
™

PROGRESS
®

ARTIX

Getting Started with Artix
Version 5.6, August 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology–Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments — See the Third Party Acknowledgements section on
page 10.

Updated: August 9, 2011

Contents

List of Figures 5

7

List of Tables 7

Preface 9
What is Covered in This Book 9
Who Should Read This Book 9
Organization of This Book 9
The Artix Documentation Library 9
Third Party Acknowledgements 10

Chapter 1 About Artix ESB 13
What is Artix ESB? 14
Runtime Features 18
Key Concepts in Depth 20

Artix ESB Runtime Components 21
Artix Bus 22
Artix Endpoints 23
Artix Contracts 24
Artix Services 26

Solving Problems with Artix ESB 27

Chapter 2 Understanding WSDL 31
WSDL Basics 32
Abstract Data Type Definitions 34
Abstract Message Definitions 37
Abstract Interface Definitions 40
Mapping to the Concrete Details 44

Index 45
3

CONTENTS
4

List of Figures

Figure 1: Artix ESB Runtime Components 21
5

LIST OF FIGURES
 6

List of Tables
Table 1: Part Data Type Attributes 39

Table 2: Operation Message Elements 41

Table 3: Attributes of the Input and Output Elements 41
7

LIST OF TABLES
 8

Preface
What is Covered in This Book
Getting Started with Artix introduces Progress Software Corporation’s Artix
ESB technology and Web Services Description Language (WSDL).

Who Should Read This Book
Getting Started with Artix is for anyone who needs to understand the concepts
and terms used in the Artix product.

Organization of This Book
This book contains conceptual information about Artix and WSDL:

• Chapter 1, “About Artix ESB” introduces the Artix ESB product,

discussing key concepts in depth and describing the types of problems it is

designed to solve.

• Chapter 2, “Understanding WSDL” explains the basics of WSDL.

The Artix Documentation Library
For information on the entire Artix Documentation Library, including
organization, contents, conventions, and reading paths, see Using the Artix
Library.

See the entire documentation set, at the Artix Product Documentation Web Site.
9

http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf

http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf

http://communities.progress.com/pcom/docs/DOC-106903

PREFACE
Third Party Acknowledgements
Progress Artix ESB v5.6 incorporates Apache Commons Codec v1.2 from The
Apache Software Foundation. Such technology is subject to the following terms
and conditions: The Apache Software License, Version 1.1 - Copyright (c)
2001-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions and
the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The
end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgement may appear in the software itself, if and wherever such
third-party acknowledgements normally appear. 4. The names "Apache", "The
Jakarta Project", "Commons", and "Apache Software Foundation" must not be
used to endorse or promote products derived from this software without prior
written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", "Apache"
nor may "Apache" appear in their name without prior written permission of the
Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

======================================
 10

PREFACE
This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB v5.6 incorporates Jcraft JSCH v0.1.44 from Jcraft. Such
technology is subject to the following terms and conditions: Copyright (c)
2002-2010 Atsuhiko Yamanaka, JCraft,Inc. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notice, this list of conditions and the following
disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The
names of the authors may not be used to endorse or promote products derived
from this software without specific prior written permission. THIS SOFTWARE
IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
JCRAFT, INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
11

PREFACE
 12

CHAPTER 1

About Artix ESB
This chapter introduces the main features of Artix ESB.

In this chapter This chapter discusses the following topics:

What is Artix ESB? page 14

Runtime Features page 18

Key Concepts in Depth page 20

Solving Problems with Artix ESB page 27
13

CHAPTER 1 | About Artix ESB
What is Artix ESB?

Overview Artix ESB is an extensible enterprise service bus. It provides the tools for rapid
application integration that exploits the middleware technologies and products
already present within your organization.

The approach taken by Artix ESB relies on existing Web service standards and
extends these standards to provide rapid integration solutions that increase
operational efficiencies, capitalize on existing infrastructure, and enable the
adoption or extension of a service-oriented architecture (SOA).

