IDOL Server

Software Version 12.12

Administration Guide

Document Release Date: June 2022
Software Release Date: June 2022

Administration Guide

Legal notices

© Copyright 2022 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
as may be set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
o Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support

Visit the MySupport portal to access contact information and details about the products, services, and support
that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

View information about all services that Support offers
Submit and track service requests

Contact customer support

Search for knowledge documents of interest

View software vulnerability alerts

Enter into discussions with other software customers
Download software patches

Manage software licenses, downloads, and support contracts

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted to
signin.

IDOL Server (12.12) Page 2 of 611

https://www.microfocus.com/support-and-services/documentation/
https://mysupport.microfocus.com/

Administration Guide

Contents
Part |: Introduction ... 23
Chapter 1: Introduction to IDOL Server ..., 25
IDOL Server Operations 25
A GO S . 25
Al S 26
Automatic Query GuIdance ... 26
Categorization 26
Category Matching ... 26
ChannelS .. 27
Cluster Information 27
Collaboration ... 27
Dynamic ClIUSters .. 27
Dynamic Thesaurus 27
EdUCHON . 27
EXPItiS e . 28
HYperlinKs 28
Email UsSers ... o 28
PrOfilES 28
Search and Retrieval 28
Conceptual Matches 29
Advanced Keyword Search 29
Boolean and Bracketed Boolean Search 29
ExactPhrase Search 29
Field Restrictions 29
FieldText Search 29
FUzzy Search . . 29
Parametric Search ... 30
Proper Names Search 30
Proximity Search .. 30
Soundex Keyword Search ... 30
Synonym Search .. 30
SPEll CRECK 30
SUMMArZatioN ... 31
Taxonomy Generation 31

IDOL Server (12.12) Page 3 of 611

Administration Guide

Automatic Taxonomy Basedon ClusterResult ... 31
Automatic Taxonomy to Category Generation ... 31

View DOCUMENES ... 31
Getting Started ... 32
Send Actions to IDOL Server 32
Display Online Help ... 32
Edit IDOL Configuration Files 34
Modify Configuration ParameterValues 34

Part |I: Store Contentin IDOL Server ..., 37
Chapter 2: Configure Content Storage ... 39
Stored Content 39
Disable Content Storage ... 39
Store Data Files on Multiple Disks 40
Compressthe Data Index 40
Encryptthe Data Index 41
Enable Index Encryplion ... 42
Enable Index Encryption in the Configuration File .. 42

Enable Index Encryption When You Start IDOL Components 43

Check Your Encryption Status ... 43
Encryption Persistence 43
Allocate Files to IDOL Server Databases 44
Enablethe Phrase Index ... 45
Setupthe Field INdeX ProCess ... 46
Index XML Attributes 47
Configure the IDOL Content component for Language andto Encode 48
Optimize INAeX PrOCESS ... 49
INAEX PrOCESS ... o 49
Delayed Synchronization 49
Chapter3:Index Data ... 51
INAEX OVEIVIEW e 51
Process Data before you Index 52
DREADD: Index IDXand XML Files Directly 53
DREADD Parameters 53
DREADD EXamPles ... 56

Specify Field Names ... 56
DREADDDATA: Index Data over a Socket

IDOL Server (12.12) Page 4 of 611

Administration Guide

DREADDDATA Parameters ... 59
Send DatawithaPOSTMethod ... 60
Use the cURL Command-Line Tool ... 60

Use @ SCript L. 60
DREADDDATA EXamples 62
INAEX StOP VOIS . 63
Index Nonalphanumeric Characters 63
Term Separators .. 64
Index Nonalphanumeric Characters for Retrieval .. 65
Hyphenated Terms ... 66
Character Tokenization ... 67
Prevent Duplicate Documents 68
Deduplication Options—KillDuplicates 68
Enable Deduplication for all Index Jobs 70
Limit ReferenceType Fields used for Deduplication ... 71

Use KillDuplicatesChecksumField to Prevent Unnecessary Indexing 72

Use KillDuplicatesPreserveFields to Preserve aField ... 72
Enable Deduplication for Individual Index Jobs 72
Use KeepExisting to Minimize the IndexLoad ... 73
Enable Deduplication for Connector Index Jobs ... 73
Deduplication Constraints 73
Use the Combine Operation 74

Use Deduplication with DIH Reference-Based Indexing 74

Use Deduplication with DIH Field-Based Indexingco i 74

Add Metadatato Documents 74
Check Index Status ... 75
IndexerGetStatus Status Codes ... 77
Tag Documents into CIUSLErS ... 80
Chapterd: Fields ... 83
AboUt Fields 83
Configure @ Field ProCess ... 86
Update Field Configuration 89
Update Fields in the Configuration File 92
Update Field Configuration with an Index Action 93
Update Field Configuration with IDOL Admin 94
INdeX FIeldS ... 94
Configure the Number Index Process 96
NumericDateType Fields 97
NumericType Fields 98

IDOL Server (12.12) Page 5 of 611

Administration Guide

FieldCheckType Fields 99
ReferenceType Fields ... 101
Setup ReferenceType Fields 101
Use KillDuplicates and Combine on ReferenceType Fields 102
Highlight Fields 104
BitFieldTYpe FIelas o 105
Edit Set Information after Indexing 107
Find Documents withina Set 107
Metadata Fields ... 107
Change Field Values ... 109
Chapter 5: Language Support ... 111
IDOL Language Support CoNCepts 111
Run the IDOL Content component in Multiple Languages ... 113
Determine the Languages thatare Enabled 114
Define Language TYPesSo 115
Associate Language Types with DOCUMENTS 117
Documents that Contain a Language Type Field .. 117
Documents that Contain Field Data that can Identify Language 118
Add LanguageType Fields to Documents ... 120
Define a Default Language Type ... 120
Define a General LangQuage ... 121
Enable Automatic Language Detection ... 122
Specify the Language Type of a Query 123
Convert Results to a Specific ENcoding ... 123
TeXtQUETIES ... 124
Text-Free QUETIES 124
Return Documents in Multiple Languages ... 124
International Stop List 125
Return Documents ina SpecificLanguage ... 126
Create a Custom Stem Fileforalanguage ... 127
Decompose Compound WOIAS 128
Enable Transliteration ... 128
Enable Generic Transliteration 128
Enable Transliteration for Individual Languages ... 129
Chapter 6: Set Up Document Tracking ... 133
Set up Document Tracking withan SQLBack End 133
Set up Document Tracking with PostgreSQL ... 133
Set up PostgreSQL to Store Tracking Information .. 134

IDOL Server (12.12) Page 6 of 611

Administration Guide

Installthe SQL Database ... 134
Setupthe Databaseand Table ... 134
Database Access Permissions 137
Setupthe IDOL HOSt Machines ... 138

Install the SQL Driver and Manager for PostgreSQL 138

Check the Installed Drivers ... 138
Configure IDOL Components ... 139

Set up Document Tracking with Microsoft SQL Server ... 140
Set up Microsoft SQL Server to Store Tracking Information 140
Configuration Example for Microsoft SQL Server ... 140
Troubleshoot Connection and Authentication Problems 141
Initialization Commands ... 141
Setupthe IDOL HOSt MacChines 143

Install the SQL Driver and Manager for Microsoft SQL Server 143

Check the Installed Drivers 144
Configure IDOL COMPONENTSo 145

Verify the Setup ... 146
Check IDOL Configuration ... 146

Index Content . . 146

Query Your Document 147

Clean ResuUIts 147
Setup Document TrackingwithaLogBack End 147
Configure Event Storage 149
Document Tracking Event Definitions ... 149
Part lIl: IDOL Server Operations ..., 151
Chapter 7: AQeNtS . L 153
ADOUL AGENES 153
ManipUlate AGENTS . 153
Create an AgeNt .. 153
Edit an AQeNt 154
Retrain an Agent L 154
CopY an AQeNt . 154
View Agent Details 155
Delete an Agent . 155
Query With AQENS 155
Modify Document References foran Agent ... 156
Collaboration and Expertise with Agents 156

IDOL Server (12.12) Page 7 of 611

Administration Guide

Collaboration 156
EXPEItiSE .. 156
Chapter 8: Categorization ... 159
Introduction to Categorization 159
Create a Hierarchical Category Structure ... 160
Create Categories from Scratch 160
Create Categories from Clusters 161
Create Categories from Legacy TopiC Sets ... 161
Create Categories by Copying Categories ... 162
Create Categories when you Generate @ Taxonomycocooviiiiiiiiii 162
Create Categories from XML 162
Create Categories from Partitions 162
Create Categories for Sentiment Analysis ... 163
Train CategOries ..o 163
Retrain Categories 164
MOVE CategOrieS ... 164
View and Administer Categories 164
View Category Details ... 165
View Category Hierarchy Details ... 165
View Category Terms and Weights 165
View Category Training ... 165
Change Category Fields 166
Reset Category Fields 166
Change Category Term Weights 166
Remove Category Term Weights 167
Replace Categories ... 167
Activate or Deactivate Categories 167
Build Categories 168
Delete Categories ... 168
Delete Category Training 168
Export Categories to XML 168
Synchronize the Category Index with Stored Categories ... 169
Categorize Data 169
SUGESt CategOrieS ... 169
Suggest Categories for DOCUMENTS 169
Suggest Categories for Text 170
Suggest Categories for Categories 170
Suggest Categories with Confidence Values 170
Match Categories .. . 170

IDOL Server (12.12) Page 8 of 611

Administration Guide

Create TaXONOMIES o e 171
Generate Taxonomies Automatically ... 171
Generate a Taxonomy from CIUStErs ... 172
Generate a Taxonomy from Query Results 172
Schedule Taxonomy Generation ... 172
Create Named TaxonOmi€s ... 172
Categorization Example 172
Chapter 9: Document Classification ... 175
Introduction to Document Classification 175
Use Document Classification ... 175
Choose Feature Fields ... 175
Create a Classifier 177
Createand Train Classes ... 177
Choose Training Documents for Classes 178
Train the Classifier ... 178
Classify DOCUMENTS ... 179
View and Administer Classifiers 180
Listand View Classifiers ... 180
Retraina Class 181
Delete aClass ... 181
Delete a Classifier 181
Chapter 10: Binary Categories ... 183
About Binary Categories 183
Create and Administer Binary Categories 183
Create aBinary Category 183
Train @ Binary Category 184
Delete Training From a Binary Category ... 184
Change Binary Category Details 184
View Binary Category Details ... 184
List Binary Categories 185
Delete a Binary Category 185
Query with Binary Categories 185
Binary Category Example 186
Chapter 11: AgentBoolean Agents and Categories .. 187
AgentBoolean Agents and Categories ... 187
EXaMIDIES o 188
Match Specific CONCEPLSo 188

IDOL Server (12.12) Page 9 of 611

Administration Guide

Use Field RestriCtions ... 188

Use Term Occurrence Restrictions 188
Categorize Documents before Indexing ... 189

Alert Users to Documents that Match TheirAgents .. 189
Configure IDOL Server for Text Parse QUENES ... 189
Create AgentBoolean Agents and Categories ... 190
Perform AgentBoolean QUENIES ... 191
Optimize AgentBoolean MatChing 193
Configure AgentBoolean Cache Fields 193
Index a DUMMY ID X 193
Determine Whether a Dummy IDXis Required ... 193
Create and Indexthe Dummy IDX 194
Customize Agent CoNteNt 194
Use aMinimal Listof Rare Terms 195

Use AlwaysMatchType Fields 196
Chapter 12: Cluster Information ... 199
Generate SNapPShOtS 199
Generate Spectrograph Data ... 201
Generate WhatsNew and WhatsHot Information 202
WhatsNew Information 203
WhatsHot Information ... 203
Generate a Cluster Map after You Cluster 203
Configure CIUSters .. . 204
Change the Numberand Size of Clusters ... 204
BUild Seeds 204
Group Seeds into CIUSTEIS 205
Configuration Parameters 205
SetUP SChedUIES 208
Partition Documents into Clusters 210

Chapter 13: Profiles ... 211
ADOUL Profiles 211
Profile @ User 211

Create an Interest Profile foraUser 211
Create an Expertise Profile fora User ... 212
Manipulate Profiles 213
Edita Profile ... 213
Query with a Profile 213
View Profile Details 213

IDOL Server (12.12) Page 10 of 611

Administration Guide

Delete a Profile ... 213
Collaboration and Expertise with Profiles ... 214
Collaboration ... 214

E XD S . 214
Part IV: Results ... 215
Chapter 14: Searchand Retrieve ..., 217
A ONS 217
Asynchronous ACtiONS 218
Configure Asynchronous ACHIONS oo 219

Send Asynchronous ACtions 219
Retrieve Results for Asynchronous Actions ... 219
Conceptual MatChes 220
Types of MatChes 220
Example QUEeries ... 221
Agentor Category QUEIY ... 221
Profile QUETY 222

T Xt QUETY 222
SUGESt QUETY ..o 222
SuggestOnText QUErY 222
KeYWOId ST .. 222
Keyword Occurrence Search 223
Exact Keyword SearCh 223
Case-Sensitive Exact Keyword Search ... 224
Paragraph and Sentence Keyword Search 224
Keyword Search EXamples ... 225
Phrase SearCh 228
Phrase Occurrence Search ... 229
Default Phrase Search ... 229
Exact Phrase Search 229
Case-Sensitive Exact Phrase Search 230
Phrase Search EXamples ... 230
Boolean and Proximity Search 233
Boolean Search Operators 233
Proximity Search Operators 235
WHEN and NOTWHEN Search Operators ..o 238
Specify the Number of Levels fromthe XML Root .. 241
Precedence of Search Operators ... 242

IDOL Server (12.12) Page 11 of 611

Administration Guide

Simple Field Restricted Search ... 242
FieldText Search 243
FieldText Query GUIdEliNeS 244
Field Specifiers for Common Restrictions ... 245
Fields whose Value Exactly Matches One or More Strings 246

Fields that Containa Number ... 246
FieldsthatContainaDate 250

Fields whose Value Matches Wildcard Strings ... 253

Field Specifiers for Advanced Restrictions ... 254
Fields whose Value Falls within a Specific AlphabeticalRange 255

Fields with a Nonzero Value for Bitwise AND 256

Fields that Contain BitFieldType Information ... 259

Fields whose Values are Boolean Agents ..., 260

Fields that are within a Specified Distance from a Specified Point 261

Fields that Contain Coordinates within a Specified Area 262

Fields that Contain a Geospatial RegionorPoint .. 262

Fields that Do Not Existor ContainNo Value ... 262
Specific Fields, Irrespective of theirValue 263
Fields whose Values are Similar to a Specified String .. 263

At Least One Field Instance Matches a Specified String or Number 264

All Field Instances Match a Specified Stringor Number ... 265
Fields that Contain a Specified ReferenceMemoryMappedType Field 267
Fields that Do Not Contain a SpecifiedValue .. 267

Fields that Contain a Specified String ... 271

Fields whose Values Match Specific TermsorPhrases 273

Field Specifiers to Bias Result SCOres ... 277
Field Specifier for Linked Queries 278
FUZZy SearCh . . 278
Fuzzy Query Syntax 278
Adjust the Tolerance Level of a Fuzzy Search 279
Parametric Search ... 279
Configure the IDOL Content component for Parametric Fields 280
Perform a Parametric Search 281
GetTagValUes ... 281
GetQuUEryTagValUes ... 281
Proper Names SearCh 282
Enable Proper Names SEarChes ... 282
Example Proper Name Searches 285
Soundex Keyword Search 286
Enable Soundex Keyword SearChes ... 286

IDOL Server (12.12) Page 12 of 611

Administration Guide

Perform Soundex Keyword Searches 287
SYNONYIM S aAICN . 287
The SYNONYM Operator ... 288
Enable Synonym Lists 288
Create a SynonymM File ... 289
Configure the IDOL Content component to Use a Synonym File 290
Perform Synonym Searches 291
Update Synonym Files 291
Setup a Synonym Server ... 291
Install the Synonym Server 292
Create and Index Synonym DOCUMENtS 292
Perform Synonym Searches with a Synonym Server ... 293
ANalytics FUNCHONS ... 294
Create Metafields ... 294
Use Metafields ... 297
el Xt 297

SOOIt 298
PrintFields ... 298
GetQueryTagValues FieldName ... 298
AgentBoolean 299
LINKQUETIES ... o e 300
Configure the IDOL Content component for Linked Queries 300
Send Linked QUENIES ... 301

EX ML 302
Combine Different Search Types ... 303
Synonym and Boolean SearChes ... 303
Synonym Search and Field Restrictions ... 303
Soundex and Proper Names Searches ... 303
Soundex and Boolean Searches 303
Soundex and Proximity SearChes 304
Soundex Search and Field Restrictions 304
Exact Phrase and Boolean Searches 304
Exact Phrase and Proximity Searches 304
Exact Phrase Search and Field Restrictions 305
Boolean and Proximity SearChes 305
Boolean Search and Field Restrictions 305
Proximity Searches and Field Restrictions 305
Wildcards in QUErIES 306
Wildcards in Query Text ... 306
Wildcards in FieldText Queries 307

IDOL Server (12.12) Page 13 of 611

Administration Guide

Matches for One or More Strings 308
Wildcard Searches in Japanese, Chinese, Korean,and Thai 309
Query for Nonalphanumeric Characters 309
T Xt 309
FieldT eXt .. 310
EXaMIPIES 310
Optimize Retrieval of Tagged Documents 311
QUETY SYNIAXES ..o 311
Chapter 15: Customize Results ... 315
Change the ResUltS DiSPIaY ... 315
Setthe Number of Results to Display ... 315
Change Result Sorting (Display Order) ... 315
Sort Options for Query, Suggest, and SuggestOnText ... 316

Sort for GetTagValues and GetQueryTagValues 319

Batch (Page) Results 320
Change the Field Display ... 320
Returned Fields 320
Display Additional Metafields ... 321
Display Document Fields 321
Configure IDOL Server to Always Display Specific Fields 321
Display Specific Fields for Individual Queries ... 322

Use XSLT Templates to Change Output Format ... 324
Enable the XSLT Templates ... 325
Apply XSLT Templates to ACtIONS 325
Generate SUMMANIES 326
TyPeS Of SUMIMANIES 326
Return Summaries with Query Results ... 327
Summarize Textor Documents 327
Cluster ResUItS 328
Generate HyperlinKs ... 329
About HyperlinKs ... 329
Implement Hyperlinks 330
Provide Spelling Correction 330
How Spelling Correction WOTKS ... 330
Spelling Correction File 331
Automatic Query GUIJaNCe ... 332
About Automatic Query Guidance 332
Enable Automatic Query GUIdanCe ... 333
About the QuerySummary Parameter 333

IDOL Server (12.12) Page 14 of 611

Administration Guide

Generate Query Summaries (Dynamic Thesaurus) ... 335
About QUery SUMMaANIesl 335
Configure the IDOL Content component to Generate Query Summaries 336
Perform an Action with the QuerySummary Parameter ... 337

Generate Dynamic CIUSIErS 337
Configure the IDOL Content component to Enable Dynamic Clusters 338
Perform an Action with the QuerySummary Parameter ... 339
Display Cluster Information ... 340
Display the Number of Documents a Dynamic Cluster Contains 341
Createa ClusterMap ... 342

Chapter 16: Manipulate ResultRelevance ... 345

BOOStREIEVANCE ... 345

Use a Field Processto Boost Relevance ... 345

Use the BIAS Field Specifier to Boost Relevance ... 347
BIAS D AT E 349
BIASDISTCARTESIAN . 350
BIASDISTSPHERICAL ... 351

Use Multipliers to Boost Relevance ... 352

Use the AutnRankType Fieldto BoostRelevance ... 353

Chapter 17: Manipulate the Results Set 355

Combine Parameter ... 355
SIMIPIE 355
FieldCheck ... 356
ReferenceTypeFields ... 356
MURIPle OptiONS .o 357
EXCOP I ONS 357

FieldCheck Parameter 358

Predict Parameter ... 358

Store and Retrieve the Result State 358
Storethe ResultState ... 359
Query withthe State ToKen ... 359
Use a State Token with Index Actions 360
EXpire State TOKENS 361

Chapter 18: View Documents ... 363

About the IDOL View COMPONENT 363

Configure the IDOL View component 363
Enable View to Access Documents ... 364

IDOL Server (12.12) Page 15 of 611

Administration Guide

Configure View to Block Particular URLs or Hostscoo, 364
Configure View to Use a Proxy Server ... 366
Configure View to Use a Distributed Connector or IDOL NiFilngest 366
Configure Universal Viewing 367
Configure View to Highlight Terms ... 369
Configure View to Embed Images ... 370
Configure View to Use Original URLSs 370
Configure View to Retrieve RMS Protected Files .. 371
Configurethe View Cache 372
Configure the Internal View Cache ... 372
Use a Memcached Server View Cache 372
UseaShared View Cache 373
Encryptthe View Server Cache 374
Configure View to Redact Documents ... 374
Distribute View Servers 375
View DOCUMENES ... 375
View the Document Directly inthe Web Browser ... 376
Use IDOL Admin to View Documents ... 376
View the Latest Version of aDocument 377
View an Uploaded Document 377
Highlight Terms o 378
Highlight Boolean EXpressions 378
Highlight Expressions in DifferentLanguages ... 379
Highlight Multiple Link Terms ... 379
Specify Document Processing ... 379
View Document Information ... 380
VW T MDA S 380
Apply a Templatetoa Document 381
Apply a Default Template to AllDocuments ... 381
Modify the HTML Output for Documents 382
Modify the HTML Output for PDF Files 382
Hide Graphicso 384
Show Revised Content and Revision Information ... 384
FormatRevised Content ... 384
Show Hidden Content 386
Hidden Content in Microsoft Documents 386
Part V: Administration and Maintenance ... 389

IDOL Server (12.12) Page 16 of 611

Administration Guide

Chapter 19: Setup Security ... 391
Setup Security on Documents ... 391
Configure Client AUthOriZzation 394
Setup an SSL CoNNECHION 395

Set up SSL between IDOL cOMPONENtSo 397
Set up SSL for Shared Communications 399
Setup SSLTorMailer 399
Set up SSL for the IDOL View COmMpoNeNnt ... 400
Set up SSL for Communications to Remote Servers ... 400
Log SSL Settingso 400
CheCk SSL Status ... 401

Chapter 20: Add Usersto IDOL Server ... 403

Create IDOL USEISo 403
Flat Structure ... 403
Hierarchical Structure 404
Create Users in IDOL AdMin ... 404
Manage Roles in IDOL AdMin ... 405

Integrate with a Third-Party User Structure 405

Implement User ACCOUNT SECUNILY 406

Create User PIN Codes ..., 406

Add aPIN Codefora User ... 406
Authenticate Users with PIN Codes 407

Set User Name and Password Restrictions 408
Enable Password and PIN Code Time Restrictions .. 408

Set Maximum Login Attempts 409

Lock and Unlock User ACCOUNTS 410
Chapter 21: Mail ... 413
Automatically Email Agentand Channel Results 413
Send Custom Emails 415
Send EmailsinBatches 416
Mailer TemPlates ... 417
Edit Templates ... 417
Chapter 22: Administer IDOL Server ... 421
Enable Configuration Changes 421
Delete and Restore Documents ... 422
Delete Documents by Reference ... 422

IDOL Server (12.12) Page 17 of 611

Administration Guide

Delete Documents and Ranges of Documents ... 423
Delete Documents in IDOL AAMIN ... 423
Restore Deleted Documents ... 424
Locate Duplicate DoCUMENtS 425
Create and Delete Databases 426
CreateaNewDatabase ... 426
Send a DRECREATEDBASE Index Action ... 426

Add a Database to the IDOL Content component Configuration File 427
Create anew database in IDOLAdmIN 428
Modify a Database Configuration ... 428
Delete a Database and Allits Documents 429
Delete a Database and All its Documents by Sending an Action 429
Delete a Database and All its Documents by using IDOL Admin 429
Delete All Documents froma Database 430
Delete All Documents from a Database by Sending an Action 430
Delete All Documents from a Database by using IDOL Admin 430
EXPIre DOCUM BN S . 431
Set up a Field Process for Expiration Dates ... 431
Expire Immediately 432
Expire at Regular Intervals 432
Change Document Metadata ... 433
Change Document Field Values 434
Change Document Field Values by Running an Index Action 435
Change Document Field Values by Using IDOL Admin ... 438
Edit the Spelling Correction Cache 442
Use a Custom Term Weight File ... 443
Compactthe Data INdeX ... 444
Compact the Data Index Immediately 445
Compact the Data Index at RegularIntervals 446
Initialize the Data Index ... 446
Validate the Data Index ... 447
Validate the Data Index Immediately ... 447
Validate Subindexes On Startup ... 449
Validate the Data Index Automatically 449
Repair an Index After Validation Fails ... 449
Regenerate with a ServerRestart 449
Regenerate with an Index Action ... 450
Regenerate with IDOL Admin ... 451
Chapter 23: Back up IDOL SEerver ... 453

IDOL Server (12.12) Page 18 of 611

Administration Guide

Back Up CoN et 453
Back up the Entire IDOL Content component Data Index 453
Back up the Data Index Immediately ... 454

Back up the Data Index at RegularIntervals ... 454

Back up the Data Index Automatically 456

Back up the Data Index Dynamically ... 456
Export IDX Documents from the IDOL Contentcomponent 457
Export XML Documents from the IDOL Content component 459
Use IDOL Admin to Export Indexed Documents 460
Archive INdex ACHIONS 462
Restore Content 463
Returna Listof Backup Files 463
Restore froma Backup File ... 463
Restoretoa Time 464
Restore Exported Content 465
Back up Categories, Taxonomies, and ClusterJobs 465
Restore Categories, Taxonomies, and ClusterJobs ... 466
Back up Users, Roles, Agents, and Profiles ... 467
Restore Users, Roles, Agents, and Profiles 468
Export Users, Roles, Agents, and Profiles 468
Import Users, Roles, Agents, and Profiles ... 469
Back up Other IDOL ComponeNnts ... 470
Chapter 24: Troubleshoot IDOL Server ... 471
IDOL Server Log Files ... o 471
Customize Logging ... 473
Create a Diagnostics PacKage 474
IDOL StatisStics Server 475
Part VI: ApPendiXes ... 477
Appendix A: IDOL Server ConfigurationFile ... 479
IDOL Server Configuration File ... 479
Modify Configuration ParameterValues 479
Include an External Configuration File 480
Include the Whole External Configuration File ... 481
Include Sections of an External ConfigurationFile .. 481
Include Parameters from an External ConfigurationFile 482
Merge a Section from an External Configuration File ... 482

IDOL Server (12.12) Page 19 of 611

Administration Guide

Configuration File Sections 483
[ACIENCIyplion] SeCHON ... 484
[AGENE] SOt ON . 484
[AgentDRE] SeCtion 485
[AnalysisSchedules] SECHioN 485
[AuthorizationRoles] SeCtion 486
[CatDRE] SECHON ... 486
[Category] SECHON . . 487
[CIUStEr] S CtON . 487
[ComMmMUNItY] SECHON . 487
[DAHENGINES] SECHON ... 487
[DAHENGINeN] SecCtion 488
[Databases] SECHONo . 489
[DataDRE] SeCtON .. o 489
[DIHENGINES] SeCtioN 489
[DIHENGINEN] SECHON ... 490
[DistributionIDOLServers] Section ... 490
[DistributionSettings] SeCtion 491
[DocumentTracking] SeCtioN 491
[DRE] SECHON ... 492
[FieldProcessing] SECON 492
[FIUShLOCK] SECHON . 494
[IDOLSErverN] SECON 495
[IndexCache] SECtioN 495
[IndexNotify] Section 496
[IndexQueue] Section 496
[INdeXServer] SECHON 496
[LanguageTypes] Section 496
[LICENSE] SO ON .. 498
[Logging] SeCtON 498
[MemoryCache] Section 499
[MyLOCKSEIrVEr] SECHONS ... 499
[MyProperty] SeCtions 500
[Paths] SECHON ... 502
[Profile] SeCHON . . 502
[ProfileNamedAreas] SECHON 502
[ROIE] S ON . 503
[Schedule] SeCtioN 503
[SectionBreaking] Section 503
[SECUNItY] SO ION .. 503

IDOL Server (12.12) Page 20 of 611

Administration Guide

[SerVer] SECtON . 504
[SIVICE] SO ION .. 505
[SSLOPtionN] SeCtion ... 505
[Summary] Section ... 506
[SYNONYM] SECHON .. 506
[Taxonomy] SECHON .. 506
[TermCache] SECHON 507

[USEBI] SO 0N . 507
[UserCustom] SeCtion 507
[UserSecurity] SECHON 508
[UserSecurityFields] SeCtion ... 509
[Viewing] Section 510
Appendix B: Password Encryption ... 513
ENCrypt PassWOrdS ..o 513
Create aKey File 513
ENCrypt @ PassWord 513
Decrypta Password 515
Appendix C: Decrypt Security Info Strings ... 517
Decrypt AES Securitylnfo Strings ... 517
Appendix D: Languages and Language Files ... 519
Supported Languages and Common ENCOdings ... 519
Supported ENCOTINGSo 565
TermSize Parameter ..l 567
Per-Language Sentence-Breaking Files ... 568
Stop Word Lists for Supported Languages ... 570
Appendix E: Manually Create IDXFiles ... 571
DX FOrmMat 571
Section a DoCUMENt .. . 573
Appendix F: Category XML Format ... 575
INtrOdUCH ON . 575
XML FOrmMat o 575
Example Category XML Files ... o 583
Appendix G: GetStatus Action Response ... 585

IDOL Server (12.12) Page 21 of 611

Administration Guide

GetStatus ACtiON ... 585

IDOL Server GetStatus RESPONSE 586
Example IDOL Server GetStatus ReSpPONSe 594
Appendix H: Error Codes ... 599
Community Error COOES ... o 599
GlOSSAIY ..o 601
Send documentationfeedback ... 611

Page 22 of 611

IDOL Server (12.12)

Part I: Introduction

This section provides a brief introduction to Micro Focus IDOL Server.
For more details on installing and running IDOL Server, refer to the IDOL Getting Started Guide.

¢ Introduction to IDOL Server

IDOL Server (12.12) Page 23 of 611

Administration Guide
Part I: Introduction

IDOL Server (12.12) Page 24 of 611

Chapter 1: Introduction to IDOL Server

The Micro Focus Intelligent Data Operating Layer (IDOL) Server integrates unstructured, semi-
structured, and structured information from multiple repositories through an understanding of the
content. It delivers a real-time environment to automate operations across applications and content,
removing all the manual processes involved in getting information to the right people at the right time.

® IDOL Server Operations 25
® Getting Started 32

IDOL Server Operations

IDOL Server can perform the following intelligent operations across structured, semistructured, and
unstructured data.

Agents Expertise

Alerts Hyperlinks

Automatic Query Guidance Mailing
Categorization Profiles

Channels Retrieval

Cluster Data Spelling Correction
Collaboration Summarization
Dynamic Clusters Taxonomy Generation
Dynamic Thesaurus Viewing

Eduction

NOTE: Your license determines which of these operations your IDOL Server installation can
perform.

Agents

Users can create agents in IDOL Server to find and monitor information that is relevant to their
interests. The agents collect this information from a configurable list of Internet and intranet sites,
news feeds, chat streams, and internal repositories.

You can create agents in a user-friendly way using:

IDOL Server (12.12) Page 25 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

¢ Natural language descriptions
¢ Example content (point and click)

¢ Legacy keyword or Boolean expressions

IDOL Server provides the conceptual information that it needs to create agents. The server accepts a
piece of content (training text, a document, or a set of documents) or reference (identifier), and
returns an encoded representation of the concepts. This representation includes the specific
underlying patterns of terms and associated probabilistic ratings for each concept.

Users can retrain their agents by submitting a new piece of content (training text, a document, or a
set of documents). The server uses the new concepts to adapt the agent.

Alerts

IDOL Server analyzes data when it receives new documents, and compares the concepts in
documents with user agents. If new data matches a user agent, it immediately notifies the user by
email or a third-party system (for example by SMS or a pager).

Automatic Query Guidance

IDOL Server finds the most salient terms and phrases in query results, and automatically clusters
these terms and phrases. It uses the clustered phrases to provide a hierarchical set of queries that
guide users to the result area that they are looking for.

Categorization

IDOL Server can automatically categorize data. IDOL categorization allows you to derive categories
from the concepts found in unstructured text. This process ensures that IDOL Server accurately
classifies all data in the correct context. IDOL categorization is a scalable solution capable of
handling high volumes of information accurately and consistently.

IDOL categorization does not rely on rigid rule-based category definitions such as legacy keyword
and Boolean operators. Instead, IDOL infrastructure uses a pattern matching process based on
concepts. It can then automatically tag data sets, route content, or alert users to relevant information
pertinent to the user profile.

IDOL hooks into various repositories and data formats respecting all security and access
entitlements, delivering complete reliability.

Category Matching

IDOL Server accepts a category or piece of content and returns categories ranked by conceptual
similarity. This ranking determines the most appropriate categories for the piece of content, so that
IDOL Server can subsequently tag, route, or file the content accordingly.

IDOL Server (12.12) Page 26 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Channels

IDOL Server can automatically provide users with a set of hierarchical channels with highly relevant
information pertinent to the respective channel. Channels are similar to agents, aggregating
information that is relevant to the channel concept. Usually, administrators set up channels that are
available to all users.

Real-time information dynamically updates in the channels. This process eliminates the requirement
for manual intervention or pretagging, and minimizes the effort required to maintain it. Moreover, the
administrator can add and remove channels on the fly, without recategorizing all the data.

Cluster Information

IDOL Server automatically clusters information. Clustering takes a large repository of unstructured
data, agents, or profiles and automatically partitions the data to cluster similar information together.
Each cluster represents a concept area in the knowledge base, and contains a set of items with
common properties.

Collaboration

IDOL Server automatically matches users with common explicit interest agents or similar implicit
profiles. This information creates virtual expert knowledge groups.

Dynamic Clusters

When it processes queries, IDOL Server automatically clusters the query results, and then clusters
the first set of clusters to produce subclusters. This process allows you to generate a hierarchy of
clusters that allows users to navigate quickly to their area of interest.

Dynamic Thesaurus

When it processes queries, IDOL Server can automatically suggest alternative queries, allowing
users to quickly produce a variety of relevant result sets.

Eduction

Eduction is a tool that you can use to extract an entity (a word, phrase, or block of information) from
text, based on a pattern you define. The pattern can be a dictionary of names such as people or
places. The pattern can also describe what the sequence of text looks like without listing it explicitly,
for example, a telephone number. The entities are contained inside grammar files.

When you use Eduction with IDOL Server, Eduction extracts the entities while the document is
indexed and adds them into fields for easy retrieval.

The Eduction capability of IDOL Server is described in the Eduction User and Programming Guide.

IDOL Server (12.12) Page 27 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Expertise

IDOL Server accepts a natural language or Boolean search string and returns users who own
matching agents or profiles. This process allows instant identification of experts in a subject,
eliminating time-consuming searches for specialists, and unnecessary researching of subjects for
which expert knowledge is already available.

