IT_Bus::Reference type as its argument:

8. You can now use the simple client proxy to make invocations on the
remote Artix server.

Note: If there is more than one WSDL port registered for the
SOAPHTTPService server, the locator service employs a round-robin
algorithm to choose one of the ports to use as the returned endpoint.

// C++
SimpleClient(
 IT_Bus::Reference & reference,
 IT_Bus::Bus_ptr bus = 0
);
79

CHAPTER 3 | Artix References
Pausing and Resuming Endpoints

Overview As part of a load management strategy, it is useful if you can pause the
traffic of requests incoming to a server. For this purpose, the
IT_Bus::Service class provides a pair of functions to pause and resume a
service�s endpoints. The locator_endpoint plug-in supports this
functionality by de-registering the service�s endpoints from the locator. This
does not prevent existing clients from sending requests to the server, but it
does help to limit the load by making the server temporarily unavailable to
new clients.

IT_Bus::Service pause and
resume functions

The IT_Bus::Service class provides the following member functions for
pausing and resuming an Artix service:

IT_Bus::Service::reached_capacity()

Call the reached_capacity() function to pause a service�s endpoints. The
locator_endpoint plug-in listens for this event and, when the function is
called, the locator_endpoint plug-in deregisters the service�s endpoints
(ports) from the locator.

IT_Bus::Service::below_capacity()

Call the below_capacity() function to resume a service�s endpoints. The
locator_endpoint plug-in listens for this event and, when the function is
called, the locator_endpoint plug-in re-registers the service�s endpoints
with the locator.
 80

Using the Artix Locator
C++ server example Example 31 shows how to pause and resume the endpoints for a
BookService service.

Example 31:Code to Pause and Resume a Service�s Endpoints

// C++
// Get handle to Service from Bus if available
IT_Bus::QName service_name(“”, “BookService”, “http://books”);
IT_Bus::Service* = bus->get_service(service_name);

// Trigger the de-register if registered
service->reached_capacity();
...
// Trigger the re-register if not register
service->below_capacity();
81

CHAPTER 3 | Artix References
 82

CHAPTER 4

Using Sessions in
Artix
The Artix Session Manager helps you manage service
resources.

In this chapter This chapter discusses the following topics:

Introduction to Session Management in Artix page 84

Registering a Server with the Session Manager page 87

Working with Sessions page 90
83

CHAPTER 4 | Using Sessions in Artix
Introduction to Session Management in Artix

Overview The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager plug-ins are:

Session Manager Service Plug-in (session_manager_service) is the central
service plug-in. It accepts and tracks service registration, hands out session
to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (session_endpoint_manager) is the
portion of the session manager that resides in a registered service. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,
sm_simple_policy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each
group.
 84

Introduction to Session Management in Artix
How do the plug-ins interact? Figure 7 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service
plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy
plug-in.

The endpoint manager plug-ins are deployed into the server processes
which contain session managed services. A process can host two services,
like Service C and Service D in Figure 7, but the process will have only one
endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on

Figure 7: The Session Manager Plug-ins

Client

Session
Manager
Service

Simple
Policy
Plug-in

Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Endpoint
Manager
Plug-in

Standalone Session Manager

Service A

Service B

Service C

Group 1

Group 2

Service D
85

CHAPTER 4 | Using Sessions in Artix
endpoint health, to receive information on new sessions that have been
granted to the managed services, and to check on the health of the session
manager service.

What are sessions? The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the
water-slide group, it would ask the session manager for a session with the
water-slide group. The session manager would then check and see if the
water-slide group had an available session, and if so it would return a
session id and the list of water-slide service references to the client. The
session manager would then notify the endpoint managers in the water-slide
group that a new session had been issued, the new session�s id, and the
duration for which the session is valid. When the client then makes requests
on the services in the water-slide group, it must include the session
information as part of the request. The endpoint manager for the services
then check the session information to ensure it is valid. If it is, the request is
accepted. If it is not, the request is rejected.

If the client wants to continue using the water-slide services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client�s session has
expired, it will have to request a new one.

What are groups? The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group be related, it
is recommended that the endpoints have some relationship.

A service�s group affiliation is controlled by the configuration scope under
which it is run. To change a service�s group, you edit the value for
plugins:session_endpoint_manager:default_group in the process�
configuration scope. For more information on Artix configuration see
Deploying and Managing Artix Solutions.
 86

Registering a Server with the Session Manager
Registering a Server with the Session Manager

Overview Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Configuring the server Any server hosting services that are to be managed by the session manager
must load the following plug-ins in addition to the transport and payload
plug-ins it requires:

� soap

� http

� session_endpoint_manager

session_endpoint_manager allows the server to register with a running
session manager.

The server�s configuration also needs to set the following configuration
variables:

plugins:session_endpoint_manager:wsdl_url points to the contract
describing the contact information for the session manager that will be
managing the services.

plugins:session_endpoint_manager:endpoint_manager_url points to the
contract describing the contact information for the endpoint manager for this
server. This enables the session manager to contact the service to with
updated state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.
87

CHAPTER 4 | Using Sessions in Artix
Example 32 shows the configuration scope of a server that hosts services
managed by the session manager.

A server loaded into the qajaq_server configuration scope will be managed
by the session manager at the location specified in
session-manager-service.wsdl, its endpoint manager will come up at the
address specified in session-manager-endpoint.wsdl, and by default all
services instantiated by the server will belong to the session manager group
qajaq_group.

For more information on Artix configuration see Deploying and Managing
Artix Solutions.

You also need to configure the port on which the endpoint manager will run.
To do this you modify session-manager.wsdl, provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open
session-manager.wsdl and edit the <soap:address> entry for the
SessionEndpointManagerService to specify the proper address.
Example 33 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 32:Server Configuration Scope

qajaq_server
{
 orb_plugins = ["xmlfile_log_stream", "soap", "http", "fixed", "session_endpoint_manager"];
 plugins:session_endpoint_manager:wsdl_url="session-manager-service.wsdl";
 plugins:session_endpoint_manager:endpoint_manager_url="session-manager-endpoint.wsdl";
 plugins:session_endpoint_manager:deafult_group="qajaq_group";
 };

Example 33:Endpoint Manager Address

<service name="SessionEndpointManagerService">
 <port name="SessionEndpointManagerPort" binding="sm:SessionEndpointManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/sessionEndpointManager"/>
 </port>
</service>
 88

Registering a Server with the Session Manager
In the server�s configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting
plugins:session_endpoint_manager:endpoint_manager_url to point to the
copy of session-manager.wsdl containing the address for this instance of
the endpoint manager.

Registration Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
plugins:session_endpoint_manager:wsdl_url.
89

CHAPTER 4 | Using Sessions in Artix
Working with Sessions

Overview Clients wishing to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service�s group using the session
manager proxy.

3. Obtain the list of endpoints available in the group.

4. Create a service proxy from one of the endpoints in the group.

5. Build a session header to pass to the service.

6. Invoke requests on the endpoint using the proxy.

7. Renew the session as needed.

8. End the session using the session manager proxy when finished with
the services.

Instantiating a session manager
proxy

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of SessionManagerClient using the
session manager�s contract name, session-manager.wsdl.

Example 34 shows how to instantiate a session manager proxy.

For more information on instantiating Artix proxies, see the Artix C++
Programmer�s Guide.

Example 34: Instantiating a Session Manager Proxy

// C++
SessionManagerClient session_manager_proxy = new

SessionManagerClient("session_manager.wsdl");
 90

Working with Sessions
Start a session After instantiating a session manager proxy, a client can then start a session
for the desired service�s group using the session manager�s
begin_session() method. begin_session() has the following signature:

input contains the name of the desired group and the desired duration of
the session. The group name is set using the setendpoint_group() method.
The group name can be any valid string and corresponds to the default
group name set in the service�s configuration scope as described in
�Configuring the server� on page 87.

The session duration is set using the setprefered_renew_timeout()
method. The duration is specified in seconds. If the specified duration is less
than the value specified by the session manager�s min_session_timeout
configuration setting, it will be set to the configured minimum value. If the
specified duration is higher than the value specified by the session
manager�s max_session_timeout configuration setting, it will be set the
configured max value.

output contains the information needed to use the session.

Once a session is returned in output, you will need to extract the session ID
to work with the session. This is done using getsession_id().
getsession_id() returns the session ID as an
IT_Bus_Services::SessionID.

void begin_session(IT_Bus_Services::BeginSession input,
 IT_Bus_Services::BeginSessionResponse output);
91

CHAPTER 4 | Using Sessions in Artix
Example 35 shows the client code to begin a session for qajaq_group.

Get a list of endpoints in the group The session manager hands out sessions for a group of services, so in order
to get an individual service upon which to make requests a client needs to
get a list of the services in the session�s group. The session manager proxy�s
get_all_endpoints() method returns a list of all endpoints registered to the
specified group. get_all_endpoints() has the following signature:

request contains the session ID for which you are requesting services. Set
the session ID using the setsession_id() method on request with the
session ID returned from the session manager.

response contains the list of services returned from get_all_endpoints().
If the group has no services, response will be empty.

Example 35:Beginning a Session

// C++
IT_Bus_Services::BeginSession begin_session_request;
IT_Bus_Services::BeginSessionResponse begin_session_response;

// set the group to request
begin_session_request.setendpoint_group("qajaq_group");
// set session renewal interval to 10 mins
begin_session_request.setpreferred_renew_timeout(600);

session_mgr.begin_session(begin_session_request,
 begin_session_response);

IT_Bus_Services::SessionId session;
session =

begin_session_response.getsession_info().getsession_id();

void get_all_endpoints(IT_Bus_Services::GetAllEndpoints request,
 IT_Bus_Services::GetAllEndpointsResponse response)
 92

Working with Sessions
Example 36 shows how to get the list of services for a group.

Create a proxy for the requested
service

The client can use any of the services returned by get_all_endpoints() to
instantiate a service proxy. To instantiate the proxy, you first need to narrow
down the list returned services to the desired one. GetAllEnpointsResponse
contains an array of references to active services that can be retrieved using
GetAllEndpointsResponse�s getendpoints() method. You can use simple
indexing to get one of the references. For example, to use the first service in
the list you would use the following:

Because the session manager simply returns the services in the order the
services registered with the session manager, the clients must be
responsible for circulating through the list or else they will all make requests
on only one service in the group. Also, because the session manager does
not force all members of a group to implement the same interface, you may

Example 36:Retrieving the List of Services in a Group

//C++
IT_Bus_Services::GetAllEndpoints request;
IT_Bus_Services::GetAllEndpointsResponse response;

// group session initialized above.
get_all_endpoints_request.setsession_id(session);

session_mgr.get_all_endpoints(request, response);

response.getendpoints()[0]
93

CHAPTER 4 | Using Sessions in Artix
want to have your clients check each service to see if it implements the
correct interface by checking the reference�s service name as shown in
Example 37.

Example 38 shows the client code for creating a proxy qajaq server from a
group service.

Create a session header Services that are being managed by the session manager will only accept
requests that include a valid session header. The session header information
is passed to the server as part of the proxy�s input message attributes.
Creating the session header and putting into the input message attributes
takes three steps:

1. Set the proxy to use input message attributes.

2. Get a handle to the proxy�s input message attributes.

3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get_port(), that provides
access to the port information used by the client to connect the service. One
of an Artix proxy�s port properties is use_input_message_attributes.

Example 37:Checking the Service Reference for its Interface

//C++
IT_Bus::Reference endpoint = response.getendpoints()[0];
if (endpoint.get_service_name() ==
 QName("", "QajaqService", "http://qajaqs.com"))
 {
 // instantiate a QajaqService using endpoint
 }
else
 {
 // do something else
 }

Example 38: Instantiate a Proxy Server

// C++
QajaqClient qajaq_proxy(response.getendpoints()[0]);
 94

Working with Sessions
Setting this property to true tells the bus to ensure the input message
attributes are propagated through to the server. Example 39 shows how to
set the client proxy port�s use_input_message_attributes property to true.

Getting a handle to the input message attributes

A pointer to the proxy port�s input message attributes is returned by the
port�s get_input_message_attributes() method. Example 40 shows how
to get a handle to the input message attributes.

Setting the session information into the input message attributes

There are two attributes that need to be set to include the proper session
information in the input message:

SessionName specifies the name the session manager has given this
session. The session manager endpoints in the group will also be given this
name to validate session header�s against. The session name is returned by
invoking getname() of the session ID of the active session.

SessionGroup specifies the group name for which the session is valid. The
session endpoints also use to ensure that the session is for the correct
group. The session group is returned by invoking getendpoint_group() on
the session ID of the active session.

Example 39:Use Input Message Attributes

//C++
// Get the proxy’s port
IT_Bus::Port proxy_port = qajaq_proxy.get_port();

// set the port property
proxy_port.use_input_attributes(true);

Example 40:Getting the Input Message Attributes

MessageAttributes& input_attributes =
proxy_port().get_input_message_attributes();
95

CHAPTER 4 | Using Sessions in Artix
The input message attributes are set using the message attribute handle�s
set_string() method. set_string() takes two attributes. The first is a
string specifying the name of the attribute being set. The second is the value
to be set for the attribute. Example 41 shows how to set the session
information in to the input message attributes.

Make requests on service proxy Once the session information is added to the proxy�s port information, the
client can invoke operations on the client as it would a non-managed
service. If the endpoint rejects the request because the client�s session is not
valid, an exception is raised.

Renewing a session If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy�s
renew_session() method. renew_session() has the following signature:

params contains the session ID of the session being renewed and the
duration, in seconds, of the renewal. The session ID is set using params�
setsession_id() method. The renewal duration is set using params�
setrenew_timeout() method.

If the renewal is successful, renewed will return containing the duration of
the renewal. The returned duration may be different if the requested renewal
duration was outside of the configured range for session timeouts.

If the renewal is unsuccessful, an
IT_Bus_Services::renewSessionFaultException is raised.

Example 41:Setting the Input Message Attributes

// C++
input_attributes.set_string("SessionName", session.getname());
input_attributes.set_string("SessionGroup",
 session.getendpoint_group());

void renew_session(IT_Bus_Services::RenewSession params,
 IT_Bus_Services::RenewSessionResponse renewed);
 96

Working with Sessions
Example 42 shows how to end a session.

End the session When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy�s
end_session() method. end_session() has the following signature:

params contains the session ID of the session being ended. The session ID is
set using params� setsession_id() method.

Example 43 shows how to end a session.

Example 42:Ending a Session

//C++
IT_Bus_Services::RenewSession params;
IT_Bus_Services::RenewSessionResponse renewed;
params.setsession_id(session);
parames.setrenewal_timeout(600);
try
{
 session_mgr.renew_session(params, renewed);
}
catch (IT_Bus_Services::renewSessionFaultException)
{
 // handle the exception
}

void end_session(IT_Bus_Services::EndSession params);

Example 43:Ending a Session

//C++
IT_Bus_Services::EndSession params;
params.setsession_id(session);
session_mgr.end_session(params);
97

CHAPTER 4 | Using Sessions in Artix
 98

CHAPTER 5

Transactions in
Artix
This chapter discusses the Artix support for distributed
transaction processing.

In this chapter This chapter discusses the following topics:

Introduction to Transactions page 100

Transaction API page 102

Client Example page 104
99

CHAPTER 5 | Transactions in Artix
Introduction to Transactions

Overview Artix supports a pluggable model of transaction support, which is currently
restricted to the CORBA Object Transaction Service (OTS) only and, by
default, supports client-side transaction demarcation only. Other transaction
services (such as MQ series transactions) will be supported in a future
release. The following transaction features are supported by Artix:

� Client-side transaction support.

� Compatibility with Orbix ASP.

� Pluggable transaction factory.

Client-side transaction support By default, Artix has only client-side support for CORBA OTS-based
transactions. Transaction demarcation functions (begin(), commit() and
rollback()) can be used on the client side to control transactions that are
hosted on a remote CORBA OTS server, as shown in Figure 8.

In Figure 8, the resource and the transaction factory are located on the
server side (in an Orbix ASP domain). Artix currently does not have the
capability to manage resources on the client side.

Figure 8: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

CORBA
Server

Transaction
Factory

Resource

begin()

 invoke

commit()

Artix
Client

Orbix ASP Domain
 100

Introduction to Transactions
Compatibility with Orbix ASP The Artix transaction facility is fully compatible with CORBA OTS in Orbix
ASP. Hence, if you already have a transactional server implemented with
Orbix ASP, you can easily integrate this with an Artix client.

Pluggable transaction factory The underlying transaction factory used by Artix can be replaced within a
pluggable framework. In future, Artix will support multiple factories (for
example, OTS, MQ series, and so on). Currently, only the following
transaction factory is supported:

� ots
101

CHAPTER 5 | Transactions in Artix
Transaction API

Overview The Artix transaction API is provided by the following classes and modules:

� IT_Bus::Bus

IT_Bus::Bus member functions The IT_Bus::Bus class has the following member functions, which are used
to manage transactions:

Factory name parameter The factory name parameter, which is passed to each of the preceding API
functions, identifies the kind of transaction factory that is used. Currently,
only the CORBA OTS transaction factory is supported, which is specified by
the string, ots.

Note: You can also gain access to interfaces from the CosTransactions
module, which is part of CORBA OTS, if you have IONA�s Orbix ASP
product. This is not included with Artix.

// C++
void begin(const char* factory_name);

void commit(bool report_heuristics, const char* factory_name);

void rollback(const char* factory_name);

void rollback_only(const char* factory_name);

char* get_transaction_name(const char* factory_name);

IT_Bus::Boolean within_transaction(const char* factory_name);

void set_timeout(IT_Bus::UInt seconds, const char*
factory_name);

IT_Bus::Uint get_timeout(const char* factory_name);

CosTransactions::Coordinator*
get_coordinator(const char* factory_name);
 102

Transaction API
Client transaction functions The begin(), commit(), and rollback() functions are used to demarcate
transactions on the client side. The commit() function ends the transaction
normally, making any changes permanent. The rollback() function aborts
the transaction, rolling back any changes.

The within_transaction() function, which can be called in an execution
context on the server side, returns TRUE if the current operation is executing
within a transaction scope.

Server transaction functions The rollback_only() function can be called on the server side to mark the
current transaction for rollback. After this function is called, the current
transaction can only be rolled back, not committed.

Timeouts A client can use the set_timeout() function to impose a timeout on the
transactions it initiates. If the timeout is exceeded, the transaction is
automatically rolled back.

CosTransactions::Coordinator
class

The CosTransactions::Coordinator class enables you to exercise
fine-grained control over a transaction. The CosTransactions::Coordinator
class is defined by the CORBA Object Transaction Service (OTS).
103

CHAPTER 5 | Transactions in Artix
Client Example

Overview This section describes a transactional Artix client that connects to a remote
CORBA OTS server. The client uses the Artix transactional API to delimit
transactions, where the transactional resource and the transaction factory
are both located in the CORBA OTS server. This simple Artix client cannot
manage a transactional resource on its own.

WSDL sample Example 44 defines a WSDL port type, AccountPortType, with two
operations withdraw and deposit, which are used for withdrawing money
from or depositing money into personal accounts on the server.

Example 44:Definition of an AccountPortType Port

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <message name="withdraw">
 <part name="accName" type="xsd:string"/>
 <part name="amount" type="xsd:int"/>
 </message>
 <message name="withdrawResponse"/>
 <message name="deposit">
 <part name="accName" type="xsd:string"/>
 <part name="amount" type="xsd:int"/>
 </message>
 <message name="depositResponse"/>
 <portType name="AccountPortType">
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>
 ...
</definitions>
 104

Client Example
Client example Example 45 shows a client that executes a transfer of funds as a
transaction. After starting the transaction, the client withdraws $1000
dollars from Bill�s account and deposits the money into Ben�s account.

The preceding transactional client code can be explained as follows:

1. The AccountClient object, acc, is a client proxy representing the
AccountPortType port type.

2. The IT_Bus::Bus::begin() function initiates the transaction. The ots
string, which is passed as the argument to begin(), specifies that the
current transaction uses the CORBA OTS transaction factory.

3. The IT_Bus::Bus::commit() function attempts to commit the changes
in the server (withdrawal and deposit of money).

4. If an exception is thrown, the transaction must be aborted by calling
the IT_Bus::Bus::rollback() operation.

Example 45:Starting and Ending a Transaction on the Client Side

// C++
...
IT_Bus::Bus_var bvar = IT_Bus::Bus::create_reference();

1 AccountClient acc;

try {
 // start a txn

2 bvar->begin("ots");
 acc.withdraw("Bill", 1000);
 acc.deposit("Ben", 1000);

3 bvar->commit(IT_TRUE,"ots");
 cout << "Transaction completed successfully." << endl;
}
catch(IT_Bus::Exception& e) {

4 bvar->rollback("ots");
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message() << endl;
 return -1;
}

105

CHAPTER 5 | Transactions in Artix
 106

CHAPTER 6

Message
Attributes
This chapter describes how to program message attributes,
which enable you to send extra data in a WSDL message during
an operation call.

