

Publication date 05 Dec 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, DataDirect (and design), DataDirect Connect,
DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing
Architecture, Empowerment Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IONA,
Making Software Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making Progress, Progress Software
Developers Network, Progress Sonic, ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic
ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design),
and Your Software, Our Technology–Experience the Connection are registered trademarks of Progress Software Corporation or
one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager,
Apama Event Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High Performance
Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress
Arcade, Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Responsive Cloud, Progress Responsive Process
Management, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation,
Shadow Studio, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration
Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service,
Sonic Workbench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service
marks of Progress Software Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered
trademark of Oracle and/or its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technologies from the Apache Software Foundation
(http://www.apache.org). Such Apache technologies are subject to the following terms and conditions: The Apache Software
License, Version 1.1. Copyright (C) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear. 4. The names “Ant”, “Xerces,” “Xalan,” “Log 4J,” and "Apache Software
Foundation" must not be used to: endorse or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived from this software may not be called “Apache”, nor
may "Apache" appear in their name, without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was originally based on software copyright
(c) 1999, International Business Machines, Inc., http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the Apache Software Foundation
((http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation and was originally based on software
copyright (c) 1999, International Business Machines, Inc., http://www.ibm.com. For more information on the Apache Software
Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1. - Copyright (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary
contributions made by many individuals on behalf of the Apache Software Foundation and was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. For more information on the Apache Software
Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (c) 2000-2003 The Apache Software Foundation. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgement: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgement may appear in the software itself, if and wherever such third-party acknowledgements normally appear.

4. The names "The Jakarta Project", "Velocity", and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", "Velocity" nor may "Apache" appear in their names without

prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache Software Foundation
(http://www.apache.org). Such Apache technology is subject to the following terms and conditions: The Apache Software License,
Version 1.1 - Copyright (C) 1999 The Apache Software Foundation. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "log4j" and "Apache Software Foundation" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM. Such technology is subject to the following
terms and conditions: Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution. 3. The name "JDOM" must not be
used to endorse or promote products derived from this software without prior written permission. For written permission, please
contact <request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called "JDOM", nor may "JDOM"
appear in their name, without prior written permission from the JDOM Project Management <request_AT_jdom_DOT_org>.
In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution
and/or in the software itself an acknowledgement equivalent to the following: "This product includes software developed by the
JDOM Project (http://www.jdom.org/)." Alternatively, the acknowledgment may be graphical using the logos available at
http://www.jdom.org/images/logos. THIS SOFTWARE IS PROVIDED AS IS AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by many individuals
on behalf of the JDOM Project and was originally created by Jason Hunter <jhunter_AT_jdom_DOT_org> and Brett McLaughlin
<brett_AT_jdom_DOT_org>. For more information on the JDOM Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technologies from IBM. Such technologies
are subject to the following terms and conditions: Copyright (c) 1995-2003 International Business Machines Corporation and
others All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting documentation. THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. Except as contained in this
notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks mentioned
herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from John Wilson. Such technology is subject
to the following terms and conditions: Copyright (c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. All advertising materials mentioning features or use of
this software must display the following acknowledgement: This product includes software developed by John Wilson. The

name of John Wilson may not be used to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY JOHN WILSON ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technology from SourceForge and Networks
Associates Technology, Inc. Such technology is subject to the following terms and conditions: Various copyrights apply to this
package, listed in various separate parts below. Please make sure that you read all the parts. Up until 2001, the project was
based at UC Davis, and the first part covers all code written during this time. From 2001 onwards, the project has been based
at SourceForge, and Networks Associates Technology, Inc hold the copyright on behalf of the wider Net-SNMP community,
covering all derivative work done since then. An additional copyright section has been added as Part 3 below also under a BSD
license for the work contributed by Cambridge Broadband Ltd. to the project since 2001. An additional copyright section has
been added as Part 4 below also under a BSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over the years it has been in development, and a full list of
contributors can be found in the README file under the THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like)
----- Copyright 1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000. Copyright 1996,
1998-2000 The Regents of the University of California. All Rights Reserved. Permission to use, copy, modify and distribute this
software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice
appears in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and
that the name of CMU and The Regents of the University of California not be used in advertising or publicity pertaining to
distribution of the software without specific written permission. CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ---- Part 2: Networks
Associates Technology, Inc copyright notice (BSD) ----- Copyright (c) 2001-2003, Networks Associates Technology, Inc. All rights
reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: *Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.* Neither the name of the Networks
Associates Technology, Inc nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 3: Cambridge
Broadband Ltd. copyright notice (BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd. All
rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:*Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.* The name of Cambridge

Broadband Ltd. may not be used to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun Microsystems, Inc. copyright notice (BSD) -----Copyright © 2003 Sun
Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Use is subject to license
terms below. This distribution may include materials developed by third parties. Sun, Sun Microsystems, the Sun logo and Solaris
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions are met:* Redistributions
of source code must retain the above copyright notice, this list of conditions and the following disclaimer.* Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.* Neither the name of the Sun Microsystems, Inc. nor the names of its
contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) -----Copyright (c)
2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution.* Neither the name of Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---- Part 6: Cisco/BUPTNIC copyright notice (BSD) ----- Copyright (c) 2004, Cisco, Inc and Information Network Center of Beijing
University of Posts and Telecommunications. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunications, nor the names of
their contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R&D Software GmbH & Co KG copyright
notice (BSD) ----- Copyright (c) Fabasoft R&D Software GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. * The name of Fabasoft R&D Software
GmbH & Co KG or any of its subsidiaries, brand or product names may not be used to endorse or promote products derived from
this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSLeay v0.9.8i technology from OpenSSL.org. Such Technology is
subject to the following terms and conditions: LICENSE ISSUES ============== The OpenSSL toolkit stays under
a dual license, i.e. both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below
for the actual license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to
OpenSSL please contact openssl-core@openssl.org. OpenSSL License --------------- /*
==

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment: "This product
includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)".

