
Connector Framework Server
Software Version: 11.6

Administration Guide

Document Release Date: February 2018
Software Release Date: February 2018

Legal notices

Warranty

The only warranties for Seattle SpinCo, Inc. and its subsidiaries ("Seattle") products and services are set
forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Seattle shall not be liable for technical or editorial errors
or omissions contained herein. The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Except as specifically indicated, valid license from Seattle required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright notice

© Copyright 2018 EntIT Software LLC, a Micro Focus company

Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Documentation updates
The title page of this document contains the following identifying information:
 l Software Version number, which indicates the software version.
 l Document Release Date, which changes each time the document is updated.
 l Software Release Date, which indicates the release date of this version of the software.
To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.

This site requires you to sign in with a Software Passport. You can register for a Passport through a link on
the site.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.

Support
Visit the Micro Focus Software Support Online website at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro
Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

 l Search for knowledge documents of interest
 l Submit and track support cases and enhancement requests
 l Access the Software Licenses and Downloads portal
 l Download software patches
 l Access product documentation
 l Manage support contracts

Administration Guide

Connector Framework Server (11.6) Page 2 of 185

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://softwaresupport.softwaregrp.com/

 l Look up Micro Focus support contacts
 l Review information about available services
 l Enter into discussions with other software customers
 l Research and register for software training
Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.

You can register for a Software Passport through a link on the Software Support Online site.

To find more information about access levels, go to
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

About this PDF version of online Help
This document is a PDF version of the online Help.

This PDF file is provided so you can easily print multiple topics or read the online Help.

Because this content was originally created to be viewed as online help in a web browser, some topics may
not be formatted properly. Some interactive topics may not be present in this PDF version. Those topics can
be successfully printed from within the online Help.

Administration Guide

Connector Framework Server (11.6) Page 3 of 185

https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Chapter 1: Introduction 9
Connector Framework Server 9

Filter Documents and Extract Subfiles 10
Manipulate and Enrich Documents 10

The Ingestion Process 11
The Import Process 13
Index Documents 14

The IDOL Platform 14

System Architecture 15

OEM Certification 16

Related Documentation 17

Display Online Help 17

Chapter 2: Configure Connector Framework Server 18
Connector Framework Server Configuration File 18

Modify Configuration Parameter Values 19

Configure Connector Framework Server 20

Include an External Configuration File 21
Include the Whole External Configuration File 21
Include Sections of an External Configuration File 22
Include a Parameter from an External Configuration File 22
Merge a Section from an External Configuration File 23

Encrypt Passwords 23
Create a Key File 23
Encrypt a Password 24
Decrypt a Password 25

Configure Client Authorization 26

Example Configuration File 27

Chapter 3: Start and Stop Connector Framework Server 29
Start Connector Framework Server 29

Stop Connector Framework Server 29

Chapter 4: Send Actions to Connector Framework Server 31

Administration Guide

Connector Framework Server (11.6) Page 4 of 185

Send Actions to Connector Framework Server 31

Asynchronous Actions 31
Check the Status of an Asynchronous Action 32
Cancel an Asynchronous Action that is Queued 32
Stop an Asynchronous Action that is Running 32

Store Action Queues in an External Database 33
Prerequisites 33
Configure Connector Framework Server 33

Store Action Queues in Memory 35

Use XSL Templates to Transform Action Responses 36
Example XSL Templates 37

Chapter 5: Ingest Data 38
Ingest Data using Connectors 38

Ingest an IDX File 38

Ingest XML 39
Transform XML Files 39
Parse XML into Documents 40

Ingest PST Files 42

Ingest Password-Protected Files 42

Ingest Data for Testing 44

Chapter 6: Filter Documents and Extract Subfiles 45
Customize KeyView Filtering 45

Disable Filtering or Extraction for Specific Documents 45

Chapter 7: Manipulate and Enrich Documents 47
Introduction 47

Choose When to Run a Task 48
Create Import and Index Tasks 50
Document Fields for Import Tasks 51

Write and Run Lua Scripts 52
Write a Lua Script 52
Run a Lua Script 53
Debug a Lua Script 53
Lua Scripts Included With CFS 56
Use Named Parameters 58
Enable or Disable Lua Scripts During Testing 58
Example Lua Scripts 59

Add a Field to a Document 59

Administration Guide

Connector Framework Server (11.6) Page 5 of 185

Count Sections 59
Merge Document Fields 60

Add Titles to Documents 61

Analyze Media 62
Create a Media Server Configuration 62
Configure the Media Analysis Task 63
Run Analysis From Lua 66
Troubleshoot Media Analysis 67

Analyze Speech 68
Run Analysis on All Audio and Video Files 69
Run Analysis on Specific Documents 69
Use Multiple Speech Servers 70
Language Identification 71
Transcode Audio 71
Speech-To-Text Results 72

Categorize Documents 73
Customize the Query 74
Customize the Output 75

Run Eduction 76
Redact Documents 77
Lua Post Processing 77

Process HTML 78
HTML Processing with WKOOP 79

Remove Irrelevant Content 80
Extract Metadata 80
Split Web Pages into Multiple Documents 81

HTML Extraction 83

Extract Metadata from Files 84

Import Content Into a Document 84

Reject Invalid Documents 85
Reject Documents with Binary Content 85
Reject Documents with Import Errors 86
Reject Documents with Symbolic Content 86
Reject Documents by Word Length 86
Reject All Invalid Documents 87

Split Document Content into Sections 87

Split Files into Multiple Documents 88
Example 88

Write Documents to Disk 90
Write Documents to Disk in IDX Format 90
Write Documents to Disk in XML Format 91
Write Documents to Disk in JSON Format 91

Administration Guide

Connector Framework Server (11.6) Page 6 of 185

Write Documents to Disk in CSV Format 92
Write Documents to Disk as SQL INSERT Statements 92

Standardize Document Fields 93
Customize Field Standardization 93

Normalize E-mail Addresses 97

Language Detection 99

Translate Documents 99

Chapter 8: Index Documents 101
Introduction 101

Configure the Batch Size and Time Interval 102

Index Documents into an IDOL Server 102

Index Documents into Haven OnDemand 103
Prepare Haven OnDemand 103
Configure CFS to Index into Haven OnDemand 104

Index Documents into Vertica 105
Prepare the Vertica Database 106
Configure CFS to Index into Vertica 107
Troubleshooting 108

Index Documents into another CFS 108

Index Documents into MetaStore 109

Document Fields for Indexing 110
AUTN_INDEXPRIORITY 110

Manipulate Documents Before Indexing 111

Chapter 9: Monitor Connector Framework Server 113
Use the Logs 113

Customize Logging 113

Monitor Asynchronous Actions using Event Handlers 114
Configure an Event Handler 115
Write a Lua Script to Handle Events 117

Monitor the size of the Import and Index Queues 117

Set Up Document Tracking 118

Appendix A: KeyView Supported Formats 120
Supported Formats 120

Archive Formats 122
Binary Format 124
Computer-Aided Design Formats 124

Administration Guide

Connector Framework Server (11.6) Page 7 of 185

Database Formats 126
Desktop Publishing 127
Display Formats 127
Graphic Formats 128
Mail Formats 131
Multimedia Formats 133
Presentation Formats 135
Spreadsheet Formats 137
Text and Markup Formats 139
Word Processing Formats 140

Supported Formats (Detected) 145

Appendix B: KeyView Format Codes 152
KeyView Classes 152

KeyView Formats 153

Appendix C: Document Fields 178
Document Fields 178

AUTN_IDENTIFIER 179
Sub File Indexes 180
Append Sub File Indexes to the Document Identifier 181

Glossary 182

Send documentation feedback 185

Administration Guide

Connector Framework Server (11.6) Page 8 of 185

Chapter 1: Introduction

This section provides an overview of Connector Framework Server.

• Connector Framework Server 9
• The Ingestion Process 11
• The IDOL Platform 14
• System Architecture 15
• OEM Certification 16
• Related Documentation 17
• Display Online Help 17

Connector Framework Server

Connector Framework Server (CFS) processes the information that is retrieved by connectors, and then
indexes the information into one or more indexes, such as IDOL Server or Haven OnDemand.

Connectors send information to CFS in the form of documents. A document is a collection of metadata and,
usually, an associated source file. The metadata describes the location of the file or record that was retrieved,
and other information that was extracted by the connector. For example, a document sent for ingestion by a
Web Connector includes the URL of the page and the links that were extracted from the page when it was
crawled. The Web Connector provides the downloaded HTML in an associated file so that it can be
processed by CFS.

Sometimes a document does not have an associated source file. For example, if you retrieve information from
a database using the ODBC Connector, the documents sent for ingestion contain the information extracted
by your chosen query, and might not have an associated file. These documents are referred to as having
metadata only.

CFS uses KeyView to extract information from the source file. Some source files are container files, such as
zip archives, and these are extracted. CFS then uses KeyView to obtain text and file-specific metadata from
the file, and adds it to the document. The original source file is discarded before the document is indexed. This
allows IDOL to search and categorize documents, and perform other operations, without needing to process
the information from a repository in its native format.

CFS provides features to manipulate and enrich documents. For example, you can send media files to an
IDOL Media Server and perform tasks such as optical character recognition and face recognition. This adds
additional information to the IDOL document, so that when a user queries IDOL the results include relevant
images, audio, and video files. CFS also supports the Lua scripting language so that you can write your own
tasks and develop custom processing rules.

A single CFS can process information from any number of connectors. For example, a CFS might process
files retrieved by a File System Connector, web pages retrieved by a Web Connector, and e-mail messages
retrieved by an Exchange Connector. Alternatively, you or an application can send information to CFS
directly.

Connector Framework Server (11.6) Page 9 of 185

Filter Documents and Extract Subfiles

CFS uses KeyView to extract meaningful information from the files retrieved by a connector. KeyView
can extract the file content, metadata, and subfiles from over 1,000 different file types.

 l File content is the main content of a file, for example the body of an e-mail message.
 l Metadata is information about a file itself, for example the sender of an e-mail message or the date

and time when it was received.
 l Subfiles are files that are contained within the main file. For example, an e-mail message might

contain embedded images or attachments that you want to index.

Manipulate and Enrich Documents

CFS provides features to manipulate and enrich documents. Enriching a document means adding
additional information, or improving the quality and usefulness of the information, before the document
is indexed into IDOL. For example, you can:

 l Add additional fields to a document.
 l Extract content from HTML pages, discarding irrelevant content such as headers, sidebars,

advertisements, and scripts.
 l Split long documents into multiple sections. This can improve performance when you query IDOL,

because IDOL can return a specific part of a document in response to a query.
 l Standardize field names, so that documents that originated from different repositories use the same

fields to store the same type of information.
 l Perform Eduction on document fields. Eduction extracts entities from a document, and writes them

to specific document fields. An entity can be a word, phrase, or block of information - for example an
address or telephone number.

 l Perform analysis on image and video files and add the results to the document. Examples of media
analysis include optical character recognition (OCR), face detection and recognition, and object
recognition. To analyze media you must have an IDOL Media Server.

 l Extract speech from audio and video files, and add the transcription to the document content. To
analyze speech you must have an IDOL Speech Server.

 l Reject documents that do not contain content in a specific language.
The simplest way to manipulate documents is to use the import tasks that are included with CFS. For
information about the tasks that are available, see Manipulate and Enrich Documents, on page 47. You
can configure these tasks by modifying configuration parameters in the CFS configuration file.

CFS also supports Lua, an embedded scripting language. You can write Lua scripts to manipulate
documents and define custom processing rules. For information about the Lua functions that are
provided with CFS, refer to the Connector Framework Server Reference.

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 10 of 185

The Ingestion Process

The following chart provides a summary of the ingestion process.

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 11 of 185

Documents are submitted to Connector Framework Server through the ingest action. If the document
has metadata only, CFS runs any processing tasks that have been configured and the document is
then ready for indexing. If the document has an associated file then the ingestion process depends on
the file format.

 l All files apart from IDOL IDX and XML. Most documents that have an associated file are added
to the import queue so that the information in the file can be extracted by KeyView or other
processing tasks. For information about the import process, see The Import Process, on the next
page.

 l IDOL IDX files. An IDX file contains one or more documents in IDOL IDX format, so CFS attempts
to parse the file. If parsing is successful then the IDOL documents are returned to the ingest queue
as metadata-only documents. If parsing is not successful then CFS adds the document to the import
queue so that the IDX file is processed by KeyView. Parsing an IDX file is preferable to processing it
with KeyView, because although KeyView can extract the text, it cannot extract the structure
information that divides the text into separate documents, content sections, and metadata fields.

 l XML files. Many systems export information in XML format and CFS has features to help you
convert XML into IDOL documents.
CFS can run a transformation on an ingested XML file. This is an optional step but can be useful in
cases where your XML files do not resemble IDOL documents or you are processing XML from
many sources and the files have different schemas. You can configure any number of
transformations and CFS runs the first transformation where the ingested XML matches the
specified schema. You can also configure a default transformation that CFS runs when an XML file
does not match any of your schemas. When a transformation is configured but is not successful,
CFS adds the document to the import queue so that the XML is processed by KeyView.
After an XML transformation is successful or when transformation is not configured, CFS attempts
to convert the XML into IDOL documents. The conversion is performed by mapping elements in the
XML to IDOL documents and document fields. If the conversion is successful the resulting
documents are returned to the ingest queue as metadata-only documents. If the conversion does not
result in any IDOL documents but the XML was transformed after matching a schema, CFS does
not consider this as a failure and does not index any documents. Otherwise, CFS adds the
document to the import queue so that the XML is processed by KeyView.
Parsing an XML file is usually preferable to processing it with KeyView, because although KeyView
can extract the text it does not preserve the structure information (the XML tags are discarded).

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 12 of 185

The Import Process

The following chart provides a summary of the import process.

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 13 of 185

 1. CFS takes a document from the import queue.
 2. CFS performs the pre-import tasks that are configured in its configuration file. Pre-import tasks

occur before files are processed by KeyView. You can use pre-import tasks to manipulate and
enrich documents (see Manipulate and Enrich Documents, on page 10). Sometimes it is important
to run tasks before KeyView processing. For example, if you send an audio file to Media Server for
analysis, you might not want to process it with KeyView.

TIP:
Both pre- and post-import tasks can reject a document, so that it is discarded and not
indexed. You might configure CFS to reject a document if the associated file does not
contain useful content. Documents are not rejected when an import task fails - in that case
CFS continues processing the document.

 3. Unless the document contains the metadata field AUTN_NO_EXTRACT, CFS uses KeyView to
extract sub-files. Examples of files that have sub-files include e-mail messages (which have
attachments) and zip files (which contain other files). CFS creates a new document for each sub-
file and adds the new documents to the import queue to be processed separately.

 4. Unless the document contains the metadata field AUTN_NO_FILTER, CFS uses KeyView to filter
the associated source file. Filtering extracts the text from a file. An office document is likely to
contain useful text, while an archive file (for example a zip file) or a media file is unlikely to have
textual content.

TIP:
Although media files (images, audio, and video) do not contain text, you can extract useful
information by sending the files to an IDOL Media Server.

 5. CFS performs the post-import tasks that are configured in its configuration file.
 6. Processing is complete and the document is ready to be indexed.

Index Documents

After CFS finishes processing documents, it automatically indexes them into one or more indexes. You
can index documents into:

 l IDOL Server (or send them to a Distributed Index Handler, so that they can be distributed across
multiple IDOL servers).

 l Haven OnDemand.
 l Vertica.

The IDOL Platform

At the core of Connector Framework Server is the Intelligent Data Operating Layer (IDOL).

IDOL gathers and processes unstructured, semi-structured, and structured information in any format
from multiple repositories using IDOL connectors and a global relational index. It can automatically
form a contextual understanding of the information in real time, linking disparate data sources together
based on the concepts contained within them. For example, IDOL can automatically link concepts

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 14 of 185

contained in an email message to a recorded phone conversation, that can be associated with a stock
trade. This information is then imported into a format that is easily searchable, adding advanced
retrieval, collaboration, and personalization to an application that integrates the technology.

For more information on IDOL, see the IDOL Getting Started Guide.

System Architecture

An IDOL infrastructure can include the following components:

 l Connectors. Connectors extract data from repositories and send the data to CFS.
 l Connector Framework Server.
 l IDOL Server. IDOL Server provides features to analyze unstructured information and extract

meaning from that information.
 l Distributed Index Handler (DIH). The Distributed Index Handler distributes data across multiple

IDOL servers. Using multiple IDOL servers can increase the availability and scalability of the
system.

These components can be installed in many different configurations. The simplest installation consists
of a single connector, a single CFS, and a single IDOL server.

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 15 of 185

A more complex configuration might include more than one connector, or use a Distributed Index
Handler (DIH) to index content across multiple IDOL servers.

OEM Certification

Connector Framework Server works in OEM licensed environments.

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 16 of 185

Related Documentation

The following documents provide more details on Connector Framework Server.

 l Connector Framework Server Reference
The Connector Framework Server Reference describes the configuration parameters and actions
that are supported by CFS.

 l IDOL Server Administration Guide
The IDOL Server Administration Guide describes the operations that IDOL Server can perform, and
describes how to set them up.

 l Distributed Index Handler (DIH) Administration Guide
This guide describes how you can use a DIH to distribute aggregated documents across multiple
IDOL Servers.

 l License Server Administration Guide
This guide describes how to use a License Server to license multiple IDOL services.

Display Online Help

You can display the Connector Framework Server Reference by sending an action from your web
browser. The Connector Framework Server Reference describes the actions and configuration
parameters that you can use with Connector Framework Server.

For Connector Framework Server to display help, the help data file (help.dat) must be available in the
installation folder.

To display help for Connector Framework Server

 1. Start Connector Framework Server.
 2. Send the following action from your web browser:

http://host:port/action=Help

where:

host is the IP address or name of the machine on which Connector Framework Server is
installed.

port is the ACI port by which you send actions to Connector Framework Server (set by the
Port parameter in the [Server] section of the configuration file).

For example:

http://12.3.4.56:9000/action=help

Administration Guide
Chapter 1: Introduction

Connector Framework Server (11.6) Page 17 of 185

Chapter 2: Configure Connector Framework
Server

This section describes how to configure CFS.

• Connector Framework Server Configuration File 18
• Modify Configuration Parameter Values 19
• Configure Connector Framework Server 20
• Include an External Configuration File 21
• Encrypt Passwords 23
• Configure Client Authorization 26
• Example Configuration File 27

Connector Framework Server Configuration File

To configure CFS, modify the configuration file. The file is located in the CFS installation folder and can be
modified with a text editor.

The parameters in the configuration file are divided into sections that represent CFS functionality. CFS
supports standard Server, Service, Logging, and License parameters.

Service Section

The [Service] section specifies the service port used by CFS.

Server Section

The [Server] section specifies the ACI port of the Connector Framework Server. When you configure
connectors, the IngestPort parameter in the connector configuration file should point to this port.

Actions Section

The [Actions] section specifies how CFS processes actions that are sent to the ACI port.

Logging Section

The [Logging] section contains configuration parameters that determine how messages are logged. You can
create separate log streams for different message types. The configuration file also contains a section to
configure each of the log streams.

Connector Framework Server (11.6) Page 18 of 185

Indexing Section

The [Indexing] section specifies the host name or IP address, and port, of machines where data is
sent after it has been processed by CFS. This is usually the IP address and ACI port of an IDOL
Server. You can use other indexing parameters to specify how data is indexed.

ImportService Section

The [ImportService] section specifies details for KeyView.

ImportTasks Section

The [ImportTasks] section is used to set up custom import tasks. CFS performs these tasks on data
before it is indexed into IDOL Server. For more information about Import Tasks, see Manipulate and
Enrich Documents, on page 47.

IndexTasks Section

The [IndexTasks] section is used to set up custom index tasks. IDOL connectors detect when
documents are updated or removed from a repository. The connectors pass this information to CFS so
that the documents can be updated or removed from IDOL Server. When CFS receives this
information, it can perform custom Index tasks before the information is sent to IDOL. For more
information about Index tasks, see Manipulate and Enrich Documents, on page 47.

Related Topics

 l Example Configuration File, on page 27
 l Customize Logging, on page 113

Modify Configuration Parameter Values

You modify Connector Framework Server configuration parameters by directly editing the parameters
in the configuration file. When you set configuration parameter values, you must use UTF-8.

CAUTION:
You must stop and restart Connector Framework Server for new configuration settings to take
effect.

This section describes how to enter parameter values in the configuration file.

Enter Boolean Values

The following settings for Boolean parameters are interchangeable:

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 19 of 185

TRUE = true = ON = on = Y = y = 1

FALSE = false = OFF = off = N = n = 0

Enter String Values

To enter a comma-separated list of strings when one of the strings contains a comma, you can indicate
the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird,"wing,beak",turtle

Alternatively, you can escape the comma with a backslash:

ParameterName=cat,dog,bird,wing\,beak,turtle

If any string in a comma-separated list contains quotation marks, you must put this string into quotation
marks and escape each quotation mark in the string by inserting a backslash before it. For example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

Configure Connector Framework Server

This section describes how to configure CFS.

To configure CFS

 1. Stop CFS, if it is running.
 2. Open the CFS configuration file.
 3. In the [Service] section, specify the service port:

ServicePort The port for CFS to use as the service port.

 4. In the [Server] section, set the ACI port:

Port The port for CFS to use as the ACI port.

 5. (Optional) In the [ImportService] section, you can set parameters to configure KeyView. You
can choose the number of threads to use, specify the folders to use for extracting files, and
customize how documents are imported.

ThreadCount The number of threads to use for importing
documents.

For information about the configuration parameters that you can set, refer to the Connector
Framework Server Reference.

 6. Save the configuration file.
Related Topics

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 20 of 185

 l Start and Stop Connector Framework Server, on page 29
 l Connector Framework Server Configuration File, on page 18
 l Customize Logging, on page 113

Include an External Configuration File

You can share configuration sections or parameters between ACI server configuration files. The
following sections describe different ways to include content from an external configuration file.

You can include a configuration file in its entirety, specified configuration sections, or a single
parameter.

When you include content from an external configuration file, the GetConfig and ValidateConfig
actions operate on the combined configuration, after any external content is merged in.

In the procedures in the following sections, you can specify external configuration file locations by
using absolute paths, relative paths, and network locations. For example:

../sharedconfig.cfg
 K:\sharedconfig\sharedsettings.cfg
 \\example.com\shared\idol.cfg
 file://example.com/shared/idol.cfg

Relative paths are relative to the primary configuration file.

NOTE:
You can use nested inclusions, for example, you can refer to a shared configuration file that
references a third file. However, the external configuration files must not refer back to your
original configuration file. These circular references result in an error, and Connector Framework
Server does not start.

Similarly, you cannot use any of these methods to refer to a different section in your primary
configuration file.

Include the Whole External Configuration File

This method allows you to import the whole external configuration file at a specified point in your
configuration file.

To include the whole external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the external configuration file.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. For
example:

< "K:\sharedconfig\sharedsettings.cfg"

 4. Save and close the configuration file.

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 21 of 185

Include Sections of an External Configuration File

This method allows you to import one or more configuration sections from an external configuration file
at a specified point in your configuration file. You can include a whole configuration section in this way,
but the configuration section name in the external file must exactly match what you want to use in your
file. If you want to use a configuration section from the external file with a different name, see Merge a
Section from an External Configuration File, on the next page.

To include sections of an external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the external configuration file section.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the configuration section name that you want to include. For
example:

< "K:\sharedconfig\extrasettings.cfg" [License]

NOTE:
You cannot include a section that already exists in your configuration file.

 4. Save and close the configuration file.

Include a Parameter from an External Configuration File

This method allows you to import a parameter from an external configuration file at a specified point in
your configuration file. You can include a section or a single parameter in this way, but the value in the
external file must exactly match what you want to use in your file.

To include a parameter from an external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the parameter from the external

configuration file.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the name of the configuration section name that contains the
parameter, followed by the parameter name. For example:

< "license.cfg" [License] LicenseServerHost

To specify a default value for the parameter, in case it does not exist in the external configuration
file, specify the configuration section, parameter name, and then an equals sign (=) followed by the
default value. For example:

< "license.cfg" [License] LicenseServerHost=localhost

 4. Save and close the configuration file.

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 22 of 185

Merge a Section from an External Configuration File

This method allows you to include a configuration section from an external configuration file as part of
your Connector Framework Server configuration file. For example, you might want to specify a
standard SSL configuration section in an external file and share it between several servers. You can
use this method if the configuration section that you want to import has a different name to the one you
want to use.

To merge a configuration section from an external configuration file

 1. Open your configuration file in a text editor.
 2. Find or create the configuration section that you want to include from an external file. For example:

[SSLOptions1]

 3. After the configuration section name, type a left angle bracket (<), followed by the path to and
name of the external configuration file, in quotation marks (""). You can use relative paths and
network locations. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg"

If the configuration section name in the external configuration file does not match the name that
you want to use in your configuration file, specify the section to import after the configuration file
name. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg" [SharedSSLOptions]

In this example, Connector Framework Server uses the values in the [SharedSSLOptions]
section of the external configuration file as the values in the [SSLOptions1] section of the
Connector Framework Server configuration file.

NOTE:
You can include additional configuration parameters in the section in your file. If these
parameters also exist in the imported external configuration file, Connector Framework
Server uses the values in the local configuration file. For example:

[SSLOptions1] < "ssloptions.cfg" [SharedSSLOptions]
 SSLCACertificatesPath=C:\IDOL\HTTPConnector\CACERTS\

 4. Save and close the configuration file.

Encrypt Passwords

Micro Focus recommends that you encrypt all passwords that you enter into a configuration file.

Create a Key File

A key file is required to use AES encryption.

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 23 of 185

To create a new key file

 1. Open a command-line window and change directory to the Connector Framework Server
installation folder.

 2. At the command line, type:

autpassword -x -tAES -oKeyFile=./MyKeyFile.ky

A new key file is created with the name MyKeyFile.ky

CAUTION:
To keep your passwords secure, you must protect the key file. Set the permissions on the key
file so that only authorized users and processes can read it. Connector Framework Server must
be able to read the key file to decrypt passwords, so do not move or rename it.

Encrypt a Password

The following procedure describes how to encrypt a password.

To encrypt a password

 1. Open a command-line window and change directory to the Connector Framework Server
installation folder.

 2. At the command line, type:

autpassword -e -tEncryptionType [-oKeyFile] [-cFILE -sSECTION -pPARAMETER]
PasswordString

where:

Option Description

-t
EncryptionType

The type of encryption to use:
 l Basic

 l AES

For example: -tAES

NOTE:
AES is more secure than basic encryption.

-oKeyFile AES encryption requires a key file. This option specifies the path and file
name of a key file. The key file must contain 64 hexadecimal characters.
For example: -oKeyFile=./key.ky

-cFILE -
sSECTION -
pPARAMETER

(Optional) You can use these options to write the password directly into
a configuration file. You must specify all three options.
 l -c. The configuration file in which to write the encrypted password.
 l -s. The name of the section in the configuration file in which to write

the password.
 l -p. The name of the parameter in which to write the encrypted

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 24 of 185

Option Description

password.
For example:
-c./Config.cfg -sMyTask -pPassword

PasswordString The password to encrypt.

For example:

autpassword -e -tBASIC MyPassword

autpassword -e -tAES -oKeyFile=./key.ky MyPassword

autpassword -e -tAES -oKeyFile=./key.ky -c./Config.cfg -sDefault -pPassword
MyPassword

The password is returned, or written to the configuration file.

Decrypt a Password

The following procedure describes how to decrypt a password.

To decrypt a password

 1. Open a command-line window and change directory to the Connector Framework Server
installation folder.

 2. At the command line, type:

autpassword -d -tEncryptionType [-oKeyFile] PasswordString

where:

Option Description

-t
EncryptionType

The type of encryption:
 l Basic

 l AES

For example: -tAES

-oKeyFile AES encryption and decryption requires a key file. This option specifies
the path and file name of the key file used to decrypt the password.
For example: -oKeyFile=./key.ky

PasswordString The password to decrypt.

For example:

autpassword -d -tBASIC 9t3M3t7awt/J8A

autpassword -d -tAES -oKeyFile=./key.ky 9t3M3t7awt/J8A

The password is returned in plain text.

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 25 of 185

Configure Client Authorization

You can configure Connector Framework Server to authorize different operations for different
connections.

Authorization roles define a set of operations for a set of users. You define the operations by using the
StandardRoles configuration parameter, or by explicitly defining a list of allowed actions in the
Actions and ServiceActions parameters. You define the authorized users by using a client IP
address, SSL identities, and GSS principals, depending on your security and system configuration.

For more information about the available parameters, see the Connector Framework Server Reference.

To configure authorization roles

 1. Open your configuration file in a text editor.
 2. Find the [AuthorizationRoles] section, or create one if it does not exist.
 3. In the [AuthorizationRoles] section, list the user authorization roles that you want to create.

For example:

[AuthorizationRoles]
 0=AdminRole
 1=UserRole

 4. Create a section for each authorization role that you listed. The section name must match the
name that you set in the [AuthorizationRoles] list. For example:

[AdminRole]

 5. In the section for each role, define the operations that you want the role to be able to perform. You
can set StandardRoles to a list of appropriate values, or specify an explicit list of allowed actions
by using Actions, and ServiceActions. For example:

[AdminRole]
 StandardRoles=Admin,ServiceControl,ServiceStatus

 [UserRole]
 Actions=GetVersion
 ServiceActions=GetStatus

NOTE:
The standard roles do not overlap. If you want a particular role to be able to perform all
actions, you must include all the standard roles, or ensure that the clients, SSL identities,
and so on, are assigned to all relevant roles.

 6. In the section for each role, define the access permissions for the role, by setting Clients,
SSLIdentities, and GSSPrincipals, as appropriate. If an incoming connection matches one of
the allowed clients, principals, or SSL identities, the user has permission to perform the operations
allowed by the role. For example:

[AdminRole]
 StandardRoles=Admin,ServiceControl,ServiceStatus

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 26 of 185

 Clients=localhost
 SSLIdentities=admin.example.com

 7. Save and close the configuration file.
 8. Restart Connector Framework Server for your changes to take effect.

Example Configuration File

This section contains an example configuration file, which meets the minimum configuration
requirements.

[Service]
 Port=17000

 [Server]
 Port=7000
 MaxInputString=-1
 MaxFileUploadSize=-1
 XSLTemplates=TRUE

 [AuthorizationRoles]
 0=AdminRole
 1=QueryRole

 [AdminRole]
 StandardRoles=admin,servicecontrol,query,servicestatus
 Clients=::1,127.0.0.1

 [QueryRole]
 StandardRoles=query,servicestatus
 Clients=*

 [Actions]
 MaxQueueSize=100

 [Logging]
 LogLevel=NORMAL
 0=ApplicationLogStream
 1=ActionLogStream
 2=ImportLogStream
 3=IndexLogStream

 [ApplicationLogStream]
 LogTypeCSVs=application
 LogFile=application.log

 [ActionLogStream]
 LogTypeCSVs=action

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 27 of 185

 LogFile=action.log

 [ImportLogStream]
 LogTypeCSVs=import
 LogFile=import.log

 [IndexLogStream]
 LogTypeCSVs=indexer
 LogFile=indexer.log

 [Indexing]
 IndexerSections=IdolServer
 IndexBatchSize=1000
 IndexTimeInterval=300

 [IdolServer]
 Host=idol
 Port=9000
 DefaultDatabaseName=News
 SSLConfig=SSLOptions

 [SSLOptions]
 SSLMethod=SSLV23

 [ImportService]
 KeyviewDirectory=filters
 ExtractDirectory=temp
 ThreadCount=3
 ImportInheritFieldsCSV=AUTN_GROUP,AUTN_IDENTIFIER,DREDBNAME

 [ImportTasks]
 //Post0=lua:<path_to_lua_file>
 Post0=IdxWriter:C:\Autonomy\ConnectorFramework\IDX\output.idx

Administration Guide
Chapter 2: Configure Connector Framework Server

Connector Framework Server (11.6) Page 28 of 185

Chapter 3: Start and Stop Connector
Framework Server

This section describes how to start and stop CFS.

• Start Connector Framework Server 29
• Stop Connector Framework Server 29

Start Connector Framework Server

This section describes how to start Connector Framework Server.

To start CFS on Windows

 1. Open the Windows Services dialog box.
 2. Select the ConnectorFramework service (you might have chosen a different name for the service

during the installation process).
 3. Click Start.
 4. (Optional). To verify that CFS is ready, send the following action to the ACI port.

http://host:port/action=getstatus

A response is displayed.

To start CFS on UNIX

 1. Change to the CFS installation directory.
 2. Run the start script by using the following command.

./startconnectorFramework.sh

Stop Connector Framework Server

This section describes how to stop Connector Framework Server.

To stop CFS on Windows

 1. Open the Windows Services dialog box.
 2. Select the ConnectorFramework service (you might have chosen a different name for the service

during the installation process).
 3. Click Stop, and close the Windows Services dialog box.

Connector Framework Server (11.6) Page 29 of 185

To stop CFS on UNIX

 1. Change to the CFS installation directory.
 2. Run the stop script by using the following command.

./stopconnectorFramework.sh

Administration Guide
Chapter 3: Start and Stop Connector Framework Server

Connector Framework Server (11.6) Page 30 of 185

Chapter 4: Send Actions to Connector
Framework Server

This section describes how to send actions to Connector Framework Server.

