
™

PROGRESS
®

ARTIX

WSDLGen Guide
Version 5.6, May 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology–Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments — See the Third Party Acknowledgements section on
page 8.

Updated: August 12, 2011

Contents

List of Figures 5

Preface 7

Chapter 1 Using WSDLGen 11
WSDLGen Architecture 12
Generating Code with the wsdlgen Utility 14
JAX-WS Templates 18
WSDLGen Configuration File 19
Unsupported XML Schema Types 22

Chapter 2 Developing Basic Templates 23
Writing Custom Templates 24
Bilingual Files 26
Predefined Objects 31
Generating JAX-WS Java Code 37

Chapter 3 Parsing WSDL and XML 45
Parser Overview 46
Basic Parsing 48

The WSDL and XML Schema Models 49
Parsing Document/Literal Wrapped Style 51
Parsing RPC/Literal Style 53

The JWSDL Parser 55
Overview of the WSDL Model 56
JWSDL Parser Classes 58

The XMLBeans Parser 63
Overview of the XMLBeans Parser 64
XMLBeans Parser Classes 65

Appendix A Java Utility Classes 73
Useful Java Utility Classes 74
 3

CONTENTS
Index 77
4

List of Figures

Figure 1: WSDLGen Code Generator Architecture 12

Figure 2: JWSDL Classes for Parsing a Port Type 56

Figure 3: Navigating the JWSDL Node Hierarchy 57
 5

LIST OF FIGURES
 6

Preface
What is Covered in This Book
This book describes how to use the WSDLGen command-line utility to generate
code from a WSDL contract. As well as describing the standard WSDLGen code
generating templates, the book explains how to develop custom templates,
which you can then use to generate Artix applications implemented in Java.

Who Should Read This Book
This book is aimed primarily at Java developers who are interested in using code
generation to accelerate the process of implementing Web service applications.

This book might also be of some interest to build engineers who need to generate
Makefiles and Ant build files based on the content of WSDL contracts.

The Artix Documentation Library
For information on the entire Artix Documentation Library, including
organization, contents, conventions, and reading paths, see Using the Artix
Library.

See the entire documentation set, at the Artix Product Documentation Web Site.
 7

http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf

http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf

http://communities.progress.com/pcom/docs/DOC-106903

PREFACE
Third Party Acknowledgements
Progress Artix ESB v5.6 incorporates Apache Commons Codec v1.2 from The
Apache Software Foundation. Such technology is subject to the following terms
and conditions: The Apache Software License, Version 1.1 - Copyright (c)
2001-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions and
the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The
end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgement may appear in the software itself, if and wherever such
third-party acknowledgements normally appear. 4. The names "Apache", "The
Jakarta Project", "Commons", and "Apache Software Foundation" must not be
used to endorse or promote products derived from this software without prior
written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", "Apache"
nor may "Apache" appear in their name without prior written permission of the
Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS''
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

======================================
 8

PREFACE
This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB v5.6 incorporates Jcraft JSCH v0.1.44 from Jcraft. Such
technology is subject to the following terms and conditions: Copyright (c)
2002-2010 Atsuhiko Yamanaka, JCraft,Inc. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notice, this list of conditions and the following
disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The
names of the authors may not be used to endorse or promote products derived
from this software without specific prior written permission. THIS SOFTWARE
IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
JCRAFT, INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
 9

PREFACE
 10

CHAPTER 1

Using WSDLGen
This chapter explains how to use the standard templates provided
with WSDLGen to generate sample applications in Java.

In this chapter This chapter discusses the following topics:

WSDLGen Architecture page 12

Generating Code with the wsdlgen Utility page 14

JAX-WS Templates page 18

WSDLGen Configuration File page 19

Unsupported XML Schema Types page 22
 11

CHAPTER 1 | Using WSDLGen
WSDL

WSDLGen Core

JWSDL Model

XMLBeans
Model

SmartLoader

Randomizer

Parse

Scripting
Plug-In

.jsb

Template

Output Files
JAX-WS

Generator
JavaScript

Plug-In

Generator
Plug-In

WSDLGen Architecture

Overview Figure 1 provides an overview of the WSDLGen code generator architecture.

WSDLGen core The WSDLGen core consists of a pluggable framework—for loading generator
and scripting plug-ins—as well as providing a core set of libraries, which are
made available to the loaded plug-ins.

The core set of libraries includes the following object models, which can
represent the parsed contents of the WSDL contract, as follows:

• JWSDL model—a model that recognizes the standard elements of a WSDL

contract, identifying each type of WSDL element with a Java class.

• XMLBeans model—a model that recognizes the elements of an XML

schema definition. This model is used to represent the types section of a

WSDL contract (where the parameter data types are defined).

For more details about the core parsers, see “Parser Overview” on page 46.

Figure 1: WSDLGen Code Generator Architecture
12

WSDLGen Architecture
The WSDLGen core also includes additional utilities, as follows:

• SmartLoad utility—provides the capability to load template files from a

well-known location (a search path for SmartLoad can be specified in the

WSDLGen configuration file).

• Randomizer utility—can be used to generate random parameter data. This

is useful for generating sample application code.

Generator plug-ins Because the WSDLGen core provides only the abstract framework for code
generation, it is always necessary to specify a particular generator plug-in when
you invoke WSDLGen. Currently, the JAX-WS generator plug-in is provided.

JAX-WS generator plug-in You must specify the JAX-WS generator in order to generate code for an Artix
JAX-WS Java application.

Scripting plug-ins The WSDLGen architecture has been designed so that it is possible to support
additional template languages by adding a plug-in to the core. Currently,
WSDLGen supports only the JavaScript language.

JavaScript plug-in JavaScript (also known as ECMAScript) is an object-based scripting language
that has a syntax similar to C or Java. Unlike object-oriented languages,
however, JavaScript is not a strongly-typed language.

The JavaScript plug-in enables you to write code-generating templates in the
JavaScript language. The choice of JavaScript as the template language has no
impact on the choice of generated language: you can use JavaScript templates to
generate code in Java, or any other language.

Standard templates WSDLGen provides a standard suite of templates that take a WSDL contract and
generate a sample Artix application in Java based on the interfaces defined in the
contract.

Custom templates It is also possible for you to develop your own custom templates. An easy way to
get started with developing custom templates is to take one of the standard
WSDLGen templates and modify it for your own requirements—see
“Developing Basic Templates” on page 23 for details.
 13

CHAPTER 1 | Using WSDLGen
Generating Code with the wsdlgen Utility

Syntax of wsdlgen The wsdlgen command-line utility has the following syntax:

Where a pair of square brackets, [], denotes an optional part of the syntax and
the asterix character, *, implies that the preceding option can be repeated 0 or
more times.

You must specify the location of a valid WSDL contract file, WSDLFile. You can
also supply the following options:

wsdlgen [-G ApplicationType] [-T TemplateID]*
[-C ConfigFile] [-D Name=Value]* WSDLFile

-G ApplicationType Specifies the type of application to generate. jaxws
for generating JAX-WS Java code, is defined by
default.

-T TemplateID Each application type defines a set of template IDs,
which can be used as shortcuts to invoke particular
template scripts. For details, see “Generating
JAX-WS code” on page 17.

-C ConfigFile Specifies the location of the WSDLGen configuration
file, ConfigFile. If this option is not set, wsdlgen
reads the default configuration file (located in
%IT_WSDLGEN_CFG_FILE% on Windows and
$IT_WSDLGEN_CFG_FILE on UNIX).

-D Name=Value Specifies the value, Value, of a JavaScript property,
Name. See also “Variables defined at the command
line” on page 16.
14

Generating Code with the wsdlgen Utility
Alternative syntax of wsdlgen Alternatively, you can use the following syntax:

In this syntax, the following options are used differently:

Generating code from a specific
template (or templates)

You can specify explicitly which templates to run, by invoking the wsdlgen
utility with the -T option. For example, suppose you have a WSDL contract file,
hello_world.wsdl, and you wish to generate a sample implementation of the
Greeter port type. You could invoke the wsdlgen utility as follows:

wsdlgen [-G GeneratorClass] [-T TemplateFile]*
[-C ConfigFile] [-D Name=Value]* WSDLFile

-G GeneratorClass Specifies the name of a generator plug-in class. Use

com.iona.cxf.tools.wsdlgen.jaxwsgenerator.Jaxw

sGenerator to generate JAX-WS Java code.

-T TemplateFile Specifies the location of a bilingual template file,
TemplateFile, that governs code generation. This
option can be repeated, in order to generate code from
multiple templates in one invocation.

wsdlgen
-G com.iona.cxf.tools.wsdlgen.jaxwsgenerator.JaxwsGenerator
-D portType=Greeter
-T templates\jaxw\ArtixJaxwsServer.jsb
hello_world.wsdl
 15

CHAPTER 1 | Using WSDLGen
Variables defined at the command
line

The following JavaScript variables can be set at the command line, using the -D
option of the wsdlgen command:

• portType—local name of the port type for which code is generated.

