Legal Notices

Copyright Notice

© Copyright 2001 - 2020 Micro Focus or one of its affiliates

Confidential computer software. Valid license from Micro Focus required for possession, use or copying. The information contained herein is subject to change without notice.

The only warranties for Micro Focus products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained herein.

No portion of this product's documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose other than the purchaser's internal use, without the express written permission of Micro Focus.

Notwithstanding anything to the contrary in your license agreement for Micro Focus ArcSight software, you may reverse engineer and modify certain open source components of the software in accordance with the license terms for those particular components. See below for the applicable terms.

U.S. Governmental Rights. For purposes of your license to Micro Focus ArcSight software, "commercial computer software" is defined at FAR 2.101. If acquired by or on behalf of a civilian agency, the U.S. Government acquires this commercial computer software documentation and other technical data subject to the terms of the Agreement as specified in 48 C.F.R. 12.212 (Computer Software) and 12.211 (Technical Data) of the Federal Acquisition Regulation ("FAR") and its successors. If acquired by or on behalf of any agency within the Department of Defense ("DOD"), the U.S. Government acquires this commercial computer software and/or commercial computer software documentation subject to the terms of the Agreement as specified in 48 C.F.R. 227.7202-3 of the DOD FAR Supplement ("DFARS") and its successors. This U.S. Government Rights Section 18.11 is in lieu of, and supersedes, any other FAR, DFARS, or other clause or provision that addresses government rights in computer software or technical data.

Contents

Technical Requirements for the ArcSight Platform	5
Additional Documentation	5
Contact Information	6
Software Requirements	7
Supported Data Types and SmartConnectors/FlexConnector Types	8
Additional Considerations	8
Hardware Requirements and Tuning Guidelines	10
Command Center for ESM Hardware Requirements and Tuning Guidelines	11
System Sizing	11
Disk Space	11
Intelligence Hardware Requirements and Tuning Guidelines	12
Intelligence Workload	
Database Cluster	12
Hardware Requirements	12
Hardware Specification Metrics	13
Intelligence System Sizing	13
System Sizing	14
Non-collocated Database Sizing	14
Intelligence Processing Requirements	15
5000 EPS, Non-collocated Database Cluster	15
25000 EPS, Non-collocated Database Cluster	16
Transformation Hub Processing Requirements	17
5000 EPS, Non-collocated Database Cluster	17
25000 EPS, Non-collocated Database Cluster	18
Fusion Processing Requirements	18
Recon Processing Requirements	19
Elasticsearch and Database Storage Requirements	19
Transformation Hub Storage Requirements	20
Recon Hardware Requirements and Tuning Guidelines	21
Recon Small Workload System Sizing	21
Small Workload Distribution	
Small Workload System Sizing	22
Small Workload Database Resource Pools Tuning	22

Small Workload Transformation Hub Tuning	23
Recon Medium Workload System Sizing	23
Medium Workload Distribution	24
Medium Workload System Sizing	24
Medium Workload Database Resource Pools Tuning	24
Medium Workload Transformation Hub Tuning	25
Recon Large Workload System Sizing	
Large Workload Distribution	
Large Workload System Sizing	
Large Workload Database Resource Pools Tuning	
Large Workload Transformation Hub Tuning	27
SOAR Hardware Requirements and Tuning Guidelines	
Small Workload System Sizing	
Medium Workload System Sizing	29
Transformation Hub Hardware Requirements and Tuning Guidelines	
Network File System Options	31
Required File Systems	31
NFS Minimum Directory Sizes	
Firewall Ports	
ArcMC	33
CDF Vault	
CDF Management Portal	34
Database	34
Intelligence	35
Kubernetes	
NFS	
SmartConnector	37
SOAR	38
Transformation Hub	
Guidance for a Multi-node, Multi-product Deployment	
Multiple Master and Worker Nodes for High Availability	

Single Master, Multiple Worker Nodes	43
Master Co-located with Worker Node	46
Send Documentation Feedback	48

Technical Requirements for the ArcSight Platform

Wednesday, March 24, 2021

This Technical Requirements document describes the requirements and guidelines for the ArcSight Platform 20.11. The platform enables you to deploy a combination of security, user, and entity solutions into a single cluster within the Container Deployment Foundation (CDF) environment. The core services for this CDF environment, including the Dashboard and user management, are provided by a common layer called Fusion.

Product	This Release	Upgrade from Version
ArcSight Command Center for Enterprise Security Manager	7.4.0	7.3.0
ArcSight Intelligence	6.2.0	Interset 6.1.0
ArcSight Recon	1.1.0	1.0.0
ArcSight SOAR	3.0.0	None
Transformation Hub	3.4.0	3.3.0

Micro Focus recommends the tested platforms listed in this document.

Customers running on platforms not provided in this document or with untested configurations will be supported until the point Micro Focus determines the root cause is the untested platform or configuration. According to the standard defect-handling policies, Micro Focus will prioritize and fix issues we can reproduce on the tested platforms.

Additional Documentation

The ArcSight Platform documentation library includes the following resources.

- Administrator's Guide for ArcSight Platform, which contains installation, user, and deployment guidance for the ArcSight software products and components that you deploy in the containerized platform.
- User's Guide for Fusion 1.2 in the ArcSight Platform, which is embedded in the product to provide both context-sensitive Help and conceptual information.
- ArcSight Platform 20.11 Release Notes, which provides an overview of the products deployed

in this suite and their latest features or updates.

• Product Support Lifecycle Policy, which provides information on product support policies.

Contact Information

We want to hear your comments and suggestions about this book and the other documentation included with this product. You can use the comment on this topic link at the bottom of each page of the online documentation, or send an email to Documentation-Feedback@microfocus.com.

For specific product issues, contact Micro Focus Customer Care.

Software Requirements

This section lists the software needed to install and run the ArcSight Platform.