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior
written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product includes software developed
by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS PROVIDED BY THE
OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written
by Tim Hudson (tjh@cryptsoft.com). Original SSLeay License ----------------------- Copyright (C) 1995-1998 Eric Young
(eay@cryptsoft.com) All rights reserved. This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL. This library is free for commercial and non-commercial use
as long as the following conditions are aheared to. The following conditions apply to all code found in this distribution, be it the
RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered
by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's, and as
such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given
attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in
documentation (online or textual) provided with the package. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: "This product
includes cryptographic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines
from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include
an acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code
cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technology from the Legion Of The Bouncy
Castle (http://www.bouncycastle.org). Such Bouncycastle 1.3.3 cryptographic technology is subject to the following terms and
conditions: Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycastle.org). Permission is hereby
granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of providing a set of functions that implement
regular expression pattern matching using the same syntax and semantics as Perl 5. Such technology is subject to the following
terms and conditions: PCRE LICENCE. PCRE is a library of functions to support regular expressions whose syntax and semantics
are as close as possible to those of the Perl 5 language. Release 7 of PCRE is distributed under the terms of the "BSD" licence,
as specified below. The documentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as the
software itself. The basic library functions are written in C and are freestanding. Also included in the distribution is a set of C++
wrapper functions. THE BASIC LIBRARY FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright (c) 1997-2008 University of Cambridge
All rights reserved. THE C++ WRAPPER FUNCTIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc.
All rights reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. *
Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED
BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mcpp v2.6.4 from Kiyoshi Matsui . Such technology is subject to the following
terms and conditions: Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. This software
including the files in this directory is provided under the following license. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corporation 2010 (IBM 32-bit Runtime
Environment for AIX, Java Technology Edition v 1.6.0 SR9 FP2).

Table of Contents
Preface ... 19

What is Covered in This Book ... 20
Who Should Read This Book .. 21
How to Use This Book .. 22
The Artix ESB Documentation Library ... 23

Introducing WSDL Contracts .. 25
WSDL Elements .. 26
Structure of a WSDL Document ... 27
Designing a contract ... 28

Defining Logical Data Units ... 29
Mapping Data into Logical Data Units ... 30
Adding Data Units to a Contract .. 32
XML Schema Simple Types .. 34
Defining Complex Data Types .. 37

Defining Data Structures .. 38
Defining Arrays ... 42
Defining Types by Extension ... 44
Defining Types by Restriction .. 45
Defining Enumerated Types .. 47

Defining Elements .. 48
Defining Logical Messages Used by a Service .. 49
Defining Your Logical Interfaces .. 53
Index .. 57

13

14

List of Tables
1. Complex Type Descriptor Elements ... 39
2. Part Data Type Attributes ... 51
3. Operation Message Elements .. 54
4. Attributes of the Input and Output Elements 55

15

16

List of Examples
1. Schema Entry for a WSDL Contract .. 32
2. Defining an Element with a Simple Type 34
3. Simple Structure .. 38
4. A Complex Type ... 38
5. Simple Complex Choice Type .. 39
6. Simple Complex Type with Occurrence Constraints 40
7. Simple Complex Type with minOccurs Set to Zero 40

8. Complex Type with an Attribute ... 41
9. Complex Type Array .. 42
10. Syntax for a SOAP Array derived using wsdl:arrayType 42

11. Definition of a SOAP Array .. 43
12. Syntax for a SOAP Array derived using an Element 43
13. Type Defined by Extension .. 44
14. int as Base Type .. 45
15. SSN Simple Type Description .. 46
16. Syntax for an Enumeration ... 47
17. widgetSize Enumeration ... 47
18. Reused Part .. 51
19. personalInfo lookup Method .. 52
20. RPC WSDL Message Definitions .. 52
21. Wrapped Document WSDL Message Definitions 52
22. personalInfo lookup interface .. 55
23. personalInfo lookup port type .. 55

17

18

Preface
What is Covered in This Book ... 20
Who Should Read This Book .. 21
How to Use This Book .. 22
The Artix ESB Documentation Library ... 23

19

What is Covered in This Book
This book describes how to write an abstract service definition using Web
Service Description Language (WSDL). An abstract service definition describes
the operations exposed by a service in terms of the messages exchanged
during the execution of each operation. These messages are described as
XML documents that are implementation neutral. The abstract service
definition does not describe how the messages are mapped to data that is
transmitted over a network or what communication protocols an
implementation of the defined service will use.

20

Who Should Read This Book
This book is intended for users of Artix ESB who are not familiar with WSDL.

