
Day-to-Day Usage of AccuRev 4.7

This document presents enough information for the individual user to work with AccuRev
Version 4.7 on a day-to-day basis. We provide a brief overview and discuss a handful of
commands. It’s a short document, because AccuRev is an elegantly simple configuration
management system.

Note: words with a double-underscore are defined in the AccuRev Glossary, in the AccuRev
Concepts Manual.

The AccuRev Usage Model
AccuRev’s flexibility makes it easy to use for a variety of development scenarios. But like every
software system, AccuRev has usage models that were foremost in the minds of its architects.
This section describes the most common usage model.

AccuRev is a configuration management (CM) system, designed for use by a team of people
(users) who are developing a set of files. This set of files might contain source code in any
programming language, images, technical and marketing documents, audio/video tracks, etc. The
files — and the directories in which the files reside — are said to be “version-controlled” or
“under source control”.

For maximum productivity, the team’s users must be able to work independently of each other —
sometimes for just a few hours or days, other times for many weeks. Accordingly, each user has
his own private copy of all the version-controlled files. The private copies are stored on the user’s
own machine (or perhaps in the user’s private area on a public machine), in a directory tree called
a workspace. We can picture the independent workspaces for a three-user team as follows:

This set of users’ workspaces uses the convention of having like names, suffixed with the
individual usernames. AccuRev enforces this username-suffix convention. widget_dvt might
mean “development work on the Widget product”; john, mary, and derek would be the users’
operating system login names.

From AccuRev’s perspective, development work in this set of workspaces is a continual back-
and-forth between “getting in sync” and “getting out of sync”:

• Initially, the workspaces are completely synchronized: they all have copies of the same set of
version-controlled files.

• The workspaces lose synchronization as each user makes changes to some of the files.

• Periodically, users share their changes with each other. When john incorporates some or all of
mary’s changes into his workspace, their two workspaces become more closely (perhaps
completely) synchronized.
Day-to-Day Usage of AccuRev 1

You might assume that the
workspace synchronization process
involves the direct transfer of data
from one workspace to another.
But this is not the way AccuRev
organizes the work environment.
Instead of transferring data directly
between private areas (that is,
between users’ workspaces),
AccuRev organizes the data
transfer into two steps:

1. One user makes his changes
public — available to all the
other members of his team.
This step is called promotion.

2. Whenever they wish, other team members incorporate the public changes into their own
workspaces. This step is called updating.

The first step involves a public data area, called a stream. AccuRev has several kinds of streams;
the kind that we’re discussing here is called a backing stream. We’ll see below how the data in
this public stream “is in back of” or “provides a backstop for” all the private workspaces of the
team members.

Change and Synchronization: The Four Basic Commands
With the usage model described above, you’ll be able to accomplish most of your AccuRev work
with four simple commands: Keep, Promote, Update, and Merge. We describe these commands
in the following sections. Each section has a subsection titled “The Fine Print”, in which we
present additional usage details, notes on the way AccuRev implements certain features, and other
tidbits of interest. You might want to skip over these sections on your first reading of this material.

Keep: Preserving Changes in Your Private Workspace
An AccuRev workspace is just a normal directory tree, in which you make changes to version-
controlled files. You can work with the files using text editors, build and test tools, IDEs, etc., just
as if the files weren’t version-controlled at all. For example, you might edit a source file and
invoke the editor’s “Save” command a dozen times over the course of an hour or two. These
operations don’t involve AccuRev at all — they simply have the operating system change the
contents and the timestamp of the file in your workspace.

You don’t need to perform a “check out” operation or otherwise get permission from AccuRev
before editing a file in your workspace. (Some legacy CM systems do impose such a regimen;
AccuRev can be configured to require checkouts, too.)
Day-to-Day Usage of AccuRev 2

Every so often, you want AccuRev to preserve
the current contents of the file as an official new
version of the file. You accomplish this using
AccuRev’s Keep command. This figure shows
how to invoke the Keep command from a file’s
context (right-click) menu in the AccuRev File
Browser tool, which has a Windows Explorer-
like interface. You can also invoke Keep with

the toolbar button.

