
™

PROGRESS
®

ARTIX

WSDL Extension Reference
Version 5.6, August 2011

Progress Software Corporation and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in this
publication. Except as expressly provided in any written license agreement from Progress
Software Corporation, the furnishing of this publication does not give you any license to
these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
Progress, IONA, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation
and/or its subsidiaries in the U.S. and other countries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the U.S. and other countries. All other trademarks that
appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate Progress Software
Corporation makes no warranty of any kind to this material including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Progress
Software Corporation shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this
material.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in
any form or by any means, photocopying, recording or otherwise, without prior written
consent of IONA Technologies PLC. No third party intellectual property right liability is
assumed with respect to the use of the information contained herein. IONA Technologies
PLC assumes no responsibility for errors or omissions contained in this book. This
publication and features described herein are subject to change without notice.

Copyright © 2011 IONA Technologies PLC, a wholly-owned subsidiary of Progress
Software Corporation. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service
marks, or product names as designated by the companies who market those products.

Updated: August 9, 2011

Contents

Preface 7

What is Covered in this Book 7
Who Should Read this Book 7
How to Use this Book 7
The Artix Documentation Library 7

Part I Bindings

SOAP 1.1 Binding 11
Runtime Compatibility 11
soap:binding 11
soap:operation 12
soap:body 13
soap:header 15
soap:fault 16

SOAP 1.2 Binding 19
Runtime Compatibility 19
wsoap12:binding 19
wsoap12:operation 20
wsoap12:body 21
wsoap12:header 23
wsoap12:fault 24

MIME Multipart/Related Binding 27
Runtime Compatibility 27
Namespace 27
mime:multipartRelated 28
mime:part 28
mime:content 28
 3

CONTENTS
CORBA Binding and Type Map 31
CORBA Binding Extension Elements 32

Runtime Namespace 32
corba:binding 34
corba:operation 34
corba:param 35
corba:return 35
corba:raises 36

Type Map Extension Elements 37
corba:typeMapping 37
corba:struct 38
corba:member 38
corba:enum 39
corba:enumerator 40
corba:fixed 40
corba:union 42
corba:unionbranch 42
corba:case 43
corba:alias 44
corba:array 45
corba:sequence 46
corba:exception 47
corba:anonsequence 48
corba:anonstring 50
corba:object 51

Chapter 5 XML Binding 57
Namespace 57
xformat:binding 57
xformat:body 58

Part II Ports

HTTP Port 61
Standard WSDL Elements 62

http:address 62
4

CONTENTS
soap:address 62
wsoap12:address 62

Configuration Extensions 63
Namespace 63
http-conf:client 63
http-conf:server 65

Attribute Details 67
AuthorizationType 67
Authorization 67
Accept 67
AcceptLanguage 68
AcceptEncoding 69
ContentType 69
ContentEncoding 70
Host 70
Connection 71
CacheControl 71
BrowserType 74
Referer 74
ProxyServer 74
ProxyAuthorizationType 75
ProxyAuthorization 75
UseSecureSockets 75
RedirectURL 76
ServerCertificateChain 76

CORBA Port 77
Java Runtime Namespace 77
corba:address 77
corba:policy 78

JMS Port 79
Java Runtime Extensions 80

Namespace 80
jms:address 80
jms:JMSNamingProperties 81
jms:client 82
jms:server 82
 5

CONTENTS
Index 85
6

Preface
What is Covered in this Book
This book is a reference to all of the Artix ESB specific WSDL extensions used
in Artix contracts.

Who Should Read this Book
This book is intended for Artix users who are familiar with Artix concepts
including:

• WSDL

• XMLSchema

• Artix interface design

In addition, this book assumes that the reader is familiar with the transports and
middleware implementations with which they are working.

How to Use this Book
This book contains the following parts:

• “Bindings”—contains descriptions for all the WSDL extensions used to

define the payload formats supported by Artix.

• “Ports”—contains descriptions for all the WSDL extensions used to define

the transports supported by Artix.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library.
 7

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 8

Part I
Bindings

In this part This part contains the following chapters:

SOAP 1.1 Binding page 11

SOAP 1.2 Binding page 19

MIME Multipart/Related Binding page 27

CORBA Binding and Type Map page 31

XML Binding page 57
 9

10

CHAPTER 1

SOAP 1.1 Binding
This chapter describes the extensions used to define a SOAP 1.1
message.

Runtime Compatibility

The SOAP binding is defined by a standard set of WDL extensors.

soap:binding

Synopsis <soap:binding style="..." transport="..." />

Description The soap:binding element specifies that the payload format to use is a SOAP
1.1 message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the soap:binding element.

• style

• transport

style

The value of the style attribute within the soap:binding element acts as the
default for the style attribute within each soap:operation element. It indicates
whether request/response operations within this binding are RPC-based (that is,
messages contain parameters and return values) or document-based (that is,
messages contain one or more documents).

Valid values are rpc and document. The specified value determines how the
SOAP Body element within a SOAP message is structured.
 11

CHAPTER 1 | SOAP 1.1 Binding
If rpc is specified, each message part within the SOAP Body element is a
parameter or return value and will appear inside a wrapper element within the
SOAP Body element. The name of the wrapper element must match the
operation name. The namespace of the wrapper element is based on the value of
the soap:body namespace attribute. The message parts within the wrapper
element correspond to operation parameters and must appear in the same order
as the parameters in the operation. Each part name must match the parameter
name to which it corresponds.

For example, the SOAP Body element of a SOAP request message is as follows
if the style is RPC-based:

If document is specified, message parts within the SOAP Body element appear
directly under the SOAP Body element as body entries and do not appear inside a
wrapper element that corresponds to an operation. For example, the SOAP Body
element of a SOAP request message is as follows if the style is document-based:

transport

The transport attribute defaults to the URL that corresponds to the HTTP
binding in the W3C SOAP specification (http://schemas.xmlsoap.org/soap/http).
If you want to use another transport (for example, SMTP), modify this value as
appropriate for the transport you want to use.

soap:operation

Synopsis <soap:operation style="..." soapAction="..." />

Description The soap:operation element is a child of the WSDL operation element. A
soap:operation element is used to encompass information for an operation as a
whole, in terms of input criteria, output criteria, and fault information.

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
12

Attributes The following attributes are defined within a soap:operation element:

• style

• soapAction

style

This indicates whether the relevant operation is RPC-based (that is, messages
contain parameters and return values) or document-based (that is, messages
contain one or more documents).

Valid values are rpc and document. The default value for soap:operation
style is based on the value specified for the soap:binding style attribute.

See “style” on page 11 for more details of the style attribute.

soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant
operation. The value must take the form of the absolute URI that is to be used to
specify the intent of the SOAP message.

soap:body

Synopsis <soap:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The soap:body element in a binding is a child of the input, output, and fault
child elements of the WSDL operation element. A soap:body element is used
to provide information on how message parts are to be appear inside the body of
a SOAP message. As explained in “soap:operation” on page 12, the structure of
the SOAP Body element within a SOAP message is dependent on the setting of
the soap:operation style attribute.

Attributes The following attributes are defined within a soap:body element:

• use

• encodingStyle

• namespace

• parts

Note: This attribute is mandatory only if you want to use SOAP over HTTP.
Leave it blank if you want to use SOAP over any other transport.
 13

CHAPTER 1 | SOAP 1.1 Binding
use

This mandatory attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn might relate
to an abstract type definition or a concrete schema definition.

An abstract type definition is a type that is defined in some remote encoding
schema whose location is referenced in the WSDL contract via an
encodingStyle attribute. In this case, types are serialized based on the set of
rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL
contract itself, within a schema element within the types component of the
contract.

The following are valid values for the use attribute:

• encoded

• literal

If encoded is specified, the type attribute that is specified for each message part
(within the message component of the WSDL contract) is used to reference an
abstract type defined in some remote encoding schema. In this case, a concrete
SOAP message is produced by applying encoding rules to the abstract types. The
encoding rules are based on the encoding style identified in the soap:body
encodingStyle attribute. The encoding takes as input the name and type
attribute for each message part (defined in the message component of the WSDL
contract). If the encoding style allows variation in the message format for a
given set of abstract types, the receiver of the message must ensure they can
understand all the format variations.

If literal is specified, either the element or type attribute that is specified for
each message part (within the message component of the WSDL contract) is
used to reference a concrete schema definition (defined within the types
component of the WSDL contract). If the element attribute is used to reference a
concrete schema definition, the referenced element in the SOAP message
appears directly under the SOAP Body element (if the operation style is
document-based) or under a part accessor element that has the same name as the
message part (if the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP
message becomes the schema type of the SOAP Body element (if the operation
style is documented-based) or of the part accessor element (if the operation style
is document-based).
14

encodingStyle

This attribute is used when the soap:body use attribute is set to encoded. It
specifies a list of URIs (each separated by a space) that represent encoding styles
that are to be used within the SOAP message. The URIs should be listed in
order, from the most restrictive encoding to the least restrictive.

