

Data Express 4.0

Getting Started with Distributed Data Stores

Micro Focus The Lawn 22-30 Old Bath Road Newbury, Berkshire RG14 1QN UK http://www.microfocus.com

 $^{\scriptsize \scriptsize (0)}$ Copyright 2009-2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Data Express 4.0 are trademarks or registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-01-30

Contents

Getting Started with Distributed Data Stores	4
Using Distributed Data Stores with Data Express	
DBA Tasks for Extension Technology	
Using Distributed Loader	7
Use of Data Analysis (Sampling) for Class Assignment	12
Importing Classes	
Creating Referential Integrity Methods	16
Using Distributed Exporter	17
Using Distributed Sampler	19
Using Extension Technology	22
Extension Technology Configuration	
Extension Technology Directories	
Invoking Extension Technology	
The dxestart command	
Execution Modes	34
Error Diagnosis	35
Masking Routines	37
Extension Technology Utilities	40
Creating an Encoded Connection File	43
Batch Distributed Exporter	
Data Express for Distributed Data Stores Tutorials	45
Using Data Express	45
Data Inventory	48
Data Masking	50
Simple Data Subset Extraction	54
Data Subset Extraction using Referential Integrity	59
Data Subset Extraction Using a Combined Data Element	61
Simple Sampling	64
Data Generation	73
Oracle Alias Creation	75
Oracle Wallet	75
Implementing Oracle Wallet Support	75

Getting Started with Distributed Data Stores

This guide contains explanatory information and a series of tutorials that show you how to start using Data Express. The tutorials introduce the major features of Data Express in a number of short sessions, typically 10 - 30 minutes.

This guide is intended for customers who have the Data Express for Distributed Systems solution or for customers who have the Data Express for z/OS solution but have also purchased the additional ODBC Extension or Oracle Extension.

Note: Previous to the 4.0 release, the Data Express tool suite was intended for users who analyze and manage data stores from System z servers running z/OS. Now with the advent of Data Express 4.0, the suite of Data Express tools is available to non-mainframe users who can now analyze and manage data stores from Windows. In addition, Data Express 4.0 now provides support for distributed data stores for z/OS and Windows users, via the ODBC Extension and Oracle Extension.

Using Distributed Data Stores with Data Express

Data Express 4.0 introduces the ability to mask and subset ODBC-enabled data stores. This new functionality basically mimics the same approach in methodology and functionality provided with the Oracle Extension Technology in previous version of Data Express.

ODBC-enabled data stores are supported on both the z/OS and distributed platforms in the same way.

Note: The Oracle Extension workflow is the same as the ODBC Extension workflow with one exception: the input of multiple data stores for Data Masking and Data Subset Extraction is not

Usernames and passwords are case sensitive and null passwords are allowed when connecting to a database.

The work-flow process for ODBC-enabled data stores looks like this:

- Data Inventory Phase (Data Builder)
 - Load from Database (Distributed Loader)
 - Load from File (Distributed Loader)
- Data Classification Phase (Data Builder)
 - Manual Association
 - Import Classification from Referential Integrity
 - Import Classification from Data Dictionary
 - Import Classification from Sampling Results
 - Limited Life Cycle Support
 - Skip, Overwrite, Update (Distributed Loader)
 - · Data Analysis
 - Sampling
 - Fingerprinting
- Data Masking Phase (Data Masking)
 - Metadata preparation

- Export masking information (Distributed Exporter)
- Actual masking (Extension Technology)
- Data Subsetting Phase (Data Subset Extraction)
 - Method preparation
 - Create Referential Integrity methods
 - Export method information (Distributed Exporter)
 - Actual subsetting (Extension Technology)
 - Distributed Statistics Loader to enable run-time statistics

DBA Tasks for Extension Technology

You can update your Run-Time Knowledge Base to enable Data Express extension technology. Depending on the current state of your Run-Time Knowledge Base, you can make the updates by executing one or more SQL scripts as specified in the topics listed below.

Script Execution

With regard to the execution of SQL scripts to make the updates, the following applies:

- All scripts must be executed by a database user with DBA privileges.
- By default, all scripts provided by Micro Focus grant privileges to PUBLIC. You can change this to limit
 privileges solely to the user ID(s) used to connect to your source data store(s) as dictated by your
 database security requirements.

User Credentials

For each database user to mask and subset data using the ODBC or Oracle Extension, you must grant access to source and target data stores as well as the Run-Time Knowledge Base, located in the source data store(s). The privileges required are:

Object	Required Privileges
Source data store(s)	SELECT on tables processed within the specified schema(s)
Run-Time Knowledge Base	INSERT, SELECT, and DELETE on tables within the DEKB schema
Target data store(s)	CREATE TABLE, INSERT, and DELETE on tables processed within the specified schema(s)

New Installations

Before using either the ODBC or Oracle Extension, a Run-Time Knowledge Base needs to be created within your source data store(s). The Run-Time Knowledge Base drives the operation and performance of Data Express' masking and subsetting processes. The Run-Time Knowledge Base consists of tables and indexes, and needs to be created using the schema name DEKB.

For convenience, we provide scripts that are tailored for working with data stores. To use these scripts, download the 3441.scripts.zip file from the *DBA tasks for working with the Data Express Extension Technology* article located in the Micro Focus Knowledge Base. This zip file contains individual scripts for the following data stores:

- IBM DB2 LUW
- Microsoft SQL Server
- Oracle

If you are using a data store for which no specific script is provided, use the <code>createkb.sql</code> script, located by default in your Data Express installation directory, as the basis for the creation of the Run-Time

Knowledge Base. This script contains "canonical" DDL (Data Definition Language) statements, describing the Run-Time Knowledge Base tables and indexes.

Before executing a script file:

IBM DB2 LUW Edit the script file and update its CONNECT statement and connection credentials

to connect to the appropriate database.

Microsoft SQL

Server

Edit the script file and update its USE statement to specify the database in which to

create and populate the Run-Time Knowledge Base.

Oracle Create a database user named DEKB and grant the DEKB user all privileges

required to create and populate the Run-Time Knowledge Base.

creatdb.sql To ensure that createkb.sql executes correctly for all source data stores edit the

> file and, if necessary, update the CREATE TABLE and CREATE INDEX statements such that they enable the successful creation of the DEKB schema, and have the

appropriate authority to create and populate that schema.

Data Express Upgrades

When upgrading your installation from Data Express 4.0 or earlier, you must update the HSURDFIL table definition in all instances of the Run-Time Knowledge Base.

For convenience, we provide scripts that are tailored to update the HSURDFIL table definition in each Run-Time Knowledge Base. To use these scripts, download the 2045. AlterkB.zip file from the DBA tasks for working with the Data Express Extension Technology article located in the Micro Focus Knowledge Base. This zip file contains individual scripts for the following data stores:

- IBM DB2 LUW
- Microsoft SQL Server
- Oracle

Required Run-Time Knowledge Base Updates

Before installing any Data Express update, you must update your run-time tables by executing the following for each Run-Time Knowledge Base that uses the IBM DB2 LUW, Microsoft SQL Server, or Oracle data stores:

```
CREATE TABLE DEKB. HSLOGTAB (MSGCODE CHAR(7), FLAGENVI CHAR(1), ROUTNAME
CHAR(8), VALRETCODE CHAR(2));
GRANT SELECT, UPDATE, DELETE, INSERT ON DEKB. HSLOGTAB TO PUBLIC;
```

For more information, see Logging Exit Routines in the Data Masking Guide.

If you are using a data store other than BM DB2 LUW, Microsoft SQL Server, or Oracle, update your runtime tables as required to allow updates to table definitions and grant the permissions required to update the DEKB schema.

Centralized Run-Time Knowledge Base for the ODBC Extension

Note: This topic applies to the ODBC Extension only.

Because Data Express extension technology requires that the Run-Time Knowledge Base contains tables and indexes created using the DEKB schema, the DEKB schema must be in the source data store. If this requirement compromises production integrity when using the ODBC Extension, use a centralized Run-Time Knowledge Base.

To configure a centralized Run-Time Knowledge Base, you must create a new configuration file named hkblayer.ini and store it in the executables directory of the ODBC Extension installation (see Extension Technology Directories for more information). This configuration file defines the connection information required to access a centralized Run-Time Knowledge Base.

Include the following content in the hkblayer.ini file:

RDBMS = ODBC

DBNAME = ConnectionAlias

DBOWNER = TableOwner

USER = UserID

PSWD = Password

ConnectionAlias The data store containing the Run-Time Knowledge Base tables. For the ODBC

Extension, this is the data source name (DSN).

TableOwner The table qualifier for the Run-Time Knowledge Base tables.

UserID and Password The connection credentials required by the data store containing the Run-Time

Knowledge Base tables.

For example:

RDBMS = ODBC
DBNAME = MYDSN
DBOWNER = MYOWNER
USER = MYUSER
PSWD = MYPASSWORD

After creating the hkblayer.ini file, start a command prompt and change to the executables directory that contains it. Enter the following command to generate the HKBLAYER.rc file required to access the centralized Run-Time Knowledge Base:

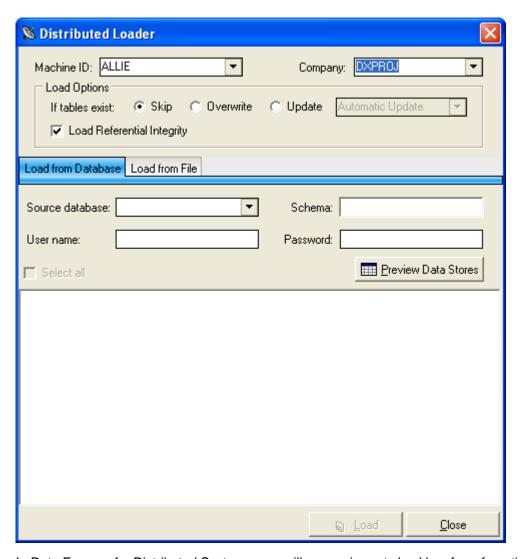
dxeencrypt hkblayer

Using Distributed Loader

The Distributed Loader is accessible in Data Builder from 💷 .

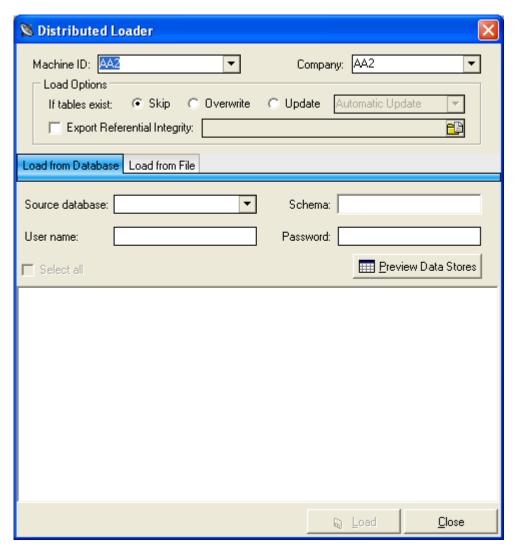
For distributed data stores, the Distributed Loader is a utility that lets you load information from an ODBC-enabled database to the Knowledge Base as part of the Data Inventory process. The Knowledge Base can exist either on Windows or z/OS.

Loading Data Store Information


Metadata information about your data stores can be loaded into Data Express in one of two ways: from a database or from flat files.

Not only can the Distributed Loader load information about your tables, columns, and indexes, but it can also work with the referential integrity information contained in your distributed data store.

Load from Database


When you choose to load information from a database, the Distributed Loader provides a list of all the ODBC-enabled data stores defined in your Windows environment, and lets you select the data store's metadata information you want to load into the Data Express Knowledge Base.

To load information about your data store from a database, begin by selecting the **Load from Database** tab.

In Data Express for Distributed Systems, you will see an import checkbox for referential integrity labelled: Load Referential Integrity. This provides the ability to load your referential integrity information into the Windows Knowledge Base, in addition to standard schema information about your tables. You are now ready to import your referential integrity classes. See Importing Classes for more information.

The Distributed Loader utility differs slightly for the z/OS solution:

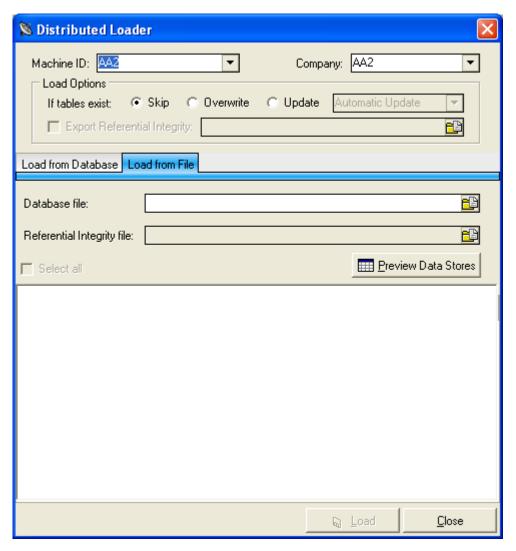
In Data Express for z/OS, an export checkbox labelled Export Referential Integrity is provided instead. In this environment, a file that contains referential information is created for you. Once this file is transferred to the mainframe, you can load and import your referential integrity classes. See Importing Classes for more information.

The ability to export referential integrity is based on an administrator's permission. This permission is provided by updating the ACTIVATION field in the HSURDRIA table in the knowledge base. By default, the table is empty. In order to allow the usage of referential integrity, the administrator needs to insert a value 'Y' in that field and to provide privileges to the user connecting to it.

Standard schema information about your distributed data store's tables is automatically loaded in the z/OS knowledge base. You can logically reduce the amount of information you wish to load by specifying the name of a schema in the Schema field. Otherwise, you leave this field blank and the Distributed Loader retrieves and loads all the information about all the schemas in the data store.

For more information about the Load from Database feature, review the Data Express for Distributed Data Stores Tutorials in this guide.

Load from File


Sometimes you may not be able to access your distributed data store from Windows. For this situation, the Distributed Loader provides the ability to load data store information from flat files.

To load information about your data store from a file, begin by selecting the **Load from File** tab. In the Distributed Systems solution, the **Load from File** tab of the Distributed Loader appears similar to the following:

In Data Express for Distributed Systems, two files can be used as input to the load process. The first file contains information about your tables, columns, and indexes. The second optional file contains information about your data store's referential integrity.

The **Load from File** tab of the Distributed Loader is different for the z/OS solution:

In Data Express for z/OS, only the file that contains information about your tables, columns, and indexes can be used. For a z/OS Knowledge Base, your referential integrity information gets loaded into the Knowledge Base while executing the Import Classification from Referential Integrity job. See Importing Classes for more information.

The files used as input by the Distributed Loader are created by the Extension Technology utility: dxegenloadfile. This utility creates both files.

If you are using Data Express for z/OS, the referential integrity file created by dxegenloadfile is used as input to the Import Classification from Referential Integrity job.

If you are using the ODBC Extension or the Oracle Extension and want Data Express to load the user ID and password for the selected connection, run the dxegenloadfile using the -c parameter. This generates an input file with table information in the corresponding ODBC or Oracle log directory. See Extension Technology Directories for more information.

For more information on dxegenloadfile, see Extension Technology Utilities in Using Extension Technology.

Limited Life Cycle Support

For distributed data stores, both in z/OS and Distributed environments, Data Express provides limited Life Cycle support.

After you have loaded information about your data stores in Data Express, your table definitions may have changed. For this possibility, the Distributed Loader provides the following options:

- **Skip** if the data store to be loaded already exists in the Knowledge Base, previously loaded tables are ignored.
- Overwrite if the data store to be loaded already exists in the Knowledge Base, old definitions are removed and the new definitions are inserted. If the data store is new, definitions are added. This option clears all the data element-class assignment in the existing data store.
- Update with the Automatic update option if the definition for the data store exists in the Knowledge Base, the following occurs:
 - Metadata is added to the Knowledge Base for new data elements in the data store.
 - Metadata for data elements that have different size values (length or precision or scale) is updated in the Knowledge Base but information for assigned classes remains untouched.
 - Metadata for data elements that have different data types is updated in the Knowledge Base and all class assignments are cleared.
- Update with the Confirm first option The behavior is exactly the same as the Automatic update option, but at any data store a confirmation is requested before applying the changes.
- Update with the **Export** option if the definition for the data store exists in the Knowledge Base, the following occurs:
 - You are asked to fill in the name and location of the IMPSRC flat file.
 - Information about data elements that have different size values (length or precision or scale) is written on the specified flat file.
 - The flat file can be moved on z/OS IMPSRC and used as IMPSRC by the z/OS life cycle, as described in the Front End Guide. Using this option, metadata is updated by the z/OS batch life cycle only.

Use of Data Analysis (Sampling) for Class Assignment

Data Express for distributed data (both in the configuration with MVS knowledge base and in the configuration with XDB knowledge base) allows the capability of analyzing data content by using the sampling feature.

This feature helps in understanding the data element content and in assigning it to the appropriate class. The sampling process provides two types of results:

- Standard sampling: it is a list of values with corresponding occurrences of the data elements selected for the process. This result can easily be checked via the user interface by human intervention.
- Compressed sampling: this is a statistical distribution of the values of the data elements selected for the process, represented in a grid with the first character and number of characters of each value contained in the data element. The result is designed to be used by an algorithm based on class assignment by analogy (data elements having the same class are supposed to have the same statistical distribution of values).

The result of the sampling can be used to make class assignment in two different ways:

- Manual assignment can be done by checking the standard sampling result and then by assigning classes to data elements through the "Work with data elements" feature. Note that the user interface is the same one of Data Express for MVS
- Using assignment from sampling result. In this case, compressed sampling results are used. This process is further composed of two separate parts:
 - The requirement is defining one or more prototypes for each specific class, this happens in the "Work with data elements" feature by dragging a "Selected data element attribute" to a "Class sample". That is associating to a class the compressed sampling of a data element containing the same class.
 - Then an interactive process starts, and this process assigns the class to all data elements included in the parameters of the interactive process itself, basing the class assignment on the similarity of the compressed sampling results. This process compares the compressed sampling of the class to the compressed sampling of the data elements included in the parameters of the process itself, and if they fit it, assigns the class to the corresponding data element. Note that Data Express for MVS

uses a similar but different one, based on the submission of a batch job from "Work with jobs" feature.

The sampling process will be described more in detail in the "Using Distributed Sampling" chapter, and it will be object of a tutorial described in the present manual.

The standard sampling and compressed sampling result verification is described in details in the "Work with data store" chapter of the Front End User Guide.

The manual class assignment and the prototype definition are described in details in the "Work with data elements" chapter of the Front End User Guide.

The assignment from sampling result is described in details in the present manual, in paragraph "Sampling result" of "Importing classes" chapter.

Importing Classes

After you have completed the Data Inventory phase using the Distributed Loader, you need to import this information so that Data Express can create the corresponding classes. This is called the class generating process and is part of the Data Classification phase.

