
IDOL

Answer Server
Software Version 12.12

Administration Guide

Document Release Date: June 2022
Software Release Date: June 2022



Legal notices
© Copyright 2015-2022 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
as may be set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support
Visit the MySupport portal to access contact information and details about the products, services, and support
that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

l View information about all services that Support offers
l Submit and track service requests
l Contact customer support
l Search for knowledge documents of interest
l View software vulnerability alerts
l Enter into discussions with other software customers
l Download software patches
l Manage software licenses, downloads, and support contracts

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted to
sign in.

Administration Guide

IDOL Answer Server (12.12) Page 2 of 158

https://www.microfocus.com/support-and-services/documentation/
https://mysupport.microfocus.com/


Contents

Part I: Get Started With Answer Server 9

Chapter 1: Introduction 11
Answer Server System Architecture 12
Answer Bank 12
Fact Bank 13
Passage Extractor 13
Conversation 14
OEM Certification 14

Chapter 2: Install and Set Up Answer Server 15
Install Answer Server 15

External Dependencies 16
Install an IDOL Component as a Service on Windows 16
Install an IDOL Component as a Service on Linux 18

systemd 18
System V 20

Licenses 20
Display License Information 21
Configure the License Server Host and Port 22
Revoke a Client License 22
Troubleshoot License Errors 23

Chapter 3: Configure Answer Server 25
General Configuration 25
Configure Answer Server Systems 26

Configure an Answer Bank System 26
Configure a Fact Bank System 26
Configure a Passage Extractor System 27
Configure a Conversation System 27
Configure a Remote System 28

Language Configuration 28
Answer Bank Language Configuration 28
Fact Bank and Passage Extractor Language Configuration 28

Use Synonyms to Expand Queries 29

Administration Guide

IDOL Answer Server (12.12) Page 3 of 158



Update Synonyms 30
Configure Client Authorization 31
Configure SSL Communication Between Components 32
Customize Logging 33
Validate the Configuration File 34

Chapter 4: Run Answer Server 36
Start Answer Server 36
Stop Answer Server 36
Verify that Answer Server is Running 37

GetStatus 37
GetLicenseInfo 38

Send Actions to Answer Server 38

Part II: Configure Answer Server Systems 39

Chapter 5: Set Up an Answer Bank System 41
Configure the Answer Bank System 41
Configure the Answer Bank Agentstore 42
Manage an Answer Bank 43

Find the JSON Schema for Your Update 43
Add a Question 43

Find the Likelihood of Existing Answers 44
Find the Likely Answers to a Question 44

Question Equivalence Rules 45
Special Rule Types 45
Generate a Question Equivalence Rule 46
Test Your Question Equivalence Rule 47

Find Questions that Do Not Match the Rule 47
Find Questions in Other Classes that Match the Rule 48
Test Whether Questions Match a Specified Rule 48

Check Spelling for Question Equivalence Rules 49
Create a Question Equivalence Class and Add an Answer 50
Update a Question Equivalence Class 52
Update the Question State 53

Automatic Question State Updates 53
Update the Question State Manually 54

Delete a Question or Question Equivalence Class 54
Undelete a Question or Question Equivalence Class 55

Administration Guide

IDOL Answer Server (12.12) Page 4 of 158



Modify the Expiration Time 56
Check the Status of an Update 56

Store Statistics for Your Answer Bank 57
Retrieve the Information Stored in an Answer Bank 58

GetResources 58
GetStats 59

Chapter 6: Set Up a Fact Bank System 60
Configure the Fact Bank System 60

Configure a Fact Bank with a SQL Database Fact Store 61
Configure a Fact Bank to Call a Lua Script 62

Configure the Fact Store 64
Set Up a SQL Backend as Fact Store 64

Manage Your Tables 65
Facts Table 65
Qualifiers Table 66
Sources Table 67
Security_Types Table 67
SQL Fact Store Example 68

Use a Lua Scripts to Retrieve Facts 70
Create a Fact Retrieval Script 70

Create Coding Files 71
Example Data 72
Generate the Property Code Files 72
Generate the Entity Code Files 73
Generate the Fact Store Data 73

Create a Fact Store Table for a SQL Database 74
Set up a SQL Database for Coding Information 74

Create a Codings SQL Database 74
Property_Codes Table 75
Properties Table 75
Entity_Codes Table 76
Entities Table 76

Import Codings into a Database from Coding Files 76
Manage the Codings Cache 77

Expire Codings Cache Entries Automatically 77
Update the Codings Database Manually 78

The Question Parser Eduction Grammar 78
Processors 79
Example Questions 79

Administration Guide

IDOL Answer Server (12.12) Page 5 of 158



Modify the Question Parser Eduction Grammar 81
Configure Security in Fact Bank 82

Configure the Security Types in Answer Server 82
Set Up Fact Store Tables for Security 83

Chapter 7: Set Up a Passage Extractor System 85
Configure the Passage Extractor System 85

Change the Passage Extractor Language 87
Train Passage Extractor Classifiers 87

Create a Training File 87
Train a Classifier 88
Classifier Behavior File 88
Training File Labels 89

Entity Extraction in Passage Extractor 92
Configure the Passage Extractor Agentstore 92

Configure the Agentstore Component 93
Index Entity Agents 93

Customize Entity Extraction 93
The Entity Extraction File Format 94
Modify the Entity Extraction File 96
Use a Different Entity Extraction File 97

Troubleshoot Passage Extractor 97

Chapter 8: Set Up a Remote Answer System 98
Configure a Remote Answer System 98
Use a Remote Answer System 100

Chapter 9: Use System Groups 101
Configure a System Group 101
Ask Questions to a System Group 102

Chapter 10: Ask Questions in Answer Server 104
Ask a Question 104
Use Context in the Ask Action 105

Create a Context 106
Use a Question Context 107
Configure Context Expiration 107

Retrieve All Facts About an Entity 108

Administration Guide

IDOL Answer Server (12.12) Page 6 of 158



Chapter 11: Set Up a Conversation System 109
Configure the Conversation System 109
Create a Task Configuration File 110

Pre-Task Actions 111
Conversation Triggers 112

Agent Triggers 113
Regular Expressions Triggers 114
Simple Triggers 115
Task Disambiguation 117
Trigger Options 118

Task Requirements 119
Automatic Requirement Gathering 122

Response Validation 123
Simple Validation 124
Regular Expression Validator 125
Eduction Validator 126
Lua Validator 127
Process Non-Valid Input 128

Post-Task Actions 129
Task Routing 131

Configure Simple Routing 131
Configure Conditional Routing 132
Use Routing in a Lua Function 134

Lua Processing Scripts 134
Default Tasks 135

Initial Task 135
Fallback Task 136

Default Messages 136
Response for Non-Valid Input 137
Response for Disambiguation 137
Response for Multiple Answer Disambiguation 138

Task Cancellation 141
User Cancellation 141
System Cancellation 142

Task Configuration Example 143
Configure the Conversation Agentstore 143

Configure the Agentstore Component 144
Configure the Conversation System to Use Agentstore 144
Index Conversation Trigger Agents 145

Check Spelling in Conversations 145

Administration Guide

IDOL Answer Server (12.12) Page 7 of 158



Chapter 12: Hold Conversations in Answer Server 147
Hold a Conversation 147

Create a Conversation Session 147
Retrieve Active Conversation Sessions 148
Start and Continue a Conversation 148
Close a Conversation Session 148
Retrieve a Conversation Transcript 149

Chapter 13: Use Natural Language Generation in Answer Server 150
Configure Natural Language Generation 150
Run Natural Language Generation 150

Part III: Appendixes 152

Appendix A: Debug Your Conversation Lua Scripts 154

Glossary 156

Send documentation feedback 158

Administration Guide

IDOL Answer Server (12.12) Page 8 of 158



IDOL Answer Server (12.12) Page 9 of 158

Part I: Get Started With Answer Server
This section introduces Micro Focus Answer Server and describes how to install and run the server.

l Introduction

l Install and Set Up Answer Server

l Configure Answer Server

l Run Answer Server



IDOL Answer Server (12.12) Page 10 of 158

Administration Guide
Part I: Get Started With Answer Server



Chapter 1: Introduction
Micro Focus Answer Server uses IDOL technology to provide specific and concise answers to user
questions.

In a traditional IDOL Server system, the user provides some search terms, or uses special search
syntax, and the server returns a list of related documents. In Answer Server, the user specifies a
question, and the server returns as specific an answer as possible.

The Answer Server has four types of system to answer different question types.

l Answer Bank. The Answer Bank contains a store of reference questions and answers, which
you can add and administer. When a user asks a question, the Answer Bank queries the store
of existing questions for any that match, and returns the relevant answers. You can use an
Answer Bank to maintain an FAQ list to answer questions such as:
o How do I fix my phone screen?
o What does error 404 mean?
o Can I use my phone to send photos of cats?

l Fact Bank. The Fact Bank contains a store of factual information, to return simple factual
answers. For example, you could use a Fact Bank to answer questions such as:
o What is the population of the USA?
o Who is the CEO of Micro Focus?
o What is the average June temperature in Antarctica?

l Passage Extractor. The Passage Extractor links to a store of documents that contain general
information that might be useful for answering questions (for example, your normal data
IDOL Server). When a user asks a question, the Passage Extractor queries the document store
and attempts to extract short sentences or paragraphs that contain relevant answers. You can
use a Passage Extractor to answer general questions that you do not have a fact store for, or
that do not have a simple answer, such as:
o What is the tallest building in the world?
o What did the only repealed amendment to the US Constitution deal with?
o What is the weight of the Eiffel Tower?

l Conversation. The Conversation module runs a real time conversation task with your end
users. It allows you to set up an interactive virtual assistant to answer common user queries.

You can configure as many different versions of each system as you need. When you send a
question to Answer Server, you can specify which of the configured systems you want to retrieve
answers from.

The following sections describe the setup for these systems in more detail.

You can also configure Remote systems, which refer to an answer system on a separate Answer
Server. In this case, you configure the system as normal on the remote Answer Server, and then
configure a remote system in your main Answer Server. When you send a question to the main

IDOL Answer Server (12.12) Page 11 of 158



Answer Server, it can forward it to the remote systems. See Set Up a Remote Answer System, on
page 98.

Answer Server System Architecture
The following diagram shows the different components of the Answer Server system.

Answer Bank
The answer bank system uses a dedicated IDOL Agentstore component.

Administration Guide
Chapter 1: Introduction

IDOL Answer Server (12.12) Page 12 of 158



The Agentstore is a specially configured IDOL Content component that stores the set of questions
and their answers. You can also create question equivalence classes, which store a set of equivalent
questions that map to the same answer.

Fact Bank
The fact bank system consists of three pieces:

l Fact Store (SQL database or Lua script). The fact store contains the factual information that you
want to retrieve. Answer Server uses the parsed question and the associated entity and
property codes to search the fact store for relevant facts. Usually the fact store component is a
SQL database. Alternatively, you can use a Lua script to retrieve facts from an external fact
store.

l Question Parser (IDOL Eduction). The fact bank uses a specialized Eduction grammar to parse
questions and extract the parts of the question that define the fact that the question requests.
For example, for the question "what is the population of the USA", Eduction determines that the
user wants to find the population property of the USA entity. The Eduction module is embedded
in Answer Server, so you do not need to install a separate component.

l Coding files. The coding files map entities, properties, and their synonyms to a unique code.
Answer Server uses this code to retrieve data from the fact store. For example, the coding files
can store the different ways of referring to the country USA as a single code (United States of
America, US, and so on). The code can be easily retrieved to match to associated facts.

The fact bank system also includes additional Eduction grammars for advanced time normalization.
Advanced time normalization extracts dates and times in various formats from questions and
normalize them to a consistent format, to improve fact retrieval.

Passage Extractor
The passage extractor system consists of two components:

l Data Store (IDOL Content component). The data store is an IDOL Content component that
contains the documents that you want to attempt to extract answers from. This might be a
general knowledge base (such as an index of Wikipedia documents), or a data set that is more
specific to your business use (such as an index of your company policy documents). This data
store does not have to be unique to Answer Server. That is, you can use your normal
IDOL Server data Content component.

l Passage Extractor Agentstore. The passage extractor uses Agentstore for some of the entity
extraction operations. For example, you can set up agents that define people and place entities,
and the passage extractor uses agent queries to extract those entities from the documents that
you use to find answers. Agent matching is often quicker than Eduction entity matching for
simple entities that consist of fixed text, such as names.

The passage extractor also requires:

Administration Guide
Chapter 1: Introduction

IDOL Answer Server (12.12) Page 13 of 158



l Eduction grammars. The passage extractor uses the Question Parser Eduction grammar, as
well as grammars for extracting entities from passages that might contain answers, and for
identifying sentences and paragraphs that might form legitimate answers, by using pattern
matching. The Eduction module is embedded in Answer Server, so you do not need to install a
separate component.

l Classifier training files. These files define types of questions, which determine the type of
answer it looks for. You can configure Answer Server to save the training files and training data.

Conversation
The conversation system does not have any required subcomponents. You configure conversation
tasks by using a JSON configuration file, which describes the task, including:

l introductory text.

l the triggers to use to activate a particular conversation or option.

l routing information to describe how to proceed through the conversation task, depending on
user input.

l details of lua scripts to run at particular points in the conversation to parse user input or provide
more detailed conversation processing.

You can set your conversation triggers by using fixed phrases, regular expressions, or IDOL agents.
If you want to use IDOL agents as triggers, you must configure an IDOL Agentstore component.

OEM Certification
Answer Server works in OEM licensed environments.

Administration Guide
Chapter 1: Introduction

IDOL Answer Server (12.12) Page 14 of 158



Chapter 2: Install and Set Up Answer
Server
This section describes how to install Answer Server.

• Install Answer Server 15
• External Dependencies 16

• Install an IDOL Component as a Service on Windows 16
• Install an IDOL Component as a Service on Linux 18
• systemd 18
• System V 20

• Licenses 20
• Display License Information 21
• Configure the License Server Host and Port 22
• Revoke a Client License 22
• Troubleshoot License Errors 23

Install Answer Server
Answer Server is available as a ZIP package which includes the files you need to set up Answer
Server.

The Answer Server ZIP package includes:

l the Answer Server executable file.

l the Answer Server configuration file.

It also includes the appropriate data and configuration files for the different answer systems.

For Answer Bank, the ZIP package includes:

l a configuration file for the Answer Bank Agentstore component

For Fact Bank, the ZIP package includes:

l the Fact Bank Eduction grammar ECR and XML files

l the Fact Bank Eduction Lua scripts

l a set of example files for setting up a SQL fact store

l a simple example script for creating a Lua fact store

IDOL Answer Server (12.12) Page 15 of 158



l a configuration file for an IDOL Content component Fact Store (the IDOL Content component
fact store option is deprecated in Answer Server version 11.5 and later. See Configure the Fact
Store, on page 64)

For Passage Extractor, the ZIP package includes:

l a configuration file for the Passage Extractor Agentstore component

l sample entity IDX files for the Passage Extractor Agentstore entity extraction

l the classifier and label files for the passage extractor question classifiers

l the entity_extraction.json and surface_patterns.json configuration files

l the Passage Extractor Eduction grammar, and several entity extraction Eduction grammar
ECR files

To install Answer Server, download and unzip the package. You can optionally install Answer Server
as a service. See Install an IDOL Component as a Service on Windows, below or Install an
IDOL Component as a Service on Linux, on page 18.

The ZIP package does not include the subcomponent executable files. For each system, you must
also download and install the associated subcomponents. The following sections provide more
information about the requirements for each system:

l Set Up an Answer Bank System, on page 41

l Set Up a Fact Bank System, on page 60

l Set Up a Passage Extractor System, on page 85

External Dependencies
On Linux operating system platforms, if you want to use any of the functionality that uses an
ODBC connection, Micro Focus recommends explicitly setting the ODBCSYSINI environment variable.
This variable specifies the directory that contains the odbcinst.ini file, which contains details of
available ODBC drivers on your system.

For example, on some systems you must set ODBCSYSINI=/etc, and on others
ODBCSYSINI=/usr/local/etc.

In particular, Micro Focus recommends that you set this environment variable if you want to use a
SQL Fact Store with your Fact Bank systems, or Answer Bank statistics.

Install an IDOL Component as a Service on
Windows
OnMicrosoft Windows operating systems, you can install any IDOL component as a Windows
service. Installing a component as a Windows service makes it easy to start and stop the component,
and you can configure a component to start automatically when you start Windows.

Use the following procedure to install Answer Server as a Windows service from a command line.

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 16 of 158



To install a component as a Windows service

1. Open a command prompt with administrative privileges (right-click the icon and select Run as
administrator).

2. Navigate to the directory that contains the component that you want to install as a service.

3. Send the following command:

Component.exe -install

where Component.exe is the executable file of the component that you want to install as a
service.

The -install command has the following optional arguments:

-start {[auto] | [manual]
| [disable]}

The startup mode for the component. Automeans that
Windows services automatically starts the component.
Manualmeans that you must start the service manually.
Disablemeans that you cannot start the service. The
default option is Auto.

-username UserName The user name that the service runs under. By default, it
uses a local system account.

-password Password The password for the service user.

-servicename ServiceName The name to use for the service. If your service name
contains spaces, use quotation marks (") around the name.
By default, it uses the executable name.

-displayname DisplayName The name to display for the service in the Windows services
manager. If your display name contains spaces, use
quotation marks (") around the name. By default, it uses the
service name.

-depend Dependency1
[,Dependency2 ...]

A comma-separated list of the names of Windows services
that Windows must start before the new service. For
example, you might want to add the License Server as a
dependency.

For example:

Component.exe -install -servicename ServiceName -displayname "Component Display
Name" -depend LicenseServer

After you have installed the service, you can start and stop the service from the Windows Services
manager.

When you no longer require a service, you can uninstall it again.

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 17 of 158



To uninstall an IDOL Windows Service

1. Open a command prompt.

2. Navigate to the directory that contains the component service that you want to uninstall.

3. Send the following command:

Component.exe -uninstall

where Component.exe is the executable file of the component service that you want to uninstall.

If you did not use the default service name when you installed the component, you must also
add the -servicename argument. For example:

Component.exe -uninstall -servicename ServiceName

Install an IDOL Component as a Service on
Linux
On Linux operating systems, you can install a component as a service to allow you to easily start and
stop it. You can also configure the service to run when the machine boots. The following procedures
describe how to install Answer Server as a service on Linux.

IMPORTANT: These procedures assume that you install Answer Server by using the installer.
The installer automatically populates some placeholder values in the init scripts. If you install
components from a ZIP package, you must update these values manually before you attempt to
install the service.

NOTE: To use these procedures, you must have root permissions.

NOTE:When you install Answer Server on Linux, the installer prompts you to supply a user name
to use to run the server. The installer populates the init scripts, but it does not create the user in
your system (the user must already exist).

The procedure that you must use depends on the operating system and init system.

l For Linux operating system versions that use systemd (including CentOS 7, and Ubuntu
version 15.04 and later), see systemd, below.

l For Linux operating system versions that use System V, see System V, on page 20.

systemd

NOTE: If your setup has an externally mounted drive that Answer Server uses, you might need to
modify the init script. The installed init script contains examples for an NFS mount requirement.

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 18 of 158



To install an IDOL component as a service

1. Run the appropriate command to copy the init scripts to the appropriate directory.

l Red Hat Enterprise Linux (and CentOS)

cp IDOLInstallDir/scripts/init/systemd/componentname.service
/etc/systemd/system/componentname.service

l Debian (including Ubuntu):

cp IDOLInstallDir/scripts/init/systemd/componentname.service
/lib/systemd/system/componentname.service

where componentname is the name of the init script that you want to use, which is the name of
the component executable (without the file extension).

For other Linux environments, refer to the operating system documentation.

2. Run the following commands to set the appropriate access, owner, and group permissions for
the component:

l Red Hat Enterprise Linux (and CentOS)

chmod 755 /etc/systemd/system/componentname.service
chown root /etc/systemd/system/componentname.service
chgrp root /etc/systemd/system/componentname.service

l Debian (including Ubuntu):

chmod 755 /lib/systemd/system/componentname.service
chown root /lib/systemd/system/componentname.service
chgrp root /lib/systemd/system/componentname.service

where componentname is the name of the component executable that you want to run (without
the file extension).

For other Linux environments, refer to the operating system documentation.

3. (Optional) If you want to start the component when the machine boots, run the following
command:

systemctl enable componentname

TIP: On systemd systems, services do not inherit file handle limits from the system limits or user
settings. The default limits for services are configured separately in /*/systemd/system.conf
and /*/systemd/user.conf.

In some cases this behavior might mean that a component fails to operate because it runs out of
file handles. In this case, you can modify the LimitNOFILE parameter in the
componentname.service file to increase the file handle limit before you install the service.
Alternatively, you can create an override.conf file for the service.

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 19 of 158



System V

To install an IDOL component as a service

1. Run the following command to copy the init scripts to your init.d directory.

cp IDOLInstallDir/scripts/init/systemv/componentname /etc/init.d/

where componentname is the name of the init script that you want to use, which is the name of
the component executable (without the file extension).

2. Run the following commands to set the appropriate access, owner, and group permissions for
the component:

chmod 755 /etc/init.d/componentname
chown root /etc/init.d/componentname
chgrp root /etc/init.d/componentname

3. (Optional) If you want to start the component when the machine boots, run the appropriate
command for your Linux operating system environment:

l Red Hat Enterprise Linux (and CentOS):

chkconfig --add componentname
chkconfig componentname on

l Debian (including Ubuntu):

update-rc.d componentname defaults

For other Linux environments, refer to the operating system documentation.

Licenses
To use IDOL solutions, you must have a running License Server, and a valid license key file for the
products that you want to use. Contact Micro Focus Big Data Support to request a license file for your
installation.

License Server controls the IDOL licenses, and assigns them to running components. License Server
must run on a machine with a static, known IP address, MAC address, or host name. The license key
file is tied to the IP address and ACI port of your License Server and cannot be transferred between
machines. For more information about installing License Server and managing licenses, see the
License Server Administration Guide.

When you start Answer Server, it requests a license from the configured License Server. You must
configure the host and port of your License Server in the Answer Server configuration file.

You can revoke the license from a product at any time, for example, if you want to change the client
IP address or reallocate the license.

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 20 of 158



CAUTION: Taking any of the following actions causes the licensed module to become
inoperable.

Youmust not:
l Change the IP address of the machine on which a licensed module runs (if you use an IP
address to lock your license).

l Change the service port of a module without first revoking the license.

l Replace the network card of a client without first revoking the license.

l Remove the contents of the license and uid directories.

All modules produce a license.log and a service.log file. If a product fails to start, check the
contents of these files for common license errors. See Troubleshoot License Errors, on page 23.

Display License Information
You can verify which modules you have licensed either by using the IDOL Admin interface, or by
sending the LicenseInfo action from a web browser.

To display license information in IDOL Admin

l In the Controlmenu of the IDOL Admin interface for your License Server, click Licenses.

The Summary tab displays summary information for each licensed component, including:
o The component name.
o The number of seats that the component is using.
o The total number of available seats for the component.
o (Content component only) The number of documents that are currently used across all

instances of the component.
o (Content component only) The maximum number of documents that you can have across

all instances of the component.

The Seats tab displays details of individual licensed seats, and allows you to revoke licenses.

To display license information by sending the LicenseInfo action

l Send the following action from a web browser to the running License Server.

http://LicenseServerHost:Port/action=LicenseInfo

where:

LicenseServerHost is the IP address of the machine where License Server resides.

Port is the ACI port of License Server (specified by the Port parameter in the
[Server] section of the License Server configuration file).

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 21 of 158



In response, License Server returns the requested license information. This example describes a
license to run four instances of IDOL Server.

<?xml version="1.0" encoding="UTF-8" ?>
<autnresponse xmlns:autn="http://schemas.autonomy.com/aci/">
<action>LICENSEINFO</action>
<response>SUCCESS</response>
<responsedata>
<LicenseDiSH>
<LICENSEINFO>
<autn:Product>
<autn:ProductType>IDOLSERVER</autn:ProductType>
<autn:TotalSeats>4</autn:TotalSeats>
<autn:SeatsInUse>0</autn:SeatsInUse>

</autn:Product>
</LICENSEINFO>

</LicenseDiSH>
</responsedata>

</autnresponse>

Configure the License Server Host and Port
Answer Server is licensed through License Server. In the Answer Server configuration file, specify
the information required to connect to the License Server.

To specify the license server host and port

1. Open your configuration file in a text editor.

2. In the [License] section, modify the following parameters to point to your License Server.

LicenseServerHost The host name or IP address of your License Server.

LicenseServerACIPort The ACI port of your License Server.

For example:

[License]
LicenseServerHost=licenses
LicenseServerACIPort=20000

3. Save and close the configuration file.

Revoke a Client License
After you set up licensing, you can revoke licenses at any time, for example, if you want to change the
client configuration or reallocate the license. The following procedure revokes the license from a
component.

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 22 of 158



To revoke a license

1. Stop the IDOL solution that uses the license.

2. At the command prompt, run the following command:

InstallDir/ExecutableName[.exe] –revokelicense –configfile cfgFilename

This command returns the license to the License Server.

You can send the LicenseInfo action from a web browser to the running License Server to check for
free licenses. In this sample output from the action, one IDOL Server license is available for
allocation to a client.

<autn:Product>
<autn:ProductType>IDOLSERVER</autn:ProductType>
<autn:Client>

<autn:IP>192.123.51.23</autn:IP>
<autn:ServicePort>1823</autn:ServicePort>
<autn:IssueDate>1063192283</autn:IssueDate>
<autn:IssueDateText>10/09/2003 12:11:23</autn:IssueDateText>

</autn:Client>
<autn:TotalSeats>2</autn:TotalSeats>
<autn:SeatsInUse>1</autn:SeatsInUse>

</autn:Product>

Troubleshoot License Errors
The table contains explanations for typical licensing-related error messages.

Error message Explanation

Error: Failed to update license from the
license server. Your license cache details do
not match the current service configuration.
Shutting the service down.

The configuration of the service has been
altered. Verify that the service port and IP
address have not changed since the service
started.

Error: License for ProductName is invalid.
Exiting.

The license returned from the License Server
is invalid. Ensure that the license has not
expired.

Error: Failed to connect to license server
using cached licensed details.

Cannot communicate with the License Server.
The product still runs for a limited period;
however, you should verify whether your
License Server is still available.

Error: Failed to connect to license server.
Error code is SERVICE: ErrorCode

Failed to retrieve a license from the License
Server or from the backup cache. Ensure that
your License Server can be contacted.

License-related error messages

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 23 of 158



Error message Explanation

Error: Failed to decrypt license keys. Please
contact Autonomy support. Error code is
SERVICE:ErrorCode

Provide Micro Focus Big Data Support with
the exact error message and your license file.

Error: Failed to update the license from the
license server. Shutting down

Failed to retrieve a license from the License
Server or from the backup cache. Ensure that
your License Server can be contacted.

Error: Your license keys are invalid. Please
contact Autonomy support. Error code is
SERVICE:ErrorCode

Your license keys appear to be out of sync.
Provide Micro Focus Big Data Support with
the exact error message and your license file.

Failed to revoke license: No license to revoke
from server.

The License Server cannot find a license to
revoke.

Failed to revoke license from server
LicenseServer Host:LicenseServerPort. Error
code is ErrorCode

Failed to revoke a license from the License
Server. Provide Micro Focus Big Data Support
with the exact error message.

Failed to revoke license from server. An
instance of this application is already
running. Please stop the other instance first.

You cannot revoke a license from a running
service. Stop the service and try again.

Failed to revoke license. Error code is
SERVICE:ErrorCode

Failed to revoke a license from the License
Server. Provide Micro Focus Big Data Support
with the exact error message.

Your license keys are invalid. Please contact
Autonomy Support. Error code is
ACISERVER:ErrorCode

Failed to retrieve a license from the License
Server. Provide Micro Focus Big Data Support
with the exact error message and your license
file.

Your product ID does not match the
generated ID.

Your installation appears to be out of sync.
Forcibly revoke the license from the License
Server and rename the license and uid
directories.

Your product ID does not match this
configuration.

The service port for the module or the IP
address for the machine appears to have
changed. Check your configuration file.