This attribute can also be used when the soap:body use attribute is set to
literal, to indicate that a particular encoding was used to derive the concrete
format, but that only the specified variation is supported. In this case, the sender
of the SOAP message must conform exactly to the specified schema.

namespace

If the soap:operation style attribute is set to rpc, each message part within
the SOAP Body element of a SOAP message is a parameter or return value and
will appear inside a wrapper element within the SOAP Body element. The name
of the wrapper element must match the operation name. The namespace of the
wrapper element is based on the value of the soap:body namespace attribute.

parts

This attribute is a space separated list of parts from the parent input, output, or
fault element. When parts is set, only the specified parts of the message are
included in the SOAP Body element. The unlisted parts are not transmitted
unless they are placed into the SOAP header.

soap:header

Synopsis <soap:header message="..." part="..." use="..." encodingStyle="..."
namespace="..."/>

Description The soap:header element in a binding is an optional child of the input, output,
and fault elements of the WSDL operation element. A soap:header element
defines the information that is placed in a SOAP header element. You can define
any number of soap:header elements for an operation. As explained in
“soap:operation” on page 12, the structure of the SOAP header within a SOAP
message is dependent on the setting of the soap:operation element’s style
attribute.

Attributes The soap:header element has the following attributes.

message Specifies the qualified name of the message from which the
contents of the SOAP header is taken.
 15

CHAPTER 1 | SOAP 1.1 Binding
soap:fault

Synopsis <soap:fault name="..." use="..." encodingStyle="..." />

Description The soap:fault element is a child of the WSDL fault element within an
operation component. Only one soap:fault element is defined for a particular
operation. The operation must be a request-response or solicit-response type of
operation, with both input and output elements. The soap:fault element is used
to transmit error and status information within a SOAP response message.

Attributes The soap:fault element has the following attributes:

part Specifies the name of the message part that is placed into
the SOAP header.

use Used in the same way as the use attribute within the
soap:body element. See “use” on page 14 for more details.

encodingStyle Used in the same way as the encodingStyle attribute
within the soap:body element. See “encodingStyle” on
page 15 for more details.

namespace If the soap:operation style attribute is set to rpc, each
message part within the SOAP header of a SOAP message
is a parameter or return value and will appear inside a
wrapper element within the SOAP header. The name of the
wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of
the soap:header namespace attribute.

Note: A fault message must consist of only a single message part. Also, it is
assumed that the soap:operation element’s style attribute is set to
document, because faults do not contain parameters.

name Specifies the name of the fault. This relates back to the name
attribute for the fault element specified for the
corresponding operation within the portType component of
the WSDL contract.

use This attribute is used in the same way as the use attribute
within the soap:body element. See “use” on page 14 for
more details.
16

encodingStyle This attribute is used in the same way as the encodingStyle
attribute within the soap:body element. See
“encodingStyle” on page 15 for more details.
 17

CHAPTER 1 | SOAP 1.1 Binding
18

CHAPTER 2

SOAP 1.2 Binding
This chapter describes the extensions used to define a SOAP 1.2
message.

Runtime Compatibility

The SOAP 1.2 binding is defined by a standard set of WDL extensors.

wsoap12:binding

Synopsis <wsoap12:binding style="..." transport="..." />

Description The wsoap12:binding element specifies that the payload format to use is a SOAP
1.2 message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the wsoap12:binding element.

• style

• transport

style

The value of the style attribute acts as the default for the style attribute within
each wsoap12:operation element. It indicates whether request/response
operations within this binding are RPC-based (that is, messages contain
parameters and return values) or document-based (that is, messages contain one
or more documents).

Valid values are rpc and document. The specified value determines how the
SOAP Body element within a SOAP message is structured.
 19

CHAPTER 2 | SOAP 1.2 Binding
If rpc is specified, each message part within the SOAP Body element is a
parameter or return value and will appear inside a wrapper element within the
SOAP Body element. The name of the wrapper element must match the
operation name. The namespace of the wrapper element is based on the value of
the soap:body namespace attribute. The message parts within the wrapper
element correspond to operation parameters and must appear in the same order
as the parameters in the operation. Each part name must match the parameter
name to which it corresponds.

For example, the SOAP Body element of a SOAP request message is as follows
if the style is RPC-based:

If document is specified, message parts within the SOAP Body element appear
directly under the SOAP Body element as body entries and do not appear inside a
wrapper element that corresponds to an operation. For example, the SOAP Body
element of a SOAP request message is as follows if the style is document-based:

transport

The transport attribute specifies a URL describing the SOAP transport to
which this binding corresponds. The URL that corresponds to the HTTP binding
in the W3C SOAP specification is http://schemas.xmlsoap.org/soap/http.
If you want to use another transport (for example, SMTP), modify this value as
appropriate for the transport you want to use.

wsoap12:operation

Synopsis <wsoap12:operation style="..." soapAction="..."
soapActionRequired="..."/>

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
20

Description The wsoap12:operation element is a child of the WSDL operation element. A
soap:operation element is used to encompass information for an operation as a
whole, in terms of input criteria, output criteria, and fault information.

Attributes The following attributes are defined within a wsoap12:operation element:

• style

• soapAction

• soapActionRequired

style

This indicates whether the relevant operation is RPC-based (that is, messages
contain parameters and return values) or document-based (that is, messages
contain one or more documents).

Valid values are rpc and document. The default value for the
wsoap12:operation element’s style attribute is based on the value specified
for the wsoap12:binding element’s style attribute.

soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant
operation. The value must take the form of the absolute URI that is to be used to
specify the intent of the SOAP message.

soapActionRequired

The soapActionRequired is a boolean that specifies if the value of the
soapAction attribute must be conveyed in the request message. When the value
of soapActionRequired is true, the soapAction attribute must be present. The
default is to true.

wsoap12:body

Synopsis <wsoap12:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The wsoap12:body element in a binding is a child of the input, output, and fault
child elements of the WSDL operation element. A wsoap12:body element is
used to provide information on how message parts are to be appear inside the body
of a SOAP 1.2 message. As explained in “wsoap12:operation” on page 20, the

Note: This attribute is mandatory only if you want to use SOAP 1.2 over
HTTP. Leave it blank if you want to use SOAP 1.2 over any other transport.
 21

CHAPTER 2 | SOAP 1.2 Binding
structure of the SOAP Body element within a SOAP message is dependent on the
setting of the soap:operation style attribute.

Attributes The following attributes are defined within a wsoap12:body element:

• use

• encodingStyle

• namespace

• parts

use

This mandatory attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn might relate
to an abstract type definition or a concrete schema definition.

An abstract type definition is a type that is defined in some remote encoding
schema whose location is referenced in the WSDL contract via an
encodingStyle attribute. In this case, types are serialized based on the set of
rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL
contract itself, within a schema element within the types component of the
contract.

The following are valid values for the use attribute:

• literal

• encoded

If literal is specified, either the element or type attribute that is specified for
each message part (within the message component of the WSDL contract) is
used to reference a concrete schema definition (defined within the types
component of the WSDL contract). If the element attribute is used to reference a
concrete schema definition, the referenced element in the SOAP 1.2 message
appears directly under the SOAP Body element (if the operation style is
document-based) or under a part accessor element that has the same name as the
message part (if the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP 1.2
message becomes the schema type of the SOAP Body element (if the operation
style is documented-based) or of the part accessor element (if the operation style
is document-based).
22

encodingStyle

This attribute is only used when the wsoap12:body element’s use attribute is set
to encoded. and the wsoap12:binding element’s style attribute is set to rpc. It
specifies the URI that represents the encoding rules that used to construct the
SOAP 1.2 message.

namespace

If the soap:operation element’s style attribute is set to rpc, each message part
within the SOAP Body element of a SOAP 1.2 message is a parameter or return
value and will appear inside a wrapper element within the SOAP Body element.
The name of the wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of the soap:body
namespace attribute.

parts

This attribute is a space separated list of parts from the parent input, output, or
fault element. When the parts attribute is set, only the specified parts of the
message are included in the SOAP Body element. The unlisted parts are not
transmitted unless they are placed into the SOAP header.

wsoap12:header

Synopsis <wsoap12:header message="..." part="..." use="..."
encodingStyle="..." namespace="..."/>

Description The wsoap12:header element in a binding is an optional child of the input,
output, and fault elements of the WSDL operation element. A
wsoap12:header element defines the information that is placed in a SOAP 1.2
header element. You can define any number of wsoap12:header elements for an
operation. As explained in “wsoap12:operation” on page 20, the structure of the
header within a SOAP 1.2 message is dependent on the setting of the
wsoap12:operation element’s style attribute.

Attributes The wsoap12:header element has the following attributes.

message Specifies the qualified name of the message from which the
contents of the SOAP header is taken.

part Specifies the name of the message part that is placed into
the SOAP header.
 23

CHAPTER 2 | SOAP 1.2 Binding
wsoap12:fault

Synopsis <wsoap12:fault name="..." namespace="..." use="..."
encodingStyle="..." />

Description The wsoap12:fault element is a child of the WSDL fault element within a
WSDL operation element. The operation must have both input and output
elements. The wsoap12:fault element is used to transmit error details and status
information within a SOAP 1.2 response message.

Attributes The wsoap12:fault element has the following attributes:

use Used in the same way as the wsoap12:body element’s use
attribute.

encodingStyle Used in the same way as the wsoap12:body element’s
encodingStyle attribute.

namespace Specifies the namespace to be assigned to the header
element when the use attribute is set to encoded. The
header is constructed in all cases as if the wsoap12:binding
element’s style attribute had a value of document.