To begin the class generating process:

- 1. From Data Builder, navigate to the Work with Data Elements window (click or access it through **Environment > Work with Data Elements).**
- 2. Click the Classes Assignments tab.
- 3. Click Import Class. The Import Class window is displayed.

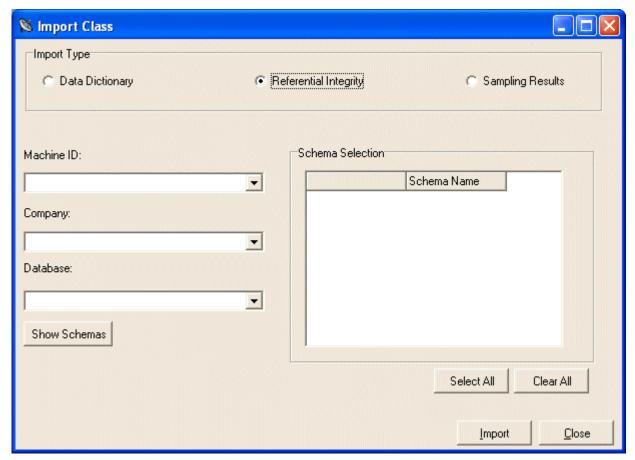
Data Express offers three options at this point: you can either create classes for referential integrity (Referential Integrity), supply your own definitions of new classes for the columns in your tables (Data **Dictionary**), or you can create classes for related data elements after sampling.

Note: All options are available to the Distributed Systems solution and the z/OS solution when accessing distributed data stores. However, if you are using the z/OS solution for non-distributed (mainframe) data stores, sampling is handled by the Class Data Element Assignment and Data Store Data Element Sampling jobs. For more information about sampling with non-distributed z/OS data stores, see section Data Analysis in the Process Guide for z/OS.

Data Dictionary

The **Data Dictionary** option gives you the ability to define your own classes for your distributed data stores from a flat file format.

For the format of the Data Dictionary input file, see section Import Classification from Data Dictionary of the Data Model Guide .


For both the Distributed Systems and z/OS solutions, the Import Class window is the similar when Data Dictionary is selected.

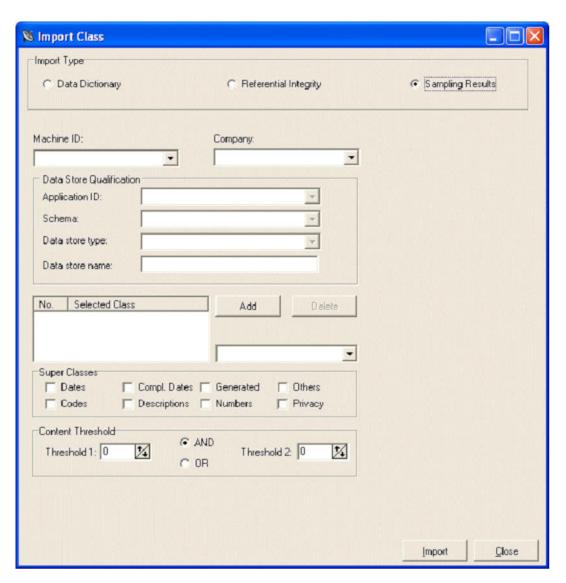
For the Data Dictionary Import Type in the Distributed Systems solution, you simply need to provide the location (data store) of the Windows text file that contains your new class declarations, in addition to declaring the appropriate workspace (machine ID, company name). The classes are generated once you click Import.

For the Data Dictionary Import Type in the z/OS solution, you simply need to provide the location of the text file that contains your new class declarations (date store), in addition to declaring the appropriate workspace (machine ID, company name). Remember that this is a z/OS file specification. Select **Import** to schedule the Import Classification from Data Dictionary Job.

Referential Integrity

For both the Distributed Systems and z/OS solutions, the Import Class window is similar when Referential **Integrity** is selected:

For the Referential Integrity import type, you need to provide your workspace information (machine ID and company), distributed data store (database), and schema specification. The classes are automatically generated once you click Import. Select Referential Integrity if you want to create referential integrity classes.


For the Referential Integrity Import Type, you need to provide your workspace information (machine ID and company), distributed data store name (database), and additional fields provided in Data Store Qualification. Select Import to schedule the Import Classification from Referential Integrity job.

More information about the import classification jobs can be found in the **Process for z/OS Guide**, the Data Model Guide, and the Front End Guide.

Sampling Results

The Sampling Results option gives you the ability to import your class assignments after you have assigned a fingerprint to your class. The class assignments are based on confidence values calculated using threshold recognition algorithms to determine the similarity of contents.

For this Import Type, you need to provide your workspace information (machine ID and company) and Content Threshold values. If desired, you can select other data store information to further restrict the class assignments. Select Import to assign classes to the data elements that have a fingerprint that matches the prototype fingerprint to the degree specified by the Content Threshold values.

For both the Distributed Systems and z/OS solutions, the Import Class window is the similar when Sampling Results is selected. However, it is only appropriate to import your classes in this way if your data stores are distributed (it works both with DB2 on MVS knowledge base and with XDB knowledge base).

Here is a summary of the parameters used by this function:

- Machine ID Identifier of the machine containing the data stores where Import Class process will work.
- Company Identifier of the company containing the data stores where Import Class process will work.
- Data Store Qualification With this set of selection parameters, it is possible to specify the scope of the class assignment process (which data stores you want to assign to the specified class).
- Selected class By using the Add botton it is possible to select one or more classes for the assignment process. This mean the process will attempt the assignation of the selected class or classes.
- Super Classes Selects a super class. This mean the process will attempt the assignment of the selected superclass.
- Thresholds Logical operations between Treshold1 and Treshold2. Data Express calculates two distinct formulas in order to understand how the processed column data distribution fits with the one of the prototype (by comparing compressed sampling result). Each one of the two formulas returns a number in the range 0-100, that is as higher as the two distributions are similar. By setting the two thresholds, and by setting the and/or parameter, it is possible to guide Data Express in the class assignment based on comparison between prototype and column to be assigned.

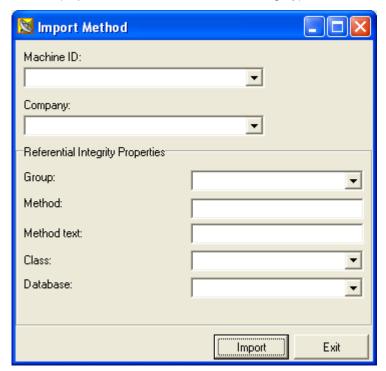
If you are working with z/OS data stores and a mainframe KB, you must schedule a series of jobs to perform the sampling functionality for you. For instance, you would schedule the job Data Store Data Element Sampling to select the sampling configuration, schedule the job Class Data Element Assignment to suggest class assignments, and then confirm the class assignments in the Work with Data Elements window of Data Builder.

For more information about assigning classes for your z/OS data stores, see section Data Analysis of chapter Project Implementation in the Process for z/OS Guide

For more information about importing classes by sampling results for distributed data stores, see the Simple Sampling exercise in this guide.

Creating Referential Integrity Methods

After you have imported your referential integrity classes, you can create subsetting methods that adhere to those specifications.


Data Express for z/OS

In Data Express for z/OS, you will need to schedule the Import Method from Referential Integrity Job. See the Process for z/OS Guide and the Front End Guide for more details.

Data Express for Distributed Systems

In Data Express for Distributed Systems, from Data Subset Extraction, you can create a Referential Integrity method automatically.

Click [Import Method from Referential Integrity) to access the Import Method window:

After supplying your workspace and method group, you need to supply the new method's name and description. In addition, you must also supply the class that drives the referential integrity (the leading class), and the distributed data store.

After selecting **Import**, the Referential Integrity method is created.

For more information, review the Data Express for Distributed Data Stores Tutorials in this guide.

Using Distributed Exporter

The Distributed Exporter utility is accessible from both Data Masking and Data Subset Extraction.

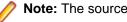
Its role is reasonably straight-forward; it creates and provides necessary information to the Extension Technology so that actual masking and subsetting of your distributed data store can occur.

There are two areas of interest when it comes to using the Distributed Exporter with distributed data stores:

- If you use ODBC-enabled data stores, you can mask and subset across all your data stores with one invocation of the ODBC Extension. This feature is not available with the Oracle Extension.
- You also have the ability to subset and mask within one distributed data store, as long as a distinct target schema name is provided.

For both Data Masking and Data Subset Extraction, the information you need to provide are very similar. For both scenarios you need to provide:

- your workspace (machine ID and company)
- your source and target distributed data store credentials
- directory where the output files for the Extension Technology should be placed


For Data Subset Extraction, you can only export one method at a time by design.

Data Masking

To access the Distributed Exporter, click from the main window of Data Masking.

To export from Data Masking, you need to provide the following input:

- Your workspace (machine ID, company)
- Your source data store credentials (source database, source schema, source user ID/password)

Note: The source database is an ODBC DSN configured to access that data store.

Your target data store credentials (target database, target scheme, target user ID/password)

Note: The target database is an ODBC DSN configured to access that data store. The Extension technology does not support case sensitive object names.

Directory where you want to place output files for Extension Technology (Output directory)

Note: If the source database and the target database are the same, the schemas cannot be the same.

In addition, if you are using ODBC-enabled data stores, you can provide multiple sets of source and target data store credentials.

After you have successfully exported from Data masking, the following files are created in your output directory:

- method.rc Encoded connection criteria for each data store referenced.
- elab.txt List of data stores and the enabled columns within those data stores that need to be masked.
- CREATETABLE.sql list of the tables that need to be masked; a generic CREATE TABLE statement is provided for each table.
- CREATEINDEX.sql list of all the indexes for the tables that need to be masked; a generic CREATE INDEX statement is provided for each index.
- ALTERTABLE_RI.sql list of all the primary and foreign keys for the tables that need to be masked; a generic ALTER TABLE statement is provided for appropriate primary and foreign keys.

Note: SQL files can be used while utilizing the Extension Technology; see section SQL Generated by Distributed Exporter for more details.

Data Subset Extraction

To access the Distributed Exporter, click from the main window of Data Subset Extraction.

To export a method from Data Subset Extraction, you need to provide the following input:

- Your workspace (machine ID, company)
- Your method (group, method)
- Your source data store credentials (source database, source schema, source user ID/password)

Note: The source database is an ODBC DSN configured to access that data store.

- Your target data store credentials (target database, target schema, target user ID/password)
 - Note: The target database is an ODBC DSN configured to access that data store. The Extension technology does not support case sensitive object names.
- Directory where you want to place output files for Extension Technology (Output directory)

Note: If the source database and the target database are the same, the schemas cannot be the same.

In addition, if you are using ODBC-enabled data stores, you can provide multiple sets of source and target data store credentials.

After you have successfully exported from Data Subset Extraction, the following files are created in your output directory:

- method.rc Encoded connection criteria for each data store referenced.
- method.txt Information identifying the method.
- filter.txt Information about the filters used in the method.
- **elab.txt** Information about the elaborations in the method.
- **cbfld.txt** Information about combined data elements used in the method.
- CREATETABLE.sql list of the tables that need to be masked; a generic CREATE TABLE statement is provided for each table.
- CREATEINDEX.sql list of all the indexes for the tables that need to be masked; a generic CREATE INDEX statement is provided for each index.
- ALTERTABLE RI.sql list of all the primary and foreign keys for the tables that need to be masked; a generic ALTER TABLE statement is provided for appropriate primary and foreign keys.

Note: SQL files can be used while utilizing the Extension Technology; see section SQL Generated by Distributed Exporter for more details.

SQL Files Generated by Distributed Exporter

Whenever you use the Distributed Exporter to export masking or subsetting information for consumption by the Extension Technology, three SQL files are created. These three files (CREATETABLE.sql, CREATEINDEX.sql, and ALTERTABLE RI.sql) contain "canonical" DDL (Data Definition Language) statements about the source distributed data store's tables, indexes, and primary/foreign keys.

Normally, the Extension Technology will create tables in the target distributed data store with the same table specifications as in the source; however, no indexes or referential integrity constraints are created. If the Extension Technology "sees" that the tables already exist, it simply places the masked or subsetted data into those already created tables.

If you want your target distributed data store to more closely mimic the schema of your source distributed data store, these SQL files can help you in that effort.

Note: The SQL files are not guaranteed to execute properly with all ODBC data stores. Each ODBC data store can have slightly different syntax when it comes to CREATE TABLE, CREATE INDEX, and ALTER TABLE statements.

- Because of this, Micro Focus recommends the following before you attempt to execute the statements:
 - Review the syntax of the SQL before you execute it to ensure it works with your distributed data store.
 - Before executing the SQL, make sure you have userid credentials sufficient to execute DDL statements in your distributed data store.

If you successfully execute the contents of these three files in your target distributed data store before using the Extension Technology, the Extension Technology will mask or subset data accordingly.

Using Distributed Sampler

The Distributed Sampler is accessible from Data Builder from

For distributed data stores, the Distributed Sampler is a utility that lets you perform sampling on your data stores and then load that information in the Knowledge Base as part of the Data Inventory process.

Sampling lets you obtain information about the distribution of your data. You can use the distribution as a way to assign classes to other data elements with similar data distributions.

There are three types of sampling:

- **Compressed sampling** Produces the data element *fingerprint*. The fingerprint graphically shows the distribution of values within a given range for the sampled data element. The fingerprints for numeric and alphanumeric data elements differ in that the fingerprint for an alphanumeric data element shows the distribution of values based on the first character and provides additional information.
- Standard sampling Displays information for each data element value including the number of times each value occurred and the percentage that value represents in the total population.
- Min/Max calculation Displays the minimum and maximum values for the data element.

Known Restriction: Data Express does not support sampling for binary data.

For more information about the **Sampling Options** feature, review the *Simple Sampling* Tutorial in this auide.

Sampling Options

Basic Options

Use the **Sampling Options** tab in the Distributed Sampler to specify your sampling criteria.

To export your sampling configuration, you need to provide the following information:

- your workspace (machine ID, company)
- your source data store credentials (source database, source schema, source user ID/password)

Note: The source database is an ODBC DSN or Oracle TNS alias configured to access that data store.

- types of sampling to be performed
- directory where you want to place output files for Extension Technology (Output directory)

Note: Only specify an Output directory if you are exporting your sampling configuration.

To export your configuration, click **Export**. After you have successfully exported from the Distributed Sampler, the following files are created in the specified output directory:

method.rc - Encoded connection criteria for each data store referenced.

Note: If you have performed export functions for masking or subset extraction, the method.rc file already exists in your config directory. If you export your sampling configuration to the config directory, the previous **method.rc** file will be overwritten.

sampling.dat - Information regarding the data elements to be sampled.

Note: If your Knowledge Base and the data stores you want to sample are located on the same Windows machine that is running Data Express, you do not need to export configuration information, execute sampling from a script, or load results. Instead, you would bypass those steps and click the Start button in the Distributed Sampler to execute sampling.

Advanced Options

To further control your sampling results, you can specify advanced sampling options, which are accessible from the Advanced button.

Additional Data Element Attributes

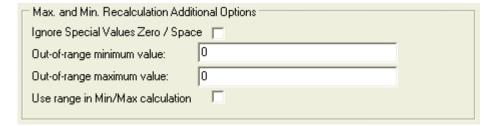
You can restrict which data elements are sampled by their data element types:

By default, all types are checked. Uncheck a type to remove it as a sampling candidate.

Note: The Binary data element type represents the COBOL binary (COMP field) data type. True binary is not supported.

Data Element Sizes

You can restrict which data elements are sampled by their data element sizes:

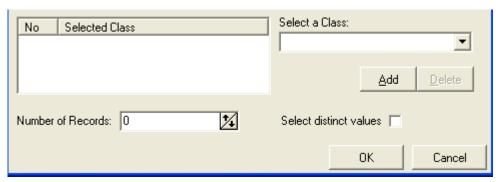

By default, all values are 0 (zero), which means to include all data elements regardless of the associated size values.

If a minimum value is set, the data element size to be included is the value greater than the specified MinValue. For example, if the Min length is changed to 1, data elements with a length of 2 or greater are included.

Likewise, if a maximum value is set, the data element size to be included is the value less than the specified MaxValue. For example, if the Max length is changed to 99, data elements with a length of 98 or less are included.

Max. and Min. Recalculation Additional Options

You can restrict the Min/Max calculation sampling for data elements:


The following options are available:

- Ignore Special Values Zero / Space If this box is checked, the 0 (zero) and special characters like the space character are ignored in your minimum and maximum value calculations.
- Out-of-range minimum value If a defined range within your data element values is desired, the Outof-range minimum value field defines the smallest value outside of that range. For example, if 5 is specified, values of 6 and greater are included in the range.
 - By default, the Out-of-range minimum value is 0 (zero), which means to include all data elements regardless of the actual value.
- Out-of-range maximum value If a defined range within your data element values is desired, the Outof-range maximum value field defines the largest value outside of that range.
 - By default, the **Out-of-range maximum value** is **0** (zero), which means to include all data elements regardless of the actual value.
- Use range in Min/Max calculation If this box is checked, the range indicated by the fields Out-ofrange minimum value and Out-of-range maximum value is applied to the Min/Max calculation sampling result.

Known Restriction: The Max. and Min. Recalculation Additional Options currently affect the minimum and maximum data element values reported for standard and compressed sampling.

Additional Restriction Options

You can restrict which data elements are sampled based on data element class assignments. You can also reduce the number of data elements to sample from.

You can add a class to the table show on the left after selecting it in the **Select a Class** list. Only data elements that are assigned to a class specified in the Selected Class list will be sampled. This is especially helpful when you have several data stores containing data elements with multiple class assignments.

The Number of records is the total number of records to be sampled. The default value is 0, which means to include all records.

Use the **Select distinct values** check box to improve the sampling process for big tables. The SELECT DISTINCT command is used to provide the distinct values of a column. This option allows you to create a sampling result only for the distinct values of a column. When checked, already sampled values are discarded and the result will be set for unique ones.

Note: The list of data elements is sorted either numerically or alphanumerically as based on the data element type. Once the limit of records is reached, the remaining data element records are not sampled.

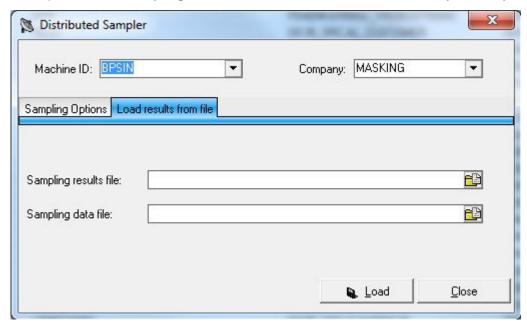
Validation

Distributed sampling allows two types of execution:

Automatically exports comma-separated side files (sampling.dat and method.rc) in the config subfolder of the Data Express extension installation path. It produces sampling results, and then imports those results into the client knowledge base.

This type of sampling requires no validation.