In this chapter This chapter discusses the following topics:

Introduction to Message Attributes page 108

Schemas page 111

Name-Value API page 113

Transport-Specific API page 117

Using Message Attributes in a Client page 120

Using Message Attributes in a Server page 123
107

CHAPTER 6 | Message Attributes
Introduction to Message Attributes

Overview Message attributes provide a way of transmitting data in a WSDL message
header as part of an operation invocation. For example, message attributes
are useful in the context of secure communication, where they can be used
to transmit authentication data between clients and servers.

Message attribute categories Message attributes are properties that are set on an instance of a WSDL
port. They are defined in a WSDL schema and are usually transport-specific.
They can be divided into the following categories:

� Attributes that can be sent from the client to the server (input message
attributes).

� Attributes that can be sent from the server to the client (output
message attributes).

Additionally, the following kinds of message attribute can only be set locally
and are not transmitted between applications:

� Attributes that configure the WSDL port on the client side (not
transmitted).

� Attributes that configure the WSDL port on the server side (not
transmitted).
 108

Introduction to Message Attributes
Input and output messages Figure 9 shows how message attributes are sent in the input message
header, from client to server, and in the output message header, from server
to client.

Client interception points A client can access message attributes at the following interception points:

� Pre-invoke�write input message attributes prior to an operation call.

� Post-invoke�read output message attributes after an operation call.

Server interception points A server can access message attributes within the body of an operation
implementation to do either of the following:

� Read the input message attributes received from the client.

� Write output message attributes to send to the client.

Oneway operations A WSDL oneway operation defines only an input message. Hence, in a
oneway operation it is only possible to define input message attributes.

Figure 9: Passing Message Attributes in Input and Output Messages

Artix Client
Transport

Artix
Binding

Artix Client

request response

Artix Server
Transport

Artix
Binding

Artix Server

request response

request

message
parts

message
attributes

response

message
parts

message
attributes

post-invokepre-invoke write attributesread attributes
109

CHAPTER 6 | Message Attributes
Setting message attributes in
configuration

It is possible to specify message attributes in configuration, by adding WSDL
extension elements to the <port> element of the WSDL contract.

For example, the HelloWorld MQ Soap example (located in
ArtixInstallDir\artix\Version\demos\hello_world\mq_soap) defines the
<port> element in its WSDL contract as follows:

The attributes in the preceding example define the name and properties of
an MQ series message queue both on the client side and the server side.

Setting message attributes by
programming

Artix also allows you to set message attributes by programming. This gives
you finer control over message attributes, enabling you to set them
per-invocation instead of per-connection.

There are two styles of API for accessing and modifying message attributes
by programming, as discussed in the following sections:

� �Name-Value API� on page 113.

� �Transport-Specific API� on page 117.

<definitions ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 AccessMode="send"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 />

 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 />
 </port>
 </service>
</definitions>
 110

Schemas
Schemas

Overview The various kinds of message attributes are defined in a collection of XML
schema definitions (one schema file for each transport type), located in the
following directory:

ArtixInstallDir/artix/Version/schemas

Schema documentation For documentation on the message attribute settings, see the relevant
sections of Designing Artix Solutions concerning HTTP Transport Attributes,
MQSeries Transport Attributes and Tibco Transport Attributes.

Schemas for message attributes The message attributes supported by Artix are defined by transport-specific
XSLT schema files, located in the ArtixInstallDir/artix/Version/schemas
directory. The transport schemas with message attributes are listed in
Table 4.

HTTP schema example Example 46 shows an extract from the HTTP schema, http-conf.xsd,
showing some message attributes that can be set on the client side (that is,
input message attributes).

The UserName and Password input message attributes can be used to send
authentication data to a server. By default, these message attributes are
sent in a BASIC HTTP authentication header.

Table 4: Transport Schemas with Message Attributes

Schema Type File

HTTP ArtixInstallDir/artix/Version/schemas/http-conf.xsd

MQ Series ArtixInstallDir/artix/Version/schemas/mq.xsd

Tibco ArtixInstallDir/artix/Version/schemas/tibrv.xsd
111

CHAPTER 6 | Message Attributes
Example 46:Sample Extract from the http-conf.xsd Schema

<xs:schema ... >
 <xs:complexType name="clientType">
 <xs:complexContent>
 <xs:extension base="wsdl:tExtensibilityElement">

 <xs:attribute name="UserName" type="xs:string"
 use="optional"/>

 <xs:attribute name="Password" type="xs:string"
 use="optional"/>
 ...
 </xs:extension>
 ...
</xs:schema>
 112

Name-Value API
Name-Value API

Overview The name-value API is a transport-neutral API for setting and getting
message attributes, where the attributes are stored in a table of name-value
pairs. Attributes are identified by passing a string argument to one of the
set_Type() or get_Type() functions (for a complete list of attribute
identifiers, see the relevant schema in �Schemas for message attributes� on
page 111).

This subsection discusses the following aspects of the name-value API:

� Inheritance hierarchy.

� MessageAttributes class.

� NamedAttributes class.

Inheritance hierarchy Figure 10 shows the inheritance hierarchy for the classes involved in the
name-value API for message attributes.

MessageAttributes class The IT_Bus::MessageAttributes class inherits functions for getting and
setting name-value pairs from IT_Bus::NamedAttributes, but it does not
define any new member functions of its own. The MessageAttribute class is
used as the base class for transport-specific message attribute classes and
instances of a MessageAttribute type encapsulate the settings for a specific
transport.

NamedAttributes class The IT_Bus::NamedAttributes class acts as a container for a collection of
name-value pairs. The name in a name-value pair is a string identifier and
the value is a data value whose type can be any of the basic WSDL data
types.

Figure 10: Inheritance Hierarchy for IT_Bus::MessageAttributes Class

IT_Bus::MessageAttributes

IT_Bus::NamedAttributes
113

CHAPTER 6 | Message Attributes
The IT_Bus::NamedAttribute API, shown in Example 47, provides a
type-safe interface to the collection of name-value pairs using type-specific
get and set operations, get_Type() and set_Type().

Example 47:The IT_Bus::NamedAttribute API

// C++
IT_Bus::Boolean get_boolean(const IT_Bus::String& name) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_boolean(
 const IT_Bus::String& name,
 IT_Bus::Boolean data
);

IT_Bus::Byte get_byte(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_byte(
 const IT_Bus::String& name,
 IT_Bus::Byte data
);

IT_Bus::Short get_short(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_short(
 const IT_Bus::String& name,
 IT_Bus::Short data
);

IT_Bus::Int get_int(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_int(
 const IT_Bus::String& name,
 IT_Bus::Int data
);

IT_Bus::Long get_long(
 const IT_Bus::String& name
 114

Name-Value API
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_long(
 const IT_Bus::String& name,
 IT_Bus::Long data
);

IT_Bus::UByte get_ubyte(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_ubyte(
 const IT_Bus::String& name,
 IT_Bus::UByte data
);

IT_Bus::UShort get_ushort(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_ushort(
 const IT_Bus::String& name,
 IT_Bus::UShort data
);

IT_Bus::UInt get_uint(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_uint(
 const IT_Bus::String& name,
 IT_Bus::UInt data
);

IT_Bus::ULong get_ulong(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_ulong(
 const IT_Bus::String& name,

Example 47:The IT_Bus::NamedAttribute API
115

CHAPTER 6 | Message Attributes
 IT_Bus::ULong data
);

IT_Bus::Float get_float(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_float(
 const IT_Bus::String& name,
 IT_Bus::Float data
);

IT_Bus::Double get_double(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_double(
 const IT_Bus::String& name,
 IT_Bus::Double data
);

IT_Bus::String get_string(
 const IT_Bus::String& name
) const
IT_THROW_DECL((WrongTypeException, NoSuchAttributeException));

void set_string(
 const IT_Bus::String& name,
 const IT_Bus::String& data
);
...
const IT_Bus::NamedAttributes::StringList& get_names();

void clear_name_values();

Example 47:The IT_Bus::NamedAttribute API
 116

Transport-Specific API
Transport-Specific API

Overview In addition to the neutral API for setting message attributes (as defined by
IT_Bus::NamedAttributes), Artix also provides a transport-specific API for
certain transports. This subsection describes the following aspects of
transport-specific APIs:

� Inheritance hierarchy.

� Transports with a message attribute API.

� Tibco transport example.

Inheritance hierarchy Figure 11 shows the inheritance hierarchy for the classes involved in the
transport-specific API for message attributes.

WARNING: If you decide to use a transport-specific API, you should note
that your application will be tied to a specific transport; that is, you lose
transport pluggability. You should consider carefully the impact that this
might have on the design of your system before opting to use a
transport-specific API.

Figure 11: Inheritance Hierarchy for the Transport-Specific API

IT_Bus::MessageAttributes

IT_Bus::NamedAttributes

HTTPClientAttributes

HTTPServerAttributes IT_Bus::TibrvMessageAttributes

MQAttributes
117

CHAPTER 6 | Message Attributes
Transports with a message
attribute API

The following transports provide a message attributes API:

� HTTP�there are two parts to this API, as follows:

♦ Client side�defined by the HTTPClientAttributes class in the
<it_bus_config/http_wsdl_client.h> header

♦ Server side�defined by the HTTPServerAttributes class in the
<it_bus_config/http_wsdl_server.h> header.

� MQ Series�defined by the MQAttributes class in the
<it_bus_config/mq_wsdl_port.h> header.

� Tibco�defined by the IT_Bus::TibrvMessageAttributes class in the
<it_bus_config/tibrv_message_attributes.h> header.

Tibco transport example Example 48, which is taken from the
<it_bus_config/tibrv_message_attributes.h> header file, shows the
transport-specific API for getting and setting message attributes on the Tibco
transport.

Example 48:Getting and Setting Tibco Message Attributes

// C++
namespace IT_Bus
{
 class IT_BUS_API TibrvMessageAttributes
 : public virtual MessageAttributes
 {
 public:
 ...
 virtual const String& get_send_subject();
 virtual void set_send_subject(const String&

send_subject);

 virtual const String& get_reply_subject();
 virtual void set_reply_subject(
 const String& reply_subject
);

 virtual const String& get_sender();
 virtual void set_sender(const String& sender);

 virtual const ULong& get_sequence();

 virtual const Double& get_time_limit();
 118

Transport-Specific API
 virtual void set_time_limit(const Double& time_limit);

 virtual const UByte& get_jms_delivery_mode();

 virtual const UByte& get_jms_priority();

 virtual const ULong& get_jms_timestamp();

 virtual const ULong& get_jms_expiration();

 virtual const String& get_jms_type();

 virtual const String& get_jms_message_id();

 virtual const String& get_jms_correlation_id();

 virtual const Boolean& get_jms_redelivered();
 ...
 };
};

Example 48:Getting and Setting Tibco Message Attributes
119

CHAPTER 6 | Message Attributes
Using Message Attributes in a Client

Overview This section describes how to write a client that sends message attributes
across the wire to a server as part of an operation invocation.

How to use message attributes in
a client

To use message attributes on the client side, perform the following steps:

C++ example To use message attributes in a sample client, you can modify the
HelloWorld HTTP Soap client as shown in Example 49. Edit the client.cxx
file, which is located in the
ArtixInstallDir/artix/Version/demos/hellow_world/http_soap/client
directory. In Example 49, the client sets two input message attributes,
UserName and Password, prior to the WSDL operation call and reads a single
output message attribute, ContentType, after the call.

Step Action

1 Obtain an IT_Bus::Port object by calling get_port() on the
client proxy object.

2 Call the use_input_message_attributes() and
use_output_message_attributes() functions on the
IT_Bus::Port object to initialize the message attribute
functionality.

3 Pre-invoke step�set the input message attributes on the
IT_Bus::Port object.

4 Invoke a WSDL operation on the client proxy.

5 Post-invoke step�read the output message attributes from the
IT_Bus::Port object.

Example 49:Using Message Attributes in a Client

// C++
...
 120

Using Message Attributes in a Client
try
{
 IT_Bus::init(argc, argv);

 HelloWorldClient hw;

 String string_in;
 String string_out;

1 // Initialize message attributes.
 IT_Bus::Port& hw_port = hw.get_port();
 hw_port.use_input_message_attributes();
 hw_port.use_output_message_attributes();

2 // Pre-invoke: Set input message attributes.
 IT_Bus::MessageAttributes& hw_input =
 hw_port.get_input_message_attributes();
 hw_input.set_string("UserName","nobody");
 hw_input.set_string("Password","hushhush");

3 hw.sayHi(string_out);
 cout << "sayHi method returned: " << string_out << endl;

4 // Post-invoke: Read output message attributes.
 IT_Bus::MessageAttributes& hw_output =
 hw_port.get_output_message_attributes();
 try {
 String cont_type = hw_output.get_string("ContentType");
 cout << "Message attribute received: ContentType = " <<

cont_type << endl;
 }

5 catch (IT_Bus::NoSuchAttributeException) { }
}
catch(IT_Bus::Exception& e)
{
 cout << endl << "Caught Unexpected Exception: "
 << endl << e.Message()
 << endl;
 return -1;
}

Example 49:Using Message Attributes in a Client
121

CHAPTER 6 | Message Attributes
The preceding client code example can be explained as follows:

1. The HelloWorld client proxy, hw, defines the get_port() method to
give you access to the IT_Bus::Port object that controls the
connection on the client side.

You switch on message attributes on the client side by calling
use_input_message_attributes() and
use_output_message_attributes() on the port object. By default, the
message attribute feature is not enabled because it adds a certain
performance penalty.

2. Pre-invoke interception point�the input message attribute object,
hw_input, enables you to set attributes that are passed over the
connection to the server.

3. The sayHi() operation performs the remote procedure call on the
server.

4. Post-invoke interception point�the output message attribute object,
hw_output, enables you to retrieve the attributes sent by the server.

5. The IT_Bus::NoSuchAttributeException exception is thrown if you try
to read an output attribute that was not sent by the server.
 122

Using Message Attributes in a Server
Using Message Attributes in a Server

Overview On the server side, message attributes can only be accessed within an
execution context. That is, inside the body of a function that implements a
WSDL operation.

This section describes how to write a server that receives input message
attributes from a client and then sends output message attributes back to
the client.

How to use message attributes in
a server

To use message attributes on the server side, perform the following steps:

1. Override the port�s virtual activation() method and call the port�s
use_input_message_attributes() and
use_output_message_attributes() to initialize the message attribute
functionality.

2. Within an execution context, obtain an IT_Bus::Current object by
calling get_bus()->get_current() on the server stub base object.

3. Using the current object�s get_operation().get_port() operation,
obtain an IT_Bus::Port object.

4. Within the server execution context, you can use the IT_Bus::Port
object to do either of the following:

♦ Read input message attributes.

♦ Set output message attributes.

C++ example To use message attributes in a server, you can modify the HelloWorld HTTP
SOAP server as shown in Example 50. Edit the HelloWorldImpl.cxx file,
which is located in the
ArtixInstallDir/artix/Version/demos/hellow_world/http_soap/server
123

CHAPTER 6 | Message Attributes
directory. In Example 50, the client sets two input message attributes,
UserName and Password, prior to the WSDL operation call and reads a single
output message attribute, ContentType, after the call.

Example 50:Using Message Attributes in a Server

// C++
#include "HelloWorldImpl.h"
#include <it_cal/cal.h>
IT_USING_NAMESPACE_STD
using namespace IT_Bus;

1 void HelloWorldImpl::activate(IT_Bus::Port& port)
{
 port.use_input_message_attributes(true);
 port.use_output_message_attributes(true);
}

void HelloWorldImpl::sayHi(IT_Bus::String & Response)
 IT_THROW_DECL((IT_Bus::Exception))
{

2 // Get a reference to the port.
 Current& current = get_bus()->get_current();

3 Port& port = current.get_operation().get_port();

4 // Read input message attributes.
 IT_Bus::MessageAttributes& hw_input =

port().get_input_message_attributes();

5 try
 {
 IT_Bus::String user_name = hw_input.get_string("UserName");
 IT_Bus::String password = hw_input.get_string("Password");

 cout << "Message attributes received:" << endl;
 cout << " username = " << user_name
 << ", password = " << password << endl;
 }

6 catch (IT_Bus::NoSuchAttributeException) { }

 cout << "HelloWorldImpl::sayHi called" << endl;

 Response = IT_Bus::String("Greetings from the Artix HelloWorld
Server");
 124

Using Message Attributes in a Server
The server code in Example 50 can be explained as follows:

1. Override the port�s activate() method to activate the use of message
attributes. Regardless of the threading model your servant will be
called back for each Port for each activation().

2. The servant�s Current object is obtained through the Bus object
representing the server connection. The get_bus() operation is defined
on the IT_Bus::ServerStubBase class, which is a base class of
HelloWorldImpl. It returns a reference to the Bus object that represents
the server connection.

3. The get_port() operation is defined on the IT_Bus::Operation class,
which is accessed through the current object�s get_operation()
operation.

4. To read the input message attribute object on the server side, call
get_input_message_attributes() on the server port object.

5. In this example, the server peeks at the value of the UserName and
Password attributes. Normally, however, you would not bother to read
the UserName and Password at this point because they would
automatically be processed by the server�s transport layer.

6. The IT_Bus::NoSuchAttributeException exception is thrown here if
you try to read an input attribute that was not sent by the client.

7. You can send output message attributes back to the client by setting
attributes on the output message attributes object, hw_output.

7 // Set output message attributes.
 IT_Bus::MessageAttributes& hw_output =

port.get_output_message_attributes();
 hw_output.set_string("ContentType","text/xml");
}

Example 50:Using Message Attributes in a Server

Note: You cannot call get_port() on the server stub if you are using
the MULTI_THREADED threading model when the servant
implementation is registered against multiple ports. The get_port()
operation is currently supported for the following scenarios only:

� MULTI_INSTANCE threading model with multiple ports.

� MULTI_THREADED threading model with only a single port.
125

CHAPTER 6 | Message Attributes
 126

CHAPTER 7

Dynamic
Configuration
This section describes how you can dynamically modify a
WSDL port�s connection parameters by parsing and modifying
the WSDL contract.

In this chapter This chapter discusses the following topics:

Introduction to Dynamic Configuration page 128

Dynamically Allocating IP Ports page 130
127

CHAPTER 7 | Dynamic Configuration
Introduction to Dynamic Configuration

Overview Dynamic configuration is an Artix mechanism that enables you to modify the
port settings in a WSDL contract at runtime. This mechanism is facilitated
by the IT_WSDL API, which is a C++ API for parsing WSDL. Figure 12
shows an overview of the Artix dynamic configuration mechanism.

Process of dynamic configuration The process of dynamic configuration shown in Figure 12 can be described
as follows:

Figure 12: Dynamic Configuration Mechanism

WSDL
Template

Read WSDL
template

WSDL

Artix Server Artix Client

1

2

3

5
Modify WSDL
in memory

Write modified
WSDL file

Connect to
Service

4 Read modified WSDL

Stage Description

1 As it starts up, the Artix server reads in a WSDL template file.
The template is almost identical to the ultimate form of the
WSDL contract, except that the <port> settings in the template
are provisional only.

2 The server modifies the image of the WSDL template file in
memory (represented as a WSDL parse tree). These
modifications normally affect only the <port> settings.

3 The server writes out the modified WSDL to a new WSDL file,
which is the form of the WSDL contract to be exposed to
clients.
 128

Introduction to Dynamic Configuration
Examples This chapter describes the following examples of dynamic configuration:

� �Dynamically Allocating IP Ports� on page 130.

4 When a client is about to use the service, it loads the modified
WSDL file from the server side (typically through a HTTP URL).

5 The client connects to the service using the port settings it
obtained from the modified WSDL contract.

Stage Description
129

CHAPTER 7 | Dynamic Configuration
Dynamically Allocating IP Ports

Overview This section describes how to program a server that uses dynamic IP port
allocation. That is, when the connection parameters in a WSDL contract
specify an IP port with the value 0. In this case, a client cannot read the IP
port number from the original copy of the WSDL contract, because TCP/IP
allocates a random IP port at runtime. The way to cope with this scenario is
to program the server to write out a new copy of the WSDL contract which
has the randomly-allocated IP port embedded in place of the 0 value.

Process for dynamically allocating
IP ports

The process for dynamically allocating IP ports can be described as follows:

Stage Description

1 When IT_Bus::init() is called on the server side, Artix
activates all of the services that are currently registered.

2 During activation, Artix reads and parses the WSDL contracts
for each of the registered services and ports. If a port address
specifies an IP port value of 0, the TCP/IP transport randomly
allocates an IP port on which it listens for connections.

