
Micro Focus Security
ArcSight Quick Flex Parser Tool
Software Version: 1.1

User Guide

Document Release Date: July 19, 2019

Software Release Date: July 19, 2019

Legal Notices
Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

https://www.microfocus.com

Copyright Notice
© Copyright 2020 Micro Focus or one of its affiliates

Confidential computer software. Valid license from Micro Focus required for possession, use or copying. The information contained
herein is subject to change without notice.

The only warranties for Micro Focus products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein.

No portion of this product's documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or information storage and retrieval systems, for any purpose other than the purchaser's internal use,
without the express written permission of Micro Focus.

Notwithstanding anything to the contrary in your license agreement for Micro Focus ArcSight software, you may reverse engineer and
modify certain open source components of the software in accordance with the license terms for those particular components. See below
for the applicable terms.

U.S. Governmental Rights. For purposes of your license to Micro Focus ArcSight software, “commercial computer software” is defined at
FAR 2.101. If acquired by or on behalf of a civilian agency, the U.S. Government acquires this commercial computer software and/or
commercial computer software documentation and other technical data subject to the terms of the Agreement as specified in 48 C.F.R.
12.212 (Computer Software) and 12.211 (Technical Data) of the Federal Acquisition Regulation (“FAR”) and its successors. If acquired
by or on behalf of any agency within the Department of Defense (“DOD”), the U.S. Government acquires this commercial computer
software and/or commercial computer software documentation subject to the terms of the Agreement as specified in 48 C.F.R. 227.7202-
3 of the DOD FAR Supplement (“DFARS”) and its successors. This U.S. Government Rights Section 18.11 is in lieu of, and supersedes, any
other FAR, DFARS, or other clause or provision that addresses government rights in computer software or technical data.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number

l Document Release Date, which changes each time the document is updated

l Software Release Date, which indicates the release date of this version of the software

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

ArcSight Product Documentation on the Micro Focus Security Community

User Guide

Micro Focus Quick Flex Parser Tool (1.1) Page 2 of 67

https://www.microfocus.com/
https://community.microfocus.com/t5/ArcSight-Product-Documentation/ct-p/productdocs

Support

Phone A list of phone numbers is available on the Technical Support
Page: https://softwaresupport.softwaregrp.com/support-contact-information

Support Web Site https://softwaresupport.softwaregrp.com/

ArcSight Product Documentation https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-
p/productdocs

Contact Information

User Guide

Micro Focus Quick Flex Parser Tool (1.1) Page 3 of 67

https://softwaresupport.softwaregrp.com/support-contact-information
https://softwaresupport.softwaregrp.com/
https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-p/productdocs
https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-p/productdocs

Contents

Chapter 1: Quick Flex Parser Tool 6

Quick Flex Parser Tool 7
Parser Tool Audience 7
Features and Benefits 7
Parser Tool Workflow Summary 8

1. Create a parser file project 8
2. Create the base regex 8
3. Create tokens and token filters 8
4. Test the token filters 8
5. Generate the parser properties file 8

Chapter 2: Creating and Opening Parser Projects 10

Create a Parser File Project 10

Open a Parser Project 11

View a Workflow Summary 11

Chapter 3: Creating Tokens and Filters 12

Quick Flex Parser Tool Log View 12

Creating Token Filters for Messages 13
Create a Base Regex 14
Create a Token 16
Create a Token Filter 17
Create a Mapping 18
Override Token Regex 19

Highlighting Patterns in Log Lines 19
Highlighting in the Log View 19
Highlighting in the Token Filter Editor 21
Highlighting in the Base Regex Editor 21

Managing and Testing Token Filters 21
Manage Token Filters 21
Test Token Filters 22

Generate a Parser File 24

ArcSight Token Types 25

Micro Focus Quick Flex Parser Tool (1.1) Page 4 of 67

Date and Time Format Symbols 26

Chapter 4: ArcSight Assignments 28

Chapter 5: Quick Flex Parser Tool Rules 38

Chapter 6: CEF Verification 42

CEF Verification Features and Benefits 42

CEF Compliance Workflow Summary 42
1. Create a CEF Compliance Project 43
2. Review Header Values 43
3. Assess CEF Extensions 43
4. Review Changes 43
5. Generate a Report 43
6. Apply Your Changes to the Device 44

Chapter 7: CEF Verification Log View 45

CEF Verification Log View Tool Bar 45

CEF Verification Log View Ribbon 45

Creating CEF Verification Projects and Opening CEF Log Files 46
Create a CEF Verification Project 46
Open a CEF Log File 47
View a Workflow Summary 48

View Header Values 48

Verify the CEF Extension 48
Warning Details 49

Generate a CEF Verification Report 49

Understanding Color Highlighting in Log Lines 50

Appendix A: ArcSight Operations 52

Send Documentation Feedback 67

User Guide

Micro Focus Quick Flex Parser Tool (1.1) Page 5 of 67

Chapter 1: Quick Flex Parser Tool
l Parser Tool Audience

l Features and Benefits

l Parser Tool Workflow Summary

This documentation is available in PDF format from the ArcSight Product Documentation, along with the
Release Notes, Installation instructions, and more!

To send feedback to the documentation team, use the link in the lower right.

Micro Focus Quick Flex Parser Tool (1.1) Page 6 of 67

https://community.saas.hpe.com/t5/ArcSight-Product-Documentation/ct-p/productdocs

Quick Flex Parser Tool

Parser Tool Audience
The Quick Flex Parser Tool is intended for users who will be developing parser properties files that can be
used with ArcSight products. It is expected that users will have expertise in regex expressions, parser
development, and the FlexConnector framework.

Features and Benefits
Quick Flex Parser Tool allows you to generate a parser file suitable for use in the FlexConnector framework
by giving you the ability to do the following:

l load a log file up to 200MB in size

l search and filter messages in the Log View

l detect syslog headers in log file

l create and reuse tokens

l build a token repository

l construct token filters from tokens

l use a different log file from the device to work on base regex and token filters

l override the token regex or use the original token regex depending on the token filter

l change a token or token filter property in one place and having it applied globally

l switch to token filter edit mode from different places in the tool

l export token filter test results to files for further analysis

Quick Flex Parser Tool provides the following features to help you analyze the log file and track your
progress:

l message highlighting in the Base Regex and Token Filter Managers to indicate whether tokens are
parsing the log lines successfully

l message highlighting in the Log View to indicate if lines are parsed successfully and whether a
particular message is being parsed by multiple token filters

l graphical statistics in the Log View to track your progress in analyzing the log file

l tests you can run to detect whether the parsing you defined makes sense; you can drill down into the
test results to determine why a test might have failed

Micro Focus Quick Flex Parser Tool (1.1) Page 7 of 67

Parser Tool Workflow Summary
The following tasks provide a high-level description of how to use Quick Flex Parser Tool to create a parser
file, suitable for the FlexConnector framework.

1. Create a parser file project

Quick Flex Parser Tool creates parser files within the context of a project. The project contains the
definitions of your tokens, base regex, token filters and mappings based on the content of a log file. When
you create a project you load the log file and identify the folder to store your results. See "Creating and
Opening Parser Projects".

2. Create the base regex

The base regex (also known as a preparser) is used to process headers from all messages in a file or
stream. The base regex is a regular expression which corresponds to the regex in the connector parser file.
The base regex must match all log lines in a file. Base regex provides the opportunity to further refine
message processing defining message token filters. Edit the base regex until all messages are processed.
See "Create a Base Regex".

3. Create tokens and token filters

Create tokens based on the content of the message. A token is a tag that identifies a data field or other
useful information in a message. Verify that the tokens work for all of the specified messages. Use the
tokens to build a token filter. A token filter is the tokenized form of a message or log record. See "Create a
Token", "Create a Token Filter", and "Override Token Regex".

4. Test the token filters

Test log lines against the token filters. The goal is to see if the parsing makes sense or if the matching
against the log lines works. The log lines are parsed by a combination of the base regex and token filters.
Ideally, each log line should be matched by only one token filter. If the log line is matched by more than one
token filter, then you should resolve this situation. Create token filters as needed by using existing tokens
or creating new tokens. The Quick Flex Parser Tool uses highlighting in the Log View to identify portions of
the log line that are matched by the base regex and by the token filters. The Log View also identifies lines
that match the token filter, do not match the token filter, or are matched by multiple token filters. See "Quick
Flex Parser Tool Log View", "Highlighting Patterns in Log Lines", and "Managing and Testing Token Filters".

5. Generate the parser properties file

Generate the parser properties file based on the tokens, base regex, token filters and mappings you
created. This file can be imported into the FlexConnector framework. See "Generate a Parser File ".

User Guide

Micro Focus Quick Flex Parser Tool (1.1) Page 8 of 67

User Guide

Micro Focus Quick Flex Parser Tool (1.1) Page 9 of 67

Chapter 2: Creating and Opening Parser Projects
You can perform these tasks on the Quick Flex Parser Tool Landing Page for a parser file project:

l Create a Parser File Project

l Open a Parser Project

l View a Workflow Summary

Create a Parser File Project
Navigation: Landing page>Create New

About:

Parser file projects:

Quick Flex Parser Tool creates a parser file within the scope of a project. The project contains the definitions
of your tokens, token filters, and their respective mappings based on the content of a log file. The result of
the project is a .properties file that is suitable for parsing the content of a log file within the
FlexConnector framework.

Procedure:

Create a new project:

1. Click Create New on the Landing Page to open the New Project dialog.

2. Select the Parser Project to create a parser file project .

3. Enter the following information in the Create New Project page:

l the name of the vendor who provided the log file

l (Optional) the name of the product that produced the log file

l (Optional) the version number of the product

Note: The vendor and product names defined are mapped automatically to their
corresponding fields.

If you do not specify these details at the beginning of a project, you can specify them later by selecting
File>Edit Project Properties in the Log View.

4. For Parser projects: select Syslog File if you are working with a syslog log file.

5. (Optional) Click Browse to navigate to the log file.

Micro Focus Quick Flex Parser Tool (1.1) Page 10 of 67

If you do not select a log file at the beginning of a project, you can select it later by selecting File>Open
Log File in the Log View.

For parser file projects only:
l Comments and empty log lines can be left in the log file that gets uploaded. The Quick Flex

Parser Tool identifies these lines and displays them, but does not count them towards the total
log lines, as they do not need to be parsed. You can view the comments in the Incomplete tab
if you are interested.

l Select the Parser Project checkbox and leave the Syslog File checkbox on to acknowledge
that the log file has Syslog Header before loading it into the tool.

l The limitation on the size of log files for parser files projects is 200 Mb.

6. Click Browse to navigate to the location where you want to store your project artifacts.

7. Click Create. The log file is loaded into the Log View.

A JSON project file is created. The name of the file is a concatenation of a prefix to indicate whether the
file belongs to a parser file or a CEF verification project (pt or cef), the vendor name, the product
name, and the version number (prefix_vendor_product_version.json). For example, cef_
vendorXYZ_productABC_1.json or pt_vendorUVW_productDEF_1.json.

Open a Parser Project
Navigation: Log View>File>Open Project

Select File>Open Project and select the name of the project. The log file and any associated project
artifacts are loaded into the Quick Flex Parser Tool. Quick Flex Parser Tool project names have the format
<project_file_name>.json.

Note: Each project file contains a path pointing to the location of the log file. If Quick Flex Parser Tool
does not find the log file at that path, it notifies you and asks if you want to browse for the log file before
opening the project.

View a Workflow Summary
Navigation: Landing page>Quick Flex Overview

Procedure:

Click Quick Flex Overview for a graphic representation of the Quick Flex workflow.

User Guide
Chapter 2: Creating and Opening Parser Projects

Micro Focus Quick Flex Parser Tool (1.1) Page 11 of 67

Chapter 3: Creating Tokens and Filters
l Quick Flex Parser Tool Log View

l Creating Token Filters for Messages

l Highlighting Patterns in Log Lines

l Managing and Testing Token Filters

Quick Flex Parser Tool Log View
The Quick Flex Parser Tool Log View opens when you create a new project or open an existing project. This
view displays the log file messages and the number of token filters applied to the messages. The Log View
also displays statistics for the token filters and the number of lines parsed by the filters.

The menu bar contains the following:

l File: contains commands to create a new project, open an existing project, open a file in the project,
export, save or save as the project, and edit project properties.

l Base Regex Editor: Click to open the Base Regex Editor where you can create and edit the base regex.
See "Create a Base Regex".

l Token Filter Editor: Click to open the Token Filter Editor where you can create and edit token filters.
See "Create a Token Filter".

l Token Manager: Click to open the Token Manager where you can create, update, and delete tokens.
See "Create a Token".

l Token Filter Manager: Click to open the Token Filter Manager where you can view the token filter
status, enable or disable token filters, and test the selected token filters. See "Managing and Testing
Token Filters".

l Help: Click to access the online help and the two workflow summaries.