Category	Minimum Requirement
 Operating systems (minimal installation) 	For CDF: • Red Hat Enterprise Linux 7.7 (x86, x64) • Red Hat Enterprise Linux 7.8 (x86, x64) • Red Hat Enterprise Linux 8.1 (x86, x64) • CentOS 8.1 (x86, x64) • CentOS 7.8 (x86, x64) • CentOS 7.7 (x86, x64) For the database: • Red Hat Enterprise Linux 7.8 (x86, x64) • Red Hat Enterprise Linux 7.7 (x86, x64) • CentOS 7.8 (x86, x64) • CentOS 7.7 (x86, x64)
File systems	One of the following: • EXT3 • EXT4 (recommended) • Logical Volume Manager (LVM) • XFS
Data Collection	SmartConnector 7.14 or later
Browser	 Google Chrome Mozilla Firefox Browsers should not use a proxy to access Container Deployment Foundation (CDF) applications because this might result in inaccessible web pages.

Supported Data Types and SmartConnectors/FlexConnector Types

This section describes the data types and SmartConnectors/FlexConnector types Intelligence supports.

Data Types	Supported Smart Connectors
Access	SmartConnector for Microsoft Windows Event Log – Native Application and System Event Support
	SmartConnector for Microsoft Windows Event Log – Unified Application and System Event Support
Active Directory	SmartConnector for Microsoft Active Directory Windows Event Log Native
VPN	SmartConnector for Microsoft Network Policy Server File
	SmartConnector for Pulse Secure Pulse Connect Secure Syslog
	SmartConnector for Citrix NetScaler Syslog
	SmartConnector for Nortel Contivity Switch Syslog
Web Proxy	SmartConnector for Microsoft Forefront Threat Management Gateway File
	SmartConnector for Squid Web Proxy Server File
	SmartConnector for Blue Coat Proxy SG Multiple Server File
Repository	FlexConnector Type - ArcSight FlexConnector Regex File

Additional Considerations

Consider the following:

- A fuller set of SmartConnectors is supported for those sources that provide data of relevance to the Intelligence analytics models. Micro Focus might need to examine sample logs to optimize analysis of data from this broader set of sources.
- For supported data types, Intelligence provides support for new devices that provide data of relevance to the Intelligence analytics models. For more information, see "Adding Support for New Devices" in the Administrators Guide for ArcSight Platform.

- To ingest packaged data from other containers, such as IBM QRadar, McAfee ESM, and Splunk, contact Micro Focus Customer Support.
- Intelligence supports the SmartConnectors listed. However, additional capabilities you might deploy, such as Recon, might support a wider set of SmartConnectors/FlexConnector types.
- Micro Focus advises against configuring event aggregation for data to be processed by ArcSight Intelligence. If you wish to use ArcSight Intelligence with aggregated events, contact Micro Focus Customer Support.

Hardware Requirements and Tuning Guidelines

The section lists the guidelines for a deployment with all of the following software installed.

- Command Center for ESM
- Intelligence
- Recon
- SOAR
- Transformation Hub

Command Center for ESM Hardware Requirements and Tuning Guidelines

These guidelines apply to the requirements for deploying Command Center for ESM to a single node. You might have additional components deployed to that node, such as ESM, which have additional requirements.

The hardware requirements are based on dedicated resources allocations. In virtual environments, where there is a risk of over-subscription of the physical hardware, ensure the Fusion system meets these hardware requirements to avoid installation and functionality issues.

If you install Command Center for ESM on the same node as ESM server, you should keep some unused resource capacity on the node. For more information, see the Administrator's Guide for ArcSight Platform.

System Sizing

This section provides guidance for node requirements.

Category	Requirement
Worker nodes	1
vCores (per node)	8
RAM (per node)	32 GB

Disk Space

This section lists the minimum disk space needed to run Command Center on ESM. In some environments, you might deploy ESM Command Center with other capabilities, which would have additional disk space requirements.

Partition	Disk Space
/opt	200 GB
swap	16 GB
/home	50 GB

Intelligence Hardware Requirements and Tuning Guidelines

This section describes the requirements and guidelines for a deployment with Intelligence, Database, Transformation Hub, Fusion, and Recon installed.

Intelligence Workload

This section describes the total workload for Intelligence, which depends on the following factors.

- The number of events collected by the SmartConnectors from the data sources and sent to the different storage components, that is, Elasticsearch, Transformation Hub, and the database.
- The number of events and the number of entities processed by the Intelligence Analytics component to produce the Intelligence Analytics results that are sent to the different storage components, that is, Elasticsearch and the database.

Database Cluster

Your deployment can have a non-collocated database cluster. In a non-collocated database cluster, the database is not deployed on the worker nodes in the CDF cluster. Instead, the database is deployed on dedicated nodes that make up the database cluster, and this cluster is not a part of the CDF cluster.

Hardware Requirements

The hardware requirements for Intelligence comprise the following:

- Processing requirements based on the Events per second (EPS) and the number of entities.
- Storage requirements based on the EPS, the number of entities, and the number of days' events.

Hardware Specification Metrics

The hardware specifications provided were determined for the following metrics.

Hardware	Metric
EPS	5000, 25000
Entities	15000
Database Cluster	Non- collocated
Master High Availability	Yes
Additional Storage Factor (additional storage required to avoid sizing errors)	20%
Replication Factor (replicas of data required to ensure data resiliency)	1
Intelligence Analytics Run Frequency	Once a Day on 1 Day's Events
Storage for Elasticsearch and the Database	30 Days
Storage for the System Sizing	30 Days

Use the given information to determine the processing and storage requirements for different values of the metrics.

Intelligence System Sizing

This section lists the system sizing used to determine the processing and storage requirements for the specified metrics.