License-related error messages, continued

Administration Guide
Chapter 2: Install and Set Up Answer Server

IDOL Answer Server (12.12) Page 24 of 158



Chapter 3: Configure Answer Server
The following sections describe how to configure Answer Server and the subcomponents that you
need to use to run your systems.

• General Configuration 25
• Configure Answer Server Systems 26
• Configure an Answer Bank System 26
• Configure a Fact Bank System 26
• Configure a Passage Extractor System 27
• Configure a Conversation System 27
• Configure a Remote System 28

• Language Configuration 28
• Answer Bank Language Configuration 28
• Fact Bank and Passage Extractor Language Configuration 28

• Use Synonyms to Expand Queries 29
• Update Synonyms 30

• Configure Client Authorization 31
• Configure SSL Communication Between Components 32
• Customize Logging 33
• Validate the Configuration File 34

General Configuration
The [Server] section of the Answer Server configuration file contains general settings that affect the
server. In most cases, the only parameter that you might need to modify is the Port parameter, which
controls the port that Answer Server listens on. This port must not be used by any other service on
the host machine.

For example:

[Server]
Port=12000

Similarly, the [Service] section controls the behavior on the service port. You must make sure that
the ServicePort parameter uses a port that is not used by any other service.

For example:

[Service]
ServicePort=12002

IDOL Answer Server (12.12) Page 25 of 158



You must also configure the License Server for your system. For more information, see Configure the
License Server Host and Port, on page 22.

Configure Answer Server Systems
To set up your answer server, you must configure one or more systems to use to retrieve questions.
The [Systems] configuration section contains a list of systems that you want to configure.

The order in which you specify the systems is also the default order in which Answer Server requests
answers from the systems. You can override this ordering for an individual action (see Ask Questions
in Answer Server, on page 104).

[Systems]
0=MyFactBank
1=MyAnswerBank

For each of these systems, you then create a configuration section with the same name, which
contains the settings for that system.

NOTE: System names are case-sensitive.

Configure an Answer Bank System
For an Answer Bank system, you must set Type to answerbank. You must also configure the host and
port of the Agentstore component that you are using as the Answer Bank.

[MyAnswerBank]
Type=answerbank
IDOLHost=localhost
IDOLACIPort=6000

For more information, see Set Up an Answer Bank System, on page 41.

Configure a Fact Bank System
For a Fact Bank system, you must set Type to factbank. You must also configure the question parser
grammars, the fact store, and the location of the coding files.

[MyFactBank]
Type=factbank
// Question Parser
EductionQuestionGrammars=./resources/grammars/question_grammar_en.ecr
EductionLuaScript=./resources/lua/question_grammar_en.lua
EductionTimeGrammars=./resources/grammars/datetime_processing.ecr
TimeLuaScript=./resources/lua/datetime.lua
// Fact Store
BackendType=sqldb
ConnectionString=Driver=PostgreSQL ANSI(x64); Server=sql-host.mycompany.com;

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 26 of 158



Port=5432; Database=factstoredb; Uid=postgres;password=password;
// Coding Files
CodingsPath=./codings
CodingsDatPath=./codings

For more information, see Set Up a Fact Bank System, on page 60.

Configure a Passage Extractor System
For a Passage Extractor system, you must set Type to passageextractor. You must also configure
the host and port of the IDOL Content component data store, as well as the Eduction grammars and
Agentstore components to use for entity extraction. You can also optionally define the locations of the
classifier file and label file to allow you to save your training classifiers.

[MyPassageExtractor]
Type=PassageExtractor
// Data store IDOL
IdolHost=localhost
IdolAciport=6002
// Entity Agentstore
AgentStoreHost=localhost
AgentStoreAciport=5002
// Eduction
EductionGrammars=./resources/grammars/question_grammar_
en.ecr,./passageextractor/eduction/number_en.ecr,./passageextractor/eduction/person_
en.ecr,./passageextractor/eduction/date_en.ecr,./passageextractor/eduction/money_
en.ecr
// Classifier Files
ClassifierFile=./passageextractor/classifiertraining/svm_en.dat
LabelFile=./passageextractor/classifiertraining/labels_en.dat
EntityExtractionFile=./passageextractor/configuration/entity_extraction_en.json
SurfacePatternsFile=./passageextractor/configuration/surface_patterns_en.json
ClassifierBehaviorFile=./passageextractor/configuration/classifier_behavior.json

For more information, see Set Up a Passage Extractor System, on page 85.

Configure a Conversation System
For a Conversation system, you must set Type to conversation. You must also configure the
location of a task configuration file, which defines the conversation task in more detail. You can also
optionally define the location of an Agentstore component to use to store conversation trigger agents,
and session expiration for the conversation sessions.

[MyConversation]
Type=Conversation
TaskConfigurationFile=C:\AnswerServer\Conversation\tasks.json
// Trigger Agentstore
AgentStoreHost=localhost
AgentStoreAciport=5002

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 27 of 158



// Session Expiration
SessionExpirationIdleTime=600
SessionExpirationInterval=60

For more information, see Set Up a Conversation System, on page 109.

Configure a Remote System
For a Remote system, you must set Type to Remote. You must also configure the location of the
remote Answer Server, and the name of the system that is configured in the remote Answer Server.
You can also optionally configure default values for Ask action parameters.

[MyRemoteSystem]
Type=Remote
AnswerSystem=AnswerBank
AnswerServerACIPort=7000
AnswerServerHost=server1.example.com

For more information, see Set Up a Remote Answer System, on page 98.

Language Configuration
The Answer Server functionality uses language-dependent information to parse and classify
questions and match them to answers.

Answer Bank Language Configuration
In the answer bank systems, the language-dependent processing is managed by the answer bank
Agentstore component. The Agentstore component stores the questions, answers, and processes
the Ask actions as queries.

You can configure languages in the Agentstore in the same way as in the IDOL Content component.
For more information, refer to the IDOL Server Reference and the IDOL Server Administration Guide.

Fact Bank and Passage Extractor Language Configuration
In fact bank and passage extractor systems, Answer Server can use stemming and stop lists to
improve the question parsing and answer matching.

l Stemming is the process of reducing related words, such as plurals and verb forms, to a
common linguistic root. For example, in English, helping, helped, and helps all derive from the
common root help.

Stemming rules are language-dependent. To get the best possible results, you must specify the
language that you use in your questions.

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 28 of 158



l A stop list is a list of very common words, which usually add very little meaning to phrases. For
example, in English, the and and can often be ignored without losing the sense of a sentence.
IDOL uses stop lists to optimize matching.

In a fact bank system, Answer Server uses the stop list to match fact bank codes more broadly.
Answer Server attempts to form pseudonym values in the code maps by taking the existing
code phrases and removing stop words from the beginning and end of the phrase. Similarly,
when Answer Server attempts to match a string to codes, it matches the full phrase, and the
phrase with the stop words removed from the beginning and end of the phrase. Answer Server
does not attempt to remove stop words from the middle of phrases.

In a passage extractor system, Answer Server removes stop words from the classified
questions to attempt to find the best match in the data IDOL Content component. Answer
Server does not use the stop list for question classification, which often depends on common
words, such as question words.

By default, Answer Server uses English stemming rules, and does not use a stop list. If you use the
default fact bank and passage extractor grammar files, this is usually appropriate, although you might
want to add an English stop list, by setting the StopList configuration parameter.

To use fact bank and passage extractor with different languages, you need a version of the grammar
files in the appropriate language. These grammar files are available in English, French, German,
Italian, Portuguese, and Spanish. If you are interested in using fact bank and passage extractor in
other languages, contact your Micro Focus account manager.

If you are using fact bank and passage extractor in a language other than English, you can change
the stemming language by modifying the Language configuration parameter. You can also add a stop
list by setting the StopList configuration parameter.

You can configure the location where you store your language files (such as stop lists), by using the
LanguageDirectory configuration parameter.

You can define language configuration in the [Server] section, to apply to all your systems. You can
also set the language configuration parameters in your individual system configuration sections. If
you set the parameters in both sections, the system configuration takes precedence.

For more information about these parameters, refer to the Answer Server Reference.

Use Synonyms to Expand Queries
Answer Server can communicate with a Query Manipulation Server (QMS) and use synonyms to
expand queries. This increases the likelihood that Answer Server can find an answer to a question.
You can manage your synonyms through IDOL Data Admin.

Synonyms can be used with all Answer Server systems.

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 29 of 158



To configure a synonym store

1. Open the Answer Server configuration file.

2. In the [Server] section, set the parameter SynonymStore. This specifies the name of another
section in the configuration file that contains information about the synonym store.

3. Add a new section to the configuration file, using the name you specified in the previous step. In
the new section, set the following parameters:

Host The host name or IP address of the Query Manipulation Server (QMS) that
provides access to your synonym rules.

ACIPort The ACI port of the QMS that provides access to your synonym rules.

For example:

[Server]
SynonymStore=SynonymQMS

[SynonymQMS]
Host=localhost
ACIPort=16000

4. Save and close the configuration file.

NOTE:When you configure a Passage Extractor system, you normally set the IDOLHost and
IDOLACIPort parameters to the host and port of the Content component that contains your
documents. To enable synonyms, you must set these parameters to the host and port of the QMS
that provides access to your synonyms. Set the host and port of the Content component in the
QMS configuration file instead. For more information about configuring a passage extractor
system, see Configure the Passage Extractor System, on page 85.

Update Synonyms
After you add, modify, or delete synonyms, Answer Server must update answer bank rules and other
relevant data. If you change your synonyms through the IDOL Data Admin interface, the application
sends information about the changes to Answer Server. However, you might interact with the
AgentStore directly. For example, you might restore a backup of your synonym data. In this case you
can instruct Answer Server that there have been changes in the synonym store by sending a
ManageResources action. For example:

action=ManageResources
data={

"operation":"refresh",
"type":"synonym"

}

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 30 of 158



NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

Configure Client Authorization
You can configure Answer Server to authorize different operations for different connections.

Authorization roles define a set of operations for a set of users. You define the operations by using
the StandardRoles configuration parameter, or by explicitly defining a list of allowed actions in the
Actions and ServiceActions parameters. You define the authorized users by using a client IP
address, SSL identities, and GSS principals, depending on your security and system configuration.

For more information about the available parameters, see the Answer Server Reference.

IMPORTANT: To ensure that Answer Server allows only the options that you configure in
[AuthorizationRoles], make sure that you delete any deprecated RoleClients parameters
from your configuration (where Role corresponds to a standard role name, for example
AdminClients).

To configure authorization roles

1. Open your configuration file in a text editor.

2. Find the [AuthorizationRoles] section, or create one if it does not exist.

3. In the [AuthorizationRoles] section, list the user authorization roles that you want to create.
For example:

[AuthorizationRoles]
0=AdminRole
1=UserRole

4. Create a section for each authorization role that you listed. The section name must match the
name that you set in the [AuthorizationRoles] list. For example:

[AdminRole]

5. In the section for each role, define the operations that you want the role to be able to perform.
You can set StandardRoles to a list of appropriate values, or specify an explicit list of allowed
actions by using Actions, and ServiceActions. For example:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus

[UserRole]

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 31 of 158



Actions=GetVersion
ServiceActions=GetStatus

NOTE: The standard roles do not overlap. If you want a particular role to be able to perform
all actions, you must include all the standard roles, or ensure that the clients, SSL identities,
and so on, are assigned to all relevant roles.

6. In the section for each role, define the access permissions for the role, by setting Clients,
SSLIdentities, and GSSPrincipals, as appropriate. If an incoming connection matches one of
the allowed clients, principals, or SSL identities, the user has permission to perform the
operations allowed by the role. For example:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus
Clients=localhost
SSLIdentities=admin.example.com

7. Save and close the configuration file.

8. Restart Answer Server for your changes to take effect.

IMPORTANT: If you do not provide any authorization roles for a standard role, Answer Server
uses the default client authorization for the role (localhost for Admin and ServiceControl, all
clients for Query and ServiceStatus). If you define authorization only by actions, Micro Focus
recommends that you configure an authorization role that disallows all users for all roles by
default. For example:

[ForbidAllRoles]
StandardRoles=*
Clients=""

This configuration ensures that Answer Server uses only your action-based authorizations.

Configure SSL Communication Between
Components
You can configure Answer Server to use SSL to connect to each of its back end components, such as
the IDOL Content and Agentstore components that you use in your systems.

For each child component, there is a ComponentHost and an ComponentACIPort configuration
parameter in the system configuration, which specifies how to connect to the component. You can
also add the ComponentSSLConfig parameter. For example, for the IDOL Content component, you
use IDOLHost, IDOLACIPort, IDOLSSLConfig.

You set the ComponentSSLConfig parameter to the name of the configuration section where you
define the SSL settings for connection to that component. By convention, this section has the name
SSLOptionN.

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 32 of 158



NOTE: For the Agentstore and Content components, Answer Server uses the
same SSL configuration for ACI and indexing requests.

For example:

[MyPassageExtractor]
Type=passageextractor
// Data Content
IDOLHost=localhost
IDOLACIPort=10050
IDOLSSLConfig=SSLOption1
// Entity Agentstore
AgentstoreHost=localhost
AgentstoreACIPort=10060
IDOLSSLConfig=SSLOption0
...

[SSLOption0]
SSLMethod=TLSV1.3
SSLCertificate=host1.crt
SSLPrivateKey=host1.key
SSLCACertificate=trusted.crt

[SSLOptions1]
SSLMethod=TLSV1.3
SSLCertificate=host2.crt
SSLPrivateKey=9s7BxMjD2d3M3t7awt/J8A
SSLCACertificate=trusted.crt

For more information about the SSL configuration options, refer to the Answer Server Reference.

Customize Logging
You can customize logging by setting up your own log streams. Each log stream creates a separate
log file in which specific log message types (for example, action, index, application, or import) are
logged.

To set up log streams

1. Open the Answer Server configuration file in a text editor.

2. Find the [Logging] section. If the configuration file does not contain a [Logging] section, add
one.

3. In the [Logging] section, create a list of the log streams that you want to set up, in the format
N=LogStreamName. List the log streams in consecutive order, starting from 0 (zero). For
example:

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 33 of 158



[Logging]
LogLevel=FULL
LogDirectory=logs
0=ApplicationLogStream
1=ActionLogStream

You can also use the [Logging] section to configure any default values for logging
configuration parameters, such as LogLevel. For more information, see the Answer Server
Reference.

4. Create a new section for each of the log streams. Each section must have the same name as
the log stream. For example:

[ApplicationLogStream]
[ActionLogStream]

5. Specify the settings for each log stream in the appropriate section. You can specify the type of
logging to perform (for example, full logging), whether to display log messages on the console,
the maximum size of log files, and so on. For example:

[ApplicationLogStream]
LogTypeCSVs=application
LogFile=application.log
LogHistorySize=50
LogTime=True
LogEcho=False
LogMaxSizeKBs=1024

[ActionLogStream]
LogTypeCSVs=action
LogFile=logs/action.log
LogHistorySize=50
LogTime=True
LogEcho=False
LogMaxSizeKBs=1024

6. Save and close the configuration file. Restart the service for your changes to take effect.

Validate the Configuration File
You can use the ValidateConfig service action to check for errors in the configuration file.

NOTE: For the ValidateConfig action to validate a configuration section, Answer Server must
have previously read that configuration. In some cases, the configuration might be read when a
task is run, rather than when the component starts up. In these cases, ValidateConfig reports
any unread sections of the configuration file as unused.

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 34 of 158



To validate the configuration file

l Send the following action to Answer Server:

http://Host:ServicePort/action=ValidateConfig

where:

Host is the host name or IP address of the machine where Answer Server is
installed.

ServicePort is the service port, as specified in the [Service] section of the configuration
file.

Administration Guide
Chapter 3: Configure Answer Server

IDOL Answer Server (12.12) Page 35 of 158



Chapter 4: Run Answer Server
This section describes how to start and stop Answer Server, and to send actions.

• Start Answer Server 36
• Stop Answer Server 36
• Verify that Answer Server is Running 37
• GetStatus 37
• GetLicenseInfo 38

• Send Actions to Answer Server 38

Start Answer Server

NOTE: Your License Server must be running before you start Answer Server.

TIP: On both Windows and Linux, you can configure services to start automatically when you start
the machine.

To start Answer Server

l Start Answer Server from the command line using the following command:

answerserver.exe -configfile configname.cfg

where the optional -configfile argument specifies the path of a configuration file to use.

l OnWindows, if you have installed Answer Server as a service, start the service from the
Windows Services dialog box.

l On Linux, if you have installed Answer Server as a service, use one of the following commands:
o Onmachines that use systemd:

systemctl start answerserver

o Onmachines that use system V:

service answerserver start

l On Linux you can use the script start-answerserver.sh which is provided in the installation
directory.

Stop Answer Server
You can stop Answer Server by using one of the following procedures.

IDOL Answer Server (12.12) Page 36 of 158



To stop Answer Server

l Send the Stop service action to the service port.

http://host:ServicePort/action=Stop

where:

host is the host name or IP address of the machine where Answer Server is
installed.

ServicePort is the Answer Server service port (specified in the [Service] section of the
configuration file).

l OnWindows, if Answer Server is running as a service, stop Answer Server from the Windows
Services dialog box.

l On Linux, if Answer Server is running as a service, use one of the following commands:
o Onmachines that use systemd:

systemctl stop answerserver

o Onmachines that use system V:

service answerserver stop

l On Linux, if you started Answer Server with the script start-answerserver.sh, run the script
stop-answerserver.sh which is provided in the installation directory.

Verify that Answer Server is Running
After starting Answer Server, you can run the following actions to verify that Answer Server is
running.

l GetStatus

l GetLicenseInfo

GetStatus
You can use the GetStatus service action to verify the Answer Server is running. For example:

http://Host:ServicePort/action=GetStatus

NOTE: You can send the GetStatus action to the ACI port instead of the service port. The
GetStatus ACI action returns information about the Answer Server setup.

Administration Guide
Chapter 4: Run Answer Server

IDOL Answer Server (12.12) Page 37 of 158



GetLicenseInfo
You can send a GetLicenseInfo action to Answer Server to return information about your license.
This action checks whether your license is valid and returns the operations that your license includes.

Send the GetLicenseInfo action to the Answer Server ACI port. For example:

http://Host:ACIport/action=GetLicenseInfo

The following result indicates that your license is valid.

<autn:license>
<autn:validlicense>true</autn:validlicense>

</autn:license>

As an alternative to submitting the GetLicenseInfo action, you can view information about your
license, and about licensed and unlicensed actions, on the License tab in the Status section of
IDOL Admin.

Send Actions to Answer Server
Answer Server actions are HTTP requests, which you can send, for example, from your web
browser. The general syntax of these actions is:

http://host:port/action=action&parameters

where:

host is the IP address or name of the machine where Answer Server is installed.

port is the Answer Server ACI port. The ACI port is specified by the Port parameter in
the [Server] section of the Answer Server configuration file. For more information
about the Port parameter, see the Answer Server Reference.

action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

NOTE: Separate individual parameters with an ampersand (&). Separate parameter names from
values with an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the Answer Server Reference.

Administration Guide
Chapter 4: Run Answer Server

IDOL Answer Server (12.12) Page 38 of 158



IDOL Answer Server (12.12) Page 39 of 158

Part II: Configure Answer Server
Systems
This section describes how to configure and use the different types of systems in Answer Server.

l Set Up an Answer Bank System

l Set Up a Fact Bank System

l Set Up a Passage Extractor System

l Set Up a Remote Answer System

l Ask Questions in Answer Server

l Set Up a Conversation System

l Hold Conversations in Answer Server



IDOL Answer Server (12.12) Page 40 of 158

Administration Guide
Part II: Configure Answer Server Systems



Chapter 5: Set Up an Answer Bank
System
This section describes how to set up an Answer Bank system, and add questions, question
equivalence classes, and answers.

• Configure the Answer Bank System 41
• Configure the Answer Bank Agentstore 42
• Manage an Answer Bank 43
• Store Statistics for Your Answer Bank 57
• Retrieve the Information Stored in an Answer Bank 58

Configure the Answer Bank System
The Answer Server configuration file contains information about the subcomponents in your Answer
Bank systems.

For any Answer Bank system, you must configure the host and port details of the Answer Bank
Agentstore, which is a specially configured IDOL Content component that stores your questions,
answers, and question equivalence classes.

The following procedure describes how to configure the Answer Bank system in Answer Server.

There are also several optional parameters in the Answer Bank system, to allow you to modify the
paths that Answer Bank uses for failed and queued actions, and how often it updates the Answer
Bank usage statistics.

For more details about the configuration parameters for the Answer Bank system, refer to the Answer
Server Reference.

To configure the Answer Bank System

1. Open the Answer Server configuration file in a text editor.

2. Find the [Systems] section, or create one if it does not exist. This section contains a list of
systems, which refer to the associated configuration sections for each system.

3. After any existing systems, add an entry for your new Answer Bank system. For example:

[Systems]
0=MyFactBank
1=MyAnswerBank

4. Create a configuration section for your Answer Bank system, with the name that you specified.
For example, [MyAnswerBank].

IDOL Answer Server (12.12) Page 41 of 158



5. Set Type to AnswerBank. Set IDOLHost and IDOLACIPort to the host name and ACI Port of the
IDOL Agentstore component that contains the questions and answers. For example:

[MyAnswerBank]
Type=answerbank
IDOLHost=localhost
IDOLACIPort=6000

6. Save and close the configuration file.

7. Restart Answer Server for your changes to take effect.

8. (Optional) The Answer Server installation includes a default set of interrogative synonyms
(such as "what time"/"when" or "where"/"which location") that you can use to help Answer
Server answer questions that are posed in different ways. If you want to use the synonyms, first
configure your synonym store as described in Use Synonyms to Expand Queries, on page 29.
Then use the DREADD index action to index the synonym rules into your IDOL AgentStore
component. The synonyms are available in the resources/synonyms folder of the Answer
Server installation. Micro Focus also recommends that you configure your AgentStore to use a
stoplist provided in the resources/stoplists folder. Otherwise, many of the synonyms will be
considered to be stopwords.

Configure the Answer Bank Agentstore
An Answer Bank system requires an IDOL Agentstore component, which is a specialized
configuration of the IDOL Content component.

The Answer Server package includes a predefined configuration file for the Answer Bank Agentstore
component, which includes the relevant field and server configuration for Answer Server. You must
download and install the IDOL Content component separately, and then update the configuration file
with the Answer Bank Agentstore-specific configurations.

To configure the Agentstore component for your Answer Bank

1. In your Answer Server installation directory, copy the Answer Bank Agentstore configuration file
(agentstore.cfg).

2. Open your IDOL Content component installation directory.

3. Paste the Answer Server Agentstore configuration file. Overwrite the installed configuration file
(you might want to make a copy of it first).

NOTE: The configuration file must have the same name as the executable file.

4. Open the configuration file in a text editor.

5. Update the [License] section with the host and port information for your License Server. For
more information, see Configure the License Server Host and Port, on page 22.

6. Find the [Server] section Port parameter. Check that the specified port is available on the host
machine, or change it to an available port.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 42 of 158



7. Find the [Service] section ServicePort parameter. Check that the specified port is available
on the host machine, or change it to an available port.

8. Save and close the configuration file.

Manage an Answer Bank
You manage the questions and answers in your Answer Bank by using the ManageResource action.
This action allows you to upload a JSON object that contains the changes that you want to make in
the Answer Bank.

You can also use the IDOL Data Admin user interface to manage the questions and answers in your
Answer Bank. For more information, refer to the IDOL Data Admin User Guide.

Find the JSON Schema for Your Update
The schemas for the ManageResources action are stored in Answer Server. You can retrieve them by
using the GetResources action. You can restrict this action to a particular system in your
configuration file by specifying the SystemName parameter.

For example:

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=Schema

NOTE: System names are case sensitive. The value that you specify in the SystemName
parameter must match the name of the system in the configuration file.

Add a Question
You can use the add question operation to keep track of questions that your users ask, and to make
rules based on real questions that hopefully match future questions. For example, you might have
your user interface set up to add every question that does not have an answer to the Answer Bank, to
build up a list of frequently asked questions, which you can add answers for.

To add a question, you use a ManageResources action in a POST request method, with the update
provided in the Data parameter as a JSON object.

The following simple example adds a question to the AnswerBank system.

Action=ManageResources&SystemName=AnswerBank
data={

"operation": "add",
"type":"question",
"questions":[

{"text":"Where do I sign up for the monthly newsletter?"}
]

}

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 43 of 158



You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on the previous page.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

The action returns a question_id, which you can use to create and update question equivalence
classes and add answers.

Find the Likelihood of Existing Answers

When you add new questions to your Answer Bank Agentstore, you can find out whether there are
any likely answers in your existing question equivalence classes.

The answer likelihood score field for a particular question stores the likelihood that there is an
existing answer. Answer Server uses the question text to query your question equivalence classes,
and uses the relevance score of each question equivalence class that returns in the query to
calculate the likelihood score.

You can use this score to sort questions by likelihood in the GetResources action. See
GetResources, on page 58.

Periodically, Answer Server runs a background process to calculate the likelihood scores for all the
questions in the Answer Bank Agentstore that do not have an answer, and updates the field for those
questions.

By default, this process runs every 600 seconds (ten minutes). You can use the
UpdateLikelihoodInterval configuration parameter in your Answer Bank system configuration to
change how frequently to update the likelihood score field.

You can update the field more frequently if you need up-to-date information to sort by likelihood.
However, for performance reasons Micro Focus recommends that you do not update the likelihood
score field too frequently, because it might result in a large number of indexing operations in the
Answer Bank Agentstore component.

You can set UpdateLikelihoodInterval to a higher value if your question equivalence classes do
not change very often, or if do not intend to use the likelihood scores very often.

For more information about UpdateLikelihoodInterval and the GetResources sort options, refer to
the Answer Server Reference.

Find the Likely Answers to a Question

You can use the GetResources action to filter the list of question equivalence classes to those that
are likely to provide an answer for a particular question or set of questions, by using the likely_
answer_for filter. This filter matches question equivalence classes where the answer is most
relevant to the specified questions.

For example:

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 44 of 158



action=GetResources&type=question_equivalance_class&filter={ "likely_answer_for": [ 
{"ids":[ "2373534828452857425" ], "resource_type":"question"} ] }

For more information, refer to the Answer Server Reference.

Question Equivalence Rules
The question equivalence rule provides a general expression to match several equivalent questions.
The rule forms part of a question equivalence class. When you ask a question, Answer Server
matches the question text against the rules in your question equivalence classes.

In general, you use text with a Boolean or proximity expression to match questions.

For example, the questionsWhy is the sky blue?, What causes the sky to appear blue?, andWhat
gives the sky the color blue? are all equivalent. You might use the rule sky NEAR blue to match all
these questions.

You can expand the rules to more complicated expressions to match more complicated sets of
equivalent questions. The expression can use the same Boolean and proximity syntax as the
IDOL Content component query text, along with bracketed expressions to specify priority. For more
information, refer to the IDOL Server Reference.

NOTE: You cannot use Wildcard expressions in your question equivalence rules unless there is
also a non-Wildcard term required by the rule. For example, you cannot use the rule sk*, because
it contains only a Wildcard term. However, you can use sk* AND blue, because blue is also
required. Answer Server returns an error if you try to use an invalid rule.

In general, Micro Focus recommends that you do not use Wildcard expressions in your rules.

In all these cases, you add the rule to the question equivalence class by using the ManageResources
action. The add and update operations for question equivalence classes accept a rule property,
which accepts the expression as a string value. For example:

"rule":"sky NEAR blue",

For these rules, you can use the GetResources action to suggest rules. See Generate a Question
Equivalence Rule, on the next page. You can also use the TestRule action to test whether a rule
matches all the questions you want. See Test Your Question Equivalence Rule, on page 47

For more information about adding a rule to a question equivalence class, see Create a Question
Equivalence Class and Add an Answer, on page 50 and Update a Question Equivalence Class, on
page 52.

Special Rule Types

In certain special cases, you might also want to use a FieldText expression. This option is most
useful when you have a very short question that you want to match exactly. In this case, you can use
a FieldText expression to prevent the rule from matching any longer question that contains your
short question.

For example, the questionWhat is life? is very short, and might easily match longer questions that
are not equivalent, such asWhat is Life of Pi about?.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 45 of 158



When you want to use a FieldText expression when you add or update a question equivalence
class, you set the rule property as an object. This object has a required text property, and an
optional fieldtext property, which set the appropriate text and FieldText rules.