Note: A fault message must consist of only a single message part. Also, it is
assumed that the wsoap12:operation element’s style attribute is set to
document, because faults do not contain parameters.

name Specifies the name of the fault. This relates back to the name
attribute for the fault element specified for the
corresponding operation within the portType component of
the WSDL contract.

namespace Specifies the namespace to be assigned to the wrapper
element for the fault. This attribute is ignored if the style
attribute of either the wsoap12:binding element of the
containing binding or of the wsoap12:operation element of
the containing operation is either omitted or has a value of
document. This attribute is required if the value of the
wsoap12:binding element’s style attribute is set to rpc.

use This attribute is used in the same way as the wsoap12:body
element’s use attribute.
24

encodingStyle This attribute is used in the same way as the wsoap12:body
element’s encodingStyle attribute
 25

CHAPTER 2 | SOAP 1.2 Binding
26

CHAPTER 3

MIME
Multipart/Related
Binding
This chapter describes the extensions that are used to define a
SOAP message binding that contains binary data.

Runtime Compatibility

The MIME extensions are defined by a standard.

Namespace

The WSDL extensions used to define the MIME multipart/related messages are
defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed with
mime. The entry in the WSDL defintion element to set this up is shown in
Example 1.

Example 1: MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 27

CHAPTER 3 | MIME Multipart/Related Binding
mime:multipartRelated

Synopsis <mime:multipartRelated>

 <mime:part ...>

 ...

 </mime:part>

 ...

</mime:multipartRelated>

Description The mime:multipartRelated element is the child of an input element or an
output element that is part of a SOAP binding. It tells Artix that the message body
is going to be a multipart message that potentially contains binary data.
mime:multipartReleated elements in Artix contain one or more mime:part
elements that describe the individual parts of the message.

mime:part

Synopsis <mime:part name="...">

 ...

</mime:part>

Description The mime:part element is the child of a mime:multipartRelated element. It is used
to define the parts of a multi-part message. The first mime:part element must
contain the soap:body element or the wsoap12:body element that would normally
appear in a SOAP binding. The remaining mime:part elements define the
attachments that are being sent in the message using a mime:content element.

Attributes The mime:part element has a single attribute called name. name is a unique string
that is used to identify the part being described.

mime:content

Synopsis <mime:content part="..." type="..." />

Description The mime:content element is the child of a mime:part element. It defines the
binary content being passed as an attachment to a SOAP message.
28

Attributes The mime:content element has the following attributes:

part Specifies the name of the WSDL part element, from the
parent message definition, that is used as the content of this
part of the MIME multipart message being placed on the
wire.

type Specifies the MIME type of the data in this message part.
MIME types are defined as a type and a subtype using the
syntax type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are
maintained by IANA and described in the following:

• Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies

(ftp://ftp.isi.edu/in-notes/rfc2045.txt)

• Multipurpose Internet Mail Extensions (MIME) Part

Two: Media Types

(ftp://ftp.isi.edu/in-notes/rfc2046.txt).
 29

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 3 | MIME Multipart/Related Binding
30

CHAPTER 4

CORBA Binding
and Type Map
Artix CORBA support uses a combination of a WSDL binding
element and a corba:typeMapping element to unambiguously
define CORBA Messages.

In this chapter This chapter discusses the following topics:

CORBA Binding Extension Elements page 32

Type Map Extension Elements page 37
 31

CHAPTER 4 | CORBA Binding and Type Map
CORBA Binding Extension Elements

Runtime Namespace

The WSDL extensions used for the Java runtime CORBA binding and the
CORBA data mappings are defined in the namespace
http://schemas.apache.org/yoko/bindings/corba. TPrimitive Type
Mapping

Most primitive IDL types are directly mapped to primitive XML Schema types.
Table 1 lists the mappings for the supported IDL primitive types.

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema
Type

CORBA Binding
Type

Artix Java Type

Any xsd:anyType corba:any Java runtime -
java.lang.Object

boolean xsd:boolean corba:boolean boolean

char xsd:byte corba:char byte

wchar xsd:string corba:wchar java.lang.String

double xsd:double corba:double double

float xsd:float corba:float float

octet xsd:unsignedByte corba:octet short

long xsd:int corba:long int

long long xsd:long corba:longlong long

short xsd:short corba:short short

string xsd:string corba:string java.lang.String

wstring xsd:string corba:wstring java.lang.String

unsigned short xsd:unsignedShort corba:ushort int

unsigned long xsd:unsignedInt corba:ulong long
32

CORBA Binding Extension Elements
Unsupported types The following CORBA types are not supported:

• long double

• Value types

• Boxed values

• Local interfaces

• Abstract interfaces

• Forward-declared interfaces

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

• Values with a local time zone. Local time is treated as a 0 UTC time zone

offset.

• Values prior to 15 October 1582.

• Values greater than approximately 30,000 A.D.

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

• Values with a non-zero inacclo or inacchi.

• Values with a time zone offset that is not divisible by 30 minutes.

• Values with time zone offsets greater than 14:30 or less than -14:30.

• Values with greater than millisecond accuracy.

• Values with years greater than 9999.

unsigned long
long

xsd:unsignedLong corba:ulonglong java.math.BigInteger

Object wsa:EndpointRefer
enceType

corba:object Java runtime -
org.apache.cxf.ws.ad

dressing.EndpointRef

erenceType

TimeBase::UtcT xsd:dateTimea corba:dateTime java.util.Calendar

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions
see “Unsupported time/date values” on page 33

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema
Type

CORBA Binding
Type

Artix Java Type
 33

CHAPTER 4 | CORBA Binding and Type Map
corba:binding

Synopsis <corba:binding repositoryID="..." bases=".." />

Description The corba:binding element indicates that the binding is a CORBA binding.

Attributes This element has two attributes:

Examples For example, the following IDL:

would produce the following corba:binding:

corba:operation

Synopsis <corba:operation name="..." >

 <corba:param ... />

 ...

 <corba:return ... />

 <corba:raises ... />

</corba:operation>

Description The corba:operation element is a child element of the WSDL operation
element and describes the parts of the operation’s messages. It has one or more of
the following children:

• corba:param

• corba:return

repositoryID A required attribute whose value is the full type ID of the
CORBA interface. The type ID is embedded in an object’s
IOR and must conform to the format
IDL:module/interface:1.0.

bases An optional attribute whose value is the type ID of the
interface from which the interface being bound inherits.

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
34

CORBA Binding Extension Elements
• corba:raises

Attributes The corba:operation attribute takes a single attribute, name, which duplicates
the name given in operation.

corba:param

Synopsis <corba:param name="..." mode="..." idltype="..." />

Description The corba:param element is a child of corba:operation. Each part element of
the input and output messages specified in the logical operation, except for the
part representing the return value of the operation, must have a corresponding
corba:param element. The parameter order defined in the binding must match the
order specified in the IDL definition of the operation.

Attributes The corba:param element has the following required attributes:

corba:return

Synopsis <corba:return name="..." idltype="..." />

Description The corba:return element is a child of corba:operation and specifies the return
type, if any, of the operation.

mode Specifies the direction of the parameter. The values directly
correspond to the IDL directions: in, inout, out. Parameters
set to in must be included in the input message of the logical
operation. Parameters set to out must be included in the
output message of the logical operation. Parameters set to
inout must appear in both the input and output messages of
the logical operation.

idltype Specifies the IDL type of the parameter. The type names are
prefaced with corba: for primitive IDL types, and corbatm:
for complex data types, which are mapped out in the
corba:typeMapping portion of the contract. See “Type Map
Extension Elements” on page 37.

name Specifies the name of the parameter as given in the name
attribute of the corresponding part element.
 35

CHAPTER 4 | CORBA Binding and Type Map
Attributes The corba:return element has two attributes:

corba:raises

Synopsis <corba:raises exception="..." />

Description The corba:raises element is a child of corba:operation and describes any
exceptions the operation can raise. The exceptions are defined as fault messages
in the logical definition of the operation. Each fault message must have a
corresponding corba:raises element.

Attributes The corba:raises element has one required attribute, exception, which
specifies the type of data returned in the exception.

name Specifies the name of the parameter as given in the logical
portion of the contract.

idltype Specifies the IDL type of the parameter. The type names are
prefaced with corba: for primitive IDL types and corbatm:
for complex data types which are mapped out in the
corba:typeMapping portion of the contract.
36

Type Map Extension Elements
Type Map Extension Elements

corba:typeMapping

Synopsis <corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap">

...

</corba:typeMapping>

Description Because complex types (such as structures, arrays, and exceptions) require a more
involved mapping to resolve type ambiguity, the full mapping for a complex type
is described in a corba:typeMapping element in an Artix contract. This element
contains a type map describing the metadata required to fully describe a complex
type as a CORBA data type. This metadata may include the members of a structure,
the bounds of an array, or the legal values of an enumeration.

Attributes The corba:typeMapping element requires a targetNamespace attribute that
specifies the namespace for the elements defined by the type map.

Examples Table 2 shows the mappings from complex IDL types to Artix CORBA types.

