
HPE HTTP Connector
Software Version: 11.2

Administration Guide

Document Release Date: October 2016

Software Release Date: October 2016

Legal Notices

Warranty

The only warranties for Hewlett Packard Enterprise Development LP products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notice

© Copyright 2016 Hewlett Packard Enterprise Development LP

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright ©
1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates
The title page of this document contains the following identifying information:

 l Software Version number, which indicates the software version.
 l Document Release Date, which changes each time the document is updated.
 l Software Release Date, which indicates the release date of this version of the software.
To check for recent software updates, go to https://downloads.autonomy.com/productDownloads.jsp.

To verify that you are using the most recent edition of a document, go to
https://softwaresupport.hpe.com/group/softwaresupport/search-result?doctype=online help.

This site requires that you register for an HPE Passport and sign in. To register for an HPE Passport ID, go to
https://hpp12.passport.hpe.com/hppcf/login.do.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HPE sales representative for details.

Support
Visit the HPE Software Support Online web site at https://softwaresupport.hpe.com.

This web site provides contact information and details about the products, services, and support that HPE
Software offers.

HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support web site to:

Administration Guide

HPE HTTP Connector (11.2) Page 2 of 156

https://downloads.autonomy.com/productDownloads.jsp
https://softwaresupport.hpe.com/group/softwaresupport/search-result?doctype=online help
https://hpp12.passport.hpe.com/hppcf/login.do
https://softwaresupport.hpe.com/

 l Search for knowledge documents of interest
 l Submit and track support cases and enhancement requests
 l Access product documentation
 l Manage support contracts
 l Look up HPE support contacts
 l Review information about available services
 l Enter into discussions with other software customers
 l Research and register for software training
Most of the support areas require that you register as an HPE Passport user and sign in. Many also require a
support contract.

To register for an HPE Passport ID, go to https://hpp12.passport.hpe.com/hppcf/login.do.

To find more information about access levels, go to
https://softwaresupport.hpe.com/web/softwaresupport/access-levels.

To check for recent software updates, go to https://downloads.autonomy.com/productDownloads.jsp.

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple
topics from the help information or read the online help in PDF format. Because this content was originally
created to be viewed as online help in a web browser, some topics may not be formatted properly. Some
interactive topics may not be present in this PDF version. Those topics can be successfully printed from
within the online help.

Administration Guide

HPE HTTP Connector (11.2) Page 3 of 156

https://hpp12.passport.hpe.com/hppcf/login.do
https://softwaresupport.hpe.com/web/softwaresupport/access-levels
https://downloads.autonomy.com/productDownloads.jsp

Contents

Chapter 1: Introduction 11
HPE HTTP Connector 11

Features and Capabilities 11
Supported Actions 12
Display Online Help 12
OEM Certification 13

Connector Framework Server 13

HPE's IDOL Platform 15

System Architecture 16

Related Documentation 17

Chapter 2: Install HPE HTTP Connector 19
System Requirements 19

Permissions 19

Install HPE HTTP Connector 19

Configure the License Server Host and Port 19

Chapter 3: Configure HPE HTTP Connector 21
HPE HTTP Connector Configuration File 21

Modify Configuration Parameter Values 23

Include an External Configuration File 24
Include the Whole External Configuration File 25
Include Sections of an External Configuration File 25
Include a Parameter from an External Configuration File 25
Merge a Section from an External Configuration File 26

Encrypt Passwords 27
Create a Key File 27
Encrypt a Password 27
Decrypt a Password 28

Register with a Distributed Connector 29

Set Up Secure Communication 30
Configure Outgoing SSL Connections 30
Configure Incoming SSL Connections 31

Backup and Restore the Connector’s State 32
Backup a Connector’s State 32

Administration Guide

HPE HTTP Connector (11.2) Page 4 of 156

Restore a Connector’s State 33

Validate the Configuration File 33

Example Configuration File 33

Chapter 4: Start and Stop the Connector 35
Start the Connector 35

Verify that HPE HTTP Connector is Running 36
GetStatus 36
GetLicenseInfo 36

Stop the Connector 36

Chapter 5: Send Actions to HPE HTTP Connector 38
Send Actions to HPE HTTP Connector 38

Asynchronous Actions 38
Check the Status of an Asynchronous Action 39
Cancel an Asynchronous Action that is Queued 39
Stop an Asynchronous Action that is Running 39

Store Action Queues in an External Database 40
Prerequisites 40
Configure HPE HTTP Connector 41

Store Action Queues in Memory 42

Use XSL Templates to Transform Action Responses 43
Example XSL Templates 44

Chapter 6: Use the Connector 45
Create a New Fetch Task 45

Retrieve Data using SSL 46

Schedule Fetch Tasks 47

Troubleshoot the Connector 48

Chapter 7: Manipulate Documents 50
Introduction 50

Add a Field to Documents using an Ingest Action 50

Customize Document Processing 51

Standardize Field Names 52

Run Lua Scripts 53
Write a Lua Script 53
Run a Lua Script using an Ingest Action 55

Administration Guide

HPE HTTP Connector (11.2) Page 5 of 156

Example Lua Scripts 55
Add a Field to a Document 55
Merge Document Fields 56

Chapter 8: Ingestion 58
Introduction 58

Send Data to Connector Framework Server 59

Send Data to Haven OnDemand 60
Prepare Haven OnDemand 60
Send Data to Haven OnDemand 60

Send Data to Another Repository 62

Index Documents Directly into IDOL Server 62

Index Documents into Vertica 63
Prepare the Vertica Database 65
Send Data to Vertica 65

Send Data to a MetaStore 66

Run a Lua Script after Ingestion 67

Chapter 9: Monitor the Connector 69
IDOL Admin 69

Prerequisites 69
Supported Browsers 69

Install IDOL Admin 69
Access IDOL Admin 70

Use the Connector Logs 71
Customize Logging 71

Set Up Event Handlers 72
Event Handlers 73
Configure an Event Handler 73

Set Up Performance Monitoring 74
Configure the Connector to Pause 75
Determine if an Action is Paused 76

Set Up Document Tracking 76

Chapter 10: Lua Functions and Methods Reference 79
General Functions 79

abs_path 81
base64_decode 81
base64_encode 82
convert_date_time 82

Administration Guide

HPE HTTP Connector (11.2) Page 6 of 156

convert_encoding 84
copy_file 85
create_path 85
create_uuid 86
delete_file 86
delete_path 87
doc_tracking 87
encrypt 88
encrypt_security_field 88
extract_date 89
file_setdates 91
get_config 92
get_log 92
get_task_config 93
get_task_name 93
getcwd 93
gobble_whitespace 94
hash_file 94
hash_string 95
is_dir 95
log 96
move_file 96
parse_csv 97
parse_xml 97
regex_match 98
regex_replace_all 99
regex_search 99
script_path 100
send_aci_action 100
send_aci_command 101
send_and_wait_for_async_aci_action 102
sleep 103
string_uint_less 103
unzip_file 104
url_escape 104
url_unescape 105
xml_encode 105
zip_file 106

LuaConfig Methods 106
getEncryptedValue 107
getValue 107
getValues 108
LuaConfig:new 108

LuaDocument Methods 109
addField 110
addSection 111

Administration Guide

HPE HTTP Connector (11.2) Page 7 of 156

appendContent 111
copyField 112
copyFieldNoOverwrite 112
countField 113
deleteField 113
getContent 114
getField 115
getFieldNames 115
getFields 115
getFieldValue 116
getFieldValues 117
getNextSection 117
getReference 118
getSection 118
getSectionCount 119
getValueByPath 119
getValuesByPath 120
hasField 120
insertXml 121
insertXmlWithoutRoot 121
LuaDocument:new 122
removeSection 122
renameField 123
setContent 123
setFieldValue 124
setReference 125
to_idx 125
to_json 125
to_xml 126
writeStubIdx 126
writeStubXml 127

LuaField Methods 127
addField 128
copyField 129
copyFieldNoOverwrite 129
countField 130
deleteAttribute 130
deleteField 130
getAttributeValue 131
getField 131
getFieldNames 132
getFields 132
getFieldValues 133
getValueByPath 133
getValuesByPath 134
hasAttribute 135

Administration Guide

HPE HTTP Connector (11.2) Page 8 of 156

hasField 136
insertXml 136
insertXmlWithoutRoot 137
name 137
renameField 137
setAttributeValue 138
setValue 138
value 139

LuaLog Methods 139
write_line 139

LuaXmlDocument Methods 140
root 141
XPathExecute 141
XPathRegisterNs 141
XPathValue 142
XPathValues 142

LuaXmlNodeSet Methods 143
at 143
size 144

LuaXmlNode Methods 144
attr 145
content 145
firstChild 145
lastChild 146
name 146
next 146
nodePath 147
parent 147
prev 147
type 147

LuaXmlAttribute Methods 148
name 148
next 149
prev 149
value 149

LuaRegexMatch Methods 150
length 150
next 151
position 151
size 151
str 152

Glossary 153

Administration Guide

HPE HTTP Connector (11.2) Page 9 of 156

Send Documentation Feedback 156

Administration Guide

HPE HTTP Connector (11.2) Page 10 of 156

Chapter 1: Introduction

This section provides an overview of the HPE HTTP Connector.

• HPE HTTP Connector 11
• Connector Framework Server 13
• HPE's IDOL Platform 15
• System Architecture 16
• Related Documentation 17

HPE HTTP Connector
HPE HTTP Connector is a powerful tool for retrieving Web site documents. The HPE HTTP Connector uses
spiders to find Web pages and to process the Web pages for content and links to other Web sites. HPE HTTP
Connector can retrieve various document types, including Web documents, Word, Excel, and PDF files.

After the HPE HTTP Connector has identified Web content, the files are sent to a Connector Framework
Server (CFS). CFS processes the information and indexes it into an IDOL Server.

After the documents are indexed, IDOL server automatically processes them, performing a number of
intelligent operations in real time, such as:

 l Agents
 l Alerting
 l Automatic Query Guidance
 l Categorization
 l Channels
 l Clustering
 l Collaboration
 l Dynamic Clustering
 l Dynamic Thesaurus

 l Eduction
 l Expertise
 l Hyperlinking
 l Mailing
 l Profiling
 l Retrieval
 l Spelling Correction
 l Summarization
 l Taxonomy Generation

Related Topics

 l Connector Framework Server, on page 13
 l HPE's IDOL Platform, on page 15

Features and Capabilities

The HTTP Connector (CFS) retrieves files from Web sites, over HTTP.

Repository Web sites retrieved over HTTP.

HPE HTTP Connector (11.2) Page 11 of 156

Data the connector can
retrieve

All files hosted on a Web site.

Data the connector
cannot retrieve

The connector cannot parse Javascript. This means that some Web pages
(linked from Javascript) are not found by the connector and are not indexed.

Supported Actions

The HTTP Connector (CFS) supports the following actions:

Action Supported

Synchronize

Synchronize (identifiers)

Synchronize Groups

Collect

Identifiers

Insert

Delete/Remove

Hold/ReleaseHold

Update

Stub

GetURI

View

Display Online Help

You can display the HPE HTTP Connector Reference by sending an action from your web browser.
The HPE HTTP Connector Reference describes the actions and configuration parameters that you can
use with HPE HTTP Connector.

For HPE HTTP Connector to display help, the help data file (help.dat) must be available in the
installation folder.

Administration Guide
Chapter 1: Introduction

HPE HTTP Connector (11.2) Page 12 of 156

To display help for HPE HTTP Connector

 1. Start HPE HTTP Connector.
 2. Send the following action from your web browser:

http://host:port/action=Help

where:

host is the IP address or name of the machine on which HPE HTTP Connector is installed.

port is the ACI port by which you send actions to HPE HTTP Connector (set by the Port
parameter in the [Server] section of the configuration file).

For example:

http://12.3.4.56:9000/action=help

OEM Certification

HPE HTTP Connector works in OEM licensed environments.

Connector Framework Server
Connector Framework Server (CFS) processes the information that is retrieved by connectors, and
then indexes the information into IDOL.

A single CFS can process information from any number of connectors. For example, a CFS might
process files retrieved by a File System Connector, web pages retrieved by a Web Connector, and e-
mail messages retrieved by an Exchange Connector.

To use the HPE HTTP Connector to index documents into IDOL Server, you must have a CFS. When
you install the HPE HTTP Connector, you can choose to install a CFS or point the connector to an
existing CFS.

For information about how to configure and use Connector Framework Server, refer to the Connector
Framework Server Administration Guide.

Filter Documents and Extract Subfiles

The documents that are sent by connectors to CFS contain only metadata extracted from the
repository, such as the location of a file or record that the connector has retrieved. CFS uses KeyView
to extract the file content and file specific metadata from over 1000 different file types, and adds this
information to the documents. This allows IDOL to extract meaning from the information contained in
the repository, without needing to process the information in its native format.

CFS also uses KeyView to extract and process sub-files. Sub-files are files that are contained within
other files. For example, an e-mail message might contain attachments that you want to index, or a
Microsoft Word document might contain embedded objects.

Administration Guide
Chapter 1: Introduction

HPE HTTP Connector (11.2) Page 13 of 156

Manipulate and Enrich Documents

CFS provides features to manipulate and enrich documents before they are indexed into IDOL. For
example, you can:

 l add additional fields to a document.
 l divide long documents into multiple sections.
 l run tasks including Eduction, Optical Character Recognition, or Face Recognition, and add the

information that is obtained to the document.
 l run a custom Lua script to modify a document.

Index Documents

After CFS finishes processing documents, it automatically indexes them into one or more indexes.
CFS can index documents into:

 l IDOL Server (or send them to a Distributed Index Handler, so that they can be distributed across
multiple IDOL servers).

 l Haven OnDemand.
 l Vertica.

Import Process

This section describes the import process for new files that are added to IDOL through CFS.

Administration Guide
Chapter 1: Introduction

HPE HTTP Connector (11.2) Page 14 of 156

 1. Connectors aggregate documents from repositories and send the files to CFS. A single CFS can
process documents from multiple connectors. For example, CFS might receive HTML files from
HTTP Connectors, e-mail messages from Exchange Connector, and database records from
ODBC Connector.

 2. CFS runs pre-import tasks. Pre-Import tasks occur before document content and file-specific
metadata is extracted by KeyView.

 3. KeyView filters the document content, and extracts sub-files.
 4. CFS runs post-import tasks. Post-Import tasks occur after KeyView has extracted document

content and file-specific metadata.
 5. The data is indexed into IDOL.

HPE's IDOL Platform
At the core of HPE HTTP Connector is HPE’s Intelligent Data Operating Layer (IDOL).

IDOL gathers and processes unstructured, semi-structured, and structured information in any format
from multiple repositories using IDOL connectors and a global relational index. It can automatically
form a contextual understanding of the information in real time, linking disparate data sources together
based on the concepts contained within them. For example, IDOL can automatically link concepts
contained in an email message to a recorded phone conversation, that can be associated with a stock
trade. This information is then imported into a format that is easily searchable, adding advanced
retrieval, collaboration, and personalization to an application that integrates the technology.

For more information on IDOL, see the IDOL Getting Started Guide.

Administration Guide
Chapter 1: Introduction

HPE HTTP Connector (11.2) Page 15 of 156

System Architecture
An IDOL infrastructure can include the following components:

 l Connectors. Connectors aggregate data from repositories and send the data to CFS.
 l Connector Framework Server (CFS). Connector Framework Server (CFS) processes and

enriches the information that is retrieved by connectors.
 l IDOL Server. IDOL stores and processes the information that is indexed into it by CFS.
 l Distributed Index Handler (DIH). The Distributed Index Handler distributes data across multiple

IDOL servers. Using multiple IDOL servers can increase the availability and scalability of the
system.

 l License Server. The License server licenses multiple products.
These components can be installed in many different configurations. The simplest installation consists
of a single connector, a single CFS, and a single IDOL Server.

Administration Guide
Chapter 1: Introduction

HPE HTTP Connector (11.2) Page 16 of 156

A more complex configuration might include more than one connector, or use a Distributed Index
Handler (DIH) to index content across multiple IDOL Servers.

Related Documentation
The following documents provide further information related to HPE HTTP Connector.

 l HPE HTTP Connector Reference
The HPE HTTP Connector Reference describes the configuration parameters and actions that you
can use with the HPE HTTP Connector.

 l Connector Framework Server Administration Guide

Administration Guide
Chapter 1: Introduction

HPE HTTP Connector (11.2) Page 17 of 156

Connector Framework Server (CFS) processes documents that are retrieved by connectors. CFS
then indexes the documents into IDOL Server, Haven OnDemand, or Vertica. The Connector
Framework Server Administration Guide describes how to configure and use CFS.

 l IDOL Getting Started Guide
The IDOL Getting Started Guide provides an introduction to IDOL. It describes the system
architecture, how to install IDOL components, and introduces indexing and security.

 l IDOL Server Administration Guide
The IDOL Server Administration Guide describes the operations that IDOL server can perform with
detailed descriptions of how to set them up.

 l Intellectual Asset Protection System (IAS) Administration Guide
The Intellectual Asset Protection System (IAS) Administration Guide describes how to use the
Intellectual Asset Protection System (IAS) to protect the information that you index into IDOL
Server.

 l License Server Administration Guide
This guide describes how to use a License Server to license multiple services.

Administration Guide
Chapter 1: Introduction

HPE HTTP Connector (11.2) Page 18 of 156

Chapter 2: Install HPE HTTP Connector

This section describes how to install the HPE HTTP Connector.

• System Requirements 19
• Permissions 19
• Install HPE HTTP Connector 19
• Configure the License Server Host and Port 19

System Requirements
HPE HTTP Connector can be installed as part of a larger system that includes an IDOL Server and an
interface for the information stored in IDOL Server. To maximize performance, HPE recommends that you
install IDOL Server and the connector on different machines.

For information about the minimum system requirements required to run IDOL components, including HPE
HTTP Connector, refer to the IDOL Getting Started Guide.

Permissions
Some Web sites might require the connector to log in to retrieve some content. You can provide credentials in
the connector’s configuration file.

Install HPE HTTP Connector
The HPE HTTP Connector can be installed using the IDOL Server installer.

For information about installing the HPE HTTP Connector using this installer, refer to the IDOL Getting
Started Guide.

Configure the License Server Host and Port
HPE HTTP Connector is licensed through HPE License Server. In the HPE HTTP Connector configuration
file, specify the information required to connect to the License Server.

To specify the license server host and port

 1. Open your configuration file in a text editor.
 2. In the [License] section, modify the following parameters to point to your License Server.

HPE HTTP Connector (11.2) Page 19 of 156

LicenseServerHost The host name or IP address of your License Server.

LicenseServerACIPort The ACI port of your License Server.

For example:

[License]
 LicenseServerHost=licenses
 LicenseServerACIPort=20000

 3. Save and close the configuration file.

Administration Guide
Chapter 2: Install HPE HTTP Connector

HPE HTTP Connector (11.2) Page 20 of 156

Chapter 3: Configure HPE HTTP Connector

This section describes how to configure the HPE HTTP Connector.

• HPE HTTP Connector Configuration File 21
• Modify Configuration Parameter Values 23
• Include an External Configuration File 24
• Encrypt Passwords 27
• Register with a Distributed Connector 29
• Set Up Secure Communication 30
• Backup and Restore the Connector’s State 32
• Validate the Configuration File 33
• Example Configuration File 33

HPE HTTP Connector Configuration File
You can configure the HPE HTTP Connector by editing the configuration file. The configuration file is located
in the connector’s installation folder. You can modify the file with a text editor.

The parameters in the configuration file are divided into sections that represent connector functionality.

Some parameters can be set in more than one section of the configuration file. If a parameter is set in more
than one section, the value of the parameter located in the most specific section overrides the value of the
parameter defined in the other sections. For example, if a parameter can be set in "TaskName or FetchTasks
or Default", the value in the TaskName section overrides the value in the FetchTasks section, which in turn
overrides the value in the Default section. This means that you can set a default value for a parameter, and
then override that value for specific tasks.

For information about the parameters that you can use to configure the HPE HTTP Connector, refer to the
HPE HTTP Connector Reference.

Server Section

The [Server] section specifies the ACI port of the connector. It also contains parameters that control the
way the connector handles ACI requests.

Service Section

The [Service] section specifies the service port of the connector. It also specifies which machines are
permitted to send service actions to the connector.

HPE HTTP Connector (11.2) Page 21 of 156

Actions Section

The [Actions] section contains configuration parameters that specify how the connector processes
actions that are sent to the ACI port. For example, you can configure event handlers that run when an
action starts, finishes, or encounters an error.

Logging Section

The [Logging] section contains configuration parameters that determine how messages are logged.
You can use log streams to send different types of message to separate log files. The configuration file
also contains a section to configure each of the log streams.

Connector Section

The [Connector] section contains parameters that control general connector behavior. For example,
you can specify a schedule for the fetch tasks that you configure.

Default Section

The [Default] section is used to define default settings for configuration parameters. For example,
you can specify default settings for the tasks in the [FetchTasks] section.

FetchTasks Section

The [FetchTasks] section lists the fetch tasks that you want to run. A fetch task is a task that
retrieves data from a repository. Fetch tasks are usually run automatically by the connector, but you
can also run a fetch task by sending an action to the connector’s ACI port.

