IONA

>3 Artix™

Security Guide

Version 1.3, December 2003

Making Software Work Together™

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.

IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA
e-Business Platform, and Total Business Integration are trademarks or registered trade-
marks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or

consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-

tion and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 19-Dec-2003

M3184

Contents

List of Tables
List of Figures
Preface

Chapter 1 Introduction to Security
Security for SOAP Bindings
Secure Hello World Example
HTTPS Connection
[IOP/TLS Connection
Security Layer

Chapter 2 Configuring the iS2 Server
Configuring the File Adapter
Configuring the LDAP Adapter
Configuring the SiteMinder Adapter
Configuring the Kerberos Adapter
Additional iS2 Configuration

Configuring the Log4J Logging

Chapter 3 Managing Users, Roles and Domains
Introduction to Domains and Realms
iSF Security Domains
iSF Authorization Realms
Managing a File Security Domain
Managing an LDAP Security Domain
Managing a SiteMinder Security Domain

Chapter 4 Managing Access Control Lists
Overview of Artix ACL Files
Artix Action-Role Mapping ACL

43
44
45
47
52
54
55

57
58
59

CONTENTS

Chapter 5 Managing Certificates
What are X.509 Certificates?
Certification Authorities
Commercial Certification Authorities
Private Certification Authorities
Certificate Chaining
PKCS#12 Files
Creating Your Own Certificates
Set Up Your Own CA
Use the CA to Create Signed Certificates
Deploying Certificates
Overview of Certificate Deployment
Deploying Trusted Certificate Authority Certificates
Deploying Application Certificates

Chapter 6 Configuring HTTPS and IIOP/TLS Authentication
Requiring Authentication
Target-Only Authentication
Mutual Authentication
Specifying Trusted CA Certificates
Specifying an Application’s Own Certificate
Providing a Certificate Pass Phrase
Certificate Pass Phrase for HTTPS
Certificate Pass Phrase for IIOP/TLS
Advanced IIOP/TLS Configuration Options
Setting a Maximum Certificate Chain Length
Applying Constraints to Certificates

Chapter 7 Configuring IIOP/TLS Secure Associations
Overview of Secure Associations
Setting IIOP/TLS Association Options
Secure Invocation Policies
Association Options
Choosing Client Behavior
Choosing Target Behavior
Specifying IIOP/TLS Cipher Suites
Supported Cipher Suites
Setting the Mechanism Policy

63
64
66
67
68
69
71
73
74
77
80
81
82
86

89
90
91
94
97
98
99

100
102
104
105
106

109
110
112
113
114
116
118
120
121
124

Constraints Imposed on Cipher Suites
Caching IIOP/TLS Sessions

Chapter 8 Principal Propagation
Introduction to Principal Propagation
Configuring
Programming
Interoperating with .NET

Explicitly Declaring the Principal Header
Modifying the SOAP Header

Chapter 9 Propagating Security Tokens Using SOAP Message Headers
Propagating a Username/Password Token
Propagating a Kerberos Token

Chapter 10 Setting Security Properties in Artix Contracts

Appendix A Security Configuration
plugins Namespace
policies Namespace
principal_sponsor Namespace
principal_sponsor:csi Namespace

Appendix B iS2 Configuration
Properties File Syntax
iS2 Properties File
Cluster Properties File
log4j Properties File

Appendix C ASN.1 and Distinguished Names
ASN.1
Distinguished Names

CONTENTS

126
129

131
132
133
136
139
140
142

145
146
148

151

155
156
161
170
172

175
176
178
200
202

205
206
207

CONTENTS

Appendix D Action-Role Mapping DTD

Appendix E OpenSSL Utilities
Using OpenSSL Utilities
The x509 Utility
The req Utility
The rsa Utility
The ca Utility
The OpenSSL Configuration File
[req] Variables
[ca]l Variables
[policy] Variables
Example openssl.cnf File

Appendix F License Issues
OpenSSL License

Index

Vi

211

215
216
217
219
221
223
225
226
227
228
229

231
232

235

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:

LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope
Cipher Suite Definitions

Association Options Supported by Cipher Suites

Contract Security Attributes

Mechanism Policy Cipher Suites

Commonly Used Attribute Types

32
122
127
152
167
208

vii

LIST OF TABLES

viii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4-:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Overview of the Secure HelloWorld Example

A HTTPS Connection in the HelloWorld Example

An IIOP/TLS Connection in the HelloWorld Example

The Security Layer in the HelloWorld Example
Architecture of an iSF Security Domain

Server View of iSF Authorization Realms

Role View of iSF Authorization Realms

Assignment of Realms and Roles to Users Janet and John
A Certificate Chain of Depth 2

Figure 10: A Certificate Chain of Depth 3
Figure 11: Elements in a PKCS#12 File
Figure 12: Target Authentication Only

Figure 13: Mutual Authentication

Figure 14: Configuration of a Secure Association

Figure 15: Constraining the List of Cipher Suites

11
18
45
48
49
50
69
70
71
91
94
111
126

LIST OF FIGURES

Audience

Related documentation

Preface

This guide is aimed at C++ developers who are developing Artix client and
server applications. The C++ API described in this guide can be used with
any Artix binding or transport (CORBA, SOAP and so on). It is assumed that
the reader has a good knowledge of C++ and an elementary understanding
of WSDL and XML concepts.

The document set for Artix includes the following related documents:

The latest updates to the Artix documentation can be found at http://

Artix Tutorial.

Getting Started with Artix Encompass.
Getting Started with Artix Relay.

Artix User's Guide.

Artix C++ Programmer's Guide.

Artix Thread Library Reference.

i ona. coni docs.

Xi

http://iona.com/docs
http://iona.com/docs

PREFACE

Additional resources

Typographical conventions

Xii

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about Artix
and other products. You can access the knowledge base at the following

location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

This guide uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

{}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

xiii

PREFACE

Xiv

In this chapter

CHAPTER 1

Introduction to
Security

This chapter introduces features of Artix security by explaining
the architecture and configuration of the secure HelloWorld
demonstration in some detail.

This chapter discusses the following topics:

Security for SOAP Bindings page 2

CHAPTER 1 | Introduction to Security

Security for SOAP Bindings

Overview This section provides a brief overview of how the IONA Security Framework
(iSF) provides security for SOAP bindings between Artix applications. The
iSF is a comprehensive security framework that supports authentication and
authorization using data stored in a central security service (the iS2 server).
This discussion is illustrated by reference to the secure HelloWorld

demonstration.
In this section This section contains the following subsections:
Secure Hello World Example page 3
HTTPS Connection page 6
[IOP/TLS Connection page 11
Security Layer page 18

Security for SOAP Bindings

Secure Hello World Example

Overview

Client copy

This section provides an overview of the secure HelloWorld demonstration,
which introduces several features of the IONA Security Framework. In
particular, this demonstration shows you how to configure a typical Artix
client and server that communicate with each other using a SOAP binding
over a HTTPS transport. Figure 1 shows all the parts of the secure
HelloWorld system, including the various configuration files.

Artix Client

Security layer

HTTPS

pmome=s > Artix Server
1
HTTP Basic Authentication |)
P Security layer ----
I >
HTTPS 1
T ; HTTPS IIOP/TLS
i 7
1 1
! i
WSDL X.509
Server copy Cert for HTTPS hello_w
>) iS2 Server <---
File
User Data Adapter
IIOP/TLS <

is2_user_password_file.txt

Cert for iS2 server

rld_action_role_mapping.xml

is2.properties

Figure 1: Overview of the Secure HelloWorld Example

CHAPTER 1 | Introduction to Security

Location

Main elements of the example

HelloWorld client

HelloWorld server

iS2 server

File adapter

The secure HelloWorld demonstration is located in the following directory:
ArtixInstallDirl arti x/ 1. 3/ demos/ secur e_hel | o_wor | d/ htt p_soap

The main elements of the secure HelloWorld example shown in Figure 1
are, as follows:

® HelloWorld client.

® HelloWorld server.

® iS2 server.

® File adapter.

The HelloWorld client communicates with the HelloWorld server using
SOAP over HTTPS, thus providing confidentiality for transmitted data. In
addition, the HelloWorld client is configured to use HTTP BASIC
authentication to transmit a username and a password to the server.

The HelloWorld server employs two different kinds of secure transport,

depending on which part of the system it is talking to:

® HTTPS—to receive SOAP invocations securely from the HelloWorld
client.

® |IOP/TLS—to communicate securely with the iS2 server, which
contains the central store of user data.

The iS2 server manages a central repository of security-related user data.
The iS2 server can be accessed remotely by Artix servers and offers the
service of authenticating users and retrieving authorization data.

The iS2 server supports a number of adapters that can be used to integrate
with third-party security products (for example, an LDAP adapter and a
SiteMinder adapter are available for iS2). This example uses the iS2 file
adapter, which is a simple adapter provided for demonstration purposes.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Security layers

HTTPS layer

IIOP/TLS layer

Security layer

Security for SOAP Bindings

To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

® HTTPS layer.
® |IOP/TLS layer.
® Security layer.

The HTTPS layer provides a secure transport layer for SOAP bindings. In
Artix, the HTTPS transport is configured by editing the WSDL contract (both
the client copy and the server copy).

For more details, see “HTTPS Connection” on page 6.

The IIOP/TLS layer consists of the OMG'’s Internet Inter-ORB Protocol (110P)
combined with the SSL/TLS protocol. The [IOP/TLS transport can be used
either with CORBA bindings or with the Artix Tunnel plug-in. In Artix, the
[IOP/TLS is configured by editing the arti x. cfg (or arti x- secur e. cf g) file.

For more details, see “llOP/TLS Connection” on page 11.

The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and
support for authorization. A security administrator can edit an action-role
mapping file to restrict user access to particular WSDL port types and
operations.

For more details, see “Security Layer” on page 18.

CHAPTER 1 | Introduction to Security

HTTPS Connection

Overview Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

1

1

:

r

1

! :
1 HTTPS
13

1

1

1

1

1

PR HTTPS - ; HTTPS IIOP/TLS
i
i 1
: : :
WSDL WSDL X.509

Server copy Cert for HTTPS

o
=
S
2
(=]
o
S
<

Figure 2: A HTTPS Connection in the HelloWorld Example

OpenSSL toolkit HTTPS transport security is provided by the OpenSSL toolkit, which is a
publicly available implementation of the SSL protocol.

The OpenSSL libraries (1i beay. di | and ssl eay. dl | on Windows) are
provided with Artix. The version of the OpenSSL libraries provided with Artix
are, however, subject to certain restrictions as follows:

®* |DEA is not supported.

® Certain encryption suites are not supported.

HTTPS cipher suites

Target-only authentication

Client HTTPS configuration

Security for SOAP Bindings

The OpenSSL libraries provided with Artix support the following cipher
suites, which can be used by the HTTPS protocol:
® Null encryption, integrity-only ciphers:

NULL- M5

NULL- SHA
® Standard ciphers:

RC4- SHA

RC4- M6

DES- CBC3- SHA

DES- CBG SHA

EXP- DES- CBG- SHA

EXP- RC4- M6

EDH RSA- DES- CBG- SHA

EDH DSS- DES- CBG- SHA

EXP- EDH RSA- DES- CBC

EXP- EDH DSS- DES- CBG- SHA

EDH RSA- DES- CBC3- SHA

EDH- DSS- DES- CBC3- SHA

The HelloWorld example is configured to use target-only authentication on
the HTTPS connection. That is, during the TLS handshake, the server
authenticates itself to the client (using an X.509 certificate), but the client
does not authenticate itself to the server. Hence, there is no X.509
certificate associated with the client.

Example 1 shows how to configure the client side of a HTTPS connection in
Artix, in the case of target-only authentication.

Example 1: WSDL Contract with Client HTTPS Configuration

<defi ni ti ons nane="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: // xm bus. com Hel | oWr | d"
xm ns: soap="htt p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: http-conf="http://schemas. i ona.conitransports/http/configu
ration" ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPor t Bi ndi ng"
name="Hel | oWr | dPort " >
<soap: address | ocation="https://| ocal host : 55012"/ >

[

2 <htt p-conf:client

CHAPTER 1 | Introduction to Security

Example 1: WSDL Contract with Client HTTPS Configuration

3 UseSecur eSocket s="t rue"
4 TrustedRoot Certificates="../certificates/openssl/x509/ cal cacert.
pent
User Nane="user _test"
Passwor d="user _passwor d"
/>
</ port>
</ servi ce>
</ definitions>

The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled here by using
https: instead of http: in the location URL attribute.

2. The <http-conf:client>tag contains all the attributes for configuring
the client side of the HTTPS connection.

3. If the UseSecur eSocket s attribute is t rue, the client will try to open a
secure connection to the server.

Note: If UseSecureSocket s is fal se and the <soap: addr ess>
location URL begins with ht t ps: , however, the client will
nevertheless attempt to open a secure connection.

4. The file specified by the Tr ust edRoot Certi fi cat es contains a
concatenated list of CA certificates in PEM format. The client uses this
CA list during the TLS handshake to verify that the server's certificate
has been signed by a trusted CA.

Server HTTPS configuration Example 2 shows how to configure the server side of a HTTPS connection in
Artix, in the case of target-only authentication.

Example 2: WSDL Contract with Server HTTPS Configuration

<defini ti ons nane="Hel | oWr | dSer vi ce"
t ar get Namespace="ht t p: / / xm bus. coni Hel | oWr | d"
xm ns: soap="ht t p: // schenas. xm soap. or g/ wsdl / soap/ "
xm ns: htt p-conf="http://schenas. i ona. coni transports/ http/configu
ration" ... >

<servi ce nane="Hel | oWr | dServi ce" >

D WN =

Security for SOAP Bindings

Example 2: WSDL Contract with Server HTTPS Configuration

<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
nanme="Hel | oWr | dPort" >
<soap: address | ocation="https://| ocal host: 55012"/ >
<htt p- conf: server
UseSecur eSocket s="t r ue"

ServerCertificate="../certificates/openssl/x509/ certs/key. cer
t. pent

Server PrivateKey="../certificates/openssl/x509/ certs/ privkey.
pent
Server Pri vat eKeyPasswor d="t est aspen”

Trust edRoot Certificates="../certificates/openssl/x509/ cal cace
rt. pem
/>
</ port >
</ servi ce>

</ definitions>

The preceding WSDL contract can be described as follows:

1.

The fact that this is a secure connection is signalled by using htt ps:
instead of htt p: in the location URL attribute.

The <ht t p- conf : server tag contains all the attributes for configuring
the server side of the HTTPS connection.

If the UseSecur eSocket s attribute is t r ue, the server will open a port to
listen for secure connections.

Note: If UseSecureSockets is fal se and the <soap: addr ess>
location URL begins with htt ps: , however, the server will listen for
secure connections.

The Server Certifi cat e attribute specifies the server's own certificate
in PEM format. For more background details about X.509 certificates,
see “Managing Certificates” on page 63.

The Server Pri vat ekey attribute specifies a PEM file containing the
server certificate’s encrypted private key.

CHAPTER 1 | Introduction to Security

6. The ServerPrivat eKeyPasswor d attribute specifies the password to
decrypt the server certificate’s private key.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<ht t p- conf : ser ver > tag from the copy of the WSDL contract that is
distributed to clients.

7. The file specified by the Trust edRoot Certi fi cat es contains a
concatenated list of CA certificates in PEM format. This attribute value
is not used in the case of target-only authentication.

10

Security for SOAP Bindings

IIOP/TLS Connection

Overview

Baltimore toolkit

Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the [IOP/TLS connection between the Artix server and
the iS2 server. In general, the iS2 server is accessible only through the
[IOP/TLS transport.

Security layer

HTTPS IIOP/TLS

P SRR >) iS2 Server
: : File
. User Data : Adapter
D I
""""" ' IIOP/TLS <
is2_user_password_file.txt te----oooeee- -
1
i
X.509

Cert for iS2 server

Figure 3: An IIOP/TLS Connection in the HelloWorld Example

[IOP/TLS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites—see
“Supported Cipher Suites” on page 121.

11

CHAPTER 1 | Introduction to Security

Target-only authentication The HelloWorld example is configured to use target-only authentication on

the IIOP/TLS connection between the Artix server and the iS2 server. That
is, during the TLS handshake, the iS2 server authenticates itself to the Artix
server (using an X.509 certificate), but the Artix server does not authenticate

itself to the iS2 server. Hence, in this example there is no X.509 certificate
associated with the IIOP/TLS transport in the Artix server.

WARNING: For a real deployment, you must modify the configuration of

the iS2 server so that it requires mutual authentication. Otherwise, your
system will be insecure.

Artix server IIOP/TLS

The Artix server's IIOP/TLS transport is configured by the settings in the
configuration

ArtixInstallDirl arti x/ 1. 3/ et ¢/ domai ns/ art i x- secur e. cf g file. Example 3

shows an extract from the arti x- secure. cf g file, highlighting some of the
settings that are important for the HelloWorld Artix server.