The ribbon above the Log View displays the following status and commands:

l Total Logs: Displays the total number of lines in the log file. Click to display the contents of the log file in
the Log View Panel.

l Base Parsed: Number of log lines that are parsed successfully by the base regex. Click to display the
parsed lines in the Log View Panel.

l Base Unparsed: Number of log lines that are not parsed by the base regex Click to display the
unparsed lines in the Log View Panel.

Micro Focus Quick Flex Parser Tool (1.1) Page 12 of 67

l Complete: Number of log lines that are parsed by the base regex and at least one token filter. Click to
display the lines in the Log View.

l Incomplete: Number of log lines that are not parsed by the base regex, a token filter, or both

l Next Unparsed Line: Click to go to the next line which is not parsed by either the base regex or a token
filter.

l Go to: Enter a line number or text string to find the information you want.

l Search by Log: The entered text will be searched for in the entire log line.

The Settings drop-down contains these options:

l Show Syslog Header: Select to display the sylog headers. See "Highlighting Patterns in Log Lines".

l Visualize Stats: Select to graphically display the statistics that appear in the top toolbar.

In the Log View Panel, the Log Message column displays the messages in the log file. The Matched
Token Filter column displays the number of token filters that match a log line. Initially, it displays 0. As
token filters are constructed and applied, this value changes to represent the number of token filters that
are parsing a particular log line.

You can begin defining tokens and token filters for your project by selecting a specific line from the log line.
This action opens the Token Filter Editor. See "Create a Token Filter".

The Log View displays these statistics to track your progress in parsing the log file:

l Token Filter Coverage: indicates the number of log lines that are parsed by a single token filter, by 2
token filters, and by 3 or more token filters

l Token Filter Stats: displays the number of matching messages for the top ten filters which are
covering most of the log lines.

When you have finished defining your base regex, tokens and token filters, and are satisfied with the test
results, click Generate Parser to generate the parser (.properties) file for the project. See "Generate a
Parser File ".

Creating Token Filters for Messages
To create a token filter, complete these tasks:

l Create a Base Regex

l Create a Token

l Create a Token Filter

l Create a Mapping

l Override Token Regex

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 13 of 67

Create a Base Regex
Navigation: Log View>Base Regex Editor

About:

The Quick Flex Parser Tool automatically generates a suggested base regex to work for the current log
line. If you don't want the suggested base regex, you can override the original line on top of the log line with
a valid regex. To fit the base regex with the other log lines, modify and test the base regex in an iterative
process. The log line highlight indicates if a regular expression matches the line. An error displays if regex
does not match the line.

Note: The auto generated regex is not meant to be a replacement to manually typing the base regex.
It is a suggestion to improve the base regex by adding or replacing expressions with something that
fits your criteria.

For Syslog files, the Syslog header is identified by the connector framework and highlighted in the Log
View. You can click the Syslog Header button to toggle the view for Syslog Header. The Syslog message
means the remainder of the line, for example, syslog header is not covered by base regex and token filter.

Specify a base regex (also known as a preparser). Connectors use a base regex to separate the header
from the body of a log message. The header is considered to be those parts of a log line that are common to
all messages. You must create the base regex that processes all log lines successfully before creating and
applying token filters to process the rest of the message.

Once you have a valid regex expression for the log line, click Tokenize to create base regex tokens. When
you edit the regex, Quick Flex Parser Tool will do its best to preserve the token properties that were
previously created (such as name, type, and assignment). In instances where base regex token(s) are
added to the base regex, token properties subsequent to the token(s) added will not be preserved. Except
for the generated regex, you can edit any of the default values that Quick Flex Parser Tool assigns to the
tokens.

Procedure:

1. Click Base Regex Editor on the Log View. The Base Regex Editor opens.

2. Define the base regex for the message in the Base Regex field.

Note:
l At a minimum, the base regex must be defined as (.*).

l You must create and save at least two base regex tokens before you can create message
tokens.

l Quick Flex Parser Tool expects the base regex to contain at least one capture group.

l Quick Flex Parser Tool uses parentheses to represent captured elements. To represent a

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 14 of 67

parenthesis as a literal character, you must escape it with the backslash character. For example:
"\(".

l The following is a list of characters which must be escaped in Quick Flex Parser Tool: [,], (,),
|, {. }

3. Click Tokenize. Quick Flex Parser Tool opens a pop-up with a list of suggested tokens for the
highlighted regex. You can accept the suggested tokens or dismiss the pop-up. If you accept the
suggested tokens, then the tokenized regex selection is highlighted.

Note:
l The Tokenize button will not become active unless the regex is valid and successfully

processes the entire log line in the Base Regex Editor.

l If the user modifies one of the tokens of the base regex defined, all tokens previously
configured return to its default values after it is tokenized.

l After you click Tokenize,when you place the cursor in the regex, the corresponding piece of
the log line is highlighted and information about the token is displayed in Token Details. See
"Highlighting in the Base Regex Editor".

l After you click Tokenize, you can examine how the tokens relate to the log line. Click Matching
Details to display a table that lists each token, the regex defined for the token, and the portion
of the log line it represents.

4. Edit the information about the token. Select a token from the Base Token List. Provide this information
in the Token Details region:

a. Edit the Token Name.

b. Select a Type from the drop-down list. See "ArcSight Token Types" for a description of token types.

Note: If you select TimeStamp, a Format field opens with a default time format. You can
enter a time format or click the search button to select a predefined format. See "Date and
Time Format Symbols".

c. Examine the Regex expression for the token. This field is populated by the regex defined for the
token in the Base Regex field. You can change the value in the Regex field only by editing the
Base Regex field.

d. (Optional) Enter a text Description for the token.

e. (Optional) Select an Assignment from the drop-down list. See "ArcSight Assignments ". When an
assignment is selected, the Type automatically fills with the associated default value. For example,
when you select User Name as the Assignment, the Type displays String.

f. Click Save Token. The name of the token appears in the Base Token List.

Note: The tool verifies the Type matching for mappings.

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 15 of 67

5. Select a Message ID Token and Message Token from the drop-down lists. This will be translated to
a sub-message in the parser file.

Note: If you want to process the log file with the base regex only, then this step is not required.

The Message ID Token drop-down list contains the tokens created for the project. You associate one
of these tokens with the Message Token to identify a sub-message.

A Message ID Token is not required, but it is desirable, because parsing performance is improved if
the Message Token can be related to a token filter.

6. (Optional) The Additional Data switch generates a setting in the parser properties file
additionaldata.enabled = true/false. The true setting tells the SmartConnectors to
collect all the unused base regex tokens (that is, tokens which are not mapped to anything). For
example, if the Additional Data switch is set to true for the token TokenABC, then the additional
mapping addionaldata.TokenABC = TokenABC will be created. This value will not appear in the
parser properties file, but it will be in the exported data or in the ESM view.

If you do not want SmartConnectors to automatically collect the unused tokens, you always have the
option to assign additionaldata when you do mapping. For example, you can enter something
similar to the following in the parser properties file: additonaldata.ANY_CUSTOM_NAME =
TokenABC.

7. Inspect the Log View to ensure that the base regex processes all lines successfully before you create
any tokens. If the base regex does not parse all lines, then they will not be parsed correctly by the
resulting parser properties file. See "Highlighting in the Log View".

Create a Token
Navigation: Log View>Token Manager or right-click a selected portion of the raw log message in the
Token Filter Editor

About:

A token is a tag that identifies a data field or other useful information in a message. Typically, the name of
the tag will be the name of the field it applies to. A token’s properties apply to each filter the token is used in.
If you change a token's properties, then the change will be reflected in each filter that uses the token.

Procedure:

The Token Manager contains a list of tokens that have been defined and a region where you can create or
edit message tokens. You can create only message tokens in the Token Manager. To create base regex
tokens, use the Base Regex Editor. See "Create a Base Regex".

Use one of these methods to open the Token Manager:

l Select Token Manager in the Log View.

l Use the top toolbar to open the Token Filter Editor. Select a message in the Log View Panel. The

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 16 of 67

message displays in the Original Log working area of the Token Filter Editor. Select and right-click a
part of the message. The Token Manager opens as a pop-up.

Provide the following information in the Token Manager.

1. Enter a Token Name in the Token Properties table.

2. (Optional) Select a Type from the drop-down list. See "ArcSight Token Types" for a description of
token types.

Note: If you select TimeStamp, a Format field opens with a default time format. You can enter a
time format or click the search button to select a predefined format. See "Date and Time Format
Symbols".

3. Edit the Regex expression for the token. When a token is created, its initial value is the default regex:
\\S+. Verify that the edited token regex processes the selected message segment.

Note: Quick Flex Parser Tool does not support the use of capture symbols ((...)) or optional
symbols (?...?) in the regex expression. Use the Capture and Mandatory toggle buttons
instead.

4. (Optional) Set the value of the Capture and/or Mandatory toggle buttons:

l Capture—Set to True to capture the value matching the token regex as a back reference. The
default is False.

l Mandatory—Set to True if the token value must be present in the message. The default is False.

5. (Optional) Enter a text Description for the token.

6. (Optional) Select an Assignment from the drop-down list. See "ArcSight Assignments ". When an
assignment is selected, the Type automatically fills with the associated default value. For example,
when you select User Name as the Assignment, the Type displays String.

7. Click Save to save the token. The name of the token appears in the Token List.

8. Repeat steps 1-7 until you have defined tokens which satisfy all of the log lines.

Create a Token Filter
Navigation: Log View>Token Filter Editor

About:

A token filter is the tokenized form of a message or log record. It is used to create a parser file and to
exercise various properties. The token filter contains the log text and all special characters are ignored.

Procedure:

1. Use the top toolbar to select Token Filter Editor. The log line appears in the Original Log and
Token Filter fields of the Token Filter Editor.

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 17 of 67

2. You can edit the token filter in the Filter ID. This value must be the ID for each log line that is
prepared to be parsed by the token filter currently under construction. This field is automatically filled
as best suggested by the tool.

3. Select the log line value in the Token Filter. Right-click the log line value to open a pop-up containing
the list of available tokens. You can create, edit or delete tokens:

a. Click + New to create a new token or select a token in the list to edit. See "Create a Token".

b. Click X Delete to remove a selected token from the project.

c. Enable Token Details to see more information about a selected token. You can edit the details, if
necessary.

d. Enable Override Regex in the Token Details if the token definition should override the token
regex. See "Override Token Regex".

4. Assign mappings to the tokens. See "Create a Mapping".

5. Click Apply to add the token to the Token Filter field. Quick Flex Parser Tool highlights portions of
the log line that match the regex defined in the filter (see "Highlighting Patterns in Log Lines").

Note:
l The order in which tokens appear, and any spaces or punctuation you add to the token filter, is

important.

l Quick Flex Parser Tool uses parentheses to represent captured elements. To represent a
parenthesis as a literal character, you must escape it with the backslash character. For example:
"\(".

l The following is a list of characters which must be escaped in Quick Flex Parser Tool: [,], (,),
|, {. }

6. When you are satisfied with the results of your token filter, click Save.

Create a Mapping
Navigation: Log View>Base Regex Editor or Token Filter Editor

About:

A mapping describes the relationship or the process of establishing the relationship between a log
message field and an ArcSight schema field. The mappings describe how the token will map to the fields in
ArcSight products, such as Logger, [[[Undefined variable _ARST_Variables.Management Center]]]
Express, and so on. More than one mapping can be associated with a field.

Procedure:

1. Click + New to create a new mapping or select an existing mapping from the list to edit.

2. Choose an Assignment from the drop-down list. See ArcSight Assignments

3. If the Assignment field is set to Additional Data, Additional Data Name field displays.

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 18 of 67

4. (Optional) Enter a text Description of the mapping.