Web services and SOAs The information services community generally regards Web services as
application-to-application interactions that use SOAP over HTTP.

Web services have the following advantages:

• The data encoding scheme and transport semantics are based on

standardized specifications.

• The XML message content is human readable.

• The contract defining the service is XML-based and can be edited by any

text editor.

• They promote loosely coupled architectures.

SOAs take the Web services concept and extend it to the entire enterprise. Using
a SOA, your infastructure becomes a collection of loosely coupled services.
Each service becomes an endpoint defined by a contract written in Web Services
Description Language (WSDL). Clients, or service consumers, can then access
the services by reading a service’s contract.
14

What is Artix ESB?
Artix and services Artix extends the Web service standards to include more than just SOAP over
HTTP. Thus, Artix allows organizations to define their existing applications as
services without worrying about the underlying middleware. It also provides the
ability to expose those applications across a number of middleware technologies
without writing any new code.

Artix also provides developers with the tools to write new applications in Java
that can be exposed as middleware-neutral services. These tools aid in the
definition of the new service in WSDL and in the generation of stub and skeleton
code.

Just like the WSDL contracts used to define a service, the code that Artix
generates adheres to industry standards.

Benefits of Artix Artix ESB’s extensible nature provides a number of benefits over other ESBs
and older enterprise application integration (EAI) products. Chief among these is
its speed and flexibility. In addition, Artix ESB provides enterprise levels of
service such as session management, service discovery, security, and
cross-middleware transaction propagation.

EAI products typically use a proprietary, canonical message format in a
centralized EAI hub. When the hub receives a message, it transforms the
message to this canonical format and then transforms the message to the format
of the target application before sending it to its destination. Each application
requires two adapters that are typically proprietary and that translate to and from
the canonical format.

By contrast, Artix ESB does not require a hub architecture, nor does it use any
intermediate message format. When a message is received by the bus, it is
transformed directly into the target application’s message format.

Artix ESB is highly configurable and easily extendable. You can configure it to
load only the pieces you need for the functionality you require. If Artix ESB
does not provide a transport or message format you need, you can easily develop
your own service, extend the contract definitions, and configure Artix to load it.
15

CHAPTER 1 | About Artix ESB
Artix ESB features Artix ESB includes the following features:

• Support for multiple transports and message data formats

• Java development

• Message routing

• Cross-middleware transaction support

• Asynchronous Web services

• Deployment of services as plug-ins via a number of different containers

• Look-up services

• Load-balancing

• High-availability service clustering

• Integration with EJBs

• Easy-to-use development tools

• No need to hard-code WSDL references into applications

Runtime and programming model Artix ESB ships with a Java Runtime based on the Apache CXF, that provides a
JAX-WS API and a JavaScript API.

Using Artix ESB There are two ways to use Artix ESB in your enterprise:

• You can use Artix ESB to develop new applications using one of the

supported APIs. In this situation, developers generate stub and skeleton

code from WSDL, and Artix becomes a part of your development

environment.

• You can use the Artix bus to integrate two existing applications, built on

different middleware technologies, into a single application. In this

situation, developers simply create an Artix contract defining the

integration of the systems. In most cases, no new code is needed.
16

What is Artix ESB?
Becoming proficient with Artix
ESB

To become an effective Artix ESB developer you need an understanding of the
following:

1. The Java runtime and programming model available in Artix ESB.

2. The syntax for WSDL and the Artix ESB extensions to the WSDL

specification.

3. The configuration mechanisms available in the Artix Java runtime.

4. The Artix APIs that you can use in your application.

This book introduces these concepts. The other books in the Artix
documentation library covers the same technologies in greater detail.
17

CHAPTER 1 | About Artix ESB
Runtime Features

Java Runtime Artix ESB Java Runtime provides the developer with both a JAX-WS API and a
JavaScript API with which to implement services.

It is based on the Apache CXF services framework and provides a fast, modular,
and extensible platform for implementing services that is built purely in Java.

