PROGRESS

SOFTWARE

Artix' ESB

Security Guide

Version 5.5, December 2008

Progress Software Corporation and/or its subsidiaries may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this publication. Except as expressly provided in any written license
agreement from Progress Software Corporation, the furnishing of this publication does
not give you any license to these patents, trademarks, copyrights, or other intellectual
property. Any rights not expressly granted herein are reserved.

Progress, IONA, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation
and/or its subsidiaries in the U.S. and other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the U.S. and other countries. All other trademarks
that appear herein are the property of their respective owners.

This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

While the information in this publication is believed to be accurate Progress Software Corporation makes no
warranty of any kind to this material including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Progress Software Corporation shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2008 IONA Technologies PLC, a wholly-owned subsidiary of Progress
Software Corporation. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: June 17, 2009

Contents

List of Tables
List of Figures

Preface
What is Covered in This Book
Who Should Read This Book
The Artix Documentation Library

Part | Introduction to Security

Chapter 1 Getting Started with Artix Security
Secure SOAP Demonstration
Secure Hello World Example
HTTPS Connection
IIOP/TLS Connection
Security Layer
Secure Container Demonstration
Debugging with the openssl Utility

Chapter 2 Introduction to the Artix Security Framework
Artix Security Architecture
Types of Security Credential
Protocol Layers
Security Layer
Using Multiple Bindings
Caching of Credentials

Chapter 3 Security for HTTP-Compatible Bindings
Overview of HTTP Security
Securing HTTP Communications with TLS

11

13

15
15
15
15

19
20
21
24
28
35
41
48

53
54
55
57
59
60
61

63
64
67

CONTENTS

HTTP Basic Authentication
X.509 Certificate-Based Authentication

Chapter 4 Security for SOAP Bindings
Overview of SOAP Security
WSS X.509 Certificates and Authentication

Chapter 5 Security for CORBA Bindings
Overview of CORBA Security
Securing IIOP Communications with SSL/TLS
Securing Two-Tier CORBA Systems with CSI
Securing Three-Tier CORBA Systems with CSI
X.509 Certificate-Based Authentication for CORBA Bindings

Part Il TLS Security Layer

Chapter 6 Managing Certificates
What are X.509 Certificates?
Certification Authorities
Commercial Certification Authorities
Private Certification Authorities
Certificate Chaining
PKCS#12 Files
Special Requirements on HTTPS Certificates
Creating Your Own Certificates
Set Up Your Own CA
Use the CA to Create Signed PKCS#12 Certificates
Use the CA to Create Signed Certificates in a Java Keystore
Generating a Certificate Revocation List

Chapter 7 Configuring HTTPS and IIOP/TLS
Authentication Alternatives
Target-Only Authentication
Mutual Authentication
No Authentication
Specifying Trusted CA Certificates

78
82

87
88
92

97
98
100
106
112
118

127
128
130
131
132
133
135
137
140
141
144
149
152

155
156
157
160
164
168

Specifying Trusted CA Certificates for HTTPS
Specifying Trusted CA Certificates for IIOP/TLS
Specifying an Application’s Own Certificate
Deploying Own Certificate for HTTPS
Deploying Own Certificate for IOP/TLS
Specifying a Certificate Revocation List
Advanced Configuration Options
Setting a Maximum Certificate Chain Length
Applying Constraints to Certificates

Chapter 8 Configuring Secure Associations
Overview of Secure Associations
Setting Association Options
Secure Invocation Policies
Association Options
Choosing Client Behavior
Choosing Target Behavior
Hints for Setting Association Options
Specifying Cipher Suites
Supported Cipher Suites
Setting the Mechanism Policy
Constraints Imposed on Cipher Suites
Caching Sessions

Part Ill The Artix Security Service

Chapter 9 Configuring the Artix Security Service
Configuring the Security Service
Security Service Accessible through [IOP/TLS
Security Service Accessible through HTTPS
Configuring the File Adapter
Configuring the LDAP Adapter
Configuring the Kerberos Adapter
Overview of Kerberos Configuration
Configuring the Adapter Properties
Configuring the KDC Connection
Configuring JAAS Login Properties

CONTENTS

169
174
176
177
182
184
186
187
188

191
192
194
195
197
199
201
203
207
208
212
215
218

221
222
223
232
243
245
251
252
254
258
261

CONTENTS

Configuring the LDAP Connection
Clustering and Federation
Federating the Artix Security Service
Failover
Client Load Balancing
Additional Security Configuration
Configuring Single Sign-On Properties
Configuring the Log4J Logging

Chapter 10 Managing Users, Roles and Domains
Introduction to Domains and Realms
Artix security domains
Artix Authorization Realms
Managing a File Security Domain
Managing an LDAP Security Domain

Chapter 11 Managing Access Control Lists
Overview of Artix ACL Files
ACL File Format
Generating ACL Files
Deploying ACL Files

Chapter 12 Configuring the Artix Security Plug-In
The Artix Security Plug-In
Configuring an Artix Configuration File
Configuring a WSDL Contract

Part IV Artix Security Features

Chapter 13 Single Sign-On
SSO and the Login Service
Username/Password-Based SSO for SOAP Bindings

Chapter 14 Publishing WSDL Securely
Introduction to the WSDL Publish Plug-In
Deploying WSDL Publish in a Container

265
268
269
274
281
284
285
287

289
290
291
293
298
303

305
306
307
310
313

315
316
317
319

325
326
329

341
342
345

Preprocessing Published WSDL Contracts
Enabling SSL/TLS for WSDL Publish Plug-In

Chapter 15 Partial Message Protection

Introduction to SOAP PMP

Setting Up a Java Keystore

Artix Configuration

Policy Configuration
Introduction to Policy Configuration
Action Definitions
Action Properties
Protection Policy Definitions
Conditions

Example of WSS Signing and Encryption
Basic Signing and Encryption Scenario
Configuring the Client
Configuring the Server

Exception Handling

Chapter 16 Principal Propagation
Introduction to Principal Propagation
Configuring
Programming
Interoperating with .NET

Explicitly Declaring the Principal Header
Modifying the SOAP Header

Chapter 17 Bridging between SOAP and CORBA
SOAP-to-CORBA Scenario
Overview of the Secure SOAP-to-CORBA Scenario
SOAP Client
SOAP-to-CORBA Router
CORBA Server
Single Sign-On SOAP-to-CORBA Scenario
Overview of the Secure SSO SOAP-to-CORBA Scenario
SSO SOAP Client
SSO SOAP-to-CORBA Router
CORBA-to-SOAP Scenario

CONTENTS

349
351

355
356
360
367
371
372
374
381
385
389
392
393
395
400
405

407
408
409
412
415
416
418

421
422
423
425
429
435
438
439
441
443
445

CONTENTS

Overview of the Secure CORBA-to-SOAP Scenario
CORBA Client

CORBA-t0-SOAP Router

SOAP Server

Part V Programming Security

Chapter 18 Programming Authentication
Configuration for SOAP 1.2 Bindings
Propagating a Username/Password Token
Propagating a Kerberos Token
Propagating an X.509 Certificate

Chapter 19 Developing an iSF Adapter
iSF Security Architecture
iSF Server Module Deployment Options
iSF Adapter Overview
Implementing the IS2Adapter Interface
Deploying the Adapter
Configuring iSF to Load the Adapter
Setting the Adapter Properties
Loading the Adapter Class and Associated Resource Files

Appendix A Artix Security
Applying Constraints to Certificates
bus:initial_contract
bus:security
initial_references
password_retrieval_mechanism
plugins:asp
plugins:at_http
plugins:atli2_tls
plugins:csi
plugins:gsp
plugins:https
plugins:iiop_tls

446
448
450
456

461
462
463
468
473

479
480
484
486
487
497
498
499
500

503
505
507
508
510
512
513
516
521
522
523
528
529

plugins:java_server
plugins:login_client
plugins:login_service
plugins:schannel
plugins:security
plugins:security_cluster
plugins:wsdl_publish
plugins:wss

policies

policies:asp
policies:bindings
policies:csi
policies:external_token_issuer
policies:https
policies:iiop_tls
policies:security_server
policies:soap:security
principal_sponsor
principal_sponsor:csi
principal_sponsor:http
principal_sponsor:https
principal_sponsor:iiop_tls
principal_sponsor:wsse

Appendix B iSF Configuration

Properties File Syntax
iSF Properties File
Cluster Properties File
log4j Properties File

Appendix C ASN.1 and Distinguished Names

ASN.1
Distinguished Names

Appendix D Action-Role Mapping DTD

Appendix E OpenSSL Utilities

Using OpenSSL Utilities

CONTENTS

533
536
537
538
539
542
543
544
546
553
557
559
562
563
569
579
581
582
586
589
591
593
595

599
600
601
627
630

633
634
635

639

645
646

CONTENTS

The x509 Utility
The req Utility
The rsa Utility
The ca Utility
The s_client Utility
The s_server Utility
The OpenSSL Configuration File
[req] Variables
[cal Variables
[policy] Variables
Example openssl.cnf File

Appendix F License Issues
OpenSSL License

Index

10

647
649
651
653
655
657
660
661
662
663
664

667
668

671

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:

Description of Different Types of Association Option

Setting EstablishTrustinTarget and EstablishTrustInClient Association Options
Setting Quality of Protection Association Options

Setting the NoProtection Association Option

Cipher Suite Definitions

Association Options Supported by Cipher Suites

LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope
The Artix Security Plug-In Configuration Variables
<bus-security:security> Attributes

Properties of an Action Definition

Condition Properties

Standard WSS Fault Codes

Progress Proprietary Fault Codes

Mechanism Policy Cipher Suites

Mechanism Policy Cipher Suites

Mechanism Policy Cipher Suites

Commonly Used Attribute Types

203
204
205
206
210
216
249
317
319
381
389
406
406
549
565
573
636

11

LIST OF TABLES

12

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

Overview of the Secure HelloWorld Example

A HTTPS Connection in the HelloWorld Example

An IIOP/TLS Connection in the HelloWorld Example

The Security Layer in the HelloWorld Example
Connecting to a Secure Container Service

Protocol Layers in a HTTP-Compatible Binding

Protocol Layers in a SOAP Binding

Protocol Layers in a CORBA Binding

Example of an Application with Multiple Bindings
HTTP-Compatible Binding Security Layers

Overview of Certificate-Based Authentication with HTTPS
Overview of Security for SOAP Bindings

Overview of Certificate-Based Authentication with WSS
A Secure CORBA Application within the Artix Security Framework
Two-Tier CORBA System Using CSI Credentials
Three-Tier CORBA System Using CSlv2

Overview of Certificate-Based Authentication

A Certificate Chain of Depth 2

A Certificate Chain of Depth 3

Elements in a PKCS#12 File

Target Authentication Only

Mutual Authentication

Configuration of a Secure Association

Constraining the List of Cipher Suites

An iSF Federation Scenario

Failover Scenario for a Cluster of Three Security Services

21
24
28
35
41
57
58
58
60
64
82
88
92
98
106
112
119
133
134
135
157
160
193
215
270
275

13

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44.
Figure 45:
Figure 46:

14

Architecture of an Artix security domain

Server View of Artix authorization realms

Role View of Artix authorization realms

Assignment of Realms and Roles to Users Janet and John
Locally Deployed Action-Role Mapping ACL File

Client Requesting an SSO Token from the Login Service
Overview of Username/Password Authentication without SSO
Overview of Username/Password Authentication with SSO
Endpoints Used by the WSDL Publishing Service

WSDL Publish Plug-In Deployed in a Secure Container
HTML Page Served Up by the WSDL Publishing Service
Basic Client-Server Scenario

Overview of Keystores for a Client-Server Application

Basic Signing and Encryption Scenario

Propagating Credentials Across a SOAP-to-CORBA Router
Propagating an SSO Token Across a SOAP-to-CORBA Router
Propagating Credentials Across a CORBA-to-SOAP Router
Overview of the Artix Security Service

iSF Server Module Deployed as a CORBA Service

iSF Server Module Deployed as a Java Library

291
294
295
296
306
327
329
330
342
345
354
357
362
393
423
439
446
481
484
485

Preface

What is Covered in This Book

This book describes how to develop and configure secure Artix solutions.

Who Should Read This Book

This book is aimed at the following kinds of reader: security administrators,
C++ programmers who need to write security code and Java programmers
who need to write security code.

If you would like to know more about WSDL concepts, see the Introduction
to WSDL in Getting Started with Artix.

The Artix Documentation Library

For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library

15

http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
../library_intro/index.htm
../library_intro/index.htm

PREFACE

16

Part

Introduction to Security

In this part This part contains the following chapters:

Getting Started with Artix Security page 19
Introduction to the Artix Security Framework page 53
Security for HTTP-Compatible Bindings page 63
Security for SOAP Bindings page 87
Security for CORBA Bindings page 97

17

18

In this chapter

CHAPTER 1

Getting Started
with Artix Security

This chapter introduces features of Artix security by explaining
the architecture and configuration of the secure HelloWorld
demonstration in some detail.

This chapter discusses the following topics:

Secure SOAP Demonstration page 20
Secure Container Demonstration page 41
Debugging with the openssl Utility page 48

19

CHAPTER 1 | Getting Started with Artix Security

Secure SOAP Demonstration

Overview This section provides a brief overview of how the Artix security framework
provides security for SOAP bindings between an Artix client and an Artix
server. The Artix security framework is a comprehensive security framework
that supports authentication and authorization using data stored in a central
security service (the Artix security service). This discussion is illustrated by
reference to the secure HelloWorld demonstration.

In this section This section contains the following subsections:
Secure Hello World Example page 21
HTTPS Connection page 24
IIOP/TLS Connection page 28
Security Layer page 35

20

Secure SOAP Demonstration

Secure Hello World Example

Overview

This section provides an overview of the secure HelloWorld demonstration,
which introduces several features of the Artix Security Framework. In

particular, this demonstration shows you how to configure a typical Artix

client and server that communicate with each other using a SOAP binding
over a HTTPS transport. Figure 1 shows all the parts of the secure
HelloWorld system, including the various configuration files.

Figure 1: Overview of the Secure HelloWorld Example

Artix Client

Security layer

HTTP Basic Authentication

....... > Artix Server

HTTPS

Client copy

T » Security layer <---
1
HTTPS 1
. i HTTPS IIOP/TLS
| N
1 '
! i
WSDL X.509
Server copy Cert for HTTPS hello_w
> _ Artix Se_curity -
File Service
User Data Adapter
IIOP/TLS <
is2_user_password_file.txt ~
i
i
X.509

Cert for security service

o [.

>

rld_action_role_mapping.xml

is2.properties

21

CHAPTER 1 | Getting Started with Artix Security

Location

Main elements of the example

HelloWorld client

HelloWorld server

Artix security service

22

The secure HelloWorld demonstration is located in the following directory:

ArtixInstallDir/cxx_java/samples/security/full security

The main elements of the secure HelloWorld example shown in Figure 1
are, as follows:

® HelloWorld client.
® HelloWorld server.
® Artix security service.

The HelloWorld client communicates with the HelloWorld server using
SOAP over HTTPS, thus providing confidentiality for transmitted data. In
addition, the HelloWorld client is configured to use HTTP BASIC
authentication to transmit a username and a password to the server.

The HelloWorld server employs two different kinds of secure transport,

depending on which part of the system it is talking to:

® HTTPS—to receive SOAP invocations securely from the HelloWorld
client.

® |IOP/TLS—to communicate securely with the Artix security service,
which contains the central store of user data.

The Artix security service manages a central repository of security-related
user data. The Artix security service can be accessed remotely by Artix
servers and offers the service of authenticating users and retrieving
authorization data.

