
Technical Note

Basis Sentence Breaking Libraries
Version 10.10

Technical Note
Revision 0

This document describes how to use the HP Autonomy Basis Sentence Breaking Libraries 10.10.

The Basis Rosette Linguistics Platform libraries allow you to use the Basis systems for sentence
breaking and stemming in IDOL Server. This library takes the place of the standard sentence
breaking libraries that Autonomy provides with IDOL Server for Chinese, Japanese, and Korean.

You can use the Basis libraries in the package to perform sentence breaking in your IDOL Server.
You can also optionally create a custom dictionary to specify custom sentence breaking rules for
particular words and phrases.

Contents

Supported Platforms 2

Install the Basis Libraries 2

Environment Variables 2

Configuration 3

RLP Configuration 3

IDOL Server Language Configuration 4

User Dictionaries 5

Create the Dictionary File 5

Compile the Dictionary Files 6

Enable the Custom Dictionary 8

Appendix: Basis RLP 9

Chinese Language Analyzer 9

Japanese Language Analyzer 15

Korean Language Analyzer 19

Copyright © 2015 Hewlett-Packard Development Company, L.P.31 July 2015

Chinese User Dictionaries 21

Japanese User Dictionaries 24

Korean User Dictionary 30

Entering Non-Standard Characters in a Chinese or Japanese User Dictionary (or a
Gazetteer) 33

Supported Platforms
The following operating system platforms are supported by Basis Sentence Breaking
Libraries10.10.

 l Linux

 l Windows

The following sections provide more information about the supported versions of these platforms.

Linux (64-bit only)

 l glibc 2.5

Windows (64-bit and 32-bit)

 l Windows 7

 l Windows 8

 l Windows Server 2008

 l Windows Server 2012

Install the Basis Libraries
The Basis zip package contains the library files for Chinese, Japanese, and Korean, along with the
required supporting files and dictionaries.

To install the Basis libraries on your IDOL Server instance

 l Extract the contents of the langfiles directory in the zip package to the langfiles directory in
your IDOL Server installation.

Environment Variables
To use the Basis RLP, you must set up the following environment variables on the machine:

Basis Sentence Breaking Libraries Technical NotePage 2 of 33

Basis Sentence Breaking Libraries__________

 l BT_ROOT. The Root directory that contains the RLP SDK. This is the langfiles directory where
you extracted the Basis zip package.

 l BT_BUILD. The platform that the script is running on. Set this variable to the appropriate value
from the following table:

Platform BT_BUILD Value

64-bit Linux amd64-glibc25-gcc41

64-bit Windows amd64-w64-msvc110

32-bit Windows ia32-w32-msvc110

You must also configure the LD_LIBRARY_PATH (for Linux platforms), or PATH (for Microsoft
Windows platforms).

On Linux, you must set:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$BT_ROOT/rlp/bin/$BT_BUILD:$BT_
ROOT/rlp/lib/$BT_BUILD

On Windows you must set:

set PATH=%PATH%;%BT_ROOT%\rlp\bin\%BT_BUILD%

Configuration
To use the Basis Rosette Linguistics Platform, you must configure a context file for each sentence
breaking library, and you must configure IDOL Server to use the sentence breaking libraries.

RLP Configuration
You can configure the Basis Rosette Linguistics Platform separately for each sentence breaking
library by using a context file. The following example shows a context file for Chinese sentence
breaking:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
 <!DOCTYPE contextconfig PUBLIC
 "-//basistech.com//DTD RLP Context Config 7.1//EN"
 "urn:basistech.com:7.1:contextconfig.dtd">
 <contextconfig>
 <properties>
 <!-- When a word is in the system dictionary use user dictionary -->
 <property name="com.basistech.cla.favor_user_dictionary" value="true"/>
 <property name="com.basistech.cla.decomposecompound" value="true"/>
 </properties>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>Language Identifier</languageprocessor>

Basis Sentence Breaking Libraries Technical Note Page 3 of 33

__________Configuration

 <languageprocessor>Encoding and Character Normalizer</languageprocessor>
 <languageprocessor>Sentence Breaker</languageprocessor>
 <languageprocessor>Script Region Locator</languageprocessor>
 <languageprocessor>Chinese Language Analyzer</languageprocessor>
 <languageprocessor>Word Breaker</languageprocessor>
 <languageprocessor>Lemmatizer</languageprocessor>
 </languageprocessors>
 </contextconfig>

You must place the context file in the langfiles directory, with the file name chinese-
context.xml, japanese-context.xml, or korean-context.xml (as appropriate). For more
information about how to configure the Basis RLP, see "Appendix: Basis RLP " on page 9.

IDOL Server Language Configuration
To use the Basis RLP libraries in IDOL Server, you must update the language configuration section
for the appropriate language.

To configure IDOL Server to use the Basis Sentence Breaking library

 1. In the appropriate language configuration section of the configuration file, set the
SentenceBreaking parameter to the name of the Basis library that you want to use. For
example:

SentenceBreaking=japanesebreaking_basis

 2. Set the SentenceBreakingOptions parameter to a comma-separated list of the options that
you want to use. The following options are available for the Basis sentence breaking libraries:

Option Description

DecomposeCompound For tokens that are a compound of several components, separate the
individual components by white space in the output buffer.

Logging Enable logging. Logs are output to the basis-logs directory, to the
Language.log file, where Language is Chinese, Japanese, or
Korean (as appropriate).

Stemming Include any stem terms that the Basis RLP provides for a token in
the output buffer. The Basis libraries provide stemming for some
words in Chinese, Japanese, and Korean.

You can also use the standard IDOL Server sentence breaking options. For available options,
refer to the IDOL Server Reference.

 3. Set the other configuration options for the language as usual. For more information about the
available configuration options, refer to the IDOL Server Reference.

Basis Sentence Breaking Libraries Technical NotePage 4 of 33

Basis Sentence Breaking Libraries__________

Tip: The default IDOL Server configuration file has the Normalise option set to true for
Chinese, which normalizes traditional Chinese characters to simplified. If you want to use
a custom dictionary file that contains rules with traditional Chinese characters, you must
set Normalise to false for IDOL Server to use these rules.

Note: The Stemming configuration parameter in the [MyLanguage] or [LanguageTypes]
configuration section does not have any effect on the
SentenceBreakingOptions=stemming option. For Chinese, Japanese, and Korean, all
the stemming is performed in the sentence breaking libraries, and not in IDOL Server, so
the IDOL stemming configuration does not affect the stemming that the Basis library
performs.

 4. Modify the configuration for any other languages that you want to use the Basis libraries for.

 5. Save and close the configuration file. Restart IDOL Server for your changes to take effect.

The following example configuration sets options for Japanese and Chinese:

[japanese]
 Encodings=UTF8:japaneseUTF8
 Stemming=false
 SentenceBreaking=japanesebreaking_basis
 SentenceBreakingOptions=logging,stemming,decomposecompound

 [chinese]
 Encodings=UTF8:chineseUTF8
 Stemming=false
 SentenceBreaking=chinesebreaking_basis
 SentenceBreakingOptions=logging

User Dictionaries
You can create custom dictionaries for the Basis RLP libraries, which define how to add white
space to compound terms that you define. These user dictionaries are compiled.

Note: You must set up the BT_ROOT and BT_BUILD environment variables before you run the
scripts to compile your custom dictionaries. See "Environment Variables" on page 2.

Create the Dictionary File
The dictionary files contain a list of terms and phrases, and descriptions of how you want the library
to add white space.

Each entry that you want to add is a single line, in the following format.

word[tab]POS[tab]DecompositionPattern

Basis Sentence Breaking Libraries Technical Note Page 5 of 33

__________User Dictionaries

where,

[tab] The ASCII horizontal tab character with code 9.

word The noun to add to the dictionary.