By default, Artix then modifies the WSDL parse tree in memory
by replacing the 0 IP port value with the actual port number
that was randomly assigned.

3 The server makes the randomly-assigned IP port value
available to Artix clients by writing the modified WSDL parse
tree to a file. You have to add some code to the server main
function to perform this step.

4 When an Artix client starts up, it reads the modified WSDL file
that is created in step 3, not the original WSDL file.
 130

Dynamically Allocating IP Ports
Modifying the HelloWorld
demonstration

The example discussed here shows how you can modify the HelloWorld
demonstration to perform dynamic IP port allocation. The source code to
modify can be found in the following directory:

ArtixInstallDir/artix/Version/demos/HelloWorld/http_soap

How to implement dynamic IP
port allocation

To implement dynamic IP port allocation, perform the following steps:

1. Modify the address in the WSDL contract to use IP port 0.

2. Add some code after IT_Bus::init() in the server.cxx file that writes
the WSDL contract to a new file, HelloWorld_written.wsdl. For
example, you could modify the main function of HelloWorld�s
server.cxx file as shown in Example 51.

<definitions ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">
 <soap:address location="http://localhost:0"/>
 </port>
 </service>
</definitions>

Example 51:Modified server.cxx File for Dynamic Port Allocation

// C++
...
int
main(int argc, char* argv[])
{
 cout << "HelloWorld Server" << endl;

 try
 {
 IT_Bus::init(argc, argv);

 IT_CurrentThread::sleep(2000);

 IT_Bus::Service * service = IT_Bus::Bus::get_service(
 QName("", "HelloWorldService", "http://xmlbus.com/HelloWorld")
);
131

CHAPTER 7 | Dynamic Configuration
3. Modify the WSDL location in the client.

You must ensure that the client reads the WSDL file created in the
previous step, HelloWorld_written.wsdl, which contains the actual
value of the randomly-assigned IP port. In a typical deployment
scenario, the client would read this file from the remote server host (for
example, through a HTTP URL).

For the purpose of this simple demonstration, however, we assume
that the client can read the WSDL contract,
HelloWorld_written.wsdl, from a local directory. In this case, you

 const IT_WSDL::WSDLDefinitions & definitions =
 service->get_wsdl_definitions();

 IT_Bus::FileOutputStream stream(
 "HelloWorld_written.wsdl"
);
 IT_Bus::XMLOutputStream xml_stream(stream, true);

 definitions.write(xml_stream);
 stream.close();

 IT_Bus::run();
 }
 catch (IT_Bus::Exception& e)
 {
 cout << "Error occurred: " << e.Error() << endl;
 return -1;
 }

 return 0;
}

Example 51:Modified server.cxx File for Dynamic Port Allocation
 132

Dynamically Allocating IP Ports
could modify the client.cxx file of the HelloWorld demonstration as
follows:

int
main(int argc, char* argv[])
{
 cout << "HelloWorld Client" << endl;

 try
 {
 IT_Bus::init(argc, argv);
 HelloWorldClient hw(
 "HelloWorldServerDir/HelloWorld_written.wsdl"
);
 ...
}

133

CHAPTER 7 | Dynamic Configuration
 134

CHAPTER 8

Artix Data Types
This chapter presents the XML schema data types supported
by Artix and describes how these data types map to C++.

In this chapter This chapter discusses the following topics:

Simple Types page 136

Complex Types page 150

anyType Type page 179

Nillable Types page 184

SOAP Arrays page 205

IT_Vector Template Class page 217
135

CHAPTER 8 | Artix Data Types
Simple Types

Overview This section describes the WSDL-to-C++ mapping for simple types. Simple
types are defined within an XML schema and they are subject to the
restriction that they cannot contain elements and they cannot carry any
attributes.

In this section This section contains the following subsections:

Atomic Types page 137

String Type page 138

QName Type page 139

Date and Time Types page 141

Decimal Type page 142

Binary Types page 144

Deriving Simple Types by Restriction page 146

Unsupported Simple Types page 149
 136

Simple Types
Atomic Types

Overview For unambiguous, portable type resolution, a number of data types are
defined in the Artix foundation classes, specified in it_bus/types.h. The
Artix data types map closely to WSDL type names, and should be used by
client applications.

Table of atomic types The atomic types are:

Table 5: Simple Schema Type to Simple Bus Type Mapping

Schema Type Bus Type

xsd:boolean IT_Bus::Boolean

xsd:byte IT_Bus::Byte

xsd:unsignedByte IT_Bus::UByte

xsd:short IT_Bus::Short

xsd:unsignedShort IT_Bus::UShort

xsd:int IT_Bus::Int

xsd:unsignedInt IT_Bus::UInt

xsd:long IT_Bus::Long

xsd:unsignedLong IT_Bus::ULong

xsd:float IT_Bus::Float

xsd:double IT_Bus::Double

xsd:string IT_Bus::String

xsd:QName IT_Bus::QName (SOAP only)

xsd:dateTime IT_Bus::DateTime

xsd:decimal IT_Bus::Decimal

xsd:base64Binary IT_Bus::BinaryBuffer

xsd:hexBinary IT_Bus::BinaryBuffer
137

CHAPTER 8 | Artix Data Types
String Type

Overview xsd:string maps to IT_Bus::String. IT_Bus::String is a typedef of the
IT_String class (declared in it_dsa/string.h), which is an IONA
implementation of the standard ANSI String class.

Codeset Strings are assumed to be in the local codeset. If Artix writes a string as
XML, however, it transcodes the string to the UTF-8 codeset.

IT_Bus::String class The IT_Bus::String class is modelled on the standard ANSI string class.
Hence, the IT_Bus::String class overloads the + and += operators for
concatenation, the [] operator for indexing characters, and the ==, !=, >, <,
>=, <= operators for comparisons. The following member functions are useful
when converting IT_Bus::Strings to ordinary C-style strings:

size_t length() const;
const char* c_str() const;

The corresponding string iterator class is IT_Bus::String::iterator.

C++ example The following C++ example shows how to perform some basic string
manipulation with IT_Bus::String:

Reference For more details about C++ ANSI strings, see The C++ Programming
Language, third edition, by Bjarne Stroustrup.

// C++
IT_Bus::String s = "A C++ ANSI string."
s += " And here is some string concatenation."

// Now convert to a C style string.
// (Note: s retains ownership of the memory)
const char *p = s.c_str();
 138

Simple Types
QName Type

Overview xsd:QName maps to IT_Bus::QName. A qualified name, or QName, is the
unique name of a tag appearing in an XML document, consisting of a
namespace URI and a local part.

QName constructor The usual way to construct an IT_Bus::QName object is by calling the
following constructor:

// C++
QName::QName(
 const String & namespace_prefix,
 const String & local_part,
 const String & namespace_uri
)

Because the namespace prefix is relatively unimportant, you can leave it
blank. For example, to create a QName for the <soap:address> element:

QName member functions The IT_Bus::QName class has the following public member functions:

const IT_Bus::String &
get_namespace_prefix() const;

const IT_Bus::String &
get_local_part() const;

const IT_Bus::String &
get_namespace_uri() const;

const IT_Bus::String get_raw_name() const;
const IT_Bus::String to_string() const;

Note: In Artix 1.2.1, the mapping from xsd:QName to IT_Bus::QName is
supported only for the SOAP binding.

// C++
IT_Bus::QName soap_address = new IT_Bus::QName(
 "",
 "address",
 "http://schemas.xmlsoap.org/wsdl/soap"
);
139

CHAPTER 8 | Artix Data Types
bool has_unresolved_prefix() const;
size_t get_hash_code() const;

QName equality The == operator can be used to test for equality of IT_Bus::QName objects.
QNames are tested for equality as follows:

1. Assuming that a namespace URI is defined for the QNames, the
QNames are equal if their namespace URIs match and the local part of
their element names match.

2. If one of the QNames lacks a namespace URI (empty string), the
QNames are equal if their namespace prefixes match and the local part
of their element names match.
 140

Simple Types
Date and Time Types

Overview xsd:dateTime maps to IT_Bus::DateTime, which is declared in
<it_bus/date_time.h>. DateTime has the following fields:

The default constructor takes no parameters and initializes all of the fields to
zero. An alternative constructor is provided, which accepts all of the
individual date/time fields, as follows:

Table 6: Member Fields of IT_Bus::DateTime

Field Datatype Accessor Methods

4 digit year short short getYear()
void setYear(short wYear)

2 digit month short short getMonth()
void setMonth(short wMonth)

2 digit day short short getDay()
void setDay(short wDay)

hours in military
time

short short getHour()
void setHour(short wHour)

minutes short short getMinute()
void setMinute(short wMinute)

seconds short short getSecond()
void setSecond(short wSecond)

milliseconds short short getMilliseconds()
void setMilliseconds(short wMilliseconds)

hour offset from
GMT

short void setUTCTimeZoneOffset(
 short hour_offset,
 short minute_offset)
void getUTCTimeZoneOffset(
 short & hour_offset,
 short & minute_offset)

minute offset from
GMT

short

IT_DateTime(short wYear, short wMonth, short wDay,
 short wHour = 0, short wMinute = 0,
 short wSecond = 0, short wMilliseconds = 0)
141

CHAPTER 8 | Artix Data Types
Decimal Type

Overview xsd:decimal maps to IT_Bus::Decimal, which is implemented by the IONA
foundation class IT_FixedPoint, defined in <it_dsa/fixed_point.h>.
IT_FixedPoint provides full fixed point decimal calculation logic using the
standard C++ operators.

IT_Bus::Decimal operators The IT_Bus::Decimal type supports a full complement of arithmetical
operators. See Table 7 for a list of supported operators.

IT_Bus::Decimal member
functions

The following member functions are supported by IT_Bus::Decimal:

// C++
IT_Bus::Decimal round(unsigned short scale) const;

IT_Bus::Decimal truncate(unsigned short scale) const;

unsigned short number_of_digits() const;

unsigned short scale() const;

IT_Bool is_negative() const;

int compare(const IT_FixedPoint& val) const;

IT_Bus::Decimal::DigitIterator left_most_digit() const;
IT_Bus::Decimal::DigitIterator past_right_most_digit() const;

Note: Whereas xsd:decimal has unlimited precision, the IT_FixedPoint
type can have at most 31 digit precision.

Table 7: Operators Supported by IT_Bus::Decimal

Description Operators

Arithmetical operators +, -, *, /, ++, --

Assignment operators =, +=, -=, *=, /=

Comparison operators ==, !=, >, <, >=, <=
 142

Simple Types
IT_Bus::Decimal::DigitIterator The IT_Bus::Decimal::DigitIterator type is an ANSI-style iterator class
that iterates over all the digits in a fixed point decimal instance.

C++ example The following C++ example shows how to perform some elementary
arithmetic using the IT_Bus::Decimal type.

// C++
IT_Bus::Decimal d1 = "123.456";
IT_Bus::Decimal d2 = "87654.321";

IT_Bus::Decimal d3 = d1+d2;
d3 *= d1;
if (d3 > 100000) {
 cout << "d3 = " << d3;
}

143

CHAPTER 8 | Artix Data Types
Binary Types

Overview There are two WSDL binary types, which map to C++ as shown in Table 8:

Encoding The only difference between HexBinary and Base64Binary is the way they
are encoded for transmission. The Base64Binary encoding is more compact
because it uses a larger set of symbols in the encoding. The encodings can
be compared as follows:

� HexBinary�the hex encoding uses a set of 16 symbols [0-9a-fA-F],
ignoring case, and each character can encode 4 bits. Hence, two
characters represent 1 byte (8 bits).

� Base64Binary�the base 64 encoding uses a set of 64 symbols and
each character can encode 6 bits. Hence, four characters represent 3
bytes (24 bits).

IT_Bus::Base64Binary and
IT_Bus::HexBinary classes

Both the IT_Bus::Base64Binary and the IT_Bus::HexBinary classes expose
a similar set of member functions, as follows:

Table 8: Schema to Bus Mapping for the Binary Types

Schema Type Bus Type

xsd:base64Binary IT_Bus::Base64Binary

xsd:hexBinary IT_Bus::HexBinary

// C++
size_t get_length() const;

const IT_Bus::Byte get_data(const size_t pos) const;

void set_data(
 IT_Bus::Byte data[],
 size_t data_length,
 bool take_ownership = false
);
 144

Simple Types
C++ example Consider a port type that defines an echoHexBinary operation. The
echoHexBinary operation takes an IT_Bus::HexBinary type as an in
parameter and then echoes this value in the response. Example 52 shows
how a server might implement the echoHexBinary operation.

Example 52:C++ Implementation of an echoHexBinary Operation

// C++
using namespace IT_Bus;
...
void BaseImpl::echoHexBinary(
 const IT_Bus::HexBinaryInParam & inputHexBinary,
 IT_Bus::HexBinaryOutParam& Response
)
 IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "BaseImpl::echoHexBinary called" << endl;
 size_t length = inputHexBinary.get_length();
 Byte * the_data = new Byte[length];

 for (size_t idx = 0; idx < length; idx++)
 {
 the_data[idx] = inputHexBinary.get_data(idx);
 }

 Response.set_data(the_data, length, true);
}

145

CHAPTER 8 | Artix Data Types
Deriving Simple Types by Restriction

Overview Artix currently has limited support for the derivation of simple types by
restriction. You can define a restricted simple type using any of the standard
facets, but in most cases the restrictions are not checked at runtime.

Unchecked facets The following facets can be used, but are not checked at runtime:

� length

� minLength

� maxLength

� pattern

� enumeration

� whiteSpace

� maxInclusive

� maxExclusive

� minInclusive

� minExclusive

� totalDigits

� fractionDigits

Checked facets The following facets are supported and checked at runtime:

� enumeration

C++ mapping In general, a restricted simple type, RestrictedType, obtained by restriction
from a base type, BaseType, maps to a C++ class, RestrictedType, with
the following public member functions:

// C++
const IT_Bus::QName & get_type() const;

void set_value(const BaseType & value);
BaseType get_value() const;
 146

Simple Types
Restriction with an enumeration
facet

Artix supports the restriction of simple types using the enumeration facet.
The base simple type can be any simple type except xsd:boolean.

When an enumeration type is mapped to C++, the C++ implementation of
the type ensures that instances of this type can only be set to one of the
enumerated values. If set_value() is called with an illegal value, it throws
an IT_Bus::Exception exception.

WSDL example of enumeration
facet

Example 53 shows an example of a ColorEnum type, which is defined by
restriction from the xsd:string type using the enumeration facet. When
defined in this way, the ColorEnum restricted type is only allowed to take on
one of the string values RED, GREEN, or BLUE.

Example 53:WSDL Example of Derivation with the Enumeration Facet

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <simpleType name="ColorEnum">
 <restriction base="xsd:string">
 <enumeration value="RED"/>
 <enumeration value="GREEN"/>
 <enumeration value="BLUE"/>
 </restriction>
 </simpleType>
 ...
</definitions>
147

CHAPTER 8 | Artix Data Types
C++ mapping of enumeration
facet

The WSDL-to-C++ compiler maps the ColorEnum restricted type to the
ColorEnum C++ class, as shown in Example 54. The only values that can
legally be set using the set_value() member function are the strings RED,
GREEN, or BLUE.

Example 54:C++ Mapping of ColorEnum Restricted Type

// C++
class ColorEnum : public IT_Bus::AnySimpleType
{
 ...
 public:
 ColorEnum();
 ColorEnum(const IT_Bus::String & value);
 ...

 ColorEnum& operator= (const ColorEnum& assign);
 IT_Bus::Boolean operator== (const ColorEnum& copy);

 virtual const IT_Bus::QName & get_type() const;
 void set_value(const IT_Bus::String & value);
 IT_Bus::String get_value() const;
};
 148

Simple Types
Unsupported Simple Types

List of unsupported simple types The following WSDL simple types are currently not supported by the
WSDL-to-C++ compiler:

Atomic Simple Types
xsd:normalizedString
xsd:token
xsd:integer
xsd:positiveInteger
xsd:negativeInteger
xsd:nonNegativeInteger
xsd:nonPositiveInteger
xsd:time
xsd:duration
xsd:date
xsd:gMonth
xsd:gYear
xsd:gYearMonth
xsd:gDay
xsd:gMonthDay
xsd:anyURI
xsd:language
xsd:Name
xsd:NCName
xsd:QName (restricted support)
xsd:ENTITY
xsd:NOTATION
xsd:IDREF

Other Simple Types
xsd:list
xsd:union
149

CHAPTER 8 | Artix Data Types
Complex Types

Overview This section describes the WSDL-to-C++ mapping for complex types.
Complex types are defined within an XML schema. In contrast to simple
types, complex types can contain elements and carry attributes.

In this section This section contains the following subsections:

Sequence Complex Types page 151

Choice Complex Types page 154

All Complex Types page 158

Attributes page 161

Nesting Complex Types page 163

Deriving a Complex Type from a Simple Type page 167

Occurrence Constraints page 170

Arrays page 174
 150

Complex Types
Sequence Complex Types

Overview XML schema sequence complex types are mapped to a generated C++
class, which inherits from IT_Bus::SequenceComplexType. The mapped
C++ class is defined in the generated PortTypeNameTypes.h and
PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for
each element in the sequence complex type.

Occurrence constraints Occurrence constraints, which are specified using the minOccurs and
maxOccurs attributes, are supported for sequence complex types. See
�Occurrence Constraints� on page 170.

WSDL example Example 55 shows an example of a sequence, SequenceType, with three
elements.

Example 55:Definition of a Sequence Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 </complexType>
 ...
</schema>
151

CHAPTER 8 | Artix Data Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 55) to
the SequenceType C++ class. An outline of this class is shown in
Example 56.

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName() and
setElementName().

Example 56:Mapping of SequenceType to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 SequenceType(const SequenceType& copy);
 virtual ~SequenceType();
 ...
 virtual const IT_Bus::QName & get_type() const;

 SequenceType& operator= (const SequenceType& assign);

 const IT_Bus::Float & getvarFloat() const;
 IT_Bus::Float & getvarFloat();
 void setvarFloat(const IT_Bus::Float & val);

 const IT_Bus::Int & getvarInt() const;
 IT_Bus::Int & getvarInt();
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String &

val);

 private:
 ...
};
 152

Complex Types
C++ example Consider a port type that defines an echoSequence operation. The
echoSequence operation takes a SequenceType type as an in parameter and
then echoes this value in the response. Example 57 shows how a client
could use a proxy instance, bc, to invoke the echoSequence operation.

Example 57:Client Invoking an echoSequence Operation

// C++
SequenceType seqIn, seqResult;
seqIn.setvarFloat(3.14159);
seqIn.setvarInt(54321);
seqIn.setvarString("You can use a string constant here.");

try {
 bc.echoSequence(seqIn, seqResult);

 if((seqResult.getvarInt() != seqIn.getvarInt()) ||
 (seqResult.getvarFloat() != seqIn.getvarFloat()) ||
 (seqResult.getvarString().compare(seqIn.getvarString()) !=

0))
 {
 cout << endl << "echoSequence FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

153

CHAPTER 8 | Artix Data Types
Choice Complex Types

Overview XML schema choice complex types are mapped to a generated C++ class,
which inherits from IT_Bus::ChoiceComplexType. The mapped C++ class
is defined in the generated PortTypeNameTypes.h and
PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for
each element in the choice complex type. The choice complex type is
effectively equivalent to a C++ union, so only one of the elements is
accessible at a time. The C++ implementation defines a discriminator,
which tells you which of the elements is currently selected.

Occurrence constraints Occurrence constraints are currently not supported for choice complex
types.

WSDL example Example 58 shows an example of a choice complex type, ChoiceType, with
three elements.

Example 58:Definition of a Choice Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="ChoiceType">
 <choice>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </choice>
 </complexType>

 ...
</schema>
 154

Complex Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 58) to
the SequenceType C++ class. An outline of this class is shown in
Example 59.

Example 59:Mapping of ChoiceType to C++

// C++
class ChoiceType : public IT_Bus::ChoiceComplexType
{
 public:
 ChoiceType();
 ChoiceType(const ChoiceType& copy);
 virtual ~ChoiceType();

 ...
 virtual const IT_Bus::QName & get_type() const ;

 ChoiceType& operator= (const ChoiceType& assign);

 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float& val);

 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int& val);

 const IT_Bus::String& getvarString() const;
 void setvarString(const IT_Bus::String& val);

 ChoiceTypeDiscriminator get_discriminator() const
 {
 return m_discriminator;
 }

 IT_Bus::UInt get_discriminator_as_uint() const
 {
 return m_discriminator;
 }
155

CHAPTER 8 | Artix Data Types
Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName() and
setElementName().

