
Connected Backup
Software Version 9.0.6

Web Services Programming Reference

Document Release Date: April 2022
Software Release Date: April 2022

Legal notices

Copyright notice

© Copyright 2017-2022 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates
The title page of this document contains the following identifying information:
l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

You can check for more recent versions of a document through the
https://www.microfocus.com/documentation/connected-backup/.

Additionally, if you subscribe to the appropriate product support service, you will receive new or updated
editions of documentation. Contact your Micro Focus sales representative for details.

Support
Visit the MySupport portal to access contact information and details about the products, services, and
support that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

l Search for knowledge documents of interest
l Access product documentation
l View software vulnerability alerts
l Enter into discussions with other software customers
l Download software patches
l Manage software licenses, downloads, and support contracts
l Submit and track service requests
l Contact customer support
l View information about all services that Support offers

Many areas of the portal require you to sign in with a Software Passport. If you need a Passport, you can
create one when prompted to sign in. To learn about the different access levels the portal uses, see the
Access Levels descriptions.

WebServices Programming Reference

Connected Backup (9.0.6) Page 2 of 112

https://www.microfocus.com/documentation/connected-backup/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Chapter 1: Get started 7
About theWeb Services API 7

In this guide 7

System requirements and permissions 7
Use scripting permission 8

Limitations 8
Required country values for input 8
Empty array handling 8
Password restrictions 9
Truncation of strings greater thanMax Size 9

Develop with theWeb Services API 9
Location 9
Get a copy of theWeb Services API WSDL file 9

Chapter 2: APIs 10
Account APIs 10

AccountDisableiRoam 11

AccountEnableiRoam 12

AccountGetEncryptionKey 13

AccountGetExtendedInfo 14

AccountGetInfo 16

AccountGetInfoEx 18

AccountGetBackupDates 19

AccountGetLastBackupDate 20

AccountGetMediaCount 21

AccountMoveToCommunity 22

AccountOrderMedia 23

AccountOrderMediaEx 25

AccountSendMessage 26

AccountSetUserInfo 27

AccountSetAgentSetupID 29

AccountSetPassword 31

AccountSetStatus 32

Web Services Programming Reference

Connected Backup (9.0.6) Page 3 of 112

AccountVerifyAgentInfoURLHash 34

AccountVerifyUserCredentials 35

Community APIs 36

CommunityChangeName 37

CommunityCreate 38

CommunityCreateInServerGroup 40

CommunityDisableRegistration 41

CommunityEnableRegistration 42

CommunityFind 44

CommunityFindAccounts 45

CommunityFindFedAuthAccounts 46

CommunityGetChangedAccounts 47

CommunityGetChangedAccountsEx 48

CommunityGetChangedCommunities 50

CommunityGetInstall 51

CommunityGetLicenseCount 53

CommunityGetName 54

CommunityGetParent 55

CommunityGetStatisticsInfo 56

CommunityGetSubCommunityIDs 57

CommunityGetTechnicians 59

CommunityReserveTicket 60

CommunityReserveTicketandFetch 61

CommunitySetLicenseCount 63

Session APIs 64

SessionLoginTechnician 65

SessionLogoutTechnician 67

Reports APIs 68

ReportTemplateRun 68

ReportGet 70

ReportDelete 71

Technician APIs 72

TechnicianCreate 72

TechnicianDelete 74

TechnicianGetPasswordExpiryDate 75

Web Services Programming Reference

Connected Backup (9.0.6) Page 4 of 112

TechnicianGetPasswordExpiryDateTime 76

Chapter 3: C# class library 79
Use the C# class library 79

System requirements 79

Create C#wrapper classes 80

Class listing 80

Account class 81

Account Size class 83

AdminAPIException class 84

APISession class 87

Community Class 88

CreditCard class 91

CustomInfo class 92

User class 93

Chapter 4: Data structures 95
Structure listing 95

AdminAPIAccountInfo 95

AdminAPIAccountInfoEx 96

AdminAPIAccountSize 97

AdminAPIAccountBackupDateInfo 98

AdminAPIBaseAccountInfo 99

AdminAPICommunityStatisticsInfo 99

AdminAPICreditCard 100

AdminAPICustomInfo 101

AdminAPIExtendedAccountInfo 101

AdminAPIMediaCount 102

AdminAPIProfileInfo 102

AdminAPIReportTemplateID 102

AdminAPITechnicianID 102

AdminAPIUserInfo 103

Chapter 5: Reference 104
Terminology 104

Web Services Programming Reference

Connected Backup (9.0.6) Page 5 of 112

Common error messages 106

Index 108

Send documentation feedback 112

WebServices Programming Reference

Connected Backup (9.0.6) Page 6 of 112

Chapter 1: Get started

This chapter describes theWeb Services API for Micro Focus Connected Backup.

l About theWeb Services API, below

l System requirements and permissions, below

l Limitations, on the next page

l Develop with theWeb Services API, on page 9

About the Web Services API

TheWeb Services API is an XMLWeb service with a SOAP API that allows you tomake calls from
your application to the Support Center to manage accounts, communities, and reports. You can use
this collection of APIs to:

l Create and reserve accounts

l Get and set account information including name, address, telephone number, and e-mail

l Cancel accounts or place them on hold

l Validate accounts and change passwords

l Move accounts into new communities and change accounts’ Agent setup

l Run reports

In this guide

This reference guide contains:

l APIs, on page 10

l C# class library, on page 79

l Data structures, on page 95

l Terminology, on page 104

l Common error messages, on page 106

System requirements and permissions

The following table lists the requirements for using theWeb Services API:

Connected Backup (9.0.6) Page 7 of 112

Requirement Description

License
agreement

Youmust obtain and install a valid license to use theWeb Services API.

Software
requirement

The Support Center server software versionmust be version 7.5 or higher.

Cookies To enablemultiple API calls per session, the client making an API call must support
HTTP cookies and return any cookie sent to it by the server on any calls subsequent
to the SessionLoginTechnician().

SSL TheWeb Services API requires SSL certificates.

Use scripting permission

Individuals who are responsible for using these APIs must have theUse Scripting technician
permission enabled. Permissions may be granted or revoked using Support Center.

Refer to Support Center help for information about granting technician permissions.

In addition to theUse Scripting permission, some APIs require additional technician permissions. For
example, the AccountMoveToCommunity API requires that the technicianmaking the call has the
Modify Communities permission enabled in both the original and destination community. Before
making a call to any API that sets or changes data, check its description to determine if it requires
specific permissions.

Limitations

The following are important limitations you should be aware of when you use these APIs.

Required country values for input

There is currently no validation of country names to standardize user input. Youmust use the ISO
standard for English Country Names. Click here to view a list of ISO standard names.

Empty array handling

Certain APIs, such as CommunityFindAccounts return an empty array when the call is successful but
nomatching results are found. Because C# cannot handle an empty array returned as part of a SOAP
response, make sure to check for null values (if (array == null) {} before performing any operation on the
returned array.

Web Services Programming Reference
Chapter 1: Get started

Connected Backup (9.0.6) Page 8 of 112

Password restrictions

Account passwordmust be at least 6 characters long, cannot have leading and trailing space and
cannot contain all the same characters. Technician passwordmust be at least 8 characters long,
including at least one numeric character. Passwords are case-sensitive. Passwords should not contain
caret symbols (< or >).

Truncation of strings greater than Max Size

For each API that has string parameters, an additional column calledMax String Size shows the
maximum number of wide (Unicode) characters permitted for the string. Strings that exceed their set
Max String Size are truncated.

Develop with the Web Services API

This section contains important information you should know before you begin working on your project.

Location

TheWeb Services API is exposed at the following URL:

https://supportcentermachine/AdminAPI

Get a copy of the Web Services API WSDL file

AWSDL file that describes theWeb Services API is created on the server when theWeb Services API
is installed. To obtain copy of the AdminAPI.wsdl file, open it from theWeb server using a browser.

For example:

https://www.connected.com/AdminAPI/AdminAPI.wsdl

Select Save As from the browser's Filemenu and save the file as an XML file.

NOTE:
If you plan to write clients in C#, you can use theWSDL file installed with theWeb Services
API to generate several C# wrapper classes.

For more information, see Create C#wrapper classes, on page 80.

Web Services Programming Reference
Chapter 1: Get started

Connected Backup (9.0.6) Page 9 of 112

Chapter 2: APIs

This chapter describes the interface categories available for theWeb Services API.

l Account APIs, below

l Community APIs, on page 36

l Session APIs, on page 64

l Reports APIs, on page 68

l Technician APIs, on page 72

Account APIs

You can use the following APIs for account operations:

l AccountDisableiRoam, on the next page

l AccountEnableiRoam, on page 12

l AccountGetEncryptionKey, on page 13

l AccountGetExtendedInfo, on page 14

l AccountGetInfo, on page 16

l AccountGetInfoEx, on page 18

l AccountGetBackupDates, on page 19

l AccountGetLastBackupDate, on page 20

l AccountGetMediaCount, on page 21

l AccountMoveToCommunity, on page 22

l AccountOrderMedia, on page 23

l AccountSendMessage, on page 26

l AccountSetUserInfo, on page 27

l AccountSetAgentSetupID, on page 29

l AccountSetPassword, on page 31

l AccountSetStatus, on page 32

l AccountVerifyAgentInfoURLHash, on page 34

l AccountVerifyUserCredentials, on page 35.

Connected Backup (9.0.6) Page 10 of 112

AccountDisableiRoam

Denies MyRoam access to the specified account by changing theMyRoam state to False.

Parameters

Name Description Type

AccountNumber The account number of the account that you want to deny iRoam or
MyRoam access.

xsd:int

Return Values

If successful, none.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1025 The Data Center is not licensed to use this feature.

Remarks

If iRoam orMyRoam access is already disabled for the specified account, nothing is done and no error
messages are returned.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 11 of 112

Example

[C# Example]

int intAccount = 101000401;

//Turn off access to iRoam or MyRoam so the user cannot
//use the Web interface, iRoam or MyRoam

AdminService.AccountDisableiRoam(intAccount);

AccountEnableiRoam, below

AccountEnableiRoam

Enables MyRoam access to the specified account by changing theMyRoam state to True.

Parameters

Name Description Type

AccountNumber The account number of the account that you want to grant iRoam or
MyRoam access.

xsd:int

Return Values

If successful, none.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1025 The Data Center is not licensed to use this feature.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 12 of 112

Remarks

If iRoam orMyRoam access is already enabled for the specified account, nothing is done and no error
messages are returned.

Example

[C# Example]

int intAccount = 101000401;

//Turn iRoam or MyRoam access on so the user can

//retrieve files using the Web interface, iRoam or MyRoam

AdminService.AccountEnableiRoam(intAccount);

AccountEnableiRoam, on the previous page

AccountGetInfo, on page 16

AccountGetEncryptionKey

Discloses the encryption key for the specified account.

Parameters

Name Description Type Max String
Size

AccountNumber The account number. xsd:int

Justification The reason why the encryption key is being
disclosed

xsd:string 255

Return Values

Name Description Type

EncryptionKey The unencrypted key for the specified account. xsd:string

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 13 of 112

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1023 Justification cannot be blank.

1054 Access denied. Logged-in Technician does not have permission ‘Disclose Encryption Keys’.

1055 Unable to disclose encryption key. It is not escrowed.

1056 The call is not allowed for specified account since its agent version does not support this
feature.

Remarks

The logged in technicianmust have theDisclose Encryption Keys permission.

Example

[C# Example]

int intAccount = 101000401;

//Get the account's EncryptionKey
string strEKey = AdminService.AccountGetEncryptionKey(intAccount, "Account holder
forgot encryption key");
Console.WriteLine("{0} has an Encryption key of: {1}", intAccount, strEKey);

AccountSetPassword, on page 31

AccountGetInfo, on page 16

AccountGetExtendedInfo

Get selected profile information for a specified account (AccountNumber). Information you can get
includes:

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 14 of 112

l Account cancellation date

l Account deletion date

l Message code (selected by technician canceling the account or putting it on hold)

l Billingmethod code

l Other profile information

Parameters

Name Description Type

AccountNumber The number of the account you want to get
extended information for

xsd:int

FieldName Type of profile field containing the requested
data. Can be one of the following:

l PROFILEFIELD_SECTION_NAME

l PROFILEFIELD_ATTRIBUTE_NAME

Connected:PROFILEFIELD

FieldValue Section or attribute for which you want to get
information

xsd:string

Return Values

Name Description Type

ExtendedAccountInfo A data structure that contains profile
information for the specified account.

Connected:
AdminAPIExtendedAccountInfo,
on page 101

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminAPIExtendedAccountInfo EAI = m_AAPI.AccountGetExtendedInfo(101000101,

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 15 of 112

PROFILEFIELD.PROFILEFIELD_SECTION_NAME, "Network");

Console.Writeline("Cancel Date: " + EAI.dtCancelDate.ToString());
Console.Writeline("Delete Date: " + EAI.dtDeleteDate.ToString());
Console.Writeline("Billing Method: " + EAI.nBillingMethod.ToString());
Console.Writeline("Message Code: " + EAI.nMsgCode.ToString());

int idx=0;
foreach (AdminAPIProfileInfo Temp in EAI.ProfileInfo)
{

Console.Writeline("Profile Info " + idx + ":");
Console.Writeline("\tAttribute: " + Temp.strAttribute);
Console.Writeline("\tSection: " + Temp.strSection);
Console.Writeline("\tValue: " + Temp.strValue);
idx++;

}

AccountGetInfo

Gets information for the specified account number. Information is returned as both individual values
and structures containing values.