- "System Sizing" on the next page
- "Non-collocated Database Sizing" on the next page

System Sizing

Туре	EPS	Databa se Cluster	Numb er of Nodes	CPU per Nod e (cor e)	CPU per Node (threa ds)	RA M per No de (GB)	Databa se storage per Node (GB)	Elasticsea rch Storage per Node	Transforma tion Hub Storage per Node	Syste m Stora ge per Node	Total Storag e per Node (GB)
Mast er	500 0	Non- collocat ed	3	8	16	64	-	-	-	-	500
	250 00	Non- collocat ed	3	8	16	64	-	-	-	-	500
Work er	500 0	Non- collocat ed	3	12	24	64	"Non- collocat ed Databas e Sizing" below	3459.233	488.162	800	4747.3 95
	250 00	Non- collocat ed	6	24	48	128	"Non- collocat ed Databas e Sizing" below	8648.083	1220.405	800	10668. 49

Non-collocated Database Sizing

EPS	Number of nodes	CPU per Node (core)	CPU per Node (threads)	RAM per Node (GB)	Database Storage per Node	System Storage per Node	Total Storage per Node
5000	3	12	24	64	2613.18	500	3113.18
25000	3	24	48	128	13065.9	500	13565.9

Intelligence Processing Requirements

This section lists the processing requirements. You will need to tune Intelligence Analytics based on the events per second (EPS) in your environment .

- "5000 EPS, Non-collocated Database Cluster" below
- "25000 EPS, Non-collocated Database Cluster" on the next page

5000 EPS, Non-collocated Database Cluster

The following table provides the Intelligence processing requirements for the specified metrics.

Component	Number of Instances	CPU per Instance	RAM per Instance (GB)	Total CPU for Component	Total RAM for Component (GB)
Intelligence UI	1	1	0.2	1	0.2
Intelligence API	1	1	1	1	1
H2	1	1	1	1	1
Intelligence Exports	1	1	1	1	1
HDFS NameNode	1	1	0.5	1	0.5
HDFS DataNode	3	1	0.5	3	1.5
Logstash	6	2	2	12	12
Intelligence Analytics Driver	1	1	5	1	5
Intelligence Analytics Executor	21	1	5	21	105
Elasticsearch Master	1	2	2	2	2
Elasticsearch data	3	10	10	30	30

Intelligence Analytics Tuning Parameters

Parameters	Values
Parallelism	32
Number of Executors	21
Number of Cores per Executor	2

Parameters	Values
Memory per Executor (GB)	6
Driver Memory (GB)	5
esBatchEntries	0
esBatchBytes (MB)	5

Increase the number of Logstash instances if the Kafka partitions are increased and there is sufficient CPU and RAM. Increase the number of Executors if there is sufficient CPU and RAM.

25000 EPS, Non-collocated Database Cluster

Component	Number of Instances	CPU per Instance	RAM per Instance (GB)	Total CPU for Component	Total RAM for Component (GB)
Intelligence UI	1	1	0.2	1	0.2
Intelligence API	1	1	1	1	1
H2	1	1	1	1	1
Intelligence Exports	1	1	1	1	1
HDFS NameNode	1	1	0.5	1	0.5
HDFS DataNode	6	1	0.5	6	3
Logstash	12	2	2	24	24
Intelligence Analytics Driver	1	1	5	1	5
Intelligence Analytics Executor	48	1	7	48	336
Elasticsearch Master	1	2	2	2	2
Elasticsearch data	6	16	16	96	96

The following table provides the Intelligence processing requirements for the specified metrics.

Intelligence Analytics Tuning Parameters

Parameters	Values
Parallelism	40
Number of Executors	48
Number of Cores per Executor	2
Memory per Executor (GB)	7
Driver Memory (GB)	5
esBatchEntries	0
esBatchBytes (MB)	15

Increase the number of Logstash instances if the Kafka partitions are increased and there is sufficient CPU and RAM.

Increase the number of Executors if there is sufficient CPU and RAM.

Transformation Hub Processing Requirements

This section lists the processing requirements for Transformation Hub.

- "5000 EPS, Non-collocated Database Cluster" below
- "25000 EPS, Non-collocated Database Cluster" on the next page

5000 EPS, Non-collocated Database Cluster

The following table provides the Transformation Hub processing requirements for the specified metrics.

Component	Number of Instances	CPU per Instance	RAM per Instance (GB)	Total CPU for Component	Total RAM for Component (GB)
TH Kafka	3	4	4	12	12
TH Zookeeper	3	0.5	2	1.5	6
TH Schema Registry	3	0.5	1	1.5	3
TH C2AV Processor	1	4	2	4	2

Component	Number of Instances	CPU per Instance	RAM per Instance (GB)	Total CPU for Component	Total RAM for Component (GB)
TH Kafka Manager	1	0.5	1	0.5	1
TH Web Service	1	0.5	1	0.5	1
TH Routing Processor	2	0.5	1	1	2
TH C2AV Processor ESM	1	1	1	1	1

25000 EPS, Non-collocated Database Cluster

The following table provides the Transformation Hub processing requirements for the specified metrics.

Component	Number of Instances	CPU per Instance	RAM per Instance (GB)	Total CPU for Component	Total RAM for Component (GB)
TH Kafka	6	4	4	24	24
TH Zookeeper	6	0.5	2	3	12
TH Schema Registry	6	0.5	1	3	6
TH C2AV Processor	1	4	2	4	2
TH Kafka Manager	1	0.5	1	0.5	1
TH Web Service	1	0.5	1	0.5	1
TH Routing Processor	2	0.5	1	1	2
TH C2AV Processor ESM	1	1	1	1	1

Fusion Processing Requirements

This section lists the Fusion processing requirements for the specified metrics.

Component	Number of Instances	CPU per Instance	RAM per Instance (GB)	Total CPU for Component	Total RAM for Component (GB)
Hercules Common Services	1	0.5	1	0.5	1
Hercules Management	1	0.5	1	0.5	1
Hercules RethinkDB	1	0.5	2	0.5	1
Hercules Search Engine	1	0.5	1	0.5	1
Hercules OSP	1	0.5	1	0.5	1
Dashboard Metadata WebApp	1	0.5	1	0.5	1
Dashboard WebApp	1	0.5	1	0.5	1
Database Monitoring WebApp	1	0.5	1	0.5	1
Autopass Im	1	0.5	1	0.5	1
Common Doc WebApp	1	0.5	0.1	0.5	0.1

Recon Processing Requirements

This section lists the Recon processing requirements for the specified metrics.