The Artix security service supports a number of adapters that can be used to
integrate with third-party security products (for example, an LDAP adapter is
available). This example uses the iSF file adapter, which is a simple
adapter provided for demonstration purposes.

Note: The file adapter is a simple adapter that does not scale well for
large enterprise applications. Progress supports the use of the file adapter
in a production environment, but the number of users is limited to 200.

Security layers

HTTPS layer

IIOP/TLS layer

Security layer

Secure SOAP Demonstration

To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

® HTTPS layer.
® |IOP/TLS layer.
® Security layer.

The HTTPS layer provides a secure transport layer for SOAP bindings. In
Artix, the HTTPS transport is configured by editing the Artix configuration
file (for example, full security.cfg). Some of the HTTPS settings can
optionally be set in the WSDL contract instead (both the client copy and the
server copy).

For more details, see “HTTPS Connection” on page 24.

The IIOP/TLS layer consists of the OMG’s Internet Inter-ORB Protocol (110P)
combined with the SSL/TLS protocol. In Artix, the IIOP/TLS is configured by
editing the Artix configuration file.

For more details, see “IlOP/TLS Connection” on page 28.

The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and
support for authorization. A security administrator can edit an action-role
mapping file to restrict user access to particular WSDL port types and
operations.

For more details, see “Security Layer” on page 35.

23

CHAPTER 1 | Getting Started with Artix Security

HTTPS Connection

Overview

Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

Figure 2: A HTTPS Connection in the HelloWorld Example

---> Artix Client pmmm s > Artix Server
| | '
. .
:r---->- Security layer E_ Security layer
1 N . TR
i HTTPS i 5
oo HTTPS S ¥ HTTPS | lIOP/TLS
i i I
1 1
| ! H
| ! :

WSDL WSDL X.509

SSL/TLS cipher suites

Mutual authentication

24

o
]
=
o
o
el
<

Server copy Cert for HTTPS

Artix supports a wide range of SSL/TLS cipher suites—see “Supported
Cipher Suites” on page 208.

The HelloWorld example is configured to use mutual authentication on the
client-to-server HTTPS connection. That is, during the TLS handshake, the

server authenticates itself to the client (using an X.509 certificate) and the

client authenticates itself to the server. Hence, both the client and the server
require their own X.509 certificates.

Note: You can also configure your application to use target-only
authentication, where the client does not require an own X.509
certificate. See “Authentication Alternatives” on page 156 for details.

Secure SOAP Demonstration

Enabling HTTPS To enable HTTPS, you must ensure that the URL identifying the service
endpoint in the WSDL contract has the https: prefix. For example, the
HelloWorld service specifies a SOAP over HTTPS endpoint in the
hello world.wsdl file as follows

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/hello world soap http"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >

<wsdl:service name="SOAPService"s>
<wsdl :port binding="tns:Greeter SOAPBinding"
name="SoapPort">
<soap:address location="https://localhost:9000"/>
</wsdl :port>
</wedl:service>
</wsdl:definitions>

Client HTTPS configuration Example 1 shows how to configure the client side of an HTTPS connection,
in the case of mutual authentication.

Example 1: Extract from the Secure Client HTTPS Configuration

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure artix

{

full_ security

{
client
{

orb plugins = ["local log stream"];

[

plugins:at http:client:use secure sockets="true";

2 plugins:at_http:client:trusted root certificates =
"C:\Programs\artix 5.0/cxx java/samples/security/certificates
/openssl/x509/ca/cacert.pem" ;

3 plugins:at _http:client:client certificate =
"C:\Programs\artix 5.0/cxx java/samples/security/certificates
/openssl/x509/certs/testaspen.pl2";

4 plugins:at http:client:client private key password =

"testaspen";

25

CHAPTER 1 | Getting Started with Artix Security

Server HTTPS configuration

26

Example 1: Extract from the Secure Client HTTPS Configuration

b

The preceding extract from full security.cfg can be explained as follows:

1. Theuse secure sockets configuration variable is set to true to enable
HTTPS security.

Note: This is not the only approach you can use to configure HTTPS
security. The alternative approach is to configure HTTPS security
policies directly, which gives you more control over the TLS
connection properties. For example, see “Securing HTTP
Communications with TLS” on page 67.

2. A HTTPS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other HTTPS applications. See “Specifying Trusted CA Certificates” on
page 168 for more details.

3. Because this example uses mutual authentication, you are required to
provide the client with its own X.509 certificate, by setting the
plugins:at_http:client:client certificate configuration variable.
The certificate must be in PKCS#12 format. See “Managing
Certificates” on page 127 for more details about X.509 certificates.

4. A password must be provided for the preceding certificate (in
PKCS#12 format, the certificate and its private key are encrypted).

Example 2 shows how to configure the server side of an HTTPS connection,
in the case of target-only authentication.

Example 2: Extract from the Secure Server HTTPS Configuration

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure_artix

{

full_ security

Secure SOAP Demonstration

Example 2: Extract from the Secure Server HTTPS Configuration

ha

{
server
{
orb plugins = ["local log_stream", "iiop profile",
"giop", "iiop tls", "artix security"];

binding:artix:server request interceptor list=
"security";

plugins:at_http:server:use secure sockets="true";

plugins:at_http:server:trusted root certificates =
"C:\Programs\artix 5.0/cxx java/samples/security/certificates
/openssl/x509/ca/cacert.pem" ;

plugins:at_http:server:server certificate =
"C:\Programs\artix 5.0/cxx java/samples/security/certificates
/openssl/x509/certs/testaspen.pl2";

plugins:at_http:server:server private key password =
"testaspen" ;

5
I

The preceding extract from full security.cfg can be explained as follows:
1.

The use secure sockets configuration variable is set to true to enable
HTTPS security.

The server needs a list of trusted CA certificates, which it uses to
determine whether or not to trust certificates received from the client
over HTTPS. See “Specifying Trusted CA Certificates” on page 168 for
more details.

You must provide the server with its own X.509 certificate, by setting
the plugins:at_http:server:server certificate configuration
variable. The certificate must be in PKCS#12 format. See “Managing
Certificates” on page 127 for more details about X.509 certificates.

A password must be provided for the preceding certificate (in
PKCS#12 format, the certificate and its private key are encrypted).

27

CHAPTER 1 | Getting Started with Artix Security

IIOP/TLS Connection

Overview

SSL/TLS cipher suites

28

Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the IIOP/TLS connection between the Artix server and
the Artix security service. In general, the Artix security service is usually
accessed through the IIOP/TLS transport.

Figure 3: An IIOP/TLS Connection in the HelloWorld Example

Security layer

. HTTPS | IIOP/TLS

.............

Artix Security

: : File Service
. User Data : ' Adapter

A

e - ; IIOP/TLS

Cert for Artix security service

Artix supports a wide range of SSL/TLS cipher suites—see “Supported
Cipher Suites” on page 208.

Mutual authentication

Artix server IIOP/TLS
configuration

Secure SOAP Demonstration

The HelloWorld example is configured to use mutual authentication on the
client-to-server [IOP/TLS connection. That is, during the TLS handshake, the
server authenticates itself to the client (using an X.509 certificate) and the
client authenticates itself to the server. Hence, both the client and the server
require their own X.509 certificates.

Note: You can also configure your application to use target-only
authentication, where the client does not require an own X.509
certificate. See “Authentication Alternatives” on page 156 for details.

The Artix server’'s IIOP/TLS transport is configured by the settings in the
ArtixInstallDir/cxx java/samples/security/full security/etc/full
security.cfg file. Example 3 shows an extract from the
full_security.cfg file, highlighting some of the settings that are important
for the HelloWorld Artix server.

Example 3: Extract from the Artix Server IIOP/TLS Configuration

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure artix

{

full security
initial references:IT SecurityService:reference =
"corbaloc:it iiops:1.2@localhost:55020/IT SecurityService";

server

binding:artix:server request interceptor list=
"security";

orb plugins = ["local log stream", "iiop profile",
"giop", "iiop tls", "artix security"];

secure iiop tls server -> security service

principal sponsor:iiop tls:use principal sponsor =
"true";

principal sponsor:iiop tls:auth method id =
"pkcsl2 file";

29

CHAPTER 1 | Getting Started with Artix Security

30

Example 3: Extract from the Artix Server IIOP/TLS Configuration

b

principal sponsor:iiop tls:auth method data =
["filename=C:\Programs\artix 5.0/cxx java/samples/security/ce
rtificates/tls/x509/certs/services/administrator.pl2",
"password file=C:\Programs\artix 5.0/cxx java/samples/securit
y/certificates/tls/x509/certs/services/administrator.pwf"] ;

policies:iiop tls:trusted ca list policy =
"C:\Programs\artix 5.0/cxx java/samples/security/certificates
/tls/x509/trusted ca lists/ca listl.pem";

i
I

The preceding extract from the Artix configuration file can be explained as
follows:

1.

The 1T _securityservice initial reference gives the location of the Artix
security service. The Artix server uses this corbaloc URL to open an
IIOP/TLS connection to the Artix security service. In this example, the
Artix security service is presumed to be running on localhost and
listening on the 55020 IP port.

The orb plugins list specifies which Artix plug-ins to load as the
server starts up. The iiop tls plug-in is included in the list (thus
enabling IIOP/TLS connections), whereas the iiop plug-in is excluded
(thus disabling plain, insecure IIOP connections).

The principal sponsor Settings are used to attach a certificate to the
Artix server. The server uses this certificate to identify itself to the
security service during the IIOP/TLS handshake.

Note: In this example, the certificate password is specified in a
password file, administrator.pwf (in a plain text format). For
alternative ways of specifying the certificate password, see
“Deploying Own Certificate for IIOP/TLS” on page 182.

The policies:iiop tls:trusted ca list policy variable specifies a
file containing a concatenated list of CA certificates. These CA
certificates are used to check the acceptability of any certificates

Secure SOAP Demonstration

received by the Artix server over the [IOP/TLS transport. If a received
certificate has not been digitally signed by one of the CA certificates in
the list, it will be rejected by the Artix server.

For more details, see “Specifying Trusted CA Certificates” on

page 168.
Artix security service IIOP/TLS Example 4 shows an extract from the full security.cfg file, highlighting
configuration the IIOP/TLS settings that are important for the Artix security service.

Example 4: Extract from the Security Service IIOP/TLS Configuration

full security.cfg File
secure artix

{

full_ security
initial references:IT SecurityService:reference =
"corbaloc:it iiops:1.2@localhost:55020/IT SecurityService";

security service

IIOP/TLS Settings

1 policies:trusted ca list policy =
"C:\Programs\artix 5.0/cxx java/samples/security/certificates
/tls/x509/trusted ca lists/ca listl.pem";

2 principal sponsor:use principal sponsor = "true";
principal sponsor:auth method id = "pkcsl2 file";
principal sponsor:auth method data =

["filename=C: \Programs\artix 5.0/cxx java/samples/security/ce
rtificates/tls/x509/certs/services/administrator.pl2",
"password file=C:\Programs\artix 5.0/cxx java/samples/securit
y/certificates/tls/x509/certs/services/administrator.pwt"] ;

3 policies:target secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:target secure invocation policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

31

CHAPTER 1 | Getting Started with Artix Security

32

Example 4: Extract from the Security Service IIOP/TLS Configuration

policies:client secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:client secure invocation policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

orb plugins = ["local log stream", "iiop profile",
llgiop“ , |liiop7tls|l] 5

plugins:security:iiop tls:addr list =
["localhost:55020"] ;

policies:security server:client certificate constraints=["CN=Orb

ix2000 IONA Services (demo cert)"];

policies:external token issuer:client certificate constraints=[]

The preceding extract from the Artix configuration file can be explained as
follows:

1.

The policies:trusted ca list policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix security service over the IIOP/TLS transport. If a received
certificate has not been digitally signed by one of the CA certificates in
the list, it will be rejected by the Artix security service.

The principal sponsor settings are used to attach an X.509
certificate to the Artix security service. The certificate is used to identify
the Artix security service to its peers during an [IOP/TLS handshake.
In this example, the Artix security service’s certificate is stored in a
PKCS#12 file, administrator.pi2, and the certificate’s private key
password is stored in another file, administrator.pwf.

Secure SOAP Demonstration

For more details about configuring the IIOP/TLS principal sponsor, see
“principal_sponsor” on page 582 and “Deploying Own Certificate for
[IOP/TLS” on page 182.

The target secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can accept when it acts
in a server role. For more details about the target secure invocation
policy, see “Setting Association Options” on page 194.

Note: Although not specified explicitly here in the target secure
invocation policies, the security service always requires clients to
present an X.509 certificate (equivalent to requiring
EstablishTrustInClient).

The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can open when it acts
in a client role.

The orb_plugins list specifies which plug-ins should be loaded into
the Artix security service. Of particular relevance is the fact that the
iiop_tls plug-in is included in the list (thus enabling IIOP/TLS
connections), whereas the iiop plug-in is excluded (thus disabling
plain IIOP connections).

If you want to relocate the Artix security service, you must modify the
plugins:security:iiop tls:addr list setting to specify the host
where the server is running and the IP port on which the server listens
for secure 1IOP/TLS connections. The address entry shown here is of
the form Host: Port.

Note: Normally, only one address is required. Multiple entries can
be added to the address list in order to support failover and
clustering. See “Clustering and Federation” on page 268 for details.

An application can open a connection to the Artix security service only
if it presents an X.509 certificate that satisfies the certificate
constraints specified by this setting. For a detailed explanation of this
setting, see “Setting client certificate constraints” on page 224.

33

CHAPTER 1 | Getting Started with Artix Security

8. Disable the external token issuer feature by setting the token issuer
certificate constraints to be an empty list (as shown here). This feature
would be enabled only in the context of an integration with Artix

mainframe.

34

Secure SOAP Demonstration

Security Layer

Overview

Figure 4 shows an overview of the HelloWorld example, focusing on the

elements relevant to the security layer. The security layer, in general, takes

care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Figure 4: The Security Layer in the HelloWorld Example

Artix Client

Security layer

WS Username/Password

....... > Artix Server

Client copy

Server copy

Security layer

HTTPS | IIOP/TLS '

hello_warld_action_role_mapping.xml

A4

User Data

File
Adapter

is2_user_password_file.txt

Artix Security
Service

is2.properties

35

CHAPTER 1 | Getting Started with Artix Security

WS username/password login

36

The security layer normally uses a simple username/password combination
for authentication, because clients do not always have a certificate with
which to identify themselves. The username and password are sent along
with every operation, enabling the Artix server to check every invocation and
make fine-grained access decisions.

The mechanism that the Artix client uses to transmit a username and
password over the SOAP binding is the WS username/password credential.
This mechanism is defined by the WS-Security standard and it involves
transmitting a username token and a password token embedded in a SOAP
header. In this example, the username and password tokens are protected
from eavesdropping, because they are transmitted through an encrypted
HTTPS connection.

The following extract from the Artix configuration file shows how to use the
WSSE principal sponsor configuration variables to set the username and
password tokens for the Artix SOAP client.

Artix Configuration File
secure artix {
full security {
client {

WSSE principle sponsor mechanism

principal sponsor:wsse:use principal sponsor =
"true";

principal sponsor:wsse:auth method id =
"USERNAME PASSWORD" ;

principal sponsor:wsse:auth method data =
["username:user_test", "password:user_password"];

}i
I
ha

In this example, the password is supplied directly in the Artix configuration
file. For alternative ways of specifying the password, see
“principal_sponsor:wsse” on page 595.