Hyperlinks

You can automatically generate hyperlinks in real time. These link to contextually similar content, for
example to recommend related articles, documents, affinity products or services, or media content
that relates to textual content.

IDOL Server automatically inserts these links when it retrieves the document. This process means
that new documents can reference older documents, and that archived documents can link to the
latest news or material on the subject.

Email Users

IDOL Server matches the agents and profiles against its document content at regular intervals, and
automatically notifies users of documents that match their agents or profiles by emailing them.

Profiles

IDOL Server automatically creates interest and expertise profiles for users, in real time.

You can create interest profiles by tracking the content that a user views and extracting a conceptual
understanding of it. IDOL Server then uses this understanding to keep user interest profiles up to
date. You can use interest profiles to:

¢ Target information to users.
¢ Recommend content to users.
+ Alert users to the existence of content.

¢ Put users in touch with other users who have similar interests.

You can create expertise profiles by tracking the content that a user creates and extracting a
conceptual understanding of it. IDOL Server uses this understanding to keep user expertise profiles
up to date. You can use expertise profiles to trace users who are experts in particular subject areas.

Search and Retrieval

IDOL Server offers a range of retrieval methods, from simple legacy keyword search to sophisticated
conceptual querying.

IDOL Server (12.12) Page 28 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Conceptual Matches

IDOL Server accepts a piece of content (a sentence, paragraph, or page of text, the body of an email,
a record containing human-readable information, or the derived contextual information of an audio or
speech snippet) or reference (identifier) as input and returns references to conceptually related
documents ranked by relevance, or contextual distance. IDOL Server uses this process to generate
automatic hyperlinks between pieces of content.

Advanced Keyword Search

IDOL Server matches any term or phrase that appears in quotation marks in its exact form before
stemming.

Boolean and Bracketed Boolean Search

IDOL Server accepts simple or complex Boolean and bracketed Boolean expressions and returns a
list of matching documents. You can form Boolean expressions using a set of Boolean and proximity
operators.

AND XOR/EOR WNEAR
NOT NEAR BEFORE
OR DNEAR AFTER

Exact Phrase Search

IDOL Server provides the ability to search for exact phrases by putting quotation marks around a
string of words. For example: “world market”.

Field Restrictions

Simple field restrictions in query text allow you to restrict results to documents that contain specific
values in specific fields.

FieldText Search

FieldText searches provide a wide range of field specifiers that you can use to query fields, restrict
query results, or bias query result scores.

Fuzzy Search

If a search string is not quite accurate (for example, if it contains spelling mistakes), a fuzzy query
returns results that contain words that are similar to the entered string.

IDOL Server (12.12) Page 29 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Parametric Search

IDOL Server supports real-time navigation across multiple taxonomies with no additional manual
configuration necessary, including full access to intersections of diverse taxonomy definitions.

From among the complete set of field names in the corpus, you can define a subset of fields in the
server configuration as parametric fields.

After indexing, IDOL Server creates and stores a structure that contains information about all
tag/value pairs that occur in defined parametric fields. A tag/value pair is a particular textual or
numerical value paired with a specific field name.

You can then query IDOL Server with the name of a parametric field or fields. IDOL Server returns a
list of all textual values that appear in the specified field or fields in all the documents stored in the
server. This underlying operation can power a user interface that enables users to refine the scope of
a query from the complete corpus to a subset of highly relevant documents.

Advanced Parametric Refinement provides an improved user experience coupled with increased
productivity using an advanced real-time information discovery process.

Proper Names Search

IDOL Server recognizes names and treats them as a unit.

Proximity Search

IDOL Server returns documents in which specific terms occur within a specified proximity with a
higher weighting.

Soundex Keyword Search

If the spelling of a keyword is not quite accurate but is phonetically correct, a Soundex keyword
search returns results that contain the keyword and phonetically similar keywords. This process uses
a configurable Soundex algorithm.

Synonym Search

A synonym query returns results that are conceptually similar to the query terms or conceptually
similar to the synonyms that are available for the query terms.

Spell Check

IDOL Server can automatically spell check the query text it receives and suggest correct spelling for
terms that its dictionary does not contain.

IDOL Server (12.12) Page 30 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Summarization

IDOL Server accepts a piece of content and returns a summary of the information. IDOL Server can
generate different types of summary.

¢ Conceptual Summaries. Conceptual summaries contain the most salient concepts of the
content.

¢ Contextual Summaries. Contextual summaries relate to the context of the original query.
They provide the most applicable dynamic summary in the results of a particular query.

¢ Quick Summaries. Quick summaries include a few sentences of the result documents.

Taxonomy Generation

Automatic taxonomy generation can automatically understand and create deep hierarchical
contextual taxonomies of information. You can use clustering, or any other conceptual operation, as
a seed for the process.

The resulting taxonomy can:
¢ Provide insight into specific areas of the information.
¢ Provide an overall information landscape.

¢ Act as training material for automatic categorization, which then places information into a
formally dictated and controlled category hierarchy.

Automatic Taxonomy Based on Cluster Result

IDOL Server can use cluster results to build taxonomies automatically and in real time.

Automatic Taxonomy to Category Generation

After the automatic taxonomy generation process has taken place, IDOL Server contextually
understands the type of data it is dealing with. It uses this understanding to generate a deep
hierarchical contextual taxonomy, known as an information landscape. Much like the automatic
cluster to category generation, this feature uses the taxonomy results to create categories.

View Documents

IDOL Server uses IDOL KeyView filters to convert documents into HTML format for viewing in a Web
browser. It can convert documents that it retrieves from a local directory, intranet, or Internet source.
It can also retrieve the document in its original format.

IDOL Server (12.12) Page 31 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Getting Started

The IDOL Getting Started Guide contains information about how to install and run IDOL Server. It
also provides an overview of the different IDOL setups that you can use.

You perform IDOL Server operations by sending AC/ actions to IDOL Server from your Web browser.
You configure IDOL Server by modifying the appropriate configuration file.

A list of all available ACI actions, configuration parameters, index actions, and service actions, is
available in the IDOL Server Reference.

Send Actions to IDOL Server

IDOL Server actions are HTTP requests, which you can send, for example, from your web browser.
The general syntax of these actions is:

http://host:port/action=action¶meters

where:
host is the IP address or name of the machine where IDOL Server is installed.
port is the IDOL Server ACI port. The ACI port is specified by the Port parameter in the
[Server] section of the IDOL Server configuration file. For more information about
the Port parameter, see the IDOL Server Reference.
action is the name of the action you want to run.

parameters are the required and optional parameters for the action.
NOTE: Separate individual parameters with an ampersand (&). Separate parameter names from
values with an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the IDOL Server Reference.

TIP: As an alternative to sending ACI actions directly, you can run any IDOL action from the IDOL
Admin interface. For more information, refer to the IDOL Admin User Guide.

Display Online Help

The IDOL Server installers includes a help data file (help.dat) for each IDOL component that you can
install. For the IDOL Server components, each help package includes IDOL Expert, the IDOL Server
Administration Guide, and the appropriate component Reference (for example the IDOL Content
component Reference). In a unified IDOL Server installation, it includes the full IDOL Server
Reference.

You can display the help by sending an action from your Web browser.

IDOL Server (12.12) Page 32 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

NOTE: For an IDOL component to display help, the help data file (help.dat) must be available in
the same directory as the service instance.

To display help for an IDOL component
1. Start the IDOL component.
2. Send the following action from your Web browser:
http://IDOLhost:port/action=Help

where:

IDOLhost is the IP address or name of the machine on which the component is installed.

port is the ACI port by which you send actions to the component (set by the Port
parameter in the [Server] section of the component configuration file).

For example:
http://12.3.4.56:9000/action=Help

3. Onthe help landing page, click one of the following options to open the relevant help set.

Admin The Admin Guide contains information about how to set up, configure, and
Guide administer IDOL Server.

Reference The Reference contains details of all the actions and configuration
parameters that you can set in the IDOL component.

IDOL IDOL Expert provides conceptual overviews and expert knowledge of
Expert IDOL Server and its features and functionality.

If you are new to IDOL, you can use IDOL Expert to find out more about the different functions
that IDOL can perform. You can use the Reference to look up specific configuration parameters
and actions.

The navigation panel for the IDOL Server Reference lists the following options to display
reference information.

Tab Description

Actions Describes the actions that you can send to the IDOL component (or
IDOL Server). Actions allow you to query the component, and to instruct it
to perform a variety of operations.

Configuration Describes the parameters that determine how the component operates.
Parameters You can set configuration parameters in the component configuration file.

Index Actions Describes the index actions that you can send to the component. This
section is available only in components that accept index actions

IDOL Server (12.12) Page 33 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Tab Description

(primarily Content and IDOL Proxy). Index actions allow you to index
content into IDOL Server, and to administer the data index.

Service Describes service actions. Service actions allow you to return data about
Actions the IDOL component service, and to control the service.

Edit IDOL Configuration Files

You configure IDOL Server by manually editing the appropriate configuration file.
The configuration file that you use depends on your IDOL setup:

¢ In most cases, Micro Focus recommends that you configure and deploy IDOL components
separately. In this case, each IDOL component has its own configuration file, which by default
has the same name as the component executable file. For example, the IDOL Content
component is content. exe and the configuration file is content.cfg.

¢ In simple testing deployments, you can use a unified IDOL Server configuration. In this case,
you configure all the IDOL Server components (that is, Content, Category, Community, and
View), as well as the IDOL Proxy component by using the IDOL Server configuration file
(idolserver.cfg).

NOTE: In the IDOL Server unified configuration, the IDOL Agentstore component is still
configured separately, in the agentstore.cfg. The IDOL Agentstore componentis a
specially configured IDOL Content component for storing agents and categories.

For more information about unified configuration, refer to the IDOL Getting Started Guide.

For more information about the IDOL Server configuration file, see IDOL Server Configuration File,
on page 479.

Modify Configuration Parameter Values

You modify IDOL Server configuration parameters by directly editing the parameters in the
configuration file. When you set configuration parameter values, you must use UTF-8.

CAUTION: You must stop and restart IDOL Server for new configuration settings to take effect.

This section describes how to enter parameter values in the configuration file.

Enter Boolean Values

The following settings for Boolean parameters are interchangeable:

TRUE = true =ON =on =Y =y =1

1}
=2
L}
=}
L}
()

FALSE = false = OFF = off

IDOL Server (12.12) Page 34 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

Enter String Values

To enter a comma-separated list of strings when one of the strings contains a comma, you can
indicate the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird, "wing,beak",turtle
Alternatively, you can escape the comma with a backslash:
ParameterName=cat,dog,bird,wing\,beak, turtle

If any string in a comma-separated list contains quotation marks, you must put this string into
quotation marks and escape each quotation mark in the string by inserting a backslash before it. For
example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

IDOL Server (12.12) Page 35 of 611

Administration Guide
Chapter 1: Introduction to IDOL Server

IDOL Server (12.12) Page 36 of 611

Part ll: Store Content in IDOL Server

This section explains the concept of indexing and describes how to index document content and metadata
into IDOL Server.

¢ Configure Content Storage
¢ Index Data

* Fields

» Language Support

e Set Up Document Tracking

IDOL Server (12.12) Page 37 of 611

Administration Guide
Part II: Store Content in IDOL Server

IDOL Server (12.12) Page 38 of 611

Chapter 2: Configure Content Storage

IDOL Server stores the content of documents in IDOL Content component data indexes. The process
of storing content in the IDOL Content component is called indexing.

This section describes how to set up the IDOL Content component for indexing by editing the
IDOL Content component configuration file.

® Stored Content ... 39
® Setupthe Field INdeX ProCesso 46
® Configure the IDOL Content component for Language andtoEncode 48
® Optimize INdeX ProCeSS 49

Stored Content

Before you start to index files into the IDOL Content component, you must:
¢ decide how you want to store content.
¢ setup field indexing.
« configure Content to process required languages.

¢ optimize the indexing process according to your system.

You can also configure additional processing steps in your indexing process, for example to extract
useful information from your documents to store as separate fields. You can set up additional
processing in your IDOL connectors and Connector Framework Server (CFS). For more information,
see the Connector Framework Server Administration Guide.

Related Topics

e Process Data before you Index, on page 52

Disable Content Storage

You can disable content storage if you do not require the IDOL Content component to return the
content of fields or summaries with results. This option saves the memory that the storing of fields
normally requires.

To disable content storage

e Inthe [Server] section of the IDOL Content component configuration file, set
NodeTableStoreContent to False.

If you disable content storage, it affects the performance of the following actions.

IDOL Server (12.12) Page 39 of 611

Administration Guide
Chapter 2: Configure Content Storage

GetContent Returns only the references and the title of results.

GetTagValues Unavailable.

List Returns only the references and the title of results.

Query Returns only the references and the title of results. You cannot restrict by
fields.

Suggest Returns only the references and the title of results. You cannot restrict by
fields.

SuggestOnText Returns only the references and the title of results. You cannot restrict by
fields.

Summarize Unavailable for indexed documents. You can generate summaries only if you
supply text.

TermExpand Expansion=Phrase unavailable.

TermGetBest Content saves the best terms for a document on indexing. These are the only

terms available.

Store Data Files on Multiple Disks

You can store data files across multiple partitions to gain space if the data in your IDOL Content
component becomes too big to store on one volume (when the stored terms, references, content,
and so on increase in size).

For example:

[PATHS]
DyntermPath=C:\IDOL\dynterm
NodetablePath=D:\IDOL\nodetable
RefIndexPath=E:\IDOL\refindex
MainPath=F:\IDOL\main
TagPath=.G:\IDOL\tagindex
GeospatialPath=H:\IDOL\geoindex

Compress the Data Index

You can configure the IDOL Content component to compress the nodetable directory to reduce the
disk footprint, by using the NodeTableCompression configuration parameter.

NOTE: If you change the compression method after you have started the server, the compression
applies only for operations that index new data or rewrite existing data (such as DREREPLACE).

To compress or change the compression of the whole index, you can run a DRECOMPACT operation
with the NodeTableCompactWindowKkB parameter set. For more information, refer to the
IDOL Server Reference.

IDOL Server (12.12) Page 40 of 611

Administration Guide
Chapter 2: Configure Content Storage

For more information about the NodeTableCompression option, and the compression method to use,
referto IDOL Expert.

To configure the IDOL Content component to compress the nodetable index
1. Open the IDOL Content component configuration file in a text editor.

2. Inthe [Server] section, add the NodeTableCompression parameter and set it to the
compression method that you want to use to compress the index.

You can set it to one of the following values:
e z1ib
* snappy
o 124
e 1z4dhc
3. Save and close the configuration file.

4. Restart the IDOL Content component for your changes to take effect.

Encrypt the Data Index

You can optionally configure the IDOL Content component to encrypt your index data.
When you enable index encryption, Content uses 256-bit AES encryption. Encryption includes:
¢ document data in the index.
e temporary data in the index cache.
¢ value mapping files used by the parametric, match, and security indexes.
¢ the term dictionary.
¢ the unstemmed term tree.
¢ the geospatial index.
¢ any data sent with index actions that is stored in your index queue before processing.

« stored state tokens that are generated when users run queries with StoreState=True (if
StoredStateField has been set so that document references are used instead of document
IDs).

To use index encryption, you need an AES key file. You can create this key file by using the
autpassword command-line tool. See Password Encryption, on page 513.

CAUTION: If you lose your encryption keys after you enable encryption, you cannot recover your
IDOL data.

In a distributed system, you can enable encryption both in your Content indexes, and in the

Distributed Index Handler (DIH). The DIH encrypts the index data that it stores in the index queue
while waiting to process it.

IDOL Server (12.12) Page 41 of 611

Administration Guide
Chapter 2: Configure Content Storage

NOTE: DIH decrypts the index queue content before it forwards data to its child Content indexes
for processing. Micro Focus recommends that you enable TLS encryption to ensure that you have
secure communication between Content and DIH.

Enable Index Encryption

There are two ways to enable encryption in your index:

¢ Setthe AESKeyFile configuration parameter in the Content and DIH configuration file.

Thed

Enab

Use the -dataencryptionkey command line parameter when you start Content and DIH.

ataencyptionkey option overrides any AESKeyFile setting in your configuration file.

NOTE: You can turn on AES encryption in an index that has existing content. In this case:

IDOL Server encrypts the value mapping and geospatial index files at startup
Document data encryption applies only to new data.
Any unprocessed data in your index queue remains unencrypted.

IDOL Server does not encrypt the unstemmed term tree unless you regenerate it (see
Regenerate with a Server Restart, on page 449).

IDOL Server encrypts the term dictionary when it next flushes the terms to disk during index,
or when you run index compaction.

Existing stored state tokens, that were generated before encryption was enabled, are not
encrypted.

Content also applies these rules for encrypting new data when you upgrade to Content version
12.9.0 or later (which uses a hardened AES implementation) from an earlier version.

To ensure that all your data is encrypted, Micro Focus recommends that you index your data into
an empty index, with encryption enabled.

le Index Encryption in the Configuration File

You can enable index encryption by setting the AESKeyFile parameter in the IDOL Content

comp

If you

onent configuration file.

have a distributed system, you can also configure AESKeyFile in the DIH configuration file, to

ensure that it encrypts the stored index queue data.

To configure index encryption

1.
2.
3.

Open the IDOL Content component configuration file in a text editor.
Find the [DataEncryption], or create one if it does not exist.
Set AESKeyFile to the full path to your AES encryption key file. For example:

[DataEncryption]
AESKeyFile=C:\idoldata\keys\indexkey.ky

IDOL Server (12.12) Page 42 of 611

Administration Guide
Chapter 2: Configure Content Storage

4. Save and close the configuration file.

5. Restart the IDOL Content component for your changes to take effect.

NOTE: Content does not start if it cannot find the specified key file, or if the key file is not valid.

Enable Index Encryption When You Start IDOL Components

When you start the IDOL Content component from the command line, you can use the -
dataencryptionkey argument to enable encryption. You set this option to the 64-character
hexadecimal AES key that you want to use.

For example:

Content.exe -configfile Content.cfg -dataencryptionkey
D15B643D5332BB9B9871EB1828D91367FA5419FD7179C8254AA4CCB647AB800O9

If you have a distributed system, you can also use this command-line parameter to add an encryption
key when you start the DIH.

The data encryption key that you provide on startup overrides any configured value for AESKeyFile.

Check Your Encryption Status
You can check the encryption status of your Content index by sending the GetStatus action.

The response for Content includes a data_encryption section, which can have one of the following
values:

¢ false. The index is not encrypted.
¢ true. All data in the index is encrypted.

« partial. Some data in the index is encrypted, but there is also some unencrypted data. This
status might also mean all data is encrypted, but some data was encrypted by an earlier version
of Content that used an older AES implementation.

You can also send a GetStatus action to the Distributed Action Handler (DAH) to find the encryption
status of all the DAH child servers. In this case, the response values are:

« false. None of your child servers are encrypted.
« true. All your child servers are fully encrypted.

« partial. At least one of your child servers contains encrypted data, but there are unencrypted or
partially encrypted child servers.

Encryption Persistence
After you enable encryption, you cannot change your encryption settings or turn off encryption.

Each time you start Content, it verifies your encryption key to ensure that it matches the existing
settings. If the encryption settings are different, or Content cannot find the key file, the server logs a
warning and does not start.

IDOL Server (12.12) Page 43 of 611

Administration Guide
Chapter 2: Configure Content Storage

Similarly, when you attempt to use the DREINITIAL index action with a backup path, Content checks
the encryption settings in the backup directory before it restores the index. If the target index has
incompatible encryption settings, the DREINITIAL index action fails with a Bad Parameter error.

NOTE: Content stores only a hash generated from the encryption key on disk, so you cannot
recover the original encryption keys from the saved information.

When you export data from Content by using DREEXPORTIDX or DREEXPORTXML, the exported content
is unencrypted. Micro Focus recommends that you use appropriate authorization roles to ensure that
only authorized users can export content from your index. See Configure Client Authorization, on
page 394.

If you want to turn off encryption, or change your encryption settings, you must export your data and
index into an empty Content index.

Allocate Files to IDOL Server Databases

You can configure the IDOL Content component to use a field in each document to determine the
database into which it indexes the document.

To configure IDOL Server to read the database from a document field
1. Open the IDOL Content component configuration file in a text editor.
2. Inthe [FieldProcessing] section, list a process that identifies database fields.
For example:

[FieldProcessing]
0=MyFirstProcess
1=MySecondProcess
2=DatabaseFields

3. Create a section for the database field identifying process. For example:
[DatabaseFields]

4. Create a property for the process (you define the property later, by using one or more
applicable configuration parameters). Identify the fields that you want to associate with the
process.

Optionally, use the PropertyMatch parameter to identify a specific value that fields must
have to be processed.

NOTE: The property that you create must not have the same name as the process.

For example:

[MyFirstProcess]

Property=MyFirstProperty
PropertyFieldCSVs=*/MyField, */MySecondField
PropertyMatch=*myString*

[MySecondProcess]

IDOL Server (12.12) Page 44 of 611

Administration Guide
Chapter 2: Configure Content Storage

6.
7.

Property=MySecondProperty
PropertyFieldCSVs=*/MyOtherField, */MyOtherSecondField

[DatabaseFields]
Property=Database
PropertyFieldCSVs=*/DREDBNAME, * /DB, * /Database

Create a section for your indexing property and set the DatabaseType parameter to True.
For example:

[MyFirstProperty]

HiddenType=True

[MySecondProperty]
Index=True

[Database]
DatabaseType=True
Save and close the configuration file.

Restart the IDOL Content component for your changes to take effect.

Enable the Phrase Index

The IDOL Content component phrase index stores short phrases from your index, for use with the
TermExpand action phrase expansion. The TermExpand phrase expansion, and the phrase index is
also used by Query Manipulation Server (QMS) TypeAhead action in index mode to find phrases.

The phrase index is not enabled by default, because it uses additional memory and on-disk storage,
and adds overhead at index time. Micro Focus recommends that you enable the phrase index only if
you want to use phrase expansion.

To enable the phrase index

1.
2.
3.

Open the IDOL Content component configuration file in a text editor.
In the [Server] section, set EnablePhraseIndex to True

Set any other optional parameters for the phrase index. For example,
PhraseIndexMaxTerms controls the lengths of the phrases that Content stores (and
therefore the length of the phrases is can expand).

Other parameters (starting with the prefix PhraseIndex) control the memory usage for the
phrase index, and the frequency that phrases must have in your index for them to be stored
in the phrase index.

For more information, refer to the IDOL Content component Reference.
Save and close the configuration file.

Restart the IDOL Content component for your changes to take effect.

IDOL Server (12.12) Page 45 of 611

Administration Guide
Chapter 2: Configure Content Storage

TIP: To enable the phrase index in an existing Content index, you can set
RegeneratePhraseIndex to generate the required phrase index files at startup.

For more information about TermExpand, refer to the IDOL Content component Reference. For more
information about TypeAhead in QMS, refer to the Query Manipulation Server Reference.

Set up the Field Index Process

IDOL connectors aggregate content and metadata, process it and then index it into the IDOL Content
component in the form of fields. To improve IDOL Server performance, divide these fields into the
following groups:

¢ Prevent from storing. Prevent Content from storing fields that you do not want to query by
setting the CantHaveFieldsCSVs parameter in your IDOL Content component configuration file.
Alternatively, add the CantHaveFields parameter to your DREADD or DREADDDATA index action.

* Index fields. Store fields that contain text that you want to query frequently as Index fields.
Content processes Index fields linguistically when it stores them. Content applies stemming
and stop word lists to the text, which allows it to process queries for these fields more quickly.
Typically, you set up DRETITLE and DRECONTENT as Index fields.

Do not use Index fields to store URLs or content that you are unlikely to use. Also, when you
query the value only in its entirety, it is more efficient to query with a field specifier (for example,
MATCH), than to store the data in an Index field.

Micro Focus does not recommend indexing all fields in documents because it can potentially
slow the indexing process, increase disk usage, and increase requirements.

¢ Numeric fields. Store fields that contain numerical values or dates as numeric fields and
numeric date fields. When Content indexes these fields, it stores them in a fast look-up table in
memory, which enables it to return the fields more quickly.

¢ Field-check fields. If a large number of the documents that you want to store in Content
contain a field whose entire value is frequently used to restrict results, store this field as a
FieldCheckType field. When Content indexes these fields, it stores them in a fast look-up table
in memory, which enables it to return the fields more quickly.

¢ Ordinary fields. By default Content stores all fields that are not identified as special fields as
ordinary fields.

NOTE: You can query all stored fields using field specifiers in FieldText queries. You can also
query Index fields using text queries.

Related Topics
* Index Fields, on page 94
e NumericType Fields, on page 98
e NumericDateType Fields, on page 97
¢ FieldCheckType Fields, on page 99

IDOL Server (12.12) Page 46 of 611

Administration Guide
Chapter 2: Configure Content Storage

» FieldText Search, on page 243

Index XML Attributes

You can index XML attributes in the same way that you index ordinary fields. However, you must
refer to them using the following format for the IDOL Content component to be able to read them:

*/tagName/ _ATTR_attributeName

where:

tagName is the name of the tag.

attributeName is the name of the attribute that you want the IDOL Content component to
read.

For example:

<FARM ANIMAL="sheep" COLOR="white"> Farmer Joe </FARM>
To identify the ANIMAL attribute to Content, refer to it as
*/FARM/_ATTR_ANIMAL

To identify the COLOR attribute to Content, refer to it as
*/FARM/_ATTR_COLOR

Example:

<ROOM Name="The Kitchen">
<FURNITURE>Table</FURNITURE >
<ITEM Type="China">Dish</ITEM>
</ROOM>

To identify the Name attribute to Content, refer to it as
* /ROOM/_ATTR_Name
To identify the Type attribute to Content, refer to it as
*/ITEM/_ATTR_Type
To store XML attributes in Index fields
1. Open the IDOL Content component configuration file in a text editor.
2. Listanindexing process in the [FieldProcessing] section.
For example:

[FieldProcessing]
0=MyFirstProcess
2=IndexingFields

3. Create a section for the indexing process, in which you create a property for the process
(you define a property later, by using one or more applicable configuration parameters).

IDOL Server (12.12) Page 47 of 611

Administration Guide
Chapter 2: Configure Content Storage

Identify the fields that you want to associate with the processes.
NOTE: The property that you create must not have the same name as the process.

For example:

[MyFirstProcess]

Property=MyFirstProperty
PropertyFieldCSVs=*/MyField, */MySecondField
PropertyMatch=*myString*

[IndexingFields]

Property=IndexFields

PropertyFieldCSVs=*/FIELD/ ATTR_ANIMAL,*/FIELD/_ATTR_COLOR,*/ROOM/ ATTR_
Name, */ITEM/_ATTR_Type

4. Create a section for your indexing property in which you set the Index parameter to True.
For example:
[MyFirstProperty]
HiddenType=True
[IndexFields]
Index=True
5. Save and close the configuration file.

6. Restart the IDOL Content component for your changes to take effect.

Configure the IDOL Content component for
Language and to Encode

Before you index documents that contain different languages into the IDOL Content component, you
must configure it to recognize the language and encoding of documents, so that it can deal with them
appropriately.

The IDOL Content component can automatically identify the language and encoding of a document
when it indexes it. You must have an IDOL license that includes automatic language detection. To
use this feature, set AutoDetectLanguagesAtIndex to True in the [Server] section of the

IDOL Content component configuration file.

If your license does not include this functionality, you must specify the language and encoding of
documents that you index into Content. Alternatively, you can configure a field process that allows
Content to read the language of a document from one of its fields.

Related Topics
e Language Support, on page 111

IDOL Server (12.12) Page 48 of 611

Administration Guide
Chapter 2: Configure Content Storage

Optimize Index Process

The speed of the indexing process is usually less critical than the speed of the query process.
However, when you index large amounts of dat into the IDOL Content component, it is important to
improve the efficiency of the process where possible. In addition, the way that you configure the
indexing process can affect the efficiency of the query process.

Index Process

The indexing process works in two stages:
1. The IDOL Content component creates a representation of the new data in the index cache.

2. The IDOL Content component synchronizes the cache with data that it currently contains, and
stores the new data on disk, removing it from the index cache.

When you schedule indexing, consider the recommendations in this chapter about IDOL content
(particularly on selecting fields to index), and on running indexing and querying processes at different
times. In addition, the delayed synchronization feature allows you to change the stage at which the
IDOL Content component synchronizes the index cache. What you use depends on whether your
priority is achieving fast query speeds or making new information available to the user as quickly as
possible.

Delayed Synchronization

The delayed synchronization feature allows you to select how the IDOL Content component
synchronizes the index cache with the permanent data index. This process is useful in systems
where you schedule indexing tasks at times when Content is also handling queries.

By default, synchronization occurs as soon as a representation of data has been made in the index
cache. New data is available to the user (as query results) quickly, so use this setting in systems
where current data is the priority. However, synchronization uses resources that Content could
otherwise use for querying.

Delayed synchronization reduces the impact of this effect by collecting multiple data representations
in the index cache and then synchronizing them all in one go. This process is useful in systems where
query speed is more important than having current data.

NOTE: Micro Focus recommends using delayed synchronization if you index a lot of small files
(files that are smaller than 100 MB).

The DelayedSync parameter in the [Server] section of the IDOL Content component configuration
file allows you to specify whether the indexing process uses delayed synchronization.

e SetDelayedSync to True if you want the IDOL Content component to delay synchronization. In
this case, Content stores data on disk only when:

IDOL Server (12.12) Page 49 of 611

Administration Guide
Chapter 2: Configure Content Storage

° the index cache is full.
° the index cache contains some data and the timeout specified by MaxSyncDelay expires.

¢ SetDelayedSync to False if you do not want to delay synchronization.

IDOL Server (12.12) Page 50 of 611

Chapter 3: Index Data

IDOL Server stores the content of documents in data indexes. (The default data indexes are in the
IDOL Server databases News and Archive.) The process of storing content in IDOL Server is called
indexing. This section describes the indexing process.

O INAEeX OVEIVIEW 51
® Process Data before you INdexX ... 52
®* DREADD: Index IDX and XML Files Directly ... 53
* DREADDDATA: Index Data overa Socket 59
O NAEX StOP W OrAS . 63
® Index Nonalphanumeric Characters 63
® Prevent Duplicate Documents 68
® Add Metadata to Documents ... 74
® Check Index Status 75
® Tag Documents into Clusters 80

Index Overview

You can index only files in XML or IDX format into the IDOL Content component. If the data that you
want to index is in XML format, you can index it directly, without having to first import it (convert its
content and metadata to IDX).

IDOL connectors use the DREADD and DREADDDATA index actions to index data. You can also use
these actions to index data directly into the IDOL Content component.

NOTE: Before you index data, review the setup instructions described in Configure Content
Storage, on page 39.

If your data is not in XML format, you must first import it. You can import data using one of three
methods.

« Import with a connector. The IDOL connectors (for example, File System Connector, HTTP
Connector, Oracle Connector, and so on) retrieve documents from different repositories and
use the Connector Framework Server (CFS) to import them into IDX or XML file format. Refer to
the appropriate CFS or connector guide for further information on how to import documents.

¢ Import manually. You can create a text file in either XML or IDX format, which contains the
information that you want to index into your IDOL Content component in specific IDOL fields.

¢ Import with IDOL Admin. You can use the wizard on the Index tab on the Console page in the
Control section of IDOL Admin to submit data for the IDOL Content component to index. For
more information, refer to the IDOL Admin User Guide.

IDOL Server (12.12) Page 51 of 611

Administration Guide
Chapter 3: Index Data

Related Topics
e Manually Create IDX Files , on page 571
¢ |IDX Format, on page 571

After the documents are in XML or IDX file format, you can index them into the IDOL Content
component using one of two methods.

¢ Index with a connector. CFS indexes the IDX files that it creates into the IDOL Content
component . Refer to the appropriate connector guide for detailed information on how to index
documents.

¢ Index directly. You can index XML and IDX files into an IDOL Content component by issuing
an HTTP request from your Web browser.

TIP: If you index into IDOL from another host, you must configure the IDOL Content component to
accept connections from the host, by applying the appropriate authorization roles. See Configure
Client Authorization, on page 394.

If you use CFS, you must assign CFS to the Admin, Index, and Query standard roles, or
equivalents.

Related Topics
e DREADD: Index IDX and XML Files Directly, on the next page
e DREADDDATA: Index Data over a Socket, on page 59

Depending on where the data to index is located, the indexing steps for each document take place in
the following order.

Local document (accessed through the file Remote document (accessed over the

system) indexing port)
¢ Contentreceives a file path. ¢ Contentreceives a stream of data over the
¢ Content opens the file and reads the port
document data. ¢ Content saves the data locally.
* Content indexes the document. ¢ Content opens the local file and reads the
document data.

+ Content indexes the document.

Process Data before you Index

The IDOL Connector Framework Server (CFS) allows you to process documents that it receives (for
example from an IDOL connector) before it sends them to the IDOL Content component index. For
more information about using CFS to process your documents, refer to the Connector Framework
Server Administration Guide.

IDOL Server (12.12) Page 52 of 611

Administration Guide
Chapter 3: Index Data

DREADD: Index IDX and XML Files Directly

The DREADD index action (case sensitive) directly indexes an IDX or XML file that is located on the
same machine as the IDOL Content component. For example:

http://Contenthost:indexPort/DREADD?requiredParams&optionalParams
where:

Contenthost is the IP address or host name of the machine on which the IDOL Content
component is installed.

indexPort is the indexing port of the IDOL Content component (specified in the IndexPort
parameter in the [Server] section of the IDOL Content component configuration
file).

DREADD Parameters

The following parameters are available for the DREADD index action.
Required Parameters
You must include the following parameters.
filename The name or location of the IDX or XML file you want to index.

or

path The DREADD index action also accepts IDX or XML files that are

compressed by gzip.

DREDbName=database The name of the IDOL database into which you want to index the file
content.

You do not require this parameter if your IDX or XML files already
contain a database field. By default, the IDOL Content component reads
from this field.

Optional Parameters

You can include any of the following parameters as required. Separate parameters with an
ampersand (&).

ACLFields=fields One or more document fields from which
Content reads ACLs (access control lists).

CantHaveFields=fields One or more document fields to discard (not
index). By default, all fields are indexed.

DatabaseFields=fields One or more document fields that contain the
name of the database into which you want to

IDOL Server (12.12) Page 53 of 611

Administration Guide
Chapter 3: Index Data

DateFields=fields

Delete

DocumentDelimiters=fields

DocumentFormat=XML | IDX

ExpiryDateFields=fields

FlattenIndexFields=fields

IDXFieldPrefix=prefix

IndexFields=fields

KeepExisting=True|False

KillDuplicates=option

IDOL Server (12.12)

index the document.

One or more document fields from which you
want Content to read the date of the document.

Content deletes the IDX or XML file after it is
indexed.

One or more fields in a file that indicates the
beginning and end of an individual document,
when the file contains multiple documents.
Document delimiters cannot be nested.

The format (XML or IDX) that Content assigns
to a file when a file format is ambiguous.