• Send Actions to Connector Framework Server 31
• Asynchronous Actions 31
• Store Action Queues in an External Database 33
• Store Action Queues in Memory 35
• Use XSL Templates to Transform Action Responses 36

Send Actions to Connector Framework Server

Connector Framework Server actions are HTTP requests, which you can send, for example, from your web
browser. The general syntax of these actions is:

http://host:port/action=action¶meters

where:

host is the IP address or name of the machine where Connector Framework Server is installed.

port is the Connector Framework Server ACI port. The ACI port is specified by the Port
parameter in the [Server] section of the Connector Framework Server configuration file. For
more information about the Port parameter, see the Connector Framework Server
Reference.

action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

NOTE:
Separate individual parameters with an ampersand (&). Separate parameter names from values with
an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the Connector Framework Server Reference.

Asynchronous Actions

When you send an asynchronous action to Connector Framework Server, the CFS adds the task to a queue
and returns a token. Connector Framework Server performs the task when a thread becomes available. You
can use the token with the QueueInfo action to check the status of the action and retrieve the results of the
action.

Connector Framework Server (11.6) Page 31 of 185

Most of the actions sent to CFS are ingest actions, so when you use the QueueInfo action, query the
ingest action queue, for example:

 /action=QueueInfo&QueueName=ingest&QueueAction=GetStatus

Check the Status of an Asynchronous Action

To check the status of an asynchronous action, use the token that was returned by Connector
Framework Server with the QueueInfo action. For more information about the QueueInfo action, refer
to the Connector Framework Server Reference.

To check the status of an asynchronous action

 l Send the QueueInfo action to Connector Framework Server with the following parameters.

QueueName The name of the action queue that you want to check.

QueueAction The action to perform. Set this parameter to GetStatus.

Token (Optional) The token that the asynchronous action returned. If you do not
specify a token, Connector Framework Server returns the status of every
action in the queue.

For example:

/action=QueueInfo&QueueName=ingest&QueueAction=getstatus&Token=...

Cancel an Asynchronous Action that is Queued

To cancel an asynchronous action that is waiting in a queue, use the following procedure.

To cancel an asynchronous action that is queued

 l Send the QueueInfo action to Connector Framework Server with the following parameters.

QueueName The name of the action queue that contains the action to cancel.

QueueAction The action to perform . Set this parameter to Cancel.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=ingest&QueueAction=Cancel&Token=...

Stop an Asynchronous Action that is Running

You can stop an asynchronous action at any point.

Administration Guide
Chapter 4: Send Actions to Connector Framework Server

Connector Framework Server (11.6) Page 32 of 185

To stop an asynchronous action that is running

 l Send the QueueInfo action to Connector Framework Server with the following parameters.

QueueName The name of the action queue that contains the action to stop.

QueueAction The action to perform. Set this parameter to Stop.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=ingest&QueueAction=Stop&Token=...

Store Action Queues in an External Database

Connector Framework Server provides asynchronous actions. Each asynchronous action has a queue
to store requests until threads become available to process them. You can configure Connector
Framework Server to store these queues either in an internal database file, or in an external database
hosted on a database server.

The default configuration stores queues in an internal database. Using this type of database does not
require any additional configuration.

You might want to store the action queues in an external database so that several servers can share
the same queues. In this configuration, sending a request to any of the servers adds the request to the
shared queue. Whenever a server is ready to start processing a new request, it takes the next request
from the shared queue, runs the action, and adds the results of the action back to the shared database
so that they can be retrieved by any of the servers. You can therefore distribute requests between
components without configuring a Distributed Action Handler (DAH).

NOTE:
You cannot use multiple servers to process a single request. Each request is processed by one
server.

Prerequisites

 l Supported databases:
 o PostgreSQL 9.0 or later.
 o MySQL 5.0 or later.

 l If you use PostgreSQL, you must set the PostgreSQL ODBC driver setting MaxVarChar to 0 (zero).
If you use a DSN, you can configure this parameter when you create the DSN. Otherwise, you can
set the MaxVarcharSize parameter in the connection string.

Configure Connector Framework Server

To configure Connector Framework Server to use a shared action queue, follow these steps.

Administration Guide
Chapter 4: Send Actions to Connector Framework Server

Connector Framework Server (11.6) Page 33 of 185

To store action queues in an external database

 1. Stop Connector Framework Server, if it is running.
 2. Open the Connector Framework Server configuration file.
 3. Find the relevant section in the configuration file:

 l To store queues for all asynchronous actions in the external database, find the [Actions]
section.

 l To store the queue for a single asynchronous action in the external database, find the section
that configures that action.

 4. Set the following configuration parameters.

AsyncStoreLibraryDirectory The path of the directory that contains the library to use to
connect to the database. Specify either an absolute path, or a
path relative to the server executable file.

AsyncStoreLibraryName The name of the library to use to connect to the database. You
can omit the file extension. The following libraries are
available:
 l postgresAsyncStoreLibrary - for connecting to a

PostgreSQL database.
 l mysqlAsyncStoreLibrary - for connecting to a MySQL

database.

ConnectionString The connection string to use to connect to the database. The
user that you specify must have permission to create tables in
the database. For example:
ConnectionString=DSN=my_ASYNC_QUEUE

or
ConnectionString=Driver={PostgreSQL};
Server=10.0.0.1; Port=9876;
Database=SharedActions; Uid=user; Pwd=password;
MaxVarcharSize=0;

For example:

[Actions]
 AsyncStoreLibraryDirectory=acidlls
 AsyncStoreLibraryName=postgresAsyncStoreLibrary
 ConnectionString=DSN=ActionStore

 5. If you are using the same database to store action queues for more than one type of component,
set the following parameter in the [Actions] section of the configuration file.

DatastoreSharingGroupName The group of components to share actions with. You can set
this parameter to any string, but the value must be the same for
each server in the group. For example, to configure several
Connector Framework Servers to share their action queues,
set this parameter to the same value in every Connector
Framework Server configuration. Micro Focus recommends

Administration Guide
Chapter 4: Send Actions to Connector Framework Server

Connector Framework Server (11.6) Page 34 of 185

setting this parameter to the name of the component.

CAUTION:
Do not configure different components (for example, two
different types of connector) to share the same action
queues. This will result in unexpected behavior.

 For example:

[Actions]
 ...
 DatastoreSharingGroupName=ComponentType

 6. Save and close the configuration file.
When you start Connector Framework Server it connects to the shared database.

Store Action Queues in Memory

Connector Framework Server provides asynchronous actions. Each asynchronous action has a queue
to store requests until threads become available to process them. These queues are usually stored in a
datastore file or in a database hosted on a database server, but in some cases you can increase
performance by storing these queues in memory.

NOTE:
Storing action queues in memory improves performance only when the server receives large
numbers of actions that complete quickly. Before storing queues in memory, you should also
consider the following:

 l The queues (including queued actions and the results of finished actions) are lost if
Connector Framework Server stops unexpectedly, for example due to a power failure or the
component being forcibly stopped. This could result in some requests being lost, and if the
queues are restored to a previous state some actions could run more than once.

 l Storing action queues in memory prevents multiple instances of a component being able to
share the same queues.

 l Storing action queues in memory increases memory use, so please ensure that the server
has sufficient memory to complete actions and store the action queues.

If you stop Connector Framework Server cleanly, Connector Framework Server writes the action
queues from memory to disk so that it can resume processing when it is next started.

To configure Connector Framework Server to store asynchronous action queues in memory, follow
these steps.

To store action queues in memory

 1. Stop Connector Framework Server, if it is running.
 2. Open the Connector Framework Server configuration file and find the [Actions] section.
 3. If you have set any of the following parameters, remove them:

Administration Guide
Chapter 4: Send Actions to Connector Framework Server

Connector Framework Server (11.6) Page 35 of 185

 l AsyncStoreLibraryDirectory

 l AsyncStoreLibraryName

 l ConnectionString

 l UseStringentDatastore

 4. Set the following configuration parameters.

UseInMemoryDatastore A Boolean value that specifies whether to keep the
queues for asynchronous actions in memory. Set
this parameter to TRUE.

InMemoryDatastoreBackupIntervalMins (Optional) The time interval (in minutes) at which
the action queues are written to disk. Writing the
queues to disk can reduce the number of queued
actions that would be lost if Connector Framework
Server stops unexpectedly, but configuring a
frequent backup will increase the load on the
datastore and might reduce performance.

For example:

[Actions]
 UseInMemoryDatastore=TRUE
 InMemoryDatastoreBackupIntervalMins=30

 5. Save and close the configuration file.
When you start Connector Framework Server, it stores action queues in memory.

Use XSL Templates to Transform Action Responses

You can transform the action responses returned by Connector Framework Server using XSL
templates. You must write your own XSL templates and save them with either an .xsl or .tmpl file
extension.

After creating the templates, you must configure Connector Framework Server to use them, and then
apply them to the relevant actions.

To enable XSL transformations

 1. Ensure that the autnxslt library is located in the same directory as Connector Framework Server.
If the library is not included in your installation, you can obtain it from Micro Focus Support.

 2. Open the Connector Framework Server configuration file in a text editor.
 3. In the [Server] section, ensure that the XSLTemplates parameter is set to true.

CAUTION:
If XSLTemplates is set to true and the autnxslt library is not present in the same
directory as the configuration file, the server will not start.

 4. (Optional) In the [Paths] section, set the TemplateDirectory parameter to the path to the
directory that contains your XSL templates. The default directory is acitemplates.

Administration Guide
Chapter 4: Send Actions to Connector Framework Server

Connector Framework Server (11.6) Page 36 of 185

 5. Save and close the configuration file.
 6. Restart Connector Framework Server for your changes to take effect.

To apply a template to action output

 l Add the following parameters to the action:

Template The name of the template to use to transform the action output.
Exclude the folder path and file extension.

ForceTemplateRefresh (Optional) If you modified the template after the server started, set this
parameter to true to force the ACI server to reload the template from
disk rather than from the cache.

For example:

action=QueueInfo&QueueName=Ingest
 &QueueAction=GetStatus
 &Token=...
 &Template=myTemplate

In this example, Connector Framework Server applies the XSL template myTemplate to the
response from an Ingest action.

NOTE:
If the action returns an error response, Connector Framework Server does not apply the XSL
template.

Example XSL Templates

Connector Framework Server includes the following sample XSL templates, in the acitemplates
folder:

XSL
Template

Description

LuaDebug Transforms the output from the LuaDebug action, to assist with debugging Lua
scripts.

Administration Guide
Chapter 4: Send Actions to Connector Framework Server

Connector Framework Server (11.6) Page 37 of 185

Chapter 5: Ingest Data

This section describes how to send data to CFS.

• Ingest Data using Connectors 38
• Ingest an IDX File 38
• Ingest XML 39
• Ingest PST Files 42
• Ingest Password-Protected Files 42
• Ingest Data for Testing 44

Ingest Data using Connectors

To configure a connector to send data to CFS, follow these steps.

To configure a connector to send data to CFS

 1. Stop the connector, if it is running. For information about how to stop a connector, refer to the
connector’s documentation.

 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to CFS, set this parameter to CFS.

IngestHost The host name or IP address of the CFS.

IngestPort The ACI port of the CFS.

For example:

[Ingestion]
EnableIngestion=True
 IngesterType=CFS
 IngestHost=localhost
 IngestPort=7000

 4. Save and close the configuration file.
You can now start the connector.

Ingest an IDX File

You can ingest an IDX file using the Ingest action.

Connector Framework Server (11.6) Page 38 of 185

Use the adds parameter to specify the document that you want to ingest. This parameter takes XML
like the following example which ingests c:\data.idx:

<adds>
 <add>
 <source filename="c:\data.idx" />
 </add>
 </adds>

The XML must be URL encoded:

http://server:port/action=ingest&adds=[URL encoded XML]

For more information about the Ingest action, refer to the Connector Framework Server Reference.

Ingest XML

Many systems export information in XML format and CFS has features to help you convert XML into
IDOL documents.

NOTE:
The XML must be encoded in UTF-8.

You can configure CFS to transform XML files, with an XSL transformation, before they are processed.
This is an optional step but can be useful in cases where your XML files do not resemble
IDOL documents or you are processing XML from many sources and the files have different schemas.
You can configure any number of transformations and CFS runs the first transformation where the
ingested XML matches the specified schema. You can also configure a default transformation that
CFS runs when an XML file does not match any of your schemas.

After an XML file has been transformed, or when transformation is not configured, CFS attempts to
convert the XML into IDOL documents. The XML is parsed according to the rules that you configure in
the [XmlParsing] section of the CFS configuration file. If the conversion is successful, the resulting
metadata-only documents are added to the ingest queue (for more information about the ingestion
process, see The Ingestion Process, on page 11). If the conversion does not result in any
IDOL documents but the XML was transformed after matching a schema, CFS does not consider this
as a failure and does not index any documents. Otherwise, for example if the XML is invalid, the XML
file is added to the import queue so that it is processed by KeyView along with other file types.

Transform XML Files

CFS can transform XML files before attempting to parse them. XSL transformations are configured in
the [XmlTransformation] section of the CFS configuration file.

To run a single transformation, you can specify the settings in the [XmlTransformation] section:

[XmlTransformation]
 ValidationSchema=schema.xsd
 TransformationStylesheet=transform.xslt

Administration Guide
Chapter 5: Ingest Data

Connector Framework Server (11.6) Page 39 of 185

In this example, CFS uses the stylesheet transform.xslt to transform any XML file that matches
schema.xsd.

If you are processing XML files that have more than one schema, you might want to configure several
transformations. To do this, use the Sections parameter to specify the names of sections that
configure the transformations:

[XmlTransformation]
 Sections=XmlTransform1,XmlTransform2

 [XmlTransform1]
 ValidationSchema=schema1.xsd
 TransformationStylesheet=transform1.xslt

 [XmlTransform2]
 TransformationStylesheet=transform2.xslt

In this example, any XML file that matches schema1.xsd is transformed by transform1.xslt. These
files are then parsed. The parameter ValidationSchema is not set in the section XmlTransform2, so
any files that do not match schema1.xsd are transformed by transform2.xslt.

You can configure as many different transformations as you require. If you set the parameter
ValidationSchema in every section and an XML file does not match any of the schemas, it is not
transformed.

Parse XML into Documents

CFS attempts to parse any XML file that it receives according to rules that are specified in the
[XMLParsing] section of its configuration file. The parameters in the [XMLParsing] section specify:

 l How to divide the XML into documents.
 l How to populate each document's DREREFERENCE field.
 l How to populate each document's DRECONTENT field.

To configure settings for parsing XML

 1. Open the CFS configuration file.
 2. In the [XMLParsing] section, set the following parameters:

DocumentRootPaths A comma-separated list of paths to nodes that contain a single
document. Specify the paths relative to the root of the XML. Use a
forward slash (/) to represent levels in the XML hierarchy. Any elements
contained within the specified node are added to the document as
metadata.

IncludeRootPath A Boolean value (default false) that specifies whether to include the
node specified by DocumentRootPaths in the document. You might set
this parameter to TRUE if the root node has attributes that you need to
include in the document.

ReferencePaths A comma-separated list of possible paths to a node that contains the

Administration Guide
Chapter 5: Ingest Data

Connector Framework Server (11.6) Page 40 of 185

document reference. Specify the paths relative to the node identified by
DocumentRootPaths. Use a forward slash (/) to represent levels in the
XML hierarchy. The XML for each document must contain exactly one
node that matches the specified path(s).

ContentPaths A comma-separated list of possible paths to a node that contains the
document content. Specify the paths relative to the node identified by
DocumentRootPaths. Use a forward slash (/) to represent levels in the
XML hierarchy. If multiple content nodes are identified for a single
document, a document is produced with multiple sections.

 3. Save and close the configuration file.

Example

Consider the following XML:

<xml>
 <documents>
 <document>
 <metadata>
 <name>This is the name of the document</name>
 <created>28/02/15 11:01:17</created>
 <modified>28/02/15 15:23:00</modified>
 </metadata>
 <content>Here is some content</content>
 </document>
 <document>
 <metadata>
 <name>This is another document</name>
 <created>01/03/15 12:21:13</created>
 <modified>02/03/15 13:23:03</modified>
 </metadata>
 <different_content>Here is some content</different_content>
 </document>
 </documents>
 </xml>

To ingest this XML file, you might use the following configuration:

[XMLParsing]
 DocumentRootPaths=documents/document
 ReferencePaths=metadata/name
 ContentPaths=content,different_content

To ingest the XML, send the ingest action to CFS:

http://localhost:7000/action=ingest&adds=%3Cadds%3E%3Cadd%3E%3Csource%20
 filename%3D%22xmlfile.xml%22%20
 lifetime%3D%22permanent%22%20%2F%3E
 %3C%2Fadd%3E%3C%2Fadds%3E

Administration Guide
Chapter 5: Ingest Data

Connector Framework Server (11.6) Page 41 of 185

This would produce the following documents:

#DREREFERENCE This is the name of the document
 #DREFIELD UUID="bfa1a8aac0b772d1ee467d830fa179bc"
 #DREFIELD DocTrackingId="3cd0e5cf3160163adf7445d013ef10b1"
 #DREFIELD ImportVersion="1207655"
 #DREFIELD KeyviewVersion="10220"
 #DREFIELD metadata/created="28/02/15 11:01:17"
 #DREFIELD metadata/modified="28/02/15 15:23:00"
 #DRECONTENT
 Here is some content
 #DREENDDOC

 #DREREFERENCE This is another document
 #DREFIELD UUID="aadf6628fccd0c6b885a79e2e39f4357"
 #DREFIELD DocTrackingId="66a63287d85b500159c5b5fb099b99a5"
 #DREFIELD ImportVersion="1207655"
 #DREFIELD KeyviewVersion="10220"
 #DREFIELD metadata/created="01/03/15 12:21:13"
 #DREFIELD metadata/modified="02/03/15 13:23:03"
 #DRECONTENT
 Here is some content
 #DREENDDOC

Ingest PST Files

Consider the following points before ingesting Microsoft Outlook Personal Folders (PST) files:

 l The best results are usually obtained when KeyView uses MAPI to extract and filter PST files. To
use MAPI, you must:
 o Run CFS on Windows.
 o Install Microsoft Outlook on the same machine as CFS. If you are using 64-bit CFS, install 64-bit

Outlook. If you are using 32-bit CFS, install 32-bit Outlook.
 o Ensure that MAPI has write access to the PST files. Set the WorkingDirectory parameter in the

[ImportService] section of the CFS configuration file so that CFS copies files to a working
directory and processes the copies, rather than processing the files in their original location.

 l PST files can contain a large amount of data and KeyView might not finish processing them within
the default time limit allowed by CFS. Consider increasing the value of the KeyviewTimeout
parameter, in the [ImportService] section of the CFS configuration file.

Ingest Password-Protected Files

To process password-protected files you must provide CFS with the passwords.

Administration Guide
Chapter 5: Ingest Data

Connector Framework Server (11.6) Page 42 of 185

To specify the passwords for password-protected files

 1. Create a credentials file to contain the passwords for your password-protected files:
 a. Open a text editor and create a new text file.
 b. Create an [ImportService] section in the file.
 c. In the ImportService section, set the following parameter:

ImportCredentialCount The total number of file name and password combinations
specified in the credentials file.

For example:

[ImportService]
 ImportCredentialCount=1

 d. Create a new section in the file, named [CredentialN], where N is the number of the file
name/password combination, starting from 0.
In the new section, set the following parameters:

FileSpec The name of the password protected file(s). You can use the * wildcard to
match the file name(s).

Password The password for the file(s). You can encrypt the password using the
password encryption utility. For information about how to do this, see
Encrypt Passwords, on page 23.

UserName The user name to use to open the file(s). Set this parameter if a user name is
required to access the file.

NotesIDFile The path of the ID file. Set this parameter for .nsf files only.

For example, the following settings could be used to specify a single password for all ZIP
files:

[ImportService]
 ImportCredentialCount=1

[Credential0]
FileSpec=*.zip
Password=9t3M3t7awt/J8A

 e. To specify further file name and password combinations, repeat steps c and d.
 f. Save the file to a suitable location.

 2. Specify the location of the credentials file. There are several ways to do this:
 l To use the credentials file you created for all ingested documents, set the CFS configuration

parameter ImportCredentialFile to the path of the file. For more information about this
parameter, refer to the Connector Framework Server Reference.

 l To use the credentials file that you created to process a single document, set the document
field AUTN_CREDENTIALS. This field accepts either the path to the credentials file, or the
credentials file content. You can encrypt the text using the password encryption utility. The
AUTN_CREDENTIALS field is removed from all documents before they are indexed. When you
send an ingest action to CFS, you can set this field using the xmlmetadata element in the

Administration Guide
Chapter 5: Ingest Data

Connector Framework Server (11.6) Page 43 of 185

adds or updates action parameter. For more information about the ingest action, refer to the
Connector Framework Server Reference.

Ingest Data for Testing

To ingest data for testing purposes, use the IngestTest action. You can use this action to view the
output of the ingestion process for a small amount of data, without the data being indexed into IDOL.

TIP:
CFS includes an XSL template to help you send IngestTest actions. Open a web browser and
navigate to http://host:7000/action=IngestTest&Template=IngestTest (where host is
the machine where CFS is running and 7000 is the CFS ACI port).

Micro Focus does not support the XSL template, it is provided only as an example of a template
that you could build.

The IngestTest action has the following parameters:

/action=IngestTest
 &config=[base64_encoded_config]
 &adds=[URL_encoded_adds_xml]

IngestTest is similar to the Ingest action, but has the following differences which make it suitable for
testing:

 l IngestTest is a synchronous action, and the document data is returned in the ACI response.
 l Indexing, whether as a result of ingestion or as a result of an import task, is disabled.
 l Update and Delete commands are disabled (you cannot use the updates and removes action

parameters like you can with the Ingest action).
 l Any writer tasks that have been configured (IdxWriter, XmlWriter, JsonWriter, CsvWriter,

SqlWriter) are disabled.
 l Logging to the import log stream is disabled. The log messages are redirected to the action

response.
 l The global Lua variable is_test is set to true. You can use this variable in your Lua scripts to

prevent certain parts of your scripts from running when you use the IngestTest action.
For more information about the IngestTest action and its parameters, refer to the Connector
Framework Server Reference.

Administration Guide
Chapter 5: Ingest Data

Connector Framework Server (11.6) Page 44 of 185

Chapter 6: Filter Documents and Extract
Subfiles

CFS automatically extracts metadata, content, and sub-files from all files that are ingested. KeyView does
not need to be configured, but this section describes how to customize the filtering and extraction process.

• Customize KeyView Filtering 45
• Disable Filtering or Extraction for Specific Documents 45

Customize KeyView Filtering

If necessary, you can customize the filtering and extraction process. For example, you can choose whether
to extract comments added by reviewers to a Microsoft Word document.

To customize filtering, use the Import Service parameters, in the [ImportService] section of the CFS
configuration file. For information about the parameters that you can set, refer to the Connector Framework
Server Reference.

You can also customize KeyView filtering by modifying the configuration parameters in the KeyView
filters\formats.ini configuration file. For more information about customizing KeyView filtering by
modifying formats.ini, refer to the KeyView documentation.

Disable Filtering or Extraction for Specific Documents

To prevent KeyView from processing specific documents, you can add the following fields to documents. You
can add the fields with any value.

AUTN_FILTER_META_ONLY Prevents CFS extracting content from a file. CFS only extracts
metadata and adds this information to the document.

AUTN_NO_FILTER Prevents CFS extracting any text (metadata or content) from a
file. This can be useful if you do not want to extract text from
certain file types.

AUTN_NO_EXTRACT Prevents CFS from extracting sub-files. This can be useful if you
want to avoid extracting items from ZIP files and other container
files.

NOTE:
To add a field to a document, use a Lua script. You must run the Lua script using a Pre import task.
This is because Post import tasks run after KeyView filtering.

Related Topics

Connector Framework Server (11.6) Page 45 of 185

 l Write and Run Lua Scripts, on page 52
 l Add a Field to a Document, on page 59

Administration Guide
Chapter 6: Filter Documents and Extract Subfiles

Connector Framework Server (11.6) Page 46 of 185

Chapter 7: Manipulate and Enrich
Documents

This section describes how to manipulate and enrich documents using CFS.

• Introduction 47
• Write and Run Lua Scripts 52
• Add Titles to Documents 61
• Analyze Media 62
• Analyze Speech 68
• Categorize Documents 73
• Run Eduction 76
• Process HTML 78
• Extract Metadata from Files 84
• Import Content Into a Document 84
• Reject Invalid Documents 85
• Split Document Content into Sections 87
• Split Files into Multiple Documents 88
• Write Documents to Disk 90
• Standardize Document Fields 93
• Normalize E-mail Addresses 97
• Language Detection 99
• Translate Documents 99

Introduction

The documents produced by connectors and CFS contain information extracted from the source repository. In
many cases you might want to add additional information to documents, or modify the structure of the
documents, before they are indexed.

To modify documents before they are indexed, use Import Tasks and Index Tasks. These are customizable
processing tasks that you can run on documents. You can use these tasks to write documents to disk,
manipulate documents, reject documents, and run custom Lua scripts.

Write documents to disk

You can write documents to disk in IDX or XML format. This allows you to view the information that is being
indexed, so that you can check the information is being indexed as you expected. If necessary, you can then
use other import tasks to manipulate and enrich the information.

Connector Framework Server (11.6) Page 47 of 185

Manipulate and enrich documents

You can use import tasks to enrich documents. For example, you can:

 l extract the meaningful content from HTML, and discard advertisements, headers, and sidebars.
 l divide document content into sections. Dividing a document can result in more relevant query

results, because IDOL can return a specific part of a document in response to a query.
 l extract speech from audio and video files, and write a transcription of the speech to the document

content. IDOL Server can then use the speech for retrieval, clustering, and other operations.

Validate and reject documents

You can reject documents that you do not want to index, for example those that do not appear to
contain valid content. When a document is rejected, it is not processed further and is not indexed.
However, you can index the document into an IDOL Server that has been configured to handle failed
documents.

Run a Lua Script

Lua is an embedded scripting language that you can use to manipulate documents and define custom
processing rules. CFS includes Lua functions for manipulating documents and running other tasks.

Choose When to Run a Task

Import Tasks run when new documents are processed by CFS, before the documents are indexed. You
can run Import Tasks before and/or after KeyView filtering.

 l Pre-import tasks run before KeyView filtering. At this point the document only contains metadata
extracted from the repository by the connector.

 l Post-import tasks run after KeyView filtering. At this point the document also contains any content
and metadata that was extracted from the file associated with the document.

Index Tasks run when a document’s metadata (but not its content) is updated, or when a document is
deleted. When a connector detects that document metadata has been updated or that a document has
been deleted from a repository, it sends this information to CFS so that the document can be updated or
removed from indexes such as IDOL Server.

 l Update index tasks run when a document’s metadata (but not its content) is updated.
 l Delete index tasks run when a document is deleted from a repository.
You can run some tasks, such as the Lua task, at any point during the import or indexing process.

You can run other tasks only at specific points within the import or indexing process. For example, to
validate the content of documents you must use a post-import task. You cannot use a pre-import task
because pre-import tasks occur before KeyView filtering, when documents do not contain any content.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 48 of 185

The following table shows when you can run each type of task.

Task Import Tasks Index Tasks

Pre Post Update Delete

Run a Lua script

Lua

Write documents to disk

CsvWriter

IdxWriter

JsonWriter

SqlWriter

XmlWriter

Manipulate and enrich documents

Eduction

EmailAddressNormalisation

ExtractMetadata

HtmlExtraction

ImportFile

Sectioner

Standardizer

TextToDocs

Validate and reject documents

BadFilesFilter

BinaryFileFilter

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 49 of 185

Task Import Tasks Index Tasks

Pre Post Update Delete

ImportErrorFilter

SymbolicContentFilter

WordLengthFilter

Media analysis

MediaServerAnalysis

IdolSpeech

You can also call many of the tasks from a Lua script, which allows more advanced processing. For
example, you might want to run a task only on selected documents. For information about the Lua
functions that are provided by CFS, refer to the Connector Framework Server Reference.

Related Topics

 l The Import Process, on page 13.

Create Import and Index Tasks

Import tasks are configured in the [ImportTasks] section of the CFS configuration file. Import tasks
run when files are imported, for example when a new item is retrieved from a repository or when the
content of a file in a repository is updated. Use the Pre parameter to specify a list of tasks to run before
KeyView filtering, and the Post parameter to specify a list of tasks to run after KeyView filtering.

Index tasks are configured in the [IndexTasks] section of the CFS configuration file. Use the Update
parameter to specify a list of tasks to run when a connector instructs CFS to update the metadata of a
document. Use the Delete parameter to specify a list of tasks to run when a connector instructs CFS
to delete a document from indexes such as IDOL Server.

The tasks that you define run in sequence. In the following example, CFS creates an IDX file, then runs
a Lua script, and then creates another IDX file:

[ImportTasks]
 Post0=IdxWriter:C:\IDXArchive\before_script.idx
 Post1=Lua:C:\Scripts\my_script.lua
 Post2=IdxWriter:C:\IDXArchive\after_script.idx

To create an import task

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. Find the [ImportTasks] section of the configuration file, or create it if it does not exist.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 50 of 185

 4. Add the task by setting the Pre or Post parameter.
The value of the Pre or Post parameter must be the name of the task that you want to run. Some
tasks also require further information, such as the name of a file or the name of a section in the
configuration file.
For example, to run a Lua script before KeyView filtering:

 [ImportTasks]
 Pre0=Lua:myscript.lua

 5. Some import tasks require you to identify the documents to process by adding a field to the
documents. For example, the IdolSpeech task only runs on documents that have the AUTN_
NEEDS_TRANSCRIPTION field. For more information about the document fields that are used with
import tasks, see Document Fields for Import Tasks, below.
To add a field to the documents that you want to process, use a Lua script. In the following
example, a Lua script named Filter.Lua runs before an IdolSpeech import task, to identify
suitable documents and add the field AUTN_NEEDS_TRANSCRIPTION.

 [ImportTasks]
 Pre0=Lua:Filter.lua
 Pre1=IdolSpeech:IdolSpeechSettings

 6. Save the configuration file and restart CFS.

To create an index task

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. Find the [IndexTasks] section of the configuration file, or create it if it does not exist.
 4. Add the task by setting the Update or Delete parameter.

The value of the Update or Delete parameter must be the name of the task that you want to run.
Some tasks also require further information, such as the name of a file or the name of a section in
the configuration file.
For example:

 [IndexTasks]
 Update0=Lua:myscript.lua

 5. Save the configuration file and restart CFS.

Document Fields for Import Tasks

You can customize how documents are processed by import tasks, by adding the following fields to
your documents.

NOTE:
The Lua script that adds the document fields must run before the import tasks.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 51 of 185

AUTN_NEEDS_TRANSCRIPTION

To use an IDOL Speech Server to extract the speech from a document that represents an audio or
video file, you must add the field AUTN_NEEDS_TRANSCRIPTION to the document. The IdolSpeech task
only runs on documents that have this field. The field can have any value. For more information about
the IdolSpeech task, see Analyze Speech, on page 68.

AUTN_FORMAT_CORRECT_FOR_TRANSCRIPTION

To bypass the transcoding step of an IdolSpeech task, add the field AUTN_FORMAT_CORRECT_FOR_
TRANSCRIPTION. The field can have any value. Documents that have this field are not sent to a
Transcode Server. For more information about the IdolSpeech task, see Analyze Speech, on page 68.

AUTN_AUDIO_LANGUAGE

To bypass the language identification step of an IdolSpeech task add the field AUTN_AUDIO_LANGUAGE.
The value of the field must be the name of the IDOL Speech Server language pack to use for extracting
speech. Documents that have this field are not sent to the IDOL Speech Server for language
identification. For more information about the IdolSpeech task, see Analyze Speech, on page 68.

AUTN_NEEDS_MEDIA_SERVER_ANALYSIS

To perform analysis on media files using the MediaServerAnalysis task, you must add this field to
every document that you want to analyze. The field can have any value.

Write and Run Lua Scripts

Connector Framework Server supports Lua, an embedded scripting language. CFS supports all
standard Lua functions. For more information about Lua, refer to http://www.lua.org/.

You can use a Lua script to:

 l Add or modify document fields.
 l Run built-in processing tasks, such as Eduction or image analysis.
 l Call out to an external service, for example to alert a user.
 l Interface with other libraries.

Write a Lua Script

Your Lua script must have the following structure:

function handler(document)
 ...
 end

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 52 of 185

http://www.lua.org/

The handler function is called for each document and is passed a document object. The document
object is an internal representation of the document being processed. Modifying this object changes the
document.

For CFS to continue processing the document, the function must return true. If the function returns
false, the document is discarded.

The script can also terminate due to an error, for example if you use the Lua error function or call a Lua
function that causes an error. In this case CFS continues to process the document, but places an error
message in the ImportErrorDescription field.

TIP:
You can write a library of useful functions to share between multiple scripts, which you can then
include in the scripts by adding dofile("library.lua") to the top of the lua script outside of
the handler function.

Run a Lua Script

To run a Lua script, create a Lua import or index task, and specify the path to your script. You can run
Lua scripts using pre and post Import Tasks, and using update and delete index tasks. For example:

[ImportTasks]
 Post0=Lua:c:\scripts\script1.lua

Debug a Lua Script

When you run a Lua script and the script fails due to an error, CFS writes the error to the import log
stream, and to the ImportErrorDescription field of any documents that are affected.

To debug your Lua scripts, you can use the LuaDebug action. You can use this action to pause and
resume scripts, and set and remove breakpoints. When a script is paused you can view the values of
variables, view a stack trace, and step over single lines.

Sessions

CFS can have more than one import thread, and might run multiple Lua scripts concurrently. This
means that you can have multiple Lua Debugging sessions. You might want to pause or continue
running scripts on one thread but not others. Some of the commands available through the LuaDebug
action allow or require you to specify a session action parameter. If the session parameter is optional
and you do not specify a session, the command applies to all sessions. To view open sessions and
obtain the values you can set for the session action parameter, use the command
/action=LuaDebug&command=get-status.