In this section, enter the total number of fetch tasks in the Number parameter and then list the tasks in
consecutive order starting from 0 (zero). For example:

[FetchTasks]
 Number=2
 0=MyTask0
 1=MyTask1

[TaskName] Section

The [TaskName] section contains configuration parameters that apply to a specific task. There must be
a [TaskName] section for every task listed in the [FetchTasks] section.

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 22 of 156

Ingestion Section

The [Ingestion] section specifies where to send the data that is extracted by the connector.

You can send data to a Connector Framework Server, Haven OnDemand, or another connector. For
more information about ingestion, see Ingestion, on page 58.

DistributedConnector Section

The [DistributedConnector] section configures the connector to operate with the Distributed
Connector. The Distributed Connector is an ACI server that distributes actions (synchronize, collect
and so on) between multiple connectors.

For more information about the Distributed Connector, refer to the Distributed Connector Administration
Guide.

License Section

The [License] section contains details about the License server (the server on which your license file
is located).

Document Tracking Section

The [DocumentTracking] section contains parameters that enable the tracking of documents through
import and indexing processes.

Related Topics

 l Modify Configuration Parameter Values, below
 l Customize Logging, on page 71

Modify Configuration Parameter Values
You modify HPE HTTP Connector configuration parameters by directly editing the parameters in the
configuration file. When you set configuration parameter values, you must use UTF-8.

Caution: You must stop and restart HPE HTTP Connector for new configuration settings to take
effect.

This section describes how to enter parameter values in the configuration file.

Enter Boolean Values

The following settings for Boolean parameters are interchangeable:

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 23 of 156

TRUE = true = ON = on = Y = y = 1

FALSE = false = OFF = off = N = n = 0

Enter String Values

To enter a comma-separated list of strings when one of the strings contains a comma, you can indicate
the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird,"wing,beak",turtle

Alternatively, you can escape the comma with a backslash:

ParameterName=cat,dog,bird,wing\,beak,turtle

If any string in a comma-separated list contains quotation marks, you must put this string into quotation
marks and escape each quotation mark in the string by inserting a backslash before it. For example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

Include an External Configuration File
You can share configuration sections or parameters between ACI server configuration files. The
following sections describe different ways to include content from an external configuration file.

You can include a configuration file in its entirety, specified configuration sections, or a single
parameter.

When you include content from an external configuration file, the GetConfig and ValidateConfig
actions operate on the combined configuration, after any external content is merged in.

In the procedures in the following sections, you can specify external configuration file locations by
using absolute paths, relative paths, and network locations. For example:

../sharedconfig.cfg
 K:\sharedconfig\sharedsettings.cfg
 \\example.com\shared\idol.cfg
 file://example.com/shared/idol.cfg

Relative paths are relative to the primary configuration file.

Note: You can use nested inclusions, for example, you can refer to a shared configuration file that
references a third file. However, the external configuration files must not refer back to your original
configuration file. These circular references result in an error, and HPE HTTP Connector does not
start.

Similarly, you cannot use any of these methods to refer to a different section in your primary
configuration file.

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 24 of 156

Include the Whole External Configuration File

This method allows you to import the whole external configuration file at a specified point in your
configuration file.

To include the whole external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the external configuration file.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. For
example:

< "K:\sharedconfig\sharedsettings.cfg"

 4. Save and close the configuration file.

Include Sections of an External Configuration File

This method allows you to import one or more configuration sections from an external configuration file
at a specified point in your configuration file. You can include a whole configuration section in this way,
but the configuration section name in the external file must exactly match what you want to use in your
file. If you want to use a configuration section from the external file with a different name, see Merge a
Section from an External Configuration File, on the next page.

To include sections of an external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the external configuration file section.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the configuration section name that you want to include. For
example:

< "K:\sharedconfig\extrasettings.cfg" [License]

Note: You cannot include a section that already exists in your configuration file.

 4. Save and close the configuration file.

Include a Parameter from an External Configuration File

This method allows you to import a parameter from an external configuration file at a specified point in
your configuration file. You can include a section or a single parameter in this way, but the value in the
external file must exactly match what you want to use in your file.

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 25 of 156

To include a parameter from an external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the parameter from the external

configuration file.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the name of the configuration section name that contains the
parameter, followed by the parameter name. For example:

< "license.cfg" [License] LicenseServerHost

To specify a default value for the parameter, in case it does not exist in the external configuration
file, specify the configuration section, parameter name, and then an equals sign (=) followed by the
default value. For example:

< "license.cfg" [License] LicenseServerHost=localhost

 4. Save and close the configuration file.

Merge a Section from an External Configuration File

This method allows you to include a configuration section from an external configuration file as part of
your HPE HTTP Connector configuration file. For example, you might want to specify a standard
SSL configuration section in an external file and share it between several servers. You can use this
method if the configuration section that you want to import has a different name to the one you want to
use.

To merge a configuration section from an external configuration file

 1. Open your configuration file in a text editor.
 2. Find or create the configuration section that you want to include from an external file. For example:

[SSLOptions1]

 3. After the configuration section name, type a left angle bracket (<), followed by the path to and
name of the external configuration file, in quotation marks (""). You can use relative paths and
network locations. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg"

If the configuration section name in the external configuration file does not match the name that
you want to use in your configuration file, specify the section to import after the configuration file
name. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg" [SharedSSLOptions]

In this example, HPE HTTP Connector uses the values in the [SharedSSLOptions] section of
the external configuration file as the values in the [SSLOptions1] section of the HPE HTTP
Connector configuration file.

Note: You can include additional configuration parameters in the section in your file. If these

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 26 of 156

parameters also exist in the imported external configuration file, HPE HTTP Connector uses
the values in the local configuration file. For example:

[SSLOptions1] < "ssloptions.cfg" [SharedSSLOptions]
 SSLCACertificatesPath=C:\IDOL\HTTPConnector\CACERTS\

 4. Save and close the configuration file.

Encrypt Passwords
HPE recommends that you encrypt all passwords that you enter into a configuration file.

Create a Key File

A key file is required to use AES encryption.

To create a new key file

 1. Open a command-line window and change directory to the HPE HTTP Connector installation
folder.

 2. At the command line, type:

autpassword -x -tAES -oKeyFile=./MyKeyFile.ky

A new key file is created with the name MyKeyFile.ky

Caution: To keep your passwords secure, you must protect the key file. Set the permissions on
the key file so that only authorized users and processes can read it. HPE HTTP Connector must
be able to read the key file to decrypt passwords, so do not move or rename it.

Encrypt a Password

The following procedure describes how to encrypt a password.

To encrypt a password

 1. Open a command-line window and change directory to the HPE HTTP Connector installation
folder.

 2. At the command line, type:

autpassword -e -tEncryptionType [-oKeyFile] [-cFILE -sSECTION -pPARAMETER]
PasswordString

where:

Option Description

-t The type of encryption to use:

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 27 of 156

Option Description

EncryptionType l Basic

 l AES

For example: -tAES

Note: AES is more secure than basic encryption.

-oKeyFile AES encryption requires a key file. This option specifies the path and file
name of a key file. The key file must contain 64 hexadecimal characters.
For example: -oKeyFile=./key.ky

-cFILE -
sSECTION -
pPARAMETER

(Optional) You can use these options to write the password directly into
a configuration file. You must specify all three options.
 l -c. The configuration file in which to write the encrypted password.

 l -s. The name of the section in the configuration file in which to write
the password.

 l -p. The name of the parameter in which to write the encrypted
password.

For example:
-c./Config.cfg -sMyTask -pPassword

PasswordString The password to encrypt.

For example:

autpassword -e -tBASIC MyPassword

autpassword -e -tAES -oKeyFile=./key.ky MyPassword

autpassword -e -tAES -oKeyFile=./key.ky -c./Config.cfg -sDefault -pPassword
MyPassword

The password is returned, or written to the configuration file.

Decrypt a Password

The following procedure describes how to decrypt a password.

To decrypt a password

 1. Open a command-line window and change directory to the HPE HTTP Connector installation
folder.

 2. At the command line, type:

autpassword -d -tEncryptionType [-oKeyFile] PasswordString

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 28 of 156

where:

Option Description

-t
EncryptionType

The type of encryption:
 l Basic

 l AES

For example: -tAES

-oKeyFile AES encryption and decryption requires a key file. This option specifies
the path and file name of the key file used to decrypt the password.
For example: -oKeyFile=./key.ky

PasswordString The password to decrypt.

For example:

autpassword -d -tBASIC 9t3M3t7awt/J8A

autpassword -d -tAES -oKeyFile=./key.ky 9t3M3t7awt/J8A

The password is returned in plain text.

Register with a Distributed Connector
To receive actions from a Distributed Connector, a connector must register with the Distributed
Connector and join a connector group. A connector group is a group of similar connectors. The
connectors in a group must be of the same type (for example, all HTTP Connectors), and must be able
to access the same repository.

To configure a connector to register with a Distributed Connector, follow these steps. For more
information about the Distributed Connector, refer to the Distributed Connector Administration Guide.

To register with a Distributed Connector

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [DistributedConnector] section, set the following parameters:

RegisterConnector (Required) To register with a Distributed Connector, set this parameter to
true.

HostN (Required) The host name or IP address of the Distributed Connector.

PortN (Required) The ACI port of the Distributed Connector.

DataPortN (Optional) The data port of the Distributed Connector.

ConnectorGroup (Required) The name of the connector group to join. The value of this

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 29 of 156

parameter is passed to the Distributed Connector.

ConnectorPriority (Optional) The Distributed Connector can distribute actions to
connectors based on a priority value. The lower the value assigned to
ConnectorPriority, the higher the probability that an action is assigned
to this connector, rather than other connectors in the same connector
group.

SharedPath (Optional) The location of a shared folder that is accessible to all of the
connectors in the ConnectorGroup. This folder is used to store the
connectors’ datastore files, so that whichever connector in the group
receives an action, it can access the information required to complete it.
If you set the DataPortN parameter, the datastore file is streamed
directly to the Distributed Connector, and this parameter is ignored.

 4. Save and close the configuration file.
 5. Start the connector.

The connector registers with the Distributed Connector. When actions are sent to the Distributed
Connector for the connector group that you configured, they are forwarded to this connector or to
another connector in the group.

Set Up Secure Communication
You can configure Secure Socket Layer (SSL) connections between the connector and other ACI
servers.

Configure Outgoing SSL Connections

To configure the connector to send data to other components (for example Connector Framework
Server) over SSL, follow these steps.

To configure outgoing SSL connections

 1. Open the HPE HTTP Connector configuration file in a text editor.
 2. Specify the name of a section in the configuration file where the SSL settings are provided:

 l To send data to an ingestion server over SSL, set the IngestSSLConfig parameter in the
[Ingestion] section. To send data from a single fetch task to an ingestion server over SSL,
set IngestSSLConfig in a [TaskName] section.

 l To send data to a Distributed Connector over SSL, set the SSLConfig parameter in the
[DistributedConnector] section.

 l To send data to a View Server over SSL, set the SSLConfig parameter in the [ViewServer]
section.

You can use the same settings for each connection. For example:

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 30 of 156

[Ingestion]
IngestSSLConfig=SSLOptions

 [DistributedConnector]
SSLConfig=SSLOptions

 3. Create a new section in the configuration file. The name of the section must match the name you
specified in the IngestSSLConfig or SSLConfig parameter. Then specify the SSL settings to use.

SSLMethod The SSL protocol to use.

SSLCertificate (Optional) The SSL certificate to use (in PEM format).

SSLPrivateKey (Optional) The private key for the SSL certificate (in PEM format).

For example:

[SSLOptions]
 SSLMethod=SSLV23
 SSLCertificate=host1.crt
 SSLPrivateKey=host1.key

 4. Save and close the configuration file.
 5. Restart the connector.

Related Topics

 l Start and Stop the Connector, on page 35

Configure Incoming SSL Connections

To configure a connector or Connector Framework Server to accept data sent to its ACI port over SSL,
follow these steps.

To configure an incoming SSL Connection

 1. Stop the connector or CFS.
 2. Open the configuration file in a text editor.
 3. In the [Server] section set the SSLConfig parameter to specify the name of a section in the

configuration file for the SSL settings. For example:

[Server]
SSLConfig=SSLOptions

 4. Create a new section in the configuration file (the name must match the name you used in the
SSLConfig parameter). Then, use the SSL configuration parameters to specify the details for the
connection. You must set the following parameters:

SSLMethod The SSL protocol to use.

SSLCertificate The SSL certificate to use (in PEM format).

SSLPrivateKey The private key for the SSL certificate (in PEM format).

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 31 of 156

For example:

[SSLOptions]
 SSLMethod=SSLV23
 SSLCertificate=host1.crt
 SSLPrivateKey=host1.key

 5. Save and close the configuration file.
 6. Restart the connector or CFS.

Related Topics

 l Start and Stop the Connector, on page 35

Backup and Restore the Connector’s State
After configuring a connector, and while the connector is running, you can create a backup of the
connector’s state. In the event of a failure, you can restore the connector’s state from the backup.

To create a backup, use the backupServer action. The backupServer action saves a ZIP file to a path
that you specify. The backup includes:

 l a copy of the actions folder, which stores information about actions that have been queued, are
running, and have finished.

 l a copy of the configuration file.
 l a copy of the connector’s datastore files, which contain information about the files, records, or other

data that the connector has retrieved from a repository.

Backup a Connector’s State

To create a backup of the connectors state

 l In the address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=backupServer&path=path

where,

host The host name or IP address of the machine where the connector is running.

port The connector’s ACI port.

path The folder where you want to save the backup.

For example:

http://localhost:1234/action=backupServer&path=./backups

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 32 of 156

Restore a Connector’s State

To restore a connector’s state

 l In the address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=restoreServer&filename=filename

where,

host The host name or IP address of the machine where the connector is running.

port The connector’s ACI port.

filename The path of the backup that you created.

For example:

http://localhost:1234/action=restoreServer&filename=./backups/filename.zip

Validate the Configuration File
You can use the ValidateConfig service action to check for errors in the configuration file.

Note: For the ValidateConfig action to validate a configuration section, HPE HTTP Connector
must have previously read that configuration. In some cases, the configuration might be read when
a task is run, rather than when the component starts up. In these cases, ValidateConfig reports
any unread sections of the configuration file as unused.

To validate the configuration file

 l Send the following action to HPE HTTP Connector:

http://Host:ServicePort/action=ValidateConfig

where:

Host is the host name or IP address of the machine where HPE HTTP Connector is
installed.

ServicePort is the service port, as specified in the [Service] section of the configuration file.

Example Configuration File
[Server]
 Port = 5678
 Threads = 5

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 33 of 156

 [service]
 ServicePort=5432
 ServiceStatusClients=*
 ServiceControlClients=*

 [Connector]
 EnableIngestion=TRUE

 [Ingestion]
 IngesterType=AsyncPiranha
 IngestHost=localhost
 IngestPort=7000
 BatchSize=100

 [FetchTasks]
 Number=1
 0=MYSITE

 [MYSITE]
 URL=http://my.site.com/
 DIRECTORY=MYSITE

 [Logging]
 LogLevel=FULL
 0=ApplicationLogStream
 1=ActionLogStream
 2=SynchronizeLogStream

 [ApplicationLogStream]
 LogFile=application.log
 LogTypeCSVs=application
 LogEcho=TRUE

 [ActionLogStream]
 LogFile=action.log
 LogTypeCSVs=action
 LogEcho=TRUE

 [SynchronizeLogStream]
 LogFile=synchronize.log
 LogTypeCSVs=synchronize

 [License]
 LicenseServerHost=localhost
 LicenseServerACIPort=20000
 LicenseServerTimeout=600000
 LicenseServerRetries=1

Administration Guide
Chapter 3: Configure HPE HTTP Connector

HPE HTTP Connector (11.2) Page 34 of 156

Chapter 4: Start and Stop the Connector

This section describes how to start and stop the HPE HTTP Connector.

• Start the Connector 35
• Verify that HPE HTTP Connector is Running 36
• Stop the Connector 36

Note: You must start and stop the Connector Framework Server separately from the HPE HTTP
Connector.

Start the Connector
After you have installed and configured a connector, you are ready to run it. Start the connector using one of
the following methods.

Start the Connector on Windows

To start the connector using Windows Services

 1. Open the Windows Services dialog box.
 2. Select the connector service, and click Start.
 3. Close the Windows Services dialog box.

To start the connector by running the executable

 l In the connector installation directory, double-click the connector executable file.

Start the Connector on UNIX

To start the connector on a UNIX operating system, follow these steps.

To start the connector using the UNIX start script

 1. Change to the installation directory.
 2. Enter the following command:

./startconnector.sh

 3. If you want to check the HPE HTTP Connector service is running, enter the following command:

ps -aef | grep ConnectorInstallName

This command returns the HPE HTTP Connector service process ID number if the service is running.

HPE HTTP Connector (11.2) Page 35 of 156

Verify that HPE HTTP Connector is Running
After starting HPE HTTP Connector, you can run the following actions to verify that HPE HTTP
Connector is running.

 l GetStatus
 l GetLicenseInfo

GetStatus

You can use the GetStatus service action to verify the HPE HTTP Connector is running. For example:

http://Host:ServicePort/action=GetStatus

Note: You can send the GetStatus action to the ACI port instead of the service port. The
GetStatus ACI action returns information about the HPE HTTP Connector setup.

GetLicenseInfo

You can send a GetLicenseInfo action to HPE HTTP Connector to return information about your
license. This action checks whether your license is valid and returns the operations that your license
includes.

Send the GetLicenseInfo action to the HPE HTTP Connector ACI port. For example:

http://Host:ACIport/action=GetLicenseInfo

The following result indicates that your license is valid.

<autn:license>
 <autn:validlicense>true</autn:validlicense>
 </autn:license>

As an alternative to submitting the GetLicenseInfo action, you can view information about your
license, and about licensed and unlicensed actions, on the License tab in the Status section of
IDOL Admin.

Stop the Connector
You must stop the connector before making any changes to the configuration file.

To stop the connector using Windows Services

 1. Open the Windows Services dialog box.
 2. Select the ConnectorInstallName service, and click Stop.

Administration Guide
Chapter 4: Start and Stop the Connector

HPE HTTP Connector (11.2) Page 36 of 156

 3. Close the Windows Services dialog box.

To stop the connector by sending an action to the service port

 l Type the following command in the address bar of your Web browser, and press ENTER:

http://host:ServicePort/action=stop

host The IP address or host name of the machine where the connector is running.

ServicePort The connector’s service port (specified in the [Service] section of the
connector’s configuration file).

Administration Guide
Chapter 4: Start and Stop the Connector

HPE HTTP Connector (11.2) Page 37 of 156

Chapter 5: Send Actions to HPE HTTP
Connector

This section describes how to send actions to HPE HTTP Connector.

• Send Actions to HPE HTTP Connector 38
• Asynchronous Actions 38
• Store Action Queues in an External Database 40
• Store Action Queues in Memory 42
• Use XSL Templates to Transform Action Responses 43

Send Actions to HPE HTTP Connector
HPE HTTP Connector actions are HTTP requests, which you can send, for example, from your web browser.
The general syntax of these actions is:

http://host:port/action=action¶meters

where:

host is the IP address or name of the machine where HPE HTTP Connector is installed.

port is the HPE HTTP Connector ACI port. The ACI port is specified by the Port parameter in the
[Server] section of the HPE HTTP Connector configuration file. For more information about
the Port parameter, see the HPE HTTP Connector Reference.

action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

Note: Separate individual parameters with an ampersand (&). Separate parameter names from values
with an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the HPE HTTP Connector Reference.

Asynchronous Actions
When you send an asynchronous action to HPE HTTP Connector, the connector adds the task to a queue
and returns a token. HPE HTTP Connector performs the task when a thread becomes available. You can use
the token with the QueueInfo action to check the status of the action and retrieve the results of the action.

Most of the features provided by the connector are available through action=fetch, so when you use the
QueueInfo action, query the fetch action queue, for example:

 /action=QueueInfo&QueueName=Fetch&QueueAction=GetStatus

HPE HTTP Connector (11.2) Page 38 of 156

Check the Status of an Asynchronous Action

To check the status of an asynchronous action, use the token that was returned by HPE HTTP
Connector with the QueueInfo action. For more information about the QueueInfo action, refer to the
HPE HTTP Connector Reference.

To check the status of an asynchronous action

 l Send the QueueInfo action to HPE HTTP Connector with the following parameters.

QueueName The name of the action queue that you want to check.

QueueAction The action to perform. Set this parameter to GetStatus.

Token (Optional) The token that the asynchronous action returned. If you do not
specify a token, HPE HTTP Connector returns the status of every action
in the queue.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=getstatus&Token=...

Cancel an Asynchronous Action that is Queued

To cancel an asynchronous action that is waiting in a queue, use the following procedure.

To cancel an asynchronous action that is queued

 l Send the QueueInfo action to HPE HTTP Connector with the following parameters.

QueueName The name of the action queue that contains the action to cancel.

QueueAction The action to perform . Set this parameter to Cancel.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Cancel&Token=...

Stop an Asynchronous Action that is Running

You can stop an asynchronous action at any point.