21

How to Use This Book
This book is organized as follows:

• Introducing WSDL Contracts on page 25 provides a brief overview of the
concepts needed to understand a WSDL contract. It also provides an
overview of the structure of a WSDL contract.

• Defining Logical Data Units on page 29 describes how to define data types
using XML Schema.

• Defining Logical Messages Used by a Service on page 49 describes how
data types are built up into the messages that are used in the definition of
a WSDL interface.

• Defining Your Logical Interfaces on page 53 describes how to define a
service interface in WSDL. Since interface definitions are built up from the
elements discussed, you should be sure you understand the concepts in
the previous chapters before reading this chapter.

For imformation on adding the physical details to a WSDL document see
Bindings and Transports, C++ Runtime1 or Bindings and Transports, Java
Runtime2.

1 http://communities.progress.com/pcom/docs/DOC-106903
2 http://communities.progress.com/pcom/docs/DOC-106903

22

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library3.

3 http://communities.progress.com/pcom/docs/DOC-105909

23

http://communities.progress.com/pcom/docs/DOC-105909
http://communities.progress.com/pcom/docs/DOC-105909
http://communities.progress.com/pcom/docs/DOC-105909

24

Introducing WSDL Contracts
WSDL documents define services using Web Service Description Language and a number of possible extensions.
The documents have a logical part and a concrete part. The abstract part of the contract defines the service in
terms of implementation neutral data types and messages. The concrete part of the document defines how an
endpoint implementing a service will interact with the outside world.

WSDL Elements .. 26
Structure of a WSDL Document ... 27
Designing a contract ... 28

The recommended approach to design services is to define your services in
WSDL and XML Schema before writing any code. When hand-editing WSDL
documents you must make sure that the document is valid, as well as correct.
To do this you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.org1.

1 http://www.w3.org/TR/wsdl

25

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

WSDL Elements
A WSDL document is made up of the following elements:

• definitions — The root element of a WSDL document. The attributes
of this element specify the name of the WSDL document, the document’s
target namespace, and the shorthand definitions for the namespaces
referenced in the WSDL document.

• types — The XML Schema definitions for the data units that form the
building blocks of the messages used by a service. For information about
defining data types see Defining Logical Data Units on page 29.

• message — The description of the messages exchanged during invocation
of a services operations. These elements define the arguments of the
operations making up your service. For information on defining messages
see Defining Logical Messages Used by a Service on page 49.

• portType — A collection of operation elements describing the logical
interface of a service. For information about defining port types see Defining
Your Logical Interfaces on page 53.

• operation — The description of an action performed by a service.
Operations are defined by the messages passed between two endpoints
when the operation is invoked. For information on defining operations see
Operations on page 54.

• binding — The concrete data format specification for an endpoint. A
binding element defines how the abstract messages are mapped into the
concrete data format used by an endpoint. This element is where specifics
such as parameter order and return values are specified.

• service — A collection of related port elements. These elements are
repositories for organizing endpoint definitions.

• port — The endpoint defined by a binding and a physical address. These
elements bring all of the abstract definitions together, combined with the
definition of transport details, and they define the physical endpoint on
which a service is exposed.

26

Introducing WSDL Contracts

Structure of a WSDL Document
A WSDL document is, at its simplest, a collection of elements contained
within a root definition element. These elements describe a service and
how an endpoint implementing that service is accessed.

A WSDL document has two distinct parts:

• An abstract part that defines the service in implementation neutral terms

• A concrete part that defines how an endpoint implementing the service is
exposed on a network

The logical part The logical part of a WSDL document contains the types, the message, and
the portType elements. It describes the service’s interface and the messages
exchanged by the service. Within the types element, XML Schema is used
to define the structure of the data that makes up the messages. A number of
message elements are used to define the structure of the messages used by
the service. The portType element contains one or more operation elements
that define the messages sent by the operations exposed by the service.

The concrete part The concrete part of a WSDL document contains the binding and the
service elements. It describes how an endpoint that implements the service
connects to the outside world. The binding elements describe how the data
units described by the message elements are mapped into a concrete,
on-the-wire data format, such as SOAP. The service elements contain one
or more port elements which define the endpoints implementing the service.

27

Structure of a WSDL Document

Designing a contract
To design a WSDL contract for your services you must perform the following
steps:

1. Define the data types used by your services.

2. Define the messages used by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and the
concrete representation of the data on the wire.

5. Define the transport details for each of the services.

28

Introducing WSDL Contracts

Defining Logical Data Units
When describing a service in a WSDL contract complex data types are defined as logical units using XML Schema.

Mapping Data into Logical Data Units ... 30
Adding Data Units to a Contract .. 32
XML Schema Simple Types .. 34
Defining Complex Data Types .. 37

Defining Data Structures .. 38
Defining Arrays ... 42
Defining Types by Extension ... 44
Defining Types by Restriction .. 45
Defining Enumerated Types .. 47

Defining Elements .. 48

When defining a service, the first thing you must consider is how the data
used as parameters for the exposed operations is going to be represented.
Unlike applications that are written in a programming language that uses
fixed data structures, services must define their data in logical units that can
be consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data
types used by the physical implementations of the service

2. Combining the logical units into messages that are passed between
endpoints to carry out the operations

This chapter discusses the first step. Defining Logical Messages Used by a
Service on page 49 discusses the second step.