Example 3: Extract from the Artix Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix

{
1 policies:trusted_ca |list_policy =
"Clartix/artix/1.2/denmos/ secure_hel | o_worl d/ http_soap/certif
icates/tls/x509/trusted_ca_|ists/ca_listl. pent;
2 initial _references:|T_SecurityService:reference =
"corbal oc:iiops: 1. 2@ocal host: 55020, it _iiops: 1. 2@ ocal host : 55
020/ 1 T_Securi tyService";
denos
hel l o_world
{
11 QP/TLS Settings
3 orb_plugins = ["xmfile_log streant, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "tunnel", "ng", "ws_orb",
"fixed"];
bi ndi ng: cl i ent _binding_|list = ["OIS+PQA Col oc",
"PQA Col oc", "OTS+tA@ CP+I I CP', "G CPHI I CP', "A CP+l | CP_TLS'];
4

princi pal _sponsor: use_princi pal _sponsor = "fal se";

12

Security for SOAP Bindings

Example 3: Extract from the Artix Server IIOP/TLS Configuration

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

Security Layer Settings

The preceding extract from the arti x. cf g file can be explained as follows:

1.

The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the Artix server.

For more details, see “Specifying Trusted CA Certificates” on page 97.

This I T_Securi t yServi ce initial reference gives the location of the iS2
server. When login security is enabled, the Artix server uses this
information to open an IIOP/TLS connection to the iS2 server. In this
example, the iS2 server is presumed to be running on | ocal host and
listening on the 55020 IP port.

Note: If you want to change the location of the iS2 server, you
should replace both instances of | ocal host : 55020 on this line. It
would also be necessary to change the listening details on the iS2
server (see “iS2 server IIOP/TLS configuration” on page 15).

13

CHAPTER 1 | Introduction to Security

14

The ORB pl ugi ns list specifies which of the Artix plug-ins should be
loaded into the Artix server. Of particular relevance is the fact that the
iiop_tls plug-inis included in the list (thus enabling IIOP/TLS
connections), whereas the i i op plug-in is excluded (thus disabling
plain IIOP connections).

The pri nci pal _sponsor settings can be used to attach a certificate to
the Artix server, which would be used to identify the server to its peers
during an [IOP/TLS handshake. In this example, however, the principal
sponsor is disabled (that is,

princi pal _sponsor : use_pri nci pal _sponsor ="f al se").

Note: In a realistic deployment, you should enable the principal
sponsor and attach a certificate to the Artix server so that the Artix
server can identify itself to the iS2 server.

The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix server can open when it acts in a client
role. In particular, these client invocation policies impose conditions on
the IIOP/TLS connection to the iS2 server.

For more details about the client secure invocation policy, see “Setting
IIOP/TLS Association Options” on page 112.

Note: In a realistic deployment, you should add the
Establ i shTrust I nd i ent association option to the list of supported
client invocation policies. This is needed for mutual authentication.

Independently of the IIOP/TLS settings, you also configure the security
layer using settings in the arti x- secure. cf g file. These settings are
described in “Security Layer” on page 18.

iS2 server IIOP/TLS configuration

Security for SOAP Bindings

Example 4 shows an extract from the arti x- secure. cf g file, highlighting
the IIOP/TLS settings that are important for the iS2 server.

Example 4: Extract from the iS2 Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix

{

policies:trusted ca |list_policy =
"C\artix/artix/1.2/denos/secure_hel |l o_world/http_soap/certif
icates/tls/x509/trusted_ca |ists/ca_listl. pent;

initial _references:|T_SecurityService:reference =
"corbal oc:iiops:1.2@ocal host: 55020, it_iiops: 1. 2@ ocal host : 55
020/ 1 T_Securi t yServi ce";

security

{
11 OP/ TLS Settings
princi pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor: auth_nethod_id = "pkcsl12_file";

princi pal _sponsor: aut h_net hod_data =
["filename=C \artix/artix/1.2/denmos/ secure_hel |l o_world/http_s
oap/ certificates/tls/x509/certs/services/adm ni strator.pl2",
"password_file=C\artix/artix/1.2/denos/secure_hel | o_worl d/ ht
tp_soap/ certificates/tls/x509/ certs/services/adm ni strator. pw
1

pol i ci es: target _secure_i nvocation_policy:requires =
["NoProtection"];

pol i ci es:target _secure_i nvocation_policy: supports =
["NoProtection", "Confidentiality", "EstablishTrustlnTarget",
"Establ i shTrustInQient", "DetectMsordering",
"Det ect Repl ay", "Integrity"];

pol i cies:client_secure_invocation_policy:requires
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality", "EstablishTrustlnTarget",
"EstablishTrustInQient", "DetectM sordering",
"Det ect Repl ay", "Integrity"];

policies:all ow unaut henti cated_clients_policy = "true";

15

CHAPTER 1 | Introduction to Security

Example 4: Extract from the iS2 Server IIOP/TLS Configuration

orb_plugins = ["local _| og_streanY, "iiop_profile", "giop",
"iiop_tls"];

plugins:security:iiop_tls:port = "55020";

pl ugins: security:iiop_tls:host ="l ocal host";

b

The preceding extract from the arti x. cf g file can be explained as follows:

1.

16

The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
iS2 server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the iS2 server.

The pri nci pal _sponsor settings are used to attach an X.509
certificate to the iS2 server. The certificate is used to identify the iS2
server to its peers during an IIOP/TLS handshake.

In this example, the iS2 server's certificate is stored in a PKCS#12 file,
adni ni strat or. p12, and the certificate’s private key password is
stored in another file, adm ni strat or. pw .

For more details about configuring the [IOP/TLS principal sponsor, see
“principal_sponsor Namespace” on page 170 and “Providing a
Certificate Pass Phrase” on page 99.

Note: The certificate format used by the IIOP/TLS transport
(PKCS#12) differs from the format used by the HTTPS transport
(PEM).

Security for SOAP Bindings

The target secure invocation policies specify what sort of secure
IIOP/TLS connections the iS2 server can accept when it acts in a server
role. For more details about the target secure invocation policy, see
“Setting IIOP/TLS Association Options” on page 112.

WARNING: The target secure invocation policies shown here are too weak
for a realistic deployment of the iS2 server. In particular, you should at
least remove support for NoPr ot ect i on and require

Establ i shTrustInd i ent. For example, see “Mutual Authentication” on
page 94.

4.

The client secure invocation policies specify what sort of secure
IIOP/TLS connections the iS2 server can open when it acts in a client
role.

The ORB pl ugi ns list specifies which plug-ins should be loaded into
the iS2 server. Of particular relevance is the fact that the iiop_tls
plug-in is included in the list (thus enabling [IOP/TLS connections),
whereas the ii op plug-in is excluded (thus disabling plain [IOP
connections).

If you want to relocate the iS2 server, you must modify the

pl ugi ns: security:iiop_tls:host and

pl ugi ns: security:iiop_tls:port settings to specify, respectively, the
host where the server is running and the IP port on which the server
listens for secure [IOP/TLS connections.

17

CHAPTER 1 | Introduction to Security

Security Layer

Overview Figure 4 shows an overview of the HelloWorld example, focusing on the
elements relevant to the security layer. The security layer, in general, takes
care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

---3 Artix Client [it > Artix Server

HTTP Basic Authentication

T

1

|

bmms3 Security layer Security layer Ke-mm - - H
) 1
| T . 1
:v---->' HTTPS HTTPS ! IIOP/TLS [RRREES . E
: e eeeaaeeaaeaaaaaaat R N :
1 1
1 1
H H

WSDL ARM
Client copy Server copy helIo_wtf)rld_action_role_mapping.xml

>) iS2 Server
File
User Data Adapter

A

is2_user_password_file.txt

is2.properties

Figure 4: The Security Layer in the HelloWorld Example

18

HTTP BASIC login

Security for SOAP Bindings

The security layer normally uses a simple username/password combination
for authentication, because clients usually do not have a certificate with
which to identify themselves. The username and password are sent along
with every operation, enabling the Artix server to check every invocation and
make fine-grained access decisions.

The mechanism that the Artix client uses to transmit a username and
password over a SOAP binding is HTTP BASIC login. This is a standard login
mechanism commonly used by Web browsers and Web services. On its
own, HTTP BASIC login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

The following extract from the client copy of the WSDL contract shows how
the User Nane and Passwor d attributes in the <htt p- conf: cl i ent > tag set
the HTTP BASIC login parameters for the Artix SOAP client.

<defini tions name="Hel | oWr | dServi ce"
t ar get Namespace="ht t p: // xm bus. com Hel | oWr | d"
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "

xm ns: http-conf="http://schemas. i ona.conitransports/http/configu
ration" ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
name="Hel | oWr | dPort " >
<soap: address | ocation="https://| ocal host : 55012"/ >
<http-conf:client

User Nane="user _test"
Passwor d="user _passwor d"
/>
</ port >
</ servi ce>
</ definitions>

19

CHAPTER 1 | Introduction to Security

Authentication through the iS2 file

On the server side, the Artix server delegates authentication to the iS2
adapter

server, which acts as a central repository for user data. The iS2 server is

configured by the i s2. properti es file, whose location is specified in the
arti x- secure. cf g file as follows:

artix-secure.cfg File
secure_artix {

security {
pl ugi ns: j ava_server: system properties =

["org. omg. CORBA CRB ass=com i ona. corba. art.artinpl . CRBl npl ",
"org. ong. CCRBA. ORBSI ngl et ond ass=com i ona. corba. art.artinpl.O
RBSi ngl et on",
"i s2.properties=C\artix/artix/ 1.2/ denmos/ secure_hel | o_worl d/ h
ttp_soap/ bi n/is2. properties. Fl LE",
"java. endorsed. dirs=C\artix/artix/1.2/lib/endorsed"];

}
iE

In this example, the i s2. properti es file specifies that the iS2 server should
use a file adapter. The file adapter is configured as follows:

is2. properties File

ITRTR TR R TN T N R R TR TN TN R TR TR T BTN TN TN TR T R TR TR TN TN R TR T RTR TN TN TN TR TR T R TN TN TN IN TR IO}
HHHHHHH R

Hit

File Adapter Properties

#

HHHHH A

comiona.isp.adapter.file.class=comiona.security.is2adapter.fil
e. Fi | eAut hAdapt er

comiona.isp.adapter.file. parans=fil enane

comiona.isp.adapter.file.paramfil ename=../config/is2_user_pass
word_file.txt

20

Applying access control

Security for SOAP Bindings

The comiona.isp. adapter.file.paramfil ename property is used to
specify the location of a file, i s2_user_password_fil e. t xt, which contains
the user data for the iS2 file adapter. Example 5 shows the contents of the
user data file for the secure HelloWorld demonstration.

Example 5: User Data from the is2_user_password file.txt File
<?xm version="1.0" encodi ng="utf-8" ?>

<ns: securi tyl nfo xm ns: ns="ur n: ww+ xm bus- com si npl e-security">
<user s>
<user name="user_test" password="user_password">
<r eal m nane="1 ONAQ obal Real ni >
<rol e name="1 ONAUser Rol e"/ >
<rol e name="Paul Cnl yRol e"/>
</real m»
</ user >
</ user s>
</ ns: securi tyl nf o>

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iS2 file adapter, see “Managing a File Security
Domain” on page 52.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

On the server side, authentication and authorization must be enabled by the
appropriate settings in the arti x-secure. cf g file. Example 6 explains the
security layer settings that appear in the arti x- secure. cf g file.

Example 6: Security Layer Settings from the artix-secure.cfg File
artix-secure.cfg File

secure_artix

{
denos

{

21

CHAPTER 1 | Introduction to Security

22

N =

(S0

Example 6: Security Layer Settings from the artix-secure.cfg File

hel l o_worl d

{
11 QP TLS Settings

Security Layer Settings

pol i ci es: asp: enabl e_security = "true";

pol i ci es: asp: enabl e_aut hori zation = "true";

pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi hg =
"file://C\artix/artix/ 1.2/ denos/secure_hel | o_worl d/ http_soap
/ confi g/ hell oworl d_action_rol e_mappi ng. xm " ;

pl ugi ns: asp: aut hori zati on_real m = "| ONAQ obal Real nf;

pl ugi ns: asp: security_type = "USERNAME PASSWRD';

b

B
b
The security layer settings from the arti x- secur e. cf g file can be explained
as follows:
1. The policies: asp: enabl e_security variable is set to t rue to enable

login security (enables authentication support and is a prerequisite for
authorization support).

The pol i ci es: asp: enabl e_aut hori zat i on variable is set to t rue to
enable authorization.

This setting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

The iSF authorization realm determines which of the user's roles will
be considered during an access control decision. iSF authorization
realms provide a way of grouping user roles together. The

| ONAQ obal Real m(the default) includes all user roles.

The pl ugi ns: asp: security_t ype variable specifies which kind of user
data is used for the purposes of authentication and authorization on
the server side (in this case, USERNAMVE_PASSWRD indicates that HTTP
Basic Login is supported). This configuration setting is necessary,
because the iSF supports different mechanisms for propagating user
identities and some of these mechanisms can be activated
simultaneously.

Security for SOAP Bindings

Example 7 shows the contents of the action-role mapping file for the
HelloWorld demonstration.

Example 7: Action-Role Mapping file for the HelloWorld Demonstration

<?xm version="1.0" encodi ng="UTF-8" 2>
<! DOCTYPE secur e- syst em SYSTEM "act i onr ol emappi ng. dt d" >
<secur e- syst en»

<acti on-r ol e- mappi ng>

<server - nane>secur e_arti x. denos. hel | o_wor | d</ ser ver - nane>
<interface>

<nane>ht t p: // xm bus. cond Hel | oWr | d: Hel | oWr | dPor t Type</ name>
<action-rol e>
<acti on- name>sayH </ act i on- name>
<r ol e- nane>l ONAUser Rol e</ r ol e- narme>
</ action-rol e>
<action-rol e>
<act i on- name>gr eet Me</ act i on- nane>
<r ol e- name>l ONAUser Rol e</r ol e- name>
</ action-rol e>
</interface>

</ acti on-rol e- mrappi ng>
</ secur e- syst en»

For a detailed discussion of how to define access control using action-role
mapping files, see “Managing Users, Roles and Domains” on page 43.

23

CHAPTER 1 | Introduction to Security

24

In this chapter

CHAPTER 2

Configuring the
1IS2 Server

This chapter describes how to configure the properties of the
iS2 security serverand, in particular, how to configure a variety
of adapters that can integrate the iS2 server with third-party
enterprise security back-ends (for example, LDAP and
SiteMinder).

This chapter discusses the following topics:

Configuring the File Adapter page 26
Configuring the LDAP Adapter page 28
Configuring the SiteMinder Adapter page 34
Configuring the Kerberos Adapter page 36
Additional iS2 Configuration page 39

25

CHAPTER 2 | Configuring the iS2 Server

Configuring the File Adapter

Overview

File locations

File adapter properties

26

The iS2 file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate for demonstration purposes only.
This section describes how to set up and configure the iS2 file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The following files configure the iS2 file adapter:

® is2 properties file—the default location of the iS2 properties file is as
follows:

ArtixInstallDirl arti x/ 1. 3/ bi n/i s2. properti es

See “iS2 Properties File” on page 178 for details of how to customize
the default iS2 properties file location.

® Security information file—this file’s location is specified by the
comiona.isp. adapter.file.paramfil ename property in the
i s2. properties file.

Example 8 shows the properties to set for a file adapter.
Example 8: Sample File Adapter Properties

comiona.isp. adapters=file

HHHHHHH R
L gy

comiona.isp.adapter.file.class=comiona.security.is2adapter.fil
e. Fi | eAut hAdapt er

Configuring the File Adapter

Example 8: Sample File Adapter Properties

comiona.isp. adapter.file. paramfil enane=Artix/nstallDir/ artix/ 1.3/
bi n/is2_user_password_rol e file.txt

HHHH R
CGeneral iS2 Server Properties

... Ceneric properties not shown here ...

The necessary properties for a file adapter are described as follows:

1. Setcomiona.isp.adapters=file toinstruct the iS2 server to load the
file adapter.

2. Thecomiona.isp. adapter.file.class property specifies the class
that implements the iS2 file adapter.

3. Thecomiona.isp.adapter.file.paramfilename property specifies
the location of the security information file, which contains information
about users and roles.

4. (Optionally) You might also want to edit the general iS2 server
properties.

See “Additional iS2 Configuration” on page 39 for details.

27

CHAPTER 2 | Configuring the iS2 Server

Configuring the LDAP Adapter

Overview

Prerequisites

File location

28

The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an i s2. properti es file. This section
discusses the following topics:

® Prerequisites

® File location.

® Minimal LDAP configuration.

® Basic LDAP properties.

® LDAP.param properties.

® LDAP server replicas.

® Logging on to an LDAP server.

Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Artix, but you can use the iS2 server's LDAP adapter with any LDAP v.3
compatible system.

The following file configures the LDAP adapter:

® is2 properties file—the default location of the iS2 properties file is as
follows:

ArtixInstallDirl arti x/ 1. 3/i s2. properties

See “iS2 Properties File” on page 178 for details of how to customize
the default iS2 properties file location.

Minimal LDAP configuration

Configuring the LDAP Adapter

Example 9 shows the minimum set of iS2 properties that can be used to
configure an LDAP adapter.