5. Select an Operation from the drop-down list. See "ArcSight operations".

6. Enter any Arguments that are required by the selected operation. See "ArcSight operations".

7. Click Save Mapping to add the mapping to the Mapping List field.

Override Token Regex
Navigation: Log View>Token Manager

About:

Occasionally, the grammar of a message does not support the regex used by the token. However, if you do
not want to modify the token regex that works for all other messages, then you can override the token
regex to allow for exceptions in the token's definition. Overrides to a token's regex have the following
characteristics:

l overrides apply only to the token filter that contains the token with the overrides

l overrides do not modify token properties in the token set

Procedure:

1. Enable the Override Regex selector on the Token Manager pop-up.

2. Edit the regex expression in the New Regex field. Note that other fields in the pop-up cannot be
edited.

3. Save the token. The token definition is overwritten with the new regex and is saved in the Token List.

Highlighting Patterns in Log Lines
Quick Flex Parser Tool uses highlighting to indicate when a pattern in a log line matches the regex defined
in a token, base token filter, or token filter. The tool applies highlighting differently, depending on whether
you are in the Log View, the Token Filter Editor, or the Base Regex Editor.

l Highlighting in the Log View

l Highlighting in the Token Filter Editor

l Highlighting in the Base Regex Editor

Highlighting in the Log View
Quick Flex Parser Tool applies corresponding highlighting in the Log View window to distinguish between
the base regex and token filters:

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 19 of 67

l Base regex - When the base regex is created and saved, you can click Refresh on the log view to view
the base regex on the log lines. If your base regex pattern provides a partial match with the log line, then
the matching portion of the line is highlighted in purple from the 0th character in the line to the Nth

character.

l Token Filter - If the selected Token Filter pattern matches the entire log line, then the entire line will be
highlighted in green. However if a base regex is also valid for the line, then the log line will be
highlighted in purple for the base token filter match and the remaining part of the line will be
highlighted green for the token filter match.

l Syslog header highlighting:

Syslog File Selected Syslog File Used Highlighting

Yes Yes Yes

Yes No No

No Yes No

No No No

The following is an image of what the parser log view looks like when base regex is completed and
refreshed. Some token filters have been assigned to log lines:

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 20 of 67

Highlighting in the Token Filter Editor
Quick Flex Parser Tool applies highlighting to a log line for the base regex and Token Filter according to
their regex patterns.

Highlighting in the Base Regex Editor
When you place the cursor in a token in the base regex after clicking Tokenize, the corresponding piece of
the log line is highlighted. Information about the token is displayed if the log line has content expected to
be covered by that regex.

If you place the cursor in a token in the base regex and highlighting is not displayed in the log line, then
this means that the token is not present in the log line.

Managing and Testing Token Filters
You can perform the following actions in the Token Filter Manager:

l Manage Token Filters on the Token Filter List tab

l Test Token Filters on the Token Filter Test tab

Manage Token Filters
Navigation: Log View>Token Filter Manager>Token Filter List tab

About:

Use the Token Filter List tab of the Token Filter Manager to view the content and status of the token filters
you have created. For each token filter, the table displays the tokens used in the filter, whether it is currently
being used to parse the log file and the number of log lines it has matched.

The position of the token filters in the list is important. Quick Flex Parser Tool applies token filters to the log
file from top to bottom. Typically, token filters are ordered from most specific to least specific.

Procedure:

For each token filter in the Token Filter list tab, you can perform the following actions:

l View the list of tokens that comprise the token filter.

l View the number of log lines each token filter has matched and whether it is currently being used to
parse the log file.

l Enable or disable the token filter.

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 21 of 67

l Change the position of the selected token filter in the list by clicking Move Up or Move Down.

l Double-click the token filter name or click Edit to display the definition of the token filter.

l Select the token filter and click Delete to remove the token filter from the project.

l Test the validity of your token filters against the log file. See "Test Token Filters".

Test Token Filters
Navigation: Log View>Token Filter Manager>Token Filter Test tab

About:

Use the Token Filter Test tab of the Token Filter Manager to test the performance of your base regex and
token filters against the log file. You can test a single token filter or any combination of filters.

The Token Filter Test region displays the list of token filters, the tokens contained by the token filter, and its
status: enabled, disabled, or invalid. You can select filters and click Display Results to display the
performance of the filters against the log file in the Results region. Click Export to save the results in a CSV-
format file.

Note: You can export results only if you select the Base Regex filter, a single filter, or all filters.

The Results regions display grids that identify the tokens used in the filter, the schema events they are
mapped to, and any assignments that are applied. It also displays grids that identify matched and
unmatched lines for selected token filters. Each section of the Results region can be exported individually
to a CSV-format file.

Procedure:

You can perform the following actions in the Token Filter Test tab:

Select the Base Regex filter and click Display Results to display the following information. Click Export to
save the Unmatched Results to a CSV-format file.

l Match Results against Base Regex—This grid displays the tokens used in the base regex and any
schema elements and assignments associated with them. An additional grid displays the raw log lines
matched against the base regex and their contents.

l Unmatched Results against Base Regex—This grid displays the log lines that do not match the base
regex.

Select one token filter from the list of filters and click Display Results to display the following information.
Click Export to save the Match Based on Line results to a CSV-format file.

l Match Results against <token name>—This grid displays the tokens used in the selected token
filter and any schema elements and assignments associated with them. An additional grid displays the
parts of the message that are matched by each token in the filter.

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 22 of 67

l Matched Based on Line—This grid displays a list of messages that are matched by the selected token
filter.

Select multiple token filters and click Display Results to display the following information. Export is not
available for this scenario.

l Matched Lines against All Filters—This grid displays a list of the messages that are matched by
more than one token filter.

Select a line in the grid to open a Details pop-up that lists the values of the tokens used in each token
filter.

Select all token filters and click Display Results to display the following information. Click Export to save
the Unmatched Lines to a CSV-format file.

l Matched against Selected Token Filters —This grid displays a list of the messages that are matched
by more than one token filter.

l Unmatched Lines—This grid displays a list of the messages that are not matched by any token filter.

Click View on an unmatched line. The line opens in the Token Filter Editor where you can continue to work
on the message.

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 23 of 67

Generate a Parser File
Navigation: Log View>Generate Parser

About:

The Quick Flex Parser Tool can generate a parser file suitable for use in the ArcSightFlexConnector
framework. The parser file contains the definitions of your tokens, base regex, token filters, and token
mappings.

The minimum requirements for generating a parser file is a base regex which successfully parses the log
file.

Procedure:

1. Click Generate Parser in the Log View to generate a parser file. You can modify the generated
content and copy it to a separate file.

2. Click Export to save the parser properties file. By default, the file will be saved as <project_
name>.sdkrfilereader.properties for non-syslog projects and for syslog projects as
<project_name>.subagent.sdkrfilereader.properties.

Micro Focus Quick Flex Parser Tool (1.1) Page 24 of 67

ArcSight Token Types
Token types are important because tokens can be mapped only to ArcSight event fields with matching
types. Event fields and their types are listed in the ArcSight Console User’s Guide, in the Reference Guide,
under Data Fields.

Type Meaning Format

Integer A number from -2147483648 to 2147483647. n/a

IPAddress An IPv4 address (for example: 1.1.1.1). For IPv6-aware parsers, this can be an
IPv4 or an IPv6 address (for example:
fdeb:f59b:2e13:56c9:xxxx:xxxx:xxxx:xxxx).

n/a

Long A number from -9223372036854775808 to 9223372036854775807. n/a

MacAddress An Ethernet MAC address of the form: 00-06-3E-22-51-B9 or
00:06:3E:22:51:B9.

n/a

String Any free form sequence of characters. n/a

TimeStamp A date, a time or a date and a time. Date/time format (see
"Date and Time Format
Symbols")

Micro Focus Quick Flex Parser Tool (1.1) Page 25 of 67

Date and Time Format Symbols
The following date and time formats are defined in Quick Flex Parser Tool:

l MMM dd HH:mm:ss.SSS zzz

l MMM dd HH:mm:ss.SSS

l MMM dd HH:mm:ss zzz

l MMM dd HH:mm:ss

l MMM dd yyyy HH:mm:ss.SSS zzz

l MMM dd yyyy HH:mm:ss.SSS

l MMM dd yyyy HH:mm:ss zzz

l MMM dd yyyy HH:mm:ss

l ddMMyyyy HH:mm:ss

l MM-dd-yyyy HH:mm:ss

l yyyy-MM-dd HH:mm:ss.SSS

l yyyy-MM-dd HH:mm:ss

For example, for this format: yyyy-MM-dd HH:mm:ss

Use single quotes around text that is not meant to be interpreted as date format characters. Use this
example for a date like: 2016.07.04 AD at 12:08:56 PDT.

yyyy.MM.dd G 'at' HH:mm:ss z

Use two single quotes to insert a single quote. Use this example for a date like: Wed, Jul 4, '16.

EEE, MMM d, ''yy

This table contains date and time format symbols:

Symbol Meaning Presentation Examples

G Era designator (Text) AD

y Year (Number) 2016 or 06

Y Week year Year 2016;16

M Month in year (Text & Number) July or Jul or 07

w Week in year (Number) 27

W Week in month (Number) 2

D Day in year (Number) 129

d Day in month (Number) 10

Micro Focus Quick Flex Parser Tool (1.1) Page 26 of 67

Symbol Meaning Presentation Examples

F Day of week in month (Number) 2 (indicating 2nd Wed. in July)

E Day in week (Text) Tuesday or Tue

u Day number of week (1=Monday, ..., 7=Sunday) Number

a Am/pm marker (Text) AM or PM

H Hour in day (0~23) (Number) 0

k Hour in day (1~24) (Number) 24

K Hour in am/pm (0~11) (Number) 0

h Hour in am/pm (1~12) (Number) 12

m Minute in hour (Number) 30

s Second in minute (Number) 55

S Millisecond (Number) 978

z Time zone General time zone Pacific Standard Time or PST or GMT-08:00

Z Time zone RFC 822 time zone -0800 (indicating PST)

X Time zone ISO 8601 time zone -08; -0800; -08:00

User Guide
Chapter 3: Creating Tokens and Filters

Micro Focus Quick Flex Parser Tool (1.1) Page 27 of 67

Chapter 4: ArcSight Assignments
An assignment can be either a mapping or a rule. Mappings are mapped to ArcSight event fields from the
connectors framework, such as event.sourceAddress. The type of the token must match the type of the
ArcSight Event field so that the verification of assignment is activated.

See the numbered Range Notes (n) following this table for further explanations of certain field ranges.

A rule provides a level of indirection between the user and the ArcSightESM schema field a value is
mapped to. For more information, see "Quick Flex Parser Tool Rules".

The Assignments drop-down list in the Quick Flex Parser Tool contains both mappings and rules. This
table lists ArcSight mappings. For descriptions of the rules, see "Quick Flex Parser Tool Rules".

ArcSight Rules, Mappings,
and Schema Names Type Length Range

ACL Name (rule) See "Quick Flex Parser Tool Rules".

Additional Data (rule) See "Quick Flex Parser Tool Rules".

AV Engine Version (rule) See "Quick Flex Parser Tool Rules".

Application Protocol
event.applicationProtocol

String 31 n/a

Base Event Count
event.baseEventCount

Integer n/a 0 -> 231-1

Bytes In
event.bytesIn

Long n/a 0 -> 231-1

Bytes Out
event.bytesOut

Long n/a 0 -> 231-1

Category Behavior
event.categoryBehavior

String 1023 n/a (1)

Category Device Group
event.categoryDeviceGroup

String 1023 n/a (1)

Category Object
event.categoryObject

String 1023 n/a (1)

Category Outcome
event.categoryOutcome

String 1023 n/a (1)

Category Significance
event.categorySignificance

String 1023 n/a (1)

Category Technique
event.categoryTechnique

String 1023 n/a (1)

Micro Focus Quick Flex Parser Tool (1.1) Page 28 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Crypto Signature
event.cryptoSignature

String 512 n/a

Custom URI
event.customURI

String - n/a (2)

Destination Account (rule) See "Quick Flex Parser Tool Rules".

Destination Address (rule) See "Quick Flex Parser Tool Rules".

Destination Address
event.destinationAddress

IPAddress n/a IPv4 (3)

Destination Dns Domain
event.destinationDnsDomain

String 255 n/a

Destination Host (rule) See "Quick Flex Parser Tool Rules".

Destination Host Name
event.destinationHostName

String 1023 n/a

Destination Mac Address
event.destinationMacAddress

MacAddress n/a MAC (4)

Destination Nt Domain
event.destinationNtDomain

String 255 n/a

Destination Port
event.destinationPort

Integer n/a 0 ->65535

Destination Process Name
event.destinationProcessName

String 1023 n/a

Destination Service Name
event.destinationServiceName

String 1023 n/a

Destination Translated Address
event.destinationTranslatedAddress

IPAddress n/a IPv4 (3)

Destination Translated Port
event.destinationTranslatedPort

Integer n/a 0 -> 65535

Destination Translated Zone URI
event.destinationTranslatedZoneURI

String - n/a (2)

Destination User Id
event.destinationUserId

String 1023 n/a

Destination User Name
event.destinationUserName

String 1023 n/a

Destination User Privileges
event.destinationUserPrivileges

String 1023 n/a

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 29 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Destination Zone URI
event.destinationZoneURI

String - n/a (2)

Device Action
event.deviceAction

String 63 n/a

Device Address (rule) See "Quick Flex Parser Tool Rules".