The member functions have the following effects:

� setElementName()�select the ElementName element, setting the
discriminator to the ElementName label and initializing the value of
ElementName.

� getElementName()�get the value of the ElementName element. You
should always check the discriminator before calling the
getElementName() accessor. If ElementName is not currently
selected, the value returned by getElementName() is undefined.

� get_discriminator()�returns the value of the discriminator.

C++ example Consider a port type that defines an echoChoice operation. The echoChoice
operation takes a ChoiceType type as an in parameter and then echoes this
value in the response. Example 60 shows how a client could use a proxy
instance, bc, to invoke the echoChoice operation.

 enum ChoiceTypeDiscriminator
 {
 varFloat,
 varInt,
 varString,
 ChoiceType_MAXLONG=-1L
 } m_discriminator;

 private:
 ...
};

Example 59:Mapping of ChoiceType to C++

Example 60:Client Invoking an echoChoice Operation

// C++
ChoiceType cIn, cResult;
// Initialize and select the ChoiceType::varString label.
cIn.setvarString("You can use a string constant here.");

try {
 156

Complex Types
 bc.echoChoice(cIn, cResult);

 bool fail = IT_TRUE;
 if (cIn.get_discriminator()==cResult.get_discriminator()) {
 switch (cIn.get_discriminator()) {
 case ChoiceType::varFloat:
 fail =(cIn.getvarFloat()!=cResult.getvarFloat());
 break;
 case ChoiceType::varInt:
 fail =(cIn.getvarInt()!=cResult.getvarInt());
 break;
 case ChoiceType::varString:
 fail =
 (cIn.getvarString()!=cResult.getvarString());
 break;
 }
 }

 if (fail) {
 cout << endl << "echoChoice FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

Example 60:Client Invoking an echoChoice Operation
157

CHAPTER 8 | Artix Data Types
All Complex Types

Overview XML schema all complex types are mapped to a generated C++ class,
which inherits from IT_Bus::AllComplexType. The mapped C++ class is
defined in the generated PortTypeNameTypes.h and
PortTypeNameTypes.cxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for
each element in the all complex type. With an all complex type, the order in
which the elements are transmitted is immaterial.

Occurrence constraints Occurrence constraints are supported for the elements of XML schema all
complex types.

WSDL example Example 61 shows an example of an all complex type, AllType, with three
elements.

Note: An all complex type can only be declared as the outermost group of
a complex type. Hence, you cannot nest an all model group, <all>,
directly inside other model groups, <all>, <sequence>, or <choice>. You
may, however, define an all complex type and then declare an element of
that type within the scope of another model group.

Example 61:Definition of an All Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="AllType">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 </complexType>
 ...
</schema>
 158

Complex Types
C++ mapping The WSDL-to-C++ compiler maps the preceding WSDL (Example 61) to
the AllType C++ class. An outline of this class is shown in Example 62.

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName() and
setElementName().

Example 62:Mapping of AllType to C++

// C++
class AllType : public IT_Bus::AllComplexType
{
 public:
 AllType();
 AllType(const AllType& copy);
 virtual ~AllType();

 virtual const IT_Bus::QName & get_type() const;

 AllType& operator= (const AllType& assign);

 const IT_Bus::Float & getvarFloat() const;
 IT_Bus::Float & getvarFloat();
 void setvarFloat(const IT_Bus::Float & val);

 const IT_Bus::Int & getvarInt() const;
 IT_Bus::Int & getvarInt();
 void setvarInt(const IT_Bus::Int & val);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String & val);

 private:
 ...
};
159

CHAPTER 8 | Artix Data Types
C++ example Consider a port type that defines an echoAll operation. The echoAll
operation takes an AllType type as an in parameter and then echoes this
value in the response. Example 63 shows how a client could use a proxy
instance, bc, to invoke the echoAll operation.

Example 63:Client Invoking an echoAll Operation

// C++
AllType allIn, allResult;
allIn.setvarFloat(3.14159);
allIn.setvarInt(54321);
allIn.setvarString("You can use a string constant here.");

try {
 bc.echoAll(allIn, allResult);

 if((allResult.getvarInt() != allIn.getvarInt()) ||
 (allResult.getvarFloat() != allIn.getvarFloat()) ||
 (allResult.getvarString().compare(allIn.getvarString()) !=

0))
 {
 cout << endl << "echoAll FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

 160

Complex Types
Attributes

Overview Artix supports the use of <attribute> declarations within the scope of a
<complexType> definition. For example, you can include attributes in the
definitions of an all complex type, sequence complex type, and choice
complex type. The declaration of an attribute in a complex type must
conform to the following syntax:

<attribute name="AttrName" type="AttrType"/>

Limitations The following attribute types are not supported:

� xsd:IDREFS

� xsd:ENTITY

� xsd:ENTITIES

� xsd:NOTATION

� xsd:NMTOKEN

� xsd:NMTOKENS

WSDL example Example 64 shows how to define a sequence type with a single attribute,
prop, of xsd:string type.

Example 64:Definition of a Sequence Type with an Attribute

<complexType name="SequenceType">
 <sequence>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </sequence>
 <attribute name="prop" type="xsd:string"/>
</complexType>
161

CHAPTER 8 | Artix Data Types
C++ mapping Example 65 shows an outline of the C++ SequenceType class generated
from Example 64 on page 161, which defines accessor and modifier
functions for the prop attribute.

Example 65:Mapping an Attribute to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 SequenceType();
 ...
 const IT_Bus::String & getprop() const;
 IT_Bus::String & getprop();

 void setprop(const IT_Bus::String & val);
};
 162

Complex Types
Nesting Complex Types

Overview It is possible to nest complex types within each other. When mapped to
C++, the nested complex types map to a nested hierarchy of classes,
where each instance of a nested type is stored in a member variable of its
containing class.

Avoiding anonymous types In general, it is a good idea to name types that are nested inside other types,
instead of using anonymous types. This results in simpler code when the
types are mapped to C++.

For an example of the recommended style of declaration, with a named
nested type, see Example 66.

WSDL example Example 66 shows an example of a nested complex type, which features a
choice complex type, NestedChoiceType, nested inside a sequence complex
type, SeqOfChoiceType.

Example 66:Definition of Nested Complex Type

<schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="NestedChoiceType">
 <choice>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 </choice>
 </complexType>
 <complexType name="SeqOfChoiceType">
 <sequence>
 <element name="varString" type="xsd:string"/>
 <element name="varChoice" type="xsd1:NestedChoiceType"/>
 </sequence>
 </complexType>
 ...
</schema>
163

CHAPTER 8 | Artix Data Types
C++ mapping of
NestedChoiceType

The XML schema choice complex type, NestedChoiceType, is a simple
choice complex type, which is mapped to C++ in the standard way.
Example 67 shows an outline of the generated C++ NestedChoiceType
class.

C++ mapping of
SeqOfChoiceType

The XML schema sequence complex type, SeqOfChoiceType, has the
NestedChoiceType nested inside it. Example 68 shows an outline of the
generated C++ SeqOfChoiceType class, which shows how the nested
complex type is mapped within a sequence complex type.

Example 67:Mapping of NestedChoiceType to C++

// C++
class NestedChoiceType : public IT_Bus::ChoiceComplexType
{
 ...
 public:
 NestedChoiceType();
 NestedChoiceType(const NestedChoiceType& copy);
 virtual ~NestedChoiceType();

 virtual const IT_Bus::QName & get_type() const ;

 NestedChoiceType& operator= (const NestedChoiceType& assign);

 const IT_Bus::Float getvarFloat() const;
 void setvarFloat(const IT_Bus::Float& val);

 const IT_Bus::Int getvarInt() const;
 void setvarInt(const IT_Bus::Int& val);

 IT_Bus::UInt get_discriminator() const;

 private:
 ...
};

Example 68:Mapping of SeqOfChoiceType to C++

// C++
class SeqOfChoiceType : public IT_Bus::SequenceComplexType
{
 ...
 164

Complex Types
The nested type, NestedChoiceType, can be accessed and modified using
the getvarChoice() and setvarChoice() functions respectively.

C++ example Consider a port type that defines an echoSeqOfChoice operation. The
echoSeqOfChoice operation takes a SeqOfChoiceType type as an in
parameter and then echoes this value in the response. Example 63 shows
how a client could use a proxy instance, bc, to invoke the echoSeqOfChoice
operation.

 public:
 SeqOfChoiceType();
 SeqOfChoiceType(const SeqOfChoiceType& copy);
 virtual ~SeqOfChoiceType();
 ...
 virtual const IT_Bus::QName & get_type() const;

 SeqOfChoiceType& operator= (const SeqOfChoiceType& assign);

 const IT_Bus::String & getvarString() const;
 IT_Bus::String & getvarString();
 void setvarString(const IT_Bus::String & val);

 const NestedChoiceType & getvarChoice() const;
 NestedChoiceType & getvarChoice();
 void setvarChoice(const NestedChoiceType & val);

 private:
 ...
};

Example 68:Mapping of SeqOfChoiceType to C++

Example 69:Client Invoking an echoSeqOfChoice Operation

// C++
NestedChoiceType nested;
nested.setvarFloat(3.14159);

SeqOfChoiceType seqIn, seqResult;
seqIn.setvarChoice(nested);
seqIn.setvarString("You can use a string constant here.");
try {
 bc.echoSeqOfChoice(seqIn, seqResult);
165

CHAPTER 8 | Artix Data Types
 if(
 (seqResult.getvarString().compare(seqIn.getvarString()) != 0)

||
 (seqResult.getvarChoice().get_discriminator()
 !=seqIn.getvarChoice().get_discriminator()))
 {
 cout << endl << "echoSeqOfChoice FAILED" << endl;
 return;
 }
} catch (IT_Bus::FaultException &ex)
{
 cout << "Caught Unexpected FaultException" << endl;
 cout << ex.get_description().c_str() << endl;
}

Example 69:Client Invoking an echoSeqOfChoice Operation
 166

Complex Types
Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type, for which the
following kinds of derivation are supported:

� Derivation by restriction.

� Derivation by extension.

A simple type has, by definition, neither sub-elements nor attributes. Hence,
one of the main reasons for deriving a complex type from a simple type is to
add attributes to the simple type (derivation by extension).

Derivation by restriction Example 70 shows an example of a complex type, orderNumber, derived by
restriction from the xsd:decimal simple type. The new type is restricted to
have values less than 1,000,000.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <restriction> tag defines the derivation by
restriction from xsd:decimal.

Example 70:Deriving a Complex Type from a Simple Type by Restriction

<xsd:complexType name="orderNumber">
 <xsd:simpleContent>
 <xsd:restriction base="xsd:decimal">
 <xsd:maxExclusive value="1000000"/>
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>
167

CHAPTER 8 | Artix Data Types
Derivation by extension Example 71 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type. The new type is
extended to include a currency attribute.

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <extension> tag defines the derivation by extension
from xsd:decimal.

C++ mapping Example 72 shows an outline of the C++ internationalPrice class
generated from Example 71 on page 168.

Example 71:Deriving a Complex Type from a Simple Type by Extension

<xsd:complexType name="internationalPrice">
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

Example 72:Mapping the internationalPrice Type to C++

// C++
class internationalPrice : public

IT_Bus::SimpleContentComplexType
{
 ...
 public:
 internationalPrice();
 internationalPrice(const internationalPrice& copy);
 virtual ~internationalPrice();

 ...
 virtual const IT_Bus::QName & get_type() const;

 internationalPrice& operator= (const internationalPrice&
assign);

 const IT_Bus::String & getcurrency() const;
 IT_Bus::String & getcurrency();
 void setcurrency(const IT_Bus::String & val);
 168

Complex Types
The value of the currency attribute, which is added by extension, can be
accessed and modified using the getcurrency() and setcurrency()
member functions. The simple type value (that is, the value enclosed
between the <internationalPrice> and </internationalPrice> tags) can
be accessed and modified by the get_simpleTypeValue() and
set_simpleTypeValue() member functions.

 const IT_Bus::Decimal & get_simpleTypeValue() const;
 IT_Bus::Decimal & get_simpleTypeValue();
 void set_simpleTypeValue(const IT_Bus::Decimal & val);
 ...
};

Example 72:Mapping the internationalPrice Type to C++
169

CHAPTER 8 | Artix Data Types
Occurrence Constraints

Overview You define occurrence constraints on a schema element by setting the
minOccurs and maxOccurs attributes for the element. Hence, the definition
of an element with occurrence constraints in an XML schema has the
following form:

Limitations In the current version of Artix, occurrence constraints can be used only
within the following complex types:

� all complex types,

� sequence complex types.

Occurrence constraints are not supported within the scope of the following:

� choice complex types.

Element lists Lists of elements appearing within a sequence complex type are represented
in C++ by the IT_Bus::ElementListT template. You should not use this
type directly in your code. Use the IT_Vector (see �IT_Vector Template
Class� on page 217) in place of IT_Bus::ElementListT. The
IT_Bus::ElementListT types automatically convert to and from IT_Vector
types.

In addition to the standard member functions and operators defined by
IT_Vector, the element list types support the following member functions:

<element name="ElemName" type="ElemType" minOccurs="LowerBound"
maxOccurs="UpperBound"/>

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
�Arrays� on page 174.

// C++
size_t get_min_occurs() const;

size_t get_max_occurs() const;

void set_size(size_t new_size);
 170

Complex Types
WSDL example Example 73 shows the definition of a sequence type, SequenceType, which
contains a list of integer elements followed by a list of string elements.

C++ mapping Example 74 shows an outline of the C++ SequenceType class generated
from Example 73 on page 171, which defines accessor and modifier
functions for the varInt and varString elements.

size_t get_size() const;

const QName & get_item_name() const;

Example 73:Sequence Type with Occurrence Constraints

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <complexType name="SequenceType">
 <sequence>
 <element name="varInt" type="xsd:int"
 minOccurs="1" maxOccurs="100"/>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 74:Mapping of SequenceType to C++

// C++
class SequenceType : public IT_Bus::SequenceComplexType
{
 public:
 ...
 virtual const IT_Bus::QName &
 get_type() const;

 SequenceType& operator= (const SequenceType& assign);

 const IT_Bus::ElementListT<IT_Bus::Int> & getvarInt() const;
171

CHAPTER 8 | Artix Data Types
IT_ElementListT is for internal use by the Artix generated code and should
not be used directly in user developed code. Because the
IT_Bus::ElementListT template supports automatic conversion to
IT_Vector, you should treat the return values and arguments of the
preceding integer and string accessor functions as if they were
IT_Vector<IT_Bus::Int> and IT_Vector<IT_Bus::String> respectively.

C++ example The following code fragment shows how to allocate and initialize an
instance of SequenceType type containing two varInt elements and two
varString elements:

 IT_Bus::ElementListT<IT_Bus::Int> & getvarInt();

 void setvarInt(const IT_Bus::ElementListT<IT_Bus::Int> & val);

 const IT_Bus::ElementListT<IT_Bus::String> & getvarString()
const;

 IT_Bus::ElementListT<IT_Bus::String> & getvarString();

 void setvarString(const IT_Bus::ElementListT<IT_Bus::String> &
val);

 private:
 ...
};

Example 74:Mapping of SequenceType to C++

// C++
SequenceType seq;

seq.getvarInt().set_size(2);
seq.getvarInt()[0] = 10;
seq.getvarInt()[1] = 20;
seq.getvarString().set_size(2);
seq.getvarString()[0] = "Zero";
seq.getvarString()[1] = "One";
 172

Complex Types
Note how the set_size() function and [] operator are invoked directly on
the member vectors, which are accessed by getvarInt() and
getvarString() respectively. This is more efficient than creating a vector
and passing it to setvarInt() or setvarString(), because it avoids
creating unnecessary temporary vectors.

Alternatively, you could assign the member vectors, seq.getvarInt() and
seq.getvarString(), to references of IT_Vector type and manipulate the
references, v1 and v2, instead. This is shown in the following code example:

In this example, the vectors are initialized using the push_back() stack
operation (adds an element to the end of the vector).

References For more details about vector types see:

� The �IT_Vector Template Class� on page 217.

� The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

// C++
SequenceType seq;

// Make a shallow copy of the vectors
IT_Vector<IT_Bus::Int>& v1 = seq.getvarInt();
IT_Vector<IT_Bus::String>& v2 = seq.getvarString();

v1.push_back(10);
v1.push_back(20);
v2.push_back("Zero");
v2.push_back("One");

Note: The IT_Vector class template does not provide the set_size()
function. Hence, you cannot invoke set_size() on v1 or v2.
173

CHAPTER 8 | Artix Data Types
Arrays

Overview This subsection describes how to define and use basic Artix array types. In
addition to these basic array types, Artix also supports SOAP arrays, which
are discussed in �SOAP Arrays� on page 205.

Array definition syntax An array is a sequence complex type that satisfies the following special
conditions:

� The sequence complex type schema defines a single element only.

� The element definition has a maxOccurs attribute with a value greater
than 1.

Hence, an Artix array definition has the following general syntax:

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

Mapping to IT_Vector When a sequence complex type declaration satisfies the special conditions
to be an array, it is mapped to C++ differently from a regular sequence
complex type. The principal difference is that the C++ array class,
ArrayName, can be treated as a vector.

For example, the C++ array class, ArrayName, supports the size()
member function and individual elements can be accessed using the []
operator.

Note: All elements implicitly have minOccurs=1 and maxOccurs=1, unless
specified otherwise.

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>
 174

Complex Types
WSDL array example Example 75 shows how to define a one-dimensional string array,
ArrayOfString, whose size can lie anywhere in the range 0 to unbounded.

C++ mapping Example 76 shows how the ArrayOfString string array (from Example 75
on page 175) maps to C++.

Example 75:Definition of an Array of Strings

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 <schema ... >
 <complexType name="ArrayOfString">
 <sequence>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 76:Mapping of ArrayOfString to C++

// C++
class ArrayOfString : public IT_Bus::ArrayT<IT_Bus::String,

&ArrayOfString_varString_qname, 0, -1>
{
 public:
 ArrayOfString();
 ArrayOfString(size_t dimensions[]);
 ArrayOfString(size_t dimension0);
 ArrayOfString(const ArrayOfString& copy);
 virtual ~ArrayOfString();

 virtual const IT_Bus::QName & get_type() const;

 ArrayOfString& operator= (const
IT_Vector<IT_Bus::String>& assign);

 const IT_Bus::ElementListT<IT_Bus::String> & getvarString()
const;

 IT_Bus::ElementListT<IT_Bus::String> & getvarString();
175

CHAPTER 8 | Artix Data Types
Notice that the C++ array class provides accessor functions,
getvarString() and setvarString(), just like any other sequence complex
type with occurrence constraints (see �Occurrence Constraints� on
page 170). The accessor functions are superfluous, however, because the
array�s elements are more easily accessed by invoking vector operations
directly on the ArrayOfString class.

C++ example Example 77 shows an example of how to allocate and initialize an
ArrayOfString instance, by treating it like a vector (for a complete list of
vector operations, see �Summary of IT_Vector Operations� on page 221).

Multi-dimensional arrays You can define multi-dimensional arrays by nesting array definitions (see
�Nesting Complex Types� on page 163 for a discussion of nested types).
Example 78 shows an example of how to define a two-dimensional string
array, ArrayOfArrayOfString.

 void setvarString(const IT_Bus::ElementListT<IT_Bus::String>
& val);

};

typedef IT_AutoPtr<ArrayOfString> ArrayOfStringPtr;

Example 76:Mapping of ArrayOfString to C++

Example 77:C++ Example for a One-Dimensional Array

// C++
// Array of String
ArrayOfString a(4);

a[0] = "One";
a[1] = "Two";
a[2] = "Three";
a[3] = "Four";

Example 78:Definition of a Multi-Dimensional String Array

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <types>
 176

Complex Types
Both the nested array type, ArrayOfArrayOfString, and the sub-array type,
ArrayOfString, must conform to the standard array definition syntax.
Multi-dimensional arrays can be nested to an arbitrary degree, but each
sub-array must be a named type (that is, anonymous nested array types are
not supported).

C++ example for
multidimensional array

Example 79 shows an example of how to allocate and initialize a
multi-dimensional array, of ArrayOfArrayOfString type.

The ArrayOfArrayOfString class has a special constructor which allows
you to specify the two array dimensions, as follows:

ArrayOfArrayOfString(size_t dimension0, size_t dimension1);

 <schema ... >
 <complexType name="ArrayOfString">
 <sequence>
 <element name="varString" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfArrayOfString">
 <sequence>
 <element name="nestArray"
 type="xsd1:ArrayOfString"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 ...
 ...
</definitions>

Example 78:Definition of a Multi-Dimensional String Array

Example 79:C++ Example for a Multi-Dimensional Array

// C++
// Array of array of String
ArrayOfArrayOfString a2(2,2);

a2[0][0] = "ZeroZero";
a2[0][1] = "ZeroOne";
a2[1][0] = "OneZero";
a2[1][1] = "OneOne";
177

CHAPTER 8 | Artix Data Types
This constructor allocates the memory needed for an array of size
[dimension0][dimension1].