One or more fields that contain the expiration
date of the document (the date when it is
deleted or—if you set ExpireIntoDatabasein
the Content configuration file—when it is
moved into another database).

One or more fields in a hierarchically structured
document whose content you want to index as
one level.

When you index an IDX file, Content
transforms it into XML by placing it under the
Document subtree (each of the IDX fields is
given the prefix Document, to construct a simple
XML hierarchy). If you do not want to call the
subtree Document, use this parameter to
specify a different name.

One or more fields that you want to index
explicitly into Content.

Explicitly indexing fields optimizes the query
process when you use these fields to restrict
queries. Use Index fields to hold data that is
particularly significant to you (for example, the
title of the document), and that you are likely to
use frequently to restrict queries.

If you setKillDuplicates to Reference or
FieldName, you can set KeepExistingto True
to discard the document received for indexing
and keep the matching document that already
exists in the database.

Specify one of the options described in

Page 54 of 611

Administration Guide
Chapter 3: Index Data

KillDuplicatesDB=database

KillDuplicatesDBField=fields

KillDuplicatesMatchDBs=Db1+Db2+Db3

KillDuplicatesMatchTargetDB=True|False

KillDuplicatesPreserveFields=True|False

LanguageFields=fields

LanguageType=type

MustHaveFields=fields

SectionFields=fields

SecurityFields=fields

IDOL Server (12.12)

Deduplication Options—KillDuplicates, on
page 68 to determine how Content handles
indexing of duplicate text.

If you do not use the KillDuplicates option,
indexing defaults to the setting specified for the
KillDuplicates parameterinthe [Server]
section of the Content configuration file.

The database to which Content moves
duplicate documents.

The name of a field in duplicate documents that
contains the name of the database to which
Content moves duplicate documents. If the
field does not exist in the document, it uses the
value of KillDuplicatesDB.

Lists the databases to search for duplicate
matches, separated by plus signs (+).

Whether to search the database that the
document is to index into for duplicate
matches. Set to True to search the database.

The name of IDX fields that Content must copy
to a newer copy of the same document, when it
performs KillDuplicates.

One or more fields that contain the language
type of the document.

The language type to apply to a document if it
has no fields that specify the language type.

You define language types and how to handle
them in the [LanguageTypes] section of the
Content configuration file.

One or more fields (in an IDX document only)
that Content must store. By default, Content
stores all fields. If you use this parameter,
Content discards all document fields that are
not specified—which means that you cannot
query or print them.

One or more fields that indicate the start of a
new section in the document (for IDX only;
Content automatically sections XML data).

One or more fields that contain the security

Page 55 of 611

Administration Guide
Chapter 3: Index Data

type of the document.

SecurityType=type The security type to apply to a document if the
document has no fields that specify the security

type.

You define security types and how to handle
them in the Content configuration file.

TitleFields=fields One or more fields from which Content reads
the document title.

Related Topics
¢ Specify Field Names, below
e Use KeepExisting to Minimize the Index Load, on page 73

NOTE: Parameters used in the DREADD index action override the equivalent settings specified in
the IDOL Content component configuration file.

DREADD Examples

http://MyHost:20001/DREADD?C:\Documents and Settings\JBrown\Market.idx&REDBNAME=Biz

http://MyHost:20001/DREADD?D:\Content\Price.idx&DREDBNAME=Shop&KillDuplicates=Refere
nce

Specify Field Names

If you specify multiple field names, separate them with commas. There must be no space before or
after any comma. You can use Wildcards.

When naming fields, use the format /FieldName to match root-level fields, */FieldName to match all
fields except root-level, or /Path/FieldName to match fields with the specified path. If you just specify
FieldName, the IDOL Content component automatically adds */ to it.

Related Topics
e Wildcards in Queries, on page 306

ACLFields Example

&ACLFields=*/AUTONOMYMETADATA

Content reads ACLs from any fields called AUTONOMYMETADATA.

DatabaseFields Example

&DatabaseFields=Document/DREDbName, * /myDB

IDOL Server (12.12) Page 56 of 611

Administration Guide
Chapter 3: Index Data

Content indexes the document into the database with the name contained in any DREDbName field
below the Document level and with the name contained in any fields called myDB.

DateFields Example

&DateFields=Document/DREDate, */myDocDate

Content extracts dates from any fields called DREDate contained below the Document level and from
any fields called myDocDate.

NOTE: If you index documents that contain fields with partial dates into Content, the document is
assigned a metadata field specifying a full date. This date is the first day of the month if the day is
not specified, and the first of January if neither the day or the month are specified. The format of
the partial date must be a format specified in the DateFormatCSVs configuration parameter.

DocumentDelimiters Example

&DocumentDelimiters=*/DOCUMENT, */SPEECH

The IDOL Content component marks the beginning and end of individual documents in the file by
opening and closing DOCUMENT and SPEECH tags.

ExpiryDateFields Example

&ExpiryDateFields=Document/DREExpiryDate, */myExpiryDate

The IDOL Content component reads the expiration date from any DREExpiryDate field below the
Document level and from any fields called myExpiryDate.

FlattenindexFields Example

<documents>
<article id="_21498602">
<url>http://example.com/21490.html</url>
<hltext_display>The history of pharmacogenetics </hltext_display>
<source>Science Online</source>
<media_type>text</media_type>
<subject>
<text>The prologue to pharmacogenetics began to play out around 1850 and
spanned some 60 years into the 1900s.</text>
<text>In 1953, the molecular basis of heredity, the double helix of DNA,
was described.</text>
</subject>
<valid_time>Jul 13 2001 5:00AM</valid_time>
</article>
</documents>

IDOL Server (12.12) Page 57 of 611

Administration Guide
Chapter 3: Index Data

If you specify FlattenIndexFields=*/subject, and index the above document, the IDOL Content
component indexes any content in a subject field or a field within a subject field as the content of
the subject field.

If you then query the subject field for a particular term that is actually contained in a level below the
subject field (such as the term “pharmacogenetics”), the content of both text fields returns. If you do
not flatten the subject field the query does not return results, because the subject field itself does
not contain the term.

IndexFields Example

&IndexFields=*/DRECONTENT, */DRETITLE

The IDOL Content component explicitly indexes the DRECONTENT and DRETITLE field in documents.

LanguageFields Example

&LanguageFields=Document/DRELanguageType, */myLanguageType

In this example, Content reads the language type of documents from any DRELanguageType field
below the Document level and any myLanguageType fields.

MustHaveFields Example

&MustHaveFields=*/DRECONTENT, * /DRETITLE

In this example, Content stores only the DRECONTENT and DRETITLE fields in the document.

SectionFields Example

&SectionFields=Document/DRESection, */mySection

In this example, any DRESection field below the Document level and any mySection fields indicate the
start of a new section.

SecurityFields Example

&SecurityFields=Document/DRESecurity,*/mySecurity

In this example, Content reads the security type of documents from any DRESecurity field below the
Document level and any mySecurity fields.

TitleFields Example

&TitleFields=*/DRETITLE

In this example, Content reads a document title from its DRETITLE field.

IDOL Server (12.12) Page 58 of 611

Administration Guide
Chapter 3: Index Data

DREADDDATA: Index Data over a Socket

The DREADDDATA index action (case sensitive) allows you to directly index data over a socket into the
IDOL Content component. For example:

DREADDDATA?optionalParamsData#DREENDDATARLLLDuplicatesOption\n\n

NOTE: This index action requires a POST request method. See Send Data with a POST Method,
on the next page.

DREADDDATA Parameters

The following parameters are available for the DREADDDATA index action.

Data The content of the IDX or XML document to index. You can use
gzipped data. You must add #DREENDDATA to the end of your data.
#DREENDDATA must be uncompressed, even if your data is in gzip
format.

This parameter is required.

optionalParams The DREADDDATA action accepts the same optional parameters as the
DREADD action, except for KillDuplicatesOption.

NOTE: The DREDBName parameter, which is required for DREADD, is
an optional parameter for DREADDDATA.

killDuplicatesOption This optional parameter is equivalent to the KillDuplicates
parameter for DREADD, except that it does not use the
“KillDuplicates=0Option” syntax.

You append the option directly to the #DREENDDATA tag that ends the
Data parameter (for example, #DREENDDATAREFERENCE). The following
option values are available:

* NOOP (available for DREADDDATA only)
e NONE

e REFERENCE

e REFERENCEMATCHN

e FieldName

e ReferenceField,GREATER:VersionField

For more information about these options, see Deduplication
Options—KillDuplicates, on page 68.

IDOL Server (12.12) Page 59 of 611

Administration Guide
Chapter 3: Index Data

Related Topics
e DREADD Parameters, on page 53

¢ Deduplication Options—K:illDuplicates, on page 68

NOTE: Parameters that you set in the DREADDDATA action override any equivalent settings
specified in the IDOL Content component configuration file.

Send Data with a POST Method

You must send the DREADDDATA action using a POST request method. There are two ways to send a
POST request over a socket to the IDOL Content component:

+ use the Curl command-line tool

e use a script

NOTE: You can use these methods for other actions that require a POST request method, such
as DREREPLACE, but you must modify the script.

Use the cURL Command-Line Tool

Curl is an open source command-line tool for transferring files with URL syntax. If you have
cURL installed on your computer, and a command prompt that allows you to use new lines, you can
use a cURL request to send the action. For example:

curl "http://host:port/DREADDDATA?" -d "
#DREREFERENCE Test

#DREDBNAME Default

#DREENDDOC

#DREENDDATA

Alternatively, you can add the #DREENDDATA tag into the IDX or XML document, or gzipped IDX or
XML file, after the data to index. The #DREENDDATA tag must be uncompressed. Then you can use a
cURL command to send this document to the IDOL Content component.

For example:
curl --data-binary @filename "http://host:port/DREADDDATA?"
where filename is the name of the IDX, XML, or gzipped IDX or XML file to index.

For information on cURL, refer to http://curl.haxx.se/.

Use a Script

Another method of sending a POST request is to use a script to open a socket and send the data.
The following is an example script in the Perl programming language that sends a DREADDDATA index
action to a specified port.

IDOL Server (12.12) Page 60 of 611

http://curl.haxx.se/
http://curl.haxx.se/

Administration Guide
Chapter 3: Index Data

To run the script
* Open a command prompt and type the following command:
PerlScript.pl HostNameIndexPortFilename [Parameters]

where:

PerlScript is the name of the file that contains the Perl script that performs the

.pl DREADDDATA index action.

HostName is the host name or IP address of the host on which the IDOL Content

component runs.

IndexPort is the index port for the IDOL Content component you send the data to.

Filename is the name of the file that you want to index into the IDOL Content component
by using the DREADDDATA action. You can use an IDX, XML, or gzipped IDX or

XML file.

Parameters are any optional parameters that you use for the DREADDDATA action.

Example Perl Script

Performs a /DREADDDATA index action
use I0::Socket;

if (@ARGV<3)

{
print "Usage: doDreAddData.pl <hostname> <indexport> <filename>
exit;

}

my $host = $ARGV[O];

my $port = $ARGV[1];

my $filename = $ARGV[2];
my $params = $ARGV[3];
my $footer = "\r\n#DREENDDATA\r\n\r\n";

my $iaddr = inet_aton($host) or die "$!";
my $paddr = sockaddr_in($port,$iaddr);
my $proto = getprotobyname('tcp');

socket(SOCK, PF_INET, SOCK_STREAM, $proto) or die "socket: $!";
connect(SOCK, $paddr) or die "connect: $!";

my $filesize = -s $filename;
$filesize += length($footer);
open (FILE, $filename) or die "couldn't open file: $!";

print SOCK "POST /DREADDDATA?$params HTTP/1.1\r\n";
print SOCK "Connection: close\r\n";

print SOCK "Content-Length: $filesize\r\n\r\n";
while (<FILE>)

IDOL Server (12.12)

[parameters]\n";

Page 61 of 611

Administration Guide
Chapter 3: Index Data

print SOCK $_;

}
print SOCK $footer;

SOCK->autoflush(1);

while(<SOCK>){
print $_;

close FILE;
close SOCK;

DREADDDATA Examples

Example 1:

POST /DREADDDATA?LanguageType=EnglishUTF8 HTTP/1.0

Content-Length: 604

#DREREFERENCE 392348A0

#DREFIELD authornamel="Brown"

#DREFIELD authorname2="Edgar"

#DREFIELD title="Dr."

#DREDATE 1998/08/06

#DRETITLE

Jurassic Molecules

#DRECONTENT

Using a technique called test tube evolution, scientists created a nucleic acid
enzyme, the first known enzyme that uses an amino acid to start chemical activity.
Scientists hope that the creation of this molecule will lead to the elusive
precursor. The precursor, by definition, will have to contain both the genetic code
for replication and an enzyme to trigger self replication.

#DREDBNAME Science

#DREENDDOC

#DREENDDATAREFERENCE

Example 2:

POST /DREADDDATA?DREDbName=Poetry&DateFields=*/Date HTTP/1.0
Content-Length: 515

Content-Type: application/xml

<DOCUMENT>
<DREREFERENCE>572801A2</DREREFERENCE>
<AUTHOR>George Eliot</AUTHOR>
<Date>2005/24/03</Date>
<DRETITLE>Roses</DRETITLE>

<DRECONTENT>

You love the roses - so do I. I wish

The sky would rain down roses, as they rain

IDOL Server (12.12) Page 62 of 611

Administration Guide
Chapter 3: Index Data

From off the shaken bush. Why will it not?
Then all the valley would be pink and white
And soft to tread on. They would fall as light
As feathers, smelling sweet; and it would be
Like sleeping and like waking, all at after!
</DRECONTENT >

</DOCUMENT>

#DREENDDATANOOP

Index Stop Words

The IDOL Content component does not normally index stop words, but you can index them by using
the StopWordIndex configuration parameterin the [LanguageTypes] section of the configuration file.
For example:

[LanguageTypes]
StopwordIndex=1

Queries match stop words only in a phrase, as shown in the following examples.

Query Result

winnie the bear Content ignores the stop word the, as usual.

"winnie the bear" Content includes the stop word the in the exact phrase search and
matches it.

copy of "winnie the Content ignores the stop word of, but matches the within the phrase.

bear"

NOTE: Wildcard search terms do not expand to stop words, even in phrases.

Related Topics
» Stop Word Lists for Supported Languages, on page 570

Index Nonalphanumeric Characters

You can configure nonalphanumeric characters to index differently based on the query result that you
want. By using these configurations, you can query nonalphanumeric terms in exactly the same form
as in a document to match that document.

You must set the configuration parameters discussed in this section in the [MyLanguage] section of
the IDOL Content component configuration file.

IDOL Server (12.12) Page 63 of 611

Administration Guide
Chapter 3: Index Data

NOTE: If you want to change these settings after you index content into the IDOL Content
component, you must reindex the content.
Related Topics

e Enable Transliteration, on page 128

Term Separators

The IDOL Content component automatically generates separators for each language to determine
where one term ends and another begins. These include characters such as spaces, tabs, carriage
returns, and line feeds.

To ensure that Content uses a character as a separator, specify it in the AugmentSeparators
configuration parameter. Content replaces all separator characters with a space.

For example, the following table describes the query matching for when AugmentSeparators=, -.

Indexed string Query terms matched
second-hand guitar e second

* hand

e guitar

NOTE: The hyphen is a separator only if it is not listed in HyphenChars, because HyphenChars
takes precedence over separators.

To ensure that Content does not use a character as a separator, specify it in the
DiminishSeparators configuration parameter. Content removes nonseparators at index time.

For example, the following table describes the query matching for when DiminishSeparators=_%.
Indexed string Query terms matched

file_name filename

To ensure that Content indexes a character as its own token, specify it in the SoftSeparators
configuration parameter.

For example, the following table describes the query matching for when
SoftSeparators=1234567890.

Indexed string Query terms matched
459 e 4

e 5

e 9

IDOL Server (12.12) Page 64 of 611

Administration Guide
Chapter 3: Index Data

Indexed string Query terms matched
e 45
» 59
* 459

In this example, Content tokenizes all numbers as single digits, so that 459 isindexedas 4 5 9.
Related Topics

¢ Hyphenated Terms, on the next page

Index Nonalphanumeric Characters for Retrieval

To ensure that a nonalphanumeric character is available for querying, specify it in the
TangibleCharacters configuration parameter.

For example, the following table describes the query matching for when TangibleCharacters=?!.

Indexed Query terms matched
string
help! help!

Queries do not match documents that contain the same word without the
exclamation mark.

NOTE: You cannot specify spaces, returns, and tabs as TangibleCharacters.

To ensure that Content indexes numbers with decimals or commas together as a single term for
querying, specify both characters in the NumberPunctuation configuration parameter.

Content treats characters that you set as NumberPunctuation as TangibleCharacters when they
occur in terms with a number on both sides.

For example, the following table describes the query matching for when NumberPunctuation=.,.

Indexed string Query terms matched
815,290.50 815,290.50
73.8A 73.8A

738. 738 (number punctuation does not apply.

NOTE: These results can vary depending on your IndexNumbers configuration parameter setting.
When you configure a character in NumberPunctuation and another tokenization parameter, such as

HyphenChars, TangibleCharacters, or AugmentSeparators, Content processes the parameters in
order of precedence. For example, TangibleCharacters takes priority over NumberPunctuation, so

IDOL Server (12.12) Page 65 of 611

Administration Guide
Chapter 3: Index Data

if you configure the period in both parameters, you get the same results as if you only configured itin
TangibleCharacters.

For more information about the order in which Content applies different tokenization configurations,
refer to IDOL Expert.

When a configured NumberPunctuation character occurs in a value where it does not have a number
on each side, the processing depends only on your other configuration. For example, the following
table describes query matching for the value 25.R in various configurations. This value does not
activate NumberPunctuation, because there is a number on only one side of the period.

If the period (.) is configured as Query terms matched

non-separator (default) 25R
HyphenChars 25, R, and 25R
TangibleCharacters 25.R
AugmentSeparators 25and R.

Related Topics

e Configure the Number Index Process, on page 96

Hyphenated Terms

By default, when Content indexes a hyphenated term, it stems each of its components and indexes
them. It also removes the hyphen from the term, stems the resulting term, and indexes that.

For example, the following table describes the default query matching for hyphenated terms.

Indexed string Query terms matched
second-hand guitar e second
e hand

e secondhand

e guitar

To treat other characters as hyphens, specify them in the HyphenChars configuration parameter.
For example, the following table describes the query matching for when HyphenChars=-8&.
Indexed string Query terms matched

Barnes&Noble e Barnes
* Noble

* BarnesNoble

IDOL Server (12.12) Page 66 of 611

Administration Guide
Chapter 3: Index Data

NOTE: To stop Content from indexing hyphenated terms this way, set HyphenChars=NONE. This
means that no characters are used as HyphenChars. The default setting is HyphenChars=-.

At query time, Content tokenizes the hyphenated term as the whole term and individual subterms, all
separated by the configured DefaultQueryOperator. For example, if the DefaultQueryOperator is
OR (the default value), a query for second-hand becomes secondhand OR second OR hand.

NOTE: If you change the DefaultQueryOperator, you might not get expected query results for
hyphenated terms.

The separate parts of a hyphenated term (such as second and hand) are available only for basic
keyword searches, and they do not match proximity expressions or field-restricted searches. For
example, if a document contains the phrase second-hand car, a keyword search for hand matches
the document, but an exact phrase search for hand car does not.

In most situations, Micro Focus recommends that you set HyphenChars to NONE, and use the hyphen
as a separator (for example, set AugmentSeparators to -). For more information, refer to
IDOL Expert.

Character Tokenization

You can tokenize characters into N-grams of a specified size. Set the NGram configuration parameter
in your language configuration section to the number of characters to use in each N-gram group.

NOTE: You must not use NGram with the SentenceBreaking configuration parameter.

For example, if you set NGram to 2, Content tokenizes the word Hello as:
he el 11 lo
To tokenize only multibyte strings, set NGramMultiByteOnly to True.

[Japanese]
NGram=2
NGramMultiByteOnly=True

For this configuration, if you have a document that contains both English and Asian (multibyte) text,
Content tokenizes the Asian text according to the NGram parameter. It does not tokenize the English
text.

To tokenize only multiple-byte strings in Chinese, Japanese, and Korean characters (and ignore
multiple-byte strings in other languages), set NGramSentenceBrokenScriptOnly to True.

[Japanese]
NGram=2
NGramSentenceBrokenScriptOnly=True

For this configuration, if you have a document that contains multibyte text in both Japanese and
Greek, Content tokenizes the Japanese text according to the NGram parameter. It does not tokenize
the Greek multibyte text.

IDOL Server (12.12) Page 67 of 611

Administration Guide
Chapter 3: Index Data

Prevent Duplicate Documents

You can configure the IDOL Content component to implement deduplication when indexing
documents. This process prevents storage of the same document or document content. If Content
determines that the document to index matches an existing document, it replaces the existing
document with the new document.

The IDOL Content component uses deduplication options to determine whether documents match.
See Deduplication Options—KillDuplicates, below.

You can enable deduplication in one of three ways:

¢ Enable deduplication for all indexing jobs by using the KillDuplicates configuration
parameter in the [Server] section of the IDOL Content component configuration file. See
Enable Deduplication for all Index Jobs, on page 70.

You can use the KillDuplicatesChecksumField configuration parameter with deduplication to
prevent the IDOL Content component from unnecessarily updating existing documents. See
Use KillDuplicatesChecksumField to Prevent Unnecessary Indexing, on page 72.

You can also use the KillDuplicatesPreserveFields configuration parameter with
deduplication to copy the specified IDX fields from an existing document to a newer version.

¢ Enable deduplication for individual indexing jobs by using the KillDuplicates action
parameter in the DREADD and DREADDDATA actions. See Enable Deduplication for Individual
Index Jobs, on page 72.

Use the KeepExisting action parameter with deduplication to discard the incoming document
instead of replacing the existing document, This option reduces the indexing load. See Use
KeepExisting to Minimize the Index Load, on page 73.

¢ Enable deduplication when indexing with Connector Framework Server (CFS) by setting the
KillDuplicates configuration parameter for the connector. See Enable Deduplication for
Connector Index Jobs, on page 73.

Some other IDOL Content component parameters affect the behavior of the deduplication settings.
See Deduplication Constraints, on page 73.

You can deduplicate after indexing by using the DREDUPLICATE index action. See Locate Duplicate
Documents, on page 425.

Deduplication Options—KillDuplicates

Use the following parameters to specify deduplication options. The IDOL Content component uses
these parameters to determine whether documents match.

e The KillDuplicates parameter specified in either the [Server] section of the IDOL Content
component configuration file or in the DREADD or DREADDDATA index action.

¢ The KillDuplicates parameter specified in the [Indexing] section of the CFS configuration
file.

IDOL Server (12.12) Page 68 of 611

Administration Guide
Chapter 3: Index Data

The following options are available for the deduplication parameters.

NONE

REFERENCE

REFERENCEMATCHN

FieldName

ReferenceField
,GREATER:
VersionField

IDOL Server (12.12)

Allows duplicate documents in Content index. Content does not replace or
delete documents.

Replaces an existing document with the new document if the document to
index has the same value in its DREREFERENCE field.

Replaces the existing document with the new document if the content of the
document to index is more than N percent similar to the existing document.
Content determines the similarity by comparing the content of the
SourceType fields in the document, or the Index fields if no SourceType fields
are configured.

NOTE: This method can deduplicate only documents that are already
synced in the IDOL Server index. It cannot deduplicate similar documents
in the same index job.

Replaces the existing document with the new document if the document to
index contains a ReferenceType field named FieldName that has the same
content as the FieldName field in the existing document.

You can specify multiple ReferenceType fields in this option (separated by a
plus symbol or space), in which case Content deletes documents that contain
any of the specified fields with identical content. You must percent-encode
any punctuation characters in the field name.

NOTE: You identify fields as ReferenceType fields through field processes
in the IDOL Content component configuration file. If you list multiple fields
in the same PropertyFieldCSVs parameter where you list the FieldName
for deduplication, Content uses all the fields to eliminate duplicate
documents. If you want to define multiple ReferenceType fields but do not
want to use all fields for duplicate elimination, set up multiple field
processes.

Replaces the existing document with the new document if the document to
index contains a ReferenceType field named ReferenceField that has the
same content as the ReferenceField field in the existing document, and if
the VersionField field in the document to index has a higher value than the
VersionField in the existing document. For XML documents, you must fully
qualify the path of the XML field that you want to use as the version field (you
cannot use wildcard values).

VersionField must contain a positive integer value, but you do not need to
configure it as a numeric field. If only one of the incoming and current
documents has a valid value in the VersionField, IDOL Server keeps the
version with a valid VersionField. When both documents have the same
VersionField, IDOL Server keeps the existing document.

NOTE: When you index IDX documents, for the version comparison to
work correctly, the value in the field that you use as the VersionField must

Page 69 of 611

Administration Guide
Chapter 3: Index Data

be listed in quotation marks (""). That is, the field must have the following
format in the IDX:

#DREFIELD MyField="N"

IDOL Server treats existing documents with a missing or non-numeric value
in the VersionField as having a version number of negative infinity. It treats
a new document with a missing or non-numeric value in the VersionField as
having a version number of 0.

NOOP (DREADDDATA Use the KillDuplicates parameterin the [Server] section of the
only) IDOL Content component configuration file to determine how to treat
duplicate documents.

NOTE: This option is available only for the DREADDDATA action.

Related Topics
e ReferenceType Fields, on page 101

e Enable Deduplication for all Index Jobs, below

When you specify a deduplication option, note that:

¢ If you postfix any of these options with =2, Content applies the KillDuplicates process to all
databases, rather than just the database into which the current IDX or XML file indexes. For
example:

KillDuplicates=REFERENCE=2

¢ The setting in the KillDuplicates option in either the DREADD or DREADDDATA index action
overrides the setting in the KillDuplicates configuration parameter.

Enable Deduplication for all Index Jobs

To enable deduplication for all indexing jobs—in other words, to set deduplication by default for the
DREADD and DREADDATA actions—use the KillDuplicates configuration parameter in the [Server]
section of the configuration file.

IMPORTANT: You must enable deduplication before you start indexing documents into the
IDOL Content component.

You can use the KillDuplicatesChecksumField parameter to configure Content to reverse normal
deduplication and retain the existing document instead of the incoming document, based on the
value of a specified field in the incoming document.

You can use the KillDuplicatesPreserveFields parameter to configure one or more IDX fields that
Content copies to a newer version of a duplicate document.

Related Topics

« Use KillDuplicatesChecksumField to Prevent Unnecessary Indexing, on page 72

IDOL Server (12.12) Page 70 of 611

Administration Guide
Chapter 3: Index Data

To enable deduplication as the default for all indexing jobs
1. Open the IDOL Content component configuration file in a text editor.

2. Inthe [Server] section, set the KillDuplicates parameter to REFERENCE,
REFERENCEMATCHN, the names of the ReferenceType fields to use to determine which
documents are duplicates, or a combination of ReferenceType field and a field that contains
a document version number. For more information about these options, see Deduplication
Options—KillDuplicates, on page 68, or refer to the IDOL Server Reference.

You can identify fields that contain document references by setting up an appropriate field
process. When you index a document that has the same value in the same ReferenceType
field as an existing document in Content, Content detects the duplicate. It deletes the
existing document and replaces it with the new one.

3. Save and close the configuration file.
4. Restart the IDOL Content component for your changes to take effect.

You can now index documents into the IDOL Content component.
Related Topics
¢ Deduplication Options—KillDuplicates, on page 68
» Setup ReferenceType Fields, on page 101

Limit ReferenceType Fields used for Deduplication

You identify fields as ReferenceType fields through field processes. If you list multiple fields in the
same PropertyFieldCSVs parameter where you list the FieldName for deduplication, Content uses
all the fields to eliminate duplicate documents. For example:

[SetReferenceFields]
Property=Reference
PropertyFieldCSVs=*/DREREFERENCE, * /URL

In this example, Content uses both the DREREFERENCE field and URL field to eliminate duplicate copies
if you set KillDuplicates to DREREFERENCE.

If you want to define multiple ReferenceType fields but do not want to use them all for duplicate
elimination, set up multiple field processes. For example:

[SetReferenceFields]
Property=Reference
PropertyFieldCSVs=*/DREREFERENCE

[SetMoreReferenceFields]
Property=Reference
PropertyFieldCSVs=*/URL

In this example, Content uses only the DREREFERENCE field to eliminate duplicate copies if you set
KillDuplicates to DREREFERENCE. It does not use the URL field.

Related Topics
» Setup ReferenceType Fields, on page 101

IDOL Server (12.12) Page 71 of 611

Administration Guide
Chapter 3: Index Data

Use KillDuplicatesChecksumField to Prevent Unnecessary Indexing

By default, when Content detects that a new document is a duplicate of an existing one, it replaces
the existing document with the new one.

For either of these two KillDuplicates options, you can also use the
KillbuplicatesChecksumField configuration parameter to specify a checksum field. Content then
checks the value of this field in both documents. If the value is the same, Content keeps the existing
document rather than replacing it with the new document.

This process prevents unnecessary updates. For example, when refetching a Web site, use
KillDuplicatesChecksumField to configure Content to update the index for this site only if the site
has changed.

NOTE: The KillDuplicatesChecksumField must be a ReferenceType field.

Use KillDuplicatesPreserveFields to Preserve a Field

If there is a field that you want to keep in all versions of a document, regardless of whether it is later
deleted or changed, you can use the KillDuplicatesPreserveFields configuration parameter.

To preserve fields, set KillDuplicatesPreserveFields to a comma-separated list of fields that you
want to save.

When Content receives a duplicate document, it copies this field from the existing version of the
document to the newer version when it performs KillDuplicates.

NOTE: If there is more than one copy of the document in the Content index when a new version
arrives, Content copies the preserve field from the existing duplicate with the highest document
ID.

Enable Deduplication for Individual Index Jobs

To enable deduplication for individual indexing jobs, use the KillDuplicates action parameter in the
DREADD or DREADDDATA index actions.

You can use the KeepExisting action parameter when directly indexing data into the IDOL Content
component with deduplication to reduce the indexing load.

You can use the following action parameters to move duplicates to a specified database.
e KillDuplicatesDB
e KillDuplicatesDBField
e KillDuplicatesMatchDBs
e KillDuplicatesMatchTargetDB

e KillDuplicatesPreserveFields

You can use any of the deduplication options with DREADD and DREADDDATA actions. When you use
either of these actions:

IDOL Server (12.12) Page 72 of 611

Administration Guide
Chapter 3: Index Data

¢ ThekKillbuplicates setting specified in either action overrides the same setting in the
KillDuplicates configuration parameter.

 |f you do not specify the KillDuplicates action parameter with either of the actions, the setting
in the KillDuplicates configuration parameter is used.

Related Topics
» DREADD: Index IDX and XML Files Directly, on page 53

DREADDDATA: Index Data over a Socket, on page 59
» Use KeepExisting to Minimize the Index Load, below

DREADDDATA Parameters, on page 59

¢ Deduplication Options—KillDuplicates, on page 68

Use KeepExisting to Minimize the Index Load

If you set KillDuplicates to Reference or FieldName, you can use the KeepExisting action
parameter to minimize the indexing load on Content when deduplicating.

Set KeepExisting to True to reverse normal deduplication and discard the document it has received
for indexing and keep the existing matching document that it already contains instead.

Enable Deduplication for Connector Index Jobs

If you use a connector to retrieve documents from a remote repository for indexing into the
IDOL Content component, you can configure the KillDuplicates configuration parameter for the
CFS to set deduplication.

¢ The options available for the KillDuplicates IDOL Content component configuration
parameter are also available for the CFS configuration parameter.

¢ The same constraints for deduplication apply when you configure for deduplication using a
KillDuplicates option for the CFS.

For more information on connector deduplication, refer to the Connector Framework Server
Reference.

Related Topics
e Deduplication Options—KillDuplicates, on page 68

¢ Deduplication Constraints, below

Deduplication Constraints

There are some constraints on deduplication when using other IDOL parameters.

IDOL Server (12.12) Page 73 of 611

Administration Guide
Chapter 3: Index Data

Use the Combine Operation

The IDOL Content component cannot use the same ReferenceType field for deduplication as it uses
for the Combine action parameter. The Combine operation occurs at query time and clashes with
deduplication. If you intend to deduplicate when indexing and use the Combine action parameter, you
must set up separate ReferenceType fields for these processes.

Related Topics

e Use KillDuplicates and Combine on ReferenceType Fields, on page 102

Use Deduplication with DIH Reference-Based Indexing

You can enable the DIH for reference-based indexing. Refer to the DIH Administration Guide.

If you index documents into IDOL with the DIH enabled for reference-based indexing, it might prevent
deduplication of documents with different references. In this case, use only one of the following
deduplication options:

e KillDuplicates=REFERENCE

e KillDuplicates=NONE

Use Deduplication with DIH Field-Based Indexing

You can use field-based indexing in the DIH to ensure correct deduplication in a distributed system.
For more information on configuring the DIH for field-based indexing, refer to the DIH Administration
Guide.

If you set KeepExisting to False, or use KillDuplicatesDB options, it might prevent correct
deduplication. To deduplicate correctly, you can distribute data by the DeDupeHash field (MDS hash)
of the documents. In this way, DIH sends all duplicates to the same child server. Setting
KillDuplicates to DeDupeHash during the indexing action then ensures accurate deduplication.

To use a field for deduplication, you must configure it as a ReferenceType field. You do not need to
configure it as ReferenceType in the DIH configuration file.

Deduplication of content occurs for all reference fields specified in a single PropertyFieldCSvs listin
the IDOL Content component configuration file. To use only the DeDupeHash field to deduplicate, and
not also the DREREFERENCE, you must set these reference fields in separate field processing sections
in the IDOL Content component configuration file.

Add Metadata to Documents

When you index a document into the IDOL Content component, Content automatically stores all its
metadata as fields. You can add additional fields to a document after you index it by running a
DREREPLACE index action.

IDOL Server (12.12) Page 74 of 611

Administration Guide
Chapter 3: Index Data

Related Topics
» Setup the Field Index Process, on page 46
e Change Document Field Values, on page 434

Check Index Status

You can check whether the indexing of data into the IDOL Content component is successful by
entering the following URL into your Web browser:

http://Contenthost:port/action=IndexerGetStatus

where:

Contenthost is the IP address or host name of the machine on which the IDOL Content
component is installed.

port is the IDOL Content component ACI port (the Port value specified in the
[Server] section of IDOL Content component configuration file).

The IndexerGetStatus action displays the status of the IDOL Content component index queue.

TIP: Alternatively, you can use the IDOL Admin interface. In the Monitor section, you can view the
current queue of indexing jobs on the Indexer Status page. You can also view information about
the index queue on the Index Queue tab in the Status section. For more information, refer to the
IDOL Admin User Guide.