Component	Number of Instances	CPU per Instance	RAM per Instance (GB)	Total CPU for Component	Total RAM for Component (GB)
Hercules Search	1	0.5	1	0.5	1
Hercules Analytics	1	0.5	1	0.5	1

Elasticsearch and Database Storage Requirements

This section lists the storage requirements for Elasticsearch and the database, which is incremental. It encompasses the storage capacity for both the raw events and the Intelligence Analytics data.

Component	EPS	Database Cluster	Number of Instances	Disk Size per Instance per Day (GB)	Total Disk Size per Day (GB)
Elasticsearch	5000	Non- collocated	3	3459.233	10377.699
	25000	Non- collocated	6	8648.083	51888.498
Database	5000	Non- collocated	3	2613.18	7839.54
	25000	Non- collocated	3	13065.9	39197.7

Transformation Hub Storage Requirements

The section describes the storage for Transformation Hub, which is non-incremental and is a buffer for storing only the raw events.

The following are applicable for storing events in Transformation Hub:

- Events are stored only for the Kafka retention period. Default is 2 days.
- Events beyond the maximum Kafka partition size are removed. Default is 60 GB.
- The storage capacity is independent of the number of entities.

The maximum storage for Transformation Hub is determined by the following formula:

```
Maximum storage = Number of Kafka Partitions * Maximum Partition Size * Number of Kafka Instances
```

The default compression used is GZIP (recommended).

Recon Hardware Requirements and Tuning Guidelines

This section describes the requirements and guidelines for Recon. These hardware requirements for Recon are based on dedicated resource allocations. In virtual environments, where there is a risk of over subscription of the physical hardware, ensure that the Recon system meets these hardware requirements to avoid installation and functionality issues.

The total workload for Recon depends on your data received through SmartConnectors or ArcSight Enterprise Security Manager (ESM) and on the number of events captured by those data sources each day. For example, each day, your environment might have thousands of events.

At the same time, someone might be updating details about the events or new information can be coming in about the entities associated with the events. Recon must be able to process all of these types of transactions. Thus, this document lists the requirements for small, medium, and large workloads.

Micro Focus based these recommendations on the maximum workload achievable while still maintaining stability of the system resources in our labs. It is possible you might need to further adjust the tuning values for satisfactory performance in your environment.

The system sizing was tested in an ArcSight Recon environment without SSL communication.

- "Recon Small Workload System Sizing" below
- "Recon Medium Workload System Sizing" on page 23
- "Recon Large Workload System Sizing" on page 25

Recon Small Workload System Sizing

This section helps you determine if your environment meets the requirements for a small workload environment when deploying Recon. It provides guidance for hardware requirements and tuning the performance of the workload. You might compare this information with the guidance for medium workloads.

- "Small Workload Distribution" on the next page
- "Small Workload System Sizing" on the next page
- "Small Workload Database Resource Pools Tuning" on the next page
- "Small Workload Transformation Hub Tuning" on page 23

Small Workload Distribution

The following table provides an example of how event ingestion activities might occur in a small workload.

Application	Category	Expected Workload
Microsoft Windows	Events per second	375
Fortinet Fortigate	Events per second	375
Infoblox NIOS	Events per second	375
Blue Coat, Check Point, Cisco	Events per second	375
ArcSight Recon	Events per second	1500
	Searches (concurrent)	3

Small Workload System Sizing

The following table provides a small workload example.

Category	Requirement
Single node (master and worker)	1
CPU cores (per node)	8
RAM (per node)	32
Disks (per node)	1
Storage per day (1x)	15 GB
Total disk space (1.5 billion events)	500 GB

Small Workload Database Resource Pools Tuning

The following table provides a small workload example.

Category	Property	Value
Database	active_partitions	8
	tm_concurrency	5
	tm_memory	6,000
Resource pools	ingest_pool_memory_size	30%
	ingest_pool_planned_concurrency	12
Schedule	plannedconcurrency	5
	tm_memory_usage	10,000
	maxconcurrency	7

Small Workload Transformation Hub Tuning

The following table provides a small workload example.

Property	Quantity
# of Kafka broker nodes in the Kafka cluster	1
# of ZooKeeper nodes in the ZooKeeper cluster	1
# of Partitions assigned to each Kafka Topic	12
# of replicas assigned to each Kafka Topic	1
# of message replicas for theconsumer_offsets Topic	1
Schema Registry nodes in the cluster	1
Kafka nodes required to run Schema Registry	1
# of CEF-to-Avro Stream Processor instances to start	2

Recon Medium Workload System Sizing

This section describes if your environment meets the requirements for a medium workload environment when deploying Recon. It provides guidance for hardware requirements and tuning the performance of the workload. You might compare this information with the guidance for small workload.

- "Medium Workload Distribution" on the next page
- "Medium Workload System Sizing" on the next page

- "Medium Workload Database Resource Pools Tuning" below
- "Medium Workload Transformation Hub Tuning" on the next page

Medium Workload Distribution

The following table provides an example of how event ingestion activities might occur in a medium workload.

Application	Category	Expected Workload
Microsoft Windows	Events per second	6000
Fortinet Fortigate	Events per second	7600
Infoblox NIOS	Events per second	4000
Blue Coat, Check Point, Cisco	Events per second	1900
ArcSight Recon	Events per second	19500
	Searches (concurrent)	3

Medium Workload System Sizing

The following table provides a medium workload example.

Category	Requirement
Single node (master and worker)	1 (G10 -L7700)
CPU cores (per node)	48
RAM (per node)	192
Disks (per node)	4 (7500 rpm)
Storage per day (1x)	0.9 ТВ
Total disk space (1.5 billion events)	10.8 TB

Medium Workload Database Resource Pools Tuning

The following table provides a medium workload example.

