
Artix ESB®

Using the Artix Library
Version 5.5, December 2008

Progress Software Corporation and/or its subsidiaries may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this publication. Except as expressly provided in any written license
agreement from Progress Software Corporation, the furnishing of this publication does
not give you any license to these patents, trademarks, copyrights, or other intellectual
property. Any rights not expressly granted herein are reserved.
Progress, IONA, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation
and/or its subsidiaries in the U.S. and other countries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the U.S. and other countries. All other trademarks
that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate Progress Software Corporation makes no
warranty of any kind to this material including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Progress Software Corporation shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001�2008 IONA Technologies PLC, a wholly-owned subsidiary of
Progress Software Corporation. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: January 28, 2009

Contents

Chapter 1 Artix Library Overview 5

Artix Documentation Library 6
Documentation Conventions 12

Chapter 2 Suggested Reading Paths 15
SOA Architects 16
Administrators 18
All Service Developers 21
Integration Use Case 23
New Development Use Cases 26
3

CONTENTS
4

CHAPTER 1

Artix Library
Overview
This chapter describes the contents of the Artix Library, how
to get additional information, and the documentation
conventions used.

In this chapter This chapter includes the following topics

Artix Documentation Library page 6

Documentation Conventions page 12
 5

CHAPTER 1 | Artix Library Overview
Artix Documentation Library

Overview The Artix documentation library is organized into the following sections:

� Getting Started

� Designing Artix Solutions

� Developing Artix Applications

� Deploying and Managing Artix Solutions

� Using Artix Services

� Integrating Artix Solutions

� Reference Material

� Artix Online Help

Getting Started The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

� Release Notes contains release-specific information about Artix.

� Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

� Using the Artix Library (this book) introduces the Artix documentation
library, explains its conventions, and provides suggested reading paths.

� Getting Started with Artix describes basic Artix and WSDL concepts,
and shows a simple example application.

� Artix Online Help Infocenter describes how to use the Artix Designer
GUI tools to build Artix solutions.

� Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

� Artix Glossary is a comprehensive reference of Artix terms. It provides
quick definitions of the main Artix components and concepts. All terms
are defined in the context of the development and deployment of Web
services using Artix.
6

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../cookbook/index.htm
../glossary/index.htm
../help/index.jsp

Artix Documentation Library
Designing Artix Solutions The books in this section discuss how to use Artix to solve real-world
problems. They describe how to build service-oriented architectures with
Artix and how Artix uses WSDL to define services:

� Building SOAs with Artix provides an overview of service-oriented
architectures and describes how they can be implemented using Artix.

� Writing Artix Contracts describes the components of an Artix WSDL
contract. Special attention is paid to Artix-specific WSDL extensions.

� Artix Bindings and Transports, C++ Runtime describes the WSDL
extensions used to define payload formats and transports for Artix
services written in C++ or JAX-RPC.

� Artix Bindings and Transports, Java Runtime describes the Artix WSDL
extensions used to define payload formats and transports for Artix
services written in JAX-WS or JavaScript.

Developing Artix Applications The books in this section describe how to use the Artix APIs to build new
services:

� Developing Artix Applications in C++ explains how to implement
services using the Artix C++ API.

� Developing Advanced Artix Plug-ins in C++ explains how to
implement advanced Artix plug-ins (for example, interceptors) using
the Artix C++ API.

� Developing Artix Applications with JAX-RPC explains how to
implement services using the Artix Java API for XML-Based Remote
Procedure Call.

� Developing Artix Applications with JAX-WS explains how to implement
services using the Artix Java API for XML-Based Web Services.

� Developing Artix Applications with JavaScript explains how to
implement services using the Artix JavaScript API.

� Developing Artix Database Services explains how to expose databases
as Web services using Artix command-line tools and Artix Designer GUI
tools. This guide applies to services written in C++, JAX-RPC,
JAX-WS, or JavaScript.

� WSDLGen Guide explains how to generate C++, JAX-RPC, and
JAX-WS code using the Artix scripting tools.
 7

../soa/index.html
../contract/index.html
../prog_guide/index.htm
../plugin_guide/index.htm
../jaxrpc_pguide/index.htm
../wsdlgen/index.htm
../db_guide/index.html
../bindings/cpp/index.html
../bindings/java/index.html
../jaxws_pguide/index.html
../js_pguide/index.html

CHAPTER 1 | Artix Library Overview
Deploying and Managing Artix
Solutions

The books in this section describe how to configure, deploy, and manage
Artix applications and services in your environment:

� Configuring and Deploying Artix Solutions, C++ Runtime explains how
to set up your Artix environment and how to configure and deploy Artix
services written in C++ or JAX-RPC.

