
DevPartner Java Edition Code Review
User’s Guide

Release 4.5

Copyright © 2009 Micro Focus (IP) Ltd.
All rights reserved.

Micro Focus (IP) Ltd. has made every effort to ensure that this book is correct and accurate,
but reserves the right to make changes without notice at its sole discretion at any time. The
software described in this document is supplied under a license and may be used or copied
only in accordance with the terms of such license, and in particular any warranty of fitness of
Micro Focus software products for any particular purpose is expressly excluded and in no
event will Micro Focus be liable for any consequential loss.

Animator®, COBOLWorkbench®, EnterpriseLink®, Mainframe Express®, Micro Focus®,
Net Express®, REQL® and Revolve® are registered trademarks, and AAI™, Analyzer™,
Application Quality Workbench™, Application Server™,
Application to Application Interface™, AddPack™, AppTrack™, AssetMiner™,
BoundsChecker™, CARS™, CCI™, DataConnect™, DevPartner™, DevPartnerDB™,
DevPartner Fault Simulator™, DevPartner SecurityChecker™,Dialog System™,
Driver:Studio™, Enterprise Server™, Enterprise View™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Server™, Mainframe Access™, Mainframe Manager™,
Micro Focus COBOL™, Micro Focus Studio™, Micro Focus Server™, Object COBOL™,
OpenESQL™, Optimal Trace™,Personal COBOL™, Professional COBOL™, QACenter™,
QADirector™, QALoad™, QARun™, Quality Maturity Model™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SoftICE™, SourceConnect™, SupportLine™,
TestPartner™, Toolbox™, TrackRecord™, WebCheck™, WebSync™, and Xilerator™ are
trademarks of Micro Focus (IP) Ltd. All other trademarks are the property of their respective
owners.

No part of this publication, with the exception of the software product user documentation
contained on a CD-ROM, may be copied, photocopied, reproduced, transmitted, transcribed,
or reduced to any electronic medium or machine-readable form without prior written consent
of Micro Focus (IP) Ltd. Contact your Micro Focus representative if you require access to the
modified Apache Software Foundation source files.

Licensees may duplicate the software product user documentation contained on a
CD-ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation, regardless of
whether the documentation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public domain, and
that the Software and Documentation are Commercial Computer Software provided with
RESTRICTED RIGHTS under Federal Acquisition Regulations and agency supplements to
them. Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause
at DFAR 252.227-7013 et. seq. or subparagraphs (c) (1) and (2) of the Commercial Computer
Software Restricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus (IP)
Ltd., 9420 Key West Avenue, Rockville, Maryland 20850. Rights are reserved under copyright
laws of the United States with respect to unpublished portions of the Software.

20090928132917

2 DevPartner Java Edition Code Review User’s Guide

Table of Contents
Preface . 5
What This Manual Covers . 5
Conventions Used In This Manual . 5
Getting Help . 6

Contact . 6
Additional Help . 6

Chapter 1 · Using Code Review Java Edition . 7
Using this Guide . 7

Creating a Code Model . 8
Code Validation . 10

Coding Rules . 11
Viewing Rule Violations . 12
Exporting Rule Violation Reports . 13

Design Validation . 14
Package Design . 14
Layering . 19
Design Metrics . 23
Viewing Design Violations . 25
Exporting Design Reports . 27
Viewing Metrics . 28

Dependency Inversion Refactoring . 29
Fixing Dependencies . 30
Synchronizing the Source Code with the Code Model . 32
Creating a Design Reference . 33
Comparing a Code Model with a Design Reference . 33
Configuring an External Editor . 34
Command Line Interface . 35

Command Syntax . 35
Command-Line Options . 36
Commands . 38
Example Script Files . 40

Metrics Publishing Utility . 41
ANT Integration . 41

Performing an Analysis with ANT . 42
Sample ANT File . 44

Customized Reports . 46
Code Rule Violations . 46
Metrics . 47

Chapter 2 · User Interface . 49
 DevPartner Java Edition Code Review User’s Guide 3

Table of Contents
Views and Dialog Boxes . 49
New Code Model . 50
Verification of Design Reference . 51
Code Validation Summary . 51
Code Validation Details . 52
Custom Rules . 53
Rule Filter . 58
Export Violations . 59
Refactor Code With Model Edits . 60
Design Validation Summary . 60
Export Metrics . 61
Design Validation Details . 62
Dependency View . 64
Usage View . 65
Dependency Table . 66
Metrics Window . 67

Menus . 68
Package Popup Menu . 68
Leaf Popup Menu . 69
Dependency Popup Menu . 69
Class Diagram Popup Menu . 70

Chapter 3 · Tutorials . 71
Improving a Package Structure . 71

Prerequisites . 71
Duration . 71
Objectives . 71
Steps . 72

Improving Java Code by Applying Coding Rules . 81
Prerequisites . 81
Duration . 81
Objectives . 81
Steps . 82
Further Reading . 87

Enhancing Javadoc with UML Diagrams . 87
Prerequisites . 87
Duration . 87
Objectives . 87
Steps . 88

Glossary . 89
4 DevPartner Java Edition Code Review User’s Guide

Preface
This manual provides a printable version of the information in the online help It is intended for
new Code Review users and for users of previous versions who want an overview of the
product’s features and functions.

Users of previous versions of Code Review should read the DevPartner Java Edition Release
Notes to learn how this version differs from previous versions.

This manual assumes that you are familiar with the Windows or UNIX operating environ-
ments and with Java software development concepts.

What This Manual Covers

This manual contains the following chapters and appendixes:

� Chapter 1, “Using Code Review Java Edition” describes how to use Code Review to ana-
lyze program design and code.

� Chapter 2, “User Interface” describes the windows and dialog boxes in Code Review.

� Chapter 3, “Tutorials” demonstrates how to build a code model, use the Design Validation
feature, and use the Code Validation feature.

� The Glossary defines technical terms used in the Code Review interface and documenta-
tion.

Conventions Used In This Manual

This book uses the following conventions to present information.

� Interactive features of Code Review appear in bold typeface. For example:

To update the information displaying in the Application Testing tab of the Start page,
click Refresh.

� Computer commands appear in monospace typeface. For example:

Execute the nmjava command.

� File names and paths appear in boldfaced monospace typeface. For example:

The session file is saved in the \var\sessionfiles folder of your product folder.

� Variables within computer commands and file names (for which you must supply values
appropriate for your installation) appear in italic monospace type. For example:
 DevPartner Java Edition Code Review User’s Guide 5

Preface
Enter http://servername/cgi-win/itemview.dll, where servername
is the designation of your server.

Getting Help

If ever you have any problems or you would like additional technical information or advice,
there are several sources. In some countries, product support from Micro Focus may be avail-
able only to customers who have maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as described below. If you
obtained it from another source, such as an authorized distributor, contact them for help first.
If they are unable to help, contact us as described below.

However you contact us, please try to include the information below, if you have it. The more
information you can give, the better Product Support can help you. But if you don't know all
the answers, or you think some are irrelevant to your problem, please give whatever informa-
tion you have.

� The name, release (version), and build number of the product.

� Installation information, including installed options, whether the product uses local or net-
work databases, whether it is installed in the default folders, whether it is a standalone or
network installation, and whether it is a client or server installation.

� Environment information, such as the operating system and release on which the product
is installed, memory, hardware/network specifications, and the names and releases of other
applications that were running.

� The location of the problem in the product software, and the actions taken before the prob-
lem occurred.

� The exact product error message, if any.

� The exact application, licensing, or operating system error messages, if any.

� Your Micro Focus client, office, or site number, if available.

Contact

Our Web site gives up-to-date details of contact numbers and addresses. The product support
pages contain considerable additional information, including the WebSync service, where you
can download fixes and documentation updates. To connect, enter www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus Product Support customer, please see your Product Support
Handbook for contact information. You can download it from our Web site or order it in
printed form from your sales representative. Support from Micro Focus may be available only
to customers who have maintenance agreements.

Additional Help

For more information about Code Review, visit the Micro Focus DevPartner Java Edition
product page at http://www.microfocus.com/products/DevPartner/JavaEdition.asp and click
the Code Validation link
6 DevPartner Java Edition Code Review User’s Guide

http://supportline.microfocus.com/
http://www.microfocus.com/products/DevPartner/JavaEdition.asp

Chapter 1

Using Code Review Java Edition
You can use Code Review to:

� Create a code model — Create a new code model based on your Java source code or byte-
code.

� View rule violations and view design violations — Once a model is available, it is auto-
matically analyzed for compliance with design principles and coding rules. You can view
and edit it using a number of views.

� Synchronize source code with the code model — Keep the source code and code model
synchronized by updating the model from code edits and refactoring the source code with
model edits.

� Create a design reference — Create a package structure design as a design reference.

� Compare a code model with a design reference — Verify code models against the design
reference, allowing implementations to be checked against designs.

� Add UML diagrams to Javadoc — This function is available from the command line only;
it is demonstrated by the tutorial “Enhancing Javadoc with UML Diagrams” on page 87.

� Publish Maintainability and Compliance metrics to Optimal Delivery Manager. For more
information, see “Metrics Publishing Utility” on page 41. Also refer to the separate docu-
mentation for PubMetrics.

Code Review functions are available through the interface window and through the command
line. For information about the interface, see the topics in the User Interface section of the
table of contents. For information about using Code Review from the command line, see
“Command Line Interface” on page 35.

Using this Guide

This guide describes:

� The features that analyze and enhance your source code

� The user interface

� Code validation rules

� Design validation principles and concepts

The tutorials demonstrate how to build a code model, use UML diagrams to improve a
program's package structure, apply coding rules to correct errors and improve performance,
and enhance Javadoc by including UML diagrams.
 DevPartner Java Edition Code Review User’s Guide 7

Chapter 1 · Using Code Review Java Edition
Creating a Code Model

A code model is used to analyze the rules and package structure of Java code. Code Review
creates a code model by parsing and analyzing Java code from either source code or bytecode.
After the code model is built, you can view the results of the rules and structure analysis in the
Code Validation Summary page and the Design Validation Summary page. You can save the
code model to file; code model files have the extension.psm.

Code Review incorporates features that allow the code model to be modified. Changes to a
code model created from Java source code can be applied to the code (for details, see
“Synchronizing the Source Code with the Code Model” on page 32). Although a code model
built from bytecode can be used solely for analysis, it allows assessment of third-party librar-
ies. Because it takes less time to build than a source code model, a model created from
bytecode is also convenient for analyzing large applications.

Building a code model may take considerable time depending on the size of your application.
An alternative to reduce the build time for either a source code or a bytecode model is to set
the Exclude Path. This allows the analysis to focus on specific components rather than an
entire application. Setting the exclude paths can also be used to resolve issues arising from
duplicate class files.

To create a new code model:

1 Choose File>New Code Model. The New Code Model dialog box appears.

2 Set the input source type. Select one of the following options:

� Source Code (allows refactoring) — Allows refactoring.

� Bytecode (faster) — Builds more quickly.

The rest of the settings vary depending on the input.

1 To set the paths, type the path in the field; or browse and select the location:

a Click Edit to display the Edit Source Path dialog box.

b Click Add and browse to the appropriate location.
8 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
2 If you select Source Code (allows refactoring), set the Source Settings as required:

� Source Path — List of directories and files where the source files can be found. If all
the sources are in one source tree, enter a path consisting of the root of this tree.

� Class Path — Java classpath used to build the model. This should be the same as the
classpath that is used when the sources are compiled.

Note: It is often possible to load sources without a complete classpath, but the model
is then incomplete because not all references can be resolved. In some cases,
the parser may not be able to build the model if the classpath is not defined.

� (JDK 1.4 only) Enable 'assert' keyword (build with -source 1.4) — Enables the new
syntax introduced in JDK 1.4 (most notably the assert keyword).

� (JDK 1.5 only) Accept JDK 1.5 language features (build with -source 1.5) —
Enables the new syntax introduced in JDK 1.5.

� Allow Refactoring (faster when off) — Enables refactoring of the source files from
the code model. This option requires additional work when analyzing, so it is much
faster (typically twice as fast) to build a code model with this option cleared. How-
ever, you must select this option if you want to synchronize the source code with code
model edits.

3 If you select Bytecode (faster), set the Bytecode Settings: as required:

� Bytecode Path — List of directories and files where the compiled bytecode files can
be found. If all the class files are in one source tree, give a path consisting of the root
of this tree.

� Source Path — Optional list of directories and files where the source files can be
found. If all the sources are in one source tree, give a path consisting of the root of this
tree.

Set this field if you want to view the source code in either a Source Fragment pane or an
external editor.

4 To define the Exclude Settings, type the path directly in the Exclude Path field. Alterna-
tively, you can browse and select the location:

� Click Edit to display the Edit Exclude Path dialog box.

� Click Add and browse to the appropriate location.

Note: The Exclude Settings option does not apply to PMD/custom rules.

5 Select the Save option if you want to save the code model automatically to the working
folder upon completion of the build.

Note: The file name is generated automatically and will overwrite an existing file of
the same name without warning. The file name is derived from the highest
level package with at least four child packages. If this criterion is not satisfied,
the file name will default to model.psm.
 DevPartner Java Edition Code Review User’s Guide 9

Chapter 1 · Using Code Review Java Edition
6 Click Build Model to create the code model. A Build Status section is added to the dialog
box. If compile errors are encountered, they are displayed in a table and the dialog box
remains open. To open the source in the external editor at the line of the error, double-click
a table row.

Code Validation

When you create a code model based on Java source code or bytecode, Code Review analyzes
it automatically, using Code Review, PMD, and custom coding rules, and displays a summary
of the results in the Code Validation Summary page.

Figure 1-1. Code Validation Summary Page

You can view details of the code violations by clicking on the pertinent link to display the
Code Validation Details page. The information in that page can help you correct the source
code. To be able to decide which changes you should make in the source code, you need to
understand the rules and sets used in the analysis.
10 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
Coding Rules

The rules that Code Review uses to analyze your program reflect best Java coding practices.

When you build a code model, the profile includes all built-in coding rules and the rules
selected in the Custom Rules page. You can filter the results list by using the Select Rules
option in the Code Validation Summary page. Information about each violated rule is
displayed when you select the rule in the Rule Filter dialog box or in the Code Validation
Details page.

Note: To specify which PMD rulesets or custom rules to include in the profile,
change the selection in the Custom Rules page and rebuild the code model.
By default, the Basic and Design rulesets are selected.

Severity Level

Rule violations are prioritized by severity:

� High — The violation is likely to cause a run-time error, performance problems, or design
issue.

� Medium — The violation may cause a problem, but there are legitimate circumstances
when the rule can be ignored.

� Low — The violation may affect the maintainability of the application, reflect a common
practice or be the result of a rule that can cause many false positive violations.

Rule Categories

The coding rules are grouped by categories or rulesets that identify the types of errors the rules
detect. For example:

� Correctness — The rule violation is likely to cause a bug. The code probably does not do
what you expect. You should always examine code that violates these rules, whether the
code is new or legacy.

� Design — The rule helps improve maintainability and object oriented programming
(OOP) design. Code that violates these rules could cause bugs in the future when it is
modified or classes are extended. Design rules are more appropriate for new code than for
existing legacy code.

� Performance — The rule violation is likely to cause problems with speed, memory or
resources.