Category	Property	Value
Database	active_partitions	8
	tm_concurrency	5
	tm_memory	6,000
Resource pools	ingest_pool_memory_size	30%
	ingest_pool_planned_concurrency	12
Schedule	plannedconcurrency	5
	tm_memory_usage	10,000
	maxconcurrency	7

Medium Workload Transformation Hub Tuning

The following table provides a medium workload example.

Property	Quantity
# of Kafka broker nodes in the Kafka cluster	1
# of ZooKeeper nodes in the ZooKeeper cluster	1
# of Partitions assigned to each Kafka Topic	12
# of replicas assigned to each Kafka Topic	1
# of message replicas for theconsumer_offsets Topic	1
Schema Registry nodes in the cluster	1
Kafka nodes required to run Schema Registry	1
# of CEF-to-Avro Stream Processor instances to start	2

Recon Large Workload System Sizing

This section describes if your environment meets the requirements for a large workload environment when deploying Recon. It provides guidance for hardware requirements and tuning the performance of the workload. You might compare this information with the guidance for small workload or medium workload.

- "Large Workload Distribution" on the next page
- "Large Workload System Sizing" on the next page

- "Large Workload Database Resource Pools Tuning" on the next page
- "Large Workload Transformation Hub Tuning" on the next page

Large Workload Distribution

The following table provides an example of how event ingestion activities might occur in a large workload.

Application	Category	Expected Workload
Microsoft Windows	Events per second	40000
Fortinet Fortigate	Events per second	40000
Infoblox NIOS	Events per second	30000
Blue Coat, Check Point, Cisco	Events per second	10000
ArcSight Recon	Events per second	120000
	Searches (concurrent)	5

Large Workload System Sizing

The following table provides a large workload example.

Transformation Hub/Recon

Category	Requirement
# of worker nodes	3 (G10 -L7700)
CPU cores (per node)	48
RAM (per node)	192
Disks (per node)	4 (7500 rpm)
Storage per day (1x)	0.2 TB
Total disk space (250 billion events)	5 TB

Database

Category	Requirement
# of unified storage nodes	6 (G10 -L7700)
CPU cores (per node)	48

RAM (per node)	192
Disks (per node)	4 (7500 rpm)
Storage per day (1x)	4.2 TB
Total disk space (250 billion events)	20 TB
K-safety level	1

Large Workload Database Resource Pools Tuning

The following table provides a large workload example.

Category	Property	Value
Database	active_partitions	8
	tm_concurrency	5
	tm_memory	10,000
Resource pools	ingest_pool_memory_size	30%
	ingest_pool_planned_concurrency	12
Scheduler	plannedconcurrency	5
	tm_memory_usage	10,000
	maxconcurrency	7

Large Workload Transformation Hub Tuning

The following table provides a large workload example.

Property	Quantity
# of Kafka broker nodes in the Kafka cluster	3
# of ZooKeeper nodes in the ZooKeeper cluster	3
# of Partitions assigned to each Kafka Topic	72
# of replicas assigned to each Kafka Topic	2
# of message replicas for theconsumer_offsets Topic	3
Schema Registry nodes in the cluster	3
Kafka nodes required to run Schema Registry	3

# of CEF-to-Avro Stream Processor instances to start	24
Kafka Override Parameters	Quantity
arcsight.eventbroker.kafka.KAFKA_NUM_IO_THREADS	256
arcsight.eventbroker.kafka.KAFKA_NUM_NETWORK_THREADS	52
arcsight.eventbroker.kafka.KAFKA_NUM_REPLICA_FETCHERS	145

SOAR Hardware Requirements and Tuning Guidelines

This section describes the SOAR workload. The total workload for SOAR depends on the number of correlation events ingested and incidents processed daily.

For example, each day, your environment might have hundreds of correlation alerts sent to SOAR and playbooks are executed for them. At the same time, your analysts might be working on manual investigations, taking reports, etc. SOAR must be able to process all of these types of transactions. Thus, this document lists the requirements for small and medium workloads.

Micro Focus based these recommendations on the maximum workload achievable while still maintaining stability of the system resources in our labs. It is possible that you might need to further adjust the tuning values for satisfactory performance in your environment.

- "Small Workload System Sizing" below
- "Medium Workload System Sizing" below

Small Workload System Sizing

The following table provides guidance for a small workload environment (up to 250 incidents per day).

Category	Requirement
Single node (master and worker)	1
CPU cores (per node)	4
RAM (per node)	16
Disks (per node)	1
Total disk space (two years)	200 GB

Medium Workload System Sizing

The following table provides guidance for a medium workload environment (up to 1000 incidents per day).

Category	Requirement
Single node (master and worker)	1
CPU cores (per node)	6
RAM (per node)	24
Disks (per node)	1
Total disk space (two years)	750 GB

Transformation Hub Hardware Requirements and Tuning Guidelines

This section describes the sizing requirements for Transformation Hub. Sizing requirements for your master and worker nodes depends on several factors.

For more information, see the Micro Focus support community.

Network File System Options

This section describes the available network file system (NFS) options.

- Required File Systems
- NFS Minimum Directory Sizes

Required File Systems

The following table lists the minimum required file systems.

Category	Minimum Requirement
NFS Types	 Amazon EFS HPE 3PAR File Persona Linux-based NFS NetApp
NFS Server Versions	NFSv4NFSv3

NFS Minimum Directory Sizes

The following table lists the minimum required size for each of the NFS installation directories.

Directory	Minimum Size	Description
{NFS_ROOT_DIRECTORY}/itom-vol	130 GB	This is the CDF NFS root folder, which contains the CDF database and files. The disk usage will grow gradually.
{NFS_ROOT_DIRECTORY}/db-single-vol	Start with 10 GB	This volume is only available when you did not choose PostgreSQL High Availability (HA) for CDF database setting. It is for CDF database. During the install you will not choose the Postgres database HA option.