Administration Guide
Chapter 5: Send Actions to HPE HTTP Connector

HPE HTTP Connector (11.2) Page 39 of 156

To stop an asynchronous action that is running

 l Send the QueueInfo action to HPE HTTP Connector with the following parameters.

QueueName The name of the action queue that contains the action to stop.

QueueAction The action to perform. Set this parameter to Stop.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Stop&Token=...

Store Action Queues in an External Database
HPE HTTP Connector provides asynchronous actions. Each asynchronous action has a queue to
store requests until threads become available to process them. You can configure HPE HTTP
Connector to store these queues either in an internal database file, or in an external database hosted on
a database server.

The default configuration stores queues in an internal database. Using this type of database does not
require any additional configuration.

You might want to store the action queues in an external database so that several servers can share
the same queues. In this configuration, sending a request to any of the servers adds the request to the
shared queue. Whenever a server is ready to start processing a new request, it takes the next request
from the shared queue, runs the action, and adds the results of the action back to the shared database
so that they can be retrieved by any of the servers. You can therefore distribute requests between
components without configuring a Distributed Action Handler (DAH).

Note: You cannot use multiple servers to process a single request. Each request is processed by
one server.

Note: Although you can configure several connectors to share the same action queues, the
connectors do not share fetch task data. If you share action queues between several connectors
and distribute synchronize actions, the connector that processes a synchronize action cannot
determine which items the other connectors have retrieved. This might result in some documents
being ingested several times.

Prerequisites

 l Supported databases:
 l PostgreSQL 9.0 or later.

 l MySQL 5.0 or later.

 l If you use PostgreSQL, you must set the PostgreSQL ODBC driver setting MaxVarChar to 0 (zero).

Administration Guide
Chapter 5: Send Actions to HPE HTTP Connector

HPE HTTP Connector (11.2) Page 40 of 156

If you use a DSN, you can configure this parameter when you create the DSN. Otherwise, you can
set the MaxVarcharSize parameter in the connection string.

Configure HPE HTTP Connector

To configure HPE HTTP Connector to use a shared action queue, follow these steps.

To store action queues in an external database

 1. Stop HPE HTTP Connector, if it is running.
 2. Open the HPE HTTP Connector configuration file.
 3. Find the relevant section in the configuration file:

 l To store queues for all asynchronous actions in the external database, find the [Actions]
section.

 l To store the queue for a single asynchronous action in the external database, find the section
that configures that action.

 4. Set the following configuration parameters.

AsyncStoreLibraryDirectory The path of the directory that contains the library to use to
connect to the database. Specify either an absolute path, or a
path relative to the server executable file.

AsyncStoreLibraryName The name of the library to use to connect to the database. You
can omit the file extension. The following libraries are
available:
 l postgresAsyncStoreLibrary - for connecting to a

PostgreSQL database.

 l mysqlAsyncStoreLibrary - for connecting to a MySQL
database.

ConnectionString The connection string to use to connect to the database. The
user that you specify must have permission to create tables in
the database. For example:
ConnectionString=DSN=my_ASYNC_QUEUE

or
ConnectionString=Driver={PostgreSQL};
Server=10.0.0.1; Port=9876;
Database=SharedActions; Uid=user; Pwd=password;
MaxVarcharSize=0;

For example:

[Actions]
 AsyncStoreLibraryDirectory=acidlls

Administration Guide
Chapter 5: Send Actions to HPE HTTP Connector

HPE HTTP Connector (11.2) Page 41 of 156

 AsyncStoreLibraryName=postgresAsyncStoreLibrary
 ConnectionString=DSN=ActionStore

 5. If you are using the same database to store action queues for more than one type of component,
set the following parameter in the [Actions] section of the configuration file.

DatastoreSharingGroupName The group of components to share actions with. You can set
this parameter to any string, but the value must be the same for
each server in the group. For example, to configure several
HPE HTTP Connectors to share their action queues, set this
parameter to the same value in every HPE HTTP Connector
configuration. HPE recommends setting this parameter to the
name of the component.

Caution: Do not configure different components (for
example, two different types of connector) to share the
same action queues. This will result in unexpected
behavior.

 For example:

[Actions]
 ...
 DatastoreSharingGroupName=ComponentType

 6. Save and close the configuration file.
When you start HPE HTTP Connector it connects to the shared database.

Store Action Queues in Memory
HPE HTTP Connector provides asynchronous actions. Each asynchronous action has a queue to
store requests until threads become available to process them. These queues are usually stored in a
datastore file or in an external database hosted on a database server. However, to increase
performance you can store these queues in memory.

Note: Storing action queues in memory means that the queues (including queued actions and the
results of finished actions) are lost if HPE HTTP Connector stops unexpectedly, for example due
to a power failure. This could result in some requests being lost, and if the queues are restored to a
previous state some actions could run more than once.

Note: Storing queues in memory will increase memory use. The amount of memory required
depends on the size of the queues. Ensure that the server has sufficient memory.

Note: You can not store action queues in memory if you want multiple components to share the
same queues.

If you stop HPE HTTP Connector cleanly, HPE HTTP Connector writes the action queues from
memory to disk so that it can resume processing when it is next started.

Administration Guide
Chapter 5: Send Actions to HPE HTTP Connector

HPE HTTP Connector (11.2) Page 42 of 156

To configure HPE HTTP Connector to store asynchronous action queues in memory, follow these
steps.

To store action queues in memory

 1. Stop HPE HTTP Connector, if it is running.
 2. Open the HPE HTTP Connector configuration file and find the [Actions] section.
 3. If you have set any of the following parameters, remove them:

 l AsyncStoreLibraryDirectory

 l AsyncStoreLibraryName

 l ConnectionString

 l UseStringentDatastore

 4. Set the following configuration parameters.

UseInMemoryDatastore A Boolean value that specifies whether to keep the
queues for asynchronous actions in memory. Set
this parameter to TRUE.

InMemoryDatastoreBackupIntervalMins (Optional) The time interval (in minutes) at which
the action queues are written to disk. Writing the
queues to disk can reduce the number of queued
actions that would be lost if HPE HTTP Connector
stops unexpectedly, but configuring a frequent
backup will increase the load on the datastore and
might reduce performance.

For example:

[Actions]
 UseInMemoryDatastore=TRUE
 InMemoryDatastoreBackupIntervalMins=30

 5. Save and close the configuration file.
When you start HPE HTTP Connector, it stores action queues in memory.

Use XSL Templates to Transform Action
Responses
You can transform the action responses returned by HPE HTTP Connector using XSL templates. You
must write your own XSL templates and save them with either an .xsl or .tmpl file extension.

After creating the templates, you must configure HPE HTTP Connector to use them, and then apply
them to the relevant actions.

Administration Guide
Chapter 5: Send Actions to HPE HTTP Connector

HPE HTTP Connector (11.2) Page 43 of 156

To enable XSL transformations

 1. Ensure that the autnxslt library is located in the same directory as your configuration file. If the
library is not included in your installation, you can obtain it from HPE Support.

 2. Open the HPE HTTP Connector configuration file in a text editor.
 3. In the [Server] section, ensure that the XSLTemplates parameter is set to true.

Caution: If XSLTemplates is set to true and the autnxslt library is not present in the same
directory as the configuration file, the server will not start.

 4. (Optional) In the [Paths] section, set the TemplateDirectory parameter to the path to the
directory that contains your XSL templates. The default directory is acitemplates.

 5. Save and close the configuration file.
 6. Restart HPE HTTP Connector for your changes to take effect.

To apply a template to action output

 l Add the following parameters to the action:

Template The name of the template to use to transform the action output.
Exclude the folder path and file extension.

ForceTemplateRefresh (Optional) If you modified the template after the server started, set this
parameter to true to force the ACI server to reload the template from
disk rather than from the cache.

For example:

action=QueueInfo&QueueName=Fetch
 &QueueAction=GetStatus
 &Token=...
 &Template=myTemplate

In this example, HPE HTTP Connector applies the XSL template myTemplate to the response from
a QueueInfo action.

Note: If the action returns an error response, HPE HTTP Connector does not apply the XSL
template.

Example XSL Templates

HPE HTTP Connector includes the following sample XSL templates, in the acitemplates folder:

XSL
Template Description

LuaDebug Transforms the output from the LuaDebug action, to assist with debugging Lua
scripts.

Administration Guide
Chapter 5: Send Actions to HPE HTTP Connector

HPE HTTP Connector (11.2) Page 44 of 156

Chapter 6: Use the Connector

This section describes how to use the connector.

• Create a New Fetch Task 45
• Retrieve Data using SSL 46
• Schedule Fetch Tasks 47
• Troubleshoot the Connector 48

Create a New Fetch Task
To automatically retrieve content from a repository, create a new fetch task by following these steps. The
connector runs each fetch task automatically, based on the schedule that is configured in the configuration
file.

To create a new Fetch Task

 1. Stop the connector.
 2. Open the configuration file in a text editor.
 3. In the [FetchTasks] section of the configuration file, specify the number of fetch tasks using the Number

parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch tasks have
already been configured, increase the value of the Number parameter by one (1). Below the Number
parameter, specify the names of the fetch tasks, starting from zero (0). For example:

[FetchTasks]
Number=1
0=MyTask

 4. Below the [FetchTasks] section, create a new TaskName section. The name of the section must
match the name of the new fetch task. For example:

[FetchTasks]
 Number=1
 0=MyTask

[MyTask]

 5. In the new section, set one of the following parameters to specify the sites that you want to index.

URLN Specify the URLs where you want to start indexing.

URLFile Specify the full path to a file that contains a list of URLs.

For example:

[MyTask]
URL0=http://www.autonomy.com
URL1=http://www.another-website.com

HPE HTTP Connector (11.2) Page 45 of 156

or

[MyTask]
URLFile=C:\autonomy\urls.txt

 6. In the [TaskName] section, use further parameters to configure the task. For information about the
parameters that you can use, refer to the HTTP Connector (CFS) Reference. For example, you
can specify how links are followed or the maximum number of pages that are retrieved.

 7. Save and close the configuration file. You can now start the connector.

Note: The connector saves a record of the data that is has retrieved for each fetch task. If you
make changes to the configuration and want to reset the connector so that it retrieves all of
your data again, delete the data files (connector_[fetchtask_name]_datastore.db) in the
connector’s installation folder.

Related Topics

 l Start and Stop the Connector, on page 35
 l Schedule Fetch Tasks, on the next page

Retrieve Data using SSL
To retrieve data from an HTTP server using SSL or TLS, you might need to set additional parameters
when you configure your fetch task.

To retrieve data over a secure connection

 1. In the HPE HTTP Connector configuration file, find the section where you configured your fetch
task:

[MyTask]
 URL0=https://www.hpe.com

 2. Specify the required SSL settings, for example:

[MyTask]
 URL0=https://www.hpe.com
 SSLMethod=TLSV1
 SSLCheckCertificate=TRUE
 SSLCACertificate=trusted.crt

Tip: In this case, you cannot use the SSLConfig parameter.

For more information about the SSL configuration parameters, refer to the Secure Socket Layer
Parameters in the HPE HTTP Connector Reference.

 3. Save and close the configuration file.

Administration Guide
Chapter 6: Use the Connector

HPE HTTP Connector (11.2) Page 46 of 156

Schedule Fetch Tasks
The connector automatically runs the fetch tasks that you have configured, based on the schedule in
the configuration file. To modify the schedule, follow these steps.

To schedule fetch tasks

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. Find the [Connector] section.
 4. The EnableScheduleTasks parameter specifies whether the connector should automatically run

the fetch tasks that have been configured in the [FetchTasks] section. To run the tasks, set this
parameter to true. For example:

[Connector]
EnableScheduledTasks=True

 5. In the [Connector] section, set the following parameters:

ScheduleStartTime The start time for the fetch task, the first time it runs after you start the
connector. The connector runs subsequent synchronize cycles after the
interval specified by ScheduleRepeatSecs.
Specify the start time in the format H[H][:MM][:SS]. To start running
tasks as soon as the connector starts, do not set this parameter or use
the value now.

ScheduleRepeatSecs The interval (in seconds) from the start of one scheduled synchronize
cycle to the start of the next. If a previous synchronize cycle is still
running when the interval elapses, the connector queues a maximum of
one action.

ScheduleCycles The number of times that each fetch task is run. To run the tasks
continuously until the connector is stopped, set this parameter to -1. To
run each task only one time, set this parameter to 1.

For example:

[Connector]
 EnableScheduledTasks=True
ScheduleStartTime=15:00:00
 ScheduleRepeatSecs=3600
 ScheduleCycles=-1

 6. (Optional) To run a specific fetch task on a different schedule, you can override these parameters
in a TaskName section of the configuration file. For example:

[Connector]
 EnableScheduledTasks=TRUE
 ScheduleStartTime=15:00:00

Administration Guide
Chapter 6: Use the Connector

HPE HTTP Connector (11.2) Page 47 of 156

 ScheduleRepeatSecs=3600
 ScheduleCycles=-1

 ...

 [FetchTasks]
 Number=2
 0=MyTask0
 1=MyTask1
 ...

 [MyTask1]
ScheduleStartTime=16:00:00
 ScheduleRepeatSecs=60
 ScheduleCycles=-1

In this example, MyTask0 follows the schedule defined in the [Connector] section, and MyTask1
follows the scheduled defined in the [MyTask1] TaskName section.

 7. Save and close the configuration file. You can now start the connector.
Related Topics

 l Start and Stop the Connector, on page 35

Troubleshoot the Connector
This section describes how to troubleshoot common problems that might occur when you set up the
HPE HTTP Connector.

Connection refused

If the connector cannot connect to the Web site that you want to index, check whether the
connector machine is behind a proxy server. If this is the case, use the configuration parameters
ProxyHost and ProxyPort (or ProxyFromLua) to specify the host name or IP address, and port, of
the proxy server.

Some pages are not indexed

If pages are not indexed, set the configuration parameter LogVerbose=true. You can then view the
synchronize log file to see the links that are extracted from pages. Check your configuration to
ensure that it does not exclude the pages that you want to index. The connector cannot parse
Javascript, so any links contained in Javascript are not found by the connector and those pages are
not indexed.

The connector does not log on successfully

Some Web sites require visitors, and therefore the connector, to log on before they can retrieve
content. You must set the LoginMethod configuration parameter and provide credentials in the
connector’s configuration file.

To determine the correct method to use to log in to a Web site, you can:

Administration Guide
Chapter 6: Use the Connector

HPE HTTP Connector (11.2) Page 48 of 156

 l View the page source. If the Web site presents an HTML form, view the page source and check
whether the form uses the POST or GET method to submit the form data to the Web server.

 l Use a packet analyzer to monitor the data sent from the Web browser to the Web server.
Compare the data sent by the Web browser, when you log in manually, to the data that is sent by
the connector.

If you configure the connector to log on to a Web site by submitting a form, ensure that the
connector submits all of the required fields.

Administration Guide
Chapter 6: Use the Connector

HPE HTTP Connector (11.2) Page 49 of 156

Chapter 7: Manipulate Documents

This section describes how to manipulate documents that are created by the connector and sent for ingestion.

• Introduction 50
• Add a Field to Documents using an Ingest Action 50
• Customize Document Processing 51
• Standardize Field Names 52
• Run Lua Scripts 53
• Example Lua Scripts 55

Introduction
IDOL Connectors retrieve data from repositories and create documents that are sent to Connector
Framework Server, another connector, or Haven OnDemand. You might want to manipulate the documents
that are created. For example, you can:

 l Add or modify document fields, to change the information that is indexed into IDOL Server or Haven
OnDemand.

 l Add fields to a document to customize the way the document is processed by CFS.
 l Convert information into another format so that it can be inserted into another repository by a connector

that supports the Insert action.
When a connector sends documents to CFS, the documents only contain metadata extracted from the
repository by the connector (for example, the location of the original files). To modify data extracted by
KeyView, you must modify the documents using CFS. For information about how to manipulate documents
with CFS, refer to the Connector Framework Server Administration Guide.

Add a Field to Documents using an Ingest Action
To add a field to all documents retrieved by a fetch task, or all documents sent for ingestion, you can use an
Ingest Action.

Note: To add a field only to selected documents, use a Lua script (see Run Lua Scripts, on page 53). For
an example Lua script that demonstrates how to add a field to a document, see Add a Field to a
Document, on page 55.

To add a field to documents using an Ingest Action

 1. Open the connector’s configuration file.
 2. Find one of the following sections in the configuration file:

HPE HTTP Connector (11.2) Page 50 of 156

 l To add the field to all documents retrieved by a specific fetch task, find the [TaskName]
section.

 l To add a field to all documents that are sent for ingestion, find the [Ingestion] section.

Note: If you set the IngestActions parameter in a [TaskName] section, the connector does
not run any IngestActions set in the [Ingestion] section for documents retrieved by that
task.

 3. Use the IngestActions parameter to specify the name of the field to add, and the field value. For
example, to add a field named AUTN_NO_EXTRACT, with the value SET, type:

IngestActions0=META:AUTN_NO_EXTRACT=SET

 4. Save and close the configuration file.

Customize Document Processing
You can add the following fields to a document to control how the document is processed by CFS.
Unless stated otherwise, you can add the fields with any value.

AUTN_FILTER_META_ONLY

Prevents KeyView extracting file content from a file. KeyView only extracts metadata and adds this
information to the document.

AUTN_NO_FILTER

Prevents KeyView extracting file content and metadata from a file. You can use this field if you do not
want to extract text from certain file types.

AUTN_NO_EXTRACT

Prevents KeyView extracting subfiles. You can use this field to prevent KeyView extracting the
contents of ZIP archives and other container files.

AUTN_NEEDS_MEDIA_SERVER_ANALYSIS

Identifies media files (images, video, and documents such as PDF files that contain embedded
images) that you want to send to Media Server for analysis, using a MediaServerAnalysis import
task. You do not need to add this field if you are using a Lua script to run media analysis. For more
information about running analysis on media, refer to the Connector Framework Server Administration
Guide.

AUTN_NEEDS_IMAGE_SERVER_ANALYSIS

Identifies images that you want to send to Image Server for image analysis, using an
ImageServerAnalysis import task. You do not need to add this field if you are using a Lua script to run
image analysis. Image Server enriches documents that represent images by running operations such
as optical character recognition, face recognition, and object detection. For more information about
running analysis on images, refer to the Connector Framework Server Administration Guide.

Administration Guide
Chapter 7: Manipulate Documents

HPE HTTP Connector (11.2) Page 51 of 156

AUTN_NEEDS_VIDEO_SERVER_ANALYSIS

Identifies video that you want to send to Video Server for analysis, using a VideoServerAnalysis
import task. You do not need to add this field if you are using a Lua script to run video analysis. For
more information about running analysis on video, refer to the Connector Framework Server
Administration Guide.

AUTN_NEEDS_TRANSCRIPTION

Identifies audio and video assets that you want to send to an IDOL Speech Server for speech-to-text
processing, using an IdolSpeech import task. You do not need to add this field if you are using a Lua
script to run speech-to-text. For more information about running speech-to-text on documents, refer to
the Connector Framework Server Administration Guide.

AUTN_FORMAT_CORRECT_FOR_TRANSCRIPTION

To bypass the transcoding step of an IdolSpeech import task, add the field AUTN_FORMAT_CORRECT_
FOR_TRANSCRIPTION. Documents that have this field are not sent to a Transcode Server. For more
information about the IdolSpeech task, refer to the Connector Framework Server Administration
Guide.

AUTN_AUDIO_LANGUAGE

To bypass the language identification step of an IdolSpeech import task add the field AUTN_AUDIO_
LANGUAGE. The value of the field must be the name of the IDOL Speech Server language pack to use for
extracting speech. Documents that have this field are not sent to the IDOL Speech Server for language
identification. For more information about the IdolSpeech task, refer to the Connector Framework
Server Administration Guide.

Standardize Field Names
Field standardization renames document fields so that they follow a standard naming scheme. You can
use field standardization so that documents indexed into IDOL through different connectors use the
same fields to store the same type of information.

For example, documents created by the File System Connector can have a field named FILEOWNER.
Documents created by the Documentum Connector can have a field named owner_name. Both of these
fields store the name of the person who owns a file. Field standardization renames the fields so that
they have the same name.

Field standardization only renames fields that are specified in the standard naming scheme. If a
connector or document does not have any mapping, field standardization does run but has no effect.
The naming scheme is defined in XML format and is supplied with the connector.

Note: You can also configure CFS to run field standardization. To standardize all field names, you
must run field standardization from both the connector and CFS.

To enable field standardization

 1. Stop the connector.
 2. Open the connector’s configuration file.
 3. In the [Connector] section, set the following parameters:

Administration Guide
Chapter 7: Manipulate Documents

HPE HTTP Connector (11.2) Page 52 of 156

EnableFieldNameStandardization A Boolean that specifies whether to enable field
standardization. Set this parameter to true.

FieldNameDictionaryPath The path to the XML file that contains the field names to
use for field standardization.