IndexerGetStatus Example

An IndexerGetStatus action is sent to the IDOL Content componentfollowing a DREADD index action.
Content returns the following output:

<autnresponse>

<action>INDEXERGETSTATUS</action>

<response>SUCCESS</response>

<responsedata>

<timeformat>YYYY/MM/DD HH:NN:SS</timeformat>

<state>Inactive (no jobs)</state>

<item>
<id>1</id>
<origin_ip>127.0.0.1</origin_ip>
<received_time>2015/03/31 16:14:43</received_time>
<start_time>2015/03/31 16:14:44</start_time>
<end_time>2015/03/31 16:16:44</end_time>
<duration_secs>120</duration_secs>
<percentage_processed>100</percentage_processed>
<documents_processed>44710</documents_processed>

IDOL Server (12.12) Page 75 of 611

Administration Guide
Chapter 3: Index Data

<documents_deleted>0</documents_deleted>
<status>-1</status>
<description>Finished</description>
<docidrange>1-44710</docidrange>

<index_command>

/DREADD?myfile.idx&KILLDUPLICATES=REFERENCE&DREDBNAME=Archive

</index_command>

</item>
</responsedata>
</autnresponse>

where:
Tag Name
<timeformat>
<state>
<id>
<origin_ip>
<received_time>
<start_time>
<end_time>

<duration_secs>

<documents_
processed>

<documents_
deleted>

<status>

<description>

<docidrange>

<index_command>

Description

The time and date format that the response uses.

The status of the Content component indexing thread.

The ID number of the index action.

The IP address of the machine that sent the index action to Content.
The time that Content received the action.

The time that Content started processing the index action.

The time that Content finished processing the index action.

The total amount of time in seconds that Content spent processing the
index action.

The number of documents that Content processed during the indexing
job.

The number of documents deleted during the indexing process.

The status code of the current status of the index action in the Content
index queue.

The description of the <status> number.

The range of DocIDs of documents that were processed during the index
job.

The index action for the index job.

For the DRECOMPACT index action, IndexerGetStatus also returns a <drecompact_status> section to
show the time that each stage of the compaction takes. This section contains <stage> tags, with the
following attributes.

IDOL Server (12.12) Page 76 of 611

Administration Guide
Chapter 3: Index Data

name The name of the compaction stage.

description The description of the compaction stage.

percentage_ The percentage of the compaction stage that is complete.

complete

time_seconds The time that the compaction stage has taken.

paused If you pause the DRECOMPACT index action, this attribute is set to True for the

paused stage.

The Content component returns the following status messages in the <state> tag to show whether it
is currently processing jobs, or if it is paused:

Running

Paused

Paused (DREFLUSHANDPAUSE)
Paused (out of disk space)
Paused (waiting for flush lock)

Inactive (no jobs)

Related Topics

¢ IndexerGetStatus Status Codes, below

IndexerGetStatus Status Codes

Codes in bold are status messages. All other codes indicate that there is a problem with the indexing
process.

Code Message Explanation
-1 Finished The indexing process is complete.
-2 Out of disk space Content ran out of disk space before it completed

the indexing process.
-3 File not found The index file could not be found.

—4 Database not found The database into which you are trying to index
could not be found.

-5 Bad parameter The indexing action syntax is incorrect.
-6 Database exists The database that you are trying to create already
exists.

IDOL Server (12.12) Page 77 of 611

Administration Guide
Chapter 3: Index Data

-10
-11

-12

-13

~14

-15

-16

-17

Message

Queued

Unavailable

Out of Memory

Interrupted
XML is not well formed

Retrying interrupted command
Backup in progress

Max index size reached

Max number of sections reached

Indexing Paused
Indexing Resumed
Indexing Cancelled
Out of file descriptors

LanguageType not found
SecurityType not found

Child engines returned differing
messages

Badly formatted index command

To be sent to DRE

DREADDDATA: Data received did

IDOL Server (12.12)

Explanation

The indexing action is queued and it is run when all
preceding indexing actions are complete.

Content is about to shut down or indexing is
paused.

Content ran out of memory before the indexing
process could be completed.

The indexing action was interrupted.
Indexing failed because the XML is not well formed.

Content is processing an index action that was
previously interrupted.

Content is performing a backup.

The indexing job exceeds the maximum indexing
size (your license determines the maximum
indexing size).

The indexing job exceeds the maximum number of
sections that you can index. Your license
determines the number of sections that you can
index.

The indexing process was paused.
The indexing process was restarted.
The indexing process was cancelled.
Content ran out of file descriptors.

The language type of the index data could not be
found.

The security type of the index data could not be
found.

The child servers returned different messages to
the DIH. This code is reported by DIH only.

The indexing action was rejected by a child server
because the syntax is not valid.

The index action is queued to be sent to the
IDOL Content component. This code is reported by
DIH only.

The data in the DREADDDATA action did not contain a

Page 78 of 611

Administration Guide
Chapter 3: Index Data

Code Message
not include #DREENDDATA

=27 Command failed more times than
the configured retry limit

-28 The index ID specified is invalid

-29 Command was redistributed to
sibling engines as this engine was
either unavailable or not
accepting index jobs

-30 Database name too long

=31 Command ignored due to id
match

-33

-34 Pending commit

=35 Initializing

-36 Reading IDX

-38 Processing in remote engine

Explanation

#DREEDNDDATA statement indicating the end of the
data.

The indexing action exceeded the maximum
number of retries specified by the MaximumRetries
parameter in the DIH configuration. This code is
reported by DIH only.

The index ID returned by the child server is not
valid. This code is reported by DIH only.

The indexing action was sent to sibling servers
because the child server was either unavailable or
not accepting indexing jobs. This code is reported
by DIH only.

The name of the database in which you are
indexing documents is too long. The length is
defined internally as 63 characters.

The DREINITIAL action was ignored because it did
not match the ID specified in the InitialID
parameter.

The database cannot be created because the
maximum number of databases was exceeded.
The maximum is defined internally as 32,767.

The indexing job is complete and the documents
become available for searching after the next
delayed sync cycle, which is specified in the
DelayedSync parameter.

The indexing job is being started. This code is
reported by DIH only.

The IDX file is being read from disk, prior to being
sent to the DRE. This code is reported by DIH only.

The target engine of a DREEXPORTREMOTE operation
is processing the exported documents.

NOTE: If the IndexerGetStatus action returns a positive number, this number indicates the
percentage of the indexing queue that has been completed.

IDOL Server (12.12)

Page 79 of 611

Administration Guide
Chapter 3: Index Data

Tag Documents into Clusters

After indexing, you can tag documents into clusters of similar documents. Tagging can be useful for
grouping duplicate documents together.

Use the index action DRETAGDOCCLUSTERS. This action takes the following parameters.

TagField The full field name that contains document tags.
MinScore The matching threshold to determine whether a document belongs to a
cluster.

TagSourceField The full field name to use as the source of the TagField value.

MinID The first document ID to tag.

MaxID The last document ID to tag.

CheckSumField A reference field to use to determine whether a document is an exact match
of another document.

TaggedDBName The database which Content moves tagged documents to and retrieves tags
from.

RelevanceField The full field name that holds the relevance score of the document to its

cluster.
DatabaseMatch The names of databases that contain documents that you want to tag.
CheckSumDBs The names of databases that you can checksum match against.
ClusterDBs The names of databases that you can cluster against. This list includes

TaggedDBName if specified.

DRETAGDOCCLUSTERS Example

The IDOL Content component indexes three documents:

#DREREFERENCE A

#DREDBNAME Default

#DREFIELD CHECKSUM="ABCD1234"
#DRECONTENT

apple banana cheese
#DREENDDOC

#DREREFERENCE B

#DREDBNAME Default

#DREFIELD CHECKSUM="ABCD1234"
#DRECONTENT

IDOL Server (12.12) Page 80 of 611

Administration Guide
Chapter 3: Index Data

apple banana cheese
#DREENDDOC

#DREREFERENCE C

#DREDBNAME Default
#DREFIELD CHECKSUM="XYZ9876"
#DRECONTENT

apple banana data
#DREENDDOC

After indexing, you send the following action:

[...]/DRETAGDOCCLUSTERS?TagField=DOCUMENT/CLUSTERID&MinScore=608&TagSourceField=DOCUM
ENT/DREREFERENCE&MinID=1&MaxID=3&CheckSumField=DOCUMENT/CHECKSUM&TaggedDBName=tagged
&RelevanceField=DOCUMENT/CLUSTERSCORE

The IDOL Content component modifies the data:

#DREREFERENCE A

#DREDBNAME Tagged

#DREFIELD CHECKSUM="ABCD1234"
#DREFIELD CLUSTERID="A"
#DREFIELD CLUSTERSCORE="100.00"
#DRECONTENT

apple banana cheese

#DREENDDOC

#DREREFERENCE B

#DREDBNAME Tagged

#DREFIELD CHECKSUM="ABCD1234"
#DREFIELD CLUSTERID="A"
#DREFIELD CLUSTERSCORE="100.00"
#DRECONTENT

apple banana cheese

#DREENDDOC

#DREREFERENCE C

#DREDBNAME Tagged

#DREFIELD CHECKSUM="XYZ9876"
#DREFIELD CLUSTERID="A"
#DREFIELD CLUSTERSCORE="70.00"
#DRECONTENT

apple banana data

#DREENDDOC

Ais tagged as A because it does not match any existing clusters.
B is tagged as A because its CHECKSUM field matches A's.

C is tagged as A because it is similar to A and has a score higher than the specified MinScore (60).

IDOL Server (12.12) Page 81 of 611

Administration Guide
Chapter 3: Index Data

IDOL Server (12.12) Page 82 of 611

Chapter 4: Fields

Both document content and metadata are stored in the IDOL Content component as fields.
Retrieving data means retrieving the values of one or more fields. This section describes how to set
up and use fields.

O AbOUL IS . 83
® Configure @a Field ProCess 86
® Update Field Configuration 89
CIndex Fields 94
® Configure the Number Index Process 96
® NumericDateType Fields 97
® NumericType Flelds ... 98
® FieldCheckType Fields 99
® ReferenceType Fields 101
® Highlight Fields ... 104
® BitFieldType Fields 105
® Metadata Fields ... 107
® Change Field Values ... 109

About Fields

Data passes to the IDOL Content component (for example, from IDOL connectors) in the form of IDX
or XML fields. Content stores all the fields that it receives so that you can search any field by using
FieldText queries. To optimize Content performance, you can specify how it processes and stores
the fields it receives.

You can associate fields with special properties in the IDOL Content component configuration file.
For example, you can instruct Content to treat these fields (or documents that contain them) in a
specific way or read specific information from them.

You can associate a field with more than one property, as long as the properties do not clash.

You can assign the following properties to fields.

ACLType Fields that hold access control lists (ACLSs).

AlwaysMatchType Fields that queries always match when they are present with a
non-empty value.

AutnRankType Fields that hold the document rank.

BitFieldCompressed The index for BitFieldType fields is compressed.

IDOL Server (12.12) Page 83 of 611

Administration Guide
Chapter 4: Fields

BitFieldMaxMemoryKB

BitFieldType

CountType

DatabaseType
DateType
DocumentTrackingType

ExpireAfterDelay

ExpireDateType

FieldCheckType

FlattenIndexType

GeospatialType
HiddenType

HighlightType

Index

IndexNumbers

IndexNumberslMaxLength

IndexNumbers2MaxLength

IndexNumbersType
InvertedAgentType

LangDetectType

LanguageType

IDOL Server (12.12)

The maximum memory (in KB) to allocate for each associated
PropertyFieldCSVs field that has the BitFieldType property

Fields that hold information on document sets. See BitFieldType
Fields, on page 105.

The number of occurrences of the associated fields are stored in
a fast look-up table in memory to optimize matching of the fields
when you use the MATCHCOVER and EQUALCOVER FieldText
specifiers.

Fields that hold the database that documents belongs to.
Fields that hold the date of documents.
Fields that hold the tracking IDs of documents.

An offset, in hours, to add to the expiration date in the
associated ExpireDateType field.

Fields that hold the expiration dates of documents.

A field that occurs in a large number of documents and holds a
value that is frequently used to restrict query results.

Fields that originate from hierarchically structured documents
and whose content is stored as one level.

Fields that contain geospatial (location) information.
Fields whose content is hidden.

If fields contain terms that match a query, these terms are
highlighted. See Highlight Fields, on page 104.

Fields that are stored as Index fields. See Index Fields, on
page 94.

Restrict the numbers to index for IndexNumbersType fields.

Restrict the length of pure numeric terms for IndexNumbersType
fields.

Restrict the length of alphanumeric terms for IndexNumbersType
fields.

Fields to index as numeric or mixed-alphanumeric fields.
Fields that are contained within inverted agents.

Fields to use for automatic language detection when
AutoDetectLanguagesAtIndex is setto True.

Fields that hold the language type of documents.

Page 84 of 611

Administration Guide
Chapter 4: Fields

MatchType

MemCachedType

NonReversibleType

NumericDateType

NumericIntegerOnly

NumericNormalMaxMem

NumericType

OcrFilterType

ParametricType

ParametricRangeType

PrintType

Ranges

ReferenceMemoryMappedType

ReferenceType

SectionBreakType

SecurityType

SortType

IDOL Server (12.12)

Fields to store in a fast look-up table in memory to optimize
matching of the fields when you use the following FieldText
specifiers: ARANGE, BIASVAL, EQUALCOVER, MATCH, MATCHALL,
MATCHCOVER, STRING, WILD

Fields to store in a memory cache.

Fields whose content is not line-reversed on index, even if the
document is detected as being right-to-left Arabic or Hebrew.

Fields that contain numeric dates and are stored in a fast look-
up table in memory to optimize matching of the fields when you
use FieldText specifiers. See NumericDateType Fields, on
page 97.

Fields with the NumericType property store signed 64-bit
integer-only values, rather than doubles.

The maximum memory (in KB) to allocate for each associated
PropertyFieldCSVs field that has one of these properties:
NumericDateType, NumericType, ParametricType.

Fields that contain numeric data and are stored in a fast look-up
table in memory to optimize matching of the fields when you use
FieldText specifiers. See NumericType Fields, on page 98.

Fields to evaluate by the OCR filter, and not to index or store if
its quality is unsatisfactory (the field is stored, but is empty).

Fields that hold parametric values.

Fields that contain numeric values to use to generate numeric
ranges for parametric searches.

Fields whose content is displayed with results when you set the
query action Print parameter to Fields.

The number of ranges to use for ParametricRangeType fields.

Fields that hold a value that is an existing value in a different
ReferenceType field. This is then used in combination with the
FieldRecurse action parameter and the field specifier
MATCHRECURSE.

Fields that hold document references. See ReferenceType
Fields, on page 101.

Fields that hold the section number of documents that were split
by the Import module.

The security type of documents that contain associated fields.

Fields to store for fast sorting when you use the ARANGE

Page 85 of 611

Administration Guide
Chapter 4: Fields

FieldText specifier or an alphabetical Sort option when
querying Content.

NOTE: Micro Focus recommends that you optimize ARANGE
by using the MatchType property, rather than SortType.

SourceType Fields to use to generate summaries and to suggest
conceptually similar documents.

SynonymType Fields that hold the name of the synonym job whose settings
apply to documents that contain associated fields.

TextParseIndexType Fields to treat as Index fields when sending a query using the
TextParse and AgentBooleanField parameters.

TitleType Fields that hold document titles.

TrimSpaces Fields from which to remove multiple, leading, or trailing spaces
before storing in Content.

Weight The factor by which the weight of terms in associated fields is
increased if they match query terms.

NOTE: You cannot configure a field with more than one numeric-based type concurrently.
Numeric-based types include NumericType, NumericDateType, MatchType,
ParametricRangeType, ReferenceMemoryMappedType, and ParametricType when the
ParametricNumericMapping configuration parameter is set to True.

If your configuration file contains a field with a conflicting configuration, the server uses an internal
precedence to set the field property. It flags the configuration conflict in the logs, and in
configuration validation.

You can view information about the indexing fields that are defined for the documents in the data
index on the Field Types page in the Monitor section of the IDOL Admin interface. For more
information, refer to the IDOL Admin User Guide.

Related Topics
e Display Online Help, on page 32
« Setup the Field Index Process, on page 46

» Configure a Field Process, below.

Configure a Field Process

The [FieldProcessing] section in the IDOL Content component configuration file allows you to
identify particular fields in documents. You can then apply any type of processing to them or the
document that contains them during the indexing process, depending on the field value.

IDOL Server (12.12) Page 86 of 611

Administration Guide
Chapter 4: Fields

In this way you can apply multiple processes to documents without needing to set up a configuration
section for each process combination.

NOTE: When identifying fields, use the following formats:
* /FieldName to match root-level fields.
e */FieldName to match all fields except root-level.

e /Path/FieldName to match fields that the specified path points to.

Field names must not contain spaces, accents, or multibyte characters, and they must not start
with a number. For IDX documents, Content converts these text elements to underscores (_)
when it indexes the fields. You must also change any queries that reference these field names to
use the modified field name.

To apply processes to fields or documents that contain specific fields

1.
2.

Open the IDOL Content component configuration file in a text editor.
In the [FieldProcessing] section, list the processes to apply to fields. For example:

[FieldProcessing]
0=MyFirstProcess
1=IndexFields
2=MyCombinedProcess
3=IndexAndWeightHigher

Create a section for each process that you listed. In each section, declare a property for the
process (you define the property later by setting one or more applicable configuration
parameters). Identify the fields to associate with the processes.

You can use the PropertyMatch parameter to identify a specific value that fields must have
to be processed. (This is useful if you set up a process that identifies security or language
fields.)

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]

Property=MyFirstProperty
PropertyFieldCSVs=*/MyField, */MySecondField
PropertyMatch=*myString*

[IndexFields]
Property=MySecondProperty
PropertyFieldCSVs=*/DRECONTENT, */DRETITLE

[MyCombinedProcess]
Property=MyCombinedProperty
PropertyFieldCSVs=*/MyDateField, */MyIndexField

[IndexAndWeightHigher]

IDOL Server (12.12) Page 87 of 611

Administration Guide
Chapter 4: Fields

Property=IndexHigherhWeight
PropertyFieldCSVs=*/SUMMARIES

4. Create a section for each of the properties and specify appropriate configuration parameters
for each. These configuration parameters define the processes that are applied to all the
fields (or all documents that contain the fields) that you previously associated with the
processes.

For example:

[MyFirstProperty]
HiddenType=True

[MySecondProperty]
Index=True

[MyCombinedProperty]
DateType=True
Index=True

[IndexHigherWeight]
Index=True
Weight=2

Related Topics
e Display Online Help, on page 32
Example:

[FieldProcessing]
0=IndexFields
1=IndexAndWeightHigher
2=SectionBreakFields
3=DateFields
4=DatabaseFields
5=SetReferenceFields

[IndexFields]

// Controls which fields are indexed
Property=Index
PropertyFieldCSVs=*/DRECONTENT, */DRETITLE

[IndexAndWeightHigher]

// Fields to index with a weight
Property=IndexWeight
PropertyFieldCSVs=*/SUMMARIES

[SectionBreakFields]

// Field containing document section number
Property=Section
PropertyFieldCSVs=*/DRESECTION

IDOL Server (12.12) Page 88 of 611

Administration Guide
Chapter 4: Fields

[DateFields]

// Fields containing the document date
Property=Date

PropertyFieldCSVs=*/DREDATE, */harvest_time

[DatabaseFields]

// CSV of field names that define the document database
Property=Database

PropertyFieldCSVs=*/DREDBNAME

[SetReferenceFields]

// CSV of fields that define the document URL
Property=Reference
PropertyFieldCSVs=*/DREREFERENCE, * /DRETITLE

[Index]
Index=True

[IndexWeight]
Index=True
Weight=2

[Section]
SectionBreakType=True

[Date]
DateType=True

[Database]
DatabaseType=True

[Reference]
ReferenceType=True
TrimSpaces=True

Update Field Configuration

The field processes that you configure affect how the IDOL Content component processes data at
index time. As a result, if you want to change the configuration after you have indexed data, there are
often additional steps required to update your index.

There are three methods that you can use to update your field configuration:

IDOL Server (12.12) Page 89 of 611

Administration Guide
Chapter 4: Fields

¢ Manually update the configuration file, and restart the server. In this case, you can use the
Regenerate*Index configuration parameters, where applicable, to automatically regenerate
the modified indexes when you restart the server.

¢ Use the DREREGENERATE index action to modify the field configuration, and run any index
regeneration at the same time.

¢ Use the IDOL Admin interface. This option provides a user interface for the

DREREGENERATE index action.

These methods are the same as the methods that you can use to regenerate an index after a
validation failure. For more information, see Repair an Index After Validation Fails, on page 449.

You can make many field configuration changes using any of these methods. The

DREREGENERATE index action allows you to make these configuration updates without restarting your
server. However, for some changes you must reindex your content to make configuration changes.
The following table describes how to update the field configuration for a particular property type.

Field type
ACLType
AlwaysMatchType
AutnRankType

BitFieldType
(and BitFieldCompressed
BitFieldMaxMemoryKB)

CountType
DatabaseType
DateType
DocumentTrackingType

ExpireDateType
(and ExpireAfterDelay)

FieldCheckType
FlattenIndexType

GeospatialType

HiddenType
HighlightType
Index

IndexNumbers

IDOL Server (12.12)

Update method
Requires reindex
Requires reindex
Requires reindex

RegenerateBitFieldIndex or DREREGENERATE with
Type=BitField.

RegenerateCountIndex or DREREGENERATE with Type=Count
Requires reindex
Requires reindex
Requires reindex

Requires reindex

Requires reindex
Requires reindex

RegenerateGeospatialIndex or DREREGENERATE with
Type=Geospatial.

No additional regeneration required
No additional regeneration required
Requires reindex

Requires reindex

Page 90 of 611

Administration Guide
Chapter 4: Fields

Field type

(and IndexNumbershNMaxLength,
IndexNumbersType)

InvertedAgentType
LangDetectType
LanguageType
MatchType
MemCachedType
NonReversibleType

NumericDateType

NumericType
(and NumericIntegerOnly,
NumericNormalMaxMem)

OcrFilterType
ParametricType
ParametricRangeType
(and Ranges)
PrintType

ReferenceMemoryMappedType

ReferenceType

SectionBreakType

SecurityType

SortType

IDOL Server (12.12)

Update method

Requires reindex

Requires reindex

Requires reindex
RegenerateMatchIndex or DREREGENERATE with Type=Match.
You must restart the server to change the configuration

No additional regeneration required

RegenerateNumericDateIndex or DREREGENERATE with
Type=NumericDate.

RegenerateNumericIndex or DREREGENERATE with
Type=Numeric.

Requires reindex

RegenerateParametricIndex or DREREGENERATE with
Type=Parametric.

RegenerateParametricIndex or DREREGENERATE with
Type=Parametric.

No additional regeneration required

Requires reindex.

You can regenerate this index to restore parent-child
relationships for documents that were indexed out of order, but
not to change the configuration. For more information, refer to
the IDOL Server Reference.

Requires reindex.

You can regenerate this index after a validation failure, but not
to change configuration. See Repair an Index After Validation
Fails, on page 449.

Requires reindex

Requires reindex.

You can regenerate this index after a validation failure, but not
to change configuration. See Repair an Index After Validation
Fails, on page 449.

RegenerateSortIndex or DREREGENERATE with Type=Sort.

Page 91 of 611

Administration Guide
Chapter 4: Fields

Field type Update method
SourceType Requires reindex
SynonymType Requires reindex
TextParseIndexType Requires reindex
TitleType Requires reindex
TrimSpaces Requires reindex
Weight You must restart the server to change the configuration

NOTE: If you attempt to use the DREREGENERATE index action to change a property that requires
reindexing, the DREREGENERATE index action returns an error response and does not make the
change.

When you use the DREREGENERATE index action to update the field configuration, you can set the Type
parameter to Auto to automatically regenerate the indexes for the fields that you have changed. You
can also set Type to None if you do not want to regenerate the indexes immediately, for example so
that you can make a series of field configuration changes and then regenerate the indexes in an
additional index action.

Related Topics
* Repair an Index After Validation Fails, on page 449

Update Fields in the Configuration File

Use the following procedure to update fields in the configuration file.

NOTE: You must use this method for changes where you must reindex content for the changes to
take effect.
To update field configurations in the configuration file
1. Open the IDOL Content component configuration file in a text editor.
2. Find the field configuration section that you want to modify.

3. Modify any of the configuration parameters that you want to change. For details of the
configuration parameters, refer to the IDOL Server Reference.

4. (Optional) If you are modifying a field type that can be regenerated, find the [Server] section,
and set the appropriate Regenerate*Index configuration parameter to True. For example, to
update the configuration for MatchType fields, set the RegenerateMatchIndex parameter to
True.

You can alternatively skip this step and run a DREREGENERATE index action after you restart the
server.

5. Save and close the configuration file.

IDOL Server (12.12) Page 92 of 611

Administration Guide
Chapter 4: Fields

6. Restart the IDOL Content component for your changes to take effect.

7. Update your content:

« If you have modified a field type where the change requires you to reindex your data,

reindex your data.

If you need to regenerate the index, run a DREREGENERATE index action with Type set to the
appropriate index. For example:

http://idolhost:9001/DREREGENERATE?Type=Match

For more information, refer to the IDOL Server Reference.

8. If you used the Regenerate*Index configuration parameters, set the parameters to False again
in the configuration file. This step means that the server does not waste time by regenerating
the index every time you restart the server.

Update Field Configuration with an Index Action

Use the following procedure to make field configuration changes for fields where you can regenerate
the content. This method allows you to update the field configuration without restarting the server,
which avoids downtime.

NOTE: You can update the lists of fields associated with a particular property, but if you want to
add a new field process or add an additional property to an existing process, you must update the
configuration file manually.

To update field configurations with an index action

1. Open the IDOL Content component configuration file in a text editor.

2. Find the field configuration section that you want to modify.

3. Send a DREREGENERATE index action to the IDOL Content component, with the
FieldProcessingSection parameter set to the name of the configuration section that you want
to modify. Set any of the following parameters to update the lists of fields:

AugmentFieldCSvVs. A list of fields that you want to add to the PropertyFieldCSVs
parameter.

DiminishFieldCSVs. A list of fields that you want to remove from the PropertyFieldCSVs
parameter.

AugmentNegativeFieldCSVs. A list of fields that you want to add to the
PropertyNegativeFieldCSVs parameter.

DiminishNegativeFieldCSVs. A list of fields that you want to remove from the
PropertyNegativeFieldCSVs parameter.

Type. Set this parameter to None if you do not want to regenerate the index immediately, for
example if you want to modify several field configuration sections and then run a single
regenerate operation. The default value is Auto, which automatically regenerates the index
for the field configuration that you modify.

IDOL Server (12.12) Page 93 of 611

Administration Guide
Chapter 4: Fields

NOTE: If you set Type to None, you must run a DREREGENERATE index action manually to
regenerate the indexes that you have modified. The DREREGENERATE index action does
not automatically check all field configurations that might need regeneration.

For example:

DREREGENERATE?FieldProcessingSection=SetMatchFields&AugmentFieldCSVs=*/NewMatch
Field, */SpecialMatch&DiminishFieldCSVs=*/ExistingMatchField

This example updates the [SetMatchFields] configuration section, adding NewMatchField
and SpecialMatch to the PropertyFieldCSVs, and removing ExistingMatchField. The
DREREGENERATE index action automatically regenerates the Match index to make the
configuration changes available.

Update Field Configuration with IDOL Admin

Use the following procedure to update your field configuration by using the IDOL Admin interface.
IDOL Admin uses the DREREGENERATE index action.

To update your field configuration by using IDOL Admin
1. Inthe Service Control tab in the Console page, click Regenerate.
The Regenerate dialog box opens.
2. Inthe Type list, click the field type that you want to update.
3. Select a priority for the index action. This determines how Content queues the action.

4. Click Regenerate.

You can monitor the progress of the DREREGENERATE action in the Recent Tasks panel.

Index Fields

Store fields that contain text which you want to query frequently as Index fields. Index fields are
processed linguistically when they are stored in IDOL Server. This means that stemming and stop
word lists are applied to text in Index fields before they are stored, which allows IDOL Server to
process queries for these fields more quickly. Typically DRETITLE and DRECONTENT are fields that are
set up as Index fields.

Do not use the Index field type for fields that contain:
¢ URLs or content that you are unlikely to use.

¢ content that you query frequently, but whose values you query only in their entirety. It is more
efficient to use field specifiers (for example, MATCH) to query these values.

¢ numeric values or dates as Index fields. Instead, store these fields as numeric fields and
numeric date type fields.

IDOL Server (12.12) Page 94 of 611

Administration Guide
Chapter 4: Fields

Related Topics

* NumericType Fields, on page 98
e NumericDateType Fields, on page 97

To set up Index fields

1.

Open the IDOL Server configuration file in a text editor.

2. Listan indexing process in the [FieldProcessing] section. For example:

[FieldProcessing]
0=MyFirstProcess
1=MySecondProcess
2=IndexingFields

Create a section for the indexing process, and in each section, create a property for the
process (you define the property later by setting one or more applicable configuration
parameters). Identify the fields that you want to associate with the process.

You can use the PropertyMatch parameter to identify a specific value that fields must have
to be processed.

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]

Property=MyFirstProperty
PropertyFieldCSVs=*/MyField, */MySecondField
PropertyMatch=*myString*

[MySecondProcess]
Property=MySecondProperty
PropertyFieldCSVs=*/MyOtherField, */MyOtherSecondField

[IndexingFields]
Property=IndexFields
PropertyFieldCSVs=*/DRECONTENT, */DRETITLE

Create a section for your indexing property in which you set the Index parameter to True.
For example:

[MyFirstProperty]
HiddenType=True

[MySecondProperty]
Index=True

[IndexFields]
Index=True

5. Save and close the configuration file. Restart IDOL Server for your changes to take effect.

IDOL Server (12.12) Page 95 of 611

Administration Guide
Chapter 4: Fields

Configure the Number Index Process

You can configure the IDOL Content component to index numeric and alphanumeric fields in several
ways by using the configuration parameter IndexNumbers. Set IndexNumbers to one of the following
values to specify how Content treats numbers:

0 Numbers are not indexed.

1 All numbers are indexed (irrespective of whether they appear on their own or as part of a
word).

2 Numbers are indexed only if they are part of a word (for example DRE4, Y2K and so on).

To restrict this to a narrower set of data, use the field processing property IndexNumbersType. Create
an IndexNumbersFields section and specify which fields qualify. You can limit only terms that are
indexed within the field property.

For example:

[English]
IndexNumbers=2

[IndexNumbersFields]
PropertyFieldCSVs=*/MYFIELD
Property=IndexNumbers

[IndexNumbers]
IndexNumbersType=True
IndexNumbers=2

This means that Content indexes the numeric terms in */MYFIELD that satisfy IndexNumbers=2 (non-
numeric and mixed-alphanumeric), whereas all other fields index with IndexNumbers=1 (all numeric
terms).

NOTE: If the IndexNumbers configuration parameter is not specified in a property section, its
default is e.

You can also limit the indexing of numeric or mixed-alphanumeric terms by the length of the term.
For example:

[IndexNumbers1]
IndexNumbersType=True
IndexNumbers=1
IndexNumberslMaxLength=5
IndexNumbers2MaxLength=6

This means that fields with this property have all numbers indexed, assuming the language has
IndexNumbers=1 configured, except for pure numeric terms longer than five characters, which are not
indexed. Alphanumeric terms longer than six characters are also not indexed.

IDOL Server (12.12) Page 96 of 611

Administration Guide
Chapter 4: Fields

| NOTE: You cannot set the length to more than 255.

NumericDateType Fields

You can configure the IDOL Content component to identify fields that contain dates. When these
fields are indexed, Content stores them in a fast look-up table in memory, so that it can quickly return
the fields.

NOTE: You cannot configure a field with two numeric-based types concurrently. Numeric-based
types include NumericType, NumericDateType, MatchType, ParametricRangeType,
ReferenceMemoryMappedType, and ParametricType when the ParametricNumericMapping
configuration parameter is set to True.

Content converts dates to numerical values (epoch seconds) and identifies the fields that contain the
numerical date values.
To set up memory mapping for NumericDateType fields

1. Open the IDOL Content component configuration file in a text editor.

2. Lista process that identifies numeric date fields in the [FieldProcessing] section. For
example:

[FieldProcessing]
0=MyFirstProcess
1=NumericDateFields

3. Create a section for each process that you listed, and in each section, create a property for
the process (you define the property by setting one or more applicable configuration
parameters). Identify the fields that you want to associate with the process.

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]
Property=MyProperty
PropertyFieldCSVs=*/MyField, */MyOtherField

[NumericDateFields]
Property=NumDate
PropertyFieldCSVs=*/BIRTHDAY, */STARTDATE

4. Create a section for the property in which you set the NumericDateType parameter to True.
This enables Content to memory map the associated PropertyFieldCSVs fields, and
identify them as fields that contain date values. For example:

[NumDate]
NumericDateType=True

IDOL Server (12.12) Page 97 of 611

Administration Guide
Chapter 4: Fields

5. Save and close the configuration file.

6. Restart the IDOL Content component for your changes to take effect.

If you now send a query for a specific value that is stored in the BIRTHDAY field, Content memory
maps the range that this value is in, so that it can return results more quickly next time a value that
lies in this range is queried.

For example:
http://12.3.4.56:4000/action=Query&FieldText=RANGE{01/01/1980,31/12/1980}:BIRTHDAY

The BIRTHDAY field must contain a numeric date value that is between 01/01/1980 and 31/12/1980 for
this document to be returned.

NumericType Fields

You can configure the IDOL Content component to identify fields that contain numerical values.
When these fields are indexed, Content stores them in a fast look-up table in memory, so that it can
quickly return the field. A numeric field can contain a comma-separated list of numbers. Content
stores each value as a numeric value for this field, for this document.

NOTE: You cannot configure a field with two numeric-based types concurrently. Numeric-based
types include NumericType, NumericDateType, MatchType, ParametricRangeType,
ReferenceMemoryMappedType, and ParametricType when the ParametricNumericMapping
configuration parameter is set to True.
To set up NumericType fields to speed numeric queries
1. Open the IDOL Content component configuration file in a text editor.

2. Lista process that identifies numeric fields in the [FieldProcessing] section. For example:

[FieldProcessing]
@=MyFirstProcess
1=PriceFields

3. Create a section for each process that you listed, and in each section, declare a property for
the process (you define the property later by setting one or more applicable configuration
parameters). Identify the fields that you want to associate with the process.

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]
Property=MyProperty
PropertyFieldCSVs=*/MyField, */MyOtherField

[PriceFields]

IDOL Server (12.12) Page 98 of 611

Administration Guide
Chapter 4: Fields

Property=Price
PropertyFieldCSVs=*/PRICE

4. Create a section for the property in which you set the NumericType parameter to True. This
enables Content to memory map the associated PropertyFieldCSVs fields. For example:

[Price]
NumericType=True

5. Save and close the configuration file.

6. Restart the IDOL Content component for your changes to take effect.

If you now send a query for a specific value that is stored in the PRICE field, Content memory maps
the range that this value is in, so that it can return results more quickly next time a value that lies in
this range is queried.