Feature list The following bindings, transports, and quality of service features are supported
by the Java runtime:

• Supported APIs

→ JAXB 2.1/2.2

→ JAX-WS 2.1/2.2

→ WSDL 1.1

→ JCA Connector 1.5

• Development Languages

→ Java

→ JavaScript

• Bindings

→ SOAP (1.1 and 1.2)

→ MTOM/XOP

→ RESTful

→ CORBA

→ Pure XML
18

Runtime Features
• Transports

→ HTTP

→ JMS

→ WebSphere MQ

• Quality of Service

→ Message routing

→ Security

→ Reliable messaging

→ High availability

→ Load balancing

→ Location resolution
19

CHAPTER 1 | About Artix ESB
Key Concepts in Depth
This section discusses key Artix ESB concepts in depth.

In this section This section discusses the following topics:

Artix ESB Runtime Components page 21

Artix Bus page 22

Artix Endpoints page 23

Artix Contracts page 24

Artix Services page 26
20

Key Concepts in Depth
Artix ESB Runtime Components

How it fits together The Artix ESB runtime consists of the following components :

• Artix Bus is at the core of Artix, and provides the support for various

transports and payload formats.

• Artix Contracts describe your applications in such a way that they become

services that can be deployed as Artix Endpoints.

• Artix Services include a number of advanced services, such as the locator

and session manager. Each Artix service is defined with an Artix contract

and can be deployed as an Artix endpoint.

Figure 1 illustrates how the Artix ESB elements fit together.

Figure 1: Artix ESB Runtime Components

Artix Bus

Client Server

Endpt
contract

Endpt
contract
21

CHAPTER 1 | About Artix ESB
Artix Bus

Overview The Artix bus is at the heart of the Artix ESB architecture. It is the component
that hosts the services that you create and connects your applications to those
services. The bus is also responsible for translating data from one format into
another.

In this way, Artix ESB enables all of the services in your company to
communicate, without needing to communicate in the same way. It also means
that clients can contact services without understanding the native language of the
server handling requests.

Benefits While other products provide some ability to expose applications as services,
they frequently require a good deal of coding. The Artix bus eliminates the need
to modify your applications or write code by directly translating the
application’s native communication protocol into any of the other supported
protocols.

For example, by deploying an Artix instance with a SOAP-over-WebSphere MQ
endpoint and a SOAP-over-HTTP endpoint, you can expose a WebSphere MQ
application directly as a Web service. The WebSphere MQ application does not
need to be altered or made aware that it is being exposed using SOAP over
HTTP.

The Artix bus translation facility also makes it a powerful integration tool.
Unlike traditional EAI products, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing overhead and increases the speed at which messages are transmitted.
22

Key Concepts in Depth
Artix Endpoints

Overview An Artix endpoint is the connection point at which a service or a service
consumer connects to the Artix bus. Endpoints are described by a contract
describing the services offered and the physical representation of the data on the
network.

Reconfigurable connection An Artix endpoint provides an abstract connection point between applications,
as shown in Figure 1 on page 21. The benefit of this abstract connection is that it
allows you to change the underlying communication mechanism without
recoding any of your applications. You only need to modify the contract
describing the endpoint.

For example, if one of your back-end service providers is a Tuxedo application
and you want to swap it for a CORBA implementation, you simply change the
endpoint’s contract to contain a CORBA connection to the Artix bus. The clients
accessing the back-end service provider do not need to be aware of the change.
23

CHAPTER 1 | About Artix ESB
Artix Contracts

Overview Artix contracts are written in WSDL. In this way, a standard language is used to
describe the characteristics of services and their associated Artix endpoints. By
defining characteristics such as service operations and messages in an abstract
way—independent of the transport or protocol used to implement the
endpoint—these characteristics can be bound to a variety of protocols and
formats.

Artix ESB allows an abstract definition to be bound to multiple specific
protocols and formats. This means that the same definitions can be reused in
multiple implementations of a service. Artix contracts define the services
exposed by a set of systems, the payload formats and transports available to each
system, and the rules governing how the systems interact with each other. The
simplest Artix contract defines a single pair of systems with a shared interface,
payload format, and transport. Artix contracts can also define very complex
integration scenarios.