Manual You can manually export the comma-separated side files, sample manually from the console, and then load your sampling results into the client knowledge base from the Distributed Sampler dialog box in Data Builder.


In this case, validation is useful to ensure that the data stores in the sampling results file match the exported sampling.dat file. This prevents errors and ensures consistent results.

Validation is performed when you specify a Sampling data file in the Distributed Sampler dialog box. See Load results from file for instructions.

Load results from file

During sampling execution, the Extension Technology uses the output files sampling.dat and method.rc to produce the **sampling.log** file that contains the resulting statistics.

The sampling analysis results contained in the **sampling.log** file must be loaded into the Knowledge Base from the Load results from file tab in the Distributed Sampler. To do this, click the browse button that corresponds to the Sampling results file field; then browse to and select your sampling.log file:

To validate the results, click the browse button that corresponds to the Sampling data file field; then browse to and select your **sampling.dat** file (optional).

Click **Load** to load the results.

Once you have loaded your results, you can view them in the Show Synthetic Data Element Contents window.

Using Extension Technology

This section of your Getting Started guide provides an overview of the Extension Technology, and provides detailed information on creating masking routines.

You should review the configuration information and the invoking procedure prior to starting the tutorials in Data Express for Distributed Systems Tutorials.

For information regarding hardware, software, user, and configuration requirements, see the Distributed Systems chapter in your Readme. In particular, see section Run-time Knowledge Base Requirements as you must create a Run-time Knowledge Base in order to mask or subset data.

For information regarding installation procedures, see the Distributed Systems Procedures chapter in your Installation Guide .

For more information pertaining to the execution of the ODBC Extension, follow the exercises in Data Express for Distributed Systems Tutorials of this guide.

Extension Technology Configuration

Configuration capabilities for the Extension Technology can be globally implemented or can be controlled at the data store level.

Extension Technology Configuration File

The dxeconfig.cfg file is used to globally manage your ODBC Extension or Oracle Extension settings. By default, it contains the following settings:

```
Data Express Configuration File
LogLevel:1
Always Drop Table:N
CSV Data Store:N
COBOL Masking: N
Validate Target Table:N
Validate Source Schema:N
Enable Logging: N
Hide Progress:N
Hide Log Message:N
Use Extended C Masking:N
Trim Spaces for ODBC Char Columns:N
Commit Size(MBs) [user range = from 1 to 4000, default range = 0]:0
Parse String finding LOW-VALUES:N
Create Table using CHAR clause:N
Execute scripts when the process aborts:N
Execute disable/enable CONSTRAINTS:N
Execute Aborted Tables:N
* These entries are only applicable to the Oracle Extension.
Text Output:N
Data Separator:,
Fields Enclosed By: "
Identify Externally:N
Use Append Condition:N
```

The following settings can be specified:

LogLevel

Controls the level of detail displayed in the dxe_errorlog.txt file. You can change the LogLevel as needed or when requested to do so by Product Support:

LogLevel	Description
1	Default log level that provides a summary for each processed data store.

LogLevel	Description
2	Verbose output used for diagnostic purposes that contains the SQL statements executed against your source and target data stores.
3	Generates ODBC trace output that is written to odbctrace.txt.

Always Drop Table

Determines whether or not to always execute DROP TABLE, and what, if any, additional action is taken. Possible values are:

N	If a table already exists within the data store, the Extension Technology first executes a DELETE FROM TableName statement before performing INSERT operations. Default.
Y	If a table already exists within the data store, it is removed by the execution of the DROP TABLE <i>TableName</i> statement, which forces the table to be recreated.
К	Keep. When the target table is not already deleted, the existing records in the target are kept, and a new record with the same key as another record in the target is discarded.
L	Delete and keep. When the target table is not already deleted, it is deleted with the same query used to extract the record from source, then existing records in the target are kept, and a new record with the same key as another record in the target is discarded.
0	Overwrite. When the target table is not already deleted, the existing records in the target are kept, and a new record with the same key as another record in the target overwrites that record, in effect deleting the original record.
P	Delete and overwrite. When the target table is not already deleted, it is deleted with the same query used to extract the record from source, the existing records in the target are kept, and a new record with the same key as another record in the target overwrites that record, in effect deleting the original record.

Note: When Validate Target Table is set to Y, Data Express performs validation before processing any tables to ensure that the structures of your source and target data stores are exactly the same. If the structures differ and Always Drop Table is set to N, the method does not execute and an error message displays instructing you to change your Always Drop Table setting in order to proceed with the creation of your test environment.

CSV Data Store

Controls whether the tables referenced by a given method should be stored in text files delimited by commas. To enable, change the CSV Data Store parameter from N to Y.

COBOL Masking

Controls whether you are using COBOL routines to mask your data. Possible values are:

Y	By default, COBOL Masking is set to Y .
N	If you want to use C masking routines, change the COBOL Masking parameter to N .
0	When the value is "O" (from Others), the product can use any language satisfying the following requirements:
	 Be built to a callable shared object (UNIX), or DLL (Windows), with the relevant entry points exposed/ exported as required. Be callable from C. Have the variables coded precisely as per the COBOL copybook UTEUSFLW.CPY (noting that the content/ structure differs slightly from the mainframe in order to more closely mimic C data types), both regarding data type and size. Cope with platform-specific byte ordering of numeric data. The C engine code and COBOL copybook expect all numeric parameters to be passed in machine-specific byte ordering. (For example, Intel platforms such as Linux and Windows use the opposite byte ordering to UNIX platforms such as HP-UX, Solaris and AIX).

Validate Target Table

Controls whether the target tables are validated against the source tables to ensure that the structures are exactly the same. By default, Validate Target Table is set to Y. If you do not want to validate the table structures, change this parameter from Y to N.

Note: You may not want to validate the target table because if the validation fails (perhaps due to differing column numbers) dropping the table and then recreating the table will create the table in a different tablespace. Set the Validate Target Table parameter to N only if you are the target and source tables match.

Validate Source Schema

Controls the usage of source schema. If Y, the target schema name is the same as the source one. If N, the default target schema name is used. By default, Validate Source Schema is set to Y.

Enable Logging

For more information about logging, see Logging Exit Routines in the Data Masking Guide.

Hide Progress

Suppresses visual progress during validation.

Hide Log Message

Controls the display of log messages in the dxe_errorlog.txt file when Enable Logging is used.

Use Extended C Masking

Controls the use of extended C masking. If N, standard masking is used. This the default. If set to Y, extended C masking is used. For information on the differences between standard C masking and extended C masking, see Appendix B of the Data Masking Guide.

Trim Spaces for ODBC Char Columns

Optional. If Y, final spaces in ODBC CHAR columns are replaced with low-values (x00). If N or the Trim Spaces for ODBC Char Columns parameter is omitted, final spaces in ODBC CHAR columns are left unchanged.

Commit Size(MBs) [user range = from 1 to 4000, default range = 0]:0

Optional. Controls the frequency of commits, and can be used to process very large numbers of inserts within the same transaction.

0	A commit is performed immediately after processing 95 MB; one commit for each 95 MB processed. Default.
n	A numerical range from 1 to 4000 indicating the number of processed megabytes (MBs) after which to perform each commit. Any number over 4000 is interpreted as 4000.

Parse String finding LOW-VALUES

Determines whether or not a column is masked based on its use of LOW-VALUES.

N	When the first character of a column set to be masked is LOW-VALUES, the column is not masked. Default.
Y	When the column contains any characters other than LOW-VALUES, it is masked.

Create Table using CHAR clause

When the DROP TABLES option is used, determines whether to create a table using the CHAR data type for CHAR columns only, or to create it using the CHAR data type for both CHAR and VARCHAR columns.

N	When the DROP TABLES option is used, the CREATE TABLE statement uses the CHAR data type for CHAR columns only. Default.
Y	When the DROP TABLES option is used, the CREATE TABLE statement uses the CHAR data type for VARCHAR columns.

Execute script when the process aborts

Determines whether or not to execute pre and post scripts when the process aborts.

N	Pre and post scripts are not executed when the process aborts. Default.
Y	Pre and post scripts are executed when the process aborts.

Execute disable/enable CONSTRAINTS

Determines whether or not Data Express provides ENABLING/DISABLING SQL commands to preserve existing CONSTRAINTS relationships.

N	No constraints are created. Default.
Y	DISABLE/ENABLE constraints are created, but only when Always Drop Table:N is set.

Execute Aborted Tables

Determines whether or not the engine logs all successfully processed data stores or only the failed data store elaborations from the previous run.

N	The engine works normally, and logs the successfully processed data stores. Default.
Y	The engine processes only the failed data store elaborations from the previous run.

The following settings apply only to the Oracle Extension:

Text Output

By default, Data Express inserts the processed data into the specified target data store. You can configure Data Express to write the output to a text file instead, which can be subsequently loaded into an Oracle database using the Oracle sqlldr routine. To enable this, change the Text Output parameter from N to Y.

Data Separator

Oracle Extension only. By default, the delimiter used to separate Oracle fields is the comma (,). You can override this default by specifying one or more characters.

Fields Enclosed By

Oracle Extension only. By default, strings are enclosed by double quotation marks ("). You can override this default by specifying one or more characters.

If the target table does not exist, the Extension Technology executes a CREATE TABLE statement and then INSERT operations in order to create it. However, if the target table already exists, the way the Extension Technology behaves depends on the settings specified in the dxeconfig.cfg file. For example:

Always Drop Table	Validate Target Table	Resulting Behavior
Y	n/a	A DROP TABLE statement is executed before the CREATE TABLE statement and INSERT operations.
N	Y	If the target table's metadata matches the source table's metadata exactly, the method will be executed. If any mismatch in the metadata is found, the method will not be executed.
		For example, if the source table is defined as:
		CREATE TABLE SRC.MYTABLE(C1 INT, C2 CHAR(5), C3 DECIMAL(5,2))
		and the target table exists, but is defined as:
		CREATE TABLE TGT.MYTABLE(C3 DECIMAL(5,2), C1 INT, C2 CHAR(5))

Always Drop Table	Validate Target Table	Resulting Behavior
		the method will not be executed.
		Note: The
		The Always Drop Table parameter set to N and the Validate Target Table parameter set to Y are default settings.
N	N	The Extension Technology will not perform any validation. If the target table does not include all columns from the source table (regardless of order), the INSERT operation will fail and the elaboration will terminate abnormally.
		For example, if the source table is defined as:
		CREATE TABLE SRC.MYTABLE(C1 INT, C2 CHAR(5), C3 DECIMAL(5,2))
		and the target table exists, but is defined as:
		CREATE TABLE TGT.MYTABLE(C3 DECIMAL(5,2), C1 INT, C2 CHAR(5))
		the method should execute and complete normally.
		If the target table is instead defined with a column C5 instead of C3:
		CREATE TABLE TGT.MYTABLE(C5 DECIMAL(5,2), C1 INT, C2 CHAR(5))
		the INSERT statement will fail, causing the method to terminate abnormally.

Identify Externally

Oracle Extension only. Identifies connection criteria for connecting to source and target databases.

Y	Data Express uses the information in the configured Wallet rather than the method.rc file to connect to the
	database, eliminating the need to specify user name and password credentials.

N	Database connection requires that you specify a user
	name and password.

Using append condition

Optional. Oracle Extension only.

Y	During the execution of the dxestart module, adds the APPEND condition to the INSERT statement and the NOLOGGING condition to the CREATE TABLE statement.
	Important: For the full benefit, you must also set Always Drop Table to Y.
N, or the Using append condition parameter is omitted	Nothing is added during the execution of the dxestart module.

Commit Size

Optional.

0	Commit is performed after processing all inserts. Default.
n	A numerical range from 1 to 4000 indicating the number of processed megabytes (MBs) after which to perform a commit. This enables incremental commits and should be used when processing a very large number of inserts.

Data Store SQL Scripts

Each data-store-specific SQL script contains the following types of information:

- Data Express configuration options denoted with the prefix **DX**:
- SQL statements
- Comments denoted with the character prefix --

Filenames

The file names used by Data Express to execute data-store-specific operations are:

- pre_ConnectionAlias.sql executes or sets options prior to Data Express processing
- post_ConnectionAlias.sql executes or sets options after Data Express processing where ConnectionAlias specifies:

 - the DSN (data source name) for the ODBC Extension
 - the Oracle TNS service name for the Oracle Extension

For example, with the ODBC Extension, if a given table is accessed via the MYSOURCE DSN and the target data store for that table is MYTARGET, the configuration file names would be named:

- pre_MYSOURCE.sql
- post_MYSOURCE.sql
- pre_MYTARGET.sql
- post_MYTARGET.sql

Configuration Options

Controlling configuration at the data store level allows data-store-specific SQL operations to be performed during before or after Data Express processing.

The following pre-processing configuration settings can be specified:

IdentifierDelimiter

Specifies two characters to be used as an opening delimiter and a closing delimiter when the data store type requires that the schema name, table name, and column name identifiers needed to be delimited. For example, if working with Microsoft SQL Server data stores, the value would need to be set to DX:IdentifierDelimiter:[]

IdentityInsertOn

Specifies to maintain the identity values from the source database in the target database when the data store type requires that this functionality be enabled. Enabling this parameter causes a SET IDENTITY_INSERT statement to be executed, which will allow values to be inserted into the identity column of a given table. For example, when working with Microsoft SQL Server, DX:IdentityInsertOn:SET IDENTITY_INSERT ~ ON results in SET IDENTITY INSERT MYSCHEMA.MYTABLE ON

EmptyTableCommand

By default, if the Always Drop Table parameter is set to N within dxeconfig.cfg and the table being processed already exists within the specified schema, the table contents will always be emptied prior to inserting processed values. (Data Express accomplishes this by executing the DELETE FROM statement, which removes rows from your table one at a time.) You can override this default by choosing a different option that allows your data store to perform more optimally such as the option TRUNCATE TABLE, which results in the execution of the TRUNCATE TABLE statement being executed. For example. DX: EmptyTableCommand: TRUNCATE TABLE results in TRUNCATE TABLE MYSCHEMA MYTABLE

The following post-processing configuration setting can be specified:

IdentityInsertOff

Specifies the default behavior of using the automatically generated value for the identity column in the target database, which may cause result in differing identity values for the source and target databases. Disabling this parameter causes a SET IDENTITY_INSERT statement to be executed. For example, when working with Microsoft SQL Server, DX:IdentityInsertOn:SET IDENTITY_INSERT ~ OFF results in SET IDENTITY INSERT MYSCHEMA. MYTABLE OFF

Sample Scripts

For your convenience, some sample scripts containing some of the options described in Configuration Options are provided in the **config** directory as templates in order to assist you in building your specific configuration:

- pre Oracle.sql
- post Oracle.sql
- pre_Microsoft SQL Server.sql
- post Microsoft SQL Server.sql

DXCOMMON Environment Variable

Applies only when using the Oracle Extension on a Windows platform.

During the extension elaboration process, the Oracle extension creates a temporary text file, dxe common.txt, to track the execution chain. It also deletes this file at the end of the extension elaboration process. Because dxe common.txt is created in the log subdirectory of the Data directory, when that directory is on a network share, the process of creating and deleting this file can degrade overall performance. Therefore, if you have changed the default Data directory for extension technology to a shared directory on a network, set the DXCOMMON environment variable to improve performance.

The DXCOMMON environment variable enables you to specify a local directory in which to create the dxe common.txt file.

To implement this environment variable, on a machine that runs Data Express, create a new system variable, DXCOMMON, and set its value to a local directory. For example:

DXCOMMON=C:\dxecommon

If the specified directory does not exist, the Oracle extension creates it when it creates the dxe_common.txt file for the first time.

Extension Technology Directories

For the Extension Technology, data files and executable files are stored in separate locations. This section describes these directories.

Executables

The following table shows the default directory containing your Extension Technology executable:

os	ODBC Extension	Oracle Extension
Windows	<pre>C:\Program Files\Micro Focus\Data Express 4.0\odbc</pre>	C:\Program Files\Micro Focus\Data Express 4.0\oracle
UNIX	<pre>/opt/microfocus/ dataexpress/odbc</pre>	/opt/microfocus/ dataexpress/oracle

Note: The default data and executable directory for UNIX happens to be the same.

You can install to a different root directory if desired.

Data

The data directory is used for data store configuration files and log files.

The following table shows the default data directory needed for the ODBC Extension or Oracle Extension depending upon your platform:

os	ODBC Extension	Oracle Extension
Windows	<pre>%ALLUSERSPROFILE%\Micro Focus\Data Express 4.0\odbc</pre>	<pre>%ALLUSERSPROFILE %\Micro Focus\Data Express 4.0\oracle</pre>
UNIX	<pre>/opt/microfocus/ dataexpress/odbc</pre>	/opt/microfocus/ dataexpress/oracle

The path specified for the %ALLUSERSPROFILE% environment variable differs depending on your Windows platform. For example:

- Windows XP C:\Documents and Settings\All Users\Application Data\Micro Focus \Data Express 4.0
- Windows Vista C:\ProgramData\Micro Focus\Data Express 4.0

Note: When using the Oracle Extension on a Windows platform, if you choose to change the default Data directory to a shared directory on a network, this could affect performance. For information on improving performance in this scenario, see DXCOMMON Environment Variable.

config

The files generated by the Distributed Exporter and the Distributed Sampler must also be stored in the config subdirectory of the data directory as this is necessary for Extension Technology execution.

If you are invoking the ODBC Extension or the Oracle Extension from a Windows environment, you can specify the config subdirectory as the output directory for masked, reduced, or sampled data stores. Otherwise, you can move the files into the default directory manually.

log

After the execution of the ODBC Extension or the Oracle Extension, a dxe_errorlog.txt log file is created within the log directory in a subdirectory named: YYYY-MM-DD_hh-mm-ss. For example:

log\2009-03-16_19-10-08\dxe_errorlog.txt

If errors occur during processing, the error log displays automatically.

If the execution of the ODBC Extension or the Oracle Extension includes subset extraction processing, dxe_summarylog.txt and dxe_statistics.txt. The Oracle Extension also creates dxe_common.txt to track the execution chain; however, this file is deleted at the end of the extension elaboration process. Log files are also created in the same subdirectory.

If the execution includes sampling analysis, the sampling.log file is also created in this subdirectory; however, this file is used to load sampling results into Data Express and is not meant to be humanreadable.

Invoking Extension Technology

The Data Express for Distributed Systems Tutorials demonstrates the default method for executing Extension Technology on a Windows platform using default mode.

This section walks you through configuration settings necessary for the execution of Extension Technology. To invoke the Extension Technology:

- 1. Copy the files generated by the Distributed Exporter from the output directory you specified, and paste them in the **config** subdirectory of the appropriate default data directory on Windows.
 - Note: For a list of default directories, refer back to the section Data of the chapter Extension Technology Directories.
- 2. Ensure that your data store environment is configured appropriately. If you are working with ODBC data stores, an ODBC Data Source Names (DSN) should be configured as required for your source and target data stores. If you will be executing the ODBC Extension from a UNIX environment, the ODBC driver manager and driver environment should be configured. Typically, this includes:
 - The **ODBCINI** environment variable should point to the ODBC configuration file.
 - The setting of the LIBPATH (AIX), SHLIB PATH (HP/UX), or LD LIBRARY PATH (all other flavors of UNIX) environment variable should include the lib folder under your ODBC Driver Manager installation.
 - Implement other settings as defined by your ODBC/ODBC Driver Manager documentation.