For example:

[Connector]
 EnableFieldNameStandardization=true
 FieldNameDictionaryPath=dictionary.xml

 4. Save the configuration file and restart the connector.

Run Lua Scripts
IDOL Connectors can run custom scripts written in Lua, an embedded scripting language. You can use
Lua scripts to process documents that are created by a connector, before they are sent to CFS and
indexed into IDOL Server. For example, you can:

 l Add or modify document fields.
 l Manipulate the information that is indexed into IDOL.
 l Call out to an external service, for example to alert a user.
There might be occasions when you do not want to send documents to a CFS. For example, you might
use the Collect action to retrieve documents from one repository and then insert them into another.
You can use a Lua script to transform the documents from the source repository so that they can be
accepted by the destination repository.

To run a Lua script from a connector, use one of the following methods:

 l Set the IngestActions configuration parameter in the connector’s configuration file. For information
about how to do this, see Run a Lua Script using an Ingest Action, on page 55. The connector runs
ingest actions on documents before they are sent for ingestion.

 l Set the IngestActions action parameter when using the Synchronize action.

Write a Lua Script

A Lua script that is run from a connector must have the following structure:

function handler(config, document, params)
 ...
 end

The handler function is called for each document and is passed the following arguments:

Argument Description

config A LuaConfig object that you can use to retrieve the values of configuration parameters
from the connector’s configuration file.

Administration Guide
Chapter 7: Manipulate Documents

HPE HTTP Connector (11.2) Page 53 of 156

Argument Description

document A LuaDocument object. The document object is an internal representation of the
document being processed. Modifying this object changes the document.

params The params argument is a table that contains additional information provided by the
connector:

 l TYPE. The type of task being performed. The possible values are ADD, UPDATE,
DELETE, or COLLECT.

 l SECTION. The name of the section in the configuration file that contains
configuration parameters for the task.

 l FILENAME. The document filename. The Lua script can modify this file, but must
not delete it.

 l OWNFILE. Indicates whether the connector (and CFS) has ownership of the file. A
value of true means that CFS deletes the file after it has been processed.

The following script demonstrates how you can use the config and params arguments:

function handler(config, document, params)
 -- Write all of the additional information to a log file
 for k,v in pairs(params) do
 log("logfile.txt", k..": "..tostring(v))
 end

 -- The following lines set variables from the params argument
 type = params["TYPE"]
 section = params["SECTION"]
 filename = params["FILENAME"]

 -- Read a configuration parameter from the configuration file
 -- If the parameter is not set, "DefaultValue" is returned
 val = config:getValue(section, "Parameter", "DefaultValue")

 -- If the document is not being deleted, set the field FieldName
 -- to the value of the configuration parameter
 if type ~= "DELETE" then
 document:setFieldValue("FieldName", val)
 end

 -- If the document has a file (that is, not just metadata),
 -- copy the file to a new location and write a stub idx file
 -- containing the metadata.
 if filename ~= "" then
 copytofilename = "./out/"..create_uuid(filename)
 copy_file(filename, copytofilename)
 document:writeStubIdx(copytofilename..".idx")
 end

Administration Guide
Chapter 7: Manipulate Documents

HPE HTTP Connector (11.2) Page 54 of 156

 return true
 end

For the connector to continue processing the document, the handler function must return true. If the
function returns false, the document is discarded.

Tip: You can write a library of useful functions to share between multiple scripts. To include a
library of functions in a script, add the code dofile("library.lua") to the top of the lua script,
outside of the handler function.

Run a Lua Script using an Ingest Action

To run a Lua script on documents that are sent for ingestion, use an Ingest Action.

To run a Lua script using an Ingest Action

 1. Open the connector’s configuration file.
 2. Find one of the following sections in the configuration file:

 l To run a Lua script on all documents retrieved by a specific task, find the [TaskName] section.

 l To run a Lua script on all documents that are sent for ingestion, find the [Ingestion] section.

Note: If you set the IngestActions parameter in a [TaskName] section, the connector does
not run any IngestActions set in the [Ingestion] section for that task.

 3. Use the IngestActions parameter to specify the path to your Lua script. For example:

IngestActions=LUA:C:\Autonomy\myScript.lua

 4. Save and close the configuration file.
Related Topics

 l Write a Lua Script, on page 53

Example Lua Scripts
This section contains example Lua scripts.

 l Add a Field to a Document, below
 l Merge Document Fields, on the next page

Add a Field to a Document

The following script demonstrates how to add a field named “MyField” to a document, with a value of
“MyValue”.

Administration Guide
Chapter 7: Manipulate Documents

HPE HTTP Connector (11.2) Page 55 of 156

function handler(config, document, params)
 document:addField("MyField", "MyValue");
 return true;
 end

The following script demonstrates how to add the field AUTN_NEEDS_MEDIA_SERVER_ANALYSIS to all
JPEG, TIFF and BMP documents. This field indicates to CFS that the file should be sent to a Media
Server for analysis (you must also define the MediaServerAnalysis task in the CFS configuration file).

The script finds the file type using the DREREFERENCE document field, so this field must contain the file
extension for the script to work correctly.

function handler(config, document, params)
 local extensions_for_ocr = { jpg = 1 , tif = 1, bmp = 1 };
 local filename = document:getFieldValue("DREREFERENCE");
 local extension, extension_found = filename:gsub("^.*%.(%w+)$", "%1", 1);

 if extension_found > 0 then
 if extensions_for_ocr[extension:lower()] ~= nil then
 document:addField("AUTN_NEEDS_MEDIA_SERVER_ANALYSIS", "");
 end
 end

 return true;
 end

Merge Document Fields

This script demonstrates how to merge the values of document fields.

When you extract data from a repository, the connector can produce documents that have multiple
values for a single field, for example:

#DREFIELD ATTACHMENT="attachment.txt"
 #DREFIELD ATTACHMENT="image.jpg"
 #DREFIELD ATTACHMENT="document.pdf"

This script shows how to merge the values of these fields, so that the values are contained in a single
field, for example:

#DREFIELD ATTACHMENTS="attachment.txt, image.jpg, document.pdf"

Example Script

function handler(config, document, params)
 onefield(document,"ATTACHMENT","ATTACHMENTS")
 return true;
 end

 function onefield(document,existingfield,newfield)
 if document:hasField(existingfield) then

Administration Guide
Chapter 7: Manipulate Documents

HPE HTTP Connector (11.2) Page 56 of 156

 local values = { document:getFieldValues(existingfield) }

 local newfieldvalue=""
 for i,v in ipairs(values) do
 if i>1 then
 newfieldvalue = newfieldvalue ..", "
 end

 newfieldvalue = newfieldvalue..v
 end

 document:addField(newfield,newfieldvalue)
 end

 return true;
 end

Administration Guide
Chapter 7: Manipulate Documents

HPE HTTP Connector (11.2) Page 57 of 156

Chapter 8: Ingestion

After a connector finds new documents in a repository, or documents that have been updated or deleted, it
sends this information to another component called the ingestion target. This section describes where you
can send the information retrieved by the HPE HTTP Connector, and how to configure the ingestion target.

• Introduction 58
• Send Data to Connector Framework Server 59
• Send Data to Haven OnDemand 60
• Send Data to Another Repository 62
• Index Documents Directly into IDOL Server 62
• Index Documents into Vertica 63
• Send Data to a MetaStore 66
• Run a Lua Script after Ingestion 67

Introduction
A connector can send information to a single ingestion target, which could be:

 l Connector Framework Server. To process information and then index it into IDOL, Haven OnDemand, or
Vertica, send the information to a Connector Framework Server (CFS). Any files retrieved by the connector
are imported using KeyView, which means the information contained in the files is converted into a form
that can be indexed. If the files are containers that contain subfiles, these are extracted. You can
manipulate and enrich documents using Lua scripts and automated tasks such as field standardization,
image analysis, and speech-to-text processing. CFS can index your documents into one or more indexes.
For more information about CFS, refer to the Connector Framework Server Administration Guide.

 l Haven OnDemand. You can index documents directly into a Haven OnDemand text index. Haven
OnDemand can extract text, metadata, and subfiles from over 1000 different file formats, so you might not
need to send documents to CFS.

 l Another Connector. Use another connector to keep another repository up-to-date. When a connector
receives documents, it inserts, updates, or deletes the information in the repository. For example, you
could use an Exchange Connector to extract information from Microsoft Exchange, and send the
documents to a Notes Connector so that the information is inserted, updated, or deleted in the Notes
repository.

Note: The destination connector can only insert, update, and delete documents if it supports the
insert, update, and delete fetch actions.

HPE HTTP Connector (11.2) Page 58 of 156

In most cases HPE recommends ingesting documents through CFS, so that KeyView can extract
content from any files retrieved by the connector and add this information to your documents. You can
also use CFS to manipulate and enrich documents before they are indexed. However, if required you
can configure the connector to index documents directly into:

 l IDOL Server. You might index documents directly into IDOL Server when your connector produces
metadata-only documents (documents that do not have associated files). In this case there is no
need for the documents to be imported. Connectors that can produce metadata-only documents
include ODBC Connector and Oracle Connector.

 l Vertica. The metadata extracted by connectors is structured information held in structured fields, so
you might use Vertica to analyze this information.

 l MetaStore. You can index document metadata into a MetaStore for records management.

Send Data to Connector Framework Server
This section describes how to configure ingestion into Connector Framework Server (CFS).

To send data to a CFS

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to CFS, set this parameter to CFS.

IngestHost The host name or IP address of the CFS.

IngestPort The port of the CFS.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=CFS
IngestHost=localhost
IngestPort=7000

 4. (Optional) If you are sending documents to CFS for indexing into IDOL Server, set the
IndexDatabase parameter. When documents are indexed, IDOL adds each document to the
database specified in the document's DREDBNAME field. The connector sets this field for each
document, using the value of IndexDatabase.

IndexDatabase The name of the IDOL database into which documents are indexed. Ensure
that this database exists in the IDOL Server configuration file.

 l To index all documents retrieved by the connector into the same IDOL database, set this
parameter in the [Ingestion] section.

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 59 of 156

 l To use a different database for documents retrieved by each task, set this parameter in the
TaskName section.

 5. Save and close the configuration file.

Send Data to Haven OnDemand
This section describes how to configure ingestion into Haven OnDemand. HPE HTTP Connector can
index documents into a Haven OnDemand text index, or send the documents to a Haven OnDemand
combination which can perform additional processing and then index the documents into a text index.

Note: Haven OnDemand combinations do not accept binary files, so any documents that have
associated binary files are indexed directly into a text index and cannot be sent to a combination.

Prepare Haven OnDemand

Before you can send documents to Haven OnDemand, you must create a text index. For information
about how to create text indexes, refer to the Haven OnDemand documentation.

Before you can send documents to a Haven OnDemand combination endpoint, the combination must
exist. HPE HTTP Connector requires your combination to accept the following input parameters, and
produce the following output.

Input Parameters

Name Type Description

json any A JSON object that contains a single attribute 'documents' that is
an array of document objects.

index string The name of the text index that you want the combination to add
documents to. HPE HTTP Connector uses the value of the
parameter HavenOnDemandIndexName to set this value.

duplicate_mode string Specifies how to handle duplicates when adding documents to
the text index. HPE HTTP Connector uses the value of the
parameter HavenOnDemandDuplicateMode to set this value.

Output

Name Type Description

result any The result of the call to AddToTextIndex made by the
combination.

Send Data to Haven OnDemand

This section describes how to send documents to Haven OnDemand.

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 60 of 156

https://dev.havenondemand.com/docs

To send data to Haven OnDemand

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to Haven OnDemand, set this parameter to
HavenOnDemand.

HavenOnDemandApiKey Your Haven OnDemand API key. You can obtain the key
from your Haven OnDemand account.

HavenOnDemandIndexName The name of the Haven OnDemand text index to index
documents into.

IngestSSLConfig The name of a section in the connector's configuration file
that contains SSL settings. The connection to Haven
OnDemand must be made over TLS. For more information
about sending documents to the ingestion server over TLS,
see Configure Outgoing SSL Connections, on page 30.

HavenOnDemandCombinationName (Optional) The name of the Haven OnDemand combination
to send documents to. If you set this parameter, HPE
HTTP Connector sends documents to the combination
endpoint instead of indexing them directly into the text
index.

Note: Haven OnDemand combinations do not accept
binary files. Therefore any document that has an
associated binary file is indexed directly into the text
index.

If you don't set this parameter, HPE HTTP Connector
indexes all documents directly into the text index specified
by HavenOnDemandIndexName.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=HavenOnDemand
HavenOnDemandApiKey=[Your API Key]
HavenOnDemandIndexName=MyTextIndex
 IngestSSLConfig=SSLOptions
 HavenOnDemandCombinationName=MyCombination

 [SSLOptions]
 SSLMethod=TLSV1

 4. Save and close the configuration file.

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 61 of 156

Send Data to Another Repository
You can configure a connector to send the information it retrieves to another connector. When the
destination connector receives the documents, it inserts them into another repository. When
documents are updated or deleted in the source repository, the source connector sends this information
to the destination connector so that the documents can be updated or deleted in the other repository.

Note: The destination connector can only insert, update, and delete documents if it supports the
insert, update, and delete fetch actions.

To send data to another connector for ingestion into another repository

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to another repository, set this parameter to Connector.

IngestHost The host name or IP address of the machine hosting the destination
connector.

IngestPort The ACI port of the destination connector.

IngestActions Set this parameter so that the source connector runs a Lua script to convert
documents into form that can be used with the destination connector's
insert action. For information about the required format, refer to the
Administration Guide for the destination connector.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Connector
 IngestHost=AnotherConnector
 IngestPort=7010
 IngestActions=Lua:transformation.lua

 4. Save and close the configuration file.

Index Documents Directly into IDOL Server
This section describes how to index documents from a connector directly into IDOL Server.

Tip: In most cases, HPE recommends sending documents to a Connector Framework Server
(CFS). CFS extracts metadata and content from any files that the connector has retrieved, and can

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 62 of 156

manipulate and enrich documents before they are indexed. CFS also has the capability to insert
documents into more than one index, for example IDOL Server and a Vertica database. For
information about sending documents to CFS, see Send Data to Connector Framework Server, on
page 59

To index documents directly into IDOL Server

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to IDOL Server, set this parameter to Indexer.

IndexDatabase The name of the IDOL database to index documents into.

For example:

[Ingestion]
 EnableIngestion=True
 IngesterType=Indexer
 IndexDatabase=News

 4. In the [Indexing] section of the configuration file, set the following parameters:

IndexerType To send data to IDOL Server, set this parameter to IDOL.

Host The host name or IP address of the IDOL Server.

Port The IDOL Server ACI port.

SSLConfig (Optional) The name of a section in the connector's configuration file that
contains SSL settings for connecting to IDOL.

For example:

[Indexing]
 IndexerType=IDOL
 Host=10.1.20.3
 Port=9000
 SSLConfig=SSLOptions

 [SSLOptions]
 SSLMethod=SSLV23

 5. Save and close the configuration file.

Index Documents into Vertica
HPE HTTP Connector can index documents into Vertica, so that you can run queries on structured
fields (document metadata).

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 63 of 156

Depending on the metadata contained in your documents, you could investigate the average age of
documents in a repository. You might want to answer questions such as: How much time has passed
since the documents were last updated? How many files are regularly updated? Does this represent a
small proportion of the total number of documents? Who are the most active users?

Tip: In most cases, HPE recommends sending documents to a Connector Framework Server
(CFS). CFS extracts metadata and content from any files that the connector has retrieved, and can
manipulate and enrich documents before they are indexed. CFS also has the capability to insert
documents into more than one index, for example IDOL Server and a Vertica database. For
information about sending documents to CFS, see Send Data to Connector Framework Server, on
page 59

Prerequisites

 l HPE HTTP Connector supports indexing into Vertica 7.1 and later.
 l You must install the appropriate Vertica ODBC drivers (version 7.1 or later) on the machine that

hosts HPE HTTP Connector. If you want to use an ODBC Data Source Name (DSN) in your
connection string, you will also need to create the DSN. For more information about installing Vertica
ODBC drivers and creating the DSN, refer to the HPE Vertica documentation.

New, Updated and Deleted Documents

When documents are indexed into Vertica, HPE HTTP Connector adds a timestamp that contains the
time when the document was indexed. The field is named VERTICA_INDEXER_TIMESTAMP and the
timestamp is in the format YYYY-MM-DD HH:NN:SS.

When a document in a data repository is modified, HPE HTTP Connector adds a new record to the
database with a new timestamp. All of the fields are populated with the latest data. The record
describing the older version of the document is not deleted. You can create a projection to make sure
your queries only return the latest record for a document.

When HPE HTTP Connector detects that a document has been deleted from a repository, the
connector inserts a new record into the database. The record contains only the DREREFERENCE and the
field VERTICA_INDEXER_DELETED set to TRUE.

Fields, Sub-Fields, and Field Attributes

Documents that are created by connectors can have multiple levels of fields, and field attributes. A
database table has a flat structure, so this information is indexed into Vertica as follows:

 l Document fields become columns in the flex table. An IDOL document field and the corresponding
database column have the same name.

 l Sub-fields become columns in the flex table. A document field named my_field with a sub-field
named subfield results in two columns, my_field and my_field.subfield.

 l Field attributes become columns in the flex table. A document field named my_field, with an
attribute named my_attribute results in two columns, my_field holding the field value and my_
field.my_attribute holding the attribute value.

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 64 of 156

http://www.vertica.com/documentation

Prepare the Vertica Database

Indexing documents into a standard database is problematic, because documents do not have a fixed
schema. A document that represents an image has different metadata fields to a document that
represents an e-mail message. Vertica databases solve this problem with flex tables. You can create a
flex table without any column definitions, and you can insert a record regardless of whether a
referenced column exists.

You must create a flex table before you index data into Vertica.

When creating the table, consider the following:

 l Flex tables store entire records in a single column named __raw__. The default maximum size of the
__raw__ column is 128K. You might need to increase the maximum size if you are indexing
documents with large amounts of metadata.

 l Documents are identified by their DREREFERENCE. HPE recommends that you do not restrict the size
of any column that holds this value, because this could result in values being truncated. As a result,
rows that represent different documents might appear to represent the same document. If you do
restrict the size of the DREREFERENCE column, ensure that the length is sufficient to hold the longest
DREREFERENCE that might be indexed.

To create a flex table without any column definitions, run the following query:

 create flex table my_table();

To improve query performance, create real columns for the fields that you query frequently. For
documents indexed by a connector, this is likely to include the DREREFERENCE:

 create flex table my_table(DREREFERENCE varchar NOT NULL);

You can add new column definitions to a flex table at any time. Vertica automatically populates new
columns with values for existing records. The values for existing records are extracted from the __raw_
_ column.

For more information about creating and using flex tables, refer to the HPE Vertica Documentation or
contact HPE Vertica technical support.

Send Data to Vertica

To send documents to a Vertica database, follow these steps.

To send data to Vertica

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to a Vertica database, set this parameter to Indexer.

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 65 of 156

http://www.vertica.com/documentation

For example:

[Ingestion]
 EnableIngestion=TRUE
 IngesterType=Indexer

 4. In the [Indexing] section, set the following parameters:

IndexerType To send data to a Vertica database, set this parameter to Library.

LibraryDirectory The directory that contains the library to use to index data.

LibraryName The name of the library to use to index data. You can omit the .dll or .so
file extension. Set this parameter to verticaIndexer.

ConnectionString The connection string to use to connect to the Vertica database.

TableName The name of the table in the Vertica database to index the documents into.
The table must be a flex table and must exist before you start indexing
documents. For more information, see Prepare the Vertica Database, on
the previous page.

For example:

[Indexing]
 IndexerType=Library
 LibraryDirectory=indexerdlls
 LibraryName=verticaIndexer
 ConnectionString=DSN=VERTICA
 TableName=my_flex_table

 5. Save and close the configuration file.

Send Data to a MetaStore
You can configure a connector to send documents to a MetaStore. When you send data to a Metastore,
any files associated with documents are ignored.

Tip: In most cases, HPE recommends sending documents to a Connector Framework Server
(CFS). CFS extracts metadata and content from any files that the connector has retrieved, and can
manipulate and enrich documents before they are indexed. CFS also has the capability to insert
documents into more than one index, for example IDOL Server and a MetaStore. For information
about sending documents to CFS, see Send Data to Connector Framework Server, on page 59

To send data to a MetaStore

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 66 of 156

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to a MetaStore, set this parameter to Indexer.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Indexer

 4. In the [Indexing] section, set the following parameters:

IndexerType To send data to a MetaStore, set this parameter to MetaStore.

Host The host name of the machine hosting the MetaStore.

Port The port of the MetaStore.

For example:

[Indexing]
 IndexerType=Metastore
 Host=MyMetaStore
 Port=8000

 5. Save and close the configuration file.

Run a Lua Script after Ingestion
You can configure the connector to run a Lua script after batches of documents are successfully sent to
the ingestion server. This can be useful if you need to log information about documents that were
processed, for monitoring and reporting purposes.

To configure the file name of the Lua script to run, set the IngestBatchActions configuration
parameter in the connector's configuration file.

 l To run the script for all batches of documents that are ingested, set the parameter in the
[Ingestion] section.

 l To run the script for batches of documents retrieved by a specific task, set the parameter in the
[TaskName] section.

Note: If you set the parameter in a [TaskName] section, the connector does not run any scripts
specified in the [Ingestion] section for that task.