� Configuring and Deploying Artix Solutions, Java Runtime explains how
to set up your Artix environment and how to configure and deploy Artix
Java services (for example, written in JAX-WS or JavaScript).

� Artix Management Guide, C++ Runtime explains how to monitor and
manage Artix services using Java Management Extensions. It also
describes how to integrate Artix solutions with a range of third-party
enterprise and SOA management systems. This guide applies to
services written in C++ or JAX-RPC.

� Artix Management Guide, Java Runtime explains how to monitor and
manage Artix Java services using Java Management Extensions. It also
describes how to integrate Artix solutions with a range of third-party
enterprise and SOA management systems. This guide applies to
services written in JAX-WS or JavaScript.

Using Artix Services The books in this section describe how to use the services provided with
Artix:

� Artix Router Guide, C++ Runtime explains how to integrate and
manage services using the Artix C++ router. This guide applies to
services written in C++ or JAX-RPC.

� Artix Java Router, Getting Started introduces the Artix Java router and
describes how to create, build and run a simple example. This guide
applies to services written in JAX-WS.

� Artix Java Router, Programmer�s Guide provides details of how to
program routing processors and describes how to implement custom
components.

� Artix Java Router, Deployment Guide explains how to deploy a
standalone Artix Java router, and how to deploy into the Spring
container. This guide applies to services written in JAX-WS.

� Artix Java Router, Defining Routes provides an introduction to defining
routes using the Java-fluent DSL and the Spring XML syntax.
8

../deploy/cpp/index.htm
../mgmt/cpp/index.htm
../routing/index.htm
../java_routing/getting_started/index.html
../java_routing/prog_guide/index.html
../java_routing/deploy_guide/index.html
../java_routing/defining_routes/index.html
../mgmt/java/index.htm
../deploy/java/index.html

Artix Documentation Library
� Implementing Enterprise Integration Patterns describes how you can
use Artix Java Router to implement Enterprise Integration Patterns
(from the book of the same name by Gregor Hohpe and Bobby Woolf).

� Artix Locator Guide explains how clients can find services using the
Artix locator. This guide applies to services written in C++, JAX-RPC,
JAX-WS, or JavaScript.

� Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager. This guide applies to services written
in C++ or JAX-RPC.

� Artix C++ Transactions Guide explains how to enable Artix
applications written in C++ to participate in transacted operations.

� Artix JAX-RPC Transactions Guide explains how to enable Artix
applications written in JAX-RPC to participate in transacted operations.

� Artix Security Guide, C++ Runtime explains how to configure and
develop secure Artix applications. This guide applies to services written
in C++ or JAX-RPC.

� Artix Security Guide, Java Runtime explains how to configure and
develop secure Artix applications. This guide applies to services written
in JAX-WS or JavaScript.

Integrating Artix Solutions The books in this section describe how to integrate Artix solutions with other
middleware technologies:

� Artix for CORBA provides information on using Artix in a CORBA
environment. This guide applies to services written in C++, JAX-RPC,
JAX-WS, or JavaScript.

� Artix for J2EE (JAX-RPC) provides information on using Artix to
integrate with J2EE applications. This guide applies to services written
in JAX-RPC.

� Artix for J2EE (JAX-WS) provides information on using Artix to
integrate with J2EE applications. This guide applies to services written
in JAX-WS.

