
A Programmer’s Guide to the
Internet
Version 8.1

Micro Focus
9920 Pacific Heights Blvd.

San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (ID) Ltd, 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft, Windows, ActiveX, Internet Explorer, Visual Basic, and PowerPoint are trademarks or
registered trademarks of Microsoft Corp. Netscape, Netscape Navigator, and Netscape
Communicator are registered trademarks and service marks of Netscape Communications
Corporation. Java is a trademark of Sun Microsystems, Inc. UNIX is a registered trademark of The
Open Group in the United States and other countries. Crystal Reports is a registered trademark of
Crystal Decisions, Inc. Apache and Cocoon Project are trademarks or registered trademarks of
Apache Digital Corp. O’Reilly is a trademark of O’Reilly and Associates. InterNIC is a registered
service mark of the U.S. Department of Commerce. Other brand and product names are trademarks
or registered trademarks of their respective holders.

E-01-UG-080901-Internet-8.1

Contents

Chapter 1: Introduction
1.1 Introduction.. 1-2
1.2 Purpose/Scope of Book.. 1-2
1.3 What You Need to Know... 1-3
1.4 What You Don’t Need to Know .. 1-3
1.5 Product Integration .. 1-4
1.6 Technical Services ... 1-5

Chapter 2: Choosing a Deployment Method
2.1 What Are My Options?.. 2-2

2.1.1 Web Solutions.. 2-2
2.1.2 Other Internet Solutions... 2-6

2.2 Helping You Decide .. 2-7

Chapter 3: Using the Thin Client to Launch Web Applications
3.1 What Is the Thin Client? .. 3-2
3.2 How the Thin Client Works... 3-3
3.3 Thin Clients and the Internet ... 3-5
3.4 Specifying an Internet Address on the Command Line ... 3-5
3.5 Providing Thin Client Links on the Web... 3-6

3.5.1 Thin Client Command Line Files ... 3-8
3.5.2 Using Anchor Tags .. 3-9
3.5.3 Security and the ACUCOBOL-GT Thin Client .. 3-10

3.6 Using the ACUCOBOL-GT Web Thin Client .. 3-10
3.6.1 Windowing Options... 3-11
3.6.2 How Your Program Executes .. 3-12
3.6.3 Browser Versions Supported by the Web Thin Client .. 3-13
3.6.4 Deploying Applications via the Web Thin Client ... 3-13
3.6.5 Setting Up a Web Site.. 3-14
3.6.6 Coding Considerations .. 3-14
3.6.7 Updating Your Web Page to Invoke Your COBOL Application 3-14
3.6.8 Using the <OBJECT> Tag .. 3-15

3.6.8.1 How the <OBJECT> tag works... 3-17
3.6.8.2 Version number of Web thin client ... 3-18
3.6.8.3 Object interface for the Web thin client .. 3-19

Contents-ii
AcuIsActive ...3-20
AcuExecute..3-21
AcuShutdownAx..3-21
AcuGetLastError..3-22
AboutBox...3-23
AcuEmbedded..3-23
AcuShowLogo ...3-24
AcuCommandLine...3-24
SRC..3-25
3.6.8.4 Scripting with the object interface...3-26

3.6.9 Licensing Considerations...3-26
3.6.10 The User’s Job ...3-26
3.6.11 Troubleshooting ...3-27
3.6.12 Security and the Web Thin Client..3-28

3.6.12.1 Digital signature of Web thin client...3-28
3.6.12.2 How Internet Explorer security affects the Web thin client3-29
3.6.12.3 Security warning messages..3-30

Chapter 4: Launching Web Applications Through CGI
4.1 What Is CGI? ...4-2
4.2 How CGI Works ..4-3
4.3 Deploying Your Applications on the Web Using CGI ..4-5
4.4 Creating a Web Interface ...4-6

4.4.1 Creating HTML Forms ..4-7
METHOD attribute..4-8
ACTION attribute..4-9

4.4.2 FORM Components ...4-9
INPUT tag..4-10
TYPE attribute ...4-10
Single-line entry fields...4-10
Multiple-line entry fields ...4-10
Check boxes and radio buttons ..4-11
List boxes...4-11
Submit and Reset buttons ..4-12
Hidden fields..4-12

4.5 Writing a CGI Program..4-13
4.5.1 Reading CGI Input Data ..4-15

Using the ACCEPT verb ...4-15
Using the C$GETCGI routine ...4-17

4.5.2 Processing the User’s Request ..4-19
4.5.3 Generating Output..4-20
4.5.4 Sample CGI Programs ...4-23

 Contents-iii
4.6 Creating a Runtime Configuration File for Your CGI Program.................................... 4-28
CGI_STRIP_CR ... 4-28
CGI_CONTENT_TYPE... 4-29
CGI_NO_CACHE .. 4-30
CGI_AUTO_HEADER .. 4-31
HTML_TEMPLATE_PREFIX .. 4-31
CGI_CLEAR_MISSING_VALUES .. 4-32

4.7 Configuring the Web Server .. 4-32
4.7.1 “-b” Runtime Option.. 4-35
4.7.2 “-f” Runtime Option .. 4-35
4.7.3 A_CGI Environment Variable... 4-35

Chapter 5: Using the ACUCOBOL-GT Web Runtime
5.1 What Is the Web Runtime? .. 5-2
5.2 How the Web Runtime Works... 5-3

5.2.1 Windowing Options... 5-4
5.2.2 How Your Program Executes .. 5-6
5.2.3 Browser Versions Supported by the Web Runtime... 5-6

5.3 Deploying Applications via the Web Runtime .. 5-7
5.4 Setting Up a Web Site.. 5-7
5.5 Preparing Your ACUCOBOL-GT Application for the Web Runtime 5-8

5.5.1 Coding for the Web Runtime... 5-10
W$BROWSERINFO routine .. 5-11
W$STATUS routine.. 5-12
IS-PLUGIN field in ACUCOBOL.DEF.. 5-12
W$GETURL routine ... 5-13
Other coding considerations .. 5-15

5.5.2 Configuring the Web Runtime... 5-16
5.5.2.1 Programmatic configuration.. 5-16
5.5.2.2 Runtime configuration files... 5-17

5.5.3 Packaging Your Application and Resources ... 5-18
5.5.3.1 Using cblutil .. 5-19
5.5.3.2 Using COPY RESOURCE.. 5-19

5.6 Invoking Your COBOL Application with the Web Runtime .. 5-20
5.6.1 Using the <OBJECT> Tag .. 5-21

5.6.1.1 How the <OBJECT> tag works... 5-24
5.6.1.2 Version number of Web runtime... 5-24
5.6.1.3 Web runtime object interface .. 5-25
AcuIsActive... 5-27
AcuExecute.. 5-28

Contents-iv
AcuShutdownAx..5-29
AcuGetLastError..5-29
AboutBox...5-30
AcuParam1 … AcuParam14..5-30
AcuOptions ..5-32
AcuEmbedded..5-33
AcuShowLogo ...5-33
AcuProgram...5-34
SRC..5-35
5.6.1.4 Scripting with the object interface...5-36

5.6.2 Using the <EMBED> Tag ...5-37
5.6.3 Using a Hyperlink to Launch Your Application..5-38

5.7 Obtaining and Distributing the Web Runtime ...5-40
5.7.1 Licensing Considerations...5-40

5.7.1.1 Licensing the server...5-41
5.7.1.2 Licensing by machine ..5-42

5.7.2 File System Dependencies ...5-43
5.7.3 Manual Registration of the Web Runtime ...5-43

5.8 The User’s Job ...5-44
5.9 Security ..5-45

5.9.1 Digital Signature of Web Runtime ..5-45
5.9.2 How Internet Explorer Security Affects the Web Runtime5-46
5.9.3 Security Warning Messages...5-47
5.9.4 How the Authorization File Works..5-48

5.9.4.1 FILE_PREFIX override...5-49
5.9.4.2 Editing the authorization file ...5-50
5.9.4.3 Restricted library routines..5-50
5.9.4.4 Using the authorization file for access...5-51

5.10 Troubleshooting ...5-51
5.11 Migrating from the Web Plug-in to the Web Runtime ..5-53

Chapter 6: Using AcuXUI to Launch Web Applications
6.1 Deploying AcuXUI as an Applet ...6-2
6.2 What is AcuXUI?...6-2
6.3 Basic Procedure..6-3

6.3.1 Updating Your Web Page ..6-3

Chapter 7: Other Internet Solutions
7.1 LAN, WAN, or Internet ...7-2
7.2 Accessing Vision Data Over the Internet...7-3

 Contents-v
7.2.1 Internet Considerations for AcuServer .. 7-4
7.2.1.1 Defining Internet pathnames ... 7-5
7.2.1.2 Security and AcuServer... 7-6

7.3 Accessing COBOL Programs Over the Internet.. 7-7
7.3.1 Internet Considerations for AcuConnect ... 7-9

7.3.1.1 Defining an Internet application path .. 7-10
7.3.1.2 Security and AcuConnect .. 7-11

7.4 Accessing Vision Data from ODBC Applications .. 7-11
7.4.1 Internet Considerations for AcuXDBC ... 7-13

7.4.1.1 Defining Internet pathnames: AcuXDBC Server configuration 7-13
7.4.1.2 Security and AcuXDBC .. 7-14

7.5 Accessing Relational Data Over the Internet... 7-14
7.5.1 Internet Considerations for Acu4GL and AcuSQL ... 7-17

7.6 Accessing XML Data Over the Internet .. 7-17
7.6.1 Internet Considerations for AcuXML and C$XML .. 7-19

7.6.1.1 Using Internet notation with C$XML ... 7-19
7.6.1.2 Using Internet notation with AcuXML ... 7-20
7.6.1.3 Using AcuServer with AcuXML or C$XML.. 7-20
7.6.1.4 Security and XML ... 7-21

Appendix A: Building and Hosting a Web Site
A.1 Setting Up a Web Site.. A-2
A.2 Designing Your Site... A-2
A.3 Finding a Host or Building a Web Server.. A-3

A.3.1 Selecting Web Server Software ... A-3
A.4 Creating Your Web Pages.. A-4
A.5 Creating a Link to COBOL Programs ... A-5
A.6 Posting Your Web Documents... A-6
A.7 Promoting Your Site .. A-7
A.8 Registering a Domain Name.. A-7

Appendix B: Adding Internet Features to Your Program
B.1 WEB-BROWSER Control ... B-2

B.1.1 Adding Web Browsing to Your COBOL Applications B-4
B.1.2 Displaying HTML Pages Distributed With Your Application B-5
B.1.3 Including Graphical and Multimedia Files in Your Applications........................ B-6
B.1.4 Invoking e-mail, telnet, and FTP Services From Your Applications................... B-6
B.1.5 Displaying Word Processing, Accounting, or Presentation Documents From Your
Applications... B-7
B.1.6 Displaying Windows Objects Such as Folders and Files..................................... B-7

Contents-vi
B.1.7 Performing Print, File, and Clipboard Operations ... B-8
B.1.8 Sample Web Browser Program.. B-9

Appendix C: Use the Runtime as a Helper Application or Viewer
C.1 What Are Helper Applications and Viewers? .. C-2
C.2 Deploying Applications with the Runtime as a Helper Application or Viewer C-3
C.3 Setting Up a Web Site .. C-4
C.4 Preparing Your ACUCOBOL-GT Application.. C-4

C.4.1 Configuring the Runtime.. C-4
C.4.2 Packaging Your Application and Resources.. C-5

C.4.2.1 Using cblutil ... C-6
C.4.2.2 Using COPY RESOURCE .. C-7

C.5 Creating a Link to Your COBOL Object ... C-8
C.6 The User’s Job.. C-9

C.6.1 Defining the Runtime as a Helper Application or Viewer C-9
C.6.2 Launching the Application... C-15

C.7 Security and the Helper Application or Viewer ... C-15

Glossary of Terms

Index

1
 Introduction
Key Topics

Introduction ... 1-2

Purpose/Scope of Book.. 1-2

What You Need to Know .. 1-3

What You Don’t Need to Know.. 1-3

Product Integration ... 1-4

Technical Services... 1-5

1-2 Introduction
1.1 Introduction

Unlike anything before it or since, the Internet has taken the world of
computing by storm. It is said that over 800 million people have Internet
access today, that there are over 400 million Web sites. Even after the
implosion of the dot com era, some industry watchers report that the number
of Internet users is growing at a rate of 10% per month, and that the number
of Web sites grows by 1.5 million each day.

So it’s no wonder that the Internet, the Web, and the promise of electronic
commerce remain a vital concern to corporate IS departments. How can they
take advantage of the infrastructure that’s in place, not to mention the user
base that it reaches? Do companies have to start over, retrain their
development staff, spend most of their computing budget?

On the contrary, Internet commerce is closer at hand than you might think.
Rather than rebuilding your applications with a new “Internet” language, you
can provide access to applications and data over the Internet without ever
leaving COBOL!

Using extend technologies, you can deploy existing ACUCOBOL-GT®
applications on the Internet today. This book explains how. You can make
your applications accessible through popular Internet browsers and the World
Wide Web, or you can harness the Internet in a more secure TCP/IP
networking configuration. When new Internet initiatives surface, you can
perform your development in ACUCOBOL-GT, or you can combine your
COBOL programs with other Internet languages and technologies.

1.2 Purpose/Scope of Book

This book is designed to teach ACUCOBOL-GT developers how to deploy
applications on the Internet. It includes a glossary of Internet technology and
terminology, a description of alternative approaches to Internet deployment,
specific instructions on implementing each approach, and samples where
appropriate.

What You Need to Know 1-3
After reading this book, ACUCOBOL-GT developers will have a clear
understanding of how to integrate COBOL programming with their current
Internet strategies, how to shape future Internet strategies, and how to
minimize development time and expense.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following 32-bit versions of the Windows operating systems:
Windows Vista, Windows XP, Windows NT 4.0 or later, Windows 2000,
Windows 2003; and the following 64-bit versions of the Windows operating
system: Windows Server 2003 and 2008 x64, Vista x64. In those instances
where it is necessary to make a distinction among the individual versions of
those operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

1.3 What You Need to Know

Although you may believe that the Internet is quite complex, all that you need
to know to deploy your ACUCOBOL-GT applications over the Internet is
COBOL. You can choose to use popular Internet languages like HTML,
XML, and Java to deploy your applications, but you don’t have to. You can
even write your CGI (Common Gateway Interface) programs in COBOL, if
you use them at all. This book explains both how to stay with what you
know, COBOL, and how to combine COBOL with other Internet
technologies.

So what are your prerequisites for using this book?

You must be a COBOL developer familiar with ACUCOBOL-GT.

That’s it!

1.4 What You Don’t Need to Know

To use this book, you do not need to be expert in:

• HTML

• XML

1-4 Introduction
• CGI

• Java

This book provides an overview to all of these languages and technologies.
If you choose to use them in your application deployment, this book gives
you some valuable guidelines and instructions as well as references to more
detailed information. It also provides alternatives so that you can leverage
your expertise in COBOL whenever possible.

1.5 Product Integration

This book describes several methods for deploying ACUCOBOL-GT
applications over the Internet. All of the methods described involve one or
more technologies from the extend family of solutions. Just as all of the
technologies in the extend family work together to provide a complete
enterprise computing solution, the extend technologies work together to
provide a complete Internet solution as well. extend technologies can work
alone or in combination with other technologies, depending on the functions
that you require. For example:

• If you want to provide access to remote Vision, relative, or sequential
data and object files over the Internet, you can use our AcuServer® file
server technology.

• If you want to provide access to that data from a Web link, you can
combine our Web thin client or Web runtime technology with AcuServer.
Our AcuConnect® application server may be used to serve the thin client
requests or to launch remote application components in a distributed
environment.

• If you want to provide access to remote RDBMSs and applications, you
can use our Acu4GL® COBOL-to-RDBMS interface in combination
with AcuConnect and/or the thin client. Or you can embed SQL into
your COBOL application and use our AcuSQL® precompiler in
combination with these technologies.

• If you want to provide a user interface in HTML, you can write CGI
programs in ACUCOBOL-GT to bridge the HTML and COBOL.

• And the list goes on . . .

Technical Services 1-5
For clarity, this book describes the simplest scenarios. Remember that a
combination of approaches may in fact be more ideal for you.

Note: Although you can use earlier versions of extend technologies to
deploy your applications and data on the Internet, the information included
in this book is specific to the extend Version 8 and higher. For
Internet-related information on previous versions of our technologies,
please refer to an earlier version of this book.

1.6 Technical Services

You can reach Technical Services in the United States Monday through
Friday from 6:00 a.m. to 5:00 p.m. Pacific time, excluding holidays. You can
also raise and manage product issues online and follow the progress of the
issue or post additional information directly through our website. Following
is our contact information:

For worldwide technical support information, please visit
 http://supportline.microfocus.com

Phone: +1 858.795.1902

Phone: 800.399.7220 (in the USA and Canada)

Fax: +1 858.795.1965

E-mail: support@microfocus.com

Online: http://supportline.microfocus.com

mailto:support@microfocus.com
http://supportline.microfocus.com

1-6 Introduction

2
 Choosing a Deployment
Method
Key Topics

What Are My Options?... 2-2

Helping You Decide .. 2-7

2-2 Choosing a Deployment Method
2.1 What Are My Options?

We offer a variety of different solutions for deploying COBOL applications
on the Internet.

Some of them allow you to make your COBOL programs and data accessible
on the Web from popular Internet browsers. Others allow you to harness the
Internet in a more secure TCP/IP networking configuration.

When discussing your alternatives, we frequently make a distinction between
the Internet and Web. We define the Internet as a global TCP/IP network, and
the Web as a mechanism for finding and viewing information on the Internet.

Our Web-based solutions involve the use of browsers and often links on a
Web page. Our other Internet solutions use more traditional methods of
launching applications.

2.1.1 Web Solutions

Following are some of the ways you can deploy your applications on the
Web:

• You can add the ACUCOBOL-GT® Web Thin Client to your Web page
so that when users visit your site, the thin client downloads and installs
on their machines and automatically launches your application on the
server. In thin client architectures, the application logic runs on the
server. Only the user interface displays on the client.

• You can add the ACUCOBOL-GT Web Runtime to your Web page so
that when users visit that page, the runtime downloads and installs on
their machines and automatically launches your application locally.

• You can create a Web interface to your COBOL application and allow
users to interact with pages on your Web site via an HTTP browser or
mobile device using our COBOL CGI technology.

• You can run AcuXUI as an Applet as an applet to display graphical
ACUCOBOL-GT programs on any client with a browser.

What Are My Options? 2-3
These options are described below in more detail. If your users already have
a licensed copy of the ACUCOBOL-GT runtime on their machine, they can
also gain access to your applications on the Web by setting up the runtime as
an Internet helper application or viewer inside their browser. When they
click a link on your Web site, the browser knows to associate the application
with the ACUCOBOL-GT runtime. This is discussed in Appendix C.

In addition to all of these approaches to Web application deployment,
ACUCOBOL-GT includes a WEB-BROWSER control that lets you add a
variety of Internet features to your COBOL program. With this control, your
programs can support Web browsing, display HTML pages, invoke e-mail,
telnet, and FTP services, and more.

Web Thin Client

If you want Windows users to launch applications from your Web site and
have the applications run exclusively on the remote server, you can use the
ACUCOBOL-GT Web Thin Client. In this scenario, end users simply visit
your Web site. The Web browser searches for the Web thin client on their
machines. If successful, it launches the program on the server. If it cannot
locate the Web thin client, it provides the software automatically with users’
permission. It then invokes the server application transparently and
“projects” the user interface back onto the client. The Web thin client is an
ActiveX version of our thin client solution.

Alternatively, end users can install the standard ACUCOBOL-GT Thin Client
on their local machine. They can install it from any ACUCOBOL-GT media
or, subject to appropriate licensing agreements, you can distribute it on your
Web site so that end users can download and install it from there. Using an
Active Server Page (ASP), Java Server Page (JSP), Visual Basic, or perl
script, you can automate the download and install process for users if you
like. Once they have the thin client installed, they can visit your Web site and
click a link to invoke your application.

Thin client users always have the option of executing the acuthin command
with an Internet server or IP address as part of the command parameters.
acuthin can launch programs on any server in a TCP/IP network, including
the Internet. The only components required on the client in this case are the
thin client software and an Internet connection. Users don’t even need to
have a Web browser.

2-4 Choosing a Deployment Method
With any of these thin client options, all application processing is performed
on the server. Usually, data access is considered local because the data
resides on the same server machine as the application. If you want to keep
data on a different server in a multi-tiered configuration, you can combine the
thin client with our AcuServer® technology. Please note that although the
thin client supports only Windows clients, it gives access to both Windows
and UNIX servers running the AcuConnect® application server software.

Chapter 3 describes Internet application access via the ACUCOBOL-GT
Thin Client and Web thin client.

COBOL CGI

Perhaps you want customers or users to run your applications by clicking a
link on your Web site, but you don’t want to require anything special of the
user’s machine (for instance, the presence of any ACUCOBOL-GT runtime,
be it a standard, thin client, or Web runtime). In this case, you can create a
new interface to your application using a markup language such as HTML,
WML, or XML. With a Web interface, your application can be interpreted
directly by the user’s HTTP browser or mobile device, and the processing
logic can remain in COBOL on the Web server.

In this scenario, you create your Web interface using one of many popular
authoring tools. Then you write a Common Gateway Interface (CGI)
program that can read CGI variables submitted by the client to the server.
This program can launch your COBOL application or it can be a COBOL
program itself. You can write it using ACUCOBOL-GT or any other
language you choose. If you write the program in ACUCOBOL-GT, you do
not have to UNSTRING the CGI variables in the program, because
ACUCOBOL-GT takes care of this for you through special “IS
EXTERNAL-FORM” syntax.

By default, your CGI program reads and writes HTML content for use in
standard HTTP browsers and mobile devices. But using configuration
variables, you can associate your program with the MIME content type for
WML so that data can be displayed on WML-based devices as well.

Once you build a Web front end and write a CGI program, your customers or
users can then visit your Web site and gain instant access to your COBOL
application running on the server.

What Are My Options? 2-5
Note that CGI programs are inherently stateless—that is, they do not store
information about previous browser actions. If you require a persistent
connection to the browser, you can achieve this by adding pointers and
cookies to your CGI program, or you may choose a different method.

This option runs on any platform where ACUCOBOL-GT runs, but it also
requires the most coding. You can employ the CGI method wherever a user
interface via DISPLAY/ACCEPT statements is not used. This includes batch
processes, processes that use socket routines to communicate with an
external UI, component adapter technology processes, BEA Tuxedo
processes, and processes launched via AcuConnect in distributed processing
mode, to name a few. The CGI method is described in Chapter 4.

Web Runtime

Another way to give end users access to your applications on the Web is to
provide runtime services through the ACUCOBOL-GT Web Runtime.

Using this approach, you set up a Web site and embed a link to your
ACUCOBOL-GT application. Because the Web runtime is freely
distributable (in accordance with the terms and conditions of your Micro
Focus extend license agreement), you embed the runtime in the link as well
by designating the URL of our Web site in your HTML coding. Users can
then visit your site and click a link to launch the program. If the Web browser
detects that users do not yet have a runtime installed on their machine, it
automates the install process, with the users’ permission, and then launches
the COBOL program locally.

The Web runtime is available only on supported Windows machines, but it
gives users access to programs or data hosted on other platforms using
AcuServer and AcuConnect.

The ACUCOBOL-GT Web Runtime is geared for Internet Explorer
environments. It relies on ActiveX technology and does not run on any
current versions of Netscape.

Chapter 5 describes this option in detail.

2-6 Choosing a Deployment Method
AcuXUI as an Applet

AcuXUI is a cross-platform user interface engine that allows graphical
ACUCOBOL-GT programs to exhibit their user interface on UNIX and
Linux platforms as well as Windows platforms. Similar to the
ACUCOBOL-GT Web thin client, AcuXUI can be deployed as an applet to
display a graphical COBOL program inside a Web browser. This gives your
end users the ability to access your program any time, anywhere.

This method requires you to edit a security file on each client machine, but
end users do not need to have a copy of the ACUCOBOL-GT runtime. To
run your graphical COBOL program, users have only to visit your Web site
and the user interface for your program automatically displays in their
browser window.

Chapter 6 describes this method.

2.1.2 Other Internet Solutions

Following are some of our solutions for harnessing the Internet in a secure
TCP/IP networking configuration:

• AcuServer can be used to provide access to Vision data over the Internet.

• AcuConnect can be used to provide access to server-resident COBOL
programs over the Internet, even programs that are distributed across a
number of different servers.

• The AcuXDBC™ interface can be used to give users of Windows
applications access to Vision data over the Internet. AcuXDBC is
combined with AcuXDBC Server for remote processing of SQL
requests.

• The Acu4GL® interface and the AcuSQL® precompiler can be used to
provide access to relational databases over the Internet.

• AcuXML can be used to provide access to XML documents over the
Internet.

Helping You Decide 2-7
All of our technologies are designed to work in TCP/IP networks. Because
the Internet is just a large TCP/IP network, you can use these same proven
technologies in Internet deployments. Chapter 7 provides details.

2.2 Helping You Decide

Many factors go into deciding your Internet implementation. In this section,
we present some questions to think about as you proceed. In the chapters that
follow, we use examples to demonstrate how these questions will affect your
decision on how to deploy Internet- or Web-based applications.

How much do you want the user to do?

Simply visit your site? Write a Web interface to your
application then write a small CGI
program to handle the
communications between the
interface and the program on the
server; embed the Web runtime or
Web thin client on your Web page;
or deploy AcuXUI as an applet on
your Web page.

Download and install a free
runtime?

Include the standard thin client on
your Web page.

Click a link? Create a hyperlink to the Web
runtime or Web thin client on your
Web page; or set up the runtime as
a helper applicaiton or viewer in
the browser.

Purchase a fully-licensed
runtime?

Set the runtime up as a helper
application or viewer in the
browser.

2-8 Choosing a Deployment Method
How much programming are you willing to undertake?

Do you need to provide remote access to programs, data, or
both?

Perform no new
programming?

Use the Web runtime or possibly
Web thin client. (If you’re already
using the thin client, no new
programming is required.) If your
ACUCOBOL-GT program is
already graphical, AcuXUI
requires no additional
programming either.

Reengineer the application
to distribute the processing
among several machines?

Use AcuConnect.

Write a markup language
front-end and a small CGI
program in COBOL?

Use our COBOL CGI solution.

Write an entirely new
Internet program?

Write it in ACUCOBOL-GT. You
can feed COBOL data to browsers
using our CGI syntax, and you can
embed Internet browsing into your
program using our
WEB-BROWSER control.

Programs Use any of our thin client or
AcuConnect solutions, AcuXUI.

Data Use AcuServer, Acu4GL or
AcuXDBC.

Programs and data Use a combination of these
technologies.

Helping You Decide 2-9
Do you want to provide Web access or more private access?

How is your application designed?

Do you require a persistent connection to the server (i.e., Does
the server need to remember the last action from the browser)?

How frequently do you update your programs and data?

Web access Use our Web thin client, COBOL
CGI solution, Web runtime, or
AcuXUI.

More private access Use AcuServer, AcuConnect, or
thin client.

Does your application
perform lots of file I/O?

Distribute the processing via
AcuConnect or offload all the
processing onto the server via the
thin client or Web thin client.

Does the executing
program require client
computer access?

Use the Web runtime or a
fully-licensed runtime.

Does the program need to
execute if a network is
unavailable?

Use the Web runtime or a
fully-licensed runtime.

Yes Use the thin client, Web thin client,
Web runtime with AcuConnect, or
add pointers and cookies to your
CGI program to store browser
information. (CGI programs are
inherently stateless.)

Frequently Use a server-processing solution
like the standard thin client, Web
thin client, AcuXUI, and/or
AcuConnect, or a remote file
server like AcuServer.

2-10 Choosing a Deployment Method
What are the operating environments of your user population?

Windows clients and
servers?

You may use any of our Internet
solutions.

UNIX clients and servers? Use our COBOL CGI solution or
AcuXUI for Web access. Use our
other technologies such as
AcuServer, AcuConnect, and
Acu4GL in Internet deployments.

Windows clients and UNIX
servers

You may use any of our Internet
solutions.

3
 Using the Thin Client to
Launch Web Applications
Key Topics

What Is the Thin Client? .. 3-2

How the Thin Client Works.. 3-3

Thin Clients and the Internet ... 3-5

Specifying an Internet Address on the Command Line....................... 3-5

Providing Thin Client Links on the Web .. 3-6

Using the ACUCOBOL-GT Web Thin Client 3-10

3-2 Using the Thin Client to Launch Web Applications
3.1 What Is the Thin Client?

Our thin client technology is an innovation that lets you display the user
interface portion of your server-based application on Windows graphical
display hosts.

The thin client technology is designed for two main purposes:

• To allow ACUCOBOL-GT® programs running on a UNIX or Windows
server to present a full Windows graphical user interface (GUI) on PCs
networked with TCP/IP. To present a graphical user interface, you must
convert the application screens to graphical, if you have not done so
already. Character-based user interfaces are also supported, with some
restrictions. In either case, your application stays in one piece on the
UNIX or Windows server.

• To allow both UNIX and Windows users to enjoy the benefits of
centralized application maintenance and to adopt the performance
characteristics of a “thin” architecture, reducing the total cost of
ownership (TCO). Many applications perform better when deployed in
a thin fashion compared to other networking techniques such as remote
file access (“fat clients”) or distributed processing. This is because thin
client configurations execute COBOL programs on the server where data
access is local.

Although designed for local and wide-area TCP/IP networks, our thin client
solution is well-suited to low-bandwidth, high-lag connections like the
Internet because it eliminates the file I/O occurring over the network.

Sample Scenario

Your inventory program is UNIX-based. However, you know that many of
your users typically work at Windows PCs or laptops, rather than UNIX
workstations. On the road, sales people often connect to your application
from their hotel rooms at low data speed connections.

The ACUCOBOL-GT Thin Client provides a way for you to keep your UNIX
program, yet enable users to work in a graphical Windows environment.
Users can simply visit your Web site to launch the program. They never
know that they are running a UNIX program because all they see is the
Windows UI.

How the Thin Client Works 3-3
Because processing is done on the server, your users don’t have to be running
especially powerful machines to be able to work efficiently with your
program. The thin client’s low bandwidth abilities make it especially
desirable for users who are out of office and using cellular connections to
laptops.

If the data file for the inventory program is remote to the application, you can
use the AcuServer® file system interface to give your customers and staff
access to that file.

3.2 How the Thin Client Works

In a thin client configuration, your application is composed of two logical
layers: a user interface (UI) layer on the display host (client) and a COBOL
layer on the application host (server). The UI layer handles screen, mouse,
and keyboard activity, and the COBOL layer performs application
processing. Because no application components are required on the client
(unless you use ActiveX controls), it is considered to be “thin.”

Rather than forcing you to split your application into client and server
components, the ACUCOBOL-GT runtime has been split so that your
existing application can be displayed on the client. The portion that is
installed on the client is known as the “ACUCOBOL-GT Thin Client”.
(Currently, the thin client runs only on Windows machines.) The full
ACUCOBOL-GT runtime is installed on the server.

3-4 Using the Thin Client to Launch Web Applications
To function, the split runtime makes use of the AcuConnect® application
server software. The role of AcuConnect is to listen for requests from clients
to launch the ACUCOBOL-GT runtime on the server. You license the server
runtime for a specific number of concurrent users.

Thin client architecture

Together, the ACUCOBOL-GT Thin Client, the ACUCOBOL-GT runtime,
and AcuConnect are the enabling technologies that make up our thin client
solution.

For a comprehensive look at the thin client technology, please refer to the
AcuConnect User’s Guide.

Thin Clients and the Internet 3-5
3.3 Thin Clients and the Internet

Our thin client can be deployed over the Internet just as easily as a local- or
wide-area network. There are three ways to accomplish this:

1. You can specify the name and port number or IP address of the server
you are accessing when you enter thin client command line parameters.
See section 3.4 for details.

2. You can create a command line file that contains all the information
needed by the ACUCOBOL-GT Thin Client to launch your application.
You can then create a link on your Web page to this file, and if your
license permits it, to a self-extracting archive for the thin client. Users
can then download the thin client from your Web site and click a link
to launch your program. See section 3.5 for details on this method.

3. You can place an ActiveX version of the thin client, known as the
ACUCOBOL-GT Web Thin Client, on your Web page. When set up
properly, the Web thin client automates the process of download and
install for end users, and it automatically invokes your application as
well. See section 3.6 for details.

Note: Please review the license agreements of any third-party product that
may be invoked when you are accessing the server from a remote location
through the ACUCOBOL-GT Thin Client. For instance, if you will be
accessing a Windows server through a virtual private network, you should
review Microsoft’s end user license agreement.

3.4 Specifying an Internet Address on the Command
Line

The ACUCOBOL-GT Thin Client can work in an Internet environment
independent of the Web and Web browsers. After all, the Internet is just a big
TCP/IP network. When end users invoke the ACUCOBOL-GT Thin Client
in an Internet environment, they type command line parameters that specify

3-6 Using the Thin Client to Launch Web Applications
the server name, optionally the port number of the server they are accessing
over the Internet, the name of the application, and any additional runtime
command line parameters. For example:

acuthin bigserver.acucorp.com:5632 myprog1 10 20 30

Note that clients must have a live Internet connection when they execute this
command, and the server name that they enter must be resolvable by the
Internet name server used by their service provider. (The Internet name
server then resolves the name with its IP address.)

If the server name is not exposed to Internet name servers, end users can enter
the explicit IP address on the ACUCOBOL-GT Thin Client command line as
in the following example:

acuthin 128.110.121.42:5632 myprog1 10 20 30

If the server is through a Virtual Private Network (VPN), the user must
connect to the network before entering the acuthin command.

Note: If desired, users can set up a Windows shortcut so that they do not
have to enter a command line in order to launch the thin client.

3.5 Providing Thin Client Links on the Web

If you want to give users access to your application on the Web, one way to
do this is to distribute the thin client software on your Web page (license
agreement permitting), and then provide a link to a command line file that
launches your application. Users visit your page, download and install the
thin client software, then click the command file link to run your program.

To provide this method of Web access, do the following:

1. Install your COBOL application on your application server host. This
machine must also contain the ACUCOBOL-GT runtime, AcuConnect,
and several additional components. These are listed in the AcuConnect
User’s Guide. Note that your application does not need to reside on the
same host as your Web Server.

Providing Thin Client Links on the Web 3-7
2. Create a thin client command line file that contains all the information
needed by the ACUCOBOL-GT Thin Client to launch your application.
The format of this file is described in section 3.5.1, “Thin Client
Command Line Files.”

3. Place the command line file and, license agreement permitting, the
self-extracting archive for the thin client on your Web server. The
archive name is “atcinst.exe”. Create links to these files from an
appropriate Web page. See section 3.5.2, “Using Anchor Tags,” for
instructions on creating links.

4. To ensure that your thin client will be recognized across a wide variety
of browsers, configure your Web server to generate the HTTP
“Content-type” response header field containing the MIME type
“application/vnd.acucorp.thincommandline” for the extensions “.atc”
and “.acutc”. This is particularly necessary if your end users have
newer versions of Windows (such as Windows XP, SP2). Refer to your
Web server documentation for instructions on adding a MIME type.