A complete list of the coding rules built into Code Review, with descriptions, is available in
JRulesReference.html, in theDevPartner Java Edition product installation folder. For explana-
tions of the rulesets listed in the Custom Rules page, see the PMD Web site, http://pmd.source-
forge.net/.
 DevPartner Java Edition Code Review User’s Guide 11

http://pmd.sourceforge.net/
http://pmd.sourceforge.net/

Chapter 1 · Using Code Review Java Edition
Viewing Rule Violations

The Code Validation Details page provides the means to view and edit the source code. This
page displays individual code violations and explanations. To display the page, click any link
in the Code Validation Summary page.

Figure 1-2. Code Validation Details Page

To correct code violations, it is first advisable to examine the summary to determine what
remedial action is required and then edit the code accordingly:

1 Examine the Code Validation Summary page to determine the worst cases of code viola-
tions from the three categories.

2 If necessary, click Select Rules to open the Rule Filter dialog box, where the rules dis-
played in the results can be selected. Once defined, this set of rules will persist through
sessions until changed. When the settings are satisfactory, click OK to return to the Code
Validation Summary page.

3 To view details of specific violation groupings, click the link of interest to open the Code
Validation Details page.

4 In the Code Validation Details page, select one of the following options from the Group
By list to change the grouping method and display a list of the items in the selected group.

� Class — Java class or interface containing the rule violation

� Rule — Rule that is being violated

� Category — Rule category (also called ruleset)
12 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
� Severity — Severity of rule violation

5 To view the table of violations for an item, click the item.

6 To view the source that causes a specific violation, select it in the table. The Source Frag-
ment pane highlights the violating code. The Rule Details pane provides more informa-
tion about the rule being violated.

7 To edit the source code to correct the violation, either double-click the item in the table,
click the Source Fragment link or double-click inside the Source Fragment pane to open
the external editor.

8 To exclude a rule from the results list, click Suppress Rule in the Rule Details pane.

9 To return to the Code Validation Summary page, click Summary.

Exporting Rule Violation Reports

You can export Rule Violation reports in HTML, XML, or print format:

1 In the Code Validation Summary page, click Export to display the Export Violations dia-
log box.

2 Select what you want to export. For details on the export options, see “Export Violations”
on page 59 and “Customized Reports” on page 46.

3 Specify the file name and location where you want to save the exported violations report
or accept the default.

4 Click Save to export the violations.

5 When the export is complete, close the dialog box.

The default location of the exported file depends on your operating system:

� Windows XP or 2003 — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\exports

Note: By default, the Application Data folder is hidden. To display the exports
folder and its contents, type the path in the Address field of Windows Explorer
and press Enter.

� Windows 2008 or Vista — C:\Program Data\Micro Focus\DevPartner
Java Edition\var\exports
 DevPartner Java Edition Code Review User’s Guide 13

Chapter 1 · Using Code Review Java Edition
� UNIX — DPJ_dir/var/exports
where DPJ_dir is the path of the DevPartner Java Edition product folder.

Design Validation

When you create a code model based on Java source code or bytecode, Code Review analyzes
it and displays a summary of the results in the Design Validation Summary page.

Figure 1-3. Design Validation Summary Page

Based on the information and suggestions provided by design validation, you can improve the
package design of your source code, whether you are working with legacy source code or
developing new code. Code Review can only analyze and make suggestions. As a developer,
you need to make intelligent decisions about the changes you actually want to make. To do so,
you need to understand the principles of good package design.

Package Design

A good modular structure is essential when building and maintaining applications. The
benefits of modular design have long been recognized and include product flexibility, compre-
hensibility, and reduced development time.1

1. D. Parnas, Carnegie-Mellon University, “On the criteria to be used in decomposing systems into
modules”. Communications of the ACM, Vol. 15, No. 12, 1972, pp. 1053–1058. Online HTML copy from
the ACM site at http://www.acm.org/classics/may96/.
14 DevPartner Java Edition Code Review User’s Guide

http://www.acm.org/classics/may96/

Chapter 1 · Using Code Review Java Edition
In Java code, the modular structure is defined by the package hierarchy. Every Java class is
part of a package, and packages are hierarchically structured in a package tree.

Code Review lets you work with design and improve package hierarchies in the following
ways:

� Analyze and improve the package hierarchies of existing source code.

� Develop new code that reflects good package design principles.

� Design package hierarchies outside the source code.

� Verify source code against a package design.

Package Definitions

In Java code, the modular structure is defined by the package hierarchy, not the class hierar-
chy1. Every Java class is part of a package and packages are structured hierarchically in a
package tree.

Unlike classes or methods, packages in Java are implicitly defined. A class (or more precisely
a compilation unit) declares itself to be in a certain package. This declaration is used to deter-
mine the packages in an application.

Interfaces and dependencies are two important concepts in modular design. For Java packages,
these properties of packages are also defined implicitly:

� The dependencies between two packages A and B are defined as the set of all dependen-
cies from types that are part of A to all the types that are part of B. Dependencies between
packages are therefore implicitly defined in the type definitions via references to other
types.

� The interface of a package is defined by the interfaces of the set of public types (classes or
interfaces) in the package. Types are part of a package if the compilation units they are in
have a package statement referring to the package.

A dependency on a nested package is also a dependency on the parent package. For example, a
class that depends on java.util also depends on java.

Package Design Principles

Packages are not just namespaces. A good package structure is based on solid design princi-
ples.

The goal of package design is a package structure that it is easy to understand, test, maintain
and extend. Robert C. Martin distinguishes the following design principles2:

� Acyclic Dependency Principle (ADP) — Allow no cycles in the package-dependency
graph.

1. J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification, Chapter 7. Online version
available at http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#60384.

2. Martin, R.C. Agile Software Development: Principles, Patterns, and Practices. Prentice Hall 2002.
 DevPartner Java Edition Code Review User’s Guide 15

http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#60384

Chapter 1 · Using Code Review Java Edition
Packages that adhere to the acyclic dependency principle are typically easier to unit test,
maintain and understand. Cyclic dependencies make it more difficult to predict what the
effect of changes in a package are to the rest of the system. The ADP is related to the
concept of layering: a package that conforms to the ADP has a layered architecture.

� Stable Dependencies Principle (SDP) — Depend on the direction of stability.

Stable packages are packages that are difficult to change. The SDP principle states that
packages should depend on packages that are more stable than themselves. Unstable
packages that are used a lot by other packages are potential problem areas in a design.

� Reuse-release Equivalence Principle (REP) — The granule of reuse is the granule of
release.

This principle is based on the idea that packages, rather than individual classes, are the
units of reuse. If a package is to be reused, all classes in that package should be designed
for reuse.

� Common Reuse Principle (CRP) — The classes in a package are reused together. If you
reuse one of the classes in a package, you reuse them all.

This principle is also based on the idea that packages, rather than individual classes, are
the units of reuse. Classes that are intended to be reused together, should be put in the
same package.

� Common Closure Principle (CCP) — Classes within a released component should share
common closure. That is, if one needs to be changed, they probably all need to be
changed. What affects one, affects all.

Classes that are likely to change together should be put in the same package. Unrelated
classes should not be put in the same package.

Designing Package Structures

In the traditional approach to application development, designing the package structure is the
first step in the design phase. From the UML point of view, the package design is the highest
level of design and the design approach is top-down. This is known as the waterfall approach.

Most organizations, however, prefer to use more flexible, iterative approaches. Agile develop-
ment methods, such as Extreme Programming (XP), advocate spending less time on up-front
design. Instead, design improvements are realized through refactoring as you develop the
software. Using agile methods, the package design changes along with the class design.

Code Review both supports approaches to software development and enables you to design
packages when working with code.

Working with Existing Code

When working with existing code written by somebody else, it can be an enormous task to re-
engineer an intended architecture. Software documentation is often not up-to-date or
sometimes even nonexistent and key developers may have left the project. The most accurate
and complete source of information is the source code. There may, however, be hundreds of
files and it is difficult to know where to start if you do not have a clue about the intended archi-
tecture.
16 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
Code Review gives you immediate insight into how different parts of the program depend on
each other. It can reconstruct an intended layering, even if there are many cycles in the depen-
dency structure. You also have a powerful set of metrics that give direct insight into the nature
of the software with which you are dealing. The results are often the starting point for a refac-
toring.

Developing New Code

In agile development methods, designs are largely made while coding. However, when
working on a detailed level, it can be very difficult to keep the general architecture in mind.
Nevertheless, any small change in a method can break an architecture by introducing an
undesirable dependency.

Code Review can help you make design decisions while coding. It makes you more aware of
the consequences and the quick feedback on your decisions can be enlightening. Furthermore,
it assists in improving the design through refactoring.

Refactoring Existing Code

Refactoring is improving the design of existing software code.

Code Review lets you quickly assess the consequences of moving classes and packages to
another location in the package structure. In many cases, an analysis with Code Review leads
to the conclusion that a class is in the wrong package. However, moving classes in the code
can be a lot of work because all the references to the class need to be modified.

Code Review provides automated refactoring support for:

� Moving and renaming packages and classes.

� Removing unused import statements.

Verifying Designs

In some projects, it may be beneficial to define a package structure outside of the code. Code
Review lets you define such a package structure and then verify that an implementation
conforms to this design. This is particularly useful when working in large teams.

Recommended Reading

One of the first people to publish on the topic of package design was John Lakos in his book
on Large Scale C++ Software Design. (7) In C++, classes are usually organized in source
directories: the language does not directly support packages. Nevertheless, many of the princi-
ples described in this book, including the ADP, are also relevant for Java development. R.
Braithwaite-Lee has written an article, “Dependencies and Levelization”, based on the work of
John Lakos. (1)

Robert Martin also introduces a set of metrics for assessing object oriented designs. The
package design principles in this document have been directly taken from his book that
discusses both agile development methods and design patterns and principles. (8) Section 4 in
the book is devoted to package design.
 DevPartner Java Edition Code Review User’s Guide 17

Chapter 1 · Using Code Review Java Edition
Kirk Knoerschild has written Java Design, Objects, UML and Process. About the ADP he
writes, “When developing Java applications, we should rarely find ourselves in a situation
where we have violated the ADP. The consequences of doing so are dire, and we should avoid
it at all costs.”

Refactoring by Martin Fowler (3) is one of the most important books on object oriented devel-
opment of recent years. It introduces and describes the process of refactoring in great detail.
Fowler has also written an interesting article that deals with package design, layering and
reducing coupling. (2)

Many books about Java design and style do not cover package design. A positive exception is
The Elements of Java Style, which includes the ADP and other package conventions. (11)

An earlier version of Code Review was presented at the IASTED SEA conference. (5)

Three other documents that provide insight into different aspects of design validation include
an article on UML by Hubert Matthews and Mark Collins-Cope in ObjectiveView (9); the
chapter on Packages in The Java Language Specification (4); and an article by D.Parnas from
Communications of the ACM (10).

Bibliography

1 Braithwaite-Lee, R. “Dependencies and Levelization”.

2 Fowler, M. “Reducing Coupling”. IEEE Software July-August 2001, pp. 102-105. Online
PDF copy available from the Web site of Martin Fowler at http://martinfowler.com/ieee-
Software/coupling.pdf.

3 Fowler, M. Refactoring, Addison-Wesley, 1999.

4 Gosling, J., B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Chapter 7:
“Packages”. Online version available at http://java.sun.com/docs/books/jls/second_edition/html/
packages.doc.html#60384.

5 Hautus, E. “Improving Java Software through Package Structure Analysis”. Sixth
IASTED International Conference Software Engineering and Applications, 2002. Online
PDF copy available at http://www.xs4all.nl/%7Eehautus/papers/PASTA.pdf.

6 Knoernschild, K. Java Design, Objects, UML and Process, Addison-Wesley, 2002.

7 Lakos, J. Large Scale C++ Software Design, Addison-Wesley, 1996.

8 Martin, R. C. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall, 2002.

9 Matthews, H. and M. Collins-Cope, “The Topsy Turvy World of UML”. ObjectiveView #
4. Online PDF copy available at http://www.ratio.co.uk/objectiveview.html#issue4.

10 Parnas, D. “On the criteria to be used in decomposing systems into modules”. Communi-
cations of the ACM, Vol. 15, No. 12, 1972, pp. 1053–1058. Online HTML copy from the
ACM Web site at http://www.acm.org/classics/may96/.

11 Vermeulen, Ambler, Bumgardner, Metz, Misfeldt, Shur, & Thompson. The Elements of
Java Style, Cambridge University Press, 2000.
18 DevPartner Java Edition Code Review User’s Guide

http://martinfowler.com/ieeeSoftware/coupling.pdf
http://martinfowler.com/ieeeSoftware/coupling.pdf
http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#60384
http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#60384
http://www.xs4all.nl/%7Eehautus/papers/PASTA.pdf
http://www.ratio.co.uk/objectiveview.html#issue4
http://www.acm.org/classics/may96/

Chapter 1 · Using Code Review Java Edition
Layering

A common system architecture approach is to define a layered architecture. A layered archi-
tecture is easier to understand and maintain than one where all packages depend on each other.

Strict Versus Non-strict Layering

Szyperski makes a distinction between strict and non-strict layering.1 In a strict layering,
elements depend only on elements from the layer directly below it. The lower layers are
hidden. In a non-strict layering, layers can depend on any lower layers. In Java programming,
strict layering is not common.

Reconstructing a Layering

In a package structure that conforms to the ADP, a non-strict layering can be reconstructed
using the following definition:

The package layer is the maximum length of a dependency path to a package with no
dependencies.

Note that the reconstructed layering has the added property that packages on one layer do not
depend on each other.

1. Szyperski, C. Component Software, Addison-Wesley, 1998.
 DevPartner Java Edition Code Review User’s Guide 19

Chapter 1 · Using Code Review Java Edition
The following graphic shows a layout generated with this layering definition.

Figure 1-4. Non-Strict Layer Reconstruction

Dealing with Cycles

Code Review allows package structures to be visualized as UML class diagrams. Unlike the
JUnit example in the preceding figure, most Java programs do not conform to the ADP. In
such cases, it can be difficult to comprehend the intended package structure.
20 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
A simple way to deal with cyclic dependencies is to simply ignore dependencies that are part
of a cycle. The result of this approach is shown in the following graphic, using the Java
package as an example. Dependencies that are part of a cycle are shown in orange.

Figure 1-5. UML Class Diagram — Package Structure

Since the approach in the preceding graphic does not help to understand the intended layering,
Code Review introduces an algorithm that reconstructs a layering in a more advanced way.

The algorithm finds sets of dependencies such that, if they were to be removed, the resulting
package structure would be acyclic. For all possible sets, a set is chosen that has a minimal
total weight.

The weight of a dependency is the number of references from one package to another. The
weight is an indicator for the amount of work that is necessary to remove this dependency.

The smart layering algorithm finds an estimate for the amount of work that would be neces-
sary to make a package structure acyclic. The dependencies that have been selected for
removal are called the undesirable dependencies.
 DevPartner Java Edition Code Review User’s Guide 21

Chapter 1 · Using Code Review Java Edition
Figure 1-6. Smart Layering Algorithm Showing Undesirable Dependencies

Layers at the Class Level

These algorithms can also be used to analyze dependencies between classes. Cycles are more
acceptable between classes, because classes from the same package are usually meant to be
reused together anyway (see the CRP). Nevertheless, removing cycles between classes can
make a package design more easy to understand and test.

The following graphic shows the package javax.swing.table.

The algorithm suggests to remove the dependency between TableColumn and JTable-
Header.