For details on integrating with Microsoft�s .NET technology, see the
documentation for Artix Connect.
 9

../locator_guide/index.htm
../session_mgr/index.htm
../transactions/cpp/index.htm
../transactions/java/index.htm
../security_guide/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../java_routing/eip/index.html
../security_guide_java/index.html
../j2ee-jaxws/index.html

CHAPTER 1 | Artix Library Overview
Reference Material These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, and command-line tools.
The reference documentation includes:

� Artix Command Line Reference

� Artix Configuration Reference, C++ Runtime

� Artix Configuration Reference, Java Runtime

� Artix WSDL Extension Reference

� Artix JAX-RPC API Reference

� Artix JAX-WS API Reference

� Artix Security Framework Java API Reference

� Artix C++ API Reference

� Artix .NET API Reference

� WSDLGen Java API Reference

� WSDLGen JavaScript API Reference

� Artix Java Router, Java API Reference

� Artix Java Router, Configuration Reference

Artix Online Help Artix Designer and Artix Orchestration Designer include comprehensive
online help, providing:

� Step-by-step instructions on how to perform important tasks

� A full search feature

� Context-sensitive help for each screen

You can access the online help the following different ways:

� Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

� Press F1 for context-sensitive help.

� See the Artix Infocenter available online.

In addition, there are a number of cheat sheets that guide you through the
most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.
10

../command_ref/index.html
../config_ref/cpp/index.htm
../wsdl_ref/index.htm
../javadoc/rpc/ndex.htm
http://www.iona.com/support/docs/artix/5.1/cppdoc/index.html
../ndoc/index.html
../help/index.jsp
../java_routing/apidoc/index.xml
../java_routing/xml_ref/index.html
../wsdlgen_javadoc/index.html
../wsdlgen_jsdoc/index.html
../isf_javadoc/index.html
http://www.iona.com/support/docs/artix/5.1/javadoc/ws/index.html
../config_ref/java/index.html

Artix Documentation Library
Related documentation For information on related Artix products, see the following documentation:

� Artix Registry/Repository

� Artix Mainframe

� Artix Orchestration

� Artix Data Services

� Artix Connect

Getting the Latest Version The latest updates to the Artix documentation library can be found online.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library You can search the online documentation by using the Search box at the top
right of the documentation home page.

To search a particular library version, browse to the required index page,
and use the Search box at the top right of that page.

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Additional Resources The Knowledge Base contains helpful articles written by company experts
about Artix and other products.

The Update Center contains the latest releases and patches for Artix
products.

If you need help with this or any other Artix product, go to Online Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@progress.com.
 11

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/docs/artix/mainframe/5.1/index.xml
http://www.iona.com/support/docs/artix/repository/1.5/index.xml
http://www.iona.com/support/docs/artix/orchestration/5.1/index.xml
http://www.iona.com/support/docs/artix/data_services/3.8/index.xml
http://www.iona.com/support/docs/artix/connectwcf/1.5/index.xml

CHAPTER 1 | Artix Library Overview
Documentation Conventions

Overview This section shows the typographical and keying conventions used by the
Artix documentation library.

Typographical conventions The Artix library uses the following typographical conventions:

Fixed width Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
12

Documentation Conventions
Keying Conventions The Artix library uses the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 13

CHAPTER 1 | Artix Library Overview
14

CHAPTER 2

Suggested
Reading Paths
This chapter describes suggested reading paths for different
types of Artix users.

In this chapter This chapter includes the following topics

SOA Architects page 16

Administrators page 18

All Service Developers page 21

Integration Use Case page 23

New Development Use Cases page 26
 15

CHAPTER 2 | Suggested Reading Paths
SOA Architects

Overview This section describes a suggested reading path for SOA architects, and
includes suggestions for background reading.

SOA architect path SOA architects should start with the following:

1. Building Service Oriented Architectures with Artix presents an overview
of SOA and ESBs, of how Artix fits into SOA, and of how Artix works.

2. Installation Guide. You must read the following sections about
supported environments:

i. Supported Systems and Compilers

ii. Java, Compiler, and Artix Designer Requirements

3. Writing Artix Contracts includes the following information about basic
WSDL concepts and how to write a service interface:

i. Introduction. Overview of WSDL, the structure of a contract, and
the steps involved in writing a service contract.

ii. Designing Logical Data Units. How to create data types using
XML Schema.

iii. Defining Logical Messages Used by a Service. How to build the
data types into the messages that a service will use to implement
its operations.

iv. Defining Your Logical Interfaces: How to create a service
interface using the logical messages.