The Ask action sends the question to your Answer Bank Agenstore in a DRECONTENT field. You can
use your FieldText expression to match text in this field by using the IDOL Content component
FieldText operators.

For example:

"rule": { "text": "What is Life?", "fieldtext": "MATCH{What is Life?}:DRECONTENT" }

This rule matches only the exact questionWhat is life?

For more information about FieldText operators, refer to the IDOL Server Reference.

NOTE: You must always specify the text property. That is, you cannot create a rule with only
FieldText.

The more complicated rule types can be useful in certain circumstances. However, the
GetResources rule suggestion option does not return any suggestions that contain FieldText.
Similarly, you cannot test complex FieldText rules by using the TestRule action.

Generate a Question Equivalence Rule

You can use the GetResources action to suggest a question equivalence rule, based on a set of
questions. You can use this to automatically generate an initial question equivalence rule, which you
can modify to optimize the rule for your question equivalence class.

For example:

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=rule_
suggestion&IDs=9706856188043740111,8129920660480699726,3067998369792637739

This example generates a rule that matches the questions with the IDs 9706856188043740111,
8129920660480699726, and 3067998369792637739.

You can also optionally add additional questions in a text filter, for example to specify the reference
question for the question equivalence class that you want to create, or to include questions that do
not currently exist in the Answer Bank index.

For example:

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=rule_
suggestion&IDs=9706856188043740111,8129920660480699726,3067998369792637739&Filter=%7
B%20%22rule_suggestion_
text%22%20%3A%20%5B%22How%20do%20I%A0get%20regular%20updates%20about%20MyCompany%3F%
22%5D%20%7D

The Filter parameter takes a percent-encoded JSON object, which contains the filters to apply. In
this case, the unencoded JSON object is:

{ "rule_suggestion_text" : ["How do I get regular updates about MyCompany?"] }

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 46 of 158



TIP: You can also use GetResources to find question equivalence classes that do not have an
associated rule, by setting the Type parameter to question_equivalence_class, and using the
Filter parameter to search for the incoming state (which is for classes that do not have rules).
For example:

Action=GetResources&SystemName=MyAnswerbank&Type=question_equivalence_
class&Filter=%7B%20%22state%22%3A%20%22incoming%22%20%7D

This corresponds to the following filter:

{ "state" : "incoming" }

You can modify the question equivalence rule as required, and add it to the question equivalence
class by using the ManageResources action. See Update a Question Equivalence Class, on page 52.

You can also test that the question equivalence rule matches all the rules that you want to add to the
question class by using the GetResources action. See Test Your Question Equivalence Rule, below.

Test Your Question Equivalence Rule

When you create a question equivalence rule, you can check that it matches all the questions that
you want to include in the question equivalence class, and that it does not match questions that
belong to other question equivalence classes. The GetResources action has several filters that you
can use to test your rules.

You can also use the TestRule action to test whether a particular set of questions matches a rule that
you specify. In this case, you do not need to have indexed the questions or the question equivalence
rule.

NOTE: The TestRule action can test only rules that use simple text (with any Boolean and
proximity expressions). You cannot test FieldText rules in this way. For more information about
FieldText rules, see Special Rule Types, on page 45.

Find Questions that Do Not Match the Rule

You can add the question equivalence rule text as a text filter in GetResources, to find questions that
match or do not match the rule. You can also specify a list of IDs for questions that you want to match
the rule in the IDs parameter.

TIP: You can retrieve a list of question IDs and the rule for a question equivalence class by
sending a GetResources action with Type set to question_equivalence_class.

To test whether the rule matches the questions in the question equivalence class, set the text filter to
NOT(RuleText), and set IDs to a list of IDs of the questions in that class.

For example:

http://localhost:12000?Action=GetResources&Type=question&IDs=9706856188043740111,812
9920660480699726,3067998369792637739&Filter=%7B%20%22text%22%20%3A%20%22NOT
(updates%20AND%C2%A0MyCompany)%22%20%7D

The Filter parameter takes a percent-encoded JSON object, which contains the filters to apply. In
this case, the unencoded JSON object is:

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 47 of 158



{ "text" : "NOT(updates AND MyCompany)" }

This action returns any questions in the list of IDs that do not match the question equivalence rule
updates AND MyCompany.

Find Questions in Other Classes that Match the Rule

After you create the question equivalence class and add the rule, you can also use GetResources to
find out if your rule matches any questions that do not belong to the class, by using the not_
associated_with filter.

For example, for a GetResources action with Type set to question, the following filter object matches
questions that match the rule updates AND MyCompany, and that do not belong to the question
equivalence class with ID 1429393462892614629.

{ 
"text" : "updates AND MyCompany",
"not_associated_with": [

{
"ids": [

"1429393462892614629"
],
"type": "question_equivalence_class"

}
]

}

This filter returns questions that match the rule that already belong to a different question
equivalence class. This might indicate that your rule is not restrictive enough.

TIP: This filter also returns any questions that match the rule and that do not belong to a question
equivalence class. If you want to find only questions that belong to a different question
equivalence class, you can add an additional state filter to find questions in the answered state.

Test Whether Questions Match a Specified Rule

You can use the TestRule action to test questions and rules that you have not added to the Answer
Bank Agentstore. This action allows you to test rules and questions before you index them, to save
indexing time, and reindexing time if you need to change the rule.

To use TestRule, you specify the questions in a JSON object in the Questions parameter, and the
rule in the Rule parameter. You must also set SystemName to the name of the Answer Bank system.

For example:

action=TestRule&SystemName=MyAnswerBank&Questions={"text":["Why is the sky
blue?","What causes the sky to appear blue?","How do I return a defective
item?"],"ids":
["7660794084496396635","15927917885427259786","14042282250303108454"]}&Rule=sky AND
blue

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 48 of 158



This action tests whether the questionsWhy is the sky blue?,What causes the sky to appear blue?,
and How do I return a defective item?, and the questions with IDs 7660794084496396635,
15927917885427259786, and 14042282250303108454 match the rule sky AND blue.

The action returns the rule, with a matched property that contains the list of matching questions, and
the not_matched property that contains any questions in the request that do not match the rule.

{
"rule": "sky AND blue",
"matched": {

"text": [
"Why is the sky blue?",
"What causes the sky to appear blue?"

],
"id" [

"15927917885427259786",
"14042282250303108454"

]
},
"not_matched": {

"text": [
"How do I return a defective item?"

],
"id": [
"7660794084496396635"

]
}

}

Check Spelling for Question Equivalence Rules

Answer Server can check the spelling of the rules you submit to the TestRule action. When you
configure this, a corrected rule might be returned in the spellchecked_rule element of the response.
This correction is not used by the Answer Bank system (Answer Server always uses the rule that you
supply), but if appropriate you can resend the action with the corrected rule.

To check spelling you must have an IDOL Content component that contains a large amount of
indexed documents. With a sufficiently large amount of data spelling errors can be identified.

To check spelling

1. Open your configuration file in a text editor.

2. Create a new section in the configuration file and configure a spelling checker. You can give the
section any name. Set the following parameters:

Type The type of component to use to check spelling. Set this parameter to
Content.

Host The host name or IP address of the machine hosting the IDOL Content

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 49 of 158



component.

ACIPort The ACI port of the IDOL Content component.

LanguageType The value to use for the LanguageType parameter, in Query actions sent to
the IDOL Content component.

For example:

[MySpellingChecker]
Type=Content
Host=localhost
ACIPort=12345
LanguageType=englishUTF8

For more information about these configuration parameters, refer to the Answer Server
Reference.

3. Find the configuration section for the Answer Bank system. In this section, set the configuration
parameter SpellcheckEngine to the name of the section that you created in the previous step.
For example:

[MyAnswerBankSystem]
SpellcheckEngine=MySpellingChecker

4. Restart Answer Server for your configuration changes to take effect.

Create a Question Equivalence Class and Add an Answer
A question equivalence class is a group of equivalent questions. When you have multiple questions
with different wording that request the same information, you can combine these questions in a
question equivalence class. You also use the question equivalence class to add an answer.

The question equivalence class contains the following information:

l the reference question (a standard question that is the most representative question for the
answer).

l the answer to the reference question.

l a list of real, sample questions that are equivalent to the reference question. These questions
are stored by adding a question. See Add a Question, on page 43.

l a question equivalence rule that matches the equivalence question. When a user asks a
question, Answer Server uses the question equivalence rule to find a relevant question
equivalence class to match. See Question Equivalence Rules, on page 45.

To create question equivalence classes, you use a ManageResources action, with the information
about the questions provided in the Data parameter as a JSON object.

NOTE:When you add a question to a question equivalence class, Answer Server automatically
updates the question state to answered. You cannot delete a question in this state, and you
cannot manually move the question out of this state. You must remove the question from the

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 50 of 158



question equivalence class. See Update a Question Equivalence Class, on the next page.

You must include the question_id values for the questions that you want to include in the question
equivalence class. You can retrieve the question_id values by sending a GetResources action. For
example:

http://localhost:12000?Action=GetResources&SystemName=Answerbank&Type=question

You can add multiple question equivalence classes in the same operation, where each question
equivalence class is an object in an array.

You can also add a context to a question equivalence class. This information will be returned in the
ask response to be used with a future ask action using the same managed context. See Use Context
in the Ask Action, on page 105

The following example adds a single question equivalence class that combines two questions, adds
a reference question and an answer, and adds a context. You can also add optional metadata for the
answer, such as author information.

Action=ManageResources&SystemName=AnswerBank
data={

"operation":"add",
"type":"question_equivalence_class",
"question_equivalence_classes":[

{
"question_ids":[

"9706856188043740111",
"8129920660480699726"

],
"rule":{"text":"how AND (regular NEAR2 updates) AND MyCompany"},
"answer":{

"text":"Send an email to subscribe@example.com, and we'll add you to our
monthly newsletter.",

"metadata":[
{"key":"author", "value":"Alex"},
{"key":"modified_date", "value":"2017-05-05"}

]
},
"reference_question":"How do I get regular updates about MyCompany?",
"context": ["MyCompany"]

}
]

}

NOTE: Metadata key names can contain alphanumeric characters (a-z, 0-9), period (.),
underscore (_) and hyphen (-). They cannot start with a number. It is also best practice to use field
names that conform to XML specifications.

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 51 of 158



NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

You can also use the GetResources action to generate a rule for your question equivalence class.
See Generate a Question Equivalence Rule, on page 46.

Update a Question Equivalence Class
You can update the following properties in your question equivalence classes:

l the list of question IDs that the question equivalence class contains.

l the answer to the reference question.

l the question equivalence rule.

l the text of the reference question. In general, Micro Focus recommends you use this update to
correct spelling mistakes only. If you want to completely change the reference question, create
a new question equivalence class with a new ID.

To update a question equivalence class, you use a ManageResources action in a POST request
method, with the information about the questions provided in the Data parameter as a JSON object.

The update operation replaces existing content with the new version that you provide. If you omit a
value, Answer Server keeps the existing value. If you want to delete the existing value, you can
explicitly set an empty value or array.

For example, if you change the list of question IDs, but do not set the answer block in your
JSON data, Answer Server updates the list of questions, but does not modify the answer.

The amend operation allows you to add questions to the question equivalence class. In this case, you
provide only the questions that you want to add to the question equivalence class, rather than the
complete list of question IDs. You can use this option if you might have multiple users adding
equivalent questions at the same time, to ensure that all changes are reflected.

NOTE:When you add questions to a question equivalence class, Answer Server automatically
updates the question state to answered. If you remove all questions from the question
equivalence class, it reverts the question state to incoming.

The following example updates the question equivalence class with ID 2012912839742797651 with
a new list of question_ids. It does not update the stored answer for the question (if it exists).

Action=ManageResource&SystemName=AnswerBank
data={

"operation":"update",
"type":"question_equivalence_class",
"question_equivalence_class":{

"id": 2012912839742797651,
"question_ids":[

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 52 of 158



"9706856188043740111",
"8129920660480699726",
"3067998369792637739"

],
"reference_question":"How do I get regular updates about MyCompany?",
"rule": "updates AND MyCompany"

}
}

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

You can also use the GetResources action to generate a rule for your question equivalence class.
See Generate a Question Equivalence Rule, on page 46.

Update the Question State
The questions in your Answer Bank systems have a state, which can have one of the following
values:

l incoming

l answerable

l needs_answer

l answered

l rejected

Answer Server makes some changes to the question state automatically. You an also modify the
question state manually by using the ManageResources action.

Automatic Question State Updates

When you add a question to the Answer Bank, Answer Server automatically assigns it the state
incoming.

When you add the question to a question equivalence class, the state automatically updates to
answered.

Similarly, if you remove the question from the question equivalence class (or if you delete the
question equivalence class), the state reverts to incoming. If you later undelete the question
equivalence class that the question belongs to, the question returns to answered again.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 53 of 158



Update the Question State Manually

You can modify the state of a question by using the ManageResources action, with the update
operation, either as part of another update, or as a separate action.

NOTE: You cannot manually change the state to or from answered by using a question update. To
move the question to the answered state, you must add the question to a question equivalence
class.

You must include the question IDs for the questions that you want to update. You can retrieve the
question ID by sending a GetResources action. For example:

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=question

The following example updates the questions with IDs 9706856188043740111 and
8129920660480699726 to have the state needs_answer.

Action=ManageResources&SystemName=AnswerBank
data={

"operation": "update",
"type": "question",
"question": { 

"question_ids": [
"9706856188043740111",
"8129920660480699726"

],
"new_state": "needs_answer"
}

}

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

You can use the question state to filter questions in the GetResources action. You can also use the
GetStats action to return information about the questions in the Answer Bank system by state. For
more information, see Retrieve the Information Stored in an Answer Bank, on page 58.

Delete a Question or Question Equivalence Class
You can use the ManageResources action to delete a question or a question equivalence class.

After you delete an item, there is a short period in which you can undelete it, before it is permanently
deleted from the system. See Undelete a Question or Question Equivalence Class, on the next page.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 54 of 158



To delete a question or question equivalence class, you use a ManageResources action in a POST
request method, with the information about the item that you want to delete provided in the Data
parameter as a JSON object.

You must include the ID of the item that you want to delete, and set the type of the operation to
question or question_equivalence_class, as appropriate.

NOTE: You cannot delete a question that has the state answered (that is, a question that belongs
to a question equivalence class). You must remove it from the question equivalence class before
you delete it. See Update the Question State, on page 53 and Update a Question Equivalence
Class, on page 52.

You can retrieve the ID of the question or question equivalence class by sending a GetResources
action. For example:

http://localhost:12000?Action=GetResources&SystemName=Answerbank&Type=question_
equivalence_class

The following example deletes a question equivalence class.

Action=ManageResource&SystemName=AnswerBank
data={

"operation":"delete",
"type":"question_equivalence_class",
"ids": [ 

"2012912839742797651"
]

}

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

Undelete a Question or Question Equivalence Class
After you delete a question or question equivalence class, there is a short period in which you can
undelete it before it is permanently deleted from the system. For more information about how long an
item is available after you delete it, see Modify the Expiration Time, on the next page.

To undelete a question or question equivalence class, you use a ManageResources action in a POST
request method, with the information about the item that you want to undelete provided in the Data
parameter as a JSON object.

You must include the ID of the item that you want to undelete, and set the type of the operation to
question or question_equivalence_class, as appropriate.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 55 of 158



You can retrieve the ID of the question or question equivalence class by sending a GetResources
action. For example:

http://localhost:12000?Action=GetResources&SystemName=Answerbank&Type=question_
equivalence_class

The following example restores a question equivalence class:

Action=ManageResource&SystemName=AnswerBank
data={

"operation":"undelete",
"type":"question_equivalence_class",
"ids": [ 

"2012912839742797651"
]

}

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

Modify the Expiration Time

When you delete a question or question equivalence class, Answer Server uses ExpireDateType
fields in the Answer Bank Agentstore component to manage the expiration of deleted items.

All items in the Answer Bank Agentstore have an ExpireDateType field. Normally, these fields are set
such that the questions and question equivalence classes never expire. When you delete an item,
Answer Server sets this expiration time to a short time after you delete it.

By default, the expiration time is ten minutes. The default Answer Bank Agentstore configuration runs
an expiration schedule every hour. You can therefore expect your question and question
equivalences classes to be available to undelete for between ten minutes and an hour and ten
minutes.

l To change the expiration time that Answer Server assigns to deleted items, modify the
UndeleteLifetime configuration parameter in the section of the Answer Server configuration
file where you configure the Answer Bank system. For more information, refer to the Answer
Server Reference.

l To change the expiration schedule, modify the ExpireTime configuration parameter in the
[Schedule] section of the Answer Bank Agentstore configuration file. For more information
refer to the IDOL Content Component Reference.

Check the Status of an Update
The GetJobStatus action allows you to check the status of jobs in your ManageResources actions.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 56 of 158



For example:

action=GetJobStatus&SystemName=MyAnswerBank&JobTokens=41,42,43

This action returns the status of the jobs with job IDs 41, 42, and 43.

For full details about the parameters available in the GetJobStatus action, refer to the Answer Server
Reference.

Store Statistics for Your Answer Bank
You can configure Answer Server to store some information about the usage of your Answer Bank
question equivalence classes in an ODBC-compatible database.

When you configure statistics storage, Answer Server stores popularity information for your question
equivalence classes. Each time the text of an Ask action matches a question equivalence class,
Answer Server updates the database.

Periodically, Answer Server also queries the database for the popularity information, and uses it to
update a count field in the question equivalence class. You can use this field to sort question
equivalence classes by popularity in the GetResources action.

To configure Answer Bank to store statistics

1. Open your configuration file in a text editor.

2. Find the configuration section for the Answer Bank system for which you want to store statistics.

3. In this configuration section, set StatsStorage to the name of a configuration section for the
statistics database details. For example:

[MyAnswerBank]
StatsStorage=MyStatsDB

4. (Optional) Set UpdatePopularityInterval to the number of seconds between updates of the
question popularity field in the Answer Bank Agentstore.

By default, Answer Server updates the field every 600 seconds (10 minutes).

You can update the field more frequently if you need up-to-date information to sort by
popularity. However, for performance reasons Micro Focus recommends that you do not
update the popularity count field too frequently, because it might result in a large number of
indexing operations in the Answer Bank Agentstore component.

5. (Optional) Set PopularityWindowDays to the number of days for which you want to consider
popularity information for your question equivalence classes in the Answer Bank Agentstore.

By default, Answer Server stores the count for the last seven days. That is, each time Answer
Server updates the popularity field, it stores the number of times the question equivalence class
was matched in the last week.

6. Create a configuration section for the statistics database. The name of this section must match
the section you defined in the StatsStorage parameter in step 3. For example:

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 57 of 158



[MyStatsDB]

7. In the statistics database configuration section, set ConnectionString to the connection string
to use to connect to the statistics database. Answer Server passes this string on to the
database, so you can use a connection string that works in any SQL client application. For
example:

[MyStatsDB]
ConnectionString=Driver=PostgreSQL ANSI(x64); Server=sql-host.mycompany.com;
Port=5432; Database=statsdb; Uid=postgres;password=password;

The database that you configure must exist, but Answer Server creates all the tables that it
needs to store the statistics information. The database must also be able and configured to
accept dates in ISO-8601 formats (that is, YYYY-MM-DD hh:mm:ss).

NOTE: On Linux operating systems, remove the spaces in the connection string.

8. (Optional) Set Enabled to True. The default value for this parameter is True, but you might want
to set it explicitly for clarity. You can set Enabled to False if you want to stop storing the
statistics.

The following example shows the complete configuration for this statistics database.

[MyAnswerBank]
StatsStorage=MyStatsDB
UpdatePopularityInterval=600
PopularityWindowDays=7

[MyStatsDB]
Enabled=True
ConnectionString=Driver=PostgreSQL ANSI(x64); Server=sql-host.mycompany.com;
Port=5432; Database=statsdb; Uid=postgres;password=password;

For more information about these configuration parameters, refer to the Answer Server Reference.

Retrieve the Information Stored in an Answer
Bank
The GetResources and GetStats actions allow you to retrieve the information in your Answer Bank
systems.

GetResources
The GetResources action allows you to retrieve the questions, answers, question equivalence
classes, schemas, and XSDs for your answer systems. You can retrieve information for all systems
by type, or you can restrict to a subset of systems or resource IDs, or exclude a particular set of IDs.

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 58 of 158



You can also apply a filter to restrict the results to those that match some text, or a particular question
state.

For full details about the parameters available in the GetResources action, refer to the Answer Server
Reference.

Examples

The following action retrieves the schemas to use in a ManageResources action:

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=schema

The following action retrieves the first ten question equivalence classes stored in the specified
Answer Bank system.

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=question_
equivalence_class

The following action retrieves the questions in the specified Answer Bank system that contain the
keyword President in the question text or rule.

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=question&Fil
ter=%7B%20%22text%22%3A%20%22president%22%20%7D

The following action retrieves the questions in the specified Answer Bank system that have not been
answered (incoming, answerable, and needs_answer states).

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=question&Fil
ter=%7B%20%22state%22%3A%20%5B%22incoming%22%2C%20%22answerable%22%2C%20%22needs_
answer%22%5D%20%7D

The following action returns the question equivalence class with ID 4371920660452849522.

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=question_
equivalence_class&IDs=4371920660452849522

The following action returns the response XML Schema Definitions (XSDs) for the Answer Server
actions:

http://localhost:12000?Action=GetResources&SystemName=MyAnswerbank&Type=XSD

For more examples of how to use GetResources to find particular information, see Manage an
Answer Bank, on page 43.

GetStats
The GetStats action returns information about the number of questions and question equivalence
classes with each question state (incoming, answered, and so on). For example, you can use this
action to find out if you have any unanswered questions in the system.

For full details about the parameters available in the GetStats action, refer to the Answer Server
Reference.

Example

action=GetStats&SystemName=MyAnswerBank

Administration Guide
Chapter 5: Set Up an Answer Bank System

IDOL Answer Server (12.12) Page 59 of 158



Chapter 6: Set Up a Fact Bank System
A Fact Bank system requires a Fact Store subcomponent, which is usually a SQL database. You can
also configure Fact Bank to use a Lua script to retrieve facts from an external fact store.

Fact Bank also requires question parser Eduction grammar files, and a set of coding files. You can
optionally configure additional Eduction grammars for advanced time normalization. Advanced time
normalization extracts dates and times in various formats from questions and normalize them to a
consistent format, to improve fact retrieval.

You must download and install the Fact Store component separately, and update the configuration
with any Answer Server-specific configurations.

The following sections describe how to configure and set up your Fact Store and Eduction grammars,
and how to configure the coding files.

• Configure the Fact Bank System 60
• Configure the Fact Store 64
• Create Coding Files 71
• Set up a SQL Database for Coding Information 74
• Manage the Codings Cache 77
• The Question Parser Eduction Grammar 78
• Configure Security in Fact Bank 82

Configure the Fact Bank System
The Answer Server configuration file contains information about the subcomponents in your Fact
Bank systems.

For any Fact Bank system, you must configure the name of your Question Parser and time
normalization Eduction grammars and Lua scripts, and the locations of the Fact Bank coding files.
You must also configure the Fact Store.

You can optionally also configure a second Eduction grammar for advanced time normalization.
Advanced time normalization extracts dates and times in various formats from questions and
normalize them to a consistent format, to improve fact retrieval.

The Fact Store component stores the facts that you want to be able to retrieve. The Fact Store
content is structured data, containing the entities and properties for your facts. As such, Micro Focus
recommends that you use a SQL database as the backend component for your fact store, because it
is optimized for querying structured content.

Alternatively, you can use a Lua script to retrieve facts from an external fact store.

You specify the type of Fact Store that you want to use by configuring the BackendType configuration
parameter in the system configuration section in the Answer Server configuration file. Depending on
which back end type you choose, you must also set additional configuration parameters.

IDOL Answer Server (12.12) Page 60 of 158



The following sections describe how to configure the Fact Bank system in Answer Server, depending
on the type of Fact Store you choose.

DEPRECATED: In earlier versions of Answer Server you could use an IDOL Content component
fact store. This option is deprecated in Answer Server version 11.5 and later. Micro Focus
recommends that you use a SQL database as your fact store.

The IDOL Content component fact store option is still available for existing implementations, but it
might be incompatible with new functionality. For information about how to set up the
IDOL Content component fact store, refer to the documentation for Answer Server version 11.4.

Configure a Fact Bank with a SQL Database Fact Store
The following procedure describes the Answer Server configuration you need to set up a Fact Bank
system with a SQL database back end. For information about how to set up the SQL database, see
Set Up a SQL Backend as Fact Store, on page 64.

To configure the Fact Bank System for a SQL database backend

1. Open the Answer Server configuration file in a text editor.

2. Find the [Systems] section, or create one if it does not exist. This section contains a list of
systems, which refer to the associated configuration sections for each system.

3. After any existing systems, add an entry for your new Fact Bank system. For example:

[Systems]
0=MyAnswerBank
1=MyFactBank

4. Create a configuration section for your Fact Bank system, with the name that you specified. For
example, [MyFactBank].

5. Set Type to FactBank.

6. Set BackendType to sqldb.

7. Set ConnectionString to the connection string to use to connect to the RDBMS that contains
the fact store content.

8. Set EductionQuestionGrammars to the name of your question parser grammar. You can also
optionally set EductionEntities to a list of entities to use from the specified grammars.

9. Set EductionTimeGrammars to the name of the Eduction grammar to use for advanced time
normalization. You can also optionally set TimeEntities to a list of entities to use from the
specified grammars.

10. Set EductionLuaScript and TimeLuaScript to the file name and path to the Lua scripts to use
for question parsing and time normalization.

11. Specify how Fact Bank must access your coding files by using one of the following methods:

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 61 of 158



l To use coding text files (see Create Coding Files, on page 71):

a. Set CodifierType to files.

b. Set CodingsPath and CodingsDatPath to the locations of the coding files.

l To use a coding database (see Set up a SQL Database for Coding Information, on
page 74):

a. Set CodifierType to odbc.

b. Set CodingsConfigSection to the name of a configuration section where you define the
connection information your coding database.

c. Create the corresponding configuration section for the coding database (for example 
[FactBankCodings0]).

d. In this coding database configuration section, set ConnectionString to the connection
string to use to connect to the RDBMS that contains the coding information.

12. (Optional) Set the parameter AskParallelizationFactor to specify the number of threads to
use to gather answers (for each ask action). The default value is 1 but if your Answer Server
has sufficient resources you can improve response times by increasing the number.

13. Save and close the configuration file.

14. Restart Answer Server for your changes to take effect.

For example:

[MyFactBank]
Type=factbank
AskParallelizationFactor=4
// Question Parser
EductionQuestionGrammars=./resources/grammars/question_grammar_en.ecr
EductionLuaScript=./resources/lua/question_grammar_en.lua
EductionTimeGrammars=./resources/grammars/datetime_processing.ecr
TimeLuaScript=./resources/lua/datetime.lua
// Fact Store
BackendType=sqldb
ConnectionString=Driver={PostgreSQL};Server=sql-
host.mycompany.com;Port=5432;Database=factstoredb;Uid=postgres;password=password;
// Coding Files
CodingsPath=./codings
CodingsDatPath=./codings

Configure a Fact Bank to Call a Lua Script
The following procedure describes the Answer Server configuration you need to set up a Fact Bank
system to call a Lua script to retrieve facts. For information about how to write the script, see Use a
Lua Scripts to Retrieve Facts, on page 70 and the Answer Server Reference.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 62 of 158



To configure the Fact Bank system for a Lua Script backend

1. Open the Answer Server configuration file in a text editor.

2. Find the [Systems] section, or create one if it does not exist. This section contains a list of
systems, which refer to the associated configuration sections for each system.

3. After any existing systems, add an entry for your new Fact Bank system. For example:

[Systems]
0=MyAnswerBank
1=MyFactBank

4. Create a configuration section for your Fact Bank system, with the name that you specified. For
example, [MyFactBank].

5. Set Type to FactBank.

6. Set BackendType to Lua.

7. Set ScriptPath to the path to the Lua script that you want to run as your Fact Bank. Answer
Server calls out to this script whenever it processes an Ask action that includes the Lua Fact
Bank system, and returns the response as an answer.

8. (Optional) Set ScriptFunction to the entry function in your Lua script that Answer Server must
call. The default entry function is called fetch.

9. Set EductionQuestionGrammars to the name of your question parser grammar. You can also
optionally set EductionEntities to a list of entities to use from the specified grammars.