Example 9: A Sample LDAP Adapter Configuration File

com i ona. i sp. adapt er s=LDAP

ITRTRTR TR NN TR T R TR T R T NIRRT R TR TN TN TN TR T R TR IO TN TN TN TR T RIS TN TN IR TR TR TR TN T TN TN TR IO}
HHHHH R

##
LDAP Adapter Properties
##

ITRTR TR TR NN R TR R NIRRT R TR T BTN TR TN TR TR TR IO TN TN TN TRTRTOTNT NIRRT R TR TN TN IR TN TR IO
HHHHH R

com i ona. i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapt er. | da
p. LdapAdapt er

com i ona. i sp. adapt er . LDAP. par am host . 1=10. 81. 1. 400
com i ona. i sp. adapt er . LDAP. param port . 1=389

com i ona. i sp. adapt er. LDAP. par am User NarreAt t r =ui d

com i ona. i sp. adapt er . LDAP. par am User BaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er . LDAP. par am User Chj ect A ass=or gani zat i onal Pe
rson

com i ona. i sp. adapt er . LDAP. par am User Sear chScope=SUB

com i ona. i sp. adapt er . LDAP. par am User Rol eDNAL t r =nsr ol edn
com i ona. i sp. adapt er . LDAP. par am Rol eNarreAt t r =cn

com i ona. i sp. adapt er. LDAP. param G oupNaneAt t r =cn

com i ona. i sp. adapt er . LDAP. par am G oupQbj ect A ass=gr oupof uni quena
nes

com i ona. i sp. adapt er . LDAP. par am G oupSear chScope=SUB

com i ona. i sp. adapt er . LDAP. par am G oupBaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er. LDAP. par am Menber DNAL t r =uni queMenber

com i ona. i sp. adapt er. LDAP. par am ver si on=3

The necessary properties for an LDAP adapter are described as follows:

1. Setcomiona.isp. adapt er s=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. The comiona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

29

CHAPTER 2 | Configuring the iS2 Server

30

3. For each LDAP server replica, you must specify the host and port

where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host. 1 and port. 1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as

follows:

User NaneAt tr The attribute type whose corresponding value
uniquely identifies the user.

User BaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

User Obj ect A ass The attribute type for the object class that
stores users.

User Sear chScope The user search scope specifies the search

depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ON\E, or SUB.

See “iS2 Properties File” on page 178 for more details.

5. The following properties specify how the adapter extracts a user’s role
from the LDAP directory schema:

User Rol eDNAt t r The attribute type that stores a user’s role DN.

Rol eNaneAt t r The attribute type that the LDAP server uses
to store the role name.

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as

follows:

Q oupNaneAt t r The attribute type whose corresponding
attribute value gives the name of the user
group.

Q oupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

Q oupQbj ect d ass The object class that applies to user group

entries in the LDAP directory structure.

Basic LDAP properties

Configuring the LDAP Adapter

QG oupSear chScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

Menber DNAE t r The attribute type that is used to retrieve
LDAP group members.

See “iS2 Properties File” on page 178 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

The following properties must always be set as part of the LDAP adapter
configuration:

com i ona. i sp. adapt er s=LDAP
com i ona. i sp. adapt er. LDAP. cl ass=com i ona. security. i s2adapter. | da
p. LdapAdapt er

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com i ona. i sp. adapt er . LDAP. par am

31

CHAPTER 2 | Configuring the iS2 Server

LDAP.param properties

Table 1 shows all of the LDAP adapter properties from the
com i ona. i sp. adapt er . LDAP. par amscope. Required properties are shown

in bold:
Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope
LDAP Server Properties LDAP User/Role Configuration
Properties

host . </ndex> User NaneAt t r

port. <Index> User BaseDN

SSLEnabl ed. </ndex> User (bj ect d ass

SSLCACert Dir. </ndex> User Sear chScope

SSLdient CertFi | e. </ndex>
SSLA i ent Cert Passwor d. </ndex>
Pri nci pal User DN </ndex>

Pri nci pal User Passwor d. </ndex>

User Sear chFi | t er
User Rol eDNAL t r
Rol eNaneAt t r
User Cert At t r Nane

LDAP Group/Member
Configuration Properties

Other LDAP Properties

G oupNaneAt t r

Q oupChj ect d ass
Q oupSear chScope
G oupBaseDN
Menber DNAt t r
Menber Fi | t er

MaxConnect i onPool Si ze
ver si on

Use@ oupAsRol e

Retri eveAut hl nfo
CacheSi ze

CacheTi neTolLi ve

LDAP server replicas

32

The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host . </ndex> and
port. </ndex> include a replica index as part of the parameter name.

For example, host. 1 and port. 1 refer to the host and port of the primary
LDAP server, while host . 2 and port . 2 would refer to the host and port of an

LDAP backup server.

Logging on to an LDAP server

Secure connection to an LDAP
server

iS2 properties reference

Configuring the LDAP Adapter

The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

Pri nci pal User DN </ndex>

Pri nci pal User Passwor d. </ndex>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

The following properties can be used to configure SSL/TLS security for the
connection between the iS2 server and the </ndex> LDAP server replica:
SSLEnabl ed. </ndex>

SSLCACertDi r. </ndex>

SSLd i ent Cert Fi |l e. </ndex>

SSLd i ent Cert Passwor d. </ndex>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

For more details about the iS2 server properties, see “iS2 Configuration” on
page 175.

33

CHAPTER 2 | Configuring the iS2 Server

Configuring the SiteMinder Adapter

Overview

Prerequisites

File location

SiteMinder adapter properties

34

The SiteMinder adapter enables you to integrate the iS2 server with
SiteMinder, which is an enterprise security product from Netegrity. By
configuring the SiteMinder adapter, you ensure that any authentication
requests within the IONA Security Framework are delegated to SiteMinder.
This section describes how to set up and configure the SiteMinder adapter.

Ensure that the SiteMinder product is installed and configured on your
system. SiteMinder is not a standard part of Artix, but is available from
Netegrity at http://www.netegrity.com.

The following file configures the SiteMinder adapter:

® is2 properties file—the default location of the iS2 properties file is as

follows:
ArtixInstallDirl arti x/ 1. 3/ bi n/i s2. properti es

See “iS2 Properties File” on page 178 for details of how to customize
the default iS2 properties file location.

Example 10 shows the properties to set for the SiteMinder adapter.
Example 10: SiteMinder Adapter Properties

com i ona. i sp. adapt er s=Si t eM nder

HHHHH R
Hit

S teMnder Adapter Properties

Hit

com iona.isp.adapter. SiteM nder. cl ass=com i ona. security. i s2adapt
er. snadapt er. Si t eM nder Agent

com i ona. i sp. adapt er. Sit eM nder. par am Ser ver Addr ess=| ocal host

com i ona. i sp. adapt er. Si t eM nder. par am Ser ver Aut hnPor t =400

com i ona. i sp. adapt er. Si t eM nder. par am Agent Secr et =secr et

com i ona. i sp. adapt er. Sit eM nder. par am Agent Nane=web

http://www.netegrity.com

Configuring the SiteMinder Adapter

Example 10: SiteMinder Adapter Properties

HHHH R
CGeneral iS2 Server Properties

4 # ... Ceneric properties not shown here ...
The necessary properties for a SiteMinder adapter are described as follows:

1. Set comiona.isp. adapt ers=Si teM nder to instruct the iS2 server to
load the SiteMinder adapter.

2. The comiona.isp. adapter. SiteM nder. cl ass property specifies the
class that implements the SiteMinder adapter.

3. A SiteMinder adapter requires the following parameters:

Ser ver Addr ess Host address where SiteMinder is running.
Ser ver Aut hnPor t SiteMinder’s IP port number.

Agent Nane SiteMinder agent's name.

Agent Secr et SiteMinder agent's password.

4. (Optionally) You might also want to edit the general iS2 server
properties.
See “Additional iS2 Configuration” on page 39 for details.

35

CHAPTER 2 | Configuring the iS2 Server

Configuring the Kerberos Adapter

Overview

File location

Kerberos adapter properties

36

The Kerberos adapter enables you to use the Kerberos Authentication
Service. By configuring the Kerberos adapter, you ensure that any
authentication requests within the IONA Security Framework are delegated
to Kerberos. This section describes how to set up and configure the Kerberos
adapter.

The following file configures the Kerberos adapter:

® is2 properties file—the default location of the iS2 properties file is as
follows:

ArtixInstallDirl arti x/ 1. 3/ bi n/i s2. properti es

See “iS2 Properties File” on page 178 for details of how to customize the
default iS2 properties file location.

Example 11 shows the properties to set for the Kerberos adapter.
Example 11: Kerberos Adapter Properties

com i ona. i sp. adapt er s=kbr 5

R HE

#

Kerberos Adapter Properties

##

R HE

com i ona. i sp. adapt er . kbr 5. cl ass=com i ona. securi ty.i s2adapt er. kbr
5. | S2Ker ber osAdapt er

com i ona. i sp. adapt er. kr b5. param j ava. securi ty. kr b5. r eal mFMYREALM
. COVPANY. QM

com i ona. i sp. adapt er . kr b5. param j ava. securi ty. krb5. kdc=10. 65. 3. 7
4

com i ona. i sp. adapt er . kr b5. param j ava. securi ty. aut h. | ogi n. confi g=
j aas. conf

com i ona. i sp. adapt er. kr b5. par am j avax. securi ty. aut h. useSubj ect O
edsOnl y=f al se

Retrieving the user’s group
information

1

Configuring the Kerberos Adapter

Example 11: Kerberos Adapter Properties

HHHH R R
CGeneral iS2 Server Properties

... CGeneric properties not shown here ...
The necessary properties for a Kerberos adapter are described as follows:

1. Setcomiona.isp. adapt er s=kbr 5 to instruct the iS2 server to load the
Kerberos adapter.

2. The comiona.isp. adapter. kbr5. cl ass property specifies the class
that implements the Kerberos adapter.

3. A Kerberos adapter requires the following parameters:

java.security.kbr5.realm The Kerberos Realm Name.

j ava. securi ty. kbr 5kdc The server name or IP address
of the Kerberos KDC server.

java.security.auth.login.config The configuration file for the
JAAS Login Module.

javax. security. aut h. useSubj ect OredsOnl y A required JAAS Login Module
property. Always set to f al se.

4. (Optionally) You might also want to edit the general iS2 server
properties.
See “Additional iS2 Configuration” on page 39 for details.

Once the Kerberos token has been authenticated, the Kerberos adapter can
be configured to retreive the user's group information and save it for future
authorization purposes.

Example 12 shows a sample iS2 configuraiton for the Kerberos adapter that
retirieve the user’s group information.

Example 12: Kerberos Configuraiton to Retreive User Group Information

com i ona. i sp. adapt er. kr b5. param Ret ri eveAut hl nf o=t rue

37

CHAPTER 2 | Configuring the iS2 Server

Example 12: Kerberos Configuraiton to Retreive User Group Information

2 comiona.isp. adapt er. kr b5. par am host . 1=$ACTI VE_D RECTCRY_SERVER _

NAMES

com i ona. i sp. adapt er . kr b5. param port. 1=389

com i ona. i sp. adapt er . kr b5. par am SSLEnabl ed. 1=no

com i ona. i sp. adapt er. kr b5. param SSLCACert D r. 1=d: / cert s/t est

com i ona. i sp. adapt er . kr b5. param SSLd i ent Cert Fi | e. 1=d: / cert s/ ver
i sign.pl2

com i ona. i sp. adapt er. kr b5. param SSLA i ent Cer t Passwor d. 1=net fi sh

com i ona. i sp. adapt er . kr b5. param Pri nci pal User DN 1=cn=admi ni st r at
or, cn=user s, dc=bost on, dc=aner, dc=i ona, dc=com

com i ona. i sp. adapt er. kr b5. par am Pri nci pal User Passwor d. 1=or bi x

com i ona. i sp. adapt er . kr b5. par am Connect Ti meout . 1=15

3 comiona.isp. adapt er. kr b5. par am User NaneAt t r =CN

com i ona. i sp. adapt er . kr b5. par am User BaseDN=dc=bost on, dc=arrer , dc=
i ona, dc=com

com i ona. i sp. adapt er. kr b5. par am ver si on=3

com i ona. i sp. adapt er . kr b5. par am User Cbj ect d ass=Per son

com i ona. i sp. adapt er . kr b5. param G oupQhj ect A ass=gr oup

com i ona. i sp. adapt er . kr b5. par am G oupSear chScope=SUB

com i ona. i sp. adapt er . kr b5. par am G oupBaseDN=dc=bost on, dc=arrer, dc
=i ona, dc=com

com i ona. i sp. adapt er. kr b5. par am G oupNaneAt t r =CN

com i ona. i sp. adapt er . kr b5. par am Menber DNAt t r =nenber

com i ona. i sp. adapt er . kr b5. par am MaxConnect i onPool Si ze=1

com i ona. i sp. adapt er . kr b5. param M nConnect i onPool S ze=1

The properties to configure the Kerberos adapter to retrieve a user's group
information are explained as follows:

1. RetrieveAut hl nfo=true activates this feature.

2. Set the connection information needed to open an LDAP connection to
the Active Directory Server.

Note: If SSL needs to be enabled set
com i ona. i sp. adapt er . kr b5. par am SSLEnabl ed. 1=yes.

3. Tell the adapter how to contruct a filter to search the Active Directory
Server.

38

Additional iS2 Configuration

Additional iS2 Configuration

Overview This section describes how to configure optional features of the iS2 server,
such as single sign-on and the authorization manager. These features can
be combined with any iS2 adapter type.

In this section This section contains the following subsections:

Configuring the Log4J Logging page 40

39

CHAPTER 2 | Configuring the iS2 Server

Configuring the Log4J Logging

Overview

logdj documentation

Enabling log4j logging

In the CLASSPATH

In the is2.properties file

40

log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the iS2
server's logging is based on log4j, it is possible to configure the output of iS2
logging using a standard log4j properties file.

For complete log4j documentation, see the following Web page:
http:/jakarta.apache.org/log4j/docs/documentation.html

To enable log4j logging, you can specify the location of the log4j properties
file in either of the following ways:

® In the CLASSPATH.
® Inthe is2.properties file.

You can specify the location of the log4j properties file by adding the file to
your CLASSPATH. For example, you could add an
/is2_configl/log4j.properties file to your CLASSPATH as follows:

Windows
set CLASSPATH=C: \is2_confi g\l og4j . properti es; %LASSPATH.

UNIX (Bourne shell)
export CLASSPATH=/ i s2_confi g/l og4j . properties: $CLASSPATH

You can specify the location of the log4j properties file in the
i s2. properties file as follows:

1S2 Properties File, for Server |D=1

HHH AR HH R R R

| og4j Loggi ng

HHHH R HH R R R R R

| og4j . configuration=C /is2_config/log4j.properties

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

Additional iS2 Configuration

Configuring the logdj properties The following example shows how to configure the log4j properties to
file perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

log4j Properties File
| 0g4j . r oot Cat egor y=DEBUG Al

Al is set to be a Consol eAppender.
| 0g4j . appender . Al=or g. apache. | og4j . Consol eAppender

Al uses PatternLayout.

| og4j . appender . Al. | ayout =or g. apache. | og4j . Pat t er nLayout

| 0g4j . appender . Al. | ayout . Conversi onPattern=%4r [%] %5p % %
- %

41

CHAPTER 2 | Configuring the iS2 Server

42

In this chapter

CHAPTER 3

Managing Users,
Roles and
Domains

The iS2 server provides a variety of adapters that enable you
to integrate the IONA Security Framework with third-party
enterprise security products. This allows you to manage users
and roles using a third-party enterprise security product.

This chapter discusses the following topics:

Introduction to Domains and Realms page 44
Managing a File Security Domain page b2
Managing an LDAP Security Domain page 54
Managing a SiteMinder Security Domain page 55

43

CHAPTER 3 | Managing Users, Roles and Domains

Introduction to Domains and Realms

Overview This section introduces the concepts of an iSF security domain and an iSF
authorization realm, which are fundamental to the administration of the
IONA security framework. Within an iSF security domain, you can create
user accounts and within an iSF authorization realm you can assign roles to

users.
In this section This section contains the following subsections:
iSF Security Domains page 45
iSF Authorization Realms page 47

44

Introduction to Domains and Realms

iSF Security Domains

Overview

Domain architecture

This subsection introduces the concept of an iSF security domain.

Figure 5 shows the architecture of an iSF security domain. The iSF security
domain is identified with an enterprise security service that plugs into the

iS2 server through an iS2 adapter. User data needed for authentication,

such as username and password, are stored within the enterprise security
service. The iS2 server provides a central access point to enable
authentication within the iSF security domain.

Artix
Server

iS2 Security Domain

authenticate authenticate authenticate

|
|
\VA

iS2 Server

Enterprise Security Service
_ [
1
T
v

\;/_/

User Data Store

Figure 5: Architecture of an iSF Security Domain

Artix
Server

45

CHAPTER 3 | Managing Users, Roles and Domains

iSF security domain

Creating an iSF security domain

Creating a user account

46

An iSF security domain is a particular security system, or namespace within

a security system, designated to authenticate a user.

Here are some specific examples of iSF security domains:

® LDAP security domain—authentication provided by an LDAP security
backend, accessed through the iS2 server.

® SiteMinder security domain—authentication provided by a SiteMinder
security backend, accessed through the iS2 server.

Effectively, you create an iSF security domain by configuring the iS2 server
to link to an enterprise security service through an iS2 adapter (such as a
SiteMinder adapter or an LDAP adapter). The enterprise security service is
the implementation of the iSF security domain.

User account data is stored in a third-party enterprise security service.
Hence, you should use the standard tools from the third-party enterprise
security product to create a user account.

For a simple example, see “Managing a File Security Domain” on page 52.