Secure SOAP Demonstration

Authentication throughtheiSF file On the server side, the Artix server delegates authentication to the Artix

adapter security service, which acts as a central repository for user data. The Artix
security service is configured by the is2.properties file, whose location is
specified in the full security.cfg file as follows:

full security.cfg File
secure artix {

full security {

security service {
plugins:java server:system properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl .ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=C:\Programs\artix 5.0/cxx java/samples/securi
ty/full security/etc/is2.properties.FILE",
"java.endorsed.dirs=C:\artix 30/artix/3.0/1lib/endorsed"] ;

In this example, the is2.properties file specifies that the Artix security
service should use a file adapter. The file adapter is configured as follows:

is2.properties File

HHHHEHHEHHRHA AR
##

File Adapter Properties

##

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter

com.iona.isp.adapter.file.params=filename

com.iona.isp.adapter.file.param.filename=is2 user password file.
txt

37

CHAPTER 1 | Getting Started with Artix Security

Server domain configuration and
access control

38

The com.iona.isp.adapter.file.param.filename property is used to
specify the location of a file, is2_user password file.txt, which contains
the user data for the iSF file adapter. Example 5 shows the contents of the
user data file for the secure HelloWorld demonstration.

Example 5: User Data from the is2_user_password _file.txt File
<?xml version="1.0" encoding="utf-8" ?>

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
<users>
<user name="user test" password="user password">
<realm name="IONAGlobalRealm">
<role name="IONAUserRole"/>
<role name="IONASupplierRole"/>
</realm>
</user>
</users>
</ns:securityInfo>

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iSF file adapter, see “Managing a File Security
Domain” on page 298.

Note: The file adapter is a simple adapter that does not scale well for
large enterprise applications. Progress supports the use of the file adapter
in a production environment, but the number of users is limited to 200.

On the server side, authentication and authorization must be enabled by the
appropriate settings in the full security.cfg file. Example 6 explains the
security layer settings that appear in the full security.cfg file.

Example 6: Security Layer Settings from the full_security.cfg File

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure artix

{

Secure SOAP Demonstration

Example 6: Security Layer Settings from the full_security.cfg File

full security

{

server

{

IIOP/TLS Settings

Security Layer Settings
binding:artix:server request interceptor list=
"security";

orb_plugins = ["xmlfile log stream", "iiop profile",
"giop", "iiop tls", "soap", "at http", "artix security",
"https"] ;

policies:asp:enable authorization = "true";

plugins:is2 authorization:action role mapping =
"file://C:\Programs\artix 5.0/cxx java/samples/security/full
security/etc/helloworld action role mapping.xml";
plugins:asp:authorization realm = "IONAGlobalRealm";
plugins:asp:security level = "REQUEST LEVEL";
plugins:asp:authentication cache size = "5";
plugins:asp:authentication cache timeout = "10";

The security layer settings from the full security.cfg file can be
explained as follows:

1.

The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

The server's orb_plugins list must include the artix security
plug-in.

The policies:asp:enable_authorization variable is set to true to
enable authorization.

This setting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

39

CHAPTER 1 | Getting Started with Artix Security

5. The Artix authorization realm determines which of the user’s roles will
be considered during an access control decision. Artix authorization
realms provide a way of grouping user roles together. The
IONAGlobalRealm (the default) includes all user roles.

6. The plugins:asp:security level variable specifies which client
credentials are used for the purposes of authentication and
authorization on the server side (in this case, the REQUEST LEVEL value
indicates that the username/password credentials are sent in the SOAP
header).

Example 7 shows the contents of the action-role mapping file for the
HelloWorld demonstration.

Example 7: Action-Role Mapping file for the HelloWorld Demonstration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd"s>
<secure-system>

<action-role-mapping>

<server-name>secure artix.full security.server</server-name>

<interface>
<name>http://www.iona.com/full security:Greeter</name>
<action-role>
<action-name>sayHi</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
<action-role>
<action-name>greetMe</action-names>
<role-name>IONAUserRole</role-name>
</action-role>
</interface>

</action-role-mapping>
</secure-system>

For a detailed discussion of how to define access control using action-role
mapping files, see “Managing Users, Roles and Domains” on page 289.

40

Secure Container Demonstration

Secure Container Demonstration

Location of demonstration The secure container demonstration is located in the following directory:
ArtixInstallDir/cxx_java/samples/advanced/container/secure contai
ner
Scenario description The secure container demonstration illustrates a scenario where some

components are configured to be secure while others are insecure. The
various components are configured as follows:

® WSDL publishing service—provides the main point of contact with the
container (runs on the port specified by the container’'s -port option).
This endpoint is insecure.

Container service—provides administrative operations, which can be
accessed using the it container admin utility. This endpoint is
secured through HTTPS and the Artix security layer.

Other Artix services—can be either secure or insecure, depending on
the settings in the WSDL contract.

Connecting to the container Figure 5 shows an overview of how the it _container admin client
service establishes a secure connection to the containerservice service.

Figure 5: Connecting to a Secure Container Service

Container
WSDL Publishing

WSDL Publish
Plug-In

e
:

it_container_admin | b oo -
Client Container Service

41

CHAPTER 1 | Getting Started with Artix Security

Configuring the secure container

42

The connection from the it_container admin client to the
ContainerService service is established in two steps, as follows:

1.

The it_container admin client sends a message to the port supplied
to the -port option, requesting the WSDL publishing service to send
the WSDL contract for the containerservice service.

Note: This initial connection is insecure, because the WSDL

publishing service is configured to be insecure in this demonstration.
The username and password sent by the it container admin client
are therefore potentially vulnerable to eavesdropping in this scenario.

Using the endpoint details from the retrieved WSDL contract, the

it container admin client establishes a secure connection to the
ContainerService endpoint. With every operation invocation on the
ContainerService Service, the it container admin client sends WSS
username and password credentials, u/p, to authenticate itself to the
container.

In this scenario, the container service is configured to have the following
security characteristics:

The container service accepts only HTTPS connections.

Clients of the container service can present X.509 certificates, but are
not required to do so.

Clients must present WSS username and password credentials.

The received WSS username and password credentials are sent to the
Artix security service to be authenticated.

Depending on which configuration is used to run the container service,
the Artix security plug-in might also limit what clients can do by
applying role-based access control.

For most of the preceding security features, the container service is
configured in a similar way to any other Artix server (for example, see the
details of secure Artix server configuration in “Secure SOAP Demonstration”
on page 20).

The following configuration setting, however, is specific to the secure
container service:

plugins:at _http:server:use secure sockets:container = "true";

Configuring the secure
it_container_admin utility

[y

Secure Container Demonstration

This boolean variable enables the HTTPS protocol for the container service

alone. Because the effect of this variable is restricted to the container
service, it is possible also to deploy other insecure services into the
container.

When plugins:at_http:server:use secure sockets:container IS true,

HTTPS is enabled for the container service only (subject to the effective
target secure invocation policy); when false, HTTPS is not specifically

enabled (although other configuration settings might enable it). The default

is false.

Note: This behavior contrasts with the behavior of the

plugins:at_http:server:use_secure sockets variable, which enables
HTTPS for all services in the container (including the containerservice

service itself).

In order to administer a secure container with the it_container admin

utility, it is necessary to define a custom configuration scope. The
configuration scope enables enables the it _container admin utility to
invoke remote administration commands securely.

Example 8: Configuration for Connecting to Secure Container

Artix Configuration File
secure artix

{

secure container

{

client authentication

{
orb plugins = ["xmlfile log stream", "https"];
policies:https:trusted ca list policy =
"% {ROOT TRUSTED CA LIST POLICY 1}";

bus:security:enable security = "true";

principal sponsor:use principal sponsor = "true";
principal sponsor:auth method id = "pkecsl2 file";

principal sponsor:auth method data =
["filename=%{PRIVATE CERT 1}",
"password file=%{PRIVATE CERT PASSWORD FILE 1}"];
b
o

43

CHAPTER 1 | Getting Started with Artix Security

44

Example 8: Configuration for Connecting to Secure Container

g

The preceding configuration can be explained as follows:

1.

This line loads the nhttps plug-in at start-up time. This is not strictly
necessary, however, because Artix can load the https plug-in
dynamically whenever it is needed.

Note: In particular, loading the nttps plug-in does not automatically
enable HTTPS security. The it container admin client dynamically
enables security for any service whose address URL starts with the
https: prefix.

The client side of a HTTPS connection must always provide a list of
trusted CA certificates. During the SSL/TLS handshake, the client
checks that the server certificate has been signed by a trusted CA.

The bus:security:enable_security variable is set to true, to enable
authentication using WSS username and password on the client side.
In this case, because the username and password are not explicitly
provided in configuration, the it container admin utility will prompt
the user to enter the username and password from the command line
in a secure mode (where keystrokes cannot be intercepted).

The principal sponsor settings associate an X.509 certificate with
the it container admin client. You only need to include these
settings, if the container is configured to require client authentication.

To run the it_container admin utility with the preceding configuration,
enter a command of the following form:

it container admin -BUSname

secure artix.secure container.client authentication config
-port Port CommandOption

Where the port option specifies the IP port where the container is listening
for connections and the commandoption specifies one of the container
administration commands (see Configuring and Deploying Artix Solutions
for details of it_container admin commands).

Configuring deployed Artix
services

Secure Container Demonstration

When you run the it _container admin command, you will be prompted as
follows for the WSS username and password:

Please enter login : WSS Username
Please enter password :

Instead of providing the WSS username and password at the command line,
you can provide them directly in the configuration file using the following
settings:

bus:security:user name = "WSS Username";
bus:security:user password = "WSS Password";

Because the services in the container (including the containerservice

itself) all share the same Artix configuration, you must edit the endpoint

settings in the WSDL contract, in order to tailor the security settings for

individual services.

For example, for a SOAP over HTTP service, there are two main aspects of

security that can be enabled:

® HTTPS security—requires incoming connections to use SSL/TLS.

® Artix security layer—enables authentication of credentials through the
Artix security service. Optionally, this might also involve authorization
using role-based access control.

You can selectively enable or disable these two security features by editing
the service’s WSDL contract as follows:

45

CHAPTER 1 | Getting Started with Artix Security

Enable HTTPS security and Artix security layer

To enable both HTTPS security and the Artix security layer for the
WellWisherService Service in the secure container demonstration, use the
following endpoint configuration:

<definitions ... >

<service name="WellWisherService">
<port binding="tns:WellWisher SOAPBinding"
name="WellWisherPort">
<soap:address
location="https://localhost:9999/wellwisher"/>
</port>
</service>
</definitions>

Where the HTTPS protocol is enabled by putting the https: prefix in the
SOAP URL and the Artix security layer is implicitly enabled (because the
container configuration already enables Artix security).

Enable HTTPS security only
To enable HTTPS only for the wellwisherservice service, use the following
endpoint configuration:

<definitions ... >

<service name="WellWisherService">
<port binding="tns:WellWisher SOAPBinding"
name="WellWisherPort">
<soap:address
location="https://localhost:9999/wellwisher"/>
<bus-security:security enableSecurity="false"/>
</port>
</service>
</definitions>

Where the Artix security layer is explicitly disabled (for this endpoint only) by
setting the enablesecurity attribute to false in the
bus-security:security element.

46

Secure Container Demonstration

Insecure service

To disable security completely for the wellwisherservice service, use the
following endpoint configuration:

<definitions ... >

<service name="WellWisherService">
<port binding="tns:WellWisher SOAPBinding"
name="WellWisherPort">
<soap:address
location="http://localhost:9999/wellwisher"/>
<bus-security:security enableSecurity="false"/>
</port>
</service>
</definitions>

Where the insecure HTTP protocol is selected by putting the http: prefix in
the SOAP URL and the Artix security layer is explicitly disabled for this
endpoint. You must also ensure that plugins:at_http:use secure_sockets
is not set to true in the Artix configuration (this setting would force the port
to use the HTTPS protocol).

Securing the WSDL publishing It is possible to make the container completely secure by securing the WSDL
service publishing service (in addition to securing the container service).
Details of how to deploy the WSDL publishing service securely in a

container are given in “Deploying WSDL Publish in a Container” on
page 345.

Note: Artix 4.0 has a limitation, which forces you to make all of the
services in a container secure, if you make the WSDL publishing service
secure.

47

CHAPTER 1 | Getting Started with Artix Security

Debugging with the openssl Utility

Overview

OpenSSL command-line utility

References

Debugging example

48

The OpenSSL toolkit is an open source implementation of SSL and TLS.

OpenSSL provides a utility, openss1, which includes two powerful tools for

debugging SSL/TLS client and server applications, as follows:

® openssl s_client—an SSL/TLS test client, which can be used to test
secure Artix servers. The test client can connect to a secure port, while
providing a detailed log of the steps performed during the SSL/TLS
handshake.

® openssl s _server—an SSL/TLS test server, which can be used to test
secure Artix clients. The test server can simulate a bare bones SSL/TLS
server (handshake only). Additionally, by supplying the -www switch,
the test server can also simulate a simple secure Web server.

Artix versions 4.1 and later include the openss1 command-line utility, which
is a general-purpose SSL/TLS utility. See “OpenSSL Utilities” on page 645
for more details.

For complete details of the openssl s client and the openssl s _server
commands, see the following OpenSSL documentation pages:

® http://www.openssl.org/docs/apps/s_client.html
® http://www.openss|.org/docs/apps/s_server.html

Consider the HelloWorld demonstration discussed in the previous section,
Secure SOAP Demonstration page 20. This demonstration consists of a
client and a target server.

To demonstrate SSL debugging, you can use the openssi test client to
connect directly to the target server.

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

Debugging steps

Convert the client certificate to
PEM format

Debugging with the openssl Utility

The following table shows the steps required to debug a secure server by
connecting to that server using the openss1 test client:

Step Action

1 | Convert the client certificate to PEM format.

Run the target server.

2
3 | Obtain the target server's IP port.
4

Run the test client.

Certificates for Artix applications are deployed in PKCS#12 format, whereas
the openssi test client requires the certificate to be in PEM format (a format
that is proprietary to OpenSSL). It is, therefore, necessary to convert the
client certificate to the PEM format.

For example, given the certificate testaspen.p12 (located in the
ArtixInstallDir/cxx_java/samples/security/certificates/openssl/x5
09/certs directory), you can convert the certificate to PEM format as
follows.

1.

Run the openssl pkes12 command, as follows:

openssl pkcsl2 -in testaspen.pl2 -out testaspen.pem

When you run this command you are prompted to enter, first of all, the
pass phrase for the testaspen.p12 file and then to enter a pass phrase
for the newly created testaspen.pen file.

The testaspen.pen file generated in the previous step contains a CA
certificate, an application certificate, and the application certificate’s
private key. Before you can use the testaspen.pen file with the
openssl test client, however, you must remove the CA certificate from
the file. That is, the file should contain only the application certificate
and its private key.

