
Micro Focus Enterprise Analyzer 3.5

Creating
Components

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2009-2014. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Enterprise Analyzer are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2014-08-01

ii

Contents

Introducing Component Maker ... 4
Componentization Methods .. 4

Dead Code Elimination (DCE) ..4
Language Support ..4

Componentization Outputs ..4
Component Maker Basics ... 5

Getting Started in the Components Pane ...5
Creating Components .. 7
Extracting Components .. 7
Converting Components ...7
Deleting Components ...7
Viewing the Text for Generated Files ... 7
Restricting the Display to Program-Related Components ..7
Working with Interactive Analysis Lists ... 8
Viewing Audit Reports .. 8
Generating Coverage Reports ... 9

Setting Component Maker Options .. 10
Setting General Options ..10
Setting Interface Options ...11
Setting Optimize Options .. 11
Setting Document Options .. 12
Setting Component Type-Specific Options ... 13
Setting Component Conversion Options ...13

Eliminating Dead Code .. 15
Generating Dead Code Statistics ..15
Understanding Dead Code Elimination ... 15
Extracting Optimized Components ..16

Technical Details .. 17
Verification Options ... 17

Use Special IMS Calling Conventions ...17
Override CICS Program Terminations ... 17
Support CICS HANDLE Statements .. 17
Perform Unisys TIP and DPS Calls Analysis ... 17
Perform Unisys Common-Storage Analysis ... 18
Relaxed Parsing ... 18
PERFORM Behavior for Micro Focus Cobol .. 18

Keep Legacy Copybooks Extraction Option ...19
How Parameterized Slices Are Generated for Cobol Programs 20
Setting a Specialization Variable to Multiple Values ... 21
Arithmetic Exception Handling .. 22

Contents | 3

Introducing Component Maker
The Component Maker tool includes the Dead Code Elimination slicing algorithm that lets you remove all of
the dead code from a program. You can create a self-contained program, called a component from the
sliced code or simply generate a Interactive Analysis list of sliced constructs for further analysis. You can
mark and colorize the constructs in the Interactive Analysis Source pane.

Componentization Methods
The supported componentization methods slice logic not only from program executables but associated
include files as well. Dead Code Elimination is an optimization tool built into the main methods and offered
separately in case you want to use it on a standalone basis.

Note: Component Maker does not follow CALL statements into other programs to determine whether
passed data items are actually modified by those programs. It makes the conservative assumption
that all passed data items are modified. That guarantees that no dependencies are lost.

Dead Code Elimination (DCE)
Dead Code Elimination is an option in each of the main component extraction methods, but you can also
perform it on a standalone basis. For each program analyzed for dead code, standalone DCE generates a
component that consists of the original source code minus any unreferenced data items or unreachable
procedural statements.

Note: Use the batch DCE feature to find dead code across your project. If you are licensed to use the
Batch Refresh Process (BRP), you can use it to perform dead code elimination across a workspace.

Language Support
The following table describes the extraction methods available for Component Maker-supported
languages.

Method COBOL PL/I Natural RPG

Dead Code
Elimination

Yes Yes Yes Yes

Componentization Outputs
The first step in the componentization process, called extraction, generates the following outputs:

• The source file that comprises the component.
• An abstract repository object, or logical component, that gives you access to the source file in

Enterprise Analyzer.
• A Interactive Analysis list of sliced constructs, which you can mark and colorize in the Interactive

Analysis Source pane.

Note: Sliced data declarations are not marked and colorized.

The second step, called conversion, registers the source files in your repository, creating repository objects
for the generated components and their corresponding copybooks.

4 | Introducing Component Maker

Component Maker lets you execute the extraction and conversion steps independently or in combination,
depending on your needs:

• If you want to analyze the components further, transform them, or even generate components from
them, you will want to register the component source files in your repository and verify them, just as you
would register and verify a source file from the original legacy application.

• If you are interested only in deploying the components in your production environment, you can skip the
conversion step and avoid cluttering your repository.

The figure below shows how the componentization outputs are represented in the Repository Browser after
conversion and verification of a COBOL component called DaysInYearCalc. PRODUPD is the program the
component was extracted from.