• bindingName—local name of the binding for which code is generated.

• serviceName—local name of the service for which code is generated.

• portName—name of the port for which code is generated.

• artixInstall—when generating an Ant build file using the

ArtixJaxwsAntfile.jsb template (for example, by running wsdlgen -G

jaxws -T ant), specifies the root directory of the Java runtime. The Ant

build file then picks up its Jar libraries from the lib subdirectory of the

specified directory. The default value is ArtixInstallDir/java.

In particular, you can set the following combinations of these variables at the
command line in order to select a particular service and port:

• serviceName and portName—generate code for the specified service and

port.

• serviceName—generate code for the specified service and the first port of

that service.

• portType—generate code for the first service, port, and binding associated

with the specified port type.

• bindingName—generate code for the first service and port associated with

the specified binding.

• None specified—generate code for the first service and port in the WSDL

contract.
16

Generating Code with the wsdlgen Utility
Generating JAX-WS code When generating JAX-WS code from the standard templates, it is usually
simpler to use the -G jaxws -T TemplateID syntax. For example, to generate a
sample implementation of the Greeter port type from the hello_world.wsdl
file, you could invoke the wsdlgen utility as follows:

When called with -G jaxws, the -T TemplateID switch supports the following
template IDs:

wsdlgen
-G jaxws -D portType=Greeter -T impl hello_world.wsdl

impl For the given PortType port type (specified by the
portType property), generate the files
PortType.java and PortTypeImpl.java. Also,
generate stub code for the port type.

server For the given PortType, generate a file,
PortTypeServerSample.java, that implements the
main() function for a standalone server. Also,
generate stub code for the port type.

client For the given PortType, generate a file,
PortTypeClientSample.java, that invokes all of the
operations in the PortType port type. Also, generate
stub code for the port type.

all Specifying -T all is equivalent to specifying
-T impl -T server -T client.

ant Generate an Apache Ant build file for the Java
application. You can customize the location of the
Java runtime by setting the cxfInstall variable—see
“Variables defined at the command line” on page 16.
 17

CHAPTER 1 | Using WSDLGen
JAX-WS Templates

Overview WSDLGen provides a standard set of templates for generating JAX-WS code.
These templates are located in the ArtixInstallDir/tools/templates
directory.

Invoking the JAX-WS templates To invoke a JAX-WS template directly, use the -G option to load the
JaxwsGenerator generator class. For example, to generate code from a single
JAX-WS template, TemplateFile, enter a command like the following:

JAX-WS templates Table 1 lists the WSDLGen templates that can be used to generate JAX-WS Java
examples.

wsdlgen
-G com.iona.cxf.tools.wsdlgen.jaxwsgenerator.JaxwsGenerator
-T TemplateFile
WSDLFile

Table 1: WSDLGen Templates for Generating JAX-WS Code

Java Template File Description

ArtixJaxwsClient.jsb Generate a sample Java client.

ArtixJaxwsServer.jsb Generate a server main() function (for deploying the server in standalone
mode).

ArtixJaxwsImpl.jsb Generate an outline implementation for the port type specified by the
portType property.

ArtixJaxwsStubTypes.jsb Generate stub code and type files for port type specifed by the portType
property.

ArtixJaxwsAntfile.jsb Generate a sample build.xml file, for use with the Apache Ant build utility.
18

WSDLGen Configuration File
WSDLGen Configuration File

Overview The wsdlgen utility has its own configuration file, which is defined in XML
format. This configuration file enables you to customize WSDLGen by:

• Setting JavaScript variables.

• Setting SmartLoader paths.

• Defining generator profiles.

Default location The WSDLGen configuration is stored at the following default location:

Setting JavaScript variables You can initialize JavaScript variables from the WSDLGen configuration file, as
shown in Example 1.

Where the defines element can contain any number of entries of the form
<VariableName>Value</VariableName>. Each configuration entry of this form
is equivalent to including the following JavaScript code at the top of your
template:

ArtixInstallDir/tools/etc/wsdlgen.cfg

Example 1: Setting JavaScript Variables in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 <defines>
 <foo>fooValue</foo>
 <!-- ... -->
 </defines>
 ...
</wsdlgen>

var VariableName = "Value";
 19

CHAPTER 1 | Using WSDLGen
Setting SmartLoader paths You can define a search path for the smart loader utility in the WSDLGen
configuration file by adding a sequence of path elements inside an enclosing
paths element, as shown in Example 2.

When searching for scripts included through the smart loader mechanism,
WSDLGen searches the directories listed in the paths element. For more details
about the smart loader utility, see “smartLoader utility” on page 36.

Defining generator profiles You can define your own generator profiles in the WSDLGen configuration file.
A generator profile enables you to customize the combination of templates that
are invoked when you enter a WSDLGen command of the form wsdlgen -G
ApplicationType -T TemplateID. This is typically useful, if you are
developing your own WSDLGen templates.

Example 3 shows the general outline of a generator profile in the WSDLGen
configuration file.

Example 2: Setting SmartLoader Paths in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 <paths>
 <path>/home/fflintstone/.wsdlgen</path>
 <path>/usr/local/templates/wsdlgen</path>
 <!-- ... -->
 </paths>
 ...
</wsdlgen>

Example 3: Defining a Generator Profile in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 ...

1 <profiles>
2 <ApplicationType>
3 <generator>GeneratorClass</generator>
4 <TemplateID>
5 <template>TemplatePath</template>

 ...
 </TemplateID>
 ...
 </ApplicationType>
20

WSDLGen Configuration File
The preceding profile configuration can be explained as follows:

1. The profiles element contains one or more arbitrarily-named profile

elements, ApplicationType.

2. An ApplicationType element represents a single generator profile. You

can call this element anything you like: the wsdlgen utility automatically

searches for the ApplicationType element when you specify it using the

-G ApplicationType option.

3. The generator element specifies the name of the generator plug-in class to

use for this profile. For details of the generator classes currently provided

by WSDLGen, see “Alternative syntax of wsdlgen” on page 15.

4. A TemplateID identifies a combination of templates that can be called in a

single batch. This element can have an arbitrary name: the wsdlgen utility

automatically searches for the TemplateID element when you specify it

using the -T TemplateID option.

You can define multiple TemplateID elements within each profile.

5. Within each template combination, use the template element to specify

the location of a single template. Typically, you would specify the absolute

pathname of the template. You can also substitute environment variables

from the operating system, using the syntax, $VARIABLE_NAME$.

Examples of generator profiles For some examples of generator profiles, see the profiles for cxx, jaxrpc, and
jaxws in the default configuration file,
ArtixInstallDir/tools/etc/wsdlgen.cfg.

 </profiles>
 ...
</wsdlgen>

Example 3: Defining a Generator Profile in the Configuration File
 21

CHAPTER 1 | Using WSDLGen
Unsupported XML Schema Types

Overview Currently, not all XML schema types are supported by the WSDLGen code
generator. The following XML schema types are currently not supported by the
JAX-WS code generator:

• Primitive types: xs:nonPositiveInteger, xs:duration, xs:NMTokens,

xs:IDREF, xs:IDREFS, xs:ENTITY, xs:ENTITIES, xs:NOTATION.

• xs:list

• xs:union

• xs:group

• Types derived by extension or restriction.

• Occurrence constraints on xs:sequence and xs:choice.

• Anonymous types.
22

CHAPTER 2

Developing Basic
Templates
This chapter provides an introduction to the subject of writing your
own templates for generating code in Java.

In this chapter This chapter discusses the following topics:

Writing Custom Templates page 24

Bilingual Files page 26

Predefined Objects page 31

Generating JAX-WS Java Code page 37
 23

CHAPTER 2 | Developing Basic Templates
Writing Custom Templates

Overview The simplest approach to take when writing a custom template is to take one of
the WSDLGen samples and modify it to your own requirements. This chapter
aims to provide you with enough information to understand the sample
templates and to use the WSDLGen programming interfaces effectively.

Running a custom template To generate code using a custom template, specify the template file to the
wsdlgen utility using the -T command-line option and specify the relevant
generator class using the -G command-line option.

For full details of the relevant wsdlgen command-line syntax, see “Alternative
syntax of wsdlgen” on page 15.

Bilingual files WSDLGen templates are written in a special file format known as a bilingual
file and identified by the .jsb file suffix. The bilingual file format enables you
to freely mix the JavaScript language and the target language together in the one
file. For details, see “Bilingual Files” on page 26.

Predefined objects To provide you with convenient access to data and objects derived from the
WSDL contract, WSDLGen creates predefined objects in JavaScript. For
example, the wsdlModel object provides access to a complete parse tree of the
WSDL contract (using the JWSDL API).

For details, see “Predefined Objects” on page 31.
24

Writing Custom Templates
Built-in APIs APIs provided for writing templates include the following:

• WSDLGen API for JAX-WS—utility functions for generating JAX-WS

Java code from WSDL.

• WSDLGen randomizer—a random data generator, used internally by

WSDLGen to generate random parameter values.