Once you have followed these steps, instruct your users to visit your Web
page and click the thin client link to download and install the thin client. It is
a self-extracting archive that will guide your users through the installation
process. (If you prefer, your users can install the ACUCOBOL-GT Thin
Client on their machines from any of our media, or they can download the
thin client from the support section of our Web site, www.microfocus.com.)

Once they have the thin client on their machines, users can visit your Web site
anytime and click the program link to launch your thin client application. The
program runs on your application server host and the display occurs in an
application window on the users’ machine, outside of their browser.

Note: If you want to automate the process for end users, you can write an
ASP, JSP, VB, or perl script that uses cookies to check for thin client
installations. The user can activate the script by clicking a link on your
Web site. The cookie can search for thin client installations on the user’s
machine, verify that the version is current if one is located, then launch the
server application automatically. If a thin client installation is not found or
is outdated, it can prompt the user to download new thin client software.

http://www.acucorp.com

3-8 Using the Thin Client to Launch Web Applications
3.5.1 Thin Client Command Line Files

When users install the ACUCOBOL-GT Thin Client on a Windows display
host, the “.atc” and “.acutc” file extensions are automatically associated with
the thin client executable (“acuthin.exe”). As a result, when your browser
downloads one of these files, it uses these associations to invoke
“acuthin.exe”. To establish the command line parameters that the executable
should use, including the name and location of the server application it
should launch, you must create a thin client command line file.

Format the thin client command line file as you would any ACUCOBOL-GT
configuration file, with each entry on its own line. You can include any of the
following variables in the file:

Note that comment lines (preceded by the “#” character) are allowed in this
file, as they are in other configuration files.

Variable name Description

atc-server the name or IP address of the server to connect to (a
required variable with no default value)

atc-port the TCP port number to use to grant access to thin
client applications (default value is 5632)

atc-runtime-options runtime options passed to the runtime via
AcuConnect (no default value)

atc-alias an alias that identifies a COBOL application on the
server (a required variable with no default value)

atc-user the username with which you want to log onto the
AcuConnect server

atc-password the password assigned to this username for granting
access to AcuConnect.

atc-splash-screen when set to "off" (0, false, no), an option that
disables the thin client start-up splash screen

atc-cobol-args COBOL arguments passed to your COBOL
program via AcuConnect (no default value)

atc-trace trace options passed to the runtime via AcuConnect
(default “0”, meaning no trace). Equivalent to the
“-t” command-line option.

Providing Thin Client Links on the Web 3-9
When you are done, save the file with an “.atc” or “.acutc” extension.

The contents of the “.atc” or “.acutc” file are interpreted by the thin client as
the following command line:

acuthin <atc-server>[:<atc-port>] [atc-runtime-options]
 <atc-alias> [<atc-cobol-args>]

3.5.2 Using Anchor Tags

Use the HTML Anchor tags to create two separate links: one to your
COBOL application and another to the self-extracting archive of the thin
client runtime. The HTML Anchor tags, <A> and , are closed elements
that, when combined with the HREF attribute, highlight text or images,
making them clickable. When users click on a highlighted item on your Web
page, they are transferred to the linked document.

In the case of the thin client runtime, when the user clicks the highlighted
item, the runtime automatically downloads to the user’s machine. When the
download is complete, the self-extracting archive guides the user through an
automated installation process.

In the case of the thin client command line file, when the user clicks the
highlighted item, the thin client application is automatically invoked.

To turn text into a hypertext anchor, enclose the clickable text in the Anchor
tags. For example, enter the following HTML command onto your Web
page:

Click here to download the thin client
Click here to run the application

where “atcinst.exe” is the name of the self-extracting archive for the thin
client runtime, and “myprog.atc” is the name of the command line file that
you created for your thin client application.

The HREF attribute is used within the starting anchor tag to specify the
document to be linked (or retrieved). (See any commercially available
HTML text for more information on anchors and hypertext links.)

3.5.3 Security and the ACUCOBOL-GT Thin Client

Security is a key consideration as you set up your thin client environment. By
its very nature, in a thin client environment traffic is flowing into and out of
your network.

You should consider setting up a firewall to limit access to your data and
enforce your organization’s access control policy. When you set up a
firewall, you’ll need to indicate the “port number” through which the thin
client, AcuConnect, and the ACUCOBOL-GT runtime can communicate.
The default port number for both the thin client and AcuConnect is 5632.

You can indicate an alternate port number for AcuConnect using the
configuration variable, ACURCL_PORT. To indicate a port number for the
thin client, set ATC_PORT in the thin client command line file.

If you want to encrypt data before transmitting it across the network, you can
use the AGS_SOCKET_ENCRYPT runtime configuration variable on the
server. You can also use the ENCRYPTION_SEED variable to initialize an
industry-standard 128-bit AES encryption algorithm.

3.6 Using the ACUCOBOL-GT Web Thin Client

The ACUCOBOL-GT Web Thin Client is a special 32-bit version of the thin
client that is based on Microsoft’s ActiveX technology. It is itself an ActiveX
control that you can embed on your Web page. It makes your existing thin
client applications accessible through browsers that support ActiveX,
particularly Microsoft Internet Explorer. While the Web thin client runs only
on Windows machines, it can access files or run programs on UNIX and other
platforms using AcuConnect.

With the Web thin client, users who visit your site are automatically provided
the software they need to run your application on the remote host (providing
that they grant permission first). Software installation and program
invocation are transparent.

Using the ACUCOBOL-GT Web Thin Client 3-11
Here is the general process:

1. The end user visits a page on your Web site.

2. The Web browser software looks for the Web thin client on the user’s
machine. If it locates the Web thin client, it runs it, and the Web thin
client launches the program on the server.

If the Web browser cannot find the Web thin client locally, it downloads
the file from the specified location and asks the user “Do you want to
install and run ACUCOBOL-GT Web Thin Client?” This message may
appear in a dialog box, or in newer versions of Windows (such as
Windows XP, SP2), it may appear in an “Information Bar” at the top of
the browser window. To assure the user that the installation is safe, the
Web thin client is supplied as a cabinet (CAB) file with a digital
signature from Acucorp.

If the user grants permission, the Web thin client is sent to the client
machine, where it automatically installs itself and launches your
program on the server. The server then “projects” the user interface back
onto the client.

Note: For automatic installation to be performed, you program your Web
page with the CODEBASE attribute of the OBJECT tag as instructed in
section 3.6.8.

3.6.1 Windowing Options

With the thin client, even though your program executes on the server, the
user interface is “projected” onto the client. You can choose whether the UI
displays inside the user’s browser window or in a separate application
window. How and where your program starts depends on the HTML
commands that you use to include it on your Web site. (Please refer to
section 3.6.7 for details.) Listed below are some things to consider when
choosing a windowing method.

3-12 Using the Thin Client to Launch Web Applications
Inside the User’s Web Browser

In this case, your COBOL program starts inside the user’s browser window.
Nearly all of the ordinary functions of your COBOL program are available to
your user and your program has access to library routines that can be used to
communicate with the browser.

In this mode, users also have access to browser functions like Forward, Back,
and Search, but when they use these functions, the COBOL program
terminates. To avoid losing data, the COBOL program should be designed to
handle the closing action gracefully within ten seconds. If users return to the
page from which they launched the ACUCOBOL-GT application, it reloads
like any Web page.

Note that because of a Microsoft child window restriction, applications
running inside a browser window cannot display a main window menu bar as
you or your users might expect. To work around this restriction, you can
program your application’s menu functions to be accessed from a toolbar or
a pop-up menu that is activated with the right mouse button.

In a Separate Application Window

In this mode, your COBOL program starts in a window separate from the
browser, making it look the same as it would if it were launched locally. All
the functions of your original program are available to users, including a
main window menu bar.

Although your program cannot access the library routines used to
communicate with the browser in this mode, users can still access functions
like Forward, Back, and Search simply by activating the browser window.
However, when the user selects a browser function, the Web thin client object
terminates. This is because the thin client object executes as an object related
to the HTML page, even when running in a separate window.

3.6.2 How Your Program Executes

With the Web thin client, your program executes on the server, and only the
user interface displays on the client.

Using the ACUCOBOL-GT Web Thin Client 3-13
Due to browser limitations, you cannot run multiple instances of the Web thin
client from a single Web page. When your browser shuts down, the Web thin
client instance also shuts down. For each browser process, you can run only
one instance of the Web thin client. However, you can run multiple browser
processes, each hosting a single instance of the Web thin client.

The recommended method of executing the ACUCOBOL-GT Web Thin
Client is with the <OBJECT> tag (see section 3.6.8).

The browser loads the Web thin client (which you recall is an ActiveX
control) and feeds it the data coming from the Web server. In this context
there is no concept of a command line.

To pass “command line” style parameters to the ACUCOBOL-GT Web Thin
Client, you use the AcuCommandLine property of the OBJECT tag when you
invoke the application in your Web page.

3.6.3 Browser Versions Supported by the Web Thin Client

The Web thin client is designed for browsers that support ActiveX controls.
We have confirmed that the Web thin client runs on Internet Explorer
Versions 5.5 Service Pack 2 and later. Browsers that do not support ActiveX
controls cannot use the Web thin client. Currently, this includes Netscape
browsers, and some earlier versions of Internet Explorer.

3.6.4 Deploying Applications via the Web Thin Client

To deploy your application on the Web via the Web thin client, you (the
developer) have three tasks:

1. Set up a Web site. (See section 3.6.5 for details.)

2. Consider whether you need to make any coding adjustments to your
program. (See section 3.6.6 for coding considerations.)

3. Update your Web page to invoke your thin client application. To do
this, you typically embed the URL of the Web thin client along with
the URL of your application on your Web page using an <OBJECT>
element and the CODEBASE attribute. (See section 3.6.7.)

3-14 Using the Thin Client to Launch Web Applications
Once your work is done, the user has only one task:

1. Visit your Web site. The Web thin client will install itself and launch
your program automatically.

Note that two dialog boxes may be displayed in the process: one
containing a security message if required by the security setting of the
user’s browser (see section 3.6.12 for more information), and the other
containing a click-wrap license agreement from Micro Focus.

3.6.5 Setting Up a Web Site

Setting up a Web site is probably the most time-intensive portion of this
method, but it is not very difficult to do. Appendix A gives general
information about setting up a Web site, including information on Web
servers, posting a site, and promoting a site. Many different tools are
available to help you create a Web page quickly and easily. Refer to
Appendix A for guidelines.

3.6.6 Coding Considerations

If you plan to have your application run inside the user’s browser window, it
cannot display the main window menu bar to which you may be accustomed.
(This is a Microsoft child window restriction.) In this case, you will need to
program your application’s menu functions to be accessed from a toolbar or
a pop-up menu that is activated with the right mouse button. You can avoid
this restriction by having your application run in its own separate window.
You can specify this as a parameter of the <OBJECT> tag or by setting the
AcuEmbedded property supplied with the object interface. See section 3.6.8
for more information.

3.6.7 Updating Your Web Page to Invoke Your COBOL
Application

To invoke your COBOL application and the Web thin client from your Web
page, you use the HTML <OBJECT> tag. The <OBJECT> tag allows you
to invoke both of these items with a single HTML element. If you add the

Using the ACUCOBOL-GT Web Thin Client 3-15
CODEBASE attribute, users can automatically download the control the first
time they access the application, and they can get updates automatically. The
browser checks the CLASSID property and downloads a new version of the
control, if one is available.

In addition, we have developed an object interface containing several
properties and methods for communicating with browsers. If desired, you
can implement all of the properties in the object interface as attributes of the
<OBJECT> tag.

Advanced users may choose to instantiate their application with the
<OBJECT> tag, and then write scripts with the object interface to invoke the
application. Please note that scripting the Web thin client may require
changes to your end users’ security settings. (See section 3.6.12.2 for more
information.)

3.6.8 Using the <OBJECT> Tag

When authoring Web pages to launch your application, you can use the
<OBJECT> tag to invoke the Web thin client and start your program at the
same time. For example, you could include the following in your HTML
code:

<OBJECT ID="AcuThinAX" WIDTH=512 HEIGHT=384
 CLASSID="CLSID:087C768D-64C1-4AC1-845D-4589B4B2C24E"
 CODEBASE=”http://www.acucorp.com/support/downloads/acuthinax/
 acuthinax800.cab#version=8,0,0,900”>
 <PARAM NAME="SRC" VALUE="http://yourserver/yourdirectory/
 yourcommandlinefile.acutc">
</OBJECT>

where the following values are described as:

ID Optional. The name of the instance of the object. This
name is only used for scripting the object interface. It is
a user-defined value to which you refer in your script.

CLASSID The GUID (globally unique identifier) assigned to the
ACUCOBOL-GT Web Thin Client control, specifically
this value:

CLSID:087C768D-64C1-4AC1-845D-4589B4B2C24E

3-16 Using the Thin Client to Launch Web Applications
By default, the application appears in the browser window, using the
HEIGHT and WIDTH attributes, if provided, to define the area that the
application occupies.

If desired, you can add any of the properties and methods of the Web thin
client object interface as parameters of the <OBJECT> tag. To do so, add
“PARAM NAME=” followed by the property name from the object interface
enclosed in quotes. You then supply the VALUE attribute.

For example, if you want to have your application appear in its own window
rather than in the browser window, set the AcuEmbedded property of the
object interface to “FALSE” as follows:

 <PARAM NAME="AcuEmbedded" VALUE=”FALSE”>

CODEBASE The CODEBASE URL, from which the Web thin client
can be downloaded and installed automatically by end
users, specifically:

http://www.acucorp.com/support/downloads/
acuthinax/acuthinax###.cab

where ### is a 3-digit segment that identifies the cab file
version. You can also append the version information
that applies to the control, including a build number, by
adding it as described in subsequent sections.

Although the CODEBASE attribute is optional, using it
is now a common practice among software vendors to
provide access to controls in this way. This allows you
to distribute the control easily.

If you do not use the CODEBASE attribute, you must
direct users to the download page on the Acucorp Web
site. Or, with a proper written license agreement, you
may provide the control on your own distribution media
or Intranet site.

HEIGHT Optional. The height (in pixels) of the object’s window.
Use to define the area within the browser window that
the application object will occupy.

WIDTH Optional. The width (in pixels) of the object’s window.
Use to define the area within the browser window that
the application object will occupy.

Using the ACUCOBOL-GT Web Thin Client 3-17
The following example illustrates how you might display your application in
a separate window.

<OBJECT ID="AcuThinAX" WIDTH="512" HEIGHT="384"
 CLASSID="clsid:087C768D-64C1-4AC1-845D-4589B4B2C24E"
 CODEBASE=”http://www.acucorp.com/support/downloads/acuthinax/
acuthinax800.cab#version=8,0,0,900”>
 <PARAM NAME="AcuEmbedded" VALUE=”FALSE”>
 <PARAM NAME="SRC" VALUE="http://yourserver/yourdirectory/
yourcommandlinefile.acutc">
 </OBJECT>

Note that there are two ways to specify command line parameters for your
program: you can use the SRC property or the AcuCommandLine property
of the object interface, but you never use both at the same time. The original
example in this section showed the SRC form:

<PARAM NAME="SRC" VALUE="http://yourserver/yourdirectory/yourcommandlinefile.acutc">

This points to a separate file containing the command line parameters that
you wish to invoke on start-up. (See section 3.5.1 for more details on
creating command line files.) If you already have such a file that you’re
using for the thin client, then this will likely be your preferred method.

Alternatively, you can use the AcuCommandLine form:

<PARAM NAME=”AcuCommandLine” VALUE=”myserver.mysite.com:5632 myalias”>

The advantage of the AcuCommand Line property is that you can specify the
command line directly in the <OBJECT> tag without maintaining a separate
file.

For more information on the object interface and its properties, including
SRC and AcuCommandLine, refer to the subsequent sections.

3.6.8.1 How the <OBJECT> tag works

The CODEBASE parameter indicates to the browser where to look for the
Web thin client if it is not installed on the target system. Internet Explorer
automatically offers to download and install the Web thin client, prompting
most users to accept the digital signature provided by Acucorp.

3-18 Using the Thin Client to Launch Web Applications
Note: If the user’s security settings are high or customized to prohibit
ActiveX controls, the user cannot install the Web thin client. If the user’s
security settings are low, the control installs without confirmation from the
user.

In the HTML document, you can introduce the Web thin client with the
<OBJECT> tag and then supply a script to invoke the object through either a
window event or a push-button event. For information on using the object
interface, see the next section. However, you need not use scripting in order
to invoke the control with the <OBJECT> tag.

3.6.8.2 Version number of Web thin client

The name of the CAB file identified in the CODEBASE URL is
version-specific. Therefore, “acuthinax800.cab” always contains the Version
8.0.0 Web thin client. However, you can implement your CODEBASE URL
with a version string that refers to the version number as well as the build
number.

If, for example, you deploy your Web site with the following CODEBASE
value:

http://www.acucorp.com/support/downloads/acuthinax/acuthinax800.cab

a control associated with the specified CLASSID will be used (if found),
regardless of version. If no associated control is available on the client
machine, the CAB file will be downloaded, installed, and executed.

On the other hand, if your Web site contains the following value:

http://www.acucorp.com/support/downloads/acuthinax/
acuthinax800.cab#version=8,0,0,900

users with an earlier version of the control will automatically be prompted to
download the new version the next time they visit your Web site. The
convention for the Web thin client control is therefore:

acuthinaxMmr.cab#version=M,m,r,b

where M,m,r,b represent the Major, minor, release, and build numbers of the
particular version of the control. This allows you to determine which version
of the control is available to your end users.

Using the ACUCOBOL-GT Web Thin Client 3-19
To determine the version and build number of a Web thin client control, you
can use the AboutBox method available in the object interface. See the next
section for more information. You can also obtain the version number by
following these steps:

1. Locate the file, “acuthinax.ocx”, for the version you want to deploy.

2. In Windows Explorer, right-click on the control and select Properties.

3. Select the Version tab and view the value in the File Version field.

3.6.8.3 Object interface for the Web thin client

The Web thin client’s object interface consists of the following methods and
properties. Some are bi-directional (B) and others are read only (R). The
component also has a default property (D).

Note: Using the object interface is optional. The <OBJECT> tag exposes
the same properties (but not methods). The object interface is available for
the advanced user who prefers scripting and wishes to use the available
methods. However, please be aware that support for specific scripting
languages and their implementations should be obtained from the
appropriate vendor.

Methods

Properties

AcuIsActive R

AcuExecute R

AcuShutDownAx R

AcuGetLastError R

AboutBox R

AcuEmbedded B

AcuShowLogo B

AcuCommandLine B

SRC BD

3-20 Using the Thin Client to Launch Web Applications
Syntax

The following sections describe the methods and properties for the Web thin
client control. Each method or property name is listed, followed by the type
of the input parameter. (The type is shown in parentheses.) Finally, the input
value and the output value (returned value) are shown, with acceptable values
indicated in square brackets “[]”. Empty brackets indicate that the value is
not limited, or takes no input.

Examples of limited values include Booleans, which can be only “True” or
“False”. The output of the AcuIsActive method uses this limited value.

You will notice that the syntax examples in the following sections refer to
“AcuThinAX”. This refers to the HTML object ID assignment of the Web
thin client control given in the <OBJECT> tag. For example:

<object classid="clsid:087C768D-64C1-4AC1-845D-4589B4B2C24E"
ID="AcuThinAX" width="251" height="144">

AcuIsActive

Returns the status of the Web thin client. AcuIsActive takes no input
parameters.

The return value is of the data type BOOL:

• TRUE = the thin client is executing

• FALSE = the thin client is not executing

For example:

If AcuThinAX.AcuIsActive() = TRUE

AcuIsActive may be executed any time after the Web thin client (in this
example, “AcuThinAX”) has been invoked.

Parameter Type Input Output

() [] [TRUE, FALSE]

Using the ACUCOBOL-GT Web Thin Client 3-21
AcuExecute

Starts the Web thin client and returns the result of the action.

Note: If you invoke your application directly by specifying the SRC or
AcuCommandLine property in the <OBJECT> tag, you do not need to call
AcuExecute. Your application will start automatically.

The AcuExecute method takes no parameters.

The return value is of data type LONG.

For example:

Return_value = AcuThinAX.AcuExecute()

Do not invoke this method until you have set either the SRC or
AcuCommandLine property to specify the command line file to use;
otherwise, AcuExecute will not have the information necessary to start your
application.

AcuShutdownAx

This is an optional method that forces a shutdown of a specific Web thin
client instance. For example:

AcuThinAX.AcuShutdownAx()

shuts down the thin client instance known as “AcuThinAX”, if it is running.

Parameter Type Input Output

() [] [0, -4, -5, >0]

Value Explanation

0 Success, Web thin client started.

-4 The Web thin client is already running.

-5 The acuthin DLL could not be found, or the
acuthin DLL is the wrong version.

>0 Unexpected error.

3-22 Using the Thin Client to Launch Web Applications
AcuShutdownAx terminates the COBOL application invoked by the Web
thin client. In general, you need not use it because the Web thin client either
terminates as a result of the COBOL program execution, or because the
browser either displays another URL or closes. If, for some reason, you want
to force shutdown of the Web thin client instance, this method is available.

The shutdown action assumes that the COBOL application is currently in idle
mode. If the Web thin client is not idle, the browser hangs, waiting for the
application to idle. This method takes no parameters, and there is no return
value for this function.

AcuShutdownAx implicitly terminates the Web thin client when you
terminate the COBOL application you are running. So, when you execute
this method, the Web thin client is terminated, closing files properly, even
though data that was not stored permanently is lost.

AcuGetLastError

Returns the last known error code.

This method takes no parameters, and the return value, which is the error
code, is of data type LONG. See “AcuExecute” for more information.

For example:

AcuThinAX.AcuGetLastError()

AcuGetLastError may be executed any time after the Web thin client has
been invoked.

Parameter Type Input Output

() [] []

Parameter Type Input Output

() [] []

Using the ACUCOBOL-GT Web Thin Client 3-23
AboutBox

Displays a dialog box that presents version information about the Web thin
client.

There is no return value.

For example:

AcuThinAX.AboutBox()

AboutBox may be executed any time after the Web thin client
(“AcuThinAX” in this example) has been invoked.

AcuEmbedded

Determines whether the Web thin client should run in an independent
window or as a frame within the document.

The AcuEmbedded property accepts a BOOL as a value. When this property
is set to “TRUE”, the default, the window appears embedded in the browser
document. Set it to “FALSE” when you want the window to appear
independently, outside the browser.

For example:

AcuThinAX.AcuEmbedded = TRUE
if AcuThinAX.AcuEmbedded

The AcuEmbedded property is available any time after the Web thin client
has been invoked. Its contents are read and applied to the Web thin client
when AcuExecute is invoked.

Parameter Type Input Output

() [] []

Parameter Type Input Output

(BOOL) [TRUE, FALSE] [TRUE, FALSE]

3-24 Using the Thin Client to Launch Web Applications
Note that if you use the HEIGHT and WIDTH attributes of the <OBJECT>
tag and you set AcuEmbedded to “FALSE”, the Web thin client’s logo screen
will occupy that area on the HTML page while the application runs in its own
window.

AcuShowLogo

Determines whether to display the ACUCOBOL-GT Web Thin Client logo
when you invoke your application.

For example:

AcuThinAX.AcuShowLogo = TRUE
if AcuThinAX.AcuShowLogo

To use this property, specify it as part of the <OBJECT> element where you
invoke the application. The default is TRUE.

AcuCommandLine

The command line that you would normally specify for the acuthin
executable. See the AcuConnect User’s Guide for a list of valid acuthin
command-line options. The minimum value is a server name and alias name.
For example:

myserver.mysite.com:5632 myalias

Do not specify this property if you are using SRC.

Parameter Type Input Output

(BOOL) [TRUE, FALSE] [TRUE, FALSE]

Parameter Type Input Output

(BSTR) [] []

Using the ACUCOBOL-GT Web Thin Client 3-25
SRC

Contains a URL (in HTTP notation) for the thin client command line file to
load. (See section 3.5.1 for a discussion of command line files and how to
create them). SRC is the default property of the Web thin client ActiveX
control. Do not specify this property if you are using AcuCommandLine.

The following example demonstrates using the <OBJECT> element to
specify the program for execution:

<OBJECT
 CLASSID="CLSID:087C768D-64C1-4AC1-845D-4589B4B2C24E"
 ID="AcuThinAX" width="512" height="384">
 <PARAM NAME="AcuEmbedded" VALUE=”TRUE”>
 <PARAM NAME="SRC" VALUE="http://server.acucorp.com/location/commandlinefile.acutc">
</OBJECT>

The SRC property is intended for HTTP URLs only. However, you may also
address local files if the path is prefixed with “file://” rather than “http://”, as
shown below. Note that this is also considered URL notation.

For example:

<OBJECT
 CLASSID="CLSID:087C768D-64C1-4AC1-845D-4589B4B2C24E"
 ID="AcuThinAX" WIDTH="512" HEIGHT="384">
 <PARAM NAME="AcuEmbedded" VALUE=”TRUE”>
 <PARAM NAME="SRC" VALUE="file://c:/webdemo/commandlinefile.acutc">
</OBJECT>

When you use the SRC property to call a file, the downloaded file is given a
temporary name and is stored in the current master temporary directory for
the user, as specified in Windows. Note that the Web thin client
automatically captures the temporary name and uses it internally; however,
the internal name is not exposed.

Parameter Type Input Output

(BSTR) [] []

3-26 Using the Thin Client to Launch Web Applications
3.6.8.4 Scripting with the object interface

Scripting is an optional method for invoking the Web thin client. While it is
possible to invoke the Web thin client without scripting, some users may
want to take advantage of all the methods and properties in the object
interface.

The following VB Script example illustrates how to invoke the Web thin
client object by a push button event using a script:

<INPUT id=button1 name=button1 type=button value=Button>
<SCRIPT LANGUAGE="VBScript">
sub button1_onclick()
 call AcuThinAX.SRC("http://www/Acucorp.com/demo/demo.acutc")
 call AcuThinAX.AcuEmbedded(1)
 call AcuThinAX.AcuExecute()
end sub
</SCRIPT>

Note: Only one instance of the Web thin client is allowed. You cannot
have multiple instances of the Web thin client in one browser instance.

3.6.9 Licensing Considerations

The ACUCOBOL-GT Web Thin Client is licensed with a runtime license on
a server running AcuConnect, licensed for the number of concurrent users
anticipated.

There is no licensing requirement on the end user client machine.

3.6.10 The User’s Job

To use your application via our Web thin client, end users typically have just
one task: they must visit your Web site. If the user’s browser supports the
Web thin client and you have implemented the CODEBASE in your HTML
code, users install the Web thin client automatically the first time they visit
your Web site, and the Web thin client automatically launches your
application.

Using the ACUCOBOL-GT Web Thin Client 3-27
If your customers do not already have the ACUCOBOL-GT Web Thin Client
installed on their machine when they try to launch your application, they are
informed that a control for the file type was not found, and they are asked if
they want to install and run your program. If they respond “Yes”, the Web
thin client installs with no further user interaction and automatically launches
your program.

Note: Users must configure the browser to enable “ActiveX controls ”. To
do this in Internet Explorer, they should check the appropriate box in the
Security tab of the Internet Explorer Options dialog.

For most users installing the Web thin client, they will be prompted to accept
the digital signature of the control. The system also displays the terms and
conditions for using the ACUCOBOL-GT Web Thin Client. Users must
agree to the terms of the agreement in order to use the Web thin client.

3.6.11 Troubleshooting

Users may encounter the following message when installing or using the Web
thin client:

A plug-in for this file type was not found.

Users receive this message if they do not have the Web thin client installed on
their machine when they try to launch your application and, for some reason,
cannot install one automatically using the CODEBASE implementation.
They should obtain a copy of the ACUCOBOL-GT Web Thin Client through
another means (extend media or Web site, for example) and install it on their
machine.

You can try reinstalling the control, running regsvr32 to register it, or
accessing an HTML document where the CODEBASE attribute is correctly
implemented.

3-28 Using the Thin Client to Launch Web Applications
3.6.12 Security and the Web Thin Client

Security for the Web thin client begins with the following provisions:

• Warning messages appear the first time users launch the Web thin client.

• We supply the Web thin client with a digital signature indicating that
Acucorp, Inc., verifies the content. This enables users to run the control
using a medium security setting on their Internet Explorer browser.

Since we distributes the Web thin client via the Internet, it is packaged as a
signed Cabinet (CAB) file. This ensures your users that the code is safe. The
CAB file contains a compressed version of the control, with information that
tells Internet Explorer how to install it.

Caution: Although we have built in a number of security features, the Web
thin client allows COBOL programs to call library routines, DLLs, and
ActiveX controls on target machines. Because we have no control over the
programs that are executed by the Web thin client, we cannot fully
guarantee that they are safe.

3.6.12.1 Digital signature of Web thin client

A digital signature provides users with a way of identifying who published
the software they are downloading from the Internet.

By distributing the Web thin client with a CAB file and digital signature, we
ensure that most standard configurations of Microsoft Internet Explorer will
accept the Web thin client application after the user responds “yes” to the
Security Warning dialog when it is installed. Users who have set their
browser security level to low will not see this dialog, since their browsers
automatically accept digitally signed components.

Note: Users with security levels set to high cannot run any ActiveX-based
controls, regardless of the digital signature.

Because the CAB installation does depend on some Microsoft files, it
contains an embedded link to a file on the Acucorp Web site to ensure that it
can obtain the proper files. If these files are needed, users are prompted to

Using the ACUCOBOL-GT Web Thin Client 3-29
install the Microsoft files; doing so may impact the download and
installation time of the control, due to the file size of some of these required
files.

3.6.12.2 How Internet Explorer security affects the Web thin client

Certain security settings of Internet Explorer can affect how it handles the
Web thin client. The following table outlines the security settings that could
have an effect on your end users, depending on their configuration of Internet
Explorer.

* If your users have selected “Disable” for either of these settings—either via
the default High security setting or a custom setting—they cannot run the
Web thin client.

**If your users have selected “Disable” for either of these settings, and they
are using the scripting facilities, they cannot run the Web thin client.

Security Setting Option Low Medium
Low

Medium High

Download signed ActiveX
controls

Enable Prompt Prompt Disable *

Download unsigned
ActiveX controls

Prompt Disable Disable Disable

Initialize and script
ActiveX controls not
marked as safe

Prompt Disable Disable Disable

Run ActiveX controls and
plug-ins

Enable Enable Enable Disable*

Script ActiveX controls
marked safe for scripting

Enable Enable Enable Disable**

Don’t prompt for client
certificate

Enable Enable Disable Disable

Active Scripting Enable Enable Enable Disable**

3-30 Using the Thin Client to Launch Web Applications
3.6.12.3 Security warning messages

In general, programs run with Web controls can potentially damage an end
user’s computer system or corrupt memory. Therefore, to help reduce the
chances of this happening, the Web thin client displays warnings to end users,
asking them to accept responsibility. Based on your end users’ expectations,
you may need to provide instructions for handling these messages.

4
 Launching Web Applications
Through CGI
Key Topics

What Is CGI?... 4-2

How CGI Works .. 4-3

Deploying Your Applications on the Web Using CGI 4-5

Creating a Web Interface.. 4-6

Writing a CGI Program.. 4-13

Creating a Runtime Configuration File for Your CGI Program 4-28

Configuring the Web Server.. 4-32

4-2 Launching Web Applications Through CGI
4.1 What Is CGI?

If you want to deploy your COBOL applications on the Web without any
configuring of the user machine, you can develop a Web interface to your
application and write a CGI program on the server. CGI stands for Common
Gateway Interface. It is an Internet standard that defines how a Web server
communicates with an external program.

Using CGI, your application becomes immediately available to any user with
a Web browser or mobile device. The end user does not require any special
runtime or plug-in to interface with your application, because the CGI script
handles the communication for them.

The CGI program (also known as the CGI script) can be written in any
language, including COBOL. By writing it in the ACUCOBOL-GT®
Development System, you can take advantage of your COBOL programming
experience, as well as many other benefits.

This option gives the most flexibility and platform independence, but it
requires the development of a new user interface and a modest amount of
COBOL programming.

Why Write CGI Programs in ACUCOBOL-GT?

ACUCOBOL-GT has features designed to simplify CGI programming. For
instance, using familiar ACCEPT and DISPLAY syntax, you can accept CGI
input data and write HTML, WML, or XML output forms. It also has
configuration variables that address special formatting and storage issues in
this environment.

By writing CGI programs in a language you already know, you have to learn
only what the Web server expects, and how it formats messages that it passes
back and forth across the network.

Another advantage is that your CGI program is compiled when it is written in
ACUCOBOL-GT. This not only speeds up processing, but it reduces the size
of the finished product, and secures your program from anyone who might try
to acquire and modify it. Your CGI program is not sent across the Internet,
only the data (if any) and response (if any). Users won’t know if your CGI
program is written in COBOL or another language. They see only the results.

How CGI Works 4-3
Sample Scenario

Your inventory program allows customers to place orders online. They fill
out an HTML form on your Web site, which provides input to a CGI program
(written in COBOL). The CGI program updates inventory information in
your database to reflect the customer order, and then returns a confirmation
notice in HTML format to the customer’s browser. Alternatively, the notice
may be sent in WML format to the customer’s mobile phone or other wireless
device.

4.2 How CGI Works

The flow of typical CGI implementation is as follows:

1. From a client machine—which could be anything from a Web browser to
a mobile phone—a form or query is sent to the Web server. The user
might launch a request by pressing a button or clicking a link.

2. The Web server forwards the request to the CGI program, in this case,
written in ACUCOBOL-GT. This program ACCEPTs the CGI data
sent by the client into an external form which you define in working
storage.

3. The request is either processed by the CGI program itself, or passed to
another ACUCOBOL-GT program for execution.

4. The CGI program uses the DISPLAY verb to merge processing results
with an HTML, XML, or WML template, and sends the result to the
Web server in the standard output stream. The ACUCOBOL-GT
runtime creates and outputs the appropriate content response headers
automatically.

4-4 Launching Web Applications Through CGI
5. The Web server sends the content response header followed by the
appropriate content message to the user’s machine or mobile device
where it is displayed.

Note that this diagram shows the CGI program and ACUCOBOL-GT
application as separate components. In many instances, you may choose to
add CGI functions directly to your COBOL application, making them one in
the same thing.

In addition, any and all connectivity options available to extend customers
can be applied in the third step if desired. For instance, the CGI program can
CALL a remote program using the AcuConnect® application server for
connectivity. Likewise, the CGI program or CALLed program can access
any file system or database that we support to perform a lookup. If the file
system resides on another machine, the program can use the AcuServer®
remote file server to achieve access. If a relational database access is desired,
the Acu4GL® interface or AcuSQL® precompiler can be used to translate the
request into SQL.

Deploying Your Applications on the Web Using CGI 4-5
The CGI method is best suited for programs that do not use a user interface
(UI) based on COBOL DISPLAY/ACCEPT statements—for instance,
programs with a Web interface, batch processes, processes that use socket
routines to communicate with an external UI, component adapter technology
processes, and BEA Tuxedo processes.

4.3 Deploying Your Applications on the Web Using
CGI

To deploy your applications on the Web using CGI, you perform the
following steps:

1. Create a Web interface to your application, targeted for your intended
environment. Include pointers to the CGI program that you will
develop.

2. Write a CGI program in COBOL that will read CGI variables,
perform the processing task or launch a separate program to do so, and
generate output from the results. Note that ACUCOBOL-GT has been
designed to make CGI programming easy.