Example

The following procedure demonstrates how to set a breakpoint in a script, view the values of Lua
variables when the script is paused, and step over single lines. The actions in this procedure assume

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 53 of 185

that your CFS is running on the local machine and is listening for actions on port 7000. For more
information about the LuaDebug action, refer to the Connector Framework Server Reference.

To debug a Lua script

 1. In the CFS configuration file, configure the script to run. This example uses the
AddLanguageDetectionFields script that is included with CFS. For example:

[ImportTasks]
 Post0=Lua:scripts/AddLanguageDetectionFields.lua

 2. Start CFS.
 3. To pause the script before a specific line is executed, set a breakpoint on that line. Line 33 of the

AddLanguageDetectionFields script sends an action to IDOL Server and stores the response in
a variable named response. To stop the script before this happens, use the following action:

http://localhost:7000/action=luadebug
 &command=set-breakpoint
 &file=scripts/AddLanguageDetectionFields.lua
 &line=33

 4. (Optional) Confirm the breakpoint has been set using the get-breakpoints command:
http://localhost:7000/action=luadebug&command=get-breakpoints

CFS returns the response.

<autnresponse xmlns:autn="http://schemas.autonomy.com/aci/">
 <action>LUADEBUG</action>
 <response>SUCCESS</response>
 <responsedata>
 <data>
 <command>get-breakpoints</command>
 <breakpoints>
 <breakpoint
source="C:\Autonomy\ConnectorFramework\scripts\AddLanguageDetectionFields.lua"
line="33"/>
 </breakpoints>
 </data>
 </responsedata>
 </autnresponse>

 5. Send CFS an IngestTest action so that CFS ingests a document and runs the script:

http://localhost:7000/action=IngestTest&adds=...

TIP:
Use an IngestTest action, rather than an Ingest action, because the IngestTest action
does not index any information into IDOL Server. For more information about the
IngestTest action, see Ingest Data for Testing, on page 44.

CFS runs the script. The IngestTest action does not finish (because the script is paused at the
breakpoint) and therefore does not return a response.

 6. Retrieve a token for the debugging session by sending CFS the LuaDebug command get-status:

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 54 of 185

http://localhost:7000/action=LuaDebug&command=get-status

CFS returns the response. You can see that there is a single debugging session and the Lua script
has stopped at the breakpoint.

 <autnresponse xmlns:autn="http://schemas.autonomy.com/aci/">
 <action>LUADEBUG</action>
 <response>SUCCESS</response>
 <responsedata>
 <data>
 <command>get-status</command>
 <session id="e4f7c45f561930cd17a5aed0fe1481d8">
 <status>AtBreak</status>
 </session>
 </data>
 </responsedata>
 </autnresponse>

 7. To retrieve the values of the Lua variables at the breakpoint, run the LuaDebug command get-
locals. Use the session token that you retrieved with the get-status command:

http://localhost:7000/action=LuaDebug
 &command=get-locals
 &session=e4f7c45f561930cd17a5aed0fe1481d8

CFS returns the response.

<autnresponse xmlns:autn="http://schemas.autonomy.com/aci/">
 <action>LUADEBUG</action>
 <response>SUCCESS</response>
 <responsedata>
 <data>
 <command>get-locals</command>
 <session id="e4f7c45f561930cd17a5aed0fe1481d8">
 <locals>
 ...
 <local name="idolHost" type="string">localhost</local>
 <local name="idolACIPort" type="number">9000</local>
 <local name="timeout" type="number">30000</local>
 ...
 ...
 <local type="string" name="detectionString">This is a document that
 contains text in English. Automatic Language Detection will
 detect the language and add the information to the document
 ...</local>
 </locals>
 </session>
 </data>
 </responsedata>
 </autnresponse>

 8. Use the step command to run line 33. CFS does not run subsequent lines (the script will remain

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 55 of 185

paused). Use the session token you retrieved with the get-status command:

http://localhost:7000/action=LuaDebug
 &command=step
 &session=e4f7c45f561930cd17a5aed0fe1481d8

CFS returns the response.

<autnresponse xmlns:autn="http://schemas.autonomy.com/aci/">
 <action>LUADEBUG</action>
 <response>SUCCESS</response>
 <responsedata>
 <data>
 <command>step</command>
 <session id="e4f7c45f561930cd17a5aed0fe1481d8"/>
 </data>
 </responsedata>
 </autnresponse>

 9. To see what effect the step had on the variables, run the get-locals command again. You should
see a new variable named response that contains the response from the DetectLanguage action.

http://localhost:7000/action=LuaDebug
 &command=get-locals
 &session=e4f7c45f561930cd17a5aed0fe1481d8

 10. After examining the variables, you might want to remove the breakpoint. To remove the
breakpoint, send CFS the following action:

http://localhost:7000/action=LuaDebug
 &command=remove-breakpoint
 &file=scripts/AddLanguageDetectionFields.lua
 &line=33

CFS returns the response. You can also use /action=LuaDebug&command=get-breakpoints to
confirm that the breakpoint has been removed.

 11. To continue running the Lua script, use the continue command:

http://localhost:7000/action=LuaDebug
 &command=continue
 &session=e4f7c45f561930cd17a5aed0fe1481d8

CFS continues to run the script. The IngestTest action finishes and returns a response.

Lua Scripts Included With CFS

The CFS installation directory includes a scripts folder that includes the following Lua scripts:

Script Description

AddLanguageDetectionFields.lua Detects the language of a document’s content, using the
IDOL Server action DetectLanguage. The script then adds
fields describing the language and encoding to the

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 56 of 185

Script Description

document’s metadata.

The script demonstrates how to:

 l send an action to an ACI server.
 l parse the action response to a LuaXmlDocument.
 l use the methods of LuaXmlDocument to extract data from

the document.
The script assumes that an IDOL Server is installed on the
local machine with an ACI port of 9000. You might need to
modify these values.

If you use this script, run it as a post import task so that it
runs after KeyView has extracted document content.

CategorySuggestFromText.lua Sends a document to IDOL for categorization, and adds
information about the matching categories to the document's
metadata. For information about how to use this script, see
Categorize Documents, on page 73.

filterdodgyfiles.lua An example script that demonstrates various ways to reject
unwanted files, for example by file extension, by detecting
the file format, or by analyzing the file content.

identifiers.lua Adds sub-file indexes to the AUTN_IDENTIFIER document
field of sub-files. This allows a connector to retrieve the sub-
file, rather than the whole container, when the collect or
view actions are used to retrieve the original file.

If you use this script, you must run it as a post import task (so
that it runs after KeyView processes the documents).

For more information about the AUTN_IDENTIFIER field, see
AUTN_IDENTIFIER, on page 179.

IdolSpeech.lua Runs speech-to text on all files identified by KeyView as
containing audio or video. To use this script, you must
configure the settings for your IDOL Speech Server in the
[IdolSpeechSettings] section of the CFS configuration
file. For more information about using this script, see Run
Analysis on All Audio and Video Files, on page 69.

mediaserver/*.lua These scripts run analysis on images, audio files, and video
files by sending them to Media Server. For information about
configuring media analysis, see Analyze Media, on page 62.

NOTE:
CFS also includes scripts for use with Eduction. Some of these scripts are Eduction post
processing scripts, which modify the output from an Eduction import task. The post processing
scripts have the entry point function processmatch (edkmatch), rather than function

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 57 of 185

handler (document). You must run a post processing script using the Eduction import task.
Do not run an Eduction post processing script using a Lua task. For more information about
Eduction Lua Post Processing, see Lua Post Processing, on page 77. For information about the
Eduction scripts that are included with CFS, refer to the Eduction User Guide.

Use Named Parameters

Some Lua functions have an argument that takes named parameters. This argument is a table in which
you can specify values for various parameters that affect the operation of the function.

You can specify a value for every parameter, or just those that you need. If you do not specify a value
for a parameter, the function uses a default value. You can also specify the name of a configuration
section and the function will read settings from that section in the CFS configuration file.

For example, when you call the function looks_like_language, you can set only the term_file
named parameter, and use default values for the other settings:

looks_like_language(document, { term_file = "english.ocr" })

You might choose to set the stop_list parameter as well:

looks_like_language(document, { term_file = "english.ocr",
 stop_list = "englishstoplist.dat" })

Alternatively, you can specify the name of a section in the CFS configuration file:

looks_like_language(document, { term_file = "english.ocr",
 section = "LanguageSettings" })

In this example, the function uses the english.ocr term file. The settings for the remaining parameters
are read from the LanguageSettings section of the CFS configuration file.

If you specify the name of a configuration section and use named parameters, the named parameters
override any values set in the configuration file. In the following example, the threshold is set to 100,
while other parameters (like term_file) are read from the LanguageSettings section:

looks_like_language(document, { section = "LanguageSettings",
 threshold=100 })

For information about individual named parameters and corresponding configuration parameters, refer
to the Connector Framework Server Reference.

Enable or Disable Lua Scripts During Testing

Lua scripts run by CFS can read a global Lua variable, is_test.

 l When a script runs as part of an Ingest action, this variable is false.
 l When a script runs as part of an IngestTest action, this variable is true.
You can use the is_test variable to enable or disable parts of a script. For example:

if is_test then
 -- The part of the script to enable for IngestTest
 -- (or disable for Ingest)

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 58 of 185

 end

 if not is_test then
 -- The part of the script to disable for IngestTest
 -- (or enable for Ingest)
 end

Example Lua Scripts

This section contains example Lua scripts.

Add a Field to a Document

The following script demonstrates how to add a field named “MyField” to a document, with a value of
“MyValue”.

function handler(document)
 document:addField("MyField", "MyValue");
 return true;
 end

The following script demonstrates how to add the field AUTN_NEEDS_IMAGE_SERVER_ANALYSIS to all
JPEG, TIFF and BMP documents. This field specifies that the documents can be processed using an
ImageServerAnalysis import task (you must also define the task in the CFS configuration file).

The script finds the file type using the DREREFERENCE document field, so this field must contain the file
extension for the script to work correctly.

function handler(document)
 local extensions_for_ocr = { jpg = 1 , tif = 1, bmp = 1 };
 local filename = document:getFieldValue("DREREFERENCE");
 local extension, extension_found =
 filename:gsub("^.*%.(%w+)$", "%1", 1);

 if extension_found > 0 then
 if extensions_for_ocr[extension:lower()] ~= nil then
 document:addField("AUTN_NEEDS_IMAGE_SERVER_ANALYSIS", "");
 end
 end

 return true;
 end

Count Sections

For each document, this Lua script adds a total sections count to the title, and replaces the content of
each section with the section number.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 59 of 185

function handler(document)
 local section_count = 0;
 local section = document;

 while section do
 section_count = section_count + 1;
 section:setContent("Section "..section_count);
 section = section:getNextSection();
 end

 local title = document:getFieldValue("TITLE");

 if title == nil then title = "" end
 document:setFieldValue("TITLE", title .." Total Sections "
 ..section_count);

 return true;
 end

Merge Document Fields

This script demonstrates how to merge the values of document fields.

When you extract data from a repository, CFS can produce documents that have multiple values for a
single field, for example:

#DREFIELD ATTACHMENT="attachment.txt"
 #DREFIELD ATTACHMENT="image.jpg"
 #DREFIELD ATTACHMENT="document.pdf"

This script shows how to merge the values of these fields, so that the values are contained in a single
field, for example:

#DREFIELD ATTACHMENTS="attachment.txt, image.jpg, document.pdf"

Example Script

function handler(document)
 onefield(document,"ATTACHMENT","ATTACHMENTS")
 return true;
 end

 function onefield(document,existingfield,newfield)
 if document:hasField(existingfield) then
 local values = { document:getFieldValues(existingfield) }
 local newfieldvalue=""

 for i,v in ipairs(values) do
 if i>1 then
 newfieldvalue = newfieldvalue ..", "

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 60 of 185

 end

 newfieldvalue = newfieldvalue..v
 end

 document:addField(newfield,newfieldvalue)
 end

 return true;
 end

Add Titles to Documents

IDOL documents have a field named DRETITLE that can contain a title for the document. Front end
applications might use the value of this field to present a title to users when displaying query results.

You should not rely on a connector to add a document title, because the connector might not be able to
obtain this information. A suitable title for an e-mail message could be the subject of the e-mail, but this
is not extracted until the e-mail is processed by CFS.

You can therefore use a Lua script to add a title to documents that do not have one, and, if necessary,
ensure that all documents have suitable titles.

CFS includes a Lua script that adds titles to documents. The script is named ExtractDreTitles.lua,
and is located in the scripts folder, in the CFS installation directory. You can use this script or modify
it to suit your requirements.

The unmodified script ensures that all documents have a title. If a title has already been added to the
document, that title is respected. If the document does not have a title, the script attempts to extract
one from metadata fields that are added by KeyView and often contain titles. If none of these fields are
present, the script adds a title by extracting the original file name from the field DREORIGINALNAME.

To add titles to documents using the ExtractDreTitles Lua script

 1. Open the CFS configuration file.
 2. Find the [ImportTasks] section of the configuration file, or create this section if it does not exist.
 3. In the [ImportTasks] section, configure a Post import task to run the Lua script

scripts/ExtractDreTitles.Lua.
For example:

[ImportTasks]
 Post0=Lua:scripts/ExtractDreTitles.lua

TIP:
You must use a Post task so that the script runs after KeyView filtering.

 4. Save and close the configuration file.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 61 of 185

Analyze Media

Images, audio, and video are examples of unstructured information that represent a vast quantity of
data. CFS extracts metadata from these files but cannot process their content, so by default
documents that represent these files are indexed without any content.

To enrich documents that represent rich media files, you can send the files to an IDOL Media Server for
analysis. Media Server can:

 l extract text from scanned documents, and subtitles and scrolling text from video.
 l identify people that appear by matching faces to a database of known faces.
 l identify known logos and objects.
 l detect and read barcodes, including QR codes.
 l determine the language of speech in a video file, convert the speech into text, and identify any

known speakers (speech processing also requires an IDOL Speech Server).
For more information about the types of analysis that you can run, refer to the Media Server
Administration Guide.

NOTE:
Some types of analysis require you to train Media Server before you start processing.

Create a Media Server Configuration

To run analysis on media, you must create a Media Server configuration file that instructs Media Server
how to process the media. Micro Focus recommends that you save the configuration in a location
accessible to CFS, and configure CFS to send the configuration to Media Server with each request.

Example Media Server configurations are provided with CFS in the script_resources/mediaserver
directory.

The Media Server configuration must meet the following requirements.

Ingestion

There is no single configuration that can process both images and video, so you must configure Media
Server to ingest the correct type of media.

The following example demonstrates how to configure ingestion. To process audio or video files, set
the parameter IngestEngine=AudioVideo so that Media Server uses the settings in the [AudioVideo]
section of the configuration. To process image files (including PDF files and office documents that
contain embedded images), set the parameter IngestEngine=Image. The Lua functions analyze_
media_in_document and analyze_media_in_file allow you to override individual parameters, so if
you request analysis from a Lua script you can first determine the file type and then set the value of the
parameter when you call the function.

[Ingest]
 IngestRate=0

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 62 of 185

 IngestEngine=AudioVideo

 [AudioVideo]
 Type=LibAv

 [Image]
 Type=Image

For more information about configuring ingestion, and the file types that are supported, refer to the
Media Server Administration Guide.

Analysis

Create a section in the configuration file named [Analysis], and configure the analysis operations that
you want to run.

The following example configures face detection and optical character recognition:

[Analysis]
 AnalysisEngine0=FaceDetect
 AnalysisEngine1=OCR

 [FaceDetect]
 Type=FaceDetect
 MinSize=70

 [OCR]
 Type=OCR

For more information about configuring analysis in Media Server, refer to the Media Server
Administration Guide.

Output

CFS expects Media Server to return the results of analysis in the process action response. You must
create a section in the configuration file named [Output], and configure an output task to write data to
the action response.

[Output]
 OutputEngine0=response

[response]
 Type=response

Configure the Media Analysis Task

You can run media analysis on documents by using the MediaServerAnalysis import task. This task
only processes documents that have the document field AUTN_NEEDS_MEDIA_SERVER_ANALYSIS, so
you must add this field to any document that you want to process.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 63 of 185

To configure the Media Server Analysis task

 1. Write a Lua script to add the document field AUTN_NEEDS_MEDIA_SERVER_ANALYSIS to the
documents that you want to analyze. For an example script that adds a field to a document, see
Add a Field to a Document, on page 59.

 2. Open the CFS configuration file.
 3. In the [ImportTasks] section, configure a Pre or Post import task to run your Lua script. For

example:

[ImportTasks]
 Pre0=Lua:scripts/TagVideoFiles.lua

 4. Add another Pre or Post task to run the MediaServerAnalysis task. Set the Pre or Post
parameter to MediaServerAnalysis, followed by a colon (:), followed by the name of the section
in the CFS configuration file that contains the task settings. For example:

 Pre1=MediaServerAnalysis:MediaServerSettings

 5. Create a new section in the configuration file, using the name you specified in Step 4.
 6. In the new section, set the following parameters:

MediaServerHost The host name and ACI port of your Media Server. To distribute
requests between several servers, specify a comma-separated list
of servers.

MediaAnalysisTransform (Optional) To transform the metadata produced by Media Server,
before CFS adds the data to your documents, set this parameter to
the path of the XSL transformation to use. By default, CFS adds
the information to your documents in a document field named
MediaServerAnalysis, in the same structure that is returned from
Media Server.

 7. Specify the Media Server configuration file that you want to use for running analysis:
 l If you saved your configuration file in the directory specified by the ConfigDirectory

parameter, in the [Paths] section of the Media Server configuration file, set
MediaServerConfigurationName to the name of the configuration.

 l If you saved your configuration file in a location accessible by CFS, set the parameter
MediaServerConfigurationFileName to the path of the configuration file. If you set a relative
path, specify the path relative to CFS, not relative to Media Server.

 8. Specify how to send media to Media Server:
 l If your Media Server can read files directly from the CFS working directory, set

ReadFromOriginalLocation=TRUE.
 l To copy files to a shared folder, set the configuration parameter MediaServerSharedPath. This

folder must be accessible to both CFS and Media Server. CFS copies files to the shared folder
so that Media Server can read them. Micro Focus recommends that you use a shared folder for
sending large files.

 l To send files to Media Server using HTTP POST requests, set neither
ReadFromOriginalLocation nor MediaServerSharedPath.

 9. Save and close the configuration file.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 64 of 185

Examples

The following example shows how to configure the MediaServerAnalysis task. This example runs
analysis using a configuration named RecognizeFacesInVideo that exists on the Media Server
machine:

[ImportTasks]
 Pre0=Lua:TagVideoFiles.lua
 Pre1=MediaServerAnalysis:MediaServerSettings

 [MediaServerSettings]
 MediaServerHost=localhost:14000
 MediaServerConfigurationName=RecognizeFacesInVideo
 ReadFromOriginalLocation=TRUE

The following example is similar but configures CFS to send a configuration file to Media Server:

[ImportTasks]
 Pre0=Lua:TagVideoFiles.lua
 Pre1=MediaServerAnalysis:MediaServerSettings

 [MediaServerSettings]
 MediaServerHost=localhost:14000
 MediaServerConfigurationFileName=./script_resources/mediaserver/facerecognition.cfg
 ReadFromOriginalLocation=TRUE

If your CFS and Media Server are running on separate machines, you can configure CFS to copy media
files to a shared folder:

[ImportTasks]
 Pre0=Lua:TagVideoFiles.lua
 Pre1=MediaServerAnalysis:MediaServerSettings

 [MediaServerSettings]
 MediaServerHost=media1:14000,media2:14000
 MediaServerConfigurationName=RecognizeFacesInVideo
 MediaServerSharedPath=\\server\videofiles

CFS adds the results of analysis to your documents. By default, the information is added in the same
structure that is returned from Media Server, in a document field named MediaServerAnalysis. Using
the configuration parameter MediaAnalysisTransform, you can configure CFS to run an XSL
transformation to transform the information before adding it a document:

[ImportTasks]
 Pre0=Lua:TagVideoFiles.lua
 Pre1=MediaServerAnalysis:MediaServerSettings

 [MediaServerSettings]
 MediaServerHost=media1:14000,media2:14000
 MediaServerConfigurationName=RecognizeFacesInVideo

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 65 of 185

 MediaServerSharedPath=\\server\videofiles
 MediaAnalysisTransform=./xslt/transform.xsl

For more information about the parameters that you can use to configure this task, refer to the
Connector Framework Server Reference.

Run Analysis From Lua

CFS provides Lua functions to run media analysis from a Lua script. These functions are named
analyze_media_in_document and analyze_media_in_file. There are several advantages to running
media analysis from a Lua script, instead of using the MediaServerAnalysis import task.

Firstly, you can use a single configuration to process audio, video, and image files. Your Lua script can
identify the type of content that is associated with a document, and choose the correct Media Server
engine to use for ingesting that content. The only way to process audio, video, and image files using the
MediaServerAnalysis import task is to configure several tasks.

Secondly, you can configure more complex operations. For example, you can write a Lua script that
sends audio to Media Server for language identification, and then uses the results of language
identification to run speech-to-text with the correct language pack.

Finally, you can run analysis from Lua by configuring a single import task. To use the
MediaServerAnalysis import task, you run a Lua script that identifies the documents to process,
followed by the MediaServerAnalysis task itself.

CFS is supplied with example scripts that run media analysis. The scripts are in the
scripts/mediaserver folder, in the CFS installation directory.

The following procedure demonstrates how to configure media analysis from a Lua script, in this case
language detection followed by speech-to-text.

To run media analysis from Lua

 1. Write a Lua script that identifies the documents that you want to process and calls the function
analyze_media_in_document (or analyze_media_in_file).
An example Lua script for running language detection and speech-to-text is located at
 ./scripts/mediaserver/LangDetectAndSpeechToText.lua.

 2. Create one or more configurations for Media Server that specify the tasks to perform. The Lua
script LangDetectAndSpeechToText.lua uses two configurations, one for language detection and
another for speech-to-text:
 l ./script_resources/mediaserver/langdetect.cfg

 l ./script_resources/mediaserver/speechtotext.cfg

If you are using the example configuration files, check that the details are correct for your
environment. For example, you might need to set the host name and ACI port of your Speech
Server.

 3. In the CFS configuration file, create an import task to run the Lua script. For example:

[ImportTasks]
 Pre0=Lua:./scripts/mediaserver/LangDetectAndSpeechToText.lua

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 66 of 185

 [MediaServerSettings]
 MediaServerHost=mediaserver:14000
 ReadFromOriginalLocation=true
 // MediaServerSharedPath=<Share Directory UNC path>

The example script passes the [MediaServerSettings] section to the Lua function analyze_
media_in_document. In the example configuration, above, this section provides the host name
and ACI port of the Media Server and specifies how Media Server can access the media.
You can provide files to Media Server in several ways:
 l If your Media Server can read files directly from the CFS working directory, set

ReadFromOriginalLocation=TRUE.
 l To copy files to a shared folder, set the configuration parameter MediaServerSharedPath. This

folder must be accessible to both CFS and Media Server. CFS copies files to the shared folder
so that Media Server can read them. Micro Focus recommends that you use a shared folder for
sending large files.

 l To send files to Media Server using HTTP POST requests, set neither
ReadFromOriginalLocation nor MediaServerSharedPath.

 4. Save and close the configuration file.

Examples

The following example configuration runs OCR on all supported image and video files ingested by CFS:

[ImportTasks]
 Pre0=Lua:scripts/mediaserver/OCR.lua

 [MediaServerSettings]
 MediaServerHost=localhost:14000
 ReadFromOriginalLocation=TRUE

If your CFS and Media Server are running on separate machines, you can configure CFS to copy the
files to a shared folder:

[ImportTasks]
 Pre0=Lua:scripts/mediaserver/OCR.lua

 [MediaServerSettings]
 MediaServerHost=mediaserver:14000
 MediaServerSharedPath=\\server\videofiles

Troubleshoot Media Analysis

This section describes how to troubleshoot problems that might occur when you configure media
analysis.

Error: Failed to find output node in response

Task (type: POST) failed with error: MediaServerAnalysis task failed: Failed to

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 67 of 185

find output node in response

Analysis will fail if CFS cannot retrieve the results of analysis from Media Server. If your analysis
task fails with this error, check that your Media Server configuration includes an output task to add
the results of analysis to the process action response. For example:

[Output]
 OutputEngine0=response

[response]
 Type=response

Analyze Speech

CFS extracts metadata from audio and video files but cannot process their content, so by default
documents that represent audio and video are indexed without any content. You can enrich these
documents by sending the files to an IDOL Speech Server. The Speech Server processes the audio,
extracts any speech, and writes it to the document content.

The processing task that sends files to IDOL Speech Server for analysis is called IdolSpeech. It can
include the following steps.

 1. Documents are identified that require speech-to-text processing.
 2. (Optional) CFS sends the audio to an IDOL Speech Server to determine the language of the

speech.
 3. CFS sends the audio to an IDOL Speech Server for transcription.
 4. CFS adds the transcription to the document content.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 68 of 185

Run Analysis on All Audio and Video Files

To run speech-to-text on all files identified by KeyView as containing audio or video, run the Lua script
scripts/IdolSpeech.Lua. The script reads settings from the [IdolSpeechSettings] section of the
CFS configuration file.

The following example demonstrates how to run the script and specify information about your Speech
Server:

[ImportTasks]
 Pre0=Lua:scripts/IdolSpeech.lua

 [IdolSpeechSettings]
 IdolSpeechServers=server:15000
 IdolSpeechLanguage=ENUK

The IdolSpeechServers parameter specifies the host name or IP address, and ACI port, of your
Speech Server. Speech-to-text processing can be time consuming, so you can distribute the load over
more than one Speech Server. For information about how to do this, see Use Multiple Speech Servers,
on the next page.

The IdolSpeechLanguage parameter is optional and specifies the language pack to use for
transcription. If you do not set this parameter, Speech Server runs language detection on each file and
chooses a language pack automatically. If you know that all of your files are in the same language,
Micro Focus recommends setting this parameter to reduce the load on the Speech Server.

If you prefer to send files to your IDOL Speech Server by writing them to a shared folder, add the
IdolSpechUseSharedPath and SharedPath parameters to the configuration:

[ImportTasks]
 Pre0=Lua:scripts/IdolSpeech.lua

 [IdolSpeechSettings]
 IdolSpeechServers=server:15000
 IdolSpeechLanguage=ENUK
IdolSpeechUseSharedPath=true
 SharedPath=\\server\SharedPath

Setting the parameter IdolSpeechUseSharedPath to true specifies that CFS sends files to Speech
Server by copying them to a shared folder. The SharedPath parameter specifies the location of the
shared folder. The folder must be accessible to both CFS and Speech Server.

Run Analysis on Specific Documents

To run speech-to-text on specific documents, you can modify the criteria in scripts/IdolSpeech.lua,
or you can use the IdolSpeech import task and write your own Lua script to identify the documents to
process. The IdolSpeech task only processes documents that have the field AUTN_NEEDS_
TRANSCRIPTION, so your script must add this field to any document that you want to process.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 69 of 185

The following example shows how to configure the IdolSpeech task in the CFS configuration file:

[ImportTasks]
 Pre0=Lua:Identify_Audio_Files.lua
 Pre1=IdolSpeech:IdolSpeechSettings

 [IdolSpeechSettings]
 IdolSpeechServers=server:15000
 IdolSpeechLanguage=ENUK

The Pre0 import task runs a Lua script that determines whether a file is suitable for transcription. You
must write this script. The script must add the field AUTN_NEEDS_TRANSCRIPTION to any documents
that you want to process. You can include conditions in the script to filter documents based on the
document source, file type, or metadata extracted by KeyView.

The Pre1 import task is the IdolSpeech task. It specifies the name of a section in the configuration file
that contains the settings for the task. In this example the section is named IdolSpeechSettings.

The IdolSpeechServers parameter specifies the host name or IP address, and ACI port, of your
IDOL Speech Server. To use multiple Speech Servers, see Use Multiple Speech Servers, below.

The IdolSpeechLanguage parameter is optional and specifies the language pack to use for
transcription. You can set this parameter when all of your audio files are in the same language. If your
audio files are in different languages, remove IdolSpeechLanguage so that Speech Server uses
language detection to detect the language for each document. For more information about language
identification, see Language Identification, on the next page.

If you prefer to send files to your IDOL Speech Server by writing them to a shared folder, add the
IdolSpeechUseSharedPath and SharedPath parameters to the configuration:

[ImportTasks]
 Pre0=Lua:Identify_Audio_Files.lua
 Pre1=IdolSpeech:IdolSpeechSettings

 [IdolSpeechSettings]
 IdolSpeechServers=server:15000
 IdolSpeechLanguage=ENUK
IdolSpeechUseSharedPath=true
 SharedPath=\\server\SharedPath

Setting IdolSpeechUseSharedPath=TRUE instructs CFS to send files to Speech Server by writing
them to the shared folder. specified by the SharedPath parameter.

For more information about the parameters that you can use to configure this task, refer to the
Connector Framework Server Reference.

Use Multiple Speech Servers

Language identification and speech-to-text processing can be time consuming. To increase
performance, you can use several IDOL Speech Servers. The IdolSpeechServers configuration
parameter accepts a comma-separated list of servers. For example:

IdolSpeechServers=server1:15000,server2:15000

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 70 of 185

Alternatively, you can use a numbered list:

IdolSpeechServers0=server1:15000
 IdolSpeechServers1=server2:15000

Language Identification

To convert speech to text successfully, the IDOL Speech Server must know the language of the
speech.

The IDOL Speech Server can automatically identify the language of speech. If language identification
is not bypassed using one of the following methods it is performed automatically.

To bypass language identification

 l To bypass language identification for all documents, set the IdolSpeechLanguage configuration
parameter. This parameter specifies the language pack to use for all documents and takes
precedence over other language settings. You can set this parameter when all of your audio is in the
same language.

 l To bypass language identification for a single document, add the field AUTN_AUDIO_LANGUAGE to the
document. The value of the field must identify the language pack to use for transcription, for
example:

#DREFIELD AUTN_AUDIO_LANGUAGE="ENUK"

For a list of IDOL Speech Server language packs, refer to the IDOL Speech Server Administration
Guide.

Transcode Audio

In most cases you do not need to transcode audio before sending it to IDOL Speech Server.

TIP:
Transcoding is necessary only when you set IdolSpeechUseStreaming=TRUE, which is not
recommended.

In the following configuration, audio is streamed to the IDOL Speech Server, because the parameter
IdolSpeechUseStreaming is TRUE. The configuration therefore includes the parameters
TranscodeServerHost and TranscodeServerPort so that CFS sends the audio to a Transcode
Server before it is sent to Speech Server. Although the audio is streamed to Speech Server, the shared
folder specified by the SharedPath parameter is required so that CFS and the Transcode Server can
exchange data.

[ImportTasks]
 Pre0=Lua:scripts/IdolSpeech.lua

 [IdolSpeechSettings]
 IdolSpeechServers=server1:15000,server2:15000
 IdolSpeechUseStreaming=TRUE
TranscodeServerHost=server3

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 71 of 185

 TranscodeServerPort=30000
SharedPath=\\server\SharedPath
 IdolSpeechLanguage=ENUK

If you are streaming audio to Speech Server but know that files are already in an acceptable format, you
can configure CFS to bypass the transcoding step of the IdolSpeech task.

To bypass transcoding

 l To bypass transcoding for all documents, do not set the TranscodeServerHost or
TranscodeServerPort configuration parameters when you configure the IdolSpeech task.

 l To bypass transcoding for a single document, add the field AUTN_FORMAT_CORRECT_FOR_
TRANSCRIPTION to the document. The field can have any value. CFS does not send these files to the
Transcode Server.

Speech-To-Text Results

When you run speech-to-text, CFS adds a transcription of the speech to the document content (the
DRECONTENT field).

CFS can also add the start time, duration, and confidence score for each detected word, sentence
boundary, and period of silence to the document metadata:

 l To add start times and durations to the document metadata, set the parameter
AddTimingsToMetadata=TRUE.

 l To add confidence scores to the document metadata, set the parameter
AddConfidenceToMetadata=TRUE.

If you choose to add information to the document metadata, CFS adds a metadata field named
SpeechToTextWord for each detected word, sentence boundary, or period of silence.

When you set AddTimingsToMetadata=TRUE, the field includes attributes named start and duration,
which describe the start time and duration in the audio:

<SpeechToTextWord start="3.1562" duration="0.3568">hello</SpeechToTextWord>

When you set AddConfidenceToMetadata=TRUE, the field includes an attribute named confidence,
which describes the confidence score. The confidence score is a value between 0 (zero) and 1. Higher
confidence scores indicate greater confidence of a correct result.

<SpeechToTextWord confidence="0.9568">hello</SpeechToTextWord>

When you set AddTimingsToMetadata=TRUE and AddConfidenceToMetadata=TRUE, CFS adds fields
that include all of these attributes:

<SpeechToTextWord start="3.1562" duration="0.3568"
confidence="0.9568">hello</SpeechToTextWord>

Fields that represent periods of silence have no value, for example:

<SpeechToTextWord start="3.1562" duration="0.3568" confidence="0.9568" />

Fields that represent sentence boundaries have a value of ".", for example:

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 72 of 185

<SpeechToTextWord start="3.1562" duration="0.3568"
confidence="0.9568">.</SpeechToTextWord>

Categorize Documents

Categorization analyzes the concepts that exist in a document and, if those concepts match categories
in IDOL Server, adds category information to the document. Categorizing documents is useful because
you can alert IDOL users to new content that matches their interests, help them find information
through taxonomies, and help them to identify similar documents.

To use categorization, you must have created and trained categories in IDOL Server. CFS queries
IDOL by sending the CategorySuggestFromText action for each document, and IDOL returns
information about any categories that match. If a document does not match any of the categories in
IDOL Server, the document is not categorized. For information about how to create and train
categories, refer to the IDOL Server Administration Guide.