29

Mapping Data into Logical Data Units
The interfaces used to implement a service define the data representing
operation parameters as XML documents. If you are defining an interface for
a service that is already implemented, you must translate the data types of
the implemented operations into discreet XML elements that can be assembled
into messages. If you are starting from scratch, you must determine the
building blocks from which your messages are built, so that they make sense
from an implementation standpoint.

Available type systems for
defining service data units

According to the WSDL specification, you can use any type system you choose
to define data types in a WSDL contract. However, the W3C specification
states that XML Schema is the preferred canonical type system for a WSDL
document. Therefore, XML Schema is the intrinsic type system in Artix ESB.

XML Schema as a type system XML Schema is used to define how an XML document is structured. This is
done by defining the elements that make up the document. These elements
can use native XML Schema types, like xsd:int, or they can use types that
are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types.
By combining type definitions and element definitions you can create intricate
XML documents that can contain complex data.

When used in WSDL XML Schema defines the structure of the XML document
that holds the data used to interact with a service. When defining the data
units used by your service, you can define them as types that specify the
structure of the message parts. You can also define your data units as elements
that make up the message parts.

Considerations for creating your
data units

You might consider simply creating logical data units that map directly to the
types you envision using when implementing the service. While this approach
works, and closely follows the model of building RPC-style applications, it is
not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides
a number of guidelines for defining data units and can be accessed at http://
www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES. In
addition, the W3C also provides the following guidelines for using XML Schema
to represent data types in WSDL documents:

• Use elements, not attributes.

30

Defining Logical Data Units

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

• Do not use protocol-specific types as base types.

31

Mapping Data into Logical Data Units

Adding Data Units to a Contract
Depending on how you choose to create your WSDL contract, creating new
data definitions requires varying amounts of knowledge. The Artix ESB GUI
tools provide a number of aids for describing data types using XML Schema.
Other XML editors offer different levels of assistance. Regardless of the editor
you choose, it is a good idea to have some knowledge about what the resulting
contract should look like.

Procedure Defining the data used in a WSDL contract involves the following steps:

1. Determine all the data units used in the interface described by the
contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 1 on page 32, as a child

of the type element.

The targetNamespace attribute specifies the namespace under which
new data types are defined. The remaining entries should not be changed.

Example 1. Schema Entry for a WSDL Contract

<schema targetNamespace="http://schemas.iona.com/bank.idl"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

4. For each complex type that is a collection of elements, define the data
type using a complexType element. See Defining Data

Structures on page 38.

5. For each array, define the data type using a complexType element. See

Defining Arrays on page 42.

6. For each complex type that is derived from a simple type, define the data
type using a simpleType element. See Defining Types by

Restriction on page 45.

7. For each enumerated type, define the data type using a simpleType

element. See Defining Enumerated Types on page 47.

32

Defining Logical Data Units

8. For each element, define it using an element element. See Defining

Elements on page 48.

33

Adding Data Units to a Contract

XML Schema Simple Types
If a message part is going to be of a simple type it is not necessary to create
a type definition for it. However, the complex types used by the interfaces
defined in the contract are defined using simple types.

Entering simple types XML Schema simple types are mainly placed in the element elements used
in the types section of your contract. They are also used in the base attribute
of restriction elements and extension elements.

Simple types are always entered using the xsd prefix. For example, to specify
that an element is of type int, you would enter xsd:int in its type attribute
as shown in Example 2 on page 34.

Example 2. Defining an Element with a Simple Type

<element name="simpleInt" type="xsd:int" />

Supported XSD simple types Artix ESB supports the following XML Schema simple types:

• xsd:string

• xsd:normalizedString

• xsd:int

• xsd:unsignedInt

• xsd:long

• xsd:unsignedLong

• xsd:short

• xsd:unsignedShort

• xsd:float

• xsd:double

• xsd:boolean

• xsd:byte

34

Defining Logical Data Units

• xsd:unsignedByte

• xsd:integer

• xsd:positiveInteger

• xsd:negativeInteger

• xsd:nonPositiveInteger

• xsd:nonNegativeInteger

• xsd:decimal

• xsd:dateTime

• xsd:time

• xsd:date

• xsd:QName

• xsd:base64Binary

• xsd:hexBinary

• xsd:ID

• xsd:token

• xsd:language

• xsd:Name

• xsd:NCName

• xsd:NMTOKEN

• xsd:anySimpleType

• xsd:anyURI

• xsd:gYear

• xsd:gMonth

• xsd:gDay

35

XML Schema Simple Types

• xsd:gYearMonth

• xsd:gMonthDay

36

Defining Logical Data Units

Defining Complex Data Types
Defining Data Structures .. 38
Defining Arrays ... 42
Defining Types by Extension ... 44
Defining Types by Restriction .. 45
Defining Enumerated Types .. 47

XML Schema provides a flexible and powerful mechanism for building complex
data structures from its simple data types. You can create data structures by
creating a sequence of elements and attributes. You can also extend your
defined types to create even more complex types.

In addition to building complex data structures, you can also describe
specialized types such as enumerated types, data types that have a specific
range of values, or data types that need to follow certain patterns by either
extending or restricting the primitive types.