Introduction to Domains and Realms

iISF Authorization Realms

Overview

iSF authorization realm

Role-based access control

This subsection introduces the concept of an iSF authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

An iSF authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

The IONA security framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1.

User-to-role mapping—every user is associated with a set of roles in
each realm (for example, guest, adni ni strat or, and so on, in a realm,
Engi neeri ng). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the iS2 server,
which returns the set of realms and roles assigned to a user when
required.

Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, Artix
servers in the iSF use an XML action-role mapping file to control access
to WSDL port types and operations.

47

CHAPTER 3 | Managing Users, Roles and Domains

Servers and realms From a server’s perspective, an iSF authorization realm is a way of grouping
servers with similar authorization requirements. Figure 6 shows two iSF
authorization realms, Engi neering and Fi nance, each containing a
collection of server applications.

IONAGIobalRealm

Figure 6: Server View of iSF Authorization Realms

Adding a server to a realm To add an Artix server to a realm, add or modify the
pl ugi ns: asp: aut hor i zat i on_r eal mconfiguration variable within the
server's configuration scope (in the artix. cf g file).

For example, if your server's configuration is defined in the ny_server _scope
scope, you can set the iSF authorization realm to Engi neeri ng as follows:

Artix configuration file

ny_server_scope {
pl ugi ns: asp: aut hori zat i on_real m = "Engi neeri ng";

iE

48

Introduction to Domains and Realms

Roles and realms From the perspective of role-based authorization, an iSF authorization realm
acts as a namespace for roles. For example, Figure 7 shows two iSF
authorization realms, Engi neeri ng and Fi nance, each associated with a set

of roles.
IONAGIobalRealm
__ ,
Engineering Finance
""""""""""""" i PTTTTTT TS T T T T T T T T T T T T T

Figure 7: Role View of iSF Authorization Realms

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the iS2 server through an adapter. Not
every enterprise security system supports realms and roles, however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user’s realms or roles.

49

CHAPTER 3 | Managing Users, Roles and Domains

Assigning realms and roles to The assignment of realms and roles to users is administered from within the
users enterprise security system that is plugged into the iS2 server. For example,
Figure 8 shows how two users, Janet and John, are assigned roles within
the Engi neeri ng and Fi nance realms.
® Janet works in the engineering department as a developer, but
occasionally logs on to the Fi nance realm with guest permissions.
® John works as an accountant in finance, but also has guest
permissions with the Engi neeri ng realm.

iISF Security Domain (users)

__

IONAGIobalRealm

Engineering Finance

devel oper

Figure 8: Assignment of Realms and Roles to Users Janet and John

50

Introduction to Domains and Realms

Special realms and roles The following special realms and roles are supported by the IONA security
framework:

| ONAQ obal Real mrealm—a special realm that encompasses every iSF
authorization realm. Roles defined within the | ONAQ obal Real mare
valid within every iSF authorization realm.

Unaut hent i cat edUser Rol e—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the Unaut hent i cat edUser Rol e role are also
accessible to authenticated users.

The Wnaut hent i cat edUser Rol e can be used only in action-role
mapping files.

51

CHAPTER 3 | Managing Users, Roles and Domains

Managing a File Security Domain

Overview

Location of file

Example

52

1
2
3

4

The file security domain is active if the iS2 server has been configured to use
the iS2 file adapter (see “Configuring the File Adapter” on page 26). The
main purpose of the iS2 file adapter is to provide a lightweight security
domain for demonstration purposes. A realistic deployed system, however,
would use one of the other adapters (LDAP, SiteMinder, or custom) instead.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The location of the security information file is specified by the
comiona.isp.adapter.file. paramfilenane property in the iS2 server's
i s2. properties file.

Example 13 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

Example 13: Sample Security Information File for an iS2 File Domain
<?xm version="1.0" encodi ng="utf-8" ?>

<ns: securityl nfo xm ns: ns="ur n: ww xm bus- com si npl e-security">
<user s>
<user nare="|CQNAADm n" passwor d="adm n"
description="Default | ONA adm n user">
<real m nane="1 ONA" description="A | |ONA applications"/>
</ user >
<user name="adm n" password="adm n" description="Ad adm n
user; will not have the sane default privil eges as
| ONAAdNi n. ">
<r eal m nane=" Cor por at " >
<rol e name="Adm ni strator"/>
</real n»
</ user >
<user name="al i ce" password="dost 1234">
<real m name=""Fi nanci al s"
descri ption="Fi nanci al Departnent">

Managing a File Security Domain

Example 13: Sample Security Information File for an iS2 File Domain

<rol e nanme="Manager" descri pti on="Departnent Mnager" />
<rol e nane="d erk"/>
</real n»
</ user >
<user name="bob" password="dost 1234">
<real m name="Fi nanci al s" >
<rol e nane="d erk"/>
</real n»
</ user >
</ user s>
</ ns: securi tyl nf o>

1. The <ns: securityl nf o> tag can contain a nested <user s> tag.

2. The <user s> tag contains a sequence of <user > tags.

Each <user > tag defines a single user. The <user > tag's name and
password attributes specify the user's username and password. Within
the scope of the <user > tag, you can list the realms and roles with
which the user is associated.

4. When a <real n» tag appears within the scope of a <user > tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <real m» must have a name and can optionally have a
descri pti on attribute.

5. Arealm can optionally be associated with one or more roles by
including <r ol e> elements within the <r eal m» scope.

53

CHAPTER 3 | Managing Users, Roles and Domains

Managing an LDAP Security Domain

Overview The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and any of them can be integrated with the iS2
server by configuring the iS2 server’'s LDAP adapter.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

Configuring the LDAP adapter A prerequisite for using LDAP within the IONA Security Framework is that
the iS2 server be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 28.

54

Managing a SiteMinder Security Domain

Managing a SiteMinder Security Domain

Overview

Configuring the SiteMinder
adapter

References

SiteMinder is an enterprise security product from Netegrity, which allows
you to manage user data stored in a central database. The iS2 server can
communicate with the SiteMinder agent, using it to perform authentication
and mapping users to roles. Using Netegrity tools you can administer users,
roles, and realms.

Please consult the Netegrity SiteMinder documentation for detailed
instructions on how to administer users and roles within the SiteMinder
product.

A prerequisite for using SiteMinder within the IONA Security Framework is
that the iS2 server be configured to use the SiteMinder adapter.

See “Configuring the SiteMinder Adapter” on page 34.

For more information on Netegrity SiteMinder, see the Netegrity Web site:
http://www.netegrity.com/

55

http://www.netegrity.com/

CHAPTER 3 | Managing Users, Roles and Domains

56

In this chapter

CHAPTER 4

Managing
Access Control
Lists

The IONA Security Framework defines access control lists
(ACLs) for mapping roles to resources.

This chapter discusses the following topics:

Overview of Artix ACL Files page 58

Artix Action-Role Mapping ACL page 59

57

CHAPTER 4 | Managing Access Control Lists

Overview of Artix ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).

58

Artix Action-Role Mapping ACL

Artix Action-Role Mapping ACL

Overview This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

File location In your arti x. cf g configuration file (located in the
ArtixInstallDirl arti x/ 1. 3/ et ¢/ domai ns directory), the
pl ugi ns: i s2_authori zation: acti on_rol e_nappi ng configuration variable
specifies the location URL of the action-role mapping file,
acti on_r ol e_mappi ng. xm , for an Artix server. For example:

artix.cfg Configuration File
ny_server_scope {
pl ugi ns:i s2_aut hori zati on: acti on_rol e_nmappi ng =

"file:///security_adm n/action_rol e_mappi ng. xm";

IE

59

CHAPTER 4 | Managing Access Control Lists

Example WSDL For example, consider how to set the operation permissions for the WSDL

port type shown in Example 14.
Example 14: Sample WSDL for the ACL Example

<definitions name="Hel | oWr | dSer vi ce"
t ar get Namespace="ht t p: // xm bus. comi Hel oWr I d" ... >

<port Type name="Hel | oWr| dPort Type" >
<oper ati on nane="gr eet " >
<i nput message="t ns: greet M&" nane="greet "/ >
<out put nessage="t ns: gr eet MeResponse"
name="gr eet MeResponse"/ >
</ oper at i on>
<oper ati on nane="sayH ">
<i nput nessage="t ns: sayH " nane="sayH "/>
<out put message="t ns: sayH Response"
nane="sayH Response"/ >
</ oper at i on>
</ por t Type>

</ definitions>

Example action-role mapping Example 15 shows how you might configure an action-role mapping file for
the Hel I over | dPort Type port type given in the preceding Example 14 on

page 60.

Example 15: Artix Action-Role Mapping Example

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE secur e- syst em SYSTEM "act i onr ol enappi ng. dt d" >
<secur e- syst en»

<act i on-rol e- mappi ng>

<i nterface>

B WN =

<server-name>secure_artix. denos. hel | o_wor | d</ ser ver - nane>

<nanme>htt p: // xm bus. com Hel | oWr | d: Hel | oWr | dPort Type</ name>

<action-rol e>
5 <act i on- nane>sayH </ act i on- nane>
<r ol e- nane>l ONAUser Rol e</ r ol e- nane>
</ action-rol e>
<action-rol e>
<act i on- nane>gr eet Me</ act i on- name>
<r ol e- name>l ONAUser Rol e</ r ol e- nane>

60

Artix Action-Role Mapping ACL

Example 15: Artix Action-Role Mapping Example

</action-rol e>
</interface>
</ acti on-rol e- mappi ng>
</ secur e- syst en»

The preceding action-role mapping example can be explained as follows:

1. The <acti on-rol e- mappi ng> tag contains all of the permissions that
apply to a particular server application.

2. The <server - nanme> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly. The ORB name is usually passed to an Artix server as the
value of the - CRBname command-line parameter.

Note: The ORB name also determines which configuration scopes
are read by the server.

3. The <interface> tag contains all of the access permissions for one
particular WSDL port type.

4. The <nane> tag identifies a WSDL port type in the format
NamespaceURI: PortTypeName. That is, the PortTypeName comes
from a tag, <port Type name="PortTypeName" >, defined in the
NamespaceUR/I namespace.

For example, in Example 14 on page 60 the <defi ni ti ons> tag
specifies the NamespaceUR/ as http: // xn bus. cond Hel | oVer | d and
the PortTypeName is Hel | over | dPor t Type. Hence, the port type name
is identified as:

<nane>ht t p: // xm bus. com Hel | oWr | d: Hel | oWr | dPor t Type</ name>

5. The sayH action name corresponds to the sayH WSDL operation
name in the Hel | oWr | dPor t Type port type (from the <operati on
nanme="sayH " > tag).

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 211 for details.

61

CHAPTER 4 | Managing Access Control Lists

62

In this chapter

CHAPTER 5

Managing
Certificates

TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Artix applications.

This chapter contains the following sections:

What are X.509 Certificates? page 64
Certification Authorities page 66
Certificate Chaining page 69
PKCS#12 Files page 71
Creating Your Own Certificates page 73
Deploying Certificates page 80

63

CHAPTER 5 | Managing Certificates

What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA's private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert. pem This CA is completely insecure because
anyone can access its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter describes the set of
certificates required by an Artix application and shows you how to replace
the default certificates.

64

The contents of an X.509
certificate

Distinguished names

What are X.509 Certificates?

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In

more detail, a certificate includes:

® X.509 version information.

® Aserial number that uniquely identifies the certificate.

® Asubject DN that identifies the certificate owner.

® The public key associated with the subject.

® Anssuer DN that identifies the CA that issued the certificate.

® The digital signature of the issuer.

® |nformation about the algorithm used to sign the certificate.

® Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See “ASN.1 and Distinguished Names” on page 205 for more details about
DNs.

65

CHAPTER 5 | Managing Certificates

Certification Authorities

Choice of CAs A CA must be trusted to keep its private key secure. When setting up an
Artix system, it is important to choose a suitable CA, make the CA certificate
available to all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

® A commercial CA is a company that signs certificates for many
systems.

® Aprivate CA is a trusted node that you set up and use to sign
certificates for your system only.

In this section This section contains the following subsections:
Commercial Certification Authorities page 67
Private Certification Authorities page 68

66

Certification Authorities

Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:
® What are the certificate-signing policies of the commercial CAs?

® Are your applications designed to be available on an internal network
only?
® What are the potential costs of setting up a private CA?

67

CHAPTER 5 | Managing Certificates

Private Certification Authorities

Choosing a CA software package

OpenSSL software package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

68

If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

One software package that allows you to set up a private CA is OpenSSL,
htt p: // wav. openssl . or g. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in “License Issues” on page 231.
The OpenSSL package includes basic command line utilities for generating
and signing certificates and these utilities are available with every
installation of Artix. Complete documentation for the OpenSSL command
line utilities is available from htt p: / / www. openssl . or g/ docs.

For instructions on how to set up a private CA, see “Creating Your Own
Certificates” on page 73.

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

® Do not connect the CA to a network.

® Restrict all access to the CA to a limited set of trusted users.

® Protect the CA from radio-frequency surveillance using an RF-shield.

Certificate Chaining

Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 9 shows an example of a simple certificate chain.
Peer |, signs CA | signs
Certificate | Certificate |

I

Figure 9: A Certificate Chain of Depth 2

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

69

CHAPTER 5 | Managing Certificates

Certificates signed by multiple
CAs

Trusted CAs

Maximum chain length policy

70

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 10 shows what this certificate chain looks like.

Finance Commercial
CA < CA <
Certificate Certificate

I

Peer | signs signs

Certificate |

signs

Figure 10: A Certificate Chain of Depth 3

An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See “Deploying Trusted Certificate Authority Certificates” on page 82.

You can limit the length of certificate chains accepted by your CORBA
applications, with the maximum chain length policy. You can set a value for
the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_| ength_pol i cy configuration variable for
[IOP/TLS.

PKCS#12 Files

PKCS#12 Files

Overview

Contents of a PKCS#12 file

Figure 11 shows the typical elements in a PKCS#12 file.

PKCS#12 File
X.509]
“ v .
— Certificate Chain
X.509
CA
O—m Private Key

Figure 11: Elements in a PKCS#12 File

A PKCS#12 file contains the following:

® An X.509 peer certificate (first in a chain).

® All the CA certificates in the certificate chain.
® A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by Artix.

71

CHAPTER 5 | Managing Certificates

Creating a PKCS#12 file

Viewing a PKCS#12 file

Importing and exporting
PKCS#12 files

72

To create a PKCS#12 file, see “Use the CA to Create Signed Certificates” on
page 77.

To view a PKCS#12 file, CertName. p12:

openssl pkcs12 -in CertName. p12

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS# 12 files from these browsers can be used in
Artix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.

Creating Your Own Certificates

Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.
OpenSSL utilities The steps described in this section are based on the OpenSSL

command-line utilities from the OpenSSL project,

htt p: // wwv. openssl . or g—see “OpenSSL Utilities” on page 215. Further
documentation of the OpenSSL command-line utilities can be obtained from
ht t p: / / waw. openssl . or g/ docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:
X509CA/ ca
X509CA/ certs
X509CA/I newncerts
X509CA/ crl

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:
Set Up Your Own CA page 74
Use the CA to Create Signed Certificates page 77

73

CHAPTER 5 | Managing Certificates

Set Up Your Own CA

Substeps to perform

Step 1—Add the bin directory to
your PATH

Step 2—Create the CA directory
hierarchy

Step 3—Copy and edit the
openssl.cnf file

74

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in “Choosing a host for
a private certification authority” on page 68.

To set up your own CA, perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create the CA directory hierarchy

® Step 3—Copy and edit the openssl.cnf file

® Step 4—lInitialize the CA database

® Step 5—Create a self-signed CA certificate and private key

On the secure CA host, add the OpenSSL bi n directory to your path:
Windows

> set PATH=OpenSSLDin bi n; YPATHY

UNIX

% PATH=OpenSSLDir/ bi n: $PATH export PATH

This step makes the openssl utility available from the command line.

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

X509CA/ ca

X509CA/ certs

X509CA/ newcerts

X509CA/ crl

Copy the sample openssi . cnf from your OpenSSL installation to the
X509CA directory.

Edit the openssl . cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.

Step 4—Initialize the CA database

Creating Your Own Certificates

Edit the [CA def aul t] section of the openssl . cnf file to make it look like
the following:

HH T R R R R
[CAdefault]

dir = X509CA # Were CA files are kept
certs = $dir/certs # Wiere issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file

new certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new ca.pem# The CA certificate

seri al = $dir/serial # The current serial nunber
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/ new ca_pk.pem # The private key

RANDFI LE = $dir/cal.rand # Private random nunber file

x509_extensions = usr_cert # The extensions to add to the cert

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see “The OpenSSL Configuration File” on page 225.

In the X509CA directory, initialize two files, serial and i ndex. txt.
Windows

> echo 01 > serial

To create an empty file, i ndex. t xt , in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> not epad i ndex. t xt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.
UNIX

% echo "01" > serial
% t ouch i ndex. t xt

These files are used by the CA to maintain its database of certificate files.

Note: The index.txt file must initially be completely empty, not even
containing white space.