This dependency not only ties together TableColumn and JTableHeader, but all classes
in the top three layers. Removing the dependency (for example with an inner interface in
TableColumn), would make the design acyclic. TableColumn could then be tested or
reused independently of JTableHeader, DefaultTableColumn, and TableColumn-
Model.
22 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
Figure 1-7. javax.swing.table Package

Is UML Upside Down?

One thing to note about Code Review UML diagrams is that they are upside down with respect
to the convention that parent classes should be shown higher than subclasses. They do,
however, follow the convention that higher layers are shown on top off lower layers. H.
Matthews and M. Collins-Cope have written an article about this mismatch of conventions1.

Design Metrics

Metrics can help you create software that is based on package design principles and layering
by indicating where design rules are possibly violated. Code Review provides several kinds of
metrics:

� Basic metrics — Numbers of specific language elements that occur in a program

� Quality metrics — Measurements based on design principles and general software engi-
neering principles

� Stability metrics — Measurements based on package stability

The Metrics window displays the statistics for each metric. Each tab in the window is associ-
ated with a diagram view in the Design Validation Details page; when you select a tab, the
diagram automatically changes to the associated view.

1. Matthews, H., and M. Collins-Cope. “The Topsy Turvy World of UML”. ObjectiveView #4. PDF
version available online at http://www.ratio.co.uk/ov4.pdf.
 DevPartner Java Edition Code Review User’s Guide 23

http://www.ratio.co.uk/ov4.pdf

Chapter 1 · Using Code Review Java Edition
Basic Metrics

The basic metrics measure the number of specific language elements that occur in a program.

� Nde — Number of direct elements in a package (subpackages + classes)

� Nt — Number of types (classes + interfaces)

� Nc — Number of classes

� Na — Number of abstract types (interfaces + abstract classes)

� Ni — Number of interfaces

� Nf — Number of compilation units (files)

The basic metrics include subpackages when present.

Quality Metrics

The quality metrics are based on the design principles (see “Package Design Principles” on
page 15) and on general software engineering principles.

Metrics should always be seen as indicators, not as absolute truth. It is possible to score well
on all metrics, but still have an unsatisfactory design.

Acyclic Dependency Principle Metric (ADP/ADPR): The ADP states that there should be
no cycles in the package-dependency graph. The ADP metric gives the percentage of depen-
dencies that do not need to be removed in order to get cycles out of the dependency graph. If
the metric is 100%, it means there are no cycles in the package structure. If the metric is 90%,
it means 10% of the dependencies need to be fixed minimally to get the package structure to
conform to the ADP.

The ADP analyzes the dependency graph on a single level, in other words, it does not consider
how subpackages are structured. The ADP recursive (ADPR) is a variation that analyzes
dependencies in the complete package tree. These metrics are introduced by Code Review.
They have proven to be very valuable in assessing the software quality of large projects.

Dependency Inversion Principle Metric (DIP): The Dependency Inversion Principle is
another principle from Agile Software Development: Principles, Patterns, and Practices
(2002). It is a class-level design principle, and does not apply to package design. It states that
classes should depend upon abstract entities, not concrete ones.

The DIP metric is defined as the percentage of dependencies in a package or class that has an
interface or an abstract class as a target. A DIP of 100% indicates that all dependencies in a
package diagram are based on interfaces or abstract classes.

Stable Abstractions Principle Metric (SAP): The SAP states that a package should be as
abstract as it is stable. The SAP metric in Code Review is the same as Robert Martin's D
stability metric (Agile Software Development: Principles, Patterns, and Practices, 2002),
expressed as a percentage. Abstract packages that are used a lot, as well as concrete packages
that themselves are not used, score the highest.

Encapsulation Principle Metric (EP): In a good modular design, each of the modules encap-
sulates implementation details that are not visible to the user of the module.
24 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
The Encapsulation Principle is, therefore: A substantial part of a package should not be used
outside of the package.

Limited Size Principle Metric (LSP): To avoid solutions where all elements are placed in a
single package, we introduce the Limited Size Principle: All packages should have a limited
amount of direct children.

The LSP metric defines the limit (rather arbitrarily) at 10. Packages with more than 10
subpackages or top-level classes should be split up in smaller packages.

Stability Metrics

The stability metrics have been defined by Robert C. Martin in Agile Software Development:
Principles, Patterns, and Practices, 2002. They can be seen as intermediate results for the
SAP metric.

� Ca — Afferent couplings: the number of incoming classes

� Ce — Afferent couplings: the number of outgoing classes

� I — Instability: I = Ce/(Ca+Ce)

� Nc — Number of classes in the package

� Na — Number of abstract types (interfaces + abstract classes) in the package

� A — Abstractness: A = Na/Nc

� D' — Normalized distance: D' = |A+I-1|

Code Review offers the possibility to use either the original definitions for the couplings Ca
and Ce or weighted definitions. In the latter case, the original definitions are modified; the
couplings Ca and Ce are not calculated according to the number of incoming and outgoing
classes but rather on the weight of the dependencies. Using the dependency weight takes into
account that some classes are more tightly coupled than others. The meaning of the metric is
not altered.

The stability metrics include subpackages when present.

Viewing Design Violations

While the Design Validation Summary page displays an overview of design violations, the
Design Validation Details page provides the means to view and edit the structure of the code
model. The Design Validation Details page displays package design details in separate tree and
class diagram panes. To display the design validation details, click any link in the Design
Validation Summary page.
 DevPartner Java Edition Code Review User’s Guide 25

Chapter 1 · Using Code Review Java Edition
Figure 1-8. Design Validation Details Page — Code Model Structure

To fix design violations, it is first advisable to examine the summary to determine what
remedial action is required, and then refactor the code accordingly:

1 Examine the Design Validation Summary page to establish the worst cases of design viola-
tion from the three categories. If necessary, click change size setting to open the Recom-
mended Package Size Setting dialog box, in which you can specify the maximum
number of elements to list.

2 To view details of a specific violation, click the corresponding link to open the Design
Violation Details page.

3 In the Design Validation Details page, right-click on objects in the tree or class diagram
panes to display a popup menu. The options available depend on the object selected.

4 To display information about dependencies, double-click a dependency to bring up the
Dependency View; or double-click a package, class, or interface to display the Usage
View.

5 To view the analysis of the model using another quality metric, click the quality metric to
display a menu, and select another metric.

6 To view metrics, choose View>Metrics View.

7 To improve the layout of a class diagram, drag and drop elements in the diagram. Changes
to the layout can be saved as part of the model but this does not affect the source code. If
the contents of a package change, a new layout is computed.
26 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
8 To change the font size, right-click the background, select Font Size and select the font
size you want to use. This may change the layout of the packages.

Note: Note: Reducing the font size is useful if there are so many elements on the
class diagram pane that package and class elements are overlapping.

9 To open the class diagram for a package, double-click the package.

10 To navigate to the parent package of the current class diagram, double-click the Show
Parent icon.

11 To move an element, drag and drop it to a new location in the tree pane. You can also drop
it on the class diagram, as long as the target element is represented in the class diagram
pane.

12 To edit a class or interface, double-click it to open the external editor for that class. For
more information, see “Configuring an External Editor” on page 34.

13 To undo or redo edits, choose Edit>Undo or Edit>Redo.

14 To return to the Design Validation Summary page, click Summary.

Note: When you edit a code model, the change is stored in the model and can be
applied to the code by choosing Tools>Refactor Code With Model Edits.

Exporting Design Reports

You can export design metrics in a variety of formats:

1 In the Design Validation Summary page, click Export to display the Export Metrics dia-
log box.

2 Select the desired report format. The formats are described in “Export Options” on page
28.

3 If you selected Print Format Reports, select the report format (PDF, postscript, or text)
from the third list; PDF is selected by default.

4 A default location and filename are entered automatically in the Output File field. To
change the location or filename, type over the default or use the browse button to navigate
to the desired location.

5 Click Save to export the violations summary.
 DevPartner Java Edition Code Review User’s Guide 27

Chapter 1 · Using Code Review Java Edition
Note: Saving the report may take several seconds.

6 When the export is complete, the dialog box closes.

Default File Location

The default location of the exported file depends on your operating system:

� Windows XP or 2003 — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\exports

Note: By default, the Application Data folder is hidden. To display the exports
folder and its contents, type the path in the Address field of Windows Explorer
and press Enter.

� Windows 2008 or Vista — C:\Program Data\Micro Focus\DevPartner
Java Edition\var\exports

� UNIX — DPJ_dir/var/exports
where DPJ_dir is the path of the DevPartner Java Edition product folder

Export Options

The Summary to HTML option creates a copy of the Design Validation Summary page,
without the hyperlinks.

The Changepoint Metrics option creates an XML file containing the value of the Maintain-
ability metric. The value of this metric is displayed on the Cycles tab of the Metrics window,
and is defined in the tab's inline help. For more information, see “Viewing Metrics” on page
28. The Maintainability metric can be published to Optimal Delivery Manager. For more
information, see “Metrics Publishing Utility” on page 41. Also refer to the separate documen-
tation for PubMetrics.

The other options create a report, in the specified format, that lists the following metrics for
each package:

� Members
� ADPR collapsed
� ADPR class level
� Signature Interface Use
� Normalized Distance
� Number of EJBs
� Number of Servlets
� Number of Struts actions
� Number of Struts form beans
� Lines of code
� Lines of manual code
� Lines of generated code

Viewing Metrics

Code Review reports a number of metrics that measure various aspects of the code model
design.
28 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
The quality metrics are used to color-code elements in the class diagram pane to indicate the
degree of conformance with a design principle.

Figure 1-9. Quality Metrics — Conformance

By default, the diagram is color-coded according to the Acyclic Dependencies Principle.

To view the metric values for a code model, choose View>Metrics. Choose the appropriate
tab in the Metrics window to see the values of interest.

Figure 1-10. Metric Values For Code Model

When you open the Metrics window, the tab associated with the current view in the Design
Validation Details page is displayed automatically. If you select a different tab, the design view
changes to the same metric.

Inline help text in the Metrics window provides definitions for the metrics in each tab. Click
the small triangles in the lower right corner to show or hide the help text.

Dependency Inversion Refactoring

Code Review provides support for inversion refactoring between classes, a standard way of
removing some cyclic dependencies by inverting the dependencies between two classes.
Support is also provided for dependency inversion refactoring between packages when all
class-to-class dependencies between the two packages can be inverted.
 DevPartner Java Edition Code Review User’s Guide 29

Chapter 1 · Using Code Review Java Edition
As an example, assume two classes — Bottom and Top — in which Bottom depends on
Top.

To invert the dependencies:

1 Create an inner interface in Bottom, for example, TopListener.

2 To the TopListener interface, add every method from Top that is called from Bot-
tom.

3 Replace all occurrences of Top in Bottom with TopListener.

4 Have Top implement the TopListener interface. This is possible because TopLis-
tener consists of the methods that were originally in Top.

5 Remove imports from Bottom and add them to Top, if they are in different packages.

The Top class now depends on Bottom.

It is important to understand, however, that Code Review can provide support for dependency
inversion refactoring between classes only when the following criteria are satisfied:

� Bottom does not extend or implement Top.

� Bottom does not create Top.

� Bottom does not use a Top field.

� Bottom does not use Top in its interface.

Note: In Code Review, for dependency inversion refactoring between classes and
packages, by default the name of the listener is set to NameOfClassLis-
tener and NameOfPackageListener, respectively.

Fixing Dependencies

The Design Validation Details page shows the dependencies between packages. On the class
diagram pane, cyclic dependencies are shown in red if the layering algorithm indicates that a
fix is appropriate (for further details, see “Layering” on page 19). Where cyclic dependencies
have a light bulb icon beside them, this indicates that Code Review can refactor the code to
remove a cycle either by moving a class, removing an unused import or by inverting the
dependency. For more information, see “Dependency Inversion Refactoring” on page 29.
30 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
To refactor the code:

1 Where a light bulb is shown, right-click it to display a menu of possible actions and
choose the action you want to implement. The refactoring actions available in the menu
depend upon the number of alternative solutions for correcting the cyclic dependency.

You may need to modify the code manually to eliminate other undesirable dependencies.

2 To display a high-level analysis, showing only cycles between packages (not cycles
between individual elements such as classes or methods) choose View>Classes Col-
lapsed. This collects all top level classes in a package and represents them by a virtual col-
lapsed classes package.

3 If you are satisfied with the changes made in the code model, you apply the changes in the
code. For more information, see “Synchronizing the Source Code with the Code Model”
on page 32.

4 To display a list of all dependencies, double-click a dependency. Information about the
dependencies is displayed in the Dependency View.

You can use this information to determine how to modify the code manually to remove the
dependency.

5 To fix a dependency manually, highlight the dependency in the list and click the Source
Fragment link to open the code in an external editor.

6 After changing the code, choose Tools>Update Model from Code Edits to synchronize it
with the code model.
 DevPartner Java Edition Code Review User’s Guide 31

Chapter 1 · Using Code Review Java Edition
Synchronizing the Source Code with the Code Model

Based on Code Review's analysis of your source code, you can edit the model (for example,
invert dependencies) or edit the source code itself. In either case, the code model and source
code must be synchronized. This topic describes how to synchronize the source code with the
code model.

After editing the model, you can update the code from the model by choosing Tools>Refactor
Code With Model Edits. You can only do this with files that have not been edited outside the
control of Code Review since the model was last built.

Note: This functionality is not available if you did not select the Allow refactoring
option when creating the code model. For further details, see “Creating a
Code Model” on page 8.

Prior to refactoring the code, it is highly recommended to make a backup of your source files
because you cannot choose to undo the changes.

To apply changes in the model to the source code:

1 From the File menu, choose Save or Save As to save the model.

2 From the Tools menu, choose Refactor Code With Model Edits to display the dialog
box.

3 Click Apply Edits to display the About to refactor dialog box. This dialog box shows a
list of source code files to be modified. These files need to exist and to be writable. The
cyclic redundancy check (CRC) also needs to be correct.
32 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
4 If a CRC option is not selected, the associated file has been changed outside the control of
Code Review. To continue to refactor the code from model edits, either:

� Temporarily replace the updated file with the original. After the code is refactored,
merge the file that failed the CRC with the refactored file.

� Choose Tools>Update Model from Code Edits to update the model from the source
code. Note, however, that all changes made to the model since the model was last built
will be lost.

5 If a Writeable option is not selected, the read-only file attribute is probably enabled. You
need to disable the read-only attribute in order to continue to refactor the code with model
edits. For instance, if you are using a source code control system, check out the files in the
list.

6 To refactor the code, click Refactor. If any of the files do not exist, are not writable, or
have failed the CRC, refactoring cannot take place and a warning message is displayed.

Creating a Design Reference

A design reference enables you to design a package structure in the unified modelling
language (UML) and enforce this design when it is implemented in Java. It contains packages
and dependencies but no classes. Unlike a source model, it is not based on source code. Design
models have the extension .pdm. You can share this design with others to ensure that every-
one on the project is following the correct design.

To create a new reference package design:

1 Choose File>New Design Reference. This creates a default package.

2 Create the required packages in the Tree View. To create new packages, right-click and
choose New package. To create dependencies, right-click and choose Dependencies.
Dependencies in the design can only be created between packages with the same parents.

3 Save the design reference.

Comparing a Code Model with a Design Reference

If you are developing source code using a design reference as a guideline to the package struc-
ture, you should periodically verify that the source code conforms to the design.