3. Create a runtime configuration file for your CGI program. In it,
define input and output requirements, such as output content type,
headers, caching, and stripping carriage returns.

4. Place your CGI program and ACUCOBOL-GT application on the Web
server, along with the necessary configuration, license, and data files.

5. Configure your Web server software. Have it run the program with
the “-f” runtime option or set the A_CGI environment variable to “1”.
This tells the runtime to run in CGI mode and not perform user
interface functions. If your program will be running on UNIX, also
specify the “-b” option.

6. Follow normal procedures for creating the license files for Windows
and UNIX environments. If you ordered a CGI license file, see section
2.4 in the Getting Started guide.

4-6 Launching Web Applications Through CGI
4.4 Creating a Web Interface

To make your COBOL program directly accessible to Web
browsers—whether on computers, personal digital assistants (PDAs), or
mobile phones—you should develop a Web interface to replace your
application’s current graphical or character-based front end.

For HTTP browsers like Internet Explorer and Netscape, you typically
develop an interface in HyperText Markup Language (HTML) or eXtensible
Markup Language (XML). HTML is the most common language for Web
pages viewed with HTTP browsers, although XML is rapidly gaining ground
for display of dynamic content on the Web.

For mobile device browsers based on Wireless Application Protocol (WAP),
you typically develop an interface in Wireless Markup Language (WML), but
you can also develop an XML interface if desired.

XML documents are typically transformed to the output format of their
targeted environment through the use of style sheets and a style sheet
transformation language (XSLT). For instance, if a Web browser client
makes a request, XML documents are typically transformed to HTML or
PDF format for output. If a WAP device issues the request, they are typically
transformed to WML. It is a published form of the document that is returned
to the client, not the XML document itself. XML Web publishing vendors
can provide more information on this subject, as well as the tools to develop
such a solution.

HTML, XML, and WML are all markup languages that tell devices how to
present information. All three of these languages use headers and tags to pass
structure, formatting, hyperlink, and form description information to the
receiving device. If you choose to, you can use other languages like VB
script or Java script to develop your user interface. The only restriction is that
the targeted browser or WAP device must be able to support the version of the
language that you use.

To develop a markup language interface to your COBOL program, you can
use any of several authoring tools. Many are available over the Internet free
of charge. For instance, Cocoon Project is an open-source XML Web
publishing framework from Apache. A search on HTML authoring tools
turns up literally thousands of suggestions.

Creating a Web Interface 4-7
Whichever language you choose, you typically create fill-out forms to collect
information from the user and send it to your CGI program for processing.
The form must include information about how and where to send the
information so that it can be processed. In HTML, this is accomplished
with the METHOD and ACTION attributes of the <FORM> tag.

Section 4.4.1 describes how to construct a form in HTML. For information
on constructing XML and WML forms, refer to XML and WML reference
books.

Note: If desired, you can display an HTML interface using the
WEB-BROWSER control described in Appendix B of this manual. Then
the HTML interface can interact with CGI programs on the Web server.

4.4.1 Creating HTML Forms

To create a form in HTML, you use the <FORM> tag. As with many HTML
tags, you need to place a beginning tag at the start of the form and a closing
tag at the end of the form, in this case <FORM> and </FORM> respectively.
More than one form can be in a single document, but forms cannot be nested.

Forms can contain single- and multiple-line entry fields, check boxes, radio
buttons, list boxes, push buttons, and hidden data. Every form has a Submit
button that users can press to have their data sent to the Web server for
processing. This data is a list of NAME/VALUE pairs, one for each
component of the form. The NAME and, optionally, the initial VALUE of
each form component is specified in the HTML code. Then the user can fill
out the form and modify the VALUEs.

Here is an example of an HTML form:

<FORM METHOD="POST" ACTION="/cgi-bin/name.acu">
Please enter your name or leave the entry field
blank for "anonymous":
 <INPUT TYPE="text" NAME="username" SIZE=60>
 <INPUT TYPE="submit" VALUE="Submit">
</FORM>

The FORM tag has two attributes that must be defined:

4-8 Launching Web Applications Through CGI
• The METHOD attribute tells the browser how to send the information
gathered in the form to the Web server.

• The ACTION attribute tells the browser where to send the encoded
form information, typically the URL (uniform resource locator) of the
CGI program that will process the form.

METHOD attribute

The METHOD part of the <FORM> tag tells the browser how to send the
information gathered in the form to the Web server. METHOD has only two
possible values: GET and POST. The difference between these two methods
is how the browser encodes the data to be sent to the server.

The GET method encodes the NAME/VALUE pairs into the URL itself.
Then the Web server moves the NAME/VALUE list into an environment
variable, QUERY_STRING, before calling the CGI program.

The drawback of GET is that the NAME/VALUE list is limited to 255
characters including the special URL encoding symbols. The advantage is
that all of the input data is visible in the URL (although this could be
considered a disadvantage as well). After submitting the form, the user can
“bookmark” the URL or save a copy of the URL text for future quick access
to the results of the submittal.

On the other hand, the POST method sends the data to the Web server as a
data stream. Using this method, the NAME/VALUE list is limited to
2,147,483,647 characters. With the POST method, the browser does not
modify the URL. Instead, it connects to the Web server and sends the
NAME/VALUE list as a stream of data. The Web server pipes this data
stream through the standard input stream (STDIN) of the CGI program.

All Web servers support the GET method, and most modern Web servers
support the POST method. ACUCOBOL-GT supports both methods. This
means that when you write your CGI program using the ACUCOBOL-GT
CGI enhancements, the method you choose makes absolutely no difference in
the way you code your CGI program. You may change the method in the
HTML FORM tag without recoding or even recompiling your CGI program.

Creating a Web Interface 4-9
ACTION attribute

ACTION tells the browser where to send the encoded form information. This
is the URL of the CGI program that will process the form. In the example
above, the browser is going to send the form information to a COBOL
program called “name.acu” on the same server as the HTML document. The
program “name.acu” is located in a directory called “/cgi-bin/”. Note that “/
cgi-bin/” is not necessarily the name of an actual file system directory on the
Web server. The Web server is configured to map URL paths to disk
directories. You must examine your Web server settings to determine the
actual disk directory represented by a URL path.

You can also include the complete URL within the ACTION attribute as
follows:

<FORM METHOD=“POST” ACTION=“http://www.mycompany.com/cgi-bin/name.acu”>

4.4.2 FORM Components

In the following syntax diagrams, square brackets, [], are used to indicate
optional attributes, and curly braces, { }, to enclose a set of choices.

The following components are described in the sections that follow:

• INPUT tag

• TYPE attribute

• Single-line entry fields

• Multiple-line entry fields

• Check boxes and radio buttons

• List boxes

• Submit and Reset buttons

• Hidden fields

4-10 Launching Web Applications Through CGI
INPUT tag

Use the INPUT tag to specify how you want users to enter data into the form.
It tells the browser to get ready for some sort of data input.

TYPE attribute

Use the TYPE attribute to tell the browser what kind of data will be entered
and how it should look on the form. The default value for TYPE is “TEXT”
(i.e. TYPE=“TEXT”).

Single-line entry fields

To create a single-line entry field, use the following syntax:

<INPUT TYPE=“{TEXT|PASSWORD}” NAME=“name”
 [VALUE=“default_text”][SIZE=“width,height”]
 [MAXLENGTH=“width”]>

where:

• TYPE selects the type of input field (text box or password box).

• NAME assigns a name to the field.

• VALUE assigns default text that will be entered in the box when the form
is displayed.

• SIZE specifies a width and height (in characters) for the box (default is
width 20 and height 1).

• MAXLENGTH specifies the maximum number of characters that may
be entered.

The main difference between the TEXT and PASSWORD types is that when
you use PASSWORD, anything the user types into the field is displayed as
asterisks.

Multiple-line entry fields

To create a multiple-line entry field, use the following syntax:

<TEXTAREA NAME=“name” [ROWS=rows] [COLS=columns]>
[Default_text]
</TEXTAREA>

Creating a Web Interface 4-11
where:

• NAME assigns a name to the field.

• ROWS specifies the number of rows in the field.

• COLS specifies the number of columns in the field.

Check boxes and radio buttons

Check boxes allow the user to select one or more options. Each check box
must have a unique name. Radio buttons allow only one choice within a
group of buttons. Each radio button within a group should have the same
name. You can create more than one group of radio buttons by using different
names.

<INPUT TYPE=“{CHECKBOX|RADIO}” NAME=“name” VALUE=“value” [CHECKED]>

where:

• TYPE selects the type of field (checkbox or radio button).

• NAME assigns a name to the field.

• VALUE assigns the value that will be sent to the CGI program if the user
selects this field.

• CHECKED specifies that this field should be selected by default when
the form is displayed.

List boxes

List boxes allow the user to select from a number of options, using either a
pull-down menu or a scrolling list box. They are similar to groups of radio
buttons or check boxes, but they take up less space for long lists of items.

<SELECT NAME=“name” [SIZE=“size”] [MULTIPLE]>
<OPTION [SELECTED]>Option 1
<OPTION [SELECTED]>Option 2
...
</SELECT>

4-12 Launching Web Applications Through CGI
where:

• NAME assigns a name to the field.

• SIZE specifies how many lines should be visible at once (default is 1).

• MULTIPLE allows the user to select more than one option (i.e. check
box behavior).

• OPTION designates a list item; the text beside the tag will be the value
sent to the CGI program.

• SELECTED specifies that this list item should be selected by default
when the form is displayed.

Submit and Reset buttons

When users finish filling out the form, the submit button allows them to send
the contents of the form to your CGI program. The reset button allows them
to clear the form, resetting the fields to their default values.

<INPUT TYPE=“{SUBMIT|RESET}” [VALUE=“value”]>

where:

• TYPE specifies the type of button (submit or reset).

• VALUE assigns text that will be displayed in the button (default text is
“Submit” or “Reset”).

If you want to enable the <Enter> key so that users can press <Enter> to
submit a completed form, add the USE-RETURN style to the
WEB-BROWSER control. See Appendix B for more information on the
WEB-BROWSER control.

Hidden fields

Hidden fields allow you to send data to the CGI program without showing
that data to the user.

<INPUT TYPE=“HIDDEN” NAME=“name” VALUE=“value”>

where:

Writing a CGI Program 4-13
• TYPE specifies that this should be a hidden field.

• NAME assigns a name to the field.

• VALUE assigns the value that will be sent to the CGI program.

Note that “Hidden” fields are not completely hidden from users, because any
user can select the “View Source” option in their browser to see the value of
these fields.

4.5 Writing a CGI Program

Each element of your HTML, XML, or WML interface has a corresponding
CGI variable. Your application must be able to interpret the CGI input data
and return an appropriate response to the user. This is where your CGI
program comes in.

Your CGI program must perform three basic functions:

In the simplest case, your ACUCOBOL-GT CGI program can contain one
ACCEPT statement and one DISPLAY statement. Even if your program is
more complicated, it will always start with an ACCEPT and end with a
DISPLAY. Few languages make CGI programming so simple.

Function Description

Read CGI input
data from the
client

When a user enters information onto the form, that
information is sent to the CGI program in the form of CGI
data. Your program must be able to read CGI input data. In
ACUCOBOL-GT, this is accomplished with the ACCEPT
verb.

Process the
input data and
arrive at results

Typically, this involves either a calculation, database
lookup, or file read, but it could involve a CALL to an
existing COBOL program on a local or remote machine.

Generate output
that can be read
by the client
browser

Minimally, this includes an HTTP response header with a
URL pointer to the response data. Otherwise, the header
may be followed by response data formatted in HTML,
WML, or XML. In ACUCOBOL-GT, HTTP output is
accomplished using the DISPLAY verb.

4-14 Launching Web Applications Through CGI
When writing your CGI program, consider the following:

• CGI programs must be written to be non-interactive. They take a set of
input data, process it, and produce output.

• While the CGI program is running, the user is waiting for a response in
the Web browser. CGI programs should be kept small and do their job
quickly to reduce the user wait time.

• If users get tired of waiting and press the Stop button on their browsers,
the Web server generally kills the CGI program. The output from the
CGI program is discarded.

• One of the limitations of CGI is that it does not automatically maintain
any state information. It is the CGI programmer’s responsibility to
record state information in a file or database and then encode a “key” to
that state information in the HTML, XML, or WML output.

For example, if a client invokes a CGI program to “log in” to your
application or to add an item to his/her “shopping cart,” the CGI program
must record that fact along with any user identification information in a
file or database. When the CGI program generates the output, it should
encode a user ID or key in a CGI variable that will get passed to the next
CGI program that the client invokes. The next CGI program can then
look up the user state information (for example, shopping cart contents)
from the database. The user state information should also include a date/
time “stamp” so that a maintenance program can delete records for users
who haven’t logged on in a specified amount of time or who left the
application without logging out.

• If you choose to use ANSI style ACCEPT and DISPLAY statements
instead of—or in addition to—the ACCEPT and DISPLAY
external-form-item syntax described in this section, you must include
the UPON SYSOUT phrase or else compile with the “-Ca” option.
“-Ca” implies UPON SYSOUT for all ANSI DISPLAY statements.

With these considerations in mind, you are ready to write your CGI program.
The following sections describe how to accomplish the necessary I/O and
processing tasks. Section 4.5.4, “Sample CGI Programs” provides some
sample code for your reference.

Writing a CGI Program 4-15
4.5.1 Reading CGI Input Data

With ACUCOBOL-GT, there are two ways to read CGI input data:

• With the ACCEPT verb. Use this method in most cases.

• With the C$GETCGI library routine. Use this method when converting
existing COBOL CGI programs to ACUCOBOL-GT.

Using the ACCEPT verb

To read CGI variables from the client machine, you can use the ACCEPT
verb in your CGI program. ACUCOBOL-GT includes special syntax for
accepting HTML, XML, or WML form records. The syntax is:

ACCEPT external-form-item

where external-form-item is an input record for an HTML, XML, or WML
form. It is a group data item (declared with the IS EXTERNAL-FORM
clause) that has one or more elementary items associated with CGI variables.
For “input forms,” the association is made using the IDENTIFIED BY clause
in the description of the elementary item. The value of external-name is the
name of the CGI variable. If the IDENTIFIED BY phrase is omitted, the data
item’s own name (data-name) is used as the name of the CGI variable.

External-form-item may also be an output record for an HTML, XML, or
WML form. In this case, the group item is declared with both the IS
EXTERNAL-FORM and IDENTIFIED BY clauses.

The “external form” is called an “output form” if the IDENTIFIED BY
clause is used in the description of the group item to associate it with a
template file.

For example, the following is an input form:

01 CGI-FORM IS EXTERNAL-FORM.
 03 CGI-VAR1 PIC X(10).
 03 CGI-VAR2 PIC X(10).

and here is an output form:

01 HTML-FORM IS EXTERNAL-FORM IDENTIFIED BY “tmplate1”.
 03 HTML-VAR1 PIC X(10).
 03 HTML-VAR2 PIC X(10).

4-16 Launching Web Applications Through CGI
The ACCEPT verb treats input and output forms the same. ACCEPT sets the
value of each elementary item in the external form, in order, to the value of
its associated CGI variable, padding with trailing spaces. ACCEPT
automatically decodes and translates the CGI input data before moving it to
the elementary items of external-form-item. The value of each CGI variable
is converted to the appropriate COBOL data type when it is moved to the
external form.

Please note that when some browsers encounter multiple-line entry fields
(also known as HTML TEXTAREAs, they send a carriage return line feed
sequence to the CGI program. If carriage returns are not desired, as in
operating systems that automatically terminate text lines with line feed
characters, you can have them removed by using the CGI_STRIP_CR
runtime configuration variable.

Also note that CGI variable names are case-sensitive. However, for
convenience, if ACCEPT cannot identify a CGI variable, it will repeat the
search for the variable ignoring the case.

If the CGI variable is empty or does not exist, ACCEPT sets the value of
numeric data items to zero and nonnumeric data items to spaces.

If the CGI variable is repeated in the CGI input data, as in the case where
multiple items have been selected from a “choose-many” list, the external
form item that is identified with the CGI variable must be in a table using the
OCCURS clause. Otherwise, only the first CGI value is moved to the
external form item.

For example:

01 CGI-FORM IS EXTERNAL-FORM.
 03 CGI-TABLE OCCURS 10 TIMES.
 05 CGI-VAR1 PIC X(10).
 05 CGI-VAR2 PIC X(10).

or

01 CGI-FORM IS EXTERNAL-FORM.
 03 CGI-VAR1 PIC X(10) OCCURS 10 TIMES.
 03 CGI-VAR2 PIC X(10) OCCURS 10 TIMES.

Writing a CGI Program 4-17
ACCEPT moves the values of the CGI variable to the items in the table.
After all of the CGI values have been moved to items in the COBOL table,
the remaining items in the table are set to “0” if they are numeric items and
spaces otherwise.

Using the C$GETCGI routine

The C$GETCGI library routine retrieves CGI variables from the
environment or the standard input stream, “stdin”, like other types of
COBOL CGI programs. The C$GETCGI routine should be used by those
with existing COBOL CGI programs to retrieve CGI variables as normal
while incrementally converting to ACUCOBOL-GT’s external form method
of CGI data retrieval. Although “ACCEPT from stdin” and “ACCEPT
external-form-item” cannot be used together, you may use C$GETCGI
instead of or in combination with external forms. The C$GETCGI routine
retrieves the exact size of a CGI variable.

To use C$GETCGI, include a CALL in your CGI program using the
following syntax:

CALL “C$GETCGI”
 USING VARIABLE-NAME, DEST-ITEM, VALUE-INDEX
 GIVING VALUE-SIZE

where the following are defined in the Working-Storage or Data Division
sections of your program.

Parameter Type Description

VARIABLE-NAME PIC X(n) Contains the name of the CGI
variable.

DEST-ITEM PIC X(n) Receives the value of the given CGI
variable.

4-18 Launching Web Applications Through CGI
C$GETCGI automatically determines whether to read the CGI variable from
the environment or “stdin” depending on the value of the
“REQUEST_METHOD” environment variable, which is set by the Web
Server. The first time C$GETCGI is called, it reads all of the CGI variables
and values into a variable-length buffer. If REQUEST_METHOD is “GET”,
the data is read from the QUERY_STRING environment variable. If the
REQUEST_METHOD is “POST”, it is read from “stdin”.

Each time C$GETCGI is called, it searches for the variable name passed in
the first parameter, translates the value from CGI format into standard format,
and moves the result to the destination item passed in the second parameter.

Note: When some browsers encounter multiple-line entry fields (also
known as HTML TEXTAREAs), they send a carriage return line feed
sequence to the CGI program. If carriage returns are not desired, as in
operating systems that automatically terminate text lines with line feed
characters, you can have them removed by using the CGI_STRIP_CR
runtime configuration variable. Refer to section 4.6 for details.

VALUE-INDEX Numeric value Contains the CGI value index. This
optional parameter contains an index
that is used when a CGI variable has
multiple values in the CGI input
data. This typically happens when
multiple items have been selected
from a “choose-many” list box. For
example, to receive the third selected
value, pass 3 for VALUE-INDEX. If
VALUE-INDEX is greater than the
total number of values in the input
stream for the given CGI variable,
spaces are moved to DEST-ITEM.

VALUE-SIZE Signed
numeric value

Receives the size of the resulting
value. This may be “0” to indicate
that the variable exists but has no
value or “-1” to indicate that the
variable does not exist.

Parameter Type Description

Writing a CGI Program 4-19
An optional third parameter specifies a CGI value index. This index is used
when a CGI variable has multiple values in the CGI input data, as in the case
where multiple items have been selected from a “choose-many” list.

4.5.2 Processing the User’s Request

The second function of most CGI programs is to process the CGI input data
or user’s request. Usually, this is a calculation, database lookup, or file read,
although CGI programs can invoke modules of an existing application to
perform a function and return data. This is the part of CGI programming that
is most familiar to COBOL developers: the application processing
component.

It is important to note that since CGI programs are executed on the Web
server machine by the Web server itself, they are not allowed to perform any
user interface operations directly. If a CGI program attempts any operation
that waits for a user response, it may cause the Web server to “hang.”

Therefore, when writing CGI programs, you should be especially careful not
to include code that waits for user input (using the ACCEPT verb).

There are some cases when the runtime displays a message box even before
loading the COBOL program. There are other cases when the runtime shuts
down due to an error that is not handled by the COBOL program. In these
cases the runtime displays a message box containing the text of the message
and waits for the user to press the OK button. This can cause a problem when
the runtime is executed by a Web server.

To solve this problem, when you are configuring the Web server to execute
the runtime, be sure to use the “-f” command line option or to configure your
environment with the A_CGI environment variable. (Refer to section 4.7,
“Configuring the Web Server,” for more information.) Both of these
methods cause the runtime to suppress warning messages that are normally
displayed in a message box. When the runtime shuts down due to an error
that is not handled by the COBOL program, it constructs an HTML, XML, or
WML page containing the shutdown message and sends it to the standard
output stream before terminating.

4-20 Launching Web Applications Through CGI
4.5.3 Generating Output

Your CGI program can generate many types of output, including—but not
limited to—HTML, WML, and XML. By default, it returns HTML output
for users accessing your program on a Web site. If you want the output to be
in XML format, or if you intend for it to be displayed on a WAP device, you
must configure your program to generate XML or WML output instead. To
do so, you use the runtime configuration variable, CGI_CONTENT_TYPE.
(See section 4.6 for more information on this variable.)

Regardless of the format, to generate output, your CGI program must use the
DISPLAY statement. With ACUCOBOL-GT, the DISPLAY verb constructs
HTTP response headers for you automatically and routes them to “stdout”.
The response header that the DISPLAY verb generates can include a pointer
to a URL where response data can be found, or it can be followed by an
HTML, WML, or XML document. Headers that point to URLs have the
content type “location”. Headers that include form data have the content type
“text/html”, “text/wml”, or “text/xml”.

Note that the runtime can DISPLAY virtually any type of content, as long as
the content type ID corresponds to the form specified in the DISPLAY
syntax.

Using the DISPLAY Statement

You can use the DISPLAY statement to display records from many types of
forms, including HTML, WML, and XML forms. To do so, use the following
syntax:

DISPLAY external-form-item

where external-form-item is an output record for the form when used in a
Common Gateway Interface (CGI) program. It is a group data item (declared
with the IS EXTERNAL-FORM and IDENTIFIED BY clauses) that may
have one or more elementary items associated with fields in an HTML,
WML, or XML template. The association is made using the IS IDENTIFIED
BY clause.

External-form-item may also be an input record for a form. In this case, the
group item is declared with only the IS EXTERNAL-FORM clause. This is
used primarily when you are debugging your CGI program.

Writing a CGI Program 4-21
The DISPLAY verb treats input and output forms differently. For output
forms, DISPLAY merges the data contained in the elementary items into the
associated template file and sends the result to the standard output stream in
conformance with the CGI specification. To do this, DISPLAY scans the
template file for data names delineated by two percentage signs on either
side (i.e., %%data-name%%). It then replaces those data names with the
contents of the associated elementary items from the output form, stripping
trailing spaces.

The maximum length of a single line in the template file is 256 bytes. The
maximum length of a single output line is 512 bytes. No conversion is
performed on the output form items before they are merged with the
template file.

You may specify a series of directories for locating template files. To do this,
use the HTML_TEMPLATE_PREFIX configuration variable, even if you
are specifying a directory for locating XML or WML templates. (See
section 4.6 for details.) For related information about file content, see also
the configuration variable “CGI_CONTENT_TYPE”.

When associating the template file with the IS IDENTIFIED BY clause, you
may omit the template file suffix if it is either “.html” or “.htm”; otherwise,
you must include the suffix. If the suffix is omitted, DISPLAY first appends
“.html” to the specified file name and tries to open it. If that fails, DISPLAY
appends “.htm” to the file name and tries to open it. If that fails, DISPLAY
tries to open the file exactly as specified. If all these attempts fail, the
following error message is sent to the standard output stream in HTML
format:

Can't open HTML template “template-file-name”

When the Web server executes your CGI program, the current working
directory depends on the configuration of the specific Web server that is
running. In many cases the current working directory is the same as the Web
server’s “root” directory. As part of the CGI specification, when the Web
server executes your CGI program, it sets an environment variable called
PATH_TRANSLATED to the directory containing your CGI program. You
may want to use this information to locate your template files.

4-22 Launching Web Applications Through CGI
For example, if your template files are in the same directory as your CGI
programs, set the HTML_TEMPLATE_PREFIX configuration variable to
the value of PATH_TRANSLATED as follows:

01 CGI-DIRECTORY PIC X(100) VALUE SPACES.
...
ACCEPT CGI-DIRECTORY FROM ENVIRONMENT “PATH_TRANSLATED”.
SET CONFIGURATION “HTML_TEMPLATE_PREFIX” TO CGI-DIRECTORY.

The output from a CGI program must begin with a “response header”.
DISPLAY automatically generates a “Content-Type” response header if the
specified template file is a local file (i.e., not a URL).

You may specify the EXTERNAL-FORM clause for an item that has no
subordinate items. This is useful for displaying static Web pages. To do this,
specify the name of the static Web page in the IDENTIFIED BY clause. For
example, if you have a Web page called “webpage1.html”, add the following
lines to your COBOL program:

01 WEB-PAGE-1 IS EXTERNAL-FORM
IDENTIFIED BY “webpage1”
...
DISPLAY WEB-PAGE-1.

You may also specify a complete URL instead of a template file name in the
IDENTIFIED BY clause. In this case, DISPLAY generates a “Location”
response header that contains the URL. This header specifies that the data
you’re returning is a pointer to another location. To determine whether the
template file name is a URL, DISPLAY scans it for the “://” string.
DISPLAY does not apply the HTML_TEMPLATE_PREFIX when the
template file name is a URL.

For example, if your program determines that the information the user has
requested is on another Web server, and its URL is “http://
www.theinfo.com”, add the following lines to your COBOL program:

01 THE-INFO-URL IS EXTERNAL-FORM
IDENTIFIED BY “http://www.theinfo.com”
...
DISPLAY THE-INFO-URL.

The length of the URL must not exceed 256 bytes.

Writing a CGI Program 4-23
Only one response header is sent to the standard output stream. Your CGI
program should exit immediately after sending a location header (i.e., after
displaying an external form identified by a URL).

You may use as many template files as you like in a single program. A
common way to use multiple template files is to have three output forms:
a header, body, and footer. Each of these has a corresponding template file.
You first display the header form, then move each row of data to the body
form and display it, and finally display the footer form.

When an input form is specified in a DISPLAY statement, the names and
values of each elementary item are sent to the standard output stream in the
format specified by the CGI_CONTENT_TYPE variable (HTML, WML,
XML, etc.). One line is generated for each elementary item. The line
consists of the name of the item followed by “ = ”, followed by the first 100
bytes of the item’s value. This can be useful when you are testing and
debugging your CGI program.

4.5.4 Sample CGI Programs

The following CGI programs were written in ACUCOBOL-GT.

Oscars sample

The first program, oscars, is designed to return the names of actors and
actresses who won Oscar awards in a specified year. Notice the definition of
external form items in the Working-Storage section of this program. Notice
also that the ACCEPT statement in the main logic section ACCEPTs these
external form items, and that the DISPLAY statement defines the HTML
templates to be used: “HTML-header-form,” “HTML-footer-form,” and
“body-para.” The contents of these templates follows.

identification division.
program-id. oscars.
remarks.
working-storage section.
01 cgi-form is external-form.
 05 y2004 pic x(5) is identified by “y2004”.
 05 y2003 pic x(5) is identified by “y2003”.
 05 y2002 pic x(5) is identified by “y2002”.
01 cgi-form-table redefines cgi-form.

4-24 Launching Web Applications Through CGI
 05 cgi-year pic x(5) occurs 5 times.
01 html-header-form is external-form identified by “header”.
 05 opening-messagepic x(40).
01 html-body-form is external-form identified by “body”.
 05 ryear pic x(5).
 05 html-oscar-info.
 10 rmovie pic x(25).
 10 ractor pic x(42).
 10 ractress pic x(42).
01 html-footer-form is external-form identified by “footer”.
 05 closing-message pic x(40).
01 movie-values.
 05 2004-oscar.
 10 movie pic x(25) value “THE LORD OF THE RINGS”.
 10 actor pic x(42) value “Sean Penn MYSTIC RIVER”.
 10 actress pic x(42) value “Charlize Theron MONSTER”.
 05 2003-oscar.
 10 movie pic x(25) value “CHICAGO”.
 10 actor pic x(42) value “Adrien Brody THE PIANIST”.
 10 actress pic x(42) value “Nicole Kidman THE HOURS”.
 05 2002-oscar.
 10 movie pic x(25) value “A BEAUTIFUL MIND”.
 10 actor pic x(42) value “Halle Berry MONSTER’S BALL”.
 10 actress pic x(42) value “Denzel Washington TRAINING DAY”.
01 movie-table redefines movie-values occurs 5 times.
 05 oscar-winners.
 10 best-movie pic x(25).
 10 best-actor pic x(42).
 10 best-actress pic x(42).
01 various-counters.
 05 idx-1 pic 99 value 1.
procedure division.
main-logic.
accept cgi-form.
 if cgi-form = space
 move “You did not select any years!” to opening-message
 display html-header-form
 move “Back up and try again.” to closing-message
 else
 move “Acucorp CGI in action.” to opening-message
 display html-header-form
 perform display-body-para
 move “THE END.” to closing-message
 end-if.
 display html-footer-form.
 stop run.
display-body-para.
 perform varying idx-1 from 1 by 1 until idx-1 > 12
 if cgi-year(idx-1) = space

Writing a CGI Program 4-25
 continue
 else
 move cgi-year(idx-1) to ryear
 move movie-table(idx-1) to html-oscar-info
 display html-body-form
 end-if
 end-perform.

Header.htm
<HTML><HEAD><TITLE>ACUCOBOL-GT CGI Header</TITLE></HEAD>
<BODY>
<H2>%%opening-message%%</H2>
<CENTER><H1>Oscar Winners</H1>
<HR>
<TABLE border cellspacing=0 cellpadding=5>
<TR>
<TH colspan=4 align=center>Your Selections</TH>
</TR>
<TR align=center>
<TH>Year</TH>
<TH>Best Movie</TH>
<TH>Best Actor</TH>
<TH>Best Actress</TH>
</TR>

Footer.htm
</TABLE>
</CENTER>
<H2>%%closing-message%%</H2>
<HR>
<P>The information you requested was processed by the ACUCOBOL-GT CGI
program.

Following the CGI standard, ACUCOBOL-GT was able to send

the requested data items to the appropriate templates and

return the completed HTML document back to you.</P>
</BODY></HTML>

Body.htm
<TR align=center>
<TD>%%ryear%%</TD>
<TD>%%rmovie%%</TD>
<TD>%%ractor%%</TD>
<TD>%%ractress%%</TD>
</TR>

4-26 Launching Web Applications Through CGI
Oscar.htm
<HTML>
<HEAD>
<META HTTP-EQUIV=“Content-Type” CONTENT=“text/html;
charset=windows-1252”>
<META NAME=“Generator” CONTENT=“Microsoft Word 97”>
<TITLE>ACUCOBOL-GT CGI Example</TITLE>
<META NAME=“Template” CONTENT=“C:\PROGRAM FILES\MICROSOFT
OFFICE\OFFICE\html.dot”>
</HEAD>
<BODY LINK=“#0000ff” VLINK=“#800080”>
<H2>ACUCOBOL-GT CGI Example using ACUCOBOL-GT.</H2>
<H3>This example shows how easily you can use ACUCOBOL-GT to act as a
CGI program.

User input is transferred from the following HTML page to a
ACUCOBOL-GT program running

on the web server. The appropriate output is returned.</H3>
<P><HR></P>
<H1 ALIGN=“CENTER”>Oscar Trivia</H1>
<P>Select a year(s)and press the Submit Query button.

The Best Picture, Best Actor and Best Actress for each year selected
will be returned. </P>
<FORM ACTION=“http://your_server_name/Scripts/oscars.acu”
METHOD=“post”>
<P>Year: </P>
<P>
<INPUT TYPE=“checkbox” NAME=“y2004” VALUE=“2004”>
2004
<INPUT TYPE=“checkbox” NAME=“y2003” VALUE=“2003”>
2003
<INPUT TYPE=“checkbox” NAME=“y2002” VALUE=“2002”>
2002
<P>
<INPUT TYPE=“submit” VALUE=“Submit Query” >
</P></FORM></BODY>
</HTML>

Hello User sample

The following CGI program assumes that the user has been asked to enter his
or her name, and that the entered name is stored in the CGI variable
“username”. This can be accomplished using the following HTML form:

<body>
<form action=“/cgi-bin/simple.acu” method=“get”>
Please enter your name or leave blank for “anonymous”:
<input type=“text” name=“username” size=60>
<input type=“submit” value=“Submit”>

Writing a CGI Program 4-27
</form>
</body>

This program also uses an HTML template, “greeting.html”. Here is an
example:

<body>
Hello %%username%%
This Web page is still under construction.
Please try again in a few days.
</body>

The CGI program then, is as follows:

identification division.
program-id. simple.
remarks.
data division.
working-storage section.
01 input-output-form is external-form is identified by “greeting”.
 03 user-name pic x(60) identified by “username”.
procedure division.
main-logic.
 accept input-output-form.
 display input-output-form.

Substituting a URL sample

This program demonstrates using an external form to substitute a URL for the
output.

identification division.
program-id. acusrch.
remarks.
data division.
working-storage section.
01 acucorp-search-url pic x(40) is external-form
 identified by “http://www.acucorp.com/cgi-bin/acusearch”.
procedure division.
main-logic.
 display acucorp-search-url.

4-28 Launching Web Applications Through CGI
4.6 Creating a Runtime Configuration File for Your
CGI Program

You can configure many aspects of input and output handling by including a
runtime configuration file with your CGI program on the Web server. For
instance, you can configure the type of output to be generated by using the
CGI_CONTENT_TYPE variable. Name and format the configuration file as
you would any ACUCOBOL-GT runtime configuration file. (See section 2.7
of the ACUCOBOL-GT User’s Guide for details.) The configuration file for
your CGI runtime can contain any or all of the following variables:

• CGI_STRIP_CR

• CGI_CONTENT_TYPE

• CGI_NO_CACHE

• CGI_AUTO_HEADER

• HTML_TEMPLATE_PREFIX

• CGI_CLEAR_MISSING_VALUES

CGI_STRIP_CR

When some browsers encounter multiple-line entry fields (also known as
HTML TEXTAREAs), they send a carriage return line feed sequence to the
CGI program. When this sequence is subsequently output to files on
operating systems that terminate text lines with line feed characters, the data
may appear to be double spaced.

If desired, you can configure the runtime to automatically remove carriage
return characters from HTML data entered in multiple-line entry fields. To
do so, set the runtime configuration variable CGI_STRIP_CR to “1” (on,
true, yes). Stripping the carriage returns from this kind of input prevents
double-spacing problems, as well as conflicts that may arise if the data is
used in a context that does not expect a carriage return character to precede
each line feed character. The default value for this variable is “0” (off,
false, no).