A more cumbersome alternative is to specify the array size as a list of
dimensions, for example:

Automatic conversion to
IT_Vector

In general, a multi-dimensional array can automatically convert to a vector
of IT_Vector<SubArray> type, where SubArray is the array element type.

Example 80 shows how an instance, a2, of ArrayOfArrayOfString type
converts to an instance of IT_Vector<ArrayOfString> type by assignment.

References For more details about vector types see:

� The �IT_Vector Template Class� on page 217.

� The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

// C++
size_t extents[] = {2, 2};
ArrayOfArrayOfString a2(extents);

Example 80:Converting a Multi-Dimensional Array to IT_Vector Type

// Array of array of String
ArrayOfArrayOfString a2(2,2);
...
// Obtain reference to the underlying IT_Vector type
IT_Vector<ArrayOfString>& v_a2 = a2;

cout << v_a2[0][0] << " " << v_a2[0][1] << " "
 << v_a2[1][0] << " " << v_a2[1][1] << endl;
cout << "v_a2.size() = " << v_a2.size() << endl;
 178

anyType Type
anyType Type

Overview In an XML schema, the xsd:anyType is the base type from which other
simple and complex types are derived. Hence, an element declared to be of
xsd:anyType type can contain any XML type.

Prerequisite for using anyType A prerequisite for using the xsd:anyType is that your application must be
built with the WSDLFileName_wsdlTypesFactory.cxx source file. This file
is generated automatically by the WSDL-to-C++ compiler utility.

anyType syntax To declare an xsd:anyType element, use the following syntax:

<element name="ElementName" [type="xsd:anyType"]>

The attribute setting, type="xsd:anyType", is optional. If the type attribute
is missing, the XML schema assumes that the element is of xsd:anyType by
default.

C++ mapping The WSDL-to-C++ compiler maps the xsd:anyType type to the
IT_Bus::AnyHolder class in C++.

The IT_Bus::AnyHolder class provides member functions to insert and
extract data values, as follows:

� Inserting and extracting atomic types.

� Inserting and extracting user-defined types.

Note: Currently, the only binding that supports xsd:anyType is the
CORBA binding.

Note: It is currently not possible to nest an IT_Bus::AnyHolder instance
directly inside another IT_Bus::AnyHolder instance.
179

CHAPTER 8 | Artix Data Types
Inserting and extracting atomic
types

To insert and extract atomic types to and from an IT_Bus::AnyHolder, use
the member functions of the following form:

For a complete list of the functions for the basic atomic types, see
�AnyHolder API� on page 182.

For example, you can insert and extract an xsd:short integer to and from an
IT_Bus::AnyHolder as follows:

Inserting and extracting
user-defined types

To insert and extract user-defined types from an IT_Bus::AnyHolder, use
the following functions:

Note that all user-defined types inherit from IT_Bus::AnyType. There are no
type-specific insertion or extraction functions generated for user-defined
types.

Memory management for these functions is handled as follows:

� The set_any_type() function copies the inserted data.

� The get_any_type() functions do not copy the return value, rather
they return either a writable (non-const) or read-only (const) reference
to the data inside the IT_Bus::AnyHolder.

void set_AtomicTypeFunc(const AtomicTypeName&);
AtomicTypeName& get_AtomicTypeFunc();
const AtomicTypeName& get_AtomicTypeFunc();

// C++
// Insert an xsd:short value into an xsd:anyType.
IT_Bus::AnyHolder aH;
aH.set_short(1234);
...
// Extract an xsd:short value from an xsd:anyType.
IT_Bus::Short sh = aH.get_short();

void set_any_type(const IT_Bus::AnyType &);
IT_Bus::AnyType& get_any_type();
const IT_Bus::AnyType& get_any_type();
 180

anyType Type
For example, given a user-defined sequence type, SequenceType (see the
declaration in Example 55 on page 151), you can insert a SequenceType
instance into an IT_Bus::AnyHolder as follows:

To extract the SequenceType instance from the IT_Bus::AnyHolder, you
need to perform a C++ dynamic cast:

Accessing the type information You can find out what type of data is contained in an IT_Bus::AnyHolder
instance by calling the following member function:

const IT_Bus::QName & get_type() const;

Type information is set whenever an IT_Bus::AnyHolder instance is
initialized. For example, if you initialize an IT_Bus::AnyHolder by calling
set_boolean(), the type is set to be xsd:boolean. If you call
set_any_type() with an argument of SequenceType, the type would be set
to xsd1:SequenceType.

// C++
// Create an instance of SequenceType type.
SequenceType seq;
seq.setvarFloat(3.14);
seq.setvarInt(1234);
seq.setvarString("This is a sample SequenceType.");

// Insert the SequenceType value into an xsd:anyType.
IT_Bus::AnyHolder aH;
aH.set_any_type(seq);

// C++
...
// Extract the SequenceType value from the IT_Bus::AnyHolder.
IT_Bus::AnyType& base_extract = aH.get_any_type();

// Cast the extracted value to the appropriate type:
SequenceType& seq_extract
 = dynamic_cast<SequenceType&>(base_extract);

Note: Because the XML representation of xsd:anyType is not
self-describing, some type information could be lost when an anyType is
sent across the wire. In the case of a CORBA binding, however, there is no
loss of type information, because CORBA anys are fully self-describing.
181

CHAPTER 8 | Artix Data Types
AnyHolder API Example 81 shows the public API from the IT_Bus::AnyHolder class,
including all of the function for inserting and extracting data values.

Example 81:The IT_Bus::AnyHolder Class

// C++
namespace IT_Bus
{
 class IT_BUS_API AnyHolder : public AnyType
 {
 public:
 AnyHolder();
 virtual ~AnyHolder() ;
 ...
 virtual const QName & get_type() const ;
 ...
 //Set Methods
 void set_boolean(const IT_Bus::Boolean &);
 void set_byte(const IT_Bus::Byte &);
 void set_short(const IT_Bus::Short &);
 void set_int(const IT_Bus::Int &);
 void set_long(const IT_Bus::Long &);
 void set_string(const IT_Bus::String &);
 void set_float(const IT_Bus::Float &);
 void set_double(const IT_Bus::Double &);
 void set_ubyte(const IT_Bus::UByte &);
 void set_ushort(const IT_Bus::UShort &);
 void set_uint(const IT_Bus::UInt &);
 void set_ulong(const IT_Bus::ULong &);
 void set_decimal(const IT_Bus::Decimal &);

 void set_any_type(const AnyType&);

 //GET METHODS
 IT_Bus::Boolean & get_boolean();
 IT_Bus::Byte & get_byte();
 IT_Bus::Short & get_short();
 IT_Bus::Int & get_int();
 IT_Bus::Long & get_long();
 IT_Bus::String & get_string();
 IT_Bus::Float & get_float();
 IT_Bus::Double & get_double();
 IT_Bus::UByte & get_ubyte() ;
 IT_Bus::UShort & set_ushort();
 IT_Bus::UInt & get_uint();
 IT_Bus::ULong & set_ulong();
 182

anyType Type
 IT_Bus::Decimal & get_decimal();

 AnyType& get_any_type();

 //CONST GET METHODS
 const IT_Bus::Boolean & get_boolean() const;
 const IT_Bus::Byte & get_byte() const;
 const IT_Bus::Short & get_short() const;
 const IT_Bus::Int & get_int() const;
 const IT_Bus::Long & get_long() const;
 const IT_Bus::String & get_string() const;
 const IT_Bus::Float & get_float() const;
 const IT_Bus::Double & get_double() const;
 const IT_Bus::UByte & get_ubyte() const;
 const IT_Bus::UShort & get_ushort() const;
 const IT_Bus::UInt & get_uint() const;
 const IT_Bus::ULong & get_ulong() const;
 const IT_Bus::Decimal & get_decimal() const;

 const AnyType& get_any_type() const;
 ...
 };
};

Example 81:The IT_Bus::AnyHolder Class
183

CHAPTER 8 | Artix Data Types
Nillable Types

Overview This section describes how to define and use nillable types; that is, XML
elements defined with xsd:nillable="true".

In this section This section contains the following subsections:

Introduction to Nillable Types page 185

Nillable Atomic Types page 187

Nillable User-Defined Types page 191

Nested Atomic Type Nillable Elements page 194

Nested User-Defined Nillable Elements page 198

Nillable Elements of an Array page 202
 184

Nillable Types
Introduction to Nillable Types

Overview An element in an XML schema may be declared as nillable by setting the
nillable attribute equal to true. This is useful in cases where you would
like to have the option of transmitting no value for a type (for example, if you
would like to define an operation with optional parameters).

Nillable syntax To declare an element as nillable, use the following syntax:

<element name="ElementName" type="ElementType" nillable="true"/>

The nillable="true" setting indicates that this as a nillable element. If the
nillable attribute is missing, the default is value is false.

On-the-wire format On the wire, a nil value for an <ElementName> element is represented by
the following XML fragment:

<ElementName xsi:nil="true"></ElementName>

Where the xsi: prefix represents the XML schema instance namespace,
http://www.w3.org/2001/XMLSchema-instance.

C++ API for nillable types Example 82 shows the public member functions of the
IT_Bus::NillableValue class, which provides the C++ API for nillable
types.

Example 82:C++ API for Nillable Types

// C++
namespace IT_Bus
{
 template <class T, const QName* TYPE>
 class NillableValue : public Nillable
 {
 public:
 NillableValue();
 NillableValue(const NillableValue& other);
 explicit NillableValue(const T& other);
 virtual ~NillableValue();
 ...
 virtual const QName& get_type() const;
 virtual Boolean is_nil() const;
185

CHAPTER 8 | Artix Data Types
 ...
 virtual const T&
 get() const IT_THROW_DECL((NoDataException));

 virtual T&
 get() IT_THROW_DECL((NoDataException));

 virtual void set(const T& data);

 virtual void reset();
 ...
 };
 ...
};

Example 82:C++ API for Nillable Types
 186

Nillable Types
Nillable Atomic Types

Overview This subsection describes how to define and use XML schema nillable
atomic types. In C++, every atomic type, AtomicTypeName, has a nillable
counterpart, AtomicTypeNameNillable. For example, IT_Bus::Short has
IT_Bus::ShortNillable as its nillable counterpart.

You can modify or access the value of an atomic nillable type, T, using the
T.set() and T.get() member functions, respectively. For full details of the
API for nillable types see �C++ API for nillable types� on page 185.

Table of nillable atomic types Table 9 shows how the XML schema atomic types map to C++ when the
xsd:nillable flag is set to true.

Table 9: Nillable Atomic Types

Schema Type Nillable C++ Type

xsd:anyType Not supported as nillable

xsd:boolean IT_Bus::BooleanNillable

xsd:byte IT_Bus::ByteNillable

xsd:unsignedByte IT_Bus::UByteNillable

xsd:short IT_Bus::ShortNillable

xsd:unsignedShort IT_Bus::UShortNillable

xsd:int IT_Bus::IntNillable

xsd:unsignedInt IT_Bus::UIntNillable

xsd:long IT_Bus::LongNillable

xsd:unsignedLong IT_Bus::ULongNillable

xsd:float IT_Bus::FloatNillable

xsd:double IT_Bus::DoubleNillable

xsd:string IT_Bus::StringNillable

xsd:QName IT_Bus::QNameNillable
187

CHAPTER 8 | Artix Data Types
WSDL example Example 83 defines four elements, test_string_x, test_short_y,
test_int_return, and test_float_z, of nillable atomic type. This example
shows how to use the nillable atomic types as the parameters of an
operation, send_receive_nil_part.

xsd:dateTime IT_Bus::DateTimeNillable

xsd:decimal IT_Bus::DecimalNillable

xsd:base64Binary IT_Bus::BinaryBufferNillable

xsd:hexBinary IT_Bus::BinaryBufferNillable

Table 9: Nillable Atomic Types

Schema Type Nillable C++ Type

Example 83:WSDL Example Showing Some Nillable Atomic Types

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="test_string_x" nillable="true"
 type="xsd:string"/>
 <element name="test_short_y" nillable="true"
 type="xsd:short"/>
 <element name="test_int_return" nillable="true"
 type="xsd:int"/>
 <element name="test_float_z" nillable="true"
 type="xsd:float"/>
 </schema>
 </types>
 ...
 <message name="NilPartRequest">
 <part name="x" element="xsd1:test_string_x"/>
 <part name="y" element="xsd1:test_short_y"/>
 188

Nillable Types
C++ example Example 84 shows how to use nillable atomic types,
IT_Bus::StringNillable, IT_Bus::ShortNillable, IT_Bus::IntNillable,
and IT_Bus::FloatNillable, in a simple C++ example.

 </message>
 <message name="NilPartResponse">
 <part name="return" element="xsd1:test_int_return"/>
 <part name="y" element="xsd1:test_short_y"/>
 <part name="z" element="xsd1:test_float_z"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="send_receive_nil_part">
 <input name="doclit_nil_part_request"
 message="tns:NilPartRequest"/>
 <output name="doclit_nil_part_response"
 message="tns:NilPartResponse"/>
 </operation>
 </portType>
 ...

Example 83:WSDL Example Showing Some Nillable Atomic Types

Example 84:Using Nillable Atomic Types as Operation Parameters

// C++
IT_Bus::StringNillable x("String for sending");
IT_Bus::ShortNillable y(321);
IT_Bus::IntNillable var_return;
IT_Bus::FloatNillable z;

try {
 // bc is a client proxy for the BasePortType port type.
 bc.send_receive_nil_part(x, y, var_return, z);
}
catch (IT_Bus::FaultException &ex) {
 // ... deal with the exception (not shown)
}

if (! y.is_nil()) { cout << "y = " << y.get() << endl; }
if (! z.is_nil()) { cout << "z = " << z.get() << endl; }

if (! var_return.is_nil()) {
 cout << "var_return = " << var_return.get() << endl;
}

189

CHAPTER 8 | Artix Data Types
The value of a nillable atomic type, T, can be initialized using either a
constructor, T(), or the T.set() member function.

Before attempting to read the value of a nillable atomic type using T.get(),
you should check that the value is non-nil using the T.is_nil() member
function.
 190

Nillable Types
Nillable User-Defined Types

Overview This subsection describes how to define and use nillable user-defined types.
In C++, every user-defined type, UserTypeName, has a nillable
counterpart, UserTypeNameNillable.

You can modify or access the value of a user-defined nillable type, T, using
the T.set() and T.get() member functions, respectively. For full details of
the API for nillable types see �C++ API for nillable types� on page 185.

WSDL example Example 85 shows the definition of an XML schema all complex type,
named SOAPStruct. This is a complex type with ordinary (that is,
non-nillable) member elements.

Example 85:WSDL Example of an All Complex Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SOAPStruct">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 </complexType>
 ...
 </schema>
 </types>
 ...
191

CHAPTER 8 | Artix Data Types
C++ mapping Example 86 shows how the SOAPStruct type maps to C++. In addition to
the regular mapping, which produces the C++ SOAPStruct and
SOAPStructPtr classes, the WSDL-to-C++ compiler also generates a
nillable type, SOAPStructNillable, and an associated smart pointer type,
SOAPStructNillablePtr.

The API for the SOAPStructNillable type is defined in �AnyHolder API� on
page 182.

C++ example The following C++ example shows how to initialize an instance of
SOAPStructNillable type, s_nillable. The nillable type is created in two
steps: first of all, a SOAPStruct instance, s, is initialized; then the
SOAPStruct instance is used to initialize a SOAPStructNillable instance.

Example 86:C++ Mapping of the SOAPStruct All Complex Type

// C++
namespace INTEROP
{
 class SOAPStruct : public IT_Bus::AllComplexType { ... }
 typedef IT_AutoPtr<SOAPStruct> SOAPStructPtr;

 typedef IT_Bus::NillableValue<SOAPStruct, &SOAPStructQName>
 SOAPStructNillable;
 typedef IT_Bus::NillablePtr<SOAPStruct, &SOAPStructQName>
 SOAPStructNillablePtr;
};

// C++
// Initialize a SOAPStruct instance.
INTEROP::SOAPStruct s;
s.setvarFloat(3.14);
s.setvarInt(1234);
s.setvarString("Hello world!");

// Initialize a SOAPStructNillable instance.
INTEROP::SOAPStructNillable s_nillable;
s_nillable.set(s);
 192

Nillable Types
The next C++ example shows how to access the contents of the
SOAPStructNillable type. Note that before attempting to access the value
of the SOAPStructNillable using get(), you should check that the value is
not nil using is_nil().

// C++
if (! s_nillable.is_nil()) {
 cout << "varFloat = " << s_nillable.get().getvarFloat()
 << endl;
 cout << "varInt = " << s_nillable.get().getvarInt()
 << endl;
 cout << "varString = " << s_nillable.get().getvarString()
 << endl;
}

193

CHAPTER 8 | Artix Data Types
Nested Atomic Type Nillable Elements

Overview This subsection describes how to define and use complex types (except
arrays) that have some nillable member elements. That is, the type as a
whole is not nillable, although some of its elements are.

The WSDL-to-C++ compiler treats a type with nillable elements as a
special case. If a member element, ElementName, is defined with
xsd:nillable equal to true, the element�s C++ modifier and accessor are
then pointer based.

For example, given that a member element ElementName is of AtomicType
type, the accessors and modifier would have the following signatures:

const AtomicType * getElementName() const;
AtomicType * getElementName();
void setElementName(const AtomicType * val);

WSDL example Example 87 defines a sequence complex type, Nil_SOAPStruct, which has
some nillable elements, varInt, varFloat, and varString.

Note: Arrays with nillable elements are treated differently�see �Nillable
Elements of an Array� on page 202.

Example 87:WSDL Example of a Sequence Type with Nillable Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"
 targetNamespace="http://soapinterop.org/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <complexType name="Nil_SOAPStruct">
 <sequence>
 <element name="varInt" nillable="true"
 type="xsd:int"/>
 194

Nillable Types
C++ mapping Example 88 shows how the Nil_SOAPStruct sequence complex type is
mapped to C++. Note how the modifiers and accessors for the nillable
member elements, setElementName() and getElementName(), take
pointer arguments and return pointers instead of actual values. For example,
the getvarInt() function returns a pointer to an IT_Bus::Int rather an
IT_Bus::Int value.

 <element name="varFloat" nillable="true"
 type="xsd:float"/>
 <element name="varString" nillable="true"
 type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 ...

Example 87:WSDL Example of a Sequence Type with Nillable Elements

Example 88:C++ Mapping of the Nil_SOAPStruct Sequence Type

// C++
namespace INTEROP {
 class Nil_SOAPStruct : public IT_Bus::SequenceComplexType
 {
 public:
 Nil_SOAPStruct();
 Nil_SOAPStruct(const Nil_SOAPStruct& copy);
 virtual ~Nil_SOAPStruct();
 ...
 const IT_Bus::Int * getvarInt() const;
 IT_Bus::Int * getvarInt();
 void setvarInt(const IT_Bus::Int * val);

 const IT_Bus::Float * getvarFloat() const;
 IT_Bus::Float * getvarFloat();
 void setvarFloat(const IT_Bus::Float * val);

 const IT_Bus::String * getvarString() const;
 IT_Bus::String * getvarString();
 void setvarString(const IT_Bus::String * val);

 virtual const IT_Bus::QName & get_type() const;
 ...
195

CHAPTER 8 | Artix Data Types
C++ example The following C++ example shows how to create and initialize a
Nil_SOAPStruct instance. Notice, for example, how the argument to
setvarInt() is a pointer value, &i.

The next C++ example shows how to read the nillable elements of the
Nil_SOAPStruct instance. Note how the elements are checked for nilness by
comparing the result of calling getElementName() with 0.

 };

 typedef IT_AutoPtr<Nil_SOAPStruct> Nil_SOAPStructPtr;

 typedef IT_Bus::NillableValue<Nil_SOAPStruct,
&Nil_SOAPStructQName> Nil_SOAPStructNillable;

 typedef IT_Bus::NillablePtr<Nil_SOAPStruct,
&Nil_SOAPStructQName> Nil_SOAPStructNillablePtr;

 ...
};

Example 88:C++ Mapping of the Nil_SOAPStruct Sequence Type

// C++
Nil_SOAPStruct nil_s;

IT_Bus::Float f = 3.14;
IT_Bus::Int i = 1234;
IT_Bus::String s = "A non-nil string.";

nil_s.setvarInt(&i);
nil_s.setvarFloat(&f);
nil_s.setvarString(&s);
 196

Nillable Types
// C++
if (nil_s.getvarInt() != 0) {
 cout << "varInt = " << *nil_s.getvarInt() << endl;
}

if (nil_s.getvarFloat() != 0) {
 cout << "varFloat = " << *nil_s.getvarFloat() << endl;
}

if (nil_s.getvarString() != 0) {
 cout << "varString = " << *nil_s.getvarString() << endl;
}

197

CHAPTER 8 | Artix Data Types
Nested User-Defined Nillable Elements

Overview This subsection describes how to define and use complex types that have
nillable member elements of user-defined type.