Component Maker Basics
Component Maker is a Interactive Analysis-based tool that you can invoke from within Interactive Analysis
itself:

• Start the tool in Interactive Analysis by selecting the program you want to slice in the Enterprise
Analyzer Repository Browser and choosing Analyze > Interactive Analysis. In the Interactive Analysis
window, choose View > Components.

Note: Choose View > Logic Analyzer if you are using Logic Analyzer.

The Components pane consists of a hierarchy of views that let you specify the logical components you
want to manipulate:

• The Types view lists the types of logical components you can create.
• The List view displays logical components of the selected type.
• The Details view displays the details for the selected logical component in two tabs, Properties and

Components. The Properties tab displays extraction properties for the logical component. The
Components tab lists the files generated for the logical component.

Getting Started in the Components Pane
You do most of your work in Component Maker in the Components pane. To illustrate how you extract a
logical component in the Components pane, let's look at the simplest task you can perform in Component
Maker, Dead Code Elimination (DCE).

Note: The following exercise deliberately avoids describing the properties and options you can set for
DCE. See the relevant help topics for details.

1. In the Components pane, double-click Dead Code Elimination. The DCE pane opens. This view
shows the DCE-based logical components created for the programs in the current project.

Introducing Component Maker | 5

Tip: Click the button on the tool bar to restrict the display to logical components created for
the selected program.

2. Select the program you want to analyze for dead code in the Interactive Analysis Objects pane and click

the button. To analyze the entire project of which the program is a part, click the button.

3. A dialog opens where you can enter the name of the new component in the text field. Click OK.
Component Maker adds the new components to the list of components. If you selected batch mode,
Component Maker creates a logical component for each program in the project, appending _n to the
name of the component.

4. Double-click a component to edit its properties. The Component of program field contains the name of
the selected program.

5. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

Note: This field is shown only for COBOL programs.

6. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

7.
Click the button on the tool bar to navigate to the list of components, then repeat the procedure for
each component you want to extract.

8. In the list of components, select each component you want to extract and click the button on the
tool bar. You are prompted to confirm that you want to extract the components. Click OK.

9. The Extraction Options dialog opens. Set extraction options as described in the relevant help topic.
When you are satisfied with your choices, click Finish.

10.Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes to view the errors or warnings in the Activity Log. Otherwise, click No.

11.Assuming the extraction executed without errors, the view shown in the figure below opens. Click the
Components tab to display a list of the component source files that were generated for the logical
component and an audit report if you requested one. Click an item in the list to view the read-only text
for the item.

6 | Introducing Component Maker

Creating Components
To create a component, select the program you want to slice in the Interactive Analysis Objects pane. In

the Types view, select the type of logical component you want to create and click the button on the

tool bar. (You can also click the button in the List or Details view.) A dialog opens where you can enter
the name of the new component in the text field. Click OK.

Extracting Components
To extract a single logical component, select the component you want to extract in the List view and click

the button on the tool bar. To extract multiple logical components, select the type of the components

you want to extract in the Types view and click the button. You are prompted to confirm that you want
to continue. Click OK.

Tip: Logical components are converted as well as extracted if the Convert Resulting Components
to Legacy Objects is set in the Component Conversion Options pane.

Converting Components
To convert a single logical component, select the component you want to convert in the List view and click

the button on the tool bar. To convert multiple logical components, select the type of the components

you want to convert in the Types view and click the button. You are prompted to confirm that you want
to continue. Click OK.

Deleting Components
To delete a logical component, select it in the List view and click the button on the tool bar.

Note: Deleting a logical component does not delete the component and copybook repository objects.
You must delete these objects manually in the Repository Browser.

Viewing the Text for Generated Files
To view the read-only text for a generated file, click the file in the list of generated files for in the
Components tab.

Tip: You can also view the text for a generated file in the Enterprise Analyzer main window. In the
Repository Browser Logical Component folder, click the component whose generated files you want
to view.

Restricting the Display to Program-Related
Components
To restrict the display to logical components of a given program, select the program and click the
button on the tool bar. The button is a toggle. Click it again to revert to the generic display.

Introducing Component Maker | 7

Working with Interactive Analysis Lists
When you extract a logical component, Component Maker generates a Interactive Analysis list of sliced
constructs. The list has the same name as the component. You can view the list in the Logic Analyzer
folder in Clipper.