49

CHAPTER 1 | Getting Started with Artix Security

50

For example, after deleting the CA certificate from the testaspen.pem
file, the contents of the file should look something like the following:

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
Cl E1 FF 4A
friendlyName: Administrator
subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty -- demo
purposes/OU=Administration/CN=Administrator/emailAddress=admi
nistrator@abigbank.com
issuer=/C=US/ST=Massachusetts/L=Boston/O=ABigBank -- no warranty
-- demo purposes/OU=Demonstration Section -- no warranty
--/CN=ABigBank Certificate
Authority/emailAddress=info@abigbank.com

MIIEiTCCA/KgAwIBAgIBATANBgkghkiGOwWOBAQQFADCRES5] ELMAKGA1 UERhMCVVMxX
FjAUBgNVBAGTDU1lhc3NhY2h1lc2V0dHMxDzZANBGNVBACTBkIJve3Rvbj EXMC8GALIUE
ChMoQUJIPZ0JhbmsgLS0gbm8gd2 FycmFudHkgLS 0gZGVtbyBwdXJwb3N1czEwMC4G
AlUECXMNRGVtb25zdHIhdG1vbiBTZWNOaWouICOt IG5vIHdhcnIhbnR5ICOtMScw
JQYDVQQDExX5BQm1nQmFuayBDZXJ0aWZpY2F0ZSBBAXRob3JpdHkx IDAeBgkghkiG
9wOBCQEWEW1uZm9AYWIpZ2JhbmsuY2 9t MB4XDTAOMTEXODEWNTE1NVOXDTEOMDgwW
NzEwWNTE1NVowgbQxCzAJBgNVBAYTA1VIMRYWFAYDVQQIEWINYXNZYWNOdXN1dHRZz
MTEwLwYDVQQKEyhBOmlnQmFuayAtLSBubyB3YXJyYW50eSAtLSBKZW1vIHBlcnBv
C2VzMRcwFQYDVQQLEwWSBZG1pbml zdHThdGl vbj EWMBQGA1UEAXMNQWRtaWSpc 3Ry
YXRvc]jEpMCcGCSgGSIb3DOEJARYaYWRtaWspe3Ry YXRvekBhYmlnYmFuay5jb2 0w
gZ8wDQYJKoZIhveNAQEBBQADGY 0AMIGJAOGBANK 7503 YBkkj Cvgy OpOPXAU+M6RE
0QzaQ8/Y1ciWlQ/oCT/17+3P/ZhHAJaT+QxmahQHAY5ePixGyak7raut 2MdjHOUo
wCKt ZglhuNa8juJSvsN5iTUupzp/mRQ/ j4rOxr8gWI5dh5d/kF4 +H5s8yrxNjrDg
£Y7£dxPIKt 0x9sYPAGMBAAG) ggF1MI IBCTAJBGNVHRMEA] AAMCWGCWCGSAGG+EIB
DQQfFh1PcGVUUINMIEdlbmVyYXR1ZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4AEFgQUJIBAK
9LPZPsaE9+a/FWbCz2LOXxWkwggEVBgNVHSMEggEMMI IBCIAUNhJ z90oNb6 Yg8d1nbH
BPjtS7ul0WyhgeykgekwgeYxCzAJBgNVBAYTALVTMRYwFAYDVQQTI EwlNYXNZYWNO
dXN1dHRzMQ8wWDQYDVQOHEWZCb3N0b24xMTAVBgNVBAOTKEFCaWdCYW5rICOt IG5V
ITHdhcnIhbnR5IC0t IGR1bW8gcHVYcG9zZXMxMDAUBgGNVBASTIO0R1bWOuc3RyYXRp
b24gU2VjdG1vbiAtLSBubyB3YXJyYW50eSAtLTENMCUGAT UEAXMeQUIpZ0Jhbmsg
Q2VydGlmaWNhdGUgOXV0aG9yaXR5MSAWHGYJKoZ ThveNAQKkBFhFpbmZvQGFiaWdi
YW5rLmNvbYIBADANBgkghkiGOw0BAQQFAAOBgQC7S5R1DsK3 ZChIVpHPQrpQj SBA
J5DYTAmgzac7pkxy8rQzYvG5FjHL7beuzT3jdM2£vQJI8M7t 8EMKHKPgeguATrnY+x
3VNGwWv1kr5jQTDeO0d7d9I102fknQA14 7 /wPFEDUwdz4n9TThjE71p]62zG27EivE
cm/h2L,/DpWgZK0TQ9Q==

Run the target server

Obtain the target server’s IP port

Debugging with the openssl Utility

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
Cl E1 FF 4A
friendlyName: Administrator

Key Attributes: <No Attributess>

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,AD8F864A0ES7FB4E

e3cexhY+kAujb6cOs9skerP2gZsauc3ldyyp4cdZiAkAilemfA/mLiv2pfgao8gfu9
yroNvYyDADEZzagEyzF/4FGU1nScZjAiy9Imi9mA/1SHD5g1HH/wl2bgXclBgtC3
GrfiHzGMbWyzDUj 0PHjw/EkbyxQBJsCed fPUCGVH7 frgCPeE1gq2EQRKBHCa3vkHr
6hrwuWS18TXn8DtcCFFtugouHXwKeGjJXE5PYfKak18BOwKgiZgt j 1IDHY6G20ERL
ZgNt AB+XF9VrA5XZHNSU6RBeXMVSrUl0GzdVrCnojd6d8Be7Q7KBSHDVIX zZ1 PKp
7DYVn5DyFSEQ7kYs9dsaZ5Id51NkMIiscPp7AL2SIAWPY 1UfENSgFNIYiwXP1ckF
STTig+BG8UPPmM6G3KGgRZMZ0Ih7DySZufbE24NIrN74kXVOVE /RpxzNiMz /PbLAG
6wiyp47We/40gxLiv8YIjGGEdYyaB/Y7XEyE9ZL74Dc3CcuSvtA2£C8hU3cXjKBu7
YsVz/Dg8G0w2230wpZ0Qz2KU1 9CLg/hmYLOJt 1yLVoaGZud 1 CWXdgX0dComDORSK
alaUagy/Gz2zys20N5WRK+s+HzgoB0OvneOy4Z1Ss71Hf GAUemiRTAI8DX1zgyHYK
5m61iSSB961xOM7YI58JYOGNLMXz1ILmCUAYCQOhk1WGIFEN4cZBrkh506 r+U4FewhF
dvDoBu3 9Xie5gHFrJu86ghzxi202h0s02vexvu]j SGyNy009PJGKEAhIJGEOG+a2Qq
VBwWUUZgo0zIJ6gUrMV1LOAWWL7zFxyKaF511jF1C9KxtEKm0393zag==

Run the target server, as described in the README. txt file in the
demos/security/full security directory.

In this demonstration, the server's IP port is specified explicitly in the WSDL
contract, demos/security/full security/etc/hello world.wsdl. For
example, in this contract the SOAPService service is configured as follows:

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/full security"

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter SOAPBinding"
name="SoapPort">
<soap:address location="https://localhost:9000"/>
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

51

CHAPTER 1 | Getting Started with Artix Security

Run the test client

52

In this example, the target server's IP port is 9000.

To run the openss1 test client, open a command prompt, change directory
to the directory containing the testaspen.pen file, and enter the following
command:

openssl s client -connect localhost:9000 -ssl3 -cert
testaspen.pem

When you enter the command, you are prompted to enter the pass phrase
for the testaspen.pen file.
The openssl s client command switches can be explained as follows:
-connect host:port
Open a secure connection to the specified host and port.
-ssl3
This option configures the client to initiate the handshake using SSL v3
(the default is SSL v2). To see which SSL version (or versions) the
target server is configured to use, check the value of the
policies:mechanism_policy:protocol_versior1Vaﬂab|ein the Artix
configuration file. Artix servers can also be configured to use TLS v1,
for which the corresponding openss1 command switch is -t1s1.
-cert testaspen.pem
Specifies testaspen.pem as the test client’'s own certificate. The PEM
file should contain only the application certificate and the application
certificate’s private key. The PEM file should not contain a complete
certificate chain.
If your server is not configured to require a client certificate, you can
omit the -cert switch.
Other command switches
The openssl s_client command supports numerous other command
switches, details of which can be found on the OpenSSL document
pages. Two of the more interesting switches are -state and -debug,
which log extra details to the command console during the handshake.

In this chapter

CHAPTER 2

Introduction to the
Artix Security
Framework

This chapter describes the overall architecture of the Artix
Security Framework.

This chapter discusses the following topics:

Artix Security Architecture page 54

Caching of Credentials page 61

53

CHAPTER 2 | Introduction to the Artix Security Framework

Artix Security Architecture

Overview The Artix security architecture embraces a variety of protocols and security
technologies. This section provides a brief overview of the security features
supported by the different kinds of Artix bindings.

In this section This section contains the following subsections:
Types of Security Credential page 55
Protocol Layers page 57
Security Layer page b9
Using Multiple Bindings page 60

54

Artix Security Architecture

Types of Security Credential

Overview

WSS username token

WSS Kerberos token

CORBA Principal

The following types of security credentials are supported by the Artix
security framework:

® WSS username token.

® WSS Kerberos token.

® CORBA Principal.

® HTTP Basic Authentication.

® X.509 certificate.

® CSl authorization over transport.
® CSl identity assertion.

¢ SSO token.

The Web service security (WSS) UsernameToken is a username/password
combination that can be sent in a SOAP header. The specification of WSS
UsernameToken is contained in the WSS UsernameToken Profile 1.0
document from OASIS (www.oasis-open.org).

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The WSS Kerberos specification is used to send a Kerberos security token in
a SOAP header. The implementation is based on the Kerberos Token Profile
v1.0 specification (wss-kerberos-token-profile-1.0). If you use Kerberos, you
must also configure the Artix security service to use the Kerberos adapter.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. The CORBA Principal is
effectively just a username (no password can be propagated).

This type of credential is available only for the CORBA binding and for SOAP
over HTTP.

55

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

CHAPTER 2 | Introduction to the Artix Security Framework

HTTP Basic Authentication

X.509 certificate

CSI authorization over transport

CSlI identity assertion

SSO token

56

HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header.

This type of credential is available to any HTTP-compatible binding.

Two different kinds of X.509 certificate-based authentication are provided,

depending on the type of Artix binding, as follows:

® HTTP-compatible binding—in this case, the common name (CN) is
extracted from the X.509 certificate’s subject DN. A combination of the
common name and a default password is then sent to the Artix security
service to be authenticated.

® CORBA binding—in this case, authentication is based on the entire
X.509 certificate, which is sent to the Artix security service to be
authenticated.

This type of credential is available to any transport that uses SSL/TLS.

The OMG’s Common Secure Interoperability (CSI) specification defines an
authorization over transport mechanism, which passes username/password
data inside a GIOP service context. This kind of authentication is available
only for the CORBA binding.

This type of credential is available only for the CORBA binding.

The OMG’s Common Secure Interoperability (CSI) specification also defines
an identity assertion mechanism, which passes username data (no
password) inside a GIOP service context. The basic idea behind CSI identity
assertion is that the request message comes from a secure peer that can be
trusted to assert the identity of a user. This kind of authentication is
available only for the CORBA binding.

This type of credential is available only for the CORBA binding.

An SSO token is propagated in the context of a system that uses single
sign-on. For details of the Artix single sign-on feature, see “Single Sign-On”
on page 325.

Artix Security Architecture

Protocol Layers

Overview

HTTP-compatible binding

Within the Artix security architecture, each binding type consists of a stack
of protocol layers, where a protocol layer is typically implemented as a
distinct Artix plug-in. This subsection describes the protocol layers for the
following binding types:

® HTTP-compatible binding.

® SOAP binding.

® CORBA binding.

HTTP-compatible means any Artix binding that can be layered on top of the
HTTP protocol. Figure 6 shows the protocol layers and the kinds of
authentication available to a HTTP-compatible binding.

Figure 6: Protocol Layers in a HTTP-Compatible Binding

HTTP-compatible
binding

HTTP 14— HTTP Basic Authentication

x
o
S
©

SSL/TLS —

57

CHAPTER 2 | Introduction to the Artix Security Framework

SOAP binding

CORBA binding

58

The SOAP binding is a specific example of a HTTP-compatible binding. The
SOAP binding is special, because it defines several additional credentials
that can be propagated only in a SOAP header. Figure 7 shows the protocol
layers and the kinds of authentication available to the SOAP binding over
HTTP.

Figure 7: Protocol Layers in a SOAP Binding
l«—— WSS UsernameToken
SOAP l¢—— WSS Kerberos

[«—— CORBA Principal

HTTP —— HTTP Basic Authentication

x

.50

©o

SSL/TLS —

For the CORBA binding, there are only two protocol layers (CORBA binding
and IIOP/TLS). This is because CORBA is compatible with only one kind of
message format (that is, GIOP). Figure 8 shows the protocol layers and the
kinds of authentication available to the CORBA binding.

Figure 8: Protocol Layers in a CORBA Binding

CORBA
binding
«—— CSI authentication over transport
GIOP l«—— CSl identity assertion

«—— CORBA Principal

X.509

IIOP/TLS —

Artix Security Architecture

Security Layer

Overview

Authentication

Authorization

Single sign-on

Artix security plug-in

GSP security plug-in

The security layer is responsible for implementing a variety of different
security features with the exception, however, of propagating security
credentials, which is the responsibility of the protocol layers. The security
layer is at least partially responsible for implementing the following security
features:

® Authentication.

® Authorization.

® Single sign-on.

On the server side, the security layer selects one of the client credentials (a
server can receive more than one kind of credentials from a client) and calls
the central Artix security service to authenticate the credentials. If the
authentication call succeeds, the security layer proceeds to make an
authorization check; otherwise, an exception is thrown back to the client.

The security layer makes an authorization check by matching a user’s roles
and realms against the ACL entries in an action-role mapping file. If the
user does not have permission to invoke the current action (that is, WSDL
operation), an exception is thrown back to the client.

Single sign-on is an optional feature that increases security by reducing the
number of times that a user’s credentials are sent across the network. The
security layer works in tandem with the login service to provide the single
sign-on feature.

The Artix security plug-in provides the security layer for all Artix bindings
except CORBA. The ASP security layer is loaded, if artix_security is listed
in the orb_plugins list in the Artix domain configuration, artix.cfg.

The GSP security plug-in provides the security layer for the CORBA binding
only. The GSP security layer is loaded, if gsp is listed in the orb_plugins list
in the Artix domain configuration, artix.cfg.

59

CHAPTER 2 | Introduction to the Artix Security Framework

Using Multiple Bindings

Overview

Example bindings

60

Figure 9 shows an example of an advanced application that uses multiple
secure bindings.

Figure 9: Example of an Application with Multiple Bindings

Application

GSP

ASP security security

G2++ SOAP | CORBA

HTTP GIOP
1IOP/
SSL/TLS TLS

This type of application might be used as a bridge, for example, to link a
CORBA domain to a SOAP domain. Alternatively, the application might be a
server designed as part of a migration strategy, where the server can support
requests in multiple formats, such as G2+ +, SOAP, or CORBA.

The following bindings are used in the application shown in Figure 9:

® G2+ +—consisting of the following layers: ASP security, G2+ +
binding, HTTP, SSL/TLS.

® SOAP—consisting of the following layers: ASP security, SOAP binding,
HTTP, SSL/TLS.

® CORBA—consisting of the following layers: GSP security, CORBA
binding, GIOP, 1IOP/TLS.

Caching of Credentials

Caching of Credentials

Overview

Cache time-out

Cache size

GSP configuration variables

To improve the performance of servers within the Artix Security Framework,
both the GSP plug-in (CORBA binding only) and the artix security plug-in
(C++ runtime) implement caching of credentials (that is, the authentication
and authorization data received from the Artix security service).

The credentials cache reduces a server's response time by reducing the
number of remote calls to the Artix security service. On the first call from a
given user, the server calls the Artix security service and caches the received
credentials. On subsequent calls from the same user, the cached credentials
are used, thereby avoiding a remote call to Artix security service.

The cache can be configured to time-out credentials, forcing the server to
call the Artix security service again after using cached credentials for a
certain period.

The cache can also be configured to limit the number of stored credentials.

The following variables configure the credentials cache for CORBA bindings:
plugins:gsp:authentication cache size
The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.
A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.
plugins:gsp:authentication cache timeout
The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.
A value of -1 (the default) means an infinite time-out. A value of o
means disable the cache.