75

CHAPTER 5 | Managing Certificates

Step 5—Create a self-signed CA
certificate and private key

76

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/ openssl . cnf -days 365 -out X509CA/ ca/ new_ca. pem
-keyout X509CA/ cal new ca_pk. pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Usi ng configuration from X509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

R o o o e

.

witing new private key to 'new ca_pk. pem

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a D stingui shed
Name or a DN There are quite a few fields but you can |eave
some bl ank. For some fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Nane (2 letter code) []:IE

State or Province Nane (full nane) []:Co. Dublin

Locality Nanme (eg, city) []:Dublin

O gani zation Nane (eg, conpany) []:|ONA Technol ogi es PLC
Qrgani zational Unit Name (eg, section) []:Finance

Conmmon Nane (eg, YOUR nane) []: Gordon Brown

Enai | Address []:gbrown@ ona. com

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.

You should ensure that the file names and location of the CA certificate and
private key, new _ca. pemand new _ca_pk. pem are the same as the values
specified in openssl . cnf (see the preceding step).

You are now ready to sign certificates with your CA.

Creating Your Own Certificates

Use the CA to Create Signed Certificates

Substeps to perform

Step 1—Add the bin directory to
your PATH

Step 2—Create a certificate
signing request

If you have set up a private CA, as described in “Set Up Your Own CA” on
page 74, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName. p12,
perform the following substeps:

® Step 1—Add the bin directory to your PATH
® Step 2—Create a certificate signing request
® Step 3—Sign the CSR

® Step 4—Concatenate the files

® Step 5—Create a PKCS#12 file

® Step 6—Repeat steps as required

If you have not already done so, add the OpenSSL bi n directory to your
path:

Windows

> set PATHEOpenSSLDir bi n; YATHY

UNIX

% PATH=OpenSSLDirl bi n: $PATH export PATH

This step makes the openss! utility available from the command line.

Create a new certificate signing request (CSR) for the CertName. p12
certificate:

openss| req -new -config X509CA/ openssl . cnf
-days 365 -out X509CA/ certs/ CertName_csr. pem - keyout
X509CAI/ cert s/ CertName_pk. pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl . cnf
file). The default openssl . cnf file requires the following entries to match:

® Country Name

® State or Province Name

® Organization Name

77

CHAPTER 5 | Managing Certificates

Step 3—Sign the CSR

78

The Common Name must be distinct for every certificate generated by
OpenSSL.

Usi ng configuration fromX509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

.

.+t

witing new private key to ' X509CA/ certs/ CertName_pk. pem
Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a D stingui shed
Name or a DN There are quite a few fields but you can |eave
sone bl ank. For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

State or Province Nane (full nane) []:Co. Dublin

Locality Nanme (eg, city) []:Dublin

Qrgani zati on Nane (eg, conpany) []:|ONA Technol ogi es PLC
Qrgani zational Unit Name (eg, section) []:Systens

Common Nane (eg, YOUR nane) []:Artix

Emai | Address []:info@ona. com

Pl ease enter the following 'extra' attributes
to be sent with your certificate request

A chal | enge password []: password

An optional conpany nane []:|ONA

Sign the CSR using your CA:

openss| ca -config X509CA/ openssl . cnf -days 365 -in
X509CAI/ certs/ CertName_csr . pem - out
X509CAI/ certs/ CertName. pem

This command requires the pass phrase for the private key associated with
the new ca. pemCA certificate:

Usi ng configuration fromX509CA/ openssl . cnf

Enter PEM pass phrase:

Check that the request natches the signature

Si gnat ure ok

The Subjects D stinguished Nane is as foll ows

count r yNanme PR NTABLE: ' | E
stateQ Provi nceNane : PR NTABLE: ' Co. Dublin'
| ocal i t yName : PR NTABLE: ' Dubl i n'

Step 4—Concatenate the files

Step 5—Create a PKCS#12 file

Step 6—Repeat steps as required

Creating Your Own Certificates

or gani zat i onNarre : PRINTABLE: ' | ONA Technol ogi es PLC
or gani zat i onal Uni t Name: PRI NTABLE: ' Syst ens'

comonNane :PRINTABLE: ' Bank Server Certificate'
enai | Addr ess ;1 ASSTR NG ' i nf o@ona. com

Certificate is to be certified until May 24 13:06:57 2000 QI (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commt? [y/n]y

Wite out database with 1 new entries

Data Base Updat ed

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “Set Up Your Own CA” on page 74.

Concatenate the CA certificate file, CertName certificate file, and
CertName_pk. pemprivate key file as follows:

Windows

copy X509CA\ ca\ new ca. pem +
X509CA\ cert s\ CertName. pem +
X509CA\ cert s\ CertName_pk. pem
X509CA\ cert s\ CertName_l i st. pem

UNIX

cat X509CA/ cal new _ca. pem
X509CA/ certs/ CertName. pem
X509CA/ cert s/ CertName_pk. pem >
X509CA/ certs/ CertName_li st. pem

Create a PKCS#12 file from the CertName_l i st . pemfile as follows:

openss| pkcs12 -export -in X509CA/ certs/ CertName_l i st. pem -out
X509CA/ cert s/ CertName. p12 -nanme "New cert"

Repeat steps 2 to 5, creating a complete set of certificates for your system.
A minimum set of Artix certificates must include a set of certificates for the
secure Artix services.

79

CHAPTER 5 | Managing Certificates

Deploying Certificates

Overview

In this section

80

This section provides an overview of deploying X.509 certificates in a typical
secure Artix system, with detailed instructions on how to deploy certificates
for different parts of the Artix system.

This section contains the following subsections:

Overview of Certificate Deployment page 81
Deploying Trusted Certificate Authority Certificates page 82
Deploying Application Certificates page 86

Deploying Certificates

Overview of Certificate Deployment

Overview

Certificate deployment for HTTPS

Certificate deployment for
IIOP/TLS

Sample deployment directory
structure

Because the HTTPS and IIOP/TLS transports use different security
mechanisms, it is necessary to deploy certificates for each of these
transports independently, as follows:

® Certificate deployment for HTTPS.

® (Certificate deployment for IIOP/TLS.

Certificates used by the HTTPS transport must be in Privacy Enhanced Mail
(PEM) format. To specify certificates for the HTTPS transport, you must edit
your application’s WSDL contract.

Certificates used by the IIOP/TLS transport must be in PKCS#12 format. To
specify certificates for the IIOP/TLS transport, you must edit the Artix
configuration file, ArtixInstallDirl arti x/ 1. 3/ et ¢/ domai ns/ arti x. cf g.

For the purposes of illustration, the examples in this section deploy
certificates into the following sample directory structure:

X509Deployl trusted_ca_lists
X509Deployi certs

Where X509Deploy is the parent directory for the deployed certificates.

81

CHAPTER 5 | Managing Certificates

Deploying Trusted Certificate Authority Certificates

Overview

Deploying for the HTTPS transport

82

This section how to deploy trusted root CA certificates for Artix applications.
In the current version of Artix, the procedure for deploying trusted CA
certificates depends on the type of transport, as follows:

Deploying for the HTTPS transport.
Deploying for the IIOP/TLS transport.

To deploy one or more trusted root CAs for the HTTPS transport in Artix,
perform the following steps:

1.

Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 74). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.
Concatenate the CA certificates into a single CA list file. A CA list file
can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert 01. pemand
ca_cert02. pem you could combine them into a single CA list file,
ca_l i st01. pem with the following command:

Windows
copy X509CA\ca\ca_cert 01. pem +
X509CA\ ca\ ca_cert 02. pem
X509Deploy\trusted_ca_lists\ca_list0l. pem
UNIX

cat X509CA/ cal ca_cert 01. pem X509CA/ cal ca_cert 02. pem >>
X509Deployi trusted_ca_lists/ca_list0Ol. pem

Edit the WSDL contract to specify the location of the CA list file. The
details of this step depend on whether you are deploying a trusted CA
list on the client side or on the server side:

Client side
Edit the client’s copy of the WSDL contract by adding (or modifying)
the Trust edRoot Certi fi cat es attribute in the <htt p-conf: client >

Deploying Certificates

tag. For example, to specify X509CA/ ca/ ca_| i st 01. pemas the client’s
trusted CA certificate, modify the client's WSDL contract as follows:

<definitions

xm ns: htt p="http://schenas. i ona. con transports/ http"

xm ns: http-conf="http://schemas. i ona. com t ransports/http/co
nfiguration" ... >

<servi ce name="...">
<port binding="...">
<http-conf:client ...
Trust edRoot Certi fi cat es="X509CA/ cal ca_l i st 01. pent
. >

</ port >
</ servi ce>
Server side
Edit the server's copy of the WSDL contract by adding (or modifying)
the Trust edRoot Cer ti fi cat es attribute in the <htt p-conf: server>
tag. For example, to specify X509CA/ ca/ ca_l i st 01. pemas the
server's trusted CA certificate, modify the server's WSDL contract as
follows:

<definitions

xm ns: http="http://schemas. i ona. com t ransports/http"

xm ns: http-conf="http://schenas. i ona. coni transports/http/co
nfiguration" ... >

<servi ce name="...">
<port binding="...">

<http-conf:server ...
Trust edRoot Certi fi cat es="X509CA/ cal ca_l i st 01. pent
. >
</ port>
</ servi ce>

83

CHAPTER 5 | Managing Certificates

Deploying for the 1IOP/TLS
transport

84

To deploy one or more trusted root CAs for the IIOP/TLS transport, perform
the following steps (the procedure for client and server applications is the
same):

1.

Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 74). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.

Organize the CA certificates into a collection of CA list files. For
example, you might create three CA list files as follows:

X509Deploy/ trusted_ca_lists/ca_list0Ol pem
X509Deploy/ trusted_ca_lists/ca_list02. pem
X509Deploy/ trusted_ca_lists/ca_list03. pem

Each CA list file consists of a concatenated list of CA certificates. A CA
list file can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert 01. pemand
ca_cert02. pem you could combine them into a single CA list file,
ca_list0l. pem with the following command:

Windows
copy X509CA\ca\ca_cert01. pem +
X509CA\ ca\ ca_cert 02. pem
X509Deploy\trusted_ca_lists\ca_list0l. pem
UNIX

cat X509CA/ cal ca_cert 01. pem X509CA/ cal ca_cert 02. pem >>
X509Deploy/ trusted_ca_lists/ca_list0l. pem

The CA certificates are organized as lists as a convenient way of
grouping related CA certificates together.

Edit the arti x. cf g file to specify which of the CA list files is used by
your application. The arti x. cf g file is located in the following
directory:

ArtixInstallDirl arti x/ 1. 3/ et c/ domai ns

To specify the CA list files, edit the value of the
policies:iiop_tls:trusted_ca_list_policy variable in your
application’s configuration scope in the arti x. cf g file.

Deploying Certificates

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_l i st 01. pemand ca_| i st 02. pemfiles, edit the
artix. cf g file as follows:

Artix configuration file.
SecureAppScope {
policies:iiop_tls:trusted_ca_ list_policy =

["X509Deploy/ trusted ca_lists/ca_list0l. pent,
"X509Deploy/ trusted_ca_|ists/ca_list02. pent];

The directory containing the trusted CA certificate lists (for example,
X509Deploy/ trusted_ca_l i sts/) should be a secure directory.

Note: If an application supports authentication of a peer, that is a client
supports Est abl i shTrust | nTar get, then a file containing trusted CA
certificates must be provided. If not, a NO RESOURCES exception is raised.

85

CHAPTER 5 | Managing Certificates

Deploying Application Certificates

Overview

Certificate formats

Deploying for the HTTPS transport

86

This section describes how to deploy an Artix application’s own certificate.
In the current version of Artix, the procedure for deploying application
certificates depends on the type of transport, as follows:

® Deploying for the HTTPS transport.

® Deploying for the IIOP/TLS transport

The format used for application certificates depends on the type of

transport, as follows:

® HTTPS transport—uses the PEM format. This format consists of a
certificate file, CertName. pem containing an encrypted X.509
certificate chain, and a private key file, CertPrivKey. pem containing an
encrypted private key. Both PEM files are encrypted by the same
password (the private key password).

® JIOP/TLS transport—uses the PKCS#12 format. This format consists
of a single encrypted file, CertName. p12, that contains an X.509
certificate chain and a private key.

Note: Because Artix uses an [IOP/TLS connection to communicate with
the iS2 security server, Artix applications that use HTTPS generally require
you to configure both HTTPS and [IOP/TLS.

To deploy an Artix application’s own certificate, CertName. pem with private
key, CertPrivKey. pem for the HTTPS transport, perform the following steps:
1. Copy the application certificate, CertName. pem and private key file,
CertPrivKey. pem to the certificates directory—for example,
X509Deploy! cert s/ appl i cati ons—on the deployment host.
The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the WSDL contract to specify the location of the application

certificate file and private key file. The details of this step depend on
whether you are deploying an application certificate on the client side
or the server side:

Deploying Certificates

Client side
Edit the client’s copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <htt p- conf: cl i ent > tag:

<definitions
xm ns: http="http://schemas. i ona. com transports/http"
xm ns: htt p-conf="http://schenas. i ona. conm transports/ http/configuration' ... >

<servi ce nane="...">
<port binding="...">
<soap: address ...>
<htt p-conf:client UseSecureSockets="true"
AientCertificate="X509Deploy/ cert s/ appli cati ons/ CertName. pent
dientCertificateChai n="X509Deploy! cert s/ appl i cati ons/ CertName. pent
dient Privat ekey="X509Deploy/ cert s/ appl i cat i ons/ CertPrivKey. pent
d i ent Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Cert i fi cat es=" RootCertPath"
. >
</ port>
</ servi ce>

Server side
Edit the server's copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <ht t p- conf : ser ver > tag:

<definiti ons
xm ns: http="http://schenas. i ona. conl transports/ http"
xm ns: htt p-conf="http://schenas. i ona. conm transports/ http/configuration' ... >

<servi ce nane="...">
<port binding="...">
<soap: address ...>
<htt p-conf: server UseSecureSocket s="true"
Server Certificate="X509Deploy/ cert s/ appl i cat i ons/ CertName. pent
Server Certifi cat eChai n="X509Deploy! cert s/ appl i cati ons/ CertName. pent
Ser ver Pri vat ekey="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pent
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Certi fi cat es=" RootCertPath"
. >
</ port>
</ servi ce>

87

CHAPTER 5 | Managing Certificates

Deploying for the 1IOP/TLS
transport

88

3. Protect the private key passwords.

Because the private key passwords in the WSDL contracts appear in
plaintext form, you must ensure that the WSDL contract files
themselves are not readable/writable by every user. Use the operating
system to restrict read/write access to trusted users only.

Additionally, to avoid revealing the server's security configuration to
clients, you should remove the <ht t p- conf : ser ver > tag from the client
copy of the WSDL contract.

To deploy an Artix application’s own certificate, CertName. p12, for the

[IOP/TLS transport, perform the following steps:

1. Copy the application certificate, CertName. p12, to the certificates
directory—for example, X509Deploy/ cert s/ appl i cat i ons—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the arti x. cf g configuration file (usually
ArtixInstallDirl arti x/ 1. 3/ et ¢/ domai ns/ arti x. cf g). Given that your
application picks up its configuration from the SecureAppScope scope,
change the principal sponsor configuration to specify the
CertName. p12 certificate, as follows:

Artix configuration file
SecureAppScope {

pri nci pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcs12_file";
pri nci pal _sponsor: aut h_net hod_data =
["filenanme=X509Deploy/ certs/ appl i cati ons/ CertName.
p12"];
b

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. To choose another option for providing the pass
phrase, see “Providing a Certificate Pass Phrase” on page 99.

CHAPTER 6

Configuring
HTTPS and
HOP/TLS

Authentication

This chapter describes how to configure HTTPS and IIOP/TLS
authentication requirements for Artix applications.

In this chapter This chapter discusses the following topics:
Requiring Authentication page 90
Specifying Trusted CA Certificates page 97
Specifying an Application’s Own Certificate page 98
Providing a Certificate Pass Phrase page 99
Advanced IIOP/TLS Configuration Options page 104

89

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Requiring Authentication

Overview This section discusses how to specify the kind of authentication required,
whether mutual or target-only.

In this section There are two possible arrangements for a TLS secure association:
Target-Only Authentication page 91
Mutual Authentication page 94

90

Requiring Authentication

Target-Only Authentication

Overview

Security handshake

When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 12.

Secure Association
A A
Client » Server
Trusted CA Lists
Authenticate -
CA Cert List 1 Vi Certificate Cert file
CA Cert List 2

Figure 12: Target Authentication Only

Prior to running the application, the client and server should be set up as
follows:
® Acertificate chain is associated with the server—the certificate chain is
provided in the form of a PEM file (for HTTPS) or a PKCS#12 file (for
IIOP/TLS). See “Specifying an Application’s Own Certificate” on
page 98.
® One or more lists of trusted certification authorities (CA) are made
available to the client—see “Deploying Trusted Certificate Authority
Certificates” on page 82.
During the security handshake, the server sends its certificate chain to the
client—see Figure 12. The client then searches its trusted CA lists to find a
CA certificate that matches one of the CA certificates in the server's
certificate chain.