Device Address
event.deviceAddress

IPAddress n/a IPv4 (3)

Device Custom Date 1
event.deviceCustomDate1

TimeStamp n/a n/a (5)

Device Custom Date 1 Label
event.deviceCustomDate1Label

String 1023 n/a

Device Custom Date 2
event.deviceCustomDate2

TimeStamp n/a n/a (5)

Device Custom Date 2 Label
event.deviceCustomDate2Label

String 1023 n/a

Device Custom IPv6 Address 1
event.deviceCustomIPv6Address1

IPv6 Address n/a IPv6 (8)

Device Custom IPv6 Address 1 Label
event.deviceCustomIPv6Address1Label

String 1023 Should be “Device IPv6
Address”. See also "Device
Address or Host" in "Quick
Flex Parser Tool Rules".

Device Custom IPv6 Address 2
event.deviceCustomIPv6Address2

IPv6 Address n/a IPv6 (8)

Device Custom IPv6 Address 2 Label
event.deviceCustomIPv6Address2 Label

String 1023 Should be “Source IPv6
Address”. See also "Source
Address or Host" in "Quick
Flex Parser Tool Rules".

Device Custom IPv6 Address 3
event.deviceCustomIPv6Address3

IPv6 Address n/a IPv6 (8)

Device Customer IPv6 Address 3 Label
event.deviceCustomerIPv6Address3Label

String 1023 Should be “Destination IPv6
Address”. See also
"Destination Address or
Host" in "Quick Flex Parser
Tool Rules".

Device Custom Number 1
event.deviceCustomNumber1

Long n/a - 263 -> 263-1

Device Custom Number 1 Label
event.deviceCustomNumber1Label

String 1023 n/a

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 30 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Device Custom Number 2
event.deviceCustomNumber2

Long n/a - 263 -> 263-1

Device Custom Number 2 Label
event.deviceCustomNumber2Label

String 1023 n/a

Device Custom Number 3
event.deviceCustomNumber3

Long n/a -263 -> 263-1

Device Custom Number 3 Label
event.deviceCustomNumber3Label

String 1023 n/a

Device Custom String 1
event.deviceCustomString1

String 1023 (4.x)

4000 (5.x)

n/a

Device Custom String 1 Label
event.deviceCustomString1Label

String 1023 n/a

Device Custom String 2
event.deviceCustomString2

String 1023 (4.x)

4000 (5.x)

n/a

Device Custom String 2 Label
event.deviceCustomString2Label

String 1023 n/a

Device Custom String 3
event.deviceCustomString3

String 1023 (4.x)

4000 (5.x)

n/a

Device Custom String 3 Label
event.deviceCustomString3Label

String 1023 n/a

Device Custom String 4
event.deviceCustomString4

String 1023 (4.x)

4000 (5.x)

n/a

Device Custom String 4 Label
event.deviceCustomString4Label

String 1023 n/a

Device Custom String 5
event.deviceCustomString5

String 1023 (4.x)

4000 (5.x)

n/a

Device Custom String 5 Label
event.deviceCustomString5Label

String 1023 n/a

Device Custom String 6
event.deviceCustomString6

String 1023 (4.x)

4000 (5.x)

n/a

Device Custom String 6 Label
event.deviceCustomString6Label

String 1023 n/a

Device Dns Domain
event.deviceDnsDomain

String 255 n/a

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 31 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Device Domain
event.deviceDomain

String 1023 n/a

Device Event Category
event.deviceEventCategory

String 1023 n/a

Device Event Class Id
event.deviceEventClassId

String 1023 n/a

Device External Id
event.deviceExternalId

String 255 n/a

Device Facility
event.deviceFacility

String 1023 n/a

Device Host Name
event.deviceHostName

String 63 n/a

Device Host (rule) See "Quick Flex Parser Tool Rules".

Device Inbound Interface
event.deviceInboundInterface

String 15 n/a

Device Mac Address
event.deviceMacAddress

MacAddress n/a MAC (4)

Device Nt Domain
event.deviceNtDomain

String 255 n/a

Device Outbound Interface
event.deviceOutboundInterface

String 15 n/a

Device Payload Id
event.devicePayloadId

String 128 n/a

Device Process Name
event.deviceProcessName

String 1023 n/a

Device Product
event.deviceProduct

String 63 n/a

Device Receipt Time
event.deviceReceiptTime

TimeStamp n/a n/a (5)

Device Severity
event.deviceSeverity

String 63 n/a

Device Time Zone
event.deviceTimeZone

String 255 n/a

Device Translated Address
event.deviceTranslatedAddress

IPAddress n/a IPv4 (3)

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 32 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Device Translated Zone URI
event.deviceTranslatedZoneURI

String - n/a (2)

Device Vendor
event.deviceVendor

String 63 n/a

Device Version
event.deviceVersion

String 31 n/a

Device ZoneURI
event.deviceZoneURI

String - n/a (2)

End Time
event.endTime

TimeStamp n/a n/a (5)

External Id
event.externalId

String 40 n/a

File Create Time
event.fileCreateTime

TimeStamp n/a n/a (5)

File Hash
event.fileHash

String 255 n/a

File Id
event.fileId

String 1023 n/a

File Modification Time
event.fileModificationTime

TimeStamp n/a n/a (5)

File Name
event.fileName

String 1023 n/a

File Path
event.filePath

String 1023 n/a

File Permission
event.filePermission

String 1023 n/a

File Size
event.fileSize

Long n/a 0 -> 263-1

File Type
event.fileType

String 1023 n/a

Flex Date 1
event.flexDate1

TimeStamp n/a n/a (5)

Flex Date 1 Label
event.flexDate1Label

String 128 n/a

Flex Number 1
event.flexNumber1

Long n/a - 263 -> 263-1

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 33 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Flex Number 1 Label
event.flexNumber1Label

String 128 n/a

Flex Number 2
event.flexNumber2

Long n/a -2 63 -> 263-1

Flex Number 2 Label
event.flexNumber2Label

String 128 n/a

Flex String 1
event.flexString1

String 1023 n/a

Flex String 1 Label
event.flexString1Label

String 128 n/a

Flex String 2
event.flexString2

String 1023 n/a

Flex String 2 Label
event.flexString2Label

String 128 n/a

Group (rule) See "Quick Flex Parser Tool Rules".

Instance (rule) See "Quick Flex Parser Tool Rules".

Message
event.message

String 1023 n/a

Name
event.name

String 512 n/a (9)

Object (rule) See "Quick Flex Parser Tool Rules".

Old File Create Time
event.oldFileCreateTime

TimeStamp n/a n/a (5)

Old File Hash
event.oldFileHash

String 255 n/a

Old File Id
event.oldFileId

String 1023 n/a

Old File Modification Time
event.oldFileModificationTime

TimeStamp n/a n/a (5)

Old File Name
event.oldFileName

String 1023 n/a

Old File Path
event.oldFilePath

String 1023 n/a

Old File Permission
event.oldFilePermission

String 1023 n/a

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 34 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Old File Size
event.oldFileSize

Long n/a 0 -> 263-1

Old File Type
event.oldFileType

String 1023 n/a

Raw Event
event.rawEvent

String 4000 n/a (7)

Request Client Application
event.requestClientApplication

String 1023 n/a

Request Context
event.requestContext

String 2048 n/a

Request Cookies
event.requestCookies

String 1023 n/a

Request Method
event.requestMethod

String 1023 n/a

Request Url
event.requestUrl

String 1023 n/a

Rule Name (rule) See "Quick Flex Parser Tool Rules".

Signature Version (rule) See "Quick Flex Parser Tool Rules".

Source Account (rule) See "Quick Flex Parser Tool Rules".

Source Address (rule) See "Quick Flex Parser Tool Rules".

Source Address
event.sourceAddress

IPAddress n/a IPv4 (3)

Source Dns Domain
event.sourceDnsDomain

String 255 n/a

Source Host (rule) See "Quick Flex Parser Tool Rules".

Source Host Name
event.sourceHostName

String 1023 n/a

Source Mac Address
event.sourceMacAddress

MacAddress n/a MAC (4)

Source Nt Domain
event.sourceNtDomain

String 255 n/a

Source Port
event.sourcePort

Integer n/a 0 -> 65535

Source Process Name
event.sourceProcessName

String 1023 n/a

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 35 of 67

ArcSight Rules, Mappings,
and Schema Names Type Length Range

Source Service Name
event.sourceServiceName

String 1023 n/a

Source Translated Address
event.sourceTranslatedAddress

IPAddress n/a IPv4 (3)

Source Translated Port
event.sourceTranslatedPort

Integer n/a 0 -> 65535

Source Translated Zone URI
event.sourceTranslatedZoneURI

String - n/a (2)

Source User Id
event.sourceUserId

String 1023 n/a

Source User Name
event.sourceUserName

String 1023 n/a

Source User Privileges
event.sourceUserPrivileges

String 1023 n/a

Source Zone URI
event.sourceZoneURI

String - n/a (2)

Start Time
event.startTime

TimeStamp n/a n/a (5)

Transport Protocol
event.transportProtocol

String 31 n/a (6)

Virus Name (rule) See "Quick Flex Parser Tool Rules".

Range Notes

1. Although these fields can be set using the FlexConnector properties file, the recommended way is to
create a categorization file. For more about the possible values, see the "Categories" topic in the
Console Help or the ArcSight Console User’s Guide. Also, see "FlexConnectors and Categorization" in
the FlexConnector Developer's Guide.

2. Although URI fields can be set using the FlexConnector properties file, these are really links to
resources in the database. Therefore, it is recommended that those fields be set using the network-
model and customer-setting features.

3. This is an IPv4 address (from 0.0.0.0 to 255.255.255.255) or an IPv6 address
(xxxx:xxxx:xxxx:xxxx:xxxx:xxxx).

4. This is a MAC address: XX:XX:XX:XX:XX:XX or XX-XX-XX-XX-XX-XX.

5. This is a timestamp stored as milliseconds since January 1, 1970.

6. The options are: TCP, UDP, ICMP, IGMP, ARP.

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 36 of 67

7. Set PreserveRawEvent to Yes to have the connector automatically preserve the original event log
received from the device. With the default No”, you can configure this field. To find the
PreserveRawEvent field in the ArcSight Console interface, go to the Connectors resource tree >
Configure > Default tab > Content >Processing section > PreserveRawEvent.

8. For a non-IPv6-aware parser, the IPv6 fields (deviceCustomIPv6Address1, 2, and 3) should
consistently use 1 for device, 2 for source, and 3 for destination. The labels for them will automatically
be set if the IPv6 address field is set, but if your ArcSight Console parser sets them explicitly, it should
use the exact strings shown above.

For an IPv6-aware parser, the IPv6 fields (deviceCustomIPv6Address1, 2, and 3) can contain either
IPv4 or IPv6 addresses. In practice, these fields should rarely be used. If they are, the labels should be
set to an appropriate value.

9. The name field is mandatory.

User Guide
Chapter 4: ArcSight Assignments

Micro Focus Quick Flex Parser Tool (1.1) Page 37 of 67

Chapter 5: Quick Flex Parser Tool Rules
A mapping rule provides a level of indirection between the user and the ArcSight ESM schema field a value
is mapped to. A value comes from either a token, the value captured by the token’s regular expression
when it is used in the token filter, or the result of an operation that is part of the token or token filter.

A mapping rule provides:

l support for common operations so that you do not need to repeatedly implement them in each token
filter or parser

l a user-friendly name for the schema field

l the ability to change how a value would be applied to the schema without requiring the user to change
token filters or parsers

There is a distinction between selecting a mapping that simply writes to a schema field and one that has
operations. The majority of users will simply do mapping.

The available operations, when the mapping rule has operations, are described in "ArcSight Operations". In
this case, the mapping rule supports these uses:

l the value must be tested and modified in some way that relates to the schema field

l the destination schema field must be selected based on an ArcSight mapping convention. It supports
consistent mapping for cases when there are no natural schema fields to map to

l support the complexity of the ArcSight schema when a value might be mapped to different places

The following table describes the mapping rules available in Quick Flex Parser Tool.

Rule Name Description and Arguments

ACL Name Defines the name of the Access Control List (ACL).

Arguments:

l ACL Name—The value of ACL Name is mapped to event.deviceCustomString1.

l ACL Label—If defined, the value is mapped to event.deviceCustomString1Label. If it is not
defined, "ACL name" is mapped to event.deviceCustomString1Label.

Additional Data Allows you to specify a custom additionaldata name when you perform mapping.

For example, when you are mappingToken0, you can enter CUSTOM_NAME as an argument.
The following will appear in the parser properties file: additonaldata.CUSTOM_NAME =
Token0

Micro Focus Quick Flex Parser Tool (1.1) Page 38 of 67

Rule Name Description and Arguments

AV Engine Version Defines the Anti Virus Engine version.