10. Set EductionTimeGrammars to the name of the Eduction grammar to use for advanced time
normalization. You can also optionally set TimeEntities to a list of entities to use from the
specified grammars.

11. Set EductionLuaScript and TimeLuaScript to the file name and path to the Lua scripts to use
for question parsing and time normalization.

12. Specify how Fact Bank must access your coding files by using one of the following methods:

l To use coding text files (see Create Coding Files, on page 71):

a. Set CodifierType to files.

b. Set CodingsPath and CodingsDatPath to the locations of the coding files.

l To use a coding database (see Set up a SQL Database for Coding Information, on
page 74):

a. Set CodifierType to odbc.

b. Set CodingsConfigSection to the name of a configuration section where you define the
connection information your coding database.

c. Create the corresponding configuration section for the coding database (for example 
[FactBankCodings0]).

d. In this coding database configuration section, set ConnectionString to the connection
string to use to connect to the RDBMS that contains the coding information.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 63 of 158



13. (Optional) Set the parameter AskParallelizationFactor to specify the number of threads to
use to gather answers (for each ask action). The default value is 1 but if your Answer Server
has sufficient resources you can improve response times by increasing the number.

14. Save and close the configuration file.

15. Restart Answer Server for your changes to take effect.

Configure the Fact Store
The Fact Store component stores the facts that you want to be able to retrieve. The Fact Store
content is structured data, containing the entities and properties for your facts. As such, Micro Focus
recommends that you use a SQL database as the backend component for your fact store, because it
is optimized for querying structured content.

Alternatively, you can use a Lua script to retrieve facts from an external fact store.

The following sections describe how to set up the Fact Store backend.

DEPRECATED: In earlier versions of Answer Server you could use an IDOL Content component
fact store. This option is deprecated in Answer Server version 11.5 and later. Micro Focus
recommends that you use a SQL database as your fact store.

The IDOL Content component fact store option is still available for existing implementations, but it
might be incompatible with new functionality. For information about how to set up the
IDOL Content component fact store, refer to the documentation for Answer Server version 11.4.

Set Up a SQL Backend as Fact Store
You can use a SQL database to store facts and qualifiers for your Fact Store.

Answer Server can connect to any RDBMS that supports SQL. You specify how to connect to the
database by setting the appropriate connection string in the ConnectionString configuration
parameter in the FactBank configuration. The most fully tested options are:

l SQLite

l PostgreSQL (version 9.3 or later is required)

The SQL Fact Store has two required tables, one for facts, and one for qualifiers. The facts table
stores the values of entity properties. The qualifiers table stores the names and values of particular
sets of qualifiers associated with the properties. Each table includes qualifier combination values,
which link the properties to the associated qualifiers.

In addition, there are two optional tables, one for sources and one for security types. The sources
table stores information about the sources of your facts, including optional security information to
allow you to restrict the facts by user permissions. The security types table stores the security
configuration information for your security types.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 64 of 158



Your Answer Server installation includes PostgreSQL schema files for these tables, and a utility
script that you can use to apply these schemas to a database by using the psql utility. These files are
available in the /factbank/schemas/postgresql directory in your installation.

The following sections describe the tables in more detail, and provide some best practices for how to
organize your fact stores.

Manage Your Tables

Micro Focus recommends that you organize your tables by creating a separate database for each set
of facts and qualifiers. In this case, each database is the backend for its own Fact Bank system,
which optimizes the database queries required for an Ask action.

For example, if you have a collection of facts about company sales histories, and a collection of facts
about the products that a company offers, you might create a sales database and a products
database. Each database is a separate Fact Bank instance in your Answer Server setup, and you
can easily query one or both, as required.

Facts Table

The facts table stores the values of entity properties.

This table must have the name facts. The facts table has four required columns, and one optional
column, described in the following table.

Column Type Description

entity_code text The code for the entity that this row is about, from your entity_to_
code.txt coding file.

property_
code

text The code for the property that this row is about, from your property_
to_code.txt coding file.

property_
value

text The value of this property for the specified entity, in the associated
qualifier combination.

qualifier_
combination

integer The reference value for the rows in the qualifiers table that contain
qualifiers that apply to a particular property value. This value
corresponds to the values in the qualifier_combination column in
the qualifiers table.

Answer Server uses this column to find the appropriate property,
entity, or property value when a question contains a particular
qualifier. If this value does not correspond to a value in the qualifiers
table, Answer Server treats it as having no qualifiers. Micro Focus
recommends that you reserve a value to use for properties that do not
have qualifiers (usually 0).

source_id integer (Optional) The reference value for the row in the sources table that
contains the source for this fact. This value corresponds to the values
in the id column in the sources table.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 65 of 158



Column Type Description

Answer Server uses this column to find and return the source for a
particular fact. If this value is missing, or does not correspond to a
value in the sources table, Answer Server returns the source as
SQLDB. Micro Focus recommends that you reserve a value to use for
properties that do not have source information (usually 0).

You can optimize the performance of the facts table by creating indexes on each column. For
example, in a PostgreSQL instance, Micro Focus recommends that you create a btree index on each
column.

Qualifiers Table

The qualifiers table stores the codes and values for qualifiers, and the qualifier combination reference
that links a qualifier to a row in the facts table.

The table must have the name qualifiers. The qualifiers table has three columns, described in the
following table.

Column Type Description

qualifier_
combination

integer The qualifier combination reference that identifies qualifiers that are
associated with a particular property value for an entity.

qualifier_
code

text The code for the property that this qualifier is about, from your
property_to_code.txt file

qualifier_
value

text The value of the qualifier in this qualifier combination

Most data sets will have multiple rows with the same qualifier combination. For example, if your facts
table contains the ares of different types of land in a country over time, you might have something like
the following table for qualifiers.

qualifier_combination qualifier_code qualifier_value

1 LANDTYPE Farmland

1 YEAR 2015

2 LANDTYPE Forest

2 YEAR 2015

3 LANDTYPE Farmland

3 YEAR 2016

4 LANDTYPE Forest

4 YEAR 2016

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 66 of 158



In this case, the qualifier combination 1 relates to farmland in 2015, qualifier combination 2 relates to
forest in 2015, and so on.

You can optimize the performance of the qualifiers table by creating indexes on each column. For
example, in a PostgreSQL instance, Micro Focus recommends that you create a btree index on each
column.

Sources Table

The sources table is an optional table to allow you to store the sources for your facts. You can use
this option with the source_id column in the facts table to store the details of the fact sources.
Answer Server returns the source information with the fact when it returns in an Ask action.

The table must have the name sources. The sources table has two required columns and two
optional columns, described in the following table.

Column Type Description

id integer A primary key integer ID value for the source.

source text The name of the source. Answer Server returns this value in the Ask
action when it returns a fact that has the associated source ID.

acl text (Optional) The Access Control List (ACL) for this source. You can use
this option if you want to use user security for your facts.

security_
type_id

integer (Optional) The reference value for the row in the security_types table
that contains the security type for this source. This value corresponds to
the values in the id column in the security_types table. You can use
this option if you want to use user security for your facts.

Answer Server uses this column to find and return the security type for a
particular source. If this value does not correspond to a value in the
security_types table, Answer Server treats it as having no security.
You can set security_type_id to NULL, or you might want to reserve a
value to use for properties that do not have security (usually 0).

Security_Types Table

The security types table is an optional table to allow you to store the security type information for your
sources. You can use this option with the security_type_id column in the sources table to store the
details of the security types.

The table must have the name security_types. The security types table has two columns,
described in the following table.

Column Type Description

id integer A primary key integer ID value for the security type. This value
corresponds to the IDs that you use in the sources table.

friendly_ text The name of the security type. This value must correspond to the

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 67 of 158



Column Type Description

name security type configuration section in your Answer Server configuration
file.

SQL Fact Store Example

The following section describes an example of setting up a SQL backend Fact Bank.

A company wants to make its exports data available for question answering. It exports two products,
Psi and Omega, to two countries, Germany and France.

In 2015, Psi cost €5 and Omega cost €20. The company exported:

l 50 units of Psi and 20 units of Omega to Germany.

l 10 units of Psi and 30 units of Omega to France.

In 2016, Psi cost €7 and Omega cost €18. Sales increased, and the company exported:

l 80 units of Psi and 100 units of Omega to Germany.

l 40 units of Psi and 50 units of Omega to France.

The following tables show the Fact Bank Facts andQualifiers table for this information.

entity_code property_code property_value qualifier_combination

QPSI REXPORTS 50 0

QPSI REXPORTS 10 1

QPSI REXPORTS 80 2

QPSI REXPORTS 40 3

QOMEGA REXPORTS 20 0

QOMEGA REXPORTS 10 1

QOMEGA REXPORTS 80 2

QOMEGA REXPORTS 40 3

QPSI RPRICE 5 4

QOMEGA RPRICE 20 4

QPSI RPRICE 7 5

QOMEGA RPRICE 18 5

Facts Table

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 68 of 158



qualifier_combination qualifier_code qualifier_value

0 S.COUNTRY Germany

0 S.YEAR 2015

1 S.COUNTRY France

1 S.YEAR 2015

2 S.COUNTRY Germany

2 S.YEAR 2016

3 S.COUNTRY France

3 S.YEAR 2016

4 S.YEAR 2015

5 S.YEAR 2016

Qualifiers Table

The following example shows the entity code values in the code_to_entity.txt file:

QPSI=Psi
QOMEGA=Omega

The following example shows the property code values in the code_to_property.txt file:

S.YEAR=Year,string
S.COUNTRY=Country,string
RPRICE=Price,string
REXPORTS=Exports,string

You can use this Fact Bank setup to answer questions such as:

l What were the 2015 exports of Psi?

l Howmany Omega were exported to Germany?

l What is the average price of Omega?

Your Answer Server installation includes example files that allow you to test this setup. The example
files are included in the sql_example directory.

To use this example, you must have a PostgreSQL instance (running on PostgresHost and
PostgresPort, with a user who has access to a factbank_example database.

To set up the example

1. Restore the database from the factback_example.pgdump file into your PostgreSQL instance,
by using a command of the following form:

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 69 of 158



psql -h PostgresHost -p PostgresPort -U UserName factbank_example < factbank_
example.pgdump

2. In your Answer Server configuration file, configure a Fact Bank system to use the plain text
coding files provided in the example, by setting the CodingsPath parameter to point to the
example coding files. For example:

[MyExampleFactBank]
Type=factbank
CodingsPath=C:\AnswerServer\sql_example
...

3. In the Fact Bank system configuration, set the ConnectionString to the appropriate connection
string for your example database.

4. In the Fact Bank system configuration, set the EductionQuestionGrammars parameters to the
location of your FactBankEductionGrammar.ecr, which is distributed with Answer Server.

5. Save and close the configuration file.

6. Start all the Answer Server components.

You can now use the Ask action to ask the questions listed above and to check the responses.

Use a Lua Scripts to Retrieve Facts
You can configure a Fact Bank system in Answer Server that calls a Lua script to get facts. Answer
Server calls out to this script whenever it processes an Ask action that includes the Lua Fact Bank
system, and returns the response as an answer.

For example, you might have an external data source or API that contains the factual information.
Rather than convert the information into a Fact Store database format, you can use a Lua script to
retrieve the information directly.

NOTE:When Answer Server processes a question in an Ask action, it might find multiple ways to
parse the question. This might mean that Answer Server calls your script multiple times for a
single Ask action, although some of the parsings might not match any available facts.

To use a Lua script, you must ensure that the Fact Bank configuration has the BackendType
configuration parameter set to Lua. See Configure a Fact Bank to Call a Lua Script, on page 62.

Create a Fact Retrieval Script

The Lua script must implement a script function that Answer Server can call. By default, Answer
Server calls the fetch function, but you can use a different name and set the ScriptFunction
configuration parameter to the appropriate function name.

The script function must accept a single LuaIncompleteFact object, and return an array of
LuaCodifiedFact objects.

For example, the following fetch function always returns an empty array:

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 70 of 158



function fetch(incomplete)
return {}

end

The LuaIncompleteFact object represents the question that has been asked. It has at most one
target element missing, which the Lua script must attempt to find the information for.

The LuaIncompleteFact object also includes:

l an entity, which is the object of the question (unless the question target is the entity itself, in
which case the entity value is empty).

l zero or more LuaIncompleteFactProperty objects, which define a property of the question.
Properties might be negated (that is, you want to find facts that do not match the property).

Each LuaIncompleteFactProperty object can also contain zero or more
LuaIncompleteFactQualifier objects, which define a qualifier for the property. Qualifiers
might be negated (that is, you want to find facts where the property does not match the
qualifier).

You initialize the LuaCodifiedFact object from a LuaIncompleteFact object by using the
initToCodifiedFactmethod. The LuaCodifiedFact object must not have any missing elements (for
example, it must have an entity value).

The LuaCodifiedFact can also include zero or more LuaCodifiedFactProperty objects, which
specify a property of the fact. Each LuaCodifiedFactProperty object can also have zero or more
LuaCodifiedFactQualifier objects.

Entities, properties, and qualifiers are all coded on entry into the function, and decoded before
Answer Server returns the information to the end user.

The Lua script has access to Lua functions and methods that are included in many IDOL products, as
well as functions and methods that are specific to Answer Server. For full details and examples of the
available functions, refer to the Answer Server Reference.

Create Coding Files
The coding files are simple files that describe the entity, property, and qualifier codes in your Fact
Bank system. It also defines any aliases for any of the entities, properties, and qualifiers, and maps
all aliases to the same code.

A Fact Bank system requires four coding files:

l code_to_property.txt. Assigns a unique code to each property and qualifier in your data, as
well as a canonical human-readable name and the data type.

l property_to_code.txt. An inverse mapping of the property and qualifier codes, including any
aliases.

l code_to_entity.txt. Assigns a unique code to each entity in your data (that is, things for
which you might want to know the values of a property).

l entity_to_code.txt. An inverse mapping of the entity codes, including any aliases.

The following sections use a simple example to show how to create the coding files from your data.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 71 of 158



Example Data
The example data starts with facts, organized in a table. This version uses CSV format:

product_name, color, buy_price, sell_price, sold_last_year
alpha, red, 10, 12, 3500000
beta, blue, 11, 13, 2000000
gamma, green, 9, 10, 1000000

For this example, you might want to be able to answer questions such as:

l What is the purchase price for alpha?

l What was the selling price of beta?

l What color is gamma?

Generate the Property Code Files
The properties in your data are the values that you want to find in the Fact Bank. For a table like the
one in this example, the properties are the columns in the table.

The code_to_property.txt coding file assigns a unique code for each property and qualifier. This
coding file also defines the canonical human-readable name for the property or qualifier, and sets its
type. You can use the following types: 

l string. The property or qualifier values are strings.

l time. The property or qualifier values are times in the ISO format YYYY-MM-DDTHH:NN:SS.

l entity. The property or qualifier values are entity codes. In this case, you must list the entity
code in the code_to_entity.txt file, and you must list the possible values for this entity in the
entity_to_code.txt file. This option allows you to map multiple values to the same qualifier
code.

NOTE: If your data values contain punctuation characters, such as commas (,) and equals signs
(=), you must percent-encode the value in the coding files. For example, use %3D for an equals
sign.

For example, the following sample is the code_to_property.txt file for the example data in the
previous section.

PRODUCT_NAME=product,string
COLOR=color,string
BUY_PRICE=buying price,string
SELL_PRICE=selling price,string
SOLD_LAST_YEAR=sold last year,string

The property_to_code.txt coding file contains the inverse mapping of the code_to_property.txt
file, without the type information. You can also include aliases for a value, on a separate line.

For example, the following sample is the property_to_code.txt file for the example data. It includes
the alias sale price for the SELL_PRICE code.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 72 of 158



product=PRODUCT_NAME
color=COLOR
buying price=BUY_PRICE
purchase price=BUY_PRICE
selling price=SELL_PRICE
sale price=SELL_PRICE
sold last year=SOLD_LAST_YEAR

Generate the Entity Code Files
The entities are the things that you want to find the property values for. For the example table, the
obvious choice is the product_name.

The code_to_entity.txt coding file assigns a unique code to each entity.

NOTE: If your data values contain punctuation characters, such as commas (,) and equals signs
(=), you must percent-encode the value in the coding files. For example, use %3D for an equals
sign.

For example, the following sample is the code_to_entity.txt for the example data.

ALPHA=alpha
BETA=beta
GAMMA=gamma

The entity_to_code.txt coding file contains the inverse mapping of the code_to_entity.txt. You
can also include aliases for the entity names, on a separate line.

For example, the following sample is the entity_to_code.txt for the example data. It includes the
alias alpha one for the ALPHA code.

alpha=ALPHA
beta=BETA
gamma=GAMMA
alpha one=ALPHA

Generate the Fact Store Data
This section describes how to convert a table of information into Fact Store content, for a
SQL database backend type. It uses the example table specified in the Create Coding Files, on
page 71, and also assumes you have set the entity and property codes as described in that section.

product_name, color, buy_price, sell_price, sold_last_year
alpha, red, 10, 12, 3500000
beta, blue, 11, 13, 2000000
gamma, green, 9, 10, 1000000

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 73 of 158



Create a Fact Store Table for a SQL Database

In the SQL database backend, each property and property value for a particular entity is a row in the
Facts table. For more information about the format of this table, see Set Up a SQL Backend as Fact
Store, on page 64.

The following table shows the table rows for the alpha product, assuming that all these properties
refer to the same qualifier combination.

entity_code property_code property_value qualifier_combination

ALPHA COLOR red 0

ALPHA BUY_PRICE 10 0

ALPHA SELL_PRICE 12 0

ALPHA SOLD_LAST_YEAR 35000000 0

For this data, the qualifiers you use in the qualifiers table might include a year, or a selling region.
For example:

qualifier_combination qualifier_code qualifier_value

0 YEAR 2015

0 REGION Americas

Set up a SQL Database for Coding
Information
The coding information in Fact Bank describes the entity, property, and qualifier codes in your Fact
Bank system. It also defines any aliases for any of the entities, properties, and qualifiers, and maps
all aliases to the same code.

You can store the coding information as a series of text files (see Create Coding Files, on page 71),
or in a SQL database.

You configure your Fact Bank to use a coding database by setting the CodifierType parameter in
your Fact Bank system to odbc, and creating a configuration section for the coding database. For
more information, see Configure the Fact Bank System, on page 60.

Create a Codings SQL Database
Answer Server can connect to any RDBMS that supports SQL. The most fully tested options are:

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 74 of 158



l SQLite

l PostgreSQL (version 9.3 or later is required)

The SQL coding database has four required tables:

l property_codes. Assigns a unique code to each property and qualifier in your data, as well as a
canonical human-readable name and the data type.

l properties. An inverse mapping of the property and qualifier codes, including any aliases.

l entity_codes. Assigns a unique code to each entity in your data (that is, things for which you
might want to know the values of a property).

l entities. An inverse mapping of the entity codes, including any aliases.

Your Answer Server installation includes a PostgreSQL schema file for these tables, and a utility
script that uses the psql utility to apply the schema to a database. These files are available in the
/factbank/schemas/postgresql/codings directory in your installation.

The following sections describe these tables in more detail.

Property_Codes Table

The properties in your data are the values that you want to find in the Fact Bank. The property_
codes table contains a unique code for each property and qualifier. This table also defines the
canonical human-readable name for the property or qualifier, and sets its type.

Column Type Description

id text The ID for the property or qualifier.

code text The unique code for the property or qualifier.

canonical_
name

text The canonical name for the property (any aliases that you define in the
properties table refer back to this name).

type text The type of the property. You can use the following types: 

l string. The property or qualifier values are strings.

l time. The property or qualifier values are times in the ISO format
YYYY-MM-DDTHH:NN:SS.

l item. The property or qualifier values are entity codes. In this case,
you must list the entity code in the entity_codes table, and you
must list the possible values for this entity in the entities table.
This option allows you to map multiple values to the same qualifier
code.

Properties Table

The properties table contains the inverse mapping of the property_codes file, without the type
information. You can also include aliases for a value, in a separate row.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 75 of 158



Column Type Description

id text The ID for the property or qualifier value.

name text The name of the property or qualifier. This value can be an alias.

code_id text The ID of the row in the property_codes table that corresponds to this
property or qualifier.

Entity_Codes Table

The entities are the things that you want to find the property values for. The entity_codes table
assigns a unique code to each entity.

Column Type Description

id text The ID for the entity.

code text The unique code for the entity.

canonical_
name

text The primary name for the entity (any aliases that you define in the
entities table refer back to this name).

weight integer The entity weight. If entities with similar names are returned as
candidate answers, the entity with the higher weight scores more
highly.

Entities Table

The entities table contains the inverse mapping of the entity_codes file. You can also include
aliases for a value, in a separate row.

Column Type Description

id text The ID for the entity alias.

name text The name of the entity. This value can be an alias.

code_id text The ID of the row in the entity_codes table that corresponds to this entity.

Import Codings into a Database from Coding Files
The Answer Server installation includes a Python script utility, sql_import.py, to allow you to
migrate from an existing set of coding files to a SQL codings database.

To run the script, you need:

l an existing set of coding files

l the details of an IDOL Content component that the script can connect to. The script uses this
Content to generate stems of the canonical names that it inserts into the database. This

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 76 of 158



Content must have the same stemming configuration as Fact Bank for the language that the
codings apply to. Content must be running before you run the script.

To import your codings from an existing set of coding files, you run the script against the directory that
contains the coding files, and provide the details of the IDOL Content component.

This script creates the required tables in your database, with the VARCHAR lengths correctly sized
for your data. It also inserts the codings into the tables for the odbc fact codifier.

NOTE: The insertion is transactional. If the script is successful, it imports all the data. If there are
any errors, the script does not import any data.

Manage the Codings Cache
Answer Server uses a cache of codings data to improve performance when it is retrieving the
codings. As well as caching valid codings, it caches a 'not found' entry when it looks up an entity that
does not exist, to prevent multiple unsuccessful lookups for the same thing.

By default, Answer Server removes old entries from the cache only when it runs out of allocated
space. When you do not update the codings information very often, this option is fine. However, if you
update the codings regularly and want Answer Server to pick up the changes in a timely manner, you
might need to update the cache more frequently.

You can configure Answer Server to automatically remove old items from the cache when you use an
ODBC codings database. You can also use a ManageResources action to manually reload the
codings.

Expire Codings Cache Entries Automatically
You configure automatic codings cache expiration by using the CacheExpirationInterval and
CacheNotFoundExpirationInterval parameters, which you set in the CodingsConfigSection (see
Configure the Fact Bank System, on page 60).

NOTE: You can use automatic codings expiration only when you use the ODBC codifier type (see
Set up a SQL Database for Coding Information, on page 74).

The CacheExpirationInterval parameter controls how long to keep entries for valid codings in the
cache. The CacheNotFoundExpirationInterval parameter controls how long to keep entries for
entities that were not found.

Depending on your use case, it is probably more common that you add new entries to the codings
database rather than modifying the existing values. In this case, you might want to set
CacheNotFoundExpirationInterval to be more frequent than CacheExpirationInterval.

For example:

[MyFactBank]
CodifierType=ODBC

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 77 of 158



CodingsConfigSection=MyCodifiers
...

[MyCodifierSection]
CacheExpirationInterval=86400
CacheNotFoundExpirationInterval=43200

For more information about these configuration parameters, refer to the Answer Server Reference.

Update the Codings Database Manually
You can reload the coding database manually by using the ManageResources action. This option
updates the codings values for all codifier types:

l When CodifierType is odbc, Answer Server removes all current cached coding lookups.

l When CodifierType is files, Answer Server reloads the coding maps from disk to reflect any
changes. It uses the raw text files if they are present, or the generated dat files otherwise.

For example:

Action=ManageResource&SystemName=FactBank
data={

"operation":"reload",
"type":"codifier"
}

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

The Question Parser Eduction Grammar
The Fact Bank Question Parser is an IDOL Eduction grammar designed for question answering,
which the Answer Server internal Eduction module uses to parse questions. This special grammar
file defines many different forms that questions can take, and extracts the entities, properties, and
qualifiers in the questions.

In general, an entity is the topic of the question, or a topic in your Fact Store data. Entities have
properties, which define pieces of information that you might want to find, or which you might want to
use to find a particular entity. A qualifier is a piece of information that modifies the property.

For example, in the questionWhat is the population of the USA in 1850, you might define:

l USA to be the entity.

l population to be the property.

l 1850 to be a qualifier.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 78 of 158



Many questions can be interpreted in more than one way, depending on how you set up your data.

The Fact Bank grammar can find the entities, properties, and qualifiers in a variety of different
question formations.

When the Question Parser processes a question, the grammar might find several valid
interpretations. In this case, the Question Parser returns all the options to Answer Server, which
attempts to find the associated entities, properties, and qualifiers in your coding files, and then in your
data.

The values that match in your Fact Store at this stage depend on how you have set up and stored
your data.

NOTE: For time and entity type answers, Answer Server merges duplicate answers when
multiple interpretations return the same value.

The examples in the sections below demonstrate many of the different forms of questions in English
that the Question Parser can detect. The questions are examples, and the list is not exhaustive. In
addition, some of the forms are not mutually exclusive (that is, Question Parser might detect both
forms). In these cases, the correct form depends on your data.

Processors
The Q&A grammar also detects a number of processors, which affect the question in a similar way to
qualifiers, but which might require further calculation on the data. The following processors are
supported (processors listed on the same line are equivalent):

l min, minimum

l max, maximum

l mean, average

l total, sum

l first, oldest

l last, latest

Example Questions
The following section lists several example questions in forms that the Question Parser can parse,
and which Answer Server can use to retrieve the relevant facts from the Fact Store.

In the questions, entities are specified in italics, properties are specified in bold, and qualifiers are
underlined.

Questions to Find a Property Value

The following questions show forms where the Question Parser detects an entity and property name,
and any associated qualifiers. For these questions, Answer Server attempts to find the property value
in the Fact Store.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 79 of 158



l What is the population of France?

l What is France's population?

l Can you tell me the French population?

l The population of France is what?

l Howmany people live in France?

This question also matches the property number of people (the grammar automatically
constructs this property because of the how many in the question).

l What was the population of France in 2010?

l What is the female population of France?

l What is the non-female population of France?

In this example, the qualifier female is negated, so Answer Server finds facts that do not have
this qualifier.

l What is the population of France that is female?

l What is the population of France that isn't female?

In this example, the qualifier female is negated, so Answer Server finds facts that do not have
this qualifier.

l What did Dickenswrite in 1837?

l Who discovered America in 1492?

This question also matches the property discovered by (the grammar automatically constructs
this property because of the who in the question).

l What is the France population above 60000000?

Questions to Find Processed Property Value

The following questions show forms where the Question Parser detects an entity and property name,
and a processor that qualifies the value that the question requests. For these questions, Answer
Server attempts to find the property value in the Fact Store.

Processors are marked in monospace font.

l What is the latest population of Russia?

l What is the maximummale population of Russia?

l When wasGeorge Washington first elected?

l What are the total electoral votes ofGeorge Washington?

Questions to Find the Name of an Entity

The following questions show forms where the Question Parser detects a property and one or more
property values. For these questions, Answer Server attempts to find the name of an entity in the
Fact Store.

Property values are marked in bold italic.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 80 of 158



l Where is Paris the capital of?

l Whose capital is Paris?

l Which country has a capital that is Paris?

l Who was president in 1810?

l Who was president of America in 1810?

l Who are the presidents of America who are fictional?

In this example, the fictional qualifier modifies the property presidents, which has the value
America.

l Who are the presidents of America who aremale?

In this example,male is treated as the value of a separate unnamed property of the entity that
the question requests.

l What country borders France and Spain?

l What country borders Portugal?

l What products are there with interest rates above 0.3%?

l What products are there with interest rates between 0.1 and 0.3%?

Questions to Find the Value of a Qualifier

The following questions show forms where the Question Parser detects an entity, a property, and a
property value. For these questions, Answer Server attempts to find the value of a qualifier that
matches these values.

l When did the USA haveGeorge Washington as president?

This question matches a special point in time qualifier.

l When didGeorge Washington become president?

This question matches the special position held property, and a special start time qualifier.

Modify the Question Parser Eduction Grammar
The default question parser grammar provides a large number of possible questions in English (see
Example Questions, on page 79). Versions of this grammar file are also available in French, German,
Italian, Portuguese, and Spanish.