61

CHAPTER 2 | Introduction to the Artix Security Framework

ASP configuration variables

62

The following variables configure the credentials cache for all non-CORBA

bindings:

plugins:asp:authentication cache size
The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:asp:authentication cache timeout
The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.

A value of -1 (the default) means an infinite time-out. A value of o
means disable the cache.

In this chapter

CHAPTER 3

Security for
HTTP-Compatible
Bindings

This chapter describes the security features supported by the
Artix HTTP transport. These security features are available to
any Artix binding that can be layered on top of the HTTP
transport.

This chapter discusses the following topics:

Overview of HTTP Security page 64
Securing HTTP Communications with TLS page 67
HTTP Basic Authentication page 78
X.509 Certificate-Based Authentication page 82

63

CHAPTER 3 | Security for HTTP-Compatible Bindings

Overview of HTTP Security

Overview

Security layers

SSL/TLS layer

64

HTTP Basic Authentication —| HTTP

Figure 10 gives an overview of HTTP security within the Artix security
framework, showing the various security layers (security layer, binding layer,
HTTP, and SSL/TLS) and the different authentication types associated with
the security layers. Because many different binding types (for example,
SOAP, tagged or fixed) can be layered on top of HTTP, Figure 10 does not
specify a particular binding layer. Any HTTP-compatible binding could be
substituted into this architecture.

Figure 10: HTTP-Compatible Binding Security Layers

ARM .
- Action-role
authorization -
mapping file
Security layer authentication
HTTP-compatible \l/
binding Artix Security Service

SSL/TLS

As shown in Figure 10, a HTTP-compatible binding has the following
security layers:

® SSL/TLS layer.

® HTTP layer.

® HTTP-compatible binding layer.
® Security layer.

The SSL/TLS layer provides guarantees of confidentiality, message integrity,
and authentication (using X.509 certificates).

HTTP layer

HTTP-compatible binding layer

Security layer

Overview of HTTP Security

The HTTP layer supports the sending of username/password data in the

HTTP message header—that is, HTTP Basic Authentication.

In the Artix C++ runtime, the HTTP/S protocol is implemented by the

following plug-ins:

® at_http plug-in—this plug-in is a thin layer that integrates the other
two plug-ins, http and https, with the Artix core. The at_http plug-in
is automatically loaded, if either the <http-conf:client> or
<http-conf:servers tags appear amongst the WSDL port settings.

® http plug-in—implements insecure HTTP only. The nttp plug-in is
automatically loaded by the at_nttp plug-in.

® https plug-in—implements secure HTTPS only. The https plug-in
must be added explicitly to the orb plugins list in order to load.

The HTTP-compatible binding layer could provide additional security
features (for example, propagation of security credentials), depending on the
type of binding. The following binding types are HTTP-compatible:

® SOAP binding.

® XML format binding.

® Fixed record length binding.
® Tagged data binding.

® MIME binding.

The Security layer is implemented by the Artix security plug-in, which

provides authentication and authorization checks for all binding types,

except the CORBA binding, as follows:

® Authentication—Dby selecting one of the available client credentials
and calling out to the Artix security service to check the credentials.

® Authorization—Dby reading an action-role mapping (ARM) file and
checking whether a user’s roles allow it to perform a particular action.

® SOAP 1.2 headers (C++ runtime)—in programs implemented using
the C++ runtime, the security layer is also responsible for adding
SOAP 1.2 headers on the client side.

65

CHAPTER 3 | Security for HTTP-Compatible Bindings

Authentication options

HTTP Basic Authentication

X.509 certificate-based
authentication

66

The following authentication options are common to all HTTP-compatible
bindings:

® HTTP Basic Authentication.

® X.509 certificate-based authentication.

HTTP Basic Authentication works by sending a username and password
embedded in the HTTP message header. This style of authentication is
commonly used by clients running in a Web browser.

For details of HTTP Basic Authentication, see “HTTP Basic Authentication”
on page 78.

X.509 certificate-based authentication is an authentication step that is
performed in addition to the checks performed at the socket layer during the
SSL/TLS security handshake.

For details of X.509 certificate-based authentication, see “X.509
Certificate-Based Authentication” on page 82.

Securing HTTP Communications with TLS

Securing HTTP Communications with TLS

Overview

Generating X.509 certificates

This subsection describes how to configure the HTTP transport (C+ +
runtime) to use SSL/TLS security, a combination usually referred to as
HTTPS. In the Artix C++ runtime, HTTPS security is implemented by a

combination of the at_http and https plug-ins and configured by settings in
the artix.cfg file.

The following topics are discussed in this subsection:
® Generating X.509 certificates.

¢ Enabling HTTPS.

® HTTPS client with no certificate.

® HTTPS client with certificate.

® HTTPS server configuration.

A basic prerequisite for using SSL/TLS security is to have a collection of
X.509 certificates available to identify your server applications and,
optionally, your client applications. You can generate X.509 certificates in
one of the following ways:

® Use a commercial third-party to tool to generate and manage your

X.509 certificates.

Use the free openss1 utility (which can be downloaded from
http://www.openssl.org)—see “Creating Your Own Certificates” on
page 140 for details of how to use it.

Note: The HTTPS protocol mandates an URL integrity check, which
requires a certificate's identity to match the hostname on which the server

is deployed. See “Special Requirements on HTTPS Certificates” on
page 137 for details.

67

http://www.openssl.org

CHAPTER 3 | Security for HTTP-Compatible Bindings

Enabling HTTPS

68

There are two approaches to enabling HTTPS, depending on whether or not
the configuration in the WSDL contract explicitly specifies a HTTPS URL.

HTTPS specified in the WSDL contract

The usual way to enable HTTPS is by specifying the endpoint address in the
WSDL contract as an URL with the https: prefix. For example, to enable
SOAP over HTTPS, you would specify the endpoint address as follows:

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/hello world soap http"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >

<wsdl :service name="SOAPService"s>
<wsdl:port binding="tns:Greeter SOAPBinding"
name="SoapPort">
<soap:address location="https://localhost:9000"/>
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

Where the location attribute of the soap:address element is configured to
use a HTTPS URL. For bindings other than SOAP, you would edit the URL
appearing in the location attribute of the http:address element.

HTTPS not specified in the WSDL contract

If the endpoint address in the WSDL contract is specified as an URL with
the http: prefix (insecure HTTP), it is possible to force the endpoint to use
SSL/TLS security by editing the Artix configuration file, setting
plugins:at_http:client:use_secure sockets t0 true on the client side
and plugins:at_http:server:use secure sockets 10 true on the server
side. In general, however, it is better to specify the HTTPS protocol by
modifying the URL in the WSDL contract (the first approach).

Securing HTTP Communications with TLS

For example, consider the configuration for a secure HTTPS client with no

HTTPS client with no certificate
certificate. Example 9 shows how to configure such a sample client.

Example 9: Sample HTTPS Client with No Certificate

Artix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

1 orb plugins = ["xml log stream", ..., "at http", "https"];
binding:client binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA Coloc", "TLS Coloc+POA Coloc",
"OTS+POA Coloc", "POA Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP TLS", "OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP TLS", "GIOP+IIOP TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

2 policies:https:trusted ca list policy =
"ArtixInstallDir\cxx java\samples\security\certificates\tls\x

509\trusted ca lists\ca listl.pem";

3 policies:https:mechanism policy:protocol version = "SSL V3";
policies:https:mechanism policy:ciphersuites =
["RSA WITH RC4 128 SHA", "RSA WITH RC4 128 MD5"] ;
4 event log:filters = ["IT ATLI TLS=*", "IT IIOP=*",
"IT IIOP TLS=*", "IT TLS=*"];
my client {
Specific HTTPS client configuration settings
5 principal sponsor:use principal sponsor = "false";
6 policies:https:client secure invocation policy:requires =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
policies:https:client secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
s
ba

69

CHAPTER 3 | Security for HTTP-Compatible Bindings

70

The preceding client configuration can be described as follows:

1.

The at_http and https plug-ins together provide support for the HTTP
and HTTPS protocols. You can optionally include these plug-ins in the
orb plugins list. If they are not explicitly listed, Artix will automatically
load them when necessary.

Note: Loading the nttps plug-in is not sufficient to make a service
secure. You must also configure the endpoints to have HTTPS URLs
in the WSDL contract—see “Enabling HTTPS” on page 68.

If you plan to use the full Artix Security Framework, you should include
the ASP plug-in, artix security, in the ORB plug-ins list as well.

A HTTPS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other HTTPS applications. You must, therefore, edit the
policies:https:trusted ca list policy variable to point at a list of
trusted certificate authority (CA) certificates. See “Specifying Trusted
CA Certificates” on page 168.

The mechanism policy specifies the default security protocol version

and the available cipher suites—see “Specifying Cipher Suites” on

page 207.

This line enables console logging for security-related events, which is

useful for debugging and testing. Because there is a performance

penalty associated with this option, you might want to comment out or

delete this line in a production system.

The SSL/TLS principal sponsor is a mechanism that can be used to

specify an application’s own X.509 certificate. Because this client

configuration does not use a certificate, the principal sponsor is

disabled by setting principal sponsor:use principal sponsor to

false.

The following two lines set the required options and the supported

options for the HTTPS client secure invocation policy. In this example,

the policy is set as follows:

¢+ Required options—the options shown here ensure that the client
can open only secure HTTPS connections.

Securing HTTP Communications with TLS

Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

HTTPS client with certificate For example, consider a secure HTTPS client that is configured to have its
own certificate. Example 10 shows how to configure such a sample client.

Example 10: Sample HTTPS Client with Certificate

Artix Configuration File

General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.
orb plugins = ["xml log stream", "at http", "https"];
binding:client binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA Coloc", "TLS Coloc+POA Coloc",
"OTS+POA Coloc", "POA Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP TLS", "OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

policies:https:trusted ca list policy =
"ArtixInstallDir\cxx java\samples\security\certificates\tls\x

509\trusted ca lists\ca listl.pem";

policies:https:mechanism policy:protocol version = "SSL V3";

policies:https:mechanism policy:ciphersuites =
["RSA WITH RC4 128 SHA", "RSA WITH RC4 128 MD5"];

event log:filters = ["IT ATLI TLS=*", "IT IIOP=*",
"IT IIOP _TLS=*", "IT TLS=*"];

my client {
Specific HTTPS client configuration settings

1 principal sponsor:use principal sponsor = "true";
2 principal sponsor:auth method id = "pkcsl2 file";
3 principal sponsor:auth method data =

["filename=C:\artix 30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.pl2"];

71

CHAPTER 3 | Security for HTTP-Compatible Bindings

72

Example 10: Sample HTTPS Client with Certificate

policies:https:client secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:https:client secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

IE

The preceding client configuration can be described as follows:

1.

The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. The principal sponsor is
enabled by setting principal sponsor:use principal sponsor t0

true.

This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 176.

Specify the X.509 certificate location by editing the filename value to
point at a custom X.509 certificate file, which should be in PKCS#12
format—see “Specifying an Application’s Own Certificate” on page 176
for more details.

For details of how to specify the certificate’s pass phrase, see

“Deploying Own Certificate for HTTPS” on page 177.

The following two lines set the required options and the supported

options for the client secure invocation policy. In this example, the

policy is set as follows:

+ Required options—the options shown here ensure that the client
can open only secure HTTPS connections.

¢ Supported options—the association options shown here include
the EstablishTrustInclient option. This association option
must be supported when the client has an X.509 certificate.

Securing HTTP Communications with TLS

Alternatively, you could configure security for a HTTPS client by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 11 shows how to configure the client side of a HTTPS connection
in Artix, in the case of mutual authentication.

Example 11: WSDL Contract for HTTPS Client with Certificate

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration" ... >

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">
<soap:address location="https://localhost:55012"/>
<http-conf:client
UseSecureSockets="true"

TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.

pla2"
ClientCertificate="../certificates/openssl/x509/certs/client cer

t.pl2"

ClientPrivateKeyPassword="ClientPrivKeyPass"
/>
</port>

</service>

</definitions>

The preceding WSDL contract can be described as follows:

1. The clientcertificate attribute specifies the client’s own certificate
in PKCS#12 format.

2. The clientPrivateKeyPassword attribute specifies the password to
decrypt the contents of the clientcertificate file.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 341.

73

CHAPTER 3 | Security for HTTP-Compatible Bindings

HTTPS server configuration

74

o b w

Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role. The
sample server described here combines the following qualities: in the server
role, the application requests clients to send a certificate; in the client role,
the application requires security and includes a certificate.

Example 12 shows how to configure such a sample server.
Example 12: Sample HTTPS Server Configuration

Artix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

my server {
Specific HTTPS server configuration settings

policies:https:target secure invocation policy:requires
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:https:target secure invocation policy:supports
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"] ;

principal sponsor:https:use principal sponsor = "true";

principal sponsor:https:auth method id = "pkcsl2 file";

principal sponsor:https:auth method data =
["filename=CertsDir\server cert.pl2"];

Specific HTTPS client configuration settings

policies:https:client secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:https:client secure invocation policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"] ;

I

Securing HTTP Communications with TLS

The preceding server configuration can be described as follows:

1.

You can use the same common SSL/TLS settings here as described in
the preceding “HTTPS client with no certificate” on page 69.

The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

+ Required options—the options shown here ensure that the server
accepts only secure HTTPS connection attempts.

¢ Supported options—all of the target association options are
supported.

A secure server must always be associated with an X.509 certificate.

Hence, this line enables the SSL/TLS principal sponsor, which

specifies a certificate for the application.

This line specifies that the X.509 certificate is contained in a

PKCS#12 file. For alternative methods, see “Specifying an

Application’s Own Certificate” on page 176.

Specify the location of the X.509 certificate file, by editing the
filename value to point at a custom X.509 certificate, which should be
in PKCS# 12 format—see “Specifying an Application’s Own Certificate”
on page 176 for more details.

For details of how to specify the certificate’s pass phrase, see
“Deploying Own Certificate for HTTPS” on page 177.

The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

. Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

¢ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.

75

CHAPTER 3 | Security for HTTP-Compatible Bindings

76

A WN

[)¢}

Alternatively, you could configure security for a HTTPS server by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 13 shows how to configure the server side of a HTTPS connection
for mutual authentication in Artix.

Example 13: WSDL Contract with Server HTTPS Configuration

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration" ... >

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">
<soap:address location="https://localhost:55012"/>
<http-conf:server
UseSecureSockets="true"

ServerCertificate="../certificates/openssl/x509/certs/server cer
t.pl2"
ServerPrivateKeyPassword="ServerPrivKeyPass"
TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.
pla2"
/>
</port>
</services>
</definitions>

The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled by using nttps:
instead of http: in the location URL attribute.

2. The <http-conf:servers tag contains all the attributes for configuring
the server side of the HTTPS connection.

3. Ifthe usesecuresockets attribute is true, the server will open a port to
listen for secure connections.

Note: If UsesecureSockets iS false and the <soap:address>
location URL begins with nttps:, however, the server will listen for
secure connections.

Securing HTTP Communications with TLS

4. The servercertificate attribute specifies the server's own certificate
in PKCS#12 format. For more background details about X.509
certificates, see “Managing Certificates” on page 127.

5. The serverpPrivateKeyPassword attribute specifies the password to
decrypt the server certificate’s private key.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<http-conf: servers tag from the copy of the WSDL contract that is
distributed to clients.

6. The file specified by the TrustedrRootCertificates contains a
concatenated list of CA certificates in PKCS#12 format. This attribute
value is needed for mutual authentication (for checking the certificates
sent by clients).

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 341.