Arguments:

l AV Engine Version—The value of AV Engine Version is mapped to
event.deviceCustomString2.

l AV Engine Version Label—If defined, the value is mapped to Device Custom String 2 Label.
If it is not defined, "AV Engine Version" is mapped to event.deviceCustomString2Label.

Destination Account Identifies the target account of an event. If the account name contains a Windows domain, it will
split the domain name out of the account name. The domain name is written to
event.destinationNtDomain.

Arguments:

l Account Name—The domain name (if it exists) is mapped to event.destinationNtDomain
and Account Name is mapped to event.destinationUserName.

Destination Address or Host Destination target of an event; typically this will be a host address or a host name. The rule
evaluates whether the target is an address or a host name and maps it to the appropriate field.

Arguments:

There are three possible mappings:

l if value pattern matches an IPV4 address then the value is mapped to
event.destinationAddress.

l if the value pattern matches an IPV6 address then the value is mapped to
event.customIPv6Address3 and "Destination IPv6 Address" is mapped to
event.customIPv6Address3Label.

l if neither of these conditions match, then the value is mapped to
event.destinationHostName.

Device Address or Host Device is the system where the event occurred, or from where the event was retrieved. The
rule evaluates the value pattern and maps the value to the appropriate field.

Arguments:

There are three possible mappings:

l if the pattern matches an IPv4 address, then the value is mapped to
event.destinationAddress in the case of an address, or event.deviceAddress in the case of a
host.

l if the pattern matches an IPv6 address then the value is mapped to
event.customIPv6Address1 and "Device IPv6 Address" is mapped to
event.customIPv6Address1Label.

l if neither of these conditions match, then the value is mapped to
event.destinationHostName in the case of an address, or event.deviceHostName in the
case of a host.

User Guide
Chapter 5: Quick Flex Parser Tool Rules

Micro Focus Quick Flex Parser Tool (1.1) Page 39 of 67

Rule Name Description and Arguments

Group A Group can be anything that an application or operating system refers to as a group.
TheArcSight event schema does not support groups, so if you must define a group, use these
conventions to handle the values.

Arguments:

l Group Name—The value of Group Name is mapped to event.deviceCustomString6.

l Group Label—If defined, the value is mapped to event.deviceCustomString6Label. If it is not
defined, "Group" is mapped to event.deviceCustomString6Label.

Instance An Instance is a representation of a distinct event. If the product supports instance, use these
conventions to map the values:

Arguments:

l Instance Field Value—The value is mapped to event.deviceCustomString3.

l Instance Label —If defined, the value is mapped to event.deviceCustomString3Label. If it is
not defined, "Instance" is mapped to event.deviceCustomString3Label.

Object A generic object. Any object that does not have a natural rule. Use these conventions to map
the values:

Arguments:

l Object Name—The value of Object Name is mapped to event.deviceCustomString6.

l Object Label—If defined, the value is mapped to event.deviceCustomString6Label. If it is
not defined, "Object name" is mapped to event.deviceCustomString6Label.

Rule Name Any instance of a rule name. For example, this can be a firewall rule, a mapping rule, and so on.
Use these conventions to map the values:

Arguments:

l Rule Name—The value of Rule Name is mapped to event.deviceCustomString1.

l Rule Label—If defined, the value is mapped to event.deviceCustomString1Label. If it is not
defined, "Rule name" is mapped to event.deviceCustomString1Label.

Signature Version This is typically an IDS (intrusion detection system) signature version number.

Arguments:

l Signature Version—The value of Signature Version is mapped to
event.deviceCustomString2.

l Signature Version Label—If defined, the value is mapped to
event.deviceCustomString2Label. If it is not defined, "Signature version" is mapped to
event.deviceCustomString2Label.

User Guide
Chapter 5: Quick Flex Parser Tool Rules

Micro Focus Quick Flex Parser Tool (1.1) Page 40 of 67

Rule Name Description and Arguments

Source Account The account of the source that triggered the event. If the account name contains a Windows
domain, it will split the domain name out of the account name. The domain name is written to
event.destinationNtDomain.

Arguments:

l Account Name—The domain name (if it exists) is mapped to event.destinationNtDomain
and Account Name is mapped to event.destinationUserName.

Source Address or Host The address of the system or device that is the origin of an event or the location where the
event occurred.

Arguments:

There are three possible mappings:

l if the pattern matches an IPv4 address, then the value is mapped to event.sourceAddress.

l if the pattern matches an IPv6 address, then the value is mapped to
event.customIPv6Address2 and "Source IPv6 Address" is mapped to
event.customIPv6Address2Label.

l if neither of these conditions match, then Source Address is mapped to
event.sourceHostName.

Virus Name The name that a product assigns to a virus.

Arguments:

l Virus Name—The value of Virus Name is mapped to event.deviceCustomString1.

l Virus Label—If defined, the value is mapped to event.deviceCustomString1Label. If it is not
defined, "Virus name" is mapped to event.deviceCustomString1Label.

User Guide
Chapter 5: Quick Flex Parser Tool Rules

Micro Focus Quick Flex Parser Tool (1.1) Page 41 of 67

Chapter 6: CEF Verification
This section contains the following topics:

"CEF Verification Features and Benefits" below

"CEF Compliance Workflow Summary" below

CEF Verification Features and Benefits
The CEF Verification tool helps you create CEF-compliant log files for a device. The log file used for CEF
Verification can include up to 2000 lines without impacting the tool's performance. The tool simplifies your
work by doing the following:

l Confirms that the CEF header fields are correct.

o If they are not correct, then you can add notes in the tool to change the settings in the device.

l Confirms the CEF field names are correct in the CEF extension.

o If you make a correction in the extension, then the tool applies the change to all lines with the same
pattern in the log file.

l Allows you to change the CEF key to match the type where you can see them in the line extensions.

l Verifies field type upon assignment to the CEF key.

l Verifies only the keys, such as field name abbreviations, that are allowed for use by the device (Event
Producer). A SmartConnector (Event Consumer) can use additional keys.

l Allows you to create new keys which are mapped to Additional Data assignments.

l Generates a report which describes whether CEF header fields and CEF field names are correct, and
notes any changes you make to the CEF extensions. You can use the report to adjust the device setting,
produce the log file and start the next iteration.

l Supports the Syslog format for lines in the log file. The Syslog Header describes the standard beginning
of Syslog line, and includes a date and a host.

CEF Compliance Workflow Summary
The following tasks provide a high-level description of how to use the Quick Flex Parser Tool to verify that
the log file adheres to the CEF standard.

Micro Focus Quick Flex Parser Tool (1.1) Page 42 of 67

1. Create a CEF Compliance Project
Create a project to load the log file and identify the folder to store the results.

2. Review Header Values
In the View Header Values window, all of the CEF headers will be parsed into their own columns. The
parsing is done by the connector. The intent of this window is for you to check and comment on whether
the values are appropriate and match the vendor's proper data type and terminology.

3. Assess CEF Extensions
Click the Warning Details icon to view the warning details and descriptions for the line that you are editing.

a. In Verify CEF extension window, right-click a key/value pair to pick an appropriate match and edit
the key. The objective of this is to have key/value pairs with matching data types so that the value
for each key can be mapped and not cause warnings when the log is being fed into the connector.

b. Keys are available in a list menu.

c. You can change the key to another key that may be more appropriate for the values that it is
representing.

Note: For a complete description of the available CEF keys, see "Implementing ArcSight
Common Event Format (CEF)" on Protect 724.

d. When you edit a log line, the pattern of the log line is noted in the back-end. When you are done
editing and apply the changes, other log lines in the log file will have the same changes applied.

e. The changes made in this window are noted in the generated report.

4. Review Changes
a. Repeat the above steps until there are no log warnings or your are satisfied with your changes.

b. Click Refresh for the edits that were done previously in the CEF extension window to apply to all the
other pattern-matching log lines.

5. Generate a Report
a. The generated report includes comments from the Header Values window.

b. The generated report includes all the edits done in the CEF extension window. Each edit contains
the original log line used, the original and new keys, and the other log lines affected from the edits
to the particular original log line.

User Guide
Chapter 6: CEF Verification

Micro Focus Quick Flex Parser Tool (1.1) Page 43 of 67

https://community.saas.hpe.com/t5/ArcSight-Connectors/ArcSight-Common-Event-Format-CEF-Guide/ta-p/1589306?attachment-id=65537
https://community.saas.hpe.com/t5/ArcSight-Connectors/ArcSight-Common-Event-Format-CEF-Guide/ta-p/1589306?attachment-id=65537

6. Apply Your Changes to the Device
Based on the information from the Generated Report, apply changes to the device. Applying changes may
be relevant in the CEF header and in certain key patterns.

User Guide
Chapter 6: CEF Verification

Micro Focus Quick Flex Parser Tool (1.1) Page 44 of 67

Chapter 7: CEF Verification Log View
Navigation: Landing page>Create New>Log View or Landing page>Open Files>Log View

The CEF Verification Log View opens when you create a new project or open an existing project. This view
contains these panels:

l The CEF Verification Log View shows the log lines with highlighting of syslog header and CEF header or
just CEF header. It shows the status for each log line. If it has a warning icon , there are some warnings
that may need to be addressed. If you click the icon, it opens the Verify CEF Extension window where you
can see the log line and modify it.

l Click the Warning icon in the Log View window Status column to open the Verify CEF Extension
window. Right-click a section of a log line to assign keys to the line. As keys are assigned, the color of
portions of the line will change. If the log line is valid, a green check mark indicates it is verified.

l You can also click the Warning Details icon to open another window that lists the warnings and
description for each warning for that particular log line.

For more information on how highlighting is used in CEF Verification tool, see "Understanding Color
Highlighting in Log Lines".

CEF Verification Log View Tool Bar
The CEF Verification Log View tool bar contains the following:

l File: contains commands to create a new project, open an existing project, open a log file in the project,
save the project, and edit project properties.

l View Header Values: Click to open the View Header Values window for the highlighted line. Use this
window to check the values assigned to components in each log line for correctness. See "View Header
Values".

l Verify CEF Extension: Click to open the Verify CEF Extension window for the highlighted line. Use this
window to assign CEF keys to components in the log message. See "Verify the CEF Extension".

l Help: Click to access the online help and the two workflow summaries.

CEF Verification Log View Ribbon
The CEF Verification Log View ribbon displays the following status and commands:

l Total Log Lines: Indicates the total number of lines in the log file.

l Warning Lines: Indicates the lines with errors.

Micro Focus Quick Flex Parser Tool (1.1) Page 45 of 67

l Go to: Enter a line number to skip to that line.

l Search by Log: Search on a word or phrase in the log file.

l Report: Click to generate a new log file and a report that contains a record of your changes. See
"Generate a CEF Verification Report".

l Gear button: Click the gear button to display these options:

o Show Syslog Header: Enable this option to display the syslog header (default). When disabled, the
syslog header is hidden. See "Highlighting Patterns in Log Lines".

o Show CEF Header: Enable this option to display the CEF header (default). When disabled, the CEF
header is hidden. See "Highlighting Patterns in Log Lines".

If the file contains both syslog and CEF headers, CEF Verification tool allows you to hide or display the
following combinations:

Show Syslog Header enabled (displayed) Show CEF Header enabled (displayed)

Syslog Header disabled (hidden) Show CEF Header enabled (displayed)

Syslog Header disabled (hidden) Show CEF Header disabled (hidden)

l Refresh: Click to refresh the contents of the working view.

Creating CEF Verification Projects and Opening CEF
Log Files
You can perform these tasks on the Quick Flex Parser Tool Landing Page for a CEF Verification project:

l Create a CEF Verification Project

l Open a CEF Log File

l View a Workflow Summary

Create a CEF Verification Project
Navigation: Landing page>Create New

About:

CEF Verification projects:

Quick Flex Parser Tool performs CEF verification within the scope of a project. The project contains the
original log file and the report of the changes you made. You can use the generated report as a reference
to make the corresponding corrections to the CEF file manually and make it suitable for use within the
FlexConnector framework.

User Guide
Chapter 7: CEF Verification Log View

Micro Focus Quick Flex Parser Tool (1.1) Page 46 of 67

Procedure:

Create a new project:

1. Click Create New on the Landing Page to open the New Project dialog.

2. Select the Verify CEF Log to create a CEF verification project.

3. Enter the following information in the Create New Project page:

l the name of the vendor who provided the log file

l (Optional) the name of the product that produced the log file

l (Optional) the version number of the product

Note: The vendor and product names defined are mapped automatically to their
corresponding fields.

If you do not specify these details at the beginning of a project, you can specify them later by selecting
File>Edit Project Properties in the Log View.