To compare a code model with a design reference:

1 Create or load a code model for the source code. See “Creating a Code Model” on page 8.

1 Choose Tools>Compare Model with Design.

2 Select the .pdm file containing your design reference.
 DevPartner Java Edition Code Review User’s Guide 33

Chapter 1 · Using Code Review Java Edition
3 Code Review checks the code model on the package level. The results of the comparison
are shown in the Verification dialog box.

Dependencies between classes are not verified. Code Review combines all classes and inter-
faces in a collapsed classes package and verifies the dependencies between this temporary
package and the other packages. You can model collapsed folders by giving a package the
name <collapsed> (including angle brackets).

By default, the dialog box shows whether the design matches the source: that is, whether
objects that are in the source code are also in the design reference. In effect, it tells you
whether the design reference has been updated as development progresses.

You may, however, want to see the opposite perspective: whether the source code complies
with the design reference. To list objects that are in the design reference but not in the source
code, click Swap.

To return to the previous perspective, click Swap again.

Configuring an External Editor

You can access an external editor to view or edit source code from several places in Code
Review. To do so, you must first configure your preferred editor to open files. No internal text
editor is included.

To set the external editor:

1 Choose Options>External Editor.

2 Enter the command to start up your editor of choice. Depending upon the editor, you can
use the following options to open the specified source file at the appropriate line:

� <file> — Specifies the file to open.

� <startline> — Specifies the line number in the code.

For example, the following command configures TextPad as the external editor:

textpad.exe -u <file>(<startline>
34 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
Note: Some text editors do not support opening a file at a specific line number. For
example, the command for Notepad would have to be entered as

notepad.exe <file>

Consult the documentation shipped with your preferred editor for details of
command line options and parameters.

Command Line Interface

Note: For information about the Metrics publishing command-line utility for publish-
ing Code Review metrics to Optimal Delivery Manager, refer to the PDF file
Metrics Publishing Utility User Guide (PubMetrics.pdf) in the DevPartner
Java Edition product folder.

The majority of Code Review features for analysis, refactoring, and reporting can be used
from the command line. The command line interface is useful in a variety of circumstances.
For example, an automated analysis could be incorporated into the build process of your
product and the results included with the build report.

Using the appropriate setoption parameters described below, you can view the generated
Code Review report in text or XML format. The report can be saved as a file or printed to the
console.

Two commands for reporting are unique to the command line interface:

� creatediagrams — Save a tree of package diagrams with an HTML page in the spec-
ified folder (dir).

� uml2javadoc — Add UML diagrams to an existing javadoc tree based on the current
model. Optionally, set width and height.

Note: The use of uml2javadoc to enhance Javadoc is demonstrated in the tutorial
“Enhancing Javadoc with UML Diagrams” on page 87.

Command Syntax

While the command line interface is compatible with ANT, using the command line interface
independently requires the use of a script file.

Note: Only the help command is designed to function outside a script.

Each line of the script file must be one of the commands or options shown in the tables (see
“Command-Line Options” on page 36 and “Commands” on page 38). Lines that start with #
are ignored and can be used as comments.

The option(s) must precede the command(s) in the script. If you are creating a new code
model, the command newjava must precede all other commands. If you are creating a new
design model, the command newdesign must precede all other commands.

The environment variables JAVA_HOME and ADVISOR_HOME must be set to the home folder
of your JDK installation and the home folder of your DevPartner Java Edition installation,
respectively.

Use the following command to invoke a script file:
 DevPartner Java Edition Code Review User’s Guide 35

Chapter 1 · Using Code Review Java Edition
1 | "%JAVA_HOME%/bin/java" -Xmx300M -enableassertions

| -DADVISOR_HOME="%ADVISOR_HOME%" -Djava.library.

| path="%PATH%" -cp "%JAVA_HOME%\lib\tools.

| jar";"%ADVISOR_HOME%\lib\DLM40JNI.

| jar";"%ADVISOR_HOME%\bin\Code Review.jar" com.compuware.

| advisor.application.commandLine.CommandLine script

| <filename.txt>

In this script file, <filename.txt> is the fully qualified path to the script file.

If the path to the script file contains any spaces, enclose the argument between quotation
marks (" "). This requirement applies whenever a path is used as an argument, whether at the
command line or within a script.

Command-Line Options

When you include setoption in your Code Review script, it sets the value for the specified
option in the advisor.cfg file. You must include a separate setoption command, one
per line, for each option you want to define for your code model or new design.

The following table describes the options. The syntax is as follows.

setoption <option> [argument]

Table 1-1. Command-Line Options

Option Valid Values Description

autosave value TRUE or FALSE Whether to save the model auto-
matically after building it.

basedir value The path. The base folder. Set in ANT, also
usable as a standalone script
option.

bcExcludePath value The path(s) of the files/
folders.

A semicolon-separated path of files/
folders that need to be excluded
from bytecode analysis.

buildforrefactoring
value

TRUE or FALSE Enable refactoring to be switched
off to increase performance when
refactoring is not needed.

bytecodepath value — The bytecode path to use when
building the code model.

bytecodesourcepath
value

 — The source path of bytecode.

classpath value — The classpath to use when building.

collapsed value TRUE or FALSE Collapse classes (true or false).
36 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
dependencyweights
value

TRUE or FALSE Show weights in diagrams.

inputPath value — Any additional bytecode path(s)
added by the user.

nodesize value 7 through 12 The size of the font used for nodes
in diagrams.

packagesizemax value — Recommended maximum package
size.

precision value 0 (zero) through 10 The number of digits behind the .
(period) when outputting values.

quiet value — Suppress output to standard out.

reportexecution value TRUE or FALSE Show timing and memory usage for
executed commands

reportFile value The output file name. If the filepath
is not provided, then the output file
is created in the launch folder.

reportFormat value text, Text, TEXT, xml, XML The format type of the report (text
or XML).

ruleset value — The list of active rules, separated
by a backslash (\).

scExcludePath value — A semicolon-separated path of files/
folders that need to be excluded
from source code analysis.

showdependencies
value

TRUE or FALSE Show dependencies in the ADP
report.

source14 value — Use the -source14 option when
building.

sourcepath value — The sourcepath to use when build-
ing.

usesourceparser value TRUE or FALSE Parse source (TRUE) or parse
bytecode (FALSE).

Table 1-1. Command-Line Options (Continued)

Option Valid Values Description
 DevPartner Java Edition Code Review User’s Guide 37

Chapter 1 · Using Code Review Java Edition
Commands

The following table describes the commands that can be included in a script file to execute
Code Review functionality from the command line.

Table 1-2. Command

Command Arguments Description

help — Give the list of Code Review scripting
commands.

newdesign — Create a new empty design.

newjava sourcePath Parse Java source to a new model.
Argument is a list of directories/files
separated by semicolons.

adddependency from to Add a dependency between the
from and to element.

adpreport [prediction] (see Notes) Generate a list in HTML of undesir-
able dependencies for the current
model, based on the ADP.

adpreporthtml outputfile Generate a list in HTML format of
undesirable dependencies for the
current model.

applytosource — Apply the accumulated refactoring
steps to the source.

checkrules packagename or class-
name

Check the element for any rule viola-
tions and record violations in an XML
file.

cleanimports [prediction] Remove unused imports.

codereport file Generate an HTML file with a sum-
mary report on code validation.

creatediagram file package [w [h]] Save the diagram of a package or
class in the file in PNG format.

creatediagrams dir [w [h]] Save a tree of package diagrams
with an HTML page in the specified
folder (dir).

delete name Delete the named element.

deletedependency from to Delete the dependency between the
given elements.

designreport file Generate an HTML file with a sum-
mary report on design validation.

flatten packageName [false] Set the flatten value for a given pack-
age name; add false to switch off.

flattenall [false] Set the flatten value for all packages;
add false to switch off.
38 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
Notes:

• If the argument [prediction] is set, the result of the command is compared to the pre-
diction. If the prediction is different from the result, an error message is generated. When
used from ANT, a BuildException is raised.

• Where the value of param? is a list, unless otherwise stated a string of items separate by
semicolons is required. Where a value is required but not specified in the description, the
value is Boolean. Where [w[h]] is required, it refers to the dimensions of the diagram in
units of pixels.

metric packagename metricname
[prediction]

Give the quality metric value for the
given package. The following metrics
are supported: NONE, ADP, DIP,
SAP, EP, LSP, ADPR, Ca, Ce, I, Nc,
Na, A, D', Nde.

move from to Move an element.

newpackage name Create a new package.

open file Open the model in the given file.

publishcodeviola-
tions

filepath/file.xml Export code violations to the speci-
fied file.

publishdesign filepath/file.xml Export the design report to the speci-
fied file.

rename name newName Rename an element.

save file Save the model to the given file.

script file [quiet] Open the file and interpret its con-
tents as commands.

uml2javadoc javadocroot [w [h]] Add UML diagrams to an existing
java doc tree based on the current
model. Optionally, set width and
height.

verifydesign file Verify the current model against the
design in the file.

xmlmetrics file Export, in XML format, all the metrics
of the model built using the new-
java command.

Table 1-2. Command (Continued)

Command Arguments Description
 DevPartner Java Edition Code Review User’s Guide 39

Chapter 1 · Using Code Review Java Edition
Example Script Files

The following example shows the use of options and commands in a command-line script.

1 | setoption scExcludePath

| /usr/local/share/WorkingCode/SnmpWebMonitor40src/IntroGUI.java

2 | setoption scExcludePath

| /usr/local/share/WorkingCode/SnmpWebMonitor40src/IntroGUI.java

3 | setoption classpath

| /usr/local/share/WorkingCode/SnmpWebMonitor40src/activation.jar

4 | newjava /usr/local/share/WorkingCode/SnmpWebMonitor40src

5 | designreport /tmp/sampleDesign.html

The following script file executes the tutorial “Improving a Package Structure” at the
command line.

Note: To create a working code model to which subsequent commands refer, a script
should always begin with a newjava command.

1 | newjava C:/jmeter/source

2 | move org.apache.jmeter.JMeterUtils org.apache.jmeter.util

3 | newpackage org.apache.jmeter.top

4 | move org.apache.jmeter.Driver org.apache.jmeter.top

5 | move org.apache.jmeter.TextDriver org.apache.jmeter.top

6 | move org.apache.jmeter.JMeter org.apache.jmeter.top

7 | move org.apache.jmeter.JMeterEngine org.apache.jmeter.top

8 | move org.apache.jmeter.threads.JMeterThreadAdapter

| org.apache.jmeter.

| controllers

9 | move org.apache.jmeter.threads.HTTPJMeterThread

| org.apache.jmeter.

| controllers

10| deletedependency org.apache.jmeter.util.JMeterUtils

| org.apache.jmeter

| .visualizers

11| applytosource

12| report
40 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
The following script specifies a format and output file for a report for saving the output of the
checkrules command.

1 setoption reportFormat xml

2 setoption reportFile c:\temp\jClassLib-viols.xml

3 newjava "C:\src\Common\Tools\jclasslib\src"

4 checkrules org.gjt.jclasslib

Type the following script at the command prompt to view a list of Code Review commands.

1 | "%JAVA_HOME%/bin/java" -Xmx300M -enableassertions

| -DADVISOR_HOME="%ADVISOR_HOME%" -Djava.library.

| path="%PATH%" -cp "%JAVA_PATH%\lib\tools.

| jar";"%ADVISOR_HOME%\lib\DLM40JNI.

| jar";"%ADVISOR_HOME%\bin\Code Review.jar" com.compuware.

| advisor.application.commandLine.CommandLine help

Note: If a Code Review License Error occurs, set -Djava.library.path to the
Distributed License Manager's installation location. By default, the license
manager is installed in C:\Program Files\Common Files\Compuware.

Metrics Publishing Utility

Code Review calculates two quality metrics, Maintainability and Compliance, that can be
published to the Optimal Delivery Manager (ODM) using the Metrics publishing utility. For
complete information about these metrics and the utility, see the PDF file Metrics Publishing
Utility User Guide (PubMetrics.pdf), which is provided in the DevPartner Java Edition
installation folder.

Before publishing the metrics, you must export them from Code Review. The Maintainability
metric is exported through the Design Validation Summary page. For more information, see
“Exporting Design Reports” on page 27. The Compliance metric is exported through the Code
Validation Summary page. For more information, see “Exporting Rule Violation Reports” on
page 13.

ANT Integration

Code Review supports use of the command line interface with ANT.

Invoking ANT with the Code Review command line interface enabled requires a batch file
with the following settings.

1 | @echo off

2 | set cp="%ANT_HOME%"\lib\ant.jar
 DevPartner Java Edition Code Review User’s Guide 41

Chapter 1 · Using Code Review Java Edition
3 | set cp=%cp%;"%ANT_HOME%"\lib\ant-launcher.jar

4 | set cp=%cp%;"%ADVISOR_HOME%"\lib\DLM40JNI.jar

5 | set cp=%cp%;"%JAVA_HOME%"\lib\tools.jar

6 | set cp=%cp%;"%ADVISOR_HOME%"\bin\Code Review.jar

7 | set PATH=%ADVISOR_HOME%\lib;%PATH%

8 | "%JAVA_HOME%/bin/java" -Xmx300M -Xms100M -enableassertions

| -Djava.library.path="%PATH%"

| -Dadvisorhome="%ADVISOR_HOME%" -classpath %cp% org.apache.

| tools.ant.Main %vb% %1 %2 %3 %4 %5 %6 %7 %8 %9

Note: The listing is valid for Microsoft Windows operating systems; the settings can
be applied to any operating system that Code Review supports.

To use the command line interface with ANT, use the AdvisorAnt class in the task defini-
tion.

<taskdef name="advisor" classname="com.compuware.advisor.appli-
cation.ant.AdvisorAnt">

<classpath>

<pathelement path="${advisorhome}\bin\Code Review.jar"/>

</classpath>

</taskdef>

The standard ANT functionality is extended to include the Code Review command line inter-
face. When constructing ANT files, there are likely to be alternative ways to achieve a particu-
lar objective. For instance, Code Review supports the ANT fileset element and it is
possible to specify a list of files either using include elements or a single string of semi-
colon separated items.

Performing an Analysis with ANT

The following ANT listing demonstrates some of the alternative ways to perform an analysis.
It analyzes Code Review itself and begins by defining a new bytecode model reliant upon a
single file location. This definition then evolves to create a class diagram and to include a
more precise specification of the resources.