• JWSDL API—a WSDL parser based on the JWSDL standard. See “The

JWSDL Parser” on page 55 for details.

• XMLBeans API—an XML schema parser. See “The XMLBeans Parser” on

page 63 for details.

• Java model for JAX-WS—a Java parser that models the artifacts generated

by the JAX-WS WSDL-to-Java mapping.
 25

CHAPTER 2 | Developing Basic Templates
Bilingual Files

Overview The basic purpose of a JavaScript template in WSDLGen is to generate code in a
target language (such as Java). Consequently, if a code generating template was
written in pure JavaScript, it would contain a large number of print directives to
produce the required target code. In practice, this style of coding quickly leads to
templates that are virtually illegible (you might be familiar with this sort of
problem in the context of HTML-generating servlet code).

To solve this difficulty, WSDLGen introduces the concept of a bilingual file for
developing code-generating templates. The basic idea of the bilingual file is that
a set of escape sequences enable you to switch back and forth between the
generating language and the target language. Example 4 shows a sample outline
of such a bilingual file, with one section of the file (enclosed between [*** and
***]) expressed in the target language.

Example 4: Sample Outline of a Bilingual File.

// JavaScript Bilingual File
openOutputFile(PathName)

// Put JavaScript code here...
...

[***
 // Put TargetLanguage code here...
 ...
***]

closeOutputFile()
26

Bilingual Files
Opening and closing the output file A bilingual file must be associated with an output destination. You can specify
an output file for the generated code by calling the following function in your
script (typically, at the start of the template):

Where PathName specifies the path to the generated output file. On UNIX
platforms, an alternative form of the openOutputFile() function is available,
which lets you set file permissions on the output file:

Where Permissions is a string value formatted in the same way as a standard
chmod permission string. For example, the string, u=rwx,g=rx,o=x, would give
full permissions to the owner, read and execute permissions to the group, and
execute permission to all others. For full details of the permission string syntax,
enter man chmod at the command line.

You can close the output file by calling the following function (typically, at the
end of the template):

The call to openOutputFile() establishes an association between the
destination file, PathName, and the blocks of generated code written in the target
language. All of the generated code is sent to the file, PathName, specified by the
openOutputFile() function.

Output text delimiters Blocks of generated code are delimited by the output text delimiters shown in
Table 2

openOutputFile(PathName)

openOutputFile(PathName, Permissions)

closeOutputFile()

Note: If openOutputFile() is not called, the output is directed to standard
out by default.

Table 2: Character Sequences for Delimiting Output Text

Character
Sequence

Description

[*** Beginning of a code block written in the target language.
 27

CHAPTER 2 | Developing Basic Templates
Escaping within output text Within the scope of the output text delimiters, you can escape back to JavaScript
using the escape characters shown in Table 3.

***] End of the code block written in the target language.

Table 2: Character Sequences for Delimiting Output Text

Character
Sequence

Description

Table 3: Escape Characters Used in Output Text

Escape
Sequence

Description

$VarName$ Substitute a JavaScript variable, VarName, embedding it
in a line of output text—see “Variable escape” on
page 29.

@JavaScript Escape to a line of JavaScript—see “Line escape” on
page 30.
28

Bilingual Files
Variable escape Within the scope of the output text delimiters, you can substitute the value of a
JavaScript variable using the dollar sign, $, as an escape character. To make the
substitution, enclose the JavaScript variable name between two dollar signs,
$VarName$.

For example, if intfName is a JavaScript variable that holds a WSDL port type
name, you could declare a Java class to implement this port type using the
following fragment of bilingual file.

The implementation class name is derived by adding the Impl suffix to the porty
type name. For example, if generating code for the Greeter port type,
$intfName$Impl would expand to GreeterImpl.

// JavaScript Bilingual File
openOutputFile(PathName)

[***
public class $intfName$Impl implements java.rmi.Remote {
***]

// More script (not shown)...
...
closeOutputFile()
 29

CHAPTER 2 | Developing Basic Templates
Line escape Within the scope of the output text delimiters, you can escape to a line of
JavaScript code by putting the at symbol, @, at the start of a line (as the first
non-whitespace character).

For example, the following bilingual file generates a Java function,
ListInterfaceOps(), that lists all of the operations in the current WSDL
interface.

Unlike the variable escape mechanism, $VarName$, the line escape does not
produce any output text as a side effect of its execution. While the line enclosing
a variable escape sequence, $VarName$, is implicitly enclosed in a print
statement, the line escaped by the at symbol, @, is not printed.

Escaping the escape characters Occasionally, you might need to output the dollar, $, and at sign, @, character
literals inside the scope of an output text block. For this purpose, WSDLGen
defines the $dollar$ and at variables, which resolve to literal dollar, $, and
literal at, @, inside an output text block.

// JavaScript Bilingual File
...
openOutputFile(PathName)

[***
 ...
 public static void ListInterfaceOps() {
 System.out.println("Operation is one of: ");
 @for (var i = 0; i < numOps; i++) {
 System.out.println(" $operations[i].getName()$");
 @}
 }
}
***]

closeOutputFile()
30

Predefined Objects
Predefined Objects

Overview The programming interface provided by WSDLGen includes a number of
predefined JavaScript objects. Some of these predefined objects are simple
variables (for example, intfName, containing the name of the current port type),
whilst others provide access to particular APIs (for example, wsdlModel, which
provides access to the JWSDL parser API).

List of predefined objects Table 4 shows the list of JavaScript objects predefined by WSDLGen.

Table 4: Predefined JavaScript Objects

JavaScript Object Description

bindingName Local part of the binding name for which code is
generated. You can set this variable when you invoke
the wsdlgen command (see “Variables defined at the
command line” on page 16).

intfName A name derived from the port type name, portType,
by dropping the PortType suffix (if any).

javaIntfName A name derived from intfName by removing any dot
characters, ., or hyphen characters, -, and
capitalizing the subsequent letter. For example,
simple.simpleIntf would become
SimpleSimpleIntf.

javaModel An instance of the
org.apache.cxf.tools.common.model.JavaModel
type, which provides access to a Java parser.

javaPackage The Java package name in which to define the
generated implementation classes. Its value is derived
from the WSDL target namespace.
 31

CHAPTER 2 | Developing Basic Templates
javaServiceName A name derived from serviceName by removing any
dot characters, ., or hyphen characters, -, and
capitalizing the subsequent letter. For example,
simple.simpleService would become
SimpleSimpleService.

jaxwsIntfName A name derived from intfName by removing any dot
characters, ., hyphen characters, -, or underscore
characters, _, and capitalizing the subsequent letter.
For example, simple.simpleIntf would become
SimpleSimpleIntf.

jaxwsServiceName A name derived from serviceName by removing any
dot characters, ., hyphen characters, -, or underscore
characters, _, and capitalizing the subsequent letter.
For example, simple.simpleService would become
SimpleSimpleService.

jsModel A wrapper for the wsdlModel object.

operations[] An array of operation objects, of
javax.wsdl.Operation type. See “JWSDL Parser
Classes” on page 58 for details.

parametersList An instance of the utility class,
com.iona.wsdlgen.common.ParametersList. This
object enables you to obtain a list of parts and faults
for every WSDL operation.

portName Port name for which code is generated. You can set
this variable when you invoke the wsdlgen command
(see “Variables defined at the command line” on
page 16).

portType Local part of the port type name for which code is
generated. You can set this variable when you invoke
the wsdlgen command (see “Variables defined at the
command line” on page 16).

Table 4: Predefined JavaScript Objects (Continued)

JavaScript Object Description
32

Predefined Objects
randomizer An instance of a WSDLGen utility that generates
random numbers. The WSDLGen templates use this
object to generate random parameters.

schemaModel An instance of the
org.apache.xmlbeans.SchemaTypeLoader class,
which provides access to an XML schema parser. See
“The XMLBeans Parser” on page 63 for details.

serviceName Local part of the service name for which code is
generated. You can set this variable when you invoke
the wsdlgen command (see “Variables defined at the
command line” on page 16).

smartLoader An instance of a WSDLGen utility that imports
JavaScript or bilingual files from a well-known
location. The search path for the smart loader can be
specified in the WSDLGen configuration file.

tns The namespace of the port type, binding, and service
elements. Specifically, this variable contains the
value of the targetNamespace attribute from the
definitions element in the WSDL contract.

wsdlFile The location of the WSDL contract file.

wsdlModel An instance of the javax.wsdl.Definition class,
which provides access to a JWSDL parser. See
“Parsing WSDL and XML” on page 45 for details.

Table 4: Predefined JavaScript Objects (Continued)

JavaScript Object Description
 33

CHAPTER 2 | Developing Basic Templates
WSDL and schema models The following objects represent the roots of the WSDL model and the XML
schema model respectively:

• wsdlModel

• schemaModel

These parser objects provide a complete model of the WSDL elements and XML
schema types defined in the WSDL contract.

The following object represents the root of the JAX-WS Java model:

• javaModel

This parser object provides a model of all the Java artifacts produced by the
JAX-WS WSDL-to-Java mapping.