To categorize documents

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. Create an import task to run the CategorySuggestFromText Lua script that is supplied with CFS.

For example:

[ImportTasks]
 Post0=Lua:./scripts/CategorySuggestFromText.lua

 4. Open the script in a text editor.
 5. Modify the variables in the script so that the script sends actions to your IDOL Server:

Line Variable name Value

178 idolCategorizeHost The host name or IP address of your IDOL Server.

179 idolCategorizePort The ACI port of your IDOL Server. The port argument in the
function send_aci_action expects a number, so do not
surround the port number with quotation marks.

184 timeoutMilliseconds The amount of time, in milliseconds, that CFS waits for a
response from your IDOL Server. If CFS does not receive a
response within this time limit and the number of retries is
reached, the document is not categorized. You should not need
to modify the default value, which is 60 seconds.

185 retries The number of times that CFS retries a request to your
IDOL Server, if the first attempt is not successful.

186-
192

sslParameters A table of SSL parameters for connecting to your IDOL Server.
For more information about the SSL parameters that you can
set, refer to the Connector Framework Server Reference.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 73 of 185

For example:

local idolCategorizeHost = "10.0.0.1"
 local idolCategorizePort = 9000

 ...

 local timeoutMilliseconds = 30000
 local retries = 3
 local sslParameters =
 {
 SSLMethod = "SSLV23",
 --SSLCertificate = "host1.crt",
 --SSLPrivateKey = "host1.key",
 --SSLCACertificate = "trusted.crt"
 }

 6. Save and close the script.

Customize the Query

The CategorySuggestFromText Lua script sends an entire document (metadata and content) to
IDOL for categorization. The document is converted to a string using the to_idx method and then
passed to the QueryText parameter of the CategorySuggestFromText action:

local categorySuggestFromTextParameters = { QueryText = document:to_idx() }

 ...

 local output = send_aci_action(
 idolCategorizeHost,
 idolCategorizePort,
 "categorysuggestfromtext",
 categorySuggestFromTextParameters,
 timeoutMilliseconds,
 retries,
 sslParameters
)

You can modify the script to categorize the document based on a specific field. For example, to use
only the document content:

local categorySuggestFromTextParameters = {
 QueryText = document:getContent()
 }

Alternatively, to use the value of a single document field:

local categorySuggestFromTextParameters = {
 QueryText = document:getFieldValue("MyFieldName")
 }

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 74 of 185

You can also add additional parameters to the action. For example, the CategorySuggestFromText
Lua script does not limit the number of categories that are added to the document. To add only the most
relevant category to a document, add the CategorySuggestFromText action parameter NumResults=1
by modifying the script as follows:

local categorySuggestFromTextParameters = {
 QueryText = document:getContent(),
 NumResults = 1
 }

For more information about the CategorySuggestFromText action and the parameters that it supports,
refer to the IDOL Server Reference.

Customize the Output

The CategorySuggestFromText Lua script creates the following document fields by default:

Field name Value

category_title The name of the category.

category_id The ID of the category in IDOL Server.

category_reference The DREREFERENCE of the category, stored as a document in the Agentstore.

The script adds one value to each field for each category that matches the document. For example:

#DREFIELD category_id="200"
 #DREFIELD category_id="100"
 #DREFIELD category_reference="200"
 #DREFIELD category_reference="100"
 #DREFIELD category_title="Science"
 #DREFIELD category_title="BusinessNews"

To modify how the information is added to the document, customize the Lua script. For example, to
change the names of the fields, modify the first argument of the addField method on lines 211 to 213:

document:addField("category_name", category["title"])
 document:addField("category_ref", category["reference"])
 document:addField("category_id", category["id"])

To add only the category names, remove lines 212 and 213:

document:addField("category_title", category["title"])
 -- document:addField("category_reference", category["reference"])
 -- document:addField("category_id", category["id"])

To add all of the category information to a single field, using subfields, you could modify the script as
follows (replacing lines 207-219):

 if(suggestWasSuccessful) then
 local suggestedCategories = parseCategories(output)

 document:addField("category", "category information")

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 75 of 185

 local field = document:getField("category")
 for i, category in ipairs(suggestedCategories) do
 field:addField("title",category["title"])
 field:addField("reference",category["reference"])
 field:addField("id",category["id"])
 end

 document:setFieldValue("result", output)

 return true
 end

To add all of the category names to a single field as a comma-separated list, you could modify the
script as follows (replacing lines 207-219):

if(suggestWasSuccessful) then
 local suggestedCategories = parseCategories(output)

 local names=""
 for i, category in ipairs(suggestedCategories) do
 if i==1 then
 names = category["title"]
 else
 names = names .. "," .. category["title"]
 end
 end

 if names~="" then
 document:addField("category_names_CSV", names)
 end

 document:setFieldValue("result", output)

 return true
 end

Run Eduction

Eduction identifies and extracts entities from text, based on a pattern that you define. An entity is a
word, phrase, or block of information. A pattern might be a dictionary, for example a list of people or
places. Alternatively, the pattern can describe what the entity looks like without having to list it
explicitly, for example a regular expression that describes an address or telephone number. After
entities are extracted the text is written to the document fields that you specify. For more information
about Eduction, refer to the IDOL Eduction User Guide.

You can run Eduction on document fields using the Eduction task.

NOTE:
To use the Eduction task you must have a license for Eduction and the relevant grammar files,

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 76 of 185

and specify the host name and ACI port of your License Server in the CFS configuration file.

You can run the Eduction task using the Post parameter. The parameters that are passed to the task
are specified in a named section of the configuration file. For example:

[ImportTasks]
 Post0=Eduction:EductionSettings

 [EductionSettings]
 ResourceFiles=C:\MyGrammar\gram1.ecr
 SearchFields=DRECONTENT
 Entity0=edk_common_entities/postal_address
 EntityField0=SHIPPING_ADDRESS

Redact Documents

You can use the Eduction task to redact information in documents.

To enable redaction, set the configuration parameter RedactedOutput=True. If you want to specify the
value or characters that replace the redacted text, use the configuration parameter
RedactionOutputString or RedactionReplacementCharacter.

For example, the following configuration redacts addresses contained in a document's DRECONTENT or
ADDRESS fields:

[ImportTasks]
 Post0=Eduction:EductionSettings

 [EductionSettings]
 ResourceFiles=C:\Autonomy\IDOLServer\Eduction\address_gb.ecr
 SearchFields=DRECONTENT,ADDRESS
 RedactedOutput=True

The fields specified by SearchFields are not modified. CFS places the redacted text in fields with a _
REDACTED suffix. For example:

#DREFIELD ADDRESS="Cambridge Business Park, Cowley Road, Cambridge, CB4 0WZ"
 #DREFIELD ADDRESS_REDACTED="[redacted]"

The Eduction task also adds the value, offset, and score for any matched entities to the document. For
example:

#DREFIELD /offset="298"
 #DREFIELD /score="1"
 #DREFIELD /value="Cambridge Business Park, Cowley Road, Cambridge, CB4 0WZ"

Lua Post Processing

An Eduction Lua Post Processing task runs a Lua script that modifies the output from the Eduction
module. For example, you might want to increase the score for a match if it is found near similar
matches.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 77 of 185

NOTE:
The Lua script is run by the Eduction module, not by CFS. The Eduction module expects the
script to start with function processmatch (edkmatch). You cannot modify the document
being processed by CFS, or use the Lua methods that are available to CFS Lua scripts. For
information about the Lua methods that are available in the Eduction module, refer to the
Eduction User Guide.

To create an Eduction Lua Post Processing task, set the PostProcessingTaskN parameter. This
specifies the name of a section in the CFS configuration file that contains parameters to configure the
task. For example:

[ImportTasks]
 Post0=Eduction:EductionSettings

 [EductionSettings]
 ResourceFiles=C:\MyGrammar\gram1.ecr
 SearchFields=DRECONTENT
 Entity0=edk_common_entities/postal_address
 EntityField0=SHIPPING_ADDRESS
PostProcessingTask0=EductionLuaPostProcessing

 [EductionLuaPostProcessing]
 Script=scripts/eduction_post_process.lua
 ProcessEnMasse=False

The Eduction Lua module will call function processmatch (edkmatch). For example:

function processmatch(edkmatch)
 if edkmatch then
 local text = edkmatch:getOutputText()
 -- modify the match
 edkmatch:setOutputText(text)
 return true
 end

 return false -- return false to drop the match
 end

The edkmatch argument represents a single eduction match, or the complete set of matches if you set
the configuration parameter ProcessEnMasse to true.

If the processmatch function returns true, the match is returned to CFS. If the function returns false,
the match is discarded.

For more information about writing Eduction post-processing scripts, and information about the Lua
methods that you can use, refer to the Eduction User Guide.

Process HTML

Connectors, including the IDOL Web Connector, can send documents to CFS that have associated
HTML files.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 78 of 185

CFS can send the HTML files to KeyView, which discards the HTML markup and extracts the text
contained in the file. However, HTML pages often contain irrelevant content such as invalid HTML,
headers, sidebars, advertisements, and scripts. This text does not contain any useful information and
could pollute the IDOL index, degrading performance. KeyView does not remove this irrelevant content,
so Connector Framework Server provides features to process HTML files.

 l HTML processing with WKOOP. CFS can use an embedded browser (WKOOP) to process
HTML in a similar way to the IDOL Web Connector. There are many reasons to use WKOOP over
other methods of processing HTML:
 o The browser allows scripts to run before the page is processed, so CFS can extract content and

links that are added by JavaScript.
 o Links are resolved before a document is ingested, so that indexed documents contain absolute

URLs.
 o You can remove unwanted content using the automatic clipping algorithm, or by selecting parts of

the page with CSS selectors.
 o You can extract metadata or divide pages into multiple documents using CSS selectors rather

than regular expressions.

NOTE:
To use WKOOP you must also install the IDOL Web Connector, because WKOOP is not
provided with CFS. You must install a version of WKOOP that is the same as, or later than,
the version of CFS that you are using.

 l HTMLExtraction. HTML extraction extracts the useful information from the page and discards the
irrelevant content. It automatically determines which content is relevant, so there are no
configuration parameters for customizing this operation. If HTML extraction does not produce good
results for your use case, you might want to use the clipping features provided by WKOOP, instead.

HTML Processing with WKOOP

The WKOOPHtmlExtraction task processes an HTML file that is associated with a document. It
extracts links and metadata and adds these to the document in a metadata field named HTML_
PROCESSING. The task appends a page to the document content that contains the plain text extracted
from the HTML source. It also sets the field AUTN_NO_FILTER, to prevent the document being
processed by KeyView.

This section describes how to configure HTML processing with WKOOP.

You can configure WKOOP HTML extraction as a pre-import task (Pre0 in the following example). The
Pre0 parameter also specifies the name of a section that contains the settings for the task. In the
following example the section is named HtmlProcessingSettings.

[ImportTasks]
 Pre0=WKOOPHtmlExtraction:HtmlProcessingSettings

 [HtmlProcessingSettings]
 WKOOPPath=F:\IDOL\WebConnector\WKOOP.exe
 ProxyHost=proxy.domain.com
 ProxyPort=8080
 SSLMethod=NEGOTIATE

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 79 of 185

 ExtractLinks=TRUE
 ResolveLinks=TRUE
 Url=https://www.example.com/

The WKOOPPath parameter specifies the path to WKOOP. WKOOP is not included with CFS, so you
must install the IDOL Web Connector and specify the path to the WKOOP executable file. You must
install a version of WKOOP that is the same as, or later than, the version of CFS that you are using.

If you are running CFS on a machine that is behind a proxy server, set the ProxyHost and ProxyPort
parameters to specify the proxy server to use to access the web. The SSLMethod parameter specifies
the version of SSL or TLS to use when connecting to the web site, and is necessary to retrieve
resources over HTTPS. Setting this parameter to NEGOTIATE uses the latest version that is supported
by both CFS and the web server.

The ExtractLinks parameter accepts a Boolean value that specifies whether to extract links from
HTML pages and add the links to the document metadata. When ResolveLinks=TRUE the links are
resolved so that indexed documents contain absolute URLs. The Url parameter specifies the source
URL so that links can be resolved. You do not need to specify the exact URL of the page being
processed, as long as all URLs in the document being processed are relative to the web server.

For a full list of configuration parameters that you can use to configure WKOOP HTML extraction, refer
to the Connector Framework Server Reference.

Remove Irrelevant Content

To remove irrelevant content from HTML pages using the automatic clipping algorithm, add the
parameter Clipped=TRUE to your task configuration. CFS decides which parts of the page to keep and
which to discard.

The automatic clipping algorithm has been designed to work with many different pages, but this means
that automatic clipping might not give the best results for every page. Alternatively, you can use
CSS selectors to choose which parts of the page to keep and which to discard. To clip pages with CSS
selectors, add Clipped=TRUE to your task configuration, and then set ClipPageUsingCssSelect to
specify the parts of the page to keep and ClipPageUsingCssUnselect to specify the parts of the page
to remove. These parameters accept standard CSS2 selectors.

You can also remove scripts and hidden content from the HTML page:

 l Remove all scripts from the HTML page by setting RemoveScripts=TRUE.
 l Remove "noframes" content by setting RemoveNoframes=TRUE. When web developers use frames

they might include content in a <noframes></noframes> element, for web browsers that do not
support frames. This content might duplicate content elsewhere in the HTML page or simply contain
a message that the browser does not support frames.

Extract Metadata

This section demonstrates how to extract metadata from an HTML page and add it to a document field.

Consider the following HTML:

<h1>This is a title</h1>
 <h2>This is a sub-title</h2>

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 80 of 185

 <p class="important">This is important text</p>

From this HTML you could extract all of the headings and add them to a metadata field named heading.
You could also extract the important text and add that to a separate document field.

The configuration parameters MetadataSelector and MetadataFieldName select the information to
extract and provide the name of the destination document field. These parameters must be set in
numbered pairs (so that each MetadataSelector parameter has a matching MetadataFieldName). The
MetadataSelector parameter accepts standard CSS2 selectors.

The following configuration would extract the information described above:

MetadataSelector0=h1,h2,h3
 MetadataFieldName0=heading
 MetadataSelector1=p.important
 MetadataFieldName1=important_paragraph
 MetadataSelectorExtractPlainText=TRUE

The parameter MetadataSelectorExtractPlainText specifies whether to extract as plain text
(removing HTML markup, for example).

The configuration above would produce the following metadata fields:

 #DREFIELD heading="This is a title"
 #DREFIELD heading="This is a sub-title"
 #DREFIELD important_paragraph="This is important text"

Split Web Pages into Multiple Documents

You might want to split pages into multiple documents. For example, if you ingest pages from a
discussion board you might want to ingest one document for each message on the page.

Connector Framework Server can create documents for sections of a Web page identified using CSS
selectors. CFS creates a child document for each section of the page that is identified. Metadata fields
(named CHILD_DOCUMENT) are added to the parent document, to refer to the child documents.

To split pages into multiple documents, add the following parameters to your WKOOPHtmlExtraction
task:

ChildDocumentSelector A CSS2 selector that identifies the root element of each child document
in the page source.

ChildReferenceSelector (Optional) An element in the child document that contains a value to use
as the document reference. The value you extract should be unique for
each child document, because it is used as part of the DREREFERENCE
field in the child document. If you do not set this parameter, the
connector uses a GUID. Specify the element using a CSS2 selector,
relative to the element identified by ChildDocumentSelector.

ChildMetadataSelector (Optional) A list of elements in the child document that contain
metadata. The metadata in these elements are extracted and added to
the metadata fields of child documents. Specify the elements as a list
of CSS2 selectors, relative to the element identified by

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 81 of 185

ChildDocumentSelector.

To specify the name(s) of the document field(s) to contain the extracted
information, set the configuration parameter
ChildMetadataFieldName. Both parameters must have the same
number of values.

ChildMetadataFieldName (Optional) The names to use for document fields (in child documents)
that contain information extracted using the parameter
ChildMetadataSelector. This parameter must have the same number
of values as ChildMetadataSelector.

For example, consider the following example page which represents messages on a page of a
discussion board:

 <html>
 <head>
 <title>Example Page</title>
 <meta charset="utf-8">
 </head>
 <body>
 <div>
 <h1>Example Page</h1>
 <div class="content">
 <p>content</p>
 </div>
 <div class="message">
 <h1>Message 1</h1>
 <p class="meta">some metadata</p>
 <p>some content</p>
 </div>
 <div class="message">
 <h1>Message 2</h1>
 <p class="meta">some metadata</p>
 <p>some content</p>
 </div>
 ...
 </div>
 </body>
 </html>

To create separate documents for the messages contained on this page, you could use the following
configuration:

[MyTask]
 ...
 ChildDocumentSelector=div.message
 ChildReferenceSelector=h1
 ChildMetadataFieldName0=my_metadata
 ChildMetadataSelector0=p.meta

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 82 of 185

This example would produce the following child document (and a similar document for the second
message):

#DREREFERENCE <current_document_reference>:<child_reference>
 #DREFIELD my_metadata="some metadata"
 ...
 #DRECONTENT
 Message 1
 some metadata
 some content
 ...

The value of the DREREFERENCE field is constructed from the reference of the original document and the
value of the element identified by the ChildReferenceSelector configuration parameter. If you don't
set this configuration parameter or the element is not found, CFS uses a GUID instead.

CFS adds the reference of the original document to the fields DREPARENTREFERENCE and
DREROOTPARENTREFERENCE. It also adds an HTML_PROCESSING metadata field that contains any
metadata and links that are extracted from the child document.

The DRECONTENT field is populated with text extracted from the HTML elements that you identified as
belonging to the child document.

Connector Framework Server automatically adds fields to the parent document, named CHILD_
DOCUMENT, that contain the references of associated child documents.

HTML Extraction

HTML pages often contain irrelevant content such as invalid HTML, headers, sidebars,
advertisements, and scripts. CFS can extract the useful information from the page and discard the
irrelevant content.

To extract the useful information from an HTML page, use the HtmlExtraction import task. This task
works only on HTML files and ignores other file types.

CFS reads the HTML document, and discards data such as invalid HTML, headers, sidebars,
advertisements, and scripts. In the remaining content, CFS then extracts blocks of text that contain a
large number of stopwords and a low proportion of links. This text is likely to be the most important
content. Because CFS automatically determines which content is relevant, there are no configuration
parameters for customizing this task.

Micro Focus recommends that you configure the HtmlExtraction task as a Pre import task. For
example:

[ImportTasks]
 Pre0=HtmlExtraction

After extracting the useful information, the HTML Extraction task sets the document field AUTN_NO_
FILTER, so that the HTML file is not processed by KeyView.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 83 of 185

Extract Metadata from Files

The ExtractMetadata task extracts metadata from the file associated with a document. This task
extracts a subset of the metadata obtained by standard KeyView filtering. It is faster than standard
KeyView filtering and does not extract the file content.

TIP:
When documents are ingested, CFS automatically extracts metadata. Do not use this task
unless you have set the fields AUTN_NO_FILTER and AUTN_NO_EXTRACT on a document and want
to extract basic metadata only.

The ExtractMetadata task is configured as a Pre task. Specify the name of the section that contains
settings for the task. For example:

[ExtractMetadata]
 Pre0=Lua:scripts/nofilter.lua
 Pre1=ExtractMetadata:ExtractMetadataSettings

 [ExtractMetadataSettings]
 FieldnamePrefix=FIELD_
 ReservedFieldnames=Reserved1,Reserved2

The Pre0 task runs a Lua script that adds the fields AUTN_NO_FILTER and AUTN_NO_EXTRACT to
documents. Adding these fields prevents KeyView from filtering the documents and extracting subfiles.

The Pre1 task runs the ExtractMetadata task using the settings contained in the
[ExtractMetadataSettings] section of the CFS configuration file.

The FieldnamePrefix parameter specifies a prefix for the names of the metadata fields that are added
to the document. The ReservedFieldnames parameter specifies a comma-separated list of field names
that the task must not use. If the task needs to add a metadata field with one of the specified names, it
prefixes the name with an underscore. For example, with the settings specified above, the task would
not add a field named FIELD_Reserved1. Instead, the task would add _FIELD_Reserved1.

Import Content Into a Document

The ImportFile task imports a file and adds its content to the document being processed. CFS does
not extract sub files from the file.

The ImportFile task can be configured as a Pre or Post task. When you create the task, specify the
name of a document field that contains the path or URL of the file to import, for example:

Pre0=ImportFile:fieldname
 Post0=ImportFile:fieldname

where fieldname is the name of the document field.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 84 of 185

Alternatively, specify the name of a section in the configuration file that contains the settings for the
task:

[ImportTasks]
 Post0=ImportFile:MySettings

 [MySettings]
 Fieldname=field_containing_file_path_or_url
 ProxyHost=10.0.0.1
 ProxyPort=8080
 SSLMethod=TLSV1

If the field contains a URL, CFS downloads the file and adds its content to the document.

Reject Invalid Documents

You can configure CFS to reject documents based on several criteria.

When documents are rejected, they are not processed by further tasks. You can index rejected
documents or discard them:

 l To index the documents into one or more indexes, such as an IDOL Error Server, set the parameters
OnErrorIndexerSections and IndexDatabase. OnErrorIndexerSections specifies a list of
configuration file sections to use to index a document. These sections must contain indexing
parameters, such as the host name and ACI port of your IDOL Server. IndexDatabase specifies the
name of the IDOL database into which the rejected documents are indexed. Before indexing a
document, CFS writes the name of the filter that caused the document to be rejected to a field
named MATCHEDFILEFILTERS.

 l If you do not specify any indexing details, the documents are discarded. CFS writes a message to
the import log showing that the document was rejected, and showing which filter caused the
rejection.

Reject Documents with Binary Content

The BinaryFileFilter task rejects any documents that have been filtered as binary. This can occur
when KeyView filtering fails, for example due to corrupt files.

When CFS detects a non-UTF8 character, it replaces the character with a hexadecimal character
code. The BinaryFileFilter task detects these character codes and rejects documents where the
proportion exceeds the limit set by the ThresholdPercent parameter.

The BinaryFileFilter task can be configured as a Post task. The parameters that are passed to the
task are specified in a named section of the configuration file. For example:

[ImportTasks]
 Post0=BinaryFileFilter:BinaryFileFilterSettings

 [BinaryFileFilterSettings]
 ThresholdPercent=10

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 85 of 185

 OnErrorIndexerSections=IdolErrorServer
 IndexDatabase=IdolErrorReview

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Reject Documents with Import Errors

The ImportErrorFilter task rejects any documents for which errors have occurred. Errors can occur
during KeyView filtering or during pre and post import tasks.

The ImportErrorFilter task can be configured as a Post task. The parameters that are passed to the
task are specified in a named section of the configuration file. For example:

[ImportTasks]
 Post0=ImportErrorFilter:ImportErrorFilterSettings

 [ImportErrorFilterSettings]
 OnErrorIndexerSections=IdolErrorServer
 IndexDatabase=IdolErrorReview

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Reject Documents with Symbolic Content

The SymbolicContentFilter task calculates the proportion of symbolic characters in a document. If
the proportion of symbolic characters in the document content exceeds the limit specified by the
MaxSymbolicCharactersPercent parameter, the document is rejected.

Symbolic characters are defined as any character between U+2000 and U+2FFF.

The SymbolicContentFilter task can be configured as a Post task. The parameters that are passed
to the task are specified in a named section of the configuration file. For example:

[ImportTasks]
 Post0=SymbolicContentFilter:SymbolicContentFilterSettings

 [SymbolicContentFilterSettings]
MaxSymbolicCharactersPercent=8
 OnErrorIndexerSections=IdolErrorServer
 IndexDatabase=IdolErrorReview

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Reject Documents by Word Length

The WordLengthFilter task calculates the average length of words in a document. If the average
length of words in the document content (DRECONTENT) falls outside the limits specified by the

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 86 of 185

MinimumAverage or MaximumAverage parameters, the document is rejected.

The WordLengthFilter task can be configured as a Post task. The parameters that are passed to the
task are specified in a named section of the configuration file. For example:

[ImportTasks]
 Post0=WordLengthFilter:WordLengthFilterSettings

 [WordLengthFilterSettings]
 MinimumAverage=3.0
 MaximumAverage=10.0
 OnErrorIndexerSections=IdolErrorServer
 IndexDatabase=IdolErrorReview

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Reject All Invalid Documents

The BadFilesFilter task rejects all documents that are considered to be invalid:

 l Documents that have binary content.
 l Documents for which import errors have occurred.
 l Documents that have too high a proportion of symbolic content.
 l Documents where the average word length is too long or too short.
BadFilesFilter must be configured as a Post task.

BadFilesFilter reads configuration parameters from the section of the configuration file that you
specify in the Post parameter. In this section you can set parameters for each filter. In the example
below, two parameters have been set to configure the word length filter:

[ImportTasks]
 Post0=BadFilesFilter:BadFilesFilterSettings

 [BadFilesFilterSettings]
 MinimumAverage=3.0
 MaximumAverage=10.0
 OnErrorIndexerSections=IdolErrorServer
 IndexDatabase=IdolErrorReview

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Split Document Content into Sections

Dividing the content of long documents into sections can result in more relevant search results,
because IDOL Server can return a specific part of a document in response to a query.

To divide document content into sections, use the Sectioner task.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 87 of 185

The Sectioner import task must be configured as a Post task. The parameters that are passed to the
task are specified in a named section of the configuration file. For example:

[ImportTasks]
 Post0=Sectioner:Sectioning

 [Sectioning]
 SectionerMaxBytes=3000
 SectionerMinBytes=1500

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Split Files into Multiple Documents

Sometimes you might retrieve files from a repository that you would prefer to ingest as multiple
documents.

You can use the TextToDocs task to split a file containing text (for example an HTML file or XML file)
into multiple documents. To divide a file, you specify regular expressions that match the relevant parts
of the document. The task creates a main document and one or more child documents, which can all
have metadata and content. When you run TextToDocs on a document, the original document is
discarded. The documents created by TextToDocs are metadata-only documents, which means that
they do not have an associated file and are not filtered by KeyView.

The TextToDocs task should be configured as a Pre task. The parameters that are passed to the task
are specified in a named section of the configuration file. For example:

[ImportTasks]
 Pre0=TextToDocs:MyTextToDocs

 [MyTextToDocs]
 ...

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

The TextToDocs task expects documents to use UTF-8 character encoding. If your documents are not
encoded in UTF-8 you can use the configuration parameter SourceEncoding to specify the character
set encoding of the source documents, so that they can be converted to UTF-8. If conversion fails, the
original encoding is used and CFS adds an error message to the ImportErrorCode and
ImportErrorDescription document fields.

Example

The following HTML is an example file that you might want to ingest as separate documents. There are
clear sections which could represent different topics:

<html>
 <body>
 <p class="main">Main content</p>

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 88 of 185

 <div class="section">
 <h1>First document</h1>
 <p class="metadata">Extract as metadata</p>
 <p>Some text</p>
 </div>

 <div class="section">
 <h1>Second document</h1>
 <p class="metadata">Extract as metadata</p>
 <p>Some text</p>
 </div>

 <div class="section">
 <h1>Third document</h1>
 <p class="metadata">Extract as metadata</p>
 <p>Some text</p>
 </div>

 </body>
 </html>

You might want to split this file into a main document and three child documents, one of which might
look like this:

#DREREFERENCE C:\MyFiles\TextToDocs\textToDocs.html:0
 #DREDBNAME FileSystem
 #DREFIELD MyMetadataField="Extract as metadata"
 #DRECONTENT
 First document
 Some text

 #DREENDDOC

To do this, you could use the following configuration:

[ImportTasks]
 Pre0=TextToDocs:MyTextToDocs

 [MyTextToDocs]
 FilenameMatchesRegex0=.*\.html

 MainRangeRegex0=<html>(.*)</html>
 MainContentRegex0=<p class="main">(.*?)</p>

 ChildrenRangeRegex0=<html>(.*)</html>
 ChildRangeRegex=<div class="section">(.*?)</div>
 ChildContentRegex0=<h1>(.*?)</h1>
 ChildContentRegex1=<p>(.*?)</p>
 ChildFieldName0=MyMetadataField

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 89 of 185

 ChildFieldRegex0=<p class="metadata">(.*?)</p>
 ChildInheritFields=DREDBNAME

In this example, the FilenameMatchesRegex parameter has been set to process only those files that
have the extension .html.

The MainContentRegex parameter identifies parts of the original document to add to the DRECONTENT
field of the main document.

The ChildRangeRegex parameter identifies the parts of the original document that should become child
documents. The sub-match (.*?) matches all of the content between a <div class="section"> tag
and a </div> tag. When this regular expression is applied to the example document above, there are
three matches and therefore three child documents are created. It is important to make the regular
expression lazy, because otherwise it would match everything between the first <div
class="section"> and the final </div>, resulting in a single child document.

The ChildContentRegex parameter identifies the content to add to the DRECONTENT field of a child
document. In this example two regular expressions are used to extract content. The ChildFieldName
and ChildFieldRegex parameters populate metadata fields. In this example a single field named
MyMetadataField is created.

Setting the parameter ChildInheritFields=DREDBNAME specifies that the child documents inherit the
field DREDBNAME from the original document. If you are indexing documents into IDOL Server it is
important to set this parameter, because (depending on how your system is configured) documents
without a DREDBNAME field might not be indexed.

Write Documents to Disk

CFS can write documents to disk in several formats. You might want to write documents to disk for the
following reasons:

 l so that you can see the data that is being indexed into IDOL Server, Haven OnDemand, or Vertica.
You can then set up further processing tasks to manipulate and enrich the data.

 l so that you can debug your Lua scripts or other processing tasks.
 l so that you can export the data from documents to other systems.

Write Documents to Disk in IDX Format

To write documents to disk in IDX format, configure an IdxWriter processing task by setting the Pre,
Post, Update, or Delete configuration parameter.

To run the IdxWriter task with default settings, use the Pre, Post, Update, or Delete parameter to
specify the file name for the IDX file:

[ImportTasks]
 Pre0=IdxWriter:pre.idx
 Post0=IdxWriter:post.idx

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 90 of 185

Alternatively, set the parameter to IdxWriter, followed by a colon (:), followed by the name of the
section in the configuration file that contains custom settings for the task. For example:

[ImportTasks]
 Pre0=IdxWriter:PreIDX
 Post0=IdxWriter:PostIDX

 [PreIDX]
 IdxWriterFilename=pre.idx
 IdxWriterMaxSizeKBs=100
 IdxWriterArchiveDirectory=./IDXArchive

 [PostIDX]
 IdxWriterFilename=post.idx
 IdxWriterMaxSizeKBs=100
 IdxWriterArchiveDirectory=./IDXArchive

For information about the configuration parameters you can use to configure this task, refer to the
Connector Framework Server Reference.

Write Documents to Disk in XML Format

To write documents to disk in XML format, configure an XmlWriter processing task by setting the Pre,
Post, Update, or Delete configuration parameter.

When you create the XmlWriter task, specify the file name of the XML file. For example:

[ImportTasks]
 Pre0=XmlWriter:C:\ConnectorFrameworkServer\pre.xml
 Post0=XmlWriter:C:\ConnectorFrameworkServer\post.xml

Write Documents to Disk in JSON Format

To write documents to disk in JSON format, configure a JsonWriter processing task by setting the
Pre, Post, Update, or Delete configuration parameter.

To configure the task with default settings, specify the file name for the output file:

[ImportTasks]
 Pre0=JsonWriter:pre.jsn
 Post0=JsonWriter:post.jsn

Alternatively, set the parameter to JsonWriter, followed by a colon (:), followed by the name of the
section in the configuration file that contains custom settings for the task. For example:

[ImportTasks]
 Post0=JsonWriter:PostJsonWriting

 [PostJsonWriting]
 JsonWriterFilename=post.jsn

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 91 of 185

 JsonWriterMaxSizeKBs=1000
 JsonWriterArchiveDirectory=./JSONarchive

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Write Documents to Disk in CSV Format

The CsvWriter task writes document metadata and content to a comma-separated values (CSV) file.
This allows you to export the data to other systems.

The task always writes the document reference (DREREFERENCE) and content (DRECONTENT) fields, and
you can choose the other fields that you want to include. The task writes the field names, followed by
one line of values for each document that is ingested.

The CsvWriter task can be configured as a Pre, Post, Update or Delete task.

To run the task with default settings, specify the file name for the output file:

[ImportTasks]
 Post0=CsvWriter:MyTask.csv

Alternatively, specify the name of a section in the configuration file that contains the settings for the
task:

[ImportTasks]
 Post0=CsvWriter:CsvWriting

 [CsvWriting]
 CsvWriterFilename=MyTask.csv
 CsvWriterMaxSizeKBs=1000
 CsvWriterArchiveDirectory=./CSVarchive
 CsvWriterFieldNames0=A_FIELD
 CsvWriterFieldNames1=A_FIELD/subfield
 CsvWriterFieldNames2=A_FIELD/@attribute

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Write Documents to Disk as SQL INSERT Statements

The SqlWriter task writes document metadata and content to a file in the form of SQL “INSERT”
statements. You can use the SQL to insert the data from the documents into a database.

The task always writes the document reference (DREREFERENCE) and content (DRECONTENT) fields, and
you can choose the other fields that you want to include. The task writes one INSERT statement for
each document that is processed.

The SqlWriter task can be configured as a Pre, Post, Update or Delete task.