Creating a Runtime Configuration File for Your CGI Program 4-29
For example, if an end user enters the following three lines in a TEXTAREA
for a field called “thetext”:

Sometext line 1
Sometext line 2
Sometext line 3

The browser sends the following to the CGI program:

thetext=Sometext+line+1%0D%0ASometext+line+2%0D%0ASometext+line+3%0D%0A

If the CGI_STRIP_CR is set to “1” (on, true, yes), the runtime strips the
carriage return characters so that the input line is the following:

thetext=Sometext+line+1%0ASometext+line+2%0ASometext+line+3%0A

CGI_CONTENT_TYPE

By default, the output generated by your CGI program is mapped as HTML
content. To associate your CGI output with a MIME content type other than
“text/html”, use the CGI_CONTENT_TYPE configuration variable. This
variable lets you control the content type information in the header of output
files created by ACUCOBOL-GT. Such information informs recipients of
the type of content that they are about to receive.

Using this variable, you can configure your CGI program for many types of
output, including eXtensible Markup Language (XML) or Wireless Markup
Language (WML) for Wireless Application Protocol (WAP) devices like
mobile phones.

Whichever format you choose, the US-ASCII character set is applied to the
output by default. If you want the CGI output to be mapped to an alternate
character set such as ISO-8859-I (Western European), then you can specify
the character encoding set to use with the variable as well.

Include this variable in your runtime configuration file as follows:

CGI_CONTENT_TYPE contenttype; charset=encoding_set

Where contenttype is the MIME content type of the generated output, and
encoding_set is the preferred character encoding set to use.

4-30 Launching Web Applications Through CGI
For example, the WML content type for WAP mobile phones is “text/
vnd.wap.wml”. To associate your CGI output with WML, include the
following in your configuration file:

CGI_CONTENT_TYPE text/vnd.wap.wml

If you want your WML output to be mapped to the Western European
character set, include the following:

CGI_CONTENT_TYPE text/vnd.wap.wml; charset=iso-8859-I

The content type for eXtensible Markup Language (XML) documents is
“text/xml”. If your program generates XML data, include the following:

CGI_CONTENT_TYPE text/xml

Caution: To avoid overriding other Content-Type associations, we suggest
that you create a different configuration file for each of the MIME
Content-Type associations that you make in your Web server setup.

Please note that if you use this variable, the external forms indicated in your
program’s DISPLAY syntax must contain the appropriate content. In other
words, if you associate your program with the “text/xml” content type, the
forms must be “.xml” documents with XML syntax. If you associate it with
“text/vnd.wap.wml”, the forms must be “.wml” documents with WML
syntax. Your program can DISPLAY virtually any type of data, as long as the
Content-Type ID corresponds to the external form file that you provide.

Be aware that if you do not use the proper file extension for your external
form documents, the Web server will interpret the data as HTML and display
the wrong data. WML and XML are also more sensitive to syntax errors than
HTML.

In addition, note that the capabilities of the configuration entry
CGI_NO_CACHE may be affected by the content type that you choose.

CGI_NO_CACHE

Using the runtime configuration variable CGI_NO_CACHE, you can choose
whether or not the HTML output of your CGI program will be cached by the
requesting client. By default, the runtime generates “Pragma: no-cache” in

Creating a Runtime Configuration File for Your CGI Program 4-31
the HTTP response header that gets sent to the standard output stream. If you
set CGI_NO_CACHE to “0” (off, false, no) in the runtime configuration file,
the runtime suppresses this line of the response header. The default value is
“1” (on, true, yes).

CGI_AUTO_HEADER

Set the runtime configuration variable CGI_AUTO_HEADER to “0” (off,
false, no) if you want to suppress the output of the HTML header. This can
be useful when you want to execute a CGI program and include its output
into an existing flow of HTML text. For example, with server-side includes
(SSI), you can instruct the Web server to execute a subprogram in the manner
of CGI and incorporate its output right into the HTML document before
sending it to the requesting client. SSIs are commands in an HTML
document that are interpreted by the Web server. They are used when you
want to include the contents of another file in the current HTML document or
to execute a script whose output will be included in the current HTML
document before being sent to the browser client. Refer to any HTML
documentation for information on using SSIs.

HTML_TEMPLATE_PREFIX

Use this configuration variable to specify a series of directories for locating
HTML, XML, or WML template files. This variable is similar to
FILE_PREFIX and CODE_PREFIX. Specify the directories as a sequence
of space-delimited prefixes to be applied to the file name. All directories in
the sequence must be valid names. The current directory can be indicated by
a period (regardless of the host operating system). For example:

HTML_TEMPLATE_PREFIX . /html/templates

tells the runtime to look for templates in the current directory and the “/html/
templates” directory.

If the template name specified in your CGI program’s IS IDENTIFIED BY
clause is a URL with “\\” characters, the runtime ignores the
HTML_TEMPLATE_PREFIX setting.

4-32 Launching Web Applications Through CGI
CGI_CLEAR_MISSING_VALUES

This variable lets you to control the behavior of the ACCEPT statement when
CGI variables are empty or do not exist in the CGI inut data.

By default, ACCEPT sets the value of numeric data items to zero and
non-numeric data items to spaces if a CGI variable is empty or does not exist.
Set the CGI_CLEAR_MISSING_VALUES configuration variable to “0”
(off, false, no) if you do not want ACCEPT to clear the value of the data item
in this case.

4.7 Configuring the Web Server

Most Web servers must be specially configured to invoke the
ACUCOBOL-GT runtime to execute your CGI program. For instance, using
IIS on Windows machines, you map the “.acu” extension with the
ACUCOBOL-GT runtime (“wrun32.exe”) in the Web server configuration
settings. On UNIX machines using Apache, you must provide a small shell
script to invoke the runtime along with the COBOL CGI program.

Although we have included helpful suggestions in this section for
configuring Web server products for this purpose, please be aware that we
are unable to provide technical assistance for Web server configuration
efforts. Configuration procedures vary with each Web server product, so be
sure to refer to your Web server documentation for specific details.

Although configuration procedures vary with Web server platforms, each
Web server shares one characteristic: if a CGI program attempts any
operation that waits for a user response, it will cause the CGI process to
“hang.” At best this wastes system resources. At worst, it may cause the
entire Web server to “hang.” Even if your code does not wait for user input,
there may be some cases when the runtime displays a message box even
before loading the COBOL program, or when shutting down due to an error
that is not handled by the COBOL program.

To help you avoid problems with the Web server when running your CGI
program, configure the Web server with the “-f” runtime command line
option as shown in the procedures below. If you prefer, you can accomplish

Configuring the Web Server 4-33
the same thing by configuring the environment with the A_CGI environment
variable. In general, we recommend that you use the “-f” option, because
environment variables can affect other COBOL programs as well.

In addition, if you will be running your CGI program on a UNIX system, you
should include the “-b” runtime option. It inhibits terminal initialization,
which can lead to problems with CGI.

To configure IIS on a Windows 2000 server

Following is a procedure for associating your “.acu” applications with the
ACUCOBOL-GT runtime using Microsoft’s Internet Information Server
(IIS) Version 5.0 on a Windows 2000 Server. Your own Web server software
may vary.

1. Start the Internet Services Manager, normally available under Start/
Programs/Administrative Tools/Internet Services Manager.

2. Select “Default Web Site” (or the Web site you wish to configure) in
the left pane.

3. Expand this node and select the directory (or virtual directory)
containing your ACUCOBOL-GT CGI program files.

4. From the Action menu, select Properties.

5. In the Properties sheet, select the Directory (or Virtual Directory) tab.

6. Uncheck the “Read” check-box. This will prevent the Web server from
trying to deliver your object files to the client.

7. Create an application by clicking the Create button under Application
Settings. (If the application has already been created, you will see a
Remove button instead of a Create button. If so, skip this step.)

8. Set the “Application name” field to any name of your choosing. The
default value is the name of the containing directory or virtual
directory.

9. Make sure the “Execute Permissions” field is set to “Scripts only”.
This is the default.

10. Click the Configuration… button. A configuration screen appears
with the “App Mappings” tab selected.

4-34 Launching Web Applications Through CGI
11. Click the Add button.

12. In the “Executable” field, enter the path to the ACUCOBOL-GT
runtime (“wrun32.exe”), or use the Browse button to locate it.

13. To the end of this path, add your desired runtime options, followed by
a space and “%s”. Be sure to include the “-f” runtime option.

For instance:

C:\Program
Files\Acucorp\Acucbl800\AcuGT\bin\wrun32.exe -f “%s”

14. In the “Extension” field, enter the extension you use for your
ACUCOBOL-GT object files (by default, “.acu”).

15. Click OK three times to close the Add dialog, the Configuration
screen, and the Properties sheet.

To configure Apache on a UNIX server

If you are using the Apache HTTP server on a UNIX machine, a small shell
script is required to invoke the runtime and your COBOL CGI program.
Depending on your Web server settings, you may need to place this script in
a particular directory (called a ScriptAlias directory in Apache), or you may
need to assign it a particular extension, such as “.cgi”. In Apache, you
normally set extensions using the AddHandler directive.

A typical script to invoke an ACUCOBOL-GT program called “myprog.acu”
might look like this:

#!/bin/sh
RUNTIME=/usr/acucobol/bin/runcbl
exec $RUNTIME –f –b myprog.acu

Note that both the “-f” and “-b” runtime options are specified. These options
are described in the following sections.

Configuring the Web Server 4-35
4.7.1 “-b” Runtime Option

If you will be running your CGI program on a UNIX system, you should
include the “-b” runtime option to prevent the runtime from attempting
terminal initialization. If you do not, the runtime will attempt to open the file
“/etc/a_termcap” (or the file named in the A_TERMCAP environment
variable). It will then try to match the value of either the A_TERM or TERM
environment variables, if set, to an entry in the “a_termcap” file. If any of
these files or variables is not set up properly, the runtime will terminate with
an error. By using the “-b” option, this entire process is bypassed. In
addition, using the “-b” option prevents extraneous characters from being
displayed in the HTML output.

This option has no effect on Windows platforms.

4.7.2 “-f” Runtime Option

The “-f” command line option ensures that the runtime does not perform user
interface functions when running as a CGI program. It is recommended for
both Windows and UNIX CGI implementations.

When executed with “-f”, the server runtime suppresses warning messages
that are normally displayed in a message box. When the runtime shuts down
due to an error that is not handled by the COBOL program, it constructs an
HTML page containing the shutdown message and sends it to the standard
output stream before terminating.

4.7.3 A_CGI Environment Variable

The A_CGI environment variable also ensures that the runtime does not
perform user interface functions when running as a CGI program, but it does
so by changing the entire server environment. As with any environment
variable, A_CGI may affect other COBOL programs in addition to your CGI
program.

When A_CGI is set to “1” in the environment, the runtime suppresses
warning messages that are normally displayed in a message box. When the
runtime shuts down due to an error that is not handled by the COBOL
program, it constructs an HTML page containing the shutdown message and
sends it to the standard output stream before terminating.

5
 Using the ACUCOBOL-GT
Web Runtime
Key Topics

What Is the Web Runtime? .. 5-2

How the Web Runtime Works.. 5-3

Deploying Applications via the Web Runtime 5-7

Setting Up a Web Site.. 5-7

Preparing Your ACUCOBOL-GT Application for the Web Runtime
5-8

Invoking Your COBOL Application with the Web Runtime 5-20

Obtaining and Distributing the Web Runtime 5-40

The User’s Job ... 5-44

Security... 5-45

Troubleshooting ... 5-51

Migrating from the Web Plug-in to the Web Runtime 5-53

5-2 Using the ACUCOBOL-GT Web Runtime
5.1 What Is the Web Runtime?

The ACUCOBOL-GT® Web Runtime is a special 32-bit version of the
ACUCOBOL-GT runtime that enables you to run existing ACUCOBOL-GT
applications over the Internet. The Web runtime is based on Microsoft’s
ActiveX technology. It is itself an ActiveX control that you can embed on
your Web page. It takes your existing COBOL applications and quickly
makes them accessible through browsers that support ActiveX, particularly
Microsoft Internet Explorer.

The Web runtime extends the built-in capabilities of Web browsers, allowing
you to execute a COBOL program over the Internet without opening and
running it as a separate application.

Because it works with existing applications, the Web runtime provides an
easy way for you to deploy your applications on the Internet or in an intranet
or extranet. For example, if your corporation has employees or distributors
dispersed throughout a region, you can give these users remote access to sales
and inventory applications via the Web.

The Web runtime is designed to run applications that make use of our
AcuServer® or AcuConnect® technologies on the data or application host.
While the Web runtime runs only on Windows machines, it can access files
or run programs on UNIX and other platforms using these remote file and
application server technologies, or through other file system interfaces like
the Acu4GL® interface.

Although it would be unusual to do so, you can run the Web runtime without
AcuServer and AcuConnect if your application does not need access to
remote files. If the Web runtime cannot find a license to AcuServer or
AcuConnect, it runs in restricted mode. Please refer to section 5.7.1 for more
details.

Sample Scenario

Your inventory application is already written and compiled in
ACUCOBOL-GT. You want to make it accessible to field employees on your
Web site right away. You add the Web runtime to your Web page, along with
the URL of your inventory application. You put the application and data,
along with AcuServer, on the designated server. Now, field representatives

How the Web Runtime Works 5-3
can visit your Web site to run your inventory application and check or update
the availability of every item in stock. All they need is a laptop and Internet
connection.

If the application is complex, or processing intensive, you could use
AcuConnect to distribute the application processing among several servers.

5.2 How the Web Runtime Works

The ACUCOBOL-GT Web Runtime works by communicating between the
end user at a client machine and the remote server. The process is simple:

1. The end user visits your Web site.

2. The Web browser software looks for the Web runtime on the user’s
machine. If it locates the Web runtime, it runs it. The Web runtime, in
turn, requests your application via HTTP, and launches the application
locally.

If the Web browser cannot find the Web runtime locally, it downloads the
file from the specified location and asks the user “Do you want to install
and run ACUCOBOL-GT Web Runtime?” This message may appear in
a dialog box, or in newer versions of Windows (such as Windows XP,
SP2), it may appear in an “Information Bar” at the top of the browser
window. To assure the user that the installation is safe, the Web runtime
is supplied as a cabinet (CAB) file with a digital signature from Acucorp.

If the user grants permission, the runtime and program are sent to the
client machine, where the runtime automatically installs itself and
launches your program locally.

Note: For automatic installation to be performed, you must program your
Web page with the CODEBASE attribute of the OBJECT tag as instructed
in section 5.6.1.

5-4 Using the ACUCOBOL-GT Web Runtime
As the following diagram illustrates, data may reside on a remote server, or
the ACUCOBOL-GT application may be distributed over several servers. In
this instance, sites will require AcuServer for remote file access or
AcuConnect for remote application access. See Chapter 6 for additional
information on these technologies.

*Netscape or
or Microsoft Internet Explorer, Version 5.5 Service Pack 1 and earlier

5.2.1 Windowing Options

You can program the ACUCOBOL-GT Web Runtime to execute COBOL
objects in their own application window or inside the user’s Web browser
window. How and where your program starts depends on the HTML
commands that you use to include it on your Web site. (Please refer to
section 5.6 for details.) Listed below are some things to consider when
choosing a windowing method.

How the Web Runtime Works 5-5
Inside the User’s Web Browser

In this case, your COBOL program starts inside the user’s browser window.
Nearly all of the ordinary functions of your COBOL program are available to
your user and your program has access to library routines that can be used to
communicate with the browser.

In this mode, users also have access to browser functions like Forward, Back,
and Search, but when they use these functions, the COBOL program
terminates. To avoid losing data, the COBOL program should be designed to
handle the closing action gracefully within ten seconds. If users return to the
page from which they launched the ACUCOBOL-GT application, it reloads
like any Web page.

Note that because of a Microsoft child window restriction, applications
running inside a browser window cannot display a main window menu bar as
you or your users might expect. To work around this restriction, you can
program your application’s menu functions to be accessed from a toolbar or
a pop-up menu that is activated with the right mouse button.

In a Separate Application Window

In this mode, your COBOL program starts in a window separate from the
browser, making it look the same as it would if it were launched locally. All
the functions of your original program are available to users, including a
main window menu bar.

Although your program cannot access the library routines used to
communicate with the browser in this mode, users can still access functions
like Forward, Back, and Search simply by activating the browser window.
However, when the user selects a browser function, the runtime object
terminates. This is because the runtime object executes as an object related
to the HTML page, even when running in a separate window.

5-6 Using the ACUCOBOL-GT Web Runtime
5.2.2 How Your Program Executes

To execute your program, the Web runtime actually makes a copy of it,
delivers the copy to the browser client, and then executes the copy. Because
the Web runtime utilizes the browser cache, the cache retains a copy of the
object file as long as it is not reloaded. When the application is closed, the
copy is removed as well.

Due to browser limitations, you cannot run multiple instances from a single
Web page. When your browser shuts down, the Web runtime instance also
shuts down. For each browser process, you can run only one instance of the
Web runtime. However, you can run multiple browser processes, each
hosting a single instance of the Web runtime.

Although the recommended method of executing the ACUCOBOL-GT Web
Runtime is with the <OBJECT> tag (see section 5.6), it can be executed by
the browser in direct response to receiving data with the MIME content type,
“application/vnd.acucobol.” Internet Explorer looks at the Windows
Registry to execute the program.

The browser loads the Web runtime and feeds it the data coming from the
Web server. In this context there is no concept of a command line.

To pass “command line” style parameters to the ACUCOBOL-GT Web
Runtime, you must specify them in HTML when you invoke the application
in your Web page. (See section 5.6.) Note that any file specified as a runtime
option that requires write access (such as “errors.txt”) is written to the
directory listed in the authorization file, “acuauth.txt”. If the authorization
file is missing, an error results.

5.2.3 Browser Versions Supported by the Web Runtime

The Web runtime is designed for browsers that support ActiveX controls. We
have confirmed that the Web runtime runs on Internet Explorer Versions 5.5
Service Pack 2 and later. Browsers that do not support ActiveX controls
cannot use the Web runtime. Currently, this includes Netscape browsers, and
some earlier versions of Internet Explorer.

Deploying Applications via the Web Runtime 5-7
5.3 Deploying Applications via the Web Runtime

To deploy your application on the Web via the Web runtime, you (the
developer) have three tasks:

1. Set up a Web site. (See section 5.4 for details.)

2. Prepare and configure your ACUCOBOL-GT application for use with
the Web runtime. Minimally, this could mean creating a library file
with your application resources and configuration files, but optionally,
you can also add Web-related library routines. (See section 5.5.)

3. Update your Web page to invoke your COBOL program. To do this,
you typically embed the URL of the Web runtime along with the URL
of your application on your Web page using an <OBJECT> element
and the CODEBASE attribute. (See section 5.6.)

Once your work is done, the user has only one or two tasks:

1. Visit your Web site. The Web runtime will install itself and launch your
program automatically.

Note that two dialog boxes may be displayed in the process: one
containing a security message if required by the security setting of the
user’s browser (see section 5.9.3 for more information), and the other
containing a click-wrap license agreement from Micro Focus.

2. If your application requires access to local resources or local network
resources, the user has one additional task: to edit an authorization file.
(See section 5.9.4.) If you write your application in such a way that
the resources are accessed remotely (using AcuConnect and
AcuServer), this step is not required.

5.4 Setting Up a Web Site

Setting up a Web site is probably the most time-intensive portion of this
method, but it is not very difficult to do. Appendix A gives general
information about setting up a Web site, including information on Web

5-8 Using the ACUCOBOL-GT Web Runtime
servers, posting a site, and promoting a site. Many different tools are
available to help you create a Web page quickly and easily. Refer to
Appendix A for guidelines.

5.5 Preparing Your ACUCOBOL-GT Application for
the Web Runtime

The Web runtime component is significantly different from standard
ACUCOBOL-GT runtimes in that you invoke it to process a single file. The
single file may be either:

• a library file that “packages” all of the objects and resources of your
application into a single file. The library file can contain optional
configuration files, together with bitmap or JPEG images. It can also
contain extended file descriptors (“.xfd” files) for use with Acu4GL.

• the initial object of your COBOL application, with the remaining objects
residing on a server. (This approach requires the use of AcuServer or
AcuConnect technologies.)

The procedure for preparing your application for use with the Web runtime
depends on whether you will be deploying your application in a distributed
or non-distributed environment.

To prepare your application for use in a non-distributed environment:

1. Code your application as usual, or use an existing application. As
needed, include the appropriate library routines or fields described in
section 5.5.1. Be sure to refer to the special coding considerations listed
at the end of that section.

2. Compile your programs with ACUCOBOL-GT. The resulting object
file can be executed from within a browser on any Windows machine
that has a Web runtime component installed.

3. Configure the Web runtime if desired. This procedure is described in
section 5.5.2. Note that you cannot access a configuration file on the
client machine.

Preparing Your ACUCOBOL-GT Application for the Web Runtime 5-9
4. Package your COBOL objects and resources into a single library file.
You can also bundle configuration files, bitmaps, and “.xfd” files into
the package if desired. This procedure is described in section 5.5.3.
(Please note that if you have a single-object application and you are not
using a separate configuration file, bitmaps, or Acu4GL, there is no
need to package your application into a library.)

5. Include the library file or single object in your Web site as described in
section 5.6.

To prepare your application for use in a distributed environment:

1. Identify the files or processes that you want to distribute onto the server.
Distributing files involves the use of AcuServer, our file server.
Distributing processes involves the use of AcuConnect, our application
server.

2. Code your application as usual, or review your existing code for
usefulness in the distributed Web runtime environment. As needed,
include the appropriate library routines or fields described in
section 5.5.1. Be sure to refer to the special coding considerations
listed at the end of that section. If you plan to distribute processes, you
may need to make some programming changes.

3. Compile your initial program using ACUCOBOL-GT. The resulting
object file can be executed from within a browser on any Windows
machine that has the Web runtime installed.

4. Create client/server configuration files as described in the AcuServer
and AcuConnect User’s Guides. Minimally, the client configuration
file should contain the path of the server files or processes. You can
achieve this using the FILE_PREFIX or CODE_PREFIX configuration
variables.

5. Configure the Web runtime as needed. This is described in
section 5.5.2.

6. Move all programs except the initial program onto the server.

7. Set up and run AcuServer and/or AcuConnect on the server machine.

8. Include the initial object file in your Web site using one of the methods
described in section 5.6.

5-10 Using the ACUCOBOL-GT Web Runtime
5.5.1 Coding for the Web Runtime

Following are several optional library routines and fields included with
ACUCOBOL-GT. These library routines and fields are designed specifically
for use with the Web runtime.

Each of these routines and fields is described briefly below. They are
described in detail in the ACUCOBOL-GT User’s Guide or Reference
Manual. For precise syntax and usage information, refer to those books.

The Web runtime component (acugtax.ocx) supports the same
ACUCOBOL-GT syntax as the standard runtime, with one exception. The
following command is not supported:

ACCEPT mystring FROM COMMAND-LINE.

To pass parameters for the Web runtime, the instantiation of the object must
call the methods “AcuParam1” through “AcuParam14” to set parameters for
the application. In the COBOL code, you must then use the
C$GETVARIANT function to retrieve parameters and C$SETVARIANT to
return parameters.

Field/Routine Description

W$BROWSERINFO
routine

Returns the version and name of the
requesting browser.

W$STATUS routine Displays status information in the host
browser’s status bar.

IS-PLUGIN field in
ACUCOBOL.DEF

Indicates whether or not the application is
running in a Web browser via the
ACUCOBOL-GT Web Runtime. Defined in
ACUCOBOL.DEF.

W$GETURL routine Passes a given URL to the browser. Lets
you give end users access to other Web
pages and the ability to send e-mail
messages, conduct Web searches, and
execute JavaScript.

Preparing Your ACUCOBOL-GT Application for the Web Runtime 5-11
W$BROWSERINFO routine

Sometimes, you may want your application to respond in different ways to
different browsers. In this case, you can use the W$BROWSERINFO library
routine to determine the version and name of the requesting browser, that is,
the one that will be hosting the COBOL application.

CALL this routine using the following syntax:

CALL “W$BROWSERINFO” USING BROWSERINFO-DATA

Parameters:

BROWSERINFO-DATA Group item as follows:

01 BROWSERINFO-DATA.
 03 USER-AGENT-STRING PIC X(50).
 03 BROWSER-MAJOR-VERSION PIC X COMP-X.
 03 BROWSER-MINOR-VERSION PIC X COMP-X.

BROWSERINFO-DATA is found in the COPY library “ACUCOBOL.DEF.”

Upon return from W$BROWSERINFO, all of the data elements contained in
BROWSERINFO-DATA are filled in. If you call W$BROWSERINFO and
the COBOL application is not running in a Web browser via the Web runtime,
the first field is set to spaces and the last two fields are set to zero. The
BROWSERINFO-DATA fields have the following meaning:

Field Description

USER-AGENT-STRING The browser’s user_agent field. This
contains the name of the browser software
as it is sent to the HTTP server. It may
also contain version numbers, product
name, and operating system name.
Netscape browsers set the first seven
characters of this field to “Mozilla”.
Microsoft Internet Explorer sets this field
to “Microsoft Internet Explorer”.

5-12 Using the ACUCOBOL-GT Web Runtime
W$STATUS routine

If desired, you can display status information in the host browser’s status bar
by CALLing the W$STATUS routine.

CALL this routine using the following syntax:

CALL “W$STATUS” USING STATUS-MESSAGE

Where STATUS-MESSAGE, PIC X(n), contains the message to be displayed
in the browser’s status bar.

Note: This routine is available only when the calling COBOL program is
running in a Web browser window via the ACUCOBOL-GT Web Runtime.
This routine is unavailable to programs run in a separate window when it is
executed by a Web browser. The RETURN-CODE register is set to “1”
after a successful call and “0” if this routine is unavailable.

IS-PLUGIN field in ACUCOBOL.DEF

Using a field in ACUCOBOL.DEF, your COBOL program can determine
whether or not it is running in a Web browser via the ACUCOBOL-GT Web
Runtime. The field, known as IS-PLUGIN, is defined in the
SYSTEM-INFORMATION group of ACUCOBOL.DEF.

BROWSER-MAJOR-VERSION The major version number reported by the
browser. This is not the same as the major
version number displayed in the browser's
“About” screen. For example, both
Netscape and Internet Explorer put “0” in
this field.

BROWSER-MINOR-VERSION The minor version number reported by the
browser. This is not the same as the minor
version number displayed in the browser’s
“About” screen. For example, both
Netscape and Internet Explorer put “9” in
this field.

Field Description

Preparing Your ACUCOBOL-GT Application for the Web Runtime 5-13
For example, you might include the following code:

ACCEPT SYSTEM-INFORMATION FROM SYSTEM-INFO.
if IS-PLUGIN then
 display message box “Running via the Web runtime”
else
 display message box “Running via stand-alone runtime”
end-if.

W$GETURL routine

If desired, you can enhance your COBOL program to give your end users
access to other Web pages and the ability to send e-mail messages, conduct
Web searches, and execute JavaScript. You determine how much
functionality you want to give to your end users, and you code those
functions into your application by passing URLs to the Web browser with the
W$GETURL library function.

The W$GETURL library routine tells the runtime to pass a given URL to the
host browser. The browser will handle the URL as if it were typed in the
URL entry field.

Each URL that you pass with the W$GETURL routine contains a protocol
and a path, separated by a colon.

Accessing a Web page uses the “http” protocol. For example,

http://www.acucorp.com/

tells the browser to contact the Web server “www.acucorp.com” and ask for
the root page (/).

Sending e-mail uses the “mailto” protocol. For example,

mailto:support@acucorp.com

opens an e-mail message to the user “support” at the machine “acucorp.com”.

JavaScript is also supported as a protocol, so you can execute JavaScript
sequences that display dialog boxes, create Web pages, build text files, and
much more.

5-14 Using the ACUCOBOL-GT Web Runtime
Use this library routine as follows:

CALL “W$GETURL” USING URL, TARGET

where:

URL, PIC X(n), contains the complete URL. This can be of any type, such as
http, FTP, news, mailto, gopher, or javascript.

TARGET, PIC X(n), represents the destination for displaying the URL. This
can be a window or a frame. You can specify “_blank”, “_parent”, “_self”
or “_top”. You can also write the response data to a frame by specifying the
frame name as the target parameter.

• “_blank” loads the link into a new unnamed window.

• “_parent” loads the link into the immediate parent of the document in
which the link is contained.

• “_self” loads the link into the same window where the link was clicked,
causing the page to be repainted.

• “_top” loads the link into the full body of the current window.

• “<window_name>” loads the link into a named HTML frame. If no
frame or window exists that matches the specified target name, a new
window is opened for the link.

After a CALL is made to W$GETURL, subsequent URL requests are ignored
until the CALL completes.

Note: This routine is available only when the calling COBOL program is
running in a Web browser window via the ACUCOBOL-GT Web Runtime.
This routine is unavailable to programs run in a separate window when it is
executed by a Web browser. The RETURN-CODE register is set to “1”
after a successful call and “0” if this routine is unavailable.

Preparing Your ACUCOBOL-GT Application for the Web Runtime 5-15
Other coding considerations

When coding for the Web runtime, also consider the following points:

• If you plan to have your application run inside the user’s browser
window, it cannot display the main window menu bar to which you may
be accustomed. (This is a Microsoft child window restriction.) In this
case, you will need to program your application’s menu functions to be
accessed from a toolbar or a pop-up menu that is activated with the right
mouse button. You can avoid this restriction by having your application
run in its own separate window. You can specify this as a parameter of
the <OBJECT> tag or using the AcuEmbedded method supplied with the
object interface. See section 5.6.1 and section 5.6.1.3 for information on
these options.

• When running in QUIT-MODE, your program may not accept or display
anything after an ACCEPT terminates with the QUIT-MODE exception.
If your program attempts to accept or display anything, the runtime
terminates immediately as if the program has executed a stop run.

• If there is a file in the cache with the same name as your object file, it will
be reused rather than downloaded from your Web site. You may need to
implement a file naming scheme to prevent this.

• When required, consider how your application will access local
resources without affecting end user security. Refer to section 5.9,
“Security,” for security issues that affect coding.

• Applications designed for the Web runtime should accommodate
situations where a runtime license file cannot be found or the maximum
number of allowable connections has been exceeded. In some cases, the
application can provide messages that explain why program functions
may be restricted. In other cases, the application can prompt users to try
to access the server again later. See section 5.7.1, “Licensing
Considerations,” for more information.

• To prevent file I/O restrictions, you may want to design your program in
such a way that one of the first activities it performs is to open a file with
AcuServer. This enables the program to “check out” or secure a runtime
license, thereby ensuring that end users have full access to runtime

5-16 Using the ACUCOBOL-GT Web Runtime
functions. If a license file is found, the serial number is available in the
“SERIAL-NUMBER” field of the SYSTEM-INFORMATION group in
“acucobol.def”.

• To minimize the amount of setup work required by users, we recommend
that you write your application in such a way that resources are always
accessed remotely (using AcuConnect and AcuServer). If your
application requires access to local resources or local network resources,
your users will have to edit the authorization file accordingly. Refer to
section 5.9.4.2 for information on editing this file.

• For security purposes, COBOL programs run in the Web runtime are not
permitted to call certain library routines. For a complete list of these
routines, refer to section 5.9.4.3.

5.5.2 Configuring the Web Runtime

Once you’ve coded your application for the Web runtime, you can configure
the runtime system in one of two ways: programmatically using the SET
CONFIGURATION or SET ENVIRONMENT variables, or with a runtime
configuration file.

5.5.2.1 Programmatic configuration

To configure the runtime programmatically, use the SET CONFIGURATION
or SET ENVIRONMENT phrase in your source code. For example, if your
application uses a configuration file with the entries:

FILE_PREFIX @hal:/u2/serverfiles
COMPRESS_FILES 1
KEYSTROKE EDIT=PREVIOUS EXCEPTION=52 kl

Add the following lines to your COBOL initialization code:

SET CONFIGURATION “FILE_PREFIX” TO “@hal:/u2/serverfiles”.
SET CONFIGURATION “COMPRESS_FILES” to “1”.
SET CONFIGURATION “KEYSTROKE” TO “EDIT=PREVIOUS EXCEPTION=52 kl”.

Preparing Your ACUCOBOL-GT Application for the Web Runtime 5-17
MAX_FILES, MAX_LOCKS, and LOCKS_PER_FILE cannot be modified
with the SET verb. These variables are used during the runtime initialization
that occurs before the COBOL program is executed. In order to allow a wider
range of applications to be used with the ACUCOBOL-GT Web Runtime,
these variables have been given new default values.

When you are using the ACUCOBOL-GT Web Runtime, these variables are
initialized to the following values:

MAX_FILES 255
MAX_LOCKS 512
LOCKS_PER_FILE 256

Note that the COBOL program can read environment variables using
ACCEPT FROM CONFIGURATION (or ACCEPT FROM
ENVIRONMENT).

5.5.2.2 Runtime configuration files

Create a configuration file for the Web runtime the same way that you would
for the standard ACUCOBOL-GT runtime. Instructions can be found in the
ACUCOBOL-GT User’s Guide section 2.7.

Once you have a configuration file, you can access it via AcuServer, using the
standard “@ServerName:/pathname” syntax, or you can bundle it into a
library file along with the COBOL object files and resources. For
information on using AcuServer to access your configuration files, refer to
the AcuServer User’s Guide, section 3.4. For information on creating library
files, refer to section 5.5.3 of this book.

Note that if you choose the library file method, you must also specify the
name of the configuration file as an option when you invoke the Web
runtime. (This is described in section 5.6.)

The Web runtime loads the configuration file by performing the equivalent of
a SET CONFIGURATION statement for each line of the configuration file.
Note that there are a few configuration variables that cannot be modified this
way. They are MAX_FILES, MAX_LOCKS, and LOCKS_PER_FILE.
When you are using the ACUCOBOL-GT Web Runtime, these variables are
initialized to the following values:

5-18 Using the ACUCOBOL-GT Web Runtime
MAX_FILES 255
MAX_LOCKS 512
LOCKS_PER_FILE 256

Note that FILE_PREFIX is initially set to the list of directories specified in
the “acuauth.txt” security file. This authorization file specifies the directories
to which your COBOL programs have access on the user’s machine. The
path given in “acuauth.txt” is limited to 4096 characters, like the
FILE_PREFIX variable. The path given in this file must be enclosed in
quotation marks. If you define an alternate FILE_PREFIX in the
configuration file that you embed with your object library, that value
overrides the “acuauth.txt” setting.

5.5.3 Packaging Your Application and Resources

When planning to package your application and resources, remember that
the Web runtime is designed to process a single file. Therefore, if your
application contains more than one object file and you do not plan to
distribute your application across a client/server network, you must package
all your COBOL object files and bitmap resources into a single library file.
You can then access this file using the Web runtime.

If you will be using a configuration file, you can package the configuration
file into the library file as well, or the configuration file must be on the remote
computer. If your application will be accessing a relational database through
our Acu4GL technology, you can package the “.xfd” files into the library file.

To create the library file package, you use the cblutil utility, the COPY
RESOURCE statement, or a combination of the two. These are described in
sections 5.5.3.1 and 5.5.3.2. Refer to the ACUCOBOL-GT Reference
Manual for additional information.

If you are creating a library containing multiple COBOL objects, we
recommend using “cblutil -lib” instead of using COPY RESOURCE. Using
cblutil, you do not need to worry about the order in which COBOL objects
are compiled (if you use COPY RESOURCE, you must ensure that the
copied object is compiled first), and cblutil also checks for duplicated
program names while COPY RESOURCE does not.