However, if you want to use a Fact Bank in a different language, or if you find that the results for a
particular question that you want to use are not ideal, you can add your own entities to the Fact Bank
User Grammar.

The QuestionUserGrammar.xml file is included in your Answer Server installation, with the other Fact
Bank resources. To modify the Question Parser grammar, you must modify this XML file and compile
it by using the edktool command-line tool, which is included in the Eduction SDK.

The QuestionUserGrammar.xml has comments that explain in more detail how to modify the
grammar. You can add new entities to the file, for example to provide question formats in different

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 81 of 158



languages. It includes the content in the existing question_grammar_en.ecr file, so your
modifications extend the existing grammar.

When you have modified the grammar, you compile it and deploy it in Answer Server, replacing the
standard question_grammar_en.ecr file.

For more information about Eduction grammars and edktool, refer to the Eduction User and
Programming Guide.

Configure Security in Fact Bank
You can use IDOL mapped security with Fact Bank, by including the ACL information in your
SQL backend fact store.

To use IDOL mapped security with Fact Bank you must:

l configure the appropriate security types in your Answer Server configuration file.

l uses a sources table in your SQL database fact store, with the ACL values.

l add a security_types table in your SQL database fact store, with the details of the security
types.

Configure the Security Types in Answer Server
Security configuration in Answer Server is similar to the configuration in the IDOL Content
component. Depending on your data sources, it is likely that your Answer Server security
configuration contains the same security types as your IDOL Content component data store.

You do not need any additional security libraries to run security in Answer Server fact bank.

To configure security in Answer Server

1. Open your configuration file in a text editor.

2. Find the [Security] configuration section, or add one if it does not exist.

3. In the [Security] section, set the SecurityInfoKeys parameter to specify the security
encryption keys to use to encrypt and decrypt the security information. You can set the
SecurityInfoKeys parameter either to the name of an AES key file (recommended) or to a
comma-separated list of four signed 32-bit integers. For information about how to generate a
key file with the autpassword command-line tool, refer to the IDOL Server Administration
Guide.

For example:

[Security]
SecurityInfoKeys=MyAESKeyFile.ky

4. In the [Security] section, list the security types that you want to use.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 82 of 158



0=NT
1=Netware
2=Notes
3=Exchange

5. Create a section for each of the security types you defined (the section must have the same
name as the security type). For each section, provide settings that determine how Answer
Server handles that security type. For example:

[NT]
Type=AUTONOMY_SECURITY_V4_NT_MAPPED

[Netware]
Type=AUTONOMY_SECURITY_NETWARE_MAPPED

[Notes]
Type=AUTONOMY_SECURITY_V4_NOTES_MAPPED

[Exchange]
Type=AUTONOMY_SECURITY_EXCHANGE_MAPPED

6. Save and close the configuration file.

Set Up Fact Store Tables for Security
To use mapped security with your facts, you must use the sources table in your SQL fact store.

The sources table contains details of the source for your facts. Each source has an ID, which you use
in the facts table to identify the source for an individual fact. For example:

entity_code property_code property_value qualifier_combination source_id

COMPANY CEO Jane Smith 0 1

Facts Table

id source

1 http//www.example.com/about

Sources Table

When you use mapped security, the sources table also includes an access control list (ACL) for each
source, and a security type ID. The security type ID corresponds to a row in the security_types
table, which contains details of your configured security types.

For example:

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 83 of 158



id source acl security_
type_id

1 http//www.example.com/ab
out

1:U:G:NU:9sjbyPA,9tnU38jBwfA:NG:9sjbxMHO
wt/d8A

3

Sources Table

id friendly_name

1 Exchange

2 Netware

3 NT

Security_Types Table

For more information about the tables in your SQL fact store, see Set Up a SQL Backend as Fact
Store, on page 64.

Administration Guide
Chapter 6: Set Up a Fact Bank System

IDOL Answer Server (12.12) Page 84 of 158



Chapter 7: Set Up a Passage Extractor
System
This section describes how to set up a Passage Extractor system, and configure the subcomponents.

• Configure the Passage Extractor System 85
• Train Passage Extractor Classifiers 87
• Entity Extraction in Passage Extractor 92
• Troubleshoot Passage Extractor 97

Configure the Passage Extractor System
The Answer Server configuration file contains information about the subcomponents in your Passage
Extractor systems.

For any Passage Extractor system, you must configure the host and port details of your data store,
which is an IDOL Content component that contains the documents that Answer Server uses to find
answers. For entity extraction, you must also configure the details for your Eduction grammars, and
the Passage Extractor Agentstore component.

Passage extractor also uses question classifiers, to determine the type of a question, and therefore
what entities to extract from candidate answers. The classifier is required. The Answer Server
installation includes classifiers for some languages, but for others you must train a classifier yourself.

The following procedure describes how to configure the Passage Extractor system in Answer Server.

For more details about the configuration parameters for the Passage Extractor system, refer to the
Answer Server Reference.

To configure the Passage Extractor System

1. Open the Answer Server configuration file in a text editor.

2. Find the [Systems] section, or create one if it does not exist. This section contains a list of
systems, which refer to the associated configuration sections for each system.

3. After any existing systems, add an entry for your new Passage Extractor system. For example:

[Systems]
0=MyAnswerBank
1=MyFactBank
2=MyPassageExtractor

4. Create a configuration section for your Passage Extractor system, with the name that you
specified. For example, [MyPassageExtractor].

IDOL Answer Server (12.12) Page 85 of 158



5. Set Type to PassageExtractor.

6. Set IDOLHost and IDOLACIPort to the host name and ACI Port of the IDOL Content component
that contains the documents that you want to use to find answers.

NOTE: If you want to use synonyms to expand queries, set these parameters to the host
and port of the Query Manipulation Server (QMS) that provides access to your synonyms.
Set the host and port of the Content component in the QMS configuration file instead. For
more information about how to enable synonyms, see Use Synonyms to Expand Queries,
on page 29.

7. Set AgentstoreHost and AgentstoreACIPort to the host name and ACI Port of the
IDOL Content component that contains entity agents.

8. Set EductionGrammars to a comma-separated list of the Eduction grammars to use for entity
extraction.

9. Set the ClassifierFile parameter to the path of the question classifier file, and set LabelFile
to the path of the label file.

TIP: The Answer Server installation includes classifier and labels files for English and
German. For example, to use the default files for the English language, set ClassifierFile
to the location of the svm_en.dat file, and set LabelFile to the location of the labels_
en.dat file.

If you want to train your own classifier or are configuring a Passage Extractor system for use
with another language, set the ClassifierFile and LabelFile parameters to the locations
where you want Answer Server to save the question classifier and label files, when you
perform training. For information about how to train classifiers, see Train Passage Extractor
Classifiers, on the next page.

10. Save and close the configuration file.

11. Restart Answer Server for your changes to take effect.

For example:

[MyPassageExtractor]
Type=PassageExtractor
// Data store IDOL
IdolHost=localhost
IdolAciport=6002
// Entity Agentstore
AgentStoreHost=localhost
AgentStoreAciport=5002
// Eduction
EductionGrammars=./resources/grammars/question_grammar_
en.ecr,./passageextractor/eduction/number_en.ecr,./passageextractor/eduction/person_
en.ecr,./passageextractor/eduction/date_en.ecr,./passageextractor/eduction/money_
en.ecr
// Classifier Files
ClassifierFile=./passageextractor/classifiertraining/svm_en.dat
LabelFile=./passageextractor/classifiertraining/labels_en.dat

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 86 of 158



EntityExtractionFile=./passageextractor/configuration/entity_extraction_en.json
SurfacePatternsFile=./passageextractor/configuration/surface_patterns_en.json
ClassifierBehaviorFile=./passageextractor/configuration/classifier_behavior.json

Change the Passage Extractor Language
The default installation of passage extractor includes the question_grammar_en.ecr, and example
question classifier training files for English. To use passage extractor in another language, you must:

l create a new question classifier in the new language. See Train Passage Extractor Classifiers,
below.

l set the Language configuration parameter to the appropriate language, either in the [Server]
section (to set the language for all of Answer Server), or in the passage extractor system
configuration section (to set the language for just passage extractor). You might also want to set
the StopList parameter. See Language Configuration, on page 28.

l set the EductionGrammars parameter to use the grammar file for the appropriate language.
Passage extractor uses the same grammar files as fact bank. The Answer Server installation
includes appropriate grammars for English, French, German, Italian, Portuguese, and Spanish.
If you are interested in using passage extractor in other languages, contact your Micro Focus
account manager.

Train Passage Extractor Classifiers
The Answer Server Passage Extractor uses a question classifier to determine what type a question
is, and therefore what entities (if any) to extract from candidate answers. The type refers to the type
of information that the question is requesting. For example, the question Howmany points make up a
perfect fivepin bowling score? is looking for a number, while the questionWhat is an annotated
bibliography? is looking for a description.

The question classifier is always required. The Passage Extractor system does not return any
answers without it.

The Answer Server installation includes classifiers for the English and German languages. For
information about configuring which classifier to use, see Configure the Passage Extractor System,
on page 85. If the default classifier does not perform well for your use case, or you want to use
Passage Extractor with other languages, you can train your own classifier.

The following sections provide more information about how to create and train your own classifiers.

Create a Training File
To train a question classifier, first create a training file to describe the kind of question classifications
that you expect to send to your Passage Extractor. Each line of the training file defines a label and an
example question, in the following format:

Label;Example Question

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 87 of 158



The example questions are the training. The label specifies the kind of information that the question
is requesting. For example, the first few lines of the training file might be:

DESC:desc;What did the only repealed amendment to the U.S. Constitution deal with?
NUM:count;How many points make up a perfect fivepin bowling score?
DESC:def;What is an annotated bibliography?
NUM:date;What is the date of Boxing Day?

The default training file uses a Text Retrieval Conference (TREC) classification system to specify
question classifiers. Micro Focus recommends that you use this classification system, which is based
on a commonly used set. For more information, see Training File Labels, on the next page. However,
you can use your own classification system if required.

Train a Classifier
To train the question classifier, you use the ManageResources action, which accepts a JSON object
with the details of the training file. For example:

action=ManageResources&SystemName=passageextractor&Data=JSON

Where the JSON object takes the following form:

{
"operation": "train",
"type": "classifier",
"trainingfile": "classifier_training.txt",
"savemodel": true

}

TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

If you do not want to save the training model (for example, during testing), set savemodel to false.

NOTE: You can save classifiers (by setting savemodel to true) only if you set the
ClassifierFile and LabelFile configuration parameters in your Passage Extractor system
configuration. See Configure the Passage Extractor System, on page 85.

The trainingfile parameter sets the location and name of a suitable training file. The training file
contains a set of training questions, and a label that specifies the sort of answer that the question is
looking for (for example, a person, place, or description).

You can use the GetResources action to retrieve the whole JSON schema for the operation, in the
same way as for Answer Bank systems. See Find the JSON Schema for Your Update, on page 43.

Classifier Behavior File
In addition to the main classifier and label files, there is a classifier behavior file, which is available in
the Answer Server installation.

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 88 of 158



The classifier behavior file contains details of question classifications that it must treat differently. In
particular, it includes information about whether to always or never consider other question
classifications when a particular classification is identified as the primary classification. 

For example, you generally want to consider other location classifications when a question matches
the LOC:other classification. Similarly, for classifications that match descriptive questions you can
explicitly never include other classifications, because classifications that match entities are less
relevant, but might score higher in the results.

The primary classification is determined by a probability threshold, which is 0.85 by default.

If you move or rename the classification behavior JSON file, modify the ClassifierBehaviorFile
configuration parameter to specify the new name and location.

Training File Labels
The label has two parts, separated by a colon. The first part is the class of the question, the second
part is a subdivision. There are six classes:

l Abbreviation (ABBR). Questions concerning abbreviations.

l Entity (ENTY). Questions about entities (things).

l Description (DESC). Questions that ask for a definition or a description.

l Human (HUM). Questions about people or organizations.

l Location (LOC). Questions about places.

l Numeric (NUM). Questions about numbers.

The following table describes the available subdivisions for each class.

Label Description Example question

Abbreviation

ABBR:abb Abbreviation
questions.

What is the abbreviation for micro?

ABBR:exp Expression
questions.

What does HPE stand for?

Entity

ENTY:animal Animal questions. Which type of bird migrates between the North and
South pole?

ENTY:body Organs of the
body.

Which artery takes blood to the head?

ENTY:color Colors. What was FDR's favorite color?

ENTY:cremat Inventions, books,
other creative

What film starred Al Pacino and Robert Deniro?

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 89 of 158



Label Description Example question

pieces.

ENTY:currency Currency names. What currency do they use in Laos?

ENTY:dismed Diseases and
medicine.

What diseases can be transmitted by mosquitoes?

ENTY:event Events. What major sporting event was held in Australia in
2000?

ENTY:food Food. What Italian dish is made of soft dumplings?

ENTY:instrument Musical
instrument.

What is Jimi Hendrix famous for playing?

ENTY:lang Languages. What language is spoken in Cambodia?

ENTY:letter Letters like a-z. Which letter is the most common in Finnish?

ENTY:other Other entities. Which shape has 14 sides?

ENTY:plant Plants. What is the most poisonous plant?

ENTY:product Products. What shampoo is best for dandruff?

ENTY:religion Religions. What is the religion that worships Prince Phillip?

ENTY:sport Sports. Which sport involves people dressed in white standing
around doing absolutely nothing for several days
straight?

ENTY:substance Elements and
substance.

What chemicals make up mica?

ENTY:symbol Symbols and
signs.

What is the chemical formula for diamond?

ENTY:techmeth Techniques and
methods.

What methods are used to measure atmospheric
pressure?

ENTY:termeq Equivalent terms. What is the name of the Thai alphabet?

ENTY:vehicle Vehicles. What is the largest plane ever made?

ENTY:word Words with a
special property.

What English words have Japanese origin?

Description

DESC:def A definition of
something.

What is dyslexia?

DESC:desc A description of What is the difference between a centipede and a

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 90 of 158



Label Description Example question

something. millipede?

DESC:manner A manner of
action.

How do I apply for a driving license?

DESC:reason Reasons. What caused the American civil war?

DESC:yesno "Yes" or "no"
questions.

Is the River Nile in Egypt?

Human

HUM:gr A group or
organization of
persons.

Which body elects the president?

HUM:ind An individual. Who wrote 'The unbearable lightness of being?'

HUM:title The title of a
person.

What is his position in the company?

HUM:desc A description of a
person.

Who is Serena Williams?

Location

LOC:city Cities. What is the capital of France?

LOC:country Countries. Which country is the best governed?

LOC:mount Mountains. What is the highest mountain in Vietnam?

LOC:other Other locations. What is the biggest lake in the world?

LOC:state States. Which state has the highest lowest point?

Numeric

NUM:code Postal codes or
other codes.

What is the White House's post code?

NUM:count The number of
something.

How many pillars of faith are there in Islam?

NUM:date Dates. When was the battle of Waterloo?

NUM:dist Linear measures. How long is the River Nile?

NUM:money Prices. How much is that doggie in the window?

NUM:ord Ranks. Which episode of the Star Wars saga has the cutest
aliens?

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 91 of 158



Label Description Example question

NUM:other Other numbers. What is Stephen Hawking's IQ?

NUM:period The duration of
something.

How long since the last ice age?

NUM:perc Fractions and
percentages.

What proportion of the Earth is covered in water?

NUM:speed Speeds. How fast is the speed of light?

NUM:temp Temperature. What is the boiling point of nitrogen?

NUM:volsize Size, area, and
volume.

How big is the sea?

NUM:weight Weight. How much does the average human weigh?

Entity Extraction in Passage Extractor
Passage Extractor uses entity extraction to provide more concise, specific answers. It attempts to
find the shortest possible section of a document that answers the original question. Depending on the
question, the answer might be a single word or name, or a few sentences of description.

There are two types of entity extraction that you can use:

l Eduction. IDOL Eduction provides a set of grammars, which define the entities that you want to
find. This method is very powerful for pattern matching, and finding entities that match a
particular structure, such as phone numbers. Answer Server includes an embedded
IDOL Eduction module for entity extraction.

l Agent matching. The Passage Extractor Agentstore component stores agents that define
entities in the Agentstore component. Passage Extractor sends any candidate answers in an
agent query, which returns the matching entity agents. This method is very powerful for entities
that have a clearly defined value, such as names.

To get the most out of Passage Extractor, you must configure at least one of an Eduction grammar or
Agentstore component for entity extraction. You can use both to make the most out of the different
methods, and to get the best answers.

Configure the Passage Extractor Agentstore
The IDOL Agentstore component is a specially configured IDOL Content component.

In agent search, you send plain text or a document to the Agentstore, which returns any agents that
match the document. In Passage Extractor, you store entity agents in the Agentstore . For example,
each entity agent might define a single name (perhaps with one or more alias names).

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 92 of 158



When you ask a question, Passage Extractor finds candidate answers in your data store, and uses
an agent search to find the entities that these candidate answers contain.

Configure the Agentstore Component

The Answer Server package includes a predefined Passage Extractor Agentstore configuration file,
as well as several predefined IDX documents that you can optionally use to populate your Agentstore
with entities.

NOTE: You must use a separate Agentstore component for Passage Extractor and Answer Bank
systems.

To configure the Agentstore component for your Passage Extractor

1. In your Answer Server installation directory, copy the Agentstore agentstore.cfg configuration
file, and the IDX files.

2. Open your Agentstore installation directory.

3. Paste the Answer Server Agentstore configuration file and IDX files. Overwrite the installed
configuration file (you might want to make a copy of it first).

4. Open the configuration file in a text editor.

5. Update the [License] section with the host and port information for your License Server. For
more information, see Configure the License Server Host and Port, on page 22.

6. In the [Server] section, find the Port parameter. Check that the specified port is available on
the host machine, or change it to an available port.

NOTE: If you modify the port, make sure to update the system configuration in your Answer
Server configuration file. See Configure the Passage Extractor System, on page 85.

7. In the [Service] section, find the ServicePort parameter. Check that the specified port is
available on the host machine, or change it to an available port.

8. Save and close the configuration file.

Index Entity Agents

After you have configured the Agentstore, you must index the entity agents that Passage Extractor
uses.

To do this, you can use a DREADD index action to add the IDX files that you copied into the Agentstore
installation directory. For example:

http://localhost:5001/DREADD?C:\AnswerServer\passageextractor\agents-HUM_ind.idx.gz

Customize Entity Extraction
The Passage Extractor entity extraction file provides Answer Server with a map to specify what
components to use to extract entities, depending on the question classification.

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 93 of 158



When you ask a question, Passage Extractor classifies it by using the question classifier, and then
finds matching documents and document sections in the data store. It uses IDOL Content
highlighting to find the most relevant passages, which it uses as candidate answers. Passage
Extractor then uses Eduction and an Agentstore component to find entities in the candidate answers
that match the question classification.

For example, if you have an Agent entity database with the names of plants, and you send a question
that Passage Extractor classifies as plants, Passage Extractor uses the Agentstore component to
find the relevant plant entities in the candidate answer text.

By default, if you configure an Agentstore component, Passage Extractor uses the Agentstore for the
classifications HUM:gr, all LOC classifications, ENTY:plant, ENTY:animal, and ENTY:lang. It uses
Eduction and Agentstore for the HUM:ind question classification, and Eduction only for all other
question classifications.

You can use the Entity Extraction file to modify these classifications, for example if you create
additional Agent entity files for your data.

NOTE: You do not need to specify an entity type to extract for every question classification. If a
question classification does not appear in the entity extraction file, Passage Extractor does not
attempt to extract entities. This might be appropriate for many question classifications (for
example, if the appropriate answer is a long description, there might not be a corresponding
entity).

Passage Extractor also attempts to corroborate the candidate answers, by comparing how often
particular entities occur. In most cases, this improves the quality of the result answers.

In some cases, corroboration might not be appropriate. For example, if valid answers include very
common words (such as one and two), the words might occur in multiple places, and be falsely
corroborated as a likely answer. For this reason, corroboration is turned off for the NUM:count entity
type in the default entity extraction JSON file.

You might also want to turn corroboration off if likely answers occur only once in your data set. In
these cases you can modify the entity extraction JSON file to turn corroboration off for particular
entities.

The Entity Extraction File Format

The entity extraction file contains the question classifications, which match the values that you use in
the classifier training file. For each question classification, it also contains at least one of:

l a list of Eduction entities that Passage Extractor must use to find entities for the question
classification.

l a list of Agentstore databases that Passage Extractor must query to find entities for the question
classification.

When there is an Agentstore database, you can also specify Agent FieldText to use in a query to the
Agentstore entity database for the question classification.

The entity extraction file is a JSON file, with the following structure:

{
"entity_map": [

{

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 94 of 158



"entity_type": "QuestionClass1",
"agentstore": {

"databases": [ListOfAgentstoreDatabases],
"fieldtext": "FieldTextRestriction"

},
"eduction": {"entities": [ListOfEductionEntities]},
"corroborate": Boolean

},
{

"entity_type": "QuestionClass2",
"agentstore": {

"databases": [ListOfAgentstoreDatabases],
"fieldtext": "FieldTextRestriction"

},
"eduction": {"entities": [ListOfEductionEntities]},
"corroborate": Boolean

}
...

]
}

where,

QuestionClassN is the name of the question classification (for example,
HUM:ind).

ListofEductionEntities is an array of relevant Eduction entities.

ListOfAgentstoreDatabases is an array of databases in the Agentstore component that
contain relevant entities.

FieldTextRestriction is an IDOL FieldText expression to use to restrict the Agent
query in the specified database.

You must specify at least one of the eduction or agentstore properties for each question
classification. If you specify the agentstore property, the database property is required, but
fieldtext is not.

If you do not want to use entity extraction for a particular question classification, do not include it in
the entity extraction file.

The corroborate property is optional. The default value is true.

The following example gives some of the question classifications in the default entity extraction file:

{
"entity_map": [

{
"entity_type": "HUM:ind",
"agentstore": {"databases": ["people"]},
"eduction": {"entities": ["hum/ind"]}

},

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 95 of 158



{
"entity_type": "NUM:date",
"eduction": {"entities": ["num/date", "date/*"]}

},
{

"entity_type": "ENTY:plant",
"agentstore": {

"databases": ["organisms"],
"fieldtext": "MATCH{PLANTAE,VIRIDIPLANTAE}:ORGANISMS_KINGDOM"

}
},
{

"entity_type": "NUM:count",
"eduction": {"entities": ["num/count"]},
"corroborate": false

},

...

Modify the Entity Extraction File

The default entity extraction file, included in your Answer Server installation , is appropriate for most
installation. However, you might need to modify the file if:

l you do not want to configure an Agentstore component for entity extraction, and want to use
Eduction entity extraction for those question classifications instead.

l you create additional Agent entity files and index them into your Passage Extractor Agentstore.

l you create custom Eduction entities that you want to use for entity extraction.

l you want to define entity extraction for additional question classifications

l you want to turn off corroboration for some question classifications.

To update the entity extraction file

1. Open the entity extraction JSON file in a text editor.

2. Make the necessary modifications. You can add, delete, or update, any of details for the
question classifications.

To turn off corroboration, add the corroborate property in a particular group and set it to false.
For example:

{
"entity_type": "NUM:count",
"eduction": {"entities": ["num/count"]},
"corroborate": false

}

3. Save and close the entity extraction file.

4. Restart Answer Server for your changes to take effect.

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 96 of 158



NOTE: If you add new question classifications that do not exist in the classifier training file,
you must also update the classifier training file and retrain the classifier. See Train Passage
Extractor Classifiers, on page 87.

Use a Different Entity Extraction File

You can use the EntityExtractionFile configuration parameter to configure the location of the
entity extraction file. If you want to move or rename the entity extraction file, or use a different file for
any reason, you must modify the value of this parameter to specify the name and location of the new
file.

Troubleshoot Passage Extractor
This section contains some information about how to check that Passage Extractor is working
correctly.

Passage Extractor Does Not Return Any Answers

l Check that you have a question classifier trained and configured. Answer Server writes an error
to the application log if there is no available classifier. See Train Passage Extractor Classifiers,
on page 87.

l Check that the host and port details for the subcomponents are correct. In particular, check that
the IDOL Content component that you use for the data store is configured correctly. See
Configure the Passage Extractor System, on page 85.

Passage Extractor Returns an Answer that is Incorrect or Unusual

l Increase the log level for your Answer Server to FULL, by modifying the log stream
configuration. See Customize Logging, on page 33.

When the log level is set to FULL, Answer Server generates a lot of extra information about how
Passage Extractor found its answers, including the candidate passages, extracted entities, and
scoring information.

To improve answers in these cases, you might need to add additional entities, or rephrase the
question. You might also want to check the data in your IDOL Content component data store, to
see whether your data set contains appropriate content for the answer.

Administration Guide
Chapter 7: Set Up a Passage Extractor System

IDOL Answer Server (12.12) Page 97 of 158



Chapter 8: Set Up a Remote Answer
System
You can configure Answer Server with remote answer systems, which refer to an answer system on
a remote Answer Server.

For these systems, Answer Server forwards the Ask action to the remote server, and adds the results
from the remote systems to the response. You can use this option when you have a large number of
large answer systems to allow you to split your answer systems over multiple machines.

This section describes how to set up a remote answer system, and configure the details of the remote
Answer Server.

• Configure a Remote Answer System 98
• Use a Remote Answer System 100

Configure a Remote Answer System
The Answer Server configuration file contains information about the remote Answer Server that you
want to connect to in your remote systems.

For any remote system, you must configure the host and port details of the remote Answer Server.
You can configure it individually for each system, or define a separate configuration section that
contains the details. Using a separate configuration might be useful if you have multiple systems that
use the same remote Answer Server.

In the remote answer system, you also configure the name of the answer system on the remote
server. When your main Answer Server forwards an Ask action to the remote server, it uses this
system in the action to retrieve the correct results.

The following procedure describes how to configure a remote system in Answer Server.

For more details about the configuration parameters for the remote system, refer to the Answer
Server Reference.

To configure the Remote Answer System

1. Open the Answer Server configuration file in a text editor.

2. Find the [Systems] section, or create one if it does not exist. This section contains a list of
systems, which refer to the associated configuration sections for each system.

3. After any existing systems, add an entry for your new remote system. For example:

[Systems]
0=MyAnswerBank
1=MyFactBank

IDOL Answer Server (12.12) Page 98 of 158



2=MyPassageExtractor
3=MyRemoteSystem

4. Create a configuration section for your remote system, with the name that you specified. For
example, [MyRemoteSystem].

5. Set Type to Remote.

6. Configure the details for the remote Answer Server that contains the full configuration for your
answer system, by using one of the following methods: 

l In the remote system configuration, set AnswerServerHost and AnswerServerACIPort to
the host name and ACI Port of the remote Answer Server.

l Define a separate configuration section that contains the Answer Server host and port
details. This option might be useful if you have multiple remote answer systems on the
same remote server.

a. In the remote system configuration, set AnswerServer to the name of a configuration
section where you define the Answer Server details. For example,
MyRemoteAnswerServer.

b. Create a configuration section for your remote server, with the name that you specified.
For example, [MyRemoteAmswerServer].

c. In this section, set Host and ACIPort to the ho st name and ACI Port of the remote
Answer Server.

7. Set any other optional parameters for your system and remote Answer Server (such as SSL
settings for the remote server). For more information about the available parameters, refer to
the Answer Server Reference.

8. Save and close the configuration file.

9. Restart Answer Server for your changes to take effect.

For example:

[MyRemoteSystem]
Type=Remote
AnswerSystem=AnswerBank
AnswerServerACIPort=7000
AnswerServerHost=server1.example.com

[MyRemoteSystem2]
Type=Remote
AnswerSystem=FactBank1
AnswerServer=RemoteServer2

[MyRemoteSystem3]
Type=Remote
AnswerSystem=FactBank2
AnswerServer=RemoteServer2

[RemoteServer2]

Administration Guide
Chapter 8: Set Up a Remote Answer System

IDOL Answer Server (12.12) Page 99 of 158



Host=server2.example.com
ACIPort=7000

Use a Remote Answer System
When you have a remote answer system, Answer Server treats it in the same way as a local answer
system when it processes results.