Parameters

Name Description Type

AccountNumber The account for which you want to retrieve Agent, account size, or user
information.

xsd:int

Return Values

Name Description Type

AdminAPIAccountInfo This structure that contains information about the
account including its start date, its Agent install
path, Agent version, user information, account
size and custom fields.

Connected:
AdminAPIAccountInfo,
on page 95

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 16 of 112

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

l If the currently logged–in technician has permission to view credit card data, the credit card type and
number are also retrieved.

l If the logged–in technician does not have theProvide Billing permission, the card type is returned
as 'unknown' and the card number is blank.

l For accounts created prior to version 7.1, the Agent Setup ID is -2.

l For accounts created using Support Center (prior to version 7.5), the Agent Setup ID is not set and
its returned value is -1. This indicates the Agent Setup ID will be determined when the user registers
the account.

l If Custom1 attribute name starts with Dep (or equivalent language translationmeaning
"Department"), the Custom1 field is not populated. In this case, the first element of the array has all
the empty values. The User Department field is populated with the value of this attribute. If Custom2
is present, the second element of the array holds the values of it.

Example

[C# Example]

AdminAPIAccountInfo cAcntInfo = AdminService.AccountGetInfo(intAccount);

Console.WriteLine(cAcntInfo.dtStartDate.ToString());
Console.WriteLine(cAcntInfo.strAgentInstallPath);
Console.WriteLine(cAcntInfo.strAgentVersion);
Console.WriteLine(cAcntInfo.strComputerName);

AccountSetUserInfo, on page 27

AccountGetEncryptionKey, on page 13

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 17 of 112

AccountGetInfoEx

Gets information for the specified account number. Information is returned as both individual values
and structures containing values. This call is similar to AccountGetInfo, on page 16, but this call
includes both date and time information.

Parameters

Name Description Type

AccountNumber The account for which you want to retrieve Agent, account size, or user
information.

xsd:int

Return Values

Name Description Type

AccountInfoEx This structure that contains information about the
account including its start date, its Agent install path,
Agent version, user information, account size and
custom fields.

Connected:
AdminAPIAccountInfoEx,
on page 96

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

l If the currently logged–in technician has permission to view credit card data, the credit card type and
number are also retrieved.

l If the logged–in technician does not have theProvide Billing permission, the card type is returned
as 'unknown' and the card number is blank.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 18 of 112

l For accounts created prior to version 7.1, the Agent Setup ID is -2.

l For accounts created using Support Center (prior to version 7.5), the Agent Setup ID is not set and
its returned value is -1. This indicates the Agent Setup ID will be determined when the user registers
the account.

l If Custom1 attribute name starts with Dep (or equivalent language translationmeaning
"Department"), the Custom1 field is not populated. In this case, the first element of the array has all
the empty values. The User Department field is populated with the value of this attribute. If Custom2
is present, the second element of the array holds the values of it.

Example

[C# Example]

AdminAPIAccountInfoEx cAcntInfo = AdminService.AccountGetInfoEx (intAccount);

Console.WriteLine(cAcntInfo.dtStartDate.ToString());
Console.WriteLine(cAcntInfo.strAgentInstallPath);
Console.WriteLine(cAcntInfo.strAgentVersion);
Console.WriteLine(cAcntInfo.strComputerName);

AccountSetUserInfo, on page 27

AccountGetEncryptionKey, on page 13.

AccountGetBackupDates

Gets information about the backup dates associated with a specified account. Information is returned
as an array of the AdminAPIAccountBackupDateInfo structure.

Parameters

Name Description Type

AccountNumber The account for which you want to get the last backup date xsd:int

Return Values

Name Description Type

AdminAPIAccountBackupDateInfo This structure that
contains information
about Tbackup dates,
including its status,

Connected:
AdminAPIAccountBackupDateInfo,
on page 98

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 19 of 112

Name Description Type

whether it was
compacted, and the size
of the backup.

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1080 No backup dates for accounts.

AccountGetLastBackupDate

Gets the last backup date for specified account number.

Parameters

Name Description Type

AccountNumber The account for which you want to get the last backup date xsd:int

Return Values

Name Description Type

LastBackupDate Date of the last backup for the specified account. xsd:dateTime

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 20 of 112

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
DateTime dtLastBackUp = AdminService.AccountGetLastBackupDate(101000101);

Console.Writeline("Last Backup was on: " + dtLastBackup.ToString());

AccountGetMediaCount

This API enables you to find out how many units of recordable storagemedia (DVDs or NAS drives) are
required to fulfil a media order. You can obtain this information before or after an account holder
requests a copy of their backed-up data.

Parameters

Name Description Type

AccountNumber The account number. xsd:int

Return Values

Name Description Type

AdminAPIMediaCount,
on page 102

A structure that contains the
media type and count fields.

Connected:AdminAPIMediaCountList

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1005 Access denied. Logged-in Technician does not have permission ‘Order External Media’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 21 of 112

Remarks

The currently logged in technicianmust have theOrder Media permission.

AccountOrderMedia, on the next page

AccountMoveToCommunity

Move the specified account to a new community.

Parameters

Name Description Type

AccountNumber The number of the account to move. xsd:int

CommunityID The ID of the target community. xsd:int

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1016 The specified account cannot be found on the system.

1024 Unable to perform required action. The destination community does not have enough
licenses available.

1036 An account cannot bemoved to a community with a different Enterprise Directory
configuration.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 22 of 112

Code Reason

1037 Unable tomove account to the data center level. An account can bemoved only to a
community.

1079 Access denied. Logged-in Technician does not have permission ‘Move Accounts’.

Remarks

Logged in technicianmust have theModify Communities permission for both the original and
destination communities.

When an account is successfully moved, it consumes a license within the new community and
releases the license in its old community. The license it used in the old community then becomes
available to a new account.

Example

[C# Example]

int intAccount = 101000401;

//Move the account to a different community

AdminService.AccontMoveToCommunity(intAccount, intRootCmtyID);

CommunityGetSubCommunityIDs, on page 57

AccountGetInfo, on page 16

AccountOrderMedia

Place an order for all of the specified account's data to be written to the specified type of external media
and shipped to the account address using the specified shipping priority.

Parameters

Name Description Type Max
String
Size

AccountNumber The account number. xsd:int N/A

MediaType Enumerated value. One of the following:

l Media_DVD (digital video disc)

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 23 of 112

Name Description Type Max
String
Size

l Media_NAS (network attached storage device)

ShippingLabel The name and address as it should appear on a
shipping label. If this is not specified, it will be
populated with:

FirstName LastName Telephone\n

CompanyName\n

Address1\n

Address2\n

City State ZIP Country

xsd:string 255

ShippingPriority Enumeration value. One of: High, Medium, Low.

This value is mapped to the appropriate default
shippingmethod.

l High. Next Day (no P.O. boxes)

l Medium. 2nd Day (no P.O. boxes)

l Low. Ground

Connected:Shipping
Priority

Return Values

When successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1005 Access denied. Logged-in Technician does not have permission ‘Order External Media’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

Logged-in Technicianmust have theOrder Media permission.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 24 of 112

ShippingPriority is saved in the database as a string representation of the ShippingPriority enumeration
values.

AccountGetMediaCount, on page 21

AccountOrderMediaEx

Place an order for all of the specified account's data from a specified backup date to be written to the
specified type of external media and shipped to the account address using the specified shipping
priority. Use this API for version 8.0 Agents only.

Parameters

Name Description Type Max
String
Size

AccountNumber The account number. xsd:int N/A

MediaType Enumerated value. One of the following:

l Media_DVD (digital video disc)

l Media_NAS (network attached storage
device)

Connected:MediaType

ShippingLabel The name and address as it should appear on a
shipping label. If this is not specified, it will be
populated with:

FirstName LastName Telephone\n

CompanyName\n

Address1\n

Address2\n

City State ZIP Country

xsd:string 255

ShippingPriority Enumeration value. One of: High, Medium, Low.

This value is mapped to the appropriate default
shippingmethod.

l High. Next Day (no P.O. boxes)

l Medium. 2nd Day (no P.O. boxes)

l Low. Ground

Connected:Shipping
Priority

BackupDate A backup date. xsd:date

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 25 of 112

Return Values

When successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1005 Access denied. Logged-in Technician does not have permission ‘Order External Media’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1081 Invalid Backup Date.

1082 No backup dates for Pre-8.0 Account.

Remarks

l Logged-in Technicianmust have theOrder Media permission.

l ShippingPriority is saved in the database as a string representation of the ShippingPriority
enumeration values.

AccountGetMediaCount, on page 21

AccountSendMessage

Sends a text message (Message) to a specified account (AccountNumber).

Parameters

Name Description Type

AccountNumber The number of the account to which you want to send a text
message.

xsd:int

Message Message to send to the account. xsd:string

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 26 of 112

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

Message content truncated after 1000 characters.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminService.AccountSendMessage(101000101, "Please log off now.");

AccountSetUserInfo

Updates information for the specified account. To change the value for a single field, call the
AccountGetInfo API to pre-set the other values before calling AccountSetUserInfo.

Parameters

Name Description Type

AccountNumber The number of the account that you want
to change information for.

xsd:int

AdminAPIUserInfo, on
page 103

A structure that contains user account
information fields.

Connected:AdminAPIUserInfo

Return Values

If successful, nothing is returned.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 27 of 112

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1012 Credit Card expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and AMEX.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1018 Credit Card number is invalid.

1045 Specified LoginID could not be located in Enterprise Directory.

1051 Access denied. Logged-in Technician does not have permission ‘Change Enterprise
Directory User’.

1052 Due to connection problems with the Enterprise Directory, the LoginID cannot be changed.

Remarks

l If you use AccountSetUserInfo to set the LoginID for an enterprise directory account, all other field
values are ignored. These values will be obtained from the enterprise directory record for the
account.

l To change enterprise directory login IDs, the technicianmust have theChange User ID permission.

l Custom field values cannot be set using this API.

Valid credit card expiration date formats are:

mm/yy

mm-yy

mmyy

mm/yyyy

mm-yyyy

mmyyyy

The valid date values are:

o Month = 1 through 12

o Year is from 1 through 99 or 2001 through 2099. (Leading zeros are ignored, for example 003/009

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 28 of 112

is accepted and converted to 03/2009 date.)

l If date is submitted in any other form, the error 1012 is returned.

l When AccountGetInfo is called, the credit card expiration date is returned in the format mm/yyyy.

l To clear existing credit card information, submit empty credit card information. This clears the
number and date and the credit card type is set to CARD_TYPE::CARD_UNKNOWN.

l Either the complete credit card number or just the last four digits of the credit card number can be
stored as a valid credit card number.

l When submitting a new credit card number, different information is required depending on whether
the full credit card number or just the last four digits of the credit card number are stored:

o If only the last four digits of the credit card number are stored, a valid expiration date and valid
credit card typemust be submitted.

o If the full credit card number is stored, only a valid expiration date is required. The Type field is
ignored since the type will be derived from the card number.

l Rules for changing credit card information are as follows:

o If the submitted credit card number is the same or empty, the type is the same or unknown, but
the expiration date is different, only the expiration date is changed.

o If the submitted credit card number is the same or empty, the type is different and the date is
different, the date is changed. The type is changed only if just the last four (4) digits of the credit
card number are stored. Otherwise, type is ignored.

o If the submitted credit card number and date are the same or empty, but the type is different, the
type is changed only if just the last four (4) digits of the credit card number are stored. Otherwise,
type is ignored.

o If the submitted credit card number is different and the expiration date is valid, the existing credit
card number and date is replaced. The typemust be provided only if the existing type is invalid. If
the new credit card number consists of four (4) digits and the stored credit card number is a full
number, the full number is replaced with the four digit one. A different credit card numbermeans
the new number is not empty and if it is a full number, it doesn't match the existing one. If the new
number is 4 digits and the stored number is a full number, just the last 4 digits of the existing
number are compared and has to be different.

AccountGetInfo, on page 16

AccountSetStatus, on page 32

AccountSetPassword, on page 31

AccountSetAgentSetupID, below

AccountSetAgentSetupID

Changes the Agent Setup for the specified account. The Agent Setup is the Agent installation file. Each
Agent installation executable can contain different features and permissions. The new Agent Setup
must reside in the community or parent community of the specified account.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 29 of 112

Parameters

Name Description Type

AccountNumber The number of the user account that you want to assign a new Agent
Setup to.

xsd:int

AgentSetupID The ID number of the Agent Setup that you want to assign to the
specified account. This determines which features and permissions are
available to the account.

xsd:int

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1026 Community this account belongs to does not contain the Agent Setup specified.

1044 Access denied. Logged-in Technician does not have permission ‘Change the Agent Setup of
Accounts’.

1047 The Agent Setup of the account may not be changed because the account is deleted. Setups
can be changed only for accounts that are active or on hold.

Remarks

l You can use this API to change Agent Setup for the reserved accounts, since it can be set when
reserving the accounts in the CommunityReserveTicket API.

l Technicianmust have theChange the Agent Configuration of Accounts permission to change
an account's Agent Setup.

l If you have the technicianUse Scripting permission, you can get the community or Agent Setup ID
number by hovering over the name of the current or parent community or agent setup in the Support

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 30 of 112

Center interface.

l Use the CommunityGetSubCommunityIDs API to obtain a list of subcommunities in a specific
community. To determine the name of a community using its ID, use the CommunityGetName API.

l Use AccountGetInfo API to obtain an account's current Agent Setup ID. AgentSetupID is returned
in AdminAPIBaseAccount.

l Optionally, youmay use the Account C# helper class to get and set the AgentSetupID.

AccountGetInfo, on page 16

AccountSetPassword

Sets the password for the specified account.