91

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

HTTPS example You configure target-only authentication for the HTTPS transport by omitting
a certificate on the client side. That is, the Qi ent Certi fi cat e attribute is
not set in the <htt p-conf: cl i ent > tag. For example, you could configure
the client side and the server side as follows:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <htt p- conf: cl i ent > tag:

<definitions
xm ns: http="http://schemas. i ona. com transports/http"
xm ns: htt p- conf="htt p://schenas. i ona. conl transports/ http/configuration* ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<http-conf:client UseSecureSockets="true"
Tr ust edRoot Cer ti fi cat es="RootCertPath"
. >
</ port>
</ servi ce>

Server side

Edit the server's copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <htt p- conf : ser ver > tag:

<definitions
xm ns: http="http://schemas. i ona. com t ransports/http"
xm ns: htt p- conf="htt p://schenas. i ona. conl transports/ http/configuration' ... >

<servi ce nane="...">
<port binding="...">
<soap: address ...>
<ht t p- conf: server UseSecur eSocket s="tr ue"
Server Certi ficate="X509Deploy/ certs/ appl i cati ons/ CertName. pent
Server Pri vat eKey="X509Deploy/ cert s/ appl i cat i ons/ CertPrivKey. pent
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Tr ust edRoot Cer ti fi cat es="RootCertPath"
. >
</ port>
</ servi ce>

92

IIOP/TLS example

Requiring Authentication

The following extract from an arti x. cf g configuration file shows the
target-only configuration of an Artix client application, bank_cl i ent, and an
Artix server application, bank_ser ver, where the transport type is I10P/TLS.

Artix Configuration File

policies:iiop_tls:nechani smpolicy: protocol _version

policies:iiop_tls:mechani smpolicy:ciphersuites =
["RSA WTH RC4_128 SHA', "RSA WTH RC4_128_MX%"];

bank_server {

"SSL_V3";

policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

};...

bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
b

93

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Mutual Authentication

Overview When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the
target. This scenario is illustrated in Figure 13. In this case, the server and
the client each require an X.509 certificate for the security handshake.

Trusted CA Lists

S CACertlListl
Authenticate
Client
CA Cert List 2
Cert file
Secure Association ‘
G A
Client > Server
Trusted CA Lists
Authenticate
CA Cert List 1 “ Target Cert file
CA Cert List 2

Figure 13: Mutual Authentication

94

Security handshake

HTTPS example

IIOP/TLS example

Requiring Authentication

Prior to running the application, the client and server should be set up as

follows:

® Both client and server have an associated certificate chain (PEM file or
PKCS#12 file)—see “Specifying an Application’s Own Certificate” on
page 98.

® Both client and server are configured with lists of trusted certification
authorities (CA)—see “Deploying Trusted Certificate Authority
Certificates” on page 82.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 12.

To configure mutual authentication for the HTTPS transport, you should
deploy an application certificate both on the client side and on the server
side. For a detailed example, see the following reference:

® “Deploying for the HTTPS transport” on page 86.

The following sample extract from an arti x. cf g configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,

secur e_server _enforce_cl i ent _aut h, where the transport type is
[IOP/TLS.

Artix Configuration File

policies:iiop_tls:nechani smpolicy:protocol version = "SSL V3";
policies:iiop_tls:nmechani smpolicy:ciphersuites =
["RSA WTH RC4 128 SHA", "RSA WTH RC4 128 MX%'];

secure_server_enforce_client_auth
{
policies:iiop_tls:target_secure_invocation_policy:requires =
["EstablishTrustIndient", “"Confidentiality"];
policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustIndient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering”,
"Establ i shTrust|nTarget"];

95

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

secure_client_wth_cert
{
policies:iiop_tls:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustlnTarget"];
policies:iiop_tls:client_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustindient",
"Establ i shTrust | nTarget"];

96

Specifying Trusted CA Certificates

Specifying Trusted CA Certificates

Overview

Which applications need to
specify trusted CA certificates?

How to deploy trusted CA
certificates

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Any application that is likely to receive an X.509 certificate as part of an
HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

® Al lIOP/TLS or HTTPS clients.

® Any [IOP/TLS or HTTPS servers that support mutual authentication.

For more details about how to deploy trusted CA certificates, see the
following references:

® “Deploying for the HTTPS transport” on page 82.
® “Deploying for the IIOP/TLS transport” on page 84.

97

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Specifying an Application’s Own Certificate

Overview To enable an Artix application to identify itself, it must be associated with an
X.5009 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

® Security unaware—configuration only,

This section discusses how to specify a certificate by configuration only.

How to deploy an application For details about how to deploy an application’s own certificate, see the
certificate following reference:

® “Deploying Application Certificates” on page 86.

98

Providing a Certificate Pass Phrase

Providing a Certificate Pass Phrase

Overview If an application is configured to have an X.509 certificate, it is necessary to
provide a pass phrase as the application starts up. There are various ways of
providing the certificate pass phrase, depending on the particular type of
transport used.

In this section This section contains the following subsections:
Certificate Pass Phrase for HTTPS page 100
Certificate Pass Phrase for [IOP/TLS page 102

929

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Certificate Pass Phrase for HTTPS

Overview For the HTTPS transport, there is just one option for specifying a certificate’s
pass phrase, as follows:

® Directly in the WSDL contract.

Directly in the WSDL contract For the HTTPS protocol, the same pass phrase is used to encrypt both the
certificate and the private key. You can specify the certificate pass phrase by
editing the WSDL contract as follows:

Client side

Edit the client's copy of the WSDL contract by adding (or modifying) the
dient Privat eKeyPasswor d attribute in the <ht t p-conf: cl i ent > tag:

<definitions
xm ns: http="http: //schenas. i ona. conltransports/http"
xm ns: htt p-conf ="http://schemas. i ona. com transports/ http/configuration" ... >

<servi ce nane="...">
<port binding="...">
<soap: address ...>
<http-conf:client ...
d i ent Pri vat eKeyPasswor d="MyKeyPassword"
Tr ust edRoot Cert i fi cat es=" RootCertPath"
>
</ port>
</ servi ce>

100

Providing a Certificate Pass Phrase

Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
Ser ver Pri vat eKeyPasswor d attribute in the <htt p- conf: server > tag:

<definitions
xm ns: htt p="http://schenas. i ona. con transports/http"

xm ns: htt p-conf ="http://schenas. i ona. conm transports/ http/configuration' ... >
<servi ce nane="...">
<port binding="...">
<soap: address ...>

<http-conf:server ...

Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Cert i fi cat es=" RootCertPath"
.1 >
</ port>
</ servi ce>

101

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Certificate Pass Phrase for IIOP/TLS

Overview

From a dialog prompt

In a password file

102

Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate’s private
key (which is used during the TLS security handshake to prove the
certificate’s authenticity).

For the IIOP/TLS transport, the pass phrase can be provided in one of the
following ways:

® From a dialog prompt.
® |n a password file.
® Directly in configuration.

If the pass phrase is not specified in any other way, Artix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C+ + Applications

When a C++ application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the CRB
Enter password :

The pass phrase is stored in a password file whose location is specified in
the pri nci pal _sponsor : aut h_net hod_dat a configuration variable using the
passwor d_fil e option. In the following example, the SecureApp scope
configures the principal sponsor as follows:

Artix Configuration File
SecureApp {

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor: auth_nethod_i d = "pkcs12_file";

princi pal _sponsor: aut h_nmet hod_data =
["filename=X509Deploy/ cert s/ adni ni strat or. p12",
"passwor d_fi | e=X509Deploy/ cert s/ adm ni strator. pwf"];

};”

Providing a Certificate Pass Phrase

In this example, the pass phrase for the bank_server. p12 certificate is
stored in the adnmi ni strator. pw file, which contains the following pass
phrase:

admi ni strat or pass

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
princi pal _sponsor : aut h_net hod_dat a configuration variable using the
passwor d option. For example, the bank_server demonstration configures
the principal sponsor as follows:

Artix Configuration File
bank_server {

princi pal _sponsor: use_princi pal _sponsor = "true";

pri nci pal _sponsor: auth_nethod_i d = "pkcs12_file";

princi pal _sponsor: aut h_net hod_data =
["fil ename=ASPInstallDir\ asp\ 6. O\ et c\ t | s\ x509\ cer t s\ denmos\ bank
_server.pl2", "password=bankserverpass"];

IE

In this example, the pass phrase for the bank_server. p12 certificate is
bankser ver pass.

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.

103

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Advanced IIOP/TLS Configuration Options

Overview For added security, the IIOP/TLS transport allows you to apply extra
conditions on certificates. Before reading this section you might find it
helpful to consult “Managing Certificates” on page 63, which provides some
background information on the structure of certificates.

In this section This section discusses the following advanced IIOP/TLS configuration
options:
Setting a Maximum Certificate Chain Length page 105
Applying Constraints to Certificates page 106

104

Advanced IIOP/TLS Configuration Options

Setting a Maximum Certificate Chain Length

Max chain length policy

Example

Configuration variable

Default value

You can use the maximum chain length policy to enforce the maximum
length of certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the

Tr ust edCALi st Pol i cy).

For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

You can specify the maximum length of certificate chains used in maximum
chain length policy with the pol i ci es:iiop_tls: max_chai n_l engt h_pol i cy
configuration variable. For example:

policies:iiop_tls:nmax_chain_|length_policy = "4";

The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA'’s.

105

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Applying Constraints to Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

106

You can use the certificate constraints policy to apply constraints to peer
X.5009 certificates. These conditions are applied to the owner’s distinguished
name (DN) on the first certificate (peer certificate) of the received certificate
chain. Distinguished names are made up of a number of distinct fields, the
most common being Organization Unit (OU) and Common Name (CN).

You can specify a list of constraints to be used by the certificate constraints
policy through the policies:iiop_tls:certificate_constraints_policy
configuration variable. For example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*, QU=[unit 1| | T_SSL], O=l ONA, C=l rel and, ST=Dubl i n, L=Ea
rth", " ON=Paul *, QU=SSLTEAM O=I ONA, C=I rel and, ST=Dubl i n, L=Eart h",
" ON=TheQmi pot ent One"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[] Grouping symbols.
I Choice symbol. For example:

QU[uni t1] I T_SSL] signifies that if the QUis unit1
or I T_SSL, the certificate is acceptable.

= 1= Signify equality and inequality respectively.

This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"QOU[uni t 1] I T_SSL], CN=St eve*, L=Dubl i n",

"OQEI T_ART*, QU =I T_ARTt est er s, ON=[Jan| Donal], ST=

Boston"];

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

I f

The QUis unitl or IT_SSL
And

Distinguished names

Advanced IIOP/TLS Configuration Options

The ON begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
Else (nmoving on to the second constraint)
I f
The QU begins with the text |T_ART but isn't | T_ARTtesters
And
The common nane is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
QG herwi se the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "ON=" is recognized.

For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 205.

107

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

108

In this chapter

CHAPTER 7

Configuring
IIOP/TLS Secure
Associations

The Artix IIOP/TLS transport layer offers additional
functionality that enables you to customize client-server
connections by specifying secure invocation policies and
security mechanism policies.

This chapter discusses the following topics:

Overview of Secure Associations page 110
Setting IIOP/TLS Association Options page 112
Specifying IIOP/TLS Cipher Suites page 120
Caching IIOP/TLS Sessions page 129

109

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Overview of Secure Associations

Secure association

TLS session

Colocation

Configuration overview

110

A secure association is a term that has its origins in the CORBA Security
Service and refers to any link between a client and a server that enables
invocations to be transmitted securely. In the present context, a secure
association is an IIOP/TLS connection augmented by a collection of security
policies that govern the behavior of the connection.

A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Artix.

For colocated invocations, that is where the calling code and called code
share the same address space, Artix supports the establishment of colocated
secure associations. A special interceptor, TLS ol oc, is provided by the
security plug-in to optimize the transmission of secure, colocated
invocations.

The security characteristics of an association can be configured through the

following CORBA policy types:

® Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 116 for details.

® Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 118 for details.

® Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
IIOP/TLS Cipher Suites” on page 120 for details.

Overview of Secure Associations

Figure 14 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

_ A Secure Association A
Client » Server 1]

Client Configuration Server Configuration

Client Invocation Target Invocation
—_— Association Options 9 Association Options

Mechanism Policy ——> Specified Cipher Suites Mechanism Policy ——> Specified Cipher Suites

Figure 14: Configuration of a Secure Association

111

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Setting IIOP/TLS Association Options

Overview This section explains the meaning of the various [IOP/TLS association
options and describes how you can use the [IOP/TLS association options to
set client and server secure invocation policies for IIOP/TLS connections.

In this section The following subsections discuss the meaning of the settings and flags:
Secure Invocation Policies page 113
Association Options page 114
Choosing Client Behavior page 116
Choosing Target Behavior page 118

112

Setting IIOP/TLS Association Options

Secure Invocation Policies

Secure invocation policies

Configuration example

You can set the minimum security requirements for the applications in your

system with two types of security policy:

® Client secure invocation policy—specifies the client association
options.

® Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

For example, to specify that client authentication is required for IIOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server_enforce_client_auth

{

policies:iiop_tls:target_secure_invocation_policy:requires
["EstablishTrustIndient", “"Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy: supports
["EstablishTrustIndient", "Confidentiality", “Integrity",
"Det ect Repl ay", "DetectM sordering"”,

"Establ i shTrust|nTarget"];

I/l CGher settings (not shown)...

IiE

113

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Association Options

Available options

NoProtection

Integrity

Confidentiality

DetectReplay

DetectMisordering

114

You can use association options to configure IIOP/TLS secure associations.
They can be set for clients or servers where appropriate. These are the
available options:

® NoProtection

® Integrity

® Confidentiality

® DetectRepl ay

® DetectMsordering

® EstablishTrust | nTarget
® EstablishTrustindient

Use the NoPr ot ect i on flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoPr ot ect i on) the target can accept secure and insecure
invocations.

Use the I ntegrity flag to indicate that your application supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHA1).

Use the Confidenti al ity flag if your application requires or supports at
least confidentiality-protected invocations. The object can support this
feature if the cipher suites specified by the Mechani snPol i cy support
confidentiality-protected invocations.

Use the Det ect Repl ay flag to indicate that your application supports or
requires replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

Use the Det ect M sor deri ng flag to indicate that your application supports
or requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.

EstablishTrustInTarget

EstablishTrustinClient

Setting IIOP/TLS Association Options

The Establ i shTrust | nTar get flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client supports
and requi r es unless anonymous cipher suites are supported.

Use the Establ i shTrust InQ i ent flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.

115

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Choosing Client Behavior

Client secure invocation policy

IIOP/TLS configuration

Association options

Default value

Example

116

The client secure invocation policy type determines how a client handles
security issues.

You can set this policy for IIOP/TLS connections through the following

configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
IIOP/TLS connections.

In both cases, you provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 114.

The default value for the client secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrustlnTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrust!nTarget

The following example shows some sample settings for the client secure
invocation policy:

Setting IIOP/TLS Association Options

Artix Configuration File
bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
IH

117

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Choosing Target Behavior

Target secure invocation policy

IIOP/TLS configuration

Association options

Default value

118

The target secure invocation policy type operates in a similar way to the
client secure invocation policy type. It determines how a target handles
security issues.

You can set the target secure invocation policy for [IOP/TLS connections

through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
IIOP/TLS connections.

In both cases, you can provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 114.

The default value for the target secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrustlnTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sor deri ng

Setting IIOP/TLS Association Options

Example The following example shows some sample settings for the target secure
invocation policy:

Artix Configuration File

bank_server {

policies:iiop_tls:target_secure_invocation_policy:requires
["Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy: supports
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

119

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Specifying IIOP/TLS Cipher Suites

Overview

In this section

120

This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
[IOP/TLS secure associations. During a security handshake, the client
chooses a cipher suite that matches one of the cipher suites available to the
server. The cipher suite then determines the security algorithms that are
used for the secure association.

This section contains the following subsections:

Supported Cipher Suites page 121
Setting the Mechanism Policy page 124
Constraints Imposed on Cipher Suites page 126

Specifying IIOP/TLS Cipher Suites

Supported Cipher Suites

Artix cipher suites

Security algorithms

Key exchange algorithms

The following cipher suites are supported by Artix [IOP/TLS:

Null encryption, integrity-only ciphers:
RSA WTH NULL_MDX%

RSA W TH NULL_SHA

Standard ciphers

RSA EXPORT W TH RCA_40_M»%
RSA W TH RCA_128 M

RSA WTH RC4_128_SHA

RSA EXPORT_W TH DES40_CBC SHA
RSA W TH DES_CBC SHA

RSA W TH_3DES_EDE_CBC SHA

Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.
Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

The following key exchange algorithms are supported by Artix [IOP/TLS:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.
RSA_EXPCRT RSA public key encryption using X.509v3 certificates.

Key size restricted to 512 bits.

121

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Encryption algorithms

Secure hash algorithms

Cipher suite definitions

The following encryption algorithms are supported by Artix [1OP/TLS:

RCA_40

RC4_128
DES40_CBC

DES CBC
3DES_EDE CBC

A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.

RC4 with a 128-bit key.

Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES with a 56-bit key.

Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

The following secure hash algorithms are supported by Artix I|OP/TLS:

MDb

SHA

Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

The Artix IIOP/TLS cipher suites are defined as follows:

Table 2: Cipher Suite Definitions
Cipher Suite Key Exchange Encryption Secure Hash Exportable?
Algorithm Algorithm Algorithm
RSA W TH NULL_MDB RSA NULL DB yes
RSA W TH_NULL_SHA RSA NULL SHA yes
RSA_EXPORT_W TH_RC4_40_MD6 RSA_EXPORT RCA_40 M6 yes
RSA WTH RC4_128 MX% RSA RC4_128 M5 no
RSA W TH RC4_ 128 SHA RSA RC4_128 SHA no
RSA EXPCRT_W TH DES40_CBC_SHA RSA_EXPCRT DES40_CBC SHA yes
RSA W TH_DES _CBC SHA RSA DES_CBC SHA no
RSA W TH_3DES_EDE_CBC_SHA RSA 3DES EDE_CBC | SHA no

122

Specifying IIOP/TLS Cipher Suites

Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.