To mark and colorize sliced constructs in the list, select the list in Clipper and click the button on the
tool bar. To mark and colorize sliced constructs in a single file, select the file in the List view and click the

 button. To mark and colorize a single construct, select it in the File view and click the button. Click

the button again to turn off marking and colorizing.

Viewing Audit Reports
An audit report contains a list of changed and deleted lines in the source files (including copybooks) from
which a logical component was extracted. The report has a name of the form <component>.audit.txt. Click
the report in the Components tab to view its text.

An audit report optionally includes reason codes explaining why a line was changed or deleted. A reason
code is a number keyed to the explanation for a change (for example, reason code 12 for computation-
based componentization is RemoveUnusedVALUEs).

8 | Introducing Component Maker

Generating Coverage Reports
A coverage report shows the extent to which a source program has been "componentized":

• The top-left pane lists each component of a given type extracted from the program.
• The bottom-left pane lists the paragraphs in the program. Click on a paragraph to navigate to it in the

righthand pane.
• The righthand pane displays the text of the program with extracted code shaded in pink. The numbers

to the left of the extracted code identify the component to which it was extracted.

To generate coverage reports, click on the Component Maker tool bar. The reports are listed in the
Generated Document folder in the Repository Browser. Report names are of the form <program>-
<method>-Coverage. Double-click a report to view it in a Web browser.

Note: Reports are created for each program in the current project.

Introducing Component Maker | 9

Setting Component Maker Options
It's a good idea to become familiar with the component extraction options before beginning your work in
Component Maker. Each extraction method has a different set of options, and each set differs for the
supported object types. Extraction options are project-based, so they apply to every program in the current
Enterprise Analyzer project.

You can set Component Maker extraction options in the standard Project Options window or in the
extraction options dialog that opens when you create a component. To open the standard Project Options
window, choose Options > Project Options. In the Project Options window, click the Component Maker
tab.

Setting General Options
The table below describes the Component Maker General extraction options.

Option Language Description

Add Program Name as Prefix COBOL, Natural, PL/I, RPG Prepend the name of the sliced program to the
component name you specified when you created
the component, in the form <program>
$<component>.

Generate Slice COBOL, Natural, PL/I, RPG Generate both a Interactive Analysis list of sliced
constructs and a component.

Keep Legacy Copybooks COBOL, RPG Do not generate modified copybooks for the
component. Modified copybooks have names of
the form <copybook>-<component>-n, where n is a
number ensuring the uniqueness of the copybook
name when multiple instances of a copybook are
generated for the same component.

Note: Component Maker issues a warning
if including the original copybooks in the
component would result in an error.

Keep Legacy Includes PL/I Do not generate modified program include files for
the component. The layout and commentary of the
sliced program is preserved.

Keep Legacy Macros PL/I Do not expand macros for the component. The
layout and commentary of the sliced program is
preserved.

Preserve Legacy Includes Natural Do not generate modified program include files for
the component.

Rename Program Entries COBOL Prepend the name of the component to inner entry
points, in the form <component>-<entrypoint>. This
ensures that entry point names are unique and that
the Enterprise Analyzer parser can verify the
component successfully. Unset this option if you
need to preserve the original names of the inner
entry points.

10 | Setting Component Maker Options

Setting Interface Options
The table below describes the Component Maker Interface extraction options.

Option Language Description

Blocking COBOL If you are performing a parameterized
computation-based extraction and want to use
blocking, click the More button. A dialog opens,
where you can select the blocking option and the
types of statements you want to block.

Note: Choose Use Blocking from
Component Definitions if you want to block
statements in a Interactive Analysis list.

Create CICS Program COBOL Create COMMAREAS for parameter exchange in
generated slices.

Generate Parameterized
Components

COBOL Extract parameterized slices.

Setting Optimize Options
The table below describes the Component Maker Optimize extraction options.

Option Language Description

No changes Cobol, Natural, RPG Do not remove unused data items from the
component.

Preserve Original Paragraphs Cobol Generate paragraph labels even for paragraphs
that are not actually used in the source code (for
example, empty paragraphs for which there are no
PERFORMs).

Note: This option also affects refactoring.
When the option is set, paragraphs in the
same "basic block" are defragmented
separately. Otherwise, they are
defragmented as a unit.