Parameters

Name Description Type Max String Size

AccountNumber The account number for the
account that you want to change.

xsd:int N/A

Password The new password. xsd:string Refer to Password Restrictions
for specific password limitations

Justification The reason or justification for the
password change.

xsd:string 255

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1022 The password provided does not conform to requirements. Account passwords must be at

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 31 of 112

Code Reason

least 6 characters long, cannot have leading and trailing space and cannot contain all the
same characters.

1023 Justification cannot be blank.

1053 Access denied. Logged-in Technician does not have permission ‘Reset Account
Passwords'.

Remarks

The logged-in technicianmust have theReset Account Passwords permission to use this API.

Example

[C# Example]

int intAccount = 101000401;

//Change the account password

AdminService.AccountSetPassword(intAccount, "NewPass1", "Account holder forgot
password, asked for new password");

AccountSetStatus, below

AccountVerifyUserCredentials, on page 35

AccountSetStatus

Sets the status of the specified account.

Parameters

Name Description Type Max
String
Size

AccountNumber The account number for the account that you want
to change.

xsd:int

Status New Status.

The values defined in the Account Status table in

Connected:Account
Status

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 32 of 112

Name Description Type Max
String
Size

CommunityFindAccounts API. Only one of three
values from this table can be specified here:
Active, Cancelled, Onhold

Justification The reason or justification for the password
change.

xsd:string 255

StatusCode Status message code.

For possible values refer to any Support Center
Account status change page. If technician has
Use Scripting permission each status message
is prefixed with the status code. If 0 is submitted,
the value is ignored and no error is produced.

xsd:int

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1023 Justification cannot be blank.

1024 Unable to perform required action. The destination community does not have enough
licenses available.

1038 Access denied. Logged-in Technician does not have permission ‘Change the Status of
Accounts’.

1039 The status of the account may not be changed at this time, as it is locked by another
process.

1040 The status of the account may not be changed, as it is 'reserved'.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 33 of 112

Code Reason

1041 The status of the account may not be changed, as it is 'deleted'.

1042 Cannot use the status specified. Status has to be one of the three values: Active,
Cancelled or OnHold.

1060 Invalid status message code.

1061 The status of the account may not be change, as old status is invalid.

Remarks

l The Logged-in technicianmust have the permissionChange the Status of Accounts.

l If the status of an account that is Active/OnHold/Reserved is changed to Cancelled/Deleted, the
license used by the account would becomes available for use by another individual.

l If the status of an account is Reserved, it can only be changed to ‘Cancelled’.

Example

[C# Example]

int intAccount = 101000401;

//Put the account on hold

AdminService.AccountStatus(ACCOUNT_STATUS.HOLD);

AccountGetInfo, on page 16

AccountSetUserInfo, on page 27

AccountVerifyAgentInfoURLHash

Determines if hash included in the Agent Info URL is valid. You can use this API to validate the hash
extracted from the URL. Validation is based on the contents of the hash and the date the hash was
generated. If the contents are valid and the hash was generated the day or the day before the request,
then the API determines the request is from an authorized and authentic Agent.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 34 of 112

Parameters

Name Description Type Max String Size

AccountNumber The account number associated with the Agent. xsd:int

Hash Hash string obtained from the Agent Info URL xsd:string

Return Values

Name Description

HashCorrect If the hash is valid, returns True; else returns False.

Error Codes

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

l The intent of this API is to provide ameans to verify that the request was sent from a computer
associated with an authorized, registered account within two days from the time the request was
made.

l This verification does not guarantee that the URL originated from the Agent.

l This verification does not guarantee that the URLwas not intercepted and reused by a third party.

l It is possible for a request to originate from the computer associated with the account, but not from
the account holder. For example, an unauthorized person who has gained access to a registered
user's computer. Use the AccountVerifyUserCredentials in addition to this API to verify the request
is coming from a registered account holder.

AccountVerifyUserCredentials, below

AccountVerifyUserCredentials

Verifies whether a user with the specified account number or e-mail address exists in the Data Center
and if the specified passwordmatches the account password. If the password is verified, returns

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 35 of 112

Approved set to True.

Parameters

Name Description Type

AccountNumber The account number of the account to be verified. xsd:int

Password The user's account password. xsd:string

Return Values

Name Description Type

Approved Indicates acceptance of credentials. The return value is set to True if the
password is valid. Otherwise it is set to False.

xsd:boolean

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1028 This account has been locked due to toomany unsuccessful login attempts.

1068 Unable to authenticate user. Either the account or password is incorrect.

AccountGetInfo, on page 16

AccountSetStatus, on page 32

Community APIs

The available APIs for accessing community attributes include:

l CommunityChangeName, on the next page

l CommunityCreate, on page 38

l CommunityCreateInServerGroup, on page 40

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 36 of 112

l CommunityDisableRegistration, on page 41

l CommunityEnableRegistration, on page 42

l CommunityFind, on page 44

l CommunityFindAccounts, on page 45

l CommunityFindFedAuthAccounts, on page 46

l CommunityGetChangedAccounts, on page 47

l CommunityGetChangedAccountsEx, on page 48

l CommunityGetChangedCommunities, on page 50

l CommunityGetInstall, on page 51

l CommunityGetLicenseCount, on page 53

l CommunityGetName, on page 54

l CommunityGetParent, on page 55

l CommunityGetStatisticsInfo, on page 56

l CommunityGetSubCommunityIDs, on page 57

l CommunityGetTechnicians, on page 59

l CommunityReserveTicket, on page 60

l CommunityReserveTicketandFetch, on page 61

l CommunitySetLicenseCount, on page 63

CommunityChangeName

Changes the name of the specified community.

Parameters

Name Description Type Max String
Size

CommunityID The ID of the community that you want to
change.

xsd:int

CommunityName The new community name. xsd:string 64

Return Values

If successful, nothing is returned.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 37 of 112

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1020 A community with the specified name already exists.

1021 Unable to authenticate user. Either the account or password is incorrect.

1029 Community names cannot include the character greater-than symbol, (>).

Remarks

l The logged-in technicianmust have theModify Communities permission.

l Community names are not case-sensitive. This API allows changing capitalization of name.

Example

[C# Example]

int intCmtyId = 15;

//Change the name of our community

AdminService.CommunityChangeName(intCmtyId, "Changing name to this");

CommunityCreate, below

CommunityGetName, on page 54

CommunityCreate

Creates a subcommunity (CommunityID, CommunityName) in the specified parent community
(ParentCommunityID). Logged-in technicianmust have theModify Communities permission.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 38 of 112

Parameters

Name Description Type Max String
Size

ParentCommunityID The ID of the community where you want to create
the subcommunity.

xsd:int

CommunityName The name of the new subcommunity. xsd:string 64

Return Values

Name Description Type

CommunityID The ID of the new subcommunity. xsd:int

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1020 A community with the specified name already exists.

1021 Unable to authenticate user. Either the account or password is incorrect.

1029 Community names cannot include the character greater-than symbol, (>).

Example

[C# Example]

//Create a new community

int intCmtyId = AdminService.CommunityCreate(intRootCmtyId, "This is my new
community");

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 39 of 112

Remarks

Logged-in technicianmust have theModify Communities permission.

CommunityGetName, on page 54

CommunityChangeName, on page 37

CommunityCreateInServerGroup

Creates a subcommunity (CommunityID, CommunityName) in the specified server group
(ParentCommunityID, ServerGroup). Logged-in technicianmust have theModify Communities
permission.

Parameters

Name Description Type Max
String
Size

ParentCommunityID The ID of the community where you
want to create the subcommunity.

xsd:int

CommunityName The name of the new subcommunity. xsd:string 64

ServerGroup The name of the server group where you
want to create the subcommunity.

xsd:int

Return Values

Name Description Type

CommunityID The ID of the new subcommunity. xsd:int

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 40 of 112

Code Reason

1020 A community with the specified name already exists.

1021 Unable to authenticate user. Either the account or password is incorrect.

1029 Community names cannot include the character greater-than symbol, (>).

1076 Invalid server group; the parent community does not exist in the specified server
group.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
int nCommunityId = AdminService.CommunityCreateInServerGroup(5, "New Community
Name", 1);

Console.Writeline("New community created has an Id of " + nCommunityId);

CommunityDisableRegistration

Disables registration to the community (CommunityID) if it was enabled. Use this API to prevent any
new users from registering to the community.

Parameters

Name Description Type

CommunityID The ID of the community you want to disable. xsd:int

Return Values

Name Description

Success If registration is disabled, returns True; if registration is already
disabled or in case of any error listed below, returns False.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 41 of 112

Code Reason

1003 Access denied. Logged-in Technician does not have permission ‘Modify
Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Remarks

l Logged-in technicianmust have theModify Communities permission.

l If registration is already disabled, the API does nothing and no error messages are returned.

l This API cannot be used to disable the root community (-1). Submitting -1 as the CommunityID
returns error 1015 and does nothing.

Example

[C# Example]

int intCmtyId = 15;

//Turn off registration to the community

AdminService.CommunityDisableRegistration(intCmtyId);

CommunityEnableRegistration, below

AccountMoveToCommunity, on page 22

CommunityEnableRegistration

Enables registration to the community (CommunityID) if it was disabled. Logged-in technicianmust
have theModify Communities permission.

Parameters

Name Description Type

CommunityID The ID of the community you want to enable. xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 42 of 112

Return Values

Name Description

Success If registration is enabled, returns True; if registration is already
enabled or in case of any error listed below, returns False.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify
Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Remarks

l Logged-in technicianmust have theModify Communities permission.

l If registration is already enabled, the API does nothing and no error messages are returned.

l This API cannot be used to enable the root community (-1), which remains enabled by default.
Submitting -1 as the CommunityID returns error 1015 and does nothing.

Example

[C# Example]

int intCmtyId = 15;

//Turn on registration to the community

AdminService.CommunityEnableRegistration(intCmtyId);

CommunityDisableRegistration, on page 41

AccountMoveToCommunity, on page 22

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 43 of 112

CommunityFind

Find all community IDs matching a specified parent community (ParentCommunityID) and community
name (CommunityName).

Parameters

Name Description Type Max
String
Size

ParentCommunityID The parent community for which you
want to find a community.

xsd:int

CommunityName The name of the community whose ID
you want to find.

xsd:string 64

Return Values

Name Description Type

CommunityList An array of community IDs. Connected:Community
Find_CommunityList_
Array

An empty list is returned if the search is successful, but nomatching results are found.

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminAPICommunityInfo[] aCI = AdminService.CommunityFind(5, "Find Me");

foreach (AdminAPICommunityInfo Temp in aCI)
{

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 44 of 112

Console.Writeline("Community ID: " + Temp.nCommunityID):
Console.Writeline("Parent Community ID: " + Temp.nParentId);
Console.Writeline("Parent Name: " + Temp.strParentCommunityName);

}

CommunityFindAccounts

Find all accounts that match specified search criteria, including accounts in subcommunities of the
specified community (CommunityID).

Parameters

Name Description Type Max
String
Size

CommunityID The community you want to find accounts in; the
starting point of the search.

xsd:int

FieldName The field to matchMust be either LoginID or
Email.

Connected:Searchfield

FieldValue Text to match. Must be the LoginID supplied in
registration or e-mail address. If this value is
blank, no search is performed.

xsd:string (LoginID)

xsd:string (Email)

64

100

Status Find accounts with the specified status; the value
of this field must be one of the following values:

ACCOUNT_NOSTATUS

ACCOUNT_ANY

ACCOUNT_INUSE *

ACCOUNT_DELETED

ACCOUNT_RESERVED

ACCOUNT_ONHOLD

ACCOUNT_CANCEL

ACCOUNT_ACTIVE

*"INUSE" indicates the account is either Active or
OnHold

Connected:
ACCOUNT_STATUS

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 45 of 112

Return Values

If successful andmatching results are found, this API returns an array called
AdminAPIBaseAccountInfoList that contains AdminAPIBaseAccountInfo structures.

An empty list is returned if the search is successful, but nomatching results are found.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

CommunityGetChangedAccounts, on the next page

CommunityFindFedAuthAccounts, below

AccountGetInfo, on page 16

AccountSetAgentSetupID, on page 29

AccountSetStatus, on page 32

AccountMoveToCommunity, on page 22

CommunityFindFedAuthAccounts

Find all accounts that match a particular federated authentication User ID in a specific community.

Parameters

Name Description Type Max
String
Size

CommunityID The community you want to find
accounts in.

xsd:int

AccountUID The User ID whose accounts you want
to find.

xsd:string 128

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 46 of 112

Return Values

If successful andmatching results are found, this API returns an array called
AdminAPIBaseAccountInfoList that contains AdminAPIBaseAccountInfo structures.

An empty list is returned if the search is successful, but nomatching results are found.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

CommunityGetChangedAccounts, below

CommunityFindAccounts, on page 45

AccountGetInfo, on page 16

AccountSetAgentSetupID, on page 29

AccountSetStatus, on page 32

AccountMoveToCommunity, on page 22

CommunityGetChangedAccounts

Returns a list of all user accounts and the account information that changed after the specified date. An
account is considered changed if there are any changes to the user information including Name,
Address, Phone, as well as status changes and community assignment changes. You can use a
bitmask to return a subset of user or account information.

Parameters

Name Description Type

CommunityID The community where you want to search for
accounts that have recently changed.
Subcommunities of the specified community are
included in the search.

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 47 of 112

Name Description Type

Date The date on or after which the account changes
occurred; use with theEndDate parameter to
search for accounts that changed within a specific
date range.

xsd:string

Return Values

Name Description Type

AccountChange
List

An array of account numbers. The array
comprises a list of accounts that
changed on or after the specifiedDate.