POS One of the user-dictionary part of speech tags, listed in the
documentation. See "Appendix: Basis RLP " on page 9.

DecompositionPattern A comma-separated list of numbers to specify the number of
characters from the word to use in each component of the
decomposition. You can use a zero (0) to specify that you do not want
to split the term.

Note: If you want to use decomposition patterns, you must set
the SentenceBreakingOptions configuration parameter to
include the DecomposeCompound option in the IDOL Server
configuration file language configuration. In addition, if you supply
a custom XML context file, you must not turn off the
decomposecompound property. For more information, see
"RLP Configuration" on page 3, and "Appendix: Basis RLP " on
page 9.

If you use a decomposition pattern of 0, the sentence breaking
library does not split the term, even if DecomposeCompound is
turned on in the IDOL Server configuration file.

For example:

深圳发展銀行 noun 2,4
 北京人 noun 0

The dictionary files must be UTF-8 encoded. You can add comment lines, by starting a line with a
hash (#) character. The libraries ignore any empty lines.

The following sections provide more detail about creating the dictionary file for each language:

 l Chinese: "Creating the User Dictionary" on page 21

 l Japanese: "Creating the Source File" on page 25

 l Korean: "Editing the Dictionary Source File" on page 30

Compile the Dictionary Files
The following sections describe how to compile the custom dictionaries on Microsoft Windows and
Unix operating systems.

Compile the Dictionary File on Windows
To compile the dictionary file on Microsoft Windows

Basis Sentence Breaking Libraries Technical NotePage 6 of 33

Basis Sentence Breaking Libraries__________

 1. Ensure that you have set the BT_BUILD and BT_ROOT environment variables. For details, see
"Environment Variables" on page 2.

 2. Open a Cygwin command-line window, and change directory to the location of the compilation
script:

Language Compilation Script

Chinese BT_ROOT/rlp/cma/source/samples/

Japanese BT_ROOT/rlp/jma/source/samples/

Korean BT_ROOT/rlp/kma/source/samples/

 3. Copy the text file containing your user dictionary to the same directory as the compilation
script.

 4. Run the following command to compile the text file.

./build_user_dict.sh CustomDictionary.txt OutputFile.bin

where,

 n CustomDictionary is the file name of your text file.

 n OutputFile is the name of the compiled dictionary file that you want to create.

For example:

./build_user_dict.sh user_chinese.txt user_chinese.bin

Compile the Dictionary File on Unix
To compile the dictionary file on Unix platforms

 1. Ensure that you have set the BT_BUILD environment variable. For details, see "Environment
Variables" on page 2.

 2. Open the command-line, and change directory to the location of the compilation script:

Language Compilation Script

Chinese BT_ROOT/rlp/cma/source/samples/

Japanese BT_ROOT/rlp/jma/source/samples/

Korean BT_ROOT/rlp/kma/source/samples/

Basis Sentence Breaking Libraries Technical Note Page 7 of 33

__________User Dictionaries

 3. Copy the text file containing your user dictionary to the same directory as the compilation
script.

 4. ./build_user_dict.sh CustomDictionary.txt OutputFile.bin

where,

 n CustomDictionary is the file name of your text file.

 n OutputFile is the name of the compiled dictionary file that you want to create.

For example:

./build_user_dict.sh user_chinese.txt user_chinese.bin

Enable the Custom Dictionary
After you have created and compiled the custom dictionary, you must move it to the appropriate
location, and update the Language Analyzer configuration file.

Update the Language Analyzer Configuration File
After you have compiled the custom dictionary and moved it to the appropriate directory, you must
update the appropriate Language Analyzer configuration file.

The following table lists the locations where you must place the compiled dictionary files, and the
location of the language analyzer configuration file. When you add a new custom dictionary, you
must update this language analyzer configuration file to configure the Basis libraries to use it.

Language Dictionary Location Language Analyzer Configuration File

Chinese BT_ROOT/rlp/cma/dicts/ BT_ROOT/rlp/etc/cla-options.xml

Japanese BT_ROOT/rlp/jma/dicts/ BT_ROOT/rlp/etc/jla-options.xml

Korean BT_ROOT/rlp/kma/dicts/ BT_ROOT/rlp/etc/kla-options.xml

 l For Chinese you can add one or more <dictionarypath> properties, containing the path to the
custom user dictionary. See "Updating the Chinese Language Analyzer Configuration File" on
page 24.

 l For Japanese, you can add one or more <DictionaryPath> properties (case-sensitive),
containing the path to the custom user dictionary. See "Updating the Japanese Language
Analyzer Configuration File" on page 29.

 l For Korean, you can add one <UserDictionaryPath> property, containing the path to the
custom user dictionary. For Korean you can add only one custom dictionary. See "Notes on the
Name and Location of the User Dictionary" on page 32.

Basis Sentence Breaking Libraries Technical NotePage 8 of 33

Basis Sentence Breaking Libraries__________

Configure IDOL Server for the Custom Dictionary
When you are using a custom dictionary, you must consider the following factors for your
IDOL Server configuration:

 l The Content component normalizes text before it sends the text to the sentence breaking library.
To prevent normalization interfering with sentence breaking, you must either ensure that your
custom dictionaries contain normalized text in the entries, or turn off normalization in
IDOL Server. To turn off normalization, you must set the Normalise parameter to false in your
language configuration, and remove any normalization-related options from the
SentenceBreakingOptions parameter.

 l If you want to decompose compound words, ensure that your SentenceBreakingOptions
parameter includes the DecomposeCompound option. For more details, see "IDOL Server
Language Configuration" on page 4.

Configure the Basis Libraries to Override Values
By default, the Basis libraries use the custom user dictionaries in conjunction with the standard
dictionaries, and in the event of a conflict, it uses the standard dictionary value. You can configure
the library to override the standard dictionary value with your custom values, by creating a context
XML configuration file.

Appendix: Basis RLP
The following sections provide more detail about the Basis RLP Language Analyzers, and the user
dictionaries.

Copyright © 2015 Basis Technology Corporation. All rights reserved. This document is property of
and is proprietary to Basis Technology Corporation. It is not to be disclosed or reproduced in whole
or in part without the express written consent of Basis Technology Corporation.

Chinese Language Analyzer 9

Japanese Language Analyzer 15

Korean Language Analyzer 19

Chinese User Dictionaries 21

Japanese User Dictionaries 24

Korean User Dictionary 30

Entering Non-Standard Characters in a Chinese or Japanese User Dictionary (or a Gazetteer)33

Chinese Language Analyzer
Name

Chinese Language Analyzer

Basis Sentence Breaking Libraries Technical Note Page 9 of 33

__________Appendix: Basis RLP

Dependencies

Sentence Breaker, Script Region Locator

Language Dependent

Chinese (Simplified and Traditional)

XML-Configurable Options

The options for the Chinese Language Analyzer are described by the BT_
ROOT/rlp/etc/claoptions.xml file. For example:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
 <!DOCTYPE claconfig SYSTEM "claconfig.dtd">

 <claconfig>
 <dictionarypath>
 <env name="root"/>/cma/dicts/zh_lex_<env
name="endian"/>.bin</dictionarypath>
 <readingdictionarypath>
 <env name="root"/>/cma/dicts/zh_reading_<env
name="endian"/>.bin</readingdictionarypath>
 <stopwordspath><env name="root"/>/cma/dicts/zh_stop.utf8</stopwordspath>
 </claconfig>

The configuration file conforms to claconfig.dtd:

<!ENTITY % pathname "(#PCDATA | env)+"
 <!ELEMENT claconfig (dictionarypath, posdictionarypath,
 readingdictionarypath, stopwordspath)>
 <!ELEMENT dictionarypath (#PCDATA | env)*>
 <!ELEMENT readingdictionarypath (#PCDATA | env)*>
 <!ELEMENT stopwordspath (#PCDATA | env)*>
 <!ELEMENT lockdictionary EMPTY >
 <!ATTLIST lockdictionary value (yes | no) 'no'>
 <!ELEMENT env EMPTY >
 <!ATTLIST env name CDATA #REQUIRED>

The dictionarypath specifies the path name to the main dictionary used for segmentation. Users
must use the main dictionary that comes with the analyzer. In addition, users can create and
employ user dictionaries (see "Chinese User Dictionaries" on page 21). This option must be
specified at least once. Users can specify one main dictionary and zero or more user dictionaries.