To configure the task, specify the name of a section that contains the settings, for example:

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 92 of 185

[ImportTasks]
 Post0=SqlWriter:SqlWriting

 [SqlWriting]
 SqlWriterFileName=MyTask.sql
 SqlWriterTableName=table
 SqlWriterDreReferenceColumnName=REFERENCE
 SqlWriterDreContentColumnName=CONTENT

 SqlWriterFieldNames0=MODIFIED_DATE
 SqlWriterColumnNames0=DATE
 SqlWriterDataTypes0=DATE_TIME

 SqlWriterUseNullForMissingFields=true

 SqlWriterDateFormats0=DD/MM/YYYY
 SqlWriterDateFormats1=YYYY/MM/DD

 SqlWriterMaxSizeKBs=1024
 SqlWriterArchiveDirectory=./SQLarchive

For information about the parameters that you can use to configure this task, refer to the Connector
Framework Server Reference.

Standardize Document Fields

The documents created by your connectors might not have consistent field names. For example,
documents created by the File System Connector can have a field named FILEOWNER. Documents
created by the Documentum Connector can have a field named owner_name. Both of these fields store
the name of the person who owns a file.

You might want to rename document fields so that documents use the same field names to store the
same type of information. CFS includes the standardizer task to do this.

You can configure the Standardizer task as a Pre or Post task. For example:

[ImportTasks]
 Post0=Standardizer

To use the Standardizer task, you must set the EnableFieldNameStandardization and
FieldNameDictionaryPath configuration parameters in the [ImportService] section of the CFS
configuration file. For more information about these parameters, refer to the Connector Framework
Server Reference.

Customize Field Standardization

Field standardization modifies documents so that they have a consistent structure and consistent field
names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information. Field standardization only

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 93 of 185

modifies fields that are specified in a dictionary, which is defined in XML format. A standard dictionary,
named dictionary.xml, is supplied in the CFS installation folder.

In most cases you should not need to modify the standard dictionary, but you can modify it to suit your
requirements or create dictionaries for different purposes. By modifying the dictionary, you can
configure CFS to apply rules that modify documents before they are ingested. For example, you can
move fields, delete fields, or change the format of field values.

The following examples demonstrate how to perform some operations with field standardization.

The following rule renames the field Author to DOCUMENT_METADATA_AUTHOR_STRING. This rule applies
to all components that run field standardization and applies to all documents.

<FieldStandardization>
 <Field name="Author">
 <Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
 </Field>
 </FieldStandardization>

The following rule demonstrates how to use the Delete operation. This rule instructs CFS to remove
the field KeyviewVersion from all documents. The Product element ensures that this rule is run only
by CFS.

<FieldStandardization>
 <Product key="ConnectorFrameWork">
 <Field name="KeyviewVersion">
 <Delete/>
 </Field>
 </Product>
 </FieldStandardization>

There are several ways to select fields to process using the Field element.

Field element
attribute

Description Example

name Select a field where the field name
matches a fixed value.

Select the field MyField:

<Field name="MyField">
 ...
 </Field>

Select the field Subfield, which is a
subfield of MyField:

<Field name="MyField">
 <Field name="Subfield">
 ...
 </Field>
 </Field>

path Select a field where its path matches a
fixed value.

Select the field Subfield, which is a
subfield of MyField.

<Field path="MyField/Subfield">

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 94 of 185

 ...
 </Field>

nameRegex Select all fields at the current depth
where the field name matches a regular
expression.

In this case the field name must begin
with the word File:

<Field nameRegex="File.*">
 ...
 </Field>

pathRegex Select all fields where the path of the
field matches a regular expression.

This operation can be inefficient
because every metadata field must be
checked. If possible, select the fields to
process another way.

This example selects all subfields of
MyField.

<Field pathRegex="MyField/[^/]*">
 ...
 </Field>

This approach would be more efficient:

<Field name="MyField">
 <Field nameRegex=".*">
 ...
 </Field>
</Field>

You can also limit the fields that are processed based on their value, by using one of the following:

Field element
attribute

Description Example

matches Process a field if its value
matches a fixed value.

Process a field named MyField, if its value matches
abc.

<Field name="MyField" matches="abc">
 ...
 </Field>

matchesRegex Process a field if its entire
value matches a regular
expression.

Process a field named MyField, if its value matches
one or more digits.

<Field name="MyField" matchesRegex="\d+">
 ...
 </Field>

containsRegex Process a field if its value
contains a match to a
regular expression.

Process a field named MyField if its value contains
three consecutive digits.

<Field name="MyField" containsRegex="\d{3}">
 ...
 </Field>

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 95 of 185

The following rule deletes every field or subfield where the name of the field or subfield begins with
temp.

<FieldStandardization>
 <Field pathRegex="(.*/)?temp[^/]*">
 <Delete/>
 </Field>
 </FieldStandardization>

The following rule instructs CFS to rename the field Author to DOCUMENT_METADATA_AUTHOR_STRING,
but only when the document contains a field named DocumentType with the value 230 (the KeyView
format code for a PDF file).

<FieldStandardization>
 <Product key="ConnectorFrameWork">
 <IfField name="DocumentType" matches="230"> <!-- PDF -->
 <Field name="Author">
 <Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
 </Field>
 </IfField>
 </Product>
 </FieldStandardization>

TIP:
In this example, the IfField element is used to check the value of the DocumentType field. The
IfField element does not change the current position in the document. If you used the Field
element, field standardization would attempt to find an Author field that is a subfield of
DocumentType, instead of finding the Author field at the root of the document.

The following rules demonstrate how to use the ValueFormat operation to change the format of dates.
The only format that you can convert date values into is the IDOL AUTNDATE format. The first rule
transforms the value of a field named CreatedDate. The second rule transforms the value of an
attribute named Created, on a field named Date.

<FieldStandardization>
 <Field name="CreatedDate">
 <ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>
 </Field>
 <Field name="Date">
 <Attribute name="Created">
 <ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>
 </Attribute>
 </Field>
 </FieldStandardization>

As demonstrated by this example, you can select field attributes to process in a similar way to
selecting fields.

You must select attributes using either a fixed name or a regular expression:

Select a field attribute by name <Attribute name="MyAttribute">

Select attributes that match a regular expression <Attribute nameRegex=".*">

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 96 of 185

You can then add a restriction to limit the attributes that are processed:

Process an attribute only if its value
matches a fixed value

<Attribute name="MyAttribute" matches="abc">

Process an attribute only if its value
matches a regular expression

<Attribute name="MyAttribute" matchesRegex=".*">

Process an attribute only if its value
contains a match to a regular
expression

<Attribute name="MyAttribute" containsRegex="\w+">

The following rule moves all of the attributes of a field to sub fields, if the parent field has no value. The
id attribute on the first Field element provides a name to a matching field so that it can be referred to
by later operations. The GetName and GetValue operations save the name and value of a selected field
or attribute (in this case an attribute) into variables (in this case $'name' and $'value') which can be
used by later operations. The AddField operation uses the variables to add a new field at the selected
location (the field identified by id="parent").

<FieldStandardization>
 <Field pathRegex=".*" matches="" id="parent">
 <Attribute nameRegex=".*">
 <GetName var="name"/>
 <GetValue var="value"/>
 <Field fieldId="parent">
 <AddField name="$'name'" value="$'value'"/>
 </Field>
 <Delete/>
 </Attribute>
 </Field>
 </FieldStandardization>

The following rule demonstrates how to move all of the subfields of UnwantedParentField to the root
of the document, and then delete the field UnwantedParentField.

<FieldStandardization id="root">
 <Product key="ConnectorFrameWork">
 <Field name="UnwantedParentField">
 <Field nameRegex=".*">
 <Move destId="root"/>
 </Field>
 <Delete/>
 </Field>
 </Product>
 </FieldStandardization>

Normalize E-mail Addresses

Documents can contain e-mail addresses in many formats, and often the name of the sender or
recipient is contained in the same metadata field as their e-mail address.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 97 of 185

The EmailAddressNormalisation task searches metadata fields for the names and e-mail addresses
of e-mail senders and recipients. It then writes the information back to the document in a standard
format. For named e-mail addresses ("Name" <name@domain.com>), the task separates the name from
the address. The task also converts all e-mail addresses to lower-case.

For example, a document might include the following field:

<To>"One, Some" <Someone@Somewhere.com>, <user.name@domain.com>, "Else, Someone" <
SomeoneElse@Somewhere.com ></To>

The EmailAddressNormalisation task reads this information and adds the following fields to the
document:

 <to_email>someone@somewhere.com</to_email>
 <to_email>user.name@domain.com</to_email>
 <to_email>someoneelse@somewhere.com</to_email>
 <to_name>One, Some</to_name>
 <to_name/>
 <to_name>Else, Someone</to_name>

As shown in the previous example, when an e-mail address does not have an associated name, an
empty name field is added to the document. This is necessary because the order of the fields in the
document is the only way to determine which name belongs with which e-mail address. The first e-mail
address is associated with the first name, the second e-mail address with the second name, and so on.

This means that if your source field does not contain any names:

<To>Someone@Somewhere.com, SomeoneElse@Somewhere.com</To>

The task writes the following fields to the document:

<to_email>someone@somewhere.com</to_email>
<to_email>someoneelse@somewhere.com</to_email>
 <to_name/>
 <to_name/>

You can configure EmailAddressNormalisation as a Pre or Post task. For example:

[ImportTasks]
 Post0=EmailAddressNormalisation:EmailAddressNormalisationSettings

 [EmailAddressNormalisationSettings]
 FieldNameRegex="To","From","Cc","Bcc"
 AddresseeFieldName="to_name","from_name","cc_name","bcc_name"
 EmailFieldName="to_email","from_email","cc_email","bcc_email"

The Post0 task runs e-mail address normalisation using the settings in the
[EmailAddressNormalisationSettings] section. The FieldNameRegex parameter specifies a list of
regular expressions that identify the fields to process. The AddresseeFieldName and EmailFieldName
parameters specify the names of the fields to add to the document. CFS adds the name of the sender
or recipient to the addressee field and their e-mail address to the e-mail field.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 98 of 185

Language Detection

CFS can identify the language of a document, and write the name of the language to a document field.
A front-end application could use this field to provide a way to filter documents by language. You can
also use language detection to reject invalid documents (when a language cannot be detected).

Language detection can be configured as a post-import task. Set the Post parameter to LangDetect
and specify the name of a configuration file section that contains the task settings. For example:

[ImportTasks]
 Post0=LangDetect:LangDetectSettings

 [LangDetectSettings]
 LanguageDetectionDirectory=./filters/datafiles/
 OutputField=DetectedLanguage
 FailIfLanguageUnknown=TRUE

You must set the parameter LanguageDetectionDirectory to the path of the folder that contains the
file langdetect.dat. The remaining parameters are optional. The parameter OutputField specifies
the name of the document field to write the name of detected language to. By default, CFS rejects
documents where it cannot detect a language but you can configure this by setting
FailIfLanguageUnknown. To continue processing documents when a language cannot be detected,
set FailIfLanguageUnknown=FALSE.

Translate Documents

CFS can use third-party translation services to translate documents into other languages. This can be
useful when you have documents that are not in your users' native language.

IMPORTANT:
To perform translation, you must have a license for one of the supported translation services.
CFS relies on third-party services to translate text between languages. The language translation
library that CFS uses to communicate with third-party translation services is not included in the
standard CFS installation but can be obtained through Micro Focus software support.

Micro Focus recommends that you configure the LanguageTranslation task as a post-import task.
Use the Post parameter to specify the name of a section that contains the task settings.

The following is an example task that uses the translation services provided by an SDL Enterprise
Translation Server:

[ImportTasks]
 Post0=Library:LanguageTranslation

 [LanguageTranslation]
 Library=LanguageTranslation
 TranslatorType=SdlEts
 ApiBaseUrl=https://host:port

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 99 of 185

 ApiKey=0a12b34c56d78e9
 SourceField=DRECONTENT
 TargetField=DRECONTENT
 TargetLanguage=ENG
 Quality=medium-high

The following is an example task that uses the translation services provided by sdlbeglobal.com:

[ImportTasks]
 Post0=Library:LanguageTranslation

 [LanguageTranslation]
 Library=LanguageTranslation
 TranslatorType=SdlBeGlobal
 AccountId=12345
 ApiKey=0a12b34c56d78e9
 UserId=23456
 TouchpointId=34567
 SourceField=DRECONTENT
 TargetField=DRECONTENT
 TargetLanguage=ENG

In both cases, the TranslatorType configuration parameter specifies the type of translation service to
use. To use an SDL Enterprise Translation Server, set this parameter to SdlEts. To use the services
that are provided by sdlbeglobal.com, set this parameter to SdlBeGlobal. You must then set the
relevant parameters that are required to use the API:

 l To use an SDL Enterprise Translation Server, set the configuration parameter ApiBaseUrl to the
base URL of the API to use for translation, and the ApiKey parameter to the API key.

 l To use the services provided by sdlbeglobal.com, set the parameters AccountId, ApiKey, UserId
and TouchpointId to the values provided by SDL.

The remaining parameters are optional but you can set these to customize the task to your use case.

The SourceField configuration parameter specifies the name of the document field to translate, and
the TargetField parameter specifies the name of the field to contain the results. If you specify the
same field name for both parameters, CFS reads the text from the field, sends it for translation, and
then writes the result back to the same field (which overwrites the original value).

The source language is detected automatically, but if automatic detection is not successful you can
specify the source language by setting the configuration parameter SourceLanguage, which accepts
the name of a language or a three-letter language code. Alternatively, you can configure the task to read
the source language from a document field, by setting the parameter SourceLanguageField. For
information about the languages that are supported, refer to the SDL documentation or translation
service user interface.

The target language is specified by the configuration parameter TargetLanguage, which has a default
value of ENG (English).

If you are using an SDL Enterprise Translation Server, you can also choose how to balance translation
quality and speed by setting the Quality parameter.

For more information about the configuration parameters that you can use to configure the language
translation task, refer to the Connector Framework Server Reference.

Administration Guide
Chapter 7: Manipulate and Enrich Documents

Connector Framework Server (11.6) Page 100 of 185

Chapter 8: Index Documents

This section describes how to configure indexing.

• Introduction 101
• Configure the Batch Size and Time Interval 102
• Index Documents into an IDOL Server 102
• Index Documents into Haven OnDemand 103
• Index Documents into Vertica 105
• Index Documents into another CFS 108
• Index Documents into MetaStore 109
• Document Fields for Indexing 110
• Manipulate Documents Before Indexing 111

Introduction

The final step in the ingestion process is to index information into an index, such as IDOL Server or
Haven OnDemand. After CFS finishes processing documents, it automatically indexes them into the
indexes that you have configured.

CFS can index documents into:

 l IDOL Server.
Index documents into IDOL Server to search, analyze, and find patterns in unstructured information.
You can index documents directly into an IDOL Server, or send them to a Distributed Index Handler
(DIH) to be distributed between multiple IDOL Servers in a distributed architecture.

 l Haven OnDemand.
Haven OnDemand analyzes unstructured information in the cloud.

 l Vertica.
Index documents into a Vertica database to analyze the structured information contained in your
data repositories. Much of the metadata extracted by connectors and by KeyView is structured
information held in structured fields, so you can use Vertica to gain insight into this information.

By default, CFS indexes each document into all of the indexes specified by the IndexerSections
parameter in the [Indexing] section of its configuration file. However, if the document field AUTN_
INDEXER_SECTIONS is set, CFS routes the document to the indexes specified in the field. The field
accepts a comma-separated list of index names that must match the names of the sections in the CFS
configuration file.

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 101 of 185

Configure the Batch Size and Time Interval

CFS indexes documents in batches. This is more efficient because fewer requests are made to the
server.

Documents wait in the index queue until there are enough documents to create a batch, or until the
maximum time interval for indexing is reached. If the time interval is reached, CFS indexes all of the
documents in the queue regardless of the batch size.

To configure indexing settings

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. In the [Indexing] section, set the following configuration parameters:

IndexBatchSize The number of documents to index in a single batch. CFS waits until this
number of documents are ready for indexing, unless the
IndexTimeInterval is reached.

IndexTimeInterval The maximum amount of time, in seconds, that a document can wait in
the index queue.

For example:

[Indexing]
 IndexBatchSize=1000
 IndexTimeInterval=600

 4. Save the configuration file.

Index Documents into an IDOL Server

To index documents into an IDOL Server

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. In the [Indexing] section, use the IndexerSections parameter to specify the names of the

sections that contain indexing settings. If this parameter is already set, add the name of the new
indexer to the list. For example:

[Indexing]
IndexerSections=IdolServer

 4. Create a new section in the CFS configuration file, with the same name that you specified in the
IndexerSections parameter. In the new section, set the following parameters:

Host The host name or IP address of the IDOL Server.

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 102 of 185

Port The ACI Port of the IDOL Server.

DefaultDatabaseName The name of the IDOL database to index a document into when the
DREDBNAME document field is not set.

SSLConfig (Optional) The name of a section in the CFS configuration file that
contains SSL settings for connecting to IDOL. Set this parameter if
your IDOL Server is configured to accept connections over SSL. For
more information about the configuration parameters you can use to
configure SSL connections, refer to the Connector Framework Server
Reference.

CreateDatabase (Optional, default false) Specifies whether IDOL should create
databases that do not already exist. For example, if you set this
parameter to TRUE and the database specified in a DREDBNAME
document field does not exist, IDOL Server will create it.

For example:

[IdolServer]
 Host=idol
 Port=9000
 DefaultDatabaseName=News
 SSLConfig=SSLOptions

 [SSLOptions]
 SSLMethod=SSLV23

For more information about these parameters and other parameters that you can set to customize
the indexing process, refer to the Connector Framework Server Reference.

 5. Save and close the configuration file.

Index Documents into Haven OnDemand

CFS can index documents into a Haven OnDemand text index, or send the documents to a Haven
OnDemand combination which can perform additional processing and then index the documents into a
text index.

Prepare Haven OnDemand

Before you can send documents to Haven OnDemand, you must create a text index. For information
about how to create text indexes, refer to the Haven OnDemand documentation.

Before you can send documents to a Haven OnDemand combination endpoint, the combination must
exist. CFS requires your combination to accept the following input parameters, and produce the
following output.

Input Parameters

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 103 of 185

https://dev.havenondemand.com/docs

Name Type Description

json any A JSON object that contains a single attribute 'documents' that is
an array of document objects.

index string The name of the text index that you want the combination to add
documents to. CFS uses the value of the parameter
HavenOnDemandIndexName to set this value.

duplicate_mode string Specifies how to handle duplicates when adding documents to
the text index. CFS uses the value of the parameter
HavenOnDemandDuplicateMode to set this value.

Output

Name Type Description

result any The result of the call to AddToTextIndex made by the
combination.

Configure CFS to Index into Haven OnDemand

This section describes how to send documents to Haven OnDemand.

To index documents into Haven OnDemand

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. In the [Indexing] section, use the IndexerSections parameter to specify the names of the

sections that contain indexing settings. If this parameter is already set, add the name of the new
indexer to the list. For example:

[Indexing]
 IndexerSections=IdolServer,HavenOnDemand

 4. Create a new section in the CFS configuration file, with the same name that you specified in the
IndexerSections parameter. In the new section, set the following parameters:

HavenOnDemandApiKey Your Haven OnDemand API key. You can obtain the key
from your Haven OnDemand account.

HavenOnDemandIndexName The name of the Haven OnDemand text index to index
documents into.

HavenOnDemandDuplicateMode The value to use for the duplicate_mode parameter in calls
to the Haven OnDemand Add to Text Index API.

SSLConfig The name of a section in the CFS configuration file that
contains SSL settings for connecting to Haven OnDemand.
The connection to Haven OnDemand must be made over

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 104 of 185

SSL. For more information about the configuration
parameters you can use to configure SSL connections,
refer to the Connector Framework Server Reference.

HavenOnDemandCombinationName (Optional) The name of the Haven OnDemand combination
to send documents to. If you set this parameter, CFS
sends all documents to the combination endpoint. If you
don't set this parameter, CFS indexes all documents
directly into the text index specified by
HavenOnDemandIndexName.

For example:

[HavenOnDemand]
 HavenOnDemandApiKey=[Your API Key]
 HavenOnDemandIndexName=MyTextIndex
 SSLConfig=SSLOptions
 HavenOnDemandCombinationName=MyCombination

 [SSLOptions]
 SSLMethod=TLSV1

For more information about these parameters and other parameters that you can set to customize
the indexing process, refer to the Connector Framework Server Reference.

 5. Save and close the configuration file.

Index Documents into Vertica

CFS can index documents into Vertica, so that you can run queries on structured fields (document
metadata).

Depending on the metadata contained in your documents, you could:

 l Investigate the average age of documents in a repository. You might want to answer questions such
as: How much time has passed since the documents were last updated? How many files are
regularly updated? Does this represent a small proportion of the total number of documents? Who
are the most active users?

 l Find the number of e-mail messages sent to your sales or support teams each week, and calculate
the average response time to customer queries.

Prerequisites

 l CFS supports indexing into Vertica 7.1 and later.
 l You must install the appropriate Vertica ODBC drivers (version 7.1 or later) on the machine that

hosts Connector Framework Server. If you want to use an ODBC Data Source Name (DSN) in your
connection string, you will also need to create the DSN. For more information about installing Vertica
ODBC drivers and creating the DSN, refer to the Vertica documentation.

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 105 of 185

http://www.vertica.com/documentation

New, Updated and Deleted Documents

When documents are indexed into Vertica, CFS adds a timestamp that contains the time when the
document was indexed. The field is named VERTICA_INDEXER_TIMESTAMP and the timestamp is in the
format YYYY-MM-DD HH:NN:SS.

When a document in a data repository is modified, CFS adds a new record to the database with a new
timestamp. All of the fields are populated with the latest data. The record describing the older version of
the document is not deleted. You can create a projection to make sure your queries only return the
latest record for a document.

When a connector detects that a document has been deleted from a repository, CFS inserts a new
record into the database. The record contains only the DREREFERENCE and the field VERTICA_INDEXER_
DELETED set to TRUE.

Fields, Sub-Fields, and Field Attributes

Documents that are created by connectors and processed by CFS can have multiple levels of fields,
and field attributes. A database table has a flat structure, so this information is indexed into Vertica as
follows:

 l Document fields become columns in the flex table. An IDOL document field and the corresponding
database column have the same name.

 l Sub-fields become columns in the flex table. A document field named my_field with a sub-field
named subfield results in two columns, my_field and my_field.subfield.

 l Field attributes become columns in the flex table. A document field named my_field, with an
attribute named my_attribute results in two columns, my_field holding the field value and my_
field.my_attribute holding the attribute value.

Prepare the Vertica Database

Indexing documents into a standard database is problematic, because documents do not have a fixed
schema. A document that represents an image has different metadata fields to a document that
represents an e-mail message. Vertica databases solve this problem with flex tables. You can create a
flex table without any column definitions, and you can insert a record regardless of whether a
referenced column exists.

You must create a flex table before you index data into Vertica.

When creating the table, consider the following:

 l Flex tables store entire records in a single column named __raw__. The default maximum size of the
__raw__ column is 128K. You might need to increase the maximum size if you are indexing
documents with large amounts of content. Alternatively, you could configure CFS to remove content
from documents before they are indexed.

 l Documents are identified by their DREREFERENCE. Micro Focus recommends that you do not restrict
the size of any column that holds this value, because this could result in values being truncated. As
a result, rows that represent different documents might appear to represent the same document. If

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 106 of 185

you do restrict the size of the DREREFERENCE column, ensure that the length is sufficient to hold the
longest DREREFERENCE that might be indexed.

To create a flex table without any column definitions, run the following query:

 create flex table my_table();

To improve query performance, create real columns for the fields that you query frequently. For
documents indexed by CFS, this is likely to include the DREREFERENCE:

 create flex table my_table(DREREFERENCE varchar NOT NULL);

You can add new column definitions to a flex table at any time. Vertica automatically populates new
columns with values for existing records. The values for existing records are extracted from the __raw_
_ column.

For more information about creating and using flex tables, refer to the Vertica Documentation or contact
Micro Focus Vertica technical support.

Configure CFS to Index into Vertica

The following procedure demonstrates a basic configuration that indexes all documents into a Vertica
database.

However, you can customize the indexing process. For example, your CFS might be importing files
from a File System Connector, e-mail messages from Exchange, and social media content. You might
want to index these items into separate flex tables. To do this, you could run a Lua script to set the
AUTN_INDEXER_SECTIONS field in each document, and create a separate indexing operation for each
type of content.

To configure CFS to index documents into Vertica

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. In the [Indexing] section, use the IndexerSections parameter to specify the names of the

sections that contain indexing settings. If this parameter is already set, add the name of the new
indexer to the list. For example:

[Indexing]
IndexerSections=IdolServer,Vertica

 4. Create a new section in the CFS configuration file, with the same name that you specified in the
IndexerSections parameter. In the new section, set the following parameters:

IndexerType The type of index to index documents into. Set this parameter to Library.

LibraryDirectory The directory that contains the library to use to index data.

LibraryName The name of the library to use to index data. You can omit the .dll or .so
file extension. Set this parameter to verticaIndexer.

ConnectionString The connection string to use to connect to the Vertica database.

TableName The name of the table in the Vertica database to index the documents into.

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 107 of 185

http://www.vertica.com/documentation

The table must be a flex table and must exist before you start indexing
documents. For more information, see Prepare the Vertica Database, on
page 106.

For example:

[Vertica]
 IndexerType=Library
 LibraryDirectory=indexerdlls
 LibraryName=verticaIndexer
 ConnectionString=DSN=VERTICA
 TableName=my_flex_table

For more information about these parameters and other parameters that you can set to customize
the indexing process, refer to the Connector Framework Server Reference.

 5. Save and close the configuration file.

Troubleshooting

This section describes how to troubleshoot problems that might occur when you index data into
Vertica.

Documents are not indexed into Vertica

Documents cannot be indexed when the Vertica database server is unavailable, or cannot be
reached by CFS. To see whether an indexing error has occurred, check the CFS indexer log. The
default location for this log file is logs/indexer.log. If documents were not indexed successfully,
you will need to ingest these documents again.

Index Documents into another CFS

You can index documents into another CFS. You might want to do this if you want to perform further
processing on them.

To index documents into another CFS

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. In the [Indexing] section, use the IndexerSections parameter to specify the names of the

sections in the configuration file that contain indexing settings. If this parameter is already set, add
the name of the new indexer to the list. For example:

[Indexing]
IndexerSections=IndexCFS

 4. Create a new section in the CFS configuration file, with the same name that you specified in the
IndexerSections parameter. In the new section, set the following parameters:

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 108 of 185

IndexerType The type of index that you want to index documents into. Set this parameter to
CFS.

Host The host name or IP address of the CFS.

Port The ACI Port of the CFS.

SSLConfig (Optional) The name of a section in the CFS configuration file that contains SSL
settings for connecting to the other CFS. Set this parameter if the CFS is
configured to accept connections over SSL. For more information about the
configuration parameters you can use to configure SSL connections, refer to the
Connector Framework Server Reference.

For example:

[IndexCFS]
 IndexerType=CFS
 Host=cfs.domain.com
 Port=7000
 SSLConfig=SSLOptions

 [SSLOptions]
 SSLMethod=TLSV1.2

For more information about these parameters and other parameters that you can set to customize
the indexing process, refer to the Connector Framework Server Reference.

 5. Save and close the configuration file.

Index Documents into MetaStore

To index documents into MetaStore

 1. Stop CFS.
 2. Open the CFS configuration file.
 3. In the [Indexing] section, use the IndexerSections parameter to specify the names of the

sections that contain indexing settings. If this parameter is already set, add the name of the new
indexer to the list. For example:

[Indexing]
IndexerSections=IdolServer,MetaStore

 4. Create a new section in the CFS configuration file, with the same name that you specified in the
IndexerSections parameter. In the new section, set the following parameters:

IndexerType Set this parameter to MetaStore.

Host The host name or IP address of the MetaStore.

Port The port of the MetaStore.

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 109 of 185

SSLConfig (Optional) The name of the section in the CFS configuration file that contains the
SSL settings to use for communicating with the MetaStore.

For example:

[MetaStore]
 IndexerType=MetaStore
 Host=localhost
 Port=4500

For more information about these parameters and other parameters that you can set to customize
the indexing process, refer to the Connector Framework Server Reference.

 5. Save and close the configuration file.

Document Fields for Indexing

To customize the way that documents are indexed, set the following document fields.

AUTN_NO_INDEX

Documents that have this field are not indexed. You can use this field when you want to troubleshoot
the ingestion process without indexing documents.

AUTN_INDEXER_SECTIONS

A comma-separated list of sections in the CFS configuration file to use to index the document. CFS
indexes the document into all of the indexes that you specify. If this field is not set, CFS indexes the
document into all of the indexes specified by the configuration parameter IndexerSections.

AUTN_INDEXPRIORITY

This field can be used to increase the priority of an index action sent to IDOL Server to index a batch of
documents. You can specify a priority from 0 to 100, where 0 is the lowest priority and 100 is the
highest. This means that you can configure some documents to be indexed before others, or before
documents from sources other than CFS.

CAUTION:
Use this field with care. Modifying the index priority for documents changes the order of the
index commands processed by IDOL. For example, in the case of an ingest-replace, the add
command could be processed before the delete, resulting in a loss of data. Micro Focus
recommends that you configure the indexing priority for batches of documents indexed into
IDOL using the IndexPriority configuration parameter. This ensures that all of the batches
indexed by CFS have the same priority.

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 110 of 185

If documents in a batch contain the field INDEXPRIORITY, and the value of this field is greater than that
specified by the IndexPriority configuration parameter, the priority of the batch is increased to the
highest INDEXPRIORITY field value present in the batch.

Manipulate Documents Before Indexing

CFS can index documents into multiple indexes. Normally, CFS indexes identical data into every
index, but you might want to manipulate documents depending on the index that they are sent to. For
example, if you are using Vertica to analyze structured information, you might want to remove the
content from the documents indexed into Vertica, but keep the content in documents that are indexed
into IDOL.

You cannot use import and index tasks to manipulate documents in this way, because those tasks
affect documents sent to all of the indexes. To manipulate the documents sent to a single index, you
can run a Lua script during the indexing process.

The script must define a handler function:

function handler(document, operation)
 -- do something, for example
 document:deleteField("UNINTERESTING_FIELD")
 return true
 end

The operation argument specifies the documents that you want to run the script on. This argument is
a string and can be set to add, update, or remove:

 l add - manipulate documents that are being added to the index. Ingest-adds are sent when a
connector finds new documents in a repository, or when a document's content is changed (the old
document is removed, and the new document added).

 l update - manipulate documents that represent metadata updates.
 l remove - manipulate documents that represent information deleted from the source repository.
To index the document the handler function must return true. To discard the document, return false.

To manipulate documents before indexing

 1. Open the CFS configuration file.
 2. In a section of the configuration file specified by the IndexerSections configuration parameter,

set the IndexLuaScript parameter. This parameter specifies the path to the script that you want
to run. For example:

[Indexing]
IndexerSections=IdolServer,Vertica

 [Vertica]
 IndexerType=Library
 LibraryDirectory=indexerdlls
 LibraryName=verticaIndexer
 ConnectionString=DSN=VERTICA

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 111 of 185

 TableName=my_flex_table
 IndexLuaScript=./scripts/remove_content.lua

 3. Save and close the configuration file.

Administration Guide
Chapter 8: Index Documents

Connector Framework Server (11.6) Page 112 of 185

Chapter 9: Monitor Connector Framework
Server

This section describes how to monitor CFS.

• Use the Logs 113
• Monitor Asynchronous Actions using Event Handlers 114
• Monitor the size of the Import and Index Queues 117
• Set Up Document Tracking 118

Use the Logs

As Connector Framework Server runs, it outputs messages to log files. Most log messages occur due to
normal operation, for example when CFS starts, receives actions, or processes documents. If CFS
encounters an error, the logs are the first place to look for information to help troubleshoot the problem.

CFS separates log messages into the following message types, each of which relates to a specific feature:

Log Message Type Description

Action Logs actions that are received by CFS, and related messages.

Application Logs application-related occurrences, such as when the CFS starts.

Import Information about the import process.

When you set LogLevel to FULL, CFS can log a significant amount of
information about the import process, which might reduce performance.

Indexer Information about the indexing process.

Customize Logging

You can customize logging by setting up your own log streams. Each log stream creates a separate log file in
which specific types of message are logged.

To set up log streams

 1. Open the CFS configuration file in a text editor.
 2. Find the [Logging] section. If the configuration file does not contain a [Logging] section, create it.
 3. In the [Logging] section, create a list of the log streams you want to set up using the format

N=LogStreamName. List the log streams in consecutive order, starting from 0 (zero). For example:

Connector Framework Server (11.6) Page 113 of 185

[Logging]
 LogLevel=NORMAL
 0=ApplicationLogStream
 1=ActionLogStream
 2=ImportLogStream
 3=IndexLogStream

You can also use the [Logging] section to configure any default values for logging configuration
parameters, such as LogLevel. For more information, refer to the Connector Framework Server
Reference.

 4. Create a new section for each of the log streams. Each section must have the same name as the
log stream. For example:

[ApplicationLogStream]
[ActionLogStream]
 ...

 5. Specify the settings for each log stream in the appropriate section. You can specify the type of
logging to perform (for example, full logging), the maximum size of log files, and so on. For
example:

[ApplicationLogStream]
 LogTypeCSVs=application
 LogFile=application.log
 LogHistorySize=50
 LogTime=True
 LogEcho=False
 LogMaxSizeKBs=1024

 [ActionLogStream]
 LogTypeCSVs=action
 LogFile=action.log
 LogHistorySize=50
 LogTime=true
 LogEcho=false
 LogMaxSizeKBs=1024

 6. Save and close the configuration file.
 7. Restart CFS for your changes to take effect. For information about how to start and stop CFS, see

Start and Stop Connector Framework Server, on page 29.