Typically, it is not necessary to use these APIs in a basic template. For more
advanced applications, however, see “Parsing WSDL and XML” on page 45 for
details about the parser APIs.

operations[] array An array of operation objects representing all of the operations in the portType
port type. The operation objects are instances of javax.wsdl.Operation, which
is part of the JWSDL API.

For example, you can print out the names of all the operations in the portType
port type as follows:

For more details about the javax.wsdl.Operation class, see “JWSDL Parser
Classes” on page 58.

// JavaScript Bilingual File
...
for (var i=0; i < operations.length; i++) {
[***
 System.out.println("Operation["+i+"] name = "
 + $operations[i].getName()$
);
***]
}

34

Predefined Objects
parametersList object The parametersList object provides a method, getPartsAndFaults(), that
provides access to all of the message parts and faults associated with a particular
WSDL operation.

For example, to obtain the parts and faults associated with the ith operation of
the current WSDL interface, make the following JavaScript call:

Where the argument to getPartsAndFaults() is a key, consisting of a port type
name concatenated with an operation name.

By calling partsAndFaults.parts()[k]—where k lies in the range 0 to
partsAndFaults.parts().length—you can obtain a PartHolder object,
which holds the following items:

• partsAndFaults.parts()[k].getPart()—returns the javax.wsdl.Part

object that represents the current part.

• partsAndFaults.parts()[k].getDirection()—returns one of the

following direction flag values: DIRECTION_IN, or DIRECTION_OUT.

By calling partsAndFaults.faults()[k]—where k lies in the range 0 to
partsAndFaults.faults().length—you can obtain a FaultHolder object,
which holds the following items:

• partsAndFaults.faults()[k].getName()—returns the fault name.

• partsAndFaults.faults()[k].getParts()—returns the array of

javax.wsdl.Part objects contained in the fault.

var partsAndFaults = parametersList.getPartsAndFaults(
 portType + operations[i].getName()
)

 35

CHAPTER 2 | Developing Basic Templates
smartLoader utility The smart loader utility provides a way of including files located relative to a
well-known directory (or directories). For example, if you are implementing a
custom template, you could include the contents of the file,
CustomUtils/MyUtilities.js, at the start of your template by calling
smartLoad() as follows:

Where the included file, CustomUtils/MyUtilities.js, is located under one of
the directories listed in the paths element in the WSDLGen configuration file.
Example 5 shows an example of a configuration file that specifies two path
directories, with each directory enclosed in a path element. The directories are
searched in the order in which they appear in the configuration file.

JavaScript Bilingual File
smartLoad("CustomUtils/MyUtilities.js");
...

Example 5: Smart Loader Path in the WSDLGen Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 <paths>
 <path>/home/fflintstone/.wsdlgen</path>
 <path>/usr/local/templates/wsdlgen</path>
 <!-- ... -->
 </paths>
 ...
</wsdlgen>
36

Generating JAX-WS Java Code
Generating JAX-WS Java Code

Overview This section provides a brief overview of the most important WSDLGen
functions for generating JAX-WS Java code. The following topics are described:

• Indentation level.

• Mangling identifiers.

• Generating print calls.

• Generating operation calls in a JAX-WS consumer.

• Catching fault exceptions in a JAX-WS consumer.

• Generating a JAX-WS service implementation.

Indentation level Some of the functions in the WSDLGen API generate multi-line output. To give
you some control over the layout of the resulting output, these functions take an
integer parameter, IndentLevel, that lets you specify the initial level of
indentation.
 37

CHAPTER 2 | Developing Basic Templates
Mangling identifiers Table 5 summarizes the functions that you can use to mangle identifiers
according to the JAX-WS mangling rules.

Table 5: Functions for Mangling JAX-WS Identifiers

Function Description

jaxwsMangleMethodName(

 methodName
)

Return a mangled method name, according to the following rule: remove
each occurrence of _ or - and capitalize the following character. For
example, foo_bar becomes FooBar and foo-bar becomes FooBar.

jaxwsMangleTypeName(

 typeName
)

Return a mangled type name, according to the following rule: remove each
occurrence of ., _, or - and capitalize the following character. For example,
my_type becomes MyType and iona.my-type becomes IonaMyType.

jaxwsMangleURI(

 name
)

Remove the trailing file extension from a URI. For example,
http://www.iona.com/foo.xml becomes http://www.iona.com/foo.

jaxwsMangleVarName(

 varName
)

Return a mangled object name or class name, according to the following
rule: remove all occurrences of . and - characters.
38

Generating JAX-WS Java Code
Generating print calls Table 6 summarizes the WSDL functions that you use to generate Java methods
that print operation parameter values.

For example, to generate a method that prints the out and inout parameters of the
met JAX-WS method, use the following code:

To call the preceding print method, generate a method call as follows:

Table 6: Functions for Generating JAX-WS Print Calls

Function Description

jaxwsPrintMethodSig(

 portType,
 opName,
 ignoreDirection
)

Generate the signature of a Java method that prints out the parameters of the
operation, opName, in the interface, portType. The ignoreDirection
parameter specifies which kind of parameter not to print. The
ignoreDirection parameter can have one of the following values:
DIRECTION_IN, DIRECTION_OUT, DIRECTION_INOUT.

jaxwsPrintParts(

 portType,
 opName,
 lvl,
 isClient
)

Generate the body of a Java method that prints out the parameters of the
operation, opName, in the interface, portType. REVISIT - In the templates,
the isClient parameter seems to be treated as an ignoreDirection parameter.
Which is correct?

jaxwsPrintCall(

 portType,
 opName,
 ignoreDirection
)

Generate a Java method call that calls the method generated by the preceding
utility functions.

$jaxwsPrintMethodSig(portType, met.getOperationName(),
DIRECTION_IN)$ {

 $jaxwsPrintParts(portType, met.getOperationName(), 2,
DIRECTION_IN)$

}

$jaxwsPrintCall(portType, met.getOperationName(), DIRECTION_IN)$
 39

CHAPTER 2 | Developing Basic Templates
Generating operation calls in a
JAX-WS consumer

Table 7 summarizes thze WSDLGen functions that you use to generate a WSDL
operation call using the JAX-WS mapping:

The functions in Table 7 take the following arguments:

• portType is the local name of the port type on which the operation is

defined;

• opName is the local name of the WSDL operation;

• lvl specifies how many levels of indentation are applied to the generated

code.

• ignoreDirection specifies which kind of parameters to ignore whilst

processing. This flag can take either of the values, DIRECTION_IN or

DIRECTION_OUT. For example, if you specify this flag as DIRECTION_OUT,

only in parameters will be processed.

Table 7: Functions for Generating a JAX-WS Operation Call

Function Description

jaxwsPopulateParts(

 portType,
 opName,
 lvl,
 isClient
)

When the isClient parameter is equal to true, populate each of the request
parameters (in and inout parameters) with random data.

jaxwsMethodCall(

 portType,
 opName,
 lvl
)

Call the operation, opName.
40

Generating JAX-WS Java Code
Example 6 shows how to use the preceding functions to generate JAX-WS
operation calls in a Web service client. The code iterates over every operation in
the current port type, generating code to declare and initialize the parameters and
then call the operation.

Catching fault exceptions in a
JAX-WS consumer

To generate a catch exception statement, WSDLGen provides the
getJaxwsCatchExceptionsStatement() function, whose syntax is summarized
in Table 8.

Example 6: Generating JAX-WS Operation Calls

@for (var i = 0; i < methods.size(); i++) {
@var met = methods.get(i)
 public static void

call$initialToUpperCase(met.getName())$($initialToUpperCase(j
axwsIntfName)$ impl) {

 System.out.println("Invoking $met.getName()$...");
 $jaxwsPopulateParts(portType, met.getOperationName(), 3,

true)$
 $jaxwsMethodCall(portType, met.getOperationName(), 3)$
 }

@}

Table 8: Functions for Generating a JAX-WS Operation Call

Function Description

getJaxwsCatchExceptionsStatem

ent(

 Method,
 lvl,
 ignoreDirection
)

Generate a catch exception statement for Method, where Method is a
JavaMethod instance that represents the WSDL operation.
 41

CHAPTER 2 | Developing Basic Templates
Example 7 shows an example of how to generate Java code to catch the fault
exceptions associated with the method, met.

Generating a JAX-WS service
implementation

Table 9 summarizes the WSDLGen functions that you use to generate a
JAX-WS implementation class.

Example 7: Generating JAX-WS Code to Catch a Fault Exception

// JavaScript Bilingual File
...
[***
@var exceptions = met.getExceptions()
@if (exceptions.size()) {
 try {
@}
 // Code to call ’met’ (not shown)
 ...
@if (exceptions.size()) {
$getJaxwsCatchExceptionsStatement(met, 2, DIRECTION_OUT)$
@}
...
***]

Table 9: Functions for Generating a JAX-WS Implementation Class

Function Description

jaxwsMethodSig(

 met
)

Generate a Java method signature for the operation represented by met in the
Java model.

jaxwsPopulateParts(

 portType,
 opName,
 lvl,
 isClient
)

When the isClient parameter is equal to false, populate each of the reply
parameters (inout and out parameters) with random data.
42

Generating JAX-WS Java Code
Example 8 shows a fragment of a script that uses the preceding functions to
generate a Java implementation class. The script iterates over all of the
operations in the current port type, portType, generating an implementing
method for each one.