WSDL elements Understanding Artix contracts requires some familiarity with WSDL. The key
WSDL elements are as follows:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated.
Each part of a message is associated with a defined type.

A WSDL operation is an abstract definition of the capabilities supported by a
service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific data format for operations defined in a
portType.

A WSDL port specifies the transport details for a binding, and defines a single
communication endpoint.

A WSDL service specifies a set of related ports.
24

Key Concepts in Depth
The Artix Contract An Artix contract is specified in WSDL and is conceptually divided into logical
and physical components.

The logical contract

The logical contract specifies components that are independent of the underlying
transport and wire format. It fully specifies the data structure and the possible
operations or interactions with the interface. It enables Artix to generate
skeletons and stubs without having to define the physical characteristics of the
connection (transport and wire format).

The logical contract includes the types, message, operation, and portType
elements of the WSDL file.

The physical contract

The physical component of an Artix contract defines the format and
transport-specific details. For example:

• The wire format, middleware transport, and service groupings

• The connection between the portType operations and wire formats

• Buffer layout for fixed formats

• Artix extensions to WSDL

The physical contract includes the binding, port, and service elements of the
WSDL file.
25

CHAPTER 1 | About Artix ESB
Artix Services

Overview In addition to the core Artix components, Artix also provides the following
services:

• Locator

• Accessing contracts and references

These services provide advanced functionality that Artix deployments can use to
gain even more flexibility.

Locator The Artix locator provides service look-up and load balancing functionality to
an Artix deployment. It isolates service consumers from changes in a service's
contact information.

The Artix WSDL contract defines how the client contacts the server, and
contains the address of the Artix locator. The locator provides the client with a
reference to the server.

Servers are automatically registered with the locator when they start, and service
endpoints are automatically made available to clients without the need for
additional coding.

Accessing contracts and
references

Accessing contracts and references in Artix ESB refers to enabling client and
server applications to find WSDL service contracts and references. Using the
techniques and conventions of Artix avoids the need to hard code WSDL into
your client and server applications.

For more information For more information on Artix services, see Configuring and Deploying Artix.
26

Solving Problems with Artix ESB
Solving Problems with Artix ESB

Overview Artix ESB allows you to solve problems arising from the integration of existing
back-end systems using a service-oriented approach. It allows you to develop
new services using Java, and to retain all of the enterprise levels of service that
you require.

There are three phases to an Artix ESB project:

1. The design phase, where you define your services and define how they are

integrated using Artix contracts.

2. The development phase, where you write the application code required to

implement new services.

3. The deployment phase, where you configure and deploy your Artix

solution.

Design phase In the design phase, you define the logical layout of your system in an Artix
contract. The logical or abstract definition of a system includes:

• the services that it contains

• the operations each service offers

• the data the services will use to exchange information

Once you have defined the logical aspects of your system, you then add the
physical network details to the contracts.

The physical details of your system include the transports and payload formats
used by your services, as well as any routing schemes needed to connect services
that use different transports or payload formats.
27

CHAPTER 1 | About Artix ESB
The Artix command-line tools automate the mapping of your service
descriptions into WSDL-based Artix contracts. These tools allow you to:

• Import existing WSDL documents

• Create Artix contracts from scratch

• Generate Artix contracts from:

♦ CORBA IDL

♦ A Java class

• Add the following bindings to an Artix contract:

♦ CORBA

♦ SOAP

♦ XML
28

Solving Problems with Artix ESB
Development phase You must write Artix application code if your solution involves creating new
applications or a custom router. The first step in writing Artix code is to generate
client stub code and server skeleton code from the Artix contracts that you
created in the design phase. You can generate this code using the Artix
command-line tools.

After you have generated the client stub code and server skeleton code, you can
develop the code that implements the business logic you require. For most
applications, Artix-generated code allows you to stick to using Java code for
writing business logic.