Connected:Community
GetChangedAccounts_
AccountChangeList_Array

EndDate Date of the last account change found. xsd:date

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1069 The specified date is not a valid date.

Remarks

l Accounts in subcommunities of the specified community are also returned.

l May be used to notify another application or portal of changes to user information.

l Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

AccountGetInfo, on page 16

CommunityGetChangedAccountsEx

Returns a list of all user accounts and the account information that changed after the specified date and
time. An account is considered changed if there are any changes to the user information including
Name, Address, Phone, as well as status changes and community assignment changes. You can use

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 48 of 112

http://www.w3.org/TR/xmlschema-2/#date

a bitmask to return a subset of user or account information. This call is similar to
CommunityGetChangedAccounts, on page 47, but this call includes both date and time information.

Parameters

Name Description Type

CommunityID The community where you want to search for
accounts that have recently changed.
Subcommunities of the specified community are
included in the search.

xsd:int

DateTime The date and time on or after which the account
changes occurred; use with theEndDateTime
parameter to search for accounts that changed
within a specific date range.

xsd:dateTime

ChangeMask Indicates the type of bitmask:

MODIFICATIONSBITMASK_ALL

MODIFICATIONSBITMASK_OTHER

MODIFICATIONSBITMASK_USER_INFO

Connected:
MODIFICATIONSBITMASK

Return Values

Name Description Type

AccountChange
List

An array of account numbers.
The array comprises a list of
accounts that changed on or
after the specifiedDateTime.

Connected:CommunityGetChangedAccounts_
AccountChangeList_Array

EndDateTime Date and time of the last
account change found.

xsd:dateTime

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1069 The specified date is not a valid date.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 49 of 112

Remarks

l Accounts in subcommunities of the specified community are also returned.

l May be used to notify another application or portal of changes to user information.

l Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:dateTime type.

AccountGetInfo, on page 16

CommunityGetChangedCommunities

Returns a list of all communities that changed during the specified period. Information includes any
existing communities changes as well as new communities.

Parameters

Name Description Type

ParentCommunityID The community where you want to start the search
for communities that have recently changed.
Subcommunities of the specified community are
included in the search.

xsd:int

Date The date on or after which the community changes
occurred; use with theEndDate parameter to search
for communities that changed within a specific date
range.

xsd:date

EndDate The date before which the community changes
occurred; used in conjunction with the Date
parameter when searching for communities that
changed within a specified date range.

xsd:date

Return Values

Name Description Type

Community
ChangeList

The community ID for each
changed community. This
information comes from the
Registry.ChangedCommunity
table.

Connected:CommunityGetChangedCommunities_
CommunityChangeList_
Array

Count Size of CommunityChangeList. xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 50 of 112

http://www.w3.org/TR/xmlschema-2/#date

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1075 Invalid date range.

Remarks

l Communities in subcommunities of the specified parent community are also returned.

l Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
DateTime dtStartDate = DateTime.UtcNow.AddDays(-30);
DateTime dtEndDate = DateTime.UtcNow;
int[] anChangeCommunityIds AdminService.CommunityGetChangedCommunities(nRoot_
Community, dtStartDate.Date, dtEndDate.Date);
int[] anAccounts;
foreach (int nID in anChangeCommunityIds)
{
 int[] anData = AdminService.CommunityGetChangedAccounts(nID, dtStartDate.Date,
MODIFICATIONSBITMASK.MODIFICATIONSBITMASK_OTHER, out dtEndDate);
 foreach (int nAccount in anData)

{
 Console.Writeline(nAccount);
 }
}

CommunityGetInstall

Returns data that can be used to create a PC Agent installation file for a selected parent community
(ParentCommunityID) and Agent configuration (ConfigurationID).

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 51 of 112

http://www.w3.org/TR/xmlschema-2/#date

Parameters

Name Description Type

ParentCommunityID The parent community that contains the Agent
configuration you want to get.

xsd:int

ConfigurationID The ID of the Agent configuration you want to
download.

xsd:int

Return Values

If successful, the API returns a binary byte array that you can save as an Agent Setup file (for example,
AgentSetup.msi).

Remarks

This API lets you create an Agent Setup file for a PC Agent.

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1078 Community does not contain the Agent Setup specified.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
byte[] abInstall = AdminService.CommunityGetInstall(5, 9);

FileStream fsWriter = new FileStream("setup.msi", FileMode.Create);
foreach (byte bTemp in abInstall)
{

fsWriter.WriteByte(Byte);
}
fsWriter.Close();

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 52 of 112

CommunityGetLicenseCount

Returns the number of licenses allocated to a community for PC Agents.

Parameters

Name Description Type

CommunityID The community for which you want to obtain the
number of allocated licenses for PC Agents.

xsd:int

ProductCode Indicates the type of product:

PRODUCTCODE_PC_AGENT

Connected:
ProductCode

Return Values

Name Description Type

LicenseCount The number of licenses allocated to the community for a
specific product type.

If access to the community is denied (no licenses are
allocated to the community), the return value is SOAP fault
1070.

If the community inherits licenses from its parent community,
the return value is -1.

If the community has an unlimited number of licenses, the
return value is -2.

xsd:int

Error Codes

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1030 The Data Center is not licensed for this product.

Example

[C# Example]

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 53 of 112

//Get the license count for CommunityId 19 and print it
//Get the count for PC Agent licenses first

int nCmtyId = 19;

PRODUCTCODE ePCode = PRODUCTCODE.PRODUCTCODE_PC_AGENT;
int nCount = AdminService.CommunityGetLicenseCount(nCmtyId, ePCode);
Console.WriteLine("CommunityId {0} has PC license count of: {1}", nCmtyId, nCount);

CommunitySetLicenseCount, on page 63

CommunityGetName

Returns the full and short community names for the specified community ID (CommunityID).

Parameters

Name Description Type

CommunityID The ID of the community you want to return the
names of.

xsd:int

Return Values

If successful, returns AdminAPICommunityNames, which contains the following information:

Name Description Type Max
String
Size

FullName Canonical name of the specified
community ID.

xsd:string 64

ShortName The short community name (community
name only).

xsd:string 64

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 54 of 112

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

[C# Example]

int intCmtyId = 15;

//Get the community name

AdminAPICommunityNames cAPICmtyNames = AdminService.CommunityGetName(intCmtyId);
Console.WriteLine("Canonical Name: {0}", cAPICmtyNames.strFullName);
Console.WriteLine("Short Name: {0}", cAPICmtyNames.strShortName);

CommunityGetSubCommunityIDs, on page 57

CommunityGetParent

Returns the parent (ParentCommunityID) of the given community.

Parameters

Name Description Type

CommunityID The ID of the community you want to return the
parent of.

xsd:int

Return Values

Name Description Type

ParentCommunityID The ID of the community you want to return a list
of subcommunities for

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 55 of 112

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Remarks

If CommunityID is -1 (that is, the Data Center root community), the returnParentCommunityID will be
-1.

Example

int nAccount = 101000001;
AdminAPIAccountInfo cAcntInfo = AdminService.AccountGetInfo(nAccount);
int nAccounts_CommunityID = cAcntInfo.BaseAccountInfo.nCommunityID;
int nAccounts_Parent_CommunityID = AdminService.CommunityGetParent(nAccounts_
CommunityID);

CommunityGetStatisticsInfo

Returns the following statistics for a given community (CommunityID):

l Number of accounts

l Number of licenses in use

l Number of licenses available

l Uncompressed tip revision size. (This information allows for identification of the relative size of the
community data.)

Parameters

Name Description Type

CommunityID The ID of the community you want to return
statistics for.

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 56 of 112

Return Values

Name Description Type

CommunityStatisticsInfo A data structure that contains
statistics for the specified
community, including:

l number of accounts

l number of licenses in use

l number of licenses available

l uncompressed tip revision size
(allows for identification of the
relative size of the community
data)

Connected:
AdminAPICommunityStatisticsInfo,
on page 99

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminAPICommunityStatisticsInfo CSI = AdminService.CommunityGetStatisticsInfo(5);

Console.Writeline("Name: " + CSI.strCommunityName);
Console.Writeline("Account Count: " + CSI.nAccountCount);
Console.Writeline(" License Count Available: " + CSI.nLicenseCountAvailable);
Console.Writeline(" License Count in Use: " + CSI.nLicenseCountInUse);
Console.Writeline(" Tip Revision Uncompressed Size: " +
CSI.lTipRevisionUncompressedSize);

CommunityGetSubCommunityIDs

Returns a list of all the child or subcommunities of the specified parent community.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 57 of 112

Parameters

Name Description Type

ParentCommunityID The ID of the community you want to return a list of
subcommunities for

xsd:int

Return Values

If successful, returns SubCommunityIDs, an array of CommunityIDs.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

[C# Example]

int intCmtyId = 15;

//Get a list of ids of subcommunities in this community

int[] intASubCmtyIDs =AdminService. CommunityGetSubCommunityIDs(intCmtyId);
if (intASubCmtyIDs != null)
{
 foreach(int x in intASubCmtyIDs)

{
 Console.Write("{0} ", x)
 }
}

CommunityCreate, on page 38

CommunityChangeName, on page 37

CommunityGetName, on page 54

CommunityGetTechnicians, on the next page

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 58 of 112

CommunityGetTechnicians

Returns a list of all the technicians in the specified community.

Parameters

Name Description Type

CommunityID The community for which you want to get a list of
technicians.

xsd:int

Return Values

If successful, returns TechIDs, an array of type AdminAPITechnicianID, on page 102.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

[C# Example]

int intCmtyId = 15;

//Get a list of technicians in this community

AdminAPITechnicianID[] TechArray = AdminService.CommunityGetTechnicians(intCmtyId);
if (intASubCmtyIDs != null)
{
 foreach(AdminAPITechnicianID T in TechArray)

{
 Console.WriteLine("{0}:{1} ", T.strTechName, T.nCommunityID)
 }
}

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 59 of 112

CommunityCreate, on page 38

CommunityChangeName, on page 37

CommunityGetName, on page 54

CommunityGetTechnicians, on the previous page

CommunityGetSubCommunityIDs, on page 57

CommunityReserveTicket

DEPRECATED:
This API is deprecated. It uses the CommunityReserveTicketandFetch, on the next page API
to reserve accounts and return the account number.

Reserves an account for future registration. Also sets the user information for the reserved account,
including the account's community, Agent Setup and license code.

Parameters

Name Description Type

CommunityID Community in which to reserve the account. xsd:int

AgentSetupID Agent Setup ID assigned for the future
account. To use the default Agent Setup for
the specified community, set AgentSetupID
to zero (0).

xsd:int

AdminAPIUserInfo,
on page 103

Information about the user of the reserved
account. This info is optional except LoginID
field, which identifies the reserved account.
LoginID may be obtained from another source
such as an enterprise directory server.

Connected:Admin
APIUserInfo

ProductCode Indicates the type of product license to
reserve for the account:

PRODUCTCODE_PC_AGENT

Connected:ProductCode

Return Values

If successful, nothing is returned.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 60 of 112

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1012 Credit Card Expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and
AMEX.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1018 Credit Card number is invalid.

1024 Unable to perform required action. The destination community does not have
enough licenses available.

1026 Community this account belongs to does not contain the Agent Setup specified.

1035 Agent Setup ID is not enabled.

1063 Access denied. Logged-in Technician does not have permission ‘Reserve
Tickets’.

1066 Cannot reserve account for empty Logon ID.

Remarks

l Logged-in technicianmust have theReserve Accounts permission enabled.

l If supplying the credit card information, see the rules for AccountSetUserInfo, on page 27.

l More than one ticket may be reserved for the same LoginID. This is useful if the individual account
holder has more than one computer to back up.

CommunityCreate, on page 38

CommunityReserveTicketandFetch

Reserves an account for future registration and returns the account number for the reserved account.
Also sets the user information for the reserved account, including the account's community, Agent
Setup and license code.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 61 of 112

Parameters

Name Description Type

CommunityID Community in which to reserve the account. xsd:int

AgentSetupID Agent Setup ID assigned for the future
account. To use the default Agent Setup for
the specified community, set AgentSetupID
to zero (0).

xsd:int

AdminAPIUserInfo,
on page 103

Information about the user of the reserved
account. This info is optional except LoginID
field, which identifies the reserved account.
LoginID may be obtained from another source
such as an enterprise directory server.

Connected:Admin
APIUserInfo

ProductCode Indicates the type of product license to
reserve for the account:

PRODUCTCODE_PC_AGENT

Connected:ProductCode

Return Values

If successful, this API returns the reserved account number in an array called
AdminAPIBaseAccountInfoList that contains AdminAPIBaseAccountInfo, on page 99 data
structures.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1012 Credit Card Expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and
AMEX.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1018 Credit Card number is invalid.

1024 Unable to perform required action. The destination community does not have
enough licenses available.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 62 of 112

Code Reason

1026 Community this account belongs to does not contain the Agent Setup specified.

1035 Agent Setup ID is not enabled.

1063 Access denied. Logged-in Technician does not have permission ‘Reserve
Tickets’.

1066 Cannot reserve account for empty Logon ID.

Remarks

l Logged-in technicianmust have theReserve Accounts permission enabled.

l If supplying the credit card information, see the rules for AccountSetUserInfo, on page 27.

l More than one ticket may be reserved for the same LoginID. This is useful if the individual account
holder has more than one computer to back up.

CommunityCreate, on page 38

CommunitySetLicenseCount

Allocates a specified number of licenses in a community for PC Agents.