{NFS_ROOT_DIRECTORY}/db-backup-vol	Start with 10 GB	This volume is used for backup and restore of the CDF Postgres database. Its sizing is dependent on the implementation's processing requirements and data volumes.
{NFS_ROOT_DIRECTORY}/itom-logging-vol	Start with 40 GB	This volume stores the log output files of CDF components. The required size depends on how long the log will be kept.
{NFS_ROOT_DIRECTORY}/arcsight-volume	10 GB	This volume stores the component installation packages.

Firewall Ports

This section lists the ArcSight Platform capabilities firewall ports. These ports need to be available when you deploy the associated capability.

- ArcMC
- CDF Vault
- CDF Management Portal
- Database
- Intelligence
- Kubernetes
- NFS
- SmartConnector
- SOAR
- Transformation Hub

ArcMC

Ports	Direction	Description
38080, 9000	Inbound	Used for Transformation Hub and ArcMC communication

CDF Vault

Ports (TCP)	Node	Description
8200	Master	Used by the itom-vault service which provides a secured configuration store All cluster nodes should be able to access this port for the client connection.

8201	Master	Used by the itom-vault service which provides a secured configuration store
		Web clients must be able to access this port for peer member connections.

CDF Management Portal

Ports (TCP)	Node	Description
3000	Master	Used only for accessing the CDF Management portal during CDF installation from a web browser
		Web clients must be able to access this port during the installation of CDF. After installation, web clients use port 5443 to access the CDF Management portal.
5443	Master	Used for accessing the CDF Management portal post CDF deployment from a web browser Web clients must be able to access this port for
5444	Mashar	administration and management of CDF.
5444	Master	Used for accessing the CDF Management portal post CDF deployment from a web browser, when using two-way (mutual) SSL authentication
		Web clients must be able to access this port for administration and management of CDF, when using two-way (mutual) SSL authentication.

Database

The database requires several ports to be open on the local network. It is not recommended to place a firewall between nodes (all nodes should be behind a firewall), but if you must use a firewall between nodes, ensure the following ports are available:

Ports	Description
TCP 22	Required for the Administration Tools and Management Console Cluster installation wizard
TCP 5433	Used by database clients, such as vsql, ODBC, JDBC, and so on

ArcSight Platform Technical Requirements Firewall Ports

TCP 5434	Used for Intra-cluster and inter-cluster communication
UDP 5433	Used for database spread monitoring
TCP 5438	Used as Management Console-to-node and node-to-node (agent) communication port
TCP 5450	Used to connect to Management Console from a web browser and allows communication from nodes to the Management Console application/web server
TCP 4803	Used for client connections
UDP 4803	Used for daemon to daemon connections
UDP 4804	Used for daemon to daemon connections
UDP 6543	Used to monitor daemon connections

Intelligence

In addition to the ports used by CDF, Transformation Hub, and the database, Intelligence uses the following ports when firewall is enabled. Ensure that the following ports are available:

Ports	Direction	Description
TCP 30820	Inbound	Used for the database to connect to HDFS during Analytics processing
TCP 30070	Inbound	Used for Hadoop Monitoring Dashboard (Optional)
TCP 30010	Inbound	Used for communication between the HDFS NameNode and the HDFS DataNodes

Kubernetes

Ports (TCP)	Node	Description
2380	Master	Used by the etcd component which provides a distributed configuration database
		All the master nodes should be able to access this port for the etcd cluster communication.
4001	Master	Used by the etcd component which provides a distributed configuration database
		All cluster nodes should be able to access this port for the client connection.

5000	Master	Used by kube-registry component which handles the management of container image delivery
		All cluster nodes should be able to access this port to communicate with the local container registry.
7443	Master	<i>(Conditional)</i> Used by the Kubernetes API server when you perform one of the following methods of installation:
		Use the provided scripts
		Install manually and on the same node as ESM
		All cluster nodes should be able to access this port for internal communication.
8443	Master	<i>(Conditional)</i> Used by the Kubernetes API server when you manually install and the installation is not on the same node as ESM.
		All cluster nodes should be able to access this port for internal communication.
8472	All nodes	Uses UDP protocol
		Used by the Flannel service component which manages the internal cluster networking
		All cluster nodes should be able to access this port for internal communication.
10250	All nodes	Used by the Kubelet service which functions as a local node agent that watches pod specifications through the Kubernetes API server
		All cluster nodes should be able to access this port for internal communications and worker node Kubelet API for exec and logs.

10251	All nodes	Used by Kube-scheduler component that watches for any new pod with no assigned node and assigns a node to the pod All cluster nodes should be able to access this port for internal communication.
10252	All nodes	Used by kube-controller-manager component that runs controller processes which regulate the state of the cluster All the cluster nodes should be able to access this port for internal communication.
10256	All nodes	Used by the Kube-proxy component, which is a network proxy that runs on each node, for exposing the services on each node All the cluster nodes should be able to access this port for internal communication.

NFS

Ports (TCP)	Node	Description		
111	NFS server	Used by portmapper service		
		All the cluster nodes should be able to access this port.		
2049 NFS server	NFS server	Used by nfsd daemon		
		All the cluster nodes should be able to access this port.		
		This port must be open even during a single-node deployment.		
20048	NFS server	Used by mountd daemon		
		All the cluster nodes should be able to access this port.		

SmartConnector

Ports	Direction	Description
1515 (Raw TCP)1999 (TLS)	Inbound	Used by SmartConnector to receive events

• 9092 (Non-SSL)	Outbound	Used by SmartConnector to send data to
• 9093 (SSL)		Transformation Hub

SOAR

The SOAR cluster listens on the following NodePorts on all Kubernetes Master and Worker Nodes, but Micro Focus suggests you only use the ports on the master virtual IP.