Once the stub code is generated, you can use your favorite development
environment to develop and debug the application code.

Artix ESB also provides advanced APIs for directly manipulating messages, for
writing message handlers, and for other advanced features your application
might require. These can be plugged into the Artix runtime for customized
processing of messages.

Deployment phase In the deployment phase, you configure the Artix runtime to fine-tune the Artix
bus for your new Artix system. This involves modifying the Artix configuration
files and editing the Artix contracts that describe your solution to fit the exact
circumstances of your deployment environment.
29

CHAPTER 1 | About Artix ESB
30

CHAPTER 2

Understanding
WSDL
Artix contracts use WSDL documents to describe services and the
data they use.

In this chapter This chapter discusses the following topics:

WSDL Basics page 32

Abstract Data Type Definitions page 34

Abstract Message Definitions page 37

Abstract Interface Definitions page 40

Mapping to the Concrete Details page 44
31

CHAPTER 2 | Understanding WSDL
WSDL Basics

Overview Web Services Description Language (WSDL) is an XML document format used
to describe services offered over the Web. WSDL is standardized by the World
Wide Web Consortium (W3C) and is currently at revision 1.1. You can find the
standard on the W3C website at www.w3.org/TR/wsdl.

Elements of a WSDL document A WSDL document is made up of the following elements:

• import allows you to import another WSDL or XSD file.

• Logical contract elements:

♦ types

♦ message

♦ operation

♦ portType

• Physical contract elements:

♦ binding

♦ port

♦ service

These elements are described in “WSDL elements” on page 24.

Abstract operations The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a result,
the abstract definitions can be reused and recombined to define several
endpoints. For example, a service can expose identical operations with slightly
different concrete data formats and two different network addresses.
Alternatively, one WSDL document could be used to define several services that
use the same abstract messages.

The portType A portType is a collection of abstract operations that define the actions provided
by an endpoint.
32

http://www.w3.org/TR/wsdl

WSDL Basics
Concrete details When a portType is mapped to a concrete data format, the result is a concrete
representation of the abstract definition.A port is defined by associating a
network address with a reusable binding, in the form of an endpoint. A
collection of ports (or endpoints) define a service.

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is typically
HTTP. However, WSDL documents can use any concrete message format and
network protocol. In fact, Artix contracts bind operations to several data formats
and describe the details for a number of network protocols.

Namespaces and imported
descriptions

WSDL supports the use of XML namespaces defined in the definition element
as a way of specifying predefined extensions and type systems in a WSDL
document. WSDL also supports importing WSDL documents and fragments for
building modular WSDL collections.

Example Example 9 on page 88 shows a simple WSDL document.
33

CHAPTER 2 | Understanding WSDL
Abstract Data Type Definitions

Overview Applications typically use data types that are more complex than the primitive
types, like int, defined by most programming languages. WSDL documents
represent these complex data types using a combination of schema types defined
in referenced external XML schema documents and complex types described in
types elements.

Complex type definitions Complex data types are described in a types element. The W3C specification
states that XSD is the preferred canonical type system for a WSDL document.
Therefore, XSD is treated as the intrinsic type system. Because these data types
are abstract descriptions of the data passed over the wire, and are not concrete
descriptions, there are a few guidelines on using XSD schemas to represent
them:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personalInfo, defined in Example 1, contains a string, an int,
and an enum. The string and the int both have equivalent XSD types and do
not require special type mapping. The enumerated type hairColorType,
however, does need to be described in XSD.

Example 1: personalInfo structure

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

34

Abstract Data Type Definitions
Example 2 shows one mapping of personalInfo into XSD. This mapping is a
direct representation of the data types defined in Example 1. hairColorType is
described using a named simpleType because it does not have any child
elements. personalInfo is defined as an element so that it can be used in
messages later in the contract.