77

CHAPTER 3 | Security for HTTP-Compatible Bindings

HTTP Basic Authentication

Overview

HTTP Basic Authentication client
configuration—WSDL file

78

This section describes how to configure an Artix client and server to use
HTTP Basic Authentication. With HTTP Basic Authentication,
username/password credentials are sent in a HTTP header.

For more details, see the W3 specification
(http://www.w3.org/Protocols/HTTP/1.0/spec.html) for HTTP/1.0.

Example 14 shows how to configure a client WSDL contract to use HTTP
Basic Authentication.

Example 14: WSDL Contract with Client HTTP Basic Authentication

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"
xmlns: soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration"
xmlns:bus-security="http://schemas.iona.com/bus/security"
o>

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">
<soap:address location="https://localhost:55012"/>
<http-conf:client

UserName="user test"
Password="user password"
/>
<bus-security:security enableSecurity="true" />
</port>
</service>
</definitions>

http://www.w3.org/Protocols/HTTP/1.0/spec.html

HTTP Basic Authentication client
configuration—principal sponsor

HTTP Basic Authentication

The preceding WSDL contract can be described as follows:

1. The bus-security namespace prefix is needed for the ASP plug-in
settings.

2. Inthis example, HTTP Basic Authentication is combined with SSL/TLS
security (see “Securing HTTP Communications with TLS” on page 67).
This ensures that the username and password are transmitted across
an encrypted connection, protecting them from snooping.

3. The userName attribute sets the user name for the HTTP Basic
Authentication credentials.

4. The password attribute sets the password for the HTTP Basic
Authentication credentials.

5. The presence of the <bus-security:security> tag ensures that the
ASP plug-in, artix security, is loaded into your application. This
plug-in is responsible for the authentication and authorization features.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 341.

Instead of setting the HTTP Basic Authentication username and password in
the WSDL contract, you can specify the username and password in the Artix
configuration file using the relevant principal sponsor configuration
variables. Example 15 shows how to configure the username and password
in the Artix configuration file.

Example 15: Artix Configuration with Client HTTPS Basic Authentication

// Artix Configuration File
secure artix {

client {
// SSL/TLS Configuration
... // (Not shown)
// Configure the HTTP/BA Username and Password
principal sponsor:http:use principal sponsor = "true";
principal sponsor:http:auth method id =

"USERNAME PASSWORD";

79

CHAPTER 3 | Security for HTTP-Compatible Bindings

HTTP Basic Authentication server
configuration

80

Example 15: Artix Configuration with Client HTTPS Basic Authentication

principal sponsor:http:auth method data =
["username=test username", "password=test password"];
Ja
ha

The preceding configuration can be described as follows:

1. This example assumes that you are using SSL/TLS security to protect
the password from snooping. See “Securing HTTP Communications
with TLS” on page 67 for details.

2. The principal sponsor:http:use principal sponsor configuration
variable is set to true to enable HTTP feature.

3. The principal_sponsor:http:auth_method_id.Conﬂguraﬁon variable
selects the type of credential to send in the HTTP header. Currently,
the only valid option is userNAME PASSWORD (equivalent to HTTP Basic
Authentication).

4., The principal sponsor:http:auth method data configuration
variable sets the Basic Authentication username and password.

There is no need to make any maodifications to the WSDL contract for
servers that support HTTP Basic Authentication.

However, it is necessary to make modifications to the domain configuration
file, artix.cfg (in the ArtixInstallDir/cxx_java/etc/domains directory),
as shown in Example 16.

Example 16: Artix Configuration for Server HTTP Basic Authentication

Artix Configuration File
security artix {
demos
hello world
plugins:artix security:shlib name="it security plugin";
binding:artix:server request interceptor list=
"security";
binding:client binding list = ["OTS+POA Coloc",
"POA Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP TLS"];

o o b

HTTP Basic Authentication

Example 16: Artix Configuration for Server HTTP Basic Authentication

orb plugins = ["xmlfile log stream", ..., "at http",
"artix security", "https"];

plugins:is2 authorization:action role mapping =
"file://ArtixInstallDir/cxx java/samples/security/full securi
ty/etc/helloworld action role mapping.xml";

policies:asp:enable authorization = "true";

plugins:asp:security level = "MESSAGE LEVEL";

plugins:asp:authentication cache size = "5";

plugins:asp:authentication cache timeout = "10";

I
}i

The preceding extract from the domain configuration can be explained as

follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The orb plugins list should include the artix security plug-in,
which is responsible for enabling authentication and authorization.

3. The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 305 for more details.

4. The policies:asp:enable authorization variable must be set to
true to enable authorization.

5. The plugins:asp:security level configuration variable specifies the
type of credentials authenticated on the server side. The
MESSAGE_LEVEL Security type, selects the username/password
credentials from the HTTP Basic Authentication header.

6. The next pair of configuration variables configure the asp caching
mechanism. For more details, see “ASP configuration variables” on
page 62.

81

CHAPTER 3 | Security for HTTP-Compatible Bindings

X.509 Certificate-Based Authentication

Overview This section describes how to enable X.509 certificate authentication in a
two-tier client/server scenario for applications based on the C++ runtime.
In this scenario, the Artix security service authenticates the client’s
certificate and retrieves roles and realms based on the identity of the
certificate subject. When certificate-based authentication is enabled, the
X.509 certificate is effectively authenticated twice, as follows:
® SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by the HTTPS configuration
settings in the Artix configuration file, artix.cfg.

® Artix security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the
artix_security plug-in.

Certificate-based authentication Figure 11 shows an example of a two-tier system, where authentication of
scenario the client’'s X.509 certificate is integrated with the Artix security service.

Figure 11: Overview of Certificate-Based Authentication with HTTPS

SSL/TLS-level @ Apply access

authentication control
Target
"

@ Retrieve user's
realms and roles

@ authenticate ()

A 4

Artix Security Service

A4

82

Scenario description

X.509 Certificate-Based Authentication

The scenario shown in Figure 11 can be described as follows:

Stage

Description

1

When the client opens a connection to the server, the client

sends its X.509 certificate as part of the SSL/TLS handshake

(HTTPS). The server then performs SSL/TLS-level

authentication, checking the certificate as follows:

® The certificate is checked against the server's trusted CA
list to ensure that it is signed by a trusted certification
authority.

® The server sends a challenge to the client, which requires
the client to prove that it possesses the certificate’s
private key.

The server performs security layer authentication by calling
authenticate () on the Artix security service, passing a copy of
the client’s certificate to the Artix security service.

The details of this authentication step depend on the particular

security adapter that is plugged into the Artix security service.

For example, the file adapter would authenticate the client

certificate as follows:

® The user's identity is extracted from the certificate’s
subject DN.

® To verify the user's identity, the file adapter compares the
client certificate with a cached copy. The authentication
succeeds, only if the certificates are equal.

If authentication is successful, the Artix security service returns
the user's realms and roles.

The ASP security layer controls access to the target's WSDL
operations by consulting an action-role mapping file to
determine what the user is allowed to do.

83

CHAPTER 3 | Security for HTTP-Compatible Bindings

Credentials priority

HTTPS prerequisites

Certificate-based authentication
security service configuration

Certificate-based authentication
client configuration

84

When performing authentication at the Artix security level, the X.509
certificate credentials have a /ower priority than HTTP Basic Authentication
credentials. Hence, if both HTTP Basic Authentication credentials and
X.509 certificate credentials are presented, the credentials from HTTP Basic
Authentication are used to perform authentication and authorization at the
Artix security layer.

In general, a basic prerequisite for using X.509 certificate-based
authentication is that both client and server are configured to use HTTPS.

See “Securing HTTP Communications with TLS” on page 67.

A basic prerequisite for using certificate-based authentication is to configure

the security adapter that plugs into the Artix security service. The details of

this configuration step are specific to each security adapter. Typically, it

involves caching copies of the X.509 certificates for all users with security

privileges.

Specific details of how to configure each adapter for certificate-based

authentication are available, as follows:

® File adapter—see “Certificate-based authentication for the file
adapter” on page 300.

® [DAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 303.

® Custom adapter—see “Developing an iSF Adapter” on page 479.

To enable certificate-based authentication on the client side, it is sufficient
for the client to be configured to use HTTPS with its own certificate. For
example, see “HTTPS client with certificate” on page 71.

Certificate-based authentication
server configuration

o Ul b

X.509 Certificate-Based Authentication

A prerequisite for using certificate-based authentication on the server side is
that the server's WSDL contract is configured to use HTTPS. For example,
see “HTTPS server configuration” on page 74.

Additionally, on the server side it is also necessary to configure the ASP
security layer by editing the Artix configuration file, as shown in
Example 17.

Example 17: Artix Configuration for X.509 Certificate-Based
Authentication

Artix Configuration File
security artix {

demos
{
hello world
{
plugins:artix security:shlib name =
"it security plugin";
binding:artix:server request interceptor list=
"security";
binding:client binding list = ["OTS+POA Coloc",
"POA Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP TLS"];
orb plugins = ["xmlfile log stream", ..., "at http",
"artix security", "https"];
plugins:is2 authorization:action role mapping =
"file://ArtixInstallDir/cxx java/samples/security/full securi
ty/etc/helloworld action role mapping.xml";

policies:asp:enable authorization = "true";
plugins:asp:security level = "MESSAGE LEVEL";
plugins:asp:authentication cache size = "5";
plugins:asp:authentication cache timeout = "10";

plugins:asp:enable security service cert authentication ="true";

SSL/TLS Settings for HTTPS Transport

85

CHAPTER 3 | Security for HTTP-Compatible Bindings

86

The preceding extract from the domain configuration can be explained as
follows:

1.

The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

The orb_plugins list should include the artix security plug-in,
which is responsible for enabling authentication and authorization. You
can optionally include the https plug-in, which implements the HTTPS
transport protocol (if you don’t include it here, it will be loaded
dynamically in any case).

The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 305 for more details.

policies:asp:enable authorization variable must be set to true to
enable authorization.

The plugins:asp:security level configuration variable specifies
whether the credentials are taken from a request-level header or from a
transport-level header. By setting the security level to MESSAGE LEVEL,
you indicate that the credentials are taken either from HTTP Basic
Authentication credentials or from an X.509 certificate at the SSL/TLS
layer.

The next pair of configuration variables configure the ASP caching
mechanism. For more details, see “ASP configuration variables” on
page 62.

The plugins:asp:enable security service cert authentication
variable must be set to true in order to enable X.509 certificate
authentication at the Artix security level.

You also need to include the settings for configuring the SSL/TLS layer.
See “HTTPS server configuration” on page 74 for details.

In this chapter

CHAPTER 4

Security for SOAP
Bindings

This chapter describes the security features that are specific
to the SOAP binding—for example, such as security
credentials that can be propagated in a SOAP header.

This chapter discusses the following topic:

Overview of SOAP Security page 88

WSS X.509 Certificates and Authentication page 92

87

CHAPTER 4 | Security for SOAP Bindings

Overview of SOAP Security

Overview

Security layers

SSL/TLS layer

88

HTTP Basic Authentication —| HTTP

Figure 12 gives an overview of security for a SOAP binding within the Artix
security framework. SOAP security consists of four different layers (SSL/TLS,
HTTP, SOAP, and security layer) and support is provided for several
different types of credentials. Figure 12 shows how the different credential
types are associated with the different security layers.

Figure 12: Overview of Security for SOAP Bindings

ARM .

- Action-role
authorization L
mapping file
Security layer authentication
WSS UsernameToken —pf \l/
WSS Kerberos —p . . .
WSS X 509 Certificate SOAP Artix Security Service

CORBA Principal —p{

x

.509

B — SSL/TLS User Data

As shown in Figure 12, the SOAP binding includes the following security
layers:

® SSL/TLS layer.

® HTTP layer.

® SOAP layer.

® Security layer.

The SSL/TLS layer provides the SOAP binding with message encryption,
message integrity and authentication using X.509 certificates.

For details of how to enable SSL/TLS for HTTP, see “Securing HTTP
Communications with TLS” on page 67.

HTTP layer

SOAP layer

Security layer

Overview of SOAP Security

The HTTP layer provides a means of sending username/password
credentials in a HTTP header (HTTP Basic Authentication). The HTTP layer
relies on SSL/TLS to prevent password snooping.

The SOAP layer can send various credentials (WSS UsernameToken, WSS
Kerberos, WSS X.509 certificate, and CORBA Principal) embedded in a
SOAP message header. The SOAP layer relies on SSL/TLS to prevent
credentials snooping.

Note: C++ runtime only—The division of labor between the SOAP layer

and the security layer differs between SOAP 1.1 and SOAP 1.2, as

follows:

® SOAP 1.1—the Artix SOAP plug-in is responsible for inserting and
extracting security credentials.

® SOAP 1.2—the Artix security plug-in (ASP security layer) is
responsible for inserting and extracting security credentials.

The security layer implements a variety of security features for non-CORBA

bindings. The main features of the security layer are:

® Authentication—the security layer calls the Artix security service
(which maintains a database of user data) to authenticate a user's
credentials. If authentication is successful, the Artix security service
returns a list of the user’s roles and realms.

® Authorization—the security layer matches the user’s roles and realms
against an action-role mapping file to determine whether the user has
permission to invoke the relevant WSDL operation.

® Inserting and extracting SOAP 1.2 security credentials (C+ + runtime
only)—the security layer is responsible for inserting and extracting
security credentials to and from SOAP 1.2 message headers.

89

CHAPTER 4 | Security for SOAP Bindings

Authentication options

WSS UsernameToken

WSS Kerberos

90

As shown in Figure 12 on page 88, the SOAP binding supports the following
authentication options:

® WSS UsernameToken.

® WSS Kerberos.

® WSS X.5009 certificate.

® CORBA Principal—C++ runtime.
® HTTP Basic Authentication.

® SSL/TLS X.509 certificate.

The Web service security extension (WSS) UsernameToken is a
username/password combination that can be sent in a SOAP header. The
specification of WSS UsernameToken is contained in the WSS
UsernameToken Profile 1.0 document from OASIS (www.oasis-open.org).

Prior to Artix version 4.0.1, the WSS UsernameToken could be set only by
programming. From Artix 4.0.1 onward, the WSS UsernameToken can be
set either by programming or through configuration. See “Propagating a
Username/Password Token” on page 463 and “principal_sponsor:wsse” on
page 595.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also
load the Artix security plug-in on the client side in order to transmit WSS
UsernameTokens. See “Load the artix_security plug-in” on page 316 for
details.

The WSS Kerberos specification is used to send a Kerberos security token in
a SOAP header. If you use Kerberos, you must also configure the Artix
security service to use the Kerberos adapter—see “Configuring the Kerberos
Adapter” on page 251.

Currently, the WSS Kerberos token can be set only by programming. See
“Propagating a Kerberos Token” on page 468.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also
load the Artix security plug-in on the client side in order to transmit WSS
Kerberos tokens. See “Load the artix_security plug-in” on page 316 for
details.

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

WSS X.509 certificate

CORBA Principal—C+ + runtime

HTTP Basic Authentication

SSL/TLS X.509 certificate

Overview of SOAP Security

The WSS specification allows you to send an X.509 certificate in a SOAP
header. For the purpose of authentication, Artix takes the username to be
the common name from the certificate’s subject DN.

For details, see “WSS X.509 Certificates and Authentication” on page 92.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also

load the Artix security plug-in on the client side in order to transmit WSS
X.509 certificates. See “Load the artix_security plug-in” on page 316 for
details.

The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. To facilitate interoperability with
early CORBA implementations, the Artix SOAP binding is also able to
propagate CORBA Principals. This feature is available only for SOAP over
HTTP and a SOAP header is used to propagate the CORBA Principal.