Port	Description
32200	Data from ESM
32201	Data from Qradar
32202	Data from McAffee

Transformation Hub

Ports (TCP)	Direction	Description
2181	Inbound	Used by ZooKeeper as an inbound port
9092	Inbound	Used by Kafka during non-SSL communication
9093	Inbound	Used by Kafka when TLS is enabled
38080	Outbound	Used by Transformation Hub to send data to ArcMC
32181	Outbound	Used by ZooKeeper as an outbound port
443	Inbound	Used by ArcMC
9000	Inbound	Used by ArcMC
9999, 10000	Inbound	Used by the Transformation Hub Kafka Manager to monitor Kafka
39001, 39050	Outbound	Used by ArcMC to communicate with Connectors in Transformation Hub

Guidance for a Multi-node, Multi-product Deployment

The most basic deployment option is an all-in-one system that contains a limited number of capabilities on a single node. The single-node deployment is suitable for small workloads or to use as a proof-of-concept environment. For example, if you have a license for ESM or Recon only. For large workloads, you will need a multi-node environment, possibly with multiple masters. For high-availability, you should have a minimum of three masters and three worker nodes. All of these environments require an external server to support NFS. Some capabilities also require a database cluster or an SMTP server.

- "Multiple Master and Worker Nodes for High Availability" on the next page
- "Single Master, Multiple Worker Nodes" on page 43
- "Master Co-located with Worker Node" on page 46

Multiple Master and Worker Nodes for High Availability

In this example, which **deploys ESM Command Center and Transformation Hub**, you have three master nodes connected to three worker nodes and a database cluster. Each node runs on a separate, dedicated, connected host. All nodes have the same operating system, such as CentOS 7.8. Each Worker Nodes processes events, with failover to another Worker Node if a Worker fails. All of these environments require an external server to support NFS.

If this scenario resembles your intended deployment, you might want to use the exampleinstall-config-esm_and_transformation_hub-high_availability.yaml config file with the ArcSight Platform Installer.

You can run this configuration in development and testing. It is the recommended configuration for highly-available environments. The worker nodes process events, with failover to another worker node in the event of a worker failure. There are no single points of failure.

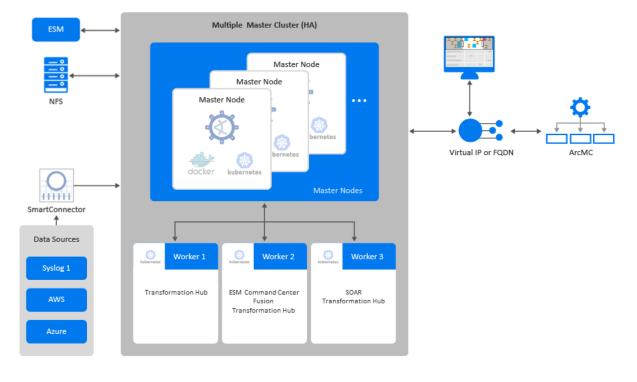


Figure 1. Example deployment of ESM Command Center and Transformation Hub in a high-availability cluster

This scenario has the following characteristics:

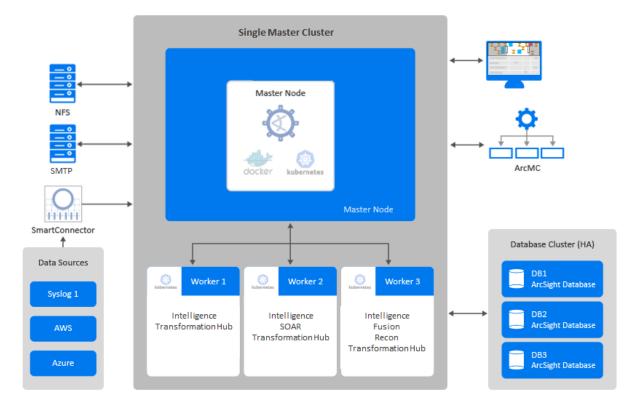
- The Kubernetes cluster has three master nodes and three worker nodes, so that it can tolerate a failure of a single master and still maintain master node quorum.
- A FQDN hostname for a virtual IP is used so that clients accessing master nodes have a single reliable hostname to connect to that will shift to whatever is the current primary master node.
- Transformation Hub's Kafka is deployed to all worker nodes with data replication enabled (1 original, 1 copy) so that it can tolerate a failure of a single node and still remain operational.
- Transformation Hub's ZooKeeper is deployed to all worker nodes with data replication across the nodes so that it can tolerate a failure of a single node and still remain operational.
- ESM Command Center, Fusion, and SOAR services as well as Transformation Hub's platform and processing services are allocated across two worker nodes so that, if one of the nodes fails, Kubernetes can move all of the components to the other node and still remain operational.
- For the NFS configuration, use an NFS server that has high availability capabilities so that it is not a single point of failure.
- The SOAR ports are open on the Master node's virtual IP so that the connection will be highly available. Kubernetes will internally relay to the node where the SOAR pods are running.

You need a minimum of six physical or VM environments: three dedicated master nodes and three or more dedicated worker nodes. You also need a customer-provisioned, highly-available NFS server (external NFS).

Node Name	Description	RAM	CPU Cores	Disk Space	Ports
Master 1-3	CDF Management Portal	256 GB	32	5 TB	"CDF Vault" on page 33
					CDF Management Portal
					"Kubernetes" on page 35
					"NFS" on page 37
					"SOAR" on page 38
Worker 1	Transformation Hub	256 GB	32	5 TB	"Kubernetes" on page 35
					"Transformation Hub" on page 38

The following table provides guidance for deploying the capabilities across multiple nodes to support a large workload.

ArcSight Platform Technical Requirements Guidance for a Multi-node, Multi-product Deployment


Node Name	Description	RAM	CPU Cores	Disk Space	Ports
Worker 2	ESM Command Center Fusion Transformation Hub	256 GB	32	5 TB	"Kubernetes" on page 35 "Transformation Hub" on page 38
Worker 3	SOAR Transformation Hub	256 GB	32	5 TB	"Kubernetes" on page 35 "Transformation Hub" on page 38

Single Master, Multiple Worker Nodes

In this example, which **deploys Intelligence and Recon with SOAR**, you have one master node connected to three worker nodes and a database cluster. Each node runs on a separate, dedicated, connected host. All nodes have the same operating system, such as CentOS 7.8. Each Worker Nodes processes events. With three or more worker nodes, there is no single point of failure and a tolerance of N-1 worker node failures without loss of any data. You can run this configuration in development and testing environments.