Remove Redundant NEXT
SENTENCE

Cobol Remove NEXT SENTENCE clauses by changing
the bodies of corresponding IF statements, such
that:

IF A=1
 NEXT SENTENCE
ELSE
 ...
END-IF.

is generated as:

IF NOT (A=1)
 ...
END-IF.

Remove/Replace Unused Fields
with FILLERs

Cobol, Natural, RPG Remove unused any-level structures and replace
unused fields in a used structure with FILLERs. Set
this option if removing a field completely from a

Setting Component Maker Options | 11

Option Language Description

structure would adversely affect memory
distribution.

Note: If you select Keep Legacy copybooks
in the General component extraction
options, Component Maker removes or
replaces with FILLERs only unused inline
data items.

Remove Unreachable Code Cobol, RPG Remove unreachable procedural statements.

Remove Unused Any-Level
Structures

Cobol, Natural, RPG Remove unused structures at any data level, if all
their parents and children are unused. For the
example below, D, E, F, and G are removed:

DEFINE DATA LOCAL
1 #A
 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Remove Unused Level-1
Structures

Cobol, Natural, RPG Remove only unused level-1 structures, and then
only if all their children are unused. If, in the
following example, only B is used, only G is
removed:

DEFINE DATA LOCAL
1 #A
 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Replace Section PERFORMs by
Paragraph PERFORMs

Cobol Replace PERFORM section statements by
equivalent PERFORM paragraph statements.

Roll-Up Nested IFs Cobol Roll up embedded IF statements in the top-level IF
statement, such that:

IF A=1
 IF B=2

is generated as:

IF (A=1) AND (B=2)

Setting Document Options
The table below describes the Component Maker Document extraction options.

Option Language Description

Comment-out Sliced-off Legacy
Code

COBOL, RPG Retain but comment out unused code in the
component source. In the Comment Prefix field,
enter descriptive text (up to six characters) for the
commented-out lines.

12 | Setting Component Maker Options

Option Language Description

Emphasize Component/Include
in Coverage Report

COBOL, Natural, PL/I, RPG Generate a Interactive Analysis list of sliced
constructs and colorize the constructs in the
Coverage Report.

Generate Audit Report COBOL Generate an audit report.

Generate Support Comments COBOL, RPG Include comments in the component source that
identify the component properties you specified,
such as the starting and ending paragraphs for a
structure-based COBOL component.

Include Reason Codes COBOL Include reason codes in the audit report
explaining why a line was changed or deleted.

Note: Generating reason codes is very
memory-intensive and may cause crashes
for extractions from large programs.

List Options in Component
Header and in Separate
Document

COBOL, RPG Include a list of extraction option settings in the
component header and in a separate text file. The
text file has a name of the form
<component>.BRE.options.txt.

Mark Modified Legacy Code COBOL, RPG Mark modified code in the component source. In
the Comment Prefix field, enter descriptive text
(up to six characters) for the modified lines.

Print Calculated Values as
Comments

COBOL For domain-based component extraction only,
print the calculated values of variables as
comments. Alternatively, you can substitute the
calculated values of variables for the variables
themselves.

Use Left Column for Marks COBOL, RPG Place the descriptive text for commented-out or
modified lines in the lefthand column of the line.
Otherwise, the text appears in the righthand
column.

Setting Component Type-Specific Options
Component type-specific extraction options determine how Component Maker performs tasks specific to
each componentization method.

Setting Component Conversion Options
The table below describes the Component Maker Component Conversion extraction options.

Option Language Description

Convert Resulting Components Cobol, Natural, PL/I, RPG Convert as well as extract the logical component.

Keep Old Legacy Objects Cobol, Natural, PL/I, RPG Preserve existing repository objects for the
converted component (copybooks, for example). If
you select this option, delete the repository object
for the component itself before performing the
extraction, or the new component object will not
be created.

Remove Components after
Successful Conversion

Cobol, Natural, PL/I, RPG Remove logical components from the current
project after new component objects are created.

Setting Component Maker Options | 13

Option Language Description

Replace Old Legacy Objects Cobol, Natural, PL/I, RPG Replace existing repository objects for the
converted component.

Note: This option controls conversion
behavior even when you perform the
conversion independently from the
extraction. If you are converting a
component independently and want to
change this setting, select Convert
Resulting Components to Legacy Objects,
specify the behavior you want, and then
deselect Convert Resulting Components to
Legacy Objects.