Examples:
http://12.3.4.56:4000/action=Query&FieldText=NRANGE{50,100} :PRICE

The PRICE field must contain a number between 50 and 100 (including decimal numbers) for this
document to return.

http://12.3.4.56:4000/action=Query&Text=computer&Sort=PRICE:numberincreasing

IDOL Server sorts the results that it returns for the query according to the values that their PRICE
fields contain. The results whose PRICE field contains the smallest value is listed first, followed by
results with increasing values in the PRICE field.

FieldCheckType Fields

You can configure the IDOL Content component to identify a field contained in a large number of
documents whose entire value is frequently used to restrict results (for example, a field that stores
category names). When this field is indexed, Content stores it in a fast look-up table in memory, so
that it can quickly return the field.

NOTE: If you set URLAnalysis to True in the [Server] section of the IDOL Content component
configuration file, you cannot identify a field as a FieldCheckType field, because Content
automatically uses the domain it finds in ReferenceType fields as the FieldCheck value.
To set up FieldCheckType fields
1. Open the IDOL Content component configuration file in a text editor.

2. Lista process that identifies numeric fields in the [FieldProcessing] section. For example:

[FieldProcessing]
0=MyFirstProcess
1=FieldCheckTypelIdentification

3. Create a section for each process that you listed, and in each section, create a property for
the process (you define the property later by setting one or more applicable configuration

IDOL Server (12.12) Page 99 of 611

Administration Guide
Chapter 4: Fields

parameters). Identify the fields that you want to associate with the process.
NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]
Property=MyProperty
PropertyFieldCSVs=*/MyField, */MyOtherField

[FieldCheckTypeldentification]
Property=FieldCheck
PropertyFieldCSVs=*/CATEGORY

4. Create a section for the property in which you set the FieldCheckType parameter to True.
This enables Content to memory map the associated PropertyFieldCSvs fields. For
example:

[FieldCheck]
FieldCheckType=True

5. Save and close the configuration file.
6. Restart the IDOL Content component for your changes to take effect.
When you now use a Query, Suggest, or SuggestOnText action to query for results, you can:

* Use the Combine action parameter to restrict the result output to the most relevant result for
each available FieldCheckType field value (by setting it to FieldCheck).

¢ Use the FieldCheck action parameter to restrict the result output to documents whose
FieldCheckType field matches a specific value (this is also available for the
GetQueryTagValues action).

Combine Parameter Example

In this example, Content is configured to store the Category field as a FieldCheckType field.
The following query is sent to Content.

http://12.3.4.56:4000/action=Query&Text=The best thing to do in your spare
time&Combine=FieldCheck

If Content contains 50 documents that match the query text, of which eight contain a Category field
with the value Sport, five contain a Category field with the value Gardening, and one contains a
Category field with the value Cooking, the above query returns only three results:

¢ The most relevant of the documents whose Category contains the value Sport.
¢ The most relevant of the documents whose Category contains the value Gardening.

¢ The document whose Category contains the value Cooking.

IDOL Server (12.12) Page 100 of 611

Administration Guide
Chapter 4: Fields

FieldCheck Parameter Example

In this example, Content is configured to store the Color field as a FieldCheckType field.
The following query is sent to Content.
http://12.3.4.56:4000/action=Query&Text=A fast sports car&FieldCheck=Red

This query returns only results whose content matches the specified Text and whose
FieldCheckType field has the value Red.

ReferenceType Fields

ReferenceType fields are used to identify documents. Before you index a document into the

IDOL Content component, you have to set up a field process that determines which of the fields in a
document are used as its ReferenceType field (note that a document can have multiple
ReferenceType fields).

Atindex time, you can use ReferenceType fields to eliminate duplicate copies of documents. At query
time, you can use ReferenceType fields to filter results (for example, by using the Combine action
parameter or by specifying references that results must or must not match).

Note that if you want to eliminate duplicate document copies and use the Combine action parameter,
you must set up separate ReferenceType fields for these processes.

Related Topics
e Prevent Duplicate Documents, on page 68
e Combine Parameter, on page 355

» Use KillDuplicates and Combine on ReferenceType Fields, on the next page

Set up ReferenceType Fields

You must set up a field process to identify ReferenceType fields before you start indexing documents
into the IDOL Content component.
To set up ReferenceType fields

1. Open the IDOL Content component configuration file in a text editor.

2. Inthe [FieldProcessing] section, add a process that identifies ReferenceType fields. For
example:

[FieldProcessing]
0=MyFirstProcess
1=MySecondProcess
2=SetReferenceFields

IDOL Server (12.12) Page 101 of 611

Administration Guide
Chapter 4: Fields

3. Create a section for the process that you added, and in each section create a property for
the process (you define the property later by setting one or more applicable configuration
parameters). Identify the fields that you want to associate with the process.

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]
Property=MyFirstProperty
PropertyFieldCSVs=*/MyField, */MySecondField

[MySecondProcess]
Property=MySecondProperty
PropertyFieldCSVs=*/MyThirdField

[SetReferenceFields]
Property=Reference
PropertyFieldCSVs=*/DREREFERENCE, */URL

4. Create a section for each of the properties and specify appropriate configuration settings for
each. These configuration parameters define the processes that are applied to all the fields
(or all documents that contain the fields) that you previously associated with the processes.
For example:

[MyFirstProperty]
HiddenType=True

[MySecondProperty]
Index=True

[Reference]
ReferenceType=True
TrimSpaces=True

5. Save and close the configuration file.
6. Restart the IDOL Content component for your changes to take effect.

You can now index documents into IDOL Server.
NOTE: If you do not set up a field process that identifies ReferenceType fields, Content

automatically allocates a unique number to each document that is indexed. Content uses this
number as the reference for the document.

Use KillDuplicates and Combine on ReferenceType Fields

When you instruct the IDOL Content component to eliminate duplicate document copies at index time
using a specific ReferenceType field (by setting the KillDuplicates parameterin the IDOL Content
component configuration file), it automatically uses any field listed for PropertyFieldCSVs alongside

IDOL Server (12.12) Page 102 of 611

Administration Guide
Chapter 4: Fields

this ReferenceType field in the IDOL Content component configuration to eliminate duplicate
document copies as well.

However, Content cannot use the same field for deduplication as for the Combine action parameter,
because the Combine operation clashes (carried out at query time) with Content eliminating duplicate
fields. This clash means that, if you want to eliminate duplicate document copies and use the
Combine action parameter, you must set up separate ReferenceType fields for these processes.

Related Topics

e Prevent Duplicate Documents, on page 68

To use KillDuplicates and Combine on ReferenceType fields
1. Open the IDOL Content component configuration file in a text editor.

2. Inthe [FieldProcessing] section, add two processes that identify ReferenceType fields
(note that you must set up a field process to identify ReferenceType fields before you start
indexing documents into Content). One of them is used to eliminate duplicate copies of
documents, and the other one is used for the Combine operation.

For example:

[FieldProcessing]
0=MyFirstProcess
1=MySecondProcess
2=SetUpReferenceFields
3=SetUpMoreReferenceFields

3. Create a section for the processes that you added, and in each section, create a property for
the respective process (you define the property later by setting one or more applicable
configuration parameters). Identify the fields that you want to associate with each process.

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]
Property=MyFirstProperty
PropertyFieldCSVs=*/MyField, */MySecondField

[MySecondProcess]
Property=MySecondProperty
PropertyFieldCSVs=*/MyThirdField

[SetUpReferenceFields]
Property=ReferenceFields
PropertyFieldCSVs=*/DREREFERENCE, * /URL

[SetUpMoreReferenceFields]

Property=MoreReferenceFields
PropertyFieldCSVs=*/DRETITLE

IDOL Server (12.12) Page 103 of 611

Administration Guide
Chapter 4: Fields

4. Create a section for each of the properties and specify appropriate configuration settings for
each. These configuration parameters define the processes that are applied to all the fields
(or all documents that contain the fields) that you previously associated with the processes.
For example:

[MyFirstProperty]
HiddenType=True

[MySecondProperty]
Index=True

[ReferenceFields]
ReferenceType=True
TrimSpaces=True

[MoreReferenceFields]
ReferenceType=True
TrimSpaces=True

5. Save and close the configuration file.
6. Restart the IDOL Content component for your changes to take effect.

After you index documents into Content, you can use, for example, the */DREREFERENCE field to
eliminate duplicate copies of documents. (Content then automatically also uses the */URL field for
deduplication because it is listed alongside */DREREFERENCE for PropertyFieldCSVs.) This leaves
you free to use the */DRETITLE field for the Combine operation.

Highlight Fields

When you run a Query, Suggest, or SuggestOnText action, you can highlight sentences or words in
the results that are related to the terms in the query (or the terms in the text or document that you are
suggesting on).

The IDOL Content component checks which fields highlighting applies to and then highlights all
sentences or words that are based on the terms in the results that it returns.

To set up highlight fields
1. Open the IDOL Content component configuration file in a text editor.
2. Lista highlighting process in the [FieldProcessing] section. For example:

[FieldProcessing]
0=MyFirstProcess
1=HighlightFields

3. Create a section for each process that you listed, and in each section, create a property for
the process (you define the property later by setting one or more applicable configuration
parameters). Identify the fields that you want to associate with the process.

IDOL Server (12.12) Page 104 of 611

Administration Guide
Chapter 4: Fields

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]
Property=MyProperty
PropertyFieldCSVs=*/MyField, */MyOtherField

[HighlightFields]
Property=Highlight
PropertyFieldCSVs=*/DRETITLE, */DRECONTENT

4. Create a section for the property in which you set the HighlightingType parameter to True.
This enables the highlighting of all matched terms that are contained in the associated
PropertyFieldCSVs fields. For example:

[Highlight]
HighlightType=True

5. Save and close the configuration file.

6. Restart the IDOL Content component for your changes to take effect.

NOTE: To use document highlighting with the IDOL View component, you must also specify the
IDOL Content component host and port in the [Server] section of the IDOL View component
configuration file.

BitFieldType Fields

If you have documents that can be part of several different document sets, you can use
BitFieldType fields to efficiently store information on which sets the documents belong to.

The value in a BitFieldType field is a hexadecimal number, which in turn represents a binary
number. The binary number is a representation of the sets that a document belongs to, with each
binary digit representing a particular set of documents. If a document is part of a set, the bit
corresponding to that set is a 1. If a document is not part of that set, the bit is a @.

For example, if a document is presentin sets 0, 5, 9, 11, 12, and 13, it has the following binary
representation:

11101000100001

where the digit at the furthest right position represents set 0, the digit to the left of set @ represents set
1 and so on. Set numbers increase from right to left.

This number is the binary representation of the decimal number 14881, and the hexadecimal number
3A21. Therefore, the BitField contains the value 3A21 to indicate that the document is part of these
sets:

#DREFIELD BitField="003A21"

IDOL Server (12.12) Page 105 of 611

Administration Guide
Chapter 4: Fields

In this way, information on sets can be stored in a single field per document, for an arbitrarily large
number of sets.

To set up BitFieldType fields

1.
2.

Open the IDOL Content component configuration file in a text editor.
List a Bit Field process in the [FieldProcessing] section. For example:

[FieldProcessing]
@=MyFirstProcess
1=BitFields

Create a section for each process that you listed, and in each section, create a property for
the process (you define the property later by setting one or more applicable configuration
parameters). Identify the fields that you want to associate with the process.

NOTE: The properties that you create must not have the same name as the processes.

For example:

[MyFirstProcess]
Property=MyProperty
PropertyFieldCSVs=*/MyField, */MyOtherField

[BitFields]
Property=BitFieldSetFields
PropertyFieldCSVs=*/WORKBOORK, */BITFIELD

Create a section for the property in which you set the BitFieldType parameter to True. This
enables Content to store the contents of the PropertyFieldCSvs fields as bit fields. For
example:

[BitFieldSetFields]
BitFieldType=True

To compress the BitField index, set BitFieldCompressed to True in the property section.
For example:

[BitFieldSetFields]
BitFieldType=True
BitFieldCompressed=True

Set the BitFieldMaxMemoryKB parameter to the maximum memory (in KB) that can be used
by BitFieldType fields. If this is zero (the default) there is no limit to the memory.

[BitFieldSetFields]
BitFieldType=True
BitFieldMaxMemoryKB=True

If you want to define BitFieldType fields or add extra BitFieldType fields, but have already
indexed content into Content, you can set RegenerateBitFieldIndex to True in the
[Server] section. This allows Content to generate the files it requires to internally identify
BitFieldType fields on startup, so that you need only to restart Content to able to use
BitFieldType fields, rather than having to reindex all your data.

IDOL Server (12.12) Page 106 of 611

Administration Guide
Chapter 4: Fields

[Server]

(...)

RegenerateBitFieldIndex=True

You can also use the DREREGENERATE index action to regenerate the BitFieldType index
while the server is running.

8. Save and close the configuration file.

9. Restart the IDOL Content component for your changes to take effect.

NOTE: Each document that you store in Content must contain only one instance of any particular
BitFieldType field.

Edit Set Information after Indexing

After a document is indexed into the IDOL Content component, you can edit the information in
BitFieldType fields by using the DREREPLACE action with the #DREFIELDBITOR, #DREFIELDBITXOR,
and #DREFIELDBITAND operators.

Related Topics
e Change Document Field Values, on page 434

Find Documents within a Set

You can query the IDOL Content component using FieldText with the BITSET field specifier to find
only documents that are part of a particular set. In this case, you use a decimal value to identify the
set number. For example:

http://localhost:9010/action=Query&FieldText=BITSET{4,18}:BitField
This query returns documents that are part of set 4 or set 18 for sets defined by the BitField field.
Related Topics

» BITSET, on page 259

Metadata Fields

Metadata fields are fields that the IDOL Content component creates for documents at index time to
display information about the documents when they are returned as results for a query. Some
document metadata fields are always displayed when Content returns a document as a query result.
You can display all document metadata fields by adding XMLMeta=True to your query.

Content displays the following metadata fields for results:

* <autn:baseid>. If the document has multiple sections, this is the ID of the first section of the
document. If the document is not sectioned, this value is the same as the document ID.

IDOL Server (12.12) Page 107 of 611

Administration Guide
Chapter 4: Fields

<autn:content>. The text content of the document.
<autn:database>. The Content database in which the document is stored.

<autn:date>. The date (in epoch seconds) when the document was created. This date is read
from the field that has been identified by the DateType parameter in the IDOL Content
component configuration file. If no field has been identified, the date the document was indexed
is used instead.

<autn:expiredate>. The date (in epoch seconds) when the document expires. This date is read
from the field that has been identified by the ExpireDateType parameter in the IDOL Content
component configuration file. If you have set an offset in the ExpireAfterDelay parameter, the
<autn:expiredate> field includes this offset to calculate the expiration date. When a document
expires, it is deleted from Content or moved to a different database (depending on what you set
ExpireIntoDatabase to in the IDOL Content component configuration file).

<autn:id>. The document ID. This ID is assigned to the document at index time. If Content is
compacted, the IDs of documents change.

<autn:language>, <autn:languageencoding>, <autn:languagetype>. The language,
encoding, and language type associated with the document. The language type is read from the
field that you identified by the LanguageType property in the IDOL Content component
configuration file. The language and encoding of the document are read from the Language and
Encoding parameters set for this language type in the configuration file.

If no field from which the language type can be read has been identified, the
DefaultLanguageType that you set in the configuration file is used instead, unless automatic
language detection is enabled, or the document has been submitted to Content with an index
action that sets a specific language type for the document.

<autn:links>. A list of stemmed terms that are contained both in the query and in the result
document.

<autn:reference>. The document reference. This is read from the field that has been identified
by the ReferenceType parameter in the IDOL Content component configuration file. If no field
has been identified, Content automatically generates a reference for the document at index
time.

<autn:section>. The number of sections the document has been split up into at index time. The
first section is section 0.

<autn:title>. The document title. This is read from the field that has been identified by the
TitleType parameterin the IDOL Content component configuration file. If no field has been
identified, the document is not given a title.

<autn:weight>. The percentage relevance that the document has to the query.

When you set XMLMeta to True, Content also returns the following fields for your results set. These
metadata fields are used by the DAH for sorting.

<autn:numericdatesort>. The index (starting from zero) of the elements of your defined sort
order that refer to a NumericDateType field.

<autn:numericsort>. The index (starting from zero) of the elements of your defined sort order
that refer to a NumericType field.

IDOL Server (12.12) Page 108 of 611

Administration Guide
Chapter 4: Fields

Change Field Values

You can use the DREREPLACE index action to change the values of fields or add fields to a document
after you index content into the IDOL Content component. For more information, see Change
Document Field Values, on page 434.

IDOL Server (12.12) Page 109 of 611

Administration Guide
Chapter 4: Fields

IDOL Server (12.12) Page 110 of 611

Chapter 5: Language Support

This section describes how the IDOL Content component supports processing in many different
languages and how you configure that support.

¢ IDOL Language Support CONCEPLS 111
® Run the IDOL Content component in Multiple Languages .. 113
* Determine the Languages thatare Enabled ... 114
® Define Language TyPes ... 115
® Associate Language Types with Documents .. 117
® Add LanguageType Fields to Documents ... 120
* Define a Default Language TYpe ... 120
®* Definea General Language 121
® Enable Automatic Language Detection ... 122
® Specify the Language Type of a Query ... 123
® Convert Results to a Specific Encoding ... 123
¢ Return Documents in Multiple Languages ... 124
® Return Documents in a Specific Language ... 126
® Create a Custom Stem File foralLanguage ... 127
® Decompose Compound WOrdS ... 128
® Enable Transliteration ... 128

IDOL Language Support Concepts

IDOL uses probabilistic modeling and therefore does not require any form of language-dependent
parsing, dictionaries, or translation modules.

Treating words as abstract symbols of meaning allows IDOL technology to derive understanding
through the context in which symbols occur rather than a rigid definition of grammar. Slang and other
variations in language do not affect the software analysis.

The IDOL Content component can build up a statistical understanding of the patterns in any
language. The more information Content has about a particular type of information (for example,
legal terms, pharmaceutical developments, technology, and so on), the more understanding it gains
of those topics.

You can think of a new language as simply another type of information, for which Content needs
enough material to learn from. Therefore, it is possible to mix more than one language in Content as
long as you have sufficient amounts of each language to build its understanding.

The choice of language does not compromise the accuracy of the concepts extracted by the
IDOL Content component. The underlying algorithm is the same regardless of the language used.

IDOL internationalization functionality enables:

IDOL Server (12.12) Page 111 of 611

Administration Guide
Chapter 5: Language Support

¢ automatic language detection. Content can automatically detect the language and encoding
of documents that it processes. This feature allows you to set up processes that Content
automatically applies to documents or document metadata if they are in a specific language.
For example, if Content identifies a document as Chinese, it automatically applies the
appropriate preliminary linguistic tools.

NOTE: If a document contains multiple languages, Content determines which language it
contains most, and processes the document according to the settings for this language.

¢ cross-lingual systems. You can set up cross-lingual systems in Content. This feature allows
you to produce multilingual results for queries, or to restrict results to documents in a specific
language or encoding. For example, an English query can return information both in English
and Spanish.

Although IDOL technology is language independent, it can be beneficial to use language-dependent
features to optimize the ability of the IDOL Content component to match concepts irrespective of their
appearance in text. IDOL therefore provides the following features:

« stop word lists. Every language has words that do not carry much significant meaning. In
grammatical terms these are normally prepositions, conjunctions, auxiliary verbs, and so on (for
example, words such as the, a, and fo in English). These words can be safely ignored when
processing content.

IDOL provides as standard a set of stop word lists for the most commonly used languages.

¢ stemming. In languages, some words have a common morphological root. IDOL provides
stemming algorithms that reduce words to this form. This process allows you to match concepts
regardless of the grammatical use of words. In English for example, the words help, helpful,
helping, and helped can all be stripped to their stem help without significant loss of meaning.

IDOL provides as standard a set of stemming algorithms for the most commonly used
languages. IDOL applies stemming after it discards stop words, both at index time (when
content is stored in the IDOL Content component) and at query time (IDOL removes stop words
and stems query text before matching).

NOTE: Content also supports per-language use of a stemming file, which you can use in
conjunction with the stemming algorithms to specify stems for individual words.

« multiple encodings. Content supports multiple encodings for languages such as Greek and
Russian. You can use different encodings interchangeably, which means that it does not matter
which encoding a language is given in. For example, it is possible to query in one recognized
encoding for a language and receive results that are in other encodings.

¢ transliteration schemes. Transliteration is the ability to represent letters that do not belong to
the Latin alphabet or words that contain accented letters with the corresponding characters of
another alphabet. This makes familiarity with the accents and special characters of different
languages unnecessary.

¢ canonicalization of characters. Some encodings have more than one way to represent a
character. For example, the Japanese katakana script can have full width or half width
characters. Regardless of its width the character in itself carries the same meaning.

IDOL Server (12.12) Page 112 of 611

Administration Guide
Chapter 5: Language Support

The IDOL software infrastructure uses canonicalization to ensure that it treats all character
forms equally. It automatically converts to an internationally recognized canonical form.

Related Topics
e Create a Custom Stem File for a Language, on page 127

¢ Enable Transliteration, on page 128

Run the IDOL Content component in Multiple
Languages

You can combine multiple languages in one IDOL Content component. Use the outline below to
determine what you have to do.

To combine multiple languages in one IDOL Content component

1. Before you index your documents, ensure that the IDOL Content component configuration
file contains the languages that you want to use. See Determine the Languages that are
Enabled, on the next page.

2. If the configuration file does not contain all the languages that you want to use, add the
missing languages. Set up a field process that enables Content to associate these
languages with documents. See Define Language Types, on page 115 and Associate
Language Types with Documents, on page 117.

3. Check the documents that you want to index into Content:

» Content can read the language type (that is, language and encoding) from a document
field. If some of your documents do not contain these fields, Content applies the default
language type. See Add LanguageType Fields to Documents, on page 120 and Define a
Default Language Type, on page 120.

If you do not want to associate the default language type with your documents, enable
automatic language detection. See Enable Automatic Language Detection, on
page 122.

Alternatively, you can manually index your documents into Content, adding the
language type of the documents to each index action. In this case, you must index
documents in batches, where each batch must have the same language type. See Index
Data, on page 51.

» Content automatically processes documents that contain fields that specify the
language type. You must add any missing languages to the IDOL Content component
configuration file.

Related Topics

e Languages and Language Files, on page 519

IDOL Server (12.12) Page 113 of 611

Administration Guide
Chapter 5: Language Support

When you query Content, by default Content returns only documents that have the same language
as the language type (that is, language and encoding) of the query. You can change this behavior in
the following ways:

¢ Touse alanguage type in the query text that is not the default language type, add the
LanguageType parameter to your query.

¢ Toreturnresults in a specific encoding, add the OutputEncoding parameter to your query. You
can return only encodings that are compatible with the query language.

¢ Toreturn documents in multiple languages, add the AnyLanguage parameter to your query.

¢ Toreturn documents in a specific language, add the AnyLanguage and MatchLanguage
parameters to your query.

Related Topics
» Specify the Language Type of a Query, on page 123
e Convert Results to a Specific Encoding, on page 123
¢ Return Documents in Multiple Languages, on page 124

¢ Return Documents in a Specific Language, on page 126

Determine the Languages that are Enabled

You can determine the languages that the IDOL Content component can process by looking at the
IDOL Content component configuration file.

To check which languages are enabled in Content
1. Open the IDOL Content component configuration file in a text editor.
2. Findthe [LanguageTypes] section.
This section lists the languages that Content can process. For example:

[LanguageTypes]
DefaultlLanguageType=englishUTF8
DefaultEncoding=UTF8
LanguageDirectory=C:\IDOLServer\IDOL\langfiles
0=Afrikaans

1=Albanian

2=Arabic

3=Armenian

4=Azeri

5=Basque

6=general

e The DefaultLanguageType parameter specifies the language type to apply when:

o Content cannot read the language type nor encoding of a document from a specified
field.

IDOL Server (12.12) Page 114 of 611

Administration Guide
Chapter 5: Language Support

° the action does not include a LanguageType parameter.
° automatic language detection is not enabled.

e The general language category is for documents whose encoding is identified, but
whose language is not.

e The LanguageDirectory parameter specifies the directory that contains resource files
(such as stop word lists) that Content uses to process languages.

TIP: You can also view information on licensed and configured languages and encodings on the
Languages tab on the Status page in IDOL Admin. For more information, refer to the IDOL Admin
User Guide.
Related Topics
e Define a Default Language Type, on page 120

» Define a General Language, on page 121

Define Language Types

To run the IDOL Content component in multiple languages, specify the language types that you want
Content to process. A language type is a combination of the language and encoding.

| NOTE: You must specify languages and language types before you index data into Content.

To specify language types
1. Open the IDOL Content component configuration file in a text editor.

2. Findthe [LanguageTypes] section and list the languages that you want Content to process.
You must use UTF-8 characters when specifying a language.

For example:

[LanguageTypes]
0=English
1=Afrikaans
2=Albanian
3=Arabic
4=Armenian
5=Azeri

3. Inthe [LanguageTypes] section, set any configuration parameters that you want to apply to
all languages. For details of the configuration parameters you can use, refer to the IDOL
Server Reference.

NOTE: As well as the general language configuration parameters, you can set any of the

individual language configuration parameters in the [LanguageTypes] section. The value
in this section sets the default value for all languages, which you can override in the

IDOL Server (12.12) Page 115 0f 611

Administration Guide
Chapter 5: Language Support

individual language configuration sections.

For example:

[LanguageTypes]
DefaultlLanguageType=englishUTF8
DefaultEncoding=UTF8
LanguageDirectory=C:\IDOLserver\IDOL\langfiles
GenericTransliteration=True

StopWordIndex=1

ProperNames=3

TangibleCharacters=1!?

4. Foreach language that you use, create a section using the name of the language.

In this section, specify appropriate settings that determine how Content handles this
language. For details on the configuration parameters you can use, refer to the IDOL Server
Reference.

5. Foreach section, add the Encodings parameter and define the encodings and
corresponding language types used by the language.

For example:

[english]
Encodings=UTF8:englishUTF8
Stoplist=english.dat
IndexNumbers=1

[afrikaans]
Encodings=UTF8:afrikaansUTF8
IndexNumbers=1

[albanian]
Encodings=UTF8:albanianUTF8
IndexNumbers=1

[arabic]
Encodings=ARABIC_ISO:arabicARABIC_ISO,ARABIC:arabicARABIC,UTF8:arabicUTF8
IndexNumbers=1

[armenian]
Encodings=UTF8:armenianUTF8
IndexNumbers=1

[azeri]
Encodings=UTF8:azeriUTF8

IndexNumbers=1

[general]

IDOL Server (12.12) Page 116 of 611

Administration Guide
Chapter 5: Language Support

Encodings=UTF8:generalUTF8,CYRILLIC:generalCYRILLIC
IndexNumbers=1

6. Save the configuration file.

7. You can now configure Content to associate the language types that you defined with
documents.

Related Topics
e Supported Languages and Common Encodings, on page 519
« Display Online Help, on page 32

* Associate Language Types with Documents, below

Associate Language Types with Documents

After you define all the language types you want the IDOL Content component to process, setup a
field process that enables Content to associate these language types with documents.

The way that you configure this field process depends on the documents that you want to index into
Content:

¢ Documents that Contain a Language Type Field
¢ Documents that Contain Field Data that can Identify Language

Related Topics
e Define Language Types, on page 115

Documents that Contain a Language Type Field

Use the following procedure to set up languages if all the documents that you want to index into
Content contain a field that specifies the language type.

To configure Content to read language type from a field

1. Setup a process for looking up the language of a document in the [FieldProcessing]
section.

For example:

[FieldProcessing]
@=LookForLanguage

2. Create a section for the process. Create a Property for the process and identify the field
that you want the process to apply to.

For example:

IDOL Server (12.12) Page 117 of 611

Administration Guide
Chapter 5: Language Support

[LookForLanguage]
Property=SetLanguage
PropertyFieldCSVs=*/DRELANGUAGE, */myLanguageType

3. Create a section for this property. Set the LanguageType parameter to True to map the
values of the */DRELANGUAGE fields to the equivalent language type in the [LanguageTypes]
section.

For example:
[SetLanguage]
LanguageType=True

[LanguageTypes]
@=russian

[russian]
Encodings=CYRILLIC:russianCYRILLIC,CYRILLIC_ISO:russianCYRILLIC_
ISO,CYRILLIC_KOI8:russianCYRILLIC_KOI8,UTF8:russianUTF8
Stoplist=russian.dat

IndexNumbers=1

4. Save and close the configuration file.
5. Restart the IDOL Content component for your changes to take effect.

6. You can now index documents into Content.

Related Topics

¢ |ndex Data, on page 51

Documents that Contain Field Data that can Identify
Language

Use the following procedure to set up languages if all the documents that you want to index into the
IDOL Content component contain a field that contains data that you can use to identify the language

type.
To configure the IDOL Content component to identify languages from field data

1. Usethe [FieldProcessing] section of the IDOL Content component configuration file to
define each language property that you want Content to be able to detect.

For example:

[FieldProcessing]
0=DetectArabic
1=DetectEnglish
2=DetectChSimplified
3=DetectChTraditional
4=DetectFrench

IDOL Server (12.12) Page 118 of 611

Administration Guide
Chapter 5: Language Support

2. Define a section with the name of the respective language type for each of the languages
that you defined in the [FieldProcessing] section. In this section, specify the fields that
Content must look for and the values that those fields must have to recognize the document
as a particular language type.

For example:

[DetectArabic]

Property=SetArabicProperty
PropertyFieldCSVs=*/DRELANGUAGETYPE, */LANG
PropertyMatch=arabic

[DetectEnglish]
Property=SetEnglishProperty
PropertyFieldCSVs=*/DRELANGUAGETYPE, */LANG
PropertyMatch=*eng*,uk, *british

[DetectChSimplified]
Property=SetChSimplifiedProperty
PropertyFieldCSVs=*/DRELANGUAGETYPE, */LANG
PropertyMatch=*ChSimp*,ChineseSimp*

[DetectChTraditonal]
Property=SetChTraditionalProperty
PropertyFieldCSVs=*/DRELANGUAGETYPE, */LANG
PropertyMatch=*ChTrad*,ChineseTrad*

[DetectFrench]

Property=SetFrenchProperty
PropertyFieldCSVs=*/DRELANGUAGETYPE, */DRELANGAGETYPE, */LANG
PropertyMatch=*fre*,fran*

3. Define a section with the same value as the respective property for each Property that you
defined in the [FieldProcessing] subsections. In this section, you can then specify the
language type (which you must also list in the [LanguageTypes] section where you define
how you want Content to handle the individual languages).

For example:

[SetArabicProperty]
LanguageType=Arabic
HiddenType=True

[SetEnglishProperty]
LanguageType=English
HiddenType=True

[SetChSimplifiedProperty]

LanguageType=ChSimplified
HiddenType=True

IDOL Server (12.12) Page 119 of 611

Administration Guide
Chapter 5: Language Support

[SetChTraditionalProperty]
LanguageType=ChTraditional
HiddenType=True

[SetFrenchProperty]
LanguageType=French
HiddenType=True

4. Save and close the configuration file.

5. Restart the IDOL Content component for your changes to take effect.

6. You can now index documents into the IDOL Content component.
Related Topics

¢ Index Data, on page 51

Add LanguageType Fields to Documents

You can configure any of the IDOL connectors to add fields to documents from which the
IDOL Content component can read the language type of the documents.

To add a language type field to documents in the connector
1. Open the configuration file of your IDOL connector in a text editor.

2. Inthe [TaskName] or [Ingestion] section, set the IngestActions parameter to
META:FieldName=FieldValue.

For example:

IngestActions=META:DRELanguage=englishUTF8

NOTE: If you add this setting to a [TaskName] section, it applies only to the connector
task defined in that section. If you add the setting to the [Ingestion] section, it applies to
all connector tasks.

3. Save the configuration file.

Alternatively, you can use a Lua script to add a field in a Connector Framework Server (CFS) task. In
a setup with a single CFS for multiple connectors, and documents in a single language, this method
allows you to process all documents in one task, rather than setting up the ingest action for each
connector.

Define a Default Language Type

You can specify a default language type (language and encoding) that the IDOL Content component
uses for documents of unspecified language. It uses the default language type when:

IDOL Server (12.12) Page 120 of 611

Administration Guide
Chapter 5: Language Support

¢ Content cannot read the language type of a document from a specified field.
¢ the action does notinclude a LanguageType parameter.

¢ automatic language detection is not enabled.

The default language type is also the default for the LanguageType parameter in actions such as
Query and Summarize.

To specify a default language type
1. Open the IDOL Content component configuration file in a text editor.

2. Findthe [LanguageTypes] section and enter the language type to associate with any
document that does not contain a language type field.

If you use automatic language detection, Content uses the detected language and encoding
to determine the language type of documents, and not the default language type.

For example:

[LanguageTypes]
DefaultlLanguageType=englishUTF8
LanguageDirectory=C:\HewlettPackardEnterprise\IDOLServer\common\langfiles

3. Save and close the configuration file.

4. Restart the IDOL Content component for your changes to take effect.

Define a General Language

You can specify a General language, which the IDOL Content component uses for documents with
an unconfigured language, but whose encoding is identified. Content categorizes documents as the
General language when:

¢ Content cannot read the language type nor the encoding of a document from a specified field.

¢ automatic language detection is enabled.

If Content detects an unconfigured language type, it indexes to the equivalent General language type
for that encoding, if it exists. It also logs a warning message in the index log so that you can add an
appropriate language type to the configuration file. Content also indexes unknown languages to the
General language type for the encoding, if it exists. If the encoding is unknown, Content indexes the
document to the default language.

If you set DiscardUnconfiguredLanguagesAtIndex to True, Content does not index documents with
unconfigured languages, even if a General language exists for that encoding.

To specify a General language category
1. Open the IDOL Content component configuration file in a text editor.
2. Add the appropriate encodings to the [General] section.

3. Save and close the configuration file.

IDOL Server (12.12) Page 121 of 611

Administration Guide
Chapter 5: Language Support

4.

Restart the IDOL Content component for your changes to take effect.

If the document has no identified language or encoding, Content indexes it to the
DefaultlLanguageType.

Related Topics

« Define Language Types, on page 115

» Define a Default Language Type, on page 120

Enable Automatic Language Detection

If your IDOL license includes automatic language detection, the IDOL Content component can
automatically identify the language and encoding of a document when it is indexed. Content analyzes
a certain amount of text in the document content fields (fields for which SourceType is setto True in
the IDOL Content component configuration file).

To enable automatic language detection

1.
2.

Open the IDOL Content component configuration file in a text editor.
Find the [Server] section and add this setting:
AutoDetectlLanguagesAtIndex=True

SetDiscardUnconfiguredLanguagesAtIndex to True if you do not want to index documents
with a language type that is not configured.

Set DiscardUnknownLanguagesAtIndex to True if you do not want to index documents
whose language Content cannot recognize. For example, it might not recognize the
language because the document does not contain language, or it might not have enough
text for Content to determine the language.

By default, Content indexes the document using the default language type. It also logs a
warning message in the index log, so that you can add an appropriate language type.

You can change the amount of text that Content analyzes to detect the language of a
document. By default, Content uses only a few sentences. In some situations, increasing
the amount of text to analyze can give more accurate results, such as when significant
amounts of a minor second language are present.