Table 2: Complex IDL Type Mappings

IDL Type CORBA Binding Type

struct corba:struct

enum corba:enum

fixed corba:fixed

union corba:union

typedef corba:alias

array corba:array

sequence corba:sequence

exception corba:exception
 37

CHAPTER 4 | CORBA Binding and Type Map
corba:struct

Synopsis <corba:struct name="..." type="..." repositoryID="..." />

 <corba:member ... />

 ...

</corba:struct>

The corba:struct element is used to represent XMLSchema types that are
defined using complexType elements. The elements of the structure are
described by a series of corba:member elements.

Attributes A corba:struct element requires three attributes:

corba:member

Synopsis <corba:member name="..." idlType="..." />

Description The corba:member element is used to define the parts of the structure represented
by the parent element. The elements must be declared in the same order used in
the IDL representation of the CORBA type.

Attributes A corba:member requires two attributes:

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in the
type map.
38

Type Map Extension Elements
Examples For example, you may have a structure, personalInfo, similar to the one in
Example 2.

It can be represented in the CORBA type map as shown in Example 3.

The idltype corbatm:hairColorType refers to a complex type that is defined
earlier in the CORBA type map.

corba:enum

Synopsis <corba:enum name="..." type="..." repositoryID="...">

 <corba:enumerator ... />

 ...

</corba:enum>

The corba:enum element is used to represent enumerations. The values for the
enumeration are described by a series of corba:enumerator elements.

Example 2: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

Example 3: CORBA Type Map for personalInfo

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap
">

...
 <corba:struct name="personalInfo" type="xsd1:personalInfo"

repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor"

idltype="corbatm:hairColorType"/>
 </corba:struct>
</corba:typeMapping>
 39

CHAPTER 4 | CORBA Binding and Type Map
Attributes A corba:enum element requires three attributes:

corba:enumerator

Synopsis <corba:enumerator value="..." />

Description The corba:enumerator element represents the values of an enumeration. The
values must be listed in the same order used in the IDL that defines the CORBA
enumeration.

Attributes A corba:enumerator element takes one attribute, value.

Examples For example, the enumeration defined in Example 2 on page 39, hairColorType,
can be represented in the CORBA type map as shown in Example 4:

corba:fixed

Synopsis <corba:fixed name="..." repositoryID="..." type="..." digits="..."
scale="..." />

Description Fixed point data types are a special case in the Artix contract mapping. A CORBA
fixed type is represented in the logical portion of the contract as the XML Schema
primitive type xsd:decimal. However, because a CORBA fixed type requires

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 4: CORBA Type Map for hairColorType

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typem
ap">

...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
</corba:typeMapping>
40

Type Map Extension Elements
additional information to be fully mapped to a physical CORBA data type, it must
also be described in the CORBA type map section of an Artix contract using a
corba:fixed element.

Attributes A corba:fixed element requires five attributes:

Examples For example, the fixed type defined in Example 5, myFixed, would be described

by a type entry in the logical type description of the contract, as shown in
Example 6.

name A unique identifier used to reference the CORBA type in the
binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA fixed
types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed. This
corresponds to the first number in the fixed type definition.

scale The number of digits allowed after the decimal point. This
corresponds to the second number in the fixed type
definition.

Example 5: myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 6: Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>
 41

CHAPTER 4 | CORBA Binding and Type Map
In the CORBA type map portion of the contract, it would be described by an
entry similar to Example 7. Notice that the description in the CORBA type map
includes the information needed to fully represent the characteristics of this
particular fixed data type.

corba:union

Synopsis <corba:union name="..." type="..." discriminator="..."

 repositoryID="...">

 <corba:unionbranch ... />

 ...

</corba:union>

Description The corba:union element is used to resolve the relationship between a union’s
discriminator and its members. A corba:union element is required for every
CORBA union defined in an IDL contract. The members of the union are described
using a series of nested corba:unionbranch elements.

Attributes A corba:union element has four mandatory attributes:

corba:unionbranch

Synopsis <corba:unionbranch name="..." idltype="..." default="...">

 <corba:case ... />

Example 7: CORBA Type Map for myFixed

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap">

...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0"

type="xsd:decimal" digits="4" scale="2"/>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

discriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.
42

Type Map Extension Elements
 ...

</corba:unionbranch>

Description The corba:unionbranch element defines the members of a union. Each
corba:unionbranch except for one describing the union’s default member will
have at least one corba:case element as a child.

Attributes A corba:unionbranch element has two required attributes and one optional
attribute.

corba:case

Synopsis <corba:case label="..." />

Description The corba:case element defines the explicit relationship between the
discriminator’s value and the associated union member.

Attributes The corba:case element’s only attribute, label, specifies the value used to select
the union member described by the corba:unionbranch.

Examples For example consider the union, myUnion, shown in Example 8:

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be either a
primitive type or another complex type that is defined in the
type map.

default The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to true.

Example 8: myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};
 43

CHAPTER 4 | CORBA Binding and Type Map
For example myUnion, Example 8, would be described with a CORBA type map
entry similar to that shown in Example 9.

corba:alias

Synopsis <corba:alias name="..." type="..." repositoryID="..." />

Description The corba:alias element is used to represent a typedef statement in an IDL
contract.

Attributes The corba:alias element has three attributes:

Example 9: myUnion CORBA type map

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap"
>

...
 <corba:union name="myUnion" type="xsd1:myUnion"

discriminator="corba:short" repositoryID="IDL:myUnion:1.0">
 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long"

default="true"/>
 </corba:union>
</corba:typeMapping>

name The value of the name attribute from the XMLSchema
simpleType element representing the renamed type.

type The XMLSchema type for the base type.

repositoryID The fully specified repository ID for the CORBA type.
44

Type Map Extension Elements
Examples For example, the definition of myLong in Example 10, can be described as shown

in Example 11:

corba:array

Synopsis <corba:array name="..." repositoryID="..." type="..."
elemtype="..." bound="..." />

Description In the CORBA type map, arrays are described using a corba:array element.

Attributes A corba:array has the following required attributes:

Example 10: myLong IDL

//IDL
typedef long myLong;

Example 11: myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>
 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping

targetNamespace="http://schemas.iona.com/bindings/corba/typem
ap">

 <corba:alias name="myLong" type="xsd:int"
repositoryID="IDL:myLong:1.0" basetype="corba:long"/>

 </corba:typeMapping>
</definitions>

name A unique identifier used to reference the CORBA type in the
binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.
 45

CHAPTER 4 | CORBA Binding and Type Map
Examples For example, consider an array, myArray, as defined in Example 12.

The array myArray will have a CORBA type map description similar to the one
shown in Example 13.

corba:sequence

Synopsis <corba:sequence name="..." repositoryID="..." elemtype="..."
bound="..." />

Description The corba:sequence element represents an IDL sequence.

Attributes A corba:sequence has five required attributes.

elemtype The IDL type of the array’s element. This type can be either
a primitive type or another complex type that is defined
within the type map.

bound The size of the array.

Example 12: myArray IDL

//IDL
typedef long myArray[10];

Example 13: myArray CORBA type map

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap"
>

 <corba:array name="myArray" repositoryID="IDL:myArray:1.0"
type="xsd1:myArray" elemtype="corba:long" bound="10"/>

</corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the sequence’s elements. This type can be
either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.
46

Type Map Extension Elements
Examples For example, consider the two sequences defined in Example 14, longSeq and
charSeq.

The sequences described in Example 14 has a CORBA type map description
similar to that shown in Example 15.

corba:exception

Synopsis <corba:exception name="..." type="..." repositoryID="...">

 <corba:member ... />

 ...

</corba:exception>

Description The corba:exception element is a child of a corba:typeMapping element. It
describes an exception in the CORBA type map. The pieces of data returned with
the exception are described by a series of corba:member elements. The elements
must be declared in the same order as in the IDL representation of the exception.

Attributes A corba:exception element has the following required attributes:

Example 14: IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;

Example 15: CORBA type map for Sequences

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap
">

 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0"
type="xsd1:longSeq" elemtype="corba:long" bound="0"/>

 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0"
type="xsd1:charSeq" elemtype="corba:char" bound="10"/>

 </corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.
 47

CHAPTER 4 | CORBA Binding and Type Map
Examples For example, consider the exception idNotFound defined in Example 16.

In the CORBA type map portion of the contract, idNotFound is described by an
entry similar to that shown in Example 17:

corba:anonsequence

Synopsis <corba:anonsequence name="..." bound="..." elemtype="..."
type="..." />

Description The corba:anonsequence element is used when representing recursive types.
Because XMLSchema recursion requires the use of two defined types and IDL
recursion does not, the CORBA type map uses the corba:anonsequence element
as a means of bridging the gap. When Artix generates IDL from a contract, it will
not generate new IDL types for XMLSchema types that are used in a
corba:anonsequence element.

Attributes The corba:anonsequence element has four required attributes:

Example 16: idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};

Example 17: CORBA Type Map for idNotFound

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap"
>

...
 <corba:exception name="idNotFound" type="xsd1:idNotFound"

repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

bound The size of the sequence.
48

Type Map Extension Elements
Examples Example 18 shows a recursive XMLSchema type, allAboutMe, defined using a
named type.

Example 19 shows the how Artix maps the recursive type into the CORBA type
map of an Artix contract.

elemtype The name of the CORBA type map element that defines the
contents of the sequence.

type The logical type the element represents.