14 | Setting Component Maker Options

Eliminating Dead Code
Dead Code Elimination (DCE) is an option in each of the main component extraction methods, but you can
also perform it on a standalone basis. For each program analyzed for dead code, DCE generates a
component that consists of the original source code minus any unreferenced data items or unreachable
procedural statements. Optionally, you can have DCE comment out dead code in Cobol and Natural
applications, rather than remove it.

Note: Use the batch DCE feature to find dead code across your project. If you are licensed to use the
Batch Refresh Process (BRP), you can use it to perform dead code elimination across a workspace.

Generating Dead Code Statistics
Set the Perform Dead Code Analysis option in the project verification options if you want the parser to
collect statistics on the number of unreachable statements and dead data items in a program, and to mark
the constructs as dead in Interactive Analysis. You can view the statistics in the Legacy Estimation tool, as
described in Analyzing Projects in the product documentation set.

Note: You do not need to set this option to perform dead code elimination in Component Maker.

For COBOL programs, you can use a DCE coverage report to identify dead code in a source program. The
report displays the text of the source program with its "live," or extracted, code shaded in pink.

Understanding Dead Code Elimination
Let's look at a simple before-and-after example to see what you can expect from Dead Code Elimination.

Before:
WORKING-STORAGE SECTION.

 01 USED-VARS.
 05 USED1 PIC 9.

 01 DEAD-VARS.
 05 DEAD1 PIC 9.
 05 DEAD2 PIC X.

 PROCEDURE DIVISION.

 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.
 MOVE 2 TO USED1.

 DEAD-PARA1.
 MOVE 0 TO DEAD2.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.

Eliminating Dead Code | 15

After:
WORKING-STORAGE SECTION.

 01 USED-VARS.
 05 USED1 PIC 9.

 PROCEDURE DIVISION.

 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.

Extracting Optimized Components
Follow the instructions below to extract optimized components for all supported languages.

1. Select the program you want to analyze for dead code in the Interactive Analysis Objects pane and click

the button. To analyze the entire project of which the program is a part, click the button.

2. A dialog opens where you can enter the name of the new component in the text field. Click OK.
Component Maker adds the new components to the list of components. If you selected batch mode,
Component Maker creates a logical component for each program in the project, appending _n to the
name of the component.

3. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

4. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

5. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

6. The Extraction Options dialog opens. Set options for the extraction and click Finish.

7. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

16 | Eliminating Dead Code

Technical Details
This appendix gives technical details of Component Maker behavior for a handful of narrowly focused
verification and extraction options; for Cobol parameterized slice generation; and for Cobol arithmetic
exception handling.

Verification Options
This section describes how a number of verification options may affect component extraction. For more
information on the verification options, see Preparing Projects in the product documentation set.

Use Special IMS Calling Conventions
Select Use Special IMS Calling Conventions in the project verification options if you want to show
dependencies and analyze CALL 'CBLTDLI' statements for the CHNG value of their first parameter, and if
the value of the third parameter is known, then generate Calls relationship in the repository.

For example:

MOVE 'CHNG' TO WS-IMS-FUNC-CODE
MOVE 'MGRW280' TO WS-IMS-TRANSACTION
CALL 'CBLTDLI' USING WS-IMS-FUNC-CODE
 LS03-ALT-MOD-PCB
 WS-IMS-TRANSACTION

When both WS-IMS-FUNC-CODE = 'CHNG' and WS-IMS-TRANSACTION have known values, the
repository is populated with the CALL relationship between the current program and the WS-IMS-
TRANSACTION <value> program (in the example, 'MGRW280').

Override CICS Program Terminations
Select Override CICS Program Terminations in the project verification options if you want the parser to
interpret CICS RETURN, XCTL, and ABEND commands in Cobol files as not terminating program
execution.

If the source program contains CICS HANDLE CONDITION handlers, for example, some exceptions can
arise only on execution of CICS RETURN. For this reason, if you want to see the code of the
corresponding handler in the component, you need to check the override box. Otherwise, the call of the
handler and hence the handler's code are unreachable.

Support CICS HANDLE Statements
Select Support CICS HANDLE statements in the project verification options if you want the parser to
recognize CICS HANDLE statements in Cobol files. EXEC CICS HANDLE statements require processing
to detect all dependencies with error-handling statements. That may result in adding extra paragraphs to a
component.