For example:

[Ingestion]
 IngestBatchActions0=LUA:./scripts/myScript.lua

For more information about this parameter, refer to the HPE HTTP Connector Reference.

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 67 of 156

The Lua script must have the following structure:

function batchhandler(documents, ingesttype)
 ...
 end

The batchhandler function is called after each batch of documents is sent to the ingestion server. The
function is passed the following arguments:

Argument Description

documents A table of document objects, where each object represents a document that was sent
to the ingestion server.

A document object is an internal representation of a document. You can modify the
document object and this changes the document. However, as the script runs after
the documents are sent to the ingestion server, any changes you make are not sent to
CFS or IDOL.

ingesttype A string that contains the ingest type for the documents. The batchhandler function
is called multiple times if different document types are sent.

For example, the following script prints the ingest type (ADD, DELETE, or UPDATE) and the reference for
all successfully processed documents to stdout:

function batchhandler(documents, ingesttype)
 for i,document in ipairs(documents) do
 local ref = document:getReference()
 print(ingesttype..": "..ref)
 end
 end

Administration Guide
Chapter 8: Ingestion

HPE HTTP Connector (11.2) Page 68 of 156

Chapter 9: Monitor the Connector

This section describes how to monitor the connector.

• IDOL Admin 69
• Use the Connector Logs 71
• Set Up Event Handlers 72
• Set Up Performance Monitoring 74
• Set Up Document Tracking 76

IDOL Admin
IDOL Admin is an administration interface for performing ACI server administration tasks, such as gathering
status information, monitoring performance, and controlling the service. IDOL Admin provides an alternative
to constructing actions and sending them from your web browser.

Prerequisites

By default, the latest version of HPE HTTP Connector should include the admin.dat file that is required to
run IDOL Admin. If you do not have this file, you must download it separately.

Supported Browsers

IDOL Admin supports the following browsers:

 l Internet Explorer 11 and later
 l Edge
 l Chrome (latest version)
 l Firefox (latest version)

Install IDOL Admin

You must install IDOL Admin on the same host that the ACI server or component is installed on. To set up a
component to use IDOL Admin, you must configure the location of the admin.dat file and enable Cross Origin
Resource Sharing.

To install IDOL Admin

 1. Stop the ACI server.
 2. Save the admin.dat file to any directory on the host.
 3. Using a text editor, open the ACI server or component configuration file. For the location of the

HPE HTTP Connector (11.2) Page 69 of 156

configuration file, see the ACI server documentation.
 4. In the [Paths] section of the configuration file, set the AdminFile parameter to the location of the

admin.dat file. If you do not set this parameter, the ACI server attempts to find the admin.dat file
in its working directory when you call the IDOL Admin interface.

 5. Enable Cross Origin Resource Sharing.
 6. In the [Service] section, add the Access-Control-Allow-Origin parameter and set its value to

the URLs that you want to use to access the interface.
Each URL must include:
 l the http:// or https:// prefix

Note: URLs can contain the https:// prefix if the ACI server or component has SSL
enabled.

 l The host that IDOL Admin is installed on

 l The ACI port of the component that you are using IDOL Admin for

Separate multiple URLs with spaces.
For example, you could specify different URLs for the local host and remote hosts:

Access-Control-Allow-Origin=http://localhost:9010
http://Computer1.Company.com:9010

Alternatively, you can set Access-Control-Allow-Origin=*, which allows you to access IDOL
Admin using any valid URL (for example, localhost, direct IP address, or the host name). The
wildcard character (*) is supported only if no other entries are specified.
If you do not set the Access-Control-Allow-Origin parameter, IDOL Admin can communicate
only with the server’s ACI port, and not the index or service ports.

 7. Start the ACI server.
You can now access IDOL Admin (see Access IDOL Admin, below).

Access IDOL Admin

You access IDOL Admin from a web browser. You can access the interface only through URLs that are
set in the Access-Control-Allow-Origin parameter in the ACI server or component configuration file.
For more information about configuring URL access, see Install IDOL Admin, on the previous page.

To access IDOL Admin from the host that it is installed on

 l Type the following URL into the address bar of your web browser:

http://localhost:port/action=admin

where port is the ACI server or component ACI port.

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 70 of 156

To access IDOL Admin from a different host

 l Type the following URL into the address bar of your web browser:

http://host:port/action=admin

where:

host is the name or IP address of the host that IDOL Admin is installed on.

port is the ACI server or component ACI port of the IDOL Admin host.

Use the Connector Logs
As the HPE HTTP Connector runs, it outputs messages to its logs. Most log messages occur due to
normal operation, for example when the connector starts, receives actions, or sends documents for
ingestion. If the connector encounters an error, the logs are the first place to look for information to help
troubleshoot the problem.

The connector separates messages into the following message types, each of which relates to specific
features:

Log Message Type Description

Action Logs actions that are received by the connector, and related messages.

Application Logs application-related occurrences, such as when the connector starts.

Synchronize Messages related to the Synchronize fetch action.

Customize Logging

You can customize logging by setting up your own log streams. Each log stream creates a separate log
file in which specific log message types (for example, action, index, application, or import) are logged.

To set up log streams

 1. Open the HPE HTTP Connector configuration file in a text editor.
 2. Find the [Logging] section. If the configuration file does not contain a [Logging] section, add

one.
 3. In the [Logging] section, create a list of the log streams that you want to set up, in the format

N=LogStreamName. List the log streams in consecutive order, starting from 0 (zero). For example:

[Logging]
 LogLevel=FULL
 LogDirectory=logs
 0=ApplicationLogStream
 1=ActionLogStream

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 71 of 156

You can also use the [Logging] section to configure any default values for logging configuration
parameters, such as LogLevel. For more information, see the HPE HTTP Connector Reference.

 4. Create a new section for each of the log streams. Each section must have the same name as the
log stream. For example:

[ApplicationLogStream]
 [ActionLogStream]

 5. Specify the settings for each log stream in the appropriate section. You can specify the type of
logging to perform (for example, full logging), whether to display log messages on the console, the
maximum size of log files, and so on. For example:

[ApplicationLogStream]
 LogTypeCSVs=application
 LogFile=application.log
 LogHistorySize=50
 LogTime=True
 LogEcho=False
 LogMaxSizeKBs=1024

 [ActionLogStream]
 LogTypeCSVs=action
 LogFile=logs/action.log
 LogHistorySize=50
 LogTime=True
 LogEcho=False
 LogMaxSizeKBs=1024

 6. Save and close the configuration file. Restart the service for your changes to take effect.

Set Up Event Handlers
The fetch actions sent to a connector are asynchronous. Asynchronous actions do not run
immediately, but are added to a queue. This means that the person or application that sends the action
does not receive an immediate response. However, you can configure the connector to call an event
handler when an asynchronous action starts, finishes, or encounters an error.

You can use an event handler to:

 l return data about an event back to the application that sent the action.
 l write event data to a text file, to log any errors that occur.
The connector can call an event handler for the following events:

OnStart The OnStart event is called when the connector starts processing an asynchronous
action.

OnFinish The OnFinish event is called when the connector successfully finishes processing an
asynchronous action.

OnError The OnError event is called when an asynchronous action fails and cannot continue.

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 72 of 156

Event Handlers

You can configure the connector to call an internal event handler, or write your own event handler.
Connectors include the following internal event handlers.

TextFileHandler

The TextFileHandler writes event data to a text file.

HttpHandler

The HttpHandler sends event data to a URL.

LuaHandler

The LuaHandler runs a Lua script. The event data is passed into the script. The script must have the
following form:

function handler(request, xml)
 ...
 end

 l request is a table holding the request parameters.
 l xml is a string holding the response to the request.

Configure an Event Handler

To configure an event handler, follow these steps.

To configure an event handler

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. Use the OnStart, OnFinish, or OnError parameter to specify the name of a section in the

configuration file that contains event handler settings for the corresponding event.
 l To run an event handler for all actions, set these parameters in the [Actions] section. For

example:

[Actions]
 OnStart=NormalEvents
 OnFinish=NormalEvents
 OnError=ErrorEvents

 l To run an event handler for specific actions, use the action name as a section in the

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 73 of 156

configuration file. The following example runs an event handler when the Fetch action starts
and finishes successfully:

[Fetch]
 OnStart=NormalEvents
 OnFinish=NormalEvents

 4. Create a new section in the configuration file to contain the settings for your event handler. You
must name the section using the name you specified with the OnStart, OnFinish, or OnError
parameter.

 5. In the new section, set the following parameters.

LibraryName (Required) The name of the library to use as the event handler. You can write
your own event handler, or use one of the internal event handlers:
 l To write event data to a text file, set this parameter to TextFileHandler, and

then set the FilePath parameter to specify the path of the file.

 l To send event data to a URL, set this parameter to HttpHandler, and then
use the HTTP event handler parameters to specify the URL, proxy server
settings, credentials and so on.

 l To run a Lua script, set this parameter to LuaHandler, and then set the
LuaScript parameter to specify the path to the Lua script.

For example:

[NormalEvents]
 LibraryName=TextFileHandler
 FilePath=./events.txt

 [ErrorEvents]
 LibraryName=LuaHandler
 LuaScript=./error.lua

 6. Save and close the configuration file.

Set Up Performance Monitoring
You can configure a connector to pause tasks temporarily if performance indicators on the local
machine or a remote machine breach certain limits. For example, if there is a high load on the CPU or
memory of the repository from which you are retrieving information, you might want the connector to
pause until the machine recovers.

Note: Performance monitoring is available on Windows platforms only. To monitor a remote
machine, both the connector machine and remote machine must be running Windows.

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 74 of 156

Configure the Connector to Pause

To configure the connector to pause

 1. Open the configuration file in a text editor.
 2. Find the [FetchTasks] section, or a [TaskName] section.

 l To pause all tasks, use the [FetchTasks] section.

 l To specify settings for a single task, find the [TaskName] section for the task.

 3. Set the following configuration parameters:

PerfMonCounterNameN The names of the performance counters that you want the
connector to monitor. You can use any counter that is available in
the Windows perfmon utility.

PerfMonCounterMinN The minimum value permitted for the specified performance
counter. If the counter falls below this value, the connector pauses
until the counter meets the limits again.

PerfMonCounterMaxN The maximum value permitted for the specified performance
counter. If the counter exceeds this value, the connector pauses
until the counter meets the limits again.

PerfMonAvgOverReadings (Optional) The number of readings that the connector averages
before checking a performance counter against the specified
limits. For example, if you set this parameter to 5, the connector
averages the last five readings and pauses only if the average
breaches the limits. Increasing this value makes the connector
less likely to pause if the limits are breached for a short time.
Decreasing this value allows the connector to continue working
faster following a pause.

PerfMonQueryFrequency (Optional) The amount of time, in seconds, that the connector
waits between taking readings from a performance counter.

For example:

[FetchTasks]
 PerfMonCounterName0=\\machine-hostname\Memory\Available MBytes
 PerfMonCounterMin0=1024
 PerfMonCounterMax0=1024000
 PerfMonCounterName1=\\machine-hostname\Processor(_Total)\% Processor Time
 PerfMonCounterMin1=0
 PerfMonCounterMax1=70
 PerfMonAvgOverReadings=5
 PerfMonQueryFrequency=10

Note: You must set both a minimum and maximum value for each performance counter. You

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 75 of 156

can not set only a minimum or only a maximum.

 4. Save and close the configuration file.

Determine if an Action is Paused

To determine whether an action has been paused for performance reasons, use the QueueInfo action:

/action=queueInfo&queueAction=getStatus&queueName=fetch

You can also include the optional token parameter to return information about a single action:

/action=queueInfo&queueAction=getStatus&queueName=fetch&token=...

The connector returns the status, for example:

<autnresponse>
 <action>QUEUEINFO</action>
 <response>SUCCESS</response>
 <responsedata>
 <actions>
 <action owner="2266112570">
 <status>Processing</status>
 <queued_time>2016-Jul-27 14:49:40</queued_time>
 <time_in_queue>1</time_in_queue>
 <process_start_time>2016-Jul-27 14:49:41</process_start_time>
 <time_processing>219</time_processing>
 <documentcounts>
 <documentcount errors="0" task="MYTASK"/>
 </documentcounts>
 <fetchaction>SYNCHRONIZE</fetchaction>
 <pausedforperformance>true</pausedforperformance>
 <token>...</token>
 </action>
 </actions>
 </responsedata>
 </autnresponse>

When the element pausedforperformance has a value of true, the connector has paused the task for
performance reasons. If the pausedforperformance element is not present in the response, the
connector has not paused the task.

Set Up Document Tracking
Document tracking reports metadata about documents when they pass through various stages in the
indexing process. For example, when a connector finds a new document and sends it for ingestion, a
document tracking event is created that shows the document has been added. Document tracking can
help you detect problems with the indexing process.

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 76 of 156

You can write document tracking events to a database, log file, or IDOL Server. For information about
how to set up a database to store document tracking events, refer to the IDOL Server Administration
Guide.

To enable Document Tracking

 1. Open the connector's configuration file.
 2. Create a new section in the configuration file, named [DocumentTracking].
 3. In the new section, specify where the document tracking events are sent.

 l To send document tracking events to a database through ODBC, set the following parameters:

Backend To send document tracking events to a database, set this parameter to
Library.

LibraryPath Specify the location of the ODBC document tracking library. This is
included with IDOL Server.

ConnectionString The ODBC connection string for the database.

For example:

[DocumentTracking]
 Backend=Library
 LibraryPath=C:\Autonomy\IDOLServer\IDOL\modules\dt_odbc.dll
 ConnectionString=DSN=MyDatabase

 l To send document tracking events to the connector's synchronize log, set the following
parameters:

Backend To send document tracking events to the connector's logs, set this
parameter to Log.

DatabaseName The name of the log stream to send the document tracking events to. Set
this parameter to synchronize.

For example:

[DocumentTracking]
 Backend=Log
 DatabaseName=synchronize

 l To send document tracking events to an IDOL Server, set the following parameters:

Backend To send document tracking events to an IDOL Server, set this parameter to
IDOL.

TargetHost The host name or IP address of the IDOL Server.

TargetPort The index port of the IDOL Server.

For example:

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 77 of 156

[DocumentTracking]
 Backend=IDOL
 TargetHost=idol
 TargetPort=9001

For more information about the parameters you can use to configure document tracking, refer to
the HPE HTTP Connector Reference.

 4. Save and close the configuration file.

Administration Guide
Chapter 9: Monitor the Connector

HPE HTTP Connector (11.2) Page 78 of 156

Chapter 10: Lua Functions and Methods
Reference

This section describes the functions and methods that you can use in your Lua scripts.

• General Functions 79
• LuaConfig Methods 106
• LuaDocument Methods 109
• LuaField Methods 127
• LuaLog Methods 139
• LuaXmlDocument Methods 140
• LuaXmlNodeSet Methods 143
• LuaXmlNode Methods 144
• LuaXmlAttribute Methods 148
• LuaRegexMatch Methods 150

General Functions

Function Description

abs_path Returns the supplied path as an absolute path.

base64_decode Decodes a base64-encoded string.

base64_encode Base64-encodes a string.

convert_date_
time

Converts date and time formats using standard IDOL date formats.

convert_
encoding

Converts the encoding of a string from one character encoding to another.

copy_file Copies a file.

create_path Creates the specified directory tree.

create_uuid Creates a universally unique identifier.

delete_file Deletes a file.

delete_path Deletes a specified directory, but only if it is empty.

doc_tracking Raises a document tracking event for a document.

HPE HTTP Connector (11.2) Page 79 of 156

Function Description

encrypt Encrypts a string.

encrypt_
security_field

Encrypts the ACL.

extract_date Searches a string for a date and returns the date.

file_setdates Modifies the properties of a file (for example created date, last modified date).

get_config Loads a configuration file.

get_log Returns a LuaLog object that provides the capability to use a log stream configured in
the connector's configuration file.

get_task_config Returns a LuaConfig object that contains the configuration of the fetch task that called
the script.

get_task_name Returns the name of the fetch task that called the script.

getcwd Returns the current working directory of the application.

gobble_
whitespace

Reduces multiple adjacent while spaces.

hash_file Hashes a file using the SHA1 or MD5 algorithm.

hash_string Hashes a string.

is_dir Checks if the supplied path is a directory.

log Appends log messages to a file.

move_file Moves a file.

parse_csv Parse comma-separated values into individual strings.

parse_xml Parse XML string to a LuaXmlDocument.

regex_match Performs a regular expression match on a string.

regex_replace_all Searches a string for matches to a regular expression, and replaces the matches.

regex_search Performs a regular expression search on a string.

script_path Returns the path and file name of the script that is running.

send_aci_action Sends a query to an ACI server.

send_aci_
command

Sends a query to an ACI server.

send_and_wait_
for_async_aci_
action

Sends a query to an ACI server and then waits for the action to finish. Use this method
for sending asynchronous actions so that the action response is returned instead of a
token.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 80 of 156

Function Description

sleep Pauses the running thread.

string_uint_less Compares the length of two strings.

unzip_file Extracts the contents of a zip file.

url_escape Percent-encode a string.

url_unescape Replaces URL escaped characters and returns a standard string.

xml_encode Takes a string and encodes it using XML escaping.

zip_file Zips the supplied path (file or directory).

abs_path

The abs_path method returns the supplied path as an absolute path.

Syntax

abs_path(path)

Arguments

Argument Description

path (string) A relative path.

Returns

(String). A string containing the supplied path as an absolute path.

base64_decode

The base64_decode method decodes a base64-encoded string.

Syntax

base64_decode(input)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 81 of 156

Arguments

Argument Description

input (string) The string to decode.

Returns

(String). The decoded string.

If the input is not a valid base64-encoded string, the function returns nil.

base64_encode

The base64_encode method base64-encodes a string.

Syntax

base64_encode(input)

Arguments

Argument Description

input (string) The string to base64-encode.

Returns

(String). A base64-encoded string.

convert_date_time

The convert_date_time method converts date and time formats using standard IDOL formats. All
date and time input is treated as local time unless it contains explicit time zone information.

The InputFormatCSV and OutputFormat arguments specify date and time formats, and accept the
following values:

 l AUTNDATE. The HPE date format (1 to a maximum of 10 digits). This format covers the epoch range
(1 January 1970 to 19 January 2038) to a resolution of one second, and dates between 30 October
1093 BC and 26 October 3058 to a resolution of one minute.

 l date formats that you specify using one or more of the following:

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 82 of 156

YY Year (2 digits). For example, 99, 00, 01 and so on.

YYYY Year (4 digits). For example, 1999, 2000, 2001 and so on.

#YY+ Year (2 or 4 digits). If you provide 2 digits, then it uses the YY format. If you provide
4 digits, it uses the YYYY format.
For example, it interprets 07 as 2007 AD and 1007 as 1007 AD.

#Y Year (1 to a maximum of 16 digits) and can be followed by AD or BC. An apostrophe
(') immediately before the year denotes a truncated year. For example, 2008, '97
(interpreted as 1997), 97 (interpreted as 97 AD), '08 (interpreted as 2008), 2008 AD
and 200 BC. A truncated year with a BC identifier is invalid ('08 BC).

#FULLYEAR Year (1 to a maximum of 16 digits). For example 8, 98, 108, 2008, each of which is
taken literally. The year is taken relative to the common EPOCH (0AD).

#ADBC Time Period. For example, AD, CE, BC, BCE or any predefined list of EPOCH
indicators. Typically, the year specified using the above Year formats is interpreted
as un-truncated and relative to the EPOCH. For example, 84 AD is interpreted as
1984 AD and 84 BC is interpreted as 84 BC.
The only exception to this is when you use both #YY+ and #ADBC. In this case, the
format is interpreted as un-truncated even if the year was set to truncated by #YY+.
For example, 99 AD is interpreted as the year 99 AD.
HPE recommends you use only YY, YYYY or #FULLYEAR with #ADBC.

LONGMONTH A long month, for example, January, February and so on.

SHORTMONTH A short month, for example, Jan, Feb and so on.

MM Month (2 digits). For example, 01, 10, 12 and so on.

M+ Month (1 or 2 digits). For example, 1,2,3,10 and so on.

DD Day (2 digits). For example, 01, 02, 03, 12, 23 and so on.

D+ Day (1 or 2 digits). For example, 1, 2, 12, 13, 31 and so on.

LONGDAY 2 digits with a postfix. For example, 1st, 2nd and so on.

HH Hour (2 digits). For example, 01, 12, 13 and so on.

H+ Hour (1 or 2 digits).

NN Minute (2 digits).

N+ Minute (1 or 2 digits).

SS Second (2 digits).

S+ Second (1 or 2 digits).

ZZZ Time Zone, for example, GMT, EST, PST, and so on.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 83 of 156

ZZZZZ Time Difference (1 to 9 digits). For example, +04 denotes 4 hours ahead of UTC.
Other examples include +4, +04, +0400, +0400 MSD (the string MSD is ignored). A
further example is +030, in this case the time differences is interpreted as 30
minutes.

#PM AM or PM indicator (2 characters). For example, 2001/09/09 02:46:40 pm

#S A space

The following table shows some example date and time formats:

Date and time format string Example date

DD/MM/YYYY 09/05/2013

D+ SHORTMONTH YYYY 2 Jan 2001

D+ LONGMONTH YYYY HH:NN:SS ZZZZZ 17 August 2003 10:41:07 -0400

Syntax

convert_date_time(Input, InputFormatCSV, OutputFormat)

Arguments

Argument Description

Input (string) The date and time to convert.