Example 8: Generating a JAX-WS Implementation Class

// JavaScript Bilingual File
...
[***
@for (var i = 0; i < methods.size(); i++) {
@var met = methods.get(i)
 $jaxwsMethodSig(met)$
 System.out.println("Executing operation $met.getName()$");
 $jaxwsPrintCall(portType, met.getOperationName(),

DIRECTION_OUT)$

 $jaxwsPopulateParts(portType, met.getOperationName(), 3,
false)$

@ if (met.getReturn().getType() != "void") {
 return null;
@ }
 }
@}
***]
 43

CHAPTER 2 | Developing Basic Templates
44

CHAPTER 3

Parsing WSDL and
XML
This chapter introduces you to the subject of parsing WSDL using
the low-level APIs, JWSDL and Apache XMLBeans. The
higher-level WSDLGen API is built on top of these basic parsing
APIs.

In this chapter This chapter discusses the following topics:

Parser Overview page 46

Basic Parsing page 48

The JWSDL Parser page 55

The XMLBeans Parser page 63
 45

CHAPTER 3 | Parsing WSDL and XML
Parser Overview

Overview The parsing APIs that underly WSDLGen are taken from the following open
source products:

• WSDL4J (reference implementation of the JWSDL standard),

• Apache XMLBeans.

These two parsers provide alternative views of the WSDL contract. The JWSDL
model is useful for parsing WSDL artifacts, such as port types, bindings, and
services. The XMLBeans model, on the other hand, is an XML schema parser,
which is more useful for parsing the XML schema types defined in the WSDL
contract.

JWSDL JWSDL is a Java API for parsing WSDL contracts. This API is being developed
under the Java Community Process, JSR 110. A copy of the JWSDL
specification and complete Javadoc for the JWSDL API can be downloaded
from the following location:

http://jcp.org/en/jsr/detail?id=110

Apache XMLBeans Apache XMLBeans is an open source API for parsing XML schemas. It is useful
for parsing the contents of the schema elements in a WSDL contract. The home
page for the XMLBeans project is:

http://xmlbeans.apache.org/

The complete Javadoc for XMLBeans v2.2.0 is available at the following
location:

http://xmlbeans.apache.org/docs/2.2.0/reference/index.html
46

http://jcp.org/en/jsr/detail?id=110
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/docs/2.2.0/reference/index.html

Parser Overview
Rhino Rhino is a Java implementation of JavaScript that includes the capability to map
Java APIs into JavaScript (the scripting Java feature). In the context of
WSDLGen, this capability of Rhino is exploited to make both the JWSDL API
and the XMLBeans API available in JavaScript (these APIs are originally
specified in Java only).

Due to the strong similarity between Java syntax and JavaScript syntax, the
mapped APIs are remarkably intuitive to use from within JavaScript. For details
about how this mapping works, see:

http://www.mozilla.org/rhino/ScriptingJava.html
 47

http://www.mozilla.org/rhino/ScriptingJava.html

CHAPTER 3 | Parsing WSDL and XML
Basic Parsing

Overview This section discusses some basic topics in parsing WSDL contracts. In
particular, you need to be aware of how the contract style (document/literal
wrapped or RPC/literal) affects how you parse a WSDL port type.

In this section This section contains the following subsections:

The WSDL and XML Schema Models page 49

Parsing Document/Literal Wrapped Style page 51

Parsing RPC/Literal Style page 53
48

Basic Parsing
The WSDL and XML Schema Models

Overview WSDLGen enables JavaScript programs to access the JWSDL API and the
XMLBeans API from by defining the following JavaScript objects:

• wsdlModel—the root of the JWSDL parser model.

• schemaModel—the root of the XMLBeans parser model.

These two objects are pushed into JavaScript using the Rhino Java-to-JavaScript
mapping feature.

wsdlModel instance To access the JWSDL API from within JavaScript, use the wsdlModel object,
which is an instance of the javax.wsdl.Definition class mapped to
JavaScript.

The JWSDL Definition class represents the top level element of the WSDL
contract (see “JWSDL Parser Classes” on page 58). For example, you can use
the wsdlModel object to obtain a list of all the port types in the contract as
follows:

// JavaScript

var portTypeMap = wsdlModel.getPortTypes()
var portTypeArr = portTypeMap.values().toArray()

// Iterate over the list of port types
for each (pt in portTypeArr) {
 ... // Do something with the port type, pt.
}

 49

CHAPTER 3 | Parsing WSDL and XML
schemaModel instance To access the XMLBeans API from within JavaScript, use the schemaModel
object, which is an instance of the org.apache.xmlbeans.SchemaTypeLoader
class mapped to JavaScript.

The XMLBeans SchemaTypeLoader class enables you to find the XML schema
types and elements defined within the wsdl:types element in the WSDL
contract (see “XMLBeans Parser Classes” on page 65). For example, you can
use the schemaModel object to obtain an element named
{http://xml.iona.com/wsdlgen/demo}testParams, as follows:

// JavaScript

var TARG_NAMESPACE = "http://xml.iona.com/wsdlgen/demo"
var elQName = new javax.xml.namespace.QName(TARG_NAMESPACE,

"testParams")

var el = schemaModel.findElement(elQName)
50

Basic Parsing
Parsing Document/Literal Wrapped Style

Overview This subsection describes how to parse a WSDL contract that is written in
document/literal wrapped style. The document/literal wrapped style is
distinguished by the fact that it uses single part messages. Each part is defined to
be a sequence type, whose constitutent elements represent operation parameters.

Characteristics of the
document/literal wrapped style

A given operation, OperationName, must be defined as follows, in order to
conform to the document/literal wrapped style of interface:

• Input message—the message element that represents the operation’s input

message must obey the following conditions:

→ The message contains just a single part.

→ The part references an element (not a type) and the element must be

named, OperationName.

• Input element—the OperationName element must be defined as a

sequence complex type, where each element in the sequence represents a

distinct input parameter.

• Output message—the message element that represents the operation’s

output message must obey the following conditions:

→ The message contains just a single part.

→ The part references an element (not a type) and the element must be

named, OperationNameResponse.

• Output element—the OperationNameResponse element must be defined as

a sequence complex type, where each element in the sequence represents a

distinct output parameter.
 51

CHAPTER 3 | Parsing WSDL and XML
Sample WSDL contract Example 9 shows an example of a WSDL contract defining an operation,
testParams, that conforms to document/literal wrapped style.

Example 9: Operation Defined in Document/Literal Style

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <wsdl:types>
 <schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="testParams">
 <complexType>
 <sequence>
 <element name="inInt" type="xsd:int"/>
 <element name="inoutInt" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="testParamsResponse">
 <complexType>
 <sequence>
 <element name="inoutInt" type="xsd:int"/>
 <element name="outFloat" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <message name="testParams">
 <part name="parameters" element="tns:testParams"/>
 </message>
 <message name="testParamsResponse">
 <part name="parameters"

 element="tns:testParamsResponse"/>
 </message>
 <wsdl:portType name="BasePortType">
 <wsdl:operation name="testParams">
 <wsdl:input message="tns:testParams"
 name="testParams"/>
 <wsdl:output message="tns:testParamsResponse"
 name="testParamsResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</definitions>
52

Basic Parsing
Parsing RPC/Literal Style

Overview This subsection describes how to parse a WSDL contract that is written in
RPC/literal style. The RPC/literal style is distinguished by the fact that it uses
multi-part messages (one part for each parameter).

Characteristics of the RPC/literal
style

A given operation, OperationName, must be defined as follows, in order to
conform to the RPC/literal style of interface:

• Input message—the message element that represents the operation’s input

message must obey the following conditions:

→ The message can contain multiple parts, where each part represents a

distinct input parameter.

→ Each part references a type (not an element).

• Output message—the message element that represents the operation’s

output message must obey the following conditions:

→ The message can contain multiple parts, where each part represents a

distinct output parameter.

→ Each part references a type (not an element).
 53

CHAPTER 3 | Parsing WSDL and XML
Sample WSDL contract Example 10 shows an example of a WSDL contract defining an operation,
testParams, that conforms to RPC/literal style.

Example 10: Operation Defined in RPC/Literal Style

<definitions ...>
 ...
 <message name="testParams">
 <part name="inInt" type="xsd:int"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 <message name="testParamsResponse">
 <part name="inoutInt" type="xsd:int"/>
 <part name="outFloat" type="xsd:float"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testParams">
 <input message="tns:testParams" name="testParams"/>
 <output message="tns:testParamsResponse"
 name="testParamsResponse"/>
 </operation>
 ...
</definitions>
54

The JWSDL Parser
The JWSDL Parser

Overview This section contains a partial summary of the JWSDL parser API. Only the
parts of the API that you would need for generating application code are
described here. For a complete description of the API, see JSR 110.