Preparing Your ACUCOBOL-GT Application for the Web Runtime 5-19
5.5.3.1 Using cblutil

The cblutil utility lets you embed resources, which are defined as pieces of
static data, directly into an object file. For the purposes of the Web runtime,
these resources can be applications, bitmap or JPEG image files, wave files,
configuration files, and extended file descriptors (“.xfd” files). The program
treats the resource as if it were a disk file, but the resource is not actually a
separate file in the target environment.

Using “cblutil -lib”, you can specify any type of file as an input file. If an
input file is a COBOL object, cblutil includes it in the resulting library as a
COBOL object. If an input file is another library, each component of the
library is individually added to the resulting library. Any other file is
included as a resource.

To use the cblutil utility program, type “cblutil -lib” followed by the desired
options, main program name, and all the modules you want to include,
separated by a space. Be sure to add the main or initial program to the library
first, because the Web runtime executes the first program it finds in the
library.

Syntax:

cblutil -lib [options] main_program modules

Example:

cblutil -lib -v -o mylib.acu prog1.obj prog2.obj
 logo.bmp cblconfi data1.xfd data2.xfd

When using “cblutil -lib”, you must use the “-o” option to specify the name
of the output file. Because the Web runtime is registered to run files with the
“.acu” extension, the output library file must have the “.acu” extension. In
the example above, “mylib.acu” is the specified output file.

5.5.3.2 Using COPY RESOURCE

If you are creating a simple, single-object library, you can use the COPY
RESOURCE statement to package your applications, bitmaps, and
configuration file instead of the cblutil utility.

5-20 Using the ACUCOBOL-GT Web Runtime
Use the COPY RESOURCE statement as follows:

COPY RESOURCE resource-name [{IN} path-name] .
 {OF}

where resource-name and path-name identify a resource file to be included
in the resulting object file.

The effect of a COPY RESOURCE statement is to add resource-name to a
list of resources that the compiler embeds into the resulting COBOL object
file. The resources are added to the end of the COBOL object in the same
order as the corresponding COPY statements. Because the resources are
added to the end of the object, the location of the corresponding COPY
RESOURCE statement in the COBOL program is irrelevant.
Conventionally, COPY RESOURCE statements are placed either in
Working-Storage or at the end of the program, but any location is acceptable.

If resource-name resolves to a COBOL object or library file, the compiler
includes this object or library in the resulting object in a manner similar to
“cblutil -lib”. These are not considered resources, but are embedded COBOL
objects.

5.6 Invoking Your COBOL Application with the Web
Runtime

There are a number of approaches you can take to invoke your COBOL
application from your Web page. You can:

• Use the <OBJECT> tag to invoke the application and Web control.

Using an <OBJECT> tag, you can invoke your application and the Web
runtime with a single HTML element. If you add the CODEBASE
attribute, users can automatically download the control the first time they
access the application, and get updates automatically. The browser
checks the clsid attribute and downloads a new version of the control, if
one is available.

Invoking Your COBOL Application with the Web Runtime 5-21
In addition, we have developed a Web runtime object interface
containing several properties and methods for communicating with
browsers. If desired, you can implement all of the properties in the
object interface as attributes of the <OBJECT> tag.

Advanced users may choose to instantiate their application with the
<OBJECT> tag, and then write scripts with the Web runtime object
interface to invoke the application. Please note that scripting the Web
runtime may require changes to your end users’ security settings. (See
section 5.9.2 for more information.)

The <OBJECT> tag is by far the most flexible method of invoking your
application with the Web runtime; therefore, it is the method that we
recommend for most situations.

• Embed your COBOL application in the HTML document using the
HTML <EMBED> tag.

This is convenient for sites that have already used the <EMBED>
element with our Web Plug-in; however, the <EMBED> tag does not
offer the capability of automatically downloading the Web runtime
component, and it is not strictly part of the HTML specification.

If you EMBED an application on your Web page, end users who visit
your site and have already installed the ACUCOBOL-GT Web Runtime
immediately start executing the first embedded object code on the page.

• Create a hyperlink to your COBOL application by placing the HTML
anchor tags <A> and in the HTML document.

If you set up your object as a hyperlink (using the <ANCHOR> tag), end
users who visit your Web page can run the program by clicking on the
program’s link. However, this method gives you the least amount of
control over how your application is displayed, and it does not offer the
capability of automatically downloading the Web runtime component.

5.6.1 Using the <OBJECT> Tag

When authoring Web pages to launch your application, you can use the
<OBJECT> tag to invoke the Web runtime and start your program at the
same time.

5-22 Using the ACUCOBOL-GT Web Runtime
For example, include the following in your HTML code:

<OBJECT ID="AcuGTAX1" WIDTH=512 HEIGHT=384
 CLASSID="CLSID:077C768D-64C1-4AC1-845D-4589B4B2C24E"
 CODEBASE=”http://www.acucorp.com/support/downloads/acugtax/
acugtax800.cab#Version=8,0,0,900”>
 <PARAM NAME="SRC" VALUE="http://192.168.128.100/webinfo.acu">
</OBJECT>

where the following values must equal:

ID The name of the instance of the object. This name is
used for scripting the object interface. It is a
user-defined value to which you refer in your script.

CLASSID The GUID (globally unique identifier) assigned to the
ACUCOBOL-GT Web Runtime control, specifically this
value:

077C768D-64C1-4AC1-845D-4589B4B2C24E

CODEBASE The CODEBASE URL, from which the Web runtime
can be downloaded and installed automatically by end
users, specifically:

http://www.acucorp.com/support/downloads/
acugtax/acugtax###.cab

where ### is a 3-digit segment that identifies the cab file
version. You can also append the version information
that applies to the control, including a build number, by
adding it as described in section 5.6.1.1.

Although the CODEBASE attribute is optional, using it
is now a common practice among software vendors to
provide access to controls in this way. This allows you
to distribute the control easily.

If you do not use the CODEBASE attribute, you must
direct users to the download page on the Acucorp Web
site. Or, with a proper written license agreement, you
may provide the control on your own distribution media
or Intranet site.

HEIGHT Optional. The height (in pixels) of the object’s window.
Use to define the area within the browser window that
the application object will occupy.

Invoking Your COBOL Application with the Web Runtime 5-23
By default, the application appears in the browser window, using the
HEIGHT and WIDTH attributes, if provided, to define the area that the
application occupies.

If desired, you can add any of the properties and methods of the Web runtime
object interface as parameters of the <OBJECT> tag. To do so, add “PARAM
NAME=” followed by the property name from the object interface enclosed
in quotes. You then supply the VALUE attribute.

For example, if you want to have your application appear in its own window
rather than in the browser window, set the AcuEmbedded property of the
object interface to “FALSE” as follows:

 <PARAM NAME="AcuEmbedded" VALUE=”FALSE”>

To supply runtime options or specify the name of a configuration file that was
included in the library file, use the “AcuOptions” property, as shown below:

 <PARAM NAME="AcuOptions" VALUE=“-d -c cblconfi">

The following options are valid for the Web runtime: “-c”, “-d”, “-e”, “-l”,
“-v”, or “-x”.

The following example illustrates how you might debug your application and
display it in a separate window.

<OBJECT ID="AcuGTAX1" WIDTH="512" HEIGHT="384"
 CLASSID="clsid:077C768D-64C1-4AC1-845D-4589B4B2C24E"
 CODEBASE=”http://www.acucorp.com/support/downloads/acugtax/
acugtax800.cab#Version=8,0,0,900”>
 <PARAM NAME="AcuEmbedded" VALUE=”FALSE”>
 <PARAM NAME="SRC" VALUE="http://yourserver/yourdirectory/yourprogram.acu">
 <PARAM NAME="AcuOptions" VALUE=“-d -c cblconfi">
</OBJECT>

WIDTH Optional. The width (in pixels) of the object’s window.
Use to define the area within the browser window that
the application object will occupy.

SRC The ACUCOBOL-GT application you want to run.
Typically the name of the library file package with a
“.acu” extension.

5-24 Using the ACUCOBOL-GT Web Runtime
Note: Since this example invokes the runtime in debug mode instantly, no
scripting is necessary. In this case, “yourprogram.acu” is the name of a
library.

 For more information on the object interface, refer to section 5.6.1.3.

5.6.1.1 How the <OBJECT> tag works

The CODEBASE parameter indicates to the browser where to look for the
Web runtime if it is not installed on the target system. Internet Explorer
automatically offers to download and install the Web runtime, prompting
most users to accept the digital signature provided by Acucorp.

Note: If the user’s security settings are high or customized to prohibit
ActiveX controls, the user cannot install the Web runtime. If the user’s
security settings are low, the control installs without confirmation from
the user.

In the HTML document, you can introduce the Web runtime with the
<OBJECT> tag and then supply a script to invoke the object through either a
window event or a push-button event. For information on using the object
interface, refer to section 5.6.1.3. However, you need not use scripting in
order to invoke the control with the <OBJECT> tag.

5.6.1.2 Version number of Web runtime

The name of the CAB file identified in the CODEBASE URL is
version-specific. Therefore, “acugtax800.cab” always contains the Version
8.0 Web runtime. However, you can implement your CODEBASE URL with
a version string that refers to the version number as well as the build number.

If, for example, you deploy your Web site with the following CODEBASE
value:

http://www.acucorp.com/support/downloads/acugtax/acugtax800.cab

a control associated with the specified CLASSID will be used (if found),
regardless of version. If no associated control is available on the client
machine, the CAB file will be downloaded, installed, and executed.

Invoking Your COBOL Application with the Web Runtime 5-25
On the other hand, if your Web site contains the following value:

http://www.acucorp.com/support/downloads/acugtax/acugtax800.cab#Version=8,0,0,900

users with an earlier version of the control will automatically be prompted to
download the new version the next time they visit your Web site. The
convention for the Web runtime control is therefore:

acugtaxMmr.cab#Version=M,m,r,b

where M,m,r,b represent the Major, minor, release, and build numbers of the
particular version of the control. This allows you to determine which version
of the control is available to your end users.

To determine the version and build number of a Web runtime control, you can
use the AboutBox method available in the object interface. See
section 5.6.1.3 for more information. You can also obtain the version
number by following these steps:

1. Locate the file, acugtax.ocx, for the version you want to deploy.

2. In Windows Explorer, right-click on the control and select Properties.

3. Select the Version tab and view the value in the File Version field.

5.6.1.3 Web runtime object interface

The Web runtime’s object interface consists of the following methods and
properties. Some are bi-directional (B), some are write only (W), and others
are read only (R). The component also has a default property (D).

Note: Using the object interface is optional. The <OBJECT> tag exposes
the same properties (but not methods). The object interface is available for
the advanced user who prefers scripting and wishes to use the available
methods. However, please be aware that support for specific scripting
languages and their implementations should be obtained from the
appropriate vendor.

5-26 Using the ACUCOBOL-GT Web Runtime
Methods

Properties

AcuIsActive R

AcuExecute R

AcuShutDownAx R

AcuGetLastError R

AboutBox R

AcuParam1 W

AcuParam2 W

AcuParam3 W

AcuParam4 W

AcuParam5 W

AcuParam6 W

AcuParam7 W

AcuParam8 W

AcuParam9 W

AcuParam10 W

AcuParam11 W

AcuParam12 W

AcuParam13 W

AcuParam14 W

AcuOptions B

AcuEmbedded B

AcuShowLogo B

AcuProgram B

SRC BD

Invoking Your COBOL Application with the Web Runtime 5-27
Syntax

The following sections describe the methods and properties for the Web
runtime control. Each method or property name is listed, followed by the
type of the input parameter. (The type is shown in parentheses.) Finally, the
input value and the output value (returned value) are shown, with acceptable
values indicated in square brackets “[]”. Empty brackets indicate that the
value is not limited, or takes no input.

Examples of limited values include Booleans, which can be only “True” or
“False”. The output of the AcuIsActive method uses this limited value.

An unlimited value, for example, would be any valid ACUCOBOL-GT
object. The AcuProgram property takes this unlimited input value.

You will notice that the syntax examples in the following sections refer to
“AcuGTAX” or sometimes “AcuGTAX1”. This refers to the HTML object
ID assignment of the Web runtime control given in the <OBJECT> tag. For
example:

<object classid="clsid:077C768D-64C1-4AC1-845D-4589B4B2C24E"
ID="AcuGTAX1" width="251" height="144">

AcuIsActive

Returns the status of the runtime. AcuIsActive takes no input parameters.

The return value is of the data type BOOL:

• TRUE = the runtime is executing

• FALSE = the runtime is not executing

For example:

If AcuGTAX1.AcuIsActive() = TRUE

Parameter Type Input Output

() [] [TRUE, FALSE]

5-28 Using the ACUCOBOL-GT Web Runtime
AcuIsActive may be executed any time after the Web runtime (in this
example, “AcuGTAX1”) has been invoked.

AcuExecute

Starts the Web runtime, using the program specified in AcuProgram, and
returns the result of the action.

Note: If you invoke your application directly using SRC as opposed to
scripting, you do not need to call AcuExecute. Your application will start
automatically.

The AcuExecute method takes no parameters.

The return value is of data type LONG.

For example:

Return_value = AcuGTAX1.AcuExecute()

Do not execute this method until you have executed AcuProgram to specify
the program to run; otherwise, AcuExecute does not know which program to
run.

Parameter Type Input Output

() [] [0, -4, -5, >0]

Value Explanation

0 Success, runtime started.

-4 The runtime is already running.

-5 The runtime DLL could not be found, or
the runtime DLL is the wrong version.

>0 COBOL error.

Invoking Your COBOL Application with the Web Runtime 5-29
AcuShutdownAx

This is an optional method that forces a shutdown of a specific Web runtime
instance. For example:

AcuGTAX1.AcuShutdownAx()

shuts down the runtime instance known as “AcuGTAX1”, if it is running.

AcuShutdownAx terminates the COBOL application invoked by the Web
runtime. In general, you need not use it because the Web runtime either
terminates as a result of the COBOL program execution, or because the
browser either displays another URL or closes. If, for some reason, you want
to force shutdown of the Web runtime instance, this method is available.

The shutdown action assumes that the COBOL application is currently in idle
mode. If the runtime is not idle, the browser hangs, waiting for the
application to idle. This method takes no parameters, and there is no return
value for this function.

AcuShutdownAx implicitly terminates the Web runtime when you terminate
the COBOL application you are running. So, when you execute this method,
the Web runtime is terminated, closing files properly, even though data that
was not stored permanently is lost.

AcuGetLastError

Returns the last known COBOL error code.

This method takes no parameters, and the return value, which is the COBOL
error code, is of data type LONG. Note that if the COBOL code could not be
executed, the output is an error code indicating why the code could not
execute. See “AcuExecute” for more information.

Parameter Type Input Output

() [] []

Parameter Type Input Output

() [] []

5-30 Using the ACUCOBOL-GT Web Runtime
For example:

AcuGTAX.AcuGetLastError()

AcuGetLastError may be executed any time after the Web runtime has been
invoked.

AboutBox

Displays a dialog box that presents version information about the Web
runtime.

There is no return value.

For example:

AcuGTAX.AboutBox()

AboutBox may be executed any time after the Web runtime (“AcuGTAX” in
this example) has been invoked.

AcuParam1 … AcuParam14

AcuParam1...AcuParam14 is a variant data item. It can hold values to be
passed to the COBOL application as parameters, or you can set the data item
before execution and have data returned when the program terminates.

Note that you will not get any data until the application has halted with STOP
RUN, GOBACK or EXIT PROGRAM. You should call the method,
AcuIsActive, before trying to access the data. When AcuIsActive returns
false (“0”), the data is available, provided there is any data.

Parameter Type Input Output

() [] []

Parameter Type Input Output

variant [] [TRUE, FALSE]

Invoking Your COBOL Application with the Web Runtime 5-31
Because this is variant, the properties accept any variant-compliant data type:
numbers, float, strings, etc.

For example:

AcuGTAX.AcuParam1 = "C:\TMP"
CurrentParam = AcuGTAX.AcuParam1

These properties are available any time after the Web runtime has been
invoked. The contents of each property specified are read and applied to the
runtime when AcuExecute is invoked.

You can use these additional properties to specify more parameters for the
COBOL application. Note that to access properties, you must use
C$GETVARIANT in your COBOL program.

Here is a Visual Basic example:

' Cobol test variables
Public testNum As Variant
Public testStr As Variant
Public testLongNum As Variant
Public testfloatNum As Variant

Dim CobolApp As Object
Set CobolApp = New AcuGT

' Set up config and error files
strCommandLine = _
 "-c ..\sample\autosrv\project1\acuvb.cfg -dle
..\sample\autosrv\project1\acuerr.log"

CobolApp.Initialize strCommandLine
' Set initial values
testNum = 123
testStr = "qwertyuiopasdfghjklzxcvbnm"
testLongNum = 1234567890
testfloatNum = 23.4
Label1.Caption = testNum
Label2.Caption = testStr
Label3.Caption = testLongNum
Label4.Caption = testfloatNum
Label9.Caption = "Before Cobol Call"

5-32 Using the ACUCOBOL-GT Web Runtime
returnValue = CobolApp.Call("astest", testNum, testStr,
testLongNum, testfloatNum)

'Values after cobol program. This did not work before.
Label1.Caption = testNum
Label2.Caption = testStr
Label3.Caption = testLongNum
Label4.Caption = testfloatNum
Label9.Caption = "After Cobol Call"

You can find the whole project in sample\autosrv\project and
sample\autosrv\cobol.

AcuOptions

Sets runtime options, such as “-d” to run the debugger or “-c configfile” to set
the configuration file. The following options are valid for the Web runtime:
“-c”, “-d”, “-l”, “-e”, “-x”, or “-v”. Note that you must have a local license
file to run the debug option.

The AcuOptions property accepts a BSTR as a value.

For example:

AcuGTAX.AcuOptions = "-d -c cblconfi"
CurrentParam = AcuGTAX.AcuOptions

The AcuOptions property is available any time after the Web runtime has
been invoked. Its contents are read and applied to the runtime when
AcuExecute is invoked.

Parameter Type Input Output

(BSTR) [] []

Invoking Your COBOL Application with the Web Runtime 5-33
AcuEmbedded

Determines whether the runtime should run in an independent window or as
a frame within the document.

The AcuEmbedded property accepts a BOOL as a value. When this property
is set to “TRUE”, the default, the window appears embedded in the browser
document. Set it to “FALSE” when you want the window to appear
independently, outside the browser.

For example:

AcuGTAX.AcuEmbedded = TRUE
if AcuGTAX.AcuEmbedded

The AcuEmbedded property is available any time after the Web runtime has
been invoked. Its contents are read and applied to the runtime when
AcuExecute is invoked.

Note that if you use the HEIGHT and WIDTH attributes of the <OBJECT>
tag and you set AcuEmbedded to “FALSE”, the Web runtime’s logo screen
will occupy that area on the HTML page while the application runs in its own
window.

AcuShowLogo

Determines whether to display the ACUCOBOL-GT Web Runtime logo
when you invoke your application.

For example:

AcuGTAX.AcuShowLogo = TRUE
if AcuGTAX.AcuShowLogo

Parameter Type Input Output

(BOOL) [TRUE, FALSE] [TRUE, FALSE]

Parameter Type Input Output

(BOOL) [TRUE, FALSE] [TRUE, FALSE]

5-34 Using the ACUCOBOL-GT Web Runtime
To use this property, specify it as part of the <OBJECT> element where you
invoke the application. The default is TRUE.

AcuProgram

Sets the COBOL application to run. You must use the absolute path even if
the COBOL application resides inside the current directory and you have not
specified the directory with the AcuOptions property.

Note: The security on your network may have an impact on which disks
and directories an instance of the runtime is allowed to access.

The AcuProgram property accepts a BSTR as a value.

The AcuProgram property is available any time after the Web runtime has
been invoked. Its contents are read and applied to the runtime when
AcuExecute is invoked.

For example:

AcuGTAX.AcuProgram = "c:\tmp\myprog.acu"
CurrentProgram = AcuGTAX.AcuProgram

If you are using scripting, rather than implicit activation (with the
<OBJECT> element), a call to AcuExecute() is necessary to activate the
runtime.

Note: Use AcuProgram for MS-DOS and UNC paths only, such as
“c:\mydir\myprog.acu” or “\\myserver\c\mydir\myprog.acu”. Use the SRC
property instead for URL paths. You can use SRC or AcuProgram, but not
both.

Parameter Type Input Output

(BSTR) [] []

Invoking Your COBOL Application with the Web Runtime 5-35
SRC

Required if you are using a URL path as the default property of the Web
runtime. The value of the SRC property uses HTTP notation to specify the
name of the remote ACUCOBOL-GT object to load. If you are using a local
file path to specify the name of the ACUCOBOL-GT object, you must use
AcuProgram instead.

The Web runtime provides this default property, since a browser may invoke
a control by associating its file extension with the MIME type. This means
the browser passes the .acu file to the object as the default property, so the
Web runtime knows which program to run.

Note: You can use SRC or AcuProgram, but not both.

The following example demonstrates using the <OBJECT> element to
specify the program for execution:

<OBJECT
 CLASSID="CLSID:077C768D-64C1-4AC1-845D-4589B4B2C24E"
 ID="AcuGTAX1" width="512" height="384">
 <PARAM NAME="AcuEmbedded" VALUE=”TRUE”>
 <PARAM NAME="SRC" VALUE="http://server.acucorp.com/location/webinfo.acu">
</OBJECT>

The SRC property is intended for HTTP URLs only. However, you may also
address local files if the path is prefixed with “file://” rather than “http://”, as
shown below. Note that this is also considered URL notation. For example:

<OBJECT
 CLASSID="CLSID:077C768D-64C1-4AC1-845D-4589B4B2C24E"
 ID="AcuGTAX1" WIDTH="512" HEIGHT="384">
 <PARAM NAME="AcuEmbedded" VALUE=”TRUE”>
 <PARAM NAME="SRC" VALUE="file://c:\webdemo\webinfo.acu">
</OBJECT>

Parameter Type Input Output

(BSTR) [] []

5-36 Using the ACUCOBOL-GT Web Runtime
When you use the SRC property to call a file, the downloaded file is given a
temporary name and is stored in the current master temporary directory for
the user, as specified in Windows. Note that the runtime automatically
captures the temporary name and uses it internally; however, the internal
name is not exposed.

5.6.1.4 Scripting with the object interface

Scripting is an optional method for invoking the Web runtime. While it is
possible to invoke the Web runtime without scripting, some users may want
to take advantage of the methods and properties in the object interface.

The following VB Script example illustrates how to invoke the object by a
push button event using a script:

<INPUT id=button1 name=button1 type=button value=Button>
<SCRIPT LANGUAGE="VBScript">
sub button1_onclick()
 call AcuGTAX.src("http://www/Acucorp.com/demo/demo.acu")
 call AcuGTAX.AcuEmbedded(1)
 call AcuGTAX.AcuExecute()
end sub
</SCRIPT>

Note: Only one instance of the Web runtime is allowed. You cannot have
multiple instances of the runtime in one browser instance.

To script runtime options, use the AcuOptions property. For example, to
implement the configuration file and error file options with VB Script, you
would use:

<SCRIPT LANGUAGE=”VBScript>
Sub window_onLoad()
 call AcuGTAX1.SRC(“http://www.acucorp.com/demo.acu”)
 call AcuGTAX1.AcuEmbedded(1)
 call AcuGTAX1.AcuOptions(“ -c cblconfi –e error.txt”)
 call AcuGTAX1.AcuExecute()
 end sub
</SCRIPT>

Invoking Your COBOL Application with the Web Runtime 5-37
5.6.2 Using the <EMBED> Tag

You can use the HTML <EMBED> tag to embed your COBOL application
in the HTML document. Using this tag, you define a rectangular area within
your Web page that your COBOL application should use as its initial
“window.”

When you include a configuration file in the library, you must also specify the
name of the file using the OPTIONS attribute of the <EMBED> element.
This ensures that the application uses the correct configuration file rather
than defaulting to another that may reside on the user’s system. You can also
specify runtime options using the OPTIONS keyword. The following
options are valid for the Web runtime: “-c”, “-d”, “-e”, “-l”, “-v”, or “-x”.

For example:

<EMBED SRC=“myprog.acu” WIDTH=400 HEIGHT=200
 OPTIONS=“-c cblconfi -dlex myerrs”>
</EMBED>

embeds “myprog.acu” on the Web page and makes it accessible using the
Web runtime, with configuration file “cblconfi” and various options. In this
example, “myprog.acu” could be an entire COBOL application, or it could be
the initial COBOL object of a distributed application using AcuServer or
AcuConnect, or it could be the name of a library file.

When a user visits this Web page, the embedded object (“myprog.acu”) is
automatically sent from the Web server to the client machine where it
immediately starts running inside the user’s browser window. Configuration
variables are read from the configuration file “myconfig”, and errors are
written to the error file “myerrs”.

While the COBOL object or library is downloading and after the COBOL
program exits, the control displays a splash screen in the browser window.
You can disable this feature by setting the AcuShowLogo property to FALSE.
For complete information on the methods and properties of the Web runtime
object interface, refer to section 5.6.1.3.

5-38 Using the ACUCOBOL-GT Web Runtime
Please note that your application is not able to display its own main window
menu bar when running inside a browser window. If you choose to use this
method, you must program another way for your users to access your menu
functions.

When invoking the Web runtime with the <EMBED> element, you can also
specify runtime options and other properties using the AcuOptions attribute
of the object interface.

If, for example, you want to specify both a configuration file and error file for
the Web runtime, you could use:

<EMBED SRC="myprog.acu” WIDTH=400 HEIGHT=200
 AcuOptions="-c cblconfi -e errors.txt">
</EMBED>

The following code demonstrates using the property for instant debugging
with the Web runtime:

<EMBED SRC="http://server.acucorp.com/activex/
 webinfo.acu"
 HEIGHT=384 WIDTH=512 AcuOptions="-d">
</EMBED>

These examples assume that the Web runtime has been installed and
registered. When you use the <EMBED> tag, the Web runtime is not
automatically downloaded, as it may be when you specify the CODEBASE
attribute and a valid URL with the <OBJECT> element.

Note: Do not use the AcuProgram property when the ACUCOBOL-GT
object is accessed via a URL. See section 5.6.1.3 for more information.

5.6.3 Using a Hyperlink to Launch Your Application

You can use the HTML anchor tags, <A> and , to create a link to your
COBOL application in the HTML document.

Invoking Your COBOL Application with the Web Runtime 5-39
Anchor tags are closed elements that highlight text or images. When users
click a highlighted item on your Web page, they are transferred to the linked
document. Because the link in this case is a COBOL program, when users
click the highlighted item, the COBOL program is automatically invoked.

Note: To run your COBOL application in a separate window using the
anchor tags, you must set up the standard ACUCOBOL-GT runtime as a
helper application as described in Appendix C. To run your COBOL
application in a separate window with the Web runtime, use the <EMBED>
tag, the <OBJECT> tag, or the scripting method.

To turn text into a hypertext anchor, enclose the text in the anchor tags. The
browser usually displays it underlined and in a different color. For example,
your HTML document may include this:

Click here to run the application

The “HREF” attribute is used within the starting anchor tag to specify the
document to be linked (or retrieved). Then when the user clicks on the
highlighted text, “Click here to run the application,” on your Web page, the
COBOL object “myprog.acu” is retrieved from the specified location on the
Web server and run inside the user’s browser window.

To use images as hypertext anchors, you place the element within the
Anchor tags. For example:

Then when the user clicks on the “myprog.gif” image on your Web page, the
COBOL object “myprog.acu” is retrieved from the specified location on the
Web server and run inside the user’s browser window. While the graphic file
is loading (or if the user’s browser does not support images), the browser
displays the alternate text, “Click here to run the application”. Clicking this
text invokes the application as before.

If you use a hyperlink to invoke the Web runtime, you must also configure
your Web server software to generate the appropriate response header when
it sends the object files to the client. The extension “.acu” has been registered
as a MIME content type that is embedded in the Web runtime. The end user’s
browser will execute the Web runtime only if the MIME content type field of

5-40 Using the ACUCOBOL-GT Web Runtime
your response header contains “application/vnd.acucobol”. For this reason,
be sure to add a new File Extension/MIME Content Type mapping for “.acu”
and “application/vnd.acucobol”. Your Web server software provides
instructions for making MIME Content Type associations.

5.7 Obtaining and Distributing the Web Runtime

End users must place the Web runtime on the client machine, along with all
the necessary license and data files. You can obtain the Web runtime from
any ACUCOBOL-GT media or download it at no cost from the Acucorp Web
site, http://www.acucorp.com/support/downloads/. (It cannot be loaded
from the ACUCOBOL-GT runtime module.)

To make it easy for your end users to obtain the Web runtime, we have
instructed you to embed the URL of the Acucorp download site to your Web
page so that you can automate the download and installation process for your
users. Your runtime license agreement must permit this form of distribution.

If you want, you can also distribute the Web runtime internally. If the target
machine has Internet Explorer Version 5.5 Service Pack 2 or later installed,
all that you need to do is copy the file “acugtax.ocx” to the preferred
directory, and register it with the computer as described in section 5.7.3.

The capabilities of the Web runtime depend on its ability to locate a runtime
license file either locally or via a server running AcuServer. If a runtime
license file is found and available, the Web runtime has the capabilities of the
standard ACUCOBOL-GT runtime. If a license file is not found, or if the
maximum limit allowed by the runtime license provided by an AcuServer
connection has been reached, the Web runtime runs in a restricted mode.

5.7.1 Licensing Considerations

The ACUCOBOL-GT Web Runtime is licensed in one of two ways.

1. With a runtime license on a server running AcuServer, licensed for the
number of concurrent users anticipated.

2. With a runtime license on a local machine or network server.

http://www.acucorp.com/support/downloads/
http://www.acucorp.com/support/downloads/
http://www.acucorp.com/support/downloads/

Obtaining and Distributing the Web Runtime 5-41
5.7.1.1 Licensing the server

Most often, you install an ACUCOBOL-GT runtime license on the server
running AcuServer. The license should accommodate the number of
concurrent Web runtime users that you anticipate. (If you anticipate 100
concurrent users, you need a 100-user runtime license file on the server in
addition to the AcuServer license file.) AcuServer detects the Web control
connections and checks out a standard runtime license for each connection if
a local license file is not found. When a Web runtime user disconnects from
AcuServer by exiting the COBOL program, the runtime license authorization
is released and made available to subsequent users. If the number of users
exceeds the number of authorizations available on the server at any given
time, the COBOL program receives a file status code 9D,105 and this
message is output to AcuServer’s error log:

You have exceeded the licensed number of clients for
AcuServer. If you would like to add clients, please
contact your customer service representative

If your COBOL program receives a status code of 9D,105, we recommend
that you display a message box stating that the Web file server is busy, and to
please retry later.

It is important to note that the Web runtime continues to run even when no
license file is available, but in a restricted mode. In restricted mode,
programs cannot use the following features:

• Indexed files

• Acu4GL

• The AcuSQL™ precompiler

• Debugging

• Printing

• Calling DLLs

If an end user tries to perform an activity that is not permitted, your program
should present a message that explains why the activity cannot be completed.
For example, if an end user tries to print something in restricted mode, your
program could display a message that says “A software license could not be

5-42 Using the ACUCOBOL-GT Web Runtime
found. XYZ Software is unable to print.” Otherwise, the user might think
that the printer is turned off, unplugged, or jammed. Your program should
accommodate all of the limitations of a restricted runtime in some manner.

Programs running in restricted mode can use AcuConnect to call programs
on a server machine that can use Acu4GL, AcuSQL, and the server’s printing
facilities. AcuConnect counts the number of concurrent runtimes it launches
on the server. Programs running in restricted mode can also use COBOL
applets, local sequential and relative files in permissible directories,
C$GETURL, ActiveX, and OLE.

Note: If you want to test from COBOL whether a Web control application
is running in restricted mode, you can test the SERIAL-NUMBER field of
the SYSTEM-INFORMATION item after an ACCEPT from SYS-INFO. If
the SERIAL-NUMBER field is SPACES, the COBOL program is being run
in restricted mode.

5.7.1.2 Licensing by machine

Alternatively, users can purchase a runtime license and install the Web
runtime on their local machine or network server. Upon execution, the
control searches for a license file in the same directory as the executable.

The license file for the Web runtime is named “wrun32.alc.” If a license file
is found, the Web runtime has all the power of a standard ACUCOBOL-GT
runtime. If no license file is available, the capabilities are restricted until the
Web runtime tries to open a file with AcuServer. At that point, AcuServer
checks for an AcuServer license file. If one is found, the OPEN succeeds,
indicating that AcuServer has checked out an authorization for it. Then the
control runs in unrestricted mode.

If you move the control’s executable (.dll or .ocx) to a new directory, be sure
to move the corresponding license file.

If you are licensed for additional extend technologies, such as Acu4GL or
AcuSQL, a license file for each product the Web runtime will work with must
reside in the same directory as the executable. Contact your Micro Focus
extend representative for additional details.

Obtaining and Distributing the Web Runtime 5-43
Nothing in this section is intended to amend the terms and conditions of the
applicable license agreement between you and Micro Focus. Rather, this
section is meant to summarize the various aspects of our licensing technology
that are required to operate the Web runtime. The terms and conditions of
your licensing of extend software shall continue to be governed by the
applicable license agreement between you and Micro Focus.

5.7.2 File System Dependencies

If you use file systems such as Pervasive.SQL or an Acu4GL product, the
Web runtime depends on DLLs for these file systems.

The dependencies for these file systems must be stored in the same directory
as the Web runtime (acugtax.ocx) because the system looks in the path of the
control to load the additional files. However, since the installation directory
of the Web runtime is determined by Windows and includes a registry entry,
its dependencies can be stored in any directory. During installation, the
control is registered so the operating system can locate the control and load it
from that location.

5.7.3 Manual Registration of the Web Runtime

Registration of the ActiveX control will occur automatically during
installation of your ACUCOBOL-GT development system, and for your
users when they download the CAB file. As a result, there is no requirement
to ever perform manual registration. However, should you need to do this as
part of your development or testing, you can use the following commands.

Using the basic syntax with no options, a dialog box appears, indicating
success or failure of the registration:

regsvr32 acugtax.ocx

You can omit the dialog box in silent mode by adding the “/s” parameter:

regsvr32 acugtax.ocx /s

To unregister the Web runtime, use the “/u” parameter:

regsvr32 acugtax.ocx /u

5-44 Using the ACUCOBOL-GT Web Runtime
The “regsvr32.exe” utility is a Microsoft system tool and most Windows
installations already contain the utility.

5.8 The User’s Job

To use your application via the Web runtime, end users typically have just
one task: they must visit your Web site. If the user’s browser supports the
Web runtime and you have implemented the CODEBASE in your HTML
code, users install the Web runtime automatically the first time they visit your
Web site, and the Web runtime automatically launches your application.

If your customers do not already have the ACUCOBOL-GT Web Runtime
installed on their machine when they try to launch your application, they are
informed that a control for the file type was not found, and they are asked if
they want to install and run your program. If they respond “Yes”, the runtime
installs with no further user interaction and automatically launches your
program. The installation script automatically makes a file type association
for ACUCOBOL-GT object files (“.acu” extension) with the Web runtime.

Note: Users must configure the browser to enable “ActiveX controls ”. To
do this in Internet Explorer, they should check the appropriate box in the
Security tab of the Internet Explorer Options dialog.

For most users installing the Web runtime, they will be prompted to accept
the digital signature of the control. The system also displays the terms and
conditions for using the ACUCOBOL-GT Web Runtime. Users must agree
to the terms of the agreement in order to use the Web runtime.