You can continue modifying the file, then using
Keep to preserve the latest changes, as often as
you like. Other team members won’t complain
about “thrashing”, because these new versions
stay within your workspace; without affecting
any other user’s workspace.

AccuRev retains all the versions that you Keep. This makes it possible for you to roll back to any
previous version you created.

Several other operations are similar to Keep, in that they create a new version of a file in your
workspace, without affecting any other user’s workspace. The most important are:

• Rename/Move: You can rename a file or move it to a different directory (or both), using
AccuRev commands. Other users will continue to see the file at its original pathname in their
workspaces.

• Defunct: You can remove a file from your workspace with the AccuRev command Defunct.
Other users will continue to see the file in their workspaces.

The Fine Print

We said above that AccuRev “retains all the versions that you Keep”. But where? Each time you
Keep a file, its current contents are copied to the AccuRev repository, located on the machine
where the AccuRev Server runs. You don’t need to care about the name and precise location of
this copy. Each version you create has a version-ID, such as widget_dvt_john/12 (“the 12th
version of this file created in workspace widget_dvt_john”).

AccuRev keeps track of the status of each file in a workspace. After you Keep a file, the Status
column in the AccuRev File Browser contains the indicator (kept). It also contains the indicator
(member), meaning that the file belongs to the set of files you’re actively working on. (See
Active and Inactive Files below.) The Version column displays the version-ID.
Day-to-Day Usage of AccuRev 3

A change to the data within a file, recorded by Keep, is termed a content change; the change made
by Rename/Move or Defunct is termed a namespace change. (Many CM systems don’t handle
namespace changes at all, or have very limited capabilities in this area.) As noted above, AccuRev
saves a new copy of the file in the repository whenever you make a content change. But it doesn’t
need to copy the file when you make a namespace change; rather, the AccuRev Server just records
the change in its database.

To perform version control on directories, AccuRev only needs to keep track of namespace
changes — renaming, moving, or deleting a directory. Unlike some legacy CM systems, AccuRev
doesn’t need to record a new directory version when you make a content change — for example,
adding a new file to the directory.

Promote: Making Your Private Changes Public
At some point, after you’ve used Keep to create one
or more new, private versions of a file in your
workspace, you typically want to share the changes
you’ve made with the other team members. To make
your (most recent) new version “available to the
public”, you promote it. This figure shows how to
invoke the Promote command from a file’s context
(right-click) menu in the File Browser. You can also

invoke Promote with the toolbar button.

Promoting your new version of a file does not
automatically “push” it into the workspaces of the
other team members. When a user decides that he’s
ready to incorporate versions of files that other team
members have Promoted, he “pulls” them into his
workspace with the Update command (details
below).

Streams

The Promote
command sends data
to — and the Update
command gets data
from — a
sophisticated
AccuRev data
structure called a
stream. The stream
acts as a “central data
exchange” for the set
of workspaces used by a development team. A stream also has a bit of “traffic cop” built in,
Day-to-Day Usage of AccuRev 4

preventing team members’ efforts from colliding and providing other mechanisms to control the
flow of data.

A stream is not, as you might initially suppose, a set of copies of promoted files. Rather, it’s more
like a list of version-IDs.

• the 4th version created in workspace talon_dvt_akp of file command.c

• the 7th version created in workspace talon_dvt_mary of file talon.c

• ... etc.

In CM-speak, a stream is a configuration of a collection of version-controlled files. The term
“stream” is apt, because it implies the ongoing change of a development project. Each time a user
promotes a version of file brass.c, the stream configuration changes for that file — for example,
from “the 5th version created in workspace talon_dvt_derek” to “the 7th version created in
workspace talon_dvt_mary”.

Promotion and Parallel Development

Sometimes, AccuRev doesn’t allow you to promote a file to the development team’s stream,
because another team member has already promoted the same file (after modifying it and
performing a Keep on it). AccuRev is preventing you from overwriting your colleague’s change
to the team’s shared stream. This situation is called an overlap: two users working at the same
time on the same goal, to create the stream’s next version of a particular file.

Before you can promote your changes to the stream, you must first perform a merge on the file
that has an overlap (details below).

Active and Inactive Files

As you work with a file using the commands described above, AccuRev considers the file to
alternate between being active in your workspace and inactive:

• The file is initially inactive.