Parameters

Name Description Type

CommunityID The community to which you want to allocate
licenses for a specific product type.

xsd:int

ProductCode Indicates the type of product license to
reserve for the account:

PRODUCTCODE_PC_AGENT

Connected:ProductCode

LicenseCount The number of licenses that you want to
allocate to the community for a specific
product type. This value cannot exceed the
number of unused licenses available to the
community.

To configure the community to inherit
licenses from its parent community, specify 0
(zero) as the LicenseCount.

To deny access to this community, do not
specify a LicenseCount value.

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 63 of 112

Return Values

If successful, none.

Error Codes

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1030 The Data Center is not licensed for this product.

1031 The allocated license count value is invalid.

Remarks

The logged-in technicianmust have theAllocate Licenses to Subcommunities permission enabled.

Example

[C# Example]

int nCmtyId = 19;

//Allocate 200 PC Agent licenses to the community

ePCode = PRODUCTCODE.PRODUCTCODE_PC_AGENT;
nCount = 200;
AdminService.CommunitySetLicenseCount(nCmtyId, ePCode, nCount);

CommunityGetLicenseCount, on page 53

Session APIs

The available interfaces for session features include:

l SessionLoginTechnician, on the next page

l SessionLogoutTechnician, on page 67

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 64 of 112

SessionLoginTechnician

Starts a SOAP session with Support Center using the specified technician's name and password.

Parameters

Name Description Type Max String
Size

TechName Technician log in name. It is case-
insensitive.

xsd:string 64

Password Technician password. It is case-
sensitive.

xsd:string See Password
Restrictions

Return Values

Name Description

CommunityID Returns the root community ID of the logged in technician.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1030 Unable to authenticate technician. Either the Technician ID or password is
incorrect, or there is more than one technician with submitted credentials.

1031 The current password has expired.

Remarks

l The technician account used to establish the sessionmust have theUse Scripting permission to
make calls to the APIs. Some APIs have additional permission requirements. Refer to the
documentation for each API to determine if any additional permissions are required for the calls you
want to make.

l To avoid exposing your password, make sure that the script you use gets the password from some
secure location, such as an encrypted file on disk.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 65 of 112

l The C#wrapper class APISession contains code to securely store the technician password in the
OS the first time it is asked for, and then uses it thereafter if the user logged in is the same user who
supplied the password.

l Use TechnicianGetPasswordExpiryDate to determine when your password expires andmake sure
you change it and the script before your password expires.

l If there are three unsuccessful attempts to log on, the account will be locked.

l Support Center allows creation of technicians using the same user name and password in different
communities. This API assumes that there aren't any such duplicate technician user names. If the
same user name is used for technicians in different communities, the duplicate technicians cannot
access these APIs. The error 1030 is returned on attempt to authenticate a duplicate technician user
ID.

l To prevent this problem, run the SQL query provided below to identify duplicate technicians. If
duplicates exist, change one of the duplicate user names to a unique name.

select techid, min(permissionvalue), max(permissionvalue), min(rootcommunityid),
max(rootcommunityid),count(*) from techpermission
where permissiontype = 'pwhash1'
group by techid
having count(*) > 1
and min(permissionvalue) = max(permissionvalue)

Example

[C# Example]

//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminAPIService AdminService = new AdminAPIService()

AdminService.CookieContainer = new System.Net.CookieContainer();
AdminService.PreAuthenticate = true;
AdminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "druidia";
string strTechPassword = "Boston1822";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDate();
Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtyId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy"));

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 66 of 112

AdminService.SessionLogoutTechnician();

SessionLogoutTechnician, below

SessionLogoutTechnician

Log out of a session.

Parameters

None.

Return Values

None.

Remarks

If SessionLogoutTechnician is not called, it will be automatically abandoned by IIS after the session
time out has passed (The default session time-out value is twenty (20) minutes.) However, calling this
function to end a session is recommended, since it frees up resources on theWeb server.

Example

[C# Example]

//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminAPIService AdminService = new AdminAPIService()

AdminService.CookieContainer = new System.Net.CookieContainer();
AdminService.PreAuthenticate = true;
AdminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "druidia";
string strTechPassword = "Boston1822";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDate();

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 67 of 112

Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtyId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy"));

AdminService.SessionLogoutTechnician();

SessionLoginTechnician, on page 65

Reports APIs

The available interfaces for reports include:

l ReportTemplateRun, below

l ReportGet, on page 70

l ReportDelete, on page 71

ReportTemplateRun

Runs a defined report in the specified community. This API returns the report name immediately,
without waiting for all of the report results. Use the ReportGet API to get the actual report results.

Parameters

Name Description Type

AdminAPIReportTemplateID,
on page 102

A data structure that
contains the name of the
report template to run and
ID of the community
where the report was
created.

Connected:AdminAPIReportTemplateID

IncludeSubCommunites Determines whether to
include information from
the subcommunities of
the specified community.

xsd:boolean

ReportStartDate The start of the date range
to use when collecting
report information.

xsd:dateTime

ReportEndDate The end of the date range
to use when collecting
report information.

xsd:dateTime

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 68 of 112

Return Values

If the template is successfully run, returns the name of the report results for the specified community
and report template.

Name Description Type Max
String
Size

ReportName Name of the report output.

If the namewas not passed in with the ReportName
parameter, then the default format is used:

<CommunityID>_8_<NameOfReport>.scr

xsd:string 64

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1004 Access denied. Logged-in Technician does not have permission ‘Run Reports’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist

1057 A report with this name already exists, or is currently running in the queue.

1059 Specified date range is invalid: start date is after the end date.

1065 Report Template does not exist in requested community.

Remarks

l Logged-in technicianmust have theRun Reports permission.

l To include information from all subcommunities in the specified community, specify
IncludeSubCommunites as True.

l A report with the requested name and CommunityID must exist in Support Center.

l The report can be self-contained, requires no additional information to run, or requires the date range.
It also applies to the Custom reports that have Active Run Screen type.

l To use this API to run a custom report, make sure the custom report's Run Screen type is set to
Custom and that all parameters for the run screen have default values (no validation for the

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 69 of 112

parameters is performed). Refer to Support Center Help for more information about running custom
Support Center reports.

l Report dates must be in GMT (UTC) time. All report times are converted to the server time before
running the report. Support Center displays report data using server time.

l Start and end dates before 1970 are invalid. If invalid report dates are specified for reports that
require a date, the report template defaults are used to generate the report. For reports that do not
require dates, invalid dates are ignored and no dates are used to generate the report results.

Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

ReportDelete, on the next page

ReportGet, below

ReportGet

Uses the report name returned by the ReportTemplateRun API to retrieve report results.

Parameters

Name Description Type

AdminAPIReportTemplateID,
on page 102

A data structure that contains the
name of the report template to run
and ID of the community where the
report was created.

Connected:AdminAPIReportID

Return Values

Name Description Type

ReportXML An XML buffer for the requested report. xsd:string

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1004 Access denied. Logged-in Technician does not have permission ‘Run Reports’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 70 of 112

http://www.w3.org/TR/xmlschema-2/#date

Code Reason

1015 The community does not exist

1019 Report does not exist in requested community.

1100 Report is currently running in the queue.

Remarks

l The logged-in technician has must have theRun Reports permission.

l Error code 1100 does not indicate an error condition, just that the report has not finished running yet.
Wait and call the API again to obtain the report results.

ReportDelete, below

ReportDelete

Deletes report output in the specified community.

Parameters

Name Description Type

AdminAPIReportTemplateID,
on page 102

Structure that contains the report
name and community ID.

Connected:AdminAPIReportID

Return Values

If report output is successfully deleted, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1004 Access denied. Logged-in Technician does not have permission ‘Run Reports’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 71 of 112

Remarks

l The logged-in technicianmust have the Run Reports permission enabled.

l Reports deleted from a parent community are no longer available to any subcommunities that inherit
them.

l If specified report does not exist, there is no error returned and API does nothing.

ReportTemplateRun, on page 68

Technician APIs

The technician APIs allow you to change values for technician IDs and passwords. The available
interfaces are:

l AccountOrderMedia, on page 23

l TechnicianDelete, on page 74

l TechnicianGetPasswordExpiryDate, on page 75

l TechnicianGetPasswordExpiryDateTime, on page 76

TechnicianCreate

Creates a new technician user ID within the specified community and grants the same permissions as
specified technician.

Parameters

Name Description Type Max
String
Size

TechID Identifies the technician. See the table
below.

Connected:
AdminAPI
TechnicianID

64

TechPassword Technician temporary password. If the
community that the technician is being
added to is an enterprise directory
community, the password should be empty
or it will be ignored. Instead, the API verifies
that the new TechID exists in the enterprise
directory server.

xsd:string

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 72 of 112

Name Description Type Max
String
Size

SameAsTechID The ID of an existing technician that
possesses the same set of permissions that
you want to grant to the new technician. The
permissions granted to the new technician
will be equal to or less than the set
possessed by the currently logged in
technician.

Connected:
AdminAPI
TechnicianID

AdminAPI
TechnicianID

CommunityID is the ID of the community
where you want to create the technician
(also known as the technician's "root
community")

TechName is the unique login name you
want to assign to the technician.

xsd:int

xsd:string

--

64

Return Values

When successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1002 Access denied. Logged-in Technician does not have permission ‘Modify
Technician Permissions’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist

1032 The Technician ID that you are trying to add is already associated with an
existing technician.

1062 The Technician Login ID cannot be empty.

1063 The password provided does not conform to requirements. All passwords must
be at least 8 characters long, including at least one numeric character.

1064 "SameAsTechID" does not exist.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 73 of 112

Remarks

l The currently logged-in technician cannot grant any permissions that he himself does not have.

l If the community into which the technician is being added is an enterprise directory community, you
may leave the password empty since it will be ignored. This API verifies that the new TechID exists
in the enterprise directory server.

Examples

[C# Example]

//This is the new technician information:
AdminAPITechnicianID Create = new AdminAPITechnicianID();

Create.nCommunityID = 5;
Create.strTechName = "NewTechnician";

//This is the existing technician that we want to use
//as a model for the new technician's permissions:
AdminAPITechnicianID As = New AdminAPITechnicianID();

As.nCommunity = 5;
As.strTechName = "MyTechnicianLoginName";

adminService.TechnicianCreate(Create "NewPass1", As);

TechnicianGetPasswordExpiryDate, on the next page

TechnicianDelete, below

TechnicianDelete

Deletes the specified technician from the specified community.

Parameters

Name Description Type

TechID Identifies the technician. Connected: AdminAPI
TechnicianID

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 74 of 112

Return Values

Name Description

Success If the technician is deleted, returns True; if technician was not found
or in case of any error listed below, returns False.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1002 Access denied. Logged-in Technician does not have permission ‘Modify
Technician Permissions’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1027 Unable to perform required action. A technician cannot modify him/herself.

Remarks

l The logged-in technician account that is making the call must have theModify Technician
Permissions password to delete another technician.

l If specified technician does not exist in the system, there is no error returned and API does nothing.

AccountOrderMedia, on page 23

TechnicianGetPasswordExpiryDate

Get the date that the currently logged in technician will expire.

Parameters

None.

Return Values

Name Description Type

Date The date the password will expire. xsd:date

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 75 of 112

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Remarks

Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

Example

[C# Example]
//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminServiceAPI adminService = new AdminServiceAPI()

adminService.CookieContainer = new System.Net.CookieContainer();
adminService.PreAuthenticate = true;
adminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "TechAccount1";
string strTechPassword = "NewPass1";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDate();

Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy"));

AdminService.SessionLogoutTechnician();

TechnicianGetPasswordExpiryDateTime

Get the date and time that the currently logged in technician will expire. This call is similar to
TechnicianGetPasswordExpiryDate, on the previous page, but this call includes both date and time

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 76 of 112

http://www.w3.org/TR/xmlschema-2/#date

information.

Parameters

None.

Return Values

Name Description Type

DateTime The date and time the password will expire. xsd:dateTime

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Remarks

Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:dateTime type.

Example

[C# Example]
//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminServiceAPI adminService = new AdminServiceAPI()

adminService.CookieContainer = new System.Net.CookieContainer();
adminService.PreAuthenticate = true;
adminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "TechAccount1";
string strTechPassword = "NewPass1";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDateTime ();

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 77 of 112

http://www.w3.org/TR/xmlschema-2/#date

Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy HH:mm:ss"));

AdminService.SessionLogoutTechnician();

WebServices Programming Reference
Chapter 2: APIs

Connected Backup (9.0.6) Page 78 of 112

Chapter 3: C# class library

This chapter describes the information used with the class libraries in theWeb Services API.

l Use the C# class library, below

l Create C#wrapper classes, on the next page

l Class listing, on the next page

Use the C# class library

Using theWSDL file installed with theWeb Interface Service, you can create several C# classes.
These classes provide API wrappers that you can use to wrap the SOAP requests and helper methods
that you can use to handle the SOAP results.

The API wrapper methods:

l Accept the parameters

l Create a SOAP request

l Send the request to Support Center for processing

l Wait for the SOAP response and store it as member variables

The helper methods provide a way to get and handle the SOAP results.

Themain wrapper classes are Community and Account. Each class is responsible for the appropriate
set of API calls. Each class constructor accepts existing APISession class object after the
LoginTechnician is called.

System requirements

You can use the class library in applications that run on one of the following operating systems:
Windows® XP, Windows 7, Windows 8, Windows Server® 2003, Windows Server 2008, Windows
Server 2012, Windows Server 2016, orWindows Server 2019. These operating systems use stored
user names and passwords to associate a set of credentials with a singleWindows user account,
storing those credentials using the Data Protection API (DPAPI).

The C# classes included in this library use the Credential Management API function
CredUIPromptForCredentials to prompt for the technician password and securely store it in the
Credential Manager. The Credential Manger is only available on the operating systems previously
listed.