1 | <?xml version="1.0" encoding="UTF-8" ?>

2 | <project basedir="." default="all" name="antSample">

3 | <property name="output" value="${advisorhome}\bin"/>

4 | <property name="3rdparty"

| value="C:\Development\MyProject\3rdparty"/>

5 | <taskdef name="advisor"
42 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
| classname="com.compuware.advisor.application.ant.AdvisorAnt">

6 | <classpath>

7 | <pathelement path="${advisorhome}\bin\Code Review.jar"/>

8 | </classpath>

9 | </taskdef>

10| <!— bytecode parsing of a complete folder using the

| 'setoption' command to enable bytecode parsing —>

11| <target name="example1">

12| <advisor command="setoption" param1="usesourceparser"

| param2="false"/>

13| <advisor command="newjava" param1="${output}"/>

14| </target>

15| <!— Same as example1 but now using the 'advisor' element

| 'usebytecode' attribute to enable bytecode parsing —>

16| <target name="example2">

17| <advisor command="newjava" usebytecode="true"

| param1="${output}"/>

18| </target>

19| <!— Include additional resources and create class diagram —>

20| <target name="example3">

21| <advisor command="newjava" usebytecode="true"

| param1="${output};${3rdparty}\util.jar"/>

22| <advisor command="setoption" param1="showdependencies"

| param2="true"/>

23| <advisor command="creatediagram" param1="diagram.png"

| param2="com.compuware.advisor" param3="400" param4="400"/>

24| </target>

25| <!— Same as example3 but now using the ANT 'fileset' element to

| specify the resources —>

26| <target name="example4">

27| <advisor command="newjava" usebytecode="true"
 DevPartner Java Edition Code Review User’s Guide 43

Chapter 1 · Using Code Review Java Edition
| param1="${output}">

28| <fileset dir="${output}">

29| <include name="${3rdparty}\util.jar"/>

30| </fileset>

31| </advisor>

32| <advisor command="setoption" param1="showdependencies"

| param2="true"/>

33| <advisor command="creatediagram" param1="diagram.png"

| param2="com.compuware.advisor" param3="400" param4="400"/>

34| </target>

35| <!— Exclude specific classes from analysis —>

36| <target name="example5">

37| <advisor command="newjava" usebytecode="true"

| param1="${output}">

38| <fileset dir="${output}">

39| <include name="${3rdparty}\util.jar"/>

40| <exclude name="**\ClassToExclude.class"/>

41| </fileset>

42| </advisor>

43| <advisor command="setoption" param1="showdependencies"

| param2="true"/>

44| <advisor command="creatediagram" param1="diagram.png"
param2="com.compuware.advisor" param3="400" param4="400"/>

45| </target>

46| <target name="all"

| depends="example1,example2,example3,example4,example5"/>

47| </project>

Sample ANT File

The following listing is a complete ANT file that executes the tutorial Improving a Package
Structure.

Note: The particular command that is specified defines the number of associated
attributes.
44 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
1 | <?xml version="1.0" encoding="UTF-8" ?>

2 | <project basedir="." default="all" name="antSample">

3 | <property name="advisorhome" value="C:\Program

| Files\Micro Focus\DevPartner Java Edition"/>

4 | <property name="jmeter"

| value="${advisorhome}\samples\org\apache\jmeter"/>

5 | <taskdef name="advisor"

| classname="com.compuware.advisor.application.ant.AdvisorAnt">

6 | <classpath>

7 | <pathelement path="${advisorhome}\bin\Code Review.jar" />

8 | </classpath>

9 | </taskdef>

10| <!— Code Review Improving a Package Structure tutorial —>

11| <target name="advisor">

12| <advisor command="newjava" param1="${jmeter}"/>

13| <advisor command="move"

| param1="org.apache.jmeter.JMeterUtils"

| param2="org.apache.jmeter.util"/>

14| <advisor command="newpackage"

| param1="org.apache.jmeter.top"/>

15| <advisor command="move" param1="org.apache.jmeter.Driver"

| param2="org .apache.jmeter.top"/>

16| <advisor command="move" param1="org.apache.jmeter.TextDriver"

| param2="org.apache.jmeter.top"/>

17| <advisor command="move" param1="org.apache.jmeter.JMeter"

| param2="org.apache.jmeter.top"/>

18| <advisor command="move"

| param1="org.apache.jmeter.JMeterEngine"

| param2="org.apache.jmeter.top"/>

19| <advisor command="move" param1="org.apache.jmeter.threads.

| JMeterThreadAdapter" param2="org.apache.jmeter.controllers"/>
 DevPartner Java Edition Code Review User’s Guide 45

Chapter 1 · Using Code Review Java Edition
20| <advisor command="move" param1="org.apache.jmeter.threads.

| HTTPJMeterThread" param2="org.apache.jmeter.controllers"/>

21| <advisor command="deletedependency"

| param1="org.apache.jmeter.util.JMeterUtils"

| param2="org.apache.jmeter.visualizers"/>

22| </target>

23| <target name="all" depends="advisor"/>

24| </project>

Customized Reports

Reports can be exported for code rule violations, from the Code Validation Summary page;
and for metrics, from the Design Validation Summary page.

Code Rule Violations

Use the Export Violations dialog box to export code rule violations to a file. The dialog box
includes the options HTML Reports and Print Format Reports. Both options rely on XSL
stylesheets to format the reports.

The stylesheets format an XML stream with the same content as the file created using the
Violations to XML option. The following fragment is taken from a Code Review XML
report. It includes the elements and attributes available to the stylesheet.

1 | <?xml version="1.0" ?>

2 | <data>

3 | <date>Fri Oct 24 08:16:35 CEST 2005</date>

4 | <summary>

5 | <graphBackgroundColor>F5F0EB</graphBackgroundColor>

6 | <totalViolations nbr='89'>89<high nbr='0' percent='0'

| /> <medium nbr='12' percent='13' /><low nbr='77' percent='86'

| /></totalViolations>

7 | <classesWithMostHighViolations>

| </classesWithMostHighViolations>

8 | </summary>

9 | <details>

10| <violation class='org.apache.jmeter.util.JMeterUtils'
46 DevPartner Java Edition Code Review User’s Guide

Chapter 1 · Using Code Review Java Edition
| file='C:\Program Files\Micro Focus\Code
Review\samples\org\apache\jmeter\

| util\JMeterUtils

| .java' line='693' ruleid='3' description='R0003: Public

| class exposes a public field' notes='' category='Design'

| severity='2' severitytext='Medium' />

11| ...

12| <violation class='org.apache.jmeter.visualizers

| .WindowedVisualizer' file='C:\Program Files\Micro Focus\DevPartner
Java Edition\examples

| \org\apache\jmeter\visualizers\WindowedVisualizer

| .java' line='186' ruleid='1011' description='R1011:

| Constructor doesn t initialize all package and private

| fields' notes='' category='Design' severity='3'

| severitytext='Low' />

13| </details>

14| </data>

The HTML Reports and Print Format Reports lists are generated from a listing of the avail-
able stylesheets. The stylesheets are located in the DPJ_dir\stylesheets\HTMLRe-
ports folder and DPJ_dir\stylesheets\PrintReports folder, respectively, where
DPJ_dir is the DevPartner Java Edition product folder.

The stylesheets can be edited to produce customized reports. Adding a new stylesheet to either
of the aforementioned folders will create a new item on either the HTML Reports or the
Print Format Reports list.

Metrics

Use the Export Metrics dialog box to export design violations and metrics to a file. The
dialog box includes the options HTML Reports and Print Format Reports. Both options
rely on XSL stylesheets to format the reports. For more information, see “Export Metrics” on
page 61.
 DevPartner Java Edition Code Review User’s Guide 47

Chapter 1 · Using Code Review Java Edition
48 DevPartner Java Edition Code Review User’s Guide

Chapter 2

User Interface
The User Interface topics describe views, dialog boxes, and menus. They are displayed when
you click the Help option in a dialog box or menu.

Views and Dialog Boxes

The Code Review interface includes these views and dialog boxes.

General

� New Code Model

� Verification of Design Reference

Code Validation

� Code Validation Summary

� Code Validation Details

� Custom Rules

� Rule Filter

� Export Violations

� Refactor Code With Model Edits

Design Validation

� Design Validation Summary

� Export Metrics

� Design Validation Details

� Class Diagram Pane

� Tree Pane

� Dependency View

� Usage View

� Dependency Table

� Metrics Window
 DevPartner Java Edition Code Review User’s Guide 49

Chapter 2 · User Interface
New Code Model

Use this dialog box to specify the parameters for creating a new code model from source code
or bytecode.

Options

� Source Code (allows refactoring) — Allows refactoring.

� Bytecode (faster) — Builds more quickly.

� Exclude Path — List of directories and files where the files to be excluded can be found.
If all the files are in one source tree, give a path consisting of the root of this tree.

� Save model after building — Saves the code model automatically to the working folder
on completion of the build.

The rest of the options vary depending on the selected input:

� Source Settings

� Source Path — List of directories and files where the source files can be found. If all
the sources are in one source tree, enter a path consisting of the root of this tree.

� Class Path — Java classpath used to build the model. This should be the same as the
classpath used to compile the sources.

� If JDK 1.4 is installed: Enable 'assert' keyword (build with -source 1.4) — Enables
the new syntax introduced in JDK 1.4 (most notably the assert keyword).If JDK 1.5
(5.0) is installed: Accept JDK 1.5 language features (build with -source 1.5) —
Enables the new syntax introduced in JDK 1.5 (also called JDK 5.0).

� Allow Refactoring (faster when off) — Enables refactoring of the source files from
the code model. This option requires additional metadata, so it is much faster (typi-
cally twice as fast) to build a code model with this option cleared. However, you must
select this option to synchronize the source files with edits in the code model.

� Bytecode Settings

� Bytecode Path — List of directories and files where the compiled bytecode files can
be found. If all the class files are in one source tree, give a path consisting of the root
of this tree.

� Source Path — Optional list of directories and files where the source files can be
found. If all the sources are in one source tree, give a path consisting of the root of this
tree. Set this field to view the source code in an external editor.

Use

� See “Creating a Code Model” on page 8.
50 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Verification of Design Reference

This dialog box displays the results of comparing a code model with a design reference.

Fields

The dialog box states whether the source complies with the design; that is, it indicates whether
any dependencies in the source are not in the design.

Packages in source but not in design:

� Name — Name of noncompliant package.

� Children — Number of child packages.

� Amount — Dependencies between packages. Dependencies between classes are not veri-
fied.

Dependencies in source but not in design:

� From — Package containing noncompliant dependency.

� To — Package depended upon.

� Amount — Dependency weight in the source. Dependency weight is an estimate of the
number of places in the source code where one element depends on another.

Actions

You can edit the model while displaying this dialog box. The design verification results are
updated on the fly.

Code Validation Summary

The Code Validation Summary page shows a summary of the code rule violations in the code
model. The violations are grouped into three categories:

� Violations By Severity

� Classes With Most High Severity Violations

� High Severity Rules With Most Violations

Clicking any of the hyperlinks under the three category headings will open the Code Valida-
tion Details page.

Note: The categories Classes With Most High Severity Violations and the High
Severity Rules With Most Violations list only the top five violations, even if
there are more than five violations in that category. To see the complete list of
violations, click any link to display the Code Violation Details page.

The Compliance index uses a weighted formula based on dividing the number of violations by
the lines of source code. It can only be calculated for a Source Code model; it is not available
for Byte Code models. A lower score indicates fewer code violations.
 DevPartner Java Edition Code Review User’s Guide 51

Chapter 2 · User Interface
Options

� Select Rules — Select the rules to use in the analysis.

� Export — Print a report, or export an HTML or XML report of the rule violations.

Use

� To view the Code Validation Details for a category, click the appropriate link. For more
information, see “Code Validation Details” on page 52.

� See “Viewing Rule Violations” on page 12.

� See “Exporting Rule Violation Reports” on page 13.

Code Validation Details

The Code Validation Details page displays information about specific rule violations. Rule
violations are listed in a violations table. Detailed information for a selected violation is
displayed in the Source Fragment and Rule Details panes.

Note: If you go to the Custom Rules page from the Code Validation Details page,
change the rules selection, and rebuild the code model by clicking Start, the
Code Validation Details page is not refreshed automatically. To update the
rules violation list, click the Summary button on the Code Validation Details
page to go to the Code Validation Summary page, then click any link on the
summary page to return to the details page.

Violations Table

The table groups violations according to the selection in the Group By field. When you click a
link in the Code Validation Summary page, the appropriate selection is made automatically;
you can change the display by selecting another item from the list.

The violations table contains the following columns, depending on the Group By selection:

� Class — The class in which the rule violation occurs

� Rule — The number and brief description of the rule

� Severity — Severity of the rule violation (High, Medium, or Low)

� Category — The rule category (ruleset).

� Source Code/Line — The location of the rule violation in the source code

Text immediately below the table refers to collections of rule violations within the main group;
for example, Severity consists of three collections arranged according to High, Medium, and
Low severity. However the violations are grouped, clicking the text will redisplay the table for
that collection.

Note: Click the column heading to sort the items by that heading.
52 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Panes

� Source Fragment — Displays the source code with the violating code highlighted. Click-
ing the link at the top of the pane opens the source code into the editor.

� Rule Details — Displays the rule being violated, notes, a detailed explanation, and possi-
ble remedies.

Note: References to Effective Java, 2001 ed. in the rule details refer to Joshua
Bloch's book Effective Java Programming Language Guide, Addison-Wesley,
2001.

Options

Violations Table

� Summary — Return to the Code Validation Summary page.

� Group by — Display the details organized according to the selected group.

� Class lists the classes that contain code identified as violating a rule, with the violated
rule(s) listed under the class.

� Rule lists the rules that are violated; for each rule, the table lists the class and specific code
line containing the violation.

� Severity groups the violations by High, Medium, and Low severity.

� Category specifies the category (ruleset) of the violated rule.

Rule Details

� Suppress Rule — Filters the rule out of the current code analysis.

Custom Rules

Code Review incorporates the PMD source code analyzer.

Note: PMD rules are not available for bytecode models. The Custom Rules page is
available, however, when you open a bytecode model. You can create new
rules while a bytecode model is open, but the PMD and custom rules will only
be applied if you rebuild the model with Source Code selected.

The Custom Rules page lists the PMD and custom rules grouped into rulesets, which are the
same as the built-in rule categories. When you select a rule, its definitiondisplays in the right
pane. The name of the ruleset containing the rule displays at the top of the right pane.
 DevPartner Java Edition Code Review User’s Guide 53

Chapter 2 · User Interface
Figure 2-1. Custom Rules Page

Java class rules and XPath rules are the two PMD rule types used in custom rulesets. Use the
provided PMD rulesets with both rule types as provided (factory default) to create custom
rules. You can duplicate both Java class rules and XPath rules for your own custom rulesets.
You can also modify rules duplicated into your custom rulesets, as well as add your own new
XPath rules, to provide maximum flexibility and customization to your rulesets. Both Java
class and XPath custom rules can be deleted.

For detailed information on how to write coding rules, see "How to write a PMD rule" in the
PMD web site http://pmd.sourceforge.net/howtowritearule.html.

You can only change the priority, and rule message fields for custom Java class rules.

Custom rules data are stored in XML files in //Documents and Settings/All Users/Application
Data/Micro Focus/DevPartner Java Edition/var/rulesets.

In the Custom Rules page, you can:

� Create custom rules.

� Edit custom rules.

� Delete custom rules.

� Select PMD rulesets to include in a code model.
54 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Creating a Custom Rule and Ruleset

An existing rule in any PMD ruleset must be selected to create a custom rule. Custom rules are
stored in the Custom Rules node.

1 Select an existing rule in a ruleset. If planning to store the rule in a custom ruleset that is
based on an existing ruleset, select a rule in the existing PMD ruleset.

2 Do one of the following:

� To create any type of custom rule by duplicating an existing rule, click the Duplicate
button on the right pane. The text of the selected rule remains in the form; all fields
except Class and Property(s) become active for editing.

Note that you can duplicate both PMD rules and custom rules. The rule is duplicated
into a custom ruleset under the Custom Rules nodes in the tree.

� To create an new XPath rule not based on an existing rule, click the New button on the
right pane. The rule is created in a new custom ruleset under the Custom Rules nodes
in the tree.