If your application requires access to local resources or local network
resources, the user has one additional task: to edit an authorization file. (See
section 5.9.4.) If you write your application in such a way that the resources
are accessed remotely (using AcuConnect and AcuServer), this step is not
required.

Security 5-45
5.9 Security

Security for the Web runtime begins with the following provisions:

• The “acuauth.txt” file contains a list of directories where COBOL
applications are authorized to create or delete files and subdirectories.

• Calls to certain library routines are disallowed to prevent potentially
damaging operations.

• Warning messages appear the first time users launch the Web runtime.

• We supply the Web runtime with a digital signature indicating that
Acucorp verifies the content. This enables users to run the control using
a medium security setting on their Internet Explorer browser.

Since we distribute the Web runtime via the Internet, it is packaged as a
signed Cabinet (CAB) file. This ensures your users that the code is safe. The
CAB file contains a compressed version of the control, with information that
tells Internet Explorer how to install it.

Caution: Although we have built in a number of security features, the Web
runtime allows COBOL programs to be executed on target machines.
Because we have no control over the programs that are executed by the Web
runtime, we cannot fully guarantee that they are safe.

5.9.1 Digital Signature of Web Runtime

A digital signature provides users with a way of identifying who published
the software they are downloading from the Internet.

By distributing the Web runtime with a CAB file and digital signature, we
ensure that most standard configurations of Microsoft Internet Explorer will
accept the Web runtime application after the user responds “yes” to the
Security Warning dialog when it is installed. Users who have set their
browser security level to low will not see this dialog, since their browsers
automatically accept digitally signed components.

5-46 Using the ACUCOBOL-GT Web Runtime
Note: Users with security levels set to high cannot run any ActiveX-based
controls, regardless of the digital signature.

Because the CAB installation does depend on some Microsoft files, it
contains an embedded link to the Microsoft Web site to ensure that it can
obtain the proper files. If these files are needed, users are prompted to install
the Microsoft files; doing so may impact the download and installation time
of the control, due to the file size of some of these required files.

5.9.2 How Internet Explorer Security Affects the Web
Runtime

Certain security settings of Internet Explorer can affect how it handles the
Web runtime. The following table outlines the security settings that could
have an effect on your end users, depending on their configuration of Internet
Explorer.

Security Setting Option Low Medium
Low

Medium High

Download signed ActiveX
controls

Enable Prompt Prompt Disable *

Download unsigned
ActiveX controls

Prompt Disable Disable Disable

Initialize and script
ActiveX controls not
marked as safe

Prompt Disable Disable Disable

Run ActiveX controls and
plug-ins

Enable Enable Enable Disable*

Script ActiveX controls
marked safe for scripting

Enable Enable Enable Disable**

Don’t prompt for client
certificate

Enable Enable Disable Disable

Active Scripting Enable Enable Enable Disable**

Security 5-47
* If your users have selected “Disable” for either of these settings—either via
the default High security setting or a custom setting—they cannot run the
Web runtime.

**If your users have selected “Disable” for either of these settings, and they
are using the scripting facilities, they cannot run the Web runtime.

5.9.3 Security Warning Messages

In general, programs run with Web controls can potentially damage an end
user’s computer system or corrupt memory through pointers or
Working-Storage tables. Therefore, to help reduce the chances of this
happening, the Web runtime displays warnings to end users, asking them to
accept responsibility. Based on your end users’ expectations, you may need
to provide instructions for handling these messages.

5-48 Using the ACUCOBOL-GT Web Runtime
5.9.4 How the Authorization File Works

When a user first installs the Web runtime, the installation creates a default
authorization file, “acuauth.txt”, and places it in the same directory that
contains “acugtax.ocx”. If downloaded from our Web site, these files are
installed into a hidden directory such as “Temporary Internet Files” or
“Downloaded Program Files,” depending on the browser configuration.

If installed from our distribution media, “acuauth.txt” and “acugtax.ocx” are
placed in the “C:\Program Files\Acucorp\Acucbl800\AcuGT\bin\” directory.

By default, the “acuauth.txt” file contains one line that specifies a list of
directories where COBOL programs may create or delete files and
subdirectories. The directories are specified as a sequence of pathnames
delimited by quotation marks. The purpose of this file is to allow
applications that create local temporary files to work immediately.

If you install the Web runtime as part of the ACUCOBOL-GT Development
System, “acuauth.txt” contains only the following line:

"C:\Program Files\Acucorp\controldir\plgndata"

where controldir is the directory that contains “acugtax.ocx”.

If a COBOL application requires access to other directories or disks on the
user’s machine, you must instruct your end users to add those directories to
the “acuauth.txt” file manually. In this way, end users can accept
responsibility for specifying which directories on the client machine may be
made accessible to Web runtime applications.

Note: You cannot change this file programmatically.

We recommend designing your application so that this is not necessary.
Using AcuServer and/or AcuConnect, you can design your application to
utilize remote application and data resources.

Security 5-49
However, if you do need access to the client machine, you might want to use
messages to help users manage the file. For example, if an application
receives file status “37,07” (access denied) when trying to open a file on the
local machine, the program can display a message that indicates the problem
and instructs the user to add the directory name to the file.

You can also instruct users to add other information to the file, for example,
to access restricted library routines. See section 5.9.4.4 for more
information.

Once the file is edited, applications executed by the Web controls are allowed
to read and write data in these directories, as well as create and delete
subdirectories. No other area of the user’s local or network file system will
be accessible to the COBOL programs executed by the Web controls. This
provides some measure of protection for the end user’s machine and network.

If the “acuauth.txt” file is empty or missing when the Web runtime is
invoked, the COBOL application is denied access to the local machine’s file
system.

5.9.4.1 FILE_PREFIX override

FILE_PREFIX is initially set to the list of directories specified in the
“acuauth.txt” file. If you define an alternate FILE_PREFIX in the
configuration file that you embed with your object library, that value
overrides the “acuauth.txt” setting. The COBOL program may use ACCEPT
FROM ENVIRONMENT to get the initial value of FILE_PREFIX and add
to it or reset it. APPLY_FILE_PATH may come in handy for existing
programs. The override is generally useful only if you set FILE_PREFIX
with remote name notation for use with AcuServer. If you specify local
directories in FILE_PREFIX, please note that your program will have
permission to access these directories only if users add them to the
“acuauth.txt” file on their machines. If the files being accessed are indexed
files, the Web runtime must first obtain a valid license, which may be either
located on the client or obtained by AcuServer.

5-50 Using the ACUCOBOL-GT Web Runtime
5.9.4.2 Editing the authorization file

If your COBOL application requires access to other directories or disks on a
user’s machine, the user must add those directories to the “acuauth.txt” file.
For example, if the application requires access to the client directory,
“c:\myfiles”, the user would add “c:\myfiles” to the end of the first line in the
“acuauth.txt” file as follows:

"C:\Program Files\Acucorp\Acucblxx\acugt\plgndata"
"c:\myfiles"

All directories must be included on a single line, separated by spaces. If a
directory name includes embedded spaces, you must enclose it in quotation
marks. You may always use quotation marks if you choose. Up to 4096
characters can be included on the line.

Note that all files and folders of the directories listed in this file become
accessible.

5.9.4.3 Restricted library routines

By default, COBOL programs that are run via the Web runtime are not
allowed to call the following library routines:

C$CHAIN
C$MEMCPY
C$RUN
C$SYSTEM
M$ALLOC
M$FREE
M$GET
M$PUT
REG-CREATE-KEY
REG-CREATE-KEY-EX
REG-DELETE-KEY
REG-DELETE-VALUE
REG-SET-VALUE
REG-SET-VALUE-EX
SYSTEM

Troubleshooting 5-51
Calling any of these routines results in a failure. If the CALL statement has
no EXCEPTION phrase, the Web control displays the message “call_name:
Access denied”, where “call_name” is the name of the library routine and
where “call_name” terminates the COBOL program. C$CALLERR returns
error code 23 if access was denied for the previous CALL.

5.9.4.4 Using the authorization file for access

If you want to allow programs executed by the Web runtime to call a library
routine that is normally disallowed, you should instruct your users to add a
line to the “acuauth.txt” file containing the name of the routine. In addition,
if you want to allow programs executed by the Web control to call DLLs,
instruct your users to add a separate line containing the word “DLL”.

5.10 Troubleshooting

This section describes messages that users may encounter when installing or
using the Web runtime.

A plug-in for this file type was not found.

Users receive this message if they do not have the Web runtime installed on
their machine when they try to launch your application and, for some reason,
cannot install one automatically using the CODEBASE implementation.
They should obtain a copy of the ACUCOBOL-GT Web Runtime through
another means (product media or Web site, for example) and install it on their
machine. The installation script automatically makes a file type association
for ACUCOBOL-GT object files (i.e., “.acu” extension) with the Web
runtime.

You can try reinstalling the control, running regsvr32 to register it, or
accessing an HTML document where the CODEBASE attribute is correctly
implemented.

5-52 Using the ACUCOBOL-GT Web Runtime
Access denied.

If the “acuauth.txt” file is empty or missing from the client machine when the
Web control is invoked, the COBOL application is denied access to the local
machine’s file system. The user should edit or create an “acuauth.txt” file
that contains the names of all required directories.

Blank screen on install.

If users receive a blank screen from Microsoft Internet Explorer when they
try to use a Web control, they may not have all the necessary DLLs copied
into the appropriate directory. Users should place a copy of “wrun32.dll”
and “acme.dll” in the directory that contains the control, along with the
license file and “ajpg32.dll”, and then try to run the install again. These files
are part of the CAB file distribution.

Another possible cause of blank screens is a misspelling of the WIDTH or
HEIGHT attributes in an EMBED statement. This results in a silent failure,
where the misspelled attribute is set to zero.

Error Locating Object Handler. There is no viewer available for the type of
object you are trying to open...

Internet Explorer users receive this message if the required file, “acme.dll”,
is missing from the directory that contains the Web runtime control. Users
should place a copy of “acme.dll”, the executable (“acugtax.ocx”), the
license file, and “ajpg32.dll” in the Web runtime directory, and then try to use
the Web runtime again. These files can be found in the AcuGT\bin directory
on the ACUCOBOL-GT distribution media, and they are part of the CAB file
distribution. You can get more information using the Web runtime
AcuGetLastError method.

Migrating from the Web Plug-in to the Web Runtime 5-53
5.11 Migrating from the Web Plug-in to the Web
Runtime

If you have already implemented the Web Plug-in control to provide Web
access to your ACUCOBOL-GT application, read this section for
information on how to upgrade your implementation to the Web runtime.
You can add the appropriate HTML code to make the new Web runtime
available to your users.

The major task is to invoke the Web runtime component from your HTML
page. If you are distributing the Web runtime internally to users with no
Internet access, you may need to supply it on your own media.

Although it is possible to invoke your application with the <EMBED> and
<ANCHOR> tags as you have for the plug-in, we recommend that you
invoke it with the <OBJECT> tag and the component’s CLASSID. For more
information, see section 5.6.1.

Changing your HTML code

To add the Web runtime to your current implementation, the minimal steps
you need to take are:

1. Create the <OBJECT> tag in your HTML documents to invoke the Web
runtime (acugtax.ocx) control.

2. Remove the <EMBED> or <ANCHOR> tag currently used to launch
the Web Plug-in. Provided you add the <OBJECT> element to your
Web page and include the CODEBASE attribute, your users will
automatically download the Web runtime the next time they visit the
Web page.

Adding the <OBJECT> element there causes the user to install the Web
runtime component. If your users can invoke the application from more than
one Web page, you need to revise all the pages to use the <OBJECT>
element.

6
 Using AcuXUI to Launch Web
Applications

Key Topics

Deploying AcuXUI as an Applet .. 6-2

What is AcuXUI? .. 6-2

Basic Procedure .. 6-3

6-2 Using AcuXUI to Launch Web Applications
6.1 Deploying AcuXUI as an Applet

Similar to the ACUCOBOL-GT Web thin client, AcuXUI can be deployed as
an applet to display a graphical COBOL program inside a Web browser. This
gives your end users the ability to access your program any time, anywhere.

This deployment requires AcuConnect on the server. Because users are
connecting via AcuConnect when using the AcuXUI applet, they require an
entry in the AcuAccess file. Although the client machines do not require an
ACUCOBOL-GT runtime, you must have the appropriate number of runtime
and AcuConnect licenses on the server to support client access over the Web.

6.2 What is AcuXUI?

AcuXUI is a cross-platform user interface engine that allows graphical
ACUCOBOL-GT programs to exhibit their user interface on UNIX and
Linux platforms as well as Windows platforms.

As always, graphical controls—such as windows, entry fields, and radio
buttons—are described in the COBOL program with ACUCOBOL-GT.
However, with AcuXUI, rather than directing the Windows operating system
to create the controls, the runtime directs the Java Runtime Environment
(JRE) to create the controls on a Java desktop. For this reason, the controls
can run on most operating systems, including UNIX, Linux, and Macintosh.
The Java desktop can also run on Windows.

With AcuXUI, you do not directly execute your COBOL program using the
runtime, “runcbl” or “wrun32.exe”. Rather you run your graphical
application by issuing a Java command on the server command line
indicating the AcuXUI Java archive (JAR) file and resources to use to run the
COBOL program.

Note that there are some differences in the way that controls display on a Java
desktop versus the traditional Windows desktop and that there are a few
limitations to what Java can display (for instance, it cannot display ActiveX
or .NET controls). Limitations and differences are covered in the
ACUCOBOL-GT User Interface Programming Guide, Chapter 11.

Basic Procedure 6-3
6.3 Basic Procedure

To deploy AcuXUI as an applet you need a Web server.

To deploy AcuXUI as an applet, you:

1. Update your Web page to invoke your graphical application. To do this,
you typically embed the URL of AcuXUI along with the URL of your
application on your Web page.

When end users visit your Web site, the Web server delivers the
“AcuXUI.jar” file to client into the user’s browser, opens a socket to the
server where AcuConnect is running and executes the COBOL program. The
user interface for your program automatically displays in their browser
window.

Using AcuXUI as an Applet

6.3.1 Updating Your Web Page

To deploy AcuXUI as an applet, create an HTML file similar to this one and
post it on your Web site. Include the applet code shown in black. This
specifies the archive name and class name for the applet contained in the
archive. Change the server name, port, alias, and username to suit your
deployment.

6-4 Using AcuXUI to Launch Web Applications
<html>
<H1>AcuXUI Applet Test</H1>
<APPLET CODE = "com.acucorp.acuxui.AcuXUIApplet"
ARCHIVE = "AcuXUI.jar" WIDTH = "500" HEIGHT = "395" >
<param name="servername" value="sparky">
<param name="port" value="5632">
<param name="alias" value="tour">
<param name="username"
value="entry-in-acurcl-acuaccess-file">
</applet>
</html>

Note: Because users are connecting via AcuConnect when using the
AcuXUI applet, they require an entry in the AcuAccess file. Use the
username parameter to specify the username with which to connect. If you
do not specify a username parameter in the HTML file under <param
name=“username”, then the client user name is sent to AcuConnect for
authentication.

Refer to the ACUCOBOL-GT User Interface Programming Guide, Chapter
11 for details on deploying graphical applications with AcuXUI.

7
 Other Internet Solutions

Key Topics

LAN, WAN, or Internet .. 7-2

Accessing Vision Data Over the Internet .. 7-3

Accessing COBOL Programs Over the Internet 7-7

Accessing Vision Data from ODBC Applications............................... 7-11

Accessing Relational Data Over the Internet 7-14

Accessing XML Data Over the Internet... 7-17

7-2 Other Internet Solutions
7.1 LAN, WAN, or Internet

Because the Internet is a large TCP/IP network, you can design an Internet
configuration using any of our networking or data access technologies. The
Web runtime and CGI technologies were designed for communicating with
Web browsers, but you can use our standard technologies to access
applications and data across the Internet outside of the World Wide Web.

• Our AcuServer® remote file server can provide access to Vision data
over the Internet.

• Our AcuConnect® remote application server can provide access to
server-resident COBOL programs over the Internet, even programs that
are distributed across a number of different servers.

• Our AcuXDBC™ interface can give users of ODBC and JDBC
applications access to Vision data over the Internet. AcuXDBC is
combined with AcuXDBC Server for remote processing of SQL
requests.

• Our Acu4GL® interface and AcuSQL® precompiler can provide access
to relational databases over the Internet.

• Our AcuXML interface or C$XML library routine can be used to
provide access to XML documents over the Internet.

The procedures for using these technologies on the Internet are not much
different from the procedures outlined in the product user’s guides for local-
and wide-area networks (LANs and WANs). Special Internet considerations
are discussed in this chapter.

Please note that when accessing extend products on remote servers via the
Internet or a virtual private network, products or technologies from
third-party vendors such as Microsoft may be invoked. Carefully review any
license agreements from these third-party vendors before proceeding with the
remote connection.

Accessing Vision Data Over the Internet 7-3
7.2 Accessing Vision Data Over the Internet

AcuServer provides access to remote data and object files. Sites may choose
to place files on a remote server because, for example, many users must
access the files or the files may be updated frequently.

With AcuServer, ACUCOBOL-GT® programs on client machines have
access to data and/or object files that are stored on remote servers and
connected via TCP/IP. When the clients request data in a file system that
resides somewhere in a network, AcuServer serves that request transparently,
regardless of the client or server operating system.

A simple AcuServer environment looks something like this.

AcuServer configuration

As you can see from the illustration, the configuration is essentially the same
whether you are using TCP/IP on a local- or wide-area network or using the
Internet. This means that you can run your ACUCOBOL-GT application as
usual on a Windows or UNIX client, store your data on a remote server, and
access it over the Internet. AcuServer can give your users access to your
Vision, relative, or sequential data and object files over the Internet as well as
over a smaller network.

LAN, WAN, or
Internet

Data server

Vision

AcuServer

Windows or
UNIX client

ACUCOBOL-GT
application

7-4 Other Internet Solutions
Using AcuServer is an easy way to take advantage of the Internet. In many
cases, no reprogramming is required. You can indicate the location of the
remote server through a runtime configuration variable. Your users do not
require a Web browser to access remote data files.

Sample Scenario

You use AcuServer is to store your data in a central place. Your inventory file
is updated frequently, and several people need to access the file over the
course of the day. Having the file centrally located enables access by
multiple users, with the current user having the most recent information.
AcuServer supports record locking, so only one user at a time can edit a file.
Finally, you may want your data or inventory files on a server that is backed
up on a regular and frequent basis.

If you want to limit access to the inventory data, AcuServer can provide
password protection for those instances where access to data must be
restricted.

7.2.1 Internet Considerations for AcuServer

Although Internet implementations of AcuServer are configured the same as
LAN or WAN configurations, there are some special considerations for
providing remote file access over the Internet. For instance, how do you
point to remote files over the Internet, and how do you keep your data files
secure in this environment? This section provides the answers.

Note that end users must have a live Internet connection when they run the
program that accesses AcuServer over the Internet. In addition, the server
name in the client configuration file must be resolvable by the Internet name
server used by their service provider. The Internet name server then resolves
the name with its IP address. If the server name is not exposed to Internet
name servers, you can enter the explicit IP address in the runtime
configuration file on the client.

If the server is through a Virtual Private Network (VPN), the user must
connect to the network before running the COBOL program.

Accessing Vision Data Over the Internet 7-5
For general information on setting up and using AcuServer, please see the
AcuServer User’s Guide.

7.2.1.1 Defining Internet pathnames

In both standard client/server and Internet configurations, enabling your
applications to use AcuServer requires that your applications refer to remote
files with remote name notation.

The easiest way to enable your applications to use AcuServer is to update the
FILE_PREFIX and CODE_PREFIX runtime configuration variables to
include paths with remote name notation. This holds true whether the remote
path is a standard remote server address or an Internet address.

To add a remote search path, you simply append or insert the name and path
of the remote directory to the variable’s definition. For Internet
configurations, you include the domain name of the AcuServer server that
users are accessing over the Internet. For example, if the name of the server
is “condor,” you could define the configuration variables as follows:

FILE_PREFIX @condor.XYZCorp.com:/usr/data
CODE_PREFIX @condor.XYZCorp.com:/usr/objects

Of course, you could define “condor” as an alias for condor.XYZCorp.com,
and simplify the remote name notation in these variables to “@condor:/usr/
data” and “@condor:/usr/objects”. This would not include the port number,
but the port number is not always required.

If you want to enter the explicit IP address of the server, you may do so as
shown in the following example:

FILE_PREFIX @128.110.121.42:/usr/data
CODE_PREFIX @128.110.121.42:/usr/objects

Alternatively, for highest performance, you can map the Vision filename
directly to the Internet pathname by defining a file name alias in your runtime
configuration file. A file name alias is a substitute string for the literal name
that appears in the ASSIGN TO clause of a SELECT statement. Defining the
alias shown below allows you to bypass FILE-PREFIX for “customer.dat”:

CUSTOMER @condor.XYZCorp.com:/usr/data/customer.dat

7-6 Other Internet Solutions
By not requiring the runtime to connect to the server to see whether a file
exists, you can open the file more quickly. For information on using name
aliases, refer to section 7.2.4 of the AcuServer User’s Guide.

7.2.1.2 Security and AcuServer

If you use AcuServer to give users access to data over the Internet, you will
want to provide security measures to ensure that your data is safe from
corruption or unauthorized access.

Setting up a firewall limits access to your data and enforces your
organization’s access control policy. When you set up a firewall, you’ll need
to indicate the “port number” through which applications gain access to your
data. The default port number for AcuServer is 6523. You can indicate this
setting through the ACUSERVER_PORT configuration variable.

Another way to secure your data is to encrypt it within your application
before it is sent to AcuServer. Encryption provides an extra layer of security
over and above the firewall your organization employs. Encryption is
enabled with two configuration variables: ENCRYPTION_SEED and
AGS_SOCKET_ENCRYPT.

AcuServer can also provide built-in password protection for access to files on
the server. It provides a great deal of flexibility in assigning access
permissions and password validation based on the client machine name, user
name, or both. ACUCOBOL-GT runtimes provide built-in
password-handling routines, or you can create your own password handling
in your COBOL code using the Acu-Client-Password external variable.

In addition, AcuServer uses a security file called AcuAccess to support a
wide range of access privileges, from very open to very restrictive. You
choose the level of security best suited to your needs. The AcuAccess file is
an encrypted Vision file. It contains one or more access records defining
which users of which clients are permitted access to AcuServer. AcuAccess
lets you specify individual user IDs that give users exactly the privileges they
need, and no more.

Accessing COBOL Programs Over the Internet 7-7
7.3 Accessing COBOL Programs Over the Internet

If you want users to be able to launch remote applications from their local
machine, you can use our remote application server, AcuConnect, to
accomplish your goal. Reasons for this may be that the application itself is
revised frequently or the application is processing-intensive.

With AcuConnect, users or programs on client machines can launch
applications on server machines, whether those servers are part of a local area
network, wide area network, or global Internet. Some portions of your
application can continue to run on the client while the resource-intensive
portions run on the server, or all but the user interface can run on the server,
in a thin client configuration.

In Chapter 3, we described how to launch a thin client from a Web page or
over the Internet from the command line. But you can also use AcuConnect
with the standard ACUCOBOL-GT runtime to distribute your application
resources between the client and one or more servers on the Internet. Exactly
how much processing is performed on the client and how much on the server
is up to you.

AcuConnect also provides users access to remote Vision data. If the data is
on the same remote server as AcuConnect, data is considered local and no
special software is required. If the data is on a third data server, AcuConnect
can work in tandem with AcuServer to provide seamless data access.
AcuConnect can also work with Acu4GL, our COBOL-to-RDBMS bridge,
to provide access to relational data wherever it resides.

7-8 Other Internet Solutions
The following figures show AcuConnect in two-tier and three-tier
environments. In a two-tier environment, applications and data are stored on
the same remote server as follows:

AcuConnect in a two-tier environment

In a three-tier configuration, the data files reside on a different server than the
application. Sites may do this for security purposes or because this may
make for more efficient use of system resources. When the applications and
data are on different servers, the data files are considered remote, and
AcuServer is required.

AcuConnect in a three-tier environment

Consider using AcuConnect when your program is I/O-intensive or if you
have reason to believe that the program will be updated frequently. You can
determine how much reprogramming you want to do to facilitate remote
application access for your users – either by embedding COBOL calls into
your program or dividing it into client and server components. Your users do
not require a Web browser for remote application access.

LAN, WAN, or
Internet

Application and
data server

Vision

AcuConnect

ACUCOBOL-GT
programs

Acu4GL

RDBMSThin, medium,
or fat client

LAN, WAN, or
Internet

AcuServer

Thin, medium,
or fat client Application server

AcuConnect

ACUCOBOL-GT
programs

Acu4GL

Data server

RDBMS

Vision

Accessing COBOL Programs Over the Internet 7-9
Sample Scenario

Your inventory program updates a file when products are sold, when products
are returned, and when the supply is replenished. In addition, it interacts with
a vendor’s programs placing orders as supplies get low. In some
circumstances, the program interacts with a payroll program to apply sales
commissions to salaries. When performed over the network, these
computationally intense activities are time consuming, and they sometimes
produce bottlenecks. You decide to distribute the processing onto a fast
application server that reduces network I/O and uses AcuConnect to launch
the various program modules.

Because your inventory and payroll data is updated frequently, you decide to
store it on a server that is devoted to data files. You use AcuServer to serve
the requests for data. The user, at the client machine, starts an application that
calls AcuConnect. The data files reside on a different server, so the files on
the data server are accessed through AcuServer. After processing, the results
are returned to the user via AcuConnect.

7.3.1 Internet Considerations for AcuConnect

Although Internet implementations of AcuConnect are configured the same
as LAN or WAN configurations, there are special considerations for
providing application and data access on the Internet: primarily, how you
define the Internet application path and how you keep your applications and
data secure in this environment. This section provides the answers.

Note that end users must have a live Internet connection when they run the
program that accesses AcuConnect over the Internet. In addition, the server
name in the client configuration file must be resolvable by the Internet name
server used by their service provider. The Internet name server then resolves
the name with its IP address. If the server name is not exposed to Internet
name servers, you can enter the explicit IP address when configuring the
client runtime.

If the server is accessed through a Virtual Private Network (VPN), the user
must connect to the network before running the client program.

7-10 Other Internet Solutions
For general information on setting up and using AcuConnect, please see the
AcuConnect User’s Guide. For information on using the thin client or Web
thin client on the Internet, refer to Chapter 3 of this manual.

7.3.1.1 Defining an Internet application path

With AcuConnect, you define the pathname of your remote COBOL objects
in a configuration file on the client. (This configuration file must be
associated with the initial COBOL object.) In this file, you use the
CODE_PREFIX variable to define the location of the object programs being
CALLed.

In an Internet environment, the CODE_PREFIX variable should include the
domain name of the AcuConnect server being accessed over the Internet. For
example:

CODE_PREFIX *condor.XYZCorp.com:/usr/prog2

where prog2 is the directory containing the ACUCOBOL-GT object code,
and “condor” is the name of the application server running AcuConnect. If
you define “condor” as an alias for condor.XYZCorp.com, you could
simplify the remote pathname to “*condor:/usr/prog2”. This would not
include the port number, but the port number is not always required.

If you want to enter the explicit IP address of the server, you may do so as in
the following example:

CODE_PREFIX *128.110.121.42:/usr/prog2

Notice that the name of the server is preceded by the asterisk character, “*”.
The asterisk indicates that the program is located on the server and that it
should be run on the server as well. If you want the program to run on the
client, you can simply change the “*” to “@”. This emulates AcuServer
notation.

When the client program executes a CALL, it determines which directory
contains the program by looking in CODE_PREFIX, and then it executes the
program on either the client or server as specified.

Accessing Vision Data from ODBC Applications 7-11
7.3.1.2 Security and AcuConnect

If you use AcuConnect to grant application access, you’ll want to take the
proper security measures to prevent unauthorized access.

One way to do this is with a firewall. When you set up a firewall, you’ll need
to indicate the “port number” through which clients gain access to the
application on the server. The default port number for AcuConnect is 5632.
You can indicate this setting through the ACURCL_PORT configuration
variable.

In addition, AcuConnect uses a security file called AcuAccess to support a
wide range of access privileges, from very open to very restrictive. You
choose the level of security best suited to your needs. The AcuAccess file is
an encrypted Vision file. It contains one or more access records defining
which users of which clients are permitted access to AcuConnect.
AcuAccess lets you specify individual user IDs that give users exactly the
privileges they need, and no more.

Every access record can include a password entry that the application or user
must match before AcuConnect establishes a connection.

7.4 Accessing Vision Data from ODBC Applications

AcuXDBC can be configured to give users of popular Windows applications
access to Vision data over the Internet. With AcuXDBC, you can retrieve and
update ACUCOBOL-GT® indexed or relative data files from many
Windows-based applications, including Microsoft Word, Excel, Access,
Query, and Crystal Reports. These applications can access your files whether
they reside on the same Windows PC, on a different computer in an enterprise
network, or on a UNIX or Windows server in a LAN, WAN, or Internet
configuration.

To gain access to remote Vision files over the Internet, you must have
AcuXDBC Server installed on the server.

7-12 Other Internet Solutions
With AcuXDBC Server, the SQL query is processed on the server and just the
result is returned to the client. This reduces network traffic and often leads to
performance gains.

AcuXDBC w/AcuXDBC Server configuration, for remote SQL processing

Sample Scenario

Your inventory program is written in ACUCOBOL-GT and run on a UNIX
server. The data is stored on the server in ACUCOBOL-GT’s Vision file
system. Frequently, field support managers create sales and inventory reports
on their laptops using Seagate’s Crystal Reports. While field reps use the thin
client to interact with the inventory application on a daily basis, the managers
use AcuXDBC to connect their Windows-based software with the COBOL
data. Using the Windows application they are familiar with, they are able to
import COBOL Vision data and create a business report in no time. If they
need to work with any of the numbers in Microsoft Excel, they can do this as
well. AcuXDBC works with any ODBC-compliant Windows application,
including all the applications in Microsoft Office. They can even update
records in the Vision file system if necessary.

All users need is a laptop, an Internet connection, and AcuXDBC. The server
takes care of the rest.

LAN, WAN, or
Internet

Data server

Vision

AcuServer

Windows or
UNIX client

ACUCOBOL-GT
application

Accessing Vision Data from ODBC Applications 7-13
7.4.1 Internet Considerations for AcuXDBC

Although Internet implementations of AcuXDBC are configured the same as
LAN or WAN configurations, there are some special considerations for
accessing data over the Internet. For instance, how do you point to remote
files over the Internet, and how do you keep your data files secure in this
environment? This section provides the answers.

Note that end users must have a live Internet connection when they try to
import Vision data into their applications from the Internet. In addition, the
server name indicated in the AcuXDBC configuration manager (described
below) must be resolvable by the Internet name server used by their service
provider. The Internet name server then resolves the name with its IP
address. If the server name is not exposed to Internet name servers, you can
enter the explicit IP address when setting up the AcuXDBC configuration.

If the server is through a Virtual Private Network (VPN), the user must
connect to the network before running the COBOL program.

For general information on setting up and using AcuXDBC, please see the
AcuXDBC User’s Guide.

7.4.1.1 Defining Internet pathnames: AcuXDBC Server configuration

In an AcuXDBC Server configuration, where data is both accessed and
processed remotely, you define the location of the server using the
AcuXDBC configuration manager on the client machine, and then you define
the data pathname when you set up the DSN on the server.

On the client machine, you define only the Data Source Name field, the name
or IP address of the remote AcuXDBC Server host, and the port number on
the General tab of the AcuXDBC DSN Setup screen. For Internet
configurations, you might enter the following Host Name:

condor.XYZCorp.com

or IP Address:

128.110.121.42

7-14 Other Internet Solutions
7.4.1.2 Security and AcuXDBC

 If you decide to use AcuXDBC to give users access to data over the Internet,
you will want to provide security measures to ensure that your data is safe
from corruption or unauthorized access.

Setting up a firewall limits access to your data and enforces your
organization’s access control policy. When you set up a firewall, you’ll need
to indicate the “port number” through which applications gain access to your
data. To define the port number for AcuXDBC Server, use the dialog box.
The default port number for AcuXDBC Server is 20222.

Another way to secure your data is to encrypt it within your application
before it is sent to AcuXDBC Server. Encryption provides an extra layer of
security over and above the firewall your organization employs.

AcuXDBC Server uses typical relational database table permissions using
the GRANT SQL syntax.

7.5 Accessing Relational Data Over the Internet

If you want users of ACUCOBOL-GT programs to access a relational
database over the Internet, you can do so using our Acu4GL or AcuSQL
technologies.

Acu4GL is a COBOL-to-RDBMS interface that automatically translates
COBOL file I/O into database-specific SQL requests and vice versa. You do
not need to know SQL to use this technology, because the translation occurs
“behind the scenes” using a data dictionary map that is created at compile

Accessing Relational Data Over the Internet 7-15
time. Typically, you don’t even need to change your source code. With
Acu4GL, COBOL users gain transparent access to RDBMS data in any TCP/
IP network.

Acu4GL on the Internet

AcuSQL is an embedded SQL (ESQL) precompiler that lets you embed
database-specific SQL directly into your ACUCOBOL-GT program. You
control the precise fourth generation Structured Query Language commands
that are sent to the database, and the precompiler automatically translates the

LAN, WAN, or
Internet

Data server

RDBMS

Database
engine

Windows or
UNIX client

ACUCOBOL-GT
application

XFDs

Acu4GL

Database client

7-16 Other Internet Solutions
SQL into COBOL CALL statements that your program understands.
Compiled again with the ACUCOBOL-GT compiler, your COBOL code is
ready to access relational data wherever it resides.

AcuSQL in Internet environments

Each of these technologies gives users of ACUCOBOL-GT applications
access to information stored in Relational Database Management Systems
(RDBMS) such as Oracle, Informix, Sybase, and Microsoft SQL Server as
well as ODBC-compliant data sources. The data can be stored on the same
machine as the ACUCOBOL-GT application, or on a different machine in a
TCP/IP network, including the Internet.

Sample Scenario

At one time, the data for your inventory program resided in a COBOL
indexed file system. You decided to move your files to a centralized
relational database—Oracle—that would give end users improved access to
data and the ability to easily create ad hoc reports.

To provide access to the Oracle data from COBOL, you could do one of two
things: embed SQL commands into your COBOL program and run it
through the AcuSQL precompiler, or use the Acu4GL interface to translate

LAN, WAN, or
Internet

Data server

RDBMS

Database
engine

Windows or
UNIX client

ACUCOBOL-GT
application

COBOL source
w/ESQL

AcuSQL
precompiler

ACUCOBOL-GT
compiler

Database client

Accessing XML Data Over the Internet 7-17
COBOL I/O statements into SQL instructions that the Oracle database
understands. The first solution gives you more power and flexibility, but the
second frees you from having to learn SQL and can be applied more quickly.
You choose to use the Acu4GL interface.

Now, users of your inventory application can access Oracle data on any
server in your TCP/IP network, even across the Internet. With a live
connection to the Internet, users can launch the ACUCOBOL-GT program on
their local machines or laptops, and access real-time inventory and
distribution information on the designated server.

7.5.1 Internet Considerations for Acu4GL and AcuSQL

With relational database systems, the database manages remote connections.
Therefore, when working with an RDBMS, you perform all remote path
definition, including Internet path definition, using the database client
software—for instance, the Oracle client or DB2 Connect client.