If this scenario resembles your intended deployment, you might want to use the exampleinstall- config- intelligence_ and_ recon- single- node.yaml config file with the ArcSight Platform Installer. The configuration in the example file describes to a single-node deployment, but you can add more worker nodes to the file.

You need a minimum of seven physical or VM environments: one dedicated master node, three or more dedicated worker nodes, and a database cluster. You also need a customer-provisioned, highly-available NFS server (external NFS) and an SMTP server.

Figure 2. Example deployment of Intelligence and Recon with SOAR in a cluster with a single master node

This scenario has the following characteristics:

• The Kubernetes cluster has one master node and three worker nodes. It can tolerate a failure of a single worker and still maintain node quorum.

The single master node is a single point of failure, and as a result, this configuration is not recommended for high availability (HA) environments.

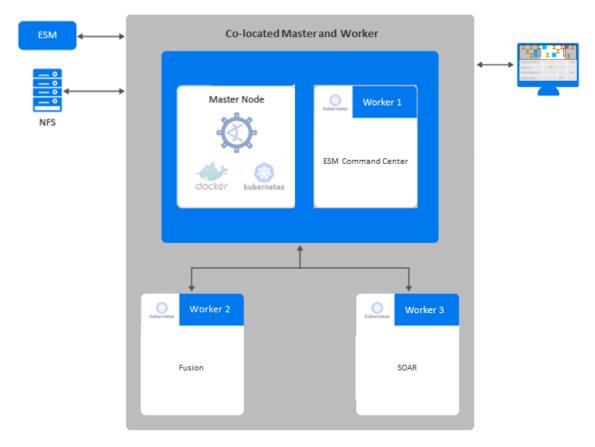
- Transformation Hub's Kafka is deployed to all worker nodes with data replication enabled (one original, one copy) so that it can tolerate a failure of a single node and still remain operational.
- Transformation Hub's ZooKeeper is deployed to all worker nodes with data replication across the nodes so that it can tolerate a failure of a single node and still remain operational.
- Fusion, Intelligence, Recon, and SOAR services as well as Transformation Hub's platform and processing services are allocated across two worker nodes so that, if one of the nodes fails, Kubernetes can move all of the components to the other node and still remain operational.
- For the NFS configuration, use an NFS server that has high availability capabilities so that it is not a single point of failure.

The following table provides guidance for deploying the Intelligence and Recon capabilities
across multiple nodes to support a medium workload.

Node Name	Description	RAM	CPU Cores	Disk Space	Ports
Master	CDF Management Portal	(tba)			"CDF Vault" on page 33
					CDF Management Portal
					"Kubernetes" on page 35
					"NFS" on page 37
					"SOAR" on page 38
DB1	Database				"Database" on page 34
DB2	Database				"Database" on page 34
DB3	Database				"Database" on page 34

ArcSight Platform Technical Requirements Guidance for a Multi-node, Multi-product Deployment

Node Name	Description	RAM	CPU Cores	Disk Space	Ports
Worker 1	Intelligence				"Intelligence" on page 35
	Transformation Hub				"Kubernetes" on page 35
					"Transformation Hub" on page 38
Worker 2	Intelligence				"Intelligence" on page 35
	SOAR				"Kubernetes" on page 35
	Transformation Hub				"Transformation Hub" on page 38
Worker 3	Fusion				"Intelligence" on page 35
	Intelligence				"Kubernetes" on page 35
	Recon				"Transformation Hub" on page 38
	Transformation Hub				


Master Co-located with Worker Node

In this configuration, which **deploys ESM Command Center with SOAR**, the master node and one of the worker nodes are co-located on the same host, while deploying worker nodes on separate hosts. ESM Command Center, SOAR, and Fusion do not carry a large workload, and thus can run on the same host as the master node.

If this scenario resembles your intended deployment, you might want to use the exampleinstall-config-esm_cmd_center-single-node.yaml config file with the ArcSight Platform Installer. The configuration in the example file describes to a single-node deployment, but you can add more worker nodes to the file.

You need a minimum of three physical or VM environments: one dedicated master node colocated with a worker node and two or more dedicated worker nodes. You also need a customer-provisioned, highly-available NFS server (external NFS).

Figure 3. Example deployment of ESM Command Center with SOAR with a master and a worker node co-located on a host

This scenario has the following characteristics:

• The Kubernetes cluster has one master node and three worker nodes. It can tolerate a failure of a single worker and still maintain node quorum.

The single master node is a single point of failure, and as a result, this configuration is not recommended for high availability (HA) environments.

- ESM Command Center, Fusion, and SOAR services are allocated across all worker nodes. If one of the nodes fails, Kubernetes can move all of the components to the other node and still remain operational.
- For the NFS configuration, use an NFS server that has high availability capabilities so that it is not a single point of failure.

The following table provides guidance for deploying the ESM Command Center capability with SOAR across three nodes to support a small workload.

Node Name	Description	RAM	CPU Cores	Disk Space	Ports
Master	CDF Management Portal	(tba)			"CDF Vault" on page 33
					CDF Management Portal
					"Kubernetes" on page 35
					"NFS" on page 37
					"SOAR" on page 38
Worker 1	ESM Command Center				"Kubernetes" on page 35
Worker 2	Fusion				"Kubernetes" on page 35
Worker 3	SOAR				"Kubernetes" on page 35

Send Documentation Feedback

If you have comments about this document, you can contact the documentation team by email. If an email client is configured on this computer, click the link above and an email window opens with the following information in the subject line:

Feedback on ArcSight Platform Technical Requirements (ArcSight Platform 2020.11)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and send your feedback to Documentation-Feedback@microfocus.com.

We appreciate your feedback!