37

Defining Complex Data Types

Defining Data Structures
In XML Schema, data units that are a collection of data fields are defined
using complexType elements. Specifying a complex type requires three pieces
of information:

1. The name of the defined type is specified in the name attribute of the

complexType element.

2. The first child element of the complexType describes the behavior of the

structure’s fields when it is put on the wire. See Complex type
varieties on page 38.

3. Each of the fields of the defined structure are defined in element elements

that are grandchildren of the complexType element. See Defining the parts

of a structure on page 39.

For example, the structure shown in Example 3 on page 38 is be defined in
XML Schema as a complex type with two elements.

Example 3. Simple Structure

struct personalInfo
{
string name;
int age;

};

Example 4 on page 38 shows one possible XML Schema mapping for the
structure shown in Example 3 on page 38.

Example 4. A Complex Type

<complexType name="personalInfo">
<sequence>
<element name="name" type="xsd:string" />
<element name="age" type="xsd:int" />

</sequence>
</complexType>

Complex type varieties XML Schema has three ways of describing how the fields of a complex type
are organized when represented as an XML document and passed on the
wire. The first child element of the complexType element determines which

38

Defining Logical Data Units

variety of complex type is being used. Table 1 on page 39 shows the elements
used to define complex type behavior.

Table 1. Complex Type Descriptor Elements

Complex Type BehaviorElement

All the complex type’s fields must be present and they must
be in the exact order they are specified in the type definition.

sequence

All of the complex type’s fields must be present but they can
be in any order.

all

Only one of the elements in the structure can be placed in the
message.

choice

If a sequence element, an all element, or a choice is not specified, then
a sequence is assumed. For example, the structure defined in
Example 4 on page 38 generates a message containing two elements: name
and age.

If the structure is defined using a choice element, as shown in
Example 5 on page 39, it generates a message with either a name element
or an age element.

Example 5. Simple Complex Choice Type

<complexType name="personalInfo">
<choice>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>

</choice>
</complexType>

Defining the parts of a structure You define the data fields that make up a structure using element elements.
Every complexType element should contain at least one element element.
Each element element in the complexType element represents a field in the
defined data structure.

To fully describe a field in a data structure, element elements have two
required attributes:

• The name attribute specifies the name of the data field and it must be
unique within the defined complex type.

39

Defining Data Structures

• The type attribute specifies the type of the data stored in the field. The
type can be either one of the XML Schema simple types, or any named
complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly
used optional attributes: minOcurrs and maxOccurs. These attributes place
bounds on the number of times the field occurs in the structure. By default,
each field occurs only once in a complex type. Using these attributes, you
can change how many times a field must or can appear in a structure. For
example, you can define a field, previousJobs, that must occur at least
three times, and no more than seven times, as shown in
Example 6 on page 40.

Example 6. Simple Complex Type with Occurrence Constraints

<complexType name="personalInfo>
<all>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>
<element name="previousJobs" type="xsd:string:

minOccurs="3" maxOccurs="7"/>
</all>

</complexType>

You can also use the minOccurs to make the age field optional by setting
the minOccurs to zero as shown in Example 7 on page 40. In this case age
can be omitted and the data will still be valid.

Example 7. Simple Complex Type with minOccurs Set to Zero

<complexType name="personalInfo>
<choice>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int" minOccurs="0"/>

</choice>
</complexType>

Defining attributes In XML documents attributes are contained in the element’s tag. For example,
in the complexType element name is an attribute. They are specified using
the attribute element. It comes after the all, sequence, or choice element
and are a direct child of the complexType element. Example 8 on page 41
shows a complex type with an attribute.

40

Defining Logical Data Units

Example 8. Complex Type with an Attribute

<complexType name="personalInfo>
<all>
<element name="name" type="xsd:string"/>
<element name="previousJobs" type="xsd:string"

minOccurs="3" maxOccurs="7"/>
</all>
<attribute name="age" type="xsd:int" use="optional" />

</complexType>

The attribute element has three attributes:

• name — A required attribute that specifies the string identifying the attribute.

• type — Specifies the type of the data stored in the field. The type can be
one of the XML Schema simple types.

• use — Specifies if the attribute is required or optional. Valid values are
required or optional.

If you specify that the attribute is optional you can add the optional attribute
default. The default attribute allows you to specify a default value for the
attribute.

41

Defining Data Structures

Defining Arrays
Artix ESB supports two methods for defining arrays in a contract. The first is
define a complex type with a single element whose maxOccurs attribute has
a value greater than one. The second is to use SOAP arrays. SOAP arrays
provide added functionality such as the ability to easily define
multi-dimensional arrays and to transmit sparsely populated arrays.

Complex type arrays Complex type arrays are a special case of a sequence complex type. You
simply define a complex type with a single element and specify a value for
the maxOccurs attribute. For example, to define an array of twenty floating
point numbers you use a complex type similar to the one shown in
Example 9 on page 42.

Example 9. Complex Type Array

<complexType name="personalInfo>
<element name="averages" type="xsd:float" maxOccurs="20"/>

</complexType>

You can also specify a value for the minOccurs attribute.

SOAP arrays SOAP arrays are defined by deriving from the SOAP-ENC:Array base type
using the wsdl:arrayType element. The syntax for this is shown in
Example 10 on page 42.