Note: If you will be executing the ODBC Extension from a UNIX environment, make sure that the UNIX ODBC DSN matches the ODBC DSN specified when you did the export on Windows. If you are making use of C or COBOL masking routines, verify that you have a development environment for building masking routines and a run-time environment for executing masking routines.

- Verify the Run-time Knowledge Base has been created and is configured with the appropriate privileges. For more information, see the sections Run-time Knowledge Base Requirements and User Credential Requirements of your **Readme**.
- Navigate to the executables directory, which contains the Extension Technology (ODBC Extension or Oracle Extension).
- **5.** Execute the appropriate command to invoke the Extension Technology:

Mode	Windows	UNIX
Default	dxestart	./dxestart
Parallel	dxestart -d DirectoryName	./dxestart -d DirectoryName
Unload	dxeunload	./dxeunload

Tip: dxeunload has the same syntax and format as dxestart. See The dxestart Utility for more information on using dxestart.

The Extension Technology processes all the tables previously specified within Data Express, and reports a status for each data store, for example:

```
Data Express Distributed Server 4.0.0
c) Micro Focus (IP) Limited 2003-2009
Table xdb.SRC.CUSTOMER: 21 rows [######## Reduced to 6 rows.
Table xdb.SRC.ORDERS: 5 rows [########] Reduced to 3 rows.
Table xdb.SRC.ITEMS: 8 rows [########] Reduced to 5 rows.
Data Express processing completed OK.
```

6. Use the Distributed Statistics Loader to populate run-time statistics into Data Subset Extraction. For more information, see section Distributed Statistics Loader of chapter Extension Technology Utilities.

The dxestart command

dxestart includes parameters for passing connection information about the input and output data stores. This is useful if you have strong security requirements and use scripts for batch processing.

Parameters for dxestart are valid for both Oracle and ODBC extensions.

Syntax

```
dxestart -d <path> -i<input method.rc> -o<output method.rc>
         [-f <from-step> -t <to-step>]
```

Parameters

-d <path> specifies that Data Express reads the method.rc location specified by <path>. If not specified, Data Express uses the default configuration folder. For example:

```
dxestart -d "C:\Testlib1"
```

This example reads the connection information from the method.rc file in C:\Testlib1\config and creates the log and statistic files in C:\Testlib1\log.

- -i <input method.rc> reads the input connection information from a different .rc file (named [FileName].rc, where [FileName] is a name you specify for the file). This file is the functional equivalent of the method.rc file. Specify the name and the path to the new .rc file in this parameter.
- -o <output method.rc> reads the output connection information from a different .rc file (named [FileName].rc, where [FileName] is a name you specify for the file). This file is the functional equivalent of the method.rc file. Specify the name and the path to the new .rc file in this parameter. For example:

```
dxestart -d "C:\Testlib1" -i "C:\Testlib2\method1.rc" -o "C:
\Testlib3\method2.rc"
```

This example reads the input connection information from the file method1.rc that resides in C: \Testlib2, the output connection information from the file method2.rc that resides in C:\Testlib3, and the exported configuration information from C:\Testlib1\config. It then creates the log and statistic files in C:\Testlib1\log.

See Creating an Encoded Connection File for instructions on creating the input and output connection file that can be used with the -i and -o parameters.

-f <from-step> -t <to-step> enables you to specify a range of steps to be executed. <fromstep> represents the first step of the range, and <to-step> represents the last step of the range.

Execution Modes

This section describes in greater detail the three Extension Technology Execution modes: default, parallel execution, and unload.

Default Mode

Use the default execution mode when the source data store meets all the schema requirements described in the section Schema Requirements of chapter Requirements of the Readme.

Parallel Mode

Use the parallel mode when you want to execute more than one method simultaneously.

Warning: Use of the parallel mode where multiple methods access the same tables within the target data store(s) is not currently supported.

In order to run a parallel execution, the files created after a successful export from Data Masking or Data Subset Extraction must be stored in a different data directory for each method.

- 1. Create a new directory for a method.
- 2. Within the newly created directory, create the subdirectory config.
- 3. Copy the contents of the default **config** directory into the newly created **config** directory.

For more information about the default **config** directory, see the section *Extension Technology* Directories in this guide.

- 4. Export or manually move the files generated by the Distributed Exporter into the new config directory.
 - Note: Bear in mind that the machine where the ODBC Extension is executed may not be the same the same machine where the Windows client software is running.
- 5. Use the **dxestart** command with the **-d** option to specify the new location.

See Invoking Extension Technology for more information.

Note: You can execute the first method in default mode, which utilizes your default data directory, but you must execute all subsequent methods in parallel execution mode.

For more information about default directories, see the section Data in the chapter Extension Technology Directories.

Unload Mode

In unload mode, the same schema requirements apply (as described in the section Schema Requirements of chapter Requirements of Readme), but with a difference: Data Express does not use privileges against the source data store. Instead, information is unloaded from the source data store to separate staging data store where these privileges are can be authorized.

You can use unload mode for the following two scenarios:

Source Data Store	Staging Data Store	Target Data Store
Data Store A	Data Store B	Data Store C
Data Store A	Data Store C	Data Store C

These examples show that the staging data store may or may not be the actual target data store.

For example, to use unload mode with Data Masking:

1. In the Distributed Loader within Data Builder, specify your source data store as the Source database (as normal), and upload tables.

For more information about the Distributed Loader, see the section Using Distributed Loader of Part 2. Using Distributed Data Stores with Data Express.

2. In Data Masking, enable masking of all the tables catalogued.

For more information, see Enable Masking within the section Data Masking of Part 4: Data Express for Distributed Data Stores Tutorials.

- 3. In the Distributed Exporter within Data Masking, specify your staging data store as your Target database, and then export files.
- Copy the exported files into the config directory.

Note: For more information about default directories, see the section Data in the chapter Extension Technology Directories.

5. Execute the Extension Technology using unload mode.

For more information, see the section *Invoking Extension Technology*.

The data from the source data store is extracted and inserted into the staging data store after the required tables were created.

6. From this point forward, you can process your data normally provided that you specify the staging data store as your source and the target data store as your target. This means that you load from staging and export into target.

Note: A similar approach can be used to unload with Data Subset Extraction; after using the Distributed Loader to upload your tables, you can mark all the tables as "register tables". Then, it is very simple to create a subsetting method of your register tables from Data Subset Extraction. Use the Distributed Exporter to copy the exported files into the config directory, and execute the Extension Technology using unload mode.

Error Diagnosis

Diagnostic information including error messages generated during the execution of the ODBC Extension or Oracle Extension is written to log files.

These messages are used by administrators and Micro Focus Product Support representatives.

Extension Technology Log Files

The Data Express Extension Technology generates three log files: dxe_errorlog.txt, dxe_summarylog.txt, and dxe_statistics.txt, which are stored in a subdirectory of the log directory. For details, see Extension Technology Directories.

dxe errorlog.txt

The dxe errorlog.txt file contains some processing information as well as information on any errors that have occurred during the processing. The level of detail displayed in this log is controlled by the LogLevel configuration option.

A sample of the dxe errorlog.txt file with LogLevel set to 1 is shown:

```
Initialization: populating Data Express Knowledge Base
Processing table GSDEMO.SRC.CSTOMER
SQLCODE=-28,SQLSTATE=S0002:[XDB][Micro Focus XDB ODBC 32-Bit Driver]
```

```
[GSDEMO]X28
Cannot find table/view/synonym 'SRC.CSTOMER'.
DE-0074: Unable to SELECT from table in the source database.
Ensure that the database permissions provide the 'install' user with SELECT
privileges.
Summary: TableID=2 TableName=GSDEMO.SRC.CSTOMER TotalCount=0 ReducedTo=0
CpuTime=
170340.391000 ElapTime=0.000000
Processing table GSDEMO.SRC.EMPLOYEE
Summary: TableID=4 TableName=GSDEMO.SRC.EMPLOYEE TotalCount=10 ReducedTo=10
CpuTime=1.153000 ElapTime=0.000000
```

A sample of the dxe errorlog.txt file with LogLevel set to 3 is shown:

```
Initialization: populating Data Express Knowledge Base
Processing table GSDEMO.SRC.CSTOMER
dxestart: executing dxeinit GSDEMO.SRC.CSTOMER | dxeextracter GSDEMO.
CSTOMER 1 1 28216 "DATAEXPRSS" 1 1 1 | UDCZIP5 GSDEMO.SRC.CSTOMER |
dxewriter GSDEMO.SRC.CSTOMER 'N' 1 | dxefinal 0 1 2 "DATAEXPRSS"
"DataExpress Business Protection" '0' 'N' 1
SQLCODE=-28, SQLSTATE=S0002: [XDB] [Micro Focus XDB ODBC 32-Bit Driver]
[GSDEMO]X28 Cannot find table/view/synonym 'SRC.CSTOMER'.
DE-0074: Unable to SELECT from table in the source database.
Ensure that the database permissions provide the 'install' user with
SELECT privileges.
Summary: TableID=2 TableName=GSDEMO.SRC.CSTOMER TotalCount=0
ReducedTo=0 CpuTime=170340.406000 ElapTime=0.000000
Processing table GSDEMO.SRC.EMPLOYEE
dxestart: executing dxeinit GSDEMO.SRC.EMPLOYEE | dxeextracter
GSDEMO.SRC.EMPLOYEE 1 1 28216 "DATAEXPRSS" 1 1 1 | UDCZIP5
GSDEMO.SRC.EMPLOYEE | dxewriter GSDEMO.SRC.EMPLOYEE 'N' 1 |
dxefinal 1 1 4 "DATAEXPRSS" "DataExpress_Business_Protection"
 '0' 'N' 1
Extracter: executing SELECT DSE TABLE.* FROM SRC.EMPLOYEE DSE TABLE
Writer: executing DROP TABLE TGT.EMPLOYEE
Writer: executing CREATE TABLE TGT.EMPLOYEE (E_NO SMALLINT
NOT NULL, LNAME CHAR(10) NOT NULL, FNAME CHAR(10) NOT NULL, STREET
CHAR(20), CITY CHAR(15), ST CHAR(2), ZIP CHAR(5), DEPT CHAR(4),
PAYRATE DECIMAL(15, 2), COM DECIMAL(2, 2))
Writer: executing INSERT INTO TGT.EMPLOYEE (E_NO, LNAME, FNAME,
STREET, CITY, ST, ZIP, DEPT, PAYRATE, COM) VALUES (?, ?, ?, ?, ?, ?,
?, ?, ?, ?)
Summary: TableID=4 TableName=GSDEMO.SRC.EMPLOYEE TotalCount=10
ReducedTo=10 CpuTime=1.138000 ElapTime=0.000000
```


Note: Following an abnormal termination, Data Express prompts you to view the dxe_errorlog.txt file. Answer Yes at the prompt to view the file in Notepad (Windows) or cat file | more (UNIX).

dxe_summarylog.txt

The dxe_summarylog.txt file provides a brief summary of the data stores processed during subset extraction with statistics on the number processed and processing time.

A sample of the dxe_summarylog.txt file is shown:

Machine ID:3 Method:SIMPLE TestRun:'N' Date:20090302							
Description:SIMPLE							
STEP TABLEID TABLE NAME ROWS CPU TIME ELAPSED TIME							
ORIGINAL OUTPUT							
10	2	xdb.SRC.CUSTOMER	21	6	1.23	1.00	
20	6	xdb.SRC.ORDERS	5	3	0.80	0.00	
30	5	xdb.SRC.ITEMS	8	5	0.75	1.00	

dxe_statistics.txt

The dxe statistics.txt file provides a brief summary of the data stores processed during subset extraction similar to the dxe summarylog.txt. However, the dxe statistics.txt file is used by the Distributed Statistics Loader to populate run-time statistics into Data Subset Extraction and is not intended for viewing even though it is human-readable.

Masking Routines

A masking routine is a program that contains the processing and masking logic needed to perform the actual masking on your data.

The masking routines for the Extension Technology can be written in C or COBOL or any other type that uses the same interface and structure as the COBOL exits.

Note: This section is only intended to provide additional information regarding Extension Technology masking routines for the Micro Focus Data Express for Distributed Systems solution. Use the Data Masking Guide as your definitive Data Masking resource.

The ODBC Extension ships with pre-built masking routines, as documented in the Data Masking Guide .

Using Predefined Masking Routines

A number of masking routines are provided with your Data Express installation. For your convenience, these routines are built and ready to use. The source files are provided in the c and cobol subdirectories of src within your Data Express installation directory, along with template sources to assist in the creation of new routines.

C Masking Routines that Access Replacement Lookup Data

The following C routines require access to a data store that contains replacement lookup data:

- UDCADDC
- UDCCDFC
- UDCCFPI
- UDCCOMC
- UDCNAMC
- UDCSNC2
- UDCSURC

Note: To use C masking routines that access replacement lookup data:

Create and populate the lookup tables.

Data Express includes the SQL script kb.sql that can be used to create and populate the lookup tables with predefined lookup data that works with the routines listed previously. The script may need to be amended to suit the requirements of your data store. For example:

The size of the replacement lookup data needs to be sized appropriately so that the masked value will fit into your user table. For example, if the column being masked is defined as a

CHAR (30), you must ensure that the replacement lookup data is no larger than 30 characters in length.

- Your data store may not require semi-colon terminators for SQL statements
- If the data store housing your lookup data is an Oracle database, you will need to change the data type VARCHAR to VARCHAR2.
- 2. Configure Data Express so that it can access the data store housing your lookup data by editing **hdblayer.ini**, which is located within the executables directory of your installation.

Note: No hdblayer.ini configuration is needed if you create lookup tables in the same place where you create the runtime knowledge base. Edit information in the file as follows:

```
RDBMS = ConnectionType
DBNAME = ConnectionAlias
   DBOWNER = TableOwner
   USER = UserID
PSWD = Password
```

where:

- ConnectionType: Set to ODBC for the ODBC Extension or ORACLE for the Oracle Extension.
- ConnectionAlias: Set to the data store containing the lookup data.

For the ODBC Extension, this is the data source name (DSN).

For the Oracle Extension, this is the Oracle TNS service name as specified in your tnsnames.ora configuration file.

- TableOwner The table qualifier for the lookup tables.
- UserID & Password The connection criteria for the data store containing the lookup tables.

For example:

```
RDBMS = ODBC
DBNAME = MYDSN
DBOWNER = MYOWNER
USER = MYUSER
PSWD = MYPASSWORD
```

3. Encrypt the hdblayer.ini file by executing the appropriate command.

os	Command
Windows	dxeencrypt hdblayer
UNIX	./ dxeencrypt hdblayer

C

The source files are provided in the c and cobol subdirectories of src within your Data Express installation directory, along with template sources to assist in the creation of new routines.

Creating C Masking Routines

To create a C masking routine:

- 1. Make a copy of the template masking routine **UDCDEMO.c** file.
- 2. Update the CHANGER_NAME definition by replacing the name CHANGER with the name of your masking routine:

```
#define CHANGER_NAME "CHANGER" /* Apply changer's name here! */
```

3. Review the processing logic in the ProcessColumns() function in order to verify that the data type is correct and that the masking routine specified for that data element is in this particular routine:

```
/* Data processing example */
if ((pData->nType[i] == TYPE_STRING | |
pData->nType[i] == TYPE_INT_STR ||
pData->nType[i] == TYPE_CLOB) &&
strcmp(pTable[i].szChangerProgram, CHANGER_NAME) == 0)
pData->uData[i].szData = ProcessString(pData->uData[i].szData, &pTable[i])
```

- 4. Code your masking logic within the ProcessString() function.
- 5. Edit the makefile:
 - Add an entry to the CHANGERS macro for your new masking routine.
 - Apply the appropriate rules for building your masking routine:

For your Windows makefile, copy the entry below and then replace UDCDEMO with the name of your masking routine:

```
UDCDEMO.obj: dxe common.h $(COMMON HEADERS) UDCDEMO.c
   !$(CPP) $(CFLAGS) $*.c
```

For your UNIX makefile, copy the entry below and then replace UDCDEMO with the name of your masking routine:

```
UDCDEMO: libdecommon.a UDCDEMO.o
   $(CC) $@.o $(LDFLAGS) -o $@
```

Building C Masking Routines

On Windows platforms, build your C masking routine by invoking **nmake** from a Visual Studio command prompt. On UNIX platforms, build your C masking routine by invoking make.

COBOL

In order to work with COBOL masking routines, you need to have the COBOL environment configured:

- For building the routines, you need the COBOL development environment.
- For executing the routines, you need the COBOL run-time environment only.

Building COBOL Masking Routines

To create a COBOL masking routine:

- 1. Make a copy of the template masking routine **UDCDEMO.CBL**.
- 2. Update the PROGRAM-ID clause to include the name of your masking routine.
- Insert your masking logic within the PROCEDURE DIVISION, after the following comment:

```
* Insert processing logic here.
```

4. Update the build script to add instructions for building the new module. For Windows platforms:

Step	Action	Details
1	Update the build.bat script.	Add the appropriate COBOL command for generating the source to object code (. obj), for example:
		cobol
		MYMODULE .CBL DEFAULTBYTE "00" CASE:
		Note that routines should be compiled with the DEFAULTBYTE "00" CASE compiler directives.
		Update the setting of the CHANGERS variable to add your masking routine name.
2	Update DE_CHANGERS.DEF .	Add an entry for your masking routine at the end, using a unique value, for example:
		MYMODULE @101

For UNIX platforms, update the build script by adding the appropriate COBOL command for generating the source to object code (.o), for example: cob -xc MYMODULE.CBL -C "DEFAULTBYTE(00) CASE"

Building COBOL Masking Routines

On Windows platforms build your COBOL masking routine by invoking build. On UNIX platforms, build your COBOL masking routine by invoking ./build.

Extension Technology Utilities

This section describes utilities provided with the ODBC Extension and Oracle Extension.

To use the utilities, you need the connection alias, username, and password for your data store.

dxegenloadfile

If your Windows machine does not have direct access to your data store, data can be loaded into the Data Express Knowledge Base from files. The dxegenloadfile utility works with the Distributed Loader to load table metadata and referential integrity information from files into the Knowledge Base.

The syntax is:

dxegenloadfile -c - d<path> -i<input method.rc>

where:

-c specifies that there is no console interaction. The information about the connection comes from the standard method.rc file. It contains the connection information including database name.

If -c is the only parameter specified, Data Express reads the method.rc file from the default configuration folders. The dxegenloadfile utility generates files which are written to the default configuration folders.