You can include a remote answer system in a query in the same way that you do any local systems.
By default, the Ask action retrieves answers from all systems, or you can limit the action to particular
systems by setting the SystemNames parameter to a comma-separated list of system configurations.
For example:

http://12.3.4.56:7000/action=Ask&Text=What is the largest city in
Norway?&SystemNames=FactBank,MyRemoteFactBank

The Ask action is the only action that Answer Server forwards to the remote servers. To manage your
systems, for example by using GetResources and ManageResources, you must send the actions
directly to the Answer Server where the system is configured.

NOTE:When you send a GetResources action with the SystemName parameter set to the name of
a remote answer system, it returns only JSON schemas and XSDs for the GetResources action.
To retrieve the full set of XSDs and schemas, you must send the action directly to the remote
Answer Server.

Administration Guide
Chapter 8: Set Up a Remote Answer System

IDOL Answer Server (12.12) Page 100 of 158



Chapter 9: Use System Groups
This section describes how to configure system groups in Answer Server to request answers from
multiple systems.

• Configure a System Group 101
• Ask Questions to a System Group 102

Configure a System Group
An Answer Server system group is a set of answer systems that you want to retrieve answers from by
sending a single system name to the Ask action.

You can use system groups to make it easier to send Ask actions to multiple systems that you
generally use together. For example, you might create a group based on language or system type.

In particular, system groups might be useful if you have a custom user interface to ask questions and
your systems might change regularly. In this case, you can use a static set of groups and change the
Answer Server configuration to update the systems, rather than changing the user interface.

To configure system groups

1. Open your configuration file in a text editor.

2. Create an [AnswerSystemGroups] configuration section.

3. In the [AnswerSystemGroups], add a parameter 0, and set it to the name of a configuration
section that you want to use to define the first group. For the next group, add a parameter 1, and
so on. For example:

[AnswerSystemGroups]
0=AllEnglish
1=AllFrench
2=AllFactBank

4. For each group that you configure in [AnswerSystemGroups], create a new configuration
section with the same name (for example [AllEnglish], [AllFrench], and [AllFactBank].

5. In the group configuration section, add a parameter 0, and set it to the name of the first system
to include in this group. The system name must match the name of the configuration section
where you have configured the system. Add a parameter 1 for the second system, and so on.
For example:

[AllEnglish]
0=FactBankEnglish
1=AnswerBankEnglish
2=PassageExtractorEnglish

IDOL Answer Server (12.12) Page 101 of 158



In this example, the AllEnglish system refers to three other systems, FactBankEnglish,
AnswerBankEnglish, and PassageExtractorEnglish.

NOTE:When you send an Ask action to the system group, Answer Server attempts to
retrieve answers from the systems in the order that you configure them in the system group.
See Ask Questions to a System Group, below.

6. Repeat step 5 for any other system groups that you want to configure.

7. Save and close the configuration file.

The following example configures three system groups:

[AnswerSystemGroups]
0=AllEnglish
1=AllFrench
2=AllFactBank

[AllEnglish]
0=FactBankEnglish
1=AnswerBankEnglish
2=PassageExtractorEnglish

[AllFrench]
0=FactBankFrench
1=AnswerBankFrench
2=PassageExtractorFrench

[AllFactBank]
0=FactBankEnglish
1=FactBankFrench
2=FactBankGerman

Ask Questions to a System Group
When you have configured system groups, you can use them in the Ask action in the same way as
individual systems. When you add a system group to the SystemNames parameter, Answer Server
sends the Ask action to all the systems in that group.

For example:

http://localhost:12000?Action=Ask&Text=Who won the award for Best Picture in
2012?&SystemNames=AllEnglish,AllFactBank

When you send the Ask action to a system group rather than individual systems, Answer Server
sends the action to the groups in the order that you specify them in SystemNames. In each group, it
sends the action to the systems in the order that you configure them in the group.

You can include a combination of groups and individual systems in SystemNames.

Administration Guide
Chapter 9: Use System Groups

IDOL Answer Server (12.12) Page 102 of 158



NOTE: If you specify a particular system more than once in the Ask action (for example because it
occurs in more than one specified group), Answer Server sends the action to it only once, the first
time it occurs.

Administration Guide
Chapter 9: Use System Groups

IDOL Answer Server (12.12) Page 103 of 158



Chapter 10: Ask Questions in Answer
Server
This section describes how to ask questions and get answers from Answer Server.

• Ask a Question 104
• Use Context in the Ask Action 105
• Retrieve All Facts About an Entity 108

Ask a Question
To get answers from Answer Server, use the Ask action. Specify the question text in the Text
parameter. For example:

http://localhost:12000?Action=Ask&Text=Who won the award for Best Picture in 2012?

The Ask action also has a number of optional parameters to allow you to tune your results.

l SystemNames restricts the Ask action to particular configured systems or system groups. For
example:

http://localhost:12000?Action=Ask&Text=Who won the award for Best Picture in
2012?&SystemNames=MovieFactBank,Answerbank

By default, Answer Server sends the question to all configured systems, in the order in which
they are configured in the [Systems] section. If you set SystemNames, Answer Server sends the
question only to the specified systems, in the order in which you specify them.

l MaxResults specifies the maximum number of results to retrieve.

http://localhost:12000?Action=Ask&Text=Who won the award for Best Picture in
2012?&SystemNames=MovieFactBank,Answerbank&MaxResults=2

In this case (for default sorting), if Answer Server finds the required number of results from the
first system, it does not request answers from further systems.

l Sort specifies how to sort the results. By default, Answer Server sorts answers in the order of
the system that the answer comes from (either the configured order, or the order in
SystemNames). You can set Sort to Confidence instead, to sort the results by score.

http://localhost:12000?Action=Ask&Text=Who won the award for Best Picture in
2012?&MaxResults=2&Sort=Confidence&SystemNames=MovieFactBank

NOTE: Each answer system in Answer Server scores its answers independently, so scores
from one system might not be comparable to scores from another.

l MinScore specifies the minimum score that an answer must have for it to return as a result.

IDOL Answer Server (12.12) Page 104 of 158



l CustomizationData specifies additional information to include in the request. For a fact bank or
passage extractor system, you can use this option to include a security info string. In this case,
fact bank returns only facts that the user has access to, and passage extractor returns answers
only if they appear in documents that the user has access to.

Action=Ask&Text=What is the gift and entertainment policy?&CustomizationData=
[{"system_name":"MyPassageExtractor", "security_info":
"MTQ0lGDBkNrJvBv0pOi+QDBK1z6y/1/09BqL4Vu/18W7JGCy8Pvm4/wixO/pI99/A=="}]

For an answer bank system, you can use this option to supply additional FieldText to provide
in the query to the answer bank Agentstore. This option allows you to restrict the Ask action to a
subset of your Answer Bank data (for example, content relevant to a particular region), without
having to set up multiple Answer Bank systems and Agentstores.

Action=Ask&Text=What is the gift and entertainment policy?&CustomizationData=
[{"system_name":"MyAnswerBank", "fieldtext": "MATCH{UK,EUROPE}:REGION"}]

TIP: You can add the custom fields to your question equivalence classes as metadata. See
Create a Question Equivalence Class and Add an Answer, on page 50.

You can retrieve the full schema for the JSON object to use in CustomizationData by using
the GetResources action. See Find the JSON Schema for Your Update, on page 43.

For more information about the Ask action, refer to the Answer Server Reference.

Use Context in the Ask Action
You can apply a context to a question that you send with the Ask action. The context specifies
additional information to limit the scope of the question. In Fact Bank the context is a specific entity
used in disambiguation, for example, you might set a context to specify that a user is asking
questions about Cambridge UK, rather than Cambridge Massachusetts or Ontario. For Answer Bank
or Passage Extractor, the context is a string that could, for example, come from a previous question.

When you include a valid ContextId with a question using the Ask action, the system will cache the
answer-system context associated with each answer. The response includes answers with a context
tag which has a "token" attribute. A token can be used to update the context using the
ManageResources action.

Tokens remain valid until the next time the user asks a question using that ContextID.

You can create an 'empty' context to save tokens for use in a future context update, by using the
ManageResources action to return a ContextID for an 'empty' context. Then you can ask a question
using the Ask action and the new contextID. Returned answers from all answer systems will have a
context tag with token attribute. In order to use the context for subsequent questions, select the
appropriate answer, and update the Context in ManageResources with the context token for that
answer. Specifying a token will load the associated system context from the cache into the current
context.

Administration Guide
Chapter 10: Ask Questions in Answer Server

IDOL Answer Server (12.12) Page 105 of 158



Create a Context
You create a question context by using the ManageResources action. You do not set a system name
in the ManageResources action. You can create an 'empty' context to save a token for use with future
context updates.

NOTE: Each question context that you create uses a licensed conversation slot (in the same way
as conversation sessions). ManageResources returns an error if you do not have enough capacity.
In this case, you must wait until a conversation session or question context expires, or delete one
before you can create another. See Configure Context Expiration, on the next page.

You can define a context in a Fact Bank instance by using an entity code.

action=ManageResources
Data={

"type": "context",
"operation": "add",
"context": [{

"system_name": "factbank1",
"data": [{

"code_type": "entity",
"name": "Cambridge",
"codes": ["Q350"]

}]
}]

}

In this example, the code Q350 corresponds to Cambridge UK.

You can define a context in an Answer Bank instance by using a context string.

action=ManageResources
Data={

"type": "context",
"operation": "add",
"context": [{

"system_name": "answerbank1",
"data": {

"subject": ["MyCompany"]
}

}]
}

In this example, "MyCompany" could be a context returned from a previous question.

You can define a context in a Passage Extractor instance by using a context string.

action=ManageResources
Data={

"type": "context",
"operation": "add",

Administration Guide
Chapter 10: Ask Questions in Answer Server

IDOL Answer Server (12.12) Page 106 of 158



"context": [{
"system_name": "passageextractor1",
"data": {

"context": ["france"]
}

}]
}

In this example, "france" could be a context returned from a previous question.

You can define an empty context without the context entity code or context string that would be
required if creating a context in a specific answer system.

action=ManageResources
Data={

"type": "context",
"operation": "add"

}

This can be use to save a token for use with future context updates.

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

The action returns an ID, which you can use in the Ask action to set the context for a question.

TIP: You can also retrieve the question context ID by sending a GetResources action with the
Type parameter set to context.

Use a Question Context
When you have a question context ID, you can send it in the Ask action Context parameter. For
example:

action=Ask&Text=What is its population?&Context=860028728520387723

If this is the ID for the context created in the Fact Bank example above, this action returns the
population of Cambridge UK.

Configure Context Expiration
Question contexts use conversation session license slots. To ensure that you do not run out of
conversation sessions or question contexts, you can:

l manually delete the contexts by using the ManageResources action.

l configure context expiration so that Answer Server automatically deletes unused contexts.

Administration Guide
Chapter 10: Ask Questions in Answer Server

IDOL Answer Server (12.12) Page 107 of 158



To configure context expiration, you can set the ExpirationIdleTime and ExpirationInterval
configuration parameters in the [AskContext] section of your configuration file. For example:

[AskContext]
ExpirationIdleTime=600
ExpirationInterval=30

For more information about these parameters, refer to the Answer Server Reference.

Retrieve All Facts About an Entity
You can retrieve all facts that relate to a particular entity by using the Report action. This action
applies only to Fact Bank systems that use a SQL database backend. You specify an entity, and this
action returns all facts in your Fact Bank that include this entity as the entity, or as a property or
qualifier value.

For example:

http://localhost:12000?Action=Report&Entity=Cambridge

For more information about this action, refer to the Answer Server Reference.

Administration Guide
Chapter 10: Ask Questions in Answer Server

IDOL Answer Server (12.12) Page 108 of 158



Chapter 11: Set Up a Conversation
System
This section describes how to set up a Conversation system, and configure the subcomponents.

• Configure the Conversation System 109
• Create a Task Configuration File 110
• Configure the Conversation Agentstore 143
• Check Spelling in Conversations 145

Configure the Conversation System
The Answer Server configuration file contains information about the subcomponents and settings for
your Conversation systems.

For any Conversation system, you must configure the name of a JSON task configuration file, which
defines the conversation task in detail. For details about how to create this file, see Create a Task
Configuration File, on the next page.

The following procedure describes how to configure the Conversation system in Answer Server.

In addition, you can optionally configure session expiration for your conversation sessions, and
settings for an IDOL Agentstore component that contains triggers for your conversation sessions.

For more details about the configuration parameters for the Conversation system, refer to the Answer
Server Reference.

To configure the Conversation System

1. Open the Answer Server configuration file in a text editor.

2. Find the [Systems] section, or create one if it does not exist. This section contains a list of
systems, which refer to the associated configuration sections for each system.

3. After any existing systems, add an entry for your new Conversation system. For example:

[Systems]
0=MyAnswerBank
1=MyFactBank
2=MyPassageExtractor
3=MyConversation

4. Create a configuration section for your Conversation system, with the name that you specified.
For example, [MyConversation].

5. Set Type to Conversation.

IDOL Answer Server (12.12) Page 109 of 158



6. Set TaskConfigurationFile to the path and file name of the JSON file that contains your task
configuration file. You can also specify a comma-separated list of path and file names if you
have split your task configuration across multiple files.

7. Optionally set any additional settings for your conversation system. For more information, refer
to the Answer Server Reference.

8. Save and close the configuration file.

9. Restart Answer Server for your changes to take effect.

For example:

[MyConversation]
Type=Conversation
TaskConfigurationFile=C:\AnswerServer\Conversation\tasks.json
// Trigger Agentstore
AgentStoreHost=localhost
AgentStoreAciport=5002
// Session Expiration
SessionExpirationIdleTime=600
SessionExpirationInterval=60

Create a Task Configuration File
The Conversation task configuration file describes all the settings for a particular conversation task,
including prompts, triggers, response validation, and the details of Lua scripts to run.

You can retrieve the full schema for the task configuration JSON file by sending the GetResources
action with the Type parameter set to Schema.

TIP: For ease of maintenance, you can split your task configuration across multiple JSON files.
Answer Server merges the configurations together when it runs.

The task configuration file contains one or more conversation tasks. Each task must contain a unique
ID (id). You can also set a display_id, which is a user friendly display name that Answer Server
uses in a disambiguation message when user input matches the triggers for more than one task (see
Conversation Triggers, on page 112).

The other options you use in a task depend on what you want to the task to do. The following sections
describe the main options that you can use in task configuration:

l Pre-Task Actions, on the next page. Pre-task actions run at the start of the task. You can use
pre-task actions to set an initial prompt for the task, by setting some text or by specifying a Lua
function to run to generate a prompt.

l Conversation Triggers, on page 112. A conversation trigger defines when to run a particular
conversation task. You can use several different types of trigger to activate a particular task by
matching user text against a simple word list, a regular expression pattern, or an agent.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 110 of 158



l Task Requirements, on page 119. Task requirements request pieces of information that the
user must provide before Answer Server can complete the tasks. You can save the requirement
result as a variable, either for the duration of the task or for the whole conversation session.

l Post-Task Actions, on page 129. Post-task actions run at the end of the task, after all the
requirements have been satisfied. You can use post-task actions to send an acknowledgment
to confirm that the requirements are met, or to call a Lua function to perform an external
operation.

l Task Routing, on page 131. Routing allows you to specify the task to run after the current task.
You can route directly to a particular task, or you can use a further prompt to allow you to route
to another task depending on user input.

l Response Validation, on page 123. Response validation allows you to check that the user
provides a response that you can use in the task, and to deal with the response if it is not valid.
You can validate the response by using a simple word list, a regular expression, Eduction, or a
Lua script.

l Lua Processing Scripts, on page 134. You can use Lua functions in your task configurations to
run additional more complicated operations, and to send calls to external systems to complete
tasks. You configure a single Lua script in your task configuration, and then call individual
functions. You can use functions to generate a custom preamble for a task, to perform an
operation at the end of the task, and you can use Lua functions for response validation and to
process user input that is not valid.

In addition to the task configuration, and the associated validator configuration, the task configuration
file also contains:

l Initial Task, on page 135. The ID of the first task to run when the conversation session starts, if
you do not have any initial user text. You must include an initial task in your task configuration.

l Fallback Task, on page 136. The ID of a task to run when there are no other active tasks. You
must include a fallback task in your task configuration.

l Default Messages, on page 136. Custom text to use for default responses, such as when the
user does not provide any valid input, or to provide the user with disambiguation options when
their text triggers more than one task. There are default values for these messages, which you
can override with your own values (for example, if you want to create conversations in a
different language).

l Task Cancellation, on page 141. Settings that determine how to allow users or the system to
cancel a task, and what to do when a task is canceled.

Pre-Task Actions
Pre-task actions run before the main part of the task. When user input triggers a particular task,
Answer Server runs the pre-task actions before checking for requirements. The main use of this
option is to provide an initial prompt at the start of the task.

To configure pre-task actions, you set the pre object in the configuration object for an individual task.

The pre object is not required. If you do not add a pre object to the task, Answer Server runs the next
step of the task, for example processing and gathering the requirements.

The following table describes the properties that you can set in the pre object.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 111 of 158



Property Type Description

response string (Optional) A string response to return to the user. For example, this might
be an introductory sentence to start the task.

lua string (Optional) A lua function to run before the rest of the task, for example to
generate a dynamic task preamble response. The function that you specify
must accept a taskUtils object. See Lua Processing Scripts, on
page 134.

{
"tasks" : [

{
"id" : "GREET",
"pre" : {

"response" : "Hello and Welcome to the Virtual Assistant. How can I help
you?"

},
"trigger" : {

"simple" : {
"phrases" : [ 

"hello",
"hi"

]
}

}
}

]
}

Conversation Triggers
A conversation trigger defines when to run a particular conversation task. When you start a
conversation session, or when a user provides text, Answer Server finds the conversation trigger that
matches the input, and runs the appropriate task.

You can use several different types of triggers:

l Agent. Trigger a task based on a match against your Conversation Agentstore index. To use
this option you must configure an IDOL Agentstore component in your Conversation system
configuration. See Configure the Conversation Agentstore, on page 143.

l Regular Expressions. Trigger a task based on a text match against a regular expression
pattern.

l Simple. Trigger a task based on a simple exact phrase match.

You can configure different tasks with different types of triggers.

TIP:When a user sends some text that matches more than one trigger, Answer Server returns a
disambiguation prompt. This prompt uses the display_id in your tasks to display the options to

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 112 of 158



the user. See Task Disambiguation, on page 117.

Not all tasks require a conversation trigger. For example, the tasks that you configure as the initial
task and fallback task might not need a trigger (see Default Tasks, on page 135). Similarly, you might
have tasks that run only when called by explicit routing from another task.

The number of tasks that you add triggers to depends on your conversation structure and routing.

To configure a trigger, you set the trigger property in the configuration object for an individual task,
which contains different properties depending on the type of trigger you use.

The following sections describe the types of conversation triggers in more detail, and provide
examples of how to configure them.

Agent Triggers

NOTE: To use agent triggers, you must configure an IDOL Agentstore component in your
Conversation system configuration.

Agent triggers use IDOL agent search to find matching triggers. In agent search, you send plain text
or a document to the Agentstore, which returns any agents that match the input text. In the case of
agent triggers, Answer Server sends the user input text to the Agentstore, which returns any
matching agent triggers.

You link the value of an Agentstore field in the trigger agent (usually the document reference) to a
task in your task configuration JSON file. When the user text matches a particular agent trigger,
Answer Server runs the corresponding task for that agent.

TIP: By default, Answer Server uses the document reference field in your agents as the task ID.
You can set the AgentstoreReferenceField configuration parameter in your Conversation
system configuration to change the field that Answer Server uses as the task ID.

Agent triggers use IDOL text search to match user text. For example, it includes IDOL stemming to
allow more flexible term matching, and you can use term weighting to influence how triggers match.
For more information, refer to the IDOL Server Administration Guide.

To configure an agent trigger, you add a trigger object with the agent property, set to the document
reference for the agent that triggers the task.

For example:

The following IDX document represents a simple agent trigger, which you index into the
Conversation Agentstore:

#DREREFERENCE LunchConversationTrigger
#DREDATE 2017/07/01
#DRETITLE
Lunch
#DRECONTENT
food lunch sandwich
#DREDBNAME MyAgentDB
#DREENDDOC

The following JSON shows a task that uses this agent as a trigger.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 113 of 158



{
"tasks" : [

{

"id" : "LUNCH",
"pre" : {

"response" : "I can help you order some lunch."
},
"trigger" : {

"agent" : "LunchConversationTrigger"
}

}
]

}

This task runs when a user sends any text that matches the terms food, lunch, or sandwich in IDOL
text matching.

Regular Expressions Triggers

Regular expressions triggers match user text against a regular expression pattern that you provide in
the task configuration. Answer Server runs the task when the user input text matches your regex.

To configure a regular expressions trigger, you add a trigger object with the regex property. The
regex property contains a pattern subproperty, which you must set to a regular expression pattern
in ECMAScript regular expression format.

For example:

{
"tasks" : [

{
"id" : "LUNCH",
"display_id" : "order lunch",
"pre" : {

"response" : "I can help you order some lunch."
},
"trigger" : {

"regex" : {
"pattern" : "(Book|order) .* lunch"

}
}

}
]

}

You can also provide a weight for the trigger by setting the weight property in the trigger object. The
weight value is a number between one and 100. The default value is 100. Answer Server uses this
weight to determine the best triggers to return in a disambiguation response. See Trigger Options, on
page 118.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 114 of 158



The weight value is constant for a particular trigger. You can assign a higher weight to triggers that
have more restrictive trigger conditions. For example, if a user must match a more complex regular
expression to trigger a task, it is more likely to be the task that they want, and so you assign a higher
weight.

For example:

"trigger" : {
"regex" : {

"pattern" : "(Book|order) .* lunch"
},
"weight" : 80

}

Simple Triggers

Simple triggers match user text against a list of phrases that you provide in the task configuration.
Answer Server runs the task when the user input text matches one of the phrases you provide.

In a simple trigger, you must provide a list of phrases. You can optionally also provide a required
prefix and suffix. By default, matches are case sensitive, but you can also use a property in your
configuration to specify that matches must be case insensitive.

To configure a simple trigger, you add a trigger object with the simple_match property. The
following table describes the subproperties that you can set in the simple_match object.

Property Type Description

phrases array,
strings

(Required) A list of phrases that you want to match. The task runs if
the user input text matches at least one of the specified strings. The
array must have at least one item.

prefix string (Optional) A string that must occur at the start of the user input text
for this trigger to match.

suffix string (Optional) A string that must occur at the end of the user input text
for this trigger to match.

case_
insensitive

Boolean (Optional) Set to true to match user text case insensitively. The
default value is false (case sensitive matching).

For example:

{
"tasks" : [

{
"id" : "LUNCH",
"display_id" : "order lunch",
"pre" : {

"response" : "I can help you order some lunch."
},
"trigger" : {

"simple_match" : {

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 115 of 158



"prefix" : "I want to",
"phrases" : [ 

"order some lunch",
"buy a sandwich",
"book a table for lunch",
"order food"

]
}

}
},
{

"id" : "BREAKFAST",
"display_id" : "order breakfast",
"pre" : {

"response" : "I can help you order some breakfast."
},
"trigger" : {

"simple_match" : {
"phrases" : [ 

"get breakfast",
"order breakfast",
"eat breakfast",
"buy breakfast"

],
"case_insensitive" : true

}
}

}
]

}

The first of these example tasks matches user text that starts with I want to and continues with one of
the listed phrases, such as I want to order some lunch, or I want to order a sandwich. The matching
for this task is case sensitive.

The second task matches user text that contains any of the listed phrases, and matches case
insensitively.

You can also provide a weight for the trigger by setting the weight property in the trigger object. The
weight value is a number between one and 100. The default value is 100. Answer Server uses this
weight to determine the best triggers to return in a disambiguation response. See Trigger Options, on
page 118.

The weight value is constant for a particular trigger. You can assign a higher weight to triggers that
have more restrictive trigger conditions. For example, if a user must supply more matching keywords
to trigger a task, it is more likely to be the task that they want, and so you assign a higher weight.

For example:

"trigger" : {
"simple_match" : {

"phrases" : [

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 116 of 158



"get breakfast",
"order breakfast",
"eat breakfast",
"buy breakfast"
],

"case_insensitive" : true
},
"weight": 90

}

Task Disambiguation

In some cases, the user might provide text that matches the trigger for more than one task. In this
case, Answer Server returns a disambiguation prompt, which allows the user to select the
appropriate option from a list of tasks that match their input.

Answer Server uses the task display_id property in the prompt that it displays to the user. If you do
not specify a display_id, it uses the id property.

For example:

{
"tasks" : [

{
"id" : "LUNCH",
"display_id" : "order lunch",
"pre" : {

"response" : "I can help you order some lunch."
},
"trigger" : {

"simple_match" : {
"prefix" : "I want to",
"phrases" : [ 

"order food"
]

}
}

},
{

"id" : "BREAKFAST",
"display_id" : "order breakfast",
"pre" : {

"response" : "I can help you order some lunch."
},
"trigger" : {

"simple_match" : {
"phrases" : [ 

"get breakfast",
"order breakfast",
"eat breakfast",
"buy breakfast",

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 117 of 158



"order food"
]

}
}

}
]

}

If a user sends the text I want to order food, both of these task triggers match. Answer Server then
returns the textWhich of the following did you mean: order lunch, or order breakfast? (you can modify
this message, if required. See Default Messages, on page 136).

After the user selects the appropriate task, Answer Server processes the selected task. It sends the
original text that activated the disambiguation prompt to the new task, so that the new task can use it
for automatic requirement gathering, where appropriate (see Automatic Requirement Gathering, on
page 122).

You can define the maximum number of triggered tasks that return in a disambiguation message by
using the trigger_options configuration. See Trigger Options, below.

Trigger Options

The trigger_options object allows you to set additional properties that define how your task triggers
work. You can optionally add this object at the top level of your task configuration file. The settings
apply to all your tasks.

The following table describes the properties that you can set in the trigger_options object.

Property Type Description

max_
triggers

integer (Optional) The maximum number of triggers that the conversation task
can return in a disambiguation response. Answer Server sorts the
triggers by weight and returns up to max_triggers options with the
highest weight. The default value is 6.

For non-agent triggers, you define the weight property in the trigger
configuration object. For agent triggers, Answer Server uses the
returned autn:weight value when it queries for matching agent triggers.
Answer Server considers triggers with zero weight only if there are no
matches with non-zero weights.

weight_
range

number
(0-100)

(Optional) The weight range for task triggers to allow in task
disambiguation. When Answer Server returns a disambiguation
response, it does not return any triggers that have a weight that is more
than weight_range below the highest weight. By default, there is no
limit.

For example:

{
"tasks" : ...
"trigger_options": {

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 118 of 158



"max_triggers": 5,
"weight_range": 50

}
}

Task Requirements
Task requirements specify a piece of information that the user must provide before Answer Server
can complete the task. Tasks can have multiple requirements.

When a user provides information to satisfy a requirement, Answer Server updates a variable. It
stores the variable to use later in the task (for example to send information to an external system). By
default, Answer Server stores the variable only for the duration of the current task. You can also
choose to store a variable for the whole conversation session.

To configure requirements, you set the requirements property in the configuration object for an
individual task. The requirements property takes an array of requirement objects. The following table
describes the properties that you use to define a requirement.

Property Type Description

id string (Required) A unique ID for the requirement. Answer Server uses this
value as the name of the task or session variable that it stores for
this requirement.

prompt string (Required) The prompt to send to the user to request the
information.
You can include session and task variables, by inserting the variable
ID in double curly brackets, for example {{MYVARIABLE}}. The
variable must already be set in an earlier part of the task (for a task
variable) or conversation session (for a session variable). You can
optionally use the task: or session: prefix to specify the type of
variable, for example {{task:MYVARIABLE}}. If you do not use a
prefix, Answer Server searches for the variable in the task variables
first, and then the session variables.

scope enum,
string

(Optional) The scope of the variable: local or session. The default
value is local, which means that the variable is available only in the
current instance of the current task. Set scope to session to store
the variable for the whole conversation session.

validation array,
strings

(Optional) A list of validators to use to validate the user input.
Specify the ID of each validator that you want to use to validate the
current requirement. You define the validators separately in the
validators section of the task configuration JSON file. See
Response Validation, on page 123.

prompt_
required

Boolean (Optional) Set to true to require that the prompt for this requirement
must be sent to the user before this requirement can be set. By
default, Answer Server attempts to answer requirements from the

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 119 of 158



trigger or subsequent user text, unless the requirement does not
have any validators (in which case, Answer Server always presents
the prompt, and the prompt for the next requirement). For more
details, see Automatic Requirement Gathering, on page 122.

ask_options object (Optional) Options to use for the Ask action when the user text does
not pass the requirement validators. By default, if the user text is not
valid, the conversation system returns a default message. You can
set ask_options if you want to treat user text that is not a valid
answer for the requirement as a question to ask in your other
answer systems.