Add the MaxLanguageDetectTerms setting to the [Server] section, specifying the number of
terms (words) that Content uses for detection. For example:

MaxLanguageDetectTerms=1000

By default, Content detects any 7-bit ASCII characters as UTF-8. If you instead want to
group these documents with documents using 8-bit ASCII, disable the LangDetectUTF8
parameter by setting it to False.

Ensure that the encoding option you want is present in the language type configuration (see
Define Language Types, on page 115). If there are no compatible encodings configured for
the detected language, IDOL assigns the default language type.

IDOL Server (12.12) Page 122 of 611

Administration Guide
Chapter 5: Language Support

6. Save and close the configuration file.

7. Restart the IDOL Content component for your changes to take effect.

NOTE: If you enable automatic language detection and set up a field process that reads the
language of a document from one of its fields, Content uses the field process rather than
autodetection to determine the document language and encoding.

Specify the Language Type of a Query

When you send a query to the IDOL Content component, by default it reads the query language type
as the DefaultLanguageType defined in the IDOL Content component configuration file.

You must correctly set the language type of any query text so that Content can handle the query text
correctly (for example, stemming correctly). If you want to send a query that does not use the default
language type, you must add the LanguageType parameter to your query action. This parameter
specifies that the query uses the language and encoding set in the IDOL Content component
configuration file for the specified LanguageType.

For example:

The following query uses the language and encoding specified for the DefaultLanguageType, SO you
can send it to Content without adding the LanguageType parameter:

http://12.3.4.56:4000/action=Query&Text=The Bayes theory of probability
The following query uses the language and encoding specified for the German language type:

http://12.3.4.56:4000/action=Query&Text=Einsteins
Relativitatstheorie&LanguageType=German

Related Topics
» Define a Default Language Type, on page 120

Convert Results to a Specific Encoding

You can send the following types of query to the IDOL Content component:

¢ Text queries. Queries that contain some form of query text (for example, Query,
SuggestOnText, Summarize, and so on).

« Text-free queries. Queries that do not contain any query text (for example, Suggest, List,
GetContent, and so on).

IDOL Server (12.12) Page 123 of 611

Administration Guide
Chapter 5: Language Support

Text Queries

When you send a query action to the IDOL Content component, by default it returns results that use
the same language and encoding as the query text. This language type can be:

¢ the language and encoding specified in the LanguageType parameter sent with the query.

¢ the language type specified in the DefaultLanguageType configuration parameter if the query
does notinclude a LanguageType parameter.

To return query results in a specific encoding, add the OutputEncoding parameter to your query
action. This parameter converts the results of a query to any type of encoding that is compatible with
the query language. If you specify an encoding that is not compatible with the query language,
Content returns an appropriate message.

You can specify a default value for the OutputEncoding parameter in the DefaultEncoding
configuration parameter.

For example:

http://12.3.4.56:4000/action=Query&Text=Neurologia i
Neurochirurgia&lLanguageType=PolishEASTERNEUROPEAN&OutputEncoding=EASTERNEUROPEAN_ISO

In this example, Content converts all query results to EASTERNEUROPEAN_ISO.
Related Topics

e Supported Languages and Common Encodings, on page 519

Text-Free Queries

By default, query actions that do not contain any query text return results in the encoding specified in
the DefaultLanguageType parameter. If any of the query results are not compatible with this
encoding, the IDOL Content component indicates this in the results.

If you want a query action to return results in a specific encoding, you can add the OutputEncoding
parameter to your query. Content converts all results to this encoding, as long as they are compatible
with it. If any of the query results are not compatible with this encoding, Content returns an
appropriate message. You can specify a default value for the OutputEncoding parameter in the
DefaultEncoding configuration parameter.

For example:
http://12.3.4.56:4000/action=Suggest&ID=9016&0utputEncoding=EASTERNEUROPEAN_ISO

In this example, Content converts all query results to EASTERNEUROPEAN_ISO.

Return Documents in Multiple Languages

When you send a query action to the IDOL Content component, by default it returns results that use
the same language and encoding as the query text. This language type can be:

IDOL Server (12.12) Page 124 of 611

Administration Guide
Chapter 5: Language Support

¢ the language and encoding specified in the LanguageType parameter sent with the query.

¢ the language type specified in the DefaultLanguageType configuration parameter if the query
does notinclude a LanguageType parameter.

To return documents in any language for your query rather than in the query language, set the
AnyLanguage parameter to True to your query.

When Content receives the query, it applies the stemming algorithm and stop word list that is
appropriate for the query language type. It returns only documents that contain words which match
the stopped and stemmed terms in the query (that is, the words in result documents must stem to the
same root as the words in the query text).

For example:

http://12.3.4.56:4000/action=Query&Text=Innovative internet marketing solutions in
Baghdad&AnyLanguage=True

In this example, Content returns documents in multiple languages that contain terms that match
terms in the specified Text.

The query returns documents in multiple languages only if they contain terms that match terms in the
query (for example, query text that contains the term Baghdad might return documents in English,
French, German, and so on).

International Stop List

When you use the AnyLanguage parameter in all or most of your queries, you might want to use the
international stop list. This stop list contains common stop words for all languages, but does not
include terms that are stop words in one language, but useful search terms in another language.

For multilingual searching, this stop list ensures that the query includes all useful terms, while still
removing all stop words that are never useful terms.

The international.dat stop listis included in the 1langfiles directory of a default IDOL Content
component installation. You must configure each of the languages in your configuration file to use
this stop list. If you have existing data in Content, you must also reindex the data.

To configure the international stop list
1. Open the IDOL Content component configuration file in a text editor.

2. Inthe [Languages] configuration section, find the configuration sections for all the
languages that you want to return in AnyLanguage queries, including the language specified
in the DefaultLanguageType parameter.

3. Ineach configuration section, set Stoplist to international.dat. For example:

[english]
Encodings=UTF8:generalUTF8
Stoplist=international.dat

[italian]

Encodings=UTF8:italianUTF8
Stoplist=international.dat

IDOL Server (12.12) Page 125 of 611

Administration Guide
Chapter 5: Language Support

[spanish]
Encodings=UTF8:spanishUTF8
Stoplist=international.dat

4. Save and close the configuration file.
5. Restart the IDOL Content component for your changes to take effect.

6. Reindex all your data into the IDOL Content component to apply the changes to all your
documents.

Related Topics
» Stop Word Lists for Supported Languages, on page 570

Return Documents in a Specific Language

When you send a query action to the IDOL Content component, by default it returns results that use
the same language and encoding as the query text. This language type can be:

¢ the language and encoding specified in the LanguageType parameter sent with the query.

¢ the language type specified in the DefaultLanguageType configuration parameter if the query
does not include a LanguageType parameter.

To return documents in one more specific languages for the query, you can set the MatchLanguage
parameter to a list of the languages that you want to match. When you set this parameter, Content
applies the stemming algorithm and stop word list that is appropriate for the query language type as
usual (it does not translate the query). The results include only documents in the specified languages
that match the stopped and stemmed terms in the original query (that is, the words in result
documents must stem to the same root as the words in the query text).

For example:
action=Query&Text=Birmingham&LanguageType=EnglishUTF8&MatchLanguage=Dutch+German

In this example Content stems the query term Birmingham according to the stemming rules for the
EnglishUTF8 language type. It returns any documents in Dutch or German that contain a term that
has the same stem as the English stem of Birmingham.

NOTE: If you specify MatchLanguage, you cannot specify MatchLanguageType or MatchEncoding
in your query.

To return documents that match the query terms, regardless of the document language, you can add
the AnyLanguage parameter to your query. See Return Documents in Multiple Languages, on
page 124.

TIP: You can use the Languages tab in the Status page of the IDOL Admin interface to search

for all documents in a particular language. You can also modify that query in IDOL Admin. For
more information, refer to the IDOL Admin User Guide.

IDOL Server (12.12) Page 126 of 611

Administration Guide
Chapter 5: Language Support

Create a Custom Stem File for a Language

You can override the default stemming rules for certain words in a particular language by creating a
language-specific stemming file. This file is a list of words and their stems. If a stemming file exists,

the IDOL Content component uses it to stem the terms that it contains. Terms that are not in the file
stem according to the default stemming rules.

Micro Focus recommends use of a stemming file only for unusual or specialized terms where the
default rules do not generate a stem. A stemming file is not intended to be a complete replacement
for the IDOL stemming algorithms.

To set up a stemming file
1. Create atextfile.

2. Format the file as a stop word list. The first line is an encoding designation. Subsequent
lines contain individual word pairs; a term followed by its stem. For example:

[UTF8]

mice mouse
mouse mouse
children child

The terms and stems can contain only alphanumeric characters.

NOTE: To ensure that two words stem to the same value, you must add both words to
the stemming file, with the appropriate stem.

3. Save the file with a name of your choice (for example, english_stem.dat) in the directory
installDir/common/langfiles.
4. Open the IDOL Content component configuration file in a text editor.

5. Inthe [MyLanguage] section for the stemming file language, set the StemmingFile
configuration parameter to the name of your stemming file. For example:

[english]
Encodings=UTF8:englishUTF8
Stoplist=engish.dat
StemmingFile=english_stem.dat

6. Ensure that this [MyLanguage] section does not set Stemming to False. The default value for
Stemming in a language is True.

If you disable stemming for a language, but provide a stemming file, Content stems terms in
the file, but does not stem other terms.

IDOL Server (12.12) Page 127 of 611

Administration Guide
Chapter 5: Language Support

Decompose Compound Words

You can configure the IDOL Content component to automatically separate a compound word into
root words at both index and query time. For example, the German word for bicycle pump is a single
word Fahrradpumpe that can be divided into Fahrrad and Pumpe.

To specify decomposition
1. Create a text file. Use the following format:

[UTF8]
rollercoaster roller coaster
hemidemisemiquaver hemi demi semi quaver

Each line defines the decomposition for one word. The first word on a line is broken into the
remaining words on the line.

2. Store the text file in the 1angfiles directory of your IDOL Content component installation.
3. Open the IDOL Content component configuration file in a text editor.

4. For each language that the decomposition file applies to, specify the file name in the
DecompositionFile configuration parameter. For example:

[German]

DecompositionFile=german_decomp.txt

| NOTE: Each of the terms in the output from the decomposition is also stemmed.

Enable Transliteration

Transliteration is the process of converting accented characters such as gu into equivalent non
accented characters. This process is useful in environments where accented keyboards are not
available.

Enable Generic Transliteration

The default IDOL Content component configuration file uses generic transliteration. Micro Focus
recommends that you use generic transliteration because it is the best way to ensure that cross-
lingual search can happen.

To enable transliteration for all languages

* Inthe [LanguageTypes] configuration section, set the GenericTransliteration parameter
to True.

Generic transliteration performs transliteration as described in the following table.

IDOL Server (12.12) Page 128 of 611

Administration Guide
Chapter 5: Language Support

Language or character type Transliteration

Symbols All dashes and hyphens to a hyphen character.

Latin Accented characters to non-accented characters

Spanish Accented vowels aéiéul to non-accented vowels

Portuguese Accented vowels aadaceééioscddui to non-accented
vowels

Greek Accented Greek characters to non-accented characters

Cyrillic (including Serbian All characters mapped to A—Z

extensions)

Arabic Arabic character normalization

Japanese Half width katakana to full width katakana

Full width 0-9, A—Z, a—z to single byte 0-9, A-Z, a—z

Chinese Full width 0-9, A-Z, a—z to single byte 0-9, A-Z, a-z

For all other languages, transliteration does not apply, except for hyphen normalization.

NOTE: Languages with a sentence-breaking library might be transliterated as part of the
sentence-breaking process.

When you set GenericTransliteration to True, it applies to all languages, unless you specifically
disable transliteration for a language.

You can disable transliteration for an individual language by setting the Transliteration parameter
to False in the individual language configuration section. This option completely disables
transliteration for that language.

Enable Transliteration for Individual Languages

In cases where you need a particular transliteration, you can set GenericTransliterationto False
and use the per-language transliteration schemes.

To turn transliteration on or off for an individual language

* Inthe [MyLanguage] individual language configuration sections, set the Transliteration
parameter to True or False.

When you set GenericTransliteration to False, the IDOL Content component always performs
transliteration for the languages in the following table, even if you also set Transliterationto

False.
Language Transliteration
Japanese Half width katakana to full width katakana

IDOL Server (12.12) Page 129 of 611

Administration Guide
Chapter 5: Language Support

Language Transliteration

Full width 0-9, A—Z, a—z to single byte 0-9, A—Z, a—z

Chinese Full width 0-9, A—Z, a—z to single byte 0-9, A-Z, a-z
Greek Accented Greek characters to non-accented characters
Spanish Accented vowels a€iéul to non-accented vowels
Portuguese Accented vowels aadacgééioodoul to non-accented vowels
Russian Some removal of characters

Arabic Arabic character normalization

Persian

Sindhi

Urdu

Malay

Malayalam

Pushto

Transliteration is optional for the language groups in the following table.

Language Transliteration

group

Western addaa=a &=aa ¢=c

European eas_ seme_s A _
eééé=e liii=i 006066=0

g=o0e uulli=u oce(oe)=o0e
®=ae R=ss fi=nh
y=y 0=d p=th
German Same as Western European apart from:
d=ae 0=oe U=ue
Scandinavian Same as Western European apart from:

a=ae O0=oe U=ue

Catalan Same as Western European apart from:
G=sz
Cyrillic All characters mapped to A-Z

Transliteration scheme uses British Standard 2979:1958

South Slavic For transliteration scheme, refer to A Handbook of Bosnian, Serbian and
Croatian by Brown & Alt.

IDOL Server (12.12) Page 130 of 611

Administration Guide
Chapter 5: Language Support

The following table describes the languages that each of these language groups contain.

Western European Czech Italian Romanian
Dutch Maori Slovakian
English Mirandese Spanish
French Polish Turkish
Hungarian Portuguese

German German

Scandinavian Danish Norwegian
Finnish Swedish
Icelandic

Catalan Catalan

Cyrillic Russian
Tajik

South Slavic Bosnian
Serbian
Croatian

For all other languages, transliteration does not apply, except for hyphen normalization.

For full details of the transliteration of different characters in different transliteration modes, refer to
IDOL Expert.

Related Topics

* Index Nonalphanumeric Characters, on page 63

IDOL Server (12.12) Page 131 of 611

Administration Guide
Chapter 5: Language Support

IDOL Server (12.12) Page 132 of 611

Chapter 6: Set Up Document Tracking

Document tracking is a feature present in IDOL components that are involved in indexing. It reports
upon the progress of documents as they pass through an index chain. Every time a document
reaches a certain stage in the indexing process, the component commits event data to a back end,
which stores the events.

The back end can be a log file, or an SQL database (this option requires an additional library, which is
available in the IDOL Server installer). You retrieve the events by using an appropriate interface for
your chosen back end, for example an SQL client for a database.

This section describes how to set up document tracking using either SQL or IDOL log files as a back
end.

¢ Set up Document Tracking withan SQL Back End .. 133
¢ Setup Document Tracking witha LogBack End 147
® Configure Event Storage ... 149

Set up Document Tracking with an SQL Back
End

This section contains instructions for setting up document tracking in IDOL with an SQL back end. It
includes instructions for setting up a PostgreSQL or Microsoft SQL Server database. PostgreSQL is
the recommended and most fully tested database, but you can also use Microsoft SQL Server (2008
(SP3) or 2012), or Oracle.

¢ Setup Document Tracking with PostgreSQL
» Set up Document Tracking with Microsoft SQL Server

Set up Document Tracking with PostgreSQL

This section describes how to set up document tracking with PostgreSQL.This process includes the
following steps:

« Install the PostgreSQL database.
* Create the database structure.
¢ |nstall SQL drivers on the IDOL host machines.

¢ Configure IDOL components.

IDOL Server (12.12) Page 133 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

Set up PostgreSQL to Store Tracking Information
This section describes how to set up the PostgreSQL back end.

The example actions and commands are for IDOL components running on a Microsoft Windows
platform, and a PostgreSQL server running on a Linux platform. Other combinations of platforms are
possible.

Install the SQL Database

The following Linux command example installs the latest stable PostgreSQL server, using the default
port (5432). You can use any recent, stable version (on any port).

sudo apt-get install postgresql

You can test that your server is up with psql.

For Windows, you can install PostgreSQL from the following Web site:
http://www.postgresql.org/download/windows/

For more detailed installation instructions, refer to the PostgreSQL wiki.

https://wiki.postgresql.org/wiki/Main_Page

Set up the Database and Table

This section describes how to set up the database in PostgreSQL on Linux. On Windows, you can
complete the tasks by using Pgadmin.

The PostgreSQL installation creates a user for you.
To set up the database and table on Linux
1. Create a database with an arbitrary name. For example:
sudo -u postgres createdb mydoctrackdb
You can test it by using the following example command:
sudo -u postgres psql -d mydoctrackdb

2. Create the tables to store document tracking events, by running the following commands
from psql or your SQL client:

CREATE TABLE type(
typeid serial PRIMARY KEY,
type varchar(64) NOT NULL UNIQUE,
is_error smallint,
is_terminal smallint

)
-- Broken into several INSERTs here for clarity only

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES(@, 'Unknown',9,0);

IDOL Server (12.12) Page 134 of 611

http://www.postgresql.org/download/windows/
https://wiki.postgresql.org/wiki/Main_Page

Administration Guide
Chapter 6: Set Up Document Tracking

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (10, 'Committed',0,1),
(20, 'Deleted',0,1),
(30, "Indexed',0,0),
(40, 'Received',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES(50, 'Updated’',0,1),
(-10, 'Warning',1,0),
(-20, 'Error',1,1),
(-39, 'Rejected’,1,1);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (90, 'Added',0,0),
(100, 'Delete received.',0,0),
(110, 'Update received.',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (120, "Non-importing add received.',0,0),
(130, 'Import:Queue’',0,0),
(140, 'Import:Importing',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (150, 'Import:Pre',0,0),
(160, 'Import:Post',0,0),
(170, 'Import:Finished',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (1890, 'Import:Cancel’,0,1);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (190, 'Import:Extracting metadata',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (200, 'Import:Extracting metadata finished',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (210, 'Import:ExtractMetaAbort',1,1);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (220, 'Import:Abort',1,1);

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (239, 'Replaced’,0,0);

CREATE TABLE source(
sourceid serial PRIMARY KEY,
source varchar(128) NOT NULL UNIQUE

)5

IDOL Server (12.12) Page 135 0f 611

Administration Guide
Chapter 6: Set Up Document Tracking

CREATE TABLE event(
eventid serial PRIMARY KEY,
docuid varchar(128) NOT NULL,
typeid int NOT NULL,
sourceid int NOT NULL,
timestamp bigint NOT NULL,

CONSTRAINT type fk FOREIGN KEY(typeid)
REFERENCES type(typeid)
ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT source_fk FOREIGN KEY(sourceid)
REFERENCES source(sourceid)
ON DELETE CASCADE ON UPDATE CASCADE

);

CREATE TABLE metadata(
metadataid serial PRIMARY KEY,
key varchar(32) NOT NULL,
value varchar(1024) NOT NULL

)s

CREATE TABLE event_metadata(
eventid int NOT NULL,
metadataid int NOT NULL,

CONSTRAINT event_fk FOREIGN KEY(eventid)
REFERENCES event(eventid)
ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT metadata_fk FOREIGN KEY(metadataid)
REFERENCES metadata(metadataid)
ON DELETE CASCADE ON UPDATE CASCADE

)5

CREATE TABLE docuid_reference(
docuid varchar(128) NOT NULL,
ref varchar(4096) NOT NULL,

UNIQUE (docuid, ref)
)

CREATE TABLE doctrack_schema_version(
key varchar(64) NOT NULL,
value varchar(128) NOT NULL

);

INSERT INTO doctrack_schema_version(key,value)

IDOL Server (12.12) Page 136 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

VALUES('major_version', '1'),
('minor_version','1"),
("IDOL_version','10.9");

CREATE RULE no_schema_version_insert AS
ON INSERT TO doctrack_schema_version
DO INSTEAD NOTHING;

CREATE RULE no_schema_version_delete AS
ON DELETE TO doctrack_schema_version
DO INSTEAD NOTHING;

NOTE: If you want to set up document tracking in an existing IDOL installation that uses the
deprecated IndexTasks component, you must also add the following statements for the type

table:

INSERT INTO type(typeid, type, is_error, is_terminal)
VALUES (60, 'IndexTasksCompleted',0,0),
(79, 'IndexTasksStarted',0,0),
(89, '"IndexTask',0,0);

To set up the database and table on Windows

1. Use Pgadmin to run the SQL Create Table command. Right-click
databases/mydoctrackdb (or the name of the database that you created) and select

Create script.

Database Access Permissions

On Windows, you can modify the configuration in Pgadmin by selecting the appropriate item on the
left pane, and then clicking Tools/Server Configuration.

To modify the database access permissions

1. Find the pg_hba. conf host-based authentication file by inspecting the PostgreSQL
configuration file. The following lines in the postgresql. conf file identify the location:

hba_file = '/etc/postgresql/9.1/main/pg_hba.conf' # host-based authentication
file

NOTE: The location of the postgresqgl. conf file can vary, depending on your version and
operating system. On Linux, you can run the following command to find the path to the

configuration file:
ps -ef | grep postgres

2. Modify the pg_hba. conf configuration file, which you located in Step 1, to allow your IDOL
components to access the database. Find the following section, and add appropriate lines for

your client IP addresses.

TYPE DATABASE USER ADDRESS METHOD
host all my.user.name 10.2.123.123/32 trust

IDOL Server (12.12) Page 137 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

For simplicity, you can set the USER field to all. Micro Focus recommends that you use a secure
METHOD, such as md5, after you have tested the system.

3. Allow PostgreSQL to accept connections. In the postgresql. conf file, find the listen_
addresses parameter and uncomment or modify it:

listen_addresses = '*'
4. Save and close the pg_hba.conf and postgresql.conf files.
5. Restart PostgreSQL, by using the following command (on Linux):

sudo -u postgres /etc/init.d/postgresql restart

Set up the IDOL Host Machines

To communicate with the SQL server, you must install an SQL driver (for your server type), and you
must install an ODBC driver manager on the IDOL host machines.

NOTE: To use document tracking with a PostgreSQL back end, you must have PostgreSQL
ODBC client driver version 9.1.0 or later.

Install the SQL Driver and Manager for PostgreSQL

Microsoft Windows has a driver manager by default. If you require a driver manager for Linux, try
UnixODBC, for example by using the following command:

sudo apt-get install unixodbc

You can download drivers for both Windows and Linux on the PostgreSQL Web site:
http://www.postgresql.org/ftp/odbc/versions/

Make sure that you install the correct version for your platform (for example, 64-bit).
On Linux, it might be easier to use your package manager. For PostgreSQL:

sudo apt-get install odbc-postgresql

NOTE: Make a note of the name of the SQL driver that you install, because you must reference it
in a configuration parameter, or a data source name (DSN).

Check the Installed Drivers

Use the following procedures to check the installed drivers.

NOTE: You can use the Windows user interface to find the installed drivers for the Microsoft
SQL Server back end.

To check the installed drivers on Linux and UNIX ODBC
¢ Inyour terminal (not in psql), type the following command to list the available drivers:
odbcinst -d -q

To find a list of drivers on Windows

IDOL Server (12.12) Page 138 of 611

http://www.postgresql.org/ftp/odbc/versions/

Administration Guide
Chapter 6: Set Up Document Tracking

1. Run the following command to open the driver manager:

%windir%\system32\odbcad32.exe

2. Inthe driver manager, review the information on the Drivers tab. The following driver is
required:

PostgreSQL ANSI or PostgreSQL ANSI (x64)

Configure IDOL Components

To use document tracking with an SQL back end, you must use the IDOL document tracking library,
which is included in the IDOL Server installer. You can store this library in any accessible location,
and then configure the location in your IDOL components.

You must then configure your IDOL components to use the SQL document tracking back end. The
DIH, IDOL Content component, Connector Framework Server (CFS), and CFS Connectors support
document tracking.

After configuration, an IDOL component automatically adds itself to the Source table on startup.

NOTE: If you retire an IDOL component, Micro Focus recommends that you leave the entry in the
Source table, because existing records might refer to the source of the retired component.

To configure an IDOL component for document tracking

1.
2.

Open the IDOL component configuration file in a text editor.

(DIH only) Turn on document tracking by setting the DocumentTracking parameter to True
in the [Server] section of the DIH configuration file.

[Server]

DocumentTracking=True

NOTE: If you are using DIH in a unified IDOL Server configuration, set the
DocumentTracking parameter to True in the [DistributionSettings] section.
Create a [DocumentTracking] configuration section.
In this [DocumentTracking] section, set the Backend parameter to Library.

Set LibraryPath to the absolute path to your document tracking library. In the default IDOL
installation, the library is located in InstalLPath/IDOL/modules/, and the library name is
dt_odbc.d11 (on Windows), or 1ibdt_odbc.so (on UNIX).

Set ConnectionString to the connection string to use, with subparameters set for your
setup. For example:

ConnectionString=Driver=PostgreSQL ANSI(x64); Server=sql-host.mycompany.com;
Port=5432; Database=mydoctrackdb; UID=postgres;Password=password;

You can also use a DSN instead of subparameters. For example:

ConnectionString=DSN=MyDSN

IDOL Server (12.12) Page 139 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

Set the parameters consistent with your environment. On Linux, the connection string
cannot contain spaces.

On Linux, you can set the Driver subparameter to the path to your SQL ODBC driver
shared object (for example, /usr/1ib/x86_64-1inux-gnu/odbc/psqlodbca.so or
/usr/1lib/odbc/psqlodbca. so). Micro Focus recommends that you use the ANSI version of
libraries.

TIP: On Linux, if you use a DSN in your connection string, and you see File not Found
errors in your IDOL logs, try specifying the driver explicitly in the ConnectionString
configuration parameter:

ConnectionString=Driver=/usr/lib/psqlodbca.so;DSN=mydsn;
7. Setany other configuration parameters for document tracking. For more information, refer to
the IDOL Server Reference. For example:

[DocumentTracking]
MaxEventsPerFile=500
TimeoutSeconds=20
UIDFieldName=UID

NOTE: Connectors generate the document ID strings, and add them to the
UIDFieldName field, so you must not use a field that already exists for another purpose.
8. Save and close the configuration file.

Restart the IDOL component for your changes to take effect.

Set up Document Tracking with Microsoft SQL Server

This section describes how to set up document tracking with Microsoft SQL Server 2008 (SP3).This
process includes the following steps:

* [nstall Microsoft SQL Server.
* Create the database structure.
¢ |nstall SQL drivers on the IDOL host machines.

¢ Configure IDOL components.

Set up Microsoft SQL Server to Store Tracking Information

This section describes how to use Microsoft SQL Server as your SQL back end.

Configuration Example for Microsoft SQL Server

For the Microsoft SQL Server back end, you must set the ConnectionString configuration parameter
in the [DocumentTracking] configuration section. This parameter must contain a valid connection
string, as understood by SQL Server and your ODBC driver manager.

IDOL Server (12.12) Page 140 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

Micro Focus recommends that you use a DSN if you are running IDOL on a Windows operating
system. This option lets the operating system save your settings. If you use Windows integrated
authentication, use a connection string of the following form:

ConnectionString=DSN=dt;database=odbc_test_db
If you use SQL Authentication [user+password], add TRUSTED_CONNECTION=yes ;. For example:
ConnectionString=DSN=dt; TRUSTED_CONNECTION=yes;database=odbc_test_db

NOTE: You can set the database that you want to connect to in the DSN configuration GUI, or

Microsoft SQL server. However, for SQL Server 2005, SQL Server 2008, and SQL Server 2012,
Micro Focus recommends that you explicitly specify it in the connection string connection options.

You can also use a DSN on UNIX operating systems, but you might find configuration easier if you
include all parameters in the ConnectionString parameter and omit the DSNs.

Troubleshoot Connection and Authentication Problems

The following table describes some common connection and authentication problems that you can
identify in the SQL Management Studio, on the server side.

Issue Suggestion

SQL Server is not configured to allow SQL In Server Properties, review the settings on
Authentication. the Security tab.

SQL Server is not configured to allow remote In Server Properties, review the settings on
connections. the Connections tab.

SQL Server is not mapping the user to the correct In the properties for the user, review the
permissions for your database. settings on the User Mapping tab.

For the client, check the following in the DSN configuration GUI:
e The driver must be SQL Server Native Client 10.e.

¢ The DSN must have Use ANSI quoted identifiers, Use ANSI nulls, paddings, warnings,
and Perform translation for character data selected.

Initialization Commands

You can run the following commands from an SQL command-line interface, or from the GUI in
Microsoft SQL Server Management Studio.

CREATE TABLE type(
typeid integer identity PRIMARY KEY,
type varchar(64) NOT NULL UNIQUE,
is_error smallint,
is_terminal smallint
)
SET IDENTITY_INSERT type ON
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES(®, 'Unknown',0,0);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (10, 'Committed’',0,1);

IDOL Server (12.12) Page 141 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (20, 'Deleted',0,1);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (30, 'Indexed',9,0);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (40, 'Received’',9,0);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (50, 'Updated',0,1);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (-10, 'Warning',1,0)
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (-20, 'Error',1,1);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (-39, 'Rejected’,1,1);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (90, 'Added',0,0);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (1090, 'Delete
received.',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (119, 'Update
received.',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (120, 'Non-importing add
received.',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES

(130, 'Import:Queue',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES

(140, 'Import:Importing',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (150, 'Import:Pre',0,0);
INSERT INTO type(typeid, type, is_error, is_terminal) VALUES

(160, 'Import:Post',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES

(170, 'Import:Finished',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES

(180, 'Import:Cancel’,0,1);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (190, 'Import:Extracting
metadata',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (200, 'Import:Extracting
metadata finished',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES

(210, 'Import:ExtractMetaAbort',1,1);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES

(220, "Import:Abort',1,1);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES (230, 'Replaced’,9,0);

CREATE TABLE source(
sourceid integer identity PRIMARY KEY,
source varchar(128) NOT NULL UNIQUE

)5

CREATE TABLE event(
eventid integer identity PRIMARY KEY,
docuid varchar(128) NOT NULL,
typeid int NOT NULL,
sourceid int NOT NULL,
timestamp bigint NOT NULL

)5

CREATE TABLE metadata(

IDOL Server (12.12) Page 142 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

metadataid integer identity PRIMARY KEY,
[key] varchar(32) NOT NULL,
value varchar(1024) NOT NULL

)s

CREATE TABLE event_metadata(
eventid int NOT NULL,
metadataid int NOT NULL,

)5

CREATE TABLE docuid_reference(
docuid varchar(128) NOT NULL,
ref varchar(900) NOT NULL,

)s

CREATE TABLE doctrack_schema_version(
[key] varchar(64) NOT NULL,
value varchar(128) NOT NULL

)s

INSERT INTO doctrack_schema_version([key],value) VALUES ('major_version', '1');
INSERT INTO doctrack_schema_version([key],value) VALUES ('minor_version','1");
INSERT INTO doctrack_schema_version([key],value) VALUES ('IDOL_version','10.9');

NOTE: If you want to set up document tracking in an existing IDOL installation that uses the
deprecated IndexTasks component, you must also add the following statements for the type
table:

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES
(60, 'IndexTasksCompleted',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES
(79, 'IndexTasksStarted',0,0);

INSERT INTO type(typeid, type, is_error, is_terminal) VALUES
(89, 'IndexTask',0,0);

Set up the IDOL Host Machines

To communicate with the SQL server, you must install an SQL driver (for your server type), and you
must install an ODBC driver manager on the IDOL host machines.

Install the SQL Driver and Manager for Microsoft SQL Server

Microsoft Windows comes with SQL Server drivers by default. You can use odbcad32.exe (in
WindowsDirectory\system32) to verify that SQL Server Native Client 10.0 is installed.

For SQL Server 2008 SP3, you can download the driver from the Microsoft Web site:

http://www.microsoft.com/en-us/download/details.aspx?id=27596

IDOL Server (12.12) Page 143 of 611

http://www.microsoft.com/en-us/download/details.aspx?id=27596

Administration Guide
Chapter 6: Set Up Document Tracking

NOTE: You might need a different version of the ODBC drivers if you are using a different edition
of SQL Server.

UNIX machines can use the open-source FreeTDS driver to connect to Microsoft SQL Server. A driver
developed by Microsoft also exists, targeted at Red Hat Enterprise Linux. This example uses
FreeTDS, which can be obtained from the following Web site:

http://www.freetds.org/
Download the driver distribution, and then read, edit, and run the following commands.
1. Unzip the package:
tar -zxf freetds-stable.tgz
2. Use the following commands to build the driver:
cd freetds-0.91
./configure --prefix=YourFileDirectory --with-tdsver=8.0
make
make install
These commands copy the drivers to your prefix directory. The driver itself is copied to
Prefix/1lib/libtdsodbc. so

You can reference this driver in your connection string when configuring IDOL. For more information,
see Configure IDOL Components, on the next page.

For example:

ConnectionString=Driver=/freetds/inst/1lib/libtdsodbc.so;TDS_
Version=7.0;Server=myserverhostname\SQLEXPRESS;Port=56841;UID=idol;PWD=password;

Check the Installed Drivers

Use the following procedures to check the installed drivers.

NOTE: You can use the Windows user interface to find the installed drivers for the Microsoft
SQL Server back end.

To check the installed drivers on Linux and UNIX ODBC
¢ Inyourterminal (not in an SQL client), type the following command to list the available drivers:
odbcinst -d -q
To find a list of drivers on Windows
1. Run the following command to open the driver manager:
%windir%\system32\odbcad32.exe

2. Inthe driver manager, review the information on the Drivers tab. The following driver is
required:

SQL Server Native Client 10.0

IDOL Server (12.12) Page 144 of 611

http://www.freetds.org/

Administration Guide
Chapter 6: Set Up Document Tracking

Configure IDOL Components

To use document tracking with an SQL back end, you must use the IDOL document tracking library,
which is included in the IDOL Server installer. You can store this library in any accessible location,
and then configure the location in your IDOL components.

You must then configure your IDOL components to use the SQL document tracking back end. The
DIH, IDOL Content component, Connector Framework Server (CFS), and CFS Connectors support
document tracking.

After configuration, an IDOL component automatically adds itself to the Source table on startup.

NOTE: If you retire an IDOL component, Micro Focus recommends that you leave the entry in the
Source table, because existing records might refer to the source of the retired component.
To configure an IDOL component for document tracking
1. Open the IDOL component configuration file in a text editor.

2. (DIH only) Turn on document tracking by setting the DocumentTracking parameter to True
in the [Server] section of the DIH configuration file.

[Server]

DocumentTracking=True

NOTE: If you are using DIH in a unified IDOL Server configuration, set the
DocumentTracking parameter to True in the [DistributionSettings] section.
3. Create a [DocumentTracking] configuration section.
4. Inthis [DocumentTracking] section, set the Backend parameter to Library.