Example 10. Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="ElementType<ArrayBounds>"/>
</restriction>

</complexContent>
</complexType>

Using this syntax, TypeName specifies the name of the newly-defined array
type. ElementType specifies the type of the elements in the array.
ArrayBounds specifies the number of dimensions in the array. To specify a
single dimension array use []; to specify a two-dimensional array use either
[][] or [,].

42

Defining Logical Data Units

For example, the SOAP Array, SOAPStrings, shown in
Example 11 on page 43, defines a one-dimensional array of strings. The
wsdl:arrayType attribute specifies the type of the array elements, xsd:string,
and the number of dimensions, with [] implying one dimension.

Example 11. Definition of a SOAP Array

<complexType name="SOAPStrings">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:string[]"/>
</restriction>

</complexContent>
</complexType>

You can also describe a SOAP Array using a simple element as described in
the SOAP 1.1 specification. The syntax for this is shown in
Example 12 on page 43.

Example 12. Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
<complexContent>
<restriction base="SOAP-ENC:Array">
<sequence>
<element name="ElementName" type="ElementType"

maxOccurs="unbounded"/>
</sequence>

</restriction>
</complexContent>

</complexType>

When using this syntax, the element's maxOccurs attribute must always be
set to unbounded.

43

Defining Arrays

Defining Types by Extension
Like most major coding languages, XML Schema allows you to create data
types that inherit some of their elements from other data types. This is called
defining a type by extension. For example, you could create a new type called
alienInfo, that extends the personalInfo structure defined in
Example 4 on page 38 by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType

element.

2. The complexContent element specifies that the new type will have more

than one element.

Note
If you are only adding new attributes to the complex type, you
can use a simpleContent element.

3. The type from which the new type is derived, called the base type, is
specified in the base attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension

element, the same as they are for a regular complex type.

For example, alienInfo is defined as shown in Example 13 on page 44.

Example 13. Type Defined by Extension

<complexType name="alienInfo">
<complexContent>
<extension base="personalInfo">
<sequence>
<element name="planet" type="xsd:string"/>

</sequence>
</extension>

</complexContent>
</complexType>

44

Defining Logical Data Units

Defining Types by Restriction
XML Schema allows you to create new types by restricting the possible values
of an XML Schema simple type. For example, you can define a simple type,
SSN, which is a string of exactly nine characters. New types defined by
restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name attribute of the

simpleType element.

2. The simple type from which the new type is derived, called the base type,
is specified in the restriction element. See Specifying the base

type on page 45.

3. The rules, called facets, defining the restrictions placed on the base type
are defined as children of the restriction element. See Defining the

restrictions on page 45.

Specifying the base type The base type is the type that is being restricted to define the new type. It is
specified using a restriction element. The restriction element is the
only child of a simpleType element and has one attribute, base, that specifies
the base type. The base type can be any of the XML Schema simple types.

For example, to define a new type by restricting the values of an xsd:int you
use a definition like the one shown in Example 14 on page 45.

Example 14. int as Base Type

<simpleType name="restrictedInt">
<restriction base="xsd:int">
...

</restriction>
</simpleType>

Defining the restrictions The rules defining the restrictions placed on the base type are called facets.
Facets are elements with one attribute, value, that defines how the facet is
enforced. The available facets and their valid value settings depend on the
base type. For example, xsd:string supports six facets, including:

45

Defining Types by Restriction

• length

• minLength

• maxLength

• pattern

• whitespace

• enumeration

Each facet element is a child of the restriction element.

Example Example 15 on page 46 shows an example of a simple type, SSN, which
represents a social security number. The resulting type is a string of the form
xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value for an element
of this type, but <SSN>032439876</SSN> is not.

Example 15. SSN Simple Type Description

<simpleType name="SSN">
<restriction base="xsd:string">
<pattern value="\d{3}-\d{2}-\d{4}"/>

</restriction>
</simpleType>

46

Defining Logical Data Units

Defining Enumerated Types
Enumerated types in XML Schema are a special case of definition by
restriction. They are described by using the enumeration facet which is
supported by all XML Schema primitive types. As with enumerated types in
most modern programming languages, a variable of this type can only have
one of the specified values.

Defining an enumeration in XML
Schema

The syntax for defining an enumeration is shown in Example 16 on page 47.

Example 16. Syntax for an Enumeration

<simpleType name="EnumName">
<restriction base="EnumType">
<enumeration value="Case1Value"/>
<enumeration value="Case2Value"/>
...
<enumeration value="CaseNValue"/>

</restriction>
</simpleType>

EnumName specifies the name of the enumeration type. EnumType specifies
the type of the case values. CaseNValue, where N is any number one or
greater, specifies the value for each specific case of the enumeration. An
enumerated type can have any number of case values, but because it is
derived from a simple type, only one of the case values is valid at a time.

Example For example, an XML document with an element defined by the enumeration
widgetSize, shown in Example 17 on page 47, would be valid if it contained
<widgetSize>big</widgetSize>, but it would not be valid if it contained
<widgetSize>big,mungo</widgetSize>.

Example 17. widgetSize Enumeration

<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>

</restriction>
</simpleType>

47

Defining Enumerated Types

Defining Elements
Elements in XML Schema represent an instance of an element in an XML
document generated from the schema. The most basic element consists of a
single element element. Like the element element used to define the
members of a complex type, they have three attributes:

• name — A required attribute that specifies the name of the element as it

appears in an XML document.