InputFormatCSV (string) A comma-separated list of the possible date and time formats of the
input.

OutputFormat (string) The format of the date and time to output.

Returns

(String). A string containing the date and time in the desired format.

convert_encoding

The convert_encoding method converts the encoding of a string from one character encoding to
another.

Syntax

convert_encoding(input, encodingTo, encodingTables [, encodingFrom])

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 84 of 156

Arguments

Argument Description

input (string) The string to convert.

encodingTo (string) The character encoding to convert to (same as IDOL encoding names).

encodingTables (string) The path to the conversion tables.

encodingFrom (string) The character encoding to convert from. The default is “UTF8”.

Returns

(String). A string, using the specified character encoding.

copy_file

The copy_file method copies a file.

Syntax

copy_file(src, dest [, overwrite])

Arguments

Argument Description

src (string) The source file.

dest (string) The destination path and file name.

overwrite (boolean) A boolean that specifies whether to copy the file if the destination file already
exists. If this argument is false and the file already exists, the copy operation fails.
The default is true, which means that the existing file is overwritten.

Returns

(Boolean). A Boolean, true to indicate success or false for failure.

create_path

The create_path method creates the specified directory tree.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 85 of 156

Syntax

create_path(path)

Arguments

Argument Description

path (string) The path to create.

create_uuid

The create_uuid method creates a universally unique identifier.

Syntax

create_uuid()

Returns

(String). A string containing the universally unique identifier.

delete_file

The delete_file method deletes a file.

Syntax

delete_file(path)

Arguments

Argument Description

path (string) The path and filename of the file to delete.

Returns

(Boolean). A boolean, true to indicate success or false for failure.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 86 of 156

delete_path

The delete_path function deletes the specified directory, but only if it is empty.

Syntax

delete_path(path)

Arguments

Argument Description

path (string) The empty directory to delete.

Returns

Nothing.

Example

delete_path("C:\MyFolder\AnotherFolder\")

doc_tracking

The doc_tracking function raises a document tracking event for a document.

Syntax

doc_tracking(document , eventName [, eventMetadata] [, reference])

Arguments

Argument Description

document (LuaDocument) The document to track.

eventName (string) The event name. You can type a description of the event.

eventMetadata (table) A table of key-value pairs that contain metadata for the document tracking
event.

reference (string) The document reference. You can set this parameter to override the
document reference used.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 87 of 156

Returns

(Boolean). A Boolean that indicates whether the event was raised successfully.

Example

local ref=document:getReference()

 doc_tracking(document, "The document has been processed",
 {myfield="myvalue", anotherfield="anothervalue"}, ref)

encrypt

The encrypt method encrypts a string and returns the encrypted string. It uses the same encryption
method as ACL encryption.

Syntax

encrypt(content)

Arguments

Argument Description

content (string) The string to encrypt.

Returns

(String). The encrypted string.

encrypt_security_field

The encrypt_security_field method returns the encrypted form of the supplied field.

Syntax

encrypt_security_field(field)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 88 of 156

Arguments

Argument Description

field (string) An Access Control List string.

Returns

(String). An encrypted string.

extract_date

The extract_date function searches a string for a date and returns the date. This function uses
standard IDOL date formats. All date and time input is treated as local time unless it contains explicit
time zone information.

The following table describes the standard IDOL date formats:

YY Year (2 digits). For example, 99, 00, 01 and so on.

YYYY Year (4 digits). For example, 1999, 2000, 2001 and so on.

#YY+ Year (2 or 4 digits). If you provide 2 digits, then it uses the YY format. If you provide 4
digits, it uses the YYYY format.

For example, it interprets 07 as 2007 AD and 1007 as 1007 AD.

#Y Year (1 to a maximum of 16 digits) and can be followed by AD or BC. An apostrophe (')
immediately before the year denotes a truncated year. For example, 2008, '97
(interpreted as 1997), 97 (interpreted as 97 AD), '08 (interpreted as 2008), 2008 AD
and 200 BC. A truncated year with a BC identifier is invalid ('08 BC).

#FULLYEAR Year (1 to a maximum of 16 digits). For example 8, 98, 108, 2008, each of which is
taken literally. The year is taken relative to the common EPOCH (0AD).

#ADBC Time Period. For example, AD, CE, BC, BCE or any predefined list of EPOCH indicators.
Typically, the year specified using the above Year formats is interpreted as un-
truncated and relative to the EPOCH. For example, 84 AD is interpreted as 1984 AD
and 84 BC is interpreted as 84 BC.

The only exception to this is when you use both #YY+ and #ADBC. In this case, the
format is interpreted as un-truncated even if the year was set to truncated by #YY+. For
example, 99 AD is interpreted as the year 99 AD.

HPE recommends you use only YY, YYYY or #FULLYEAR with #ADBC.

LONGMONTH A long month, for example, January, February and so on.

SHORTMONTH A short month, for example, Jan, Feb and so on.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 89 of 156

MM Month (2 digits). For example, 01, 10, 12 and so on.

M+ Month (1 or 2 digits). For example, 1,2,3,10 and so on.

DD Day (2 digits). For example, 01, 02, 03, 12, 23 and so on.

D+ Day (1 or 2 digits). For example, 1, 2, 12, 13, 31 and so on.

LONGDAY 2 digits with a postfix. For example, 1st, 2nd and so on.

HH Hour (2 digits). For example, 01, 12, 13 and so on.

H+ Hour (1 or 2 digits).

NN Minute (2 digits).

N+ Minute (1 or 2 digits).

SS Second (2 digits).

S+ Second (1 or 2 digits).

ZZZ Time Zone, for example, GMT, EST, PST, and so on.

ZZZZZ Time Difference (1 to 9 digits). For example, +04 denotes 4 hours ahead of UTC.
Other examples include +4, +04, +0400, +0400 MSD (the string MSD is ignored). A
further example is +030, in this case the time differences is interpreted as 30 minutes.

#PM AM or PM indicator (2 characters). For example, 2001/09/09 02:46:40 pm

#S A space

The following table shows some example date and time formats:

Date and time format string Example date

DD/MM/YYYY 09/05/2013

D+ SHORTMONTH YYYY 2 Jan 2001

D+ LONGMONTH YYYY HH:NN:SS ZZZZZ 17 August 2003 10:41:07 -0400

Syntax

extract_date(input, formatCSV, outputFormat)

Arguments

Argument Description

input (string) The string that you want to search for a date.

formatCSV (string) A comma-separated list of the possible date and time formats for dates

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 90 of 156

Argument Description

contained in the input.

outputFormat (string) The format for the output.

Returns

(String). A string containing the date and time in the desired format.

Example

The following example would return the value "1989/01/14":

extract_date("This string contains a date 14/01/1989 somewhere",
"DD/YYYY/MM,DD/MM/YYYY", "YYYY/MM/DD")

file_setdates

The file_setdates method sets the metadata for the file specified by path. If the format argument is
not specified, the dates must be specified in seconds since the epoch (1st January 1970).

Syntax

file_setdates(path, created, modified, accessed [, format])

Arguments

Argument Description

path (string) The path or filename of the file.

created (string) The date created (Windows only).

modified (string) The date modified.

accessed (string) The date last accessed.

format (string) The format of the dates supplied. The format parameter uses the same values
as other IDOL components. The default is "EPOCHSECONDS"

Returns

(Boolean). A Boolean indicating whether the operation was successful.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 91 of 156

get_config

The get_config function loads a configuration file.

Configuration files are cached after the first call to get_config, to avoid unnecessary disk I/O in the
likely event that the same configuration is accessed frequently by subsequent invocations of the Lua
script. One cache is maintained per Lua state, so the maximum number of reads for a configuration file
is equal to the number of threads that run Lua scripts.

If you do not specify a path, the function returns the configuration file with the same name as the
ACI server executable file.

Syntax

get_config([path])

Arguments

Argument Description

path (string) The path of the configuration file to load.

Returns

(LuaConfig). A LuaConfig object.

get_log

The get_log method reads a configuration file and returns a LuaLog object that provides the capability
to use the specified log stream.

Syntax

get_log(config, logstream)

Arguments

Argument Description

config (LuaConfig) A LuaConfig object that represents the configuration file which contains the
log stream. You can obtain a LuaConfig object using the function get_config.

logstream (string) The name of the section in the configuration file that contains the settings for
the log stream.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 92 of 156

Returns

(LuaLog). A LuaLog object that provides the capability to use the log stream.

Example

local config = get_config("connector.cfg")
 local log = get_log(config, "SynchronizeLogStream")

get_task_config

The get_task_config function returns a LuaConfig object that contains the configuration of the fetch
task that called the script.

For information about the methods you can use to read information from the LuaConfig object, see
LuaConfig Methods, on page 106.

Syntax

get_task_config()

Returns

(LuaConfig). A LuaConfig object.

get_task_name

The get_task_name function returns a string that contains the name of the fetch task that called the
script.

Syntax

get_task_name()

Returns

(String). A string that contains the task name.

getcwd

The getcwd method returns the current working directory of the application.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 93 of 156

Syntax

getcwd()

Returns

(String). Returns a string containing the absolute path of the current working directory.

gobble_whitespace

The gobble_whitespace method reduces multiple adjacent white spaces (tabs, carriage returns,
spaces, and so on) in the specified string to a single space.

Syntax

gobble_whitespace(input)

Arguments

Argument Description

input (string) An input string.

Returns

(String). A string without adjacent white spaces.

hash_file

The hash_file method hashes the contents of the specified file using the SHA1 or MD5 algorithm.

Syntax

hash_file(FileName, Algorithm)

Arguments

Argument Description

FileName (string) The name of the file.

Algorithm (string) The type of algorithm to use. Must be either SHA1 or MD5.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 94 of 156

Returns

(String). A hash of the file contents.

hash_string

The hash_string method hashes the specified string using the SHA1 or MD5 algorithm.

Syntax

hash_string(StringToHash, Algorithm)

Arguments

Argument Description

StringToHash (string) The string to hash.

Algorithm (string) The algorithm to use. Must be either SHA1 or MD5.

Returns

(String). The hashed input string.

is_dir

The is_dir method checks if the supplied path is a directory.

Syntax

is_dir(path)

Arguments

Argument Description

path (string) The path to check.

Returns

(Boolean). Returns true if the supplied path is a directory, false otherwise.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 95 of 156

log

The log method appends log messages to the specified file.

Syntax

log(file, message)

Arguments

Argument Description

file (string) The file to append log messages to.

message (string) The message to print to the file.

move_file

The move_file method moves a file.

Syntax

move_file(src, dest [, overwrite])

Arguments

Argument Description

src (string) The source file.

dest (string) The destination file.

overwrite (boolean) A boolean that specifies whether to move the file if the destination file already
exists. If this argument is false, and the destination file already exists, the move
operation fails. The default is true, which means that the destination file is overwritten.

Returns

(Boolean). Returns true to indicate success, false otherwise.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 96 of 156

parse_csv

The parse_csv method parses a string of comma-separated values into individual strings. The method
understands quoted values (such that parsing 'foot, "leg, torso", elbow' produces three values) and
ignores white space around delimiters.

Syntax

parse_csv(input [, delimiter])

Arguments

Argument Description

input (string) The string to parse.

delimiter (string) The delimiter to use (the default delimiter is ",").

Returns

(Strings). You can put them in a table like this:

local results = { parse_csv("cat,tree,house", ",") };

parse_xml

The parse_xml method parses an XML string to a LuaXmlDocument.

Syntax

parse_xml(xml)

Arguments

Argument Description

xml (string) XML data as a string.

Returns

(LuaXmlDocument). A LuaXmlDocument containing the parsed data, or nil if the string could not be
parsed.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 97 of 156

regex_match

The regex_match method performs a regular expression match on a string.

Syntax

regex_match(input, regex [, case])

Arguments

Argument Description

input (string) The string to match.

regex (string) The regular expression to match against.

case (boolean) A boolean that specifies whether the match is case-sensitive. The match is
case sensitive by default (true).

Returns

One or more strings, or nil.

If the string matches the regular expression, and the regular expression has no sub-matches, the full
string is returned.

If the string matches the regular expression, and the regular expression has sub-matches, then only the
sub-matches are returned.

If the string does not match the regular expression, there are no return values (any results are nil).

You can assign multiple strings to a table. To assign the return values to a table, surround the function
call with braces. For example:

matches = { regex_match(input, regex) }

Examples

local r1, r2, r3 = regex_match("abracadabra", "(a.r)((?:a.)*ra)")

Results: r1="abr", r2="acadabra", r3=nil

local r1, r2, r3 = regex_match("abracadabra", "a.r(?:a.)*ra")

Results: r1="abracadabra", r2=nil, r3=nil

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 98 of 156

regex_replace_all

The regex_replace_all method searches a string for matches to a regular expression, and replaces
the matches according to the value specified by the replacement argument.

Syntax

regex_replace_all(input, regex, replacement)

Arguments

Argument Description

input (string) The string in which you want to replace values.

regex (string) The regular expression to use to find values to be replaced.

replacement (string) A string that specifies how to replace the matches of the regular expression.

Returns

(String). The modified string.

Examples

regex_replace_all("ABC ABC ABC", "AB", "A")
 -- returns "AC AC AC"

 regex_replace_all("One Two Three", "\\w{3}", "_")
 -- returns "_ _ _ee"

 regex_replace_all("One Two Three", "(\\w+) (\\w+)", "\\2 \\1")
 -- returns "Two One Three"

regex_search

The regex_search method performs a regular expression search on a string. This method returns a
LuaRegexMatch object, rather than strings.

Syntax

regex_search (input, regex [, case])

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 99 of 156

Arguments

Argument Description

input (string) The string in which to search.

regex (string) The regular expression with which to search.

case (boolean) A boolean that specifies whether the match is case-sensitive. The match is
case sensitive by default (true).

Returns

(LuaRegexMatch).

script_path

The script_path function returns the path and file name of the script that is running.

Syntax

script_path()

Returns

(String, String) Returns the path of the folder that contains the script and the file name of the script, as
separate strings.

Example

local script_directory, script_filename = script_path()

You can use this function to load scripts using their location relative to the current script. In the
following example only the first return value from script_path() - the directory - is concatenated with
"more_scripts/another_script.lua".

dofile(script_path().."more_scripts/another_script.lua")

send_aci_action

The send_aci_action method sends a query to an ACI server. This method takes the action
parameters as a table instead of the full action as a string, as with send_aci_command. This avoids
issues with parameter values containing an ampersand (&).

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 100 of 156

Syntax

send_aci_action(host, port, action [, parameters] [, timeout] [, retries] [,
sslParameters])

Arguments

Argument Description

host (string) The ACI host to send the query to.

port (number) The port to send the query to.

action (string) The action to perform (for example, query).

parameters (table) A Lua table containing the action parameters, for example, {
param1="value1", param2="value2" }

timeout (number) The number of milliseconds to wait before timing out. The default is
3000.

retries (number) The number of times to retry if the request fails. The default is 3.

sslParameters (table) A Lua table containing the SSL settings.

Returns

(String). Returns the XML response as a string. If required, you can call parse_xml on the string to
return a LuaXmlDocument. If the request fails, it returns nil.

Example

send_aci_action("localhost", 9000, "query" ,
 {text = "*", print = "all"});

See Also

 l send_aci_command, below

send_aci_command

The send_aci_command method sends a query to an ACI server.

Syntax

send_aci_command(host, port, query [, timeout] [, retries] [, sslParameters])

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 101 of 156

Arguments

Argument Description

host (string) The ACI host to send the query to.

port (number) The port to send the query to.

query (string) The query to send (for example, action=getstatus)

timeout (number) The number of milliseconds to wait before timing out. The default is
3000.

retries (number) The number of times to retry if the request fails. The default is 3.

sslParameters (table) A Lua table containing the SSL settings.

Returns

(String). Returns the XML response as a string. If required, you can call parse_xml on the string to
return a LuaXmlDocument. If the request fails, it returns nil.

See Also

 l send_aci_action, on page 100

send_and_wait_for_async_aci_action

The send_and_wait_for_async_aci_action method sends a query to an ACI server. The method
does not return until the action has completed.

You might use this method when you want to use an asynchronous action. The send_aci_action
method returns as soon as it receives a response, which for an asynchronous action means that it
returns a token. The method send_and_wait_for_async_aci_action sends an action and then waits.
It polls the server until the action is complete and then returns the response.

Argument Description

host (string) The ACI host to send the query to.

port (number) The ACI port to send the query to.

action (string) The name of the action to perform.

parameters (table) A Lua table containing the action parameters, for example, {
param1="value1", param2="value2" }

timeout (number) The number of milliseconds to wait before timing out. The default is

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 102 of 156

Argument Description

60000 (1 minute).

retries (number) The number of times to retry if the connection fails. The default is 3.

sslParameters (table) A Lua table containing the SSL settings.

Returns

(String). Returns the XML response as a string. If required, you can call parse_xml on the string to
return a LuaXmlDocument. If the request fails, it returns nil.

See Also

 l send_aci_action, on page 100

sleep

The sleep method pauses the thread.

Syntax

sleep(milliseconds)

Arguments

Argument Description

milliseconds (number) The number of milliseconds for which to pause the current thread.

string_uint_less

The string_uint_less method takes two strings and returns True if the second is longer than the
first. It returns False otherwise.

Syntax

string_uint_less(input1, input2)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 103 of 156

Arguments

Argument Description

input1 (string) The string that acts as the standard for comparison.

input2 (string) The string to compare against the first string.

Returns

(Boolean).

unzip_file

The unzip_file method extracts the contents of a zip file.

Syntax

unzip_file(path, dest)

Arguments

Argument Description

path (string) The path and filename of the file to unzip.

dest (string) The destination path where files are extracted.

Returns

(Boolean). Returns a Boolean indicating success or failure.

url_escape

The url_escape method percent-encodes a string.

Syntax

url_escape(input)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 104 of 156

Arguments

Argument Description

input (string) The string to percent-encode.

Returns

(String). The percent-encoded string.

url_unescape

The url_unescape method replaces URL escaped characters and returns a standard string.

Syntax

url_unescape(input)

Arguments

Argument Description

input (string) The string to process.

Returns

(String). The modified string.

xml_encode

The xml_encode method takes a string and encodes it using XML escaping.

Syntax

xml_encode (content)

Arguments

Argument Description

content (string) The string to encode.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 105 of 156

Returns

(String).

zip_file

The zip_file method zips the supplied path (file or directory). It overwrites the output file only if you
set the optional overwrite argument to true.

Syntax

zip_file(path [, overwrite])

Arguments

Argument Description

path (string) The path or filename of the file or folder to zip.

overwrite (boolean) A boolean that specifies whether to force the creation of the zip file if an
output file already exists. The default is false.

Returns

(Boolean). Returns a Boolean indicating success or failure. On success writes a file called path.zip.

LuaConfig Methods
A LuaConfig object provides access to configuration information. You can retrieve a LuaConfig for a
given configuration file using the get_config function.

If you have a LuaConfig object called config you can call its methods using the ':' operator. For
example:

config:getValue(sectionName, parameterName)

Constructor Description

LuaConfig:new The constructor for a LuaConfig object (creates a new LuaConfig object).

Method Description

getEncryptedValue Returns the unencrypted value from the config of an encrypted value.

getValue Returns the value of the configuration parameter key in a given section.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 106 of 156

Method Description

getValues Returns all the values of a configuration parameter if you have multiple values
for a key (for example, a comma-separated list or numbered list like keyN).

getEncryptedValue

The getEncryptedValue method returns the unencrypted value from the configuration file of an
encrypted value.

Syntax

getEncryptedValue(section, parameter)

Arguments

Argument Description

section (string) The section in the configuration file.

parameter (string) The parameter in the configuration file to get the value for.

Returns

(String). The unencrypted value.

getValue

The getValue method returns the value of the configuration parameter key in a given section. If the key
does not exist in the section, then it returns the default value.

Syntax

getValue(section, key [, default])

Arguments

Argument Description

section (string) The section name in the configuration file.

key (string) The name of the key from which to read.

default (string/boolean/number) The default value to use if no key is found.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 107 of 156

Returns

A string, boolean, or integer containing the value read from the configuration file.

getValues

The getValues method returns multiple values for a parameter (for example, a comma-separated list or
numbered list like keyN).

Syntax

getValues(section, parameter)

Arguments

Argument Description

section (string) The section in the configuration file.

parameter (string) The parameter to find in the configuration file.

Returns

(Strings). The strings can be assigned to a table. To map the return values to a table, surround the
function call with braces. For example:

values = { config:getValues(section, parameter) }

LuaConfig:new

The constructor for a LuaConfig object (creates a new LuaConfig object).

Syntax

LuaConfig:new(config_buffer)

Arguments

Argument Description

config_buffer (string) The configuration to use to create the LuaConfig object.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 108 of 156

Returns

(LuaConfig). The new LuaConfig object.

Example

local config_buffer = "[default]\nparameter=value"
 local config = LuaConfig:new(config_buffer)

LuaDocument Methods
This section describes the methods provided by the LuaDocument object. A LuaDocument allows you to
access and modify the reference, metadata and content of a document.