Please refer to your database guide for instructions on how to configure the
client software for Internet environments. Pay close attention to database
security features when providing data access across the Internet.

Refer to the Acu4GL or AcuSQL User’s Guides for instructions on using
these database technologies.

7.6 Accessing XML Data Over the Internet

There are two ways to access XML data from ACUCOBOL-GT:

1. Via the C$XML library routine, which gives you low-level control over
the XML data that is parsed.

2. Via AcuXML, which provides a transparent file system interface
between ACUCOBOL-GT applications and XML documents.

7-18 Other Internet Solutions
With either method, an ACUCOBOL-GT program can read whatever XML
files a user indicates, and/or output data in XML format. It doesn’t matter
whether the data is in a LAN, WAN, or Internet configuration. Both methods
support Internet notation for remote filenames.

Accessing XML data on the Internet

Although AcuServer can be used to provide remote file access to XML
documents, it is not required. ACUCOBOL-GT applications can process
XML streams directly on socket connections.

For more information on using AcuXML, please refer to the
ACUCOBOL-GT User’s Guide, section 6.11. For information on using the
C$XML library routine, refer to Appendix I.

Sample Scenario

In your company, your inventory application is managed at your warehouse
location. It is written in COBOL and running on a local Windows 2000
server. Data is stored in the Vision indexed file system. The customer

Accessing XML Data Over the Internet 7-19
service application, on the other hand, is managed by the sales organization.
It is written in Java and run on a UNIX server on the other side of the country.
Data is output in XML for use in a Web-based self-service application.

Occasionally, your inventory application must access the customer service
data for delivery status. In the past, the only way this was feasible was to
create a redundant database in COBOL. Now, using AcuXML, you can
connect the worlds of COBOL and XML, and eliminate the need for
redundancy. And you can take advantage of the Internet to traverse your
company’s geographical boundaries.

With a live Internet connection, your end users can make a standard COBOL
request, and a runtime configuration file on the client tells the application the
location and type of data being requested—XML. AcuXML translates the
XML to input that the COBOL program understands.

7.6.1 Internet Considerations for AcuXML and C$XML

Both AcuXML and C$XML make use of Internet notation to provide direct
access to XML data on the Internet. The procedures for using Internet
notation are provided in the next sections.

If you prefer to use AcuServer to access the XML files over the Internet, you
can combine it with AcuXML or C$XML. In this case, you include the
domain name of the file server in the FILE_PREFIX variable, but you are
required to have AcuServer installed on the machine hosting the XML files.
The procedure for using AcuServer is also provided below.

Whichever method you choose, make sure that the server name that you
specify is resolvable by the Internet name server that will be used. Of course,
end users must have a live connection to the Internet or VPN to make use of
the remote files.

7.6.1.1 Using Internet notation with C$XML

To parse an XML file with the C$XML routine, you call C$XML using the
CXML-PARSE-FILE op-code, and pass the filename and path of the XML
document to parse. If the document is located on the Internet, you pass the
filename with URL syntax. For example:

7-20 Other Internet Solutions
CALL "C$XML" using CXML-PARSE-FILE, “http://myserver.mycomp.com/xmldata/bookfile.xml”

Refer to Appendix I of the ACUCOBOL-GT manual set for more information
on using this routine.

7.6.1.2 Using Internet notation with AcuXML

With AcuXML, the file path is specified in the runtime configuration file,
“cblconfig.”

To read a file from the Internet, you set up a filename alias in the runtime
configuration file, and use Internet notation to map the data files directly to a
URL. For example, to read “bookfile.xml” over the Internet, you might
define a name alias for “bookfile” in your configuration file like this:

BOOKFILE http://myserver.mycomp.com/xmldata/bookfile.xml

Whenever your application refers to “bookfile” in a SELECT statement, the
alias “http://myserver.mycomp.com/xmldata/bookfile.xml” is substituted.

To specify that “bookfile” should be treated as XML data for translation by
AcuXML, you must also set the filename_HOST variable to “XML” as
follows:

BOOKFILE_HOST XML

With AcuXML, you include a separate entry for each XML document name.

Please refer to Book 1, section 2.7.1 of the ACUCOBOL-GT manual set for
more information on setting up file aliases. Refer to Book 1, section 6.11.4
for more information on creating configuration files for use with AcuXML.

7.6.1.3 Using AcuServer with AcuXML or C$XML

To access remote XML files using AcuServer, you use the FILE_PREFIX
configuration variable to define the location of the remote files. You simply
append or insert the name and path of the remote directory to the variable’s
definition.

Accessing XML Data Over the Internet 7-21
For Internet configurations, you include the domain name of the server that
users are accessing over the Internet. (The remote server that contains the
XML documents must be running AcuServer.) For example, if the name of
the server is “condor,” you could define the configuration variables as
follows:

FILE_PREFIX @condor.XYZCorp.com:/usr/data

Of course, you could define “condor” as an alias for condor.XYZCorp.com,
and simplify the remote name notation in this variable to “@condor:/usr/
data”. Or if you want to enter the explicit IP address of the server, you may
do so as in the following example:

FILE_PREFIX @128.110.121.42:/usr/data

If you are using AcuServer with AcuXML, you must use the filename_HOST
variable to designate the data files as XML files, as in the following example:

file1-HOST XML
file2-HOST XML
file3-HOST XML

This lets the ACUCOBOL-GT runtime know to use the AcuXML file
interface to translate the XML input for the COBOL application.

7.6.1.4 Security and XML

If you decide to use AcuXML or C$XML to give users access to XML data
over the Internet, you will want to provide security measures to ensure that
your data is safe from corruption or unauthorized access. If you are using
AcuServer, you can take advantage of AcuServer’s access privileges and
password protection to aid in the process. Refer to the AcuServer User’s
Guide for more information.

A
 Building and Hosting a Web
Site
Key Topics

Setting Up a Web Site... A-2

Designing Your Site .. A-2

Finding a Host or Building a Web Server .. A-3

Creating Your Web Pages .. A-4

Creating a Link to COBOL Programs ... A-5

Posting Your Web Documents ... A-6

Promoting Your Site ... A-7

Registering a Domain Name... A-7

A-2 Building and Hosting a Web Site
A.1 Setting Up a Web Site

A Web site is typically comprised of an HTML document or set of HTML
documents and the Web server software. Sometimes it contains XML
documents and PDF files instead of or in addition to the HTML documents.

How exactly you create a Web site depends largely on the tool you choose.
For this reason, this chapter will not try to exhaust the subject. It will simply
provide some guidelines and general instructions to help orient you to your
task. This chapter divides the task of setting up a Web site into seven
main steps:

1. Designing Your Site

2. Finding a Host or Building a Web Server

3. Creating Your Web Pages

4. Creating a Link to COBOL Programs

5. Posting Your Web Documents

6. Promoting Your Site

7. Registering a Domain Name

A.2 Designing Your Site

The first step to setting up a Web site is to design the site. What kind of
material do you want to publish on the Web? Do you plan to include
company information…product information…order forms…applications…
data? How do you want your home page to look? With most Web authoring
tools, you can choose from a wide array of templates, customize a template,
or design your own page from scratch. The best way to decide on your design
is to surf the Web. Which sites do you find to be the most effective? Which
ones grab your interest and compel you to read on, compel you to buy?

If you’re designing a site from scratch, you may find it useful to make a
thumbnail sketch of your home page. Once you have the basic design of your
home page, you need to decide what subsequent pages to include and how to

Finding a Host or Building a Web Server A-3
navigate your visitor to those pages. It is often helpful to create a flow
diagram similar to the one you create when designing an application. For
instance:

Once you have a good idea of how you want the site to look and flow, you're
ready to move to the next step.

A.3 Finding a Host or Building a Web Server

Before you create your site, you need to find or create a Web server to host it.
Initially you might decide to have an Internet service provider (ISP) host the
site. ISPs provide space on their Web server for your site and charge for it
based on the type of information that your site will contain and the amount of
disk space and network I/O that it requires. The best way to learn about ISPs
is to check computer circulars, computer stores, or even your local Yellow
Pages. Once you find an ISP that serves your needs, you simply set up an
account with that provider and you’re ready to go.

To build your own Web server, you must make a minor investment in
hardware and software, and you should prepare to spend hundreds or
thousands each month for a dedicated connection to the Internet. You must
also be prepared to dedicate time and personnel to the cause.

A.3.1 Selecting Web Server Software

If you plan to build your own Web server, you must select the operating
system and Web server software to use. Web servers can operate on a variety
of operating systems, the most popular being Windows and UNIX. When

Product A Product B Product C proga. acu progb.acu progc.acu

Home page

Order formsProduct info.Company info. COBOL programs

A-4 Building and Hosting a Web Site
setting up your Web server, be sure to select the operating system that you are
most comfortable with. Whichever operating system you choose, you will
have a variety of packaged Web server suites to choose from. Both Netscape
and Microsoft offer complete Web server suites for supporting applications
and data on the Internet.

Once you install the Web server software on the machine you intend to use as
a Web server, you may also need to configure the Web server for your
particular deployment method. Instructions for configuring the Web server
can be found in the following sections:

A.4 Creating Your Web Pages

To create a Web page, you can use any of several HTML or XML authoring
tools or you can use a simple programmer’s editor. Some authoring tools
come bundled with Microsoft Office others are available over the Internet
free of charge. Many tools let you customize a site template so you don’t
have to begin from scratch. Most provide a WYSIWYG
(what-you-see-is-what-you-get) screen painter-type interface, so you don’t
even have to learn the markup language.

If you choose to create the more dynamic XML documents, you will have to
“publish” the documents in HTML or PDF form before a Web browser can
display them. XML documents are typically transformed to HTML or PDF
through the use of style sheets and a style sheet transformation language
(XSLT). XML tools like the Cocoon Project from Apache provide a Web
publishing framework for creating XML-based Web sites.

Because every Web authoring tool is different, this section cannot provide
specifics. It can, however, provide some guidelines. When authoring your
Web pages, you should:

Deployment Method Information on Web Server Configuration

HTML/CGI Section 4.7, “Configuring the Web
Server”

Creating a Link to COBOL Programs A-5
• Create a separate folder to hold your HTML, XML and PDF documents.
This will make it much easier when it comes time to “post” the site. It is
also a good idea to separate logical sections into separate subdirectories.

• Work from an existing template if available.

• Start with your home page, then move to subsequent pages.

• Perform all formatting before including clickable image maps or setting
up links.

• If you are working with an ISP, find out what name to save your home
page under, such as “index.html” or “index.htm”.

• Keep it simple. You can always edit your files later to add more “glitz.”

• Manage your HTML and XML files the same way you manage your
COBOL source code files. (After all, they are plain text like the source
code files you work with daily.) You can even use version control tools.

• Use server-side includes, SSI, whenever possible to reduce redundancy
on your Web site. For example, suppose you want to include your e-mail
address at the bottom of every page. Without SSI, if your site contains
100 Web pages and your e-mail address changes, you need to edit 100
individual files. With SSI you simply edit the “included” file containing
your e-mail address.

A.5 Creating a Link to COBOL Programs

Once you’ve created your HTML or XML documents, you can easily
establish a link to a COBOL program, whether it is your main application, a
client or server subprogram, or a CGI program. In most cases, this involves
using an HTML source editor or word processor to edit the HTML document
you created with your authoring tool. You can use this same editor to “tune”
your HTML tags later, once the site is operational and you have enhancement
requests.

A-6 Building and Hosting a Web Site
The procedure for establishing a link to COBOL programs varies with Web
server platform and Web deployment method. You’ll find instructions for
your method in the appropriate chapter in this book.

A.6 Posting Your Web Documents

Once you’ve created your Web document, you need to “post” it to your Web
server to make it available on the World Wide Web. Posting is nothing more
than uploading or copying the documents onto the Web server.

If you have created HTML files, you can post the files directly. If, however,
you have created XML files, you must transform the files to HTML, PDF, or
WML before posting them. You do not post the XML page, but rather a
published form of the page.

Authoring tools like the one that comes with Netscape Navigator/
Communicator provide “one-button publishing,” meaning you can post your
entire site to an ISP’s server with the click of a button. If this is not available,
you can use FTP to post your site. Your ISP will provide instructions.

If you have your own Web server, posting your site simply involves copying
the files over to the server machine. Your URL is formed from the path to the
files relative to the server’s root directory. Your Web server software will
provide instructions.

Method Where to find information on linking COBOL
programs

Thin client Section 3.5.2, “Using Anchor Tags”

Web runtime Section 5.6, “Invoking Your COBOL
Application with the Web Runtime”

Helper application/viewer Section C.5, “Creating a Link to Your
COBOL Object”

Promoting Your Site A-7
A.7 Promoting Your Site

If you are using your new Web site for business use, you will no doubt want
to promote the site once it’s up and running. Since most people use search
engines to find sites on the WWW, it is a good idea to add your site to several
prominent search databases. To do this, you can navigate to the site,
www.submit-it.com. There you specify which search databases to submit
your information to (e.g., Yahoo, WebCrawler, and InfoSeek), then you
define keywords, categories, and your URL. Submit-it lets you submit your
information to many databases at the same time, so no matter which search
engine users use, they have a good chance of discovering your site if they
enter your keywords.

A.8 Registering a Domain Name

After you create your Web site, you can register a domain name for the site
with the Internic. A domain name associates your site with a specific Internet
Protocol (IP) address. Web site domain names, such as
“www.company-name.com” provide a series of benefits leading to the
success of your Web site.

For instance, by registering a domain name, you can move your Web site
anywhere on the Web and your visitors can access the new location the same
as always simply by updating the registered address. If you plan to include
your Web site in the many search engines, a registered domain name allows
you to move your Web site without having to update the search engine
entries. Also, a domain name that matches, or closely matches, your
company name makes it easy for visitors to locate your Web site.

To register a domain name, talk to your Internet service provider or visit
www.InterNIC.com.

B
 Adding Internet Features to
Your Program
Key Topics

WEB-BROWSER Control .. B-2

Adding Web Browsing to Your COBOL Applications B-4

Displaying HTML Pages Distributed With Your Application B-5

Including Graphical and Multimedia Files in Your Applications B-6

Invoking e-mail, telnet, and FTP Services From Your Applications . B-6

Displaying Word Processing, Accounting, or Presentation Documents
From Your Applications .. B-7

Displaying Windows Objects Such as Folders and Files B-7

Performing Print, File, and Clipboard Operations............................. B-8

Sample Web Browser Program ... B-9

B-2 Adding Internet Features to Your Program
B.1 WEB-BROWSER Control

The ACUCOBOL-GT® Development System includes an Internet-related
graphical control called WEB-BROWSER. This control broadens the
usefulness and scope of your COBOL programs by giving them all of the
capabilities of Microsoft Internet Explorer’s Web browser control Version 4.0
and later (this control is designed for Windows users only). For instance, the
WEB-BROWSER control lets you:

• Facilitate seamless Web browsing from your COBOL application.

• Display Web pages containing HTML, scripting, ActiveX controls and
Java applet content.

• Display HTML pages distributed with your COBOL application.

• Include a variety of graphical and multimedia file types in your COBOL
application.

• Invoke e-mail, telnet, and FTP services from your COBOL application.

• Display word processing, accounting, or presentation documents from
your COBOL application.

• Display Windows objects such as folders and files from your COBOL
application.

• Display Windows dialog boxes such as “Print,” “Print Preview,” and
“Page Setup,” allowing users to print the contents delivered by the
control.

• Display the Windows “Save As” dialog box allowing the user to save the
current control content to a file.

• Perform “Select All” and “Copy” clipboard operations.

ACUCOBOL-GT’s WEB-BROWSER control is used just as any other
graphical control in ACUCOBOL-GT is used, except that it opens a resource
such as an HTML page, graphical image, video, audio, e-mail program, file
folder or any other resource that a Web browser can open. When you include

WEB-BROWSER Control B-3
the WEB-BROWSER control in your source code, your application launches
Microsoft Internet Explorer (MS IE) on your user’s machine and displays the
resource you specified.

Note: For the control to work, your users must have Microsoft Internet
Explorer Version 4.0 or later on their machine.

You specify the resource using standard URL naming conventions with any
protocol that Internet Explorer recognizes, such as http:, ftp:, mailto:, file:, or
javascript:.

For example to display our Web page on the user’s machine, you might create
a WEB-BROWSER control identified by the name BROWSER-1, then add
the following lines to a Screen Section item:

03 BROWSER-1 WEB-BROWSER, VALUE “www.acucorp.com”
 COLUMN 5, LINE 5, SIZE 60, LINES 20.

or add the following Procedure Division code:

DISPLAY WEB-BROWSER, VALUE “www.acucorp.com”
COLUMN 5, LINE 5, SIZE 60, LINES 20.

You can then close the screen, close the window, or destroy the control as you
would destroy any other ACUCOBOL-GT control.

The VALUE of the WEB-BROWSER control determines which resource to
display. Therefore, if you include:

DISPLAY WEB-BROWSER, VALUE “mailto:info@acucorp.com”.

your application launches your user’s default e-mail program and creates a
new message with the “To:” field prefilled. This allows your user to quickly
compose and mail a message to the specified address.

The default settings used by Internet Explorer when it performs these Web
browser functions (such as the “home page,” security options, e-mail
program) are included in the user’s control panel under the Internet option.
Users who want to alter the behavior of the browser controls should modify
their control panel Internet settings.

B-4 Adding Internet Features to Your Program
As with any ACUCOBOL-GT control, you can add the WEB-BROWSER
control to user interface screens using the AcuBench® Screen Designer. The
control can be found on the screen design control palette along with the other
controls. Click the control, fill in its value clause, and the Screen Painter will
show you what the screen will look like to the user.

Your WEB-BROWSER control can be as simple or involved as you like. In
its simplest form, the WEB-BROWSER control is activated in a single
DISPLAY statement. If desired, you can specify the size and color of the
resulting browser window; you can activate the browser control’s back,
forward, home, and search buttons; or you can capture events such as
download progress, status bar text changes or resource title change so you
can communicate them to your user.

For information on the methods, properties, events, and event properties of
the WEB-BROWSER control, refer to Chapter 3 of ACUCOBOL-GT
Book 2: User Interface Programming.

B.1.1 Adding Web Browsing to Your COBOL Applications

To add Web browsing to your COBOL applications, you include the Web
address (or URL) in the VALUE clause of the DISPLAY WEB-BROWSER
statement. For example:

display web-browser, value “www.acucorp.com”
 column 5, line 5, size 60, lines 20.

Using this method, your COBOL program can display Web pages containing
HTML, scripting, ActiveX controls, Java applet content and more.

Alternatively, your COBOL program can send Internet Explorer to the user’s
predefined home page (the one defined in the user’s control panel, Internet
Properties setting). To do this, you use the GO-HOME feature of the
WEB-BROWSER control, as in:

display web-browser, go-home = 1

Or, if you want to enable your users to search the Web, you can send the
browser to Microsoft’s Web portal site using the GO-SEARCH feature, as in:

display web-browser, go-search = 1

WEB-BROWSER Control B-5
If desired, you can dynamically change the browser’s location using the
MODIFY verb. For instance, if your program displays a combo-box offering
many different URL choices, you may need to MODIFY the location of the
browser based on a user response (mouse click).

Modify web-browser, value “www.cobol.com”

B.1.2 Displaying HTML Pages Distributed With Your
Application

To display HTML pages distributed with your application, you include the
HTML filename in the VALUE clause of the DISPLAY WEB-BROWSER
statement. For example:

display web-browser, value “myfile.htm”.

This opens and displays the file “myfile.htm” inside the WEB-BROWSER
control.

Using this method, you can display an HTML forms-based front end for your
application. To pass user input values from the HTML form to your COBOL
application, you must write a CGI program as described in section 4.5,
“Writing a CGI Program.” Then the HTML program can interact with the
CGI program on the Web server, and the CGI program can interact with your
COBOL code.

Note: If you want the <Enter> key to be active on an HTML page, add the
USE-RETURN style to the WEB-BROWSER control. This permits users
to press <Enter> after filling out a form to submit the form. If you do not
add the USE-RETURN style, pressing the <Enter> key will normally
terminate input (e.g., generate a button-pushed event for the default
push-button).

B-6 Adding Internet Features to Your Program
B.1.3 Including Graphical and Multimedia Files in Your
Applications

Using the WEB-BROWSER control, you can include many types of files in
your COBOL applications, including those with compressed graphical
formats, compressed sound formats, movie-file formats, animated GIF
formats, PDF formats, and more.

To include a graphical or multimedia file in your program, you include the
filename in the VALUE clause of the DISPLAY WEB-BROWSER
statement. For example:

display web-browser, value “movie1.avi”.

This example would launch the user’s default movie viewer and play the
movie on the user’s screen.

B.1.4 Invoking e-mail, telnet, and FTP Services From Your
Applications

To invoke e-mail, telnet, or FTP services from your COBOL application, you
include a standard mailto, telnet, or FTP path in the VALUE clause of the
DISPLAY WEB-BROWSER statement. For example, to open the user’s
default e-mail program and create a new message addressed to
“info@acucorp.com”, you would include:

display web-browser, value “mailto:info@acucorp.com”.

To open the login screen to a server called “sun” over telnet, you would
include:

display web-browser, value “telnet://sun”.

If desired, you can even use this interface to log on to a UNIX system from
your Windows environment.

To go to the FTP site “ftp://ftp.acucorp.com”, you would include:

display web-browser, value “ftp.acucorp.com”.

This opens a directory view of Acucorp’s FTP server.

WEB-BROWSER Control B-7
B.1.5 Displaying Word Processing, Accounting, or
Presentation Documents From Your Applications

To display word processing, accounting, or presentation documents that have
been distributed with your COBOL program, you include a path and filename
in the VALUE clause of the DISPLAY WEB-BROWSER statement. For
example, you can “embed” a Word document, Excel spreadsheet, or
PowerPoint slide presentation in your application, as in the following
example:

display web-browser, value “c:\presentations\training.ppt”.

This example opens PowerPoint inside the browser on the user’s machine
and displays the presentation named “training.ppt”. Note that the menus and
toolbars normally available to PowerPoint users do not appear in the browser.
Users can access a subset of menu options by right-clicking in the control.

B.1.6 Displaying Windows Objects Such as Folders and
Files

To display Windows objects such as directory folders and files (as in the
Windows Explorer directory structure), you include a pathname in the
VALUE clause of the DISPLAY WEB-BROWSER statement. For example:

display web-browser, value “C:\Program
Files\Acucorp\Acucbl800\acugt\bin”.

This displays the folders and files contained in the
“\acucorp\acucbl5x\acugt\bin” directory on the user’s local machine in a
manner similar to Windows Explorer. The user can open files by
double-clicking them. To view the options normally displayed in the
Windows Explorer menu bar or toolbar, users can right-click in the control.
They will see a pop-up menu that contains many useful options for browsing
directories.

B-8 Adding Internet Features to Your Program
B.1.7 Performing Print, File, and Clipboard Operations

The WEB-BROWSER control includes special properties that allow users to
perform standard Windows print, file, and clipboard operations from your
COBOL application.

There are five special properties relating to the Windows Print function.
They are designed to let users print the contents of the WEB-BROWSER
control (i.e., the Web page that is being displayed). These are:

To display the “Print” dialog so that users can choose a printer, page range,
and so on, set the Print property equal to “1” as such:

display web-browser PRINT = 1.

To assign a custom print template to use when printing with the dialog, add a
pathname to the CUSTOM-PRINT-TEMPLATE property, then set PRINT
equal to “1”. For example:

display web-browser CUSTOM-PRINT-TEMPLATE = "\templates\mytemplate.html", PRINT = 1.

In addition to the print properties, the WEB-BROWSER control has several
special properties relating to the Windows file and clipboard operations.
These are:

Special Property Function

PRINT Displays the “Print” dialog

PRINT-NO-PROMPT Prints without displaying a dialog first

PRINT-PREVIEW Displays the “Print Preview” dialog

CUSTOM-PRINT-TEMPLATE Defines the name and location of the
custom template to use for printing and
print previewing. (For use with IE versions
5.5 and later)

PAGE SETUP Displays the “Page Setup” dialog

Special Property Function

COPY-SELECTION Copies current selection to clipboard

CLEAR-SELECTION Clears current selection from clipboard

WEB-BROWSER Control B-9
To copy the current selection to the clipboard, set the COPY-SELECTION
property to “1” as shown below:

display web-browser, COPY-SELECTION = 1.

For complete information on the WEB-BROWSER control special
properties, refer to Book 2, section 5.19.2 of the ACUCOBOL-GT manual
set.

B.1.8 Sample Web Browser Program

The following sample program, “browser.cbl”, demonstrates usage of the
ACUCOBOL-GT WEB-BROWSER control. Additional samples have been
provided in the sample directory on your ACUCOBOL-GT distribution
media. See “webbrows.cbl” for another useful example.

identification division.
program-id. Browser.

* Copyright (c) 1988 - 2003 by Acucorp, Inc. Users of ACUCOBOL
* may freely modify and redistribute this program.

remarks.
This program illustrates the WEB BROWSER control type.

data division.
working-storage section.
copy "acucobol.def".

SELECT-ALL Selects the active HTML page, frame, or
entry field, depending on cursor location

SAVE-AS Displays the “Save As” dialog

SAVE-AS-NO-PROMPT Saves frame contents to disk without
prompting (for early version of IE only)

FILE-NAME Defines path of file to be used in Save As
operation

PROPERTIES Displays the “Properties” dialog

Special Property Function

COPY-SELECTION Copies current selection to clipboard

B-10 Adding Internet Features to Your Program
copy "acugui.def".

77 key-status
 is special-names crt status pic 9(4) value 0.
 88 exit-button-pushed value 27.

01 event-status
 is special-names event status.
 03 event-type pic x(4) comp-x.
 03 event-window-handle usage handle.
 03 event-control-handle usage handle.
 03 event-control-id pic x(2) comp-x.
 03 event-data-1 usage signed-short.
 03 event-data-2 usage signed-long.
 03 event-action pic x comp-x.

78 event-occurred value 96.
78 go-btn-pressed value 707.
78 back-btn-pressed value 708.
78 forward-btn-pressed value 709.
78 home-btn-pressed value 710.
78 refresh-btn-pressed value 711.
78 search-btn-pressed value 712.
78 stop-btn-pressed value 713.
77 ef-url pic x(1000).
77 wb-1-url pic x(1000).
77 wb-1-title pic x(100).
77 wb-1-status pic x(100).
77 wb-1-progress pic 9(7).
77 wb-1-max-progress pic 9(7).
77 progress-percent pic 9(9).

77 gt-bitmap pic s9(9) comp-4.

01 configuration-data.
 05 current-lines pic s99999V99 value 25.
 05 current-size pic s99999v99 value 73.

screen section.
01 screen-1.

 03 entry-field, column 5, line 4, size 55 max-text = 0
 value ef-url.

 03 push-button, "&Back",
 column 5, line 2, size 9
 self-act

WEB-BROWSER Control B-11
 termination-value = back-btn-pressed.

 03 push-button, "&Forward",
 column + 2, size 9
 self-act
 termination-value = forward-btn-pressed.

 03 push-button, "&Home",
 column + 2, size 9
 self-act
 termination-value = home-btn-pressed.

 03 push-button, "&Refresh",
 column + 2, size 9
 self-act
 termination-value = refresh-btn-pressed.

 03 push-button, "&Find",
 column + 2, size 9
 self-act
 termination-value = search-btn-pressed.

 03 push-button, "&Stop",
 column + 2, size 9
 self-act
 termination-value = stop-btn-pressed.

 03 push-button, "&Go", default-button
 column 55.2, line 4,
 termination-value = go-btn-pressed.

 03 status-frame-1 frame, line 22, column 5,
 lines 2 size 65 cells lowered.

 03 status-text-1 label, line 22.5, column 5.5,
 size 64 cells
 value wb-1-status.

 03 progress-meter-1 frame line 24 column 5
 lines 1.5 size 24
 fill-color = red, fill-color2 = white,
 fill-percent = 0, lowered.

 03 exit-1 push-button, "E&xit",
 cancel-button, line 24, column 32, size 11.

 03 busy-bitmap bitmap bitmap-handle = gt-bitmap,
 size 39, bitmap-start = 1, bitmap-end = 15,
 bitmap-timer = 0,

 line 2, column 65.

 03 wb-1 web-browser
 column 5, line 6,
 lines 16 cells, size 65 cells
 event procedure is browser-event-handler.

procedure division.
main-logic.
 display standard window,
 title "Web Browser Sample - browser.cbl"
 lines current-lines, size current-size,
 resizable
 background-low.

 call "w$bitmap" using wbitmap-load, "gtanima.bmp",
 giving gt-bitmap.

 display screen-1.

 perform, with test after, until exit-button-pushed
 accept screen-1
 evaluate key-status
 when go-btn-pressed
 move ef-url to wb-1-url
 modify wb-1 value=wb-1-url
 when back-btn-pressed
 modify wb-1 go-back=1
 when forward-btn-pressed
 modify wb-1 go-forward=1
 when home-btn-pressed
 modify wb-1 go-home=1
 when search-btn-pressed
 modify wb-1 go-search=1
 when refresh-btn-pressed
 modify wb-1 refresh=1
 when stop-btn-pressed
 modify wb-1 stop-browser=1
 when event-occurred
 if event-type = ntf-resized
 divide event-data-1 by 100 giving current-lines
 divide event-data-2 by 100 giving current-size
 modify wb-1
 lines current-lines - 9
 size current-size - 8
 modify status-frame-1
 line current-lines - 3
 size current-size - 8

WEB-BROWSER Control B-13
 modify status-text-1
 line current-lines - 2.5
 size current-size - 9
 modify progress-meter-1
 line current-lines - 1
 modify exit-1
 line current-lines - 1
 end-if
 end-evaluate
 end-perform.
 stop run.

browser-event-handler.
 evaluate event-type
 when msg-wb-navigate-complete
 inquire wb-1 value in wb-1-url
 if wb-1-url is not = ef-url then
 move wb-1-url to ef-url
 display screen-1
 end-if
 when msg-wb-progress-change
 inquire wb-1 progress in wb-1-progress
 inquire wb-1 max-progress in wb-1-max-progress
 move wb-1-progress to progress-percent
 multiply 100 by progress-percent
 divide wb-1-max-progress into progress-percent
 if progress-percent = 100
 move 0 to progress-percent
 end-if
 modify progress-meter-1,
 fill-percent = progress-percent
 if progress-percent = 0
 modify busy-bitmap bitmap-timer = 0
 bitmap-number = 1
 else
 modify busy-bitmap bitmap-timer = 10
 end-if
 when msg-wb-status-text-change
 inquire wb-1 status-text in wb-1-status
 display status-text-1
 when msg-wb-title-change
 inquire wb-1 title in wb-1-title
 display wb-1-title upon global window title
 end-evaluate.

C
 Use the Runtime as a Helper
Application or Viewer
Key Topics

What Are Helper Applications and Viewers?...................................... C-2

Deploying Applications with the Runtime as a Helper Application or
Viewer .. C-3

Setting Up a Web Site... C-4

Preparing Your ACUCOBOL-GT Application C-4

Creating a Link to Your COBOL Object ... C-8

The User’s Job .. C-9

Security and the Helper Application or Viewer C-15

C-2 Use the Runtime as a Helper Application or Viewer
C.1 What Are Helper Applications and Viewers?

If your users already have a licensed copy of the ACUCOBOL-GT® runtime
on their machine and they want to be able to access COBOL applications on
a Web site, one way to do this is to set up their runtime as an Internet helper
application or viewer inside their browser.

Helper application and viewer are browser terms referring to user-based
software that can read and process files of a given type. Netscape uses the
term “helper application” to refer to such software. Microsoft Internet
Explorer uses the term “viewer.”

Since the ACUCOBOL-GT runtime has the ability to read and process
COBOL objects, it allows users to run COBOL programs that they encounter
when browsing your Web page.

The main difference between this and a standard runtime configuration is that
your COBOL object files are on the Web server and transmitted to the client
machine via HTTP.

Windows-based

Web browser*

ACUCOBOL-GT

runtime

Web server

software

HTML documents

(Web pages)

ACUCOBOL-GT

object files and

libraries

Browser client

Server

HTTP

HTTP

Deploying Applications with the Runtime as a Helper Application or Viewer C-3
Keep in mind that the helper application/viewer is a fully-featured runtime; it
has full access to your users’ machines, including system calls, memory, disk
and network access. Therefore, it should be used only with programs from
trusted sources, or in conjunction with the Internet security you have in place.

Note: If your users do not already have an ACUCOBOL-GT runtime
installed, a thin client or Web runtime may be a better option for them.
These client technologies are available on Acucorp’s Web site, and they
provide additional capabilities designed for accessing remote COBOL
resources in Internet environments. Refer to Chapter 3 and Chapter 5 for
more information on these Web deployment methods.

Sample Scenario

The runtime as a helper application makes it very easy for your mobile work
force to “stay in touch.” With the runtime running as a helper application on
their laptops, remote staff can access the appropriate page on your Web site
and click on the link to start your inventory program on their local machines.
To access Vision data on the server, the runtime makes use of the AcuServer®
file system interface. This enables the sales person to access the inventory
data files and update them with new information from a remote location.

C.2 Deploying Applications with the Runtime as a
Helper Application or Viewer

To deploy your application on the Web using the helper application/viewer
method, you (the developer) have three tasks, described in the following
sections:

1. Setting Up a Web Site

2. Preparing Your ACUCOBOL-GT Application

3. Creating a Link to Your COBOL Object

C-4 Use the Runtime as a Helper Application or Viewer
Once your work is done, runtime users also have two tasks, described in these
sections:

1. Defining the Runtime as a Helper Application or Viewer

2. Launching the Application

C.3 Setting Up a Web Site

Appendix A gives general information about setting up a Web site, including
information on Web servers, posting a site, and promoting a site. Many
different tools are available to help you create a Web page quickly and easily.
Refer to Appendix A for guidelines.

C.4 Preparing Your ACUCOBOL-GT Application

There are no special coding considerations for using this method of Web
deployment. However, runtime configuration and packaging do require
some thought.

C.4.1 Configuring the Runtime

When used as a helper application or viewer, the ACUCOBOL-GT runtime is
invoked to execute a single file. If your application contains more than a
single object file, it must be packaged in a library file that “packages” all of
the objects and associated resources of your application into a single file (see
section C.4.2, “Packaging Your Application and Resources.”)

There are two ways to configure the runtime for use as a helper application:

• Programmatically, using the SET CONFIGURATION or SET
ENVIRONMENT variables, or

• Bundling a configuration file into the library file along with the COBOL
object files and resources.

Preparing Your ACUCOBOL-GT Application C-5
If you choose the library file method and the library contains a configuration
file, the client machine must be set up to specify the name of the
configuration file when users define the runtime as a helper application in
their browser. Be aware, however, that this will affect all COBOL
applications that your users run as a helper application. (See section C.6.1,
“Defining the Runtime as a Helper Application or Viewer,” for
instructions.)

If you choose to configure the runtime programmatically, you should use the
SET CONFIGURATION (or SET ENVIRONMENT) phrase in your source
code.