123

http://www.ietf.org

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Setting the Mechanism Policy

Mechanism policy

The protocol_version
configuration variable

The cipher suites configuration
variable

124

To specify IIOP/TLS cipher suites, use the mechanism policy. The
mechanism policy is a client and server side security policy that determines

® Whether SSL or TLS is used, and
® Which specific cipher suites are to be used.

You can specify whether SSL or TLS is used with a transport protocol by
setting the policies:iiop_tls:nechani smpolicy: protocol _version
configuration variable for IOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:nmechani smpolicy: protocol version = "SSL V3";

You can set the prot ocol _ver si on configuration variable to one of the
following alternatives:

TLS V1
ssL_V3

And a special setting for interoperating with an application deployed on the
0S/390 platform (to work around a bug in IBM’s System/SSL toolkit):

SSL_\2v3

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:nmechani smpolicy: ciphersuites configuration
variable for IIOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:nechani smpolicy:ciphersuites =
["RSA WTH NULL_MX%",
"RSA WTH NULL_SHA",
"RSA_EXPORT_W TH _RC4_40_MX%",
"RSA WTH RC4_128_MX%"];

Cipher suite order

Valid cipher suites

Default values

Specifying IIOP/TLS Cipher Suites

The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ci phersui t es list.

You can specify any of the following cipher suites:
® Null encryption, integrity only ciphers:

RSA WTH_NULL_MDX%,
RSA W TH NULL_SHA
® Standard ciphers

RSA_EXPCRT W TH_RCA_40_MD5,
RSA WTH RC4_128_MD5,

RSA WTH RCA_128_SHA,
RSA_EXPCRT_ W TH_DES40_CBC_SHA,
RSA W TH_DES_CBC SHA,

RSA W TH_3DES_EDE_CBC SHA

If no cipher suites are specified through configuration or application code,
the following apply:

RSA WTH RC4_128_SHA,

RSA WTH RC4_128 MDb,

RSA W TH_3DES_EDE_CBC SHA,

RSA W TH DES CBC SHA

125

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Constraints Imposed on Cipher Suites

Effective cipher suites

Required and supported
association options

126

Figure 15 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Artix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Association constrain Specified
Options Cipher Suites
yields ‘ ‘
Effective
Cipher Suites

Figure 15: Constraining the List of Cipher Suites

For example, in the context of the IIOP/TLS protocol the list of cipher suites

is affected by the following configuration options:

® Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires on
the server side.

® Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports on
the server side.

Cipher suite compatibility table

Specifying IIOP/TLS Cipher Suites

Use Table 3 to determine whether or not a particular cipher suite is
compatible with your association options.

Table 3: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA WTH NULL_MX»b Integrity, DetectReplay,

Det ect M sor deri ng

RSA WTH NULL_SHA Integrity, DetectReplay,

Det ect M sor deri ng

RSA EXPCRT_W TH RC4A_40_MX% Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH RC4_128 MX»b Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH RC4_128 SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA EXPCRT_W TH _DESA0_CBC_SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH DES CBC SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA W TH 3DES EDE CBC SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

Determining compatibility

The following algorithm is applied to the initial list of cipher suites:

1. For the purposes of the algorithm, ignore the Est abl i shTrust | nd i ent
and Est abl i shTrust | nTar get association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 3) do not satisfy the configured required
association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 3) not included in the configured supported
association options.

127

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

No suitable cipher suites available

Example

128

If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

For example, specifying a cipher suite such as RSA WTH RG4_128_ M that
supports Confidentiality, Integrity, DetectRepl ay, Det ect M sor deri ng,
Est abl i shTrust | nTarget (and optionally Est abl i shTrust I nd i ent) but
specifying a secure_i nvocat i on_pol i cy that supports only a subset of
those features results in that cipher suite being ignored.

Caching IIOP/TLS Sessions

Caching IIOP/TLS Sessions

Session caching policy

Configuration variable

Valid values

Default value

Configuration variable

Valid values

Default value

Configuration variable

Default value

You can use the [IOP/TLS session caching policy to control TLS session
caching and reuse for both the client side and the server side.

You can set the session caching policy with the
policies:iiop_tls:session_caching_policy or

pol i ci es: htt ps: sessi on_cachi ng_pol i cy configuration variables. For
example:

policies:iiop_tls:session_caching_policy = "CACHE CLI ENT";

You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLI ENT,
CACHE_SERVER
CACHE_SERVER AND_CLI ENT

The default value is CACHE_NONE.

plugins:atli_tls_tcp:session_cache_validity period
This allows control over the period of time that SSL/TLS session caches
are valid for.

sessi on_cache_val i dity_peri od is specified in seconds.

The default value is 1 day.

plugins:atli_tls_tcp:session_cache_size
sessi on_cache_si ze is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

This defaults to no limit specified for C+ +.
This defaults to 100 for Java.

129

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

130

In this chapter

CHAPTER 8

Principal
Propagation

Principal propagation is a compatibility feature of Artix that is
designed to facilitate interoperability with legacy Orbix
applications.

This chapter discusses the following topics:

Introduction to Principal Propagation page 132
Configuring page 133
Programming page 136
Interoperating with .NET page 139

131

CHAPTER 8 | Principal Propagation

Introduction to Principal Propagation

Overview

Supported bindings/transports

Interoperability

132

Artix principal propagation is a transport-neutral mechanism that can be
used to transmit a secure identity from a client to a server. It is not
recommended that you use this feature in new applications. Principal

propagation is provided primarily in order to facilitate interoperability with
legacy Orbix applications.

WARNING: By default, the principal is propagated across the wire in
plaintext. Hence, the principal is vulnerable to snooping. To protect
against this possibility, you should enable SSL for your application.

Support for principal propagation is limited to the following bindings and
transports:

CORBA binding—the principal is sent in a GIOP service context.
SOAP over HTTP—the principal is sent in a SOAP header.

Note: If a CORBA call is colocated, the principal is not propagated unless
you remove the POA Col oc interceptor from the binding lists in the

artix. cfgfile. This has the effect of disabling the CORBA colocated
binding optimization.

The primary purpose of Artix principal propagation is to facilitate
interoperability with legacy Orbix applications, in particular for applications
running on the mainframe.

Because Artix uses standard mechanisms to propagate the principal, this
feature ought to be compatible with third-party products as well.

Configuring

Configuring

Overview This section describes how to configure Artix to use principal propagation.
The following aspects of configuration are described:
®* CORBA.
® SOAP over HTTP.
® Routing.
Note: Principal configuration is not supported for any other bindings,
apart from CORBA and SOAP over HTTP.

CORBA

To use principal propagation with a CORBA binding, you must set the
following configuration variables in your arti x. cf g file (located in the
ArtixInstallDirl arti x/ 1. 3/ et ¢/ domai ns directory):

Example 16: Configuring Principal Propagation for a CORBA Binding

pol i ci es: gi op: interop_policy:send _principal = "true";
pol i ci es: gi op: i nterop_pol i cy: enabl e_pri nci pal _service_context =
"true";

You can either add these settings to the global scope or to a specific
sub-scope (in which case you must specify the sub-scope to the - CRBnane
command line switch when running the Artix application).

SOAP over HTTP SOAP over HTTP requires no special configuration to support principal

propagation. The Artix SOAP binding will always add a principal header, if
you switch on message attributes in your code. The following cases arise:
® Message attributes enabled and principal set explicitly—the specified
principal is sent in the principal header.

Message attributes enabled and principal not set—Artix reads the
username from the operating system and sends this username in the
principal header.

Message attributes not enabled—no principal header appears in the
request message.

133

CHAPTER 8 | Principal Propagation

Routing

134

If you want a SOAP server to authenticate a propagated principal using the
iS2 security service, however, you do need to add some settings to the
server's configuration scope in your arti x. cf g file, as shown in

Example 17.

Example 17: Configuring Principal Authentication for SOAP

Security Layer Settings

pol i ci es: asp: enabl e_security = "true";

pol i ci es: asp: enabl e_aut hori zation = "true";

pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi hg =
"file://C\artix/artix/1.2/denos/secure_hel |l o_worl d/ http_soap
/ confi g/ hell oworld_action_rol e_mappi ng. xm";

pl ugi ns: asp: aut hori zati on_real m= "| ONAQ obal Real nf;

pl ugi ns: asp: security_type = "PR NA PAL";
pl ugi ns: asp: def aul t _password = "def aul t _password";

Setting pl ugi ns: asp: security_type equal to PR NO PAL specifies that the
received principal serves as the username for the purpose of authentication.
The pl ugi ns: asp: def aul t _passwor d value serves as the password for the
purpose of authentication. This latter setting is necessary because, although
the iS2 service requires a password, there is no password propagated with
the principal.

WARNING: The procedure of supplying a default password for the
principal enables you to integrate principals with the iS2 service. Users
identified in this way, however, do not have the same status as properly
authenticated users. For security purposes, such users should enjoy lesser
privileges and be treated in the same way as unauthenticated users.

The net effect of the configuration shown in Example 17 is that the SOAP
server performs authentication by contacting the central iS2 security service.

See also “Security Layer” on page 18 and “Configuring the iS2 Server” on
page 25 for more details about configuring the iS2 service.

If you are using the Artix routing feature, you need to modify the WSDL by
adding a <rout i ng: pr opagat el nput At t ri but e> tag, as shown in
Example 18.

Configuring

Example 18: Configuring a Router to Support Principal Propagation
<definitions ... >

<routing: route name="route_from corba_to_soap">

<routing: source service="tns:client"
port="Corbadient"/>

<routing: destination service="tns: server"

port =" SoapSer ver "/ >

<routi ng: propagat el nput At tri bute name="Pri nci pal "/ >

</routing:route>
<definitions>

135

CHAPTER 8 | Principal Propagation

Programming

Overview

Client example

136

This section describes how to program an Artix client and server to set
(client side) and get (server side) a principal value. The code examples are
written using the transport-neutral message attributes API.

Example 19 shows how to set the principal prior to invoking an operation,
echoString(), on a proxy object, of M/Proxy type.

Example 19: Setting a Principal on the Client Side

/] C++
M/Proxy proxy;

/1 Switch nessage attributes on.
proxy. get _port().use_input_message _attributes(true);

// Set the "Principal" attribute.
MessageAt tri but es& i nput _attributes =

proxy. get _port().get_input_message_attributes();
input_attributes.set_string("Principal", "theprincipal");

// Now use the proxy as nornal .
proxy. echoString();

The preceding client example can be explained as follows:

1. You must call use_nessage_attributes() on the proxy's port object to
enable message attributes (which are responsible for propagating the
principal). Because message attributes add a performance penalty,
they are disabled by default.

2. This line gets a reference to the proxy’s input message attributes

object.

3. This line uses a transport-neutral API to set the Pri nci pal message

attribute.

Server example

(o) IS, B

Programming

4. This line invokes a remote WSDL operation, echoString(), which
includes the Princi pal attribute in the input message. The precise
mechanism used for propagating the principal value is transport
specific.

Example 20 shows how to read the principal on the server side, when the
servant is invoked by a client that uses principal propagation.

Example 20: Reading the Principal on the Server Side

/] C++

/1 Overide the base Port activation method.
void M/l npl::activate(lT _Bus::Port& port)

{

}

port.use_i nput _nessage_attributes(true);

// in operation..
void Myl npl::echoString(const | T _Bus::String& inputString,
I T_Bus: : String& Response)
| T_THRON DECL((| T_Bus: : Excepti on))
{
Response = i nput Stri ng;

try

{
Qurrent & current =get _bus()->get_current();
Port & port=current.get_operation().get_port();
const String& the_principal =

port().get_input_message_attributes().get_string(
"Principal");

}
catch (1 T_Bus:: NoSuchAttri buteException) { }
}

The preceding server example can be explained as follows:

1. By overiding the port’s virtual activation method, you ensure that each
port created for this servant will have its attributes set properly.

2. You must call use_message_attributes() on the servant base class to
enable message attributes. Because message attributes add a
performance penalty, they are disabled by default.

137

CHAPTER 8 | Principal Propagation

138

This is the implementation of the echoString() operation that was
called in Example 19.

Get the Qurrent object from the Bus. The Qurrent object holds
references to the port.

Get a reference to the port from the Qurrent object.

This line uses the transport-neutral message attribute API to read the
Princi pal value received from the client.

If the client has not sent a Pri nci pal attribute, the

I T_Bus: : NoSuchAt t ri but eExcept i on exception is thrown.

Interoperating with .NET

Interoperating with .NET

Overview If your Artix applications must interoperate with other Web service products,
for example .NET, you need to modify your WSDL contract in order to make
the principal header interoperable. This section describes the changes you
can make to a WSDL contract to facilitate interoperability with other Web
services platforms.

In this section This section contains the following subsections:
Explicitly Declaring the Principal Header page 140
Modifying the SOAP Header page 142

139

CHAPTER 8 | Principal Propagation

Explicitly Declaring the Principal Header

Overview

Declaring the principal header in
WSDL

140

Artix applications do not require any modifications to the WSDL contract in
order to use principal headers. Whenever input message attributes are
enabled (set by programming), an Artix service expects to receive the user's
principal in a SOAP header.

In contrast to this, non-Artix services, for example, .NET services, require
the principal header to be declared explicitly in the WSDL contract.
Otherwise, the non-Artix services would be unable to access the principal.

Example 21 shows the typical modifications you must make to a WSDL
contract in order to make the principal value accessible to non-Artix
applications.

Example 21: WSDL Declaration of the Principal Header

<definitions ... >
<t ypes>
<schema t ar get Namespace="TypeSchema" ... >

<el enent name="princi pal " type="xsd:string"/>
</ schema>
</ type>
<nessage target Namespace="http://schenas. i ona. coni security"

nane="pri nci pal ">
<part el enent =" TypePrefix: princi pal " name="pri nci pal "/ >

</ message>
<binding ... xmns:sec="http://schenas.iona.consecurity">
<operation ...>
<i nput >
<soap: body ...>
<soap: header message="sec: pri nci pal "
part="principal " use="literal ">
</i nput >
</ oper at i on>
</ bi ndi ng>

Interoperating with .NET

Example 21: WSDL Declaration of the Principal Header

</ definitions>

The preceding WSDL extract can be explained as follows:

1.

Declare a <pri nci pal > element in the type schema, which must be
declared to be of type, xsd: stri ng. In this example, the <pri nci pal >
element belongs to the TypeSchema namespace.

Add a new <nessage> element.

The <part > tag’s el ement attribute is set equal to the QName of the
preceding pri nci pal element. Hence, in this example the TypePrefix
appearing in el ement =" TypePrefix: pri nci pal " must be a prefix
associated with the TypeSchema namespace.

Edit the binding, or bindings, for which you might need to access the
principal header. You should define a prefix for the

htt p: / / schenas. i ona. cond secur i t y namespace within the <bi ndi ng>
tag, which in this example is sec.

Edit each operation for which you might need to access the principal
header.

Add a <soap: header > tag to the operation’s input part, as shown.

141

CHAPTER 8 | Principal Propagation

Modifying the SOAP Header

Overview It is possible to change the default format of the principal header by making
appropriate modifications to the WSDL contract. It is usually not necessary
to modify the header format in this way, but in some cases it could facilitate
interoperability.

Default SOAP header By default, when a client uses principal propagation with SOAP over HTTP,
the input message sent over the wire includes the following form of header:

<SQOAP- ENV: Header >
<sec: princi pal xmns:sec="http://schenas.iona.conisecurity"
xsi : type="xsd: string">ny_princi pal </ sec: pri nci pal >
</ SOAP- ENV: Header >

Custom SOAP header You can change the form of the SOAP header that is sent over the wire to
have the following custom format (replacing <sec: pri nci pal > by a custom
tag, <sec: PrincipalTag>):

<SQOAP- ENV: Header >
<sec: PrincipalTag xm ns: sec="http: //schemas. i ona. coni security"
xsi : type="xsd: string">ny_princi pal </ sec: PrincipalTag>
</ SOAP- ENV: Header >

WSDL modifications To change the tag that is sent in the SOAP header to be PrincipalTag, you
can modify your WSDL contract as shown in Example 22.

Example 22: Customizing the Form of the Principal Header

<definitions ... >
<t ypes>
<schema t ar get Nanespace="TypeSchema" ... >
1 <el ement name="PrincipalTag" type="xsd:string"/>
</ schema>
</type>

<nessage target Namespace="http: //schenas. i ona. coni security"

142

Interoperating with .NET

Example 22: Customizing the Form of the Principal Header

nane="pri nci pal ">
<part el ement =" TypePrefix: PrincipalTag" name="pri nci pal "/ >
</ message>

<binding ... xmns:sec="http://schenas.iona.con security">
<operation ...>
<i nput >
<soap: body ...>

<soap: header message="sec: pri nci pal "
part="principal " use="literal ">
</i nput >
</ oper at i on>
</ bi ndi ng>

</ definitions>

The preceding WSDL extract can be explained as follows:

1.

Modify the <pri nci pal > element in the type schema to give it an
arbitrary QName. In this example, the <PrincipalTag> element belongs
to the TypeSchema namespace.