4. For CEF Verification projects: select Syslog File if you are working with a syslog log file.

5. (Optional) Click Browse to navigate to the log file.

If you do not select a log file at the beginning of a project, you can select it later by selecting File>Open
Log File in the Log View.

Note: For CEF Verification projects only:

l The limitation on the size of log files for CEF Verification projects is 100 Mb.

l Select the Verify CEF Log checkbox and leave the Syslog File checkbox on for CEF
verification of Syslog files.

6. Click Browse to navigate to the location where you want to store your project artifacts.

7. Click Create. The log file is loaded into the Log View.

A JSON project file is created. The name of the file is a concatenation of a prefix to indicate whether the
file belongs to a parser file or a CEF verification project (pt or cef), the vendor name, the product
name, and the version number (prefix_vendor_product_version.json). For example, cef_
vendorXYZ_productABC_1.json or pt_vendorUVW_productDEF_1.json.

Open a CEF Log File
Navigation: Log View>File>Open Log File

Select File>Open Log File. The log file and any associated project artifacts are loaded into the Quick Flex
Parser Tool.

When you open a new log file, you will be prompted that the work that you have done so far will be erased if
uploading a new log. You will get a prompt to save the generated report for the original log file since the

User Guide
Chapter 7: CEF Verification Log View

Micro Focus Quick Flex Parser Tool (1.1) Page 47 of 67

keys that changed may not work for the new log file. Each new log file gets interpreted by the connector
and may produce different results. Follow the prompts to save the work that you have done with the
original log file.

View a Workflow Summary
Navigation: Landing page> CEF Compliance Overview

Procedure:

Click Quick Flex Overview for a graphic representation of the Quick Flex workflow.

See CEF Compliance Workflow Summary for details.

View Header Values
Navigation: Log View>View header values

Use the View Header Values window to inspect the values assigned to components in the header.

About:

The first column in the table contains the line number. Subsequent columns contain the values for the
components detected in the header. Click Add Comments to add any notes you want to the table. You can
open and edit the comments at any time.

If you notice any header component values that you want to change, you must return to the device to make
your changes, re-run the log file, then load it back into Quick Flex Parser Tool.

Verify the CEF Extension
Navigation: Log View>Verify CEF Extension or click the Warning icon in the Status column of a log line
in the Log View panel.

About:

Use the Verify CEF Extension page to assign CEF keys to portions of the log line so they comply with the
connector expectations. For example, a key expecting an integer value is not associated with a string value.
The Verify CEF Extension page contains a copy of the log line in the Original Log field and in the Modified
Log Line field.

You can assign an existing CEF key to a portion of a log line.

Procedures:

User Guide
Chapter 7: CEF Verification Log View

Micro Focus Quick Flex Parser Tool (1.1) Page 48 of 67

1. In the Assign Key Values field in the Verify CEF Extension window, highlight the key and right-click
on it. A list of available CEF keys displays. They are sorted in the order of corresponding full event field
names.

2. Apply one of the keys from the CEF Key list.

3. Do this for each key that you intend to correct in the line. The key is the word preceding the "=" sign.

4. Mark as AdditionalData is not currently supported.

5. When you are finished processing all of the components in the line, click Apply to apply it to the
modified panel in the Log View window. The key assignments that you make will be applied to all of
the lines that have the same pattern and values of keys. Lines that are processed correctly (verified)
will have a green check mark.

Warning Details
Click the Warning Details icon to view the warning details and descriptions for the line that you are editing.

1. This is a view only window where you can see the log line number followed by incrementing warning
line numbers. For example, for log line #15 there may be warning 15.1, 15.2, 15.3, etc.

2. Leave this window open side-by-side with the Verify CEF Extension window to review the details and
address warning messages.

Generate a CEF Verification Report
Navigation: Log View>Generate Report

About:

The Quick Flex Parser Tool can generate a report to provide data regarding the changes made in the
project.

The report data includes project information such as the following:

l Product, Vendor, and Version of the project

l Log file used in project

l Header comments

l Extension comments with log line number, log line, and comments

l Extension modifications with example of original and modified log line, log lines affected, old and new
keys

Report Example:

Vendor: myVersion

Product: myProduct

User Guide
Chapter 7: CEF Verification Log View

Micro Focus Quick Flex Parser Tool (1.1) Page 49 of 67

Version: myVersion

Log file used: C:\Users\auser\Documents\Parser Tool Documents\Version 1.1\qfpt_
demo\cefErrorsSyslog.log

Header Comments:

change device versions from 2.1 to 2.2

Extension Comments:

Line #6: suser=hello@hello.com duser=fedf@dfdf.com messg=Social Security Numbers
deviceCustomNumber1=1 deviceCustomNumber1Label=MatchCount

Comment: messg wasn't cef key

CEF Extension Modifications:

Example of original key pattern, using line #1: src=1.1.1.1 dst=2.2.2.2 spt=4380 dpt=80 proto=TCP

Lines numbers modified: 1,5,9

Old key: src, New key: dst

Example of modified key pattern, using line #1: dst=1.1.1.1 dst=2.2.2.2 spt=4380 dpt=80 proto=TCP

Example of original key pattern, using line #10: suser=hi@hello.com duser=fredf@dfdf.com messg=Social
Facebook Numbers deviceCustomNumber1=6 deviceCustomNumber1Label=MatchCount

Lines numbers modified: 6,10

Old key: messg, New key: deviceInboundInterface

Example of modified key pattern, using line #10: suser=hi@hello.com duser=fredf@dfdf.com
deviceInboundInterface=Social Facebook Numbers deviceCustomNumber1=6
deviceCustomNumber1Label=MatchCount

Procedure:

1. Click Generate Report in the Log View to generate a report.

Understanding Color Highlighting in Log Lines
In the Log View, lines that must be verified display components as either unhighlighted or highlighted in
the following colors:

Parser project:

l syslog=peach

l base regex=purple

User Guide
Chapter 7: CEF Verification Log View

Micro Focus Quick Flex Parser Tool (1.1) Page 50 of 67

l submessage=green when there is a match. Otherwise, there is no highlight.

CEF project:

l syslog=peach

l CEF header=light blue

See "Verify the CEF Extension" for information on how to address warnings in log lines.

Syslog header highlighting:

Syslog File Selected Syslog File Used Highlighting

Yes Yes Yes

Yes No No

No Yes No

No No No

User Guide
Chapter 7: CEF Verification Log View

Micro Focus Quick Flex Parser Tool (1.1) Page 51 of 67

Appendix A: ArcSight Operations
The following table describes all of the operations that can be used when tokens are mapped to ArcSight
event fields.

Operations are used primarily when tokens are mapped to ArcSight event fields.

The values in the Arguments have the following meaning:

l token_name—the name of a token, for example, Token0, TimeToken.

l expression—can be a token name, a quoted string, or null; for example, TimeToken, "Receipt Time",
or ,,.

l (string) constant—a quoted string, for example, "string constant".

l null—an empty value, for example ,,.

l regex_expression—a regex expression. Must be enclosed in parentheses, for example (\s+).

Note: The Quick Flex Parser Tool does not support nested operations.

Operation Return Type Definition and Comments

__BASE64Decode String The parameter is a single Base-64 encoded string, which is
decoded to bytes, and then converted to a string using the
platform's default character set.

__byteArrayToIPAddress IPAddress This operation takes a byte array representation of an IPv4 or
IPv6 address as a parameter and returns an IPAddress object.
This operation can be used only for IPv6-aware parsers.

__byteArrayToIPv6 IPAddress This parameter returns an IPv6 address stored as an IPAddress
object. Use this parameter for mapping to event fields or
additional fields which can have an IPv6 address type. Use this
operation only in a non-IPv6-aware parser. For an IPv6-aware
parser use the __byteArrayToIPAddress operation.

__byteArrayToIPv6String String The parameter returns the string representation of an IPv6
address stored in a byte array.

__concatenate String The parameters can be literal strings or other values of various
types. The result is a string that consists of all of these
parameters concatenated together.

__concatenate("Active",protocol," Ports:
",portnum)

__concatenate("CompanyName: [",
CompanyName,"]")

__concatenate("PF: ",PassOrBlock)

Micro Focus Quick Flex Parser Tool (1.1) Page 52 of 67

Operation Return Type Definition and Comments

__concatenateDeleting String The last parameter is a literal string containing a set of characters
to delete. The other parameters can be literal strings or other
values of various types. The result is a string that consists of all of
these parameters (except the last) concatenated together, with
the specified characters deleted from the non-literal parameters.
For example, if the parameters are “Literal”, “Foobar”, and “r”
(where the first and third parameters are literal), then the result
would be “LiteralFooba”. Note that the “r” in “Foobar” was deleted
but the “r” in “Literal” was not.

__contains Boolean This operation searches for one string within another and returns
true if it is found and false otherwise. For example, like

__contains(stringInWhichToSearch,
stringToFind)

__containsFromList Boolean This operation tries to match a string (the first operand, which is
searched in) with a list of comma-separated strings and returns
true when a string match is found. Otherwise returns false. For
example,

__containsFromList(stringInWhichToSearch ,
firstStringToFind, secondStringToFind)

__convertMSDNSURL String This operation converts a Microsoft DNS URL in the form:

(n)nchars(m)mchars(0)

To a normal URL:

nchars.mchars

__createLocalTimeStampFromSeconds
MicrosZone

TimeStamp The parameters are 2 long integer numbers and a string. The first
parameter is the number of seconds since January 1, 1970, while
the second is the number of microseconds within the second.
These are combined into a TimeStamp. If the third parameter is a
valid time zone name, the number of seconds is interpreted
relative to January 1, 1970 in that time zone. Otherwise GMT is
used. Some of the precision of the microseconds is currently lost.

__createLocalTimeStampFromGMT
SecondsMillis

TimeStamp The 2 parameters are each long integer numbers. The first is the
number of seconds since January 1, 1970 GMT, while the second
is the number of milliseconds within the second. They are
combined into a TimeStamp. __
createLocalTimeStampFromGMTSecondsMillis(tv_sec,tv_msec)

__createLocalTimeStampFromGMT
Second Nanoseconds

TimeStamp The 2 parameters are each long integer numbers. The first is the
number of seconds since January 1, 1970 GMT, while the second
is the number of nanoseconds within the second. They are
combined into a TimeStamp. Some of the precision of the
nanoseconds is currently lost.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 53 of 67

Operation Return Type Definition and Comments

__createLocalTimeStampFrom
NanoSeconds

TimeStamp The parameter is a long integer number. It is the number of
nanoseconds since January 1, 1970 GMT. It is converted into a
TimeStamp. Some of the precision of the nanoseconds is currently
lost.

__createLocalTimeStampFromNTP TimeStamp The parameter is a string. It should contain the number of
seconds since January 1, 1970 GMT before a decimal point, and
the number of microseconds after the decimal point. They are
combined into a TimeStamp.

__createLocalTimeStampFromSeconds
SinceEpoch

TimeStamp The parameter is a single long integer number, which is the
number of seconds since January 1, 1970 GMT. It is converted
into a TimeStamp, with the fractional seconds set to zero.

__createLocalTimeStampFrom
SecondsSinceEpoch(srcTimestamp)

__createOptionalTimeStamp
FromString

TimeStamp The parameters are two strings. The first string is date and time
specified by default in the yyyy-MM-dd HH:mm:ss format. The
second, optional parameter specifies the format for the first string
if it needs to be different from the default. If the value of the first
string is null, nothing is mapped. Otherwise the value is mapped
using the format specified for the second parameter, if present, or
the default format.

__createRuleFiringInfo String This operation takes an arbitrary number of parameters. Each
can be either a literal string or a value of some other type. The
result is simply the parameters concatenated together as a long
string, with commas between the parameters. The parameters
which are not literal strings are converted to strings.

__createSafeLocalTimeStamp TimeStamp The first parameter is a string, which is the date/time to parse,
while the second is a literal string, which is the format (same style
as the format for the Date, Time, and TimeStamp tokens). The
string is parsed and returned as a TimeStamp. Most errors result
in the current time being returned.

__createTimeStamp TimeStamp The first parameter is a Date and the second parameter is a Time.
They are combined into a single TimeStamp an returned.
Everything is assumed to be in local time.

__createTimeStamp(date,time)

__createTimeStampByHexEncodedTime TimeStamp The parameter is a single string of 12 hexadecimal digits, with 2
each for year (0 means 1970), month (0-11), day (1-31), hou
(0-23), minute (0-59), and second (0-59). The milliseconds are
implicitly set to zero, and the numbers are interpreted as local
time. The resulting TimeStamp is returned.