Example 18: Recursive XML Schema Type

<complexType name="allAboutMe">
 <sequence>
 <element name="shoeSize" type="xsd:int"/>
 <element name="mated" type="xsd:boolean"/>
 <element name="conversation" type="tns:moreMe"/>
 </sequence>
</complexType>
<complexType name="moreMe">
 <sequence>
 <element name="item" type="tns:allAboutMe"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>

Example 19: Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
 elemtype="ns1:allAboutMe" type="xsd1:moreMe"/>
<corba:struct name="allAboutMe"
 repositoryID="IDL:allAboutMe:1.0"
 type="xsd1:allAboutMe">
 <corba:member name="shoeSize" idltype="corba:long"/>
 <corba:member name="mated" idltype="corba:boolean"/>
 <corba:member name="conversation" idltype="ns1:moreMe"/>
</corba:struct>
 49

CHAPTER 4 | CORBA Binding and Type Map
While the XML in the CORBA typemap does not explicitly retain the recursive
nature of recursive XMLSchema types, the IDL generated from the typemap
restores the recursion in the IDL type. The IDL generated from the type map in
Example 19 defines allAboutMe using recursion. Example 20 shows the
generated IDL.

corba:anonstring

Synopsis <corba:anonstring name="..." bound="..." type="..." />

Description The corba:anonstring element is used to represent instances of anonymous
XMLSchema simple types that are derived from xsd:string. As with
corba:anonsequence elements, corba:anonstring elements do not result in
generated IDL types.

Attributes corba:anonstring elements have three attributes.

Example 20: IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
 long shoeSize;
 boolean mated;
 sequence<allAboutMe> conversation;
};

name A unique identifier used to reference the CORBA type in the
binding.

bound The maximum length of the string.

type The XMLSchema type of the base type. Typically this is
xsd:string.
50

Type Map Extension Elements
Examples The complex type, madAttr, described in Example 21 contains a member, style,
that is an instance of an anonymous type derived from xsd:string.

madAttr would generate the CORBA typemap shown in Example 22. Notice
that style is given an IDL type defined by a corba:anonstring element.

corba:object

Synopsis <corba:object binding="..." name="..." repositoryID="..."
type="..." />

Description The corba:object element is used to represent Artix references in the CORBA
type map.

Example 21: madAttr XML Schema

<complexType name="madAttr">
 <sequence>
 <element name="style">
 <simpleType>
 <restriction base="xsd:string">
 <maxLength value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="gender" type="xsd:byte"/>
 </sequence>
</complexType>

Example 22: madAttr CORBA typemap

<corba:typeMapping
targetNamespace="http://schemas.iona.com/anonCat/corba/typemap/"
>

 <corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0"
type="xsd1:madAttr">

 <corba:member idltype="ns1:styleType" name="style"/>
 <corba:member idltype="corba:char" name="gender"/>
 </corba:struct>
 <corba:anonstring bound="3" name="styleType" type="xsd:string"/>
</corba:typeMapping>
 51

CHAPTER 4 | CORBA Binding and Type Map
Attributes corba:object elements have four attributes:

Examples Example 23 shows an Artix contract fragment that uses Artix references.

binding Specifies the binding to which the object refers. If the
annotation element is left off the reference declaration in the
schema, this attribute will be blank.

name Specifies the name of the CORBA type. If the annotation
element is left off the reference declaration in the schema,
this attribute will be Object. If the annotation is used and the
binding can be found, this attribute will be set to the name of
the interface that the binding represents.

repositoryID Specifies the repository ID of the generated IDL type. If the
annotation element is left off the reference declaration in the
schema, this attribute will be set to
IDL:omg.org/CORBA/Object/1.0. If the annotation is used
and the binding can be found, this attribute will be set to a
properly formed repository ID based on the interface name.

type Specifies the schema type from which the CORBA type is
generated. This attribute is always set to
references:Reference.

Example 23: Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation="./references.xsd"
 namespace="http://schemas.iona.com/references"/>
52

Type Map Extension Elements
...
 <xsd:element name="account" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>
 corba:binding=AccountCORBABinding
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
</types>
...
 <message name="find_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <portType name="Account">
 <operation name="account_id">
 <input message="tns:account_id" name="account_id"/>
 <output message="tns:account_idResponse"
 name="account_idResponse"/>
 </operation>
 <operation name="balance">
 <input message="tns:balance" name="balance"/>
 <output message="tns:balanceResponse"
 name="balanceResponse"/>
 </operation>
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 <fault message="tns:InsufficientFundsException"

name="InsufficientFunds"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>

Example 23: Reference Sample (Continued)
 53

CHAPTER 4 | CORBA Binding and Type Map
The element named account is a reference to the interface defined by the
Account port type and the find_account operation of Bank returns an element
of type account. The annotation element in the definition of account specifies
the binding, AccountCORBABinding, of the interface to which the reference
refers.

Example 24 shows the generated CORBA typemap resulting from generating
both the Account and the Bank interfaces into the same contract.

 <portType name="Bank">
 <operation name="find_account">
 <input message="tns:find_account" name="find_account"/>
 <output message="tns:find_accountResponse"
 name="find_accountResponse"/>
 <fault message="tns:AccountNotFound"
 name="AccountNotFound"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse"
 name="create_accountResponse"/>
 <fault message="tns:AccountAlreadyExistsException"
 name="AccountAlreadyExists"/>
 </operation>
 </portType>
</definitions>

Example 23: Reference Sample (Continued)

Example 24: CORBA Typemap with References

<corba:typeMapping

targetNamespace="http://schemas.myBank.com/bankService/corba/ty
pemap/">

...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0"

type="references:Reference"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0"

type="references:Reference"/>
</corba:typeMapping>
54

Type Map Extension Elements
There are two entries because wsdltocorba was run twice on the same file. The
first CORBA object is generated from the first pass of wsdltocorba to generate
the CORBA binding for Account. Because wsdltocorba could not find the
binding specified in the annotation, it generated a generic Object reference. The
second CORBA object, Account, is generated by the second pass when the
binding for Bank was generated. On that pass, wsldtocorba could inspect the
binding for the Account interface and generate a type-specific object reference.

Example 25 shows the IDL generated for the Bank interface.

Example 25: IDL Generated From Artix References

//IDL
...
interface Account
{
 string account_id();
 float balance();
 void withdraw(in float amount)
 raises(::InsufficientFundsException);
 void deposit(in float amount);
};
interface Bank
{
 ::Account find_account(in string account_id)
 raises(::AccountNotFoundException);
 ::Account create_account(in string account_id,
 in float initial_balance)
 raises(::AccountAlreadyExistsException);
};
 55

CHAPTER 4 | CORBA Binding and Type Map
56

CHAPTER 5

XML Binding
Artix includes a binding that supports the exchange of XML
documents without the overhead of a SOAP envelope.

Namespace

The extensions used to describe XML format bindings are defined in the
namespace http:// cxf.apache.org/bindings/xmlformat. Artix tools use
the prefix xformat to represent the XML binding extensions. Add the following
line to your contracts:

xformat:binding

Synopsis <xformat:binding rootNode="..." />

Description The xformat:binding element is the child of the WSDL binding element. It
signifies that the messages passing through this binding will be sent as XML
documents without a SOAP envelope.

Attributes The xformat:binding element has a single optional attribute called rootNode.
The rootNode attribute specifies the QName for the element that serves as the
root node for the XML document generated by Artix. When the rootNode attribute
is not set, Artix uses the root element of the message part as the root element when
using doc style messages or an element using the message part name as the root
element when using RCP style messages.

xmlns:xformat="http://cxf.apache.org/bindings/xmlformat"
 57

CHAPTER 5 | XML Binding
xformat:body

Synopsis <xformat:body rootNode="..." />

Description The xformat:body element is an optional child of the WSDL input element, the
WSDL output element, and the WSDL fault element. It is used to override the
value of the rootNode attribute specified in the binding’s xformat:binding
element.

Attributes The xformat:body element has a single attribute called rootNode. The rootNode
attribute specifies the QName for the element that serves as the root node for the
XML document generated by Artix. When the rootNode attribute is not set, Artix
uses the root element of the message part as the root element when using doc style
messages or an element using the message part name as the root element when
using RCP style messages.
58

Part II
Ports

In this part This part contains the following chapters:

HTTP Port page 61

CORBA Port page 77

JMS Port page 79
 59

60

CHAPTER 7

HTTP Port
Along with the standard WSDL elements used to specify the
location of an HTTP port, Artix uses a number of extensions for
fine tuning the configuration of an HTTP port.

In this chapter This chapter discusses the following topics:

Standard WSDL Elements page 62

Configuration Extensions page 63

Attribute Details page 67
 61

CHAPTER 7 | HTTP Port
Standard WSDL Elements

http:address

Synopsis <http:address location="..." />

Description The http:address element is a child of the WSDL port element. It specifies the
address of the HTTP port of a service that is not using SOAP messages to
communicate.

Attributes The http:address element has a single required attribute called location. The
location attribute specifies the service’s address as a URL.

soap:address

Synopsis <soap:address location="..." />

Description The soap:address element is a child of the WSDL port element. It specifies the
address of the HTTP port of a service that uses SOAP 1.1 messages to
communicate.