3 As needed, create or edit field contents.

� Rule Set — The name of the custom ruleset for the custom rule. This can be the name
of an existing custom ruleset or a new custom ruleset.

When clicking the New or Duplicate button to create a new rule, a default ruleset
name appears in the RuleSet field on the right pane. The default name is based on the
ruleset of the selected rule, with the prefix My added to the ruleset name. For example,
if you create new rule with a rule from the Basic Rules ruleset selected, the default
ruleset name for the new rule is MyBasic Rules.

Once saved, the custom ruleset name cannot be changed.

� Rule Name — Use a brief, descriptive name. You can include spaces and special
characters if desired. The default name is My followed by the originating rule name.
New rules must have unique names.

� Message — Summarize the purpose of the rule.

� Class — Displays the rule class name. This field cannot be changed.

� Rule Priority — Select High, Medium, or Low from the list.

� Description — Provide a brief description of the rule or ruleset. You can only create
or edit a description for XPath type rules.

� Property — For XPath rules, this displays the XPath statement of the rule. The XPath
refers to the path in the Abstract Syntax Tree (AST). For details, see the XPath Rule
tutorial in the PMD Web site, http://pmd.sourceforge.net/xpathruletutorial.html. Any
additional XPath properties are copied from the originating rule and can not be edited.

� Example — For new rules or XPath type duplicated rules, provide an example that
would be identified as "bad code" by the rule. Duplicated rules that are not XPath type
rules display the example of the originating rule, which cannot be edited.
 DevPartner Java Edition Code Review User’s Guide 55

http://pmd.sourceforge.net/xpathruletutorial.html

Chapter 2 · User Interface
4 Click Save to create the custom rule. A message appears indicating that the custom rule
has been created.

5 Click OK. The rule is added to the Custom Rules node within the new custom ruleset. If a
new custom ruleset name is specified, Code Review creates the custom ruleset to store the
new rule.

You must rebuild the code model for any newly created custom rule to apply. See “Selecting
Rulesets and Rebuilding the Code Model” on page 56 for more information.

Deleting a Custom Rule

Only custom rules can be deleted. PMD rules cannot be deleted.

To delete a custom rule:

1 Select the custom rule and click Delete. A message appears to confirm the deletion.

2 Click Yes to delete the rule, or No to cancel the deletion and return to the rule. If you click
Yes, the rule is deleted. If the deleted rule is the only rule in its ruleset, the ruleset is also
deleted. When a rule is deleted the preceding rule displays in the right pane.

Updating a Custom Rule

Certain fields in a custom rule can be updated. Fields that can be updated depend on the
custom rule's rule type.

1 Select the custom rule to be edited.

2 Make the desired changes. Fields that cannot be edited are disabled.

For XPath rules, you can update the Message, Rule Priority, and Example fields.

For Java class rules, you can update the Message and Rule Priority fields.

3 Click Save to update the custom rule.

Editing a Custom Ruleset Name

When creating a new rule or duplicating an existing PMD rule, the rule is placed in a custom
ruleset. To change the name of the custom ruleset:

1 Click New or Duplicate to create a new rule. The ruleset name can only be edited at this
time.

2 Type a new name for the ruleset in the Ruleset Name field. The name must be unique.

3 Click Save.

Selecting Rulesets and Rebuilding the Code Model

By default, only the PMD Basic and Design rulesets are used with Code Review's built-in
rules when you create a source code model. Through the Custom Rules page, you can select
other rulesets for rebuilding the model.

To select PMD rulesets (including any custom rules you created in the rulesets):
56 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
1 Select the Custom Rules page. By default, the Edit view displays.

2 Click Select Rules. A list of the rulesets appears in the right pane.

3 In the Select Rules list, select the check box or name of each ruleset you want to include
(or click a selected ruleset to exclude it). When you select a ruleset, a brief description dis-
plays in the lower right pane.

Use the Select All or Clear All button at the bottom of the window to include or exclude
all rulesets. To restore the default setting (Basic and Design only), click Reset. Selections
are saved.

When you select rulesets, they are not automatically applied to the code model. You must
rebuild the code model to include the selected ruleset.

4 Click Start to rebuild the code model using the selected rulesets. Once the code model is
rebuilt, review the code rule violations in the code model. See “Code Validation Sum-
mary” on page 51 more information.

When you select rulesets, they are not automatically applied to the code model. You must
rebuild the code model to include the selected rulesets. To rebuild the code model, click Start.

Note: If you go from the Code Validation Details page to the Custom Rules page,
change the rules selection, rebuild the code model by clicking Start, and
return to the Code Validations page, the page is not refreshed automatically.
 DevPartner Java Edition Code Review User’s Guide 57

Chapter 2 · User Interface
To update the rules violation list, click the Summary button on the Code
Validation Details page to go to the Code Validation Summary page, then click
any link on the summary page to return to the details page.

Once a ruleset is selected, it is included in every code model.

Rule Filter

When you build a code model, all Code Review rules and all selected PMD and custom rules
are used in analyzing the code. You can, however, filter the results to focus to display only
specific types of rule violations.

Use the Rule Filter dialog box to choose the results to be displayed in the Code Validation
Summary page and Code Validation Details page.

To open the Rule Filter dialog box, click Select Rules in the Code Validation Summary page.

The table listing the code rules used in the analysis includes the following columns:

� Active — Whether or not the rule is active.

� Rule — The rule name. Only the rules included in the analysis results are listed.

� Severity — Rule severity. Possible values are High, Medium, or Low.

� Category — The Code Review category or PMD ruleset, as applicable.

Click the column heading to sort the items by that heading.

When you select a rule in the table, the Rule Details pane displays an explanation of the rule,
proposed remedies for violations, an example of code that violates the rule, and expert refer-
ences. Depending on the rule, not all these details may be included in the text.

To filter the analysis results, use one of the following options. You can further refine the filter
by selecting or clearing individual rules after using the option.

� Check only — Select an item from the list to include only the rules matching the selec-
tion.

� Check All — Select all the rules.

� Clear All — Clear all the rules.

� Reset to Default — Restores the list to the default selections.

You must rebuild the code model to apply the new filter to the results.
58 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Export Violations

Use the Export Violations dialog box to export a report of rule violations in your preferred
output format.

� Summary to HTML — Export the summary page as an HTML file.

� Violations to XML — Export all violation details as an XML file.

� HTML Reports — Export a specific category of rule violation details as an HTML file.
When you select this option, the list to the right of the option becomes active so you can
select whether to export only High, only Medium, or all violations.

� Print Format Reports — When you select this option, the list to the right of it becomes
active so you can select the desired format: PDF, PS (postscript), or text.

� Compliance Metrics — Export the value of the Compliance metric to an XML file for
publishing to Optimal Delivery Manager. For more information, see “Metrics Publishing
Utility” on page 41. Also refer to the separate documentation for the Metrics publishing
utility.

� Output file — Path and file name for the exported report. You can type the path or click
the browse button to navigate to the desired folder. The default file name is appended to
the path, with the extension appropriate for the selected format.

The default location of the exported file depends on your operating system:

� Windows XP or 2003 — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\exports

Note: By default, the Application Data folder is hidden. To display the exports
folder and its contents, type the path in the Address field of Windows Explorer
and press Enter.

� Windows 2008 or Vista — C:\Program Data\Micro Focus\DevPartner
Java Edition\var\exports

� UNIX — DPJ_dir/var/exports
where DPJ_dir is the path of the Devpartner Java Edition product folder.

Use

� See “Exporting Rule Violation Reports” on page 13.
 DevPartner Java Edition Code Review User’s Guide 59

Chapter 2 · User Interface
Refactor Code With Model Edits

Use this dialog box to review code model changes and the apply them to the source code.

Columns

The Refactor Code With Model Edits dialog box displays a table listing all changes made to
the current model:

� Type — Type of edit; one of move, rename, delete, or new.

� Element — Element that has been edited.

� From — Old parent package or package name of the element (if applicable).

� To — New parent package or package name of the element (if applicable).

� Applied to source — Shows whether the edit has been applied.

Actions

� Apply Edits — Start refactoring the source code. A list of files that will be updated is dis-
played.

Design Validation Summary

The Design Validation Summary page shows a summary of the design violations in the code
model. The violations are grouped into three categories:

� Packages Exceeding the Recommended Maximum Size of n Elements

� Packages with Most Inter Package Cyclic Dependencies

� Packages with Most Inter and Intra Package Cyclic Dependencies

The first category heading includes a change size setting link, which enables you to change
the maximum number of elements (the default is 10).

Clicking any of the links under the three category headings opens the Design Validation
Details page.

Option

� Export — Export reports in HTML, XML, PDF, postscript (PS), or text formats. See
“Exporting Design Reports” on page 27.

Use

� See “Viewing Design Violations” on page 25.
60 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Export Metrics

Use the Export Metrics dialog box to export a report of design violations in your preferred
output format.

Figure 2-2. Export Metrics Dialog Box

� Summary to HTML — Export the Design Validation Summary page as an HTML file.

� Metrics to XML — Export metrics for each package as an XML file.

� HTML Reports — Export metrics for each package as an HTML file.

� Print Format Reports — Export metrics for each package in a printable format. When
you select this option, the list to the right of it becomes active so you can select the desired
format: PDF, PS (postscript), or text.

� Maintainability Metrics — Export the value of the Maintainability metric to an XML file
for publishing to Optimal Delivery Manager. For more information, see “Metrics Publish-
ing Utility” on page 41. Also refer to the separate documentation for the Metrics publish-
ing utility.

� Output File — Path and file name for the exported report. You can type the path or click
the browse button to navigate to the desired folder. The default file name is appended to
the path, with the extension appropriate for the selected format.

The default location of the exported file depends on your operating system:

� Windows XP or 2003 — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\exports

Note: By default, the Application Data folder is hidden. To display the exports
folder and its contents, type the path in the Address field of Windows Explorer
and press Enter.

� Windows 2008 or Vista — C:\Program Data\Micro Focus\DevPartner
Java Edition\var\exports

� UNIX — DPJ_dir/var/exports
where DPJ_dir is the path of the Devpartner Java Edition product folder.

Use

� See “Exporting Design Reports” on page 27.
 DevPartner Java Edition Code Review User’s Guide 61

Chapter 2 · User Interface
Design Validation Details

The Design Validation Details page consists of a navigation tree that lists the various
packages, classes and methods, and a UML class diagram.

Use

You can view, navigate, and edit in the class diagram pane as described in “Viewing and
Editing a Class Diagram” on page 63. You can navigate and edit in the tree pane as described
in “Viewing and Editing a Package Tree” on page 64.

Class Diagram Pane

The class diagram pane shows the elements of a package and the dependencies between these
elements.

Class Diagram Notation

The class diagram uses the unified modeling language (UML) notation, with some additions.
This following graphic explains the symbols used in the class diagram pane.

Figure 2-3. Class Diagram Symbols

Elements that are referred to from the code, but for which the code itself is not part of the
model, are shown in grey.

Package elements are laid out on layers in the diagram background to show the layered archi-
tecture of the application. A clear layered architecture requires each layer to depend only on
lower layers — the application must not have cycles. If this is the case, Code Review proposes
a layering structure, showing cyclic dependencies in red if the selected quality metric is the
Acyclic Dependencies Principle. These undesirable dependencies must be removed for the
diagram to become acyclic.
62 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Use

You can view, navigate, and edit the diagram as described in “Viewing and Editing a Class
Diagram” on page 63.

Viewing and Editing a Class Diagram

You can navigate, view, and edit a code model or design reference class diagram in the class
diagram pane:

� To move objects, drag and drop them. You can move objects to improve the layout of a
class diagram. When editing a code model, this does not affect the source code. Changes
to the layout are saved as part of the model. However, when the contents of a package
change, a new layout is computed.

� To focus on a specific object across layers, right-click the object and select Add to
Scratch Area. The scratch area opens on the left side of the diagram and a copy of the
object is moved into it (the object also remains in the diagram). The diagram is automati-
cally rearranged as needed to display the connections between the scratch object and other
objects. As you navigate through the layers, the object remains in the scratch area. To
remove it, right-click the object and select Remove from Scratch Area. You can place
more than one object at a time in the scratch area.

� To view detailed information about a dependency, double-click the dashed line extending
from the object to open the Dependency View.

� To open the class diagram for a package, double-click the package.

� To navigate to the parent package of the current class diagram, click the Show Parent
icon.

� To return to the previous view, click the Previous View icon.

� To edit a class or interface, right-click it and select View Source to open the external edi-
tor for that class. For more information, see “Configuring an External Editor” on page 34.

� By default, the class diagram displays ADP cycles. To view the analysis of the model
using another quality metric, select the metric from the list above the diagram.

� To open the Metrics window or Usage View window, right-click the object of interest and
select the appropriate option from the menu.

� To move an object into another package, right-click the object and select Move from the
menu.

� Right-click the class diagram background (not on an object) to display a popup menu that
enables you to print, save, or customize the view.

Tree Pane

The tree pane on the left side of the Design Validation Details page shows the package struc-
ture of the code model or design reference.
 DevPartner Java Edition Code Review User’s Guide 63

Chapter 2 · User Interface
Tree elements

The tables list elements shown in the tree.

All elements that are not packages are called leaf elements.

In a code model, classes, interfaces, or packages may be referred to from the source, without
actually being in the source (because they are available in the classpath or are part of the Java
standard library). These external elements are shown in grey.

Use

You can navigate and edit in the tree pane as described in “Viewing and Editing a Package
Tree”.

Viewing and Editing a Package Tree

You can create new packages and move elements in the tree pane:

1 To display the class diagram for a package, click a package to give it focus.

2 To move an element in the tree, drag and drop it to a new location in the package structure
tree. You can also drop an element on the class diagram, in which case the target is the ele-
ment represented in the class diagram pane.

Note: When editing a code model, the change is stored in the model and can be
applied to the code by choosing Tools>Refactor Code With Model Edits.

3 To display a popup menu, right-click a tree element. The menu displayed depends on the
element selected. If you have multiple items selected, right-click to display a menu that
contains only Move. This enables you to move the selected elements to another package.

Dependency View

The Dependency View dialog box shows all the dependencies between two elements that
have the same parent package.

Table 2-1. Code model icons

Icon Represents

/ Package

/ Java file with a public class definition

/ Java file with a public interface definition

Table 2-2. Design reference icons

Icon Represents

Package
64 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Panes

� Dependency table — The table columns provide information about the dependencies:

� From and To — The two packages between which dependencies are examined.

� Dependency Type — A brief description of the dependency relationship.

� Line — The line in the source code.

For more details, see “Dependency Table” on page 66.

� Source fragment — Select an item in the dependency table to display the section of
source code containing it, with the dependency highlighted.

Options

� From and To — Select an item in the list to enter it in the From column of the depen-
dency table. The corresponding packages are listed automatically in the To list. If the To
list contains more than one item, you can change the objects in the To column by selecting
a different item in the list.

� Swap — Switch the From and To elements, if there are dependencies in the opposite
direction. This field is only active if it is applicable to the listed elements.

� Filter imports — Ignore import dependencies.

� Source Fragment — Click the link to open the source code into an external editor.

Note: While the Dependency View dialog box is open, you can change the From
and To elements by clicking a dependency in the class diagram pane.

Usage View

The Usage View window enables you to view the dependencies for a selected element,
showing the dependencies from and to the element.