• When you create a new version in your workspace, using Keep, Rename/Move, or Defunct,
the file becomes active.

• When you make your private version public, using the Promote command, the file becomes
inactive again.

Later, you might restart this cycle, making the file active again by creating another new version of
it. Alternatively, an update of your workspace might overwrite your inactive file with a newer
version that another team member promoted.

AccuRev keeps track of the set of active files in your workspace. Officially, this set is called the
default group. You might find it easier to think of it as the workspace’s “active group” or its
“active set”.
Day-to-Day Usage of AccuRev 5

The Fine Print

The Promote command doesn’t copy the promoted version to the AccuRev repository. It doesn’t
need to. Promotion just gives an additional name to a version that already exists in the repository
— having been placed there by a previous Keep command (or Rename/Move or Defunct). For
example, promoting “the 7th version created in workspace talon_dvt_mary” might give that
version the additional name “the 3rd version promoted to stream talon_dvt”.

Just to emphasize the previous point: a stream does not reside in the file system, but in the
database managed by the AccuRev Server. Promoting a version to a stream does not create a copy
of a file; it just creates an additional file-reference in the Server database.

It might seem strange at first that deleting a file with the Defunct command makes the file active.
The File Browser continues to list the file — with a (defunct) status — even though the file has
been removed from your workspace’s disk storage. This design feature enables AccuRev to
implement the file-deletion operation using the same private-change/public-change scheme as all
other changes.

We’ve discussed the stream behind a set of workspaces. But a typical development project has
many streams, organized into a hierarchy. Promoting a version to a higher-level stream from a
lower-level stream makes that version “even more public” — for example, available to users
outside your local development team.

Update: Incorporating Others’ Changes into Your Workspace
As users work independently of each other, the contents of their workspaces increasingly diverge.
Typically, some of the differences between workspaces are inconsistencies. For example, changes
that John makes in a report-library routine might cause errors in the report program that Mary’s
writing. To minimize the time and effort required to resolve inconsistencies during the
“integration” phase of a project, it makes sense to have users synchronize their workspaces on a
regular basis.

Update
command

With AccuRev, synchronization does not mean
incorporating data into your workspace directly from
one or more other workspaces. Instead,
synchronization involves copying data into the
workspace from the stream to which all team
members Promote their changes. This operation is
performed by the Update command. This figure

shows the Update toolbar button. You can also invoke this command as File > Update from
the main menu.

Note: the stream’s role as a provider of data — through Updates — to a set of workspaces
motivates the term backing stream. Think of restocking a store’s shelves with merchandise
retrieved from “the back room”.
Day-to-Day Usage of AccuRev 6

So an update operation on your workspace copies versions of certain files from the backing
stream to the workspace, overwriting/replacing the files currently in the workspace. But which
files? Update changes a file if (1) there is a newer version in the backing stream, and (2) the file is
not currently active in your workspace.

Update won’t overwrite an active file, even if there’s a new version of it in the backing stream.
No matter how good someone else’s code is, you don’t want his changes to wipe out the changes
that you’ve been making! This situation is another instance of an overlap, which we described in
the Promote section above. (You can encounter an overlap both (1) if you’re trying to make your
private changes public (promotion), or (2) if you’re trying to bring already-public changes into
your private workspace (updating).) In all such situations, AccuRev resolves the overlap situation
with a merge operation (details below).

Update handles namespace changes as well as content changes. Thus, if your colleague renamed
a file and promoted the change, an update will cause the file to be renamed in your workspace.
And if your colleague removed a file (Defunct command), an update will cause the file to
disappear from your workspace.

The Fine Print

Here’s how AccuRev prevents an update from “clobbering” your changes. The first thing Update
does is to analyze your workspace, determining whether each version-controlled file is “active” or
“inactive”. Initially, all the files in a workspace are inactive — each one is a copy of some version
in the repository. (For each version-controlled file, AccuRev keeps track of which particular
version.)

A file is deemed to be active in your workspace if you’ve created a new version of it, using the
Keep, Rename/Move, or Defunct command. (A couple of additional commands “activate” a file;
one of them is discussed below.) When Update copies versions from the repository into your
workspace, it skips over all such active files.