Attributes The soap:address element has a single required attribute called location. The
location attribute specifies the service’s address as a URL.

wsoap12:address

Synopsis <wsoap12:address location="..." />

Description The wsoap12:address element is a child of the WSDL port element. It specifies
the address of the HTTP port of a service that uses SOAP 1.2 messages to
communicate.

Attributes The wsoap12:address element has a single required attribute called location.
The location attribute specifies the service’s address as a URL.
62

Configuration Extensions
Configuration Extensions

Namespace

Example 26 shows the namespace entries you need to add to the definitions
element of your contract to use the Java runtime’s HTTP extensions.

http-conf:client

Synopsis <http-conf:client ConnectionTimeout="..." RecieveTimeout="..."

 AutoRedirect="..." MaxRetransmits="..."

 AllowChunking="..." Accept="..."

 AcceptLanguage="..." AcceptEncoding="..."

 ContentType="..." Host="..." Connection="..."

 CacheControl="..." Cookie="..." BrowserType="..."

 Referer="..." DecoupledEndpoint="..."

 ProxyServer="..." ProxyServerPort="..."

 ProxyServerType="..." />

Description The http-conf:client element is a child of the WSDL port element. It is used
to specify client-side configuration details.

Attributes The http-conf:client element has the following attributes:

Example 26: Artix Java Runtime HTTP Extension Namespaces

<definitions
 ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 ... >

ConnectionTimeout Specifies the length of time, in milliseconds,
the client tries to establish a connection before
timing out. Default is 30000.

ReceiveTimeout Specifies the length of time, in milliseconds,
the client tries to receive a response from the
server before the connection is timed out. The
default is 30000.
 63

CHAPTER 7 | HTTP Port
AutoRedirect Specifies if a request should be automatically
redirected when the server issues a redirection
reply via RedirectURL. The default is false,
to let the client redirect the request itself.

AllowChunking Specifies whether the consumer will send
requests using chunking. The default is true.

Accept Specifies what media types the client is
prepared to handle.

AcceptLanguage Specifies the client’s preferred language for
receiving responses.

AcceptEncoding Specifies what content codings the client is
prepared to handle.

ContentType Specifies the media type of the data being sent
in the body of the client request.

AuthorizationType Specifies the name of the authorization
scheme the client wishes to use.

Host Specifies the Internet host and port number of
the resource on which the client request is
being invoked.

Connection Specifies if the client wants a particular
connection to be kept open after each
request/response dialog.

CacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

Cookie Specifies a static cookie to be sent to the
server along with all requests.

BrowserType Specifies information about the browser from
which the client request originates.

Referer Specifies the URL of the resource that
directed the client to make requests on a
particular service.

DecoupledEndpoint Specifies the URL of a decoupled endpoint
for the receipt of responses over a separate
connection.
64

Configuration Extensions
http-conf:server

Synopsis <http-conf:server RecieveTimeout="..."

 SuppressClientSendErrors="..."

 SuppressClientReceiveErrors="..."

 HonorKeepAlive="..." RedirectURL="..."

 CacheControl="..." ContentLocation="..."

 ContentType="..." ContentEncoding="..."

 ServerType="..."

Description The http-conf:server element is a child of the WSDL port element. It is used
to specify server-side configuration details.

Attributes The http-conf:server element has the following attributes:

ProxyServer Specifies the URL of the proxy server, if one
exists along the message path.

ProxyServerPort Specifies the port number of the proxy server.

ProxyServerType Specifies the type of proxy server to use. The
default is HTTP.

ReceiveTimeout Sets the length of time, in milliseconds,
the server tries to receive a client request
before the connection times out. The
default is 30000.

SuppressClientSendErrors Specifies whether exceptions are to be
thrown when an error is encountered on
receiving a client request. The default is
false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be
thrown when an error is encountered on
sending a response to a client. The default
is false; exceptions are thrown on
encountering errors.
 65

CHAPTER 7 | HTTP Port
HonorKeepAlive Specifies whether the server honors client
requests for a connection to remain open
after a response has been sent. The default
is Keep-Alive; Keep-alive requests are
honored. false specifies that keep-alive
requests are ignored.

RedirectURL Sets the URL to which the client request
should be redirected if the URL specified
in the client request is no longer
appropriate for the requested resource.

CacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
response from a server to a client.

ContentLocation Sets the URL where the resource being
sent in a server response is located.

ContentType Sets the media type of the information
being sent in a server response, for
example, text/html or image/gif.

ContentEncoding Specifies what additional content codings
have been applied to the information
being sent by the server.

ServerType Specifies what type of server is sending
the response to the client. Values take the
form program-name/version. For
example, Apache/1.2.5.
66

Attribute Details
Attribute Details

AuthorizationType

Description The AuthorizationType attribute corresponds to the HTTP AuthorizationType
property. It specifies the name of the authorization scheme the client wishes to
use. This information is specified and handled at the application level. Artix does
not perform any validation on this value. It is the user’s responsibility to ensure
that the correct scheme name is specified, as appropriate.

Authorization

Description The Authorization attribute corresponds to the HTTP Authorization property.
It specifies the authorization credentials the client wants the server to use when
performing the authorization. The credentials are encoded and handled at the
application-level. Artix does not perform any validation on the specified value. It
is the user’s responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Accept

Description The Accept attribute corresponds to the HTTP Accept property. It specifies what
media types the client is prepared to handle. The value of the attribute is specified
using as multipurpose internet mail extensions (MIME) types.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.
 67

CHAPTER 7 | HTTP Port
MIME type values MIME types are regulated by the Internet Assigned Numbers Authority (IANA).
They consist of a main type and sub-type, separated by a forward slash. For
example, a main type of text might be qualified as follows: text/html or
text/xml. Similarly, a main type of image might be qualified as follows:
image/gif or image/jpeg.

An asterisk (*) can be used as a wildcard to specify a group of related types. For
example, if you specify image/*, this means that the client can accept any
image, regardless of whether it is a GIF or a JPEG, and so on. A value of */*
indicates that the client is prepared to handle any type.

Examples of typical types that might be set are:

• text/xml

• text/html

• text/text

• image/gif

• image/jpeg

• application/jpeg

• application/msword

• application/xbitmap

• audio/au

• audio/wav

• video/avi

• video/mpeg

See also See http://www.iana.org/assignments/media-types/ for more details.

AcceptLanguage

Description The AcceptLanguage attribute corresponds to the HTTP AcceptLanguage
property. It specifies what language (for example, American English) the client
prefers for the purposes of receiving a response.

Specifying the language Language tags are regulated by the International Organization for Standards
(ISO) and are typically formed by combining a language code, determined by
the ISO-639 standard, and country code, determined by the ISO-3166 standard,
separated by a hyphen. For example, en-US represents American English.

See also A full list of language codes is available at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm.
68

http://www.iana.org/assignments/media-types/
http://www.w3.org/WAI/ER/IG/ert/iso639.htm

Attribute Details
A full list of country codes is available at
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-e
n1.html.

AcceptEncoding

Description The AcceptEncoding attribute corresponds to the HTTP AcceptEncoding
Property. It specifies what content encodings the client is prepared to handle.
Content encoding labels are regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values include zip, gzip,
compress, deflate, and identity.

The primary use of content encodings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Artix performs no
validation on content codings. It is the user’s responsibility to ensure that a
specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

ContentType

Description The ContentType attribute corresponds to the HTTP ContentType property. It
specifies the media type of the data being sent in the body of a message. Media
types are specified using multipurpose internet mail extensions (MIME) types.

MIME type values MIME types are regulated by the Internet Assigned Numbers Authority (IANA).
MIME types consist of a main type and sub-type, separated by a forward slash.
For example, a main type of text might be qualified as follows: text/html or
text/xml. Similarly, a main type of image might be qualified as follows:
image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include:

• application/jpeg

• application/msword

• application/xbitmap

• audio/au

• audio/wav

• text/html

• text/text

• image/gif

• image/jpeg
 69

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

CHAPTER 7 | HTTP Port
• video/avi

• video/mpeg.

Any content that does not fit into any type in the preceding list should be
specified as application/octet-stream.

Client settings For clients this attribute is only relevant if the client request specifies the POST
method to send data to the server for processing.

For web services, this should be set to text/xml. If the client is sending HTML
form data to a CGI script, this should be set to
application/x-www-form-urlencoded. If the HTTP POST request is bound to a
fixed payload format (as opposed to SOAP), the content type is typically set to
application/octet-stream.

See also See http://www.iana.org/assignments/media-types/ for more details.

ContentEncoding

Description The ContentEncoding attribute corresponds to the HTTP ContentEncoding
property. This property specifies any additional content encodings that have been
applied to the information being sent by the server. Content encoding labels are
regulated by the Internet Assigned Numbers Authority (IANA). Possible content
encoding values include zip, gzip, compress, deflate, and identity.

The primary use of content encodings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Artix performs no
validation on content codings. It is the user’s responsibility to ensure that a
specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

Host

Description The Host attribute corresponds to the HTTP Host property. It specifies the internet
host and port number of the resource on which the client request is being invoked.
This attribute is typically not required. Typically, this attribute does not need to
be set. It is only required by certain DNS scenarios or application designs. For
example, it indicates what host the client prefers for clusters (that is, for virtual
servers mapping to the same internet protocol (IP) address).
70

http://www.iana.org/assignments/media-types/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

Attribute Details
Connection

Description The Connection attribute specifies whether a particular connection is to be kept
open or closed after each request/response dialog. Valid values are close and
Keep-Alive. The default, Keep-Alive, specifies that the client want to keep its
connection open after the initial request/response sequence. If the server honors
it, the connection is kept open until the client closes it. close specifies that the
connection to the server is closed after each request/response sequence.