Example 2: XSD type definition for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"
 xmlns:xsd1="http://iona.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor" type="xsd1:hairColorType"/>
 </sequence>
 </complexType>
 </element>
</types>
35

CHAPTER 2 | Understanding WSDL
Another way to map personalInfo is to describe hairColorType in-line as shown
in Example 3. WIth this mapping, however, you cannot reuse the description of
hairColorType.

Example 3: Alternate XSD Mapping for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"
 xmlns:xsd1="http://iona.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
</types>
36

Abstract Message Definitions
Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network. It describes
data that is exchanged between two endpoints in terms of abstract messages
described in message elements.

Each abstract message consists of one or more parts, defined in part elements.

These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in the
WSDL document’s binding elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an endpoint,
WSDL documents allow abstract operations to have only one input message, the
representation of the operation’s incoming parameter list, and only one output
message, the representation of the data returned by the operation.

In the abstract message definition, you cannot directly describe a message that
represents an operation's return value. Therefore, any return value must be
included in the output message.

Messages allow for concrete methods defined in programming languages like
Java to be mapped to abstract WSDL operations. Each message contains a
number of part elements that represent one element in a parameter list.

Therefore, all of the input parameters for a method call are defined in one
message and all of the output parameters, including the operation’s return value,
are mapped to another message.
37

CHAPTER 2 | Understanding WSDL
Example For example, imagine a server that stores personal information as defined in
Example 1 on page 34 and provides a method that returns an employee’s data
based on an employee ID number.

The method signature for looking up the data would look similar to Example 4.

This method signature could be mapped to the WSDL fragment shown in
Example 5.

Message naming Each message in a WSDL document must have a unique name within its
namespace. Choose message names that show whether they are input messages
(requests) or output messages (responses).

Example 4: Method for Returning an Employee’s Data

personalInfo lookup(long empId)

Example 5: WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
</message>
38

Abstract Message Definitions
Message parts Message parts are the formal data elements of the abstract message. Each part is
identified by a name attribute and by either a type or an element attribute that
specifies its data type. The data type attributes are listed in Table 1.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, which is passed by reference or is an in/out, it can be a part in
both the request message and the response message. An example of parameter
reuse is shown in Example 6.

Table 1: Part Data Type Attributes

Attribute Description

type="type_name" The data type of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The data type of the part is defined by an element
called elem_name.

Example 6: Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
</message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
</message>
39

CHAPTER 2 | Understanding WSDL
Abstract Interface Definitions

Overview WSDL portType elements define, in an abstract way, the operations offered by
a service. The operations defined in a portType list the input, output, and any
fault messages used by the service to complete the transaction the operation
describes.

PortTypes A portType can be thought of as an interface description. In many Web service
implementations there is a direct mapping between portTypes and
implementation objects. PortTypes are the abstract unit of a WSDL document
that is mapped into a concrete binding to form the complete description of what
is offered over a port.

PortTypes are described using the portType element in a WSDL document.
Each portType in a WSDL document must have a unique name, specified using
the name attribute, and is made up of a collection of operations, described in
operation elements. A WSDL document can describe any number of
portTypes.

Operations Operations, described in operation elements in a WSDL document, are an
abstract description of an interaction between two endpoints. For example, a
request for a checking account balance and an order for a gross of widgets can
both be defined as operations.

Each operation within a portType must have a unique name, specified using the
required name attribute.
40

Abstract Interface Definitions
Elements of an operation Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.

 The elements that can describe an operation are listed in Table 2.

An operation is required to have at least one input or output element. The
elements are defined by two attributes listed in Table 3.

Table 2: Operation Message Elements

Element Description

input Specifies a message that is received from another endpoint. This
element can occur at most once for each operation.

output Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

fault Specifies a message used to communicate an error condition
between the endpoints. This element is not required and can
occur an unlimited number of times.

Table 3: Attributes of the Input and Output Elements

Attribut
e

Description

name Identifies the message so it can be referenced when mapping the
operation to a concrete data format. The name must be unique
within the enclosing port type.

message Specifies the abstract message that describes the data being sent
or received. The value of the message attribute must correspond
to the name attribute of one of the abstract messages defined in
the WSDL document.
41

CHAPTER 2 | Understanding WSDL
It is not necessary to specify the name attribute for all input and output elements;
WSDL provides a default naming scheme based on the enclosing operation’s
name.