__createTimeStampByStartTimeElapsed TimeStamp The parameters are 2 strings. The first is the starting time in
ddMMMyyyy hh:mm:ss format, while the second is an elapsed
time in hh:mm:ss format. The result is a TimeStamp for the ending
time, assuming the starting time is a local time.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 54 of 67

Operation Return Type Definition and Comments

__createTimeStampForOpsecStartTime TimeStamp The parameter is a single string in ddMMMyyyy HH:mm:ss
format. It is parsed and the resulting TimeStamp, interpreted as
being local time, is returned.

__createTimeStampStringFrom
SecondsMicros

String The parameters are 2 long integer numbers. The first parameter
is the number of seconds since January 1, 1970 GMT, while the
second is the number of microseconds within the second. These
are combined into a TimeStamp and then into a string. Some of
the precision of the microseconds is currently lost.

__currentTimestampInSeconds Long Any parameters are ignored. The current time, expressed as the
number of seconds since January 1, 1970 GMT, is returned as a
long integer.

__divide Integer The first parameter is the numerator and the second parameter
is the denominator. The result is an integer with the value of the
numerator divided by the denominator, rounded to the nearest
integer.

__doubleToAddress IPAddress This is the same as the numberToAddress operation except that
the parameter is a double-precision floating-point number.

__doubleToAddress(DestIP)

__extractNTDomain String The only parameter is a string. If it contains a back slash, the part
of the string up to but not including that backslash is returned.
Otherwise the entire string is returned.

__extractNTUser String The only parameter is a string in the form 'domain\user', where
domain is an NT domain and user is an NT user name. The user
name is returned. If there is no backslash in the string, it is
returned unchanged.

__extractProtocol String The only parameter is a string. If the string contains any of the
defined protocol strings (TCP, ICMP, UDP, IGMP, or RTSP), just
that string is returned (the search is case- insensitive, and the first
protocol found is returned). If none of the protocol strings is found,
the whole string is returned.

__firstOfPositiveInteger Integer This operation takes an arbitrary number of integer number
parameters. The first one which is positive is returned. If no
positive parameter is found, null is returned.

__foundScanHostName String The host name is returned in most cases. The exception is if the
string is “[Unknown]”, in that case null is returned.

__getCVEStringFor String The only parameter is a string, which should be a CVE identifier.
What is returned is “CVE|id” where id is the identifier. Note that
the separator character is a vertical bar.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 55 of 67

Operation Return Type Definition and Comments

__getDeviceDirection Enumeration
(Integer)

The only parameter is a string. If it is one of the defined inbound
strings (e.g., “in” or “incoming”), then the inbound constant (0) is
returned. If it is one of the defined outbound strings (e.g.,
“outbound” or “=>”), then the outbound constant (1) is returned.
Otherwise the unknown constant (Integer.MIN_VALUE, -
2147483648) is returned.

__getIPv4AddressEmbeddedIn
IPv6Address

IPAddress The operation extracts and returns an IPv4 address embedded
in an IPv6 address. The return parameter is an IPv4 address. The
input parameter is an IPv6 address in byte array format.

To assign the IPv4 address to an IPv4 address event field in a
non-IPv6-aware parser:

__getIPv4AddressEmbeddedInIPv6Address (__
stringToIPv6Address("::ffff:10.14.11.140"))

__getIpV6AddressFromHighLow String This operator takes two string parameters consisting of decimal
numbers and returns a string representation of an IPv6 address.
The numbers are a decimal representation of the first four and
last four segments of the IPv6 address.

__getLongMACAddressByHexString MacAddress The parameter is a 12-character hexadecimal string, which is
converted to a MAC address.

__getLongMACAddressByString MacAddress The only parameter is a string. It is a MAC address, which is a 6-
part hexadecimal address separated by colons or dashes. It is
returned.

__getManhuntPriority String The two parameters are both long integers, with the first
representing the severity and the second representing the
reliability. The result is a string containing the product of the two
values, divided by 256.

__getNormalizedOS String The only parameter is a string. This string is looked up in a map
that comes from an AUP file. If found, the result is returned.
Otherwise a string of the form “/Operating System/param” is
returned, where param is the parameter string, with any slashes
replaced by dashes. For example, “OS/2” would become
“/Operating System/OS-2” (unless OS/2 appeared in the
os.mappings.csv map, in which case that value would be
returned).

__getNotZeroPort Integer The only parameter is a string. If it is null, not a valid integer, or
zero, then null is returned.

Otherwise (it is a valid non-zero integer), the numeric value is
returned.

__getOriginator Enumeration
(Integer)

The only parameter is a string. If the string is “Source”, the result is
the source constant (0). If the string is “Destination”, the result is
the destination constant (1). Otherwise the unknown constant
(Integer.MIN_VALUE, - 2147483648) is returned.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 56 of 67

Operation Return Type Definition and Comments

__getOriginatorFromSourcePort Enumeration
(Integer)

The parameters are an Integer (the port number) and a literal
integer. If neither is null and the port is less than the limit specified
in the second (literal) parameter, then the destination constant
(1) is returned. Otherwise the source constant (0) is returned.

__getProtocolName String The only parameter is an Integer, which is converted into a string
for the matching protocol, as defined in RFC 1700. If the
parameter is null, null is returned. And if the parameter is out of
range, then the number itself is returned as a string.

__getProtocolNameFromString String This operation is like the getProtocolName operation, except that
the parameter is a string instead of an integer. If the string does
not contain a valid integer, then the string is returned unchanged.

__getSymantecNSPriority String The two parameters are both long integers, with the first
representing the severity and the second representing the
reliability. The result is a string containing the product of the two
values, divided by 10.

__getTimeZone String The only parameter is a string. If the string does not represent a
valid timezone, it returns null. If the string is in the general
timezone format, it returns the passed parameter. If the string is
an offset in the RFC 822 format (such as "-08:00"), the return
string is found by offset into the "timezones" list in
agent.properties.

Valid RFC 822 formats that are not found in agent.properties will
return a reasonable default string.

__getTrendMicroHost Name String The single parameter is a string. If it is null, null is returned. If it
contains a backslash, then the part before the backslash is
returned. If it contains an '@' or a '.', null is returned.

Otherwise, the original string is returned.

__getTrendMircoUser String The first parameter is a string. If it contains a backslash that is not
the final character of the string, then the part after the backslash
is returned. If it contains an '@' or a '.', null is returned. Otherwise,
the second parameter (which is a string if specified) is returned if
specified. A null is returned if the second parameter is not
specified.

__getTypeEnumeration (Integer) The only parameter is a literal string. If it is “correlation” or
“correlated”, then the correlation constant (2) is returned. If it is
“aggregated,” then the aggregated constant (1) is returned.
Otherwise the base constant (0) is returned. The comparisons
are made case- insensitively.

__getVendor String This is a synonym for the stringConstant operation.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 57 of 67

Operation Return Type Definition and Comments

__getVulnerabilityCategory String The only parameter is a literal integer, which should be in the
range 0 to 4. The values returned are:

l /scanner/device/vulnerability for 0

l /scanner/device/openport for 1

l /scanner/device/user for 2

l /scanner/device/banner for 3

l /scanner/device/uri for 4

__getXForceStringFor String If the one string parameter is not null, it is returned with 'X-Force|'
prepended to it. If it is null, then null is returned.

__hexStringToAddress IPAddress This is similar to the noDotStringFormatToAddress operation,
except that the parameter is in hexadecimal. In other words, it
should be 8 hexadecimal digits, where each set of 2 digits is a part
of the IP address, zero-filled and with no dots. For example,
“C0A80A0C” would become the IP address 192.168.10.12.

Use this operation only with IPv6-aware parsers for both IPv4
and IPv6 addresses.

__hexStringToLong Long The one string parameter represents a hexadecimal value. If it
starts with '0x' or '$', those are removed before parsing the value.
The result is returned as a long integer.

__hexStringToIPV6Address IPAddress For non-IPv6-aware parsers, this operator takes as input a 32-
character string consisting of hexadecimal digits and converts it
to an IPv6 address. If the length is 8 characters, as it would be for
an IPv4 address, the return value is null. Any other input size
results in an exception.

For IPv6-aware parsers, this operation is obsolete and should not
be used.

__hexStringToString String The parameter is a single string, which should consist of
hexadecimal digits. It is converted to an array of bytes (two
hexadecimal digits per byte), which is then converted to a string
using UTF-8 encoding (RFC 3629). If the input is null, the result is
also null.

__hourMinuteSecondsToSeconds Long The parameter is a single string, in HH:mm:ss format. The
duration is converted to seconds and returned.

__ifAorBThenElse String There are five parameters. Each can be either a literal string or a
regular string (although other types are converted to strings). If
the first parameter is equal to the second or the first parameter is
equal to the third parameter, then the fourth parameter is
returned. Otherwise, the fifth parameter is returned.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 58 of 67

Operation Return Type Definition and Comments

__ifGreaterOrEqual String The four parameters are strings. If either of the first two
parameters is null, null is returned and an error is logged.
Otherwise, those two parameters are parsed as integers and
compared. Any parsing errors treat the value as zero. If the first
parameter is numerically larger than the second, then the third
parameter is returned. Otherwise, the fourth parameter is
returned.

__ifPositive String There are three parameters. If the first (integer) operand is
positive, return the second (string) operand; otherwise, return the
third (string) operand.

__ifThenElse String There are four parameters. Each can be either a literal string or a
regular string (although other types are converted to strings).
The first two parameters are compared, and if they are equal,
then the third parameter is returned as the result. Otherwise (if
the first two parameters differ), the fourth parameter is returned.

__ifThenElseAddress IPAddress There are four parameters. The first two parameters are string.
The first two parameters are compared, and if they are equal,
then the third parameter is returned as the result.

Otherwise (if the first two parameters differ), the fourth
parameter is returned.

__ifTrueThenElse String There are three parameters. The first is a Boolean value (true or
false), and if it is true, then the second parameter is returned; if the
Boolean value is false, then the third parameter is returned.

__integerConstant Integer The parameter is a single literal integer, which is returned. If a
literal string which is not a valid integer is passed instead, then null
is returned.

__integerToLong Long The parameter is a single integer number, which is converted to a
long integer number and returned. If the parameter is null, the
returned value is too.

__length Integer This operation retrieves the length of the operand string.

__longToDot4QuadAddress String The parameter is a single long integer number, which is converted
to an IP address in the same manner as for the
numberToAddress operation, but is then converted to a 4-part
dotted string. For example, 16909060 would become the string
“1.2.3.4”.

__longToInteger Integer The parameter is a single long integer number, which is converted
to an integer number (possibly truncating it) and returned. If the
parameter is null, the returned value is too.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 59 of 67

Operation Return Type Definition and Comments

__longToString String This operation returns the string representation of a long object.
The optional second operand is the radix (integer, minimum value
is 2). The optional third operand is the minimum length (integer,
minimum value is 0), and the result will be left-padded with zeroes,
if needed to achieve that minimum length. This is useful in making
numbers comparable as strings.

__longToTimeStamp TimeStamp The parameter is a single long integer number, which is the
number of milliseconds since January 1, 1970 GMT. It is
converted into a TimeStamp.

__noDot4QuadStringsToAddress IPAddress The parameters are 4 strings, each of which is a decimal number,
and in the normal order for IP addresses. For example, the strings
“192”, “168”, “10”, “12” would become the IP address
192.168.10.12.

__noDot4QuadStringsToAddress (src_ip1,src_
ip2,src_ip3,src_ip4)

__noDotStringFormatToAddress IPAddress The parameter is a single string of 12 decimal digits, where each
set of 3 digits is a part of the IP address, zero-filled and with no
dots. For example, “192168010012” would become the IP
address 192.168.10.12.

__numberToAddress IPAddress The parameter is a single long integer number, which is converted
to an IP address with the least signifigant byte of the number
corresponding to the rightmost part of the address. For example,
16909060 would become the IP address 1.2.3.4.

__numberToAddress(IPAddress)

__oneOf String This operation takes an arbitrary number of token names or
expressions. Each can be either a literal string or a regular string.
The first one that is not null and not zero-length is returned.

__oneOfAddress IPAddress For non-IPv6-aware parsers, this operation returns only the first
non-null IPv4 address. For IPv6-aware parsers, this operation
returns the first non-null IPv4 or IPv6 address.

__oneOfDateTime TimeStamp The parameters are any number of TimeStamp tokens. The first
token, which is not null, is returned.

__oneOfHostName String For non IPv6-aware parsers, this operation works like the oneOf
operation, but any parameter which looks like an IP address (4
decimal numbers separated by 3 periods) is skipped.

For IPv6-aware parsers, this operation works like the oneOf
operation, but any parameter which looks like an IPv4 or IPv6
address is skipped.