The WSDL-to-C++ compiler treats user-defined nillable elements as a
special case. As with nillable elements of atomic type, if a member element
of user-defined type, ElementName, is defined with xsd:nillable equal to
true, the element�s C++ modifier and accessor are then pointer based.

For example, given that a member element ElementName is of UserType
type, the accessors and modifier would have the following signatures:

const UserType * getElementName() const;
UserType * getElementName();
void setElementName(const UserType * val);

WSDL example Example 89 defines a sequence complex type, Nil_NestedSOAPStruct,
which includes a nillable element of SOAPStruct type, varSOAP.

Note: Arrays with nillable elements are treated differently�see �Nillable
Elements of an Array� on page 202.

Example 89:WSDL Example of a Nillable All Type inside a Sequence Type

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 ...
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="SOAPStruct">
 <all>
 <element name="varFloat" type="xsd:float"/>
 <element name="varInt" type="xsd:int"/>
 <element name="varString" type="xsd:string"/>
 </all>
 198

Nillable Types
C++ mapping Example 90 shows how the Nil_NestedSOAPStruct sequence complex type
is mapped to C++. Note how the getvarSOAP() function returns a pointer
to a SOAPStruct rather a SOAPStruct value. Likewise, the setvarSOAP()
function takes a SOAPStruct pointer as its argument.

 </complexType>
 ...
 <complexType name="Nil_NestedSOAPStruct">
 <sequence>
 <element name="varInt" nillable="true"
 type="xsd:int"/>
 <element name="varSOAP" nillable="true"
 type="xsd1:SOAPStruct"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...

Example 89:WSDL Example of a Nillable All Type inside a Sequence Type

Example 90:C++ Mapping of the Nil_NestedSOAPStruct Type

// C++
class Nil_NestedSOAPStruct : public IT_Bus::SequenceComplexType
{
 public:
 Nil_NestedSOAPStruct();
 Nil_NestedSOAPStruct(const Nil_NestedSOAPStruct& copy);
 virtual ~Nil_NestedSOAPStruct();
 ...
 const IT_Bus::Int * getvarInt() const;
 IT_Bus::Int * getvarInt();
 void setvarInt(const IT_Bus::Int * val);

 const SOAPStruct * getvarSOAP() const;
 SOAPStruct * getvarSOAP();
 void setvarSOAP(const SOAPStruct * val);

 virtual const IT_Bus::QName & get_type() const;
 ...
};
199

CHAPTER 8 | Artix Data Types
NillablePtr types To help you manage the memory associated with nillable elements of
user-defined type, UserType, the WSDL-to-C++ utility generates a nillable
smart pointer type, UserTypeNillablePtr. The NillablePtr template types
are similar to the std::auto_ptr<> template types from the Standard
Template Library�see �Smart Pointers� on page 42.

For example, the following extract from the generated
WSDLFileName_wsdlTypes.h header file defines a SOAPStructNillablePtr
type, which is used to represent SOAPStruct nillable pointers:

Example 91 shows the API for the NillablePtr template class. A
NillablePtr instance can be initialized using either a NillablePtr()
constructor, a set() member function, or an operator=() assignment
operator. The is_nil() member function tests the pointer for nilness.

// C++
typedef IT_Bus::NillablePtr<SOAPStruct, &SOAPStructQName>

SOAPStructNillablePtr;

Example 91:The NillablePtr Template Class

// C++
namespace IT_Bus
{
 /**
 * Template implementation of Nillable as an auto_ptr.
 * T is the C++ type of data, TYPE is the data type qname.
 */
 template <class T, const QName* TYPE>
 class NillablePtr : public Nillable, public IT_AutoPtr<T>
 {
 public:
 NillablePtr();
 NillablePtr(const NillablePtr& other);
 NillablePtr(T* data);
 virtual ~NillablePtr();
 ...
 void set(const T* data);

 virtual Boolean is_nil() const;

 virtual const QName& get_type() const;
 ...
 };
 200

Nillable Types
C++ example The following C++ example shows how to create and initialize a
Nil_NestedSOAPStruct instance. Notice, for example, how the argument
passed to setvarSOAP() is a pointer, &nillable_struct.

The next C++ example shows how to read the nillable elements of the
Nil_NestedSOAPStruct instance. Note how the varSOAP element is checked
for nilness by calling is_nil().

 ...
};

Example 91:The NillablePtr Template Class

// C++
// Construct a smart nillable pointer.
// The SOAPStruct memory is owned by the smart nillable pointer.
SOAPStruct nillable_struct;
nillable_struct.setvarFloat(3.14);
nillable_struct.setvarInt(4321);
nillable_struct.setvarString("Nillable struct element.");

// Construct a nested struct.
Nil_NestedSOAPStruct outer_struct;
IT_Bus::Int k = 4321
outer_struct.setvarInt(&k);

// MEMORY MANAGEMENT: The argument to setvarSOAP is deep copied.
outer_struct.setvarSOAP(&nillable_struct);

// C++
IT_Bus::Int * int_p = outer_struct.getvarInt();

// MEMORY MANAGEMENT: outer_struct owns the return value.
SOAPStruct * nillable_struct_p = outer_struct.getvarSOAP();

if (int_p != 0) {
 cout << "varInt = " << *int_p << endl;
}

if (!nillable_struct_p.is_nil()) {
 cout << "varSOAP = " << *nillable_struct_p << endl;
}

201

CHAPTER 8 | Artix Data Types
Nillable Elements of an Array

Overview This subsection describes how to define and use array complex types with
nillable array elements. To define an array with nillable elements, add a
nillable="true" setting to the array element declaration.

An array with nillable elements has the following general syntax:

<complexType name="ArrayName">
 <sequence>
 <element name="ElemName" type="ElemType" nillable="true"
 minOccurs="LowerBound" maxOccurs="UpperBound"/>
 </sequence>
</complexType>

The ElemType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

WSDL example Example 92 shows defines an array complex type, Nil_SOAPArray (the
name indicates that the type is used in a SOAP example, not that it is
defined using SOAP array syntax) which has nillable array elements, item.

Example 92:WSDL Example of an Array with Nillable Elements

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://soapinterop.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 202

Nillable Types
C++ mapping Example 93 shows how the Nil_SOAPArray array complex type is mapped
to C++. Note that the array elements are of IT_Bus::ShortNillable type.

 <complexType name="Nil_SOAPArray">
 <sequence>
 <element name="item" nillable="true"
 type="xsd:short" minOccurs="10"
 maxOccurs="10"/>
 </sequence>
 </complexType>
 ...
 </schema>
 </types>
 ...

Example 92:WSDL Example of an Array with Nillable Elements

Example 93:C++ Mapping of the Nil_SOAPArray Array Type

// C++
namespace INTEROP {
 class Nil_SOAPArray
 : public IT_Bus::ArrayT<IT_Bus::ShortNillable,

&Nil_SOAPArray_item_qname, 10, 10>
 {
 public:
 Nil_SOAPArray();
 Nil_SOAPArray(const Nil_SOAPArray& copy);
 Nil_SOAPArray(size_t dimensions[]);
 Nil_SOAPArray(size_t dimension0);
 virtual ~Nil_SOAPArray();

 ...
 const IT_Bus::ElementListT<IT_Bus::ShortNillable> &
 getitem() const;

 IT_Bus::ElementListT<IT_Bus::ShortNillable> &
 getitem();

 void
 setitem(const IT_Vector<IT_Bus::ShortNillable> & val);

 virtual const IT_Bus::QName &
 get_type() const;
 };
203

CHAPTER 8 | Artix Data Types
C++ example The following C++ example shows how to create and initialize a
Nil_SOAPArray instance. Because each array element is of
IT_Bus::ShortNillable type, the array elements must be initialized using
the set() member function. Any elements not explicitly initialized are nil by
default.

The next C++ example shows how to access the nillable array elements.
You should check each of the array elements for nilness using the is_nil()
member function before attempting to read an array element value.

 typedef IT_AutoPtr<Nil_SOAPArray> Nil_SOAPArrayPtr;

 typedef IT_Bus::NillableValue<Nil_SOAPArray,
&Nil_SOAPArrayQName> Nil_SOAPArrayNillable;

 typedef IT_Bus::NillablePtr<Nil_SOAPArray,
&Nil_SOAPArrayQName> Nil_SOAPArrayNillablePtr;

};

Example 93:C++ Mapping of the Nil_SOAPArray Array Type

// C++
Nil_SOAPArray nil_s(10);
nil_s[0].set(10);
nil_s[1].set(20);
nil_s[2].set(30);
nil_s[3].set(40);
nil_s[4].set(50);
// The remaining five element values are left as nil.

// C++
for (size_t i=0; i<10; i++) {
 if (! nil_s[i].is_nil()) {
 cout << "Nil_SOAPArray[" << i << "] = "
 << nil_s[i].get() << endl;
 }
}

 204

SOAP Arrays
SOAP Arrays

Overview In addition to the basic array types described in �Arrays� on page 174, Artix
also provides support for SOAP arrays. SOAP arrays have a relatively rich
feature set, including support for sparse arrays and partially transmitted
arrays. Consequently, Artix implements a distinct C++ mapping specifically
for SOAP arrays, which is different from the C++ mapping described in the
�Arrays� section.

In this section This section contains the following subsections:

Introduction to SOAP Arrays page 206

Multi-Dimensional Arrays page 210

Sparse Arrays page 213

Partially Transmitted Arrays page 216
205

CHAPTER 8 | Artix Data Types
Introduction to SOAP Arrays

Overview This section describes the syntax for defining SOAP arrays in WSDL and
discusses how to program a simple one-dimensional array of strings. The
following topics are discussed:

� Syntax.

� C++ mapping.

� Definition of a one-dimensional SOAP array.

� Sample encoding.

� C++ example.

Syntax In general, SOAP array types are defined by deriving from the
SOAP-ENC:Array base type (deriving by restriction). The type definition must
conform to the following syntax:

Where <SOAPArrayType> is the name of the newly-defined array type,
<ElementType> specifies the type of the array elements (for example,
xsd:int, xsd:string, or a user type), and <ArrayBounds> specifies the
dimensions of the array (for example, [], [,], [,,], [,][], [,,][],
[,][][], and so on). The SOAP-ENC namespace prefix maps to the
http://schemas.xmlsoap.org/soap/encoding/ namespace URI and the
wsdl namespace prefix maps to the http://schemas.xmlsoap.org/wsdl/
namespace URI.

<complexType name="<SOAPArrayType>">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="<ElementType><ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

Note: In the current version of Artix, the preceding syntax is the only case
where derivation from a complex type is supported. Definition of a SOAP
array is treated as a special case.
 206

SOAP Arrays
C++ mapping A given SOAPArrayType array maps to a C++ class of the same name,
which inherits from the IT_Bus::SoapEncArrayT<> template class. The
SOAPArrayType C++ class overloads the [] operator to provide access to
the array elements. The size of the array is returned by the get_extents()
member function.

Definition of a one-dimensional
SOAP array

Example 94 shows how to define a one-dimensional array of strings,
ArrayOfSOAPString, as a SOAP array. The wsdl:arrayType attribute
specifies the type of the array elements, xsd:string, and the number of
dimensions, [] implying one dimension.

Example 94:Definition of the ArrayOfSOAPString SOAP Array

<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://soapinterop.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://soapinterop.org/xsd">
 <types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="ArrayOfSOAPString">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 ...
</definitions>
207

CHAPTER 8 | Artix Data Types
Sample encoding Example 95 shows the encoding of a sample ArrayOfSOAPString instance,
which is how the array instance might look when transmitted as part of a
WSDL operation.

The preceding WSDL fragment can be explained as follows:

1. The element type and the array size are specified by the
SOAP-ENC:arrayType attribute. Because ArrayOfSOAPString has been
derived by restriction, SOAP-ENC:arrayType can only have values of the
form xsd:string[ArraySize].

2. The XML elements that delimit the individual array values, for example
<item>, can have an arbitrary name. These element names are not
significant.

C++ example Example 96 shows a C++ example of how to allocate and initialize an
ArrayOfSOAPString instance with four elements.

Example 95:Sample Encoding of ArrayOfSOAPString

1 <ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[2]">
2 <item>Hello</item>

 <item>world!</item>
</ArrayOfSOAPString>

Example 96:C++ Example of Initializing an ArrayOfSOAPString Instance

// C++
// Allocate SOAP array of String
const size_t extents[] = {4};

1 ArrayOfSOAPString a_str(extents);

2 a_str[0] = "Hello";
a_str[1] = "to";
a_str[2] = "the";
a_str[3] = "world!";
 208

SOAP Arrays
The preceding C++ example can be explained as follows:

1. To specify the array�s size, you pass a list of extents (of size_t[] type)
to the ArrayOfSOAPString constructor. This style of constructor has the
advantage that it is easily extended to the case of multi-dimensional
arrays�see �Multi-Dimensional Arrays� on page 210.

2. The overloaded [] operator provides read/write access to individual
array elements.

Note: Be sure to initialize every element in the array, unless you want to
create a sparse array (see �Sparse Arrays� on page 213). There are no
default element values. Uninitialized elements are flagged as empty.
209

CHAPTER 8 | Artix Data Types
Multi-Dimensional Arrays

Overview The syntax for SOAP arrays allows you to define the dimensions of a
multi-dimensional array using two slightly different syntaxes:

� A comma-separated list between square brackets, for example [,] and
[,,].

� Multiple square brackets, for example [][] and [][][].

Artix makes no distinction between the two styles of array definition. In both
cases, the array is flattened for transmission and the C++ mapping is the
same.

Definition of multi-dimensional
SOAP array

Example 97 shows how to define a two-dimensional array of integers,
Array2OfInt, as a SOAP array. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:int, and the number of dimensions, [,]
implying an array of two dimensions.

Example 97:Definition of the Array2OfInt SOAP Array

<definitions ... >
 <types>
 <schema ... >
 <complexType name="Array2OfInt">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:int[,]"/>
 </restriction>
 </complexContent>
 </complexType>
 ...
</definitions>
 210

SOAP Arrays
Sample encoding of
multi-dimensional SOAP array

Example 98 shows the encoding of a sample Array2OfInt instance, which
is how the array instance might look when transmitted as part of a WSDL
operation.

The dimensions of this array instance are specified as [2,3], giving a total
of six elements. Notice that the encoded array is effectively flat, because no
distinction is made between rows and columns of the two-dimensional
array.

Given an array instance with dimensions, [I_MAX,J_MAX], a particular
position in the array, [i,j], corresponds with the i*J_MAX+j element of the
flattened array. In other words, the right most index of [i,j,...,k] is the
fastest changing as you iterate over the elements of a flattened array.

C++ example of a
multi-dimensional SOAP array

Example 99 shows a C++ example of how to allocate and initialize an
Array2OfInt instance with dimensions, [2,3].

Example 98:Sample Encoding of an Array2OfInt SOAP Array

<Array2OfInt SOAP-ENC:arrayType="xsd:int[2,3]">
 <i>1</i>
 <i>2</i>
 <i>3</i>
 <i>4</i>
 <i>5</i>
 <i>6</i>
</Array2OfInt>

Example 99: Initializing an Array2OfInt SOAP Array

// C++
1 const size_t extents2[] = {2, 3};

Array2OfInt a2_soap(extents2);

size_t position[2];
2 size_t i_max = a2_soap.get_extents()[0];

size_t j_max = a2_soap.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
 position[0] = i;
 for (size_t j=0; j<j_max; j++) {
 position[1] = j;

3 a2_soap[position] = (IT_Bus::Int) (i+1)*(j+1);
 }
211

CHAPTER 8 | Artix Data Types
The preceding C++ example can be explained as follows:

1. The dimensions of this array instance are specified to be [2,3] by
initializing an array of extents, of size_t[] type, and passing this array
to the Array2OfInt constructor.

2. The dimensions of the a2_soap array can be retrieved by calling the
get_extents() function, which returns an extents array that converts
to size_t[] type.

3. The operator [] is overloaded on Array2OfInt to accept an argument
of size_t[] type, which contains a list of indices specifying a
particular array element.

}

Example 99: Initializing an Array2OfInt SOAP Array
 212

SOAP Arrays
Sparse Arrays

Overview Sparse arrays are fully supported in Artix. Every SOAP array instance stores
an array of status flags, one flag for each array element. The status of each
array element is initially empty, flipping to non-empty the first time an array
element is accessed or initialized.

Sample encoding Example 100 shows the encoding of a sparse Array2OfInt instance, which
is how the array instance might look when transmitted as part of a WSDL
operation.

The array instance is defined to have the dimensions [10,10]. Out of a
maximum 100 elements, only four, that is [3,0], [2,1], [1,2], and [0,3],
are transmitted. When transmitting an array as a sparse array, the
SOAP-ENC:position attribute enables you to specify the indices of each
transmitted array element.

Note: Sparse arrays are not optimized for minimization of storage space.
Hence, a sparse array with dimensions [1000,1000] would always allocate
storage for one million elements, irrespective of how many elements in the
array are actually non-empty.

WARNING: Sparse arrays have been deprecated in the SOAP 1.2
specification. Hence, it is better to avoid using sparse arrays if possible.

Example 100:Sample Encoding of a Sparse Array2OfInt SOAP Array

<Array2OfInt SOAP-ENC:arrayType="xsd:int[10,10]">
 <item SOAP-ENC:position="[3,0]">30</item>
 <item SOAP-ENC:position="[2,1]">21</item>
 <item SOAP-ENC:position="[1,2]">12</item>
 <item SOAP-ENC:position="[0,3]">3</item>
</Array2OfInt>
213

CHAPTER 8 | Artix Data Types
Initializing a sparse array Example 101 shows an example of how to initialize a sparse array of
Array2OfInt type.

This example does not differ much from the case of initializing an ordinary
non-sparse array (compare, for example, Example 99 on page 211). The
only significant difference is that the majority of array elements are not
initialized, hence they are flagged as empty by default.

Example 101:Initializing a Sparse Array2OfInt SOAP Array

// C++
const size_t extents2[] = {10, 10};
Array2OfInt a2_soap(extents2);

size_t position[2];

position[0] = 3;
position[1] = 0;
a2_soap[position] = 30;

position[0] = 2;
position[1] = 1;
a2_soap[position] = 21;

position[0] = 1;
position[1] = 2;
a2_soap[position] = 12;

position[0] = 0;
position[1] = 3;
a2_soap[position] = 3;

Note: The state of an array element flips from empty to non-empty the
first time it is accessed using the [] operator. Hence, attempting to read
the value of an uninitialized array element can have the unintended side
effect of flipping the array element status.
 214

SOAP Arrays
Reading a sparse array Example 102 shows an example of how to read a sparse array of
Array2OfInt type.

The preceding C++ example can be explained as follows:

1. The get_extents() function returns the full dimensions of the array (as
a size_t[] array), irrespective of the actual number of non-empty
elements in the sparse array.

2. Before attempting to read the value of an element in the sparse array,
you should call the is_empty() function to check whether the
particular array element exists or not.

If you were to access all the elements of the array, irrespective of their
status, the empty array elements would all flip to the non-empty state.
Hence, you would lose the information about which elements were
transmitted in the sparse array.

Example 102:Reading a Sparse Array2OfInt SOAP Array

// C++
...
size_t p2[2];

1 size_t i_max = a2_out.get_extents()[0];
size_t j_max = a2_out.get_extents()[1];
for (size_t i=0; i<i_max; i++) {
 p2[0] = i;
 for (size_t j=0; j<j_max; j++) {
 p2[1] = j;

2 if (!a2_out.is_empty(p2)) {
 cout << "a[" << i << "][" << j << "] = "
 << a2_out[p2] << endl;
 }
 }
}

215

CHAPTER 8 | Artix Data Types
Partially Transmitted Arrays

Overview A partially transmitted array is essentially a special case of a sparse array,
where the transmitted array elements form one or more contiguous blocks
within the array. The start index and end index of each block can have any
value.

The difference between a partially transmitted array and a sparse array is
significant only at the level of encoding. From the Artix programmer�s
perspective, there is no significant distinction between partially transmitted
arrays and sparse arrays.

Sample encoding Example 103 shows the encoding of a partially transmitted
ArrayOfSOAPString instance.