Monitor Asynchronous Actions using Event Handlers

Some of the actions that you can send to Connector Framework Server are asynchronous.
Asynchronous actions do not run immediately, but are added to a queue. This means that the person or
application that sends the action does not receive an immediate response. However, you can configure
Connector Framework Server to call an event handler when an asynchronous action starts, finishes, or
encounters an error.

Administration Guide
Chapter 9: Monitor Connector Framework Server

Connector Framework Server (11.6) Page 114 of 185

You might use an event handler to:

 l Return data about an event back to the application that sent the action.
 l Write event data to a text file, to log any errors that occur.
You can also use event handlers to monitor the size of asynchronous action queues. If a queue
becomes full this might indicate a problem, or that applications are making requests to Connector
Framework Server faster than they can be processed.

Connector Framework Server can call an event handler for the following events.

OnStart The OnStart event handler is called when Connector Framework Server starts
processing an asynchronous action.

OnFinish The OnFinish event handler is called when Connector Framework Server
successfully finishes processing an asynchronous action.

OnError The OnError event handler is called when an asynchronous action fails and
cannot continue.

OnQueueEvent The OnQueueEvent handler is called when an asynchronous action queue
becomes full, becomes empty, or the queue size passes certain thresholds.

 l A QueueFull event occurs when the action queue becomes full.
 l A QueueFilling event occurs when the queue size exceeds a configurable

threshold (QueueFillingThreshold) and the last event was a QueueEmpty or
QueueEmptying event.

 l A QueueEmptying event occurs when the queue size falls below a configurable
threshold (QueueEmptyingThreshold) and the last event was a QueueFull or
QueueFilling event.

 l A QueueEmpty event occurs when the action queue becomes empty.

Connector Framework Server supports the following types of event handler:

 l The TextFileHandler writes event data to a text file.
 l The HttpHandler sends event data to a URL.
 l The LuaHandler runs a Lua script. The event data is passed into the script.

Configure an Event Handler

To configure an event handler, follow these steps.

To configure an event handler

 1. Stop Connector Framework Server.
 2. Open the Connector Framework Server configuration file in a text editor.
 3. Set the OnStart, OnFinish, OnError, or OnQueueEvent parameter to specify the name of a

section in the configuration file that contains the event handler settings.
 l To run an event handler for all asynchronous actions, set these parameters in the [Actions]

section. For example:

Administration Guide
Chapter 9: Monitor Connector Framework Server

Connector Framework Server (11.6) Page 115 of 185

[Actions]
 OnStart=NormalEvents
 OnFinish=NormalEvents
 OnError=ErrorEvents

 l To run an event handler for a specific action, set these parameters in the [ActionName]
section, where ActionName is the name of the action. The following example calls an event
handler when the Example action starts and finishes successfully, and uses a different event
handler to monitor the queue size:

[Example]
 OnStart=NormalEvents
 OnFinish=NormalEvents
 OnQueueEvent=QueueSizeEvents

 4. Create a new section in the configuration file to contain the settings for your event handler. You
must name the section using the name you specified with the OnStart, OnFinish, OnError, or
OnQueueEvent parameter.

 5. In the new section, set the LibraryName parameter.

LibraryName The type of event handler to use to handle the event.
 l To write event data to a text file, set this parameter to TextFileHandler, and

then set the FilePath parameter to specify the path of the file.
 l To send event data to a URL, set this parameter to HttpHandler, and then

use the HTTP event handler parameters to specify the URL, proxy server
settings, credentials, and so on.

 l To run a Lua script, set this parameter to LuaHandler, and then use the
LuaScript parameter to specify the script to run. For information about
writing the script, see Write a Lua Script to Handle Events, on the next page.

For example:

[NormalEvents]
 LibraryName=TextFileHandler
 FilePath=./events.txt

 [ErrorEvents]
 LibraryName=HTTPHandler
 URL=http://handlers:8080/lo-proxy/callback.htm?

 [QueueSizeEvents]
 LibraryName=LuaHandler
 LuaScript=./handle_queue_events.lua

 6. Save and close the configuration file. You must restart Connector Framework Server for your
changes to take effect.

Administration Guide
Chapter 9: Monitor Connector Framework Server

Connector Framework Server (11.6) Page 116 of 185

Write a Lua Script to Handle Events

The Lua event handler runs a Lua script to handle events. The Lua script must contain a function named
handler with the arguments request and xml, as shown below:

function handler(request, xml)
 ...
 end

 l request is a table holding the request parameters. For example, if the request was
action=Example&MyParam=Value, the table will contain a key MyParam with the value Value. Some
events, for example queue size events, are not related to a specific action and so the table might be
empty.

 l xml is a string of XML that contains information about the event.

Monitor the size of the Import and Index Queues

CFS generates events when the import queue and the outgoing (indexing) queue become full, become
empty, or the queue size passes certain thresholds. If a queue approaches its maximum size, this
might indicate a problem, or that applications are making requests to Connector Framework Server
faster than they can be processed.

CFS generates the following events for each queue that is monitored:

 l A QueueFull event occurs when the queue becomes full.
 l A QueueFilling event occurs when the queue size exceeds a configurable threshold

(QueueFillingThreshold) and the last event was a QueueEmpty or QueueEmptying event.
 l A QueueEmptying event occurs when the queue size falls below a configurable threshold

(QueueEmptyingThreshold) and the last event was a QueueFull or QueueFilling event.
 l A QueueEmpty event occurs when the queue becomes empty.
You can configure event handlers to process these events. For example, you might want to notify an
administrator if the size of a queue reaches 80 percent of the maximum.

To monitor queue sizes

 1. Stop CFS.
 2. Open the CFS configuration file in a text editor.
 3. Set the OnQueueEvent parameter to the name of a section that configures the event handler.

 l To monitor the size of the import queue, set this parameter in the [ImportService] section.
For example:

[ImportService]
OnQueueEvent=MyEventHandler

 l To monitor the size of the outgoing (indexing) queue, set this parameter in the [Indexing]
section. For example:

Administration Guide
Chapter 9: Monitor Connector Framework Server

Connector Framework Server (11.6) Page 117 of 185

[Indexing]
 OnQueueEvent=MyEventHandler

 4. Create a new section in the configuration file to contain the settings for your event handler. You
must name the section using the name you specified with the OnQueueEvent parameter.

 5. In the new section, set the LibraryName parameter.

LibraryName The type of event handler to use to handle the event.
 l To write event data to a text file, set this parameter to TextFileHandler, and

then set the FilePath parameter to specify the path of the file.
 l To send event data to a URL, set this parameter to HttpHandler, and then

use the HTTP event handler parameters to specify the URL, proxy server
settings, credentials, and so on.

 l To run a Lua script, set this parameter to LuaHandler, and then use the
LuaScript parameter to specify the script to run. For information about
writing the script, see Write a Lua Script to Handle Events, on the previous
page.

For example:

[MyEventHandler]
LibraryName=LuaHandler
 LuaScript=./handle_queue_event.lua

 6. Save and close the configuration file. You must restart CFS for your changes to take effect.

Set Up Document Tracking

Document tracking reports metadata about documents when they pass through various stages in the
ingestion and indexing process. Document tracking can help you detect problems with the indexing
process.

You can write document tracking events to a database, log file, or IDOL Server. For information about
how to set up a database to store document tracking events, refer to the IDOL Server Administration
Guide.

To enable Document Tracking

 1. Open the CFS configuration file.
 2. Create a new section in the configuration file, named [DocumentTracking].
 3. In the [DocumentTracking] section, specify where the document tracking events are sent.

Administration Guide
Chapter 9: Monitor Connector Framework Server

Connector Framework Server (11.6) Page 118 of 185

 l To send document tracking events to a database through ODBC, set the following parameters:

Backend To send document tracking events to a database, set this parameter to
Library.

LibraryPath Specify the location of the ODBC document tracking library. This is
included with IDOL Server.

ConnectionString The ODBC connection string for the database.

For example:

[DocumentTracking]
 Backend=Library
 LibraryPath=C:\Autonomy\IDOLServer\IDOL\modules\dt_odbc.dll
 ConnectionString=DSN=MyDatabase

 l To send document tracking events to the CFS import log, set the following parameters:

Backend To send document tracking events to the logs, set this parameter to Log.

DatabaseName The name of the log stream to send the document tracking events to. Set
this parameter to import.

For example:

[DocumentTracking]
 Backend=Log
 DatabaseName=import

 l To send document tracking events to an IDOL Server, set the following parameters:

Backend To send document tracking events to an IDOL Server, set this parameter to
IDOL.

TargetHost The host name or IP address of the IDOL Server.

TargetPort The index port of the IDOL Server.

For example:

[DocumentTracking]
 Backend=IDOL
 TargetHost=idol
 TargetPort=9001

For more information about the parameters you can use to configure document tracking, refer to
the Connector Framework Server Reference.

 4. Save and close the configuration file.

Administration Guide
Chapter 9: Monitor Connector Framework Server

Connector Framework Server (11.6) Page 119 of 185

Appendix A: KeyView Supported Formats

This section lists information about the file formats that can be detected and processed by KeyView.

• Supported Formats 120
• Archive Formats 122
• Binary Format 124
• Computer-Aided Design Formats 124
• Database Formats 126
• Desktop Publishing 127
• Display Formats 127
• Graphic Formats 128
• Mail Formats 131
• Multimedia Formats 133
• Presentation Formats 135
• Spreadsheet Formats 137
• Text and Markup Formats 139
• Word Processing Formats 140

• Supported Formats (Detected) 145

Supported Formats

The tables in this section provide the following information:

 l The file formats that can be processed by KeyView, and the features that are supported for each
format:
 o The Filter column specifies whether KeyView can extract the main content of the file (for

example the text in a document or the body of an email message). CFS writes this text to the
document content.

 o The Extract column specifies whether KeyView can extract subfiles from the file, if it is a
container file.

 l The file formats for which KeyView can detect and extract the character set and metadata
information (properties such as title, author, and subject).
Even though a file format might be able to provide character set information, some documents might
not contain character set information. Therefore, the document reader would not be able to determine
the character set of the document. In this case, either the operating system code page or the
character set specified in the API is used.

 l The document reader used to filter each format.

Connector Framework Server (11.6) Page 120 of 185

Symbol Description

Y The format is supported.

You can extract metadata for this format.

You can determine the character set for this format.

N The format is not supported.

You cannot extract metadata for this format.

You cannot determine the character set for this format.

P Partial metadata is extracted from this format. Some non-standard fields are not
extracted.

T Only text is extracted from this format. Formatting information is not extracted.

M Only metadata (title, subject, author, and so on) is extracted from this format. Text and
formatting information are not extracted.

Key to Support Tables

Administration Guide
Supported Formats

Connector Framework Server (11.6) Page 121 of 185

Archive Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

7-Zip 4.57 z7zsr,
multiarcsr1

7Z N N Y Y N n/a N

AD1 n/a ad1sr AD1 N N Y Y N n/a N

ARJ n/a multiarcsr ARJ N N N Y N n/a N

B1 n/a b1sr B1 N N Y Y N n/a N

BinHex n/a kvhqxsr HQX N N Y Y N n/a N

Bzip2 n/a bzip2sr BZ2 N N Y Y N n/a N

Expert Witness
Compression Format
(EnCase)

6 encasesr E01, L01 N N Y Y N n/a N

7 encase2sr Lx01 N N Y Y N n/a N

GZIP 2 kvgzsr GZ N N N Y N n/a N

kvgz GZ N N Y N N n/a N

ISO n/a isosr ISO N N Y Y N n/a N

Java Archive n/a unzip JAR N N Y Y N n/a N

Legato EMailXtender n/a emxsr EMX N N Y Y N n/a N

Supported Archive Formats

17zip is supported with the multiarcsr reader on some platforms for Extract.

Page 122 of 185Connector Framework Server (11.6)

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Archive

MacBinary n/a macbinsr BIN N N Y Y N n/a N

Mac Disk Copy Disk Image n/a dmgsr DMG N N Y Y N n/a N

Microsoft Backup File n/a bkfsr BKF N N Y Y N n/a N

Microsoft Cabinet format 1.3 cabsr CAB N N Y Y N n/a N

Microsoft Compiled HTML
Help

3 chmsr CHM N N Y Y N n/a N

Microsoft Compressed
Folder

n/a lzhsr LZH
LHA

N N N Y N n/a N

PKZIP through
9.0

unzip ZIP N N Y Y N n/a N

RAR archive 2.0
through
3.5

rarsr RAR N N N Y N n/a N

RAR5 archive 5 multiarcsr RAR5 N N N Y N n/a N

Tape Archive n/a tarsr TAR N N Y Y N n/a N

UNIX Compress n/a kvzeesr Z N N N Y N n/a N

kvzee Z N N Y N N n/a N

UUEncoding all
versions

uudsr UUE N N Y Y N n/a N

XZ n/a multiarcsr XZ N N N Y N n/a N

Supported Archive Formats, continued

Connector Framework Server (11.6) Page 123 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Windows Scrap File n/a olesr SHS N N N Y N n/a N

WinZip through
10

unzip ZIP N N Y Y N n/a N

Supported Archive Formats, continued

Binary Format

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Executable n/a exesr EXE N N Y N N n/a N

Link Library n/a exesr DLL N N Y N N n/a N

Supported Binary Formats

Computer-Aided Design Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

AutoCAD
Drawing

R13, R14,
R15/2000, 2004,

kpODArdr
kpDWGrdr1

DWG Y Y2 Y 3 N Y Y N

Supported CAD Formats

1On Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
2On non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.
3On non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.

Connector Framework Server (11.6) Page 124 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

2007, 2010, 2013

AutoCAD
Drawing
Exchange

R13, R14,
R15/2000, 2004,
2007, 2010, 2013

kpODArdr
kpDXFrdr1

DXF Y Y2 Y3 N Y Y N

CATIA formats 5 kpCATrdr CAT4 Y N N N Y N N

Microsoft Visio 4, 5, 2000, 2002,
2003, 2007, 20105

vsdsr VSD Y Y Y Y6 Y Y N

kpVSD2rdr VSD, VSS
VST

Y Y Y N Y Y N

2013 ActiveX
components

VSDM
VSSM
VSTM
VSDX
VSSX
VSTX

N N Y7 N Y N N

Supported CAD Formats, continued

1On Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
2On non-Windows platforms, graphic rendering is supported through the kpDXFrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.
3On Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
4All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.
5Viewing and Export use the graphic reader, kpVSD2rdr for Microsoft Visio 2003, 2007, and 2010, and vsdsr for all earlier versions. Image fidelity
in Viewing and Export is therefore only supported for versions 2003 and above. Filter uses the graphic reader kpVSD2rdr for Microsoft Visio 2003,
2007, and 2010, and vsdsr for all earlier versions.
6Extraction of embedded OLE objects is supported for Filter on Windows platforms only.
7Visio 2013 is supported in Viewing only, with the support of ActiveX components from the Microsoft Visio 2013 Viewer. Image fidelity is
supported but other features, such as highlighting, are not.

Connector Framework Server (11.6) Page 125 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

kpVSDXrdr VSDM
VSSM
VSTM
VSDX
VSSX
VSTX

Y Y Y4 Y Y Y N

Unigraphics
(UG) NX

 kpUGrdr PRT Y N N N N N N

Supported CAD Formats, continued

Database Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

dBase
Database

III+, IV dbfsr DBF Y Y Y N N N N

Microsoft
Access

95, 97, 2000, 2002, 2003,
2007, 2010, 2013, 2016

mdbsr MDB,
ACCDB

Y T T N N Y1 N

Microsoft
Project

2000, 2002, 2003, 2007,
2010, 2013

mppsr MPP Y Y Y Y Y Y N

Supported Database Formats

1Charset is not supported for Microsoft Access 95 or 97.

Connector Framework Server (11.6) Page 126 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Desktop Publishing

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Publisher 98 to 2016 mspubsr PUB Y T T Y Y Y N

Supported Desktop Publishing Formats

Display Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Adobe PDF 1.1 to 1.7 pdfsr PDF Y Y N Y1 Y Y N

pdf2sr PDF N Y N N N N N

kppdfrdr PDF N Y Y N N N N

kppdf2rdr2 PDF N N Y N N N N

Supported Display Formats

1Includes support for extraction of subfiles from PDF Portfolio documents.
2kppdf2rdr is an alternate graphic-based reader that produces high-fidelity output but does not support other features such as highlighting or text
searching.

Connector Framework Server (11.6) Page 127 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Graphic Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Computer Graphics
Metafile

n/a kpcgmrdr1 CGM Y Y Y N N N N

CorelDRAW2 through
9.0

10, 11,
12, X3

kpcdrrdr CDR N Y Y N N N N

DCX Fax System n/a kpdcxrdr DCX N Y Y N N N N

Digital Imaging &
Communications in
Medicine (DICOM)

n/a dcmsr DCM M N N N Y N N

Encapsulated PostScript
(raster)

TIFF
header

kpepsrdr EPS N Y Y N N N N

Enhanced Metafile n/a kpemfrdr EMF Y Y Y N Y N N

GIF 87, 89 kpgifrdr GIF N Y Y N N N N

gifsr M M N N Y N N

JBIG2 n/a kpJBIG2rdr JBIG2 N Y Y N N N N

Supported Graphic Formats

1Files with non-partitioned data are supported.

2CDR/CDR with TIFF header.

Connector Framework Server (11.6) Page 128 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

JPEG n/a kpjpgrdr JPEG N Y Y N N N N

jpgsr M M N N Y N N

JPEG 2000 n/a kpjp2000rdr JP2, JPF,
J2K, JPWL,
JPX, PGX

N Y Y N N N N

jp2000sr M M N N Y N N

Lotus AMIDraw
Graphics

n/a kpsdwrdr SDW N Y Y N N N N

Lotus Pic n/a kppicrdr PIC Y Y Y N N N N

Macintosh Raster 2 kppctrdr PIC
PCT

N Y Y N N N N

MacPaint n/a kpmacrdr PNTG N Y Y N N N N

Microsoft Office Drawing n/a kpmsordr MSO N Y Y N N N N

Omni Graffle n/a kpGFLrdr GRAFFLE Y N N N Y Y N

PC PaintBrush 3 kppcxrdr PCX N Y Y N N N N

Portable Network
Graphics

n/a kppngrdr PNG N Y Y N N N N

pngsr PNG M M N N Y N N

SGI RGB Image n/a kpsgirdr RGB N Y Y N N N N

Sun Raster Image n/a kpsunrdr RS N Y Y N N N N

Supported Graphic Formats, continued

Connector Framework Server (11.6) Page 129 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Tagged Image File through
6.01

tifsr TIFF M M N N Y N N

kptifrdr TIFF N Y Y N N N N

Truevision Targa 2 kpTGArdr TGA N Y Y N N N N

Windows Animated
Cursor

n/a kpanirdr ANI N Y Y N N N N

Windows Bitmap n/a kpbmprdr BMP N Y Y N N N N

bmpsr BMP M M N N Y N N

Windows Icon Cursor n/a kpicordr ICO N Y Y N N N N

Windows Metafile 3 kpwmfrdr WMF Y Y Y N N N N

WordPerfect Graphics 1 1 kpwpgrdr WPG N Y Y N N N N

WordPerfect Graphics 2 2, 7 kpwg2rdr WPG N Y Y N N N N

Supported Graphic Formats, continued

1The following compression types are supported: no compression, CCITT Group 3 1-Dimensional Modified Huffman, CCITT Group 3 T4 1-
Dimensional, CCITT Group 4 T6, LZW, JPEG (only Gray, RGB and CMYK color space are supported), and PackBits.

Connector Framework Server (11.6) Page 130 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Mail Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Documentum
EMCMF

n/a msgsr EMCMF N N Y Y Y Y N

Domino XML
Language1

n/a dxlsr DXL N N Y Y Y N N

GroupWise FileSurf n/a gwfssr GWFS N N Y Y Y N N

Legato Extender n/a onmsr ONM N N Y Y Y N N

Lotus Notes
database

4, 5, 6.0, 6.5, 7.0, 8.0 nsfsr NSF N N Y Y Y N N

Mailbox2 Thunderbird 1.0,
Eudora 6.2

mbxsr3 MBX N N T Y Y Y N

Microsoft Entourage
Database

2004 entsr various N N Y Y Y Y N

Supported Mail Formats

1Supports non-encrypted embedded files only.

2KeyView supports MBX files created by Eudora Email and Mozilla Thunderbird. MBX files created by other common mail applications are
typically filtered, converted, and displayed.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

Connector Framework Server (11.6) Page 131 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Outlook 97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

msgsr1 MSG,
OFT

Y T T Y Y Y 2 N

Microsoft Outlook
DBX

5.0, 6.0 dbxsr DBX N N Y Y Y Y N

Microsoft Outlook
Express

Windows 6
MacIntosh 5

emlsr3 EML Y T T Y Y Y N

mbxsr4 EML N N T Y Y Y N

Microsoft Outlook
iCalendar

1.0, 2.0 icssr ICS, VCS N N Y Y Y Y N

Microsoft Outlook
for Macintosh

2011 olmsr OLM N N Y Y N Y N

Microsoft Outlook
Offline Storage File

97, 2000, 2002,
2003, 2007, 2010,
2013

pffsr5 OST N N Y Y Y Y N

Supported Mail Formats, continued

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

2Returns "Unicode" character set for version 2003 and up, and "Unknown" character set for previous versions.

3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

5The reader pffsr is available only on Windows and Linux.

Connector Framework Server (11.6) Page 132 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Outlook
Personal Folder

97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

pstsr12 PST N N Y Y Y N N

97, 2000, 2002,
2003, 2007, 2010,
2013

pstnsr PST N N Y Y Y Y N

Microsoft Outlook
vCard Contact

2.1, 3.0, 4.0 vcfsr VCF Y Y T N Y N N

Text Mail (MIME) n/a emlsr3 various Y T T Y Y Y N

mbxsr4 various Y T T Y Y Y N

Transport Neutral
Encapsulation
Format

n/a tnefsr various N N Y Y Y Y N

Supported Mail Formats, continued

Multimedia Formats

Viewing SDK plays some multimedia files using the Windows Media Control Interface (MCI). MCI is a set of Windows APIs that communicate
with multimedia devices.

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

2Uses Microsoft Messaging Application Programming Interface (MAPI). Note that the native PST reader (pstsr) works only on Windows, and
requires that you have Microsoft Outlook installed. As an alternative, the MAPI reader (pstnsr) runs on all platforms, and does not require
Microsoft Outlook.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

Connector Framework Server (11.6) Page 133 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Advanced Systems Format 1.2 asfsr ASF
WMA
WMV

N N N N Y N N

Audio Interchange File
Format

n/a MCI AIFF N N Y N N N N

aiffsr AIFF M N N N Y N N

Microsoft Wave Sound n/a MCI WAV N N Y N N N N

riffsr WAV M N N N Y N N

MIDI n/a MCI MID N N Y N N N N

MPEG-1 Audio layer 3 ID3 v1 and
v2

MCI MP3 N N Y N N N N

mp3sr MP3 M M Y N Y N N

MPEG-1 Video 2, 3 MCI MPG N N Y N N N N

MPEG-2 Audio n/a MCI MPEGA N N Y N N N N

MPEG-4 Audio n/a mpeg4sr MP4
3GP

M N N N Y N N

NeXT/Sun Audio n/a MCI AU N N Y N N N N

QuickTime Movie 2, 3, 4 MCI QT
MOV

N N Y N N N N

Windows Video 2.1 MCI AVI N N Y N N N N

Supported Multimedia Formats

NOTE:
Depending on the default multimedia player installed on your computer, the View API might not be able to play some supported multimedia
formats. To play multimedia files, the View API uses the Windows Media Control Interface (MCI) to communicate with the multimedia

Connector Framework Server (11.6) Page 134 of 185

Administration Guide
Appendix A: KeyView Supported Formats

player installed on your computer. If the player does not play a multimedia file that is supported by the Viewing SDK, the View API cannot
play the file.

If you cannot play a supported multimedia file by using the View API, install a different multimedia player or compressor/decompressor
(codec) component.

Presentation Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Keynote 2, 3, ‘08, ‘09 kpIWPGrdr GZ Y Y Y N Y Y N

'13, '16 kplWPG13rdr KEY Y N N N N N N

Applix Presents 4.0, 4.2, 4.3,
4.4

kpagrdr AG Y Y Y N N N N

Corel Presentations 6, 7, 8, 9, 10,
11, 12, X3

kpshwrdr SHW Y Y Y N N N N

Extensible Forms
Description Language

n/a kpXFDLrdr XFD
XFDL

Y Y Y N Y Y N

Lotus Freelance
Graphics

96, 97, 98,
R9, 9.8

kpprzrdr PRZ Y Y Y N N N N

Lotus Freelance
Graphics 2

2 kpprerdr PRE Y Y Y N N N N

Macromedia Flash through 8.0 swfsr SWF Y Y Y N N Y1 N

Supported Presentation Formats

1The character set cannot be determined for versions 5.x and lower.

Connector Framework Server (11.6) Page 135 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft OneNote 2007, 2010,
2013, 2016

kpONErdr ONE
ONETOC2

Y Y Y Y N Y N

Microsoft PowerPoint
Macintosh

98 kpp40rdr PPT Y Y Y N N N N

2001, v.X,
2004

kpp97rdr PPT
PPS
POT

Y Y Y N P Y N

Microsoft PowerPoint
PC

4 kpp40rdr PPT Y Y Y N P N N

Microsoft PowerPoint
Windows

95 kpp95rdr PPT Y Y Y N P Y N

Microsoft PowerPoint
Windows

97, 2000,
2002, 2003

kpp97rdr PPT
PPS
POT

Y Y Y Y P Y Y1

Microsoft PowerPoint
Windows XML

2007, 2010,
2013, 2016

kpppxrdr PPTX
PPTM
POTX
POTM
PPSX
PPSM
PPAM

Y Y Y Y Y Y Y

OASIS Open 1, 22 kpodfrdr SXD Y Y Y Y3 Y Y N

Supported Presentation Formats, continued

1Slide footers are supported for Microsoft PowerPoint 97 and 2003.

2Generated by OpenOffice Impress 2.0, StarOffice 8 Impress, and IBM Lotus Symphony Presentation 3.0.

3Supported using the olesr embedded objects reader.

Connector Framework Server (11.6) Page 136 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Document Format SXI
ODG
ODP

OpenOffice Impress,
LibreOffice Impress

1 to 5 sosr SXI
SXP
ODP

Y T T N Y Y N

StarOffice Impress 6, 7, 8, 9 sosr SXI
SXP
ODP

Y T T N Y Y N

Supported Presentation Formats, continued

Spreadsheet Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Numbers ‘08, ‘09 iwsssr GZ Y Y Y N Y Y N

'13, '16 iwss13sr NUMBERS Y T T N N Y N

Applix Spreadsheets 4.2, 4.3, 4.4 assr AS Y Y Y N N Y N

Comma Separated
Values

n/a csvsr CSV Y Y Y N N N N

Corel Quattro Pro 5, 6, 7, 8 qpssr WB2
WB3

Y Y Y N P Y N

X4 qpwsr QPW Y N Y N P Y N

Data Interchange n/a difsr Y Y Y N N N N

Supported Spreadsheet Formats

Connector Framework Server (11.6) Page 137 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Format

Lotus 1-2-3 96, 97, R9, 9.8 l123sr 123 Y Y Y N P Y N

Lotus 1-2-3 2, 3, 4, 5 wkssr WK4 Y Y Y N N Y N

Lotus 1-2-3 Charts 2, 3, 4, 5 kpchtrdr 123 N Y Y N N N N

Microsoft Excel Charts 2, 3, 4, 5, 6, 7 kpchtrdr XLS N Y Y N N N N

Microsoft Excel
Macintosh

98, 2001, v.X,
2004

xlssr XLS Y Y Y Y1 Y Y N

Microsoft Excel
Windows

2.2 through
2003

xlssr XLS
XLW
XLT
XLA

Y Y Y Y2 Y Y Y

Microsoft Excel
Windows XML

2007, 2010,
2013, 2016

xlsxsr XLSX
XLTX
XLSM
XLTM
XLAM

Y Y Y Y Y Y Y

Microsoft Excel Binary
Format

2007, 2010,
2013, 2016

xlsbsr XLSB Y Y Y N N N N

Microsoft Works
Spreadsheet

2, 3, 4 mwssr S30
S40

Y Y Y N N Y N

Supported Spreadsheet Formats, continued

1Supported using the embedded objects reader olesr.
2Supported for versions 97 and higher using the embedded objects reader olesr.

Connector Framework Server (11.6) Page 138 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

OASIS Open
Document Format

1, 21 odfsssr ODS
SXC
STC

Y Y Y Y2 Y Y N

OpenOffice Calc,
LibreOffice Calc

1 to 5 sosr SXC
ODS
OTS

Y T T N Y Y N

StarOffice Calc 6, 7, 8, 9 sosr SXC
ODS

Y T T N Y Y N

Supported Spreadsheet Formats, continued

Text and Markup Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

ANSI n/a afsr TXT Y Y Y N N N N

ASCII n/a afsr TXT Y Y Y N N N N

HTML 3, 4 htmsr HTM Y Y Y N P Y N

Microsoft Excel Windows
XML

2003 xmlsr XML Y T T N Y Y N

Microsoft Word Windows
XML

2003 xmlsr XML Y T T N Y Y N

Supported Text and Markup Formats

1Generated by OpenOffice Calc 2.0, StarOffice 8 Calc, and IBM Lotus Symphony Spreadsheet 3.0.
2Supported using the embedded objects reader olesr.

Connector Framework Server (11.6) Page 139 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Visio XML 2003 xmlsr VDX
VTX

Y T T N Y Y N

MIME HTML n/a mhtsr MHT Y Y Y N Y Y N

Rich Text Format 1 through
1.7

rtfsr RTF Y Y Y N P Y Y

Unicode HTML n/a unihtmsr HTM Y Y Y N Y Y N

Unicode Text 3, 4 unisr TXT Y Y Y N N Y N

XHTML 1.0 htmsr HTM Y Y Y N Y Y N

XML (generic) 1.0 xmlsr XML Y T T N Y Y N

Supported Text and Markup Formats, continued

Word Processing Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Adobe FrameMaker
Interchange Format

5, 5.5, 6, 7 mifsr MIF Y Y Y N N Y N

Apple iChat Log 1, AV 2
AV 2.1, AV 3

ichatsr ICHAT Y Y Y N N N N

Apple iWork Pages ‘08, ‘09 iwwpsr GZ Y Y Y N Y Y N

'13, '16 iwwp13sr PAGES Y T T N N N N

Applix Words 3.11, 4, 4.1,
4.2, 4.3, 4.4

awsr AW Y Y Y N N Y Y

Supported Word Processing Formats

Connector Framework Server (11.6) Page 140 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Corel WordPerfect
Linux

6.0, 8.1 wp6sr WPS Y Y Y N P Y N

Corel WordPerfect
Macintosh

1.02, 2, 2.1,
2.2, 3, 3.1

wpmsr WPM Y Y Y N N Y N

Corel WordPerfect
Windows

5, 5.1 wosr WO Y Y Y N P Y Y

Corel WordPerfect
Windows

6, 7, 8, 9, 10,
11, 12, X3

wp6sr WPD Y Y Y N P Y Y

DisplayWrite 4 dw4sr IP Y Y Y N N Y N

Folio Flat File 3.1 foliosr FFF Y Y Y N Y Y Y

Founder Chinese E-
paper Basic

3.2.1 cebsr1 CEB Y N N N N N N

Fujitsu Oasys 7 oa2sr OA2 Y Y Y N P N N

Haansoft Hangul 97 hwpsr HWP Y N N N N Y N

2002, 2005,
2007, 2010

hwposr HWP Y T T Y Y Y N

Health level7 2.0 hl7sr HL7 Y Y Y N Y Y N

IBM DCA/RFT
(Revisable Form Text)

SC23-0758-1 dcasr DC Y Y Y N N Y N

Supported Word Processing Formats, continued

1This reader is only supported on Windows 32-bit platforms.

Connector Framework Server (11.6) Page 141 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

JustSystems Ichitaro 8 through 2013 jtdsr JTD Y Y Y N P N Y

Lotus AMI Pro 2, 3 lasr SAM Y Y Y N P Y Y

Lotus AMI Professional
Write Plus

2.1 lasr AMI Y Y Y N N N Y

Lotus Word Pro 96, 97, R9 lwpsr LWP Y Y Y N P N Y

Lotus SmartMaster 96, 97 lwpsr MWP Y Y Y N N N N

Microsoft Word
Macintosh

4, 5, 6, 98 mbsr DOC Y Y Y N Y N Y

2001, v.X,
2004

mw8sr DOC
DOT

Y Y Y Y1 Y Y N

Microsoft Word PC 4, 5, 5.5, 6 mwsr DOC Y Y Y N N N Y

Microsoft Word
Windows

1.0 and 2.0 misr DOC Y Y Y N N N Y

Microsoft Word
Windows

6, 7, 8, 95 mw6sr DOC Y Y Y N Y Y Y

Microsoft Word
Windows

97, 2000,
2002, 2003

mw8sr DOC
DOT

Y Y Y Y2 Y Y Y

Microsoft Word
Windows XML

2007, 2010,
2013, 2016

mwxsr DOCM
DOCX

Y Y Y Y Y Y Y

Supported Word Processing Formats, continued

1Supported using the embedded objects reader olesr.

2Supported using the embedded objects reader olesr.