The ask_options JSON object can contain the following properties:

l max_results (number) Required. The maximum number of
results to retrieve from the other answer systems.

l systems (array, strings) Optional. The systems that you want
to send the Ask action to.

suggestions array,
strings

(Optional) A list of suggested answers to return to the user with the
requirement prompt. When you set this option, Answer Server
returns the suggestions with the prompt in the Converse action
response. You can use these values to present suggestions to your
users.

Answer Server does not validate the configured suggestions.
However, it does validate the user responses that include them, so
Micro Focus strongly recommends that you use valid values as
suggestions.

You can include session and task variables, by inserting the variable
ID in double curly brackets, for example {{MYVARIABLE}}. The
variable must already be set in an earlier part of the task (for a task
variable) or conversation session (for a session variable). You can
optionally use the task: or session: prefix to specify the type of
variable, for example {{task:MYVARIABLE}}. If you do not use a
prefix, Answer Server searches for the variable in the task variables
first, and then the session variables.

user_cancel object (Optional) An object that defines keywords that a user can use to
cancel a task, and the action to perform if they do. For details of the
configuration properties, see User Cancellation, on page 141.
The user_cancel options in the requirements section override any
values that you set in the main task configuration or for the individual
task.

system_
cancel

object (Optional) An object that defines what actions to take when the
requirement receives multiple non-valid responses. For details of
the configuration properties, see System Cancellation, on page 142.
The system_cancel options in the requirements section override

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 120 of 158



any values that you set in the main task configuration or for the
individual task.

When Answer Server runs a task that has requirements, it returns the pre response for the task (if
present), and then the prompt for the first requirement. Each prompt returns in a separate
<prompt> tag in the same Converse action response, and you can choose how to display this
information in your user interface.

For example:

{
"initial_task" : "GREET",
"tasks" : [

{
"id" : "GREET",
"pre" : {

"response" : "Hello and welcome to the Virtual Assistant. Before we get
started, I'd like to ask you a couple of questions."

},
"requirements": [ 

{
"id": "USER_NAME",
"prompt": "What is your name?",
"prompt_required": true,
"scope": "session"

},
{

"id": "USER_COUNTRY",
"prompt": "What country do you live in?",
"prompt_required": true,
"validation": [ "VALIDATE_COUNTRIES" ]

}
]

}
],
"validators": [

{
"id": "VALIDATE_COUNTRIES",
"eduction": {

"grammars": "place_countries.ecr"
}

}
]

}

When the task runs at the start of a conversation session, the user receives the following initial
message:

Hello and welcome to the Virtual Assistant. Before we get started, I'd like to ask you a
couple of questions.
What is your name?

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 121 of 158



When the user answers, the task stores the answer in the USER_NAME session variable and then
returns the following message:

What country do you live in?

Answer Server validates the user input by using the VALIDATE_COUNTRIES validator. For more
information about validator configuration, see Response Validation, on the next page. If the response
is valid, Answer Server stores the value in the USER_COUNTRY task variable.

Automatic Requirement Gathering

The example in the previous section uses the prompt_required flag to ensure that Answer Server
sends the prompt to the user, and the user must provide an answer to each requirement individually.

In many cases, you might want to automatically check the user response text for additional answers
to your task requirements. For example, if you send a prompt to a user for their name, and they reply
with their name and company, you might want to extract the company name from this text, rather than
subsequently asking the user what company they work for.

Automatic requirement gathering applies only to requirements that have validators, and where the
prompt is not required. When a user sends some text, Answer Server checks whether any portion of
their input text matches the validator for the current requirement. If it does, it also checks whether the
user input text matches the validators for any other requirements in the current tasks, and sets the
appropriate task and session variables if it does.

NOTE: For requirements that do not have validators (for example, those with free text input),
Answer Server always presents the prompt. It also always presents the prompt for the following
requirement, even if the user provided the information in an earlier response.

This process applies to the initial user text that triggers the task. If the trigger text contains the answer
for the first requirement in the task, Answer Server also checks whether the text contains answers for
other requirements.

For example:

{
"tasks" : [

{
"id" : "LUNCH",
"pre" : {

"response" : "I can help you order some lunch."
},
"trigger" : {

"regex" : {
"pattern" : "(Book|order) .* lunch"

}
},
"requirements": [ 

{
"id": "FOOD_TYPE",
"prompt": "Do you feel like a sandwich or a panini?",
"validation": [ "FOODTYPEVALIDATOR" ]

},

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 122 of 158



{
"id": "FILLING",
"prompt": "What filling would you like?",
"validation": [ "FILLINGVALIDATOR" ],
"suggestions": ["cheese", "ham", "turkey"]

}
],
"post" : {

"response" : "We'll get you a {{FILLING}} {{FOOD_TYPE}} right away!"
}

}
],
"validators" : [

{
"id" : "FOODTYPEVALIDATOR",
"simple" : {

"matches": [
{ "values": [ "sandwich", "panini" ] }

]
}

},
{

"id" : "FILLINGVALIDATOR",
"simple" : {

"matches": [
{ "values": [ "cheese", "ham", "turkey" ] }

]
}

}
]

}

If a user triggers this task with the text I want to order some lunch, Answer Server returns the prompt
for the first requirement as usual. However, if the user triggers the task with the text I want to order a
cheese panini for lunch, the trigger text provides the answer to both of the requirements. In this case,
Answer Server responds with the initial task prompt (I can help you order some lunch), and the
acknowledgment (We'll get you a cheese panini right away).

Related Topics
l Post-Task Actions, on page 129

l Response Validation, below

l Conversation Triggers, on page 112

Response Validation
Response validation allows you to check that the user response contains the information you need to
complete a task, or route to an appropriate task. You use validators in the requirements for your tasks
(see Task Requirements, on page 119).

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 123 of 158



You can use several different types of validation:

l Simple. Validate against a simple list of words and phrases, which the user input must match
exactly.

l Regular expression. Validate against a regular expression pattern, which the user input must
match.

l Eduction. Validate against a set of Eduction grammars and entities. This validator uses the
embedded Answer Server Eduction module.

l Lua. Validate by using a Lua function. This validator calls a function in an external Lua script,
which you must configure in the task configuration file. See Lua Processing Scripts, on
page 134.

You configure validators in the validators section of the task configuration file. This property takes
an array of validators. Each validator must contain a unique ID, and a configuration object (one of
simple, regex, eduction, and lua, depending on the validation type). The following sections
describe each type of validator configuration in more detail, and provide examples of each type of
validator.

Each validator object can also optionally include the properties in the following table.

Property Type Description

invalid_
input_lua

string (Optional) A Lua function in the configured Lua script to call if the user
input is not valid. For example, you might use this to submit the user
response to your other answer systems. See Lua Processing Scripts,
on page 134.

inverted Boolean (Optional) Set to true if you want to invert the match (that is, to consider
user input text as valid if it does not match the validator). The default
value is false (user input text must match the validator).

Simple Validation

In simple validation, you provide a simple list of values that the user input must match.

The following table describes the properties that you can set in the simple validation configuration
object.

Property Type Description

matches array,
objects

One or more match JSON objects, which contain the following
properties:

l values (array, strings) Required. A list of values that you want
to accept as user input for this validator. Answer Server
accepts these values if they appear as part of a sentence in the
input.

l return_value (string) Optional. The value that the validator
uses if the user input matches any of the values in the array. If
you do not set this value, the validator returns the value that

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 124 of 158



was matched in the user input.

case_
insensitive

Boolean (Optional) Set to true if you want to match values case insensitively.
The default value is false (case sensitive matching).

For example:

{
"tasks": [

...
]
"validators": [

{
"id" : "UKcountryname",
"simple" : {

"matches": [
{

"values": [ "United Kingdom", "UK", "Great Britain", "GB" ],
"return_value": "UK"

},
{

"values": [ "England", "Northern Ireland", "Scotland", "Wales" ]
}

],
"case_insensitive" : true

}
}

]
}

This example validator checks that the user input matches one of the listed names for the United
Kingdom. If the user text includes one of United Kingdom, UK,Great Britain, orGB, the validator
returns the value UK to the task. If the user text includes England, Northern Ireland, Scotland, or
Wales, the validator returns the value that the user matches.

Regular Expression Validator

In regular expression validation, you provide a regular expression pattern that the user input string
must match.

The following table describes the properties that you can set in the regex validation configuration
object.

Property Type Description

pattern string (Required) A regular expression pattern in ECMAScript regular
expression format. The user input text must match the pattern to be
valid.
The validator supports named captures, which must have the name
<return>. The validator returns the matched value if the input is

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 125 of 158



valid.

case_
insensitive

Boolean (Optional) Set to true if you want to match values case insensitively.
The default value is false (case sensitive matching).

For example:

{
"tasks": [

...
]
"validators": [

{
"id": "PRODUCT_CODE",
"regex": {

"pattern": "PCO-.*"
}

}
]

}

This validator matches any string that starts with the value PCO-.

Eduction Validator

In Eduction validation, you specify one or more Eduction grammars (and optionally entities) that the
user input string must match. This option uses the Answer Server embedded Eduction module.

The following table describes the properties that you can set in the eduction validation configuration
object.

Property Type Description

grammars string (Required) A comma-separated list of grammars to use to validate the
input. You can use Wildcards in the grammar name to specify multiple
grammars. However, you cannot use Wildcard values in the directory
name. You can specify grammar files with an absolute path or a path
relative to the Answer Server working directory.

entities string (Optional) A comma-separated list of entities in the configured grammars
to use to validate the input. You can use Wildcards in the entity string to
specify multiple entities.

For example:

{
"tasks": [

...
]
"validators": [

{

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 126 of 158



"id": "UK_PHONE",
"eduction": {

"grammars": "configuration/number_phone_gb.xml",
"entities": "phone/all/gb"

}
}

]
}

This validator checks that the user input text contains a phone number that matches one of the types
in the phone/all/gb entity of the number_phone_gb.xml grammar. If the user input text contains a
valid match, the validator returns the normalized match text to the task.

Lua Validator

In Lua validation, you specify the name of a Lua function to use to validate the user input.

The function that you specify must accept a string (the text to validate) as the first parameter. You can
optionally also use a taskUtils object as the second parameter, if you want to use taskUtils
methods in your validator.

When the text is a valid response, the function must a string (the normalized value to use from the
user input text). When the user text is not a valid response the function must either return nil or not
return a value.

The following table describes the properties that you can set in the lua validation JSON configuration
object.

Property Type Description

function string (Required) The name of the function to call. This function must exist in the
Lua script that you configure in your task configuration JSON file (see Lua
Processing Scripts, on page 134).

For example:

{
"tasks": [

...
]
"validators": [

{
"id": "FTSE_SYMBOL",
"lua": {
"function": "check_ftse_symbol"

}
}

]
}

This validator calls the check_ftse_symbol function in the task Lua script to validate user input text. If
the user input text is valid, the validator sends the value that the function returns to the task.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 127 of 158



Process Non-Valid Input

You can configure your response validators to call a Lua function when the user input text fails to
validate.

To configure a Lua function, you set the invalid_input_lua property in your validator configuration
to the name of the Lua function to call. This function must exist in the Lua script that you configure in
your task configuration JSON file (see Lua Processing Scripts, on page 134).

You can use this function to process non-valid input further. For example, if a user asks a question
instead of providing a direct answer to a requirement, you might use the invalid_input_lua function
to send the user input text to the Ask action, and retrieve answers from your answer systems.

The function that you specify must take a taskUtils object. If the function sets a response, Answer
Server returns this response to the user.

If the function does not update the response, Answer Server uses a default message I'm sorry.
I didn't understand that., and then repeats the requirement prompt. You can modify this message, if
required (see Default Messages, on page 136).

For example:

{
"tasks": [

{
"id" : "HOLIDAY",
"trigger" : {

"regex" : {
"pattern" : "(book|go) .* holiday"

}
},
"requirements": [

{
"id": "HOLIDAY_LOCATION",
"prompt": "What country would you like to visit?",
"validators": [ "COUNTRYVALIDATOR" ]

}
]

}
],
"validators": [

{
"id": "COUNTRYVALIDATOR",
"eduction": {

"grammars": "configuration/place_countries.ecr"
},
"invalid_input_lua": "holiday_planner"

}
]

}

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 128 of 158



If holiday_planner is a Lua function that uses the user input text to send an Ask action, and returns
the answer as a prompt, you might get a conversation similar to the following (user text is in italic,
Answer Server response in bold):

I'd like to go on holiday.

What country would you like to visit?

What country is Budapest in?

Hungary. What country would you like to visit?

Hungary.

Post-Task Actions
Post-task actions run at the end of the task, after all the task requirements have been satisfied. You
can use these options to return an acknowledgment response to the user to confirm the details in the
task, and to run a Lua function that performs some final operation with the collected task
requirements.

To configure post-task actions, you set the post object in the configuration object for an individual
task.

The following table describes the properties that you can set in the post object.

Property Type Description

response string (Optional) A string response to return to the user. For example, this might
be a confirmation of the information that was collected in the task.
You can include session and task variables, by inserting the variable ID in
double curly brackets, for example {{MYVARIABLE}}. The variable must
already be set in an earlier part of the task (for a task variable) or
conversation session (for a session variable). You can optionally use the
task: or session: prefix to specify the type of variable, for example
{{task:MYVARIABLE}}. If you do not use a prefix, Answer Server
searches for the variable in the task variables first, and then the session
variables.

lua string (Optional) A lua function to run at the end of the task, for example to run an
external process to complete the task. The function that you specify must
accept a taskUtils object. See Lua Processing Scripts, on page 134.

routing object (Optional) A string or configuration object that determines the task to run
next. See Task Routing, on page 131.

{
"initial_task" : "GREET",
"tasks" : [

{
"id" : "GREET",
"pre" : {

"response" : "Hello and welcome to the Lunch Virtual Assistant."

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 129 of 158



},
"requirements" : [ 

{
"id": "USER_NAME",
"prompt": "Before we get started, could you tell me your name?",
"scope": "session"

}
],
"post": {

"response" : "Welcome, {{USER_NAME}}. How can we help you today?"
}

},
{

"id" : "LUNCH",
"pre" : {

"response" : "I can help you order some lunch."
},
"trigger" : {

"regex" : {
"pattern" : "(Book|order) .* lunch"

}
},
"requirements" : [ 

{
"id" : "FOOD_TYPE",
"prompt" : "Do you feel like a sandwich or a panini?"

},
{

"id" : "FILLING",
"prompt" : "What filling would you like?"

}
],
"post" : {

"response" : "All right, {{USER_NAME}}. We'll get you a {{FILLING}}
{{FOOD_TYPE}} right away!",

"lua" : "send_lunch_order",
"routing" : "ANYTHING_ELSE"

}
}

]
}

In this example, the final response in the GREET task uses the session variable {{USER_NAME}}. The
final response in the LUNCH task uses the session variable {{USER_NAME}}, and the task variables
{{FILLING}} and {{FOOD_TYPE}}.

This simple configuration might result in a conversation like the following example:

Hello and Welcome to the Lunch Virtual Assistant.
Before we get started, could you tell me your name?

Amy

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 130 of 158



Welcome, Amy. How can we help you today?

I'd like to book lunch.

I can help you order some lunch.
Do you feel like a sandwich or a panini?

Panini

What filling would you like?

Cheese

All right, Amy. We'll get you a Cheese Panini right away!

The task then runs the send_lunch_order Lua function, which might call out to an external system to
set up the order. It routes the user to the ANYTHING_ELSE task.

Task Routing

Task routing allows you to specify a task to run after the current task is complete. There are two types
of routing that you can use:

l Simple. You provide the ID of the task to run after the current task is complete.

l Conditional. You specify a set of conditions (such as user selections), and specify the task to
run in each case.

To use routing, you set the routing property in the post object of your task (see Post-Task Actions,
on page 129).

Configure Simple Routing

In a simple routing, you set the routing property to the ID of the task that you want to run next.

For example:

{
"initial_task" : "GREET",
"tasks" : [

{
"id" : "GREET",
"pre" : {

"response" : "Hello and welcome to the Virtual Assistant. Before we get
started, I'd like to ask you a couple of questions."

},
"requirements": [ 

{
"id": "USER_NAME",
"prompt": "What is your name?",
"scope": "session"

},
{

"id": "USER_COUNTRY",
"prompt": "What country do you live in?",
"scope": "session"

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 131 of 158



}
],
"post" : {

"routing" : "CUSTOMER"
}

},
...

]
}

This example task asks the user for their name and location, and then automatically routes to the
CUSTOMER task (which you must also define somewhere in the task configuration file).

Configure Conditional Routing

In conditional routing, the routing property contains a configuration object that contains details of the
conditional routing.

The following table describes the properties that you can set in the routing configuration object.

Property Type Description

prompt string (Required) A prompt to send to the user to request a choice for routing.
You can include session and task variables, by inserting the variable
ID in double curly brackets, for example {{MYVARIABLE}}. The variable
must already be set in an earlier part of the task (for a task variable) or
conversation session (for a session variable). You can optionally use
the task: or session: prefix to specify the type of variable, for example
{{task:MYVARIABLE}}. If you do not use a prefix, Answer Server
searches for the variable in the task variables first, and then the
session variables.

map array,
object

(Required) One or more JSON objects that specify the user responses,
and the routing option to use for that response. Each object contains
the following properties:

l match (string). Required. The value that triggers this option.

l routing (string). Required. The task to route to next when the
user response triggers this option.

l response (string). Optional. A string to return to the user to
confirm their option. You can include session and task variables,
by inserting the variable ID in double curly brackets, for example
{{MYVARIABLE}}. The variable must already be set in an earlier
part of the task (for a task variable) or conversation session (for a
session variable). You can optionally use the task: or session:
prefix to specify the type of variable, for example
{{task:MYVARIABLE}}. If you do not use a prefix, Answer Server
searches for the variable in the task variables first, and then the
session variables.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 132 of 158



validation array,
strings

(Optional) A list of validators to use to validate the user selection.
Specify the ID of each validator that you want to use to validate the
response to use to route the conversation to a new task. You define the
validators separately in the validators section of the task
configuration JSON file. See Response Validation, on page 123.

If you use validation, you must ensure that all the validators for a
routing option map back to the value that you specify in your map
object match properties.

user_cancel object (Optional) An object that defines keywords that a user can use to
cancel a task, and the action to perform if they do. For details of the
configuration properties, see User Cancellation, on page 141.
The user_cancel options in the conditional routing section override
any values that you set in the main task configuration or for the
individual task.

system_
cancel

object (Optional) An object that defines what actions to take when the
requirement receives multiple non-valid responses. For details of the
configuration properties, see System Cancellation, on page 142.
The system_cancel options in the conditional routing section override
any values that you set in the main task configuration or for the
individual task.

For example:

{
"tasks" : [

...
{

"id" : "CUSTOMER",
"routing" : {

"prompt" : "Do you have an existing account with us?",
"validation" : [ "YESNO" ],
"map" : [

{ 
"match" : "yes",
"routing" : "EXISTING_DETAILS",
"response" : "Okay, {{USER_NAME}}. We'll get you the options for

existing customers."
},
{

"match" : "no",
"routing" : "NEW_OPTIONS"

}
]

}
}
...

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 133 of 158



]
}

This example routes users to different tasks depending on whether they are an existing or new
customer.

TIP:When Answer Server returns a routing prompt, it also returns the valid responses (the values
of the match property for each object in your map array). You can use these values to present the
available options to your users, particularly if you do not want to use validation in your routing
object.

Use Routing in a Lua Function

When you are using a Lua script in your task configuration, you can route to the next task in your post
Lua function.

Answer Server calls the post Lua function at the end of a task, when all the requirements are met.
You can use this function to run an external operation, or store data that allows an operative to
complete any manual portion of the task.

You can include routing in your post Lua function to control the task that Answer Server occurs next.
To do this, you can use the setNextTaskmethod. For more information, refer to the Answer Server
Reference.

Task routing in the post Lua response takes precedence over any explicit task routing in the task
JSON configuration.

Lua Processing Scripts
You can use Lua functions to perform additional processing for your tasks. For example, if you have a
conversation task that sets up the options that a user wants to use to open an account, or make a
transaction, you might use a Lua function to call out to an external system to perform the final action.

You can create only one Lua script for your conversation system. You specify the path and file name
for this script in the lua_script property in your task configuration JSON file. You can then call out
from the configuration for an individual task to a particular function in the script file. For example:

{
tasks : [

...
],
lua_script : "C:\AnswerServer\Scripts\TaskProcessing.lua",
validators : [

...
]

}

You can use a full or relative path. Relative paths can be relative to the Answer Server working
directory, or relative to the directory that contains your task configuration JSON file (Answer Server
checks for the file relative to the working directory first).

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 134 of 158



NOTE: You can specify only one Lua script, even if you split your task configuration across
multiple JSON files.

In your individual task configurations, you can specify the following properties to set Lua scripts:

l The pre object lua property specifies the name of a function to run before the task starts. For
example, you can use this function to generate an appropriate preamble to send to the user.
See Pre-Task Actions, on page 111.

l The post object lua property specifies the name of a function to run when all the task
requirements have been satisfied. You can use this function to run an external process to
complete the task. See Post-Task Actions, on page 129.

l The action object lua property (in the user_cancel or system_cancel objects) specifies the
name of a function to run when the user or system cancels the task. See Task Cancellation, on
page 141.

All pre, post, and cancel action Lua functions must accept a taskUtils object.

You can also use Lua functions in your validators, to validate user input:

l Lua validator configuration objects allow you to specify the name of a Lua function to use to
validate user input. Lua validator functions must accept a string (the text to validate) as the first
parameter. You can optionally also use a taskUtils object as the second parameter, if you
want to use taskUtilsmethods in your validator. See Response Validation, on page 123.

l The invalid_input_lua property allows you to set the name of a function to run when the user
input text does not validate. This function must accept a taskUtils object. See Process Non-
Valid Input, on page 128.

You can use an additional Lua function to determine the message to return to a user and valid
responses from the user when their input triggers multiple tasks. The Lua function must accept a
routingTable object as the first parameter, which is can use to override the response and options.
You can optionally also use a taskUtils object as the second parameter, if you want to use
taskUtilsmethods in your function. See Default Messages, on the next page.

You can use any of the standard Lua functions and methods in your Lua functions, as well as several
custom conversation system Lua methods. The conversation Lua options include simple methods to
get and set task and session variables, and a method to forward a question to your other Answer
Server systems.

For more information about the Lua functions and methods available, refer to the Answer Server
Reference.

Default Tasks
In most cases, you use conversation triggers or routing to direct users to particular conversation
tasks. However, you must also configure an initial task and a fallback task.

Initial Task

The initial task runs when the conversation session starts. It activates when you start a conversation
by sending the Converse action without the Text parameter (see Start and Continue a Conversation,

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 135 of 158



on page 148).

The main use of the initial task is to greet your users when they join a conversation session.

To define the initial task, you set the initial_task property in your task configuration JSON to the
ID of the task that you want to use. This property is required, and the associated task must exist
somewhere in your task configuration file.

For example:

{
"initial_task" : "GREET",
"tasks" : [

{
"id" : "GREET",
"pre" : {

"response" : "Hello and Welcome to the Virtual Assistant. How can I help
you?"

}
}

]
}

Fallback Task

The fallback task runs when there are no existing tasks in the session, for example because all
previous tasks are complete.

To define the fallback task, you set the fallback_task property in your task configuration JSON to
the ID of the task that you want to use. This property is required, and the associated task must exist
somewhere in your task configuration file, even if you have explicit routing such that it is never used.

{
"fallback_task" : "HELP",
"tasks" : [

{
"id" : "HELP",
"pre" : {

"response" : "Is there anything else I can help you with today?"
}

}
]

}

Default Messages
The conversation system has several default messages that it uses, in addition to the responses that
exist in the task configuration. These default messages have standard values in Answer Server. You
can change the default values, for example, if you want to run conversations in a different language,
use a different conversational style, or customize the messages to your organization.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 136 of 158



To configure default messages, you set the default_messages object in your task configuration file.
The following sections describe the messages that you can configure.

Response for Non-Valid Input

The non-valid input response is the value that the conversation system returns when the user input
was not recognized, for example because the message did not pass validation.

To modify the default message for non-valid input, add the default_messages object and set the
invalid_input property to the new message.

For example:

{
"default_messages" : {

"invalid_input" : "Je ne comprends pas."
}

}

The default value for this message is:

I'm sorry. I didn't understand that.

Response for Disambiguation

The disambiguation response is the value that the conversation system returns when there are two or
more possible responses. For example, if user text triggers more than one task, or if the task sends a
question that has multiple interpretations to a Answer Server Fact Bank system.

To modify the default message for disambiguation, add the ambiguous_input property to the
default_messages object. The ambiguous_input property is a configuration object.

The following table describes the properties that you can set in the ambiguous_input object.

Property Type Description

message string (Optional) The message text to display to the user. This message must
include the string [[ITEMS]], which is a special token that Answer Server
replaces with the disambiguation items.
The default value is "Which of the following did you mean: 
[[ITEMS]]?".

item_
separator

string (Optional) The separator to use between the items in the disambiguation
list.
The default value is ", " (that is, a comma and a space).

last_
separator

string (Optional) The separator to use between the second-last and last item in
the list.
The default value is ", or " (that is, a serial comma and or, with
appropriate spaces).

lua string (Optional) A Lua function to call whenever some user input triggers
multiple tasks. See Lua Processing Scripts, on page 134.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 137 of 158



The Lua function must accept a routingTable object as the first
parameter, which is can use to override the response and options. You
can optionally also use a taskUtils object as the second parameter, if
you want to use taskUtilsmethods in your function.
This function can change the default prompt to return to the user, and the
possible responses and tasks that they route to.
The function can access the default prompts and options, as well as user
input text, session variables, and so on. The function can optionally route
to tasks that were not originally triggered.
If the function leaves only one possible task, Answer Server routes to that
task immediately without prompting the user. If the function removes all
possible tasks, Answer Server behaves as if no tasks were triggered. If
the function does not modify the prompt or options, Answer Server uses
the default options.

For example:

{
"default_messages" : {

"ambiguous_input" : { 
"message": "Which one of [[ITEMS]] did you mean?",
"item_separator": "/",
"last_separator": "/"

}
}

}

This example results in a disambiguation message of the following form:

Which one of order breakfast/order lunch/order dinner did you mean?

The default configuration gives a disambiguation message of the following form:

Which of the following did you mean: order breakfast, order lunch, or order dinner?

Response for Multiple Answer Disambiguation

The multiple answer disambiguation is the message that the conversation system returns if an Ask
action sent as part of the conversation returns multiple possible answers.

This configuration allows you to set different messages depending on the type of answer that is
requested. For more information about the types of questions that Answer Server can parse, see The
Question Parser Eduction Grammar, on page 78.

To modify the default message for disambiguation, add the multiple_answers_disambiguation
property to the default_messages object. The multiple_answers_disambiguation property is a
configuration object.