CacheControl

Description The CacheControl attribute specifies directives about the behavior of caches
involved in the message chain between clients and servers. The attribute is used
for both client and server. However, clients and servers have different settings for
specifying cache behavior.

Client-side Table 3 shows the valid settings for CacheControl in http-conf:client.

Table 3: Settings for http-conf:client CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire response.

no-store Caches must not store any part of a response or any
part of the request that invoked it.

max-age The client can accept a response whose age is no
greater than the specified time in seconds.
 71

CHAPTER 7 | HTTP Port
Server-side Table 4 shows the valid values for CacheControl in http-conf:server.

max-stale The client can accept a response that has exceeded its
expiration time. If a value is assigned to max-stale, it
represents the number of seconds beyond the
expiration time of a response up to which the client
can still accept that response. If no value is assigned,
it means the client can accept a stale response of any
age.

min-fresh The client wants a response that will be still be fresh
for at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of the
content in a response between a server and a client.

only-if-cached Caches should return only responses that are currently
stored in the cache, and not responses that need to be
reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications not
understanding the extended directive can at least
adhere to the behavior mandated by the standard
directive.

Table 3: Settings for http-conf:client CacheControl

Directive Behavior

Table 4: Settings for http-conf:server CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.
72

Attribute Details
public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of response or any
part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revaildate expired entries that relate to
a response before that entry can be used in a
subsequent response.

proxy-revelidate Means the same as must-revalidate, except that it
can only be enforced on shared caches and is
ignored by private unshared caches. If using this
directive, the public cache directive must also be
used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-maxage Means the same as max-age, except that it can only
be enforced on shared caches and is ignored by
private unshared caches. The age specified by
s-maxage overrides the age specified by max-age.
If using this directive, the proxy-revalidate
directive must also be used.

Table 4: Settings for http-conf:server CacheControl (Continued)

Directive Behavior
 73

CHAPTER 7 | HTTP Port
BrowserType

Description The BrowserType attribute specifies information about the browser from which
the client request originates. In the HTTP specification from the World Wide Web
consortium (W3C) this is also known as the user-agent. Some servers optimize
based upon the client that is sending the request.

Referer

The Referer attribute corresponds to the HTTP Referer property. It specifies the
URL of the resource that directed the client to make requests on a particular
service. Typically this HTTP property is used when a request is the result of a
browser user clicking on a hyperlink rather than typing a URL. This can allow
the server to optimize processing based upon previous task flow, and to generate
lists of back-links to resources for the purposes of logging, optimized caching,
tracing of obsolete or mistyped links, and so on. However, it is typically not used
in web services applications.

If the AutoRedirect attribute is set to true and the client request is redirected,
any value specified in the Referer attribute is overridden. The value of the
HTTP Referer property will be set to the URL of the service who redirected the
client’s original request.

ProxyServer

Description The ProxyServer attribute specifies the URL of the proxy server, if one exists
along the message path. A proxy can receive client requests, possibly modify the

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 4: Settings for http-conf:server CacheControl (Continued)

Directive Behavior
74

Attribute Details
request in some way, and then forward the request along the chain possibly to the
target server. A proxy can act as a special kind of security firewall.

ProxyAuthorizationType

Description The ProxyAuthorizationType attribute specifies the name of the authorization
scheme the client wants to use with the proxy server. This name is specified and
handled at application level. Artix does not perform any validation on this value.
It is the user’s responsibility to ensure that the correct scheme name is specified,
as appropriate.

ProxyAuthorization

Description The ProxyAuthorization attribute specifies the authorization credentials the
client will use to perform authorization with the proxy server. These are encoded
and handled at application-level. Artix does not perform any validation on the
specified value. It is the user’s responsibility to ensure that the correct
authorization credentials are specified, as appropriate.

UseSecureSockets

Description The UseSecureSockets attribute indicates if the application wants to open a
secure connection using SSL or TLS. A secure HTTP connection is commonly

Note: Artix does not support the existence of more than one proxy server
along the message path.

Note: If basic username and password-based authentication is being used by
the proxy server, this does not need to be set.

Note: If basic username and password-based authentication is being used by
the proxy server, this does not need to be set.
 75

CHAPTER 7 | HTTP Port
referred to as HTTPS. Valid values are true and false. The default is false; the
endpoint does not want to open a secure connection.

RedirectURL

Description The RedirectURL attribute corresponds to the HTTP RedirectURL property. It
specifies the URL to which the client request should be redirected if the URL
specified in the client request is no longer appropriate for the requested resource.
In this case, if a status code is not automatically set in the first line of the server
response, the status code is set to 302 and the status description is set to Object
Moved.

ServerCertificateChain

Description PKCS12-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their certificates
issued in turn by a trusted certificate authority. If this is the case, you can use the
ServerCertificateChain attribute to allow the certificate chain of
PKCS12-encoded X509 certificates to be presented to the client for verification.
It specifies the full path to the file that contains all the certificates in the chain.

Note: If the http:address element’s location attribute, or the
soap:address element’s location attribute, has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.
76

CHAPTER 8

CORBA Port
Artix supports a robust mechanism for configuring a CORBA
endpoint.

Java Runtime Namespace

The namespace under which the Java runtime CORBA extensions are defined is
http://schemas.apache.org/yoko/bindings/corba. If you are going to add
a Java runtime CORBA port by hand you will need to add this to your contract’s
definition element as shown below.

corba:address

Synopsis <corba:address location="..."/>

Description The corba:address element is a child of a WSDL port element. It specifies the
IOR for the service’s CORBA object.

Attributes The corba:address element has one required attribute named location. The
location attribute contains a string specifying the IOR. You have four options
for specifying IORs in Artix contracts:

• Entering the object’s IOR directly into the contract using the stringified

IOR format:

xmlns:corba="http://schemas.apache.org/yoko/bindings/corba"

IOR:22342...
 77

CHAPTER 8 | CORBA Port
• Entering a file location for the IOR using the following syntax:

• Entering the object’s name using the corbaname format:

When you use the corbaname format for specifying the IOR, Artix will

look-up the object’s IOR in the CORBA name service.

• Entering the port at which the service exposes itself, using the corbaloc

syntax.

corba:policy

Synopsis <corba:policy poaname="..."|persistent="..."|serviceid="..." />

Description The corba:policy element is a child of a WSDL port element. It specifies the
POA polices the Artix service will use when creating the POA for connecting to
a CORBA object. Each corba:policy element can only specify one policy.
Therefore to define multiple policies you must use multiple corba:policy
elements.

Attributes The corba:policy element uses attributes to specify the policy it is describing.
The following attributes are used:

See also For more information about CORBA POA policies see the Orbix
documentation.

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

poaname Specifies the POA name to use when connecting to the
CORBA object. The default POA name is WS_ORB.

persistent Specifies the value of the POA’s persistence policy. The
default is false; the POA is not persistent.

serviceid Specifies the value of the POA’s ID. By default, Artix POAs
are assigned their IDs by the ORB.
78

CHAPTER 9

JMS Port
JMS is a powerful messaging system used by Java applications.

In this chapter This chapter discusses the following topic:

Java Runtime Extensions page 80
 79

CHAPTER 9 | JMS Port
Java Runtime Extensions

Namespace

The WSDL extensions for defining a JMS endpoint are defined in the
namespace http://cxf.apache.org/transports/jms. In order to use the JMS
extensions you will need to add the line shown in Example 27 to the definitions
element of your contract.

jms:address

Synopsis <jms:address destinationStyle="..."

 jndiConnectionFactoryName="..."

 jndiDestinationName="..."

 jndiReplyDestinationName="..."

 jmsDestinationName="..."

 jmsReplyDestinationName="..."

 connectionUserName="..." connectionPassword="...">

 <jms:JMSNamingProperty ... />

 ...

</jms:address>

Description The jms:address element specifies the information needed to connect to a JMS
system.

Attributes The jms:address element has the following attributes:

Example 27: Java Runtime Namespace

xmlns:jms="http://cxf.apache.org/transports/jms"

destinationStyle Specifies if the JMS destination is a JMS
queue or a JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting
to the JMS destination.
80

Java Runtime Extensions
jms:JMSNamingProperties

Synopsis <jms:JMSNamingProperty name="..." value="..." />

Description The jms:JMSNamingProperty element is a child of the jms:address element. It
is used to provide the values used to populate the properties object used when
connecting to a JNDI provider.

Attributes The jms:JMSNamingProperty element has the following attributes:

JNDI property names The following is a list of common JNDI properties that can be set:

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.factory.object

• java.naming.factory.state

• java.naming.factory.url.pkgs

• java.naming.dns.url

• java.naming.authoritative

• java.naming.batchsize

• java.naming.referral

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which Artix connects.