Panes

� Dependency table — Displays information about the dependencies in two tabs:

� Used by — Shows all dependencies to a chosen model element.

� Uses from — Shows all dependencies from a chosen element.

Each tab contains four columns:

� From and To — The two packages between which dependencies are examined.

� Dependency Type — A brief description of the dependency relationship.

� Line — The line in the source code.

For more details, see “Dependency Table” on page 66.

� Source Fragment — Displays the source code of the selected dependency and includes a
link to view or edit the source code in an external editor.
 DevPartner Java Edition Code Review User’s Guide 65

Chapter 2 · User Interface
Options

� Filter dependencies from/to contained elements — Ignore all dependencies to con-
tained elements of the selected element.

� Filter imports — Ignore import dependencies.

� Used by — Shows all dependencies to a chosen model element.

� Uses from — Shows all dependencies from a chosen element.

� Source Fragment — Displays the source code of the selected dependency and includes a
link to view or edit the source code in an external editor.

Dependency Table

The dependency table includes the following columns to provide information about the depen-
dencies listed in the Usage View:

� From — Source element.

� To — Target element.

� Dependency Type — Description of the dependency.

� Line — Line number in the source code where the dependency is defined.

Table 2-3. Dependencies in the Usage View

Dependency Type Description

imports Uses a type or package in an import statement.

extends Indicates an inheritance relationship.

implements Interface implementation relationship.

return type Uses a type as a method return type.

parameter type Uses a type in a method parameter.

throws Declares a method exception.

method call Calls a method.

field type Uses a type as a class field.

field access Uses a field.

type usage Uses a type as a local variable.

instanceof Uses a type in an instanceof check.

cast Uses a type in a cast operation.

catch Uses a type as an exception type in a catch clause.

new Consists of a new type statement.

new array Uses a type in an array creation.
66 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Use

� To view or edit the source code of a selected dependency in an external editor, double-
click a row or click the Source Fragment link.

� To export the table to a .csv file, right-click in the table and select Export data as
comma-separated file (CSV).

Metrics Window

The Metrics window shows the metrics for all the packages in the package tree.

The window contains tabs corresponding to the perspectives of the Design Validation Details
diagram.

� Cycles

� Size

� Hubs

� Inheritance

� Stability

� J2EE

� Code Generation

When you select a Metrics tab, the diagram automatically changes to the corresponding view.
Similarly, when you select an item within a tab, the diagram changes to display information
for that item.

The Metrics window contains inline help for each tab. To show or hide the help text, click the
small triangles in the bottom right corner.

Each tab except the Stability tab includes a list that you can use to filter the information
displayed. You can sort the tables by clicking the appropriate column heading. A blue triangle
indicates the column by which the table is sorted, and whether the sort is ascending or
descending order.

Use

� See “Viewing Metrics” on page 28.

uses in expression Uses a type in an expression not yet covered by the other
flavors.

generic type Used for the generics introduced in JDK 5.0 (also called JDK
1.5).

Table 2-3. Dependencies in the Usage View (Continued)

Dependency Type Description
 DevPartner Java Edition Code Review User’s Guide 67

Chapter 2 · User Interface
Menus

The following context-sensitive menus are available:

� Package Popup Menu

� Leaf Popup Menu

� Dependency Popup Menu

� Class Diagram Popup Menu

Package Popup Menu

The popup menu for a package element has the following items.

Table 2-4. Package Element Menu Items

Menu item Function Enabled

Flatten Turn the Flatten option on or off.
This option displays all child ele-
ments at the same hierarchical
level as the parent.

Always

Move Move to another package (as
specified using the fully qualified
element identifier). You can also
drag and drop the package in the
tree pane.

Always

Delete Delete the package. Only for empty packages

Rename Rename the package. Always

New Package Create a new child package. Always

Add To Scratch Area Place the object in the scratch
area.

Only when the element is
not in the scratch area

Remove From Scratch
Area

Remove the object from the
scratch area.

Only when the element is
in the scratch area

Dependencies Add or remove design dependen-
cies to packages on the same
level.

Only available for Design
Reference models

Metrics View Open the Metrics window for this
package.

Always

Usage View Open the Usage View dialog box
for this package.

Always

Help Display the help topic for the
package popup menu.

Always
68 DevPartner Java Edition Code Review User’s Guide

Chapter 2 · User Interface
Leaf Popup Menu

The popup menu for a leaf element has the following items.

Dependency Popup Menu

The popup menu for a dependency has the following items.

Table 2-5. Leaf Menu Items

Menu item Function Enabled

View Source Open the element in the external
text editor.

Only for Java source code
models

Metrics View Open the Metrics window for this
leaf.

Always

Usage View Open the Usage View dialog box
for this leaf.

Always

Help Display the help topic for the leaf
popup menu.

Always

Table 2-6. Dependency Menu Items

Menu item Function Enabled

Dependency View Open the Dependency View dia-
log box for this leaf.

Always for both Java code
models and Design Refer-
ence models.

Delete Delete the dependency. Always for Design mod-
els. This item is not avail-
able for Java code models.

Remove Unused Import Remove an unused import. For Java code models only
if the dependency con-
sists of useless imports.
This item is not available
for Design Reference
models.

Invert Invert the dependency. For Java code models only
if the observer pattern can
be applied to invert a
dependency. This item is
not available for Design
Reference models.

Help Display the help topic for the
dependency popup menu.

Always.
 DevPartner Java Edition Code Review User’s Guide 69

Chapter 2 · User Interface
Class Diagram Popup Menu

The class diagram popup menu is displayed when you click on the background in the class
diagram pane of the Design Validation Details page.

Table 2-7. Class Diagram Menu Items

Item Function

Classes collapsed Turns the Classes collapsed option on or off. If selected, the
classes and interfaces in a package are collapsed into a pack-
age. Collapsing classes can be useful to reduce the complexity
of a diagram.

Dependency weights Turns the display of dependencies weights on or off. The
dependency weight is the number of references there are from
one element to another.

Show Suggested Fixes Turns the light bulbs for suggested fixes on or off. When
shown, clicking a light bulb will generate a list of fixes to correct
the undesirable dependency.

Animate Transitions Turns the animation of diagram elements on or off.

Quality Principle Changes the quality metric. The selected quality metric is used
to color the nodes. Green is the best score, red is the worst,
and yellow is in-between. Precise values for metrics are given
by the Metrics window.

Font size Changes the size of the font and the element. The value corre-
sponds to the text font point size. Reducing the font size is use-
ful if the class diagram crowded.

Flatten All Packages Turns the Flatten option on for all packages. Consequently,
when browsing the package structure with the Classes col-
lapsed option cleared, classes from all subpackages are dis-
played at the same hierarchical level. With Classes collapsed
selected, all subpackages are displayed at the same hierarchi-
cal level.

Unflatten All Packages Unflattens all packages.

Print Prints the diagram.

Save as PNG Saves the diagram as a PNG image. The size of the image is
the same as the window size. The PNG format is supported by
most browsers and image tools.

Help Displays the help topic for the class diagram popup menu.
70 DevPartner Java Edition Code Review User’s Guide

Chapter 3

Tutorials
The following tutorials demonstrate various features of Code Review and how to work with
Code Review to improve your code:

� Improving a Package Structure

� Improving Java Code by Applying Coding Rules

� Enhancing Javadoc with UML Diagrams

Sample files for use with these tutorials are included in the DevPartner Java Edition installa-
tion.

Improving a Package Structure

This tutorial demonstrates how you can improve a package structure.

Prerequisites

To execute the tutorial, you need a copy of the JMeter source files. A zipped copy of the
JMeter source tree used for this example is included in the samples folder of theDevPartner
Java Edition product folder. Before starting the tutorial, extract the contents of the zip file to a
local folder.

This tutorial is based on the 1.4.1-dev version of the JMeter sources. It requires the Sun J2EE
SDK version 1.2.1 j2ee.jar library (available from http://java.sun.com/j2ee/sdk_1.2.1/).
To build the JMeter code model without compile errors, the classpath must include a reference
to the j2ee.jar library.

Although working with an incomplete model is often possible, there may be occasions where
the classpath must be defined to build the code model. When analyzing your own programs,
therefore, it is recommended that you provide a complete classpath.

Duration

This tutorial takes approximately 40 minutes to complete.

Objectives

In this tutorial, you learn how to improve a package structure using Code Review, focusing
particularly on the compliance of the package structure with the Acyclic Dependency Princi-
ple (ADP). The ADP is a well-known design principle, which states that there should be no
cycles between packages. We use the JMeter open source project (project Web site at http://
jakarta.apache.org/jmeter/) as a real-life case. In about 40 minutes, you will have made major
improvements to the top-level architecture of JMeter.
 DevPartner Java Edition Code Review User’s Guide 71

http://java.sun.com/j2ee/sdk_1.2.1/
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/

Chapter 3 · Tutorials
Steps

Note: The screens shown below are examples only. Your actual results may not
exactly match the results shown in this tutorial.

Step 1 – Build the source model

In the first step, you make a new Java source model based on the source files of JMeter.

1 From the File menu, choose New Code Model to display the New Code Model dialog
box.

2 Select the Source Code (allows refactoring) option.

3 In the Source Path box, click Edit, then navigate to and select the JMeter source root
folder. the JMeter source root folder is the location where you extracted the JMeter zip file
contents.

4 In the Class Path box, click Edit, then navigate to and select the j2ee.jar library file.

5 Whether you are editing a code model or refactoring source code, saving the code model
to file is good practice for the following reasons:

� Allows a model to be loaded at the start of a session more quickly than rebuilding.

� Simplifies redistribution of the model amongst team members.

� Provides a snapshot of the model for later reference.

To save the code model automatically, select the Save model after building check box.
Alternatively, the code model can be saved to file at any stage after the model has been
built by choosing File>Save or File>Save As.

6 Click Build Model to build a code model. The progress of the build and error messages
are reported in Build Status.
72 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
7 When the build is complete, if no compile errors were encountered, the dialog box will
close automatically. Otherwise, click Close to close the New Code Model dialog box.

The results of the rules and design validation analysis are available in the Code Validation
Summary and Design Validation Summary pages.

� Click the Design Validation Summary page, which provides an overview of the design
violations, grouped into three categories. For more information, see “Design Validation”
on page 14.

� To save a report of the records displayed in the Design Validation Summary page, click
Export to display the Export Metrics dialog box.

� Packages with Most Inter Package Cyclic Dependencies allows the best initial assess-
ment of the causes of design violations. Click the associated org.apache.jmeter link to
open the Design Validation Details page, which displays the code model as a hierarchical
tree of packages containing classes and a class diagram of the selected package.

Note: To display inter-package cyclic dependencies alone, Code Review “collapses”
any top-level classes.

Step 2 – Save and Print the Design Validation Details

While working in the Design Validation Details page, changes can be saved or printed at any
stage in a number of different ways:

� From the File menu, choose Save or Save As to save the latest version of your code
model.
 DevPartner Java Edition Code Review User’s Guide 73

Chapter 3 · Tutorials
� To print a copy of the class diagram, right-click the background of the class diagram pane
and from the popup menu, choose Print.

� Similarly, to save a copy of the class diagram to file, right-click the background of the
class diagram pane and from the popup menu, choose Save as PNG.

Step 3 – Move top-level classes to subpackages

As shown in the previous figure, JMeter source does not comply with the ADP — it scores
88% on this metric. The red arrows show dependencies that, according to the analysis, should
be removed. Code Review provides suggested fixes, indicated by the light bulb icons. When
all the red dependencies have been removed, the resulting package structure is acyclic and the
score is 100%.

To make the right decisions as a software architect or developer, you should understand the
functionality and requirements of the program. Furthermore, you need to have some idea
about which parts of the programs are likely to be extended or reused. However, the package
structure can be improved even without this knowledge.

One of the first things to look for is whether there are any classes at the top-level. A high
occurrence of cyclic dependencies associated with the 'collapsed' top-level classes, as is the
case for this example, is a good indication that top-level classes should be moved to appropri-
ate subpackages.

As shown in the tree view, the jmeter package has five top-level classes. For improved
package structure, it is good practice to move these classes to subpackages. However, care
should be taken to choose suitable packages based on the layer where the top-level classes are
located.

1 Right-click on the diagram background and clear the Classes Collapsed option in the con-
text menu. Notice how the ADP score increases to 95% because cyclic dependencies asso-
ciated with the “collapsed” classes are no longer recognized.

2 In the diagram, click the light bulb icon beside the red dependency between util and
JMeterUtils to display the suggested solution.

3 Click the option Move JMeterUtils to util. The package tree and diagram are redrawn to
reflect this change. Notice how util is relocated to the lowest layer. Notice also that the
file name displayed in the title bar has been flagged with an asterisk to indicate a change to
the model that has yet to be saved.

4 In the tree view, right-click the jmeter package, select New Package and name the new
package top. Click OK.
74 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
5 In the tree view, drag and drop the classes Driver, JMeter, JMeterEngine, and
TextDriver to the top package. The resulting package diagram is already much
clearer than the original, even though this move did not directly improve the ADP.

Step 4 – Fix an undesirable dependency by moving classes

1 In the diagram, click the light bulb icon beside the red dependency between visualizers
and samplers to display the suggested solution.

2 Click the option Move URLSampler to visualizers. The package tree and diagram are
redrawn to reflect this change.
 DevPartner Java Edition Code Review User’s Guide 75

Chapter 3 · Tutorials
3 Double-click the dependency between threads and controllers to display the Dependency
View.

The From column shows that all dependencies originate from two classes in the threads
package: HTTPJMeterThread and JMeterThreadAdapter. We now focus on the
usage of these two classes.

4 Close the Dependency View and double-click the threads package.

5 Right-click JMeterThreadAdapter and choose Usage View from the popup menu.
You can see that JMeterThreadAdapter is only used by HTTPJMeterThread.

6 Close the Usage View for JMeterThreadAdapter and open it for HTTPJMeter-
Thread. This shows that HTTPJMeterThread is only used by classes from the con-
trollers package.
76 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
You can therefore move these two classes from the threads package to the control-
lers package.

7 Close the Usage View.

8 In the tree view, drag HTTPJMeterThread and JMeterThreadAdapter from the
threads package to the controllers package.

9 Navigate to the jmeter package and notice that the undesirable dependency is com-
pletely removed and that the ADP score is 99%.

10 For a more precise score, choose View>Metrics and click the Cycles tab. The exact ADP
score for org.apache.jmeter is displayed in the ADP column.

Step 5 – Fix an undesirable dependency by removing an import

There are two undesirable dependencies left.

1 Click the light bulb icon beside the dependency between util and visualizers. It
suggests that you Remove Unused Import. To confirm the suggested fix, double-click the
dependency to display the Dependency View, and select Filter imports. The import
dependency is listed in the table, which indicates that the visualizers package is
imported but not used in the util package.

2 Return to the light bulb icon and delete the dependency by clicking Remove Unused
Import. The undesirable dependency is removed and there is only one red arrow left in
the diagram.

Step 6 – Invert dependencies

There is only one undesirable dependency left and the weight of this dependency is 2.
 DevPartner Java Edition Code Review User’s Guide 77

Chapter 3 · Tutorials
1 To examine the remaining cyclic dependency (between util and controllers) in
more detail, double-click the dependency to display the Dependency View. This shows
that the dependency is between the classes JMeterUtils and SamplerController.
It consists of a cast to SamplerController in the code of JMeterUtils and a
related method call to setPropName. One way to fix this dependency is to use an inter-
face to reverse the dependency. For more information, see “Dependency Inversion Refac-
toring” on page 29.