For details, see “Principal Propagation” on page 407.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also
load the Artix security plug-in on the client side in order to transmit
CORBA Principals. See “Load the artix_security plug-in” on page 316 for
details.

HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header. This kind of authentication is available to any
HTTP-compatible binding.

For details, see “HTTP Basic Authentication” on page 78.

You can use an X.509 certificate from the SSL/TLS layer for the purpose of
performing authentication and authorization at the Artix security layer. This
kind of authentication is available to any HTTP-compatible binding.

For details, see “X.509 Certificate-Based Authentication” on page 82.

91

CHAPTER 4 | Security for SOAP Bindings

WSS X.509 Certificates and Authentication

Overview This section describes how to enable X.509 certificate authentication for
certificates extracted from a WSS SOAP header, based on a simple two-tier
client/server scenario. In this scenario, the Artix security service retrieves
roles and realms based on the identity of the certificate subject.

WARNING: The WSS X.509 certificate is not authenticated by the server,
and the security service does not verify the identity of the certificate owner.
The receiver of the WSS X.509 certificate relies on the sender to perform
authentication. This contrasts with the case of X.509 certificates sent over
a TLS transport, where the receiver does verify the certificate owner’s
identity.

Certificate-based authentication Figure 13 shows an example of a two-tier system, where authentication of
scenario the client's WSS X.509 certificate is integrated with the Artix security
service.

Figure 13: Overview of Certificate-Based Authentication with WSS

@ Transmit X.509 @ Apply access

cert. over WSS control
Target
"

@ Retrieve user's
realms and roles

@ authenticate ()

A 4

Artix Security Service |

A4

92

WSS X.509 Certificates and Authentication

Scenario description The scenario shown in Figure 13 can be described as follows:

Stage Description

1 | When the client opens a connection to the server, the client
sends an X.509 certificate in a WSS SOAP header. The server
does not check the certificate itself.

2 | The server performs security layer authentication by calling

authenticate () on the Artix security service, passing

username and password arguments as follows:

® Username—obtained by extracting the common name
(CN) from the client certificate’s subject DN.

® Password—obtained from the value of the
plugins:asp:default password configuration variable in
the server's artix.cfg domain configuration.

WARNING: This step is not a true authentication step,

because the password is cached on the server side. Effectively,
this authentication is performed with a dummy password.

3 | If the preceding step is successful, the Artix security service
returns the user's realms and roles.

4 | The ASP security layer controls access to the target's WSDL
operations by consulting an action-role mapping file to
determine what the user is allowed to do.

Credentials priority When performing authentication, the X.509 certificate credentials have a
lower priority than that of the other SOAP credential types. For example, if
both WSS UsernameToken credentials and X.509 certificate credentials are
available, the WSS UsernameToken credentials take priority over the X.509
certificate and are used to perform authentication and authorization at the
Artix security layer.

Programming the client for WSS On the client side, you need to insert an X.509 certificate into the WSS

certificate-based authentication SOAP header by programming the bus-security context (there is currently
no configuration option for doing this). For details, see “Propagating an
X.509 Certificate” on page 473.

93

CHAPTER 4 | Security for SOAP Bindings

Configuring the server for WSS On the server side it is necessary to configure the ASP security layer by
certificate-based authentication editing the Artix configuration file, as shown in Example 18.

Example 18: Configuration for WSS Certificate-Based Authentication

Artix Configuration File
security artix {
demos

hello world

plugins:artix security:shlib name =
"it security plugin";

1 binding:artix:server request interceptor list=
"principal context+security";
binding:client binding list = ["OTS+POA Coloc",
"POA Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP TLS"];
2 orb plugins = ["xmlfile log stream", ..., "at http",
"artix security", "https"];
3 plugins:is2 authorization:action role mapping =

"file://ArtixInstallDir/cxx java/samples/security/full securi
ty/etc/helloworld action role mapping.xml";

4 policies:asp:enable authorization = "true";

5 plugins:asp:security level = "REQUEST LEVEL";

6 plugins:asp:default password = "CertPassword";

7 plugins:asp:authentication cache size = "5";
plugins:asp:authentication cache timeout = "10";

The preceding extract from the domain configuration can be explained as
follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The orb plugins list should include the artix security plug-in,
which is responsible for enabling authentication and authorization.

94

WSS X.509 Certificates and Authentication

The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 305 for more details.

policies:asp:enable authorization variable must be set to true to
enable authorization.

The plugins:asp:security level configuration variable specifies
whether the credentials are taken from a request-level header or from a
transport-level header. By setting the security level to REQUEST LEVEL,
you indicate that the credentials are taken from a SOAP header (for
example, WSS X.509 certificate or WSS UsernameToken credentials).
In the case of WSS X.509 certificate-based authentication, the
username is taken to be the common name (CN) from the client
certificate’s subject DN (for an explanation of X.509 certificate
terminology, see “ASN.1 and Distinguished Names” on page 633).
When WSS X.5009 certificate-based authentication is used, a default
password, certPassword, must be supplied on the server side. This
password is then used for authenticating with the Artix security service.
The next pair of configuration variables configure the ASP caching
mechanism. For more details, see “ASP configuration variables” on
page 62.

95

CHAPTER 4 | Security for SOAP Bindings

96

In this chapter

CHAPTER 5

Security for
CORBA Bindings

Using Progress’s modular ART technology, you make a CORBA
binding secure by configuring it to load the relevant security
plug-ins. This section describes how to load and configure
security plug-ins to reach the appropriate level of security for
applications with a CORBA binding.

This chapter discusses the following topics:

Overview of CORBA Security page 98

Securing IIOP Communications with SSL/TLS page 100
Securing Two-Tier CORBA Systems with CSI page 106
Securing Three-Tier CORBA Systems with CSI page 112
X.509 Certificate-Based Authentication for CORBA Bindings page 118

97

CHAPTER 5 | Security for CORBA Bindings

Overview of CORBA Security

Overview There are three layers of security available for CORBA bindings: 1IOP over
SSL/TLS (IIOP/TLS), which provides secure communication between client
and server; CSI, which provides a mechanism for propagating
username/password credentials; and the GSP plug-in, which is concerned
with higher-level security features such as authentication and authorization.
The following combinations are recommended:
® |IOP/TLS only—for a pure SSL/TLS security solution.
® |IOP/TLS, CSI, and GSP layers—for a highly scalable security solution,

based on username/password client authentication.

CORBA applications and the Artix Figure 14 shows the main features of a secure CORBA application in the
security framework context of the Artix security framework.

Figure 14: A Secure CORBA Application within the Artix Security
Framework

ARM .
- Action-role
authorization -
mapping file
GSP security authentication
CORBA \l/
binding Artix Security Service
CSI authentication over transport —»
CSl identity assertion —»| GIOP
CORBA Principal —»|
X.509
—_—> IIOP/TLS
= User Data

98

Security plug-ins

IIOP/TLS plug-in

CSIv2 plug-in

GSP plug-in

Overview of CORBA Security

Within the Artix security framework, a CORBA application becomes fully
secure by loading the following plug-ins:

® |IOP/TLS plug-in
® CSIv2 plug-in
® GSP plug-in

The IIOP/TLS plug-in, iiop tls, enables a CORBA application to transmit
and receive I10OP requests over a secure SSL/TLS connection. This plug-in
can be enabled independently of the other two plug-ins.

See “Securing IIOP Communications with SSL/TLS” on page 100 for details
on how to enable IIOP/TLS in a CORBA application.

The CSIv2 plug-in, csi, provides a client authentication mechanism for
CORBA applications. The authentication mechanism is based on a
username and a password. When the CSIv2 plug-in is configured for use
with the Artix security framework, the username and password are
forwarded to a central Artix security service to be authenticated. This plug-in
is needed to support the Artix security framework.

Note: The IIOP/TLS plug-in also provides a client authentication
mechanism (based on SSL/TLS and X.509 certificates). The SSL/TLS and
CSIv2 authentication mechanisms are independent of each other and can
be used simultaneously.

The GSP plug-in, gsp, provides authorization by checking a user's roles
against the permissions stored in an action-role mapping file. This plug-in is
needed to support the Artix security framework.

99

CHAPTER 5 | Security for CORBA Bindings

Securing IIOP Communications with SSL/TLS

Overview This section describes how to configure a CORBA binding to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain.

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

Sample client configuration For example, consider the configuration for a secure SSL/TLS client with no
certificate.

Example 19 shows how to configure such a sample client.
Example 19: Sample SSL/TLS Client Configuration

Artix Configuration File

#;C.;eneral configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

1 orb plugins = ["local log stream", "iiop profile", "giop",
"iiop tls"];
2 binding:client binding list = ["GIOP+EGMIOP",

"OTS+TLS_Coloc+POA Coloc", "TLS Coloc+POA Coloc",

"OTS+POA Coloc", "POA Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP TLS", "OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

3 policies:trusted ca list policy =
"ArtixInstallDir\cxx java\samples\certificates\tls\x509\trust
ed ca lists\ca listl.pem";

4 policies:mechanism policy:protocol version = "SSL V3";

policies:mechanism policy:ciphersuites =
["RSA WITH RC4_ 128 SHA", "RSA WITH RC4 128 MD5"];

100

Securing IIOP Communications with SSL/TLS

Example 19: Sample SSL/TLS Client Configuration

event log:filters = ["IT ATLI TLS=*", "IT IIOP=*",
"IT IIOP TLS=*", "IT TLS=*"];

my client {
Specific SSL/TLS client configuration settings
principal sponsor:use principal sponsor = "false";

policies:iiop tls:client secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop tls:client secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

¥

The preceding client configuration can be described as follows:

1.

Make sure that the orb plugins variable in this configuration scope
includes the iiop tls plug-in.

Note: For fully secure applications, you should exc/ude the iiop
plug-in (insecure I10OP) from the ORB plug-ins list. This renders the
application incapable of making insecure [IOP connections.

For semi-secure applications, however, you should incl/ude the iiop
plug-in before the iiop tls plug-in in the ORB plug-ins list.

If you plan to use the full Artix Security Framework, you should include
the gsp plug-in in the ORB plug-ins list as well—see “Securing
Two-Tier CORBA Systems with CSI” on page 106.

Make sure that the binding:client binding list variable includes
bindings with the r1op TLS interceptor. You can use the value of the
binding:client binding list shown here.

An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You must, therefore, edit the

101

CHAPTER 5 | Security for CORBA Bindings

policies:trusted ca list policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 168.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted ca list policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.

4. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 207.

5. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

6. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting principal sponsor:use principal sponsor to

false.

7. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:
¢+ Required options—the options shown here ensure that the client
can open only secure SSL/TLS connections.

¢ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

Sample server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.

102

o b w

Securing IIOP Communications with SSL/TLS

Example 20 shows how to configure a sample server that acts both as a
secure server and as a secure client.

Example 20: Sample SSL/TLS Server Configuration

Artix Configuration File

General configuration at root scope.

my secure apps {

Common SSL/TLS configuration settings.
my server {
Specific SSL/TLS server configuration settings

policies:target secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering"] ;
policies:target secure invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"] ;
principal sponsor:use principal sponsor = "true";

principal sponsor:auth method id = "pkcsl2 file";
principal sponsor:auth method data =
["filename=CertsDir\server cert.pl2"];

Specific SSL/TLS client configuration settings

policies:iiop tls:client secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop tls:client secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"] ;

T

103

CHAPTER 5 | Security for CORBA Bindings

The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “Sample client configuration” on page 100

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

¢+ Required options—the options shown here ensure that the server
accepts only secure SSL/TLS connection attempts.

+ Supported options—all of the target association options are
supported.

3. A server must always be associated with an X.509 certificate. Hence,
this line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

4. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 176.

5. Replace the X.509 certificate, by editing the filename option in the
principal sponsor:auth method data configuration variable to point
at a custom X.509 certificate. The filename value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 176 for more
details.

For details of how to specify the certificate’s pass phrase, see

“Deploying Own Certificate for HTTPS” on page 177.

6. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

+ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

¢+ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.

104

Mixed security configurations

Customizing SSL/TLS security
policies

Securing IIOP Communications with SSL/TLS

Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each
other.

For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in “Sample server configuration” on page 102. Then configure the
client role by adding (or modifying) the following lines to the

my secure apps.my server configuration scope:

orb plugins = ["local log stream", "iiop profile", "giop",
"iiop", "iiop tls"];

policies:iiop tls:client secure invocation policy:requires =
["NoProtection"] ;

policies:iiop tls:client secure invocation policy:supports =
["NoProtection"] ;

The first line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure 110P) is included. The NoProtection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

You can, optionally, customize the SSL/TLS security policies in various
ways. For details, see the following references:

® “Configuring Secure Associations” on page 191.
® “Configuring HTTPS and IIOP/TLS"” on page 155.

105

CHAPTER 5 | Security for CORBA Bindings

Securing Two-Tier CORBA Systems with CSI

Overview This section describes how to secure a two-tier CORBA system using the
OMG’s Common Secure Interoperability specification version 2.0 (CSIv2).
The client supplies username/password authentication data which is
transmitted as CSI credentials and then authenticated on the server side.
The following configurations are described in detail:
® Client configuration.
® Target configuration.

Two-tier CORBA system Figure 15 shows a basic two-tier CORBA system using CSI credentials,
featuring a client and a target server.

Figure 15: Two-Tier CORBA System Using CSI Credentials

Propagate

@ authentication @ égr?tlglo?ccess
token
Client | Reaquest+ JW
‘ 7'y
Client credentials @ authenticate () @ z_:;rrir:ag Z#j ?;Ses
v

Artix Security
Service

106

Securing Two-Tier CORBA Systems with CSI

Scenario description The scenario shown in Figure 15 can be described as follows:

Stage Description

1 | The user enters a username, password, and domain name
(u/p/d) on the client side.

Note: The domain name must match the value of the
policies:csi:auth over transport:server domain name
configuration variable set on the server side.

2 | When the client makes a remote invocation on the server, the
CSI username/password/domain authentication data is
transmitted to the target along with the invocation request.

3 | The server authenticates the received username and password
by calling out to the external Artix security service.

4 | If authentication is successful, the Artix security service returns
the user’s realms and roles.

5 | The GSP security layer controls access to the target's IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

Client configuration The CORBA client from Example 15 on page 106 can be configured as
shown in Example 21.

Example 21: Configuration of a CORBA client Using CSI Credentials
Artix Configuration File
General configuration at root scope.

my secure apps {
1 # Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.

2 orb plugins = ["local log stream", "iiop profile", "giop",
"iiOpitlS", "gSp"] ;

107

CHAPTER 5 | Security for CORBA Bindings

108

Example 21: Configuration of a CORBA client Using CSI Credentials

ha

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA Coloc", "TLS Coloc+POA Coloc",

"OTS+POA Coloc", "POA Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP TLS", "OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];
binding:server binding list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

my_client {
Specific SSL/TLS configuration settings.

Specific Artix security framework settings.
policies:csi:auth over transport:client supports =
["EstablishTrustInClient"] ;

principal sponsor:csi:use principal sponsor = "true';
principal sponsor:csi:auth method id = "GSSUPMech";
principal sponsor:csi:auth method data = [];

IE

The preceding client configuration can be explained as follows:

1.

The SSL/TLS configuration variables common to all of your applications
can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 100 for details of the SSL/TLS configuration.
Make sure that the orb plugins variable in this configuration scope
includes both the iiop tl1s and the gsp plug-ins in the order shown.
Make sure that the binding:client binding 1ist variable includes
bindings with the cst interceptor. Your can use the value of the
binding:client binding list shown here.