__oneOfInteger Integer This works like the oneOf operation, but the result is then parsed
as an integer number and returned. If the value is not a valid
number, null is returned.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 60 of 67

Operation Return Type Definition and Comments

__oneOfLong Long This works like the oneOf operation, but the result is then parsed
as a long integer number and returned. If the value is not a valid
number, null is returned.

__oneOfMac MacAddress This works like the oneOf operation, but the result is then parsed
as a MAC address (a six octet hexadecimal representation,
separated by colons) and returned. For example,
00:08:74:4C:7F:1D. If the value is not a valid MAC address, null is
returned.

__oneOfNetBIOSName String This works like the oneOf operation, except for the removal of one
or two leading backslashes, if present, before returning the result.

__parseMultipleTimeStamp TimeStamp The first parameter is a token name that contains a timestamp
value, passed as a string. If it is null, null is returned. Otherwise, the
second and any additional parameters are token names that
contain constant time stamp formats (as defined for Java's
SimpleDateFormat class). They are used to attempt to parse the
first parameter. The result of the first one that works, without
throwing an exception, is returned as a TimeStamp. If none of the
formats work, then an exception is thrown.

__parseMutableTimeStamp TimeStamp The parameter is a single string, which can be in one of these
formats:

l MMM dd HH:mm:ss

l MMM dd HH:mm:ss.SSS zzz

l MMM dd HH:mm:ss.SSS

l MMM dd HH:mm:ss zzz

l MMM dd yyyy HH:mm:ss

l MMM dd yyyy HH:mm:ss.SSS zzz

l MMM dd yyyy HH:mm:ss.SSS

l MMM dd yyyy HH:mm:ss zzz

If this operation has been called before successfully, the same
format is tried first. If one of the first four formats (which do not
include a year) is used, then the year is changed as described for
the setYearToCurrentYear operation. If no format works, a fatal
error is written to the log and null is returned.

__parseMutableTimeStampSilently TimeStamp This is the same as the _parseMutableTimeStamp operation,
except that when no format works, no fatal error is written to the
log.

__parseSignedLong Long This is the same as the safeToLong operation, except that a
leading “+” sign is also allowed.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 61 of 67

Operation Return Type Definition and Comments

__product Integer Each parameter is either an integer variable or a string constant
that can be a floating-point value. The result is an integer with the
value of the product of the parameters multiplied together and
rounded to the nearest integer.

__regexToken String This operation takes two strings as parameters. The first is the
string to parse. The second is the regular expression (a literal
string). If the regular expression is blank or null then the result is
the same as the first argument. Otherwise the string to parse is
parsed using the regular expression, and the first matching group
(expression inside parentheses) is returned as a string. For
example, if the parameters are “foobar” and “fo+(o.*)(r)”, the
result will be “oba”.

__regexToken(proto,".*?/(.*)")

__regexTokenAsAddress IPAddress For non-IPv6-aware parsers, this operation is similar to the
regexToken operation: it takes two string parameters, and the
result (expected to be in four-part dotted decimal format) is then
converted from a string to an IP address. That is, if the
parameters are “foo/192.168.10.12/bar” and “[a-z]+\/([0-
9\.]+)\/bar”, the result will be the IP address 192.168.10.12.

__regexTokenAsAddress (dst,"(.*?)[:].*")

For IPv6-aware parsers, this operation can return both IPv4 and
IPv6 addresses.

__regexTokenAsInteger Integer This is like the regexToken operation, also taking 2 string
parameters, except that the result is then converted from a string
to an integer (or null if it is not a valid number).

__regexTokenAsInteger (port,".*?:(\\d+)")

__regexTokenAsInteger (dst,".*?:(\\d+)[:
].*")

__regexTokenAsLong Long This is like the regexToken operation, also taking 2 string
parameters, except that the result is then converted from a string
to a long integer (or null if it is not a valid number).

__regexTokenFindAndJoin String There are five string parameters. The first parameter is the string
to be processed. The second is a regular expression with at least
one capturing group. The third is an optional join delimiter. The
fourth and fifth are optional strings to prepend and append to the
final result, respectively. The operation repeatedly attempts to
find the regular expression in the string to be processed, starting
each time at the end of where the regular expression was last
found. Each time it is found, the capturing groups from the regular
expression are added to the result, with the join delimiter
between them. Finally, the prepend and append strings are
added, if they are not null.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 62 of 67

Operation Return Type Definition and Comments

__regexTokenNoWarning String This operation works similarly to the regexToken operation. The
primary differences are that 1) the regular expression has to
match the entire string, not just be found in it, and 2) if the regular
expression does not match, there is no warning logged.

__replaceAll String The three parameters are all strings. The first is the starting
string, the second is the regular expression, and the third is the
replacement string. Each place the regular expression is found in
the starting string is replaced by the replacement string, and the
result is returned. Note that the replacement string can contain
references to capturing groups in the regular expression, in the
form '$n', where n is 0 to 9.

__replaceFirst String The three parameters are all strings. The first is the starting
string, the second is the regular expression, and the third is the
replacement string. The first place the regular expression is found
in the starting string it is replaced by the replacement string, and
the result is returned. Note that the replacement string can
contain references to capturing groups in the regular expression,
in the form '$n', where n is 0 to 9.

__reverseDottedDecimalAddress
ByteOrder

String The parameter is an IP address passed as a string, which must
have exactly 3 dot characters. The result is an IP address
returned as a string, but with the 4 parts reversed in order. For
example, passing '2.1.168.192' will result in '192.168.1.2' being
returned.

__safeToDate TimeStamp This operation works like the
createOptionalTimeStampFromString operation, except that if
errors occur, null is returned.

__safeToInteger Integer The parameter is a single string, which is converted to an integer,
or null if the string is not a valid number. Useful for log formats that
use "-" to specify null values on integer fields, such as Microsoft
Windows XP SP2 Personal Firewall.

__safeToInteger(bytes)

__safeToInteger(srcPort)

__safeToLong Long The parameter is a single string, which is converted to a long
integer, or null if the string is not a valid number.

__safeToLong(time_taken)

__safeToRoundedLong Long The parameter is a string that is parsed as a number (which can
have a fractional part) and then rounded to the nearest long
integer and returned. If the string is not a valid number, null is
returned.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 63 of 67

Operation Return Type Definition and Comments

__setYearToCurrentYear TimeStamp The parameter is a single TimeStamp, for which the year is
forcibly set to the current year, plus or minus one (depending in
part on the syslog.future.limit property). This is used for
TimeStamps that do not have a defined year.

__signedNumberToAddress IPAddress The parameter is a long integer that is returned as an IP address,
but with the byte-order reversed.

__simpleMap String There are n+1 or n+2 parameters. The first parameter is a string
which is to be looked up in the map. The next n parameters are
the map, in the form of string literals each of which has a key, an
equals sign, and a value. If the key matches the first parameter,
then the value for that key is returned. If the final parameter is a
single character, it is used as the delimiter instead of the equals
sign. For example, if the parameters are (all literal except the
first): “Foo”, “Bar=17”, “Foo=34”, then the returned value will be
“34”. If no key matches, null is returned.

__simpleMap(FileInfected,"0=No",
"1=Yes","=")

__simpleMap(Type,"8=Success", "16=Failure")

__split String This operation takes three parameters. The first is the string to
split (a string). The second is the delimiter (a literal string). The
third is the index (a literal integer). If the delimiter or the index is
blank or null, then the result is the same as the first argument.
Otherwise the string to split is split around occurrences of the
delimiter, with the index'th string returned. For example, if the
parameters are “The string to split,” “ “ (space), and “2”, the result
will be “string”.

__splitAsAddress IPAddress For non-IPv6-aware parsers, this operation is like the split
operation: it takes three string parameters, and the result
(expected to be in four-part dotted decimal format) is then
converted from a string to an IP address. That is, if the
parameters are “foo/192.168.10.12/bar”, “/”, and 2, the result will
be the IP address 192.168.10.12.

For IPv6-aware parsers, this operation converts the result to an
IPv4 or IPv6 address.

__splitAsInteger Integer This is like the split operation, also taking 3 string parameters,
except that the result is then converted from a string to an
integer (or null if it is not a valid number).

__splitAsLong Long This is like the split operation, also taking 3 string parameters,
except that the result is then converted from a string to a long
integer (or null if it is not a valid number).

__stringConstant String This takes a single string literal parameter, and returns it.

__stringConstant("Example")

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 64 of 67

Operation Return Type Definition and Comments

__stringToIPv6Address IPAddress In a non-IPv6-aware parser, this operation takes a string
representation of an IPv6 address as input and returns a value of
type IPv6 address.

This operation should not be used in a IPv6-aware parser.
Instead, use the IP Address token parser or directly map the IPv6
address string to event fields.

__stringTrim String The parameter is a string, that is returned with any leading or
trailing whitespace characters removed.

__subtract Integer The two parameters must be integer variables, or can be string
constants that are floating- point values. The result is an integer
with the value of the first parameter minus the second and
rounded to the nearest integer.

__sum Integer Each parameter must be an integer variable, or can be a string
constants that are floating-point values. The result is an integer
with the value of the sum of the parameters added together and
rounded to the nearest integer

__toHex String The parameters are a long integer number and a literal integer.
The value of the first parameter is converted to hexadecimal and
returned, padded to the number of digits specified by the second
parameter, and preceded by “0x”. Note that odd lengths are
rounded down, and if the specified length is insufficient some of
the bits of the first parameter are simply lost. For example, with
parameters of 65535 and 8, the result is “0x0000FFFF”. With
parameters of 65535 and 3, the result is “0xFF” (the 3 is rounded
down to 2, and the high-order bits of 65535 are lost).

__toLongTimeStamp Long The parameter is a single string, which is a date and time in yyyy-
MM-dd HH:mm:ss format. The string is parsed, interpreting it as
local time, and the resulting date in returned as the long integer
number of milliseconds since January 1, 1970 GMT.

__toLowerCase String The parameter is a single string, which is converted to lowercase
and returned.

__toLowerCase(protocol)

__toUpperCase String The parameter is a single string, which is converted to uppercase
and returned.

__toUpperCase(protocol)

__useCurrentYear TimeStamp The parameter is a single TimeStamp, which is returned with its
year changed to the current year. The calculation is done in the
local timezone, which will affect the result near either end of the
year.

__useCurrentYear(date)

Note:

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 65 of 67

1. For the __ifThenElse operation, you can substitute any of the following for operation: token_
name|”constant”|operation|regex_expression|null.

User Guide
Appendix A: ArcSight Operations

Micro Focus Quick Flex Parser Tool (1.1) Page 66 of 67

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this computer, click the link above and an email window opens with the following
information in the subject line:

Feedback on User Guide (Quick Flex Parser Tool 1.1)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to arcsight_doc@microfocus.com.

We appreciate your feedback!

Micro Focus Quick Flex Parser Tool (1.1) Page 67 of 67

mailto:arcsight_doc@microfocus.com?subject=Feedback on Quick Flex Parser Tool User Guide (1.1)

	Chapter 1: Quick Flex Parser Tool
	Quick Flex Parser Tool
	Parser Tool Audience
	Features and Benefits
	Parser Tool Workflow Summary
	1. Create a parser file project
	2. Create the base regex
	3. Create tokens and token filters
	4. Test the token filters
	5. Generate the parser properties file

	Chapter 2: Creating and Opening Parser Projects
	Create a Parser File Project
	Open a Parser Project
	View a Workflow Summary

	Chapter 3: Creating Tokens and Filters
	Quick Flex Parser Tool Log View
	Creating Token Filters for Messages
	Create a Base Regex
	Create a Token
	Create a Token Filter
	Create a Mapping
	Override Token Regex

	Highlighting Patterns in Log Lines
	Highlighting in the Log View
	Highlighting in the Token Filter Editor
	Highlighting in the Base Regex Editor

	Managing and Testing Token Filters
	Manage Token Filters
	Test Token Filters

	Generate a Parser File
	ArcSight Token Types
	Date and Time Format Symbols

	Chapter 4: ArcSight Assignments
	Chapter 5: Quick Flex Parser Tool Rules
	Chapter 6: CEF Verification
	CEF Verification Features and Benefits
	CEF Compliance Workflow Summary
	1. Create a CEF Compliance Project
	2. Review Header Values
	3. Assess CEF Extensions
	4. Review Changes
	5. Generate a Report
	6. Apply Your Changes to the Device

	Chapter 7: CEF Verification Log View
	CEF Verification Log View Tool Bar
	CEF Verification Log View Ribbon
	Creating CEF Verification Projects and Opening CEF Log Files
	Create a CEF Verification Project
	Open a CEF Log File
	View a Workflow Summary

	View Header Values
	Verify the CEF Extension
	Warning Details

	Generate a CEF Verification Report
	Understanding Color Highlighting in Log Lines

	Appendix A: ArcSight Operations
	Send Documentation Feedback