If only one element is used in the operation, the element name defaults to the
name of the operation. If both an input and an output element are used, the
element name defaults to the name of the operation with Request or Response,
respectively, appended to the name.

Return values Because the portType is an abstract definition of the data passed during an
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value, it is mapped into the output message as
the last part of that message. The concrete details of how the message parts are
mapped into a physical representation are described in “Bindings” on page 44.

Example For example, in implementing a server that stores personal information in the
structure defined in Example 1 on page 34, you might use an interface similar to
the one shown in Example 7.

Example 7: personalInfo Lookup Interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

42

Abstract Interface Definitions
This interface could be mapped to the portType in Example 8.

Example 8: personalInfo Lookup Port Type

<types>
...
 <element name="idNotFound" type="idNotFoundType">
 <complexType name="idNotFoundType">
 <sequence>
 <element name="ErrorMsg" type="xsd:string"/>
 <element name="ErrorID" type="xsd:int"/>
 </sequence>
 </complexType>
</types>
<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </operation>
</portType>
43

CHAPTER 2 | Understanding WSDL
Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network addresses,
use specific network protocols, and expect data in a particular format. To fully
define these real applications, the abstract definitions discussed in the previous
section must be mapped to concrete representations of the data passed between
applications. The details describing the network protocols in use must also be
added.

This is accomplished in the WSDL bindings and ports elements. WSDL
binding and port syntax is not tightly specified by the W3C. A specification is
provided that defines the mechanism for defining these syntaxes. However, the
syntaxes for bindings other than SOAP and for network transports other than
HTTP are not defined in a W3C specification.

Bindings Bindings describe the mapping between the abstract messages defined for each
portType and the data format used on the wire. Bindings are described in
binding elements in the WSDL file. A binding can map to only one portType,
but a portType can be mapped to any number of bindings.

It is within the bindings that you specify details such as parameter order,
concrete data types, and return values. For example, a binding can reorder the
parts of a message to reflect the order required by an RPC call. Depending on the
binding type, you can also identify which of the message parts, if any, represent
the return type of a method.

Services To define an endpoint that corresponds to a running service, the port element in
the WSDL file associates a binding with the concrete network information
needed to connect to the remote service described in the file. Each port specifies
the address and configuration information for connecting the application to a
network.

Ports are grouped within service elements. A service can contain one or many
ports. The convention is that the ports defined within a particular service are
related in some way. For example, all of the ports might be bound to the same
portType, but use different network protocols, like HTTP and WebSphere MQ.
44

Index

A
Apache CXF 18
Artix

bus 22
contracts 24, 25
locator 26
session manager 26

B
bindings 24, 44
bus 22

C
contracts 24, 25
CORBA IDL 28

D
deployment phase 29
design phase 27
development phase 29

E
EAI 15
enterprise application integration, see EAI
enterprise service bus, See ESB

I
IDL 28

J
Java Runtime 18

L
locator 26

M
messages 24

O
operations 24, 40

P
ports 24
portTypes 24, 32, 40

R
runtimes

Java 18

S
service-oriented architecture, see SOA
services 24, 44
session manager 26
SOA 14
SOAP 15

T
types 24

W
W3C 32
Web Services Description Language, see WSDL
World Wide Web Consortium, see W3C
WSDL 24, 31–44

defined 32

X
XSD 34
Variable: ~DraftStampText 45

INDEX
46 Variable: ~DraftStampText

	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of This Book
	The Artix Documentation Library
	Third Party Acknowledgements

	About Artix ESB
	What is Artix ESB?
	Runtime Features
	Key Concepts in Depth
	Artix ESB Runtime Components
	Artix Bus
	Artix Endpoints
	Artix Contracts
	Artix Services

	Solving Problems with Artix ESB

	Understanding WSDL
	WSDL Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