Make sure that the binding:server binding 1ist variable includes
bindings with both the cst and asp interceptors. Your can use the
value of the binding:server binding list shown here.

The SSL/TLS configuration variables specific to the CORBA client can
be placed here—see “Securing [IOP Communications with SSL/TLS”
on page 100.

Target configuration

Securing Two-Tier CORBA Systems with CSI

6. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

7. The next three lines specify that the client uses the CSI principal
sponsor to obtain the user’s authentication data. With the configuration
as shown, the user would be prompted to enter the username and
password when the client application starts up.

The CORBA target server from Figure 15 on page 106 can be configured as
shown in Example 22.

Example 22: Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.
orb plugins = [..., "iiop tls", "gsp", ... 1;
binding:client binding list = [...];

binding:server binding list [ooo Ip

my two tier target {
Specific SSL/TLS configuration settings.

Specific Artix security framework settings.
policies:csi:auth over transport:target supports =
["EstablishTrustInClient"] ;
policies:csi:auth over transport:target requires =
["EstablishTrustInClient"];
policies:csi:auth over transport:server domain name =

"CSIDomainName" ;
plugins:gsp:authorization realm = "AuthzRealm";
plugins:is2 authorization:action role mapping =
"ActionRoleURL" ;

109

CHAPTER 5 | Security for CORBA Bindings

110

Example 22: Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix security framework client configuration settings.
policies:csi:auth over transport:client supports =
["EstablishTrustInClient"] ;

principal sponsor:csi:use principal sponsor = "true";
principal sponsor:csi:auth method id = "GSSUPMech";
principal sponsor:csi:auth method data = [];
b
s

The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing [IOP Communications with
SSL/TLS” on page 100.

2. This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. This configuration setting specifies that the target server requires the
client to send username/password authentication data.

4. The server_domain_name configuration variable sets the server's CSIv2
authentication domain name, csipomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server domain name Variable on the server side.

5. This configuration setting specifies the Artix authorization realm,
Authzrealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 293.

6. The action role mapping configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:
file:///security admin/action role mapping.xml (UNIX) or
file:///c:/security admin/action role mapping.xml (Windows).
For more details about the action-role mapping file, see “ACL File
Format” on page 307.

Securing Two-Tier CORBA Systems with CSI

7. You should also set secure client configuration variables in the server
configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

® See “Managing Users, Roles and Domains” on page 289.
® See “ACL File Format” on page 307.

111

CHAPTER 5 | Security for CORBA Bindings

Securing Three-Tier CORBA Systems with CSI

Overview This section describes how to secure a three-tier CORBA system using
CSIv2. In this scenario there is a client, an intermediate server, and a target
server. The intermediate server is configured to propagate the client identity
when it invokes on the target server in the third tier. The following
configurations are described in detail:

® |ntermediate configuration.

® Target configuration.

Three-tier CORBA system Figure 16 shows a basic three-tier CORBA system using CSIv2, featuring a
client, an intermediate server and a target server.

Figure 16: Three-Tier CORBA System Using CSIv2

@ Set own identity

->[u]--.

N

/ v Propagate identity

Client Req”es” [Wpld] [ntermediate Request + [u] .| Target

‘ Server ‘ "l Server
A
Client

@ Apply access
authenncatlon Identity token control
token v

Artix Security
Service

@ Obtain user's
realms and roles

112

Scenario description

Client configuration

Intermediate configuration

Securing Three-Tier CORBA Systems with CSI

The second stage of the scenario shown in Figure 16 (intermediate server
invokes an operation on the target server) can be described as follows:

Stage Description

1 | The intermediate server sets its own identity by extracting the
user identity from the received username/password CSI
credentials. Hence, the intermediate server assumes the same
identity as the client.

2 | When the intermediate server makes a remote invocation on
the target server, CSl identity assertion is used to transmit the
user identity data to the target.

3 | The target server then obtains the user’s realms and roles.

4 | The GSP security layer controls access to the target's IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

The client configuration for the three-tier scenario is identical to that of the
two-tier scenario, as shown in “Client configuration” on page 107.

The CORBA intermediate server from Figure 16 on page 112 can be
configured as shown in Example 23.

Example 23: Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework

Artix Configuration File

General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.
orb plugins = [..., "iiop tls", "gsp", ... 1;
binding:client binding list = [... 1;

binding:server binding list = [...];

113

CHAPTER 5 | Security for CORBA Bindings

Example 23: Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework

my three tier intermediate {
1 # Specific SSL/TLS configuration settings.

Specific Artix security framework settings.

2 policies:csi:attribute service:client supports =
["IdentityAssertion"] ;

3 policies:csi:auth over transport:target supports =
["EstablishTrustInClient"] ;

4 policies:csi:auth over transport:target requires =
["EstablishTrustInClient"] ;

5 policies:csi:auth over transport:server domain name =
"CSIDomainName" ;

6 plugins:gsp:authorization realm = "AuthzRealm";

7 plugins:is2 authorization:action role mapping =
"ActionRoleURL" ;

8 # Artix security framework client configuration settings.

policies:csi:auth over transport:client supports =
["EstablishTrustInClient"] ;

principal sponsor:csi:use principal sponsor = "true";
principal sponsor:csi:auth method id = "GSSUPMech";
principal sponsor:csi:auth method data = [];

i
ha

The preceding intermediate server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing [IOP
Communications with SSL/TLS” on page 100.

2. This configuration setting specifies that the intermediate server is
capable of propagating the identity it receives from a client. In other
words, the server is able to assume the identity of the client when
invoking operations on third-tier servers.

3. This configuration setting specifies that the intermediate server
supports receiving username/password authentication data from the
client.

114

Target configuration

Securing Three-Tier CORBA Systems with CSI

4. This configuration setting specifies that the intermediate server
requires the client to send username/password authentication data.

5. The server domain name configuration variable sets the server's CSIv2
authentication domain name, csIpomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server domain name variable on the server side.

6. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 293.

7. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security admin/action role mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml(VVindOVVS)
For more details about the action-role mapping file, see “ACL File
Format” on page 307.

8. You should also set Artix security framework client configuration
variables in the intermediate server configuration scope, because a
secure server application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need to
contact both the locator service and the CORBA naming service.

The CORBA target server from Figure 16 on page 112 can be configured as
shown in Example 24.

Example 24: Configuration of a Third-Tier Target Server Using CS/
Artix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.
orb plugins = [..., "iiop tls", "gsp", ... I;
binding:client binding list = [...];

binding:server binding list = [...];

115

CHAPTER 5 | Security for CORBA Bindings

Example 24: Configuration of a Third-Tier Target Server Using CS/

my three tier target {
Specific SSL/TLS configuration settings.

N =

policies:iiop tls:target secure invocation policy:requires
= ["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];
3 policies:iiop tls:certificate constraints policy =
[ConstraintStringl, ConstraintString2, ...];

Specific Artix security framework settings.
4 policies:csi:attribute service:target supports =
["IdentityAssertion"] ;

5 plugins:gsp:authorization realm = "AuthzRealm";

6 plugins:is2 authorization:action role mapping =
"ActionRoleURL" ;

7 # Artix security framework client configuration settings.

policies:csi:auth over transport:client supports =
["EstablishTrustInClient"] ;

principal sponsor:csi:use principal sponsor = "true";
principal sponsor:csi:auth method id = "GSSUPMech';
principal sponsor:csi:auth method data = [];
e
b

The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing [IOP Communications with
SSL/TLS” on page 100.

2. ltis recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For example, the
intermediate server (acting as a client of the target) would then be
required to send an X.509 certificate to the target during the SSL/TLS
handshake.

You can specify this option by including the EstablishTrustInClient
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration
scope).

116

Related administration tasks

Securing Three-Tier CORBA Systems with CSI

In addition to the preceding step, it is also advisable to restrict access
to the target server by setting a certificate constraints policy, which
allows access only to those clients whose X.509 certificates match one
of the specified constraints—see “Applying Constraints to Certificates”
on page 188.

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege:
propagated identities are granted access to the target server without
the target server performing authentication on the propagated
identities. Hence, the target server trusts the intermediate server to
do the authentication on its behalf.

This configuration setting specifies that the target server supports
receiving propagated user identities from the client.

This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 293.
This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security admin/action role mapping.xml.

For more details about the action-role mapping file, see “ACL File
Format” on page 307.

You should also set secure client configuration variables in the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

See “Managing Users, Roles and Domains” on page 289.
See “ACL File Format” on page 307.

117

CHAPTER 5 | Security for CORBA Bindings

X.509 Certificate-Based Authentication for
CORBA Bindings

Overview This section describes how to enable X.509 certificate authentication for
CORBA bindings, based on a simple two-tier client/server scenario. In this
scenario, the Artix security service authenticates the client’s certificate and
retrieves roles and realms based on the identity of the certificate subject.
When certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:
® SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by Artix configuration settings
and programmable SSL/TLS policies.

® GSP security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the gsp

plug-in.

118

X.509 Certificate-Based Authentication for CORBA Bindings

Certificate-based authentication Figure 17 shows an example of a two-tier system, where authentication of
scenario the client’s X.509 certificate is integrated with the Artix security service.

Figure 17: Overview of Certificate-Based Authentication

Ll

User login

Client

SSL/TLS-level @ Apply access
authentication control

Target

|
A
@ thenticate () @ Retrieve user's
authenticate realms and roles
v

Artix Security Service |

®

Check certificate

Scenario description The scenario shown in Figure 17 can be described as follows:
Stage Description
1 | When the client opens a connection to the server, the client

sends its X.509 certificate as part of the SSL/TLS handshake.

The server then performs SSL/TLS-level authentication,
checking the certificate as follows:

list to ensure that it is signed by a trusted certification
authority.

If a certificate constraints policy is set, the certificate is

checked to make sure it satisfies the specified constraints.

If a certificate validator policy is set (by programming),
the certificate is also checked by this policy.

The certificate is checked against the server's trusted CA

119

CHAPTER 5 | Security for CORBA Bindings

Stage

Description

2 | The server then performs security layer authentication by
calling authenticate () on the Artix security service, passing
the client’s X.509 certificate as the argument.

3 | The Artix security service authenticates the client’'s X.509
certificate by checking it against a cached copy of the
certificate. The type of checking performed depends on the
particular third-party enterprise security service that is
plugged into the Artix security service.

4 | If authentication is successful, the Artix security service returns
the user’s realms and roles.

5 | The security layer controls access to the target's IDL interfaces
by consulting an action-role mapping file to determine what
the user is allowed to do.

Client configuration

Example 25 shows a sample client configuration that you can use for the

security-level certificate-based authentication scenario (Figure 17 on
page 119).

Example 25: Client Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba cert auth

{

120

orb plugins = ["local log stream", "iiop profile", "giop",
"iiOpit].S", ngspu];

event log:filters = ["IT GSP=*", "IT CSI=*", "IT TLS=*",
"IT IIOP TLS=*", "IT ATLI2 TLS=*"];

binding:client binding list = ["GIOP+EGMIOP",
"OTS+POA Coloc", "POA Coloc", "OTS+TLS Coloc+POA Coloc",
"TLS Coloc+POA Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP TLS", "GIOP+IIOP", "GIOP+IIOP TLS"];

Target configuration

X.509 Certificate-Based Authentication for CORBA Bindings

Example 25: Client Configuration for Security-Level Certificate-Based
Authentication

client x509

{

policies:iiop tls:client secure invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"] ;

policies:iiop tls:client secure invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

principal sponsor:iiop tls:use principal sponsor =
"true";

principal sponsor:iiop tls:auth method id =
"pkcsl2 file";

principal sponsor:iiop tls:auth method data =
["filename=W: \certs\bob.pl2",
"password file=W:\certs\bob password.txt"];
s

ha

The preceding client configuration is a typical SSL/TLS configuration. The
only noteworthy feature is that the client must have an associated X.509
certificate. Hence, the principal sponsor settings are initialized with the
location of an X.509 certificate (provided in the form of a PKCS#12 file).

For a discussion of these client SSL/TLS settings, see “Sample client
configuration” on page 100 and “Specifying an Application’s Own
Certificate” on page 176.

Example 26 shows a sample server configuration that you can use for the
security-level certificate-based authentication scenario (Figure 17 on
page 119).

Example 26: Server Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth

{

121

CHAPTER 5 | Security for CORBA Bindings

Example 26: Server Configuration for Security-Level Certificate-Based
Authentication

orb plugins = ["local log stream", "iiop profile", "giop",
n 1lop_tls n , ngspu] ;

event log:filters = ["IT GSP=*", "IT CSI=*", "IT TLS=*",
"IT IIOP TLS=*", "IT ATLI2 TLS=*"];

binding:client binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA Coloc", "OTS+TLS Coloc+POA Coloc",
"TLS Coloc+POA Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP TLS", "GIOP+IIOP", "GIOP+IIOP TLS"];

server
{
principal sponsor:iiop tls:use principal sponsor =
"true";
principal sponsor:iiop tls:auth method id =
"pkesl2 file";
1 principal sponsor:iiop tls:auth method data =
["filename=CertDir\target cert.pl2",
"password file=CertDir\target cert password.txt"];

binding:server binding list = ["CSI+GSP", "CSI",
IIGSPH] ;

2 plugins:is2 authorization:action role mapping =
"file:///PathToARMFile" ;

auth x509

3
plugins:gsp:enable security service cert authentication =
"true" ;
policies:iiop tls:target secure invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"] ;

4

policies:iiop tls:target secure invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

It

122

Related administration tasks

X.509 Certificate-Based Authentication for CORBA Bindings

Example 26: Server Configuration for Security-Level Certificate-Based
Authentication

ha

I

The preceding server configuration can be explained as follows:

1.

As is normal for an SSL/TLS server, you must provide the server with
its own certificate, target_cert.p12. The simplest way to do this is to
specify the location of a PKCS#12 file using the principal sponsor.

This configuration setting specifies the location of an action-role
mapping file, which controls access to the server’s interfaces and
operations. See “ACL File Format” on page 307 for more details.

The plugins:gsp:enable security service cert authentication
variable is the key to enabling security-level certificate-based
authentication. By setting this variable to true, you cause the server to
perform certificate authentication in the GSP security layer.

The IIOP/TLS target secure invocation policy must require
EstablishTrustInClient. Evidently, if the client does not provide a
certificate during the SSL/TLS handshake, there will be no certificate
available to perform the security layer authentication.

When using X.509 certificate-based authentication for CORBA bindings, it is
necessary to add the appropriate user data to your enterprise security
system (which is integrated with the Artix security service through an iSF
adapter), as follows:

File adapter—see “Certificate-based authentication for the file adapter”
on page 300.

LDAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 303.

123

CHAPTER 5 | Security for CORBA Bindings

124

Part ||
TLS Security Layer

In this part This part contains the following chapters:
Managing Certificates page 127
Configuring HTTPS and IIOP/TLS page 155
Configuring Secure Associations page 191

125

126

In this chapter

Managing
Certificates

CHAPTER 6

TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Artix applications.

This chapter contains the following sections:

What are X.509 Certificates? page 128
Certification Authorities page 130
Certificate Chaining page 133
PKCS#12 Files page 135
Special Requirements on HTTPS Certificates page 137
Creating Your Own Certificates page 140
Generating a Certificate Revocation List page 152

127

CHAPTER 6 | Managing Certificates

What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA'’s digital signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert.pem. This CA is completely insecure because
anyone can access its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter describes the set of
certificates required by an Artix application and shows you how to replace
the default certificates.

128

The contents of an X.509
certificate

Distinguished names

What are X.509 Certificates?

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value.