Perform Unisys TIP and DPS Calls Analysis
Select Perform Unisys TIP and DPS Calls Analysis in the project verification options if you are working
on a project containing Unisys 2200 Cobol files and need to perform TIP and DPS calls analysis.

Technical Details | 17

This analysis tries to determine the name (value of the data item of size 8 and offset 20 from the beginning
of form-header) of the screen form used in input/output operation (at CALL 'D$READ', 'D$SEND', 'D
$SENDF', 'D$SENDF1') and establish the repository relationships ProgramSendsMap and
ProgramReadsMap between the program being analyzed and the detected screen.

For example:

01 SCREEN-946.
 02 SCREEN-946-HEADER.
 05 FILLER PIC X(2)VALUE SPACES.
 05 FILLER PIC 9(5)COMP VALUE ZERO.
 05 FILLER PIC X(4)VALUE SPACES.
 05 S946-FILLER PIC X(8) VALUE 'DPSSWS'
 05 S946-NUMBER PIC 9(4) VALUE 946.
 05 S946-NAME PIC X(8) VALUE 'SCRN946'.
CALL 'D$READ USING DPS-STATUS, SCREEN-946.

Relationship ProgramSendsMap is established between the program and screen 'SCRN946'.

Note: Select DPS routines may end with error if you want to perform call analysis of DPS routines
that end in an error.

Perform Unisys Common-Storage Analysis
Select Perform Unisys Common-Storage Analysis in the project verification options if you want the
system to include in the analysis for Unisys Cobol files variables that are not explicitly declared in CALL
statements. This analysis adds implicit use of variables declared in the Common Storage Section to every
CALL statement of the program being analyzed, as well as for its PROCEDURE DIVISION USING phrase.
That could lead to superfluous data dependencies between the caller and called programs in case the
called program does not use data from Common Storage.

Relaxed Parsing
The Relaxed Parsing option in the workspace verification options lets you verify a source file despite
errors. Ordinarily, the parser stops at a statement when it encounters an error. Relaxed parsing tells the
parser to continue to the next statement.

For code verified with relaxed parsing, Component Maker behaves as follows:

• Statements included in a component that contain errors are treated as CONTINUE statements and
appear in component text as comments.

• Dummy declarations for undeclared identifiers appear in component text as comments.
• Declarations that are in error appear in component text as they were in the original program. Corrected

declarations appear in component text as comments.
• Commented-out code is identified by an extra comment line: "Enterprise Analyzer assumption".

PERFORM Behavior for Micro Focus Cobol
For Micro Focus Cobol applications, use the PERFORM behavior option in the workspace verification
options window to specify the type of PERFORM behavior the application was compiled for. You can
select:

• Stack if the application was compiled with the PERFORM-type option set to allow recursive
PERFORMS.

• All exits active if the application was compiled with the PERFORM-type option set to not allow
recursive PERFORMS.

For non-recursive PERFORM behavior, a COBOL program can contain PERFORM mines. In informal
terms, a PERFORM mine is a place in a program that can contain an exit point of some active but not
current PERFORM during program execution.

18 | Technical Details

The program below, for example, contains a mine at the end of paragraph C. When the end of paragraph C
is reached during PERFORM C THRU D execution, the mine "snaps" into action: control is transferred to
the STOP RUN statement of paragraph A.

A.
 PERFORM B THRU C.
 STOP RUN.
 B.
 PERFORM C THRU D.
 C.
 DISPLAY 'C'.
 * mine
 D.
 DISPLAY 'D'.

Setting the compiler option to allow non-recursive PERFORM behavior where appropriate allows the
Enterprise Analyzer parser to detect possible mines and determine their properties. That, in turn, lets
Component Maker analyze control flow and eliminate dead code with greater precision. To return to our
example, the mine placed at the end of paragraph C snaps each time it is reached: such a mine is called
stable. Control never falls through a stable mine. Here it means that the code in paragraph D is
unreachable.

Keep Legacy Copybooks Extraction Option
Select Keep Legacy Copybooks in the General extraction options for Cobol if you want Component
Maker not to generate modified copybooks for the component. Component Maker issues a warning if
including the original copybooks in the component would result in an error.