In this example, only the third, fourth, seventh, and eighth elements of a
ten-element string array are actually transmitted. The SOAP-ENC:offset
attribute is used to specify the index of the first transmitted array element.
The default value of SOAP-ENC:offset is [0]. The SOAP-ENC:position
attribute specifies the start of a new block within the array. If an <item>
element does not have a position attribute, it is assumed to represent the
next element in the array.

Example 103:Sample Encoding of a Partially Transmitted
ArrayOfSOAPString Array

<ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[10]"
 SOAP-ENC:offset="[2]">
 <item>The third element</item>
 <item>The fourth element</item>
 <item SOAP-ENC:position="[6]">The seventh element</item>
 <item>The eighth element</item>
</ArrayOfSOAPString>
 216

IT_Vector Template Class
IT_Vector Template Class

Overview The IT_Vector template class is an implementation of std::vector. Hence,
the functionality provided by IT_Vector should be familiar from the C++
Standard Template Library.

In this section This section contains the following subsections:

Introduction to IT_Vector page 218

Summary of IT_Vector Operations page 221
217

CHAPTER 8 | Artix Data Types
Introduction to IT_Vector

Overview This section provides a brief introduction to programming with the
IT_Vector template type, which is modelled on the std::vector template
type from the C++ Standard Template Library (STL).

Differences between IT_Vector
and std::vector

Although IT_Vector is modelled closely on the STL vector type,
std::vector, there are some differences. In particular, IT_Vector does not
provide the following types:

IT_Vector<T>::allocator_type

Where T is the vector�s element type. Hence, the IT_Vector type does not
support an allocator_type optional final argument in its constructors.

The IT_Vector type does not support the following operations:

!=, <

The member functions listed in Table 10 are not defined in IT_Vector.

Although clear() is not defined, you can easily get the same effect for a
vector, v, by calling erase() as follows:

v.erase(v.begin(), v.end());

This has the effect of erasing all the elements in v, leaving an array of size 0.

Table 10: Member Functions Not Defined in IT_Vector

Function Type of Operation

at() Element access (with range check)

clear() List operation

assign() Assignment

resize()
Size and capacity

max_size()
 218

IT_Vector Template Class
Basic usage of IT_Vector The size() member function and the indexing operator [] is all that you
need to perform basic manipulation of vectors. Example 104 shows how to
use these basic vector operations to initialize an integer vector with the first
one hundred integer squares.

Iterators Instead of indexing vector elements using the operator [], you can use a
vector iterator. A vector iterator, of IT_Vector<T>::iterator type, gives you
pointer-style access to a vector�s elements. The following operations are
supported by IT_Vector<T>::iterator:

++, --, *, =, ==, !=

An iterator instance remembers its current position within the element list.
The iterator can advance to the next element using ++, step back to the
previous element using --, and access the current element using *.

The IT_Vector template also provides a reverse iterator, of
IT_Vector<T>::reverse_iterator type. The reverse iterator differs from the
regular iterator in that it starts at the end of the element list and traverses
the list backwards. That is the meanings of ++ and -- are reversed.

Example 104:Using Basic IT_Vector Operations to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT_Vector<IT_Bus::Int> v(100);

for (size_t k=0; k < v.size(); k++) {
 v[k] = (IT_Bus::Int) k*k;
}

219

CHAPTER 8 | Artix Data Types
Example using iterators Example 104 on page 219 can be written in a more idiomatic style using
vector iterators, as shown in Example 105.

Example 105:Using Iterators to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT_Vector<IT_Bus::Int> v(100);

IT_Vector<IT_Bus::Int>::iterator p = v.begin();
IT_Bus k_int = 0;

while (p != v.end())
{
 *p = k_int*k_int;
 ++p;
 ++k_int;
}

 220

IT_Vector Template Class
Summary of IT_Vector Operations

Overview This section provides a brief summary of the types and operations supported
by the IT_Vector template type. Note that the set of supported types and
operations differs slightly from std::vector. They are described in the
following categories:

� Member types.

� Iterators.

� Element access.

� Stack operations.

� List operations.

� Other operations.

Member types Table 11 lists the member types defined in IT_Vector<T>.

Table 11: Member Types Defined in IT_Vector<T>

Member Type Description

value_type Type of element.

size_type Type of subscripts.

difference_type Type of difference between iterators.

iterator Behaves like value_type*.

const_iterator Behaves like const value_type*.

reverse_iterator Iterates in reverse, like value_type*.

const_reverse_iterator Iterates in reverse, like const value_type*.

reference Behaves like value_type&.

const_reference Behaves like const value_type&.
221

CHAPTER 8 | Artix Data Types
Iterators Table 12 lists the IT_Vector member functions returning iterators.

Element access Table 13 lists the IT_Vector element access operations.

Stack operations Table 14 lists the IT_Vector stack operations.

Table 12: Iterator Member Functions of IT_Vector<T>

Iterator Member Function Description

begin() Points to first element.

end() Points to last element.

rbegin() Points to first element of reverse sequence.

rend() Points to last element of reverse sequence.

Table 13: Element Access Operations for IT_Vector<T>

Element Access Operation Description

[] Subscripting, unchecked access.

front() First element.

back() Last element.

Table 14: Stack Operations for IT_Vector<T>

Stack Operation Description

push_back() Add to end.

pop_back() Remove last element.
 222

IT_Vector Template Class
List operations Table 15 lists the IT_Vector list operations.

Other operations Table 16 lists the other operations supported by IT_Vector.

Table 15: List Operations for IT_Vector<T>

List Operations Description

insert(p,x) Add x before p.

insert(p,n,x) Add n copies of x before p.

insert(first,last) Add elements from [first:last[before p.

erase(p) Remove element at p.

erase(first,last) Erase [first:last[.

Table 16: Other Operations for IT_Vector<T>

Operation Description

size() Number of elements.

empty() Is the container empty?

capacity() Space allocated.

reserve() Reserve space for future expansion.

swap() Swap all the elements between two vectors.

== Test vectors for equality (member-wise).
223

CHAPTER 8 | Artix Data Types
 224

CHAPTER 9

Artix IDL to C++
Mapping
This chapter describes how Artix maps IDL to C++; that is,
the mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to C++ (using the
WSDL-to-C++ compiler).

In this chapter This chapter discusses the following topics:

Introduction to IDL Mapping page 226

IDL Basic Type Mapping page 228

IDL Complex Type Mapping page 229

IDL Module and Interface Mapping page 238
225

CHAPTER 9 | Artix IDL to C++ Mapping
Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-C++ mapping. Mapping
IDL to C++ in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, SampleIDL.idl, to a WSDL contract,
SampleIDL.wsdl, using the following command:

idl -wsdl SampleIDL.idl

2. Map the generated WSDL contract to C++ using the WSDL-to-C++
compiler. For example, you could generate C++ stub code from the
SampleIDL.wsdl file using the following command:

wsdltocpp SampleIDL.wsdl

For a detailed discussion of these command-line utilities, see the Artix
User�s Guide.

Alternative C++ mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to C++ directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to C++, as follows:

� Artix IDL-to-C++ mapping�this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-C++. It is an IONA-proprietary mapping.

� CORBA IDL-to-C++ mapping�as specified in the OMG C++
Language Mapping document (http://www.omg.org). This mapping is
used, for example, by the IONA�s Orbix.
 226

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping
These alternative approaches are illustrated in Figure 13.

The advantage of using the Artix IDL-to-C++ mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-C++ mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix C++ mapping:

� wchar.

� wstring.

� long double.

� Value types.

� Boxed values.

� Local interfaces.

� Abstract interfaces.

� forward-declared interfaces.

Figure 13: Artix and CORBA Alternatives for IDL to C++ Mapping

IDL File

WSDL
Contract

Artix
C++

Stubs

CORBA
C++

Stubs

Artix

CORBA

IDL-to-WSDL

IDL-to-C++

WSDL-to-C++
227

CHAPTER 9 | Artix IDL to C++ Mapping
IDL Basic Type Mapping

Overview Table 17 shows how IDL basic types are mapped to WSDL and then to
C++.

Table 17: Artix Mapping of IDL Basic Types to C++

IDL Type WSDL Schema Type C++ Type

any xsd:anyType IT_Bus::AnyHolder

boolean xsd:boolean IT_Bus::Boolean

char xsd:byte IT_Bus::Byte

string xsd:string IT_Bus::String

wchar xsd:string IT_Bus::String

wstring xsd:string IT_Bus::String

short xsd:short IT_Bus::Short

long xsd:int IT_Bus::Int

long long xsd:long IT_Bus::Long

unsigned short xsd:unsignedShort IT_Bus::UShort

unsigned long xsd:unsignedInt IT_Bus::UInt

unsigned long long xsd:unsignedLong IT_Bus::ULong

float xsd:float IT_Bus::Float

double xsd:double IT_Bus::Double

long double Not supported Not supported

octet xsd:unsignedByte IT_Bus::UByte

fixed xsd:decimal IT_Bus::Decimal

Object references:Reference IT_Bus::Reference
 228

IDL Complex Type Mapping
IDL Complex Type Mapping

Overview This section describes how the following IDL data types are mapped to
WSDL and then to C++:

� enum type.

� struct type.

� union type.

� sequence types.

� array types.

� exception types.

� typedef of a simple type.

� typedef of a complex type.

enum type Consider the following definition of an IDL enum type, SampleTypes::Shape:

The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to a WSDL
restricted simple type, SampleTypes.Shape, as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>
229

CHAPTER 9 | Artix IDL to C++ Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Shape type to a C++
class, SampleTypes_Shape, as follows:

The value of the enumeration type can be accessed and modified using the
get_value() and set_value() member functions.

Programming with the Enumeration Type

For details of how to use the enumeration type in C++, see �Deriving
Simple Types by Restriction� on page 146.

union type Consider the following definition of an IDL union type, SampleTypes::Poly:

The IDL-to-WSDL compiler maps the SampleTypes::Poly union to an XML
schema choice complex type, SampleTypes.Poly, as follows:

class SampleTypes_Shape : public IT_Bus::AnySimpleType
{
 public:
 SampleTypes_Shape();
 SampleTypes_Shape(const IT_Bus::String & value);
 ...
 void set_value(const IT_Bus::String & value);
 const IT_Bus::String & get_value() const;
};

// IDL
module SampleTypes {
 union Poly switch(short) {
 case 1: short theShort;
 case 2: string theString;
 };
 ...
};

<xsd:complexType name="SampleTypes.Poly">
 <xsd:choice>
 <xsd:element name="theShort" type="xsd:short"/>
 <xsd:element name="theString" type="xsd:string"/>
 </xsd:choice>
</xsd:complexType>
 230

IDL Complex Type Mapping
The WSDL-to-C++ compiler maps the SampleTypes.Poly type to a C++
class, SampleTypes_Poly, as follows:

The value of the union can be modified and accessed using the
getUnionMember() and setUnionMember() pairs of functions. The union
discriminator can be accessed through the get_discriminator() and
get_discriminator_as_uint() functions.

Programming with the Union Type

For details of how to use the union type in C++, see �Choice Complex
Types� on page 154.

// C++
class SampleTypes_Poly : public IT_Bus::ChoiceComplexType
{
 public:
 ...
 const IT_Bus::Short gettheShort() const;
 void settheShort(const IT_Bus::Short& val);

 const IT_Bus::String& gettheString() const;
 void settheString(const IT_Bus::String& val);

 enum PolyDiscriminator
 {
 theShort,
 theString,
 Poly_MAXLONG=-1L
 } m_discriminator;

 PolyDiscriminator get_discriminator() const { ... }
 IT_Bus::UInt get_discriminator_as_uint() const { ... }
 ...
};
231

CHAPTER 9 | Artix IDL to C++ Mapping
struct type Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

The WSDL-to-C++ compiler maps the SampleTypes.SampleStruct type to
a C++ class, SampleTypes_SampleStruct, as follows:

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
 ...
};

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SampleStruct : public
IT_Bus::SequenceComplexType

{
 public:
 SampleTypes_SampleStruct();
 SampleTypes_SampleStruct(const SampleTypes_SampleStruct&

copy);
 ...
 const IT_Bus::String & gettheString() const;
 IT_Bus::String & gettheString();
 void settheString(const IT_Bus::String & val);

 const IT_Bus::Int & gettheLong() const;
 IT_Bus::Int & gettheLong();
 void settheLong(const IT_Bus::Int & val);
};
 232

IDL Complex Type Mapping
The members of the struct can be accessed and modified using the
getStructMember() and setStructMember() pairs of functions.

Programming with the Struct Type

For details of how to use the struct type in C++, see �Sequence Complex
Types� on page 151.

sequence types Consider the following definition of an IDL sequence type,
SampleTypes::SeqOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::SeqOfStruct sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.SeqOfStruct type to a
C++ class, SampleTypes_SeqOfStruct, as follows:

The SampleTypes_SeqOfStruct class is an Artix C++ array type (based on
the IT_Vector template). Hence, the array class has an API similar to the
std::vector type from the C++ Standard Template Library.

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_SeqOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_SeqOfStruct_item_qname, 0, -1>

{
 public:
 ...
};
233

CHAPTER 9 | Artix IDL to C++ Mapping
Programming with Sequence Types

For details of how to use sequence types in C++, see �Arrays� on page 174
and �IT_Vector Template Class� on page 217.

array types Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

The WSDL-to-C++ compiler maps the SampleTypes.ArrOfStruct type to a
C++ class, SampleTypes_ArrOfStruct, as follows:

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the IT_Bus::ArrayT base class uses the bounds
specified in the IDL.

// IDL
module SampleTypes {
 typedef SampleStruct ArrOfStruct[10];
 ...
};

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"
 minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

class SampleTypes_ArrOfStruct : public
IT_Bus::ArrayT<SampleTypes_SampleStruct,
&SampleTypes_ArrOfStruct_item_qname, 10, 10>

{
 ...
};
 234

IDL Complex Type Mapping
The SampleTypes_ArrOfStruct class is an Artix C++ array type (based on
the IT_Vector template). The array class has an API similar to the
std::vector type from the C++ Standard Template Library, except that the
size of the vector is restricted to the specified array length, 10.

Programming with Array Types

For details of how to use array types in C++, see �Arrays� on page 174 and
�IT_Vector Template Class� on page 217.

exception types Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

The IDL-to-WSDL compiler maps the SampleTypes::GenericExc exception
to a WSDL sequence type, SampleTypes.GenericExc, and to a WSDL fault
message, _exception.SampleTypes.GenericExc, as follows:

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"
 type="xsd1:SampleTypes.GenericExc"/>
...
<message name="_exception.SampleTypes.GenericExc">
 <part name="exception"

element="xsd1:SampleTypes.GenericExc"/>
</message>
235

CHAPTER 9 | Artix IDL to C++ Mapping
The WSDL-to-C++ compiler maps the SampleTypes.GenericExc and
_exception.SampleTypes.GenericExc types to C++ classes,
SampleTypes_GenericExc and _exception_SampleTypes_GenericExc, as
follows:

Programming with Exceptions in Artix

For an example of how to initialize, throw and catch a WSDL fault
exception, see �Propagating Exceptions� on page 29.

typedef of a simple type Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias:

The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias typedef
directory to the type, xsd:float.

// C++
class SampleTypes_GenericExc : public

IT_Bus::SequenceComplexType
{
 public:
 SampleTypes_GenericExc();
 ...
 const IT_Bus::String & getreason() const;
 IT_Bus::String & getreason();
 void setreason(const IT_Bus::String & val);
};
...
class _exception_SampleTypes_GenericExcException : public

IT_Bus::UserFaultException
{
 public:
 _exception_SampleTypes_GenericExcException();
 ...
 const SampleTypes_GenericExc & getexception() const;
 SampleTypes_GenericExc & getexception();
 void setexception(const SampleTypes_GenericExc & val);
 ...
};

// IDL
module SampleTypes {
 typedef float FloatAlias;
 ...
};
 236

IDL Complex Type Mapping
The WSDL-to-C++ compiler then maps the xsd:float type directly to the
IT_Bus::Float C++ type. Hence, no C++ typedef is generated for the
float type.

typedef of a complex type Consider the following IDL typedef that defines an alias of a struct,
SampleTypes::SampleStructAlias:

The IDL-to-WSDL compiler maps the SampleTypes::SampleStructAlias
typedef directly to the plain, unaliased SampleTypes.SampleStruct type.

The WSDL-to-C++ compiler then maps the SampleTypes.SampleStruct
WSDL type directly to the SampleTypes::SampleStruct C++ type. Hence,
no C++ typedef is generated for this struct type. Instead of a typedef, the
C++ mapping uses the original, unaliased type.

// IDL
module SampleTypes {
 typedef SampleStruct SampleStructAlias;
 ...
};

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific C++ class being generated to represent the
sequence or array type.
237

CHAPTER 9 | Artix IDL to C++ Mapping
IDL Module and Interface Mapping

Overview This section describes the Artix C++ mapping for the following IDL
constructs:

� Module mapping.

� Interface mapping.

� Object reference mapping.

� Operation mapping.

� Attribute mapping.

Module mapping An IDL identifier appearing within the scope of an IDL module,
ModuleName::Identifier, maps to a C++ identifier of the form
ModuleName_Identifier. That is, the IDL scoping operator, ::, maps to an
underscore, _, in C++.

Although IDL modules do not map to namespaces under the Artix C++
mapping, it is possible nevertheless to put generated C++ code into a
namespace using the -n switch to the WSDL-to-C++ compiler (see
�Generating Stub and Skeleton Code� on page 2). For example, if you pass a
namespace, TEST, to the WSDL-to-C++ -n switch, the
ModuleName::Identifier IDL identifier would map to
TEST::ModuleName_Identifier.

Interface mapping An IDL interface, InterfaceName, maps to a C++ class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName::InterfaceName, the interface maps to the
ModuleName_InterfaceName C++ class.

If an IDL data type, TypeName, is defined within the scope of an IDL
interface, that is ModuleName::InterfaceName::TypeName, the type
maps to the ModuleName_InterfaceName_TypeName C++ class.
 238

IDL Module and Interface Mapping
Object reference mapping When an IDL interface is used as an operation parameter or return type, it is
mapped to the IT_Bus::Reference C++ type.

For example, consider an operation, get_foo(), that returns a reference to a
Foo interface as follows:

The get_foo() IDL operation then maps to the following C++ function:

Note that this mapping is very different from the OMG IDL-to-C++
mapping. In the Artix mapping, the get_foo() operation does not return a
pointer to a Foo proxy object. Instead, you must construct the Foo proxy
object in a separate step, by passing the IT_Bus::Reference object into the
FooClient constructor.

See �Artix References� on page 61 for more details.

// IDL
interface Foo {};

interface Bar {
 Foo get_foo();
};

// C++
void get_foo(
 IT_Bus::Reference & var_return
) IT_THROW_DECL((IT_Bus::Exception));
239

CHAPTER 9 | Artix IDL to C++ Mapping
Operation mapping Example 106 shows two IDL operations defined within the
SampleTypes::Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,
test_oneway().

The operations from the preceding IDL, Example 106 on page 240, map to
C++ as shown in Example 107,

Example 106:Example IDL Operations

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 SampleStruct test_op(
 in SampleStruct in_struct,
 inout SampleStruct inout_struct,
 out SampleStruct out_struct
) raises (GenericExc);

 oneway void test_oneway(in string in_str);
 };
};

Example 107:Mapping IDL Operations to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void test_op(
 const TEST::SampleTypes_SampleStruct & in_struct,
 TEST::SampleTypes_SampleStruct & inout_struct,
 TEST::SampleTypes_SampleStruct & var_return,
 TEST::SampleTypes_SampleStruct & out_struct
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void test_oneway(
 const IT_Bus::String & in_str
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
 240

IDL Module and Interface Mapping
The preceding C++ operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type
void. If a return value is defined in IDL, it is mapped as an out
parameter, var_return.

The order of parameters in the C++ function signature, test_op(), is
determined as follows:

♦ First, the in and inout parameters appear in the same order as in
IDL, ignoring the out parameters.

♦ Next, the return value appears as the parameter, var_return
(with the same semantics as an out parameter).

♦ Finally, the out parameters appear in the same order as in IDL,
ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward,
because a oneway operation can have only in parameters and a void
return type.

Attribute mapping Example 108 shows two IDL attributes defined within the
SampleTypes::Foo interface. The first attribute is readable and writable,
str_attr, and the second attribute is readonly, struct_attr.

Example 108:Example IDL Attributes

// IDL
module SampleTypes {
 ...
 interface Foo {
 ...
 attribute string str_attr;
 readonly attribute SampleStruct struct_attr;
 };
};
241

CHAPTER 9 | Artix IDL to C++ Mapping
The attributes from the preceding IDL, Example 108 on page 241, map to
C++ as shown in Example 109,

The preceding C++ attribute signatures can be explained as follows:

1. A normal IDL attribute, AttributeName, maps to a pair of accessor and
modifier functions in C++, _get_AttributeName(),
_set_AttributeName().