5. SetLibraryPath to the absolute path to your document tracking library. In the default IDOL
installation, the library is located in InstallPath/IDOL/modules/, and the library name is
dt_odbc.d11 (on Windows), or 1ibdt_odbc.so (on UNIX).

6. SetConnectionString to the connection string to use, with subparameters set for your
setup. For example:

ConnectionString=DSN=MyDSN

Set the parameters consistent with your environment. On Linux, the connection string
cannot contain spaces.

On Linux, you can set the Driver subparameter to the path to your SQL ODBC driver
shared object. Micro Focus recommends that you use the ANSI version of libraries.

TIP: On Linux, if you use a DSN in your connection string, and you see File not Found
errors in your IDOL logs, try specifying the driver explicitly in the ConnectionString
configuration parameter:

ConnectionString=Driver=/freetds/inst/1lib/libtdsodbc.so;DSN=mydsn

IDOL Server (12.12) Page 145 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

7. Setany other configuration parameters for document tracking. For more information, refer to
the IDOL Server Reference. For example:

[DocumentTracking]
MaxEventsPerFile=500
TimeoutSeconds=20
UIDFieldName=UID

NOTE: Connectors generate the document ID strings, and add them to the
UIDFieldName field, so you must not use a field that already exists for another purpose.
8. Save and close the configuration file.

Restart the IDOL component for your changes to take effect.

Verify the Setup

The following section describes how to troubleshoot and verify your setup.

Check IDOL Configuration

When you start the IDOL Content component, it logs the following message in the application log
when the document tracking module loads correctly:

Starting document tracker

IDOL logs messages about document tracking to the Index log stream. To see these messages, set
the LogLevel parameter to Full for this log stream.

Index Content

To test the document tracking setup, you can create an IDX document to add to the IDOL Content
component. Make sure that you include the configured UIDFieldName in your IDX. Alternatively, you
can use a connector to generate the IDX and index it.

The following example IDX has the UID field configured as the UIDFieldName.

dtsample.idx

#DREREFERENCE sample_idx_001

#DRETITLE A document to test document tracking
#DREDBNAME Default

#DREFIELD UID="@01"

#DREFIELD Myfieldl="field1l"

#DREFIELD Myfield2="field2"

#DRECONTENT Did it work?

#DREENDDOC

#DREENDDATANOOP

Index this document into your IDOL Content component, for example by using a DREADD index action:

http://idol-server:9011/DREADD?dtsample.idx&IndexUID=test

IDOL Server (12.12) Page 146 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

Query Your Document

Run a select statement to query for the document in your SQL back end. For example:

sudo -u postgres
! Jpostgre: fbingpsql: / -2.4.50.2: no versi
on i1nformation available (required .
psgl (2.4.15)]
Type "help" for help.

odbc_test=# select * from event lLimit 5;

114187
114188

|
|
114189 |
114160 |

|

3714875851

(S rows)

odbc_test=# I

You might need to wait some time (30-40 seconds) for Content to send records to your back end.
After this time, if the document is not present, check the index log for SQL errors.

Clean Results

At the end of a test run, you might want to clean the database of tracking events. Itis safe to delete
entries from the Event table.

You must not clear the Source table while IDOL components are running. Stop the components
before clearing the Source table or removing any entries from it.

NOTE: If you retire an IDOL component, Micro Focus recommends that you leave the entry in the
Source table, because existing records might refer to the source of the retired component.

Set up Document Tracking with a Log Back
End

This section describes how to set up document tracking to store information in an IDOL log file.

IDOL Server (12.12) Page 147 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

To configure document tracking in logs
1. Open the IDOL component configuration file in a text editor.

2. (DIH only) Turn on document tracking by setting the DocumentTracking parameter to True
in the [Server] section of the DIH configuration file.

[Server]
DocumentTracking=True

NOTE: If you are using DIH in a unified IDOL Server configuration, set the
DocumentTracking parameter to True in the [DistributionSettings] section.

3. Create a [DocumentTracking] configuration section.
4. Inthis [DocumentTracking] section, set the Backend parameter to Log.

5. Set any other configuration parameters for document tracking. For more information, refer to
the IDOL Server Reference. For example:

[DocumentTracking]
MaxEventsPerFile=500
TimeoutSeconds=20
UIDFieldName=UID

6. Find the [Logging] configuration section.

7. Configure a new log stream for document tracking, with LogTypeCSVs set to doctrack. For
more information, see Customize Logging, on page 473.

For example:

[Logging]

LogLevel=FULL
LogDirectory=Logs
@=ApplicationLogStream
1=ActionLogStream
2=DocumentTrackinglLogStream

[DocumentTrackinglLogStream]
LogFile=doctrack.log
LogHistorySize=50
LogTime=True

LogEcho=False
LogMaxSizeKBs=1024
LogTypeCSVs=doctrack

8. Save and close the configuration file.

Restart the IDOL component for your changes to take effect.

IDOL Server (12.12) Page 148 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

Configure Event Storage

You can configure how document tracking stores the events by modifying the [DocumentTracking]
configuration in your components. By default, document tracking stores all events, but you can use
the PositiveEventFilter and NegativeEventFilter configuration parameters to reduce the
number of events to store.

¢ PositiveEventFilter allows you to configure a list of events that you explicitly want to store.

¢ NegativeEventFilter allows you to configure a list of events that you do not want to store.

If you configure both parameters, PositiveEventFilter takes precedence. For more information,
refer to the IDOL Server Reference.

For a full list of event types that you can use in the filter parameters, see Document Tracking Event
Definitions, below.

Document Tracking Event Definitions

The following table lists the event definitions that are used for document tracking.

Event type Generated Description
by
Warning General An event that suggests some user attention might

be required for this document.

Error General An event that suggests that further processing of
the document might stop because of errors.

Committed Content A document is indexed and available to search.
Deleted Content A document has been deleted.
Indexed Content A document has been processed for indexing (but

might not be searchable until flushed).
Updated Content A document has been updated by DREREPLACE.

Rejected Content This document has been rejected and will
definitely not be indexed.

Received DIH A document has been received.

Added Connectors A document add command has been added to the
connector ingest queue.

Deleted Connectors A document delete command has been added to
the connector ingest queue.

IDOL Server (12.12) Page 149 of 611

Administration Guide
Chapter 6: Set Up Document Tracking

Replaced

Updated

Delete received.
Update received.
Non-importing add
received.
Import:Queue

Import:Importing

Import:Pre

Import:Post

Import:Finished
Import:Cancel

Import:Extracting
metadata

Import:Extracting
metadata finished

Connectors

Connectors

CFS
CFS
CFS

CFS

CFS

CFS

CFS

CFS
CFS
CFS

CFS

Import:ExtractMetaAbort CFS

Import:Abort

CFS

A document replace command (delete and add)
has been added to the connector ingest queue.

A document update command has been added to
the connector ingest queue.

CFS has received a document delete command.
CFS has received a document update command.

CFS has received a document that does not
require import (for example, because it is
metadata only).

A document has been placed in the import queue.

A document is being imported (that is, processed
by KeyView).

A document is being processed by the pre-import
tasks.

A document is being processed by the post-import
tasks.

A document has been successfully imported.
A document import process has been cancelled.

The import process is extracting metadata from a
document.

The import process has completed extracting
metadata from a document.

The metadata extraction process was stopped for
an import.

The import process was stopped.

The following event definitions are generated by the deprecated IndexTasks component:

Event type

IndexTasksStarted

IndexTask

IndexTasksCompleted

IDOL Server (12.12)

Generated
by

IndexTasks

IndexTasks

Description

The start of all tasks in IndexTasks.

A task has been started in IndexTasks. The task name

is available as a custom value for this event.

IndexTasks

The end of all tasks in IndexTasks.

Page 150 of 611

Part lll: IDOL Server Operations

This section shows how you can make best use of the many information-retrieval, analysis, classification,
and management capabilities of IDOL Server.

e Agents

e Categorization

* Document Classification

e Binary Categories

¢ AgentBoolean Agents and Categories
¢ Cluster Information

¢ Profiles

IDOL Server (12.12) Page 151 of 611

Administration Guide
Part Ill: IDOL Server Operations

IDOL Server (12.12) Page 152 of 611

Chapter 7: Agents

This section describes how to set up and use agents.

O AUt AGEN S 153
® Manipulate AQeNnts . 153
® Query With AQENTS .. 155
*® Collaboration and Expertise with Agents 156

About Agents

Agents automatically find documents for you that match your interests. A user who is interested in
football and gardening could, for example, create a Real Madrid agent and a Pest Control agent.

When you create an agent, you give it training text. This training provides an example of the type of
text that the agent must look for, so that an agent returns only documents, profiles, categories, or
other agents that conceptually match its training.

For example, you could create a Mortgage agent and train it with text that is similar to the type of
results you expect the agent to return. You can train the agent with text that you type yourself, or with
documents. After you train the agent and specify details for it (such as the maximum number of
results the agent returns, the minimum conceptual similarity of results and so on), you can run the
agent. You can edit or retrain the agent at any time to fine-tune it.

NOTE: By default agents match against all Content index databases. However, you can restrict
the matching to one or more databases.

Related Topics

¢ AgentBoolean Agents and Categories, on page 187

Manipulate Agents

This section describes how to create, modify, view, and delete agents by using ACI actions.

TIP: You can also create, modify, view, and delete agents by using the IDOL Admin interface.
Refer to the IDOL Admin User Guide for more details.

Create an Agent

You can create agents by using the AgentAdd action to the IDOL Community component. For details
on this action, refer to the IDOL Server Reference. For example:

IDOL Server (12.12) Page 153 of 611

Administration Guide
Chapter 7: Agents

http://12.3.4.56:4000/action=AgentAdd&UserName=Administrator&AgentName=Global+Warmin
g&Training=Factors+affecting+global+warming&FieldMinScore=60

This action uses port 4000 to create an agent called Global Warming forthe Administrator user,in
the IDOL Community component, which is on a machine with the IP address 12.3.4.56.

The IDOL Community component creates and stores the agent in the agent index (IDOL Agentstore
component). The agent is trained to find documents whose concept matches the concept of the text

Factors affecting global warming. Only documents that have a conceptual relevance of at least
60 percent to this text can return as results.

Related Topics
e Create AgentBoolean Agents and Categories, on page 190

¢ Optimize AgentBoolean Matching, on page 193

Edit an Agent

You can edit agents by using the AgentEdit action. For details on this action, refer to the
IDOL Server Reference. For example:

http://12.3.4.56:4000/action=AgentEdit&UserName=Administrator&AgentName=Global+Warmi
ng&FieldMinScore=75

Retrain an Agent

You can retrain agents by using the AgentRetrain action. For details on this action, refer to the
IDOL Server Reference. Retraining the agent modifies the concepts of its training with the concepts
of the text that you use for retraining. For example:

http://12.3.4.56:4000/action=AgentRetrain&UserName=Administrator&AgentName=Global+Wa
rming&PositiveDocs=534+352+4534

This action uses port 4000 to retrain the Global Warming agent for the Administrator user with the
documents that have the IDs 534, 352, and 4534.

Copy an Agent

You can copy an agent by using the AgentCopy action. For details on this action, refer to the
IDOL Server Reference. You can copy an agent to use it as a template.You can copy the agent and
then modify the copy. For example:

http://12.3.4.56:4000/action=AgentCopy&UserName=Administrator&AgentName=Global+Warmi
ng&DestinationUserName=JSmith&DestinationAgentName=Environment

This action uses port 4000 to copy the Global Warming agent details from the Administrator userto
the Environment agent for the user JSmith.

IDOL Server (12.12) Page 154 of 611

Administration Guide
Chapter 7: Agents

View Agent Details

You can view the details of an agent by using the AgentRead action. For details on this action, refer to
the IDOL Server Reference. For example:

http://12.3.4.56:4000/action=AgentRead&UserName=Administrator&AgentName=Global+Warmi
ng

This action requests the details of the Global Warming agent for the Administrator user from
IDOL Community component.

Delete an Agent

You can delete an agent from the IDOL agent index by sending the AgentDelete action to the
IDOL Community component. For details on this action, refer to the IDOL Server Reference. For
example:

http://12.3.4.56:4000/action=AgentDelete&UserName=Administrator&AgentName=Global+War
ming

This action deletes the Global Warming agent for the Administrator user from the IDOL Community
component.

Related Topics
e Display Online Help, on page 32

Query with Agents

You can query with an agent by using the AgentGetResults action. For details on this action, refer to
the IDOL Server Reference.

NOTE: When you match an agent against the IDOL Content component databases, all the agent
terms are internally postfixed with a tilde (~) to indicate that the terms are stemmed and must not
be stemmed again.

For example:

http://12.3.4.56:4000/action=AgentGetResults&UserName=Administrator&AgentName=Global
+Warming&DREDatabaseMatch=News,Archive

This action uses port 4000 to request the results of the Global Warming agent for the Administrator
user from the IDOL Community component, which is located on a machine with the IP address
12.3.4.56.

It matches the Global Warming agent against the IDOL Content component News and Archive
databases.

IDOL Server (12.12) Page 155 of 611

Administration Guide
Chapter 7: Agents

Modify Document References for an Agent

You can specify a set of documents to mark as read or unread for an agent by using the
AgentChangeDocsReadStatus action. For details on this action, refer to the IDOL Server Reference.
For example:

http://12.3.4.56:9030/action=AgentChangeDocsReadStatus&UserName=Administrator&AgentN
ame=Global+Warming&DocRefs=1234,5678,2953

This action modifies the agent called Global Warming for the Administrator user, and marks the
documents with the IDs 1234, 5678, and 2953 as read, so that they do not return in the agent results.

Related Topics
e Display Online Help, on page 32

Collaboration and Expertise with Agents

You can use agents in IDOL to collaborate with other users or to locate experts in your field of
interest.

Collaboration

The IDOL Community component automatically matches users with common explicit interest agents
or similar implicit profiles. You can use this information to create virtual expert knowledge groups.

You can use the Community action to find agents or profiles in the community that match the agents
or the profiles of a specific user. For example:

http://Communityhost:port
/action=Community&UserName=JSmith&Agents=True&Profiles=True&AgentsFindProfiles=True&
ProfilesFindAgents=True

This action instructs the IDOL Community component to find agents and profiles in the user
community that match both the agents and the profiles of the user JSmith.

Expertise

The IDOL Community component accepts a natural language or Boolean search string and returns
users who own matching agents or profiles. This action allows instant identification of experts in any
subjects at hand, eliminating time-consuming searches for specialists, and unnecessary researching
of subjects for which expert knowledge is already available

You can use the Community action to find agents or profiles in the community that match a natural
language or Boolean search string. For example:

http://IDOLhost:port/action=Community&Text=how does the cost of funds, such as the
costs of performing a credit evaluation on the business requesting a loan, determine

IDOL Server (12.12) Page 156 of 611

Administration Guide
Chapter 7: Agents

the spread between the federal funds rate and the prime
rate&AgentsFindProfiles=True&ProfilesFindAgents=True

This action instructs the IDOL Community component to find agents and profiles in the user
community that match the specified text.

IDOL Server (12.12) Page 157 of 611

Administration Guide
Chapter 7: Agents

IDOL Server (12.12) Page 158 of 611

Chapter 8: Categorization

The IDOL categorization capability allows you to create and administer categories, and to use them
for categorization, suggesting, sentiment analysis, and matching.

® Introduction to Categorization 159
® Create a Hierarchical Category Structure 160
® View and Administer Categories 164
® Categorize Data ... 169
® Suggest Categories 169
O Match Categories . 170
® Create TaXONOMIUES e 171
® Categorization Example 172

Introduction to Categorization

The IDOL Category component automatically organizes text documents of any type into predefined
categories. These sections describe how to adapt the categorization process to obtain the best
possible performance.

For example, start with a data set of 1,000 news stories and a list of categories such as Sports,
Politics, Entertainment, Science, and Business. The categorization process has two principal stages:
training and testing. Divide the data set into training data, which might consist of 800 of the stories,
and test data, which contains the remaining 200.

In the training stage, Category uses the training data to build the agents that it uses later to
categorize the test data. A human expert sorts the data into the categories, by reading each news
story and deciding which category it belongs to. More than one category might be appropriate for
some stories. For example, you could place a story about patenting the human genome in both
Science and Business. Other stories might not have an appropriate category, so they are discarded.
After the training data has been sorted manually, you train the agents by running the training sections
of the Categorizer.

After training, you are ready to categorize additional documents. You enter the test documents into
Category, which automatically places them into the category or categories that its mathematical rules
decide are most appropriate. Similar to the expert sorting the training data, Category might place a
particular document in more than one category, or in no category at all.

The human expert must also sort the 200 test documents. You can then examine the performance of
Category and determine how well it categorizes. If it is categorizing optimally, you can then add any
future news stories into Category to categorize automatically. If required, you can add the original
200 test documents to the training set.

IDOL Server (12.12) Page 159 of 611

Administration Guide
Chapter 8: Categorization

Related Topics

» AgentBoolean Agents and Categories, on page 187

Create a Hierarchical Category Structure

The IDOL Category component provides a single category, the root category, which you cannot
delete or modify. The root category serves as a base for the hierarchical category structure that you
create. You can create categories under the root category:

 from scratch

e from clusters

« from legacy topic sets

¢ by copying categories

¢ by generating a taxonomy

¢ from XML

All categories are stored on disk, and become available for querying only if they are indexed into the
IDOL category index (IDOL Agentstore component).

After you create categories, you can:
e train the categories
¢ retrain the categories

¢ move the categories

Create Categories from Scratch

You can create categories from scratch.
To create categories from scratch
1. Create the category by using the CategoryCreate action. For example:
action=CategoryCreate&Name=Botanics&Category=1

From this action, IDOL Server creates the Botanics category with an ID of 1. The new category
is a child of the root category, which has the ID 0. Categories that you create from scratch are
by default stored as child categories of the root category. However, you can specify an
alternative parent category when you create a category. The Category parameter is optional. If
you do not specify an ID, the system automatically generates a random ID.

2. Create a child category.

The IDOL Category component returns an ID for the category that it creates. You can use this
ID to identify the category, for example, to add a child category to it:

action=CategoryCreate&Name=Perennials&Parent=1

IDOL Server (12.12) Page 160 of 611

Administration Guide
Chapter 8: Categorization

In this example, Category creates the Perennials category. The new category is a child of the
category with the ID 1 (in this case, the Botanics category).

3. Train the new category. You can set training action parameters for the CategoryCreate action
to train a category when you create it.

4. Optionally, move categories to create a hierarchical structure or to modify their position in the
category hierarchy.

Related Topics
e Train Categories, on page 163
« Move Categories, on page 164

e Create AgentBoolean Agents and Categories, on page 190

Create Categories from Clusters

You can use the CategoryImportFromCluster action to create categories from clusters that the
IDOL Category component has previously created. It imports these categories with training that is
generated from the cluster concepts.

Category stores the categories that it imports from clusters in the root category, unless you specify a
parent category for them. For example:

action=CategoryImportFromCluster&SourceJobName=Jobl&BuildNow=True

In this example, Category imports all the clusters in the Job1 cluster source job to categories in the
root category. The BuildNow parameter instructs Category to build the categories immediately, so
that they become active. You can also activate the category at a later point by using the
CategoryBuild action.

Related Topics
» Cluster Information, on page 199

¢ Build Categories, on page 168

Create Categories from Legacy Topic Sets

You can use the CategoryImportFromTopic action to import categories from existing legacy topic
sets. The IDOL Category component creates one category for each topic set. When you import a
topic set, you can specify whether you want to maintain the original Boolean rules of the topic, or
import the topic as an IDOL concept matching agent.

All categories that you import from legacy topic sets are child categories of the root category. You
can move them to create a hierarchical structure. For example:

action=CategoryImportFromTopic&Topic=MyTopicFile.otl&BuildNow=True

In this example, Category imports the topic sets that are stored in the MyTopicFile.otl to categories
in the root category. The BuildNow parameter instructs Category to build the categories
immediately, so that they become active. You can also activate the category at a later point by using
the CategoryBuild action.

IDOL Server (12.12) Page 161 of 611

Administration Guide
Chapter 8: Categorization

Related Topics
» Build Categories, on page 168

Create Categories by Copying Categories

You can create a category by copying an existing category and retraining or editing it. The
IDOL Category component stores the new category in the same position in the root category as the
original category, unless you specify a parent category for it. For example:

action=CategoryCopy&Category=123456789012345&Name=BotanicsCopy&Parent=98765432109876
&BuildNow=True

In this example, Category copies the category with the ID 123456789012345. It calls the new category
BotanicsCopy and stores it as a child category of the category with the ID 98765432109876. The
BuildNow parameter instructs Category to build the categories immediately, so that they become
active. You can also activate the category at a later point by using the CategoryBuild action.

Related Topics
¢ Build Categories, on page 168

Create Categories when you Generate a Taxonomy

You can use the TaxonomyGenerate action to generate a taxonomy to build categories from clusters
or query results. The IDOL Category component stores the imported categories in the root category,
in a hierarchical structure that reflects the hierarchical structure of the taxonomy.

Related Topics
e Generate a Taxonomy from Clusters, on page 172

* Generate a Taxonomy from Query Results, on page 172

Create Categories from XML

The CategoryImportFromXML action allows you to create categories by importing category
information from an XML file. This file can be a third-party category XML hierarchy provided that it
follows the IDOL category XML format. The categories are imported with the training set in the XML
file.

Related Topics
e Category XML Format, on page 575

Create Categories from Partitions

The CategoryPartition action divides up a specified set of documents into several partitions. The
IDOL Category component assigns each document to a partition, and generates a title for each
partition. This option is similar to clustering, but it places all documents in a query set into partitions.
For example:

IDOL Server (12.12) Page 162 of 611

Administration Guide
Chapter 8: Categorization

action=CategoryPartition&REQuery=child+benefit+cuts&NumResults=500&NumPartitions=6

In this example, Category retrieves all the documents that match the specified query terms up to a
maximum of 500 results, splits them into six partitions, and returns the results as an ACl response.

To create categories from the partitions, add the CreateCategories action parameter to the
CategoryPartition action.

For more information, refer to the IDOL Server Reference.
Related Topics

¢ Cluster Information, on page 199

Create Categories for Sentiment Analysis

The CategorySetupSentimentAnalysisCats action allows you to set up and train positive, negative,
and neutral sentiment categories to use to perform sentiment analysis.

After you run the CategorySetupSentimentAnalysisCats action, you can perform sentiment
analysis without having to perform any other actions.

For example:

action=CategorySetupSentimentAnalysisCats&PositiveCatName=PositiveFeedback&PositiveC
atTraining=the new procedure for routing service calls has really improved our
customer satisfaction&Parent=71056

In this example, the IDOL Category component sets up a category, PositiveFeedback, as a child of
the category with the ID 71056, and trains that category with the specified text.

Related Topics

» Suggest Categories with Confidence Values, on page 170

Train Categories

You can use the CategorySetTraining action to train a category. Category training can consist of
text, documents, a Boolean expression, category content, or a combination of these. These elements
identify text, documents, agents, profiles, and other categories that match the category.

For example:

action=CategorySetTraining&Category=323499876022105571056&DocID=238,785,9912&BuildNo
w=True

In this example, the IDOL Category component trains the category with the ID
323499876022105571056 using the content of the documents with the IDs 238, 785, and 9912. The
BuildNow parameter instructs Category to build the categories immediately, so that they become
active. You can also activate the category at a later point by using the CategoryBuild action.

You can also train categories when you create them by assigning training action parameters to the
CategoryCreate action.

IDOL Server (12.12) Page 163 of 611

Administration Guide
Chapter 8: Categorization

NOTE: Categories that you create or import by using an action other than CategoryCreate are
already trained. However, you can retrain them.

Related Topics
Build Categories, on page 168

Retrain Categories

Use the CategorySetTraining action to retrain a category. You can use text, documents, a Boolean
expression, and category content or a combination of these to retrain a category. When you retrain a
category, its original training merges with the new training. For example:

action=CategorySetTraining&Category=323499876022105571056&Boolean=dog AND NOT
cat&BuildNow=True

In this example, the IDOL Category component retrains the category with the ID
323499876022105571056 using the Boolean expression dog AND NOT cat. The BuildNow parameter
instructs Category to build the categories immediately, so that they become active. You can also
activate the category at a later point by using the CategoryBuild action.

Related Topics
« Build Categories, on page 168

Move Categories

You can use the CategoryMove action to move individual categories in the category hierarchy. For
example:

action=CategoryMove&Category=124365780934532&Parent=12398234987345876

In this example, the IDOL Category component moves the category that has the ID 124365780934532
to the category with the ID 123098234987345876 (to make category 12398234987345876 the new
parent of category 124365780934532).

View and Administer Categories

The IDOL Category component allows you to do these tasks to maintain your category hierarchy:
¢ view category details
¢ view category hierarchy details
¢ view category terms and weights
¢ view category training

¢ change category fields

IDOL Server (12.12) Page 164 of 611

Administration Guide
Chapter 8: Categorization

¢ change category term weights
¢ replace categories

¢ activate categories

¢ build categories

¢ delete categories

¢ delete category training

¢ export categories to XML

¢ sync the IDOL category index with the categories stored on disk

View Category Details

Use the CategoryGetDetails action to view category fields. For example:
action=CategoryGetDetails&Category=124365780934532

In this example, the IDOL Category component returns all fields in the category with the ID
124365780934532.

View Category Hierarchy Details

Use the CategoryGetHierDetails action to view hierarchy details for a category. For example:
action=CategoryGetHierDetails&Category=124365780934532

In this example, IDOL Server returns the hierarchy details for the category with the ID
124365780934532.

View Category Terms and Weights

Use the CategoryGetTNW action to view category stemmed terms and their weights. For example:
action=CategoryGetTNW&Category=124365780934532

In this example, the IDOL Category component returns the terms and weights of the category with
the ID 124365780934532.

View Category Training

Use the CategoryGetTraining action to view category training. For example:
action=CategoryGetTraining&Category=124365780934532

In this example, the IDOL Category component returns the training of the category with the ID
124365780934532.

IDOL Server (12.12) Page 165 of 611

Administration Guide
Chapter 8: Categorization

Change Category Fields

Use the CategorySetDetails action to set the value of one or more category fields, or to create new
fields in a category.

By default each category has a threshold of 0 and is set to return six results. Use the
CategorySetDetails action fields THRESHOLD and NUMRESULTS to set the threshold and the number of
results that a category can return. For example:

action=CategorySetDetails&Category=124365780934532&Fields=THRESHOLD,NUMRESULTS&Value
s=60,10&BuildNow=True

In this example, the IDOL Category component sets the THRESHOLD field of the category with the ID
124365780934532 to 60 and its NUMRESULTS to 10. The BuildNow parameter instructs Category to
build the categories immediately, so that they become active. You can also activate the category at a
later point by using the CategoryBuild action.

Related Topics
e Build Categories, on page 168

Reset Category Fields

Use the CategoryResetDetails action to reset the value of the category fields to their default values.

Use the CategoryResetDetails action to reset the values of any of these fields: DATABASES,
FIELDTEXT, NUMRESULTS, THRESHOLD, TAXONOMYROOT, SIMPLECATDEFAULTCAT, SIMPLECATPARAM, and
FIELD. The action also removes values associated with the fields. For example:

action=CategoryResetDetails&Category=324987602&Params=NUMRESULTS, THRESHOLD

In this example, the IDOL Category component resets the NUMRESULTS and THRESHOLD fields of the
category with ID 324987602 to their default values of 6 and o.

Change Category Term Weights

You can use the CategorySetTNW action to change the weights of terms in the category that you
believe are weighted inappropriately. For example:

action=CategorySetTNW&Category=124365780934532&Terms=tax,monei,budget&Weights=2353,1
223,1023&BuildNow=True

In this example, the IDOL Category component sets the weight of the term tax to 2353, the weight of
the term monei to 1223 and the weight of the term budget to 1023 (tax, monei and budget are what
IDOL stems the words Tax, Money and Budget to).

The BuildNow parameter instructs Category to build the categories immediately, so that they become
active. You can also activate the category at a later point by using the CategoryBuild action.

Related Topics
e Build Categories, on page 168

IDOL Server (12.12) Page 166 of 611

Administration Guide
Chapter 8: Categorization

Remove Category Term Weights

You can use the CategorySetTNW action to remove any modifications that you made to the weights of
terms in a category. For example:

action=CategorySetTNW&Category=124365780934532&BuildNow=True

In this example, IDOL Server removes all previous changes to the weights of all terms in the category
with the ID 124365780934532. The BuildNow parameter instructs Category to build the categories
immediately, so that they become active. You can also activate the category at a later point by using
the CategoryBuild action.

Related Topics

» Build Categories, on the next page

Replace Categories

You can use the CategoryReplace action to replace a category with another category. For example:

action=CategoryReplace&FromCategory=123456789012345&ToCategory=98765432109876&BuildN
ow=True

In this example, the IDOL Category component replaces the 98765432109876 category with the
123456789012345 category. The BuildNow parameter instructs Category to build the categories
immediately, so that they become active. You can also activate the category at a later point by using
the CategoryBuild action.

Related Topics

» Build Categories, on the next page

Activate or Deactivate Categories

You can use the CategoryActivate action to activate or deactivate a category. You cannot query
inactive categories or return them as results. By default the IDOL Category component activates a
category when it builds it. For example:

action=CategoryActivate&Category=3234998760221&Active=True
In this example, the IDOL Category component activates the category with the ID 3234998760221.
Use the CategoryGetHierDetails action to find out whether categories are active.
Related Topics
e View Category Hierarchy Details, on page 165

IDOL Server (12.12) Page 167 of 611

Administration Guide
Chapter 8: Categorization

Build Categories

You can use the CategoryBuild action to build a category. You must build a category after you
create it and train it, as well as every time that you retrain it. Building a category identifies the
concepts of the training for the category and indexes the category into the IDOL category index
(IDOL Agentstore component). For example:

action=CategoryBuild&Category=32349987602210557106
In this example, the IDOL Category component builds the category with the ID
32349987602210557106.

NOTE: If you train or retrain a category by using the CategorySetTraining action with BuildNow
set to True, you do not have to run a CategoryBuild action, because the category was built
immediately after it was trained.

The IDOL Category component also builds categories immediately if you assign training
parameters to the CategoryCreate action to train a category when you create it.

Delete Categories

You can use the CategoryDelete action to delete a category. Deleting a category removes the
category from disk and from the IDOL category index. For example:

action=CategoryDelete&Category=32349987602210557106

In this example, the IDOL Category component deletes the category with the ID
32349987602210557106.

Delete Category Training

You can use the CategoryDeleteTraining action to delete all or part of the training for a category.
Deleting a category removes the training from disk and from the IDOL category index. For example:

action=CategoryDeleteTraining&Category=32349987602210557106

In this example, the IDOL Category component deletes the training for the category with the ID
32349987602210557106.

Export Categories to XML

You can use the CategoryExportToXML action to export a category to XML format, including its
descendants, training documents, and terms and weights. For example:

action=CategoryExportToXML

In this example, the IDOL Category component exports the entire category structure to XML.

IDOL Server (12.12) Page 168 of 611

Administration Guide
Chapter 8: Categorization

Synchronize the Category Index with Stored Categories

You can use the CategorySyncCatDRE action to synchronize the IDOL category index with the
categories stored on disk. CategorySyncCatDRE deletes the current contents of the category index,
and overwrites it with the category information stored on disk. For example:

action=CategorySyncCatDRE

In this example, the IDOL Category component synchronizes its category index with the categories
stored on disk.

Categorize Data

You can configure IDOL to automatically categorize data before you index it.

To automatically categorize documents before storing them in the IDOL Content component index,
set up a preprocessing task in Connector Framework Server (CFS). The IDOL Category component
matches incoming documents against categories that its category index contains and returns
matching categories. CFS then tags the incoming documents according to the categories that they
match.

For more information, refer to the Connector Framework Server Administration Guide.
Related Topics

e Perform AgentBoolean Queries, on page 191

Suggest Categories

The IDOL Category component can suggest conceptually similar categories for:
e documents
o text

« categories

Suggest Categories for Documents

You can use the CategorySuggestFromDocument action to suggest categories from the IDOL
category index that are conceptually similar to a specified document. For example:

action=CategorySuggestFromDocument&DocID=125

In this example, the IDOL Category component returns categories that are conceptually similar to the
document with the ID 125.

IDOL Server (12.12) Page 169 of 611

Administration Guide
Chapter 8: Categorization

Suggest Categories for Text

You can use the CategorySuggestFromText action to suggest categories from the IDOL category
index that are conceptually similar to specified text. For example:

action=CategorySuggestFromText&ueryText=Caring for passiflora incarnata

In this example, the IDOL Category component returns categories that are conceptually similar to the
text Caring for passiflora incarnata.

Itis possible to configure a spell checking engine to detect spelling mistakes in the input for this
action and use the corrected terms to suggest categories. TextParse input is also spellchecked and
categories are suggested based on the corrected terms, without changing the spelling in the
document being ingested.

For configuration details refer to IDOL Server Reference.

Suggest Categories for Categories

You can use the CategorySuggestFromCategory action to suggest categories from the IDOL
category index that are conceptually similar to a specified category. For example:

action=CategorySuggestFromCategory&Category=32349987602210557106

In this example, the IDOL Category component returns categories that are conceptually similar to the
category with the ID 3234998760221055.

Suggest Categories with Confidence Values

You can use the CategorySimpleCategorize action to suggest categories from the IDOL category
index that are conceptually similar to a specified document, piece of text, or file content, and to return
terms and weights for each category.

You can also specify cluster job names and cluster numbers to import into categories when you use
the CategorySimpleCategorize action. This enables you to perform sentiment analysis on clusters.

Related Topics

« Create Categories for Sentiment Analysis, on page 163

Match Categories

You can use the CategoryQuery action to match categories against data, agents, profiles, and other
categories. For example:

action=CategoryQuery&Category=32349987602210557106

IDOL Server (12.12) Page 170 of 611

Administration Guide
Chapter 8: Categorization

In this example, the IDOL Category component matches the category with the ID
32349987602210557106 against all its databases and returns conceptually similar data, agents,
profiles, and categories.

Create Taxonomies

The IDOL Category component taxonomy generation feature allows you to automatically create
hierarchical contextual taxonomies of clusters or other information. It provides you with an overview
of the information landscape and an insight into specific areas of the information.

You can also create a taxonomy manually and name it by the category that is its root node.

Generate Taxonomies Automatically

The TaxonomyGenerate action allows you to generate a hierarchical taxonomy from one or more
clusters or query results.

The taxonomy generator adapts the Bayesian and information theoretic methods to concept
selection. It applies Bayesian algorithms to identify statistical relationships between concepts and
sets of concepts (at the document and document set level). It then filters them to form the hierarchical
structure of the final taxonomy.

You can write the taxonomy to disk as a directory structure, or import the taxonomy into the category
hierarchy.

NOTE: Before you create a taxonomy, ensure that your IDOL Content component index does not
contain duplicate documents or text that is repeated in multiple documents (for example,
document headers). Ensure that these are stripped out at the import stage to gain optimal results.

You can set up a schedule that runs the TaxonomyGenerate action at regular intervals.