Example 1:
[COBOL]
01 A PIC X.
PROCEDURE DIVISION.
COPY CP.
[END-COBOL]
[COPYBOOK CP.CPY]
STOP RUN.
DISPLAY A.
[END-COPYBOOK CP.CPY]

For this example, Component Maker issues a warning for an undeclared identifier after Dead Code
Elimination.

Example 2:
[COBOL]
PROCEDURE DIVISION.
COPY CP.
STOP RUN.
P.
[END-COBOL]
[COPYBOOK CP.CPY]
DISPLAY "QA is out there"
STOP RUN.
PERFORM P.
[END-COPYBOOK CP.CPY]

For this example, Component Maker issues a warning for an undeclared paragraph after Dead Code
Elimination.

Example 3:
[COBOL]
working-storage section.

Technical Details | 19

copy file.
PROCEDURE DIVISION.
p1.
 move 1 to a.
p2.
 display b.
 display a.
p3.
 stop run.
[END-COBOL]
[COPYBOOK file.cpy]
01 a pic 9.
01 b pic 9.
[END-COPYBOOK file.cpy]

For this example, the range component on paragraph p2 looks like this:

[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1.
 LINKAGE SECTION.
 PROCEDURE DIVISION USING A.
[END-COBOL]
while, with the option turned off, it looks like this:
[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1-A$RULE-0.
 LINKAGE SECTION.
 COPY FILE1-A$RULE-1.
[END-COBOL]

That is, turning the option on overrides the splitting of the copybook file into two files. Component Maker
issues a warning if that could result in an error.

How Parameterized Slices Are Generated for Cobol
Programs

The specifications for input and output parameters are:

• Input

A variable of an arbitrary level from the LINKAGE section or PROCEDURE DIVISION USING is
classified as an input parameter if one or more of its bits are used for reading before writing.

A system variable (field of DFHEIB/DFHEIBLK structures) is classified as an input parameter if the
Create CICS Program option is turned off and the variable is used for writing before reading.

• Output

A variable of an arbitrary level from the LINKAGE section or PROCEDURE DIVISION USING is
classified as an output parameter if it is modified during component execution.

A system variable (a field of DFHEIB/DFHEIBLK structures) is classified as an output parameter if the
Create CICS Program option is turned off and the variable is modified during component execution.

• For each input parameter, the algorithm finds its first usage (it does not have to be unique, the algorithm
processes all of them), and if the variable (parameter from the LINKAGE section) is used for reading,
code to copy its value from the corresponding field of BRE-INPUT-STRUCTURE is inserted as close to
this usage as possible.

• The algorithm takes into account all partial or conditional assignments for this variable before its first
usage and places PERFORM statements before these assignments.

If a PERFORM statement can be executed more than once (as in the case of a loop), then a flag
variable (named BRE-INIT-COPY-FLAG-[<n>] of the type PIC 9 VALUE 0 is created in the WORKING-

20 | Technical Details

STORAGE section, and the parameter is copied into the corresponding variable only the first time this
PERFORM statement is executed.

• For all component exit points, the algorithm inserts code to copy all output parameters from working-
storage variables to the corresponding fields of BRE-OUTPUT-STRUCTURE.

Variables of any level (rather than only 01-level structures together with all their fields) can act as
parameters. This allows exclusion of unnecessary parameters, making the resulting programs more
compact and clear.

For each operator for which a parameter list is generated, the following transformations are applied to
the entire list:

• All FD entries are replaced with their data descriptions.
• All array fields are replaced with the corresponding array declarations.
• All upper-level RENAMES clauses are replaced with the renamed declarations.
• All upper-level REDEFINES clauses with an object (including the object itself, if it is present in the

parameter list) are replaced with a clause of a greater size.
• All REDEFINES and RENAMES entries of any level are removed from the list.
• All variable-length arrays are converted into fixed-length of the corresponding maximal size.
• All keys and indices are removed from array declarations.
• All VALUE clauses are removed from all declarations.
• All conditional names are replaced with the corresponding data items.

Setting a Specialization Variable to Multiple Values
For Domain-Based Componentization, Component Maker lets you set the specialization variable to a range
of values (between 1 and 10 inclusive, for example) or to multiple values (not only CHECK but CREDIT-
CARD, for example). You can also set the variable to all values not in the range or set of possible values
(every value but CHECK and CREDIT-CARD, for example).