The readingdictionarypath specifies the path to the analyzer's reading dictionary, which is used
to look up readings for segmented tokens.

The stopwordspath specifies the pathname to the stopwords list used by the analyzer.

The lockdictionary value indicates whether or not the pages containing the dictionary are locked
in RAM.

Context Properties

Basis Sentence Breaking Libraries Technical NotePage 10 of 33

Basis Sentence Breaking Libraries__________

The following table lists the context properties supported by the Chinese Language Analyzer. Note
that for brevity the com.basistech.cla prefix has been removed from the property names in the
first column. Hence the full name for break_at_alphanum_intraword_punct is
com.basistech.cla.break_at_alphanum_intraword_punct.

Property Type Default Description

break_at_
alphanum_
intraword_punct

boolean false Ignored when consistent_latin_
segmentation is true (the default). If true,
Chinese Language Analyzer considers
punctuation between alphanumeric characters
as a break. For example, the text
"www.basistech.com" is segmented as a
single token when the option is false, but as five
tokens when it is true: "www", ".", "basistech",
".", and "com".

consistent_latin_
segmentation

boolean true If true, Chinese Language Analyzer provides
consistent segmentation of embedded text in
Latin script; the break_at_alphanum_
intraword_punct and whitespace_is_
number_sep settings are ignored. Set to false to
revert to pre-RLP 7.1 segmentation behavior.

decomposecompound boolean true If true, Chinese Language Analyzer
decomposes compound words into their
components. A word is subject to
decomposition if it is a user-dictionary entry
with a decomposition pattern (see "Creating the
User Dictionary" on page 21) or a noun in the
Chinese Language Analyzer dictionary that
contains more than 4 characters. Words are
never decomposed into a sequence of single-
character units.

favor_user_
dictionary

boolean false If true, resolve conflicts between a user
dictionary (see "Chinese User Dictionaries" on
page 21) and a system dictionary in favor of the
user dictionary.

generate_all boolean true If true and readings is true, all the readings for
a token are returned. For single characters,
these are returned in brackets, separated by
semicolons.

Basis Sentence Breaking Libraries Technical Note Page 11 of 33

__________Appendix: Basis RLP

Property Type Default Description

ignore_stopwords boolean false If false, stopwords are returned and the vector
of STOPWORD results is instantiated. 1If true,
tokens that are stopwords are not returned to
the caller.

limit_parse_
length

non-
negative
integer

0 (no
limit)

Sets the maximum number of characters, n that
are processed in a single parse buffer as a
sentence. Chinese Language Analyzer
normally starts parsing after it detects a
sentence boundary. When a limit is set,
Chinese Language Analyzer starts parsing
within n characters, even if a sentence
boundary has not yet been detected. Setting a
limit avoids delays when the processor
encounters thousands of characters but no
sentence boundary.

Note: Basis Technology recommends
setting the limit n to at least 100.
Depending on the type of text being
processed, any number less than 100 may
degrade tokenization accuracy or cause
Chinese Language Analyzer to split a valid
token across buffers and not detect the
token correctly.

min_length_for_
script_change

positive
integer

10 Ignored when consistent_latin_
segmentation is false. The minimum length of
non-native text to be considered for a script
change. For example, DVD 播放机 does not
trigger a script change if the setting is greater
than 3.2

1If stopwords are returned, you can determine with the C++ API whether a given token is a
stopword by calling BT_RLP_TokenIterator::IsStopword. In Java, you can use the List
contains method to see whether the list of stopword references returned by RLPResultAccess
getListResult(RLPConstants.STOPWORD) contains the Integer index of the token.
2A script change indicates a boundary between tokens, so the length for script change setting you
choose may influence how a mixed-script string is tokenized.

Basis Sentence Breaking Libraries Technical NotePage 12 of 33

Basis Sentence Breaking Libraries__________

Property Type Default Description

normalize_result_
token

boolean false If true, Chinese Language Analyzer generates
LEMMA results with normalized number
tokens: full-width Latin digits and punctuation
are converted to their half-width counterparts,
grouping separators are removed (e.g., 2,000
becomes 2000), and Hanzi numerals and mixed
Hanzi/Latin numeric expressions are converted
to Latin.

pos boolean true If true, PART_OF_SPEECH results are
calculated.

reading_by_
character

boolean false If true and readings is true, the reading for a
polysyllabic token is determined on a
percharacter basis, instead of by the token as a
whole. Generally speaking, this usage is
problematic for polyphonic Hanzi, such as 都 ,
which can be read as dou1 or du1 depending on
the context. For example, when followed by 市 ,
it is pronounced du1 (as in du1shi4), but is
pronounced dou1 when used alone.

reading_type string "tone_
marks"

Sets the representation of tones. Possible
values:

 l "tone_marks" 1-- diacritics over the
appropriate vowels

 l "tone_numbers" -- a number from 1-4,
suffixed to each syllable

 l "no_tones" -- pinyin without tone
presentation

 l "cjktex" -- pinyin generated as macros for
the CJKTeX pinyin.sty style

readings boolean false If true, READING results are calculated. These
results contain the pinyin transcription of the
word in most cases, and alternative pinyin
transcriptions when the recognized word has
more than one way to be pronounced.

1The readings are generated in Unicode, and not all Unicode fonts include glyphs for the codepoints
used to represent "tone_marks".

Basis Sentence Breaking Libraries Technical Note Page 13 of 33

__________Appendix: Basis RLP

Property Type Default Description

separate_
syllables

boolean false If true, the syllables in the reading for a
polysyllabic token are separated by a vertical
line ("|").

use_v_for_u_
diaresis

boolean false If true, v is used instead of ü. The value is
implicitly true when reading_type is "cjktex,"
and is ignored when reading_type is "tone_
marks". The substitution of v is common in
environments that lack diacritics. It is probably
most useful when reading_type is "tone_
numbers".

whitespace_is_
number_sep

boolean true Ignored when consistent_latin_
segmentation is true (the default). Whether the
Chinese language processor treats whitespace
(horizontal and vertical) as a number separator.
If true, the text "1995 1996" is segmented as
two tokens; if false, the same text is
segmented as a single token.

Note: The default behavior (whitespace is
a numeric separator) yields different
behavior than Chinese Language Analyzer
versions prior to Release 4.3.

Description

The Chinese Language Analyzer segments Chinese text into separate tokens (words and
punctuation) and assigns part-of-speech (POS) tags to each token. Chinese Language Analyzer
also reports offsets for each token, and alternative readings, if any, for Hanzi or Hanzi compounds.

The Chinese Language Analyzer returns the following result types:

 l TOKEN

 l TOKEN_OFFSET

 l SENTENCE_BOUNDARY

 l PART_OF_SPEECH — if com.basistech.cla.pos is true (the default)

 l COMPOUND — if com.basistech.cla.decomposecompound is true (the default)

 l READING (pinyin transcriptions) — if com.basistech.cla.readings is true (the default is
false)

Basis Sentence Breaking Libraries Technical NotePage 14 of 33

Basis Sentence Breaking Libraries__________

 l LEMMA — if com.basistech.cla.normalize_result_token is true (the default is false)

 l STOPWORD — if com.basistech.cla.ignore_stopwords is false (the default)

Chinese User Dictionaries

You can create user dictionaries for words specific to an industry or application. User dictionaries
allow you to add new words, personal names, and transliterated foreign words. In addition, you can
specify how existing words are segmented. For example, you may want to prevent a product name
from being segmented even if it is a compound. For more information, see "Chinese User
Dictionaries" on page 21.