Connector Framework Server (11.6) Page 142 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

DOTX
DOTM

Microsoft Word
Windows Flat XML

2007, 2010,
2013, 2016

mwxsr XML Y Y Y Y Y Y Y

Microsoft Works 1, 2, 3, 4 mswsr WPS Y Y Y N N N Y

Microsoft Works 6, 2000 msw6sr WPS Y Y Y N N N Y

Microsoft Windows
Write

1, 2, 3 mwsr WRI Y Y Y N N Y N

OASIS Open
Document Format

1, 21 odfwpsr ODT
SXW
STW

Y Y Y Y2 Y Y Y

Omni Outliner v3, OPML,
OOutline

oo3sr OO3
OPML
OOUTLINE

Y Y Y N N Y N

OpenOffice Writer,
LibreOffice Writer

1 to 5 sosr SXW
ODT

Y T T N Y Y N

Open Publication
Structure eBook

2.0, 3.0 epubsr EPUB Y Y Y N Y Y N

StarOffice Writer 6, 7, 8, 9 sosr SXW
ODT

Y T T N Y Y N

Supported Word Processing Formats, continued

1Generated by OpenOffice Writer 2.0, StarOffice 8 Writer, and IBM Lotus Symphony Documents 3.0.

2Supported using the embedded objects reader olesr.

Connector Framework Server (11.6) Page 143 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Skype Log 3 skypesr DBB Y Y Y N N N N

WordPad through 2003 rtfsr RTF Y Y Y N P Y N

XML Paper
Specification

n/a xpssr XPS Y T T N N N N

XyWrite 4.12 xywsr XY4 Y Y Y N N N N

Yahoo! Instant
Messenger

n/a yimsr1 DAT Y Y Y N N N N

Supported Word Processing Formats, continued

1To successfully use this reader, you must set the KV_YAHOO_ID environment variable to the Yahoo user ID. You can optionally set the KV_
OTHER_YAHOO_ID environment variable to the other Yahoo user ID. If you do not set it, "Other" is used by default. If you enter incorrect values for
the environment variables, erroneous data is generated.

Connector Framework Server (11.6) Page 144 of 185

Administration Guide
Appendix A: KeyView Supported Formats

Supported Formats (Detected)

The file formats listed in this section can be detected by the KeyView format detection module, but
cannot be filtered, converted, or displayed.

These file formats therefore cannot be processed by CFS.

 l 3D Systems STL format
 l Ability Office (SS, DB, GR, WP, COM)
 l AC3 audio
 l ACT
 l Adobe FrameMaker
 l Adobe FrameMaker Markup Language
 l AES Multiplus Comm
 l Aldus Freehand (Macintosh)
 l Aldus PageMaker (DOS)
 l Aldus PageMaker (Macintosh)
 l Amiga IFF-8SVX sound
 l Amiga MOD sound
 l Apple Binary Property List
 l Apple Double
 l Apple iWork
 l Apple Photoshop Document
 l Apple Single
 l Apple XML Property List
 l Appleworks
 l Applix Alis
 l Applix Asterix
 l Applix Graphics
 l ARC/PAK Archive
 l ASCII-armored PGP encoded
 l ASCII-armored PGP Public Keyring
 l ASCII-armored PGP signed
 l AutoDesk Animator FLIC Animation
 l AutoDesk Animator Pro FLIC Animation
 l AutoDesk WHIP
 l AutoShade Rendering
 l B1 Archive
 l BlackBerry Activation File

Connector Framework Server (11.6) Page 145 of 185

 l CADAM Drawing
 l CADAM Drawing Overlay
 l CCITT Group 3 1-Dimensional (G31D)
 l COMET TOP Word
 l Confifer Software WavPack
 l Convergent Tech DEF Comm.
 l Corel Draw CMX
 l cpio Archive (UNIX/VAX/SUN)
 l CPT Communication
 l Creative Voice (VOC) sound
 l Curses Screen Image (UNIX/VAX/SUN)
 l Data Point VISTAWORD
 l DCX Fax
 l DEC WPS PLUS
 l DECdx
 l Desktop Color Separation (DCS)
 l Device Independent file (DVI)
 l DG CEOwrite
 l DG Common Data Stream (CDS)
 l DIF Spreadsheet
 l Digital Document Interchange Format (DDIF)
 l Digital Imaging and Communications in Medicine (DICOM)
 l Disk Doubler Compression
 l EBCDIC Text
 l eFax
 l ENABLE
 l ENABLE Spreadsheet (SSF)
 l Envoy (EVY)
 l Executable UNIX/VAX/SUN
 l FileMaker (Macintosh)
 l FPX format
 l Framework
 l Framework II
 l Freehand 11
 l FTP Session Data
 l GEM Bit Image
 l Ghost Disk Image
 l Google SketchUp

Administration Guide
Supported Formats (Detected)

Connector Framework Server (11.6) Page 146 of 185

 l Graphics Environment Manager (GEM VDI)
 l Harvard Graphics
 l Hewlett Packard
 l Honey Bull DSA101
 l HP Graphics Language (HP-GL)
 l HP Graphics Language (Plotter)
 l HP PCL and PJL Languages
 l HP Word PC
 l IBM 1403 Line Printer
 l IBM DCA-FFT
 l IBM DCF Script
 l Informix SmartWare II
 l Informix SmartWare II Communication File
 l Informix SmartWare II Database
 l Informix SmartWare Spreadsheet
 l Interleaf
 l ISO 10303-21 STEP format
 l Java Class file
 l JPEG File Interchange Format (JFIF)
 l Keyhole Markup Language
 l KW ODA G4 (G4)
 l KW ODA G31D (G31)
 l KW ODA Internal G32D (G32)
 l KW ODA Internal Raw Bitmap (RBM)
 l Lasergraphics Language
 l Link Library UNIX/VAX/SUN
 l Lotus Notes Bitmap
 l Lotus Notes CDF
 l Lotus Screen Cam
 l Lyrix
 l Macromedia Director
 l MacWrite
 l MacWrite II
 l MASS-11
 l MATLAB MAT Format
 l Micrografx Designer
 l Microsoft Access 2007
 l Microsoft Access 2007 Template

Administration Guide
Supported Formats (Detected)

Connector Framework Server (11.6) Page 147 of 185

 l Microsoft Common Object File Format (COFF)
 l Microsoft Compiled HTML Help
 l Microsoft Device Independent Bitmap
 l Microsoft Document Imaging (MDI)
 l Microsoft Excel 2007 Macro-Enabled Spreadsheet Template
 l Microsoft Excel 2007 Spreadsheet Template
 l Microsoft Exchange Server Database File
 l Microsoft Object File Library
 l Microsoft Office Drawing
 l Microsoft Office Groove
 l Microsoft Outlook Restricted Permission Message File
 l Microsoft Windows Cursor (CUR) Graphics
 l Microsoft Windows Group File
 l Microsoft Windows Help File
 l Microsoft Windows Icon (ICO)
 l Microsoft Windows NT Event Log
 l Microsoft Windows OLE 2 Encapsulation
 l Microsoft Windows Vista Event Log
 l Microsoft Word (UNIX)
 l Microsoft Works (Macintosh)
 l Microsoft Works Communication (Macintosh)
 l Microsoft Works Communication (Windows)
 l Microsoft Works Database (Macintosh)
 l Microsoft Works Database (PC)
 l Microsoft Works Database (Windows)
 l Microsoft Works Spreadsheet (Macintosh)
 l Microstation
 l Milestone Document
 l MORE Database Outliner (Macintosh)
 l MPEG4 (ISO IEC MPEG4)
 l MPEG-PS container with CDXA stream
 l MS DOS Batch File format
 l MS DOS Device Driver
 l MultiMate 4.0
 l Multiplan Spreadsheet
 l Navy DIF
 l NBI Async Archive Format
 l NBI Net Archive Format

Administration Guide
Supported Formats (Detected)

Connector Framework Server (11.6) Page 148 of 185

 l Nero Encrypted File
 l Netscape Bookmark file
 l NeWS font file (SUN)
 l NIOS TOP
 l Nota Bene
 l NURSTOR Drawing
 l Object Module UNIX/VAX/SUN
 l ODA/ODIF
 l ODA/ODIF (FOD 26)
 l Office Writer
 l OLE DIB object
 l OLIDIF
 l Open PGP (new format packets)
 l OS/2 PM Metafile Graphics
 l PaperPort image file
 l Paradox (PC) Database
 l PC COM executable (detected in file mode only)
 l PC Library Module
 l PC Object Module
 l PC True Type Font
 l PCD Image
 l PeachCalc Spreadsheet
 l Persuasion Presentation
 l PEX Binary Archive (SUN)
 l PGP Compressed Data
 l PGP Encrypted Data
 l PGP Public Keyring
 l PGP Secret Keyring
 l PGP Signature Certificate
 l PGP Signed and Encrypted Data
 l PGP Signed Data
 l Philips Script
 l PKCS #12 (p12) Format
 l Plan Perfect
 l Portable Bitmap Utilities (PBM)
 l Portable Greymap Utilities (PGM)
 l Portable Pixmap Utilities (PPM)
 l PostScript File

Administration Guide
Supported Formats (Detected)

Connector Framework Server (11.6) Page 149 of 185

 l PostScript Type 1 Font File
 l PRIMEWORD
 l Program Information File
 l PTC Creo
 l Q & A for DOS
 l Q & A for Windows
 l Quadratron Q-One (V1.93J)
 l Quadratron Q-One (V2.0)
 l Quark Xpress (Macintosh)
 l QuickDraw 3D Metafile (3DMF)
 l Real Audio
 l RealLegal E-Transcript
 l Reflex Database (R2D)
 l RIFF Device Independent Bitmap
 l RIFF MIDI
 l RIFF Multimedia Movie
 l SAMNA Word IV
 l Samsung Electronics JungUm Global format
 l SEG-Y Seismic Data format
 l Serialized Object Format (SOF) Encapsulation
 l SGML
 l Simple Vector Format (SVF)
 l SMTP document
 l SolidWorks
 l Sony WAVE64 format
 l Star Office Calc Spreadsheet (versions 3-5)
 l Star Office Impress Presentation (versions 3-5)
 l Star Office Math (versions 3-5)
 l Star Office Writer Text (versions 3-5)
 l StuffIt Archive (Macintosh)
 l SUN vfont definition
 l SYLK Spreadsheet
 l Symphony Spreadsheet
 l Targon Word (V 2.0)
 l Unigraphics NX
 l Uniplex (V6.01)
 l UNIX SHAR Encapsulation
 l Usenet format

Administration Guide
Supported Formats (Detected)

Connector Framework Server (11.6) Page 150 of 185

 l Volkswriter
 l Vorbis OGG format
 l VRML
 l VRML 2.0
 l WANG PC
 l Wang WITA
 l WANG WPS Comm.
 l Web ARChive (WARC)
 l Windows C++ Object Storage
 l Windows Journal
 l Windows Micrografx Draw (DRW)
 l Windows Palette
 l Windows scrap file (SHS)
 l Wireless Markup Language
 l Word Connection
 l WordMARC word processor
 l WordPerfect General File
 l WordStar
 l WordStar 6.0
 l WordStar 2000
 l WriteNow
 l Writing Assistant word processor
 l X Bitmap (XBM)
 l X Image
 l X Pixmap (XPM)
 l Xerox 860 Comm.
 l Xerox DocuWorks
 l Xerox Writer word processor
 l Yahoo! Messenger chat log
 l Zipped Keyhole Markup Language

Administration Guide
Supported Formats (Detected)

Connector Framework Server (11.6) Page 151 of 185

Appendix B: KeyView Format Codes

This section lists the KeyView format classes and codes used with Connector Framework Server.

 l KeyView Classes, below
 l KeyView Formats, on the next page
KeyView Classes lists KeyView file classes. The numbers are reported in the DocumentClass field in
documents processed by CFS. Consult the table to determine the file class that was imported.

KeyView Formats, on the next page lists all KeyView formats. The numbers are reported in the
DocumentType field in documents processed by Connector Framework Server. Consult the table to determine
the file type that was imported.

You can use any of the format numbers from KeyView Formats, on the next page in conjunction with the
ImportFamilyRootExcludeFmtCSV parameter. For more information about this parameter, refer to the
Connector Framework Server Reference.

KeyView Classes

Attribute number File class

0 No file class

01 Word processor

02 Spreadsheet

03 Database

04 Raster image

05 Vector graphic

06 Presentation

07 Executable

08 Encapsulation

09 Sound

10 Desktop publishing

11 Outline/planning

12 Miscellaneous

13 Mixed format

KeyView classes

Connector Framework Server (11.6) Page 152 of 185

Attribute number File class

14 Font

15 Time scheduling

16 Communications

17 Object module

18 Library module

19 Fax

20 Movie

21 Animation

KeyView classes, continued

KeyView Formats

The following table lists KeyView file format codes and the file extensions they are most commonly
associated with.

NOTE:
This table is not a complete list of file extensions. KeyView returns format codes based on file
content, which cannot always be predicted from the file extension. Some file extensions may
also be associated with multiple format numbers.

Format Name Format
Number

Format Description Associated File
Extension

AES_Multiplus_
Comm_Fmt

1 Multiplus (AES) PTF

ASCII_Text_Fmt 2 Text

MSDOS_Batch_
File_Fmt

3 MS-DOS Batch File BAT

Applix_Alis_Fmt 4 APPLIX ASTERIX AX

BMP_Fmt 5 Windows Bitmap BMP

CT_DEF_Fmt 6 Convergent Technologies DEF
Comm. Format

Corel_Draw_Fmt 7 Corel Draw CDR

CGM_ClearText_ 8 Computer Graphics Metafile (CGM) CGM1

KeyView file formats and extensions

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 153 of 185

Format Name Format
Number

Format Description Associated File
Extension

Fmt

CGM_Binary_Fmt 9 Computer Graphics Metafile (CGM) CGM 1

CGM_Character_
Fmt

10 Computer Graphics Metafile (CGM) CGM 1

Word_Connection_
Fmt

11 Word Connection CN

COMET_TOP_
Word_Fmt

12 COMET TOP

CEOwrite_Fmt 13 CEOwrite CW

DSA101_Fmt 14 DSA101 (Honeywell Bull)

DCA_RFT_Fmt 15 DCA-RFT (IBM Revisable Form) RFT

CDA_DDIF_Fmt 16 CDA / DDIF

DG_CDS_Fmt 17 DG Common Data Stream (CDS) CDS

Micrografx_Draw_
Fmt

18 Windows Draw (Micrografx) DRW

Data_Point_
VistaWord_Fmt

19 Vistaword

DECdx_Fmt 20 DECdx DX

Enable_WP_Fmt 21 Enable Word Processing WPF

EPSF_Fmt 22 Encapsulated PostScript EPS 1

Preview_EPSF_Fmt 23 Encapsulated PostScript EPS 1

MS_Executable_Fmt 24 MSDOS/Windows Program EXE

G31D_Fmt 25 CCITT G3 1D

GIF_87a_Fmt 26 Graphics Interchange Format
(GIF87a)

GIF 1

GIF_89a_Fmt 27 Graphics Interchange Format
(GIF89a)

GIF 1

HP_Word_PC_Fmt 28 HP Word PC HW

IBM_1403_
LinePrinter_Fmt

29 IBM 1403 Line Printer I4

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 154 of 185

Format Name Format
Number

Format Description Associated File
Extension

IBM_DCF_Script_
Fmt

30 DCF Script IC

IBM_DCA_FFT_Fmt 31 DCA-FFT (IBM Final Form) IF

Interleaf_Fmt 32 Interleaf

GEM_Image_Fmt 33 GEM Bit Image IMG

IBM_Display_Write_
Fmt

34 Display Write IP

Sun_Raster_Fmt 35 Sun Raster RAS

Ami_Pro_Fmt 36 Lotus Ami Pro SAM

Ami_Pro_
StyleSheet_Fmt

37 Lotus Ami Pro Style Sheet

MORE_Fmt 38 MORE Database MAC

Lyrix_Fmt 39 Lyrix Word Processing

MASS_11_Fmt 40 MASS-11 M1

MacPaint_Fmt 41 MacPaint PNTG

MS_Word_Mac_Fmt 42 Microsoft Word for Macintosh DOC 1

SmartWare_II_
Comm_Fmt

43 SmartWare II

MS_Word_Win_Fmt 44 Microsoft Word for Windows DOC 1

Multimate_Fmt 45 MultiMate MM 1

Multimate_Fnote_
Fmt

46 MultiMate Footnote File FNX 1

Multimate_Adv_Fmt 47 MultiMate Advantage

Multimate_Adv_
Fnote_Fmt

48 MultiMate Advantage Footnote File

Multimate_Adv_II_
Fmt

49 MultiMate Advantage II MM1

Multimate_Adv_II_
Fnote_Fmt

50 MultiMate Advantage II Footnote File FNX 1

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 155 of 185

Format Name Format
Number

Format Description Associated File
Extension

Multiplan_PC_Fmt 51 Multiplan (PC)

Multiplan_Mac_Fmt 52 Multiplan (Mac)

MS_RTF_Fmt 53 Rich Text Format (RTF) RTF

MS_Word_PC_Fmt 54 Microsoft Word for PC DOC 1

MS_Word_PC_
StyleSheet_Fmt

55 Microsoft Word for PC Style Sheet DOC 1

MS_Word_PC_
Glossary_Fmt

56 Microsoft Word for PC Glossary DOC 1

MS_Word_PC_
Driver_Fmt

57 Microsoft Word for PC Driver DOC 1

MS_Word_PC_
Misc_Fmt

58 Microsoft Word for PC Miscellaneous
File

DOC 1

NBI_Async_
Archive_Fmt

59 NBI Async Archive Format

Navy_DIF_Fmt 60 Navy DIF ND

NBI_Net_Archive_
Fmt

61 NBI Net Archive Format NN

NIOS_TOP_Fmt 62 NIOS TOP

FileMaker_Mac_Fmt 63 Filemaker MAC FP5, FP7

ODA_Q1_11_Fmt 64 ODA / ODIF OD1

ODA_Q1_12_Fmt 65 ODA / ODIF OD 1

OLIDIF_Fmt 66 OLIDIF (Olivetti)

Office_Writer_Fmt 67 Office Writer OW

PC_Paintbrush_Fmt 68 PC Paintbrush Graphics (PCX) PCX

CPT_Comm_Fmt 69 CPT

Lotus_PIC_Fmt 70 Lotus PIC PIC

Mac_PICT_Fmt 71 QuickDraw Picture PCT

Philips_Script_
Word_Fmt

72 Philips Script

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 156 of 185

Format Name Format
Number

Format Description Associated File
Extension

PostScript_Fmt 73 PostScript PS

PRIMEWORD_Fmt 74 PRIMEWORD

Quadratron_Q_One_
v1_Fmt

75 Q-One V1.93J Q1 1, QX 1

Quadratron_Q_One_
v2_Fmt

76 Q-One V2.0 Q1 1, QX 1

SAMNA_Word_IV_
Fmt

77 SAMNA Word SAM

Ami_Pro_Draw_Fmt 78 Lotus Ami Pro Draw SDW

SYLK_Spreadsheet_
Fmt

79 SYLK

SmartWare_II_WP_
Fmt

80 SmartWare II

Symphony_Fmt 81 Symphony WR1

Targa_Fmt 82 Targa TGA

TIFF_Fmt 83 TIFF TIF, TIFF

Targon_Word_Fmt 84 Targon Word TW

Uniplex_Ucalc_Fmt 85 Uniplex Ucalc SS

Uniplex_WP_Fmt 86 Uniplex UP

MS_Word_UNIX_
Fmt

87 Microsoft Word UNIX DOC1

WANG_PC_Fmt 88 WANG PC

WordERA_Fmt 89 WordERA

WANG_WPS_
Comm_Fmt

90 WANG WPS WF

WordPerfect_Mac_
Fmt

91 WordPerfect MAC WPM, WPD1

WordPerfect_Fmt 92 WordPerfect WO, WPD1

WordPerfect_VAX_
Fmt

93 WordPerfect VAX WPD1

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 157 of 185

Format Name Format
Number

Format Description Associated File
Extension

WordPerfect_Macro_
Fmt

94 WordPerfect Macro

WordPerfect_
Dictionary_Fmt

95 WordPerfect Spelling Dictionary

WordPerfect_
Thesaurus_Fmt

96 WordPerfect Thesaurus

WordPerfect_
Resource_Fmt

97 WordPerfect Resource File

WordPerfect_Driver_
Fmt

98 WordPerfect Driver

WordPerfect_Cfg_
Fmt

99 WordPerfect Configuration File

WordPerfect_
Hyphenation_Fmt

100 WordPerfect Hyphenation Dictionary

WordPerfect_Misc_
Fmt

101 WordPerfect Miscellaneous File WPD1

WordMARC_Fmt 102 WordMARC WM, PW

Windows_Metafile_
Fmt

103 Windows Metafile WMF1

Windows_Metafile_
NoHdr_Fmt

104 Windows Metafile (no header) WMF1

SmartWare_II_DB_
Fmt

105 SmartWare II

WordPerfect_
Graphics_Fmt

106 WordPerfect Graphics WPG, QPG

WordStar_Fmt 107 WordStar WS

WANG_WITA_Fmt 108 WANG WITA WT

Xerox_860_Comm_
Fmt

109 Xerox 860

Xerox_Writer_Fmt 110 Xerox Writer

DIF_SpreadSheet_
Fmt

111 Data Interchange Format (DIF) DIF

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 158 of 185

Format Name Format
Number

Format Description Associated File
Extension

Enable_
Spreadsheet_Fmt

112 Enable Spreadsheet SSF

SuperCalc_Fmt 113 Supercalc CAL

UltraCalc_Fmt 114 UltraCalc

SmartWare_II_SS_
Fmt

115 SmartWare II

SOF_Encapsulation_
Fmt

116 Serialized Object Format (SOF) SOF

PowerPoint_Win_
Fmt

117 PowerPoint PC PPT1

PowerPoint_Mac_
Fmt

118 PowerPoint MAC PPT1

PowerPoint_95_Fmt 119 PowerPoint 95 PPT1

PowerPoint_97_Fmt 120 PowerPoint 97 PPT1

PageMaker_Mac_
Fmt

121 PageMaker for Macintosh

PageMaker_Win_
Fmt

122 PageMaker for Windows

MS_Works_Mac_
WP_Fmt

123 Microsoft Works for MAC

MS_Works_Mac_
DB_Fmt

124 Microsoft Works for MAC

MS_Works_Mac_
SS_Fmt

125 Microsoft Works for MAC

MS_Works_Mac_
Comm_Fmt

126 Microsoft Works for MAC

MS_Works_DOS_
WP_Fmt

127 Microsoft Works for DOS WPS1

MS_Works_DOS_
DB_Fmt

128 Microsoft Works for DOS WDB1

MS_Works_DOS_
SS_Fmt

129 Microsoft Works for DOS

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 159 of 185

Format Name Format
Number

Format Description Associated File
Extension

MS_Works_Win_
WP_Fmt

130 Microsoft Works for Windows WPS1

MS_Works_Win_
DB_Fmt

131 Microsoft Works for Windows WDB1

MS_Works_Win_
SS_Fmt

132 Microsoft Works for Windows S30, S40

PC_Library_Fmt 133 DOS/Windows Object Library

MacWrite_Fmt 134 MacWrite

MacWrite_II_Fmt 135 MacWrite II

Freehand_Fmt 136 Freehand MAC

Disk_Doubler_Fmt 137 Disk Doubler

HP_GL_Fmt 138 HP Graphics Language HPGL

FrameMaker_Fmt 139 FrameMaker FM, FRM

FrameMaker_Book_
Fmt

140 FrameMaker BOOK

Maker_Markup_
Language_Fmt

141 Maker Markup Language

Maker_Interchange_
Fmt

142 Maker Interchange Format (MIF) MIF

JPEG_File_
Interchange_Fmt

143 Interchange Format JPG, JPEG

Reflex_Fmt 144 Reflex

Framework_Fmt 145 Framework

Framework_II_Fmt 146 Framework II FW3

Paradox_Fmt 147 Paradox DB

MS_Windows_
Write_Fmt

148 Windows Write WRI

Quattro_Pro_DOS_
Fmt

149 Quattro Pro for DOS

Quattro_Pro_Win_
Fmt

150 Quattro Pro for Windows WB2, WB3

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 160 of 185

Format Name Format
Number

Format Description Associated File
Extension

Persuasion_Fmt 151 Persuasion

Windows_Icon_Fmt 152 Windows Icon Format ICO

Windows_Cursor_
Fmt

153 Windows Cursor CUR

MS_Project_
Activity_Fmt

154 Microsoft Project MPP1

MS_Project_
Resource_Fmt

155 Microsoft Project MPP1

MS_Project_Calc_
Fmt

156 Microsoft Project MPP1

PKZIP_Fmt 157 ZIP Archive ZIP

Quark_Xpress_Fmt 158 Quark Xpress MAC

ARC_PAK_Archive_
Fmt

159 PAK/ARC Archive ARC, PAK

MS_Publisher_Fmt 160 Microsoft Publisher PUB1

PlanPerfect_Fmt 161 PlanPerfect

WordPerfect_
Auxiliary_Fmt

162 WordPerfect auxiliary file WPW

MS_WAVE_Audio_
Fmt

163 Microsoft Wave WAV

MIDI_Audio_Fmt 164 MIDI MID, MIDI

AutoCAD_DXF_
Binary_Fmt

165 AutoCAD DXF DXF1

AutoCAD_DXF_
Text_Fmt

166 AutoCAD DXF DXF1

dBase_Fmt 167 dBase DBF

OS_2_PM_Metafile_
Fmt

168 OS/2 PM Metafile MET

Lasergraphics_
Language_Fmt

169 Lasergraphics Language

AutoShade_ 170 AutoShade Rendering

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 161 of 185

Format Name Format
Number

Format Description Associated File
Extension

Rendering_Fmt

GEM_VDI_Fmt 171 GEM VDI VDI

Windows_Help_Fmt 172 Windows Help File HLP

Volkswriter_Fmt 173 Volkswriter VW4

Ability_WP_Fmt 174 Ability

Ability_DB_Fmt 175 Ability

Ability_SS_Fmt 176 Ability

Ability_Comm_Fmt 177 Ability

Ability_Image_Fmt 178 Ability

XyWrite_Fmt 179 XYWrite / Nota Bene XY4

CSV_Fmt 180 CSV (Comma Separated Values) CSV

IBM_Writing_
Assistant_Fmt

181 IBM Writing Assistant IWA

WordStar_2000_Fmt 182 WordStar 2000 WS2

HP_PCL_Fmt 183 HP Printer Control Language PCL

UNIX_Exe_
PreSysV_VAX_Fmt

184 Unix Executable (PDP-11/pre-
System V VAX)

UNIX_Exe_Basic_
16_Fmt

185 Unix Executable (Basic-16)

UNIX_Exe_x86_Fmt 186 Unix Executable (x86)

UNIX_Exe_iAPX_
286_Fmt

187 Unix Executable (iAPX 286)

UNIX_Exe_MC68k_
Fmt

188 Unix Executable (MC680x0)

UNIX_Exe_3B20_
Fmt

189 Unix Executable (3B20)

UNIX_Exe_
WE32000_Fmt

190 Unix Executable (WE32000)

UNIX_Exe_VAX_
Fmt

191 Unix Executable (VAX)

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 162 of 185

Format Name Format
Number

Format Description Associated File
Extension

UNIX_Exe_Bell_5_
Fmt

192 Unix Executable (Bell 5.0)

UNIX_Obj_VAX_
Demand_Fmt

193 Unix Object Module (VAX Demand)

UNIX_Obj_MS8086_
Fmt

194 Unix Object Module (old MS 8086)

UNIX_Obj_Z8000_
Fmt

195 Unix Object Module (Z8000)

AU_Audio_Fmt 196 NeXT/Sun Audio Data AU

NeWS_Font_Fmt 197 NeWS bitmap font

cpio_Archive_
CRChdr_Fmt

198 cpio archive (CRC Header)

cpio_Archive_
CHRhdr_Fmt

199 cpio archive (CHR Header)