For example, if your application uses a configuration file with the following
entries:

FILE_PREFIX @hal:/u2/serverfiles
COMPRESS_FILES 1
KEYSTROKE EDIT=PREVIOUS EXCEPTION=52 kl

Add the following lines to your COBOL initialization code:

SET CONFIGURATION “FILE_PREFIX” TO “@hal:/u2/serverfiles”.
SET CONFIGURATION “COMPRESS_FILES” to “1”.
SET CONFIGURATION “KEYSTROKE” TO “EDIT=PREVIOUS EXCEPTION=52 kl”

Note that MAX_FILES, MAX_LOCKS, and LOCKS_PER_FILE cannot be
modified using the SET verb and that the COBOL program can read
environment variables using ACCEPT FROM CONFIGURATION (or
ACCEPT FROM ENVIRONMENT).

C.4.2 Packaging Your Application and Resources

In order to be used as a helper application or viewer, your COBOL
application must be packaged in a single library file that contains all of the
necessary COBOL objects, bitmap resources, and if desired, a configuration
file. If you will be interfacing your application with a relational database
through Acucorp’s Acu4GL® product, you can package the “.xfd” files into
the library file as well.

C-6 Use the Runtime as a Helper Application or Viewer
To create your library “package,” you use the cblutil utility, the COPY
RESOURCE statement, or a combination of the two. An overview of these
two techniques is provided below. Refer to the ACUCOBOL-GT Reference
Manual for additional information.

C.4.2.1 Using cblutil

The cblutil utility lets you embed resources, which are defined as pieces of
static data, directly into an object file. For the purposes of the helper
application, these resources can be applications, bitmaps, wave files,
configuration files, and extended file descriptors (“.xfd” files). The program
treats the resource as if it were a disk file, but the resource is not actually a
separate file in the target environment.

Using “cblutil -lib”, you can specify any type of file as an input file. If an
input file is a COBOL object, cblutil includes it in the resulting library as a
COBOL object. If an input file is another library, each component of the
library is individually added to the resulting library. Any other file is
included as a resource.

To use the cblutil utility program, type “cblutil -lib” followed by the desired
options, main program name, and all the modules you want included,
separated by a space. Be sure to add the main or initial program to the library
first, because the runtime executes the first program it encounters in the
library.

Syntax:
cblutil -lib [options] main_program modules

Example:
cblutil -lib -v -o mylib.acu prog1.obj prog2.obj logo.bmp cblconfi data1.xfd data2.xfd

Note: Since the helper application identifies content with the “.acu”
extension, the output library file must have the “.acu” extension. For this
reason, be sure to use the “-o” option to specify the name of the output file
when using “cblutil -lib”. In the example above, “mylib.acu” is the
specified output file.

Preparing Your ACUCOBOL-GT Application C-7
C.4.2.2 Using COPY RESOURCE

If you are creating a simple, single object library without “.xfd” files, you can
use the COPY RESOURCE statement to package your applications, bitmaps,
and configuration file instead of or in addition to the cblutil utility.

Use the COPY RESOURCE statement as follows:

COPY RESOURCE resource-name [{IN} path-name] .
 {OF}

where resource-name and path-name identify a resource file to be included
in the resulting object file.

The effect of a COPY RESOURCE statement is to add resource-name to a
list of resources that the compiler embeds into the resulting COBOL object
file. The resources are added to the end of the COBOL object in the same
order as the corresponding COPY statements. Since the resources are added
to the end of the object, the location of the corresponding COPY
RESOURCE statement in the COBOL program is irrelevant.
Conventionally, COPY RESOURCE statements are placed either in
Working-Storage or at the end of the program, but any location is acceptable.

If resource-name resolves to a COBOL object or library file, the compiler
includes this object or library in the resulting object in a manner similar to
“cblutil -lib”. These are not considered resources, but are embedded COBOL
objects.

If you are creating a library containing multiple COBOL objects, we
recommend using “cblutil -lib” instead of using COPY RESOURCE. Using
cblutil, you do not need to worry about the order in which COBOL objects
are compiled (if you use COPY RESOURCE, you must ensure that the
copied object is compiled first), and cblutil also checks for duplicated
program names while COPY RESOURCE does not.

Although technically you can include “.xfd” files in a library using COPY
RESOURCE, these files must exist before you compile with the COPY
RESOURCE statement. Because “.xfd” files are created at compile time, this
means you must compile more than once. For this reason, the cblutil method
is also preferred for including “.xfd” files in your object library.

C-8 Use the Runtime as a Helper Application or Viewer
C.5 Creating a Link to Your COBOL Object

To place your COBOL application on your Web page for use with a helper
application or viewer, you create a hyperlink by placing the HTML Anchor
tags in your HTML document. End users who visit your Web page can then
run the program by clicking on the program’s link.

The HTML Anchor tags, <A> and , are closed elements that, when
combined with the HREF attribute, highlight text or images, making them
clickable. When users click on a highlighted item on your Web page, they are
transferred to the linked document. Since the link in this case is a COBOL
program, when users click on the highlighted item, the COBOL program is
automatically invoked. (See any commercially available HTML text for
more information on anchors and hypertext links.)

To turn text into a hypertext anchor, enclose the clickable text in the Anchor
tags. The browser usually displays this text underlined and in a different
color. For example, your HTML document may include this:

Click here to run the application

The HREF attribute is used within the starting anchor tag to specify the
document to be linked (or retrieved). Then when the user clicks on the
highlighted text, “Click here to run the application,” on your Web page, the
COBOL object “myprog.acu” is retrieved from the specified location on the
Web server and run in a normal ACUCOBOL-GT window.

To use images as hypertext anchors, you place the element within the
Anchor tags. For example:

Then when the user clicks on the “myprog.gif” image on your Web page, the
COBOL object “myprog.acu” is retrieved from the specified location on the
Web server and run in a normal ACUCOBOL-GT window. While the
graphic file is loading (or if the user’s browser does not support images), the
browser displays the alternate text, “Click here to run the application”.
Clicking this text invokes the application as before.

The User’s Job C-9
C.6 The User’s Job

Once your work is done, runtime users have two tasks:

1. Defining the Runtime as a Helper Application or Viewer in Their
Browsers

2. Visiting Your Web site and Launching the Application

C.6.1 Defining the Runtime as a Helper Application or
Viewer

The process for defining helper applications or viewers varies according to
the browser. While many browsers support helper applications or viewers,
this section describes the most common: Netscape Communicator,
Netscape Navigator, and Microsoft Internet Explorer.

To define the runtime as a helper application in Netscape Communicator

The following procedure was written for newer versions of Netscape
Communicator. Your version of Netscape may operate differently. (Refer to
the documentation that comes with the browser for instructions on setting up
helper applications.) To configure Netscape Communicator to use
ACUCOBOL-GT as a helper application, do the following:

1. Start Netscape Communicator.

2. From the Edit menu, choose Preferences.

3. Under the Navigator category, click Helper Applications (Netscape
7) or Applications (Netscape 4.5).

4. To add a helper application to the list, and click New Type (or New on
UNIX).

C-10 Use the Runtime as a Helper Application or Viewer
5. Click inside each field in the box and do the following:

The New Type dialog box should now look similar to this:

Field Action

Description of Type Type “ACUCOBOL-GT object file”

File Extension Type “acu”

MIME Type Type “application/vnd.acucobol”

Application to use Type “wrun32.exe” or browse to and select the
ACUCOBOL-GT runtime file “wrun32.exe”.

This is the command line used to launch the
application. If users want to specify command line
options, they may do so by typing the option after
the executable name.

The User’s Job C-11
6. Click OK to return to the Preferences dialog box, which should now
look something like this:

7. Click OK to accept the new helper application set up for the
ACUCOBOL-GT runtime.

To define the runtime as a viewer in Internet Explorer

To invoke viewers, Internet Explorer uses the file type associations that users
have set up for their Windows configurations. The procedure to add a file
type association for ACUCOBOL-GT object files depends on your operating
system.

C-12 Use the Runtime as a Helper Application or Viewer
Windows NT, 2000, ME, and XP users do the
following:

1. Start Windows Explorer using the Start/Programs/Accessories menu.

2. From the Tools menu, select Folder Options and click the File Types
tab.

3. Click New to open the Create New Extension dialog box.

4. Type “.acu” for extension and click OK.

The User’s Job C-13
5. On the File Types tab, click Advanced.

6. From the Edit File Type box, select New... from the Actions field.

7. Click inside each field in the box and do the following:

Field Action

Action: Type “OPEN”

Application used to
perform action:

Browse to and select ACUCOBOL-GT
runtime file “wrun32.exe”. Click at the
end of this field and type “%1” preceded
by a space. Include the quotation marks.
This indicates the complete path to the
COBOL program file.

Note: If users want to specify command
line options, they may do so by typing the
option after the executable name.

C-14 Use the Runtime as a Helper Application or Viewer
The New Action dialog box should look similar to this:

8. Click OK to accept the new action.

9. Change the icon for the application as desired. The Edit File Type box
should look similar to this:

10. Click OK to accept the new file type.

Security and the Helper Application or Viewer C-15
C.6.2 Launching the Application

Now for the easy part. Once the runtime is installed on the local machine and
set up as a helper application or viewer in the browser, users just start their
browsers and visit your Web site. Since your application was included as a
hyperlink, users simply click the highlighted text or image associated with
the hyperlink to invoke your COBOL program.

The browser recognizes ACUCOBOL-GT object files, invokes the
ACUCOBOL-GT runtime as a helper application, and runs your application
on the end user’s machine. The application runs just as if the user had
invoked it directly on a local machine, using the full screen and
ACUCOBOL-GT user interface. The browser continues to run in the
background.

C.7 Security and the Helper Application or Viewer

It is important to realize that the ACUCOBOL-GT runtime is a fully enabled
runtime, even when used as a helper application or viewer. Unlike the
ACUCOBOL-GT Web Runtime, it does not contain any extra Internet
security mechanisms; it has full access to your users’ machines, including
system calls, memory, disk and network access.

For this reason, you should warn your users not to download COBOL
applications from other sources to use with this runtime, unless the
applications are from a trusted source. When your users try to download a
file of a new type under Netscape, they are warned that the file may contain
malicious code or scripting instructions, and they are given a chance to
decline the operation. Nevertheless, users should be reminded that their
helper application is a full-featured runtime without access limitations.

C-16 Use the Runtime as a Helper Application or Viewer

Glossary of Terms
Browser

The user interface that one uses to “browse” the World Wide Web. The
browsers discussed in this book are Netscape Navigator/Communicator and
Microsoft Internet Explorer, although ACUCOBOL-GT applications can be
accessed by most Web browsers.

CGI

Common Gateway Interface. A standard interface for running external
programs, or gateways, on a Web server. The Internet Server Application
Programming Interface (ISAPI) standard is an alternative to CGI. CGI
programs can be written in any language, including COBOL.

Domain name

A domain name associates your site with a specific Internet Protocol (IP)
address. Web site domain names, such as “www.company-name.com”
provide a series of benefits leading to the success of your Web site.

Headers

The information included in the beginning of client requests and server
responses using the HTTP model. Request headers contain file type
requirements, usernames and passwords, URLs, etc. Response headers
contain Web server information, date information, MIME types, etc.

Helper Application

Software installed on a user’s machine that has the ability to read and
process files of a given type. Synonymous with “viewer.” The
ACUCOBOL-GT runtime can be set up as a helper application in Netscape
or a viewer in Internet Explorer.

Glossary-2
HTML

HyperText Markup Language. A language that tells browsers how to
present Web pages. HTML uses a header and tags to pass structure,
formatting, hyperlink, and form description information to the browser.

HTTP

HyperText Transfer Protocol. The protocol or set of rules used by the
World Wide Web to govern the transfer of documents.

Hyperlink

A hot spot in a document or Web site that when clicked, takes you to
another location in the same or different document. Also called a Link.

Internet

The largest TCP/IP network in the world. A network that allows global
users to exchange information instantly and seamlessly. The infrastructure
behind the World Wide Web.

Internet Explorer

Microsoft’s browser program. Has become one of the two browser
standards used today, alongside Netscape Navigator and Netscape
Communicator.

MIME

Multipurpose Internet Mail Extensions. A set of standards for encoding/
decoding and identifying different types of files for transmission across
multiple platforms on the Internet.

Netscape Navigator/Netscape Communicator

Netscape’s browser program. Has become one of the two browser
standards used today, alongside Microsoft Internet Explorer. Navigator is
an older version of Communicator.

 Glossary-3
SSI

Server-Side Includes. Commands in an HTML document that are
interpreted by the Web server. SSIs are used when you want to include the
contents of another file in the current HTML document or to execute a
script whose output will be included in the current HTML document before
being sent to the browser client.

Tags

Codes that you use to mark up HTML documents in order to format the
document’s appearance. Tags indicate to the Web browser how to display
and handle portions of the document.

TCP/IP

Transmission control protocol/Internet protocol. The protocol or set of
rules used by the Internet and most client/server networks to facilitate
communication between computers.

Templates

HTML documents that can be used to provide standard formatting for other
HTML documents. Templates save hours of work. They can be used to
store common HTML shared by multiple Web pages on a single Web
server. This decreases the amount of replication and simplifies the task of
maintaining a Web site.

Thin client

A configuration in which your application is composed of two logical
layers: a user interface (UI) layer on the display host (client) and a COBOL
layer on the application host (server). The UI layer handles screen, mouse,
and keyboard activity, and the COBOL layer performs application
processing. With the ACUCOBOL-GT Thin Client, you do not have to
split your application into these layers, because a special runtime does it for
you. Because no application components are required on the client (unless
you want to use ActiveX controls), it is considered to be “thin.”

Glossary-4
URL

Uniform resource locator. It contains the address or location of a resource
on the Internet. The resource may be located on a server or locally on the
client machine. The resource can be a file, command, or query that is
handled using a protocol or access method indicated in the URL prefix.
Some common URL prefixes are http, ftp, file, news, javascript, telnet,
wais, and gopher.

Viewer

Software installed on a user’s machine that has the ability to read and
process files of a given type. Synonymous with “helper application.” The
ACUCOBOL-GT runtime can be set up as a helper application in Netscape
or a viewer in Internet Explorer.

Web site

A Web page or a set of related Web pages on the World Wide Web.

Web thin client

The ACUCOBOL-GT Web Thin Client is a special 32-bit version of the
thin client that is based on Microsoft’s ActiveX technology. It is itself an
ActiveX control that you can embed on your Web page. It makes your
existing thin client applications accessible through browsers that support
ActiveX, particularly Microsoft Internet Explorer.

WAP

Wireless Application Protocol. The communications protocol commonly
used for wireless devices like mobile phones and Personal Digital
Assistants (PDAs).

WML

Wireless Markup Language. Language standard of Wireless Application
Protocol (WAP).

World Wide Web

Also known as WWW. A collection of sites or pages that provide access to
text, graphics, multimedia, and more over the Internet.

 Glossary-5
XML

eXtensible Markup Language. Language standard for business-to-business
data exchange, Web services, and dynamic content Web publishing.

Index

A
A_CGI environment variable 4-35

AboutBox 3-23, 5-30

ACCEPT statement syntax for CGI 4-15

ACTION attribute, of FORM tag 4-9

ActiveX 3-10, 5-2

Acu4GL on the Internet 1-4, 2-6, 7-2, 7-14

AcuAccess file 6-4

acuauth.txt file 5-48, 5-50

quotation marks in 5-18

Acu-Client-Password external variable 7-6

ACUCOBOL.DEF 5-12

ACUCOBOL-GT Thin Client as a Web solution 2-2

ACUCOBOL-GT Web Runtime 5-2

general information 2-2

ACUCOBOL-GT Web Thin Client 3-10

AcuConnect 1-4, 5-9

on the Internet 2-6, 7-2, 7-7

used with thin clients 3-4

with AcuServer 7-7

with Web runtime 5-2

AcuEmbedded 3-23, 5-33

AcuExecute 3-21, 5-28

AcuGetLastError 3-22, 5-29

AcuIsActive 3-20, 5-27

AcuOptions 5-32

AcuParam1 ... AcuParam14 5-30

AcuProgram 3-24, 5-34

ACURCL_PORT configuration variable 3-10

AcuServer 1-4, 5-9

on the Internet 7-3

security issues 7-6

with Web runtime 5-2

Index-2
ACUSERVER_PORT configuration variable 7-6

AcuShowLogo 3-24, 5-33

AcuShutdownAx 3-21, 5-29

AcuSQL on the Internet 2-6, 7-2, 7-14

AcuXDBC

on the Internet 2-6, 7-2, 7-11

security 7-14

AcuXDBC Server

Internet pathnames 7-13

on the Internet 7-2

AcuXML 7-17

on the Internet 2-6

security 7-21

AcuXUI 2-6

as an applet 6-2

AcuXUI.jar file 6-3

ANCHOR tags

with helper application/viewer C-8

with thin client 3-9

with Web runtime 5-21, 5-38

Apache, configuring for CGI 4-34

applet 2-2

applet code, AcuXUI 6-3

architecture, thin client 3-3

ATC_PORT configuration variable 3-10

authorization file, Web runtime 5-50

B
bitmap resources 5-8, C-5

BROWSERINFO-DATA field 5-11

BROWSER-MAJOR-VERSION field 5-12

BROWSER-MINOR-VERSION field 5-12

browsers, behavior with Web controls 3-12, 5-5

 Index-3
C
C$GETCGI library routine 4-17

C$XML library routine 7-17

CAB file

Web runtime 5-3

Web thin client 3-11

cblutil utility 5-19, C-6

CGI (Common Gateway Interface) 4-2

diagram 4-4

process flow 4-3

programming 4-13

programming guidelines 4-14

reading CGI variables 4-15

sample programs 4-23

CGI program, writing a 4-13

CGI variables 4-13

CGI_AUTO_HEADER configuration variable 4-31

CGI_CONTENT_TYPE configuration variable 4-20, 4-21, 4-29

CGI_NO_CACHE configuration variable 4-30

CGI_STRIP_CR configuration variable 4-16, 4-18, 4-28

character encoding, CGI content 4-29

charset, CGI content 4-29

check boxes 4-11

CLASSID

value for Web runtime 5-22

value for Web thin client 3-15

client/server solutions 1-4

COBOL CGI 2-4

CODE_PREFIX configuration variable 7-5, 7-10

CODEBASE

using with Web runtime 5-24

using with Web thin client 3-17

value for Web runtime 5-22

value for Web thin client 3-16

coding and compiling for the Web runtime 5-10

coding considerations 5-15

Index-4
command-line options 4-19

Common Gateway Interface (CGI) 2-4

configuration file

for CGI runtime 4-28

packaging with Web Controls 5-18

configuration variables

ACURCL_PORT 3-10

ACUSERVER_PORT 7-6

ATC_PORT 3-10

CGI_AUTO_HEADER 4-31

CGI_NO_CACHE 4-30

CGI_STRIP_CR 4-16, 4-18, 4-28

CODE_PREFIX 7-5, 7-10

FILE_PREFIX 5-18, 5-49, 7-5

filename_HOST 7-20

HTML_TEMPLATE_PREFIX 4-21, 4-31

LOCKS_PER_FILE 5-17, C-5

MAX_FILES 5-17, C-5

MAX_LOCKS 5-17, C-5

SERVER_PORT 7-11

SET CONFIGURATION 5-16

SET ENVIRONMENT 5-16

configuring the runtime as a helper application C-4

configuring Web runtime 5-16

content type. See MIME content type

COPY RESOURCE statement 5-19, C-6, C-7

D
default port numbers

ACUCOBOL-GT Thin Client 3-10

AcuConnect 7-11

AcuServer 7-6

DEST-ITEM 4-17

directory folders, displaying B-7

DISPLAY statement syntax for CGI 4-20

domain names, registering A-7

 Index-5
E
e-mail services, invoking B-6

EMBED tag, with Web runtime 5-21

embedded SQL 7-15

encoding, character, CGI content 4-29

encryption 7-6

environment variables

A_CGI 4-35

PATH_TRANSLATED 4-21

REQUEST_METHOD 4-18

ESQL 7-15

eXtensible Markup Language (XML) 4-6

external-form-item 4-15

F
-f command-line option 4-19, 4-35

file system dependencies, Web runtime 5-43

file type associations C-11

FILE_PREFIX configuration variable 5-49, 7-5

filename_HOST configuration variable, used with AcuXML 7-20

files, acuauth.txt 5-50

firewalls

AcuConnect 7-11

AcuServer 7-6

thin client 3-10

FORM tag 4-7

components 4-9

forms 4-7

FTP services, invoking B-6

G
GET method 4-8

GRANT SQL syntax 7-14

graphical and multimedia files B-6

Index-6
H
HEIGHT and WIDTH attributes of OBJECT tag 3-16, 5-23

helper application, defined C-2

hidden fields 4-12

HREF attribute 3-9, 5-39, C-8

HTML (HyperText Markup Language) 4-6

authoring tools A-4

forms 4-7

front end B-5

tags

ANCHOR 3-9, C-8

FORM 4-7

INPUT 4-10

TEXTAREA 4-16, 4-18

HTML_TEMPLATE_PREFIX configuration variable 4-21, 4-31

HTTP browsers 4-6

hyperlinks, creating C-8

HyperText Markup Language (HTML) 4-6

I
ID

value for Web runtime 5-22

value for Web thin client 3-15

IDENTIFIED BY clause 4-20

IIS, configuring for CGI 4-33

IMG element 5-39

INPUT tag 4-10

installing the Web runtime 5-44

installing the Web thin client 3-27

international character mapping, CGI content 4-29

Internet Explorer 5-11, 5-12, C-11

Internet Information Server, configuring for CGI 4-33

Internet service providers A-3

IP address 3-6, 7-4, 7-9

IS EXTERNAL-FORM clause 2-4, 4-15, 4-20

IS-PLUGIN field 5-10, 5-12

 Index-7
L
launching the application, helper application method C-15

library file 5-8, C-4

license file

restricted mode 5-41

Web runtime 5-40

linking to COBOL programs A-5

list boxes 4-11

LOCKS_PER_FILE configuration variable 5-17, C-5

M
main window menu bars 3-12, 3-14, 5-5, 5-15

markup languages 4-6

MAX_FILES configuration variable 5-17, C-5

MAX_LOCKS configuration variable 5-17, C-5

menu bars 3-14, 5-15

METHOD attribute of FORM tag 4-8

methods

Web runtime object interface 5-25

Web thin client object interface 3-19

Microsoft IIS 4-33

migrating to Web runtime 5-53

MIME content type

configuring CGI output 4-29

configuring for Helper Application/Viewer C-9

configuring for thin client 3-7

mobile device browsers 4-6

multiple-line entry fields 4-10, 4-16, 4-18

N
Netscape Communicator C-9

Netscape Navigator C-9, C-15

Index-8
O
OBJECT element

invoking Web runtime 5-21

invoking Web thin client 3-15

object interface

scripting for Web runtime 5-36

scripting for Web thin client 3-26

options, command line, “-f” 4-19

options, command line,” -f” 4-35

P
packaging applications and resources 5-18, C-5

PATH_TRANSLATED environment variable 4-21

permissions, table 7-14

POST method 4-8

posting HTML documents A-6

product integration 1-4

properties

Web runtime object interface 5-25

Web thin client object interface 3-19

Q
QUIT-MODE 5-15

quotation marks, acuauth.txt file 5-18

R
radio buttons 4-11

remote name notation 7-5

REQUEST_METHOD environment variable 4-18

reset buttons 4-12

response header, HTTP 4-4

 Index-9
restricted mode 5-41

RETURN-CODE register 5-12, 5-14

running in restricted mode 5-41

runtime configuration file, Web runtime 5-17

runtime options 5-23, 5-32

CGI 4-35

for Web runtime 5-37

with the Web controls 5-6

S
scenarios

Acu4GL and AcuSQL 7-16

AcuConnect 7-9

AcuServer 7-4

AcuXDBC 7-12

AcuXML 7-18

thin client 3-2

Web runtime 5-2

scripting

with Web runtime object interface 5-36

with Web thin client object interface 3-26

security 7-6, C-15

AcuConnect 7-11

AcuServer 7-6, 7-21

AcuXML 7-21

thin client 3-10

Web runtime 5-45

Web thin client 3-28

security warning messages

Web runtime 5-47

Web thin client 3-30

SERVER_PORT configuration variable 7-11

server-side includes 4-31, A-5

SET CONFIGURATION configuration variable 5-16, C-4, C-5

SET ENVIRONMENT configuration variable 5-16, C-4, C-5

Index-10
SET verb C-5

single-line entry fields 4-10

solutions, client/server 1-4

SRC 3-25, 5-35

standard input stream 4-17

standard output stream 4-20

style sheet transformation language 4-6, A-4

submit buttons 4-12

SYSTEM-INFORMATION group 5-12

SYSTEM-INFORMATION IS-PLUGIN field 5-10

T
table permissions 7-14

tags

ANCHOR tags 5-39

EMBED 5-37

OBJECT 3-15, 5-21

TEXTAREA 4-16, 4-18

thin client

and the Internet 3-2

architecture 3-3

how it works 3-3

launching programs over the Internet 2-2

runtime 3-4

See also Web thin client

troubleshooting Web controls 5-51

TYPE attribute 4-10

U
URL of AcuXUI 6-3

user interface operations 4-19

USER-AGENT-STRING field 5-11

 Index-11
V
VALUE-INDEX field 4-18

VALUE-SIZE field 4-18

VARIABLE-NAME 4-17

viewer, defined C-2

W
W$BROWSERINFO library routine 5-10, 5-11

W$GETURL library routine 5-10, 5-13

W$STATUS library routine 5-10, 5-12

WAP devices 4-6, 4-20

Web browsing, adding to COBOL applications B-4

Web interface 2-4, 4-6

Web runtime

configuring 5-16

deploying 5-7

execution 5-6

general information 2-5, 5-2

how it works 5-3

licensing 5-40

object interface 5-25

program termination 5-5

security 5-45

supported browsers 5-6

user installation 5-44

using with AcuServer 5-41, 5-48

windowing options 5-4

working with object interface 5-25

Web servers, selecting software A-3

Web sites

authoring A-4

designing A-2

domain name registration A-7

posting A-6

promoting A-7

Index-12
Web thin client

deploying 3-13

general information 2-3, 3-10

how it works 3-10

licensing 3-26

program termination 3-12

security 3-28

supported browsers 3-13

user installation 3-26

working with object interface 3-19

WEB-BROWSER control 4-7, B-2

Windows objects, displaying B-7

Wireless Markup Language. See WML

WML 4-2, 4-3, 4-6

X
XFD files

packaging for helper application C-5

packaging for Web runtime 5-18

XML 4-6

authoring tools A-4

XSLT 4-6, A-4

	Introduction
	1.1 Introduction
	1.2 Purpose/Scope of Book
	1.3 What You Need to Know
	1.4 What You Don’t Need to Know
	1.5 Product Integration
	1.6 Technical Services

	Choosing a Deployment Method
	2.1 What Are My Options?
	2.1.1 Web Solutions
	2.1.2 Other Internet Solutions

	2.2 Helping You Decide
	How much do you want the user to do?
	How much programming are you willing to undertake?
	Do you need to provide remote access to programs, data, or both?
	Do you want to provide Web access or more private access?
	How is your application designed?
	Do you require a persistent connection to the server (i.e., Does the server need to remember the last action from the browser)?
	How frequently do you update your programs and data?
	What are the operating environments of your user population?

	Using the Thin Client to Launch Web Applications
	3.1 What Is the Thin Client?
	3.2 How the Thin Client Works
	3.3 Thin Clients and the Internet
	3.4 Specifying an Internet Address on the Command Line
	3.5 Providing Thin Client Links on the Web
	3.5.1 Thin Client Command Line Files
	3.5.2 Using Anchor Tags
	3.5.3 Security and the ACUCOBOL-GT Thin Client

	3.6 Using the ACUCOBOL-GT Web Thin Client
	3.6.1 Windowing Options
	3.6.2 How Your Program Executes
	3.6.3 Browser Versions Supported by the Web Thin Client
	3.6.4 Deploying Applications via the Web Thin Client
	3.6.5 Setting Up a Web Site
	3.6.6 Coding Considerations
	3.6.7 Updating Your Web Page to Invoke Your COBOL Application
	3.6.8 Using the <OBJECT> Tag
	3.6.8.1 How the <OBJECT> tag works
	3.6.8.2 Version number of Web thin client
	3.6.8.3 Object interface for the Web thin client
	AcuIsActive
	AcuExecute
	AcuShutdownAx
	AcuGetLastError
	AboutBox
	AcuEmbedded
	AcuShowLogo
	AcuCommandLine
	SRC
	3.6.8.4 Scripting with the object interface

	3.6.9 Licensing Considerations
	3.6.10 The User’s Job
	3.6.11 Troubleshooting
	3.6.12 Security and the Web Thin Client
	3.6.12.1 Digital signature of Web thin client
	3.6.12.2 How Internet Explorer security affects the Web thin client
	3.6.12.3 Security warning messages

	Launching Web Applications Through CGI
	4.1 What Is CGI?
	4.2 How CGI Works
	4.3 Deploying Your Applications on the Web Using CGI
	4.4 Creating a Web Interface
	4.4.1 Creating HTML Forms
	METHOD attribute
	ACTION attribute

	4.4.2 FORM Components
	INPUT tag
	TYPE attribute
	Single-line entry fields
	Multiple-line entry fields
	Check boxes and radio buttons
	List boxes
	Submit and Reset buttons
	Hidden fields

	4.5 Writing a CGI Program
	4.5.1 Reading CGI Input Data
	Using the ACCEPT verb
	Using the C$GETCGI routine

	4.5.2 Processing the User’s Request
	4.5.3 Generating Output
	4.5.4 Sample CGI Programs

	4.6 Creating a Runtime Configuration File for Your CGI Program
	CGI_STRIP_CR
	CGI_CONTENT_TYPE
	CGI_NO_CACHE
	CGI_AUTO_HEADER
	HTML_TEMPLATE_PREFIX
	CGI_CLEAR_MISSING_VALUES

	4.7 Configuring the Web Server
	4.7.1 “-b” Runtime Option
	4.7.2 “-f” Runtime Option
	4.7.3 A_CGI Environment Variable

	Using the ACUCOBOL-GT Web Runtime
	5.1 What Is the Web Runtime?
	5.2 How the Web Runtime Works
	5.2.1 Windowing Options
	5.2.2 How Your Program Executes
	5.2.3 Browser Versions Supported by the Web Runtime

	5.3 Deploying Applications via the Web Runtime
	5.4 Setting Up a Web Site
	5.5 Preparing Your ACUCOBOL-GT Application for the Web Runtime
	5.5.1 Coding for the Web Runtime
	W$BROWSERINFO routine
	W$STATUS routine
	IS-PLUGIN field in ACUCOBOL.DEF
	W$GETURL routine
	Other coding considerations

	5.5.2 Configuring the Web Runtime
	5.5.2.1 Programmatic configuration
	5.5.2.2 Runtime configuration files

	5.5.3 Packaging Your Application and Resources
	5.5.3.1 Using cblutil
	5.5.3.2 Using COPY RESOURCE

	5.6 Invoking Your COBOL Application with the Web Runtime
	5.6.1 Using the <OBJECT> Tag
	5.6.1.1 How the <OBJECT> tag works
	5.6.1.2 Version number of Web runtime
	5.6.1.3 Web runtime object interface
	AcuIsActive
	AcuExecute
	AcuShutdownAx
	AcuGetLastError
	AboutBox
	AcuParam1 … AcuParam14
	AcuOptions
	AcuEmbedded
	AcuShowLogo
	AcuProgram
	SRC
	5.6.1.4 Scripting with the object interface

	5.6.2 Using the <EMBED> Tag
	5.6.3 Using a Hyperlink to Launch Your Application

	5.7 Obtaining and Distributing the Web Runtime
	5.7.1 Licensing Considerations
	5.7.1.1 Licensing the server
	5.7.1.2 Licensing by machine

	5.7.2 File System Dependencies
	5.7.3 Manual Registration of the Web Runtime

	5.8 The User’s Job
	5.9 Security
	5.9.1 Digital Signature of Web Runtime
	5.9.2 How Internet Explorer Security Affects the Web Runtime
	5.9.3 Security Warning Messages
	5.9.4 How the Authorization File Works
	5.9.4.1 FILE_PREFIX override
	5.9.4.2 Editing the authorization file
	5.9.4.3 Restricted library routines
	5.9.4.4 Using the authorization file for access

	5.10 Troubleshooting
	5.11 Migrating from the Web Plug-in to the Web Runtime

	Using AcuXUI to Launch Web Applications
	6.1 Deploying AcuXUI as an Applet
	6.2 What is AcuXUI?
	6.3 Basic Procedure
	6.3.1 Updating Your Web Page

	Other Internet Solutions
	7.1 LAN, WAN, or Internet
	7.2 Accessing Vision Data Over the Internet
	7.2.1 Internet Considerations for AcuServer
	7.2.1.1 Defining Internet pathnames
	7.2.1.2 Security and AcuServer

	7.3 Accessing COBOL Programs Over the Internet
	7.3.1 Internet Considerations for AcuConnect
	7.3.1.1 Defining an Internet application path
	7.3.1.2 Security and AcuConnect

	7.4 Accessing Vision Data from ODBC Applications
	7.4.1 Internet Considerations for AcuXDBC
	7.4.1.1 Defining Internet pathnames: AcuXDBC Server configuration
	7.4.1.2 Security and AcuXDBC

	7.5 Accessing Relational Data Over the Internet
	7.5.1 Internet Considerations for Acu4GL and AcuSQL

	7.6 Accessing XML Data Over the Internet
	7.6.1 Internet Considerations for AcuXML and C$XML
	7.6.1.1 Using Internet notation with C$XML
	7.6.1.2 Using Internet notation with AcuXML
	7.6.1.3 Using AcuServer with AcuXML or C$XML
	7.6.1.4 Security and XML

	Building and Hosting a Web Site
	A.1 Setting Up a Web Site
	A.2 Designing Your Site
	A.3 Finding a Host or Building a Web Server
	A.3.1 Selecting Web Server Software

	A.4 Creating Your Web Pages
	A.5 Creating a Link to COBOL Programs
	A.6 Posting Your Web Documents
	A.7 Promoting Your Site
	A.8 Registering a Domain Name

	Adding Internet Features to Your Program
	B.1 WEB-BROWSER Control
	B.1.1 Adding Web Browsing to Your COBOL Applications
	B.1.2 Displaying HTML Pages Distributed With Your Application
	B.1.3 Including Graphical and Multimedia Files in Your Applications
	B.1.4 Invoking e-mail, telnet, and FTP Services From Your Applications
	B.1.5 Displaying Word Processing, Accounting, or Presentation Documents From Your Applications
	B.1.6 Displaying Windows Objects Such as Folders and Files
	B.1.7 Performing Print, File, and Clipboard Operations
	B.1.8 Sample Web Browser Program

	Use the Runtime as a Helper Application or Viewer
	C.1 What Are Helper Applications and Viewers?
	C.2 Deploying Applications with the Runtime as a Helper Application or Viewer
	C.3 Setting Up a Web Site
	C.4 Preparing Your ACUCOBOL-GT Application
	C.4.1 Configuring the Runtime
	C.4.2 Packaging Your Application and Resources
	C.4.2.1 Using cblutil
	C.4.2.2 Using COPY RESOURCE

	C.5 Creating a Link to Your COBOL Object
	C.6 The User’s Job
	C.6.1 Defining the Runtime as a Helper Application or Viewer
	C.6.2 Launching the Application

	C.7 Security and the Helper Application or Viewer

	Glossary of Terms