These classes provide two kinds of methods, API wrappers and helper methods. The API wrapper
methods accept parameters, create a SOAP request, and send it to Support Center. When a SOAP
response is received, the wrapper methods store it as member variables. You can get the results
through the utility methods provided.

Connected Backup (9.0.6) Page 79 of 112

Create C# wrapper classes

If you are usingMicrosoft Visual Studio to write clients in C#, you can use theMicrosoft Web Services
Description Language Tool wsdl.exe to create a proxy class for use in your project.

To create the proxy classes

1. Open the AdminAPI.wsdl file in a browser, then save a copy of it to an XML file on your local drive.

2. Run the following command:

wsdl /n:YourNamespace YourDrive:\YourPath\AdminAPI.wsdl

This command generates a C# file that contains theWeb Service proxy class you can include in
your project. This class has a hard-coded URL in the constructor. This is the URL in the
soap:location field in the original AdminAPI.wsdl file.

Youmust change this URL to point to theWeb Interface Service server that you will be working
with. To do this, set the URL property on the instance of theWebService class. The URLmust be
in this form:

"https://DNS name/AdminAPI Virtual Directory/AdminAPI.dll?Handler=Default"

C# Example:

AdminAPIService WebService = new AdminAPIService();

WebService.Url =
"https://www.connected.com/AdminAPI/AdminAPI.dll?Handler=Default";

AdminAPIService is the proxy class generated using the wsdl.exe utility program.

Class listing

l Account class, on the next page

l Account Size class, on page 83

l AdminAPIException class, on page 84

l APISession class, on page 87

l Community Class, on page 88

l CreditCard class, on page 91

l CustomInfo class, on page 92

l User class, on page 93

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 80 of 112

Account class

Class Hierarchy

Account

public class account;

File

Account.cs

Description

AdminAPIUtil.Account holds complete information about an account including the user information
stored in the User class. It provides themethods to get the User object, get and change account
settings, move the account and order DVDs.

To use this class, create an Account class object passing APISession and AccountNumber, and call
Load() on the object to populate account and user information.

Namespace

AdminAPIUtil

Properties

Property Description

AccountNumber The ID number that identifies an account.

AccountSizeInfo Account size information for this account.

AccountStartDate The date the account was registered.

AgentInstallPath The installation path of the Agent.

AgentSetupID The ID of the Agent Setup assigned to this account.

AgentVersion The version of the Agent assigned to this account.

CommunityID The ID of the community where the account was created.

ComputerName The name of the computer associated with this account.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 81 of 112

Property Description

Status The current status of this account.

UserInfo The personal information of the account holder.

Methods

Method Description

Account The account number.

GetCustomInfo Get the custom information values for the account.

GetEncryptionKey Get the encryption key of the account.

GetMediaCount Get the number of units of media required to fulfill a media order
for this account (for example, the total number of DVDs).

Load Load the object.

Move Move the account to another community.

OrderMedia Order a copy of the account data on the specified type of storage
media.

SavePassword Save the account password.

SaveUser Save the account user information.

SetAgentSetupID Change the Agent setup that is assigned to this account.

SetiRoamOff Disable access to iRoam.

SetiRoamOn Enable access to iRoam.

SetStatus Change the status of the account.

Remarks

If any of the Get methods (with the exception of GetAccountNumber() and GetEncryptionKey()), are
called before Load(), the program checks to see if account information was already loaded. If not, it
calls Load() before returning the data.

Examples

[C#]

// Creating a new account class

 class MyClass
{

WebServices Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 82 of 112

 public static int Main()
{

 string strTech = "Admin";
 APISession Session = new APISession();
 Session.LoginTechnician(strTech);
 Account Acc = new Account(Session, 101000001);
 Acc.Load();
 }
 }

User class, on page 93

CustomInfo class, on page 92

Account Size class

Class hierarchy

AccountSize

public class AccountSize;

File

AccountSize.cs

Description

AdminAPIUtil.AccountSize class holds the backup sizes at some point in time for the account
specified in the Account Class. It wraps the AdminAPIAccountSize structure.

Namespace

AdminAPIUtil

Properties

Property Description

FirstBackup Determines if this is the first backup (True) or a subsequent
backup (False).

NumArchives Gets the number of archives for the specified account.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 83 of 112

Property Description

NumFilesPool Gets the number of non-pool file revisions.

NumFilesUnique Gets the number of non-pool file revisions.

SizePool Gets the compressed size of pool files.

SizePoolUncompressed Gets the uncompressed size of non-pool file revisions.

SizeUnique Gets the compressed size of all non-pool file revisions
(equal to size of archives).

SizeUniqueDelta Gets the uncompressed, post-delta size of all non-pool file
revisions.

SizeUniqueUncompressed Gets the uncompressed size of all non-pool file revisions.

SnapShotDate Gets the date the sizes were recorded.

TipRevisionNumFiles Gets the number of files in tip revision set.

TipRevisionUncompressed Gets the uncompressed size of tip revision size.

AdminAPIException class

Class hierarchy

SoapException

AdminAPIException

public class AdminAPIException : SoapException;

File

AdminAPIException.cs

Description

AdminAPIUtil.AdminAPIException class is an exception object used by the wrapper classes. It is
derived from .NET exception class System.SoapException. In addition to themembers of the base
class it provides the API Name, the Error Code and the Error Messagemembers. When response from
the API call comes in as a SOAP Fault, the AdminAPIException class is created and populated with
the API name, and error details from the Soap Fault message. Then it is thrown to the caller.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 84 of 112

Namespace

AdminAPIUtil

Properties

Property Description

APIName The name of the API.

ErrorCode The numeric error code number.

ErrorMessage A string containing the error description.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 85 of 112

Examples

[C#]

// This example shows how to throw this exception.

 public void APIWrapperMethod()
{

 try
{

 m_APISession.GetWebService().APICall();
 }
 catch (SoapException e)

{
 throw new AdminAPIException("AccountDisableiRoam", e);
 }
 }

// This sample shows how to the caller can catch it.

 class MyClass
{

 public static int Main()
{

 try
{

 string strTech = "Admin";
 APISession Session = new APISession();
 Session.LoginTechnician(strTech);
 }
 catch (AdminAPIException e)

{
 string strAPIName = e.APIName;
 string strErrCode = e.ErrorCode;
 int nErrCode = e.GetErrorCode();
 string strError = e.ErrorMessage;
 Console.WriteLine(strError);
 }
 }
 }

APISession class, on the next page

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 86 of 112

APISession class

Class hierarchy

APISession

public class APISession;

File

APISession.cs

Description

AdminAPIUtil.APISession class is a starting point of using theWeb Interface Service APIs. It logs in
the technician andmaintains the session state to handle all subsequent 3rd party application or user
requests.

Namespace

AdminAPIUtil

Properties

Property Description

RootCommunity The community that the technician logged into.

WebService The URL of the server where theWeb Interface Service is
installed.

Methods

Method Description

APISession Initiates a session.

LoginTechnician Passes the specified technician's credentials.

LogoutTechnician Terminates a session.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 87 of 112

Method Description

TechnicianGetPassword
ExpiryDate

Gets the specified technician's password expiration date to
determine if it is still valid.

VerifyUserCredentials Verifies the Agent user's login ID and password.

VerifyAgentInfoURLHash Verifies that the hash in a URL spawned by an Agent
associated with the user is valid.

Remarks

l To avoid exposing credentials in clear text in a script, LoginTechnician() does not accept the
technician name or password as a parameter. It accepts the name of the resource, called Target
Name, by which the Credential Manager stores the credentials. The target name should be a server
name (can be DNS name) to identify the server the credentials that should be used to create the
session. There are no special requirements for the name. LoginTechnician() calls the
SessionLoginTechnician() API and passes in the technician Login ID and password.

l The APISession class uses CredUIPromptForCredentials Win32 API to store and retrieve the
password from the Credential Manager in the OS. Since the library Credui.lib is a C library, the call
has to be wrapped in a C++ dll for C# program to use through the DllImport attribute.

l The behavior of retrieving and storing credentials is as follows:

o The program tries to retrieve the credentials from the Credential Manager stored under specified
Target Name. If successful, the name and password are returned to the caller.

o If Target Name is not found, a prompt will ask the user for a login name and password. When user
clicks OK, the program tries to verify the credentials by logging on to Support Center.

o If technician with the provided name and password is accepted, the credentials are saved in the
Credential Manager by the supplied Target Name.

o If the program fails to log in, the credentials are not saved but still returned to the caller.

AdminAPIException class, on page 84

Community Class

Class hierarchy

Community

public class Community;

File

Community.cs

WebServices Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 88 of 112

Description

AdminAPIUtil.Community class represents a unit of administration and corresponds to the community
stored on the server. It provides functionality to manage technicians, search for accounts, search for
changed accounts and change the community settings. Each Community method wraps its
corresponding API call.

Namespace

AdminAPIUtil

Methods

Method Description

ChangeName Calls the CommunityChangeName API to change the
community name.

CreateSubCommunity Calls the ComunityCreate API to create a new
subcommunity in the specified parent community.

CreateTechnician Calls the TechnicianCreate API to create a new
technician.

DeleteReport Calls the ReportDelete API to delete the specified report.

DeleteTechnician Calls the TechnicianDelete to delete the specified
technician.

DisableRegistration Calls the CommunityDisableRegistration API to disable
registration to the specified community.

EnableRegistration Calls the CommunityEnableRegistration API to enable
registration to the specified community.

FindAccounts Calls the CommunityFindAccounts API to search for
accounts in a specific community and its subcommunities
based on a set of given criteria.

GetChangedAccounts Calls the CommunityGetChangedAccounts to get a list of
accounts that have changed in the specified community
and its subcommunities.

GetName Calls the CommunityGetName API to get both the short and
full canonical name for the specified community ID.

GetReport Calls the ReportGet API to get report results.

GetSubCommunityIDs Calls the CommunityGetSubCommunityIDs API to return a

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 89 of 112

Method Description

list of subcommunities within the specified parent
community.

GetTechnicians Calls the CommunityGetTechnicians API to return a list of
all technicians in the specified community.

ReserveTicket Calls the CommunityReserveTicket API to reserve an
account in the specified community.

Examples

[C#]

public class Community
{

private APISession m_APISession;
private int m_nCommunityID;

// Class constructor. Initializes data members: m_APISession, m_nCommunityID.
//
public Community(APISession Session, int nCommunityID)
{

m_APISession = Session;
m_nCommunityID = nCommunityID;

// The following reserves an account for later registration and sets
// the user information.
// The parameter nAgentSetupID is the Agent Setup ID assigned for
// the future account.
// UseInfo contains information about the user of the reserved account.
// This information is optional.
// The LoginID field is required. LoginID is normally the LoginID
// into a 3rd party system and is used to identify the reserved ticket.
// eCode is the product code: PRODUCTCODE_PC_AGENT
// If there is an error during the call to CommunityReserveTicket API,
// AdminAPIException is thrown.

public void ReserveTicket(int nAgentSetupID, User UseInfo, PRODUCTCODE eCode)
{

try
{

AdminAPIUserInfo APIUserInfo = new AdminAPIUserInfo();
APIUserInfo.strAddress1 = UseInfo.Address1;
APIUserInfo.strAddress2 = UseInfo.Address2;
APIUserInfo.strCity = UseInfo.City;
APIUserInfo.strCompany = UseInfo.Company;
APIUserInfo.strCountry = UseInfo.Country;
APIUserInfo.strDepartment = UseInfo.Department;

WebServices Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 90 of 112

APIUserInfo.strEmail = UseInfo.Email;
APIUserInfo.strFirstName = UseInfo.FirstName;
APIUserInfo.strLastName = UseInfo.LastName;
APIUserInfo.strLoginID = UseInfo.LoginID;
APIUserInfo.strMiddleName = UseInfo.MiddleName;
APIUserInfo.strState = UseInfo.State;
APIUserInfo.strTelephone = UseInfo.Telephone;
APIUserInfo.strZip = UseInfo.Zip;
APIUserInfo.CreditCardInfo.eCCType =

UseInfo.CreditCardInfo.CCType;
APIUserInfo.CreditCardInfo.strCCExpDate =

UseInfo.CreditCardInfo.CCExpDate;
APIUserInfo.CreditCardInfo.strCCNumber =

UseInfo.CreditCardInfo.CCNumber;
m_APISession.WebService.CommunityReserveTicket(

m_nCommunityID, nAgentSetupID, APIUserInfo, eCode);
}
catch (SoapException e)
{

throw new AdminAPIException("CommunityReserveTicket", e);
}

}

Remarks

l To use this class, create Account class object passing APISession and AccountNumber, and call
Load() on the object to populate account and user information.

l Refer to AdminAPIException Class for more information about SOAP faults and error handling.

l Refer to the UserAdminAPICustomInfo class for information on getting and setting values that
appear in an Agent's custom fields.

Account class, on page 81

CreditCard class

Class hierarchy

CreditCard

public class CreditCard;

File

CreditCard.cs

WebServices Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 91 of 112

Description

AdminAPIUtil.CreditCard class holds credit card information for a specific account. This is a wrapper
for the AdminAPICreditCard structure.

Namespace

AdminAPIUtil

Properties

Property Description

CCType The credit card type (Master Card, VISA, etc.) for the
specified account number.

CCNumber String that contains the credit card number for the specified
account number.

CCExpDate String that represents the credit card expiration date for the
specified account number.

User class, on the next page

CustomInfo class

Class hierarchy

CustomInfo

public class CustomInfo;

File

CustomInfo.cs

Description

The AdminAPIUtil.CustomInfo class describes the names and value of the custom fields defined in an
Agent for the account specified in the Account class.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 92 of 112

Namespace

AdminAPIUtil

Properties

Property Description

Attribute The name of the custom field.