4. Artix Bindings and Transports, C++ Runtime describes the Artix
WSDL extensions used to define payload formats and transports for
Artix services written in C++ or JAX-RPC:

i. Read the relevant binding chapter that applies to your system (for
example, SOAP, Fixed, or XML).

ii. Read the relevant transport chapter that applies to your system
(for example, HTTP, Tuxedo, or JMS).
16

../soa/index.html
../contract/index.html
../install_guide/index.htm
../bindings/cpp/index.html

SOA Architects
5. Artix Bindings and Transports, Java Runtime describes the Artix WSDL
extensions used to define payload formats and transports for Artix
services written in JAX-WS or JavaScript.

i. Read the relevant binding chapter that applies to your system (for
example, SOAP, CORBA, or XML).

ii. Read the relevant transport chapter that applies to your system
(for example, HTTP, MQ, or JMS).

6. Artix Infocenter explains how to use the Eclipse-based Artix Designer
GUI tools to design WSDL service contracts and to generate C++,
JAX-RPC, and JAX-WS implementation code.

Background reading In addition, the following publications provide useful background
information on Web services, XML, and WSDL:

� Understanding Web Services: XML, WSDL, SOAP, and UDDI, by Eric
Newcomer

� Understanding SOA with Web Services, by Eric Newcomer and Greg
Lomow

� W3Schools online tutorials

(see http://www.w3schools.com)

♦ XML tutorial (http://www.w3schools.com/xml/default.asp)

♦ XSD tutorial (http://www.w3schools.com/schema/default.asp)

♦ XSLT tutorial (http://www.w3schools.com/xsl/default.asp)

� The W3C XML schema page

(see www.w3.org/XML/Schema)

� The W3C WSDL specification

(see www.w3.org/TR/wsdl)
 17

http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl
http://www.w3schools.com
../bindings/java/index.html
http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/schema/default.asp
http://www.w3schools.com/xsl/default.asp
http://infocenter.iona.com:8200/help/index.jsp

CHAPTER 2 | Suggested Reading Paths
Administrators

Overview This section describes a suggested reading path for Artix administrators in
both C++ and Java runtime environments.

All Artix administrators Administrators can approach the Artix library as follows:

1. Installation Guide describes all the prerequisites and procedures for
installing Artix on supported systems. You must read the following:

i. Supported Systems and Compilers

ii. Java, Compiler, and Artix Designer Requirements

iii. Installing Artix

C++ runtime administrators Administrators working with applications written in C++ or JAX-RPC
should read the following:

1. Configuring and Deploying Artix Solutions, C++ Runtime explains how
to configure and deploy Artix services written in C++ or JAX-RPC. It
explains Artix configuration, how to find contracts that control your
Artix services, and how to deploy Artix applications. You should start
with the following chapters:

i. Getting Started explains how to set up an Artix environment
using the artix_env script, and Artix system environment
variables.

ii. Artix Configuration explains concepts such as Artix .cfg
configuration files, scopes, namespaces, and variables.

iii. Artix Logging explains how to configure Artix logging for services
and Artix subsystems.

iv. Deploying Services in an Artix Container explains how to deploy
and manage C++ and Java services using an Artix container.

v. Deploying High Availability explains how to configure and deploy
high availability in Artix, which is based on Berkeley DB.
18

../install_guide/index.htm
../deploy/cpp/index.htm

Administrators
vi. Deploying Reliable Messaging explains how to configure and
deploy WS-RM and WS-Addressing for services in an Artix
runtime environment.

vii. Publishing WSDL Contracts explains how to publish WSDL files
that correspond to specific Web services, and enable clients to
access the WSDL file and invoke on the service.

viii. Accessing Contracts and References shows how to specify the
location of WSDL contracts and references in a configuration file
and on the command line.

2. Artix Configuration Reference, C++ Runtime provides a
comprehensive reference for the all configuration variables in an Artix
configuration domain.

Java runtime administrators Administrators working with applications written in JAX-WS or JavaScript
should read the following:

1. Configuring and Deploying Artix Solutions, Java Runtime explains how
to configure and deploy Artix Java services (for example, JAX-WS or
JavaScript). You should start with the following chapters:

i. Getting Started explains how to set your Artix Java runtime
system environment.

ii. Artix Java Configuration introduces the main concepts and
components in the Artix Java runtime configuration.It also
explains how to use Artix Java configuration files to manage your
applications.

iii. Deploying to the Spring Container outlines how to deploy and
manage an Artix endpoint in the Spring container.