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destination where replies are sent. This
attribute allows you to use a user defined
destination for replies.

jmsDestinationName Specifies the JMS name of the JMS
destination used for requests.

jmsReplyDestinationName Specifies the JMS name of the JMS
destination where replies are sent. This
attribute allows you to use a user defined
destination for replies.

connectionUserName Specifies the username to use when
connecting to a JMS broker.

connectionPassword Specifies the password to use when
connecting to a JMS broker.

name Specifies the name of the JNDI property to set.

value Specifies the value for the specified property.
 81

CHAPTER 9 | JMS Port
• java.naming.security.protocol

• java.naming.security.authentication

• java.naming.security.principal

• java.naming.security.credentials

• java.naming.language

• java.naming.applet

For more details on what information to use in these attributes, check your JNDI
provider’s documentation and consult the Java API reference material.

jms:client

Synopsis <jms:client messageType="..." />

Description The jms:client element is a child of the WSDL port element. It is used to specify
the types of messages being used by a JMS client endpoint and the timeout value
for a JMS client endpoint.

Attributes The jms:client element has the following attributes:

jms:server

Synopsis <jms:server useMessageIDAsCorrelationID="..."

 durableSubscriberName="..."

 messageSelector="..." transactional="..." />

Description The jms:server element is a child of the WSDL port element. It specifies settings
used to configure the behavior of a JMS service endpoint.

Attributes The jms:server element has the following attributes:

messageType Specifies how the message data will be packaged as a JMS
message. text specifies that the data will be packaged as a
TextMessage. binary specifies that the data will be
packaged as an ObjectMessage.

useMessageIDAsCorrealationID Specifies whether JMS will use the message
ID to correlate messages. The default is
false.

durableSubscriberName Specifies the name used to register a durable
subscription.
82

Java Runtime Extensions
messageSelector Specifies the string value of a message
selector to use.

transactional Specifies whether the local JMS broker will
create transactions around message
processing. The default is false.

Currently this feature is not supported by the
Java runtime.
 83

CHAPTER 9 | JMS Port
84

Index

A
adding a SOAP header 15, 23
arrays

mapping to CORBA 45
Artix reference

mapping to CORBA 51

C
complex types

mapping to CORBA 38
corba:address 77

location attribute 77
corba:alias 44

name attribute 44
repositoryID attribute 44
type attribute 44

corba:anonsequence 48
bound attribute 48
elemtype attribute 49
name attribute 48
type attribute 49

corba:array 45
bound attribute 46
elemtype attribute 46
name attribute 45
repositoryID attribute 45
type attribute 45

corba:binding 34
bases attribute 34
repositoryID attribute 34

corba:case 43
label attribute 43

corba:enumerator 40
corba:exception 47

name attribute 47
repositoryID attribute 47
type attribute 47

corba:fixed 41
digits attribute 41
name attribute 41
repositoryID attribute 41
scale attribute 41
type attribute 41

corba:member 38
idltype attribute 38
name attribute 38

corba:object
binding attribute 52
name attribute 52
repositoryID attribute 52
type attribute 52

corba:operation 34
name attribute 35

corba:param 35
idltype attribute 35
mode attribute 35
name attribute 35

corba:policy 78
persistent attribute 78
poaname attribute 78
serviceid attribute 78

corba:raises 36
exception attribute 36

corba:return 35
idltype attribute 36
name attribute 36

corba:sequence 46
bound attribute 46
elemtype attribute 46
name attribute 46
repositoryID attribute 46

corba:typeMapping 37
targetNamespace attribute 37

corba:union 42
discriminator attribute 42
name attribute 42
repositoryID attribute 42
type attribute 42

corba:unionbranch 43
default attribute 43
idltype attribute 43
name attribute 43

D
durable subscriptions 82
 85

INDEX
E
enumerations

mapping to CORBA 39
exceptions

mapping to CORBA 36, 47
mapping to SOAP 16, 24

H
http:address 62

location attribute 62
http-conf:client 63

Accept attribute 67
AcceptEncoding attribute 69
AcceptLanguage attribute 68
AllowChunking attribute 64
Authorization attribute 67
AuthorizationType attribute 67
AutoRedirect attribute 64
BrowserType attribute 74
CacheControl attribute 71

cache-extension directive 72
max-age directive 71
max-stale directive 72
min-fresh directive 72
no-cache directive 71
no-store directive 71
no-transform directive 72
only-if-cached directive 72

Connection attribute 71
ConnectionTimeout attribute 63
ContentType attribute 64
Cookie attribute 64
DecoupledEndpoint attribute 64
Host attribute 70
ProxyAuthorization attribute 75
ProxyAuthorizationType attribute 75
ProxyServer attribute 74
ReceiveTimeout attribute 63
Referer attribute 74
UseSecureSockets attribute 75

http-conf:server 65
CacheControl attribute 71

cache-extension directive 74
max-age directive 73
must-revalidate directive 73
no-cache directive 72
no-store directive 73
no-transform directive 73

private directive 73
proxy-revelidate directive 73
public directive 73
s-maxage directive 73

ContentEncoding attribute 70
ContentLocation attribute 66
ContentType attribute 66
HonorKeepAlive attribute 66
ReceiveTimeout attribute 65
RedirectURL attribute 76
ServerCertificateChain 76
ServerType attribute 66
SuppressClientReceiveErrors attribute 65
SuppressClientSendErrors attribute 65
UseSecureSockets attribute 75

I
IDL types

fixed 40
Object 51
sequence 46
typedef 44

IOR 77

J
jms:address 80

connectionPassword attribute 81
connectionUserName attribute 81
destinationStyle attribute 80
jmsDestinationName attribute 81
jmsReplyDestinationName 81
jndiConnectionFactoryName attribute 80
jndiDestinationName attribute 81
jndiReplyDestinationName 81

jms:client 82
messageType attribute 82

jms:JMSNamingProperty 81
name attribute 81
value attribute 81

jms:server 82
durableSubscriberName attribute 82
messageSelector attribute 83
transactional attribute 83
useMessageIDAsCorrealationID attribute 82

JNDI
connection factory 80
86

INDEX
M
mime:content 28

part attribute 29
type attribute 29

mime:multipartRelated 28
mime:part 28

name attribute 28

P
POA policies 78
port address

HTTP 62
primitive types

mapping to CORBA 32

S
soap:address 62

location attribute 62
soap:binding 11

style attribute 11
transport attribute 12

soap:body 13
encodingStyle attribute 15
namespace attribute 15
parts attribute 15
use attribute 14

encoded 14
literal 14

soap:fault 16
name attribute 16
use attribute 16

encoded 14
literal 14

soap:header 15
encodingStyle attribute 16
message attribute 15
namespace attribute 16
part attribute 16
use attribute 16, 24

encoded 14
literal 14

soap:operation 12
soapAction attribute 13
style attribute 13

T
timeouts

HTTP 63

U
unions

mapping to CORBA 42

W
wsoap12:address 62

location attribute 62
wsoap12:binding 19

style attribute 19
transport attribute 20

wsoap12:body 21
encodingStyle attribute 23
namespace attribute 23
parts attribute 23
use attribute 22

literal 22
wsoap12:fault 24

name attribute 24
namespace attribute 24
use attribute 24

literal 22
wsoap12:header 23

encodingStyle attribute 24
message attribute 23
namespace attribute 24
part attribute 23
use attribute

literal 22
wsoap12:operation 21

soapAction attribute 21
soapActionRequired attribute 21
style attribute 21

wsoap12/
fault

encodingStyle attribute 25

X
xformat:binding 57

rootNode attribute 57
xformat:body 58

rootNode attribute 58
 87

INDEX
88

	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Bindings
	SOAP 1.1 Binding
	Runtime Compatibility
	soap:binding
	soap:operation
	soap:body
	soap:header
	soap:fault

	SOAP 1.2 Binding
	Runtime Compatibility
	wsoap12:binding
	wsoap12:operation
	wsoap12:body
	wsoap12:header
	wsoap12:fault

	MIME Multipart/Related Binding
	Runtime Compatibility
	Namespace
	mime:multipartRelated
	mime:part
	mime:content

	CORBA Binding and Type Map
	CORBA Binding Extension Elements
	Runtime Namespace
	corba:binding
	corba:operation
	corba:param
	corba:return
	corba:raises

	Type Map Extension Elements
	corba:typeMapping
	corba:struct
	corba:member
	corba:enum
	corba:enumerator
	corba:fixed
	corba:union
	corba:unionbranch
	corba:case
	corba:alias
	corba:array
	corba:sequence
	corba:exception
	corba:anonsequence
	corba:anonstring
	corba:object

	XML Binding
	Namespace
	xformat:binding
	xformat:body

	Ports
	HTTP Port
	Standard WSDL Elements
	http:address
	soap:address
	wsoap12:address

	Configuration Extensions
	Namespace
	http-conf:client
	http-conf:server

	Attribute Details
	AuthorizationType
	Authorization
	Accept
	AcceptLanguage
	AcceptEncoding
	ContentType
	ContentEncoding
	Host
	Connection
	CacheControl
	BrowserType
	Referer
	ProxyServer
	ProxyAuthorizationType
	ProxyAuthorization
	UseSecureSockets
	RedirectURL
	ServerCertificateChain

	CORBA Port
	Java Runtime Namespace
	corba:address
	corba:policy

	JMS Port
	Java Runtime Extensions
	Namespace
	jms:address
	jms:JMSNamingProperties
	jms:client
	jms:server

	Index