CustomField Enumerated value of the custom field.

Value The value of the custom field.

User class, below

User class

Class hierarchy

User

public class User;

File

User.cs

Description

AdminAPIUtil.User class holds user basic information such as the user name and address, and
description of custom fields and credit card info. It provides sets and gets methods for themembers
and allows Partners to get the information stored on the server as well as to set it on the server.

Namespace

AdminAPIUtil

WebServices Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 93 of 112

Properties

Property Description

Address1 Registered Agent user's street address.

Address2 Registered Agent user's street address, second line.

City Registered Agent user's city.

Company Registered Agent user's company.

Country Registered Agent user's country.

CreditCardInfo Structure containing Registered Agent user's credit card
number, type and expiration date. (See CreditCard class,
on page 91).

Department Registered Agent user's department.

Email Registered Agent user's e-mail address.

FirstName Registered Agent user's first name.

LastName Registered Agent user's last name.

LoginID Registered Agent user's login name.

MiddleName Registered Agent user's middle name or initial.

State Registered Agent user's state.

Telephone Registered Agent user's telephone.

Zip Registered Agent user's zip code.

CreditCard class, on page 91

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.6) Page 94 of 112

Chapter 4: Data structures

This chapter describes the data structures that theWeb Services API specifies or returns.

l Structure listing, below

IMPORTANT:
AdminAPI is a paid feature. To use it, contact Account Management.

Structure listing

TheWeb Services API uses several data structures:

l AdminAPIAccountInfo, below

l AdminAPIAccountInfoEx, on the next page

l AdminAPIAccountSize, on page 97

l AdminAPIAccountBackupDateInfo, on page 98

l AdminAPIBaseAccountInfo, on page 99

l AdminAPICommunityStatisticsInfo, on page 99

l AdminAPICreditCard, on page 100

l AdminAPICustomInfo, on page 101

l AdminAPIExtendedAccountInfo, on page 101

l AdminAPIMediaCount, on page 102

l AdminAPIProfileInfo, on page 102

l AdminAPIReportTemplateID, on page 102

l AdminAPITechnicianID, on page 102

l AdminAPIUserInfo, on page 103

AdminAPIAccountInfo

This structure that contains information about the account including its start date, its Agent install path,
Agent version, user information, account size and custom fields.

Connected Backup (9.0.6) Page 95 of 112

Name Description Type Max
String
Size

AdminAPIBase
AccountInfo

A collection of values common to
all accounts.

Connected:
AdminAPIBaseAccountInfo,
on page 99

StartDate The date the account was
registered. This value is empty if
the account status is "Reserved".

xsd:date

AgentInstallPath The installation path of the Agent;
where it was installed. This value
is empty if the account status is
"Reserved".

xsd:string 255

AgentVersion The Agent version (typically
software and/or language version)
assigned to the account. This
value is empty if the account
status is "Reserved".

xsd:string

ComputerName The name of the computer
associated with the account. This
value is empty if the account
status is "Reserved".

xsd:string 255

AdminAPICustom
Info

A collection of values returned for
any defined custom fields in use.

Connected:
AdminAPICustomInfo, on
page 101

AdminAPIUserInfo A collection of personal
information values for the account
holder.

Connected:
AdminAPIUserInfo, on
page 103

AdminAPIAccountSize A collection of account size and
usage statistics.

Connected:
AdminAPIAccountSize, on
the next page

AdminAPIAccountInfoEx

This structure that contains information about the account including its start date and time, its Agent
install path, Agent version, user information, account size and custom fields.

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 96 of 112

Name Description Type Max
String
Size

AdminAPIBase
AccountInfo

A collection of values common to
all accounts.

Connected:
AdminAPIBaseAccountInfo,
on page 99

StartDateTime The date the account was
registered. This value is empty if
the account status is "Reserved".

xsd:dateTime

AgentInstallPath The installation path of the Agent;
where it was installed. This value
is empty if the account status is
"Reserved".

xsd:string 255

AgentVersion The Agent version (typically
software and/or language version)
assigned to the account. This
value is empty if the account
status is "Reserved".

xsd:string

ComputerName The name of the computer
associated with the account. This
value is empty if the account
status is "Reserved".

xsd:string 255

AdminAPICustom
Info

A collection of values returned for
any defined custom fields in use.

Connected:
AdminAPICustomInfo, on
page 101

AdminAPIUserInfo A collection of personal
information values for the account
holder.

Connected:
AdminAPIUserInfo, on
page 103

AdminAPIAccountSize A collection of account size and
usage statistics.

Connected:
AdminAPIAccountSize,
below

AdminAPIAccountSize

Name Description Type

SnapShotDate Date the backed up file was recorded in
the database. Since the type of this field is
xsd:date, it cannot be empty. However it
can contain an invalid date, which is 0001-
01-01.

xsd:date

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 97 of 112

Name Description Type

NumArchives Number of archives created for this
account.

xsd:int

NumFilesUnique Number of unique files backed up. xsd:int

SizeUnique Total file size of all unique files. xsd:long

SizeUniqueUncompressed Total uncompressed file size of all unique
files.

xsd:long

SizeUniqueDelta Uncompressed, post-delta size of all non-
pool file revisions. This is the size of the
data before it is compressed.

xsd:long

NumFilesPool Number of backed up files that are in the
SendOnce pool of shared files.

xsd:int

SizePool Total size of backed up files located in the
SendOnce pool.

xsd:long

SizePoolUncompressed Total uncompressed size of backed up
files located in the SendOnce pool.

xsd:long

TipRevisionNumFiles Number of changed files backed up during
the last backup session.

xsd:int

TipRevisionUncompressed Total uncompressed size of changed files
backed up during the last backup session.

xsd:long

IsFirstBackup If True, signifies that the number and size
of files backed up reflects data for the
account's first backup. If false, signifies
that the number and size of files backed up
reflects a normal backup. Typically, the
number and total size of files backed up
during a first backup can be significantly
larger than a normal backup.

xsd:Boolean

AdminAPIAccountBackupDateInfo

Name Description Type

BackupDate A date of a backup. xsd:date

Status The current status of the account:

NOSTATUS

RESERVED

ACTIVE

Connected:
ACCOUNT_
STATUS

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 98 of 112

Name Description Type

ONHOLD

CANCELLED

Compacted If True, indicates the backup was compacted. If False,
indicates the backup was not compacted.

xsd:Boolean

MediaSizeInBytes The size of the backup in bytes. xsd:Long

AdminAPIBaseAccountInfo

Name Description Type

AccountNumber The number of the account xsd:int

CommunityID The ID of the community to which the Account is
registered

xsd:int

Status The current status of the account:

NOSTATUS

RESERVED

ACTIVE

ONHOLD

CANCELLED

Connected:
ACCOUNT_
STATUS

AgentSetupID The ID of the Agent Setup assigned to this account xsd:int

AdminAPICommunityStatisticsInfo

Name Description Type

CommunityName The name of the community xsd:string

PCAccountCount The number of PC accounts in this
community

xsd:int

SVAccountCount The number of Server accounts in this
community

xsd:int

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 99 of 112

Name Description Type

PCLicenseCountInUse The number of PC licenses in use in this
community

xsd:int

SVLicenseCountInUse The number of Server licenses in use in
this community

xsd:int

PCLicenseCountAvailable The number of PC licenses available in
this community (that is, the total number of
PC licenses allocated to the community
minus the number of PC licenses in use by
this community and its subcommunities)

xsd:int

SVLicenseCountAvailable The number of Server licenses available in
this community (that is, the total number of
Server licenses allocated to the
community minus the number of Server
licenses in use by this community and its
subcommunities)

xsd:int

PCTipRevisionUncompressedSize The relative size of the data for PC
accounts in this community

xsd:long

SVTipRevisionUncompressedSize The relative size of the data for Server
accounts in this community

xsd:long

AdminAPICreditCard

Name Description Type Max
String
Size

Type The credit card type; enumerated
value:

CARD_AMEX

CARD_DISCOVER

CARD_VISA

CARD_MASTERCARD

CARD_OTHER

Connected:AdminAPICreditCard

Number The credit card number that is billed for
the specified account.

xsd:string 16

ExpiryDate The credit card expiration date xsd:string 16

Initialize AdminAPICreditCard before calling the CommunityReserveTicketmethod.

For example:

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 100 of 112

AdminAPIUserInfo oUserInfo = new AdminAPIUserInfo();
oUserInfo.CreditCardInfo = new AdminAPICreditCard();
oUserInfo.strLoginID = ‘ABC123’;

CommunityReserveTicket(3,0,oUserInfo, PRODUCTCODE_PC_AGENT);

AdminAPICustomInfo

Name Description Type Max
String
Size

Section One of the three custom fields available in the Agent,
represented as Enumerated value:

CUSTOM1

CUSTOM2

CUSTOM3

Connected:
CUSTOMFIELD

Attribute The name of the custom field. For this call this value is
already set in the agent options and will be ignored

xsd:string 32

Value The value of the custom field (of the Attribute above) xsd:string 255

AdminAPIExtendedAccountInfo

Name Description Type

CancelDate Date account was canceled. xsd:dateTime

DeleteDate Date account was deleted xsd:dateTime

MsgCode Message selected by technician was canceling
account or putting it on hold

xsd:int

BillingMethod Account’s billingmethod xsd:int

ProfileInfo A data structure that contains account profile
information

Connected:
AdminAPIProfileInfo,
on the next page

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 101 of 112

AdminAPIMediaCount

Name Description Type

eType Enumerated value. One of the following:

MEDIA_DVD

MEDIA_NAS

Connected:MediaType

nCount The number of media units required to complete amedia order. xsd:int

AdminAPIProfileInfo

Name Description Type

Section Section of account profile. xsd:string

Attribute Account profile attribute name. xsd:string

Value Account profile attribute value. xsd:string

AdminAPIReportTemplateID

Name Description Type Max
String
Size

CommunityID The ID of the community where a report
was created

xsd:int

Name The name of the report output xsd:string 64

AdminAPITechnicianID

Name Description Type Max
String
Size

CommunityID Community where the technician was
created (also known as the technician's
root community).

xsd:int

TechName Technician's login name xsd:string 64

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 102 of 112

AdminAPIUserInfo

Name Description Type Max
String
Size

LoginID The account holder's login ID xsd:string 64

FirstName First name of the account holder xsd:string 32

MiddleName Middle name or initial of the account
holder

xsd:string 16

LastName Last name of the account holder xsd:string 64

Telephone Given telephone number for the account
holder

xsd:string 32

Company Account holder's employer or place of
business

xsd:string 64

Address1 Account holder's given street address xsd:string 40

Address2 Account holder's given street address,
suite, apartment or PO box number

xsd:string 40

City Account holder's city xsd:string 32

State Account holder's state xsd:string 20

Zip Account holder's zip xsd:string 11

Email Account holder's e-mail address xsd:string 100

Country Account holder's country xsd:string 32

Department Account holder's department or group xsd:string 64

AdminAPICreditCard,
on page 100

A collection of credit card fields including
Type, Number and Expiration date.

For more details, see
AccountSetUserInfo, on page 27.

Connected:
AdminAPICreditCard

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.6) Page 103 of 112

Chapter 5: Reference

This chapter describes the terms used in this document, as well as the error messages used by the
Web Services API.

l Terminology, below

l Common error messages, on page 106

Terminology

Term Description

account An individual Agent subscriber. Accounts are identified by a unique 9-
digit account number. An account is established at the Data Center
when the Agent registers with the Data Center; an account is a
prerequisite to first backup.

Agent The client program installed on a computer that assembles the backup
and sends it to the Data Center.

Agent configuration The Agent version, rule set, Agent settings andWebsite settings that
you can enable when creating Agent Setups.

AgentInfoURL A URL created within the Agent that links to an informational Web site
or portal.

This is an optional feature for legacy PC Agents. This feature is
configured in the Agent Configuration using the Agent Configuration
Editor (ACE) through Support Center. The
AccountVerifyAgentInfoURLHash API enables verification of
requests coming into aWebsite by determining if the hash in the URL
originated from valid Agent and the computer on which it is registered.

Agent Setup The program that installs the Agent.

Agent Setups are created using Support Center or theAccount
Management Website. Each Agent Setup has a unique ID. The
AccountSetAgentSetupID API enables you to change the Agent Setup
assigned for a specified account ID. The CommunityGetInstall API
enables you to download an Agent Setup.

Agent version The language or software version of an Agent.

community The basic organizational unit for accounts on the Data Center.

A community is a group of accounts that can bemanaged collectively.
When the Data Center is installed, one “default” community is created

Connected Backup (9.0.6) Page 104 of 112

Term Description

to receive new accounts. The CommunityCreate API enables the
creation of new subcommunities within a given community.

canonical name The form of a full community name that includes the path, starting from
technician root community. The path is displayed in this format:

TechnicianRootCommunityName>SubcommunityName>Subcommunity

encryption key A key is a variable value used in the encryption and decryption of data.

Every backup account has one encryption key. The encryption key is
a series of letters and numbers, either randomly chosen or selected by
the user. The encryption key is used to automatically encrypt and
decrypt data on the user's computer. Once established, the encryption
key for an account cannot be changed for the lifetime of the account.

All data is encrypted on the user's computer by the Agent before it is
transmitted to the Data Center. Starting in version 8.0, encryption
keys are generated automatically and are not part of the user interface.

iRoam / MyRoam An optional feature that provides secure access to backed up data via
aWeb interface.

iRoam is accessible using any Web browser. Access to iRoammay
bemanaged using the AccountDisableiRoam and
AccountEnableiRoam APIs. Starting in version 8.0, iRoam is renamed
MyRoam and can be accessed from the Account Management
Website.

registration Process by which an account is established at the Data Center during
Agent installation on a computer.