Japanese Language Analyzer
Name

Japanese Language Analyzer

Dependencies

Sentence Breaker, Script Region Locator

Language Dependent

Japanese

XML-Configurable Options

Settings for the Japanese Language Analyzer are specified in BT_ROOT/rlp/etc/jla-options.xml.
This file includes pathnames for the main dictionary used for tokenization and POS tagging, the
reading dictionary (with yomigana pronunciation aids expressed in Hiragana), a stopwords list, and
may include one or more user dictionaries.

The user can edit the stopwords list and create user dictionaries (see"Japanese User Dictionaries"
on page 24).

<?xml version="1.0" encoding="utf-8" standalone="no"?>
 <!DOCTYPE jlaconfig SYSTEM "jlaconfig.dtd">
 <jlaconfig>
 <DictionaryPaths>
 <DictionaryPath><env name="root"/>/jma/dicts/JP_<env
name="endian"/>.bin</DictionaryPath>
 <!-- Add a DictionaryPath for each user dictionary -->
 </DictionaryPaths>

 <!-- We only support one Japanese Language Analyzer reading dictionary -->
 <ReadingDictionaryPath><env name="root"/>/jma/dicts/JP_<env name="endian"/>_
Reading.bin
 </ReadingDictionaryPath>

 <StopwordPath><env name="root"/>/jma/dicts/JP_stop.utf8</StopwordPath>
 </jlaconfig>

Basis Sentence Breaking Libraries Technical Note Page 15 of 33

__________Appendix: Basis RLP

The <env name="endian"/> in the dictionary name is replaced at runtime with either "BE" or "LE" to
match the platform byte order: big-endian or little-endian. For example, Sun's SPARC and Hewlett
Packard's PA-RISC are big-endian, whereas Intel's x86 CPUs are little-endian.

The StopwordPath specifies the pathname to the stopwords list used by the analyzer.

Context Properties

The following table lists the context properties supported by the Japanese Language Analyzer
processor. Note that for brevity the com.basistech.jla prefix has been removed from the property
names in the first column. Hence the full name for decomposecompound is
com.basistech.jla.decomposecompound.

Property Type Default Description

consistent_latin_
segmentation

boolean true If true, Japanese Language Analyzer provides
consistent segmentation of embedded text in Latin
script; the segment_non_japanese setting is ignored.
Set to false to revert to pre-RLP 7.1 segmentation
behavior.

decomposecompound boolean true If true, Japanese Language Analyzer decomposes
compound words into their components.1

deep_compound_
decomposition

boolean false If true, Japanese Language Analyzer recursively
decomposes into smaller components the
components marked in the dictionary as being
decomposable.2

favor_user_
dictionary

boolean false If true, Japanese Language Analyzer favors words in
the user dictionary (over the standard Japanese
dictionary) during tokenization.

generate_token_
sources

boolean false If true, Japanese Language Analyzer generates a
TOKEN_SOURCE_ID result for each token. You can use
the TOKEN_SOURCE_ID to get the TOKEN_SOURCE_NAME
of the dictionary.

ignore_separators boolean true If true, Japanese Language Analyzer ignores
whitespace separators when tokenizing input text. If
false, Japanese Language Analyzer treats
whitespace separators as token delimiters. Note that
Japanese orthography allows a newline to occur in
the middle of a word.

1To access the components that make up the compound, use the COMPOUND result.
2To access the components that make up the compound, use the COMPOUND result.

Basis Sentence Breaking Libraries Technical NotePage 16 of 33

Basis Sentence Breaking Libraries__________

Property Type Default Description

ignore_stopwords boolean false If true, tokens that are stopwords are not returned to
the caller. If false, tokens that are stopwords are
returned and the vector of STOPWORD results is
instantiated.1

limit_parse_
length

0 or
positive
integer

0 (no
limit)

Sets the maximum number of characters, n that are
processed in a single parse buffer as a sentence.
Japanese Language Analyzer normally starts parsing
after it detects a sentence boundary. When a limit is
set, Japanese Language Analyzer starts parsing
within n characters, even if a sentence boundary has
not yet been detected. Setting a limit avoids delays
when the processor encounters thousands of
characters but no sentence boundary.

Note: Basis Technology recommends setting
the limit n to at least 100. Depending on the type
of text being processed, any number less than
100 may degrade tokenization accuracy or
cause Japanese Language Analyzer to split a
valid token across buffers and not detect the
token correctly.

min_length_for_
script_change

positive
integer

10 Ignored when consistent_latin_segmentation is
false. The minimum length of non-native text to be
considered for a script change. For example, DVD レ
コーダー does not trigger a script change if the setting
is greater than 3.

normalize_result_
token

boolean false If true, when a dictionary form is not available and a
normalized form is, Japanese Language Analyzer
returns the normalized form as LEMMA. Middle dots
are removed from words (e.g., ワールド・ミュージック is
normalized to ワールドミュージック) and numbers are
normalized: zenkaku (fullwidth) Arabic numerals
such as １０，０００ are converted to half-width
numerals; commas are removed (e.g., 2,000
becomes 2000); Kanji numerals are converted to
halfwidth numerals (e.g., 四千 becomes 4000). Note:
independent of this setting, the dictionary form, if
available, is always returned as LEMMA.

1If stopwords are returned, you can determine with the C++ API whether a given token is a
stopword by calling BT_RLP_TokenIterator::IsStopword. In Java, you can use the List
contains method to see whether the list of stopword references returned by RLPResultAccess
getListResult(RLPConstants.STOPWORD) contains the Integer index of the token.

Basis Sentence Breaking Libraries Technical Note Page 17 of 33

__________Appendix: Basis RLP

Property Type Default Description

readings boolean false If true, READING [113] results are calculated. These
results contain Furigana transcriptions rendered in
Hiragana.

segment_non_
japanese

boolean true Ignored when consistent_latin_segmentation is
true (the default). When true, non-Japanese text is
segmented at Latin script and number boundaries.
For example, 206xs is tokenized as 206 and xs. If
false, 206xs is tokenized as 206xs.

separate_numbers_
from_counters

boolean true If true, Japanese Language Analyzer returns
numbers and their counters as separate tokens.
Warning: If you set it to false, you degrade the
accuracy of the Base Noun Phrase Locator and
Statistical Entity Extractor.

separate_place_
name_from_suffix

boolean true If true, Japanese Language Analyzer separates place
names from their suffixes (e.g., 岡山県 is tokenized
to 岡山 and 県). Warning: If you set it to false, you
degrade the accuracy of the Base Noun Phrase
Locator and Statistical Entity Extractor.

whitespace_
tokenization

boolean false If true, Japanese Language Analyzer tokenizes on
whitespace boundaries only. This can be useful in
search applications when parsing short query strings.
Such queries typically do not have enough context for
accurate segmentation based on morphological
analysis.