The <part > tag's el enent attribute is set equal to the QName of the
preceding pri nci pal element. Hence, in this example the TypePrefix
appearing in el ement =" TypePrefix: PrincipalTag" must be a prefix
associated with the TypeSchema namespace.

The <soap: header > tag must be defined precisely as shown here. That
is, when writing or reading a principal header, Artix looks for the
princi pal part of the message with QName, princi pal , in the
namespace, http://schenas. i ona. con security.

143

CHAPTER 8 | Principal Propagation

144

Overview

In this chapter

CHAPTER 9

Propagating
Security Tokens
Using SOAP

Message Headers

Artix uses Web Services Security compliant security tokens to
ensure maximum interoperability with other Web services.

To ensure that Web services and Web service clients developed using Artix
can interoperate with the widest possible array of Web services, Artix
supports the WS Security specification for propagating Kerberos security
tokens and username/password security tokens in SOAP message headers.
The security tokens are placed into the SOAP message header using Artix
APIs that format the tokens and place them in the header correctly.

This chapter discusses the following topics:

Propagating a Username/Password Token page 146

Propagating a Kerberos Token page 148

145

CHAPTER 9 | Propagating Security Tokens Using SOAP Message Headers

Propagating a Username/Password Token

Overview

Procedure

Example

146

Many Web services use simple username/password authentication to ensure
that only preapproved clients an access them. Artix provides a simple client
side API for embedding the username and password into the SOAP message
header of requests in a WS Security compliant manner.

Embedding a username and password token into the SOAP header of a

request using the Artix APIs requires you to do the following:

1. Instruct the proxy’s port object to use the message attributes. The
message attributes are responsible for propagating the token. Because
the use of message attributes results in a performance hit, they are not
used by default.

2. Get a reference to the input message’s message attributes.

Set the VBSEUser naneToken property on the message attributes using
the set _string() method to specify the username.

4. Set the WsSEPasswor dToken property on the message attributes using
the set _string() method to specify the password.

Example 23 shows how to set the username/password token prior to
invoking an operation on a proxy object of M/Pr oxy type.

Example 23: Setting a Username/Password Token on the Client Side
[l C++
M/Pr OXY proxy;

// Switch message attributes on.
proxy. get _port().use_input_message _attributes(true);

I/ Get the nessage attri butes.
MessageAt tri butes& i nput _attributes =
proxy. get _port().get_input_message_attributes();

Propagating a Username/Password Token

Example 23: Setting a Username/Password Token on the Client Side

//Set the usernane nessage attribute.
input _attributes. set_string("WSEUser naneToken",
“artix_user");

//Set the usernane nessage attribute.
input _attributes. set_string("WSEPasswor dToken",
"artix");

147

CHAPTER 9 | Propagating Security Tokens Using SOAP Message Headers

Propagating a Kerberos Token

Overview

Acquiring a Kerberos Token

Embedding the token in the SOAP
header

148

Using the Kerberos Authentication Service requires you to make a few
changes to your client code. First you need to acquire a valid Kerberos
token. Then you need to embed it into the SOAP message header of all the
request being made on the secure server.

To get a security token from the Kerberos Authentication Service is you must
use platform specific APIs and then base64 encode the returned binary
token so that it can be placed into the SOAP header.

On UNIX platforms use the GSS APIs to contact Kerberos and get a token for
the service you wish to make requests upon. On Windows platforms use the
Microsoft Security Framework APIs to contact Kerberos and get a token for
the service you wish to contact.

Embedding a Kerberos token into the SOAP header of a request using the

Artix APIs requires you to do the following:

1. Instruct the proxy’s port object to use the message attributes. The
message attributes are responsible for propagating the token. Because
the use of message attributes results in a performance hit, they are not
used by default.

2. Get a reference to the input message’s message attributes.

Set the Kerberos token property in the message headers using the
message attributes’ set _string() method. The Kerberos token
property is named WBSEKer ber osv5SToken. The property’s value is the
base64 encoded string generated from the token obtained from the
Kerberos Authentication Service.

Propagating a Kerberos Token

Example 24 shows how to set the Kerberos token prior to invoking an
operation on a proxy object of M/Proxy type.

Example 24: Setting a Kerberos Token on the Client Side

/] C++
M/Pr oxy pr oxy;

// The val ue of the token string placed in the SOAP header is a

/|l base64 encoded string created fromthe token reci eved from
/'l Kerberos

String token_string = base64EncodedKer ber osToken;

// Switch message attributes on.
proxy. get_port().use_i nput_message_attributes(true);

/1 Set the Kerberos token attri bute.
MessageAttributes& i nput_attributes =
proxy.get_port().get_input_nessage attributes();
input _attributes. set_string("WsSEKer ber osv5SToken",
token_string);

149

CHAPTER 9 | Propagating Security Tokens Using SOAP Message Headers

150

Overview

Namespace

CHAPTER 10

Setting Security
Properties in Artix
Contracts

Artix allows you to configure a number of security features
directly from the Artix contract describing your system.

Ocassionally you will need finer grained control of your systems security
than is provided through the standard Artix and security configuration. Artix
provides the ability to control security on a per-port basis by describing the
service’s security settings in the Artix contract that describes it. This is done
by using the <bus: securi t y> extenstion in the <port > element describing
the service's address and transport details.

The XML namespace defining <bus: securi ty> is

http: //schenas/ i ona. con bus. You will need to add the following line to
the definitions element of any contracts that use the <bus: security>
element:

xm ns: bus="htt p: // schenas. i ona. coni bus"

151

CHAPTER 10 | Setting Security Properties in Artix Contracts

<bus:security> attributes

All of the attributes to <bus: securi t y> map directly to Artix configuration

variables controling security. The settings specified in the contract overide
the settings specified in the Artix configuraiton file, arti x. cf g. They are all
optional and are listed in Table 4.

Table 4:

Contract Security Attributes

Configuration Variable

Contract Attribute

pl ugi ns: i s2_aut hori zati on: acti on_r ol e_nappi ng

i s2Aut hori zat i onAct i onRol eMappi ng

pol i ci es: asp: enabl e_security

enabl eSecurity

pol i ci es: asp: enabl e_aut hori zati on

enabl eAut hori zati on

pl ugi ns: asp: aut henti cati on_cache_si ze

aut hent i cati onCacheS ze

pl ugi ns: asp: aut henti cati on_cache_ti meout

aut hent i cati onCacheTi neout

pl ugi ns: asp: security_type

securityType

pl ugi ns: asp: security_| evel

securityLevel

pl ugi ns: asp: aut hori zati on_real m

aut hori zati onReal m

pl ugi ns: asp: def aul t _passwor d

def aul t Passwor d

For a description of security configuration see “Security Configuration” on

page 155.

152

Examples Disabling security for a service
Example 25 shows how to disable security for the service wi dget Ser vi ce.

Example 25: Disabling Security in an Artix Contract

<definitions
xm ns: bus="ht t p: / schenas. i ona. coni bus"
>

<servi ce name="wi dget Servi ce">
<port name="wi dget Servi cePort" bi ndi ng="t ns: wi dget SOAPBI ndi ng" >
<soap: address | ocation="http://| ocal host : 8080"/ >
<bus: security enabl eSecurity="fal se" />
</ port>
</ servi ce>
</ definitions>

Enabling security for a service

Example 26 shows how to enable security for the service
per sonal | nf oSer vi ce. For this example, it is assumed that no security
configuration was specified in the Artix configuration.

Example 26: Enabling Security in an Artix Contract

<definitions
xm ns: bus="ht t p: / schenas. i ona. coni bus"
>

<servi ce name="personal | nf oServi ce">
<port name="personal | nfoServi cePort" bi ndi ng="t ns: i nf 0SOAPBi ndi ng" >
<soap: address | ocation="http://| ocal host : 8080"/ >
<bus: security enabl eSecurity="true"
i s2Aut hori zat i onAct i onRol eMappi ng="file://c:/ionalartix/1.3/bin/action_role.xm"
enabl eAut hori zati on="t r ue"
securitylevel =" REQUEST_LEVEL"
securi tyType="USERNAME PASSWORD'
aut hent i cat i onChacheSi ze="5"
aut hent i cati onChaceTi neout =" 10" />
</ port>
</ servi ce>
</ definitions>

153

CHAPTER 10 | Setting Security Properties in Artix Contracts

The <bus: security> element in Example 26 fully configures
per sonal | nf oSer vi ce to use WS Security compliant username/password
authentication.

Overiding specific security properties for a service

Example 27 shows how to specify that a particular service,

ker ber osW dget Ser vi ce, is to use WS Security compliant Kerberos token for
authentication while the remaining services in the domain are using HTTPS
authentication.

Example 27: Changing Security Configuration in an Artix Contract

<definitions
xm ns: bus="ht t p: / schenas. i ona. coni bus"
>

<servi ce name="ker ber osW dget Servi ce">
<port name="ker ber osW dget Servi cePort" bi ndi ng="t ns: wi dget SOAPBi ndi ng" >
<soap: address | ocation="http://| ocal host: 8080"/ >
<bus: security securitylevel =" REQUEST_ LEVEL"
securi tyType="KERBERCS' />
</ port>
</ servi ce>
</ definitions>

154

In this appendix

APPENDIX A

Security
Configuration

This appendix provides details of Artix security configuration
variables.

This appendix contains the following sections:

plugins Namespace page 156
policies Namespace page 161
principal_sponsor Namespace page 170
principal_sponsor:csi Namespace page 172

155

CHAPTER A | Security Configuration

plugins Namespace

List of configuration variables The pl ugi ns namespace contains the following configuration variables:

plugins:asp:authentication_cache_size

For SOAP bindings, the maximum number of credentials stored in the
authentication cache. If this size is exceeded the oldest credential in the
cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

plugins:asp:authentication_cache_timeout

For SOAP bindings, the time (in seconds) after which a credential is
considered stale. Stale credentials are removed from the cache and the
server must re-authenticate with iS2 on the next call from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

plugins:asp:authorization_realm

Specifies the iSF authorization realm to which an Artix server belongs. The
value of this variable determines which of a user's roles are considered
when making an access control decision.

For example, consider a user that belongs to the ej b- devel oper and

cor ba- devel oper roles within the Engi neeri ng realm, and to the ordi nary
role within the Sal es realm. If you set pl ugi ns: asp: aut hori zati on_real m
to Sal es for a particular server, only the or di nary role is considered when
making access control decisions (using the action-role mapping file).

The default is | ONAG obal Real m

156

plugins Namespace

plugins:asp:default_password

plugins:asp:security type

When the pl ugi ns: asp: security_type variable is set to PR NQ PAL, this
variable specifies the password to use on the server side. The

pl ugi ns: asp: def aul t _passwor d variable is used to get around the
limitation that a PRI NO PAL identity is propagated without an accompanying
password.

When the PRI NO PAL security type is selected, the asp plug-in uses the
received client principal together with the password specified by

pl ugi ns: asp: def aul t _passwor d to authenticate the user through the iS2
security service.

The default value is the string, def aul t _passwor d.

Specifies the source of the user identity that is sent to the iS2 server for
authentication. Because the IONA Security Framework supports several
different security mechanisms for propagating user identities, it is necessary
to specify which of the propagated identities is actually used for the
authentication step. The following options are currently supported by the
asp plug-in:

USERNAME_PASSWIRD Authenticate the username and password
propagated as WSDL message attributes. For
example, you can configure these values on the
client side using the User Nane and Password
attributes in the <htt p-conf: cli ent > tag in the

WSDL contract.

CERT_SUBJECT Authenticate the Common Name (CN) from the
client certificate’s subject DN.

ENOCDED TOKEN Reserved for future use.

KERBERCS_TCKEN Authenticate the Kerberos token. You must have

the Kerberos adapter configured to use this option.
For more information see “Configuring the Kerberos
Adapter” on page 36.

157

CHAPTER A | Security Configuration

PR NG PAL Authenticate the CORBA principal. This is needed
to support interoperability with legacy CORBA
applications. This options can be used in
combination with the
pl ugi ns: asp: def aul t _passwor d setting.

plugins:asp:security _level

Specifies where iS2 server will look for the security information to use for
authentication. The following options are supported by the asp plug-in:

MESSAGE_LEVEL Get security information from the transport header. This
is the default.

REQUEST_LEVEL Get the security information from the message header.

plugins:gsp:authentication_cache_size

For CORBA bindings, specifies the maximum number of credentials stored
in the authentication cache. If this size is exceeded the oldest credential in
the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

plugins:gsp:authentication_cache_timeout

For CORBA bindings, specifies the time (in seconds) after which a credential
is considered stale. Stale credentials are removed from the cache and the
server must re-authenticate with iS2 on the next call from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

plugins:gsp:authorization_realm

For CORBA bindings, specifies the iSF authorization realm to which a server
belongs. The value of this variable determines which of a user’s roles are
considered when making an access control decision.

158

plugins Namespace

For example, consider a user that belongs to the ej b- devel oper and
cor ba- devel oper roles within the Engi neeri ng realm, and to the ordi nary
role within the Sal es realm. If you set pl ugi ns: gsp: aut hori zati on_real m
to Sal es for a particular server, only the ordi nary role is considered when
making access control decisions (using the action-role mapping file).

plugins:iiop_tls:buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the i i op_t|s plug-in reads this
variable’s value instead of the

pl ugi ns: i i op: buf fer _pool s: max_i ncom ng_buf fers_i n_pool variable’s
value.

plugins:iiop_tls:buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_t|s plug-in reads this
variable's value instead of the

pl ugi ns: i i op: buf f er_pool s: max_out goi ng_buf f ers_i n_pool variable's
value.

plugins:iiop_tls:enable_iiop_1_0_client_support

When this variable is set, the iiop_t1s plug-in reads this variable's value
instead of the pl ugins:iiop:enable iiop_1_0 client_support variable's
value.

plugins:iiop_tls:incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to IIOP. [IOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the i i op_t1s plug-in reads this variable’s value
instead of the pl ugi ns: i i op: i ncom ng_connections: hard_linit variable's
value.

159

CHAPTER A | Security Configuration

plugins:iiop_tls:incoming_connections:soft_limit

Specifies the number of connections at which 110P should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_t1s plug-in reads this variable's value
instead of the pl ugi ns: i i op: i ncom ng_connecti ons: soft_linit variable’s
value.

plugins:iiop_tls:outgoing_connections:hard_limit

When this variable is set, the iiop_t1s plug-in reads this variable’s value

instead of the pl ugi ns: i i op: out goi ng_connecti ons: hard_l i nt variable’s
value.

plugins:iiop_tls:outgoing_connections:soft_limit

When this variable is set, the iiop_t1s plug-in reads this variable’s value

instead of the pl ugi ns: i i op: out goi ng_connections: soft_|inmt variable’s
value.

plugins:is2_authorization:action_role_mapping
Specifies the action-role mapping file URL. For example:

pl ugi ns: i s2_aut hori zati on: acti on_rol e_nappi ng =
"file:///nylaction/rol e/ mappi ng";

160

policies Namespace

policies Namespace

List of configuration variables The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application.

policies:allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is f al se.

This configuration variable is applicable only in the special case where the

target secure invocation policy is set to require NoPr ot ect i on (a semi-secure
server).

policies:asp:enable_authorization

A boolean variable that specifies whether Artix should enable authorization
using the IONA Security Framework. Default is f al se.

Note: This feature requires that the pol i ci es: asp: enabl e_security
variable is also set to true.

policies:asp:enable_security

A boolean variable that specifies whether Artix should enable authentication
using the IONA Security Framework. Default is f al se.

policies:certificate_constraints_policy

A list of constraints applied to peer certificates—see “Applying Constraints
to Certificates” on page 106 for the syntax of the pattern constraint
language.

161

CHAPTER A | Security Configuration

policies:client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options. For defaults, see
“Choosing Client Behavior” on page 116.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

policies:client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options. For
defaults, see “Choosing Client Behavior” on page 116.

This policy can be upgraded programmatically using either the QoP or the
Est abl i shTrust policies.

policies:csi:attribute_service:client_supports

A client-side policy that specifies the association options supported by the
CSIv2 attribute service (principal propagation). The only association option
that can be specified is I denti t yAsserti on. This policy is normally
specified in an intermediate server so that it propagates CSIv2 identity
tokens to a target server. For example:

policies:csi:attribute_service:client_supports =
["lIdentityAssertion"];

policies:csi:attribute_service:target_supports

A server-side policy that specifies the association options supported by the
CSIv2 attribute service (principal propagation). The only association option
that can be specified is I denti t yAsserti on. For example:

policies:csi:attribute_service:target_supports =
["lIdentityAssertion"];

162

policies Namespace

policies:csi:auth_over_transport:client_supports

A client-side policy that specifies the association options supported by
CSIv2 authorization over transport. The only association option that can be
specified is Est abl i shTrust 1 nQ i ent. For example:

pol i cies:csi:auth_over_transport:client_supports =
["EstablishTrustIndient"];

policies:csi:auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

policies:csi:auth_over_transport:target_requires

A server-side policy that specifies the association options required for CSIv2
authorization over transport. The only association option that can be
specified is Est abl i shTrust 1 nQ i ent. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustIndient"];

policies:csi:auth_over_transport:target_supports

A server-side policy that specifies the association options supported by
CSIv2 authorization over transport. The only association option that can be
specified is Est abl i shTrust 1 nQ i ent. For example:

pol i cies: csi:auth_over_transport:target_suppor