The following table describes the properties that you can set in the multiple_answers_
disambiguation object.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 138 of 158



Property Type Description

entity object (Optional) An object that describes the message to display when a
question about a particular entity returned multiple answers. This
object can contain the following properties:

l message (string). Optional. The message text to display to the
user. This message must include the string [[ITEMS]], which is
a special token that Answer Server replaces with the
disambiguation items. It can also include the string [[ENTITY]],
which is a special token that Answer Server replaces with the
name of the entity in the question. The default value is "Found
multiple possibilities for '[[ENTITY]]', which did you
mean: [[ITEMS]]?".

l item_separator (string). Optional. The separator to use
between the items in the disambiguation list. The default value is
", " (that is, a comma and a space).

l last_separator (string). Optional. The separator to use
between the second-last and last item in the list. The default
value is ", or " (that is, a serial comma and or, with appropriate
spaces).

qualifier_
code

object (Optional) An object that describes the message to display when a
question returned multiple answers with different qualifiers that you
can use to determine the correct answer to use. This object can
contain the following properties:

l message (string). Optional. The message text to display to the
user. This message must include the string [[ITEMS]], which is
a special token that Answer Server replaces with the
disambiguation items. The default value is "Got multiple
answers. Choose a qualifier to disambiguate on:
[[ITEMS]]?".

l item_separator (string). Optional. The separator to use
between the items in the disambiguation list. The default value is
", " (that is, a comma and a space).

l last_separator (string). Optional. The separator to use
between the second-last and last item in the list. The default
value is ", or " (that is, a serial comma and or, with appropriate
spaces).

qualifier_
value

object (Optional) An object that describes the message to display when a
question returned multiple answers with different qualifiers that you
can use to determine the correct answer to use. This object can
contain the following properties:

l message (string). Optional. The message text to display to the
user. This message must include the string [[ITEMS]], which is
a special token that Answer Server replaces with the

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 139 of 158



disambiguation items. The default value is "Which value did
you want to filter by: [[ITEMS]]?".

l item_separator (string). Optional. The separator to use
between the items in the disambiguation list. The default value is
", " (that is, a comma and a space).

l last_separator (string). Optional. The separator to use
between the second-last and last item in the list. The default
value is ", or " (that is, a serial comma and or, with appropriate
spaces).

additional_
choices

object (Optional) An object that describes additional messages to return .
This object can contain the following properties:

l all_answers (string). Optional. The message text to display to
allow the user to choose to return all available answers. The
default value is Return all answers.

l reject_answers (string). Optional. The message text to display
to allow the user to choose to reject all available answers. The
default value is None of these.

rejected_
answers

object (Optional) An object that describes the message to display when the
user rejects the available answers. This object can contain the
following properties:

l message (string). Optional. The message text to display to the
user. The default value is I'm sorry, I don't have an
answer for that.".

For example:

"default_messages": {
"multiple_answers_disambiguation": {

"entity": {
"message": "I found several possible matches for '[[ENTITY]]'. Which of the

following matches your intent: [[ITEMS]]?"
},
"qualifier_code": {

"message": "I found multiple answers for that. Pick one of these qualifiers
to clarify your original question: [[ITEMS]]"

},
"qualifier_value": {

"message": "I have several answers for you, but I need more information to
give you the best one. Choose one of the following values: [[ITEMS]]"

},
"additional_choices": {

"all_answers": "I want it all",
"reject_answers": "That's not helpful"

},
"rejected_answers": {

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 140 of 158



"message": "Then I'm afraid I can't help you with your question, because I
have no further information."

}
}

}

TIP:When the Converse action calls out to the Ask action to ask a question, Answer Server
returns the possible answers in the Converse action response, along with the disambiguation
information. At this point, you can use the special string ANSWER_NUMBER_N in the Text parameter
of the Converse action to return a particular answer from the list, where N is the number of the
answer (starting from 0).

Task Cancellation
You can configure settings to define when and how to cancel a conversation task.

You can define task cancellation options at the top level of your task configuration file, to define
global cancellation options. You can also define it in a task, a task requirement, and in a post-task
conditional routing object. Values that you set in the requirement or routing objects override the
settings at the task level, which override the global values.

User Cancellation

The user_cancel property defines settings that allows users to cancel a conversation task, and what
actions to take.

The following table describes the options that you can set in the user_cancel object.

Property Type Description

keywords array,
strings

(Optional) A list of keywords that the user can type to cancel the
task. When a user provides one of these keywords, Answer Server
cancels the current conversation task, and runs the specified
action.
The default value is cancel. You can turn off user cancellation by
setting keywords to an empty array.

NOTE: Answer Server checks for cancellation terms before it
performs response validation, so it cancels the task even if the
cancellation keyword is also a valid response to the task
requirement. Micro Focus recommends that you choose your
response validation and cancellation keywords carefully to avoid
a conflict. You can override global or task-level cancellation
keywords by setting keywords in a requirement (or by setting the
requirement keywords to an empty array).

case_
insensitive

Boolean (Optional) Set to false if you want to match the specified keywords
case sensitively.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 141 of 158



The default value is true (not case sensitive).

action object (Optional) An object that defines the action to perform when the user
cancels the task. You can set the following properties:

l response (string) Optional. The response to return when the
task is canceled. You can include session and task variables.
The default value is Task canceled.

l routing (string) Optional. The ID of the task to route to when
the task is canceled. The default value is the configured
fallback_task (see Default Tasks, on page 135).

l lua (string) Optional. The name of a Lua function to run when
the task is canceled. See Lua Processing Scripts, on
page 134. You can set this property to null to remove a Lua
script that you configured at a more general level.

For example:

{
"user_cancel" : {

"keywords" : [ "cancel", "end", "stop" ],
"action" : {

"response" : "Okay {{USER_NAME}}, we'll cancel that for now.",
"routing" : "HELP"

}
}

}

System Cancellation

The system_cancel property defines settings that define what actions to take when the conversation
task receives multiple non-valid responses.

NOTE: Any requirements that have ask_options configured ignore any system cancellation
because in this case, Answer Server treats all non-valid responses as potential questions.

The following table describes the options that you can set in the system_cancel object.

Property Type Description

max_
attempts

number (Optional) The number of non-valid input attempts that the user can
make before the system cancels the task. The default value is 0 (no
limit).

action object (Optional) An object that defines the action to perform when the system
cancels the task after non-valid input. You can set the following
properties:

l response (string) Optional. The response to return when the task is

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 142 of 158



canceled. You can include session and task variables. The default
value is Task aborted.

l routing (string) Optional. The ID of the task to route to when the
task is canceled. The default value is the configured fallback_
task (see Default Tasks, on page 135).

l lua (string) Optional. The name of a Lua function to run when the
task is canceled. See Lua Processing Scripts, on page 134. You
can set this property to null to remove a Lua script that you
configured at a more general level.

For example:

{
"system_cancel" : {

"max_attempts" : 5,
"action" : {

"response" : "I'm sorry, I still didn't understand that. Would you like to
try again?",

"lua" : "system_cancel"
}

}
}

Task Configuration Example
The Answer Server installation includes an example conversation JSON configuration and Lua
script.

You can view the example files in the conversation/examples/travel directory in your Answer
Server installation. The default Answer Server configuration file contains a commented example
conversation system configuration, which you can uncomment to run the example.

Configure the Conversation Agentstore

NOTE: The Conversation Agentstore is an optional component. You do not need to configure it if
you do not want to use agent triggers in your conversation tasks. See Conversation Triggers, on
page 112.

The IDOL Agentstore component is a specially configured IDOL Content component.

In agent search, you send plain text or a document to the Agentstore, which returns any agents that
match the document. In a Conversation system, you can store conversation triggers in the
Agentstore.

The conversation task can query the Agentstore to find any conversation triggers that match the text
that a user provides.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 143 of 158



Configure the Agentstore Component
The Answer Server package includes a predefined Conversation Agentstore configuration file.

NOTE: Micro Focus recommends that you use a separate Agentstore for Passage Extractor,
Answer Bank, and Conversation answer systems.

To configure the Agentstore component for your Conversation system

1. In your Answer Server installation directory, copy the Agentstore agentstore.cfg configuration
file.

2. Open your Agentstore installation directory.

3. Paste the Answer Server Agentstore configuration file. Overwrite the installed configuration file
(you might want to make a copy of it first).

4. Open the configuration file in a text editor.

5. Update the [License] section with the host and port information for your License Server. For
more information, see Configure the License Server Host and Port, on page 22.

6. In the [Server] section, find the Port parameter. Check that the specified port is available on
the host machine, or change it to an available port.

NOTE: If you modify the port, make sure to update the system configuration in your Answer
Server configuration file. See Configure the Conversation System, on page 109.

7. In the [Service] section, find the ServicePort parameter. Check that the specified port is
available on the host machine, or change it to an available port.

8. Save and close the configuration file.

Configure the Conversation System to Use Agentstore
To use Agent triggers, you must include the Agentstore details in your conversation system
configuration by setting the AgentstoreHost and AgentstoreACIPort configuration parameters.
Depending on your system configuration, you might also need to set AgentstoreSSLConfig and
AgentstoreGSSServiceName.

[MyConversation]
Type=Conversation
TaskConfigurationFile=C:\AnswerServer\Conversation\tasks.json
// Trigger Agentstore
AgentStoreHost=localhost
AgentStoreAciport=5002

For more information about the available configuration parameters, refer to the Answer Server
Reference.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 144 of 158



Index Conversation Trigger Agents
After you have configured the Agentstore, you must index the conversation trigger agents that the
Conversation system must use.

To do this, you must create the IDX or XML files that contain your conversation triggers (see Agent
Triggers, on page 113). You can then use a DREADD index action to add the IDX or XML files to your
Agentstore. For example:

http://localhost:5001/DREADD?C:\AnswerServer\conversation\conversation_
triggers.idx.gz

Check Spelling in Conversations
Answer Server can check the spelling of input to a conversation system. This means that if a user
makes a spelling error, the conversation system can still suggest potential answers.

When a user submits input that does not trigger any tasks, Answer Server runs the spelling checker.
If a spelling correction is possible and that correction would trigger one or more tasks, the user is
presented with the suggested correction and a list of matching tasks through the standard
disambiguation prompt.

To check spelling you must have an IDOL Content component that contains a large amount of
indexed documents. The words in the conversation are checked against the words present in the
index. With a sufficiently large amount of data spelling errors can be identified.

To check spelling in conversations

1. Open your configuration file in a text editor.

2. Create a new section in the configuration file and configure a spelling checker. You can give the
section any name. Set the following parameters:

Type The type of component to use to check spelling. Set this parameter to
Content.

Host The host name or IP address of the machine hosting the IDOL Content
component.

ACIPort The ACI port of the IDOL Content component.

LanguageType The value to use for the LanguageType parameter, in Query actions sent to
the IDOL Content component.

For example:

[MySpellingChecker]
Type=Content

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 145 of 158



Host=localhost
ACIPort=12345
LanguageType=englishUTF8

For more information about these configuration parameters, refer to the Answer Server
Reference.

3. Find the configuration section for the Conversation system. In this section, set the configuration
parameter SpellcheckEngine to the name of the section that you created in the previous step.
For example:

[MyConversationSystem]
SpellcheckEngine=MySpellingChecker

4. Restart Answer Server for your configuration changes to take effect.

Administration Guide
Chapter 11: Set Up a Conversation System

IDOL Answer Server (12.12) Page 146 of 158



Chapter 12: Hold Conversations in
Answer Server
This section describes how to hold conversations in Answer Server.

• Hold a Conversation 147

Hold a Conversation
To start conversations, you must create a conversation session in Answer Server, which generates a
session token. You use this session token to track a particular conversation in the Converse action.

Create a Conversation Session
To create a conversation session, you use a ManageResources action in a POST request method,
with the details of the operation to perform provided in the Data parameter as a JSON object.

Action=ManageResources&SystemName=MyConversations
data={

"operation":"add",
"type":"conversation_session"

}

You can optionally pass session variables to the conversation session, so that the conversation does
not have to ask for information that is already available in your system. For example, you might pass
in the user name from the login that the user provided when they signed into your application. For
example:

Action=ManageResources&SystemName=MyConversations
data={

"operation":"add",
"type":"conversation_session",
"session_variables": [

{"name": "USER_NAME", "value": "Jane"},
{"name": "COUNTRY", "value": "USA"}

]
}

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

NOTE: The ManageResources action fails if you attempt to use request JSON that contains
properties that are not contained in the appropriate schema.

IDOL Answer Server (12.12) Page 147 of 158



TIP: Typically, Micro Focus recommends that you send ManageResources as a POST request.
For testing, you can use a GET request, in which case you must base64 encode the JSON data.

This action returns a session token, which you can use in the Converse action.

Retrieve Active Conversation Sessions
To retrieve the session IDs of your active conversation sessions, you use a GetResources action,
with Type set to conversation_session. For example:

action=GetResources&SystemName=MyConversations&Type=conversation_session

Start and Continue a Conversation
To run conversations, you use the Converse action. You must set SystemName to the name of the
conversation system, and SessionID to the session token that you receive from the
ManageResources action when you create the session.

For example:

action=Converse&SystemName=MyConversations&SessionID=860028728520387723

This example starts the conversation without providing any user text. In this case, Answer Server
runs the conversation task that you have configured as your initial task and returns the response from
that task. See Initial Task, on page 135.

To provide user text, you add the Text parameter:

action=Converse&SystemName=MyConversations&SessionID=860028728520387723&Text=I would
like to buy some shares

Each action with the same session ID carries on the conversation, running the appropriate
conversation tasks. You provide each new user text selection in the Text parameter, and the action
returns the response from the conversation task.

When the Converse action calls out to the Ask action to ask a question, the Ask response can include
additional information to allow the user to disambiguate between multiple possible answers. In this
case, Answer Server returns the possible answers in the Converse action response, along with the
disambiguation information. At this point, you can use the special string ANSWER_NUMBER_N to return a
particular answer from the list, where N is the number of the answer (starting from 0).

You can retrieve the XML Schema Definitions (XSDs) for the Converse action by using the
GetResources action with the Type parameter set to XSD. For more information, refer to the Answer
Server Reference.

Close a Conversation Session
At the end of a conversation, you can delete the conversation session to free up the session license.
To delete the conversation session, you use another ManageResources action, with the delete
operation and the appropriate session ID. For example:

Administration Guide
Chapter 12: Hold Conversations in Answer Server

IDOL Answer Server (12.12) Page 148 of 158



Action=ManageResources&SystemName=MyConversations
data={

"operation":"delete",
"type":"conversation_session",
"ids":["860028728520387723"]

}

TIP: You can configure Answer Server to automatically close inactive conversation sessions, by
setting the SessionExpirationInterval and SessionExpirationIdleTime configuration
parameters in the system configuration section. For more information, see Configure the
Conversation System, on page 109, and refer to the Answer Server Reference.

Retrieve a Conversation Transcript
You can retrieve a full transcript of a particular conversation session by using the GetResources
action with Type set to Transcript, and IDs set to the ID of the conversation session that you want to
retrieve. For example:

action=GetResources&Type=Transcript&SessionID=860028728520387723

TIP: You can also use the transcript in your conversation Lua scripts. See Lua Processing
Scripts, on page 134 and refer to the Answer Server Reference.

Administration Guide
Chapter 12: Hold Conversations in Answer Server

IDOL Answer Server (12.12) Page 149 of 158



Chapter 13: Use Natural Language
Generation in Answer Server
This section describes how to configure Answer Server to use natural language generation (NLG),
and how to use the NLG action to generate sentences.

• Configure Natural Language Generation 150
• Run Natural Language Generation 150

Configure Natural Language Generation
Answer Server Natural Language Generation (NLG) generates a user-friendly natural language
sentence from a JSON object that describes the parts of speech to include. You can use NLG, for
example, to generate user-friendly responses for a user interface in a programmatic way.

NOTE: You can use NLG only if your license permits it.

Answer Server uses the SimpleNLG-4.4.8.jar file to perform natural language generation. You
must enable NLG and provide the location of this

To configure Answer Server to use NLG

1. Open your configuration file in a text editor.

2. Create the [NLG] configuration section.

3. In the [NLG] section, set Enabled to True.

4. Set JarPath to the path to the directory that contains the SimpleNLG-4.4.8.jar file. This file is
available in your Answer Server installation.

5. Save and close the configuration file.

NOTE: If you enable NLG and your license does not allow it, or Answer Server cannot find the
SimpleNLG-4.4.8.jar in the specified directory, Answer Server does not start.

Run Natural Language Generation
You run NLG by sending the NLG action to Answer Server in a POST request method. You submit a
JSON object, which contains details of the parts of speech that you want to use to generate a
sentence, and the action returns the appropriate sentence.

IDOL Answer Server (12.12) Page 150 of 158



curl http://localhost:12000/?action=NLG –F Spec={
"sentences": [
{
"subject": {
"noun_phrases": [
{ "value": "the dog" },
{ "value": "your giraffe" }

]
},
"verb": {
"verb_phrase": {
"value": "chase",
"modifiers": [ "quickly" ]

}
},
"object": {
"noun_phrases": [
{ "value": "the monkey" },
{ "value": "George" },
{ "value": "Martha" }

],
"conjunction": "or"

}
}

]
}

This action generates the following sentence:

The dog and your giraffe quickly chase the monkey, George or Martha.

You can retrieve the full schema for the JSON object to use by using the GetResources action. See
Find the JSON Schema for Your Update, on page 43.

Administration Guide
Chapter 13: Use Natural Language Generation in Answer Server

IDOL Answer Server (12.12) Page 151 of 158



IDOL Answer Server (12.12) Page 152 of 158

Part III: Appendixes
This section contains additional information about Answer Server.

l Debug Your Conversation Lua Scripts



IDOL Answer Server (12.12) Page 153 of 158

Administration Guide
Part III: Appendixes



Appendix A: Debug Your Conversation
Lua Scripts
The Answer Server installation includes IDE files to allow you to debug your Conversation system
Lua scripts with the ZeroBrane Studio Lua IDE on Windows. For more information about
conversation Lua scripts, see Lua Processing Scripts, on page 134.

To use Lua debugging, you must install ZeroBrane Studio (see https://studio.zerobrane.com).

After you install ZeroBrane Studio, you must:

l Copy the files from the lua_ide_files directory in your Answer Server installation to the
ZeroBrane Studio installation directory, merging with the files that are already there,

l Copy the following files from the lua directory in your Answer Server installation to a debugging
project directory (which can be anywhere):
o autn_conversation.dll A DLL for debugging conversation Lua scripts.
o taskutils_factory.lua A helper module for constructing taskUtils objects.
o autn_conversation.cfg A copy of the answerserver.cfg to use during debugging.

You can then create a debug script to allow you to debug individual Lua functions. The Lua debug
script file must have the following code at the start, where LuaScript.lua is your conversation Lua
script file:

require("autn_lua_conversation").as_global() -- load lua functions into global
namespace
local factory = require("taskutils_factory") -- load factory module
require("LuaScript.lua") -- load the file that contains Lua scripts to debug

The rest of the debug script can call individual functions in your LuaScript.lua, set breakpoints and
check the output.

For functions that require a taskUtils object, you can use the factory.create_taskutils helper
function provided in the taskutils_factory.lua helper module. This helper module also lets you
specify various input and output parameters, such as tables containing session and task variables,
and tables for storing the result of API calls such as setNextTask. For more information, see the
documentation in taskutils_factory.lua.

NOTE:When you debug ask operations in your Lua scripts, the script sets up all the systems in
your configuration file, but any required IDOL components and Fact Bank databases must be
available.

To debug Eduction validators, you must supply a License Server license key file that contains a
license for Answer Server. Set the EductionLicenseFile parameter to the path to your license
key in the conversation system configuration section of your debugging configuration file. For
example:

[MyConversation]
EductionLicenseFile=C:\IDOL\licensekey.dat

IDOL Answer Server (12.12) Page 154 of 158

https://studio.zerobrane.com/
https://studio.zerobrane.com/


Page 155 of 158IDOL Answer Server (12.12)

Administration Guide
Appendix A: Debug Your Conversation Lua Scripts



Page 156 of 158IDOL Answer Server (12.12)

Glossary

A

ACI (Autonomy Content Infrastructure)
A technology layer that automates
operations on unstructured information for
cross-enterprise applications. ACI enables
an automated and compatible business-to-
business, peer-to-peer infrastructure. The
ACI allows enterprise applications to
understand and process content that exists
in unstructured formats, such as email,
Web pages, Microsoft Office documents,
and IBM Notes.

ACI Server
A server component that runs on the
Autonomy Content Infrastructure (ACI).

action
A request sent to an ACI server.

Agentstore
A specialized configuration of the Content
component. In an Answer Bank system,
the Agentstore stores the reference
questions, question equivalence classes,
and answers.

answer
The response that Answer Server returns.
An answer provides a precise and concise
response to a reference question. Answers
are included as part of a question
equivalence class.

answer bank
An Answer Server system that retrieves
answers from a store of reference
questions and associated answers, such
as an FAQ. The Answer Bank uses a
specially configured IDOL Agentstore

component to store the questions and
answers.

answer system
A configured component of Answer Server
that returns answers to questions. Systems
include Answer Banks and Fact Banks. An
Answer Server can have multiple systems
of each type, and can retrieve answers
from each configured system.

C

Content component
The IDOL component that manages the
data index and performs most of the
search and retrieval operations from the
index.

E

entity
An object, place, or person. In a Fact Bank
system, the entity is the item that the fact is
about, or that the question wants to know
about. For example, in the question "What
is the population of the USA", USA is the
entity.

F

fact bank
An Answer Server system that retrieves
simple factual answers. The Fact Bank
uses Eduction to parse questions, and an
IDOL Content component as a fact store.

fact store
The component of a fact bank that stores
the factual information for retrieval. The
fact store is a specially configured IDOL
Content component.



Administration Guide
Glossary: IDOL - reference question

Page 157 of 158IDOL Answer Server (12.12)

I

IDOL
The Intelligent Data Operating Layer
(IDOL) Server, which integrates
unstructured, semi-structured and
structured information from multiple
repositories through an understanding of
the content. It delivers a real-time
environment in which operations across
applications and content are automated.

L

License Server
License Server enables you to license and
run multiple IDOL solutions. You must
have a License Server on a machine with a
known, static IP address.

P

property
The information associated with a
particular entity. In a Fact Bank system, the
property is the information that the fact
provides, or that the question wants to
know about. For example, in the question
"What is the population of the USA",
population is the property.

Q

qualifier
A term or item that modifies the property in
a question. This might be a date, or an
adjective that affects the meaning of a
question. For example, in the question
"What was the population of the USA in
1850", 1850 is a qualifier to the population
property.

question equivalence class
A set of equivalent questions, which all
resolve to a single reference question.

question equivalence rule
A rule that maps questions to a reference
question (and therefore to a question
equivalence class).

question parser
The component of a Fact Bank system that
parses the incoming questions to extract
entities, properties, and qualifiers. Answer
Server has an embedded IDOL Eduction
moedule to perform question parsing.

question set
The set of questions that can reasonably
be included in the Answer Bank,
regardless of whether they currently have
answers.

R

reference question
The best question that a stored Answer
answers. In a question equivalence class,
all the equivalent questions map to the
reference question.



Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Micro Focus IDOL Answer Server 12.12 Administration Guide

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

IDOL Answer Server (12.12) Page 158 of 158

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Administration Guide (Micro Focus Answer Server 12.12)

	Part I: Get Started With Answer Server
	Chapter 1: Introduction
	Answer Server System Architecture
	Answer Bank
	Fact Bank
	Passage Extractor
	Conversation
	OEM Certification

	Chapter 2: Install and Set Up Answer Server
	Install Answer Server
	External Dependencies

	Install an IDOL Component as a Service on Windows
	Install an IDOL Component as a Service on Linux
	systemd
	System V

	Licenses
	Display License Information
	Configure the License Server Host and Port
	Revoke a Client License
	Troubleshoot License Errors


	Chapter 3: Configure Answer Server
	General Configuration
	Configure Answer Server Systems
	Configure an Answer Bank System
	Configure a Fact Bank System
	Configure a Passage Extractor System
	Configure a Conversation System
	Configure a Remote System

	Language Configuration
	Answer Bank Language Configuration
	Fact Bank and Passage Extractor Language Configuration

	Use Synonyms to Expand Queries
	Update Synonyms

	Configure Client Authorization
	Configure SSL Communication Between Components
	Customize Logging
	Validate the Configuration File

	Chapter 4: Run Answer Server
	Start Answer Server
	Stop Answer Server
	Verify that Answer Server is Running
	GetStatus
	GetLicenseInfo

	Send Actions to Answer Server


	Part II: Configure Answer Server Systems
	Chapter 5: Set Up an Answer Bank System
	Configure the Answer Bank System
	Configure the Answer Bank Agentstore
	Manage an Answer Bank
	Find the JSON Schema for Your Update
	Add a Question
	Find the Likelihood of Existing Answers
	Find the Likely Answers to a Question


	Question Equivalence Rules
	Special Rule Types
	Generate a Question Equivalence Rule
	Test Your Question Equivalence Rule
	Find Questions that Do Not Match the Rule
	Find Questions in Other Classes that Match the Rule
	Test Whether Questions Match a Specified Rule

	Check Spelling for Question Equivalence Rules

	Create a Question Equivalence Class and Add an Answer
	Update a Question Equivalence Class
	Update the Question State
	Automatic Question State Updates
	Update the Question State Manually

	Delete a Question or Question Equivalence Class
	Undelete a Question or Question Equivalence Class
	Modify the Expiration Time

	Check the Status of an Update

	Store Statistics for Your Answer Bank
	Retrieve the Information Stored in an Answer Bank
	GetResources
	GetStats


	Chapter 6: Set Up a Fact Bank System
	Configure the Fact Bank System
	Configure a Fact Bank with a SQL Database Fact Store
	Configure a Fact Bank to Call a Lua Script

	Configure the Fact Store
	Set Up a SQL Backend as Fact Store
	Manage Your Tables
	Facts Table
	Qualifiers Table
	Sources Table
	Security_Types Table
	SQL Fact Store Example

	Use a Lua Scripts to Retrieve Facts
	Create a Fact Retrieval Script


	Create Coding Files
	Example Data
	Generate the Property Code Files
	Generate the Entity Code Files
	Generate the Fact Store Data
	Create a Fact Store Table for a SQL Database


	Set up a SQL Database for Coding Information
	Create a Codings SQL Database
	Property_Codes Table
	Properties Table
	Entity_Codes Table
	Entities Table

	Import Codings into a Database from Coding Files

	Manage the Codings Cache
	Expire Codings Cache Entries Automatically
	Update the Codings Database Manually

	The Question Parser Eduction Grammar
	Processors
	Example Questions
	Modify the Question Parser Eduction Grammar

	Configure Security in Fact Bank
	Configure the Security Types in Answer Server
	Set Up Fact Store Tables for Security


	Chapter 7: Set Up a Passage Extractor System
	Configure the Passage Extractor System
	Change the Passage Extractor Language

	Train Passage Extractor Classifiers
	Create a Training File
	Train a Classifier
	Classifier Behavior File
	Training File Labels

	Entity Extraction in Passage Extractor
	Configure the Passage Extractor Agentstore
	Configure the Agentstore Component
	Index Entity Agents

	Customize Entity Extraction
	The Entity Extraction File Format
	Modify the Entity Extraction File
	Use a Different Entity Extraction File


	Troubleshoot Passage Extractor

	Chapter 8: Set Up a Remote Answer System
	Configure a Remote Answer System
	Use a Remote Answer System

	Chapter 9: Use System Groups
	Configure a System Group
	Ask Questions to a System Group

	Chapter 10: Ask Questions in Answer Server
	Ask a Question
	Use Context in the Ask Action
	Create a Context
	Use a Question Context
	Configure Context Expiration

	Retrieve All Facts About an Entity

	Chapter 11: Set Up a Conversation System
	Configure the Conversation System
	Create a Task Configuration File
	Pre-Task Actions
	Conversation Triggers
	Agent Triggers
	Regular Expressions Triggers
	Simple Triggers
	Task Disambiguation
	Trigger Options

	Task Requirements
	Automatic Requirement Gathering

	Response Validation
	Simple Validation
	Regular Expression Validator
	Eduction Validator
	Lua Validator
	Process Non-Valid Input

	Post-Task Actions
	Task Routing
	Configure Simple Routing
	Configure Conditional Routing
	Use Routing in a Lua Function


	Lua Processing Scripts
	Default Tasks
	Initial Task
	Fallback Task

	Default Messages
	Response for Non-Valid Input
	Response for Disambiguation
	Response for Multiple Answer Disambiguation

	Task Cancellation
	User Cancellation
	System Cancellation

	Task Configuration Example

	Configure the Conversation Agentstore
	Configure the Agentstore Component
	Configure the Conversation System to Use Agentstore
	Index Conversation Trigger Agents

	Check Spelling in Conversations

	Chapter 12: Hold Conversations in Answer Server
	Hold a Conversation
	Create a Conversation Session
	Retrieve Active Conversation Sessions
	Start and Continue a Conversation
	Close a Conversation Session
	Retrieve a Conversation Transcript


	Chapter 13: Use Natural Language Generation in Answer Server
	Configure Natural Language Generation
	Run Natural Language Generation


	Part III: Appendixes
	Appendix A: Debug Your Conversation Lua Scripts

	Glossary
	Send documentation feedback