In this section This section contains the following subsections:

Overview of the WSDL Model page 56

JWSDL Parser Classes page 58
 55

http://jcp.org/en/jsr/detail?id=110

CHAPTER 3 | Parsing WSDL and XML
Overview of the WSDL Model

Overview This section provides a partial overview of the WSDL model supported by the
JWSDL parser. We focus here on the subset of the JWSDL API that is useful for
generating application code from a WSDL contract. Hence, the discussion omits
the API for parsing wsdl:binding and wsdl:service elements. The API for
parsing the wsdl:portType element, which is essential for generating
application code, is described here.

JWSDL classes required for
parsing a port type

Figure 2 provides an overview of the JWSDL classes required for parsing a
WSDL port type, showing how each JWSDL class corresponds to an element of
the original WSDL contract.

Figure 2: JWSDL Classes for Parsing a Port Type

<definitions ...>
 ...
 <message ...>
 <part ... />
 </message>
 ...
 ...
 ...
 <portType ...>
 ...
 <operation>
 <input .../>
 <output .../>
 <fault .../>
 ...
 </operation>
 ...
 </portType>
 ...
</definitions>

javax.wsdl.Definition

javax.wsdl.Message

javax.wsdl.Part

javax.wsdl.PortTy

javax.wsdl.Opera

javax.wsdl.Inp

javax.wsdl.Ou

javax.wsdl.Fa
56

The JWSDL Parser
Generally, each JWSDL class is named after the element it represents. Note,
however, that the class representing the definitions element is called
Definition, not Definitions.

Node hierarchy Each JWSDL class in the nodal hierarchy provides methods to access the WSDL
elements it contains or, in some cases, references. Figure 3 shows the most
convenient paths you can take to navigate down the node hierarchy when
parsing a WSDL port type.

Once you get down as far as a javax.wsdl.Part node, you can retrieve the
QName of the element (or type) that represents a particular operation argument.
To progress further with the parsing, you need to switch to the XMLBeans API,
which enables you to parse the XML schema encoding the argument data (see
“The XMLBeans Parser” on page 63).

Figure 3: Navigating the JWSDL Node Hierarchy

Definition

Message Part

PortType Operation

Input

Output

Fault

Message Part

Message Part
 57

CHAPTER 3 | Parsing WSDL and XML
JWSDL Parser Classes

Overview This subsection summarizes the JWSDL parser classes that are likely to prove
most useful when attempting to parse a port type in the context of generating
code.

The following JWSDL classes are summarized here:

• javax.wsdl.Definition

• javax.wsdl.PortType

• javax.wsdl.Operation

• javax.wsdl.Input

• javax.wsdl.Output

• javax.wsdl.Fault

• javax.wsdl.Message

• javax.wsdl.Part

Useful Java utility classes A number of Java utility classes are used with the JWSDL parser API (for
example, aggregate types such as java.util.List). For your convenience, a
brief overview of these utility classes is provided in Appendix A on page 73.

For the complete Javadoc API, consult the following Javadoc reference:

http://java.sun.com/j2se/1.5.0/docs/api
58

http://java.sun.com/j2se/1.5.0/docs/api

The JWSDL Parser
javax.wsdl.Definition The javax.wsdl.Definition class represents a wsdl:definition element (top
level of a WSDL contract). The most useful methods from the
javax.wsdl.Definition class are shown in Table 10.

Table 10: Methods from the javax.wsdl.Definition Class

Method Signatures Description

java.util.Map getPortTypes() Get the portType elements defined in this definition
element.

javax.wsdl.PortType getPortType(

 javax.xml.namespace.QName name

)

Get the portType element with the specified name.

java.util.Map getAllPortTypes() Get the portType elements defined in this definition
element and those in any imported definition elements
down the WSDL tree.

java.util.Map getImports() Get a map of lists containing all the imports defined
here.

java.util.Map getImports(String namespaceURI) Get the list of imports for the specified namespaceURI.

java.util.Map getNamespaces() Get all namespace associations in this definition.

String getNamespace(String prefix) Get the namespace URI associated with this prefix.

String getPrefix(String namespaceURI) Get a prefix associated with this namespace URI.

String getTargetNamespace() Get the target namespace in which the WSDL elements
are defined.
 59

CHAPTER 3 | Parsing WSDL and XML
javax.wsdl.PortType The javax.wsdl.PortType class represents a wsdl:portType element. The
most useful methods from the javax.wsdl.PortType class are shown in
Table 11.

javax.wsdl.Operation The javax.wsdl.Operation class represents a wsdl:operation element. The
most useful methods from the javax.wsdl.Operation class are shown in
Table 12.

Table 11: Methods from the javax.wsdl.PortType Class

Method Signatures Description

java.util.List getOperations() Get the operations defined in this port type.

javax.wsdl.Operation getOperation(

 String name,

 String inputName,

 String outputName

)

Get the operation with the specified name, name. If the
operation name is overloaded, you can optionally use the
inputName (the name of the operation’s input element)
and/or the outputName (the name of the operation’s
output element) to disambiguate. Otherwise, set
inputName and outputName to null.

javax.xml.namespace.QName getQName() Returns the name of the port type.

boolean isUndefined() True if this port type is not defined.

Table 12: Methods from the javax.wsdl.Operation Class

Method Signatures Description

javax.wsdl.Input getInput() Get this operation’s input element.

javax.wsdl.Output getOutput() Get this operation’s output element.

java.util.Map getFaults() Get this operation’s fault elements.

javax.wsdl.Fault getFault(String name) Get the fault with the specified name.

String getName() Returns the name of the operation.

boolean isUndefined() True if the operation is undefined.
60

The JWSDL Parser
javax.wsdl.Input The javax.wsdl.Input class represents a wsdl:input element. The most useful
methods from the javax.wsdl.Input class are shown in Table 13.

javax.wsdl.Output The javax.wsdl.Output class represents a wsdl:output element. The most
useful methods from the javax.wsdl.Output class are shown in Table 14.

javax.wsdl.Fault The javax.wsdl.Fault class represents a wsdl:fault element. The most useful
methods from the javax.wsdl.Fault class are shown in Table 15.

Table 13: Methods from the javax.wsdl.Input Class

Method Signatures Description

javax.wsdl.Message getMessage() Get the input message element.

String getName() Return the name of the input element (if any).

Table 14: Methods from the javax.wsdl.Output Class

Method Signatures Description

javax.wsdl.getMessage() Get the output message element.

String getName() Return the name of the output element (if any).

Table 15: Methods from the javax.wsdl.Fault Class

Method Signatures Description

javax.wsdl.Message getMessage() Get the fault message element.

String getName() Return the name of the fault element (if any).
 61

CHAPTER 3 | Parsing WSDL and XML
javax.wsdl.Message The javax.wsdl.Message class represents a wsdl:message element. The most
useful methods from the javax.wsdl.Message class are shown in Table 16.

javax.wsdl.Part The javax.wsdl.Part class represents a wsdl:part element. The most useful
methods from the javax.wsdl.Part class are shown in Table 17.

Table 16: Methods from the javax.wsdl.Message Class

Method Signatures Description

java.util.Map getParts() Get a map of the message’s parts, where the key is a part
name and the value is a javax.wsdl.Part object.

javax.wsdl.Part getPart(String name) Get the part specified by name.

javax.xml.namespaceQName getQName() Get the qualified name of this message element.

boolean isUndefined() True if this message element is undefined.

Table 17: Methods from the javax.wsdl.Part Class

Method Signatures Description

javax.xml.namespace.QName getElementName() Get the element node referred to by the part’s element
attribute (if any).

javax.xml.namespace.QName getTypeName() Get the type node referred to by the part’s type attribute
(if any).

String getName() Get the name of the part.
62

The XMLBeans Parser
The XMLBeans Parser

Overview This section contains a partial summary of the XMLBeans parser API, which
can be used to parse the parameter data from WSDL operations at runtime. For a
complete description of the API, see the XMLBeans 2.2.0 Javadoc.

In this section This section contains the following subsections:

Overview of the XMLBeans Parser page 64

XMLBeans Parser Classes page 65
 63

http://xmlbeans.apache.org/docs/2.2.0/reference/index.html

CHAPTER 3 | Parsing WSDL and XML
Overview of the XMLBeans Parser

Overview This section provides a partial overview of the classes in the XMLBeans parser.
The XMLBeans parser actually supports two different kinds of schema model: a
static model and a dynamic (runtime) model. The static model is created by
generating a set of Java classes that represent the elements of an XML schema.
The dynamic model, on the other hand, does not require any Java classes to be
generated and can parse any XML schema at runtime.

The section focusses on describing the dynamic (runtime) model.

XMLBeans classes needed to parse
XML schema

The following XMLBeans classes are essential for the runtime parsing of XML
data:

• org.apache.xmlbeans.SchemaTypeLoader—a class that enables you to

look up schema types and schema global elements by name.