Note: Update can tell if you’ve modified a file but have not yet stored the changes in the
repository as a new Keep version. It uses timestamps and checksums to determine this. The
presence of such files prevents the update from proceeding if updating would “clobber” one or
more of them with the backing-stream version. You can use the Anchor command to activate
such files, enabling Update to do its work.

Merge: When Changes Would Collide ...
The preceding sections, on the Promote and Update commands, both discuss the situation in
which two users concurrently work on the same file. Their changes to the file are said to overlap.
Both Promote and Update decline to process a file with overlap status, because doing so would
cause one user’s changes to overwrite the other’s changes.
Day-to-Day Usage of AccuRev 7

For example:

• Team members John and Mary both Keep one or more new private versions of brass.c in their
respective workspaces.

• Mary Promotes her latest new version of brass.h to the backing stream.

• At this point, AccuRev will decline to do either of the following:

• Promote John’s version of brass.h to the backing stream.

• Overwrite John’s copy of brass.h during an update. (The Update command skips over
this file, but continues its work on other files.)

To enable either a promotion or an update of brass.h, John must incorporate, or merge, the
version in the backing stream — which contains Mary’s changes — into his own copy of the file.
The Merge command is essentially a fancy text editor, which combines the contents of two
versions of a text file. The resulting “merged version” replaces the file in John’s workspace.

This figure shows how to invoke the Merge
command from a file’s context (right-click) menu in
the File Browser. You can also invoke Merge with

the toolbar button.

Often, a merge operation is unambiguous, and so can
be performed automatically. For example, suppose
Mary’s changes to file brass.h all occur in lines
1–50, and all of John’s changes occur in lines
125–140. In this case, merging the two versions
involves replacing some or all of John’s first 50 lines
with Mary’s. Now, the edited version of brass.h in
John’s workspace contains both users’ changes.

Note: we don’t claim that the two sets of changes
are semantically consistent with each other.
That’s what the build-and-test cycle is for!

If both John and Mary have made changes to the same part of the file — say, lines 85–87 — then
John must decide how to resolve this conflict. The graphical Merge tool makes this easy:
Day-to-Day Usage of AccuRev 8

merged
version

contributor from
other source

contributor from
workspace

common ancestor
of two other
contributors

After performing a merge, AccuRev automatically Keeps the merged version to preserve the
results of the merge operation. You can then Promote the merged version to the backing stream.
After that, other team members can use Update — or perhaps Merge — to bring all the changes
into their workspaces.

The Fine Print

The graphical Merge tool performs a “3-way merge”, which uses the common ancestor of the two
versions being merged. This algorithm helps to automate the merge operation, often completely
eliminating the need for human intervention. AccuRev performs merge operations on text files
only, not on binary files.

AccuRev keeps track of all merge operations. This greatly simplifies subsequent merge operations
on files that have been merged previously: you don’t need to resolve the same conflicts over and
over again.

The most common overlap situation involves AccuRev’s preventing you from promoting a file,
because someone else “got there first” in creating a version in the backing stream. AccuRev can
Day-to-Day Usage of AccuRev 9

also detect deep overlaps, in which another user “got there first” in creating a version in the parent
of the backing stream, or in other higher-level streams.

Learning More about AccuRev
Armed with the four commands Keep, Promote, Update, and Merge, you’ll be able to work
effectively in team parallel development environment. To make full use of AccuRev’s
configuration management capabilities, you’ll need to dig a bit deeper. But no matter what your
SCM challenges are, we think you’ll find that AccuRev meets them with an architecture and user
interface that are intuitive and easy to learn.
Day-to-Day Usage of AccuRev 10

	Day-to-Day Usage of AccuRev 4.7
	The AccuRev Usage Model
	Change and Synchronization: The Four Basic Commands
	Keep: Preserving Changes in Your Private Workspace
	The Fine Print

	Promote: Making Your Private Changes Public
	Streams
	Promotion and Parallel Development
	Active and Inactive Files
	The Fine Print

	Update: Incorporating Others’ Changes into Your Workspace
	The Fine Print

	Merge: When Changes Would Collide ...
	The Fine Print

	Learning More about AccuRev