2. Artix Configuration Reference, Java Runtime provides a comprehensive
reference for Artix configuration settings in Spring XML configuration
files.
 19

../config_ref/cpp/index.htm
../config_ref/java/index.html
../deploy/java/index.html

CHAPTER 2 | Suggested Reading Paths
Security and management Security administrators and administrators using management consoles
should read the following:

1. Artix Security Guide, C++ Runtime provides detailed information on
Artix security configuration and management. This guide applies to
services written in C++ or JAX-RPC.

2. Artix Security Guide, Java Runtime provides detailed information on
Artix security configuration and management. This guide applies to
services written in JAX-WS or JavaScript.

3. Artix Management Guide, C++ Runtime explains how to monitor and
manage Artix services using Java Management Extensions. It also
provides information on how to integrate Artix with various third-party
enterprise and SOA management systems, such as Progress Actional,
AmberPoint, and BMC Patrol. This guide applies to services written in
C++ or JAX-RPC.

4. Artix Management Guide, Java Runtime explains how to monitor and
manage Artix Java services using Java Management Extensions. It also
provides information on how to integrate Artix with various third-party
enterprise and SOA management systems, such as Progress Actional,
AmberPoint, and BMC Patrol. This applies to services written in
JAX-WS or JavaScript.

Background reading For background information on Web services, XML, and WSDL, see
�Background reading� on page 17.
20

../security_guide/index.htm
../mgmt/cpp/index.htm
../security_guide_java/index.html
../mgmt/java/index.htm

All Service Developers
All Service Developers

Overview This section describes an initial reading path for all types of service
development use case. You should follow this path before writing any code.

All developers All service developers should read the following path:

1. Building Service Oriented Architectures with Artix presents an overview
of SOA and ESBs, of how Artix fits into SOA, and of how Artix works.

2. Artix Installation Guide. You must read the following sections about
supported environments:

i. Supported Systems and Compilers

ii. Java, Compiler, and Artix Designer Requirements

3. Writing Artix Contracts includes information about basic WSDL
concepts and how to write a service interface.

i. Introduction. Overview of WSDL, the structure of a contract, and
the steps involved in writing a service contract.

ii. Designing Logical Data Units. How to create data types using
XML Schema

iii. Defining Logical Messages Used by a Service. How to build the
data types into the messages that a service will use to implement
its operations.

iv. Defining Your Logical Interfaces: How to create a service
interface using the logical messages.

4. Artix Infocenter explains how to use the Eclipse-based Artix Designer
GUI tools to design WSDL service contracts and to generate C++ and
Java implementation code.
 21

../soa/index.html
../install_guide/index.htm
../contract/index.html
http://infocenter.iona.com:8200/help/index.jsp

CHAPTER 2 | Suggested Reading Paths
5. Configuring and Deploying Artix Solutions, C++ Runtime explains how
to configure and deploy Artix services written in C++ or JAX-RPC. You
must read the following chapters:

i. Getting Started explains how to set up an Artix environment
using the artix_env script, and system environment variables.

ii. Artix Configuration explains concepts such as Artix configuration
files, scopes, namespaces, and variables.

iii. Artix Logging explains how to configure Artix logging for services
and Artix subsystems.

6. Configuring and Deploying Artix Solutions, Java Runtime explains how
to configure and deploy Artix Java services (for example, written in
JAX-WS or JavaScript). You must read the following chapters:

i. Getting Started explains how to set your Artix Java runtime
system environment.

ii. Artix Java Configuration introduces the main concepts and
components in the Artix Java runtime configuration.It also
explains how to use Artix Java configuration files to manage your
applications.

iii. Deploying to the Spring Container outlines how to deploy and
manage an Artix endpoint in the Spring container.
22

../deploy/cpp/index.htm
../deploy/java/index.html

Integration Use Case
Integration Use Case

Overview This section describes the reading path for developing a service as a
front-end for existing functionality.

Service integration Service integrators should read the following books:

1. Artix Technical Use Cases. Read the following chapter:

i. Web Service Enabling Backend Services. Walks through the
steps for the integration use case.

2. Artix Router Guide, C++ Runtime. Read the following information
about the C++ router service and how to make routes.

i. Introduction. Overview of the C++ router and how it is used.

ii. Compatibility of Ports and Operations. Explains the requirements
for routing between interfaces.

iii. Creating Routes Using Artix Tools. Introduces the GUI and
command line tools that can be used to create routes.