-d <path> specifies Data Express reads the method.rc file from the folder indicated by <path>. For example:

```
dxegenloadfile -d "C:\Testlib1\config"
```

This example reads the connection information from the method.rc file in C:\Testlibl\config and creates the list and log file in C:\Testlib1\log.

If not specified, Data Express uses default configuration directories.

Note: The -d and -c parameters are mutually exclusive. If -d is used, then -c must not be specified.

-i <input method.rc> reads the input connection information from a different .rc file (named [FileName].rc, where [FileName] is a name you specify for the file). This file is the functional equivalent of the method.rc file. Specify the name and the path to the new .rc file in this parameter. For example:

```
dxegenloadfile -d "C:\Testlib1" -i "C:\Testlib2\method1.rc"
```

This example reads the connection information from the file method1.rc that resides in the C: \Testlib2 folder creates the file list and log file in the folder C:\Testlib1\log.

See Creating an Encoded Connection File for instructions on creating the input connection file that can be used with the -i parameter.

To load data from files, you must first install the ODBC Extension or Oracle Extension and then run the dxegenloadfile utility to generate the text files DataStoreLoader.txt and RILoader.txt, which are placed into the log folder.

For more information about the Distributed Loader, see section Load from File in Part 2. Using Distributed Data Stores in this guide.

dxelc

The dxelc utility is designed to update the knowledge base, changing data structures from a previous release. The input of this command is the output of dxegenloadfile.

The syntax is:

```
dxelc -d "<lcmap.rc>"
```

It uses a configuration file that includes the following information in the order shown:

- 1. Full path to the output generated by the dxegenloadfile command
- 2. Machine ID
- 3. Company ID
- 4. ODBC instance name for reference environment
- 5. Schema name for reference environment
- 6. ODBC instance name for Data Express
- 7. Schema name for Data Express

Example:

```
<full_path_DataStoreLoader.txt>,<machine_id.>,
  <company_id.>,<reference_ODBC>,<reference_schema>,
  <kb ODBC>,<kb schema>
```


Note: To get lcmap.rc, encrypt lcmap.ini using dxeencrypt lcmap.ini.

dxegentypeinfo

dxegentypeinfo is an ODBC Extension utility used by Micro Focus for diagnostic purposes. The utility generates a file dxe_odbcdiag.txt that lists details of ODBC data types supported by the data store, which is placed into the log folder.

Distributed Statistics Loader

For the Data Express for Distributed Systems solution, run-time statistics recorded during subset extraction execution are not automatically loaded into your Data Express Knowledge Base (KB).

The Distributed Statistics Loader is a utility that lets you load run-time statistics into the KB. Once you have executed the Extension Technology to subset your data, a log filed called dxe statistics.txt is created. This file is used to load the run-time data into the KB so that the statistics are available in Data Subset Extraction.

Use the Distributed Statistics Loader after you have executed the Extension Technology to subset your data.

To use the Distributed Statistics Loader:

- 1. Use FTP, NFS, or some means to copy the dxe_statistics.txt file generated by the Extension Technology to the client machine where you have the Data Express Window client-side software installed.
- 2. Start Data Subset Extraction.

See Starting Data Subset Extraction in your Data Subset Extraction Guide for specific instructions.

3. Click

(Distributed Statistics Loader).

- 4. In the Log file to import box, specify the dxe_statistcs.txt log file name including the path where you saved it on your Windows machine.
- 5. Click Check Log File to verify that the log file you select is correct.

The remaining fields in the Distributed Statistic Loader windows populate from information specified from the dxe statistics.txt file.

Click Load to load the subset extraction statistics into Data Subset Extraction.

A Statistic loaded successfully! message is displayed.

You can view the run-time statistics in various places in Data Subset Extraction. For example:

- Viewing the List of Elaborations in Step by selecting the appropriate method from the Main Window
- Viewing the Data Stores Elaboration from the Elaborations tab in the Work with Method window
- Viewing the List of Elaborations in Step from the Method Overview tab in the Work with Method window

Run-time statistics include the following:

- Number of Read Records
- Number of Written Records
- Reduction in Percentage
- **Simulation Date**
- **Real Extraction Date**
- Elapsed Time [hh:mm:ss]
- CPU Time [hh:mm:ss]

Note: The Reduction in Bytes run-time statistic is not used in the Distributed Systems solution because of the way ODBC-enabled data stores display the record length.

Creating an Encoded Connection File

You can create an encoded connection file by following these instructions:

1. Create a Filename.ini text file that contains at least one line using one of these format specifications:

dxegenloadfile (-i option) or dxeexport

Format specification is TYPE, ALIAS, SCHEMA, USERID, PASSWORD where:

- TYPE is ORACLE or ODBC
- ALIAS is either your ODBC DSN or Oracle TNS alias
- SCHEMA is your schema name that contains your tables
- USERID and PASSWORD are the user credentials to connect to ALIAS

dxegenloadfile example -ODBC,TUTORIAL,SRC,INSTALL,1 This example uses ODBC extension to connect to DSN TUTORIAL with supplied user credentials, and retrieves table information from the schema SRC, so dxegenloadfile can create files for consumption by the Distributed Loader.

dxeexport example - ODBC, Dist KB for DX 4.0, DX40, install, 1

This example uses ODBC extension to connect to DSN Dist KB for DX 4.0 with supplied user credentials. and retrieve knowledgebase information, allowing dxeexport to create required files for dxestart to mask and subset your data.

dxestart (-i option or -o option)

Format specification is TYPE, ALIAS, SCHEMA, USERID, PASSWORD where:

- TYPE is ORACLE or ODBC
- ALIAS is either your ODBC DSN or Oracle TNS alias
- SCHEMA is your schema name that contains your tables
- USERID and PASSWORD are the user credentials to connect to ALIAS

dxestart -i option example -ODBC,TUTORIAL,SRC,INSTALL,1

This example uses ODBC extension to connect to DSN TUTORIAL with supplied user credentials, and is the source data store (input). The source data store is be masked, subsetted, and placed in the target data store.

dxestart -o option example -ODBC, Dist KB for DX 4.0, DX40, install, This example uses ODBC extension to connect to DSN Dist KB for DX 4.0 with supplied user credentials, and is the target data store (output). The source data store is masked, subsetted, and placed in the target data store.

Note: For any of these formats, you can optionally add , , , , , to the end of the specification.

2. Encode a Filename.ini file with dxeencrypt to create an encoded Filename.rc file. For example, from a command prompt, enter:

```
dxeencrypt Filename.ini
```

3. Use an encoded .rc file with dxegenloadfile, dxeexport, or dxestart.

Batch Distributed Exporter

In addition to invoking the Distributed Exporter directly from the Data Masking or Data Subset Extraction modules themselves, Data Express also provides a batch, command-line utility, dxeexport.

dxeexport

The dxeexport command exports the information required so that a successful masking/subsetting execution can occur when the dxestart command is executed.

Syntax dxeexport [path/]exportparms [path/]connfile

Parameters Parameters for dxeeport are valid for both Oracle and ODBC extensions.

Full path to the specified file; required when the file is not in the current path directory.

exportparms The name of the file that contains export parameters. This must be a text (.txt) file. It identifies the group and methods to export from the knowledge base. The text in this file consists of the following items, each delimited by a comma:

- Machine ID
- Company
- Group name
- Method name
- Step range
- Test Run(Y,N)
- Configuration file path (location of your configuration directory)

Note: *ALL is allowed at both the group and at the method level. When *ALL is used, subfolders for each method will be created in the destination directory.

connfile

The name of the file that contains encoded connections. This must be an .rc file. dxeexport uses this file to retrieve required information from the Data Express knowledge base. See Creating a Encoded Connection File for details.

Example From command line, enter:

dxeexport "C:\AA2\Export_Folder\exportparms" "C:\AA2\Export_Folder \connfile"

This command executes a batch export for the method described in exportparms.txt, using the Data Express knowledge base described in connfile.rc.

Assume that exportparms.txt contains one line as follows:

PRUEBA, PRUEBA, PG1, PM1, 0010, 0100, N, C:\AA2\Export_Folder

With this example, the method PM1 of group PG1 on machine PRUEBA and company PRUEBA is exported, from step 10 to step 100, with test run set to No (so real extraction), and the resulting configuration files generated by the process are placed in folder config under C:\AA2\Export_Folder.

You can now run dxestart to mask and subset your data, specifying C: \AA2\Export_folder as the -d argument.

Data Express for Distributed Data Stores Tutorials

These tutorials introduce the Data Express Windows client and show you how to configure your working environment and start and use the three Data Express modules: Data Builder, Data Masking, and Data Subset Extraction.

Follow the tutorials in this guide in order after you have completed the product installation.

Using Data Express

The easiest way to learn about Data Express is to complete a few simple tasks. This guide takes you through configuring Data Builder, loading metadata into the Data Express Knowledge Base, using Data Masking to implement masking rules on a small amount of data, using Data Subset Extraction to create a simple subset of data, and finally using Data Subset Extraction twice more to create subsets of data using referential integrity. Please note that some of the subsetting examples also mask data, showing that Data Express can do both functions in one method invocation.

The three Data Express modules (Data Builder, Data Masking, and Data Subset Extraction), and the ODBC Extension contain all the tools you need to perform these tasks.

Machine IDs and Company Codes

A Machine ID and Company code pair is essentially an identifier for your Data Express working environment or workspace. The Machine ID is the higher-level identifier, while the Company code must be identified by a Machine ID. You can create a new Machine ID and a new Company code for each test environment, or you can create new Company codes under a single Machine ID as needed for each test environment you want to create.

Note: A single machine ID can correspond to numerous company codes. A new company code can be created only if an existing machine ID is first selected.

Sample Data

Data Express includes sample XDB tables for the Data Express Knowledge Base and a corresponding XDB source database called TUTORIAL, which is used throughout the exercises in this tutorial. The database and its sample tables are installed automatically during product installation.

Preparation

In this session, you configure connectivity for the sample XDB data store provided in the product installation and perform setup for basic Data Express options. This involves setting up a data source name (DSN) to enable communication to the XDB TUTORIAL data store for all three client-side modules.

Note: Sessions in this tutorial should be done in order.

Sample Session

In this session, you:

- Configure an ODBC DSN
- Start Data Builder

Set options

Configuring an ODBC DSN

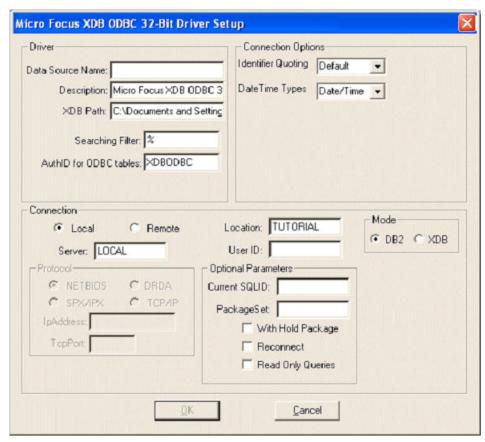
Data Express requires a user or system DSN for connectivity to your data store through an ODBC driver, which is configured using the Data Sources (ODBC) administrative tool.

This section provides instructions for configuring a user DSN needed for the ODBC driver provided with your Data Express installation.

Note: The Data Express product installation will install the correct networking components and ODBC driver.

The Data Express Knowledge Base also uses a system DSN for connectivity through an ODBC driver; the driver is installed and the preconfigured DSN is implemented during product installation.

A BDE alias is not required for your ODBC-enabled data store.


To configure your ODBC DSN:

 Start the ODBC Data Source Administrator. (Use Start > Settings > Control Panel > Administrative Tools > Data Sources (ODBC).)

Note: On some older versions of Windows, you can access Administrative Tools from the Start menu.

- 2. Click the User DSN tab.
- Click Add.
- In the Create New Data Source window, select the driver Micro Focus XDB for DX 4.0.

Enter the following details for the DSN (leave the remaining fields unchanged):

Data Source Name

GSDEMO

Server	DX40	
User ID	install	

6. Click **OK**. The DSN appears in the User Data Sources list.

See section Run-time Knowledge Base Requirements as you must create a Run-time Knowledge Base in order to mask or subset data.

Starting Data Builder

Data Builder enables functionality for Data Masking and Data Subset Extraction, and for the ODBC and Oracle Extension technologies. With Data Builder, you can take an inventory of data, and classify the data as you see fit. These processes store information about the data in the Data Express Knowledge Base.

Note: You will use the settings shown in this section throughout each subsequent chapter of this Getting Started guide.

Start Data Builder:

- Click Start > All Programs > Micro Focus Data Express 4.0 > Data Builder.
- 2. Select the XDB Knowledge Base Dist KB for DX 4.0 as the required database with which to launch the connection. By default, the highlighted item in the list of available databases is the last database you connected to using Data Builder. However, for the very first connection, Dist KB for DX 4.0 - DX40 is selected by default.

Note: By selecting Dist KB for DX 4.0 - DX40, you do not need to choose the database and then the schema DX40.

- 3. Click OK.
- In the User Name box, type: install.
- 5. In the Password box, type: 1.

Note: This is the number one.

The [Work with Data Stores] window provides a list of files cataloged by Data Express using different sets of search criteria, including:

- Machine identifiers
- Company names
- Application identifiers
- · Data store types
- Data stores with assigned classes (Multiple class Selection)
- Data stores with Data Changer activated
- Data stores with Data Changer inactivated
- Data stores set as Register Table
- Data stores without Register Table attribute

This window comprises four tabular views: Structure, Classes, Data Changer, and Register Tables. You can select a tab to view files using a specific set of criteria as listed previously. Each tab is associated with different grouping criteria.

The list of displayed data stores can be further restricted by applying filters. Filters can be selected from the context menu displayed by right-clicking the List of Files grid, or by selecting the specific icons displayed on the left side of the screen.

Note: Data Masking and the Data Subset Extraction are launched as separate applications.

Setting Options

Let's look at some ways you can configure Data Express behavior.

Default Environment Parameter Settings Selection

You can set default parameters for the environment, identified by the Machine ID and Company pair. The main parameter, Output Date Format, indicates the format in which dates are displayed in Data Express, for example:

- DD/MM/YY or DD/MM/YYYY day/month/year (year with 2 or 4 digits)
- MM/DD/YY or MM/DD/YYYY month/day/year (year with 2 or 4 digits)

Note: The Output Date Format parameter is valid for the whole environment and is therefore independent of the Company parameter. To define or change this parameter, click Environment > Work With Default Parameters.

Client Options

Options can be edited in the Options window:

- 1. To display the window, click **Tools** > **Options**.
- 2. In the Help language list, select English.
- 3. As a security measure to not store password information for the current connection with the Knowledge Base, leave the box **Save user name and password** unchecked.
- Click the Filter Settings tab.

The Filter Settings tab allows the scope of the filters configured in the Work with Files area to be selected.

- 5. Select Filter on all TabSheets so that all filtering properties remain regardless of what tab (Structure, Classes, Data Changer, or Registers Tables) in the Data Builder - Work with data stores window is active.
- Leave the box Show filter before loading data unchecked.
- 7. Click the **Confirmation Messages** tab.

The **Confirmation Messages** tab lets you set specific work modes.

- 8. Leave all the default settings, and click Apply.
- 9. Click OK.

10. If you're planning to go straight on to the next session, you can keep Data Builder open. Otherwise, either Click File > Exit or click the button, and then click Yes.

Data Inventory

This tutorial describes the Data Inventory process, which includes preparing a work environment using Data Builder, and Definition and association of classes.

Note: Sessions in this tutorial should be done in order.

Work through the exercises in this tutorial only after you have completed all exercises in the previous tutorial.

To begin, you must already be logged in to Data Builder.

Sample Session

In this session, you:

- Set your workspace
- Load data store information into the Knowledge Base

Setting Your Workspace

Data Builder lets you set your workspace as part of the Data Inventory process. You must specify your workspace to organize and sort data on the basis of a logical model:

1. From Data Builder, open the Work with Machine IDs window (click or access it through Environment > Work with Machine IDs) to create a new Machine ID.

- Click New.
- 3. Specify your name as the name of the machine ID in the Machine ID box. For this tutorial, type: ALLIE.
- 4. Type a description of your machine ID in the **Description** box. For this tutorial, type: **ALLIE'S** ENVIRONMENT.
- 5. Specify additional information if appropriate. For this tutorial, the additional fields have been left blank. Click Apply.
- 6. Click **OK** to save your specification and to close the window.
- From Data Builder, open the Work with Companies window (click or access it through Environment > Work with Companies) to create a new company code:
- Click New.
- 9. Select the ALLIE Machine ID you just created.
- 10. Specify DXPROJ as the name of your company code in the Company Code box.
- 11.In the Company Description box, type: DX GETTING STARTED GUIDE.
- **12.**By default, the Life Cycle is activated. Leave this box selected.
- 13. By default, the Is a Backup Company checkbox is not selected. Leave this box unselected.

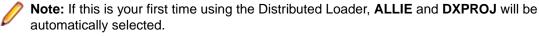
During the definition of a company, the backup company associated with it can also be defined.

A Backup Company is useful when all the information concerning the files that undergo the Life Cycle procedure needs to be preserved.

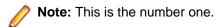
Note: Only one version for each file is stored in the backup company.

14.Click Apply.

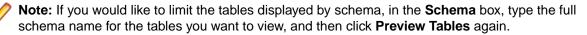
The company you just created appears in the **List of Companies**.


- **15.**Click **OK** to save your specification and to close the window.
- 16. Continue to the next section.

Loading your Data Store Information into the Knowledge Base


Perform this procedure to map and load the definitions from your data store into the XDB Knowledge Base. The information from your data store will be mapped to your workspace.

Load data store information into the Knowledge Base:


- Open the **Distributed Loader** window by clicking
- 2. Verify that the Machine ID ALLIE and the Company DXPROJ are selected.

- 3. For this tutorial, leave the load option **Skip** selected.
- In the Source database list, select GSDEMO.
- 5. In the Schema box, type: SRC.
- **6.** In the **User name** box, type: **install**.
- 7. In the Password box, type: 1.

- 8. Click Preview Tables to view all the available tables in the source database.
- 9. Check the desired tables to load.

By default, all tables are selected. You can deselect tables as appropriate.

- **10.**Click **Load** to begin the export of the metadata into the Knowledge Base.
- 11.Click Yes. An Insert tables window appears, followed by an Information window. After the metadata has fully loaded, an **Information** window appears that displays data store information including the number of data stores.
- 12.Click OK.
- **13.**Click **Yes** to display the log file in a text format.
- 14. Close the notepad view of the log file.
- 15. Click Close to close the Distributed Loader.

The list of Data Stores in the [Work with Data Stores] window is updated automatically.

16.16. If you're planning to go straight on to the next session, you can keep Data Builder open. Otherwise, either Click File > Exit or click the button, and then click Yes.

Data Masking

Data Masking is used to manage the privacy of data contained in databases of applications that are either developed internally or purchased by external suppliers. The aim is to protect sensitive data such as name, surname, or company name according to privacy laws.