2 To fix this dependency, click the light bulb icon for the undesirable dependency and
choose Invert with listener(s).

Step 7 – Apply the changes to the code

So far, we have made changes to the model of the code but the code itself has not been
changed. Any change made to the model can also be applied to the code.
78 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
1 Prior to refactoring code, it is highly recommended to make a backup of your source files
because you cannot choose to undo the changes.

2 From the Tools menu, choose Refactor Code with Model Edits. The Refactor Code
With Model Edits dialog box opens, showing a table with all the changes listed.

3 Click Apply Edits to display the About to refactor dialog box, which lists all the files
that need to be changed to apply this refactoring. The tool checks whether all the files
exist, whether they are writable and whether they have been edited with another program.
For more information, see “Synchronizing the Source Code with the Code Model” on
page 32.

4 Click Refactor!. When refactoring is complete, the About to refactor dialog box closes
and the Refactor Code With Model Edits dialog box reappears with all the Applied to
Source options selected.
 DevPartner Java Edition Code Review User’s Guide 79

Chapter 3 · Tutorials
Note that slight changes in the number of dependencies may be apparent compared with
the diagram prior to updating the model from code. These are to be expected and are due
to the manner in which code edits are applied.

5 You have significantly cleaned up the architecture. The JMeter package structure now
conforms to the Acyclic Dependencies Principle (ADP).

Code Review can indicate problems in Java package structures and help you to improve them.
80 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
In the case of JMeter, the structure could be fixed easily in a few steps. However, it is not
always possible to repair a package structure by just moving classes and packages. Sometimes
you can make additional fixes through the use of the interfaces but often the structure is so
polluted that you need to thoroughly rewrite the code.

If you use Code Review from the beginning of the development process, you can identify and
repair problems immediately and with little effort. This results in a clean package structure,
improving comprehensibility and product flexibility, and cutting development time.

To assist the development process, the majority of Code Review interface features for analysis,
refactoring, and reporting can be implemented at the command line. There are a variety of
circumstances where the command line interface is particularly useful. For instance, an
automated analysis could be incorporated into the build process of your product and the results
included with the build report. For more information, see “Command Line Interface” on page
35.

Improving Java Code by Applying Coding Rules

This tutorial demonstrates how you can use the code validation component of Code Review to
improve the quality of source code.

Prerequisites

To execute the tutorial, you need a copy of the JMeter source files. A zipped copy of the
JMeter source tree used for this example is included with the DevPartner Java Edition installa-
tion, in the samples folder. Before starting the tutorial, unzip the file to a local folder.

This tutorial is based on the 1.4.1-dev version of the JMeter sources. It requires the Sun J2EE
SDK version 1.2.1 j2ee.jar library (available from http://java.sun.com/j2ee/sdk_1.2.1/).
To build the JMeter code model without compile errors, the classpath must include a reference
to the j2ee.jar library.

Although working with an incomplete model is often possible, there may be occasions where
the classpath must be defined to build the code model. When analyzing your own programs,
therefore, it is recommended that you provide a complete classpath.

Duration

This tutorial takes approximately 30 minutes to complete.

Objectives

In this tutorial, you will build a code model from source code, evaluate the code violation
reports and implement fixes according to best Java coding practices.

This tutorial demonstrates the function of the code validation components of Code Review and
illustrates the selection of code rules. It shows how to do the following:

� Work with reporting tools.

� Interpret the results of the analysis.

� Edit source code and update the code model.
 DevPartner Java Edition Code Review User’s Guide 81

http://java.sun.com/j2ee/sdk_1.2.1/

Chapter 3 · Tutorials
Steps

Note: The screens shown below are examples only. Your actual results may not
exactly match the results shown in this tutorial.

Step 1 – Build the source model

In the first step, you make a new Java source model from the source files of JMeter.

1 From the File menu, choose New Code Model to display the New Code Model dialog
box.

2 Select the Source Code (allows refactoring) option and enter the JMeter source root
folder.

3 Whether you are editing a code model or refactoring source code, saving the code model
to file is good practice for several reasons, including the following:

� It enables a model to be loaded at the start of a session more quickly than rebuilding.

� It simplifies redistribution of the model amongst team members.

� It provides a snapshot of the model for later reference.

To save the code model automatically, select Save model after building. Alternatively,
the code model can be saved to file at any stage after the model has been built by choosing
File>Save or File>Save As.

4 Click Build Model to build a code model. The progress of the build and error messages
are reported in Build Status. In this tutorial, building JMeter with errors will have no
affect on the results.

5 When the build is complete, if no compile errors were encountered, the dialog box closes
automatically. Otherwise, click Close to close the New Code Model dialog box. The
results of the rules and design validation analysis are displayed in the Code Validation
Summary page and Design Validation Summary page, respectively.
82 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
6 Select the Code Validation Summary page, which provides an overview of the code viola-
tions, grouped into three categories. For more information, see “Code Validation” on page
10.

Step 2 – Select the Ruleset

The results shown on the Code Validation Summary page and Code Validation Details page
depend on the active ruleset. A ruleset is the list of rules that will be used to perform code
validation. Any rule that is not appropriate to your situation can be suppressed. The ruleset can
be chosen either from predefined categories or customized according to specific requirements.
As a general guide, high severity rule violations will identify parts of code most in need of
attention:

1 In the Code Validation Summary page, click Select Rules to display the Rule Filter dia-
log box.

2 A table shows a list of all rules that were violated, with short descriptions, category, and
severity. A detailed description for the selected rule is shown in the Rule Details pane,
which also includes suggested remedies and links to reference material. The Active option
defines whether or not a rule is enabled.
 DevPartner Java Edition Code Review User’s Guide 83

Chapter 3 · Tutorials
3 From the Check only list, select Correctness to activate all rules in the correctness cate-
gory.

Note: To define a custom ruleset, select the item from the Check only list that most
closely matches your requirements and select or clear Active options as
necessary.
84 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
4 Click OK to return to the Code Validation Summary page, where the code violation results
will be updated for an analysis based upon the correctness ruleset.

Note: The active ruleset is persistent through sessions until changed.

Step 3 – Export Rule Violation Reports

From the Code Validation Summary page, reports can be saved or printed in a number of
different ways:

1 To save a report of the records displayed in the Code Validation Summary, click Export to
display the Export Violations dialog box.

2 Select Summary to HTML, specify the location and file name, and click Save. After the
report is saved, the dialog box closes automatically.

3 Start your Web browser and open the HTML report. The report is identical to the informa-
tion shown on the Code Validation Summary page. Leave the HTML report open and
return to Code Review.

Step 4 – Correct the Rule Violations

The analysis of the JMeter code based on the correctness ruleset yields a considerable number
of violations. Here, we shall correct the high severity violations reported for the
org.apache.jmeter.Driver class:
 DevPartner Java Edition Code Review User’s Guide 85

Chapter 3 · Tutorials
1 On the Code Validation Summary page, click the org.apache.jmeter.Driver link to view
the Code Validation Details page.

2 As shown in the figure, there are two reported occurrences of the high severity violation
“Overridable method is invoked in constructor, clone() or readObject()”.

3 Examine the code in the Source Fragment pane. In this case, Driver() was probably
not meant to be subclassed. To correct the problem, init() and initGUI() should be
changed to final.

4 To display the source code in an external editor, do one of the following:

� Double-click the item in the table.

� Click the Source Fragment link.

� Double-click inside the Source Fragment pane.

5 Edit Driver.java for corrections to init() and initGUI() and save the changes.

Note: To configure Code Review for an external editor, see “Configuring an External
Editor” on page 34.

6 Although changes to source code are saved, the code model is not updated automatically.
To refresh the model for code edits and to display an updated summary of rule violations,
it is necessary to synchronize the code model with source code edits.
86 DevPartner Java Edition Code Review User’s Guide

Chapter 3 · Tutorials
Step 5 – Synchronize the Code Model with Source Code Edits

To synchronize the code model with the source code it is necessary to update the model from
the code:

1 From the Tools menu, choose Update Model from Code Edits and, if necessary, save the
code model when prompted.

2 The code model is rebuilt, with the progress shown in a status bar.

3 After the code model is rebuilt, the Code Validation Summary page displays the rule viola-
tions updated for the corrections made to org.apache.jmeter.Driver.

4 A comparison of the Code Validation Summary page with the earlier HTML report veri-
fies the changed summary report.

This tutorial has demonstrated how to produce and analyze code violation reports in anticipa-
tion of making improvements to source code. We have seen that Code Review rule descrip-
tions include details of possible remedies to individual violations, which guide the developer
in their choice of solution. Edits are always performed manually, using an external editor.
Consequently, the final stage in correcting for code violations should always be to synchronize
the code model with the code edits. If the code model is saved to file before exiting Code
Review, the model can be redistributed amongst members of the development team and loaded
at the start of the next Code Review session more quickly than rebuilding the model.

Further Reading

Effective Java Programming Language Guide, written by Joshua Bloch and published by
Addison-Wesley (ISBN 0201310058), provides detailed information for many coding rules.
See http://java.sun.com/docs/books/effective/ for details and sample chapters.

Enhancing Javadoc with UML Diagrams

Prerequisites

For this tutorial you need a copy of JUnit. Download the zipped file from http://prdown-
loads.sourceforge.net/junit/ and extract the archive to your local disk.

You also need the JUnit source code. Download the source .jar file and extract the archive
into a folder, source, under the folder to which you downloaded JUnit.

Duration

This tutorial takes approximately 20 minutes to complete.

Objectives

This tutorial demonstrates how to enhance Javadoc by incorporating UML class diagrams into
the Javadoc package descriptions. In this tutorial, you will enhance the Javadoc for JUnit
(project Web site at http://www.junit.org/index.htm).
 DevPartner Java Edition Code Review User’s Guide 87

http://java.sun.com/docs/books/effective/
http://www.junit.org/index.htm
http://prdownloads.sourceforge.net/junit/
http://prdownloads.sourceforge.net/junit/

Chapter 3 · Tutorials
Steps

Step 1 – Write the script

To generate Javadoc enhanced with UML class diagrams, you need to start Code Review via
the command line interface.

1 Create a script file with the following two lines:

newjava <JUNIT>\source

uml2javadoc <JUNIT>\javadoc

where <JUNIT> is the fully qualified path to the folder to which you extracted the file. If
the path contains spaces, enclose the argument between quotation marks (" "). This
applies whenever a path is used as an argument, irrespective of whether from the
command line or within a script.

2 Save the script as myscript.txt.

Step 2 – Start Code Review from the command line

Now start Code Review from the command line:

1 | java -DADVISOR_HOME="%ADVISOR_HOME%" -Djava.library.

| path="%PATH%" -Xmx500m -cp

| "%JAVA_HOME%\lib\tools.jar";"%ADVISOR_HOME%\lib\DLM40JNI.

| jar";"%ADVISOR_HOME%\bin\Code Review.jar" com.compuware.

| advisor.application.commandLine.CommandLine script

| <SCRIPTPATH>\myscript.txt

where <SCRIPTPATH> is the fully qualified path to myscript.txt. If any spaces occur in
the path to the script file, it is necessary to enclose the argument between double quotation
marks. This applies whenever a path is used as an argument, irrespective of whether at the
command line or within a script. The environment variables JAVA_HOME and ADVISOR_HOME are
set to the home folder of your JDK installation and the home folder of your DevPartner Java
Edition installation, respectively.

The Javadoc is now enhanced with UML class diagrams.
88 DevPartner Java Edition Code Review User’s Guide

Glossary
ADP: The Acyclic Dependency Principle is an object-oriented design principle: “The depen-
dencies between packages must form no cycles”. See Design Principles and Design Patterns
by Robert C. Martin, at http://www.objectmentor.com/resources/articles/
Principles_and_Patterns.PDF.

ADP metric: The Acyclic Dependency Principle metric measures the amount of work neces-
sary to fix a package structure that violates the ADP. For a more detailed description of the
metric, see “Quality Metrics” on page 24. The metric can be viewed in the Metrics window.

code model: A model of a Java program that is used in Code Review to provide metrics and
views. Java source models can be built from either source code or bytecode, and stored to disk.
Java source models can be verified against a design model.

collapsed: A collapsed box in a diagram represents the set of classes in the package shown.
Classes can be collapsed into a single box, to allow for a simplified view. The collapse classes
option can be switched on or off in the diagram popup menu.

dependency: A class dependency is a reference from the definition of a class to another
class.

� A file dependency is a reference from one file to a class defined in the other file. It can be
a class dependency or an import statement.

� A package dependency is a reference from a file in one package to a file in another pack-
age, or an * import of a package.

dependency weight: The dependency weight between two elements (packages or classes)
is the amount of references from one to the other. Dependency weights can optionally be
shown via the diagram popup menu.

design reference model: A UML design consisting of packages and their dependencies.
Design reference models can be defined in Code Review, and used to verify source models.

layering: The layering of the application determines the layout of the UML diagrams.

quality metrics: A set of metrics that indicate the quality of the Java code. Quality metrics
can be shown in the Metrics window or as color highlighting in the Diagram View.

refactoring: A technique to restructure code in a disciplined way (as defined by Martin
Fowler). Code Review supports a number of refactorings.

stability metrics: A set of metrics defined by Robert C. Martin to measure the quality of an
object-oriented design. The metrics can be viewed in the Metrics window. See http://
www.objectmentor.com.
 DevPartner Java Edition Code Review User’s Guide 89

http://www.objectmentor.com
http://www.objectmentor.com
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

Glossary
90 DevPartner Java Edition Code Review User’s Guide

	Table of Contents
	Preface
	What This Manual Covers
	Conventions Used In This Manual
	Getting Help
	Contact
	Additional Help

	Using Code Review Java Edition
	Using this Guide
	Creating a Code Model
	Code Validation
	Coding Rules
	Viewing Rule Violations
	Exporting Rule Violation Reports

	Design Validation
	Package Design
	Layering
	Design Metrics
	Viewing Design Violations
	Exporting Design Reports
	Viewing Metrics

	Dependency Inversion Refactoring
	Fixing Dependencies
	Synchronizing the Source Code with the Code Model
	Creating a Design Reference
	Comparing a Code Model with a Design Reference
	Configuring an External Editor
	Command Line Interface
	Command Syntax
	Command-Line Options
	Commands
	Example Script Files

	Metrics Publishing Utility
	ANT Integration
	Performing an Analysis with ANT
	Sample ANT File

	Customized Reports
	Code Rule Violations
	Metrics

	User Interface
	Views and Dialog Boxes
	New Code Model
	Verification of Design Reference
	Code Validation Summary
	Code Validation Details
	Custom Rules
	Rule Filter
	Export Violations
	Refactor Code With Model Edits
	Design Validation Summary
	Export Metrics
	Design Validation Details
	Dependency View
	Usage View
	Dependency Table
	Metrics Window

	Menus
	Package Popup Menu
	Leaf Popup Menu
	Dependency Popup Menu
	Class Diagram Popup Menu

	Tutorials
	Improving a Package Structure
	Prerequisites
	Duration
	Objectives
	Steps

	Improving Java Code by Applying Coding Rules
	Prerequisites
	Duration
	Objectives
	Steps
	Further Reading

	Enhancing Javadoc with UML Diagrams
	Prerequisites
	Duration
	Objectives
	Steps

	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