3. Artix Java Router, Getting Started. Read the following information
about the Java router service.

i. Introduction. Overview of the Java router and how it is used.

ii. Tutorial. Describes the Java router in more detail, explains the
code for a sample application, and how to build and run the
application.

4. Artix Bindings and Transports, C++ Runtime includes information
about creating bindings and endpoints for Artix services written in
C++ or JAX-RPC:

i. Read the relevant binding chapter that applies to your system (for
example, SOAP, Fixed, or XML).

ii. Read the relevant transport chapter that applies to your system
(for example, HTTP, Tuxedo, or JMS).
 23

../cookbook/index.htm
../routing/index.htm
../bindings/cpp/index.html
../java_routing/getting_started/index.html

CHAPTER 2 | Suggested Reading Paths
5. Artix Bindings and Transports, Java Runtime includes information
about creating bindings and endpoints for Artix services written in
JAX-WS or JavaScript.

i. Read the relevant binding chapter that applies to your system (for
example, SOAP, CORBA, or XML).

ii. Read the relevant transport chapter that applies to your system
(for example, HTTP, MQ, or JMS).

6. Artix Router Guide, C++ Runtime. Read the following information
about how to define routes between endpoints:

i. Creating a Basic Route. This is required reading. It describes the
minimum needed to create a route in Artix.

ii. Adding Operation-Based Rules to a Route: This is optional. It
expands on basic route design.

iii. Adding Attribute-Based Rules to a Route. This is optional. It
expands on basic route design.

iv. Adding Content-Based Rules to a Route. This is optional. It
describes how to create content based routes.

v. Linking Routes. This is optional. It expands on previous chapters.

vi. Using Advanced Routing Features. This is optional. It describes
how to create routes for various advanced use cases such as load
balancing and service fail-over.

vii. Deploying an Artix Router. This is required reading. It describes
how to deploy the router in an Artix runtime environment.

7. Artix Java Router, Defining Routes. Read the following information
about how to define routes between endpoints:

i. Defining Routes in Java DSL. Explains how to define routing rules
in Java in a domain specific language (DSL). This is the most
flexible way to define rules.

ii. Defining Routes in XML. Explains how to define routing rules in
XML. This is not as flexible as Java DSL, but is easy to
reconfigure at runtime.

iii. Basic Principles of Route Building. Explains the principles of
building a route using the provided building blocks
24

../java_routing/defining_routes/index.html
../bindings/java/index.html
../routing/index.htm

Integration Use Case
8. Artix Java Router, Deployment Guide. Read the following information
about how to deploy an Artix Java Router:

i. Deploying a Standalone Router. Explains how to deploy the Java
router in standalone mode. This means you can deploy the router
independent of any container, but some extra programming steps
are required.

ii. Deploying into a Spring Container. Explains how to deploy the
Java router into a Spring container. This enables you to specify
routing rules in an XML configuration file.

iii. Components. Provides a reference of components available with
the Artix Java router. These are plug-ins that can be used to
enable integration with different kinds of protocol, containers,
databases, and so on.

Advanced integration topics

In addition, you may wish to read the following:

� Artix Java Router, Programmer�s Guide provides details of how to
program routing processors and describes how to implement custom
components.

� Implementing Enterprise Integration Patterns describes how you can
use Artix Java Router to implement Enterprise Integration Patterns
(from the book of the same name by Gregor Hohpe and Bobby Woolf).

� Artix for CORBA contains detailed information about using Artix to
integrate with CORBA applications.

� Artix for J2EE (JAX-RPC) contains detailed information about using
Artix with J2EE applications. This guide applies to services written in
JAX-RPC.

� Artix for J2EE (JAX-WS) contains detailed information about using Artix
with J2EE applications. This guide applies to services written in
JAX-WS.

� Developing Artix Database Services contains detailed information on
how to integrate databases with Artix Web services. You can use Artix
command-line or GUI tools to generate a database Web service.
 25

../j2ee/index.htm
../j2ee-jaxws/index.html
../java_routing/prog_guide/index.html
../corba_ws/index.htm
../db_guide/index.html
../java_routing/deploy_guide/index.html
../java_routing/eip/index.html

CHAPTER 2 | Suggested Reading Paths
New Development Use Cases

Overview This section describes reading paths for the following new development use
cases:

� �Service consumer�

� �C++ development�

� �JAX-RPC development�

� �JAX-WS development�

� �JavaScript development�

Service consumer Read the following if you are developing a new service consumer:

1. Artix Technical Use Cases. Read the following chapter:

i. Building a Client for a Web Service. Provides a walk through of
the service consumer use case.