This tutorial explains the Data Masking configuration procedure, and describes the steps required to migrate the files in your application.

Note: Sessions in this tutorial should be done in order.

This tutorial walks you through the data classification and the data masking phases.

Begin this session only after you have set your workspace and loaded data store information into the Knowledge Base in tutorials Using Data Express and Data Inventory. You must already be logged in to Data Builder to begin.

Sample Session

In this session, you:

- Create a masking class
- Associate a masking class to data elements
- Start the Data Masking module
- Enable masking
- Export masking information
- Execute masking

Creating a Masking Class

You can create new classes to be used for masking purposes, or you can use a predefined class. In this exercise you will create a masking class named ZIPCODE.

1. In Data Builder, open the **Work with Classes** window (click or access it through **Environment** > Work with Classes).

- Click New.
- 3. In the Name field, specify ZIPCODE as the name of the class you want to create.
- 4. In the Full description field, specify ZIPCODE as the description of the class.
 - Note: The description will be visible as a label when you assign the class to data elements within data stores.
- 5. Specify UDCZIP5 in the Data Masking Routine box.

Note: This masking routine is provided during product installation.

You can mask at the class level or at the data-element level. In this tutorial, we will be masking at the class level.

- Select the Super Class Privacy.
- 7. Select the data type Alpha.
- 8. Leave the remainder of the fields at their default values. Click Apply.

The class **ZIPCODE** is now listed at the bottom of **List of Classes**.

- 9. Click OK.
- 10. Continue to the next section.

Associating a Masking Class to Data Elements

In this exercise you will be manually associating the ZIPCODE class you just created with columns in tables CUSTOMER and EMPLOYEE.

Open the Work with Data Elements window (click or access it through Environment > Work with Data Elements).

Note: If a message appears indicating that the default confirmation options have not been set, click Yes to set them; click Apply, and then OK in the Options window. However, this should not occur if you followed the previous steps in the tutorial Using Data Express.

You can also access the Work with Data Elements window from the main window by selecting the file name, right-clicking to view the context menu, and then by clicking Work with Data Elements of the Selected Data Store.

2. Click the **Apply Filter** button to display all data stores:

Note: To narrow down the list of data elements displayed, use the filter fields (Machine ID, Company name, and Application ID), and then click Apply Filter. To display all data elements, simply click Apply Filter.

- 3. Click the Classes Assignment tab.
- 4. In the All Classes pane, expand the Privacy Super Class, and then select the class ZIPCODE.
- 5. Click the **Data Store** column to sort data elements by data store.
- 6. In the List of Data Elements, select the row for CUSTOMER.ZIP. (That is, select the row for the data storeCUSTOMER and the name ZIP.)
- 7. Click the Assign Class button to assign the ZIPCODE class to CUSTOMER.ZIP.
 - ZIPCODE now appears in the Assigned Class column for CUSTOMER.ZIP.
- 8. In the List of Data Elements, select the row for EMPLOYEE.ZIP. (That is, select the row for the data store **EMPLOYEE** and the name **ZIP**.)
- 9. Click the Assign Class button to assign the ZIPCODE class to EMPLOYEE.ZIP.

ZIPCODE now appears in the Assigned Class column for EMPLOYEE.ZIP.

- 10.Click the Close button to close the Work with Data Elements window.
- 11.If you are planning to go straight on to the next tutorial Simple Data Subset Extraction, you can keep Data Builder open. Otherwise, either Click File > Exit or click the button, and then click Yes. **12.**Continue to the next chapter.

Starting the Data Masking Module

To start Data Masking:

- 1. Click Start > All Programs > Micro Focus Data Express 4.0 > Data Masking.
- 2. Click OK.

- Select the XDB Knowledge Base Dist KB for DX 4.0 as the required database with which to launch the connection. By default, the highlighted item in the list of available databases is the last database you connected to using Data Masking.
- 4. Click OK.
- **5.** In the User Name box, type: install.
- 6. In the Password box, type: 1.

Note: This is the number one.

- 7. Click OK.
- 8. Select the schema DX40, and click OK.

The Main Window comprises four main areas: Machine ID./Company grid, All Machine ID./Companies, Multiple Class Selection, and Object Distribution.

The area containing the grid and the tabs Enabled and Disabled is referred to as the Machine ID./ Company area or the Grid area. The grid lists files related to the selected class and to the selected machine ID and company. The names of the forms, their meaning and the included information are outlined below.

The **Enabled** tab shows a list of all active files (enabling a file means that it is visible in the export functionality in order to be prepared for masking), and all files, which have one or more specific classes related to their data elements.

The **Object Distribution** area displays a pie chart and bar chart representation of the file types for the classes selected in the Machine ID./Companies or Multiple Class Section area. The pie chart shows the percentage distribution of file types, while the bar chart shows the numerical distribution of file types. For both charts, both enabled and disabled files are included. Click the minimize button (_) to minimize the Object Distribution area.

Continue to the next section.

Enabling Masking

Data Masking lets you to enable masking for individual data stores or all data stores, and to enable masking at the data-element level or class level.

You can mask at the class level or at the data-element level. In this tutorial, we will be masking at the class level.

In this exercise you will activate masking for all data stores (EMPLOYEE and CUSTOMER) at the class (ZIPCODE) level.

Note: To mask at the data-element level, double-click the desired data store from the Main Window, right-click the desired data element, and then click Data Changer Data Element Properties. Click Change, click Yes to activate the Changer option, and finally click Apply to activate your setting.

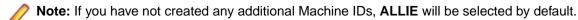
Enable masking:

Click Tools>Enable All Data Stores.

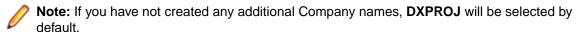
Note: Only the data stores that have assigned classes with masking routines defined will be enabled.

Click Yes to continue.

The data stores are now listed in the table on the **Enabled** tab. For a list of data stores that do not have assigned classes, click the **Disabled** tab.


3. Continue to the next section.

Exporting Masking Information


In this exercise you will export your masked information so that the Extension Technology can mask your data.

Export masking information:

- 1. Click @ (Distributed Exporter) from the main window of Data Masking. The Distributed Exporter window is shown:
- 2. In the Machine ID list, click ALLIE.

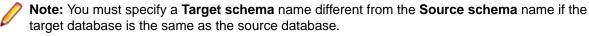
3. In the Company list, click DXPROJ.

Click the Select Target button.

Note: If you have already completed this tutorial once, your target database will already be listed. If this is the case, you just need to select the row for the GSDEMO database from the Target Database List and then click OK. You can then continue to step 9.

- 5. Click Add.
- 6. Enter the following details for the target (leave the remaining fields unchanged):

Database	GSDEMO
Туре	ODBC
User name	install
Password	1



Note: In this tutorial, the source and target databases are the same.

7. Click **OK** to close the **Add Target** window.

The database you added now appears in the **Select Target Database** window.

- 8. Click **OK** to close the **Select Target Database** window.
- 9. In the Distributed Exporter window, in the Target schema field, specify TGT.

10. In the Output directory, specify the odbc\config subfolder of your data directory. For more information, see the section Data of chapter Extension Technology Directory of Part 3. Using Extension Technology. For example: c:\Documents and Settings\All Users\Application Data\Micro Focus \Data Express 4.0\odbc\config

Note: Files needed for the ODBC Extension and Oracle Extension must be placed in the config directory of your default data directory on Windows. In this tutorial you will be invoking the ODBC Extension from a Windows environment; therefore, you will specify this directory as your output directory.

- 11.Click Export.
- 12.Click Yes.
- 13.Click OK.
- 14.Click Close.
- 15. Exit Data Masking. Click **File** > **Exit** or click the button, and then click **Yes**.
- 16. Continue to the next section.

Executing Masking

By default, the Extension Technology will attempt to insert the processed data into the target database. Execute masking with Extension Technology:

 From a MS-DOS prompt, change to the executables directory c:\Program Files\Micro Focus\Data Express 4.0\odbc.

- 2. 2. Type dxestart The target ODBC data store now contains masked tables TGT.EMPLOYEE and TGT.CUSTOMER.
- 3. The execution finished without errors, so you are prompted to view the log file. Type Y to view the file.
- Close the text file.
- 5. Continue to the next section.

Verifying Results

Verify that the zip codes in the masked tables are in fact different:

- 1. Launch the SQL Wizard:
 - ..\mfsql\bin\xwiz40n
- 2. Notice that the values in the Zip Code column for SRC.EMPLOYEE and SRC.CUSTOMER are different in TGT.EMPLOYEE and TGT.CUSTOMER.

Simple Data Subset Extraction

Data Subset Extraction is used to generate a reduced test environment.

In this tutorial, you perform basic data subset extraction.

Note: Sessions in this tutorial should be done in order.

This tutorial walks you through the data classification and the data subset extraction phases. This session involves creating simple subsetting classes.

Begin this session only after you have set your workspace and loaded data store information into the Knowledge Base in tutorials Using Data Express and Data Inventory. You must already be logged in to Data Builder to begin.

Sample Session

In this session, you:

- Create simple subsetting classes
- Associate simple subsetting classes to data elements
- Start the Data Subset Extraction module
- Create a group
- Create a simple method within that group
- Export simple subsetting method information
- Execute simple subsetting method

Creating Simple Subsetting Classes

You can create new classes to be used for subsetting purposes, or you can use a predefined class. In this exercise you will create subsetting classes named **DEPTNAM** and **DEPTNO**.

- 1. In Data Builder, open the Work with Classes window (click or access it through Environment > Work with Classes).
- Click New.
- 3. In the Name field, specify DEPTNAM as the name of the class you want to create.
- 4. In the Full description field, specify DEPARTMENT NAME as the description of the class.
 - Note: The description will be visible as a label when you assign the class to data elements within files.
- Select the Super Class None.

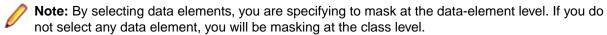
- **6.** Select the data type **Alpha**.
- 7. Leave the remainder of the fields at their default values.
- 8. Click Apply. The class **DEPTNAM** appears at the end of **List of Classes**.
- 9. Click New.
- 10.In the Name field, specify DEPTNO as the name of the class you want to create.
- 11.In the Full description field, specify DEPARTMENT NUMBER as the description of the class.
- **12.**Select the Super Class **None**.
- 13. Select the data type Alpha.
- 14. Click Apply. The class **DEPTNAM** appears at the end of **List of Classes**.
- 15.Click OK to close the Work with Classes window.
- 16. Continue to the next section.

Associating Simple Subsetting Classes to Data Elements

In this exercise you will be manually associating the classes **DEPTNAM** and **DEPTNO** you just created with columns in tables **DEPT** and **EMPLOYEE**:

1. Open the Work with Data Elements window (click or access it through Environment > Work with Data Elements).

Note: If a message appears indicating that the default confirmation options have not been set, click Yes to set them; click Apply, and then OK in the Options window. However, this should not occur if you followed the steps in the tutorial Using Data Express.


You can also access the Work with Data Elements window from the main window by selecting the file name, right-clicking to view the context menu, and then by clicking Work with Data Elements of the Selected Data Store.

2. Click the Apply Filter button to display all data stores:

Note: To narrow down the list of data elements displayed, use the filter fields (Machine ID, Company name, and Application ID), and then click Apply Filter. To display all data elements, simply click Apply Filter.

- Click the Classes Assignment tab.
- 4. In the All Classes pane, expand the None Super Class, and then select the class DEPARTMENT NUMBER.
- **5.** Click the **Data Store** column to data elements by data store.
- 6. In the List of Data Elements, select the row for DEPT.DEPT. (That is, select the row for the data store**DEPT** and the name **DEPT**.)

7. Click the Assign Class button to assign the DEPTNO class to DEPT.DEPT.

DEPARTMENT NUMBER now appears in the **Assigned Class** column for **DEPT.DEPT**.

- 8. In the List of Data Elements, select the row for EMPLOYEE.DEPT. (That is, select the row for the data store **EMPLOYEE** and the name **DEPT**.)
- 9. Click the Assign Class button to assign the DEPTNO class to EMPLOYEE.DEPT.

DEPARTMENT NUMBER now appears in the **Assigned Class** column for **EMPLOYEE.DEPT**.

- 10. In the All Classes pane under the None Super Class, select the class DEPARTMENT NAME.
- 11.In the List of Data Elements, select the row for DEPT.DNAME. (That is, select the row for the data store**DEPT** and the name **DNAME**.)
- 12. Click the Assign Class button to assign the DEPTNAM class to DEPT. DNAME.

DEPARTMENT NAME now appears in the **Assigned Class** column for **DEPT.DNAME**.

13.Click the Close button to close the Work with Data Elements window.

14.If you are planning to go straight on to the next tutorial Data Subset Extraction using Referential Integrity, you can keep Data Builder open. Otherwise, either click File > Exit or click the Market button, and then click Yes.

15. Continue to the next section.

Starting the Data Subset Extraction Module

To start Data Subset Extraction:

Click Start > All Programs > Micro Focus Data Express 4.0 > Data Subset Extraction.

Note: If you are using Data Express on Windows Vista and User Access Control is enabled, you must run Data Subset Extraction as Administrator.

- 2. Select the XDB Knowledge Base Dist KB for DX for 4.0 as the required database with which to launch the connection.
- Click OK.
- 4. In the User Name field, specify install.
- 5. In the Password field, specify 1.

Note: This is a number one.

- 6. Click OK.
- 7. Select the schema DX40. The Data Subset Extraction window appears:
- 8. The Data Subset Extraction window comprises two main areas: the node pane and the grid area. The node pane contains a hierarchical structure that shows the grouping associated with each root-level node. The two root-level nodes are Groups and Creators.
- 9. Continue to the next section.

Creating a Group

The Work with Groups window lets you to define, view, modify, and delete groups.

Groups can be used to logically separate the methods created for each workspace. Each method must belong to a group.

To create a group:

- 1. Open the Work with Groups window (click or access it through Environment > Work with Groups).
- 2. Click New.
- 3. In the Machine ID list, click ALLIE.
- 4. In the Company list, click DXPROJ.
- 5. In the Group name box, specify DX40GS.
- 6. In the Group description box, type DX 40 GETTING STARTED GUIDE.
- Click Apply.
- 8. Click OK.
- 9. Continue to the next section.

Creating a Simple Method

The New Method Wizard is used to create a new method, which is the extraction proposal containing the set of operations needed for the creation of the test environment. During method creation, all the information concerning the method is saved locally in a directory indicated by the user

Reduction can be obtained for data stores of a certain size and/or a particular type. In this case, you must be knowledgeable about the application to determine the appropriate selections. However, Data Subset Extraction can recognize and automatically create a first subset containing a series of files (called register table files) that are initially brought into the new test environment. Identifying register table files has the following advantages:

You can create a method to extract only the register table file subset, which is normally valid for the creation of any test environment independently of the selection criteria applied. Once this method has been saved and confirmed, it can be run whenever necessary.

You can create a second file subset, which filters the register file subset you created, to produce a file subset that is reduced even further.

To create a simple method:

1. Launch the New Method Wizard (click Method).

or access it through Environment > Create New

- 2. In the Machine ID list, click ALLIE.
- 3. In the Company list, click DXPROJ.
- 4. Note: Files belonging to different workspaces cannot be included.
- 5. Click Next to go to the next screen. Note: If a group has not previously been defined in the Work with Groups area, it can be defined from this screen, by simply specifying its name and description in a specific field.
- 6. In the Group name box, click DX40GS.
- 7. Text in the **Group description** box populates automatically.
- 8. In the **Method** box, type **SIMPLE**.
- 9. In the Method description box, type: SIMPLE METHOD.
- **10.**Click **Next** to go to the next screen.
- 11. Select Import all non-register table Data Stores to include demographic files are registered in a dedicated elaboration step of the method.
- 12. Click to clear the Import all register table Data Stores box.
- **13.**Click **Next** to go the next screen:
- **14.**Select **DEPARTMENT NAME** to be used as the primary extraction criteria.
- 15. Click Next. Data Subset Extraction automatically extracts all the environment files containing the selected classes, entering them into a specific step. Once the method has been created, the remaining files (that is the files that are not sensitive to the selected classes) will initially be excluded from elaboration. During the Method Confirmation phase, they can be included in the method again. These files will then be integrally copied into the new environment generated by the method involved.
- 16. One or more classes related to each class selected as a primary extraction step can be indicated. The primary extraction criteria are listed in the Selection class field.
- 17. Select the class DEPARTMENT NUM BER from the Other class list.
- 18. Click Add to relate the class DEPARTMENT NUMBER to the class DEPARTMENT NAME. Data Subset Extraction automatically extracts all the environment files containing the related classes and inserts them in a further elaboration step.
- **19.**Click **Finish**. The **Create Method** window is displayed.
- 20.Click Start.
- 21.Click OK.
- 22. Click Confirm. During method confirmation, specified filters are applied to the classes needed to perform the extraction, and the method information is imported from a temporary file to the Knowledge Base. This process, by default, will only include the data stores that contain these selected classes. If you would like to include your other data stores not related to the classes specified previously, check the option Move excluded data stores into new step. In this example, we will simply create a method based on the data stores that use classes **DEPTNAM** and **DEPTNO**.
- 23.Click OK.
- 24.In the Choose a Filter Type list, click FILTER BY VALUE LIST:
- 25.In one of the boxes on the lower-left corner, type Sales.

- 26. Click OK to close the Set Filter to Selection Classes window.
- 27. Click **OK** to confirm the method.
- 28.In the Work with Method window, click Properties.
- 29.Click Active.
- 30. Click OK to close the Method Properties window.
- 31.Click OK to close the Work with Method window.
- 32. Continue to the next section.

Exporting Simple Subsetting Method Information

Export simple subsetting method information.

- 1. Open the **Distributed Exporter** window by clicking from the main window:
- 2. Click Select Target.

Note: If you have already completed the Masking tutorial, your target database will already be listed. If this is the case, you just need to select the row for the GSDEMO database from the Target Database List and then click OK; then proceed to step 7.

- 3. Click Add.
- 4. Enter the following details for the target (leave the remaining fields unchanged):

Database	GSDEMO
Туре	ODBC
User name	install
Password	1

- 5. Click OK.
- 6. Click OK.
- 7. In the Distributed Exporter window, in the Target schema field, specify TGT.
- 8. In the Output directory, specify the odbc\config subfolder of your data directory. For more information, see the section Data of chapter Extension Technology Directory of Part 3. Using Extension Technology.
- 9. Click Export.
- **10.**When prompted to continue elaboration, click **Yes**.
- 11.Click OK.
- 12. Click Close to close the Distributed Exporter window.
- 13.If you are planning to go straight on to the next tutorial Data Subset Extraction using Referential

Integrity, you can keep Data Subset Extraction open. Otherwise, either Click File > Exit or click the button, and then click Yes.