If you have a LuaDocument object called document you can call its methods using the ':' operator. For
example:

document:addField(name, value)

Constructor Description

LuaDocument:new The constructor for a LuaDocument object (creates a new LuaDocument object
that only contains a reference).

Method Description

addField Creates a new field.

addSection Add an empty section to the end of the document.

appendContent Appends content to the existing content of the document.

copyField Creates a new named field with the same value as an existing named field.

copyFieldNoOverwrite Copies a field to a certain name but does not overwrite the existing value.

countField Returns the number of fields with the name specified.

deleteField Removes a field from the document.

getContent Returns the document content.

getField Returns the first field with a specified name.

getFieldNames Returns all the field names for the document.

getFields Returns all fields with the specified name.

getFieldValue Gets a field value.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 109 of 156

Method Description

getFieldValues Gets all values of a multi-valued field.

getNextSection Gets the next section in a document, allowing you to perform find or add
operations on every section.

getReference Returns the document reference.

getSection Returns a LuaDocument object with the specified section as the active
section.

getSectionCount Returns the number of sections in the document.

getValueByPath Gets the value of the document field or sub field with the specified path.

getValuesByPath Gets all values of a multi-value document field or sub field, with the
specified path.

hasField Checks whether the document has a named field.

insertXml Inserts XML metadata into a document.

insertXmlWithoutRoot Inserts XML metadata into a document.

removeSection Removes a section from a document.

renameField Renames a field.

setContent Sets the content for a document.

setFieldValue Sets a field value.

setReference Sets the document reference.

to_idx Returns a string containing the document in IDX format.

to_json Returns a string containing the document in JSON format.

to_xml Returns a string containing the document in XML format.

writeStubIdx Writes out a stub IDX document.

writeStubXml Writes out a stub XML document.

addField

The addField method adds a new field to the document.

Syntax

addField (fieldname, fieldvalue)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 110 of 156

Arguments

Argument Description

fieldname (string) The name of the field to add.

fieldvalue (string) The value to set for the field.

addSection

The addSection method adds an empty section to the end of the document.

Syntax

addSection()

Returns

(LuaDocument). Returns a LuaDocument object representing the document, with the new section as
the active section.

Example

local newSection = document:addSection() -- Add a new section to the document
 newSection:setContent("content") -- Set content for the new section

appendContent

The appendContent method appends content to the existing content (the DRECONTENT field) of a
document or document section.

Syntax

appendContent (content [, number])

Arguments

Argument Description

content (string) The content to append.

number (number) The document section to modify. If you do not specify this argument, content

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 111 of 156

Argument Description

is appended to the last section. If you specify a number greater than the number of
existing sections, additional empty sections are created.

Examples

 -- Append content to the last section
 document:appendContent("content")

 -- Append content to section 7, empty sections are created before this section if
necessary
document:appendContent("content", 7)

copyField

The copyField method copies a field value to a new field. If the target field already exists it is
overwritten.

Syntax

copyField (sourcename, targetname [, case])

Arguments

Argument Description

sourcename (string) The name of the field to copy.

targetname (string) The destination field name.

case (boolean) A boolean that specifies whether sourcename is case-sensitive. The field
name is case sensitive by default (true).

copyFieldNoOverwrite

The copyFieldNoOverwrite method copies a field value to a new field but does not overwrite the
existing value. After calling this function the target field will contain all values of the source field in
addition to any values it already had.

Syntax

copyFieldNoOverwrite(sourcename, targetname [, case])

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 112 of 156

Arguments

Argument Description

sourcename (string) The name of the field to copy.

targetname (string) The destination field name.

case (boolean) A boolean that specifies whether sourcename is case-sensitive. The name
is case sensitive by default (true).

countField

The countField method returns the number of fields with the specified name.

Syntax

countField(fieldname [, case])

Arguments

Argument Description

fieldname (string) The name of the field to count.

case (boolean) A boolean that specifies whether fieldname is case sensitive. The field
name is case sensitive by default (true).

Returns

(Number) The number of fields with the specified name.

deleteField

The deleteField method deletes a field from a document. If you specify the optional value argument,
the field is deleted only if has the specified value.

Syntax

deleteField(fieldName [, case])

deleteField(fieldName, value [, case])

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 113 of 156

Arguments

Argument Description

fieldname (string) The name of the field to delete.

value (string) The value of the field. If this is specified only fields with matching names and
values are deleted. If this is not specified, all fields that match fieldname are deleted.

case (boolean) A boolean that specifies whether fieldname is case sensitive. The field
name is case sensitive by default (true).

getContent

The getContent method gets the content (the value of the DRECONTENT field) for a document or
document section.

Syntax

getContent([number])

Arguments

Argument Description

number (number) The document section for which you want to return the content. If you do not
specify this argument, the method returns the content of the active section. For the
document object passed to the script's handler function, the active section is the first
section (section 0).

Returns

(String). The document content as a string.

Examples

 local content7 = document:getContent(7) -- Get content for section 7
 local section = document:getSection(3) -- Get document for section 3
 local content3 = section:getContent() -- Get content for section 3
 local content0 = document:getContent() -- Get content for section 0

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 114 of 156

getField

The getField method returns a LuaField object representing the field with the specified name.

Syntax

getField(name [, case])

Arguments

Argument Description

name (string) The name of the field.

case (boolean) A boolean that specifies whether the name argument is case-sensitive. The
name is case sensitive by default (true).

Returns

(LuaField). A LuaField object.

getFieldNames

The getFieldNames method returns all of the field names for the document.

Syntax

getFieldNames()

Returns

(Strings) The names of the fields. To map the return values to a table, surround the function call with
braces. For example:

names = { document:getFieldNames() }

getFields

The getFields method returns LuaField objects where each object represents a field that matches the
specified name.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 115 of 156

Syntax

getFields(name [, case])

Arguments

Argument Description

name (string) The name of the field.

case (boolean) A boolean that specifies whether the name argument is case-sensitive. The
name is case sensitive by default (true).

Returns

(LuaFields) One LuaField for each matching field. To map the return values to a table, surround the
function call with braces. For example:

fields = { document:getFields(name) }

getFieldValue

The getFieldValue method gets the value of a field in a document. To return the values of a multi-
value field, see getFieldValues, on the next page.

Syntax

getFieldValue(fieldname [, case])

Arguments

Argument Description

fieldname (string) The name of the field to be retrieved.

case (boolean) A boolean that specifies whether fieldname is case-sensitive. The argument
is case sensitive by default (true).

Returns

(String). A string containing the value.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 116 of 156

getFieldValues

The getFieldValues method gets all values from all fields that have the same name.

Syntax

getFieldValues(fieldname [, case])

Arguments

Argument Description

fieldname (string) The name of the field.

case (boolean) A boolean that specifies whether fieldname is case-sensitive. The argument
is case sensitive by default (true).

Returns

(Strings). Strings that contain the values. To map the return values to a table, surround the function call
with braces. For example:

fieldvalues = { document:getFieldValues(fieldname) }

getNextSection

The getNextSection method returns the next section of a document (if the document has been divided
into sections).

The document object passed to the script's handler function represents the first section of the
document. This means that the methods described in this section read and modify only the first
section.

Calling getNextSection on the LuaDocument passed to the handler function will always return the
second section. To perform operations on every section, see the example below.

When a document is divided into sections, each section has the same fields. The only difference
between each section is the document content (the value of the DRECONTENT field).

Syntax

getNextSection()

Returns

(LuaDocument) A LuaDocument object that contains the next DRE section.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 117 of 156

Example

To perform operations on every section, use the following script.

local section = document
 while section do
 -- Manipulate section
 section = section:getNextSection()
 end

getReference

The getReference method returns a string containing the reference (the value of the DREREFERENCE
document field).

Syntax

getReference()

Returns

(String). A string containing the reference.

getSection

The getSection method returns a LuaDocument object with the specified section as the active
section.

Syntax

getSection(number)

Arguments

Argument Description

number (number) The document section for which you want to return a LuaDocument object.

Returns

(LuaDocument). A LuaDocument object with the specified section as the active section.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 118 of 156

Example

-- Get object for section 7 of document
 local section = document:getSection(7)

 -- Get the content from the section
 local content = section:getContent()

getSectionCount

The getSectionCount method returns the number of sections in a document.

Syntax

getSectionCount()

Returns

(Number). The number of sections.

Example

local sectionCount = document:getSectionCount()

getValueByPath

The getValueByPath method gets the value of a document field. The field is specified by its path,
which means that you can get the value of a sub field. If you pass this method the path of a multi-value
field, only the first value is returned. To return all of the values from a multi-value field, see
getValuesByPath, on the next page.

Syntax

getValueByPath(path)

Arguments

Argument Description

path (string) The path of the field.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 119 of 156

Returns

(String). A string containing the value.

Example

local value = document:getValueByPath("myfield")
 local subfieldvalue = document:getValueByPath("myfield/subfield")

getValuesByPath

The getValuesByPath method gets all values of a document field. The field is specified by its path,
which means that you can get values from a sub field.

Syntax

getValuesByPath(path)

Arguments

Argument Description

path (string) The path of the field.

Returns

(Strings). Strings that contain the values. To map the return values to a table, surround the function call
with braces. For example:

fieldvalues = { document:getValuesByPath("myfield/subfield") }

hasField

The hasField method checks to see if a field exists in the current document.

Syntax

hasField (fieldname [, case])

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 120 of 156

Arguments

Argument Description

fieldname (string) The name of the field.

case (boolean) A boolean that specifies whether the fieldname is case-sensitive. The field
name is case-sensitive by default.

Returns

(Boolean). True if the field exists, false otherwise.

insertXml

The insertXml method inserts XML metadata into the document.

Syntax

insertXml (node)

Arguments

Argument Description

node (LuaXmlNode) The node to insert.

Returns

(LuaField). A LuaField object of the inserted data.

insertXmlWithoutRoot

The insertXmlWithoutRoot method inserts XML metadata into the document.

This method does not insert the top level node. All of the child nodes are inserted into the document.
insertXmlWithoutRoot(node) is therefore equivalent to calling insertXml() for each child node.

Syntax

insertXmlWithoutRoot (node)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 121 of 156

Arguments

Argument Description

node (LuaXmlNode) The node to insert.

LuaDocument:new

The constructor for a LuaDocument object (creates a new LuaDocument object that only contains a
reference).

Syntax

LuaDocument:new(reference)

Arguments

Argument Description

reference (string) The reference to assign to the new document.

Returns

(LuaDocument). The new LuaDocument object.

Example

local reference = "my_reference"
 local document = LuaDocument:new(reference)

removeSection

The removeSection method removes a section from a document.

Syntax

removeSection(sectionNumber)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 122 of 156

Arguments

Argument Description

sectionNumber (number) A zero-based index that specifies the section to remove. For example, to
remove the second section, set this argument to 1.

Returns

Nothing.

Example

 -- Example that removes the last section of a document
 if document:getSectionCount() > 0 then
 local lastSection = document:getSectionCount() - 1
 document:removeSection(lastSection)
 end

renameField

The renameField method changes the name of a field.

Syntax

renameField(currentname, newname [, case])

Arguments

Argument Description

currentname (string) The name of the field to rename.

newname (string) The new name of the field.

case (boolean) A boolean that specifies whether the currentname argument is case-
sensitive. The argument is case sensitive by default (true).

setContent

The setContent method sets the content (the value of the DRECONTENT field) for a document or
document section.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 123 of 156

Syntax

setContent(content [, number])

Arguments

Argument Description

content (string) The content to set for the document or document section.

number (number) The document section to modify. If you do not specify a number, the method
modifies the active section. For the document object passed to the script's handler
function, the active section is the first section (section 0). If you specify a number
greater than the number of existing sections, additional empty sections are created.

Examples

 -- Set content for section 0
 document:setContent("content0")

 -- Get document for section 1
 local section = document:getNextSection()

 -- Set content for section 1
 section:setContent("content1")

 -- Set content for section 7, and assign sections 2-6 to
 -- empty string if non-existent
 document:setContent("content7", 7)

setFieldValue

The setFieldValue method sets the value of a field in a document. If the field does not exist, it is
created. If the field already exists, the existing value is overwritten.

Syntax

setFieldValue(fieldname, newvalue)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 124 of 156

Arguments

Argument Description

fieldname (string) The name of the field to set.

newvalue (string) The value to set for the field.

setReference

The setReference method sets the reference (the value of the DREREFERENCE document field) to the
string passed in.

Syntax

setReference(reference)

Arguments

Argument Description

reference (string) The reference to set.

to_idx

The to_idx method returns a string containing the document in IDX format.

Syntax

to_idx()

Returns

(String). Returns the document as a string.

to_json

The to_json method returns a string containing the document in JSON format.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 125 of 156

Syntax

to_json()

Returns

(String). Returns the document as a string.

to_xml

The to_xml method returns a string containing the document in XML format.

Syntax

to_xml()

Returns

(String). Returns the document as a string.

writeStubIdx

The writeStubIdx method writes out a stub IDX document (a metadata file used by IDOL
applications). The file is created in the current folder, but you can specify a full path and file name if you
want to create the file in another folder.

Syntax

writeStubIdx(filename)

Arguments

Argument Description

filename (string) The name of the file to create.

Returns

(Boolean). True if written, false otherwise.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 126 of 156

writeStubXml

The writeStubXml method writes out an XML file containing the metadata for the document. The file is
created in the current folder but you can specify a full path and file name if you want to create the file in
another folder.

Syntax

writeStubXml(filename)

Arguments

Argument Description

filename (String) The name of the file to create.

Returns

(Boolean) True if successful, false otherwise.

LuaField Methods
This section describes the methods provided by LuaField objects. A LuaField represents a single
field in a document. You can retrieve LuaField objects for a document using the LuaDocument
getField and getFields methods. In its simplest form a field has just a name and a value, but it can
also contain sub-fields.

If you have a LuaField object called field you can call its methods using the ':' operator. For
example:

field:addField(name, value)

Method Description

addField Adds a sub field with the specified name and value.

copyField Copies the sub field to another sub field.

copyFieldNoOverwrite Copies the sub field to another sub field but does not overwrite the
destination.

countField Returns the number of sub fields that exist with the specified name.

deleteAttribute Deletes the attribute with the specified name.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 127 of 156

Method Description

deleteField Deletes the sub field with the specified name.

getAttributeValue Gets the value of an attribute.

getField Gets the sub field specified by the name.

getFieldNames Returns the names of all sub fields of this field.

getFields Gets all the sub fields specified by the name.

getFieldValues Returns all the values of the sub field with the specified name.

getValueByPath Returns the value of a sub field with the specified path.

getValuesByPath Returns all the values of the sub field with the specified path.

hasAttribute Returns a Boolean specifying if the field has the specified attribute passed
in by name.

hasField Returns a Boolean specifying if the sub field exists or not.

insertXml Inserts XML metadata into a document.

insertXmlWithoutRoot Inserts XML metadata into a document.

name Returns the name of the field object in a string.

renameField Renames a sub field.

setAttributeValue Sets the value for the specified attribute of the field.

setValue Sets the value of the field.

value Returns the value of the field object.

addField

The addField method adds a sub field with the specified name and value.

Syntax

addField(fieldname, fieldvalue)

Arguments

Argument Description

fieldname (string) The name of the field.

fieldvalue (string) The value of the field.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 128 of 156

copyField

The copyField method copies a sub field to another sub field. If the target sub field exists it is
overwritten.

Syntax

copyField (from, to [, case])

Arguments

Argument Description

from (string) The name of the field to copy.

to (string) The name of the field to copy to.

case (boolean) A boolean that specifies whether the from argument is case sensitive. The
argument is case sensitive by default (true).

copyFieldNoOverwrite

The copyFieldNoOverwrite method copies the sub field to another sub field but does not overwrite the
destination. After this operation the destination field contains all the values of the source field as well as
any values it already had.

Syntax

copyFieldNoOverwrite(from, to [, case])

Arguments

Argument Description

from (string) The name of the field to copy.

to (string) The name of the field to copy to.

case (boolean) A boolean that specifies whether the from argument is case sensitive. The
argument is case sensitive by default (true).

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 129 of 156

countField

The countField method returns the number of sub fields that exist with the specified name.

Syntax

countField (fieldname [, case])

Arguments

Argument Description

fieldname (string) The name of the field.

case (boolean) A boolean that specifies whether the fieldname argument is case sensitive.
The argument is case sensitive by default (true).

Returns

(Number). The number of sub fields that exist with the specified name.

deleteAttribute

The deleteAttribute method deletes the specified field attribute.

Syntax

deleteAttribute(name)

Arguments

Argument Description

name (string) The name of the attribute to delete.

deleteField

The deleteField method deletes the sub field with the specified name.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 130 of 156

Syntax

deleteField(name [, case])

deleteField(name , value [, case])

Arguments

Argument Description

name (string) The name of the sub field to delete.

value (string) The value of the sub field. If this is specified a field is deleted only if it has the
specified name and value. If this is not specified, all fields with the specified name are
deleted.

case (boolean) A boolean that specifies whether the name argument is case sensitive. The
argument is case sensitive by default (true).

getAttributeValue

The getAttributeValue method gets the value of the specified attribute.

Syntax

getAttributeValue(name)

Arguments

Argument Description

name (string) The name of the attribute.

Returns

(String). The attribute value.

getField

The getField method returns the specified sub field.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 131 of 156

Syntax

getField (name [, case])

Arguments

Argument Description

name (string) The name of the field to return.

case (boolean) A boolean that specifies whether the name argument is case sensitive. The
argument is case sensitive by default (true).

Returns

(LuaField) A LuaField object.

getFieldNames

The getFieldNames method returns the names of the sub fields in the LuaField object.

Syntax

getFieldNames()

Returns

(Strings). The names of the sub fields. The strings can be assigned to a table. To map the return values
to a table, surround the function call with braces. For example:

fieldnames = { field:getFieldNames() }

getFields

The getFields method returns all of the sub fields specified by the name argument.

Syntax

getFields(name [, case])

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 132 of 156

Arguments

Argument Description

name (string) The name of the fields.

case (boolean) A boolean that specifies whether the name argument is case sensitive. The
argument is case sensitive by default (true).

Returns

(LuaFields) One LuaField per matching field. The objects can be assigned to a table. To map the return
values to a table, surround the function call with braces. For example:

fields = { field:getFields(name [, case]) }

getFieldValues

The getFieldValues method returns the values of all of the sub fields with the specified name.

Syntax

getFieldValues(fieldname [, case])

Arguments

Argument Description

fieldname (string) The name of the field.

case (boolean) A boolean that specifies whether the fieldname argument is case sensitive.
The argument is case sensitive by default (true).

Returns

(Strings) One string for each value. The strings can be assigned to a table. To map the return values to
a table, surround the function call with braces. For example:

fieldvalues = { field:getFieldValues(fieldname) }

getValueByPath

The getValueByPath method gets the value of a sub-field, specified by path. If you pass this method
the path of a sub-field that has multiple values, only the first value is returned. To return all of the values

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 133 of 156

from a multi-value sub-field, see getValuesByPath, below.

Syntax

getValueByPath(path)

Arguments

Argument Description

path (string) The path of the sub-field.

Returns

(String). A string containing the value.

Example

Consider the following document:

<DOCUMENT>
 ...
 <A_FIELD>
 <subfield>
 <anothersubfield>the value to return</anothersubfield>
 </subfield>
 </A_FIELD>
 ...
 </DOCUMENT>

The following example demonstrates how to retrieve the value "the value to return" from the sub-field
anothersubfield, using a LuaField object representing A_FIELD:

local field = document:getField("A_FIELD")
 local value = field:getValueByPath("subfield/anothersubfield")

getValuesByPath

The getValuesByPath method gets the values of a sub-field, specified by path.

Syntax

getValuesByPath(path)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 134 of 156

Arguments

Argument Description

path (string) The path of the sub-field.

Returns

(Strings). Strings that contain the values. To map the return values to a table, surround the function call
with braces. For example:

fieldvalues = { myfield:getValuesByPath("subfield/anothersubfield") }

Example

Consider the following document:

<DOCUMENT>
 ...
 <A_FIELD>
 <subfield>
 <anothersubfield>one</anothersubfield>
 <anothersubfield>two</anothersubfield>
 <anothersubfield>three</anothersubfield>
 </subfield>
 </A_FIELD>
 ...
 </DOCUMENT>

The following example demonstrates how to retrieve the values "one", "two", and "three" from the sub-
field anothersubfield, using a LuaField object representing A_FIELD:

local field = document:getField("A_FIELD")
 local values = { field:getValuesByPath("subfield/anothersubfield") }

hasAttribute

The hasAttribute method returns a Boolean indicating whether the field has the specified attribute.

Syntax

hasAttribute(name)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 135 of 156

Arguments

Argument Description

name (string) The name of the attribute.

Returns

(Boolean). A Boolean specifying if the field has the specified attribute.

hasField

The hasField method returns a Boolean specifying if the sub field exists.

Syntax

hasField(fieldname [, case])

Arguments

Argument Description

fieldname (string) The name of the field.

case (boolean) A boolean that specifies whether the fieldname argument is case sensitive.
The argument is case sensitive by default (true).