2. Artix Bindings and Transports, C++ Runtime includes information
about creating bindings and endpoints for Artix services written in
C++ or JAX-RPC:

i. Read the relevant binding chapter that applies to your system (for
example, SOAP, Fixed, or XML).

ii. Read the relevant transport chapter that applies to your system
(for example, HTTP, Tuxedo, or JMS).

3. Artix Bindings and Transports, Java Runtime includes information
about creating bindings and endpoints for Artix services written in
JAX-WS or JavaScript.

i. Read the relevant binding chapter that applies to your system (for
example, SOAP, CORBA, or XML).

ii. Read the relevant transport chapter that applies to your system
(for example, HTTP, MQ, or JMS).
26

../bindings/cpp/index.html
../cookbook/index.htm
../bindings/java/index.html

New Development Use Cases
C++ development For detailed information on developing a new C++ service provider or
consumer, read the following:

1. Developing Artix Applications in C++:

i. Getting Started with Artix Programming. An overview of how a
developer works in the Artix C++ development environment.

ii. Artix Programming Considerations: Operations and Parameters
section. An overview of how WSDL is mapped into C++.

iii. Server Programming. The basics of developing an Artix C++
service.

iv. Client Programming. The basics of developing an Artix C++
consumer.

v. Artix Programming Considerations: Compiling and Linking an
Artix Application section. What is needed to build Artix C++
applications.

vi. Artix Programming Considerations: Building Artix Stub Libraries
on Windows section. How to build Artix stub code into a
Windows DLL.

vii. Artix Data Types. Overview of how WSDL types are mapped into
C++.

viii. Artix Programming Considerations: Exceptions section. Overview
of how to create and handle exceptions in Artix C++.

ix. Artix Programming Considerations: Locating Services with UDDI
section. How to use the UDDI interface as an alternate method of
finding services.

x. Endpoint References and Callbacks. Overview of EPRs and how
to use them in implementing callbacks.

xi. Artix Contexts. How to get information from the binding and
transport layers of the runtime.

xii. Working with Transport Attributes. How to extract a default set of
transport information from the runtime.

xiii. Persistent Maps. How to use persistent data for high availability.

xiv. Reflection. How to determine the structure of an Artix data type
without advance knowledge.
 27

../prog_guide/index.htm

CHAPTER 2 | Suggested Reading Paths
xv. Default Servants. How to write a scalable factory pattern.

xvi. Artix Programming Considerations: Multi-Threading section.
Describes issues for multi-threaded Artix clients and servers.

Advanced C++ development

For detailed information on developing new advanced C++ plug-ins, read
the following:

2. Developing Advanced Artix Plug-Ins with C++. How to write custom
interceptors and transport plug-ins.

JAX-RPC development For detailed information on developing a new JAX-RPC service provider or
consumer, read the following:

1. Developing Artix Applications with JAX-RPC:

i. The Artix Java Development Model. An overview of the Artix Java
development process. This includes a section on WSDL to Java
mapping.

ii. Developing Artix Services. The basics for developing and building
a service in Artix.

iii. Developing Artix Consumers. The basics for developing and
building a consumer in Artix.

iv. Finding Contracts and References at Runtime. How to use the
Java APIs to locate contracts.

v. Things to Consider when Developing Artix Applications: Getting
a Bus section. How to get access to a bus reference from the
runtime.

vi. Working with Artix Data Types. Overview of XML schema to Java
type mapping for most data types.

vii. Creating User-Defined Exceptions. How to create and handle
exceptions in Artix.

viii. Using Endpoint References. Details of working with EPRs.

ix. Using Native XML. How to develop Java applications that work
with pure XML data.

x. Working with Artix Type Factories. How to create type factories.
Type factories are needed to work with features that follow.
28

../plugin_guide/index.htm
../jaxrpc_pguide/index.htm

New Development Use Cases
xi. Using Message Contexts. Describes the Artix implementation and
extension of the JAX-RPC MessageContext interface. This enables
you to pass/receive information from the lower-levels of the Java
runtime including the binding, transport, and handler layers.