14. Continue to the next section.

Executing Simple Subsetting Method

By default, the Extension Technology will attempt to insert the processed data into the target database. For testing purposes, it is possible to configure the Extension to instead write the processed data into text files as comma separated values (.csv).

Execute a simple subsetting method with Extension Technology:

- From a MS-DOS prompt, change to the executables directory c:\Program Files\Micro Focus\Data Express 4.0\odbc.
- 2. 2. Type dxestart

The target ODBC data store now contains reduced tables.

- 3. The execution finished without errors, so you are prompted to view the log file. Type Y to view the file.
- Close the text file.

5. Continue to the next section.

Verifying Results

Verify that the tables are in fact different:

- 1. 1. Launch the SQL Wizard: ..\mfsql\bin\xwiz40n
- Notice that the tables TGT.EMPLOYEE and TGT.DEPT have been reduced from SRC.EMPLOYEE and SRC.DEPT.

Data Subset Extraction using Referential Integrity

In this tutorial, you import class information using referential integrity.

Note: Sessions in this tutorial should be done in order.

This tuorial walks you through the data classification and the data subsetting phases. In this session, subsetting is based on referential integrity rules.

Begin this session only after you have completed the tutorial Simple Data Subset Extraction. You must already be logged in to Data Builder to begin.

Sample Session

In this session, you:

- Create referential integrity classes
- Create a referential integrity method
- Export referential integrity method information to Extension Technology
- Execute referential integrity method

Creating Referential Integrity Classes

In this exercise you will import referential integrity classes:

1. In Data Builder, open the **Work with Data Elements** window (click or access it through **Environment > Work with Data Elements).**

Note: You can also access the Work with Data Elements window from the main window by selecting the file name, right-clicking to view the context menu, and then by clicking Work with Data Elements of the Selected Data Store.

2. From the Select Data Elements tab, click the Apply Filter button to display all data stores.

Note: To narrow down the list of data elements displayed, use the filter fields (Machine ID, Company name, and Application ID), and then click Apply Filter. To display all data elements, simply click Apply Filter.

- Click the Classes Assignment tab.
- 4. Click Import Class.
- **5.** Select the **Referential Integrity** import type:
- 6. In the Machine ID list, specify ALLIE.
- 7. In the Company list, specify DXPROJ.
- 8. In the **Database** list, specify **GSDEMO**.
- 9. Click Show Schemas.
- 10.Click Import.
- 11.Close the **Import Class** window.

In the All Classes pane in the Work with Data Elements window, classes CLA0201 and CLA0202 now exist in the None Super Class.

12.In the List of Data Store Data Elements, notice:

- class CLA0201 is assigned to CUSTOMER.C_NO and ORDERS.C_NO
- class CLA0202 is assigned to ORDERS.O NO and ITEMS.O NO
- 13.Close the Work with Elements window.
- 14.If you are planning to go straight on to the next tutorial Data Subset Extraction using a Combined Data Element, you can keep Data Builder open. Otherwise, either Click File > Exit or click the button, and then click Yes.
- **15.**Continue to the next section.

Creating a Referential Integrity Method

Create a referential integrity method:

- 1. In Data Subset Extraction, open the Import Method window by clicking !! (Import Method from Referential Integrity).
- 2. Enter the following details for the method:

Machine ID	ALLIE				
Company	DXPROJ				
Group	DX40GS				
Method (method name)	RI METHOD				
Method text (method description)	RI METHOD				
Class	CLA0201				
Database	GSDEMO				

- 3. Click Import.
- 4. Click Properties.
- **5.** Click **Active** to activate the method.
- Click OK to close the Method Properties window.
- 7. Click OK to close the Work with Method window.
- 8. Continue to the next section.

Exporting Referential Integrity Method Information to Extension Technology

Export your referential integrity method information.

- 1. Click (Distributed Exporter) from the main window of Data Subset Extraction.
- 2. Verify that the method RI METHOD is selected.
- 3. Click Export.
- **4.** When prompted to continue elaboration, click **Yes**.
- 5. Click OK.
- 6. Click Close to close the **Distributed Exporter** window.
- 7. If you are planning to go straight on to the next tutorial Data Subset Extraction using a Combined Data Element, you can keep Data Subset Extraction open. Otherwise, either Click File > Exit or click the button, and then click Yes.
- 8. Continue to the next section.

Executing Referential Integrity Method

By default, the Extension Technology will attempt to insert the processed data into the target database. For testing purposes, it is possible to configure the Extension to instead write the processed data into text files as comma separated values (.csv).

Execute subset extraction with Extension Technology:

- 1. From a MS-DOS prompt, change to the executables directory c:\Program Files\Micro Focus\Data Express 4.0\odbc.
- 2. 2. Type dxestart

The target ODBC data store now contains the table TGT.CUSTOMER, TGT. ORDERS, and **TGT.ITEMS**. The contents within these tables follow the referential integrity defined in the database:

- Only records in the TGT.ORDERS table that have the same customer number as records in the **TGT.CUSTOMER** table are present.
- Likewise, only records in the TGT.ITEMS table that have the same order number as records in the TGT.ORDERS table are present.
- 3. Continue to the next section.

Verifying Results

Verify that the tables are in fact different.

- 1. Launch the SQL Wizard:
 - ..\mfsql\bin\xwiz40n
- Notice that the tables TGT.ORDERS and TGT.ITEMS have been reduced.

Data Subset Extraction Using a Combined Data **Element**

In this tutorial, you change the selection criteria in the RI METHOD you created in the tutorial Data Subset Extraction Using Referential Integrity to use a combined data element. This is a more realistic portrayal of what you will do with RI methods - that is, supply initial criteria to the lead table to drive the referential integrity constraints throughout your method.

A combined data element is essentially a "dummy" data element that you create for ease of use when it comes to manipulating classes. Once a combined data element is created, you can perform operations against the data element like you would for other elements.

Note: Sessions in this tutorial should be done in order.

This tutorial walks you through the data classification and the data subsetting phases. In this session, subsetting is based on a combined data element.

Begin this session only after you have completed the tutorial Data Subset Extraction Using Referential Integrity. You must already be logged in to Data Builder to begin.

In this session, you:

- Create a combined data element
- Create a class on a combined data element
- Associate a class with a combined element
- Modify a referential integrity method to use a combined data element as a selection class
- Export referential integrity method to Extension Technology
- Execute referential integrity method

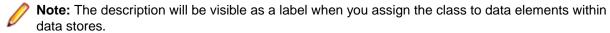
Creating a Combined Data Element

Create a combined data element:

- 1. 1.Launch Data Builder.
- Double-click the row for SRC.CUSTOMER.

- Use <Ctrl> to select the rows for the data element names STATE and BALANCE.
- Right-click to display a context menu, and then click Add to Combined Data Element.
- Change the Data element name to FLDSTBAL.
- 6. 5. In the Description box, specify ST BALANCE COMBINED FIELD.
- 7. Click Apply.
- 8. Click Close to close the Add to Combined Data Element window.

The combined data element FLDSTBAL you just created is added to the List of Data Elements for the data store SRC.CUSTOMER.


Continue to the next section.

Creating a Class on a Combined Data Element

In this exercise, you will create the class STBAL on a combined data element.

1. In Data Builder, open the **Work with Classes** window (click or access it through **Environment** > Work with Classes).

- 2. Click New.
- 3. In the Name field, specify STBAL as the name of the class you want to create.
- 4. In the Full description field, specify STBAL as the description of the class.

- 5. Select the Super Class None.
- 6. 6. Select the data type Alpha.
- 7. 7. Leave the remainder of the fields at their default values.
- 8. 8. Click Apply.

The class STBAL appears at the end of List of Classes.

- 9. 9. Click OK to close the Work with Classes window.
- 10.10. Continue to the next section.

Associating a Class with a Combined Data Element

In this exercise you will be manually associating the STBAL class you just created with columns in table CUSTOMER:

1. In Data Builder, open the Work with Data Elements window (click or access it through **Environment > Work with Data Elements).**

Note: You can also access the Work with Data Elements window from the main window by selecting the file name, right-clicking to view the context menu, and then by clicking Work with Data Elements of the Selected Data Store.

2. Click the Apply Filter button to display all data stores.

Note: To narrow down the list of data elements displayed, use the filter fields (Machine ID, Company name, and Application ID) to narrow down the list of fields displayed, and then click **Apply Filter**. To display all fields, simply click **Apply Filter**.

- 3. Click the Classes Assignment tab.
- In the All Classes pane, expand the None Super Class, and then select the class STBAL.
- 5. Click the **Data Store Name** column to data elements by data store.
- In the List of Data Elements, select the row for CUSTOMER.FLDSTBAL. (That is, select the row for the data store CUSTOMER and the name FLDSTBAL.)
- 7. Click the Assign Class button to assign the STBAL class to CUSTOMER.FLDSTBAL.

STBAL now appears in the Assigned Class column for CUSTOMER.FLDSTBAL.

- 8. Click the Close button to close the Work with Data Elements window.
- 9. Exit Data Builder. (Click **File** > **Exit** or click the button, and then click **Yes**.)
- 10. Continue to the next section.

Modifying a Referential Integrity Method to Use a Combined Data **Element as a Selection Class**

Modify a referential integrity method.

- 1. Launch Data Subset Extraction.
- 2. In the List of Methods in Group, double-click the row for the method RI METHOD.
- 3. Maximize the Work with Method window.
- 4. In the Data Stores Elaboration list, right-click step 10, point to Elaboration, and then click Selection class / Filter properties.
- **5.** Select the row for the class STBAL.
- **6.** Click the filter type FILTER BY RANGE:
- 7. Specify MD in the From and To boxes.
- 8. In the Choose a data element list, click BALANCE.
- 9. Specify 0 in the From box, and 1000 in the To box.
- 10.Click OK to close the Selection class / Filter properties window.
- 11.Click OK to close the Work with Method window.
- **12.**Continue to the next section.

Exporting a Referential Integrity Method to Extension Technology

Export method information:

- 1. Open the **Distributed Exporter** window by clicking from the main window.
- 2. Verify that all values are populated as shown previously.
- 3. Click Export.
- 4. When prompted to continue elaboration, click Yes.
- 5. Click **OK** to close the **Distributed Exporter** window.
- 6. Exit Data Subset Extraction. (Click File > Exit or click the button, and then click Yes.)
- **7.** Continue to the next section.

Executing Referential Integrity Method

Execute subset extraction with Extension Technology:

- 1. From a MS-DOS prompt, change to the executables directory c:\Program Files\Micro Focus\Data Express 4.0\odbc.
- 2. Type dxestart

The target ODBC data store now contains the table TGT.CUSTOMER, TGT. ORDERS, and **TGT.ITEMS**. The contents within these tables follow the referential integrity defined in the database:

- Records in the TGT.CUSTOMER table have been reduced to only contain MD records with a balance of less than \$1000 (USD).
- Records in the TGT.ORDERS table have been reduced to only contain records that have the same customer number as the parent table TGT.CUSTOMER.
- · Likewise, records in the TGT.ITEMS tables have the same order number as records in the parent TGT.ORDERS table
- 3. Use standard tools and procedures relevant to your data store to verify that the information in the reduced tables is in fact different.

Verifying Results

Verify that the tables are in fact different:

1. Launch the SQL Wizard:

```
..\mfsql\bin\xwiz40n
```

Notice that the tables TGT.ORDERS, TGT.CUSTOMER, and TGT.ITEMS have been reduced.

Simple Sampling

In this tutorial, you perform sampling to obtain information about the distribution of data. Then you use that distribution as a way to assign classes to other data elements with similar data distributions.

Known Restriction: Data Express does not support sampling for binary data.

Note: Sessions in this tutorial should be done in order.

This tutorial walks you through the data preparation, data inventory, and data sampling phases.

Begin this session only after you configured connectivity for the sample XDB data store provided in the product installation in the tutorial Using Data Express. We recommend that you begin this session only after you have completed all previous tutorials.

You must already be logged in to Data Builder to begin.

Sample Session

The sample sessions are broken out into three parts: one to add the demo sampling tables to your XDB database TUTORIAL location, one to perform data inventory, and one to perform the actual sampling.

Note: Sessions in this tutorial must be done in order.

Database Preparation for Sampling Exercises

In this session, you prepare your sampling data by adding tables to your XDB database TUTORIAL location, which is necessary to complete the sampling exercises.

Note: The tables needed for this tutorial are different than the ones required for the previous tutorials.

1. From a MS-DOS prompt, type:

cd

InstallationDirectory\mfsql\bin

where InstallationDirectory specifies the directory where Data Express 4.0 is installed, for example, c:\Program Files\Micro Focus\Data Express 4.0.

2. Load the data by executing the following command:

```
xwiz40n /b sampling.sql
```

3. Once the command has finished running, continue to the next section.

Data Inventory

In this session, you prepare your Data Express environment for the sampling data stores and add metadata for the sampling data stores into the Knowledge Base:

- Set your sampling workspace
- Load data store information into the Knowledge Base

Setting Your Sampling Workspace

Data Builder lets you set your workspace as part of the Data Inventory process. You must specify your workspace to organize and sort data on the basis of a logical model:

1. From Data Builder, open the Work with Companies window (click or access it through Environment > Work with Companies) to create a new company code.

Note: Notice that the Machine IDALLIE is listed with the DXPROJ Company Code in the List of **Companies**. You created **ALLIE** during the tutorial *Data Inventory*. For the purpose of this tutorial, you create a new company under the ALLIE Machine ID. If for some reason you did not perform the Data Inventory tutorial, you must create a Machine ID prior to performing this step.

- Click New.
- 3. Select the ALLIE Machine ID.
- 4. Specify **SAMPLING** as the name of your company

code in the Company Code box.

- 5. In the Company Description box, type: SAMPLING EXERCISE.
- **6.** By default, the Life Cycle is activated. Leave this box selected.
- 7. By default, the **Is a Backup Company** checkbox is not selected. Leave this box unselected.

During the definition of a company, the backup company associated with it can also be defined.

A Backup Company is useful when all the information concerning the files that undergo the Life Cycle procedure needs to be preserved.

Note: Only one version for each file is stored in the backup company.

- 8. Click **Apply**. The company you just created appears in the **List of Companies**.
- 9. Click **OK** to save your specification and to close the window.
- 10. Continue to the next section.

Loading Data Store Information into the Knowledge Base

Perform this procedure to map and load the definitions from your data stores into the XDB Knowledge Base. The information from your data stores will be mapped to your workspace.

Load data store information into the Knowledge Base:

- Open the **Distributed Loader** window by clicking
- 2. Select the Machine ID ALLIE and the Company SAMPLING.
- 3. For this tutorial, leave the load option **Skip** selected.
- 4. In the Source database list, select GSDEMO.
- 5. In the Schema box, type: SAMPLING.
- 6. In the User name box, type: install.
- 7. In the Password box, type: 1.

Note: This is the number one.

- 8. Click **Preview Tables** to view all the available tables in the source database.
- 9. Click **Load** to begin the export of the metadata into the Knowledge Base.
- 10.Click Yes.

An Insert tables window appears, followed by an Information window. After the metadata has fully loaded, an Information window appears that displays data store information including the number of data stores.

- 11.Click OK.
- **12.**12. Click **Yes** to display the log file in a text format.

- **13.**13. Close the notepad view of the log file.
- 14.14. Click Close to close the Distributed Loader. The list of data stores in the [Work with Data Stores] window is updated automatically.
- **15.**15. Keep Data Builder open, and continue to the next section.

Data Element Sampling

The data for this session is actually located in an XDB database that resides on the Windows machine where you are running your Data Express client software. Typically when this is the case, you would simply execute sampling by clicking Start in the Distributed Sampler window; there is no need to export sampling configuration, execute sampling, and import results.

In this session however, sampling is executed in a similar fashion as it would be in a UNIX environment. Therefore, sampling configuration must be exported, sampling executed, and results imported.

In this session, you:

- Set and export sampling configuration
- Execute sampling
- · Import sampling results
- · Verify results
- Associate a fingerprint to a class
- · Associate a class to data elements

Setting and Exporting Sampling Configuration

Perform this procedure to verify your sampling configuration settings and to export information about the data store to output files.

Note: This exercise contains several references to the config subdirectory. For more information, see chapter Extension Technology Directories.

- 1. In the List of Data Stores in the Work with Data Stores window, select a row for a SAMPLING. Table Name data store.
- 2. Right-click and select Enable Sampling.

Enabling sampling changes the *classification number* value for the data store to a 1.

Classification numbers are used to restrict the data stores that get sampled. By default, all data stores are assigned a Classification number of 0, which means that sampling is disabled. When sampling the data stores within your work environment, all enabled data stores with Classification number values of 1 will be sampled.

- 3. Repeat steps 1-2 for each **SAMPLING**. *TableName* data store.
- 4. In the List of Data Stores, select a data store with the Machine ID ALLIE and the company SAMPLING, right-click, and then click Data Store Properties:
- 5. Note that the Classification number value is a 1.

Classification numbers can be changed in the **Properties** window to provide further granularity in restricting which data stores get sampled as based on user-defined criteria. The data store remains enabled as long as the Classification number is not 0. However, just because sampling is enabled does not mean that the data store is a candidate for sampling as this is controlled by Classification number in the Distributed Sampler.

If the Classification number set for the data store is less than or equal to the Classification number specified in the **Distributed Sampler**, the data store will be sampled. Likewise, if the data store Classification number is greater than the Classification number in the Distributed Sampler, the data store will not be sampled.

Tip: You can assign classification numbers to your data stores based on how often you want to sample data. For example, 1 could represent daily sampling, 2 could represent weekly sampling, and 3 could represent monthly sampling.

- Open the **Distributed Sampler** window by clicking
- 7. Select the ALLIE Machine ID if it is not already selected.
- 8. Select the **SAMPLING** company code.
- 9. Retain all default sampling options.

For this exercise, all data stores should be sampling candidates and all sampling options should be utilized.

The following list describes the sampling **Options**:

- Compressed sampling Produces the data element fingerprint. The fingerprint graphically shows the distribution of values within a given range for the sampled data element. The fingerprints for numeric and alphanumeric data elements differ in that the fingerprint for an alphanumeric data element shows the distribution of values based on the first character and provides additional information.
- Standard sampling Displays information for each data element value including the number of times each value occurred and the percentage that value represents in the total population.
- Min/Max calculation Displays the minimum and maximum values for the data element.
- 10. Note the Output directory specified. By default, this is the directory path to your config subdirectory, which is located in the data directory appropriate to the ODBC Extension.

Notes:

- By default, the directory path to the config subdirectory is listed for the ODBC Extension. If you are using the Oracle Extension, this must be changed.
- You can change the Output directory to any directory; just make sure that the files sampling.dat and method.rc are copied to the appropriate config directory prior to executing sampling.

11.Click Advanced.

12. Retain all default values.

Note: The Data Element Size of 0 (zero) means to include all sizes in the sampling results and does not actually reflect the value of 0 when Ignore Special Values Zero / Space is checked. Likewise, the default 0 values in Max. And Min. Recalculation Additional Options mean to consider all values to be in-range and does not reflect the value of 0.