Support Center A Web-based application that allows users of version 6.1 and later to
manage communities and accounts, create and deploy Agents, and
run reports to monitor backup activity.

technician Someone who has permission to access Support Center to manage,
monitor and report on accounts.

Technicians have one or more permissions that allow them to perform
various administrative tasks using Support Center, theWeb Interface
Service, the Account Management Website, and the Agent user
interface (Retrieve).

ticket A uniquely-generated ID number that, when employed with an Agent
configured to use reserved accounts, ensures that the Agent Setup
will only establish one account, for the owner of the ticket. The API
enables you to reserve accounts for a specific community.

Web Services Programming Reference
Chapter 5: Reference

Connected Backup (9.0.6) Page 105 of 112

Common error messages

The following is a list of error messages in common use by one or more APIs.

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1002 Access denied. Logged-in Technician does not have permission ‘Modify
Technician Permissions’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify
Communities’.

1004 Access denied. Logged-in Technician does not have permission ‘Run
Reports’.

1012 Credit Card Expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and
AMEX.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1016 The specified account cannot be found on the system.

1018 Credit Card number is invalid.

1019 Report does not exist in requested community.

1020 The community name cannot be blank.

1021 A community with the specified name already exists.

1022 The password provided does not conform to requirements. Account
passwords must be at least 6 characters long, cannot have leading and
trailing space and cannot contain all the same characters.

1023 Justification cannot be blank.

1024 Unable to perform required action. The destination community does not have
enough licenses available.

1025 The Data Center is not licensed to use this feature.

1026 Community this account belongs to does not contain the Agent Setup
specified.

1027 Unable to perform required action. A technician cannot modify him/herself.

Web Services Programming Reference
Chapter 5: Reference

Connected Backup (9.0.6) Page 106 of 112

Code Reason

1028 This account has been locked due to toomany unsuccessful login attempts.

1030 The Data Center is not licensed for this product.

1056 The call is not allowed for specified account since its agent version does not
support this feature.

1059 Specified date range is invalid: start date is after the end date.

1069 The specified date is not a valid date.

1075 Invalid date range.

1076 Invalid server group; the parent community does not exist in the specified
server group.

1077 Credit Cards are not supported for this account.

1078 Community does not contain the Agent Setup specified.

1079 Access denied. Logged-in Technician does not have permission ‘Move
Accounts’.

Web Services Programming Reference
Chapter 5: Reference

Connected Backup (9.0.6) Page 107 of 112

Index

A

about theWeb Services API 7
account

APIs 10
change Agent Setup for 29
get backup dates 19
get extended information 14
get info 16
get info including time 18
get last backup date 20
move to community 22
set password 31
set status 32
set user information 27

Account Size 83
Account, C# Class 81
AccountDisableiRoam 11
AccountEnableiRoam 12
AccountGetBackupDates 19
AccountGetEncryptionKey 13
AccountGetExtendedInfo 14
AccountGetInfo 16
AccountGetInfoEx 18
AccountGetLastBackupDate 20
AccountGetMediaCount 21
AccountMoveToCommunity 22
AccountNumber 81
AccountOrderMedia 23
AccountOrderMediaEX 25
accounts

find for community 45-46
reserve for community 60-61
reserving 60

AccountSendMessage 26
AccountSetAgentSetupID 29
AccountSetPassword 31
AccountSetStatus 32
AccountSetUserInfo 27
AccountSize.cs 83
AccountSizeInfo 81
AccountStartDate 81
AccountVerifyAgentInfoURLHash 34
AccountVerifyUserCredentials 35
AdminAPIAccountBackupDateInfo 98
AdminAPIAccountInfo 95
AdminAPIAccountInfoEx 96

AdminAPIAccountSize 97
AdminAPIBaseAccountInfo 99
AdminAPICommunityStatisticsInfo 99
AdminAPICreditCard 100
AdminAPICustomInfo 101
AdminAPIException 84
AdminAPIExtendedAccountInfo 101
AdminAPIMediaCount 102
AdminAPIProfileInfo 102
AdminAPIReportTemplateID 102
AdminAPITechnicianID 102
AdminAPIUserInfo 103
AdminAPIUtil.Account 81
Agent Info URL 34
AgentInstallPath 81
AgentSetupID 81
AgentVersion 81
APIName 84
APIs

account 10
community 36
report 68
session 64
technician 72

APISession 87
arrays that are empty 8
Attribute, custom info 92

B

backup date
get last backup date for account 20

backup dates
get for account 19

C

C#Classes 92-93
Account 81
AccountSize 83
AdminAPIException 84
APISession 87
Community 88
creating 80
CreditCard 91
CustomInfo 92
User 93

caret symbol in passwords 9
CCExpDate 91
CCNumber 91
CCType 91
class library requirements 79
Classes 81, 83, 91-93

Account 81

Connected Backup (9.0.6) Page 108 of 112

WebServices Programming Reference
Index: common error messages – iRoam

AccountSize 83
wrappers 91-93

common error messages 106
communities

find for parent 44
community 41-42

APIs 36
change for account 22
change name 37
create new community 38
create new community in specific server

group 40
get changed accounts 47
get changed accounts including time 48
get changed communities 50
get parent 55
get statistics info 56
getting subcommunity IDs 57
license count 53
reserve accounts for 60-61
technician list for 59

Community class 88
CommunityChangeName 37
CommunityCreate 38
CommunityCreateInServerGroup 40
CommunityDisableRegistration 41
CommunityEnableRegistration 42
CommunityFind 44
CommunityFindAccounts 45
CommunityFindFedAuthAccounts 46
CommunityGetChangeAccounts 47
CommunityGetChangeAccountsEx 48
CommunityGetChangedCommunities 50
CommunityGetInstall 51
CommunityGetLicenseCount 53
CommunityGetName 54
CommunityGetParent 55
CommunityGetStatisticsInfo 56
CommunityGetSubCommunityIDs 57
CommunityGetTechnicians 59
CommunityID 81
CommunityReserveTicket 60, 88
CommunityReserveTicket API 60
CommunityReserveTicketandFetch 61
CommunitySetLicenseCount 63
ComputerName 81
country names 8
CreateSubCommunity 88
CreateTechnician 88
credential verification 35
CreditCard class 91
CustomField 92

CustomInfo 92

D

DeleteReport 88
DeleteTechnician 88
DisableRegistration 88

E

empty arrays 8
EnableRegistration 88
encryption key

get 13
error codes 106
Error Handling 84
error messages 106
ErrorCode 84
ErrorMessage 84
expiration date and time for technician 76
expiration date for technician 75

F

FindAccounts 88
FirstBackup 83

G

GetAccountNumber 81
GetChangedAccounts 88
GetCustomInfo 81
GetEncryptionKey 81
GetErrorCode 84
GetMediaCount 81
GetName 88
GetReport 88
GetSubCommunityIDs 88
GetTechnicians 88
getting started withWeb Interface Service

API 7

H

hash verification for Agent Info URL 34

I

installer for Agent
get installer program file 51

iRoam
disable 11
enable 12

Connected Backup (9.0.6) Page 109 of 112

WebServices Programming Reference
Index: licenses – SnapShotDate

L

licenses
get count for community 53
set count for community 63

limitations 8
LoginTechnician 87
LogoutTechnician 87

M

M_APISession 88
M_

APISession.WebService.CommunityRe
serveTicket 88

M_bIsFirstBackup 83
M_dtSnapShotDate 83
M_lNumArchives 83
M_lNumFilesPool 83
M_lNumFilesUnique 83
M_lSizePool 83
M_lSizePoolUncompressed 83
M_lSizeUnique 83
M_lSizeUniqueDelta 83
M_lSizeUniqueUncompressed 83
M_lTipRevisionNumFiles 83
M_lTipRevisionUncompressed 83
M_nCommunityID 88
maximum string size and truncation 9
media

get count 21
order 23, 25

message
send to account 26

move account 22
MyRoam

disable 11
enable 12

N

name
change for community 37
get for community 54

NumArchives 83
NumFilesPool 83
NumFilesUnique 83

O

OrderMedia 81

P

parent
get for community 55

passwords
formats 9
set for account 31

PRODUCTCODE_PC_AGENT 88
PRODUCTCODE_SERVER_AGENT 88

R

Referred 83, 88
registration

disabling for community 41
enabling for community 42

ReportDelete 71
ReportGet 70
reports

APIs 68
deleting output 71
getting results 70
running 68

ReportTemplateRun 68
requirements for country names 8
requirements for the class libary 79
requirements for using theWeb Services API 7
ReserveTicket method, Community class 88
reserving accounts 60
RootCommunity 87

S

SavePassword 81
SaveUser 81
scripting permission requirement 8
session

APIs 64
login attempts and lockouts 65

SessionLoginTechnician 65
SessionLoginTechnician API 65
SessionLogoutTechnician 67
SetAgentSetupID 81
SetiRoamOff 81
SetiRoamOn 81
SetStatus 81
Setup

set ID for account 29
SizePool 83
SizePoolUncompressed 83
SizeUnique 83
SizeUniqueDelta 83
SnapShotDate 83

Connected Backup (9.0.6) Page 110 of 112

WebServices Programming Reference
Index: SOAP Fault – wrappers, C#

SOAP Fault 84
SoapException 88
statistics

get for community 56
status

changing for account 32
strings

max size 9
truncation 9

subcommunity IDs, getting for community 57

T

TargetName 87
TechnicianCreate 72
TechnicianDelete 74
TechnicianGetPasswordExpiryDate 75, 87
TechnicianGetPasswordExpiryDateTime 76
technicians

APIs 72
create new 72
delete from community 74
get expiration date 75
get expiration date and time 76
get list of for community 59
log into session 65
log out of session 67
logging into a session 65
passwords, protecting 65

terminology 104
tickets

reserving 60
TipRevisionNumFiles 83
TipRevisionUncompressed 83
truncate strings 9

U

URL for Agent Info 34
use scripting permission requirement 8
user credential verification 35
UserInfo 81

V

Value, custom field 92
VerifyAgentInfoURLHash 87
VerifyUserCredentials 87

W

WebService 87
wrappers, C# 81, 83-84, 87-88, 91-93

Connected Backup (9.0.6) Page 111 of 112

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Web Services Programming Reference (Micro Focus Connected Backup 9.0.6)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to swpdl.ConnectedBackup.DocFeedback@microfocus.com.

We appreciate your feedback!

Connected Backup (9.0.6) Page 112 of 112

mailto:swpdl.ConnectedBackup.DocFeedback@microfocus.com?subject=Feedback on Web Services Programming Reference (Micro Focus Connected Backup 9.0.6)

	Chapter 1: Get started
	About the Web Services API
	In this guide

	System requirements and permissions
	Use scripting permission

	Limitations
	Required country values for input
	Empty array handling
	Password restrictions
	Truncation of strings greater than Max Size

	Develop with the Web Services API
	Location
	Get a copy of the Web Services API WSDL file

	Chapter 2: APIs
	Account APIs
	AccountDisableiRoam
	AccountEnableiRoam
	AccountGetEncryptionKey
	AccountGetExtendedInfo
	AccountGetInfo
	AccountGetInfoEx
	AccountGetBackupDates
	AccountGetLastBackupDate
	AccountGetMediaCount
	AccountMoveToCommunity
	AccountOrderMedia
	AccountOrderMediaEx
	AccountSendMessage
	AccountSetUserInfo
	AccountSetAgentSetupID
	AccountSetPassword
	AccountSetStatus
	AccountVerifyAgentInfoURLHash
	AccountVerifyUserCredentials
	Community APIs
	CommunityChangeName
	CommunityCreate
	CommunityCreateInServerGroup
	CommunityDisableRegistration
	CommunityEnableRegistration
	CommunityFind
	CommunityFindAccounts
	CommunityFindFedAuthAccounts
	CommunityGetChangedAccounts
	CommunityGetChangedAccountsEx
	CommunityGetChangedCommunities
	CommunityGetInstall
	CommunityGetLicenseCount
	CommunityGetName
	CommunityGetParent
	CommunityGetStatisticsInfo
	CommunityGetSubCommunityIDs
	CommunityGetTechnicians
	CommunityReserveTicket
	CommunityReserveTicketandFetch
	CommunitySetLicenseCount
	Session APIs
	SessionLoginTechnician
	SessionLogoutTechnician
	Reports APIs
	ReportTemplateRun
	ReportGet
	ReportDelete
	Technician APIs
	TechnicianCreate
	TechnicianDelete
	TechnicianGetPasswordExpiryDate
	TechnicianGetPasswordExpiryDateTime

	Chapter 3: C# class library
	Use the C# class library
	System requirements

	Create C# wrapper classes
	Class listing
	Account class
	Account Size class
	AdminAPIException class
	APISession class
	Community Class
	CreditCard class
	CustomInfo class
	User class

	Chapter 4: Data structures
	Structure listing
	AdminAPIAccountInfo
	AdminAPIAccountInfoEx
	AdminAPIAccountSize
	AdminAPIAccountBackupDateInfo
	AdminAPIBaseAccountInfo
	AdminAPICommunityStatisticsInfo
	AdminAPICreditCard
	AdminAPICustomInfo
	AdminAPIExtendedAccountInfo
	AdminAPIMediaCount
	AdminAPIProfileInfo
	AdminAPIReportTemplateID
	AdminAPITechnicianID
	AdminAPIUserInfo

	Chapter 5: Reference
	Terminology
	Common error messages

	Index
	Send documentation feedback