• type — Specifies the type of the element. The type can be any XML Schema

primitive type or any named complex type defined in the contract. This
attribute can be omitted if the type has an in-line definition.

• nillable — Specifies whether an element can be omitted from a document

entirely. If nillable is set to true, the element can be omitted from any

document generated using the schema.

An element can also have an in-line type definition. In-line types are specified
using either a complexType element or a simpleType element. Once you
specify if the type of data is complex or simple, you can define any type of
data needed using the tools available for each type of data. In-line type
definitions are discouraged because they are not reusable.

48

Defining Logical Data Units

Defining Logical Messages Used by a
Service
A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract these
messages are defined using message element. The messages are made up of one or more parts that are defined
using part elements.

A service’s operations are defined by specifying the logical messages that are
exchanged when an operation is invoked. These logical messages define the
data that is passed over a network as an XML document. They contain all of
the parameters that are a part of a method invocation.

Logical messages are defined using the message element in your contracts.
Each logical message consists of one or more parts, defined in part elements.

Tip
While your messages can list each parameter as a separate part, the
recommended practice is to use only a single part that encapsulates
the data needed for the operation.

Messages and parameter lists Each operation exposed by a service can have only one input message and
one output message. The input message defines all of the information the
service receives when the operation is invoked. The output message defines
all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault
messages define the data that is returned when the service encounters an
error. These messages usually have only one part that provides enough
information for the consumer to understand the error.

Message design for integrating
with legacy systems

If you are defining an existing application as a service, you must ensure that
each parameter used by the method implementing the operation is represented
in a message. You must also ensure that the return value is included in the
operation’s output message.

One approach to defining your messages is RPC style. When using RPC style,
you define the messages using one part for each parameter in the method’s

49

parameter list. Each message part is based on a type defined in the types
element of the contract. Your input message contains one part for each input
parameter in the method. Your output message contains one part for each
output parameter, plus a part to represent the return value, if needed. If a
parameter is both an input and an output parameter, it is listed as a part for
both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems
that use transports such as Tibco or CORBA. These systems are designed
around procedures and methods. As such, they are easiest to model using
messages that resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service and the
application it is exposing.

Message design for SOAP services While RPC style is useful for modeling existing systems, the service’s
community strongly favors the wrapped document style. In wrapped document
style, each message has a single part. The message’s part references a wrapper
element defined in the types element of the contract. The wrapper element
has the following characteristics:

• It is a complex type containing a sequence of elements. For more information
see Defining Complex Data Types on page 37.

• If it is a wrapper for an input message:

• It has one element for each of the method’s input parameters.

• Its name is the same as the name of the operation with which it is
associated.

• If it is a wrapper for an output message:

• It has one element for each of the method’s output parameters and one
element for each of the method’s inout parameters.

• Its first element represents the method’s return parameter.

• Its name would be generated by appending Response to the name of

the operation with which the wrapper is associated.

Message naming Each message in a contract must have a unique name within its namespace.
It is recommended that you use the following naming conventions:

50

Defining Logical Messages Used by a Service

• Messages should only be used by a single operation.

• Input message names are formed by appending Request to the name of

the operation.

• Output message names are formed by appending Response to the name

of the operation.

• Fault message names should represent the reason for the fault.

Message parts Message parts are the formal data units of the logical message. Each part is
defined using a part element, and is identified by a name attribute and either
a type attribute or an element attribute that specifies its data type. The data
type attributes are listed in Table 2 on page 51.

Table 2. Part Data Type Attributes

DescriptionAttribute

The data type of the part is defined by an element
called elem_name.

element="elem_name"

The data type of the part is defined by a type
called type_name.

type="type_name"

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, that is passed by reference or is an in/out, it can be a part
in both the request message and the response message, as shown in
Example 18 on page 51.

Example 18. Reused Part

<message name="fooRequest">
<part name="foo" type="xsd:int"/>

<message>
<message name="fooReply">
<part name="foo" type="xsd:int"/>

<message>

Example For example, imagine you had a server that stored personal information and
provided a method that returned an employee’s data based on the employee's
ID number. The method signature for looking up the data is similar to
Example 19 on page 52.

51

Example 19. personalInfo lookup Method

personalInfo lookup(long empId)

This method signature can be mapped to the RPC style WSDL fragment shown
in Example 20 on page 52.

Example 20. RPC WSDL Message Definitions

<message name="personalLookupRequest">
<part name="empId" type="xsd:int"/>

<message/>
<message name="personalLookupResponse>
<part name="return" element="xsd1:personalInfo"/>

<message/>

It can also be mapped to the wrapped document style WSDL fragment shown
in Example 21 on page 52.

Example 21. Wrapped Document WSDL Message Definitions

<types>
<schema ...>
...
<element name="personalLookup">
<complexType>
<sequence>
<element name="empID" type="xsd:int" />

</sequence>
</complexType>

</element>
<element name="personalLookupResponse">
<complexType>
<sequence>
<element name="return" type="personalInfo" />

</sequence>
</complexType>

</element>
</schema>

</types>
<message name="personalLookupRequest">
<part name="empId" element="xsd1:personalLookup"/>

<message/>
<message name="personalLookupResponse>
<part name="return" element="xsd1:personalLookupResponse"/>

<message/>

52

Defining Logical Messages Used by a Service

Defining Your Logical Interfaces
Logical service interfaces are defined using the portType element.