Returns

(Boolean). A Boolean specifying if the sub field exists or not.

insertXml

The insertXml method inserts XML metadata into the document. When called on a LuaField, the
insertXml method inserts the fields as children of the LuaField.

Syntax

insertXml (node)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 136 of 156

Arguments

Argument Description

node (LuaXmlNode) The node to insert.

Returns

(LuaField). A LuaField object of the inserted data.

insertXmlWithoutRoot

The insertXmlWithoutRoot method inserts XML metadata into the document.

This method does not insert the top level node. All of the child nodes are inserted into the document.
insertXmlWithoutRoot(node) is therefore equivalent to calling insertXml() for each child node.

Syntax

insertXmlWithoutRoot (node)

Arguments

Argument Description

node (LuaXmlNode) The node to insert.

name

The name method returns the name of the field object.

Syntax

name()

Returns

(String). The name of the field object.

renameField

The renameField method renames a sub field.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 137 of 156

Syntax

renameField(oldname, newname [, case])

Arguments

Argument Description

oldname (string) The previous name of the field.

newname (string) The new name of the field.

case (boolean) A boolean that specifies whether the oldname argument is case sensitive.
The argument is case sensitive by default (true).

setAttributeValue

The setAttributeValue method sets the value for the specified attribute of the field.

Syntax

setAttributeValue(attribute, value)

Arguments

Argument Description

attribute (string) The name of the attribute to set.

value (string) The value to set.

setValue

The setValue method sets the value of the field.

Syntax

setValue(value)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 138 of 156

Arguments

Argument Description

value (string) The value to set.

value

The value method returns the value of the field object.

Syntax

value()

Returns

(String). The value of the field object.

LuaLog Methods
A LuaLog object provides the capability to use a log stream defined in the connector's configuration file.
You can obtain a LuaLog object for a log stream by using the function get_log.

If you have a LuaLog object called log you can call its methods using the ':' operator. For example:

log:write_line(level, message)

Method Description

write_line Write a message to the log stream.

write_line

The write_line method writes a message to the log stream.

Syntax

write_line(level, message)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 139 of 156

Arguments

Argument Description

level The log level for the message. The message only appears in the log if the log level
specified here is the same as, or higher than, the log level set for the log stream. To
obtain the correct value for the log level, use one of the following functions:

 l log_level_always()

 l log_level_error()

 l log_level_warning()

 l log_level_normal()

 l log_level_full()

message (string) The message to write to the log stream.

Example

local config = get_config("connector.cfg")
 local log = get_log(config, "SynchronizeLogStream")
 log:write_line(log_level_error() , "This message is written to the synchronize
log")

LuaXmlDocument Methods
This section describes the methods provided by LuaXmlDocument objects. A LuaXmlDocument object
provides methods for accessing information stored in XML format. You can create a LuaXmlDocument
from a string containing XML using the parse_xml function.

If you have a LuaXmlDocument object called xml you can call its methods using the ':' operator. For
example:

xml:root()

Method Description

root Returns a LuaXmlNode that is the root node of the XML document.

XPathExecute Returns a LuaXmlNodeSet that is the result of supplied XPath query.

XPathRegisterNs Register a namespace with the XML parser. Returns an integer detailing the
error code.

XPathValue Returns the first occurrence of the value matching the XPath query.

XPathValues Returns the values according to the XPath query.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 140 of 156

root

The root method returns an LuaXmlNode, which is the root node of the XML document.

Syntax

root()

Returns

(LuaXmlNode). A LuaXmlNode object.

XPathExecute

The XPathExecute method returns a LuaXmlNodeSet, which is the result of the supplied XPath query.

Syntax

XPathExecute(xpathQuery)

Arguments

Argument Description

xpathQuery (string) The xpath query to run.

Returns

(LuaXmlNodeSet). A LuaXmlNodeSet object.

XPathRegisterNs

The XPathRegisterNs method registers a namespace with the XML parser.

Syntax

XPathRegisterNs(prefix, location)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 141 of 156

Arguments

Argument Description

prefix (string) The namespace prefix.

location (string) The namespace location.

Returns

(Boolean). True if successful, False in case of error.

XPathValue

The XPathValue method returns the first occurrence of the value matching the XPath query.

Syntax

XPathValue(query)

Arguments

Argument Description

query (string) The XPath query to use.

Returns

(String). A string of the value.

XPathValues

The XPathValues method returns the values according to the XPath query.

Syntax

XPathValues(query)

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 142 of 156

Arguments

Argument Description

query (string) The XPath query to use.

Returns

(Strings). The strings can be assigned to a table. To map the return values to a table, surround the
function call with braces. For example:

values = { xml:XPathValues(query) }

LuaXmlNodeSet Methods
A LuaXmlNodeSet object represents a set of XML nodes.

If you have a LuaXmlNodeSet object called nodes you can call its methods using the ':' operator. For
example:

nodes:size()

Method Description

at Returns the LuaXmlNode at position pos in the set.

size Returns size of node set.

at

The at method returns the LuaXmlNode at position position in the set.

Syntax

at(position)

Arguments

Argument Description

position (number) The index of the item in the array to get.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 143 of 156

Returns

(LuaXmlNode).

size

The size method returns the size of the node set.

Syntax

size()

Returns

(Number) An integer, the size of the node set.

LuaXmlNode Methods
A LuaXmlNode object represents a single node in an XML document.

If you have a LuaXmlNode object called node you can call its methods using the ':' operator. For
example:

node:name()

Method Description

attr Returns the first LuaXmlAttribute attribute object for this element.

content Returns the content (text element) of the XML node.

firstChild Returns a LuaXmlNode that is the first child of this node.

lastChild Returns a LuaXmlNode that is the last child of this node.

name Returns the name of the XML node.

next Returns a LuaXmlNode that is the next sibling of this node.

nodePath Returns the XML path to the node that can be used in another XPath query.

parent Returns the parent LuaXmlNode of the node.

prev Returns a LuaXmlNode that is the previous sibling of this node.

type Returns the type of the node as a string.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 144 of 156

attr

The attr method returns the first LuaXmlAttribute attribute object for the LuaXmlNode. If the name
argument is specified, the method returns the first LuaXmlAttribute object with the specified name.

Syntax

attr([name])

Arguments

Argument Description

name (string) The name of the LuaXmlAttribute object.

Returns

(LuaXmlAttribute).

content

The content method returns the content (text element) of the XML node.

Syntax

content()

Returns

(String). A string containing the content.

firstChild

The firstChild method returns the LuaXmlNode that is the first child of this node.

Syntax

firstChild()

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 145 of 156

Returns

(LuaXmlNode).

lastChild

The lastChild method returns the LuaXmlNode that is the last child of this node.

Syntax

lastChild()

Returns

(LuaXmlNode).

name

The name method returns the name of the XML node.

Syntax

name()

Returns

(String). A string containing the name.

next

The next method returns the LuaXmlNode that is the next sibling of this node.

Syntax

next()

Returns

(LuaXmlNode).

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 146 of 156

nodePath

The nodePath method returns the XML path to the node, which can be used in another XPath query.

Syntax

nodePath()

Returns

(String). A string containing the path.

parent

The parent method returns the parent LuaXmlNode of the node.

Syntax

parent()

Returns

(LuaXmlNode).

prev

The prev method returns a LuaXmlNode that is the previous sibling of this node.

Syntax

prev()

Returns

(LuaXmlNode).

type

The type method returns the type of the node as a string.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 147 of 156

Syntax

type()

Returns

(String) A string containing the type. Possible values are:

element_node comment_node element_decl

attribute_node document_node attribute_decl

text_node document_type_node entity_decl

cdata_section_node document_frag_node namespace_decl

entity_ref_node notation_node xinclude_start

entity_node html_document_node xinclude_end

pi_node dtd_node docb_document_node

LuaXmlAttribute Methods
A LuaXmlAttribute object represents an attribute on an XML element.

If you have a LuaXmlAttribute object called attribute you can call its methods using the ':'
operator. For example:

attribute:name()

Method Description

name Returns the name of this attribute.

next Returns a LuaXmlAttribute object for the next attribute in the parent element.

prev Returns a LuaXmlAttribute object for the previous attribute in the parent element.

value Returns the value of this attribute.

name

The name method returns the name of this attribute.

Syntax

name()

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 148 of 156

Returns

(String). A string containing the name of the attribute.

next

The next method returns a LuaXmlAttribute object for the next attribute in the parent element.

Syntax

next()

Returns

(LuaXmlAttribute).

prev

The prev method returns a LuaXmlAttribute object for the previous attribute in the parent element.

Syntax

prev()

Returns

(LuaXmlAttribute).

value

The value method returns the value of this attribute.

Syntax

value()

Returns

(String). A string containing the value of the attribute.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 149 of 156

LuaRegexMatch Methods
A LuaRegexMatch object provides information about the matches for a regular expression found in a
string. For example, the regex_search function returns a LuaRegexMatch object.

If a match is found for a regular expression at multiple points in the string, you can use the next()
method to get a LuaRegexMatch object for the next match.

If the regular expression contained sub-expressions (surrounded by parentheses) the methods of
LuaRegexMatch objects can also be used to retrieve information about the sub-expression matches.

If you have a LuaRegexMatch object called match you can call its methods using the ":" operator. For
example:

match:length()

Method Description

length Returns the length of the sub match.

next Returns a LuaRegexMatch for the next match.

position Returns the position of the sub match as an index from 1.

size Returns the number of sub matches for the current match.

str Returns the string for the sub match.

length

The length method returns the length of the match. You can also retrieve the length of sub matches by
specifying the submatch parameter.

Syntax

length([submatch])

Arguments

Argument Description

submatch (number) The sub match to return the length of, starting at 1 for the first sub match. With
the default value of 0 the length of the whole match is returned.

Returns

(Number). The length of the sub match.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 150 of 156

next

The next method returns a LuaRegexMatch object for the next match.

Syntax

next()

Returns

(LuaRegexMatch). A LuaRegexMatch object for the next match, or nil if there are no matches
following this one.

position

The position method returns the position of the match in the string searched, where 1 refers to the first
character in the string. You can also retrieve the position of sub matches by specifying the submatch
parameter.

Syntax

position([submatch])

Arguments

Argument Description

submatch (number) The sub match to return the position of, starting at 1 for the
first sub match. With the default value of 0 the position of the whole
match is returned.

Returns

(Number). The position of the submatch as an index from 1.

size

The size method returns the total number of sub matches made for the current match, including the
whole match (sub match 0).

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 151 of 156

Syntax

size()

Returns

(Number). The number of sub matches for the current match.

str

The str method returns the value of the substring that matched the regular expression. You can also
retrieve the values of sub matches by specifying the submatch parameter.

Syntax

str([submatch])

Arguments

Argument Description

submatch (number) The sub match to return the value of, starting at 1 for the first sub match. With
the default value of 0 the value of the whole match is returned.

Returns

(String). The value of the sub match.

Administration Guide
Chapter 10: Lua Functions and Methods Reference

HPE HTTP Connector (11.2) Page 152 of 156

Page 153 of 156HPE HTTP Connector (11.2)

Glossary

A

ACI (Autonomy Content Infrastructure)
A technology layer that automates operations
on unstructured information for cross-
enterprise applications. ACI enables an
automated and compatible business-to-
business, peer-to-peer infrastructure. The
ACI allows enterprise applications to
understand and process content that exists
in unstructured formats, such as email, Web
pages, Microsoft Office documents, and IBM
Notes.

ACI Server
A server component that runs on the
Autonomy Content Infrastructure (ACI).

ACL (access control list)
An ACL is metadata associated with a
document that defines which users and
groups are permitted to access the
document.

action
A request sent to an ACI server.

active directory
A domain controller for the Microsoft
Windows operating system, which uses
LDAP to authenticate users and computers
on a network.

C

Category component
The IDOL Server component that manages
categorization and clustering.

Community component
The IDOL Server component that manages
users and communities.

connector
An IDOL component (for example File
System Connector) that retrieves information
from a local or remote repository (for
example, a file system, database, or Web
site).

Connector Framework Server (CFS)
Connector Framework Server processes the
information that is retrieved by connectors.
Connector Framework Server uses KeyView
to extract document content and metadata
from over 1,000 different file types. When the
information has been processed, it is sent to
an IDOL Server or Distributed Index Handler
(DIH).

Content component
The IDOL Server component that manages
the data index and performs most of the
search and retrieval operations from the
index.

D

DAH (Distributed Action Handler)
DAH distributes actions to multiple copies of
IDOL Server or a component. It allows you to
use failover, load balancing, or distributed
content.

DIH (Distributed Index Handler)
DIH allows you to efficiently split and index
extremely large quantities of data into
multiple copies of IDOL Server or the
Content component. DIH allows you to
create a scalable solution that delivers high
performance and high availability. It provides
a flexible way to batch, route, and categorize
the indexing of internal and external content
into IDOL Server.

Administration Guide
Glossary: IDOL - OmniGroupServer (OGS)

Page 154 of 156HPE HTTP Connector (11.2)

I

IDOL
The Intelligent Data Operating Layer (IDOL)
Server, which integrates unstructured, semi-
structured and structured information from
multiple repositories through an
understanding of the content. It delivers a
real-time environment in which operations
across applications and content are
automated.

IDOL Proxy component
An IDOL Server component that accepts
incoming actions and distributes them to the
appropriate subcomponent. IDOL Proxy also
performs some maintenance operations to
make sure that the subcomponents are
running, and to start and stop them when
necessary.

Import
Importing is the process where CFS, using
KeyView, extracts metadata, content, and
sub-files from items retrieved by a connector.
CFS adds the information to documents so
that it is indexed into IDOL Server. Importing
allows IDOL server to use the information in
a repository, without needing to process the
information in its native format.

Ingest
Ingestion converts information that exists in
a repository into documents that can be
indexed into IDOL Server. Ingestion starts
when a connector finds new documents in a
repository, or documents that have been
updated or deleted, and sends this
information to CFS. Ingestion includes the
import process, and processing tasks that
can modify and enrich the information in a
document.

Intellectual Asset Protection System (IAS)
An integrated security solution to protect your
data. At the front end, authentication checks

that users are allowed to access the system
that contains the result data. At the back end,
entitlement checking and authentication
combine to ensure that query results contain
only documents that the user is allowed to
see, from repositories that the user has
permission to access.

K

KeyView
The IDOL component that extracts data,
including text, metadata, and subfiles from
over 1,000 different file types. KeyView can
also convert documents to HTML format for
viewing in a Web browser.

L

LDAP
Lightweight Directory Access Protocol.
Applications can use LDAP to retrieve
information from a server. LDAP is used for
directory services (such as corporate email
and telephone directories) and user
authentication. See also: active directory,
primary domain controller.

License Server
License Server enables you to license and
run multiple IDOL solutions. You must have a
License Server on a machine with a known,
static IP address.

O

OmniGroupServer (OGS)
A server that manages access permissions
for your users. It communicates with your
repositories and IDOL Server to apply
access permissions to documents.

Administration Guide
Glossary: primary domain controller - XML

Page 155 of 156HPE HTTP Connector (11.2)

P

primary domain controller
A server computer in a Microsoft Windows
domain that controls various computer
resources. See also: active directory, LDAP.

V

View
An IDOL component that converts files in a
repository to HTML formats for viewing in a
Web browser.

W

Wildcard
A character that stands in for any character
or group of characters in a query.

X

XML
Extensible Markup Language. XML is a
language that defines the different attributes
of document content in a format that can be
read by humans and machines. In IDOL
Server, you can index documents in XML
format. IDOL Server also returns action
responses in XML format.

Send Documentation Feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Administration Guide (HPE HTTP Connector 11.2)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to AutonomyTPFeedback@hpe.com.

We appreciate your feedback!

HPE HTTP Connector (11.2) Page 156 of 156

mailto:AutonomyTPFeedback@hpe.com?subject=Feedback on Administration Guide (HPE HTTP Connector 11.2)

	Chapter 1: Introduction
	HPE HTTP Connector
	Features and Capabilities
	Supported Actions
	Display Online Help
	OEM Certification

	Connector Framework Server
	HPE's IDOL Platform
	System Architecture
	Related Documentation

	Chapter 2: Install HPE HTTP Connector
	System Requirements
	Permissions
	Install HPE HTTP Connector
	Configure the License Server Host and Port

	Chapter 3: Configure HPE HTTP Connector
	HPE HTTP Connector Configuration File
	Modify Configuration Parameter Values
	Include an External Configuration File
	Include the Whole External Configuration File
	Include Sections of an External Configuration File
	Include a Parameter from an External Configuration File
	Merge a Section from an External Configuration File

	Encrypt Passwords
	Create a Key File
	Encrypt a Password
	Decrypt a Password

	Register with a Distributed Connector
	Set Up Secure Communication
	Configure Outgoing SSL Connections
	Configure Incoming SSL Connections

	Backup and Restore the Connector’s State
	Backup a Connector’s State
	Restore a Connector’s State

	Validate the Configuration File
	Example Configuration File

	Chapter 4: Start and Stop the Connector
	Start the Connector
	Verify that HPE HTTP Connector is Running
	GetStatus
	GetLicenseInfo

	Stop the Connector

	Chapter 5: Send Actions to HPE HTTP Connector
	Send Actions to HPE HTTP Connector
	Asynchronous Actions
	Check the Status of an Asynchronous Action
	Cancel an Asynchronous Action that is Queued
	Stop an Asynchronous Action that is Running

	Store Action Queues in an External Database
	Prerequisites
	Configure HPE HTTP Connector

	Store Action Queues in Memory
	Use XSL Templates to Transform Action Responses
	Example XSL Templates

	Chapter 6: Use the Connector
	Create a New Fetch Task
	Retrieve Data using SSL
	Schedule Fetch Tasks
	Troubleshoot the Connector

	Chapter 7: Manipulate Documents
	Introduction
	Add a Field to Documents using an Ingest Action
	Customize Document Processing
	Standardize Field Names
	Run Lua Scripts
	Write a Lua Script
	Run a Lua Script using an Ingest Action

	Example Lua Scripts
	Add a Field to a Document
	Merge Document Fields

	Chapter 8: Ingestion
	Introduction
	Send Data to Connector Framework Server
	Send Data to Haven OnDemand
	Prepare Haven OnDemand
	Send Data to Haven OnDemand

	Send Data to Another Repository
	Index Documents Directly into IDOL Server
	Index Documents into Vertica
	Prepare the Vertica Database
	Send Data to Vertica

	Send Data to a MetaStore
	Run a Lua Script after Ingestion

	Chapter 9: Monitor the Connector
	IDOL Admin
	Prerequisites
	Supported Browsers

	Install IDOL Admin
	Access IDOL Admin

	Use the Connector Logs
	Customize Logging

	Set Up Event Handlers
	Event Handlers
	Configure an Event Handler

	Set Up Performance Monitoring
	Configure the Connector to Pause
	Determine if an Action is Paused

	Set Up Document Tracking

	Chapter 10: Lua Functions and Methods Reference
	General Functions
	abs_path
	base64_decode
	base64_encode
	convert_date_time
	convert_encoding
	copy_file
	create_path
	create_uuid
	delete_file
	delete_path
	doc_tracking
	encrypt
	encrypt_security_field
	extract_date
	file_setdates
	get_config
	get_log
	get_task_config
	get_task_name
	getcwd
	gobble_whitespace
	hash_file
	hash_string
	is_dir
	log
	move_file
	parse_csv
	parse_xml
	regex_match
	regex_replace_all
	regex_search
	script_path
	send_aci_action
	send_aci_command
	send_and_wait_for_async_aci_action
	sleep
	string_uint_less
	unzip_file
	url_escape
	url_unescape
	xml_encode
	zip_file

	LuaConfig Methods
	getEncryptedValue
	getValue
	getValues
	LuaConfig:new

	LuaDocument Methods
	addField
	addSection
	appendContent
	copyField
	copyFieldNoOverwrite
	countField
	deleteField
	getContent
	getField
	getFieldNames
	getFields
	getFieldValue
	getFieldValues
	getNextSection
	getReference
	getSection
	getSectionCount
	getValueByPath
	getValuesByPath
	hasField
	insertXml
	insertXmlWithoutRoot
	LuaDocument:new
	removeSection
	renameField
	setContent
	setFieldValue
	setReference
	to_idx
	to_json
	to_xml
	writeStubIdx
	writeStubXml

	LuaField Methods
	addField
	copyField
	copyFieldNoOverwrite
	countField
	deleteAttribute
	deleteField
	getAttributeValue
	getField
	getFieldNames
	getFields
	getFieldValues
	getValueByPath
	getValuesByPath
	hasAttribute
	hasField
	insertXml
	insertXmlWithoutRoot
	name
	renameField
	setAttributeValue
	setValue
	value

	LuaLog Methods
	write_line

	LuaXmlDocument Methods
	root
	XPathExecute
	XPathRegisterNs
	XPathValue
	XPathValues

	LuaXmlNodeSet Methods
	at
	size

	LuaXmlNode Methods
	attr
	content
	firstChild
	lastChild
	name
	next
	nodePath
	parent
	prev
	type

	LuaXmlAttribute Methods
	name
	next
	prev
	value

	LuaRegexMatch Methods
	length
	next
	position
	size
	str

	Glossary
	Send Documentation Feedback