PEX_Binary_
Archive_Fmt

200 SUN PEX Binary Archive

Sun_vfont_Fmt 201 SUN vfont Definition

Curses_Screen_Fmt 202 Curses Screen Image

UUEncoded_Fmt 203 UU encoded UUE

WriteNow_Fmt 204 WriteNow MAC

PC_Obj_Fmt 205 DOS/Windows Object Module

Windows_Group_
Fmt

206 Windows Group

TrueType_Font_Fmt 207 TrueType Font TTF

Windows_PIF_Fmt 208 Program Information File (PIF) PIF

MS_COM_
Executable_Fmt

209 PC (.COM) COM

StuffIt_Fmt 210 StuffIt (MAC) HQX

PeachCalc_Fmt 211 PeachCalc

Wang_GDL_Fmt 212 WANG Office GDL Header

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 163 of 185

Format Name Format
Number

Format Description Associated File
Extension

Q_A_DOS_Fmt 213 Q & A for DOS

Q_A_Win_Fmt 214 Q & A for Windows JW

WPS_PLUS_Fmt 215 WPS-PLUS WPL

DCX_Fmt 216 DCX FAX Format(PCX images DCX

OLE_Fmt 217 OLE Compound Document OLE

EBCDIC_Fmt 218 EBCDIC Text

DCS_Fmt 219 DCS

UNIX_SHAR_Fmt 220 SHAR SHAR

Lotus_Notes_
BitMap_Fmt

221 Lotus Notes Bitmap

Lotus_Notes_CDF_
Fmt

222 Lotus Notes CDF CDF

Compress_Fmt 223 Unix Compress Z

GZ_Compress_Fmt 224 GZ Compress GZ1

TAR_Fmt 225 TAR TAR

ODIF_FOD26_Fmt 226 ODA / ODIF F26

ODIF_FOD36_Fmt 227 ODA / ODIF F36

ALIS_Fmt 228 ALIS

Envoy_Fmt 229 Envoy EVY

PDF_Fmt 230 Portable Document Format PDF

BinHex_Fmt 231 BinHex HQX

SMTP_Fmt 232 SMTP SMTP

MIME_Fmt 233 MIME2 EML, MBX

USENET_Fmt 234 USENET

SGML_Fmt 235 SGML SGML

HTML_Fmt 236 HTML HTM1, HTML 1

ACT_Fmt 237 ACT ACT

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 164 of 185

Format Name Format
Number

Format Description Associated File
Extension

PNG_Fmt 238 Portable Network Graphics (PNG) PNG

MS_Video_Fmt 239 Video for Windows (AVI) AVI

Windows_Animated_
Cursor_Fmt

240 Windows Animated Cursor ANI

Windows_CPP_Obj_
Storage_Fmt

241 Windows C++ Object Storage

Windows_Palette_
Fmt

242 Windows Palette PAL

RIFF_DIB_Fmt 243 RIFF Device Independent Bitmap

RIFF_MIDI_Fmt 244 RIFF MIDI RMI

RIFF_Multimedia_
Movie_Fmt

245 RIFF Multimedia Movie

MPEG_Fmt 246 MPEG Movie MPG, MPEG1

QuickTime_Fmt 247 QuickTime Movie, MPEG-4 Audio MOV, QT, MP4

AIFF_Fmt 248 Audio Interchange File Format (AIFF) AIF, AIFF

Amiga_MOD_Fmt 249 Amiga MOD MOD

Amiga_IFF_8SVX_
Fmt

250 Amiga IFF (8SVX) Sound IFF

Creative_Voice_
Audio_Fmt

251 Creative Voice (VOC) VOC

AutoDesk_Animator_
FLI_Fmt

252 AutoDesk Animator FLIC FLI

AutoDesk_
AnimatorPro_FLC_
Fmt

253 AutoDesk Animator Pro FLIC FLC

Compactor_Archive_
Fmt

254 Compactor / Compact Pro

VRML_Fmt 255 VRML WRL

QuickDraw_3D_
Metafile_Fmt

256 QuickDraw 3D Metafile

PGP_Secret_ 257 PGP Secret Keyring

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 165 of 185

Format Name Format
Number

Format Description Associated File
Extension

Keyring_Fmt

PGP_Public_
Keyring_Fmt

258 PGP Public Keyring

PGP_Encrypted_
Data_Fmt

259 PGP Encrypted Data

PGP_Signed_Data_
Fmt

260 PGP Signed Data

PGP_
SignedEncrypted_
Data_Fmt

261 PGP Signed and Encrypted Data

PGP_Sign_
Certificate_Fmt

262 PGP Signature Certificate

PGP_Compressed_
Data_Fmt

263 PGP Compressed Data

PGP_ASCII_Public_
Keyring_Fmt

264 ASCII-armored PGP Public Keyring

PGP_ASCII_
Encoded_Fmt

265 ASCII-armored PGP encoded PGP1

PGP_ASCII_
Signed_Fmt

266 ASCII-armored PGP encoded PGP1

OLE_DIB_Fmt 267 OLE DIB object

SGI_Image_Fmt 268 SGI Image RGB

Lotus_ScreenCam_
Fmt

269 Lotus ScreenCam

MPEG_Audio_Fmt 270 MPEG Audio MPEGA

FTP_Software_
Session_Fmt

271 FTP Session Data STE

Netscape_
Bookmark_File_Fmt

272 Netscape Bookmark File HTM1

Corel_Draw_CMX_
Fmt

273 Corel CMX CMX

AutoDesk_DWG_
Fmt

274 AutoDesk Drawing (DWG) DWG

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 166 of 185

Format Name Format
Number

Format Description Associated File
Extension

AutoDesk_WHIP_
Fmt

275 AutoDesk WHIP WHP

Macromedia_
Director_Fmt

276 Macromedia Director DCR

Real_Audio_Fmt 277 Real Audio RM

MSDOS_Device_
Driver_Fmt

278 MSDOS Device Driver SYS

Micrografx_
Designer_Fmt

279 Micrografx Designer DSF

SVF_Fmt 280 Simple Vector Format (SVF) SVF

Applix_Words_Fmt 281 Applix Words AW

Applix_Graphics_
Fmt

282 Applix Graphics AG

MS_Access_Fmt 283 Microsoft Access MDB1

MS_Access_95_Fmt 284 Microsoft Access 95 MDB1

MS_Access_97_Fmt 285 Microsoft Access 97 MDB1

MacBinary_Fmt 286 MacBinary BIN

Apple_Single_Fmt 287 Apple Single

Apple_Double_Fmt 288 Apple Double

Enhanced_Metafile_
Fmt

289 Enhanced Metafile EMF

MS_Office_Drawing_
Fmt

290 Microsoft Office Drawing

XML_Fmt 291 XML XML1

DeVice_
Independent_Fmt

292 DeVice Independent file (DVI) DVI

Unicode_Fmt 293 Unicode UNI

Lotus_123_
Worksheet_Fmt

294 Lotus 1-2-3 WK11

Lotus_123_Format_
Fmt

295 Lotus 1-2-3 Formatting FM3

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 167 of 185

Format Name Format
Number

Format Description Associated File
Extension

Lotus_123_97_Fmt 296 Lotus 1-2-3 97 WK11

Lotus_Word_Pro_
96_Fmt

297 Lotus Word Pro 96 LWP1

Lotus_Word_Pro_
97_Fmt

298 Lotus Word Pro 97 LWP1

Freelance_DOS_Fmt 299 Lotus Freelance for DOS

Freelance_Win_Fmt 300 Lotus Freelance for Windows PRE

Freelance_OS2_Fmt 301 Lotus Freelance for OS/2 PRS

Freelance_96_Fmt 302 Lotus Freelance 96 PRZ1

Freelance_97_Fmt 303 Lotus Freelance 97 PRZ1

MS_Word_95_Fmt 304 Microsoft Word 95 DOC1

MS_Word_97_Fmt 305 Microsoft Word 97 >DOC1

Excel_Fmt 306 Microsoft Excel XLS1

Excel_Chart_Fmt 307 Microsoft Excel XLS1

Excel_Macro_Fmt 308 Microsoft Excel XLS1

Excel_95_Fmt 309 Microsoft Excel 95 XLS1

Excel_97_Fmt 310 Microsoft Excel 97 XLS1

Corel_
Presentations_Fmt

311 Corel Presentations XFD, XFDL

Harvard_Graphics_
Fmt

312 Harvard Graphics

Harvard_Graphics_
Chart_Fmt

313 Harvard Graphics Chart CH3, CHT

Harvard_Graphics_
Symbol_Fmt

314 Harvard Graphics Symbol File SY3

Harvard_Graphics_
Cfg_Fmt

315 Harvard Graphics Configuration File

Harvard_Graphics_
Palette_Fmt

316 Harvard Graphics Palette

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 168 of 185

Format Name Format
Number

Format Description Associated File
Extension

Lotus_123_R9_Fmt 317 Lotus 1-2-3 Release 9

Applix_
Spreadsheets_Fmt

318 Applix Spreadsheets AS

MS_Pocket_Word_
Fmt

319 Microsoft Pocket Word PWD, DOC1

MS_DIB_Fmt 320 MS Windows Device Independent
Bitmap

MS_Word_2000_Fmt 321 Microsoft Word 2000 DOC1

Excel_2000_Fmt 322 Microsoft Excel 2000 XLS1

PowerPoint_2000_
Fmt

323 Microsoft PowerPoint 2000 PPT

MS_Access_2000_
Fmt

324 Microsoft Access 2000 MDB1, MPP1

MS_Project_4_Fmt 325 Microsoft Project 4 MPP1

MS_Project_41_Fmt 326 Microsoft Project 4.1 MPP1

MS_Project_98_Fmt 327 Microsoft Project 98 MPP1

Folio_Flat_Fmt 328 Folio Flat File FFF

HWP_Fmt 329 HWP(Arae-Ah Hangul) HWP

ICHITARO_Fmt 330 ICHITARO V4-10

IS_XML_Fmt 331 Extended or Custom XML XML1

Oasys_Fmt 332 Oasys format OA2, OA3

PBM_ASC_Fmt 333 Portable Bitmap Utilities ASCII
Format

PBM_BIN_Fmt 334 Portable Bitmap Utilities Binary
Format

PGM_ASC_Fmt 335 Portable Greymap Utilities ASCII
Format

PGM_BIN_Fmt 336 Portable Greymap Utilities Binary
Format

PGM

PPM_ASC_Fmt 337 Portable Pixmap Utilities ASCII

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 169 of 185

Format Name Format
Number

Format Description Associated File
Extension

Format

PPM_BIN_Fmt 338 Portable Pixmap Utilities Binary
Format

XBM_Fmt 339 X Bitmap Format XBM

XPM_Fmt 340 X Pixmap Format XPM

FPX_Fmt 341 FPX Format FPX

PCD_Fmt 342 PCD Format PCD

MS_Visio_Fmt 343 Microsoft Visio VSD

MS_Project_2000_
Fmt

344 Microsoft Project 2000 MPP1

MS_Outlook_Fmt 345 Microsoft Outlook MSG, OFT

ELF_Relocatable_
Fmt

346 ELF Relocatable O

ELF_Executable_
Fmt

347 ELF Executable

ELF_Dynamic_Lib_
Fmt

348 ELF Dynamic Library SO

MS_Word_XML_Fmt 349 Microsoft Word 2003 XML XML1

MS_Excel_XML_Fmt 350 Microsoft Excel 2003 XML XML1

MS_Visio_XML_Fmt 351 Microsoft Visio 2003 XML VDX

SO_Text_XML_Fmt 352 StarOffice Text XML SXW1, ODT1

SO_Spreadsheet_
XML_Fmt

353 StarOffice Spreadsheet XML SXC1, ODS1

SO_Presentation_
XML_Fmt

354 StarOffice Presentation XML SXI1, SXP1, ODP1

XHTML_Fmt 355 XHTML XML1

MS_OutlookPST_
Fmt

356 Microsoft Outlook PST PST

RAR_Fmt 357 RAR RAR

Lotus_Notes_NSF_ 358 IBM Lotus Notes Database NSF/NTF NSF

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 170 of 185

Format Name Format
Number

Format Description Associated File
Extension

Fmt

Macromedia_Flash_
Fmt

359 SWF SWF

MS_Word_2007_Fmt 360 Microsoft Word 2007 XML DOCX, DOTX

MS_Excel_2007_
Fmt

361 Microsoft Excel 2007 XML XLSX, XLTX

MS_PPT_2007_Fmt 362 Microsoft PPT 2007 XML PPTX, POTX, PPSX

OpenPGP_Fmt 363 OpenPGP Message Format (with new
packet format)

PGP

Intergraph_V7_
DGN_Fmt

364 Intergraph Standard File Format
(ISFF) V7 DGN (non-OLE)

DGN1

MicroStation_V8_
DGN_Fmt

365 MicroStation V8 DGN (OLE) DGN1

MS_Word_Macro_
2007_Fmt

366 Microsoft Word Macro 2007 XML DOCM, DOTM

MS_Excel_Macro_
2007_Fmt

367 Microsoft Excel Macro 2007 XML XLSM, XLTM, XLAM

MS_PPT_Macro_
2007_Fmt

368 Microsoft PPT Macro 2007 XML PPTM, POTM, PPSM,
PPAM

LZH_Fmt 369 LHA Archive LZH, LHA

Office_2007_Fmt 370 Office 2007 document XLSB

MS_XPS_Fmt 371 Microsoft XML Paper Specification
(XPS)

XPS

Lotus_Domino_DXL_
Fmt

372 IBM Lotus representation of Domino
design elements in XML format

DXL

ODF_Text_Fmt 373 ODF Text ODT1, SXW1, STW

ODF_Spreadsheet_
Fmt

374 ODF Spreadsheet ODS1, SXC1, STC

ODF_Presentation_
Fmt

375 ODF Presentation SXD1, SXI1, ODG1,
ODP1

Legato_Extender_
ONM_Fmt

376 Legato Extender Native Message
ONM

ONM

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 171 of 185

Format Name Format
Number

Format Description Associated File
Extension

bin_Unknown_Fmt 377 n/a

TNEF_Fmt 378 Transport Neutral Encapsulation
Format (TNEF)

various

CADAM_Drawing_
Fmt

379 CADAM Drawing CDD

CADAM_Drawing_
Overlay_Fmt

380 CADAM Drawing Overlay CDO

NURSTOR_
Drawing_Fmt

381 NURSTOR Drawing NUR

HP_GLP_Fmt 382 HP Graphics Language (Plotter) HPG

ASF_Fmt 383 Advanced Systems Format (ASF) ASF

WMA_Fmt 384 Window Media Audio Format (WMA) WMA

WMV_Fmt 385 Window Media Video Format (WMV) WMV

EMX_Fmt 386 Legato EMailXtender Archives
Format (EMX)

EMX

Z7Z_Fmt 387 7 Zip Format(7z) 7Z

MS_Excel_Binary_
2007_Fmt

388 Microsoft Excel Binary 2007 XLSB

CAB_Fmt 389 Microsoft Cabinet File (CAB) CAB

CATIA_Fmt 390 CATIA Formats (CAT*) CAT3

YIM_Fmt 391 Yahoo Instant Messenger History DAT1

ODF_Drawing_Fmt 392 ODF Drawing SXD1, SX1, ODG1

Founder_CEB_Fmt 393 Founder Chinese E-paper Basic (ceb) CEB

QPW_Fmt 394 Quattro Pro 9+ for Windows QPW

MHT_Fmt 395 MHT format2 MHT

MDI_Fmt 396 Microsoft Document Imaging Format MDI

GRV_Fmt 397 Microsoft Office Groove Format GRV

IWWP_Fmt 398 Apple iWork Pages format PAGES, GZ1

IWSS_Fmt 399 Apple iWork Numbers format NUMBERS, GZ1

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 172 of 185

Format Name Format
Number

Format Description Associated File
Extension

IWPG_Fmt 400 Apple iWork Keynote format KEY, GZ1

BKF_Fmt 401 Windows Backup File BKF

MS_Access_2007_
Fmt

402 Microsoft Access 2007 ACCDB

ENT_Fmt 403 Microsoft Entourage Database
Format

DMG_Fmt 404 Mac Disk Copy Disk Image File

CWK_Fmt 405 AppleWorks File

OO3_Fmt 406 Omni Outliner File OO3

OPML_Fmt 407 Omni Outliner File OPML

Omni_Graffle_XML_
Fmt

408 Omni Graffle XML File GRAFFLE

PSD_Fmt 409 Photoshop Document PSD

Apple_Binary_PList_
Fmt

410 Apple Binary Property List format

Apple_iChat_Fmt 411 Apple iChat format

OOUTLINE_Fmt 412 OOutliner File OOUTLINE

BZIP2_Fmt 413 Bzip 2 Compressed File BZ2

ISO_Fmt 414 ISO-9660 CD Disc Image Format ISO

DocuWorks_Fmt 415 DocuWorks Format XDW

RealMedia_Fmt 416 RealMedia Streaming Media RM, RA

AC3Audio_Fmt 417 AC3 Audio File Format AC3

NEF_Fmt 418 Nero Encrypted File NEF

SolidWorks_Fmt 419 SolidWorks Format Files SLDASM, SLDPRT,
SLDDRW

XFDL_Fmt 420 Extensible Forms Description
Language

XFDL, XFD

Apple_XML_PList_
Fmt

421 Apple XML Property List format

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 173 of 185

Format Name Format
Number

Format Description Associated File
Extension

OneNote_Fmt 422 OneNote Note Format ONE

Dicom_Fmt 424 Digital Imaging and Communications
in Medicine

DCM

EnCase_Fmt 425 Expert Witness Compression Format
(EnCase)

E01, L01, Lx01

Scrap_Fmt 426 Shell Scrap Object File SHS

MS_Project_2007_
Fmt

427 Microsoft Project 2007 MPP1

MS_Publisher_98_
Fmt

428 Microsoft Publisher
98/2000/2002/2003/2007/

PUB1

Skype_Fmt 429 Skype Log File DBB

Hl7_Fmt 430 Health level7 message HL7

MS_OutlookOST_
Fmt

431 Microsoft Outlook OST OST

Epub_Fmt 432 Electronic Publication EPUB

MS_OEDBX_Fmt 433 Microsoft Outlook Express DBX DBX

BB_Activ_Fmt 434 BlackBerry Activation File DAT1

DiskImage_Fmt 435 Disk Image

Milestone_Fmt 436 Milestone Document MLS, ML3, ML4, ML5,
ML6, ML7, ML8, ML9

E_Transcript_Fmt 437 RealLegal E-Transcript File PTX

PostScript_Font_Fmt 438 PostScript Type 1 Font PFB

Ghost_DiskImage_
Fmt

439 Ghost Disk Image File GHO, GHS

JPEG_2000_JP2_
File_Fmt

440 JPEG-2000 JP2 File Format Syntax
(ISO/IEC 15444-1)

JP2, JPF, J2K, JPWL,
JPX, PGX

Unicode_HTML_Fmt 441 Unicode HTML HTM1, HTML1

CHM_Fmt 442 Microsoft Compiled HTML Help CHM

EMCMF_Fmt 443 Documentum EMCMF format EMCMF

MS_Access_2007_ 444 Microsoft Access 2007 Template ACCDT

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 174 of 185

Format Name Format
Number

Format Description Associated File
Extension

Tmpl_Fmt

Jungum_Fmt 445 Samsung Electronics Jungum Global
document

GUL

JBIG2_Fmt 446 JBIG2 File Format JB2, JBIG2

EFax_Fmt 447 eFax file EFX

AD1_Fmt 448 AD1 Evidence file AD1

SketchUp_Fmt 449 Google SketchUp SKP

GWFS_Email_Fmt 450 Group Wise File Surf email GWFS

JNT_Fmt 451 Windows Journal format JNT

Yahoo_yChat_Fmt 452 Yahoo! Messenger chat log YCHAT

PaperPort_MAX_
File_Fmt

453 PaperPort image file MAX

ARJ_Fmt 454 ARJ (Archive by Robert Jung) file
format

ARJ

RPMSG_Fmt 455 Microsoft Outlook Restricted
Permission Message

RPMSG

MAT_Fmt 456 MATLAB file format MAT, FIG

SGY_Fmt 457 SEG-Y Seismic Data format SGY, SEGY

CDXA_MPEG_PS_
Fmt

458 MPEG-PS container with CDXA
stream

MPG1

EVT_Fmt 459 Microsoft Windows NT Event Log EVT

EVTX_Fmt 460 Microsoft Windows Vista Event Log EVTX

MS_OutlookOLM_
Fmt

461 Microsoft Outlook for Macintosh
format

OLM

WARC_Fmt 462 Web ARChive WARC

JAVACLASS_Fmt 463 Java Class format CLASS

VCF_Fmt 464 Microsoft Outlook vCard file format VCF

EDB_Fmt 465 Microsoft Exchange Server Database
file format

EDB

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 175 of 185

Format Name Format
Number

Format Description Associated File
Extension

ICS_Fmt 466 Microsoft Outlook iCalendar file
format

ICS, VCS

MS_Visio_2013_Fmt 467 Microsoft Visio 2013 VSDX, VSTX, VSSX

MS_Visio_2013_
Macro_Fmt

468 Microsoft Visio 2013 macro VSDM, VSTM, VSSM

ICHITARO_Compr_
Fmt

469 ICHITARO Compressed format JTDC

IWWP13_Fmt 470 Apple iWork 2013 Pages format IWA

IWSS13_Fmt 471 Apple iWork 2013 Numbers format IWA

IWPG13_Fmt 472 Apple iWork 2013 Keynote format IWA

XZ_Fmt 473 XZ archive format XZ

Sony_WAVE64_Fmt 474 Sony Wave64 format W64

Conifer_WAVPACK_
Fmt

475 Conifer Wavpack format WV

Xiph_OGG_
VORBIS_Fmt

476 Xiph Ogg Vorbis format OGG

MS_Visio_2013_
Stencil_Fmt

477 MS Visio 2013 stencil format VSSX

MS_Visio_2013_
Stencil_Macro_Fmt

478 MS Visio 2013 stencil Macro format VSSM

MS_Visio_2013_
Template_Fmt

479 MS Visio 2013 template format VSTX

MS_Visio_2013_
Template_Macro_
Fmt

480 MS Visio 2013 template Macro format VSTM

Borland_Reflex_2_
Fmt

481 Borland Reflex 2 format R2D

PKCS_12_Fmt 482 PKCS #12 (p12) format P12, PFX

B1_Fmt 483 B1 format B1

ISO_IEC_MPEG_4_
Fmt

484 ISO/IEC MPEG-4 format MP4

KeyView file formats and extensions, continued

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 176 of 185

Format Name Format
Number

Format Description Associated File
Extension

RAR5_Fmt 485 RAR5 Format RAR5

Unigraphics_NX_
Fmt

486 Unigraphics (UG) NX CAD Format PRT

PTC_Creo_Fmt 487 PTC Creo CAD Format ASM, PRT

KML_Fmt 488 Keyhole Markup Language KML

KMZ_Fmt 489 Zipped Keyhole Markup Language KMZ

WML_Fmt 490 Wireless Markup Language WML

SO_Text_Fmt 492 Star Office Writer Text SDW, SGL, VOR

SO_Spreadsheet_
Fmt

493 Star Office Calc Spreadsheet SDC

SO_Presentation_
Fmt

494 Star Office Impress Presentation SDD, SDA

SO_Math_Fmt 495 Star Office Math SMF

STEP_Fmt 496 ISO 10303-21 STEP format STEP

STL_Fmt 497 3D Systems STL format STL

MS_Word_2007_
Flat_XML_Fmt

546 Microsoft Word 2007 Flat XML XML

KeyView file formats and extensions, continued

1This file extension can return more than one format number.

2MHT, EML, and MBX files might return either format 2, 233, or 395, depending on the text in the file. In
general, files that contain fields such as To, From, Date, or Subject are considered to be email
messages; files that contain fields such as content-type and mime-version are considered to be MHT
files; and files that do not contain any of those fields are considered to be text files.
3All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.

Administration Guide
Appendix B: KeyView Format Codes

Connector Framework Server (11.6) Page 177 of 185

Appendix C: Document Fields

This appendix describes the standard fields that Connectors and CFS add to documents before the
documents are indexed into IDOL Server.

 l Document Fields
 l AUTN_IDENTIFIER

Document Fields

The following fields are added to a document by connectors:

Field Description

AUTN_IDENTIFIER An identifier that allows a connector to extract the document
from the repository again, for example during the collect or view
actions. For more information about the identifier, see AUTN_
IDENTIFIER, on the next page.

DocTrackingId An identifier used for document tracking functionality.

DREREFERENCE A reference for the document. This is the standard IDOL
reference field, which is used for deduplication.

source_connector_run_id (Added only when IngestSourceConnectorFields=TRUE). The
asynchronous action token of the fetch action that ingested the
document.

source_connector_server_id (Added only when IngestSourceConnectorFields=TRUE). A
token that identifies the instance of the connector that retrieved
the document (different installations of the same connector
populate this field with different IDs). You can retrieve the UID of
a connector through action=GetVersion.

The following fields are added to a document during ingestion:

Field Description

DocumentAttributes KeyView document attributes.

DocumentClass The KeyView document class.

DocumentSize The size of the document.

DocumentType A number that represents the program that created the file format.

DRECHILDCOUNT The number of sub-files that the document contains.

Connector Framework Server (11.6) Page 178 of 185

Field Description

DREDBNAME The name of the IDOL database that the document must be indexed to.

DREFILENAME The file name of the original document.

DREORIGINALNAME The original file name passed to CFS. This is the full path for extracted sub-
files.

DREROOTFAMILYREFERENCE The parent document for the family of documents.

DREROOTFAMILYREFERENCE_
ID

A unique hash for the family of documents.

FAMILYSORT A field used to track families (that is, containers) of documents. It contains a
hash unique to the family, with indices appended that describe the depth and
number of attachments.

ImportErrorDescription If an error occurs when a document is processed, a description of the error is
written to this field.

ImportMagicExtension The file extension of the detected document type.

ImportOriginalEncoding The detected encoding used by the document.

ImportVersion Internal version number.

InfoFlag A KeyView Flag that describes the file type (External, Embedded and so
on).

0 = default

1 = This sub file needs further extraction

2 = This sub file is protected

4 = This sub file is an external file

8 = This sub file is a mail item attachment

16 = This sub file is SMIME protected

KeyviewVersion The version of KeyView that CFS was released with.

UUID A unique identifier for the document.

VersionNumber The version of CFS that was used to import the document.

AUTN_IDENTIFIER

An Identifier is a base-64 encoded string that identifies the source of a document in IDOL Server. When
you use a connector to index documents into IDOL Server, an identifier is added to every document, in
the AUTN_IDENTIFIER document field.

Administration Guide
Appendix C: Document Fields

Connector Framework Server (11.6) Page 179 of 185

A connector can use the identifier to extract the original file from the repository. An application might
need to extract the original file when presenting the results of a query. The application can request the
file by sending a collect or view action to the connector.

The exact content of the AUTN_IDENTIFIER field depends on the connector that retrieved the document,
but contains information such as:

 l The document reference. The document reference identifies an item in a repository. For the files
retrieved from the same repository, a reference is unique. For files retrieved by a File System
Connector, the document reference is the path to the file. For e-mail messages retrieved by an
Exchange Connector, the document reference includes the name of the message store and folder
that contains the message.

 l Additional information used to find the document in the repository. Though the document reference
identifies a file in the repository, it might not provide sufficient information to retrieve it efficiently.
The identifier can include additional information to assist the connector locate the document.

 l The name of the fetch task that was used to retrieve the document. When a connector needs to
retrieve a file, it can use the same settings by finding the fetch task in its configuration file.

An example identifier appears below:

<id section="MyTask1" reference="http://myserver:4567/doc/_vxswdfguhjknbio_
earycqzt_">
 <param name="SERVICEURL" value="http://myserver:4567/service"/>
 <param name="DOCID">_vxswdfguhjknbio_earycqzt_</param>
 </id>

Sub File Indexes

Documents in IDOL Server can represent sub-files. In these documents, the AUTN_IDENTIFIER field
contains the identifier of the container file.

To retrieve a sub-file from a repository, a connector must retrieve the container file and send it to
KeyView so that the sub-file can be extracted. So that KeyView can extract the correct sub-file, the
identifier must include a sub-file index.

When CFS indexes documents into IDOL Server, sub-file indexes are automatically written to the
SubFileIndexCSV document field. For example:

SubFileIndexCSV="1"

NOTE:
Your connector must be configured with EnableExtraction=true. The connector's
KeyviewDirectory parameter must also be set.

The sub-file index in this example (1) indicates that the document represents the second file in the
container (the sub-files are indexed from 0).

Container files can contain other container files (for example an e-mail message file could contain ZIP
file attachments, containing further sub-files). In this case, the sub-file index might include more than
one level:

SubFileIndexCSV="2,6"

Administration Guide
Appendix C: Document Fields

Connector Framework Server (11.6) Page 180 of 185

A sub-file index of 2,6 indicates that the document represents the seventh file in the third container, in
the original container file.

When an action is sent to a connector to retrieve sub-files, the sub-file index must be appended to the
identifier of the container. For example:

PGlkIHM9Ik15VGFzazEiIHI9Imh0dHA6Ly9teXNlcnZlcjo0NTY3L2RvYy9fdnhzd
 2RmZ3VoamtuYmlvX2VhcnljcXp0XyI+PHAgbj0iU0VSVklDRVVSTCIgdj0iaHR0cD
 ovL215c2VydmVyOjQ1Njcvc2VydmljZSIvPjxwIG49IkRPQ0lEIiB2PSJfdnhzd2R
 mZ3VoamtuYmlvX2VhcnljcXp0XyIvPjwvaWQ+|2.6

NOTE:
Where sub-file indexes have multiple levels (for example SubFileIndexCSV="2,6", the comma
must be replaced by a period).

Append Sub File Indexes to the Document Identifier

You can configure CFS to automatically append sub-file indexes to document identifiers, before the
documents are indexed into IDOL Server.

To do this, use the lua script identifiers.lua, which is included with CFS in the scripts folder. The
script is also included below:

function handler(document)
 identifier = document:getFieldValue("AUTN_IDENTIFIER")

 if identifier then
 indices = document:getFieldValue("SubFileIndexCSV")

 if indices then
 indices = string.gsub(indices, ",", ".")
 document:setFieldValue("AUTN_IDENTIFIER", identifier .. "|" .. indices)
 end
 end

 return true
 end

You must run the script after KeyView has extracted sub-files, so run the script using a Post Import
task. For example:

[ImportTasks]
 Post0=Lua:scripts/identifiers.lua

Administration Guide
Appendix C: Document Fields

Connector Framework Server (11.6) Page 181 of 185

Page 182 of 185Connector Framework Server (11.6)

Glossary

A

ACI (Autonomy Content Infrastructure)
A technology layer that automates operations
on unstructured information for cross-
enterprise applications. ACI enables an
automated and compatible business-to-
business, peer-to-peer infrastructure. The
ACI allows enterprise applications to
understand and process content that exists
in unstructured formats, such as email, Web
pages, Microsoft Office documents, and IBM
Notes.

ACI Server
A server component that runs on the
Autonomy Content Infrastructure (ACI).

ACL (access control list)
An ACL is metadata associated with a
document that defines which users and
groups are permitted to access the
document.

action
A request sent to an ACI server.

active directory
A domain controller for the Microsoft
Windows operating system, which uses
LDAP to authenticate users and computers
on a network.

C

Category component
The IDOL Server component that manages
categorization and clustering.

Community component
The IDOL Server component that manages
users and communities.

connector
An IDOL component (for example File
System Connector) that retrieves information
from a local or remote repository (for
example, a file system, database, or Web
site).

Connector Framework Server (CFS)
Connector Framework Server processes the
information that is retrieved by connectors.
Connector Framework Server uses KeyView
to extract document content and metadata
from over 1,000 different file types. When the
information has been processed, it is sent to
an IDOL Server or Distributed Index Handler
(DIH).

Content component
The IDOL Server component that manages
the data index and performs most of the
search and retrieval operations from the
index.

D

DAH (Distributed Action Handler)
DAH distributes actions to multiple copies of
IDOL Server or a component. It allows you to
use failover, load balancing, or distributed
content.

DIH (Distributed Index Handler)
DIH allows you to efficiently split and index
extremely large quantities of data into
multiple copies of IDOL Server or the
Content component. DIH allows you to
create a scalable solution that delivers high
performance and high availability. It provides
a flexible way to batch, route, and categorize
the indexing of internal and external content
into IDOL Server.

Administration Guide
Glossary: IDOL - View

Page 183 of 185Connector Framework Server (11.6)

I

IDOL
The Intelligent Data Operating Layer (IDOL)
Server, which integrates unstructured, semi-
structured and structured information from
multiple repositories through an
understanding of the content. It delivers a
real-time environment in which operations
across applications and content are
automated.

IDOL Proxy component
An IDOL Server component that accepts
incoming actions and distributes them to the
appropriate subcomponent. IDOL Proxy also
performs some maintenance operations to
make sure that the subcomponents are
running, and to start and stop them when
necessary.

Intellectual Asset Protection System (IAS)
An integrated security solution to protect your
data. At the front end, authentication checks
that users are allowed to access the system
that contains the result data. At the back end,
entitlement checking and authentication
combine to ensure that query results contain
only documents that the user is allowed to
see, from repositories that the user has
permission to access. For more information,
refer to the IDOL Document Security
Administration Guide.

K

KeyView
The IDOL component that extracts data,
including text, metadata, and subfiles from
over 1,000 different file types. KeyView can
also convert documents to HTML format for
viewing in a Web browser.

L

LDAP
Lightweight Directory Access Protocol.
Applications can use LDAP to retrieve
information from a server. LDAP is used for
directory services (such as corporate email
and telephone directories) and user
authentication. See also: active directory,
primary domain controller.

License Server
License Server enables you to license and
run multiple IDOL solutions. You must have a
License Server on a machine with a known,
static IP address.

O

OmniGroupServer (OGS)
A server that manages access permissions
for your users. It communicates with your
repositories and IDOL Server to apply
access permissions to documents.

P

primary domain controller
A server computer in a Microsoft Windows
domain that controls various computer
resources. See also: active directory, LDAP.

V

View
An IDOL component that converts files in a
repository to HTML formats for viewing in a
Web browser.

Administration Guide
Glossary: Wildcard - XML

Page 184 of 185Connector Framework Server (11.6)

W

Wildcard
A character that stands in for any character
or group of characters in a query.

X

XML
Extensible Markup Language. XML is a
language that defines the different attributes
of document content in a format that can be
read by humans and machines. In IDOL
Server, you can index documents in XML
format. IDOL Server also returns action
responses in XML format.

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Administration Guide (Micro Focus Connector Framework Server 11.6)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

Connector Framework Server (11.6) Page 185 of 185

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Administration Guide (Micro Focus Connector Framework Server 11.6)

	Chapter 1: Introduction
	Connector Framework Server
	Filter Documents and Extract Subfiles
	Manipulate and Enrich Documents

	The Ingestion Process
	The Import Process
	Index Documents

	The IDOL Platform
	System Architecture
	OEM Certification
	Related Documentation
	Display Online Help

	Chapter 2: Configure Connector Framework Server
	Connector Framework Server Configuration File
	Modify Configuration Parameter Values
	Configure Connector Framework Server
	Include an External Configuration File
	Include the Whole External Configuration File
	Include Sections of an External Configuration File
	Include a Parameter from an External Configuration File
	Merge a Section from an External Configuration File

	Encrypt Passwords
	Create a Key File
	Encrypt a Password
	Decrypt a Password

	Configure Client Authorization
	Example Configuration File

	Chapter 3: Start and Stop Connector Framework Server
	Start Connector Framework Server
	Stop Connector Framework Server

	Chapter 4: Send Actions to Connector Framework Server
	Send Actions to Connector Framework Server
	Asynchronous Actions
	Check the Status of an Asynchronous Action
	Cancel an Asynchronous Action that is Queued
	Stop an Asynchronous Action that is Running

	Store Action Queues in an External Database
	Prerequisites
	Configure Connector Framework Server

	Store Action Queues in Memory
	Use XSL Templates to Transform Action Responses
	Example XSL Templates

	Chapter 5: Ingest Data
	Ingest Data using Connectors
	Ingest an IDX File
	Ingest XML
	Transform XML Files
	Parse XML into Documents

	Ingest PST Files
	Ingest Password-Protected Files
	Ingest Data for Testing

	Chapter 6: Filter Documents and Extract Subfiles
	Customize KeyView Filtering
	Disable Filtering or Extraction for Specific Documents

	Chapter 7: Manipulate and Enrich Documents
	Introduction
	Choose When to Run a Task
	Create Import and Index Tasks
	Document Fields for Import Tasks

	Write and Run Lua Scripts
	Write a Lua Script
	Run a Lua Script
	Debug a Lua Script
	Lua Scripts Included With CFS
	Use Named Parameters
	Enable or Disable Lua Scripts During Testing
	Example Lua Scripts
	Add a Field to a Document
	Count Sections
	Merge Document Fields

	Add Titles to Documents
	Analyze Media
	Create a Media Server Configuration
	Configure the Media Analysis Task
	Run Analysis From Lua
	Troubleshoot Media Analysis

	Analyze Speech
	Run Analysis on All Audio and Video Files
	Run Analysis on Specific Documents
	Use Multiple Speech Servers
	Language Identification
	Transcode Audio
	Speech-To-Text Results

	Categorize Documents
	Customize the Query
	Customize the Output

	Run Eduction
	Redact Documents
	Lua Post Processing

	Process HTML
	HTML Processing with WKOOP
	Remove Irrelevant Content
	Extract Metadata
	Split Web Pages into Multiple Documents

	HTML Extraction

	Extract Metadata from Files
	Import Content Into a Document
	Reject Invalid Documents
	Reject Documents with Binary Content
	Reject Documents with Import Errors
	Reject Documents with Symbolic Content
	Reject Documents by Word Length
	Reject All Invalid Documents

	Split Document Content into Sections
	Split Files into Multiple Documents
	Example

	Write Documents to Disk
	Write Documents to Disk in IDX Format
	Write Documents to Disk in XML Format
	Write Documents to Disk in JSON Format
	Write Documents to Disk in CSV Format
	Write Documents to Disk as SQL INSERT Statements

	Standardize Document Fields
	Customize Field Standardization

	Normalize E-mail Addresses
	Language Detection
	Translate Documents

	Chapter 8: Index Documents
	Introduction
	Configure the Batch Size and Time Interval
	Index Documents into an IDOL Server
	Index Documents into Haven OnDemand
	Prepare Haven OnDemand
	Configure CFS to Index into Haven OnDemand

	Index Documents into Vertica
	Prepare the Vertica Database
	Configure CFS to Index into Vertica
	Troubleshooting

	Index Documents into another CFS
	Index Documents into MetaStore
	Document Fields for Indexing
	AUTN_INDEXPRIORITY

	Manipulate Documents Before Indexing

	Chapter 9: Monitor Connector Framework Server
	Use the Logs
	Customize Logging

	Monitor Asynchronous Actions using Event Handlers
	Configure an Event Handler
	Write a Lua Script to Handle Events

	Monitor the size of the Import and Index Queues
	Set Up Document Tracking

	Appendix A: KeyView Supported Formats
	Supported Formats
	Archive Formats
	Binary Format
	Computer-Aided Design Formats
	Database Formats
	Desktop Publishing
	Display Formats
	Graphic Formats
	Mail Formats
	Multimedia Formats
	Presentation Formats
	Spreadsheet Formats
	Text and Markup Formats
	Word Processing Formats

	Supported Formats (Detected)

	Appendix B: KeyView Format Codes
	KeyView Classes
	KeyView Formats

	Appendix C: Document Fields
	Document Fields
	AUTN_IDENTIFIER
	Sub File Indexes
	Append Sub File Indexes to the Document Identifier

	Glossary
	Send documentation feedback