13. Click OK to return to the Distributed Sampler window.

14.Click Export:

15.Click OK.

Two output files have been created and are located in the output directory on your Windows machine:

- sampling.dat contains information regarding the data elements to be sampled
- · method.rc contains encrypted connectivity information about the source data store (data store name, username, and password)
- 16. Verify that the files sampling.dat and method.rc are located in the config subdirectory.

Important: Under normal circumstances, you would need to copy the files sampling.dat and method.rc to the config subdirectory on the machine where your source data store is located. However, in this exercise the files are already in the correct location.

17. Continue to the next section.

Executing Sampling

During sampling execution, the Extension Technology uses the output files sampling.dat and method.rc to produce the **sampling.log** file that contains the resulting statistics.

1. From a MS-DOS prompt, change to the Extension Technology executables directory. For example, change to c:\Program Files\Micro Focus\Data Express 4.0\ODBC.

Note: For more information about directories, see Extension Technology Directories.

- 2. Type dxesampling.
- Change to the log directory.

Note: For more information, see section Executables in Extension Technology Directories.

- **4.** Verify that the **sampling.log** file is listed.
- 5. Continue to the next section.

Loading Sampling Results

The sampling.log file that was generated during sampling execution must be loaded into the Knowledge Base.

- Open the **Distributed Sampler** window by clicking
- 2. Verify that the Machine ID selected is ALLIE.
- 3. In the Company list, click SAMPLING.
- 4. Click the Load results from file tab.
- 5. Click 🕮 and browse for the sampling.log file that was generated during sampling execution.
- 6. Click Load.
- 7. Continue to the next section

Verifying Results

Once you have exported sampling configuration information, executed sampling, and loaded the results into the Knowledge Base, you can view the results.

When compressed sampling is performed, a *fingerprint* is created. The fingerprint is a unique graphical representation of the distribution of data for the sampled data element. When the results for compressed sampling are loaded, the fingerprint is created.

- 1. In Data Builder, click the **Sampling** tab:
- 2. Select the row for the SAMPLING.TABADD data store name in the List of data stores Sampling Active list.
- Click (Show Synthetic Data Elements) or right-click and then select Show Synthetic Data **Element Contents.**

The Data Store Data Elements list in the left pane shows the data elements for the data store you selected.

4. In the Data Store Data Elements list, select the data element PRGADDR.

You can also select the image for the data element in the Data Element Samples grid. To ensure that you have selected the correct one, the related data element name is highlighted in the **Data Store Data** Elements list.

Sampling results for the numeric data element **PRGADDR** are displayed.

5. Review the data element fingerprint in the Zoomed Data Element Sample. The fingerprint is the result of performing compressed sampling.

Notice the following:

- The numbers on the vertical y-axes represent the ranges of values based on the decimal place, where each number represents one decimal place to the left of the decimal point. For instance, 0 represents the ones place (0-9), 1 represents the tens place (10-99), 2 represents the hundreds place (100-999), and so on.
- The numbers on the horizontal x-axes represent a specific range based on the corresponding ycoordinate. For instance, 1 represents the value 1 for the y-coordinate 0, while 1 represents values 10-19 for the y-coordinate 1.

The values in each cell indicate the number of times a value in the data element falls within the specified range.

Note: The fingerprint can also be viewed as a bar graph by clicking **Graph**.

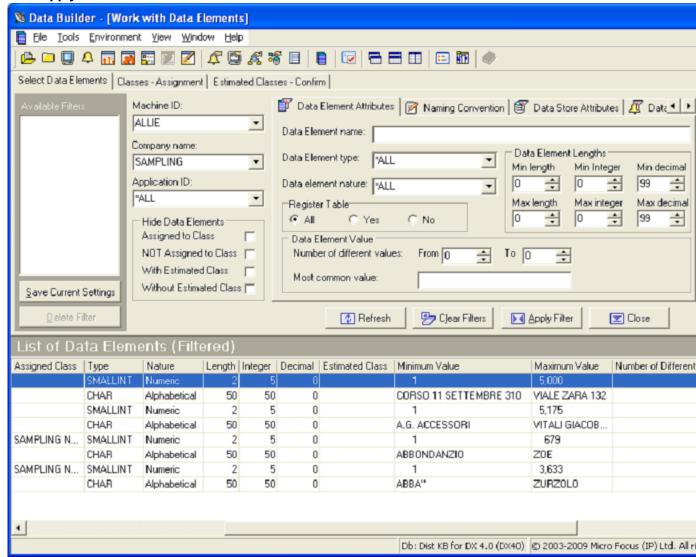
6. Review the items in the list Sample Analysis of the Selected Data Element. This list shows the actual data element values when standard sampling was performed.

Known Restriction: Currently Data Express only shows the first 1000 distinct values and ranges, which are sorted either numerically or alphanumerically based on the data element type. When there are more than 1000 distinct data element values, the Data Element Value ends at the 1000th unique value instead of the greatest data element value.

7. In the Data Store Data Elements list, select the data element ADDRESS.

Sampling results for alphanumeric data element ADDRESS are displayed.

Review the data element fingerprint in the Zoomed Data Element Sample. The fingerprint is the result of performing compressed sampling.


Notice that the fingerprint for an alphanumeric data element contains four distinct sections:

Section Type	Exam	Example Description						
Character	Spa	А	В	С	D	Ε	F	^G A range of characters in alphabetical
Distribution	J	κ	L 50	521 M	М	o	P 463	dorder is provided to show how many ©dataRelensents begin with that character.
	Т	U	U	Ш	×	٧	Z	*
			3K					
Number Distribution	Ø	1	2	3	4	5	6	7 A range of numbers is provided to show how many data elements begin with the indicated number. In
								the provided example, no data elements begin with numbers.
Type Summary	Nu m.	Only					Alpha 76	a on An alphanumeric data element can actually be a numeric-only data element or alphanumeric data element. The type summary provides a count of how many data elements fall into either category. In the provided example, all data elements are alphanumeric in type.
Field Length	0 - 9	Fie l d	i Len. 1	Va l. 2	3	4	5	The numbers on the vertical y-axes represent the ranges of values specified. The numbers on the horizon tal x-axes represent the
	10-19		90	181	342	444	548	⁶² position <mark>ပါ</mark> the ခြင်းual number in that
	20>		205	162	178	137	98	Prange. For instance, 90 in the provided example means that there are 90 values with a length equal to 11.

Note: The fingerprint can also be viewed as a bar graph by clicking **Graph**.

8. Close the Show Synthetic Data Element Contents window to return to Work with Data Stores.

- 9. Open the Work with Data Elements window (click or access it through Environment > Work with Data Elements).
- 10.In the Machine ID list, click ALLIE.
- 11.In the Company name list, click SAMPLING.
- 12.Click Apply Filter.

- 13. Note the Minimum Value and Maximum Value items in the List of Data Elements, which are the result of performing min/max calculation sampling.
- 14.Leave the Work with Data Elements window open, and continue to the next section.

Creating a Sampling Class

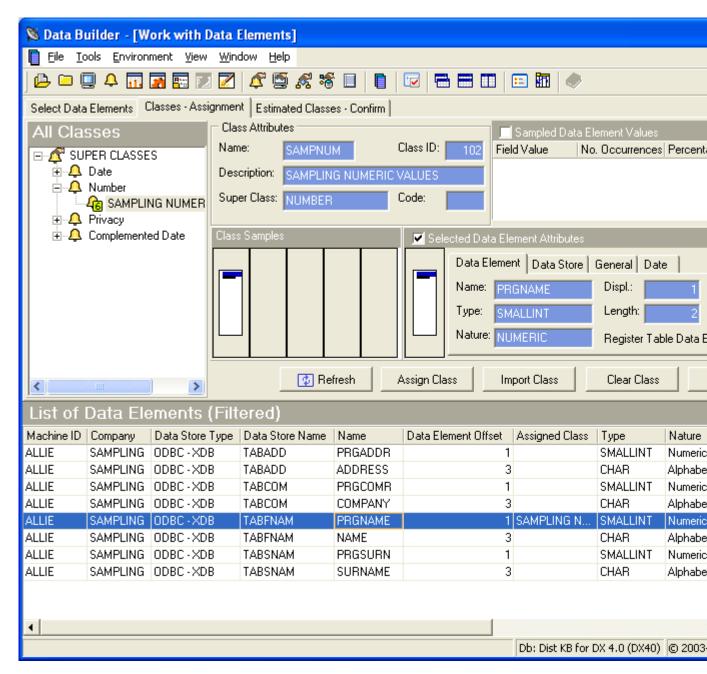
You can create a new class to be used for sampling purposes, or you can use a predefined class. In this exercise you will create a sampling class named SAMPNUM.

- Open the Work with Classes window (click or access it through Environment > Work with Classes).
- Click New.
- 3. In the Name box, specify SAMPNUM as the name of the class you want to create.
- 4. In the Full description field, specify SAMPLING NUMERIC VALUES as the description of the class.

Note: The description will be visible as a label when you assign the class to data elements within data stores.

- **5.** Select the Super Class **Numbers**.
- **6.** Select the data type **Numeric**.
- 7. Leave the remainder of the fields at their default values. Click Apply.

The class **SAMPNUM** is now listed in the **List of Classes**.


- 8. Click OK to return to the Work with Data Elements window.
- 9. Click Refresh.
- 10. Continue to the next section.

Associating a Fingerprint to a Class

In Data Express, you can correlate data elements if their value distributions are similar. To do this, you must first associate a fingerprint, which represents the desired distribution, to a class.

This fingerprint becomes the prototype that is used determine the class assignment for other data elements. If the prototype and the fingerprint for a data element are deemed similar based on a calculated confidence value, the data element is also associated with the prototype class.

- 1. Click the Classes Assignments tab.
- 2. In the All Classes pane, expand the Number Super Class, and select the class description SAMPLING **NUMERIC VALUES.**
- 3. In the List of Data Elements, select the row for the data element PRGNAME in the data store TABFNAM.
- 4. Check the Selected Data Element Attributes check box:
- 5. Drag the fingerprint that now appears beneath the text Selected Data Element Attributes, to the first Class Samples cell.

By highlighting the **SAMPNUM** class description in the **All Classes** pane and then by dragging the fingerprint for the PRGNAME data element to the Class Samples cell, the SAMPNUM class is then assigned to the fingerprint. This fingerprint becomes the prototype. This action also associates the **SAMPNUM** class to the **PRGNAME** data element.

6. Continue to the next section.

Associating a Class to Data Elements

In this exercise you are associating the class **SAMPNUM** (which is associated to your sampling prototype) to other data elements with sampling data distributions similar to the prototype fingerprint.

The level of similarity between distributions depends on the thresholds you set when importing the class information. If the prototype and the fingerprint for a data element are deemed similar based on a calculated confidence value, the data element is also associated with the prototype class.

1. From the Work with Data Elements window, click Import Class. The Import Class window is displayed.

2. Click Sampling Results.

When comparing the fingerprint for a data element to the prototype fingerprint, internal Data Express confidence values are calculated to provide measurements that illustrates the similarities between the data distributions. The internal confidence values are used as input for the threshold formulas.

- In the Machine ID list, click ALLIE.
- 4. In the Company list, click SAMPLING.
- 5. In the Super Classes section, click Numbers.
- 6. Set the Theshold 1 value to 82.

The value for Threshold 1 represents a percentage where the similar areas in the two fingerprints are weighted more heavily than the dissimilar areas.

- 7. Keep the logical operator set to AND.
- 8. Set the Theshold 2 value to 75.

The value for Threshold 2 represents a percentage where all areas (both similar and dissimilar) in the two fingerprints are given equal weight.

9. Click Import:

10.Click OK.

- 11. Close the Import Class window and return to the Work with Data Elements window:
- 12. Click the Close button to close the Work with Data Elements window.

A sampling class has successfully been assigned to data elements with similar distributions to the prototype.

13. Close Data Builder; either Click File > Exit or click the button, and then click Yes.

Data Generation

In this tutorial, you perform basic data generation, working with the TGT.DEPT and TGT.EMPLOYEE tables to populate a table based on the content of another table and on data in a dictionary.

Begin this session only after you have set your workspace and loaded data store information into the Knowledge Base by following the instructions in tutorials Using Data Express and Data Inventory. You must be logged into Data Builder before you begin.

In this session, you:

- Catalog the XDB tables provided in the sample
- Start the Data Generator module.
- Create simple Data Generation code
- Submit JCL to generate data

Complete these tutorials in the following order:

Catalog and Classify Tables

- 1. Using a different machine and company, repeat the cataloguing phase, but loading only the TGT.DEPT and TGT.EMPLOYEE tables.
- 2. Execute the classification phase as described in the Data Subset Extraction part of this guide, assigning the same class to the DEPTNO columns of both TGT.DEPT and TGT.EMPLOYEE.

Start the Data Generation Module

1. Start the Data Generation module from your Start menu or tile, depending on your Windows operating system.

Note: If you are using Data Express on Windows Vista and User Access Control is enabled, you must run the Data Generation module as Administrator.

2. Select the XDB Knowledge Base as the required database for your ODBC connection.

By default, the highlighted item in the list of available databases is the last database you connected to using Data Masking. This becomes apparent after you click Available databases.

- 3. Click OK.
- 4. Log in using your username and password.
- Click OK.
- 6. Select the schema DX40; click OK.

Create Simple Data Generation Code

- 1. Launch the New Code Wizard from the New Code icon.
- Specify the proper machine and company.
- 3. Give the code the name SIMPLEC and provide a description.
- 4. Click Apply.

This creates the code.

- 5. Select the code, and look at the lower part of the screen; it shows the laws that are used in the code, one law per table.
- 6. Ensure that the TGT.EMPLOYEE table appears before the TGT.DEPT table. If now, reorder the tables using the arrows on the right.
- Right-click on TGT.EMPLOYEE; then select Set directive from the context menu.
- 8. Select the DEPT column; then right-click and select Assign output class specifying the DEPT column.
- 9. Right-click TGT.EMPLOYEE; then select Don't create output on the context menu.
- **10.**Right-click **TGT.DEPT**; then select **Set directive** from the context menu.
- 11.Right-click the COD CUS column; then select **Set directive** from the context menu, specifying **Other** file dependencies as the directive type.
- 12. Right-click TGT.EMPLOYEE; then select Set directive on the context menu.
- 13. Select the DNAME column; then select Set directive from the context menu, specifying Dictionary as the directive type and **USDCHSUR** as dictionary name.
- 14. Export the information about the tables DEPT and EMPLOYEE using the Distributed Exporter.

Execute a Simple Data Generation Law

By default, Extension Technology attempts to insert the processed data into the target database.

Execute a simple data generation law with Extension Technology:

- 1. From a command prompt, change to the executables directory, which by default is %PROGRAMFILES% \Micro Focus\Data Express 4.0\Synthetic\ODBC.
- 2. Enter dxestart.

This populates the tables in the target ODBC data store using the specified data generation laws. After the execution finishes without errors, you are prompted to view the log file.

- **3.** Type Y to view the file.
- 4. Close the text file.
- Continue to the next section.

Verify Results

Verify that the tables are populated according to definition:

- 1. Launch the SQL Wizard: ..\mfsql\bin\xwiz40n
- 2. Verify that the TGT.EMPLOYEE table contains its original values, and the TGT.DEPT table has been populated according to the specified laws.

Oracle Alias Creation

In order to use the Oracle Extension, you must first create an alias in the Borland Database Engine (BDE) for your source data store to communicate with the Oracle client installed on your machine. A BDE alias is not required for your target data store.

Note:

- For your source Oracle data store specified for either the Distributed Loader or Distributed Exporter, you must create a BDE alias. We recommend that the associated BDE alias match the Oracle TNS service name specified in your tnsnames.ora file.
- For your target Oracle data store specified in the Distributed Exporter, make sure that the target name is the Oracle TNS service name specified in your tnsnames.ora file located on the machine where you intend to mask/subset data.
- If you are using Data Express on Windows Vista and User Access Control is enabled, you must run the BDE Administrator utility as **Administrator**.

To create an Oracle alias:

- 1. Open BDE Administrator (from the Control Panel). Click the Configuration tab, and then select **ORACLE** from the **Native Drivers** list as shown in *Figure A-1*:
- 2. In the **Definition of ORACLE** pane, click in the second column for **DLL32** to display a list of DLLs. Select **SQLORA8.DLL**, and click **Object** > **Apply** as shown in *Figure A-2*:
- 3. 3. In the Definition of ORACLE pane, click in the second column for VENDOR INIT, and enter OCI.DLL as the Vendor DLL file name.
- 4. 4. In the **Drivers and System** pane, click the **Databases** tab.
- 5. 5. Create a new Oracle database alias (right-click, select New, select the Database Driver Name **ORACLE**, and then **OK**) and rename the alias as appropriate.
- 6. In the **Definition of** AliasName pane, click in the second column for **SERVER NAME**, and enter your Oracle TNS.

Oracle Wallet

Oracel Wallet allows the Data Express engine to connect the source and target databases without needing to specify the user name and password.

Oracle Wallet is a container/repository that stores credentials such as certificates, certificate requests, and private keys. You can use this feature if you enable HTTPS. Oracle Wallets can be stored either on the file system or an LDAP Server (like OID).

You manage Oracle Wallets using Oracle Wallet Manager (OWM - java based application). OWM is executable in \$ORACLE_HOME/bin.

Using OWM you can:

- Create wallets
- Create certificate requests
- Import certificates to wallets
- Upload wallets to a directory

Implementing Oracle Wallet Support

There is a new parameter in the dxeconfig.cfg file named Identify Externally that identifies the connection criteria. This parameter is at the end of the file in the section applicable to the Oracle Extension only.

The possible values are Y and N. Default value is N.

- Yes Data Express will skip the reading of user name and password from method.rc. In this case, the connection to the database, instead of happening in the usual way (using the user and password specified during the "export" phase), will use the configured Wallet (if the Wallet has been configured properly). The system will connect to the database without needing explicit user name and password credentials.
- No Data Express behavior will remain unchanged and access continues to require a valid user name and password.

The user interface will remain unchanged (and in case of use of wallet feature, the data specified as user and password are ignored), and the only change needed, from the user perspective, is that in order to use the new feature, you must set the dxeconfig.cfg configuration file properly.

Here is a sample of the dxeconfig.cfg file:

```
* Data Express Configuration File
LogLevel:1
Always Drop Table:N
CSV Data Store:N
COBOL Masking:Y
Validate Target Table:Y
Validate Source Schema:N
Enable Logging: N
Hide Progress: N
* These entries are only applicable to the Oracle Extension.
Text Output:N
Data Separator:,
Fields Enclosed By: "
Identify Externally:Y
```

The dxeconfig file is not used for sampling. In order to use wallet management, you need to specify a -e parameter.

Use the following command to use identification via user and password: Dxestart

Use the following command to use identification via wallet: Dxestart -e

Index

0

oracle wallet

about 75 implementing 75