Logical service interfaces are defined using the WSDL portType element.
The portType element is a collection of abstract operation definitions. Each
operation is defined by the input, output, and fault messages used to complete
the transaction the operation represents. When code is generated to implement
the service interface defined by a portType element, each operation is
converted into a method containing the parameters defined by the input,
output, and fault messages specified in the contract.

Process To define a logical interface in a WSDL contract you must do the following:

1. Create a portType element to contain the interface definition and give

it a unique name. See Port types on page 53.

2. Create an operation element for each operation defined in the interface.

See Operations on page 54.

3. For each operation, specify the messages used to represent the operation’s
parameter list, return type, and exceptions. See Operation
messages on page 54.

Port types A WSDL portType element is the root element in a logical interface definition.
While many Web service implementations map portType elements directly
to generated implementation objects, a logical interface definition does not
specify the exact functionality provided by the the implemented service. For
example, a logical interface named ticketSystem can result in an
implementation that either sells concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into
a binding to define the physical data used by an endpoint exposing the defined
service.

Each portType element in a WSDL document must have a unique name,
which is specified using the name attribute, and is made up of a collection of

53

operations, which are described in operation elements. A WSDL document
can describe any number of port types.

Operations Logical operations, defined using WSDL operation elements, define the
interaction between two endpoints. For example, a request for a checking
account balance and an order for a gross of widgets can both be defined as
operations.

Each operation defined within a portType element must have a unique name,
specified using the name attribute. The name attribute is required to define
an operation.

Operation messages Logical operations are made up of a set of elements representing the logical
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 3 on page 54.

Table 3. Operation Message Elements

DescriptionElement

Specifies the message the client endpoint sends to the service
provider when a request is made. The parts of this message
correspond to the input parameters of the operation.

input

Specifies the message that the service provider sends to the client
endpoint in response to a request. The parts of this message

output

correspond to any operation parameters that can be changed by
the service provider, such as values passed by reference. This
includes the return value of the operation.

Specifies a message used to communicate an error condition
between the endpoints.

fault

An operation is required to have at least one input or one output element.
An operation can have both input and output elements, but it can only
have one of each. Operations are not required to have any fault elements,
but can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 4 on page 55.

54

Defining Your Logical Interfaces

Table 4. Attributes of the Input and Output Elements

DescriptionAttribute

Identifies the message so it can be referenced when mapping the
operation to a concrete data format. The name must be unique
within the enclosing port type.

name

Specifies the abstract message that describes the data being sent
or received. The value of the message attribute must correspond

message

to the name attribute of one of the abstract messages defined in

the WSDL document.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation
with either Request or Response respectively appended to the name.

Return values Because the operation element is an abstract definition of the data passed
during an operation, WSDL does not provide for return values to be specified
for an operation. If a method returns a value it will be mapped into the output
element as the last part of that message.

Example For example, you might have an interface similar to the one shown in
Example 22 on page 55.

Example 22. personalInfo lookup interface

interface personalInfoLookup
{
personalInfo lookup(in int empID)
raises(idNotFound);

}

This interface can be mapped to the port type in Example 23 on page 55.

Example 23. personalInfo lookup port type

<message name="personalLookupRequest">
<part name="empId" element="xsd1:personalLookup"/>

<message/>
<message name="personalLookupResponse">
<part name="return" element="xsd1:personalLookupResponse"/>

55

<message/>
<message name="idNotFoundException">
<part name="exception" element="xsd1:idNotFound"/>

<message/>
<portType name="personalInfoLookup">
<operation name="lookup">
<input name="empID" message="personalLookupRequest"/>
<output name="return" message="personalLookupResponse"/>
<fault name="exception" message="idNotFoundException"/>

</operation>
</portType>

56

Defining Your Logical Interfaces

Index
A
all element, 39
attribute element, 40

name attribute, 41
type attribute, 41
use attribute, 41

B
binding element, 26

C
choice element, 39
complex types

all type, 39
choice type, 39
elements, 39
occurrence constraints, 40
sequence type, 39

complexType element, 38
concrete part, 27

D
definitions element, 26

E
element element, 39

maxOccurs attribute, 40
minOccurrs attribute, 40
name attribute, 39
type attribute, 40

L
logical part, 27

M
message element, 26, 49

O
operation element, 26

P
part element, 49, 51

element attribute, 51
name attribute, 51
type attribute, 51

port element, 26
portType element, 26, 53

R
RPC style design, 49

S
sequence element, 39
service element, 26

T
types element, 26

W
wrapped document style, 50
WSDL design

RPC style, 49
wrapped document style, 50

57

58

	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Introducing WSDL Contracts
	WSDL Elements
	Structure of a WSDL Document
	Designing a contract

	Defining Logical Data Units
	Mapping Data into Logical Data Units
	Adding Data Units to a Contract
	XML Schema Simple Types
	Defining Complex Data Types
	Defining Data Structures
	Defining Arrays
	Defining Types by Extension
	Defining Types by Restriction
	Defining Enumerated Types

	Defining Elements

	Defining Logical Messages Used by a Service
	Defining Your Logical Interfaces
	Index