Description

The Japanese Language Analyzer tokenizes Japanese text into separate words and assigns a Part-
of-Speech (POS) tag to each word; see Japanese POS Tags [286] . The Japanese Language
Analyzer returns the following result types:

 l TOKEN

 l TOKEN_OFFSET

 l SENTENCE_BOUNDARY

 l PART_OF_SPEECH

 l LEMMA — dictionary form when available, or normalized form if available and
com.basistech.jla.normalize_result_token is true (the default is false)

 l COMPOUND — if com.basistech.jla.decomposecompound is true (the default)

Basis Sentence Breaking Libraries Technical NotePage 18 of 33

Basis Sentence Breaking Libraries__________

 l READING (Furigana transcriptions rendered in Hiragana) if com.basistech.jla.readings is
true (the default is false)

 l STOPWORD — if com.basistech.jla.ignore_stopwords is false (the default)

 l TOKEN_SOURCE_ID — if com.basistech.jla.generate_token_sources is true (the default
is false)

 l TOKEN_SOURCE_NAME — if com.basistech.jla.generate_token_sources is true (the
default is false)

Japanese User Dictionaries

Japanese Language Analyzer includes the capability to create and use one or more segmentation
(tokenization) user dictionaries for words specific to an industry or application. User dictionaries
allow you to add new words, personal names, and transliterated foreign words. In addition, you can
specify how compound words are tokenized. For example, you may want to prevent a product
name from being segmented even if it is a compound.

You can also create reading user dictionaries with Furigana transcriptions rendered in Hiragana.You
can use a reading user dictionary to override readings returned by the standard JLA reading
dictionaryand to override readings guessed from a standard segmentation (tokenization) user
dictionary.

For more information, see "Japanese User Dictionaries" on page 24.

Korean Language Analyzer
Name

Korean Language Analyzer

Dependencies

Sentence Breaker, Script Region Locator

Language Dependent

Korean

XML-Configurable Options

The options for the Korean Language Analyzer are defined in BT_ROOT/rlp/etc/kla-options.xml.

For example:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
 <!DOCTYPE klaconfig SYSTEM "klaconfig.dtd">
 <klaconfig>
 <dictionarypath><env name="root"/>/kma/dicts/</dictionarypath>
 <utilitiesdatapath><env name="root"/>/utilities/data/</utilitiesdatapath>
 <stopwordspath><env name="root"/>/kma/dicts/kr_stop.utf8</stopwordspath>
 </klaconfig>

The configuration file must conform to klaconfig.dtd:

Basis Sentence Breaking Libraries Technical Note Page 19 of 33

__________Appendix: Basis RLP

<!ELEMENT klaconfig (dictionarypath, utilitiesdatapath)>
 <!ELEMENT dictionarypath (#PCDATA)>
 <!ELEMENT utilitiesdatapath (#PCDATA)>
 <!ELEMENT stopwordspath (#PDCATA)>

Note that for the Korean Language Analyzer, the dictionarypath points to the directory that
contains the required dictionaries. This is different from the Japanese and Chinese Language
Analyzer behavior, which requires a path to each dictionary that you are including.

The utilitiesdatapath must specify utilities/data. This contains internal transcription tables.

The stopwordspath specifies the pathname to the stopwords list used by the analyzer.

Context Properties

The following table lists the context property supported by the Korean Language Analyzer
processor. Note that for brevity the com.basistech.kla prefix has been removed from the property
names in the first column. Hence the full name for ignore_stopwords is
com.basistech.kla.ignore_stopwords.

Property Type Default Description

consistent_
latin_
segmentation

boolean true If true, Korean Language Analyzer provides consistent
segmentation of embedded text in Latin script. Set to false
to revert to pre-RLP 7.1 segmentation behavior.

ignore_
stopwords

boolean false If false, stopwords are returned and the vector of
STOPWORD results is instantiated. 1If true, tokens that
are stopwords are not returned to the caller.

min_length_
for_script_
change

positive
integer

10 Ignored when consistent_latin_segmentation is false.
The minimum length of non-native text to be considered for
a script change. For example, DVD 플레이어 does not
trigger a script change if the setting is greater than 3.

Description

The Korean Language Analyzer segments Korean text into separate words and compounds, reports
the length of each word and the lemma, and assigns a Part-of-Speech (POS) tag to each word.
Korean Language Analyzer also returns a list of compound analyses (may be empty).

The Korean Language Analyzer returns the following result types:

 l TOKEN

 l TOKEN_OFFSET

1If stopwords are returned, you can determine with the C++ API whether a given token is a
stopword by calling BT_RLP_TokenIterator::IsStopword. In Java, you can use the List
contains method to see whether the list of stopword references returned by RLPResultAccess
getListResult(RLPConstants.STOPWORD) contains the Integer index of the token.

Basis Sentence Breaking Libraries Technical NotePage 20 of 33

Basis Sentence Breaking Libraries__________

 l SENTENCE_BOUNDARY

 l PART_OF_SPEECH

 l COMPOUND

 l LEMMA

 l STOPWORD — if com.basistech.kla.ignore_stopwords is false (the default)

Korean User Dictionary

Korean Language Analyzer provides a user dictionary that users can edit and recompile. For more
information, see "Korean User Dictionary" on page 30.

Chinese User Dictionaries
You can create user dictionaries for words specific to an industry or application. User dictionaries
allow you to add new words, personal names, and transliterated foreign words. In addition, you can
specify how existing words are segmented. For example, you may want to prevent a product name
from being segmented even if it is a compound.

For efficiency, Chinese user dictionaries are compiled into a binary form with big-endian or little-
endian byte order to match the platform.

Procedure for Using a Chinese User Dictionary

 1. Create the dictionary. See "Creating the User Dictionary" below.

 2. Compile the user dictionary. See "Compiling the User Dictionary" on page 23.

 3. Put the dictionary in the BT_ROOT/rlp/cma/dicts directory. See "Where to Put the User
Dictionary" on page 24

 4. Edit the Chinese Language Analyzer configuration file to include the user dictionary. See
"Updating the Chinese Language Analyzer Configuration File" on page 24

Creating the User Dictionary
The source file for a Chinese user dictionary is UTF-8 encoded (see "Valid Characters for Chinese
User Dictionary Entries" on page 23). The file may begin with a byte order mark (BOM). Empty lines
are ignored. A comment line begins with #.

Each entry is a single line:

word Tab POS Tab DecompPattern

where word is the noun, POS is one of the user-dictionary part-of-speech tags listed below, and
DecompPattern (optional) is the decomposition pattern: a comma-delimited list of numbers that
specify the number of characters from word to include in each component of the compound (0 for no

Basis Sentence Breaking Libraries Technical Note Page 21 of 33

__________Appendix: Basis RLP

decomposition). The individual components that make up the compound are in the COMPOUND
results.

User Dictionary POS Tags (case-insensitive)

 l NOUN

 l PROPER_NOUN

 l PLACE

 l PERSON

 l ORGANIZATION

 l FOREIGN_PERSON

For example, the user dictionary entry

深圳发展銀行 organization 2,2,2

indicates that 深圳发展銀行 should be decomposed into three two-character components:

深圳

 发展

 銀行

The sum of the digits in the pattern must match the number of characters in the entry. For example,

深圳发展銀行 noun 4,9

is invalid because the entry has 6 characters while the pattern is for a 13-character string. The
correct entry is:

深圳发展銀行 noun 2,4

The POS and decomposition pattern can be in Chinese full-width numerals and Roman letters. For
example:

上海证券交易所 ｏｒｇａｎｉｚａｔｉｏｎ １,２,３,１

Decomposition can be prevented by specifying a pattern with the special value "0" or by specifying
a pattern consisting of a single digit with the length of the entry.

For example:

北京人 noun 0

or

北京人 noun 3

Tokens matching this entry will not be decomposed. To prevent a word that is also listed in a
system dictionary from being decomposed, set com.basistech.cla.favor_user_dictionary to
true.