2. An IDL readonly attribute, AttributeName, maps to a single accessor
function in C++, _get_AttributeName().

Example 109:Mapping IDL Attributes to C++

// C++
class SampleTypes_Foo
{
 public:
 ...

1 virtual void _get_str_attr(
 IT_Bus::String & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

 virtual void _set_str_attr(
 const IT_Bus::String & _arg
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

2 virtual void _get_struct_attr(
 TEST::SampleTypes_SampleStruct & var_return
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
};
 242

Index

Symbols
<extension> tag 168
<fault> tag 30
<port> element 110
<restriction> tag 167
<simpleContent> tag 167

A
abstract interface type 227
all complex type

nillable example 191
AllComplexType class 158
all groups 158
anonymous types

avoiding 163
AnyHolder class 179

get_any_type() function 180
get_type() function 181
inserting and extracting atomic types 180
inserting and extracting user types 180
set_any_type() function 180

AnyType class 180
anyType type 179

nillable 187
anyURI 149
arrays

multi-dimensional native 176
native 174
SOAP 205

arrayType attribute 207
array types

nillable elements 202
artix.cfg file 55
Artix foundation classes 17
Artix locator

overview 66
Artix namespaces 5
Artix services

locator 69
ART library 17
assign() 218
at() 218
atomic types 137
nillable example 188
nillable types 187

attributes
mapping 161

auto_ptr template 42

B
Base64Binary type 144
base64Binary type

nillable 188
BASIC authentication 111
begin() 103, 105
begin_session() 91
below_capacity() function 80
binary types 144

get_data() 144
set_data() 144

binding name
specifying to code generator 3

boolean type
nillable 187

bounded sequences 234
boxed value type 227
building Artix applications 179
Bus library 17
byte type

nillable 187

C
C++ mapping

parameter order 24
parameters 23

checked facets 146
choice complex type 163
ChoiceComplexType class 154
choice complex types 154
clear() 218
client

developing 12
proxy object 12
stub code, files 2

client proxies
243

INDEX
and multi-threading 53
and threading 52
get_port() 120

client stub code 2
Code generation 2
code generation

from the command line 3
impl flag 8

code generator
command-line 3
files generated 2

codeset 138
commit() 103, 105
compare() 142
compiler requirements 17
complex datatypes

generated files 2
complex type

deallocating 41
deriving from simple 167

complex types 150
assignment operators 39
copying 39
nesting 163
recursive copying 40

configuration
message attributes 110
-ORBname switch 75

ConnectException type 28
ContentType message attribute 124
CORBA

abstract interface 227
any 228
basic types 228
boolean 228
boxed value 227
char 228
enum type 229
exception type 235
fixed 228
forward-declared interfaces 227
local interface type 227
Object 228
sequence type 233
string 228
struct type 232
typedef 236
union type 230, 234
value type 227
 244
wchar 228
wstring 228

CORBA binding 179
CosTransactions::Coordinator class 103
create_server() 49
create_service() 59
c_str() 138

D
date 149
dateTime type

nillable 188
decimal type

nillable 188
declaration specifiers 19
-declspec option 19
derivation

by extension 167
by restriction 167
get_simpleTypeValue() 169
set_simpleTypeValue() 169

DeserializationException type 28
destroy_server() 50
developing a server 8
DLL

building stub libraries 19
double type

nillable 187
duration 149
dynamic configuration

implementing 131
introduction to 128
of IP ports 130

E
 element 128
ElementListT class 170

conversion to IT_Vector 172
embedded mode

compiling 17
linking 17

encoding of SOAP array 211
EndpointNotExist fault 71
endpoint reference 62
endpoints 68

below_capacity() function 80
pausing and resuming 80
reached_capacity() function 80

INDEX
registering with the locator 75
end_session() 97
ENTITIES type 161
ENTITY 149
ENTITY type 161
enumeration facet 146
enum type 229
Error() function 27
exception

propagating 29
raising a fault exception 30

exception handling
CORBA mapping 235

Exception type 27
exception type 235

F
facets 146

checked 146
FaultException type 29
fixed decimal

compare() 142
DigitIterator 143
is_negative() 142
left_most_digit() 142
number_of_digits() 142
past_right_most_digit() 142
round() 142
scale() 142
truncate() 142

float type
nillable 187

forward-declared interfaces 227
fractionDigits facet 146

G
gDay 149
get_all_endpoints() 92
get_any_type() function 180
get_bus() 125
get_data() 144
get_discriminator() 231
get_discriminator_as_uint() 231
getendpoints() 93
get_extents() 207, 212, 215
get_input_message_attributes() 95, 125
get_item_name() 171
get_max_occurs() 170
get_min_occurs() 170
get_port() 94, 120
getsession_id() 91
get_simpleTypeValue() 169
get_size() 171
get_threading_model() 50, 58
get_type() function 181
get_wsdl_location() 49
gMonth 149
gMonthDay 149
gYear 149
gYearMonth 149

H
HelloWorld port type 6
HexBinary type 144
hexBinary type

nillable 188
high water mark 55
high_water_mark configuration variable 56
HTTP

BASIC authentication 111
example port 13

HTTPClientAttributes class 118
http-conf.xsd file 111
http plug-in 75
HTTPServerAttributes class 118

I
IDL

bounded sequences 234
enum type 229
exception type 235
object references 239
oneway operations 241
sequence type 233
struct type 232
typedef 236
union type 230, 234

IDL attributes
mapping to C++ 241

IDL basic types 228
IDL interfaces

mapping to C++ 238
IDL modules

mapping to C++ 238
IDL operations

mapping to C++ 240
245

INDEX
parameter order 241
return value 241

IDL readonly attribute 242
IDL-to-C++ mapping

Artix and CORBA 226
IDL types

unsupported 227
idl utility 226
IDREF 149
IDREFS type 161
init() 130

-ORBname parameter 79
init() function 10, 12
Initializing the Bus 10
initial_threads configuration variable 56
inout parameter ordering 25
inout parameters 241
in parameters 241
input message 22
input message attributes 108
input parameters 22
instance namespace 185
integer 149
interception points 109
int type

nillable 187
InvalidRouteException type 28
IOException type 28
IONA foundation classes 17
IP port

0 value 130
implementing dynamic allocation 131

IP ports
dynamically allocating 130

is_empty() 215
is_negative() 142
is_nil() function 190, 193, 200
IT_AutoPtr template 42
IT_Bus::AllComplexType 158
IT_Bus::Base64Binary 144
IT_Bus::BinaryBuffer 137
IT_Bus::Boolean 137
IT_Bus::Bus::register_server_factory() 49
IT_Bus::Byte 137
IT_Bus::ChoiceComplexType 154
IT_Bus::ConnectException 28
IT_Bus::DateTime 137, 141
IT_Bus::Decimal 137, 142
IT_Bus::Decimal::DigitIterator 143
 246
IT_Bus::DeserializationException 28
IT_Bus::Double 137
IT_Bus::ElementListT 170

conversion to IT_Vector 172
IT_Bus::Exception 27
IT_Bus::Exception::Error() 27
IT_Bus::Exception::Message() 27
IT_Bus::Exception type 27
IT_Bus::FaultException 29
IT_Bus::Float 137
IT_Bus::HexBinary 137, 144
IT_Bus::init() 10, 12

activating services 130
IT_Bus::Int 137
IT_Bus::IOException 28
IT_Bus::Long 137
IT_Bus::MessageAttributes class 113
IT_Bus::NamedAttributes class 113
IT_Bus::NoSuchAttributeException exception 122,

125
IT_Bus::QName 137
IT_Bus::run() 11, 12
IT_Bus::SequenceComplexType 151
IT_Bus::SerializationException 28
IT_Bus::ServiceException 28
IT_Bus::Short 137
IT_Bus::shutdown() 14
IT_Bus::SoapEncArrayT 207
IT_Bus::String 137, 138
IT_Bus::String::iterator 138
IT_Bus::TibrvMessageAttributes class 118
IT_Bus::TransportException 28
IT_Bus::UByte 137
IT_Bus::UInt 137
IT_Bus::ULong 137
IT_Bus::UShort 137
IT_BUS_E_FAULT error code 27
IT_Bus namespace 5
IT_Bus_Services::renewSessionFaultException 96
IT_Bus_Services::SessionID 91
iterators

in IT_Vector 219
IT_FixedPoint class 142
IT_HTTP_E_ACCESS_DENIED error code 27
IT_HTTP_E_BAD_CONFIG error code 27
IT_HTTP_E_COMM_ERROR error code 27
IT_HTTP_E_NOT_FOUND error code 27
IT_HTTP_E_SHUTTING_DOWN error code 27
IT_Routing::InvalidRouteException 28

INDEX
IT_String class 138
IT_Vectof class

resize() 218
IT_Vector class 170, 172

and set_size() 173
assign() 218
at() 218
clear() 218
converting to 178
differences from std::vector 218
iterators 219
operations 221
overview 217
resize() 218

IT_WSDL namespace 5

L
language 149
leaks

avoiding 42
left_most_digit() 142
length() 138
length facet 146
libraries

Artix foundation classes 17
ART library 17
Bus 17
IONA foundation classes 17

license
display current 4

linker requirements 17
list 149
load balancing

with the locator 67
local interface type 227
locator

binding and protocol 69
demonstration code 67
embedded deployment 68
EndpointNotExist fault 71
load balancing 67, 68
LocatorService port type, C++ mapping 72
lookupEndpointResponse type 71
lookupEndpointResponse type, C++ mapping 74
lookupEndpoint type 71
lookupEndpoint type, C++ mapping 73
reading a reference from 76
registering endpoints 75
standalone deployment 68
WSDL contract 69
locator, Artix 66
locator_endpoint plug-in 75, 80
LocatorService port type 72
long type

nillable 187
lookupEndpointResponse type 71
lookupEndpointResponse type, C++ mapping 74
lookupEndpoint type 71
lookupEndpoint type, C++ mapping 73
low water mark 55
low_water_mark configuration variable 56

M
mapping

IDL attributes 241
IDL interfaces 238
IDL modules 238
IDL operations 240
IDL to C++ 226

maxExclusive facet 146
maxInclusive facet 146
maxLength facet 146
maxOccurs 170, 174
max_size() 218
memory management 33

client side 35
copying and assignment 39
deallocating 41
rules 34
server side 36
smart pointers 42

Message() function 27
message attributes

categories 108
client example 120
ContentType 124
HTTPClientAttributes class 118
HTTPServerAttributes class 118
in configuration 110
input message 108
interception points 109
IT_Bus::TibrvMessageAttributes class 118
MQAttributes class 118
MQ series 110
name-value API 113
NoSuchAttributeException exception 122
oneway operation 109
output 108
247

INDEX
schemas 111
server example 123
transport-specific API 117

MessageAttributes class 113
messages

input 22
output 22

minExclusive facet 146
minInclusive facet 146
minLength facet 146
minOccurs 170
mq.xsd file 111
MQAttributes class 118
MQ series

message attributes 110
multi-dimensional native arrays 176
MULTI_INSTANCE threading model 46, 54, 125
multiple ports

per service 46
multiple servants per port 46
multiple services 46
MULTI_THREADED threading model 55, 125
multi-threading

client side 52
server side 54

N
Name 149
NamedAttributes class 113
namespace

for generated C++ code 3
namespaces

IT_Bus 5
IT_WSDL 5
using in C++ 5

name-value API 113
native arrays 174
NCName 149
negativeInteger 149
nesting complex types 163
nillable atomic member elements 194
NillablePtr template class 200
nillable types 194

atomic type, example 188
atomic types 187
IT_Bus::NillableValue 185
nillable array elements 202
NillablePtr template class 200
nillable user-defined member elements 198
 248
overview 184
syntax 185
user-defined types 191
xsi:nil attribute 185

NillableValue class 185
NMTOKENS type 161
NMTOKEN type 161
nonNegativeInteger 149
nonPositiveInteger 149
normalizedString 149
NoSuchAttributeException exception 122, 125
NOTATION 149
NOTATION type 161
number_of_digits() 142

O
object references

mapping to C++ 239
occurrence constraints

get_item_name() 171
get_max_occurs() 170
get_min_occurs() 170
get_size() 171
in all groups 158
in choice groups 154
in sequence groups 151
overview of 170
set_size() 170

offset attribute 216
oneway operations

in IDL 241
operations

declaring 22
-ORBname, parameter to IT_Bus::init() 79
-ORBname command-line parameter 75
-ORBname command-line switch 55
order of parameters 24
OTS

transaction support 100
out parameters 241
output message 22
output message attributes 108
output parameters 22

P
parameters

in IDL-to-C++ mapping 241
parse tree

INDEX
WSDL 130
partially transmitted arrays 216
Password attribute 111
past_right_most_digit() 142
pattern facet 146
plug-ins

http 75
locator_endpoint 75
locator_endpoint plug-in 80
soap 75

plugins:sm_simple_policy:max_session_timeout 91
plugins:sm_simple_policy:min_session_timeout 91
port

specifying on the client side 12
specifying to code generator 3

port object
use_input_message_attributes() 120, 123
use_output_message_attributes() 123

ports
and endpoints 68

port type
specifying to code generator 3

positiveInteger 149
propagating exceptions 29
properties

in a reference 65
proxies

constructor for references 79
proxy object

and multi-threading 53
constructors 12

Q
QName 149
QName type

nillable 187

R
reached_capacity() function 80
recursive copying 40
recursive deallocating 41
ref:Reference type 71
reference

to an endpoint 62
references

constructor for client proxies 79
CORBA mapping 239
IT_Bus
Reference class 65
looking up in the locator 68
properties 65
reading from the locator 76
ref:Reference type 71
schema 71
static 63
transient 64
XML schema 62

register_server_factory() 49
renew_session() 96
resize() 218
resources

server side 100
rollback() 103, 105
rollback_only() 103
round() 142
run() function 11, 12
Running the Bus 11

S
scale() 142
schema

for references 71
schemas 111

for references 62
sequence complex type 163
SequenceComplexType class 151
sequence complex types 151

and arrays 174
sequence type 233
Serialization type 28
servant

and threading models 54
servants

multiple per port 46
server

developing 8
implementation class 8
main() function 10
skeleton code, files 2

server factory
creating 49
default implementation 46
deregistering services 49
implementing 46
multiple ports 46
249

INDEX
multiple services 46
registering a service 49
ServerFactoryBase class 58

ServerFactoryBase class 58
server skeleton code 2
service

registering in a server factory 49
specifying on the client side 12

ServiceException type 28
service name

specifying to code generator 3
SessionManagerClient 90
set_any_type() function 180
set_data() 144
setendpoint_group() 91
setprefered_renew_timeout() 91
setsession_id() 92
set_simpleTypeValue() 169
set_size() 170, 173
set_timeout() 103
short type

nillable 187
shutdown() function 14
Shutting the Bus down 11
simple types

deriving by restriction 146
skeleton code

files 2
generating with wsdltocpp 3

smart pointer
assignment semantics 43

smart pointers 42
SOAP arrays 205

encoding 211
get_extents() 207, 212
multi-dimensional 210
one-dimensional 207
partially transmitted 216
sparse 213
syntax 206

SOAP bindings 69
SOAP-ENC:Array type 206
SOAP-ENC:offset attribute 216
SoapEncArrayT class 207
soap plug-in 75
sparse arrays 213

get_extents() 215
initializing 214
is_empty() 215
 250
static reference 63
std::vector class 217
strings

codeset 138
c_str() 138
iterator 138
IT_String class 138
length() 138

string type
nillable 187

Stroustrup, Bjarne 138
struct type 232
stub code

files 2
stub libraries

building on Windows 19

T
threading

client proxy in two threads 52
get_threading_model() function 50
MULTI_INSTANCE model 54, 125
MULTI_THREADED model 55, 125
work queue 54

threading model
changing 58
create_service() 59
default 55

thread pool
configuration settings 55
initial threads 55

thread_pool:high_water_mark configuration
variable 56

thread_pool:initial_threads configuration variable 56
thread_pool:low_water_mark configuration

variable 56
Tibco transport 118
tibrv.xsd file 111
time 149
token 149
totalDigits facet 146
transaction factory 100
transaction factory name 102
transactions

begin() 103, 105
client example 104
commit() 103, 105
compatibility with CORBA OTS 101
CosTransactions::Coordinator class 103

INDEX
in Artix 100
IT_Bus::Bus class 102
OTS-based 100
rollback() 103, 105
rollback_only() 103
set_timeout() 103
transaction factory 100
within_transaction() 103

transient references 64
TransportException type 28
transports

schemas 111
Tibco 118

truncate() 142
Tuxedo

example port 13
typedef 236

U
union 149
union type 230, 234
unsignedByte type

nillable 187
unsignedInt type

nillable 187
unsignedLong type

nillable 187
unsignedShort type

nillable 187
unsupported IDL types 227
URL

for WSDL contract 129
for WSDL file 132

use_input_message_attributes 94
use_input_message_attributes() 120, 122, 123
use_output_message_attributes() 122, 123
user defined exceptions

propagation 29
user-defined types

nillable 191
UserName attribute 111

V
value type 227
_var types 43

W
wchar type 227
whiteSpace facet 146
within_transaction() 103
work queue 54
WSDL

anyType syntax 179
atomic types 137
attributes 161
binary types 144
complex types 150
deriving by restriction 146
parse tree 130

wsdl:arrayType attribute 207
WSDL contract

location of 13
see WSDL file

WSDL facets 146
WSDL faults 235
WSDL file

location 46, 49
template for 128

wsdltocpp
command-line options 3
command-line switches 3
files generated 2

wsdltocpp utility 179, 226
-declspec option 19
generating default server factory 46

wstring type 227

X
xsd

anyURI 149
date 149
duration 149
ENTITY 149
gDay 149
gMonth 149
gMonthDay 149
gYear 149
gYearMonth 149
IDREF 149
language 149
list 149
Name 149
NCName 149
negativeInteger 149
nonNegativeInteger 149
nonPositiveInteger 149
normalizedString 149
251

INDEX
NOTATION 149
positiveInteger 149
QName 149
time 149
token 149
union 149

xsd:boolean 147
xsd:dateTime type 141
xsd:decimal type 142
xsd:ENTITIES 161
xsd:ENTITY 161
xsd:IDREFS 161
xsd:NMTOKEN 161
xsd:NMTOKENS 161
xsd:NOTATION 161
xsdl

integer 149
xsi:nil attribute 185
xsi namespace 185
 252

INDEX
253

INDEX
 254

	List of Tables
	Preface
	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	C++ Namespaces
	Defining a WSDL Interface
	Developing a Server
	Developing a Client
	Compiling and Linking an Artix Application
	Building Artix Stub Libraries on Windows

	Artix Programming Considerations
	Operations and Parameters
	Exceptions
	Non-Propagating Exceptions
	Propagating Exceptions

	Memory Management
	Managing Parameters
	Assignment and Copying
	Deallocating
	Smart Pointers

	Implementing a Server Factory
	Multi-Threading
	Client Threading Issues
	Server Threading Models
	Changing the Server Threading Model

	Artix References
	Introduction to References
	The IT_Bus::Reference Class
	Using the Artix Locator
	Overview of the Locator
	Locator WSDL
	Registering Endpoints with the Locator
	Reading a Reference from the Locator
	Pausing and Resuming Endpoints

	Using Sessions in Artix
	Introduction to Session Management in Artix
	Registering a Server with the Session Manager
	Working with Sessions

	Transactions in Artix
	Introduction to Transactions
	Transaction API
	Client Example

	Message Attributes
	Introduction to Message Attributes
	Schemas
	Name-Value API
	Transport-Specific API
	Using Message Attributes in a Client
	Using Message Attributes in a Server

	Dynamic Configuration
	Introduction to Dynamic Configuration
	Dynamically Allocating IP Ports

	Artix Data Types
	Simple Types
	Atomic Types
	String Type
	QName Type
	Date and Time Types
	Decimal Type
	Binary Types
	Deriving Simple Types by Restriction
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Occurrence Constraints
	Arrays

	anyType Type
	Nillable Types
	Introduction to Nillable Types
	Nillable Atomic Types
	Nillable User-Defined Types
	Nested Atomic Type Nillable Elements
	Nested User-Defined Nillable Elements
	Nillable Elements of an Array

	SOAP Arrays
	Introduction to SOAP Arrays
	Multi-Dimensional Arrays
	Sparse Arrays
	Partially Transmitted Arrays

	IT_Vector Template Class
	Introduction to IT_Vector
	Summary of IT_Vector Operations

	Artix IDL to C++ Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Index