xii. Working with Transport Attributes. Details about the Artix
provided transport attribute types.

xiii. Sending Message Headers. Details about using the
MessageContext to send message headers over SOAP and
CORBA.

xiv. Writing Handlers. Overview of writing JAX-RPC handler objects.
Handler objects are like interceptors in that work on a message as
it passes through the Artix runtime.

xv. Manipulating Messages in a Handler. Details about altering the
contents of requests or responses as they pass through the
Handler objects in a message chain.

xvi. Instrumenting a Service. Details about adding JMX
instrumentation to a service implementation.

xvii. Using Persistent Datastores. Details how to use persistent data in
Artix Java applications.

xviii. Using the Call Interface for Dynamic Invocations. Details about
writing clients that can invoke operations on a service for which it
only has WSDL.

xix. Using Substitution Groups. Substitution groups are an advanced
XML Schema construct.

xx. Working with XML Schema anyTypes. An anyType is the XML
equivalent of a CORBA Any.

Advanced JAX-RPC topics

For detailed information on developing Java advanced plug-ins (for example,
transport plug-ins), read the following:

2. Developing Artix Applications with JAX-RPC:

i. Using Artix Classloader Environments

ii. Developing Plug-Ins

iii. Developing Custom Artix Transports

iv. Configuring Artix Plug-Ins
 29

../jaxrpc_pguide/index.html

CHAPTER 2 | Suggested Reading Paths
JAX-WS development For detailed information on developing a new JAX-WS service provider or
consumer, read the following:

1. Developing Artix Applications with JAX-WS:

i. Starting from Java Code. Describes how to write a JAX-WS
application without WSDL.

ii. Service Enabling a Java Class. Describes how to annotate a Java
class for use as a service provider. This includes creating the SEI,
annotating the code, and generating WSDL.

iii. Developing a Consumer without a WSDL Contract. This includes
creating a service object, adding a port to a service, getting a
proxy for an endpoint, and implementing the consumer's business
logic.

iv. Starting from a WSDL Contract. Describes how to write a
JAX-WS service starting from WSDL. This includes developing a
service and a consumer starting from WSDL.

v. Publishing a Service. Describes how to publish a service provider
as a standalone Java application.

vi. Developing RESTful Services. Describes what it means for a
service to be RESTful, and how to build RESTful services using
Java classes and annotations.

vii. Developing Asynchronous Applications. Describes how to use the
JAX-WS asynchronous APIs to develop asynchronous service
consumers.

viii. Generating the Stub Code. Describes how to create a
customization file to alter the code generated to use the
asynchronous APIs.

ix. Implementing an Asynchronous Client with the Polling
Approach. Describes how to use the APIs that provide a
mechanism for using the generated response object to pole for an
asynchronous response.
30

../jaxws_pguide/index.html

New Development Use Cases
x. Implementing an Asynchronous Client with the Callback
Approach. Describes how to use a callback object to process
asynchronous responses.

xi. Using Raw XML Messages. Describes how to obtain direct access
to raw XML message data on the wire. The JAX-WS client-side
interface is Dispatch, and the server-side interface is Provider.

xii. Working with Contexts. Describes how to access the metadata
passed by contexts along the messaging chain. This metadata
can be accessed by implementation code and by JAX-WS
handlers that operate on the message below the implementation
level.

JavaScript development For information on developing a new JavaScript service provider or
consumer, read the following:

1. Developing Artix Applications with JavaScript:

i. Implementing a service provider using JavaScript. This includes
defining the metadata, which describes how to provide the
information provided by the JAX-WS annotations. It also includes
implementing the application logic, which is a brief overview of
implementing the service using the invoke property

ii. Implementing a service provider using E4X. Describes the minor
differences between the JavaScript interface and the ECMAScript
for XML (E4X) interface.

iii. Deploying a JavaScript service. Describes how to deploy scripted
services using the ServerApp Java application provided.

Background reading For background information on Web services, XML, and WSDL, see
�Background reading� on page 17.
 31

../js_pguide/index.html

CHAPTER 2 | Suggested Reading Paths
32

	Artix Library Overview
	Artix Documentation Library
	Documentation Conventions

	Suggested Reading Paths
	SOA Architects
	Administrators
	All Service Developers
	Integration Use Case
	New Development Use Cases