Basis Sentence Breaking Libraries Technical NotePage 22 of 33

Basis Sentence Breaking Libraries__________

Valid Characters for Chinese User Dictionary Entries
An entry in a Chinese user dictionary must contain characters corresponding to the following
Unicode code points or to valid surrogate pairs. In this listing, .. indicates an inclusive range of valid
code points:

0023..002F, 0030..0039, 0040..005A, 005F, 0060..007A, 007E, 00A2..00A5, 00B7,
00C0..00D6,00D8..00F6, 00F8..00FF, 0100..017F, 0180..024F, 09F2..09F3, 0E3F, 17DB,
2010..206F, 2160..216B,2170..217B, 2200..22FF, 2460..24FF, 25A0..25FF, 25CB, 2600..26FF,
2E80..2EF3, 2F00..2FD5, 2FF0..2FFB, 3003..3007, 3012, 3020, 3031..3037, 30FB, 3200..32FF,
3401..4DB5, 4E00..9FA5,F900..FA2D, FDFC, FE69, FF00, FF02..FFEF

For example, the full stop 。 (3002), indicates a sentence break and may not be included in a
dictionary entry,

Compiling the User Dictionary
Chinese Language Analyzer requires the dictionary as described above to be in a binary form. The
byte order of the binary dictionary must match the byte order of the runtime platform. The platform
on which you compile the dictionary determines the byte order. To use the dictionary on both a little-
endian platform (such as an Intel x86 CPU) and a big-endian platform (such as a Sun Solaris),
generate a binary dictionary on each of these platforms.

Note: A compiled user dictionary may also contain entries that include PUA or Supplementary
characters. See "Entering Non-Standard Characters in a Chinese or Japanese User Dictionary
(or a Gazetteer)" on page 33 .

The script for generating a binary dictionary is BT_ROOT/rlp/cma/source/samples/build_user_
dict.sh.

Prerequisites

 l Unix or Cygwin (for Windows).

 l The BT_ROOT environment variable must be set to BT_ROOT , the Basis root directory. For
example, if RLP SDK is installed in /usr/local/basistech, set the BT_ROOT environment variable
to /usr/local/basistech.

 l The BT_BUILD environment variable must be set to the platform identifier embedded in your SDK
package file name (see "Environment Variables" on page 2).

To compile the dictionary into a binary format, issue the following command:

build_user_dict.sh input output

For example, if you have a user dictionary named user_dict.utf8, build the binary user dictionary
user_dict.bin with the following command:

./build_user_dict.sh user_dict.utf8 user_dict.bin

Basis Sentence Breaking Libraries Technical Note Page 23 of 33

__________Appendix: Basis RLP

Note: If you are making the user dictionary available for little-endian and big-endian platforms,
you can compile the dictionary on both platforms, and differentiate the dictionaries by using
user_dict_LE.bin for the little-endian dictionary and user_dict_BE.bin for the big-endian
dictionary.

Where to Put the User Dictionary
We recommend that you put your Chinese user dictionaries in BT_ROOT/rlp/cma/dicts, where BT_
ROOT is the root directory of the RLP SDK.

Updating the Chinese Language Analyzer Configuration
File

To instruct Chinese Language Analyzer to use your user dictionary, add a <dictionarypath>
element to cla-options.xml. For example, suppose the binary user dictionary is named user_
dict.bin and is in BT_ROOT/rlp/cma/dicts. Modify BT_ROOT/rlp/etc/cla-options.xml to include the
new <dictionarypath> element.

<claconfig>
 ...
 ...
 <dictionarypath><env name="root"/>/cma/dicts/user_dict.bin</dictionarypath>
 </claconfig>

If you are making the user dictionary available for little-endian and big-endian platforms, and you are
differentiating the two files as indicated above ("LE" and "BE"), you can set up the Chinese
Language Analyzer configuration file to choose the correct binary for the runtime platform:

<claconfig>
 ...
 ...
 <dictionarypath><env name="root"/>/cma/dicts/user_dict_<env
name="endian"/>.bin</dictionarypath>
 </claconfig>

The <env name="endian"/> in the dictionary name is replaced at runtime with "BE" if the platform
byte order is big-endian or "LE" if the platform byte order is little-endian.

Note: At runtime, RLP replaces <env name="root"/> with the path to the RLP root directory (
BT_ROOT/rlp).

You can specify multiple user dictionaries in the options file.

Japanese User Dictionaries
Japanese Language Analyzer includes the capability to create and use one or more segmentation
(tokenization) user dictionaries for nouns specific to an industry or application. User dictionaries
allow you to add new nouns, including also personal and organizational names, and transliterated

Basis Sentence Breaking Libraries Technical NotePage 24 of 33

Basis Sentence Breaking Libraries__________

foreign nouns. In addition, you can specify how compound nouns are tokenized. For example, you
may want to prevent a product name from being segmented even if it is a compound.

You can also create user reading dictionaries with Furigana transcriptions rendered in Hiragana.
The readings can override the readings returned from the JLA reading dictionary and override
readings that are otherwise guessed from segmentation (tokenization) user dictionaries.

Japanese segmentation (tokenization) user dictionaries and reading user dictionaries are compiled
into separate binary forms with big-endian or little-endian byte order to match the platform. Both
dictionary types can be compiled from the same source file.

Procedure for Creating and Using a Japanese User Dictionary

 1. Create the user dictionary. See "Creating the Source File" below.

 2. Compile the source file. See "Compiling the User Dictionary" on page 27.

 3. Put the user dictionary in the Japanese Language Analyzer dictionary directory. See "Where to
Put the User Dictionary" on page 29.

 4. Edit the Japanese Language Analyzer configuration file to include the user dictionary. See
"Updating the Japanese Language Analyzer Configuration File" on page 29.

Creating the Source File
The source file for a Japanese user dictionary is UTF-8 encoded (see "Valid Characters for
Japanese User Dictionary Entries" on page 27). The file may begin with a byte order mark (BOM).
Empty lines are ignored. A comment line begins with #.

If you want to identify the dictionary where Japanese Language Analyzer found each token, you
must assign each user dictionary a name, and you must compile the dictionary (see "Compiling the
User Dictionary" on page 27). At the top of the file, enter

!DICT_LABEL Tab Dictionary Name

where Dictionary Name is the name you want to assign to the dictionary.

Each entry in the dictionary is a single line:

word Tab POS Tab DecompPattern Tab Reading1,Reading2,...

where word is the noun, POS is one of the user-dictionary part-of-speech tags listed below, and
DecompPattern is the decomposition pattern: a comma-delimited list of numbers that specify the
number of characters from word to include in each component of the compound (0 for no
decomposition), and Reading1,...is a comma-delimited list of one or more Furigana transcriptions
rendered in Hiragana or Katakana.

The individual components that make up the compound are in the COMPOUND results. The
decomposition pattern and readings are optional, but you must include a decomposition pattern if
you include readings. In other words, you must include all elements to include the entry in a reading
user dictionary, even though the reading user dictionary does not use the POS tag or decomposition
pattern. To include an entry in a segmentation (tokenization) user user dictionary, you only need
POS tag and an optional decomposition pattern. Keep in mind that those entries that include all

Basis Sentence Breaking Libraries Technical Note Page 25 of 33

__________Appendix: Basis RLP

elements can be included in both a segmentation (tokenization) user dictionary and a reading user
dictionary.