• org.apache.xmlbeans.SchemaGlobalElement—a class that represents

elements defined directly inside the xsd:schema element (in contrast to

elements defined at a nested level in the schema, which are known as local

elements).

• org.apache.xmlbeans.SchemaType—the class that represents a schema

type.

• org.apache.xmlbeans.SchemaProperty—a class that represents a

summary of the elements that share the same name within a complex type

definition.

Note: The main difference between a global element and a local
element is that a global element can be defined to be a member of a
substitution group, whereas a local element cannot. In addition, the
elements referenced within a wsdl:part element would normally be
global elements.

Note: XML schema allows you to define an element with the same
name more than once inside a complex type declaration.
64

The XMLBeans Parser
XMLBeans Parser Classes

Overview This subsection summarizes the most important XMLBeans parser classes,
which you are likely to use while parsing an XML schema type in WSDLGen.

The following XMLBeans classes are summarized here:

• org.apache.xmlbeans.SchemaTypeLoader

• org.apache.xmlbeans.SchemaGlobalElement

• org.apache.xmlbeans.SchemaType

• org.apache.xmlbeans.SchemaProperties

SchemaTypeLoader The org.apache.xmlbeans.SchemaTypeLoader class is used to find specific
nodes in the XMLBeans parse tree. In particular, you can use it to find element
nodes and type nodes. The most useful methods from the SchemaTypeLoader
class are shown in Table 18.

Table 18: Methods from the SchemaTypeLoader Class

Method Signature Description

SchemaGlobalElement findElement(

 javax.xml.namespace.QName name

)

Returns the global element definition with the given
name, or null if none.

SchemaType findType(

 javax.xml.namespace.QName name

)

Returns the type with the given name, or null if none.
 65

CHAPTER 3 | Parsing WSDL and XML
SchemaGlobalElement The org.apache.xmlbeans.SchemaGlobalElement class represents an element
node in the XMLBeans parse tree. The most useful methods from the
SchemaGlobalElement class are shown in Table 19.

Table 19: Methods from the SchemaGlobalElement Class

Method Signature Description

javax.xml.namespace.QName getName() Returns the form-unqualified-or-qualified name.

SchemaType getType() Returns the type.

java.math.BigInteger getMinOccurs() Returns the minOccurs value for this particle.

java.math.BigInteger getMaxOccurs() Returns the maxOccurs value for this particle, or null if it
is unbounded.

boolean isNillable() True if nillable; always false for attributes.

String getSourceName() The name of the source file in which this component was
defined (if known).
66

The XMLBeans Parser
SchemaType The org.apache.xmlbeans.SchemaType class represents a type node in the
XMLBeans parse tree. The most useful methods from the SchemaType class are
shown in Table 20.

Table 20: Methods from the SchemaType Class

Method Signature Description

SchemaStringEnumEntry enumEntryForString(

 String s

)

Returns the string enum entry corresponding to the given
enumerated string, or null if there is no match or this
type is not a string enumeration.

StringEnumAbstractBase enumForInt(int i) Returns the string enum value corresponding to the
given enumerated string, or null if there is no match or
this type is not a string enumeration.

StringEnumAbstractBase enumForString(String s) Returns the string enum value corresponding to the
given enumerated string, or null if there is no match or
this type is not a string enumeration.

SchemaType[] getAnonymousTypes() The array of inner (anonymous) types defined within this
type.

int getAnonymousUnionMemberOrdinal() For anonymous types defined inside a union only: gets
the integer indicating the declaration order of this type
within the outer union type, or zero if this is not
applicable.

SchemaAttributeModel getAttributeModel() Returns the attribute model for this complex type (with
simple or complex content).

SchemaProperty[] getAttributeProperties() Returns all the SchemaProperties corresponding to
attributes.

SchemaProperty getAttributeProperty(

 QName attrName

)

Returns a SchemaProperty corresponding to an attribute
within this complex type by looking up the attribute
name.

SchemaType getAttributeType(

 QName eltName,

 SchemaTypeLoader wildcardTypeLoader

)

Returns the type of an attribute based on the attribute
name and the type system within which (wildcard)
names are resolved.
 67

CHAPTER 3 | Parsing WSDL and XML
QName getAttributeTypeAttributeName() Returns the attribute qname if this is a attribute type, or
null otherwise.

SchemaType getBaseEnumType() If this is a string enumeration, returns the most basic
base schema type that this enuemration is based on.

SchemaType getBaseType() Returns base restriction or extension type.

SchemaType getContentBasedOnType() For complex types with simple content returns the base
type for this type's content.

SchemaParticle getContentModel() Returns the complex content model for this complex
type (with complex content).

int getContentType() Returns EMPTY_CONTENT, SIMPLE_CONTENT,
ELEMENT_CONTENT, or MIXED_CONTENT for complex
types.

int getDecimalSize() For atomic numeric restrictions of decimal only: the
numeric size category.

int getDerivationType() Returns an integer for the derivation type, either
DT_EXTENSION, DT_RESTRICTION, DT_NOT_DERIVED.

SchemaProperty[] getDerivedProperties() Returns the SchemaProperties defined by this complex
type, exclusive of the base type (if any).

SchemaProperty[] getElementProperties() Returns all the SchemaProperties corresponding to
elements.

SchemaProperty getElementProperty(

 QName eltName

)

Returns a SchemaProperty corresponding to an element
within this complex type by looking up the element
name.

SchemaType getElementType(

 QName eltName,

 QName xsiType,

 SchemaTypeLoader wildcardTypeLoader

)

Returns the type of a child element based on the element
name and an xsi:type attribute (and the type system
within which names are resolved).

XmlAnySimpleType[] getEnumerationValues() Returns the array of valid objects from the enumeration
facet, null if no enumeration defined.

Table 20: Methods from the SchemaType Class (Continued)

Method Signature Description
68

The XMLBeans Parser
SchemaType getListItemType() For list types only: get the item type.

QName getName() The name used to describe the type in the schema.

SchemaType getPrimitiveType() For atomic types only: get the primitive type underlying
this one.

SchemaProperty[] getProperties() For atomic types only: get the primitive type underlying
this one.

int getSimpleVariety() Returns whether the simple type is ATOMIC, UNION, or
LIST.

SchemaStringEnumEntry[] getStringEnumEntries() Returns the array of SchemaStringEnumEntries for this
type: this array includes information about the java
constant names used for each string enum entry.

SchemaTypeSystem getTypeSystem() Returns the SchemaTypeLoader in which this type was
defined.

SchemaType getUnionCommonBaseType() For union types only: get the most specific common base
type of the constituent member types.

SchemaType[] getUnionConstituentTypes() For union types only: get the constituent member types.

SchemaType[] getUnionMemberTypes() For union types only: get the shallow member types.

SchemaType[] getUnionSubTypes() For union types only: gets the full tree of member types.

boolean hasAllContent() True if the complex content model for this complex type
is an all group.

boolean hasAttributeWildcards() True if this type permits wildcard attributes.

boolean hasElementWildcards() True if this type permits element wildcards.

boolean hasPatternFacet() True if there are regular expression pattern facets.

boolean hasStringEnumValues() True if this is a string enum where an integer is assigned
to each enumerated value.

boolean isAnonymousType() True if the Xsd type is anonymous (i.e., not top-level).

boolean isAttributeType() True if this is a attribute type.

Table 20: Methods from the SchemaType Class (Continued)

Method Signature Description
 69

CHAPTER 3 | Parsing WSDL and XML
boolean isBounded() True if bounded.

boolean isBuiltinType() True for any of the 40+ built-in types.

boolean isNoType() True for the type object that represents a the absence of a
determined type.

boolean isNumeric() True if numeric.

boolean isPrimitiveType() True for any of the 20 primitive types (plus
anySimpleType).

boolean isSimpleType() True for the anySimpleType and any
restrictions/unions/lists.

boolean isURType() True for anyType and anySimpleType.

boolean matchPatternFacet(String s) True if the given string matches the pattern facets.

int ordered() True if ordered.

QNameSet qnameSetForWildcardAttributes() Returns a QNameSet of attributes that may exist in
wildcard buchets and are not explicitly defined in this
schema type.

QNameSet qnameSetForWildcardElements() Returns a QNameSet of elements that may exist in
wildcard buchets and are not explicitly defined in this
schema type.

Table 20: Methods from the SchemaType Class (Continued)

Method Signature Description
70

The XMLBeans Parser
SchemaProperties The org.apache.xmlbeans.SchemaProperties class represents a summary of
the element definitions that share the same name within a complex type
definition. Rather than having to look up the properties for all of the different
element fields that have the same name, it is usually simpler to obtain the
relevant SchemaProperties object. The SchemaProperties object attempts to
unify the properties of the same-name elements in a consistent manner.

The most useful methods from the SchemaProperties class are shown in
Table 20.

Table 21: Methods from the SchemaProperties Class

Method Signature Description

SchemaType getContainerType() The type within which this property appears.