Component Maker uses multiple values to predict conditional branches intelligently. In the following code
fragment, for example, the second IF statement cannot be resolved with a single value, because of the two
conflicting values of Z coming down from the different code paths of the first IF. With multiple values,
however, Component Maker correctly resolves the second IF, because all the possible values of the
variable at the point of the IF are known:

IF X EQUAL Y
 MOVE 1 TO Z
ELSE
 MOVE 2 TO Z
DISPLAY Z.
IF Z EQUAL 3
 DISPLAY "Z=3"
ELSE
 DISPLAY "Z<>3"

Keep in mind that only the following COBOL statements are interpreted with multiple values:

• COMPUTE
• MOVE
• ADD
• SUBTRACT
• MULTIPLY
• DIVIDE

That is, if the input of such a statement is defined, then, after interpretation, its output can be defined as
well.

Technical Details | 21

Single-Value Example:

MOVE 1 TO Y.
MOVE 1 TO X.
ADD X TO Y.
DISPLAY Y.
IF Y EQUAL 2 THEN...

In this fragment of code, the value of Y in the IF statement (as well as in DISPLAY) is known, and so the
THEN branch can be predicted.

Multiple-Value Example:

IF X EQUAL 0
 MOVE 1 TO Y
ELSE
 MOVE 2 TO Y.
ADD 1 TO Y.
IF Y = 10 THEN... ELSE...

In this case, Component Maker determines that Y in the second IF statement can equal only 2 or 3, so the
statement can be resolved to the ELSE branch.

The statement interpretation capability is available only when you define the specialization variable
"positively" (as equalling a range or set of values), not when you define the variable "negatively" (as not
equalling a range or set of values).

Arithmetic Exception Handling
For Cobol, the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements can have ON SIZE
ERROR and NOT ON SIZE ERROR phrases. The phrase ON SIZE ERROR contains an arithmetic
exception handler.

Statements in the ON SIZE ERROR phrase are executed when one of the following arithmetic exception
conditions take place:

• The value of an arithmetic operation result is larger than the resultant-identifier picture size.
• Division by zero.
• Violation of the rules for the evaluation of exponentiation.

For MULTIPLY arithmetic statements, if any of the individual operations produces a size error condition,
the statements in the ON SIZE ERROR phrase is not executed until all of the individual operations are
completed.

Control is transferred to the statements defined in the phrase NOT ON SIZE ERROR when a NOT ON
SIZE ERROR phrase is specified and no exceptions occurred. In that case, the ON SIZE ERROR is
ignored.

Component Maker specialization processes an arithmetic statement with exception handlers in the
following way:

• If a (NOT) ON SIZE ERROR condition occurred in some interpreting pass, then the arithmetic
statement is replaced by the statements in the corresponding phrase.

• Those statements will be interpreted at the next pass.

22 | Technical Details

	Contents
	Introducing Component Maker
	Componentization Methods
	Dead Code Elimination (DCE)
	Language Support

	Componentization Outputs
	Component Maker Basics
	Getting Started in the Components Pane
	Creating Components
	Extracting Components
	Converting Components
	Deleting Components
	Viewing the Text for Generated Files
	Restricting the Display to Program-Related Components
	Working with Interactive Analysis Lists
	Viewing Audit Reports
	Generating Coverage Reports

	Setting Component Maker Options
	Setting General Options
	Setting Interface Options
	Setting Optimize Options
	Setting Document Options
	Setting Component Type-Specific Options
	Setting Component Conversion Options

	Eliminating Dead Code
	Generating Dead Code Statistics
	Understanding Dead Code Elimination
	Extracting Optimized Components

	Technical Details
	Verification Options
	Use Special IMS Calling Conventions
	Override CICS Program Terminations
	Support CICS HANDLE Statements
	Perform Unisys TIP and DPS Calls Analysis
	Perform Unisys Common-Storage Analysis
	Relaxed Parsing
	PERFORM Behavior for Micro Focus Cobol

	Keep Legacy Copybooks Extraction Option
	How Parameterized Slices Are Generated for Cobol Programs
	Setting a Specialization Variable to Multiple Values
	Arithmetic Exception Handling