User Dictionary POS Tags

 l NOUN

 l PROPER_NOUN

 l PLACE

 l PERSON

 l ORGANIZATION

 l GIVEN_NAME

 l SURNAME

 l FOREIGN_PLACE_NAME

 l FOREIGN_GIVEN_NAME

 l FOREIGN_SURNAME

 l AJ (adjective)

 l AN (adjectival noun)

 l D (adverb)

 l HS (honorific suffix)

 l V1 (vowel-stem verb)

 l VN (verbal noun)

 l VS (suru-verb)

 l VX (irregular verb)

Examples (the last three entries include readings)

!DICT_LABEL New Words 2014
 デジタルカメラ NOUN
 デジカメ NOUN 0
 東京証券取引所 ORGANIZATION 2,2,3
 狩野 SURNAME 0
 安倍晋三 PERSON 2,2 あべしんぞう

 麻垣康三 PERSON 2,2 あさがきこうぞう

 商人 NOUN 0 しょうにん, あきんど

Basis Sentence Breaking Libraries Technical NotePage 26 of 33

Basis Sentence Breaking Libraries__________

The POS and decomposition pattern can be in Japanese full-width numerals and Roman letters. For
example:

東京証券取引所 ｏｒｇａｎｉｚａｔｉｏｎ ２,２,３

The "2,2,3" decomposition pattern instructs Japanese Language Analyzer to decompose this
compound entry into

東京

 証券

 取引所

Valid Characters for Japanese User Dictionary Entries
An entry in a Japanese user dictionary must contain characters corresponding to the following
Unicode code points, to valid surrogate pairs, or to letters or decimal digits in Latin script. In this
listing, .. indicates an inclusive range of valid code points:

0025..0039, 0040..005A, 005F..007A, 007E, 00B7, 0370..03FF, 0400..04FF, 2010..206F,
2160..217B, 2200..22FF, 2460..24FF, 25A0..25FF, 2600..26FF, 3003..3007, 3012, 3020,
3031..3037, 3041..3094, 3099..309E, 30A1..30FA, 30FC..30FE, 3200..32FF, 3300..33FF,
4E00..9FFF, D800..DBFF, DC00..DFFF, E000..F8FF, F900..FA2D, FF00, FF02..FFEF

For example, the full stop 。 (3002), indicates a sentence break and must not be included in a
dictionary entry. The Katakana middle dot ・ (30FB) must not appear in a dictionary entry; input
strings with this character match the corresponding dictionary entries without the character.

Compiling the User Dictionary
Japanese Language Analyzer requires the dictionary as described above to be in a binary form. If
you have created a reading dictionary, you must compile it separately, even if it is in the same
source file as a segmentation dictionary.

The byte order of the binary dictionary must match the byte order of the runtime platform. The
platform on which you compile the dictionary determines the byte order. To use the dictionary on
both a little-endian platform (such as an Intel x86 CPU) and a big-endian platform (such as a Sun
Solaris), generate a binary dictionary on each of these platforms.

Segmentation (Tokenization) User Dictionary. The script for generating a binary segmentation
(tokenizzation) user dictionary is a shell script for Unix (build_user_dict.sh) and a batch file for
Windows (build_user_dict.bat). The script is in BT_ROOT/rlp/jma/source/samples/.

The script for generating a binary dictionary is a shell script for Unix (build_user_dict.sh) and a
batch file for Windows (build_user_dict.bat). The script is in BT_ROOT/rlp/jma/source/samples/.

Prerequisites

 l The BT_ROOT environment variable must be set to BT_ROOT, the Basis Technology root directory.
For example, if RLP SDK is installed in /usr/local/basistech, set the BT_ROOT environment
variable to /usr/local/basistech.

Basis Sentence Breaking Libraries Technical Note Page 27 of 33

__________Appendix: Basis RLP

 l The BT_BUILD environment variable must be set to the platform identifier embedded in your SDK
package file name (see "Environment Variables" on page 2).

To compile the dictionary into a binary format that Japanese Language Analyzer can use, issue the
following command:

build_user_dict.[sh|bat] input output

For example, if you have a user dictionary named user_dict.utf8, build the binary user dictionary
user_dict.bin with the following command in a Unix shell:

./build_user_dict.sh user_dict.utf8 user_dict.bin

Reading User Dictionary. Compile the dictionary on the little-endian or big-endian platform on
which you plan to use the dictionary. The script for generating a binary reading user dictionary is
build_user_reading_dict.sh in BT_ROOT/rlp/jma/source/samples/.

Prerequisites

 l Unix or Cygwin (for Windows)

 l Python

 l The BT_ROOT environment variable must be set to BT_ROOT, the Basis Technology root directory.
For example, if RLP SDK is installed in /usr/local/basistech, set the BT_ROOT environment
variable to /usr/local/basistech.

 l The BT_BUILD environment variable must be set to the platform identifier embedded in your SDK
package file name (see "Environment Variables" on page 2).

To compile the reading dictionary into a binary format that Japanese Language Analyzer can use,
issue the following command in a Unix shell or Cygwin (Windows):

build_user_reading_dict.sh input output

For example, if you have a user dictionary named user_dict.utf8, build the binary readinguser
dictionary user_reading_dict.bin with the following command in a Unix shell:

./build_user_reading_dict.sh user_dict.utf8 user_reading_dict.bin

Note: For both segmentation (tokenization) user dictionaries and reading user dictionaries, if
you are making the user dictionary available for little-endian and big-endian platforms, you can
compile the dictionary on both platforms, and differentiate the dictionaries by using user_dict_
LE.bin for the little-endian dictionary and user_dict_BE.bin for the big-endian dictionary.

The extension for the Japanese dictionary files (system and user) does not have to be .bin.

Non-Compiled User Dictionaries
For backwards compatibility, Japanese Language Analyzer continues to support non-compiled user
dictionaries. Keep in mind that non-compiled dictionaries are less efficient and contain less

Basis Sentence Breaking Libraries Technical NotePage 28 of 33

Basis Sentence Breaking Libraries__________

information. A non-compiled user dictionary must be in UTF-8 and may contain comments, single-
field (word) entries, and double-field entries with a word and a decomposition pattern:

 l Comment lines beginning with a pound sign (#).

 l Word entries (one word per line with no POS, but may include a Tab and a decomposition
pattern). The decomposition pattern is a series of one or more digits without commas. For
example:

東京証券取引所 223

Where to Put the User Dictionary
We recommend that you put your segmentation (tokenization) Japanese user dictionaries and
reading user dictionaries in BT_ROOT/rlp/jma/dicts, where BT_ROOT is the root directory of the RLP
SDK.

Updating the Japanese Language Analyzer Configuration
File

To use user_dict.bin and user_reading_dict.bin with the Japanese Language Analyzer, modify
the jla-options.xml file to include them. For example, if you put your user dictionaries in the
location we recommend (the directory that contains the system Japanese dictionary), modify it to
read as follows:

<DictionaryPaths>
 <DictionaryPath><env name="root"/>/jma/dicts/JP_<env
name="endian"/>.bin</DictionaryPath>
 <!-- Add a DictionaryPath for each standard user dictionary -->
 <DictionaryPath>
 <env name="root"/>/jma/dicts/user_dict.bin
 </DictionaryPath>
 </DictionaryPaths>
 <!-- To supply your own reading dictionary, add the user reading dictionary
before the JLA Reading dictionary -->
<ReadingDictionaryPaths>
 <ReadingDictionaryPath>
 <env name="root"/>/jma/dicts/user_reading_dict.bin</ReadingDictionaryPath>
 <ReadingDictionaryPath>
 <env name="root"/>/jma/dicts/JP_<env name="endian"/>_
Reading.bin</ReadingDictionaryPath>
 </ReadingDictionaryPaths>

If you are making the user dictionary available for little-endian and big-endian platforms, and you are
differentiating the two files as indicated above ("LE" and "BE"), you can set up the Japanese
Language Analyzer configuration file to choose the correct binary for the runtime platform:

<DictionaryPaths>
 <DictionaryPath><env name="root"/>/jma/dicts/JP_<env
name="endian"/>.bin</DictionaryPath>

Basis Sentence Breaking Libraries Technical Note Page 29 of 33

__________Appendix: Basis RLP

 <!-- Add a DictionaryPath for each user dictionary -->
 <DictionaryPath>
 <env name="root"/>/jma/dicts/user_dict_<env name="endian"/>.bin
 </DictionaryPath>
 </DictionaryPaths>
 <ReadingDictionaryPaths>
 <ReadingDictionaryPath>
 <env name="root"/>/jma/dicts/user_reading_dict_<env
name="endian"/>.bin</ReadingDictionaryPath>
 <ReadingDictionaryPath>
 <env name="root"/>/jma/dicts/JP_<env name="endian"/>_
Reading.bin</ReadingDictionaryPath>
 </ReadingDictionaryPaths>

The <env name="endian"/> in the dictionary name is replaced at runtime with "BE" if the platform
byte order is big-endian or "LE" if the platform byte order is little-endian.