String getDefaultText() Returns the default or fixed value, if it is consistent.

XmlAnySimpleType getDefaultValue() Returns the default or fixed value as a strongly-typed
value, if it is consistent.

BigInteger getMaxOccurs() Returns a summarized maximum occurrence number.

BigInteger getMinOccurs() Returns a summarized minimum occurrence number.

QName getName() The name of this element or attribute.

SchemaType getType() The schema type for the property.

int hasDefault() Returns NEVER, VARIABLE, or CONSISTENTLY defaulted,
depending on the defaults present in the elements in this
property.

int hasFixed() Returns NEVER, VARIABLE, or CONSISTENTLY fixed,
depending on the fixed constraints present in the
elements in this property.

int hasNillable() Returns NEVER, VARIABLE, or CONSISTENTLY nillable,
depending on the nillability of the elements in this
property.

boolean isAttribute() True for attributes.

boolean isReadOnly() True for read-only properties.
 71

CHAPTER 3 | Parsing WSDL and XML
72

APPENDIX A

Java Utility Classes
For you convenience, this appendix summarizes some standard
Java utility classes that are used extensively throughout the
WSDLGen scripts.

In this appendix This appendix discusses the following topics:

Useful Java Utility Classes page 74
 73

APPENDIX A | Java Utility Classes
Useful Java Utility Classes

Overview There are a few Java utility classes that are extensively used in the WSDLGen
scripts, as follows:

• javax.xml.namespace.QName

• java.util.Map

• java.util.Collection

• java.util.Iterator

• java.util.List

• java.util.ListIterator

For your convenience, the API for these utility classes is summarized here. This
summary does not include all of the methods in these classes, however. For the
complete Java API, consult the Javadoc reference on Sun’s Web site:

http://java.sun.com/j2se/1.5.0/docs/api/

javax.xml.namespace.QName The javax.xml.namespace.QName class includes the methods shown in
Table 22.

Table 22: Some Methods and Constructors from QName

Method/Constructor Signature Description

QName(String localPart) Construct a QName that has no namespace.

QName(String namespaceURI, String localPart) Construct a QName consisting of a namespace URI and
a local part.

QName(String namespaceURI, String localPart,

String Prefix)

Constructor with namespace prefix (the prefix is not
very important in the context of WSDL parsing).

String getLocalPart() Get the local part of the QName.

String getNamespaceURI Get the namespace URI of the QName.

String getPrefix Get the prefix (rarely needed).

String toString() Return "{"+namespaceURI+"}"+localPart.
74

http://java.sun.com/j2se/1.5.0/docs/api/

Useful Java Utility Classes
java.util.Map The java.util.Map<K,V> class includes the methods shown in Table 23.

java.util.Collection The java.util.Collection<E> class includes the methods shown in Table 24.

java.util.Iterator The java.util.Iterator<E> class includes the methods shown in Table 25.

Table 23: Some Methods from java.util.Map

Method Signature Description

put(K key, V value) Add a new entry to the map.

V get(Object key) Use the key to look up a value in the map.

java.util.Collection<V> values() If you want to iterate over all of the values in the map, it
is necessary to convert it to a collection first.

boolean isEmpty() True, if the map is empty.

int size() Return the number of entries in the map.

Table 24: Some Methods from java.util.Collection

Method Signature Description

java.util.Iterator<E> iterator() Return an iterator, which can be used to iterate over all
members of the collection.

Table 25: Some Methods from java.util.Iterator

Method Signature Description

boolean hasNext() True, if a call to next() would return another element in
the collection.

E next() Return the next element in the collection and increment
the iterator index.
 75

APPENDIX A | Java Utility Classes
java.util.List The java.util.List<E> class includes the methods shown in Table 26.

java.util.ListIterator The java.util.ListIterator<E> class, which is a bidirectional iterator,
includes the methods shown in Table 27.

Table 26: Some Methods from java.util.List

Method Signature Description

Object[] toArray() Convert the list to an array.

java.util.ListIterator listIterator() Return an iterator, which you can use to iterate over all
of the list members.

boolean isEmpty() True, if the list is empty.

int size() Return the number of list members.

Table 27: Some Methods from java.util.ListIterator

Method Signature Description

boolean hasNext() True, if a call to next() would return another list
member.

E next() Return the next member of the list and increment the
iterator index.

boolean hasPrevious() True, if a call to previous() would return another list
member.

E previous() Return the previous member of the list and decrement
the iterator index.
76

Index

A
ant build file

generating 17
architecture

of WSDLGen 12
array 32, 34
artixInstall property 16

B
bilingual file

jsb file suffix 24
bilingual files

and wsdlgen utility 15
closeOutputFile() method 27
definition 24
escape characters 28
including 36
indentation level 37
openOutputFile() method 27
output text delimiters 28
overview 26

bindingName property 16, 31

C
character literals

dollar and at sign 30
closeOutputFile() method 27
Collection class 75
com.iona.wsdlgen.common.ParametersList class 32
configuration

and wsdlgen utility 14
smart loader path 36

custom templates
writing 24

D
Definition class 49, 59
delimiters

output text, in bilingual files 28
DIRECTION_IN 35
DIRECTION_OUT 35
document/literal wrapped style

parsing 51

E
escape character

dollar sign 29
escape characters

at sign 30
escaping the 30
in bilingual files 28

F
Fault class 61
fault handling

faults() method 35
getPartsAndFaults() method 35

faults() method 35

G
getDirection() method 35
getPart() method 35
getPartsAndFaults() method 35

I
including bilingual files 36
indentation level 37
Input class 61
intfName variable 31
Iterator class 75
 77

INDEX
J
java.util.Collection class 75
java.util.Iterator class 75
java.util.List class 76
java.util.ListIterator class 76
java.util.Map class 75
javaIntfName variable 31
javaModel variable 31
javaPackage variable 31
JavaScript

bilingual files 26
plug-in 13
predefined objects 24
properties, specifying on command line 14
Rhino implementation of 47

javaServiceName variable 32
javax.wsdl.Definition class 49, 59
javax.wsdl.Fault class 61
javax.wsdl.Input class 61
javax.wsdl.Message class 62
javax.wsdl.Operation class 32, 60
javax.wsdl.Output class 61
javax.wsdl.Part class 57, 62
javax.wsdl.PortType class 60
javax.xml.namespace.QName class 74
jaxwsIntfName variable 32
jaxwsServiceName variable 32
jsb file suffix 24
jsModel object 32
JWSDL

in WSDLGen architecture 12
JWSDL parser

API 55

L
line escape 30
List class 76
ListIterator class 76

M
Map class 75

Message class 62
message direction

DIRECTION_IN 35
DIRECTION_OUT 35

message URL http
//www.ecma-international.org/publications/

standards/Ecma-262.htm 13

O
openOutputFile() method 27
Operation class 60
org.apache.xmlbeans.SchemaGlobalElement class 66
org.apache.xmlbeans.SchemaProperties class 71
org.apache.xmlbeans.SchemaType class 67
org.apache.xmlbeans.SchemaTypeLoader class 50, 65
Output class 61

P
parametersList object 32, 35
parser objects 34
Part class 57, 62
path

for smart loader utility 36
plug-ins

JavaScript 13
portName property 16, 32
PortType class 60
portType property 16, 32
predefined objects 24

list of 31
parser objects 34

Q
QName class 74

R
randomizer object 33
Rhino 47
RPC/literal style

parsing 53
78

INDEX
S
SchemaGlobalElement class 66
schemaModel object 33

and XMLBeans parser 49
SchemaProperties class 71
SchemaType class 67
SchemaTypeLoader class 50, 65
serviceName property 16, 33
smartLoad() method 36
smart loader

configuring the path 36
smartLoader utility 33
smart loader utility

how to use 36
stub code

generating 17

T
templates

in WSDLGen architecture 13
tns variable 33

V
variable escape 29

W
WSDL4J 46
wsdlFile variable 33
wsdlgen utility

artixInstall property 16
bindingName property 16
portName property 16
portType property 16
serviceName property 16
syntax 14

wsdlModel object 33
and JWSDL parser 49

X
XMLBeans 46

in WSDLGen architecture 12
 79

INDEX
80

	List of Figures
	Preface
	Using WSDLGen
	WSDLGen Architecture
	Generating Code with the wsdlgen Utility
	JAX-WS Templates
	WSDLGen Configuration File
	Unsupported XML Schema Types

	Developing Basic Templates
	Writing Custom Templates
	Bilingual Files
	Predefined Objects
	Generating JAX-WS Java Code

	Parsing WSDL and XML
	Parser Overview
	Basic Parsing
	The WSDL and XML Schema Models
	Parsing Document/Literal Wrapped Style
	Parsing RPC/Literal Style

	The JWSDL Parser
	Overview of the WSDL Model
	JWSDL Parser Classes

	The XMLBeans Parser
	Overview of the XMLBeans Parser
	XMLBeans Parser Classes

	Java Utility Classes
	Useful Java Utility Classes

	Index