Note: At runtime, RLP replaces <env name="root"/> with the path to the RLP root directory (
BT_ROOT/rlp).

You can specify multiple standard user dictionaries and reading user dictionaries in the options file.

Korean User Dictionary
Korean Language Analyzer (see "Korean Language Analyzer" on page 19) provides one dictionary
that users can edit and recompile.

Note: Prior to Release 6.0, the contents of this dictionary were maintained in two separate
dictionaries: a Hangul dictionary and a compound noun dictionary.

As specified in the Korean Language Analyzer options file (see "XML-Configurable Options" on
page 19) dictionarypath element, this dictionary in its compiled form is in BT_
ROOT/rlp/kma/dicts. If your platform is little-endian, the compiled dictionary filename is kla-usr-
LE.bin. If your platform is big-endian, the compiled dictionary filename is kla-usr-BE.bin. You can
modify and recompile this dictionary. Do not change its name.

Procedure for Modifying the User Dictionary

 1. Edit the dictionary source file. See "Editing the Dictionary Source File" below.

 2. Recompile the dictionary. See "Compiling the User Dictionary" on page 32.

Editing the Dictionary Source File
The source file for the compiled user dictionary shipped with RLP is BT_
ROOT/rlp/kma/samples/kla-usrdict.u8. The source file is UTF-8 encoded. A comment line begins
with #. The file begins with a number of comment lines that document the format of the dictionary
entries.

Basis Sentence Breaking Libraries Technical NotePage 30 of 33

Basis Sentence Breaking Libraries__________

Each dictionary entry is a single line:

word Tab POS Tab DecompPattern

word is the lemma (dictionary) form of the word. Verbs and adjectives should not include the "-ta"
suffix.

POS is one or more of the user-dictionary part-of-speech tags listed below. An entry can have
multiple parts of speech; simply concatenate the part of speech codes. For example, the POS for a
verb that can be used transitively and intransitively is "IT".

DecompPattern (optional) is the decomposition pattern for a compound noun: a comma-delimited
list of numbers that specify the number of characters from word to include in each component of the
compound (0 for no decomposition). Korean Language Analyzer uses a decomposition algorithm to
decompose compound nouns that contain no DecompPattern. The individual components that
make up the compound are in the COMPOUND results.

POS Meaning

N Noun

P Pronoun

U Auxiliary noun

M Numeral

c Compound noun

T Transitive verb

I Intransitive verb

W Auxiliary verb

S Passive verb

C Causative verb

J Adjective

K Auxiliary adjective

B Adverb

D Determiner

L Interjection (exclamation)

Examples:

개배때기 N
 그러더니 B
 그러던 D
 꿰이 TC

Basis Sentence Breaking Libraries Technical Note Page 31 of 33

__________Appendix: Basis RLP

 개인홈페이지 c
 경품대축제 c 2,3

One compound noun (개인홈페이지) contains no decomposition pattern, so Korean Language
Analyzer uses a decomposition algorithm to decompose it. For the other compound noun (경품대
축제), the "2,3" decomposition pattern instructs Korean Language Analyzer to decompose it into

경품

 대축제

You can add new entries and modify or delete existing entries.

Compiling the User Dictionary
Compile the dictionary on the little-endian or big-endian platform on which you plan to use the
dictionary.

The script for generating a binary dictionary is BT_ROOT/rlp/kma/source/samples//build_user_
dict.sh.

Prerequisites

 l Unix or Cygwin (for Windows).

 l The BT_ROOT environment variable must be set to BT_ROOT, the Basis Technology root directory.
For example, if Korean Language Analyzer is installed in /usr/local/basistech, set BT_ROOT to
/usr/local/basistech.

 l The BT_BUILD environment variables must be set to the platform identifier embedded in your
Korean Language Analyzer package name, such as ia32-glibc22-gcc32. For a list of the BT_
BUILD values, see "Environment Variables" on page 2.

To compile the dictionary into a binary format, issue the following command:

build_user_dict.sh input output

where input is the input filename (kla-userdict.u8, unless you have changed the name) and
ouput is kla-usr-LE.bin if your platform is little-endian or kla-usr-BE.bin if your platform is big-
endian.

Notes on the Name and Location of the User Dictionary
You must put the binary user dictionary in the dictionary directory specified by the dictionarypath
element in kla-options.xml (see "XML-Configurable Options" on page 19). As shipped, this directory
is BT_ROOT/rlp/kma/dicts. As indicated above, the default filename for the user dictionary is kla-
usr-LE.bin or kla-usr-BE.bin. There can only be one user dictionary, so we recommend you use
the default filename. If you want to use a different filename, you must add a userdictionarypath
element to kla-options.xml with the filename (no path). Suppose, for example, that you have
compiled the user dictionary with the name my-kla-usr-LE.bin and placed that file in the
dictionary directory. Edit kla-options.xml so it contains userdictionarypath as indicated below:

Basis Sentence Breaking Libraries Technical NotePage 32 of 33

Basis Sentence Breaking Libraries__________

<klaconfig>
 <dictionarypath<env name="root"/>/kma/dicts</dictionarypath>
 <userdictionarypath>my-kla-usr-LE.bin</userdictionarypath>
 ..
 ..
 <klaconfig>

Entering Non-Standard Characters in a Chinese or
Japanese User Dictionary (or a Gazetteer)

In a Chinese or Japanese user dictionary, you may want to include terms that include Unicode
Private Use Area (PUA) characters for user-defined characters (UDC) or non-BMP
(Supplementary) characters found in personal names.

PUA Characters. Characters in the range U+E000 - U+F8FF. Use \uxxxx where the u is lower-
case and each x is a hexadecimal character.

Supplementary Characters. Unicode characters in the range >U+FFFF. Use \Uxxxxxxxx where
the U is upper-case and each x is a hex character.

In fact, you can use \uxxxx for any character in the range U+E000 - U+F8FF, and you can use
\Uxxxxxxxx to represent any Unicode character. You can also use this syntax for entering
characters in text gazetteers.

Basis Sentence Breaking Libraries Technical Note Page 33 of 33

__________Appendix: Basis RLP

	Supported Platforms
	Install the Basis Libraries
	Environment Variables
	Configuration
	RLP Configuration
	IDOL Server Language Configuration

	User Dictionaries
	Create the Dictionary File
	Compile the Dictionary Files
	Compile the Dictionary File on Windows
	Compile the Dictionary File on Unix

	Enable the Custom Dictionary
	Update the Language Analyzer Configuration File
	Configure IDOL Server for the Custom Dictionary
	Configure the Basis Libraries to Override Values

	Appendix: Basis RLP
	Chinese Language Analyzer
	Japanese Language Analyzer
	Korean Language Analyzer
	Chinese User Dictionaries
	Creating the User Dictionary
	Valid Characters for Chinese User Dictionary Entries
	Compiling the User Dictionary
	Where to Put the User Dictionary
	Updating the Chinese Language Analyzer Configuration File

	Japanese User Dictionaries
	Creating the Source File
	Valid Characters for Japanese User Dictionary Entries
	Compiling the User Dictionary
	Non-Compiled User Dictionaries
	Where to Put the User Dictionary
	Updating the Japanese Language Analyzer Configuration File

	Korean User Dictionary
	Editing the Dictionary Source File
	Compiling the User Dictionary
	Notes on the Name and Location of the User Dictionary

	Entering Non-Standard Characters in a Chinese or Japanese User Dictionary (or...