Categories

Directory
structure

D.q

~
]

TaxonomyGenerate

Clusters

Related Topics

e Cluster Information, on page 199

IDOL Server (12.12) Page 171 of 611

Administration Guide
Chapter 8: Categorization

Generate a Taxonomy from Clusters

Use the TaxonomyGenerate action with the SourceJobName and Cluster parameters to generate a
taxonomy from one or more clusters. For example:

action=TaxonomyGenerate&SourceJobName=Taxonomyl&Cluster=0,1

In this example, the IDOL Category component generates a taxonomy from the Taxonomy1 cluster.

Generate a Taxonomy from Query Results

Use the TaxonomyGenerate action with the DREQuery parameter to generate a taxonomy from a
query. For example:

action=TaxonomyGenerate&REQuery=new+tax+cuts

In this example, the IDOL Category component generates a taxonomy from the results that it returns
from its data index for the query new tax cuts.

Schedule Taxonomy Generation
You can set up a schedule to run the TaxonomyGenerate action at regular intervals.
Related Topics

e Setup Schedules, on page 208

Create Named Taxonomies

You can take advantage of the hierarchical nature of IDOL categorization to manually create and
store named taxonomies in the IDOL Category component. You can then use those taxonomies to
investigate searches or suggestions.

If you set up a hierarchy of categories using the CategoryCreate or CategoryImportFromXML
actions, you can then run CategorySetDetails for the topmost category with TaxonomyRoot set to
True. That category becomes the root of the new taxonomy and its name is the new taxonomy name.

You can also generate a named taxonomy automatically by running the TaxonomyGenerate action
and setting TaxonomyRoot to True.

You can subsequently use the taxonomy name as a parameter in actions such as CategoryFind and
CategorySuggestFromDocument, to restrict the scope of the action results.

Categorization Example

This section contains an example of how you might set up categorization in the IDOL Category
component. Each step provides several examples of possible actions for that step.

IDOL Server (12.12) Page 172 of 611

Administration Guide
Chapter 8: Categorization

To use Categorization
1. Create a few categories.
action=CategoryCreate&Name=Animals&Category=10
action=CategoryCreate&Name=Cats&Parent=10&Category=11
action=CategoryCreate&Name=Dogs&Parent=10&Category=12

2. Train the new categories (from a selection of indexed documents, free text, and Boolean
rules).

action=CategorySetTraining&Category=10&DocRef=http://foo.com/animals&DocID=1
09,178

action=CategorySetTraining&Category=11&Training=Cats and kittens can be a
variety of colours, such as tabby or tortoiseshell

action=CategorySetTraining&Category=12&Boolean=dog OR hound

3. Build the categories (this processes the training into terms and weights, enabling
CategoryQuery and CategorySuggest).

action=CategoryBuild&Category=10&Recurse=True

4. Manually adjust the terms and weights for one of the categories, and rebuild it.
action=CategorySetTnhW&Category=11&Terms=cat,kitten&Weights=500,400
action=CategoryBuild&Category=11

5. Query for documents matching a particular category, with optional parameters.
action=CategoryQuery&Category=11
action=CategoryQuery&Category=12&DatabaseMatch=News&NumResults=10

6. Categorize already-indexed documents or free text.
action=categorySuggestfromDocument&DocID=1465

action=CategorySuggestFromText&ueryText=the cat in the hat

IDOL Server (12.12) Page 173 of 611

Administration Guide
Chapter 8: Categorization

IDOL Server (12.12) Page 174 of 611

Chapter 9: Document Classification

IDOL document classification allows you to create classifiers, which use the random forest algorithm
to classify documents into a set of classes that you define.

® Introduction to Document Classification ... 175
® Use Document Classification ... 175
® View and Administer Classifiers 180

Introduction to Document Classification

Document classification allows you to automatically assign documents to classes according to values
that occur in a set of fields that you specify. Classification uses the random forest algorithm, and you
can use it as an alternative to the IDOL conceptual categorization (see Categorization, on page 159).

Classification works by analyzing the contents of various feature fields in the documents. You choose
feature fields that contain useful information for classifying the documents. Typically, feature fields
contain small snippets of information, rather than large portions of text. For example, you might use a
name, or color field, rather than the document content. The feature fields that you use depend on the
classifier and classes that you want to create.

To use classification, you create one or more classifiers. A classifier contains a set of classes (similar
to categories), which represent the topics that you want to assign documents to. You train each class
with a set of documents that represent the kind of content that you want the class to match.

After you create and train a classifier, you can query the classifier with new documents, and the
classifier returns the details of the class that each new document belongs to.

Use Document Classification

The following sections describe how to create and train a classifier, and query the classifier with new
documents.

For more information about the classification actions, refer to the IDOL Server Reference.

Choose Feature Fields

Before you create a classifier, you must choose the fields in your documents that you want to use to
classify documents. These are the feature fields for the classifier.

Feature fields generally contain short pieces of information, such as a name or a very brief
description. A good choice of feature field is similar to a good choice of ParametricType field. For
example, if you want to create a food classifier, you might use a field that stores ingredients, or a

IDOL Server (12.12) Page 175 of 611

Administration Guide
Chapter 9: Document Classification

meal name, rather than a field that contains a recipe procedure or a detailed description of a type of
food.

The feature fields must contain information that describes features of the different classes that you
want to create for your classifier. For example, to classify meals as vegetarian or meat-based, you
must find feature fields that describe features of vegetarian or meat-based meals.

The exact choice of feature field also depends on the contents of your documents.
For example, the following IDX document describes part of a recipe for soup:

#DREREFERENCE Food/Carrot and Coriander Soup
#DRETITLE Carrot and Coriander Soup
#DRESECTION ©

#DREFIELD Ingredient="carrots"

#DREFIELD Ingredient="onion"

#DREFIELD Ingredient="potato"

#DREFIELD Herbs="coriander"

#DREFIELD Seasoning="vegetable stock"
#DREFIELD Meal="soup"

#DREFIELD Equipment="food processor"
#DREFIELD PreparationTime="20 minutes"
#DREFIELD CookingTime="1 hour"

#DREFIELD Description”This easy recipe makes a tasty carrot and coriander soup"
#DRECONTENT

Example soup recipe

#DREENDDOC

« For a classifier that distinguishes between vegetarian meals and meat-based meals, you might
choose the Ingredient field.

» For aclassifier that distinguishes between savory recipes and desserts, you might choose the
Meal and Ingredient fields.

¢ For aclassifier that distinguishes between quick recipes and meals that take longer, you might
choose the PreparationTime and CookingTime fields.

You can choose more than one feature field for a classifier. The classifier does not distinguish
between data from different feature fields. It extracts the content from all the available feature fields
from a document, and uses all the content to train the classifier (or classify a document).

For example, if your document had the fields:

#DREFIELD Ingredientl="carrots"
#DREFIELD Ingredient2="onion"
#DREFIELD Ingredient3="potato"

You can set Ingredientl, Ingredient2, and Ingredient3 as feature fields. If you use this document
for classification, it gives the same results as if you used a document with the following fields:

#DREFIELD Ingredientl="onion"
#DREFIELD Ingredient2="potato"
#DREFIELD Ingredient3="carrots"

IDOL Server (12.12) Page 176 of 611

Administration Guide
Chapter 9: Document Classification

Create a Classifier

You create a classifier with a unique name and a set of feature fields.

To create a classifier

¢ SendaClassifierCreate action to the IDOL Category component, with the following
parameters:

° (ClassifierName set to the name of the new classifier. This name must be unique in the
IDOL Category component.

© (ClassifierType setto RandomForest.

° FeatureFields setto a comma-separated list of the feature fields that you want to use for
the classifier.

For example:
action=ClassifierCreate&ClassifierName=food&FeatureFields=Ingredient,Herbs,Seasoning

This action creates a food classifier, which uses the Ingredient, Herbs, and Seasoning fields to
classify documents.

Create and Train Classes

After you create the classifier, you create and assign training to the classes. You can either create the
classes and assign training in a single action, or you can create the classes and train them later.

The documents that you use to train the class must exist in the IDOL data index (IDOL Content
component). You provide training in the form of a state token, which you create by using the Query
action with the StoreState parameter set to True. See Choose Training Documents for Classes, on
the next page.

To create a class

¢ SendaClassifierAddClass action to the IDOL Category component, with the following
parameters:

° (ClassifierName setto the name of the classifier.
© (ClassName set to the name of the new class.

° (Optional) StatelID set to a state token that lists the documents that you want to use to train
the class.

For example:

action=ClassifierAddClass&ClassifierName=food&ClassName=vegetarian&StateID=B8UGIK95F
K3G-23

This action creates a vegetarian class in the food classifier. It assigns the documents from the state
token B8UGIK95FKJG-23 as training for the new class.

IDOL Server (12.12) Page 177 of 611

Administration Guide
Chapter 9: Document Classification

If you do not train the class when you create it, you can add training by using the
ClassifierSetClassTraining action. You can also use this action to retrain a class. For more
information, see Retrain a Class, on page 181.

You must run the ClassifierAddClass action for each class that you want to create in the classifier.

Choose Training Documents for Classes

When you create a classifier, you must train each of the classes with content that represents the
classes that you want to define. The content must exist in your IDOL data index, and the content must
contain the feature fields that you have defined for the classifier.

You provide training to the classes as a state token. You create state tokens by sending the Query
action with the StoreState parameter set to True. Therefore, to train a class, you must have a single
query that returns the documents that define that class.

For some classifications, you might be able to perform a complex query that returns enough
documents to train your classifier. However, the best way to find training is usually to manually
categorize a set of documents, and add a field that labels the document with its class. You can then
use a simple FieldText query to find all documents with a particular label.

For example, if you label a set of documents with a MealType field, with a value of savory or dessert,
you can use the following query to find and save the results to use as training for the savory class:

action=Query&FieldText=MATCH{savory}:MealType&MaxResults=1000&StoreState=True

You can use the resulting state token that this query returns to train the class. You can also create
similar queries to train your other classes.

After you have trained the classifier, you can classify any new documents, and automatically add the
label field to those documents.

NOTE: To get the best results out of your classifiers, use as many training documents as
possible. Micro Focus recommends that you use a minimum of 200 to 300 training documents for
each class.

Train the Classifier

You must train the classifier before you can use it to classify documents. During this stage, the
IDOL Category component retrieves all the training documents from the index, and extracts the
feature fields. It uses the content to train each class in the classifier.

For Category to successfully train the classifier, it must have at least two classes, each of which must
have training assigned.

NOTE: When Category trains the classifier, it ignores any very rare features.

To train a classifier

¢ SendacClassifierTrain action to the IDOL Category component, with the ClassifierName
parameter set to the name of the classifier.

IDOL Server (12.12) Page 178 of 611

Administration Guide
Chapter 9: Document Classification

For example:
action=ClassifierTrain&ClassifierName=food

This action trains the food classifier.

NOTE: The action returns an error if IDOL Category component could not extract any features
from the training documents (for example, because none of the training documents contained the
feature fields for the classifier).

Classify Documents

You can use a trained classifier to classify documents, by using the ClassifierQuery action.
The document can either be:
« the document reference for a document that exists in the IDOL Content component index.

¢ apercent-encoded IDX or XML document.

In both cases, the IDOL Category component extracts the classifier feature fields from the query
document, and compares the values in these feature fields against the trained classes in the
classifier. The action returns the class that the document matches most closely.

To classify a document that exists in the index
¢ Send the ClassifierQuery action with the following parameters.
° (ClassifierName set to the name of the classifier to use to classify the document.

° DocRef set to the IDOL reference of the document to classify.

For example:

action=ClassifierQuery&ClassifierName=food&DocRef=http://www.example.com/documents/c
arrots

To classify a document that does not exist in the index

¢ Send the ClassifierQuery action to the IDOL Category component with the following
parameters.

° (ClassifierName set to the name of the classifier to use to classify the document.

° QueryText set to the percent-encoded IDX or XML document (Category detects the correct
format automatically).

For example:

action=ClassifierQuery&ClassifierName=food&QueryText=%23DREREFERENCE%20Food%2FLeek%2
@and%20Potato%20Pie’%0D%0OA%23DRETITLE%20Leek%20and%20Potato%20Pie%0D%0OA%23DRESECTION
200%0D%PA%23DREFIELD%20Ingredient%3D%221eeks%22%0D%0A%23DREFIELD%20Ingredient%3D%22p
otatoes%22%0D%0OA%23DREFIELD%20Ingredient%3D%22cheese%22%0D%0OA%23DREFIELD%20Ingredien
t%3D%22pastry%22%0D%0A%23DREFIELD%20Ingredient%3D%22butter%22%0D%0A%23DREFIELD%20Ing

IDOL Server (12.12) Page 179 of 611

Administration Guide
Chapter 9: Document Classification

redient%3D%22egg%22%0D%0A%23DREFIELD%20Herbs%3D%22rosemary%22%0D%0A%23DREFIELD%20Her
bs%3D%22thyme%22%0D%0A%23DREFIELD%20Meal%3D%22pie%22%0D%0OA%23DREFIELD%20Equipment%3D
%22pie%20dish%22%0D%0A%23DREFIELD%20PreparationTime%3D%2210%20minutes%22%0D%0A%23DRE
FIELD%20CookingTime%3D%221%20hour%22%0D%0A%23DREFIELD%20Description%22This%20easy%20
recipe%20makes%20a%20tasty%20leek%20and%20potato%20pie’22%0D%0A%23DRECONTENT%OD%OAP i
e%20recipe%0D%0A%23DREENDDOC

This action classifies the following document:

#DREREFERENCE Food/Leek and Potato Pie
#DRETITLE Leek and Potato Pie
#DRESECTION ©

#DREFIELD Ingredient="leek"

#DREFIELD Ingredient="potato"

#DREFIELD Ingredient="cheese"

#DREFIELD Ingredient="shortcrust pastry"
#DREFIELD Ingredient="butter"

#DREFIELD Ingredient="egg"

#DREFIELD Herbs="rosemary"

#DREFIELD Herbs="thyme"

#DREFIELD Meal="pie"

#DREFIELD Equipment="pie dish"

#DREFIELD PreparationTime="10 minutes"
#DREFIELD CookingTime="1 hour"

#DREFIELD Description"This easy recipe makes a tasty leek and potato pie"
#DRECONTENT

Pie recipe

#DREENDDOC

View and Administer Classifiers

After you have set up classification, you can list and view classifiers, retrain classes, and delete
classes and classifiers.

List and View Classifiers

The ClassifierList and ClassifierGetInfo actions allow you to view information about the
classifiers you have created. ClassifierList returns information for all classifiers, and
ClassifierGetInfo returns information for a single classifier that you specify. Both actions return the
number of classes in the classifier, the feature fields that the classifier uses, and whether the
classifier has been trained.

For example:
action=ClassifierlList
This action returns the names of all your classifiers, and the information for each classifier.

action=ClassifierGetInfo&ClassifierName=food

IDOL Server (12.12) Page 180 of 611

Administration Guide
Chapter 9: Document Classification

This action returns information for the food classifier.

Retrain a Class

You can change the training documents associated with a class in a classifier by using the
ClassifierSetClassTraining action. This action overwrites any existing training for the class with
the new training. After you retrain a class, you must retrain the classifier.

To retrain a classifier
1. Sendthe ClassifierSetClassTraining action with the following parameters:
e ClassifierName set to the name of the classifier.
¢ ClassName set to the name of the class to retrain.
e StatelID setto a state token that lists the documents that you want to use to train the class.
For example:

action=ClassifierSetClassTraining&ClassifierName=food&ClassName=vegetarian&Stat
eID=G7KPID13APWM-15

This action updates the training for the vegetarian class in the food classifier to use the
documents listed in the state token G7ZKPID13APWM-15.

2. Send aClassifierTrain actionto IDOL Server, with the ClassifierName parameter set to the
name of the classifier.

For example:
action=ClassifierTrain&ClassifierName=food

This action trains the food classifier, and updates the training for the retrained classes.

Delete a Class

You can delete a class from a classifier by using the ClassifierDeleteClass action. After you send
this action, IDOL Server automatically retrains the classifier.

For example:
action=ClassifierDeleteClass&ClassifierName=food&ClassName=vegetarian

This action deletes the vegetarian class from the food classifier and retrains the classifier.

Delete a Classifier

You can delete a classifier that you no longer need by using the ClassifierDelete action. This
action deletes the classifier and all associated classes.

For example:

action=ClassifierDelete&ClassifierName=food

IDOL Server (12.12) Page 181 of 611

Administration Guide
Chapter 9: Document Classification

This action deletes the food classifier.

IDOL Server (12.12) Page 182 of 611

Chapter 10: Binary Categories

This section describes how to set up and use binary categories.

® About Binary Categories 183
® Create and Administer Binary Categories 183
® Query with Binary Categories 185
® Binary Category Example 186

About Binary Categories

A binary category is a special kind of category, designed to answer yes/no questions about
documents, files, and text, like /s this document spam?, Does this violate company policy?, or Is this
work-related?.

After you create a binary category, you train it. Unlike regular categories, which receive only positive
training, binary categories can receive both positive and negative training. You provide the binary
category with documents or text that result in a yes (POSITIVE) answer when querying with the
binary category. You also provide documents or text that result in a no (NEGATIVE) answer to the
same query.

After training, the binary category determines whether a piece of text, a file on disk, or a document in
IDOL results in a POSITIVE or a NEGATIVE result. IDOL also provides a score (0—1) for the result,
which indicates the confidence.

Create and Administer Binary Categories

The following section describes how to create, train, delete, change, and view binary categories.
Related Topics
¢ Display Online Help, on page 32

Create a Binary Category

You can use the BinaryCatCreate action to create binary categories. For details on this action, refer
to the IDOL Server Reference. For example:

http://12.3.4.56:9020/action=BinaryCatCreate&Name=spam_binarycat

This action uses port 9020 to instruct the IDOL Category component, which is located on a machine
with the IP address 12.3.4.56, to create a new binary category named spam_binarycat.

IDOL Server (12.12) Page 183 of 611

Administration Guide
Chapter 10: Binary Categories

Train a Binary Category

You can use the BinaryCatTrain action to train a binary category. Unlike normal categories, which
have only positive training, binary categories can have both positive and negative training.

If the binary category has existing training, BinaryCatTrain adds the new training to it. If you want to
replace the training for a binary category, you must first use the BinaryCatDeleteTraining action to
delete the existing training. For example:

http://12.3.4.56:9020/action=BinaryCatTrain&Name=spam_
binarycat&PositiveDocID=123,456&NegativeDocID=789,890

This action uses port 9020 to instruct the IDOL Category component, which is located on a machine
with the IP address 12.3.4.56, to train the binary category named spam_binarycat. It uses the
documents with IDs 123 and 456 for positive training, and the documents with IDs 789 and 890 for
negative training.

Delete Training From a Binary Category

You can use the BinaryCatDeleteTraining action to remove the existing training from a binary
category. Using the BinaryCatTrain action on a binary category with existing training adds the new
training to the existing training, unless you use the BinaryCatDeleteTraining action first. For details
on this action, refer to the IDOL Server Reference. For example:

http://12.3.4.56:9020/action=BinaryCatDeleteTraining&Name=spam_binarycat

This action uses port 9020 to instruct the IDOL Category component, which is located on a machine
with the IP address 12.3.4.56, to delete the training of the binary category named spam_binarycat.

Change Binary Category Details

You can use the BinaryCatSetDetails action to change the fields for a binary category from their
default values. For details on this action, refer to the IDOL Server Reference. For example:

http://12.3.4.56:9020/action=BinaryCatSetDetails&Name=spam_
binarycat&inDocOccs=128&TestTermsPerDoc=20

This action instructs the IDOL Category component to change the value of the parameter
MinDocOccs to 12, and the value of the parameter TestTermsPerDoc to 20, for the binary category
named spam_binarycat.

View Binary Category Details

You can use the BinaryCatGetDetails action to view the details of a binary category. For details on
this action, refer to the IDOL Server Reference. For example:

http://12.3.4.56:9020/action=BinaryCatGetDetails&Name=spam_binarycat

IDOL Server (12.12) Page 184 of 611

Administration Guide
Chapter 10: Binary Categories

This action uses port 9020 to instruct the IDOL Category component, which is located on a machine
with the IP address 12.3.4.56, to display parameter values of the binary category named spam_
binarycat.

List Binary Categories

You can use the BinaryCatList action to view a list of all the binary categories in the system. For
details on this action, refer to the IDOL Server Reference. For example:

http://12.3.4.56:9020/action=BinaryCatlList

This action uses port 9020 to instruct the IDOL Category component, which is located on a machine
with the IP address 12.3.4.56, to list all the binary categories in the system.

Delete a Binary Category

You can use the BinaryCatDelete action to delete a binary category from the IDOL Category
component. For details on this action, refer to the IDOL Server Reference. For example:

http://12.3.4.56:9020/action=BinaryCatDelete&Name=spam_binarycat

This action uses port 9020 to instruct the IDOL Category component, which is located on a machine
with the IP address 12.3.4.56, to delete the binary category named spam_binarycat.

Query with Binary Categories

After you train the binary category, you can use the BinaryCatQuery action to determine whether a
piece of text, a file on disk, or a document in IDOL results in a “yes” (POSITIVE) or a “no”
(NEGATIVE) answer for the question that the binary category asks. For example, your binary
category might ask the question “Is this spam?” and could filter emails to ignore spam emails. For
details on the BinaryCatQuery action, refer to the IDOL Server Reference.

For example:

http://12.3.4.56:9020/action=BinaryCatQuery&Name=spam_binarycat&QueryText=How to
become an instant millionaire

This action uses port 9020 to instruct the IDOL Category component, which is located on a machine
with the IP address 12.3.4.56, to check whether the text How to become an instant millionaire
results in a “POSITIVE” or a “NEGATIVE” result for the question posed by the binary category spam_
binarycat.

Related Topics
e Display Online Help, on page 32

IDOL Server (12.12) Page 185 of 611

Administration Guide
Chapter 10: Binary Categories

Binary Category Example

This section contains a step-by-step scenario for how you might use a binary category. After the
initial creation of the binary category, each step provides more than one example of possible actions.

1.

2.

Create a binary category.
action=BinaryCatCreate&Name=spam_binarycat
Train the new binary category (from a selection of indexed documents, free text, and files).

action=BinaryCatTrain&Name=spam_
binarycat&PositiveDocID=123,456&NegativeDocID=789,890

action=BinaryCatCreate&Name=spam_binarycat&PositiveTraining=Get rich quick,
join today&NegativeTraining=We should discuss the Jones file

action=BinaryCatCreate&Name=spam_
binarycat&PositiveDirectory=C:\spampositive&NegativeDirectory=C:\spamnegative

Query some data using the binary category.
action=BinaryCatQuery&Name=spam_binarycat&QueryFile=C:\unknown_email.txt

action=BinaryCatQuery&Name=spam_binarycat&QueryText=Limited space available,
apply today

The following sample shows a POSITIVE result, with a score of 8.99664 from a binary category query:

<autnresponse xmlns:autn=""http://schemas.autonomy.com/aci/"'">

<action>
BINARYCATQUERY
</action>
<response>
SUCCESS
</response>
<responsedata>
<autn:queryresult>
<autn:result>
POSITIVE
</autn:result>
<autn:score>
0.99664
</autn:score>
<autn:queryresult>
</responsedata>

</autnresponse>

IDOL Server (12.12) Page 186 of 611

Chapter 11: AgentBoolean Agents and
Categories

This section describes how to set up and use AgentBoolean agents and categories in IDOL.

® AgentBoolean Agents and Categories 187
*® Configure IDOL Server for Text Parse Queries ... 189
*® Create AgentBoolean Agents and Categories ... 190
® Perform AgentBoolean QUETIES 191
® Optimize AgentBoolean Matching 193

AgentBoolean Agents and Categories

You can create agents and categories that use keywords, conceptual information, a Boolean or
proximity expression, or a FieldText expression to match documents. The fields in the agents or
categories that contain these expressions are called AgentBoolean fields.

The following sections describe how to set up and use AgentBoolean agents and categories.
To use AgentBoolean and FieldText fields

1. Configure the fields that the IDOL Content component uses to match against AgentBoolean
agents and categories.

2. Create agents and categories that contain Boolean or FieldText matching expressions.

3. Send queries to the IDOL Content component to match against the categories and agents.

After you set up AgentBoolean matching, you can optimize the system to provide the most efficient
matching.

Related Topics
e Configure IDOL Server for Text Parse Queries, on page 189
» Create AgentBoolean Agents and Categories, on page 190
e Perform AgentBoolean Queries, on page 191

e Optimize AgentBoolean Matching, on page 193

IDOL Server (12.12) Page 187 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

Examples

IDOL stores agents and categories in the IDOL Agentstore component in the same way as the

IDOL Content component stores documents. You can create agents and categories by using IDOL
actions (in the IDOL Community component or IDOL Category component), or you can index an IDX
or XML agent or category into the Agentstore. For example:

#DREREFERENCE 947344A0

#DRETITLE

My Cat and Dog Agent

#DREFIELD MyABField="cat AND dog"

#DREFIELD FieldTextField="MATCH{cat}:Animal"
#DRECONTENT

cat

#DREENDDOC

Similarly, you can search for agents and categories in the IDOL Agentstore component in the same
way that you search for documents in the IDOL Content component.

For example, you can find agents and categories that match a document. This process allows you to
categorize documents, or alert users when a new document matches their agent.

In this case, AgentBoolean expressions can improve the performance and accuracy for matching
documents. It also provides extra functionality that you cannot easily achieve with simple conceptual
agents.

Match Specific Concepts

If you have an Apollo category, it matches documents that contain the concepts Apollo space
program and Greek god Apollo. You can use a Boolean expression to specifically restrict results to
one or other of the concepts. For example:

"Space Program" NOT "Greek god"

Use Field Restrictions

You can use field restrictions in your AgentBoolean expressions, to match only the most relevant
documents. For example:

"New Zealand" :COUNTRY AND wine.

This expression matches documents that contain the phrase New Zealand in the COUNTRY field, and
contain the term wine.

Related Topics
e Simple Field Restricted Search, on page 242

Use Term Occurrence Restrictions

You can use term occurrence restrictions in your agents to ensure that only the most relevant
documents return. For example:

IDOL Server (12.12) Page 188 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

"Gene Therapy"[10:]

This expression matches documents in which the phrase Gene Therapy occurs ten or more times.

Categorize Documents before Indexing

You can use the Connector Framework Server (CFS) to match documents against categories before
you index them, and to tag the document with the appropriate category. You can use AgentBoolean
categories for more specific categorization. This method speeds up future searches for documents
that match a category, because the document is already tagged.

You can also use this method to prevent documents from being indexed, based on the category data.
For example, you can automatically prevent the IDOL Content component from indexing a document
that contains sensitive or restricted material.

Related Topics

e Categorization, on page 159

Alert Users to Documents that Match Their Agents

Connector Framework Server (CFS) allows you to alert users to documents that match their agents
before you index the documents. In this case, CFS can send a TextParse query to the

IDOL Agentstore component to find all agents that match the document, and then email the users
who own those agents.

TextParse queries allow you to send a whole IDX or XML document to Agentstore in a query.
Agentstore extracts fields that you configure as TextParseIndexType from the document and uses
the contents of these fields as the query text.

AgentBoolean rules improve the speed and accuracy of this agent matching procedure.
Related Topics
¢ Agents, on page 153

Configure IDOL Server for Text Parse Queries

IDOL Server can categorize documents or alert users to new content that matches their agents
before it indexes the documents. This process includes matching against AgentBoolean rules.

You can configure your pre-indexing tasks to send the percent-encoded IDX or XML document as
query text, with the TextParse action parameter set to True.

When you use an IDX or an XML document as query text, you must configure as
TextParseIndexType all the fields that you use to match agents and categories.

IDOL stores agents and categories in the IDOL Agentstore component. Agentstore has its own
configuration file, which by default is stored in the following location:

installDir\agentstore

IDOL Server (12.12) Page 189 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

To configure TextParse fields

1.

7.
8.

Open the IDX or XML document that you want to match against the AgentBoolean
categories in a text editor.

Decide which fields in the document contains the content that you want to match against the
AgentBoolean categories (for example, the DRECONTENT and the DRETITLE field).

Open the IDOL Agentstore component configuration file in a text editor.

Inthe [FieldProcessing] section, add a new process to the list of processes. This process
identifies the fields in the IDX or XML document that you want to match against the
AgentBoolean categories. For example:

[FieldProcessing]
0=SetIndexFields

15=SetAgentBooleanFields

Create a new section for the process that you added. In this section, create a property for
the process (you define the property later, by setting one or more applicable configuration
parameters). Set PropertyFieldCSVs to a list of fields to associate with the process. If you
are not sure which fields to use, type */* to use all fields. For example:

[SetAgentBooleanFields]
Property=AgentBooleanFields
PropertyFieldCSVs=*/DRECONTENT, *DRETITLE

Create a new section for the property that you added, in which you set TextParseIndexType
to True. This property indicates that Agentstore must use the associated fields as query text
in TextParse queries. For example:

[AgentBooleanFields]
TextParseIndexType=True

Save and close the configuration file.

Restart the IDOL Agentstore component for your changes to take effect.

Related Topics

e Fields, on page 83

Create AgentBoolean Agents and Categories

You can create AgentBoolean or FieldText agents and categories in IDOL Server in the same way
as you create other agents. For example, you can send an AgentAdd action to the IDOL Community
component, and add the BooleanRestriction or FieldTextRestriction parameter.

Alternatively, you can manually create an IDX document that contains agents or categories, and
index it into the IDOL Agentstore component. For example:

#DREREFERENCE 947344A0
DRETITLE

IDOL Server (12.12) Page 190 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

Cat

#DREFIELD MyABField="(cat AND mat) AND ("furry kitten")"
#DREFIELD FieldTextField="MATCH{cat}:Animal"

#DRECONTENT

cat

#DREENDDOC

Related Topics
¢ Manually Create IDX Files , on page 571

Perform AgentBoolean Queries

After you create or index AgentBoolean categories and agents, you can start querying them.

To match documents that already exist in the IDOL Content component against the categories and
agents, use the following actions:

¢ AgentGetResults. Returns results for a particular agent.

e CategorySuggestFromDocument. Returns categories that match a particular document in your
IDOL Content component index.

To match IDX or XML documents that do not exist in the IDOL Content component, you can use the
following actions with the TextParse parameter:

e CategorySuggestOnText. Returns categories that match the text you provide.

¢ Query. Returns documents that match the text you provide.

NOTE: You must send the Query action to the IDOL Agentstore component to return agents
or categories.

To perform a TextParse query

1. Percent-encode the content of the IDX or XML document that you want to match against the
AgentBoolean agents or categories. For example:

#DREREFERENCE http://www.catdog.com

#DRETITLE Cats and Dogs

#DREFIELD Animalle="dog"

#DREFIELD Animalll="cat"

#DRECONTENT

The organisation takes care of homeless cats and dogs
#DREENDDOC

Percent-encoding turns this IDX into this string:

%23DREREFERENCE%20http%3A%2F%2Fwww%2Ecatdog¥%2Ecom%0D%eA
%23DRETITLE%20Cats%20and%20Dogs%0D%0A
%23DREFIELD%20Animal10%3D%22dog%22%0D%0A
%23DREFIELD%20Animal11%3D%22cat%22%0D%0A

IDOL Server (12.12) Page 191 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

The%20organisation%20takes%20care%200f%20homeless%20cats¥%20and%»20dogs%0OD%OA
%23DREENDDOC

2. Copy the percent-encoded content string.
3. Send a Query action to the IDOL Agentstore component with the following parameters:

» Text. Paste the percent-encoded content of the IDX or XML document to match against
the AgentBoolean categories.

e TextParse. Set this parameter to True to indicate that the specified Text is a percent-
encoded document in IDX or XML format (it automatically detects the correct format).

* AgentBooleanField. Setthis parameter to the name of the AgentBoolean field to match
against.

e DatabaseMatch. Set this parameter to the database that contains agents or categories in
the IDOL Agentstore component. By default, Agentstore databases are internal, so you
must specify them explicitly.

For example:

action=Query&TextParse=True&AgentBooleanField=myABfield&DatabaseMatch=Activa
ted

&Text=%23DREREFERENCE%20http%3A%2F%2Fwww%2Ecatdog%2Ecom%0D%0A
%23DRETITLE%20Cats%20and%20Dogs%0D%0A
%23DREFIELD%20Animal10%3D%22dog%22%0D%0A
%23DREFIELD%20Animal11%3D%22cat%22%0D%0A

%23DRECONTENT%0OD%0A
The%20organisation%20takes%20care%200f%20homelessk%20cats¥%20and%20dogs%0OD%OA
%23DREENDDOC

This query finds the categories that conceptually match the query text in the Activated Agentstore
database. It then checks which of these categories contain a Boolean expression in their myAbfield
that the fields in the percent-encoded document match.

NOTE: Agentstore also returns agents and categories that match the query text and do not
contain the AgentBoolean or FieldText field.

Agentstore returns only categories that match the document conceptually and contain a Boolean
expression that matches the document fields. For example:

¢ Agentstore returns a category that conceptually matches the document if its myABfield
contains, for example, one of these Boolean expressions:

cat AND dog
cat:DRETITLE AND dog

¢ Agentstore does not return a category that conceptually matches the document if its myABfield
contains, for example, one of these Boolean expressions:

cat AND mat
cat AND dog:Animalle

(because Animalie is not configured as a TextParseIndexType field).

IDOL Server (12.12) Page 192 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

Related Topics

e Search and Retrieve, on page 217

Optimize AgentBoolean Matching

After you set up AgentBoolean and FieldText matching, you can optimize the performance.

Configure AgentBoolean Cache Fields

When you create categories and agents in IDOL Server, the Category and Community components
send these agents and categories to the IDOL Agentstore component.

If you manually create agents and categories and want to use a custom field for Boolean and
FieldText restrictions, you can configure these fields in the IDOL Agentstore component. This
configuration optimizes AgentBoolean and FieldText matching for those fields.

To configure AgentBoolean cache fields
1. Open the IDX or XML agents or categories that you want to index into IDOL Server.
2. Note the names of fields that contain the Boolean or FieldText restrictions.
3. Open the IDOL Agentstore component configuration file in a text editor.
4

In the [Server] section, set AgentBooleanCacheField to the name of the field that contains
the Boolean restrictions.

5. SetFieldTextCacheField to the name of the field that contains the FieldText restrictions.

NOTE: You can have only one field in the AgentBooleanCacheField and
FieldTextCacheField parameters.

6. Save and close the configuration file.

7. Restart the IDOL Agentstore component for your changes to take effect.

Index a Dummy IDX

If your AgentBoolean expressions contain field restrictions, you might need to index a dummy IDX
document to ensure that the IDOL Agentstore component contains all the fields that you use for field
restrictions in your agents and categories.

For example, if your agents and categories contain the FieldText expression MATCH{dog} :Animalie,
Agentstore must include the Animal1e field to optimize restrictions.

Determine Whether a Dummy IDX is Required

When you index an agent document, Agentstore attempts to automatically create the fields that you
use in your field restrictions in the configured FieldTextCacheField and AgentBooleanCacheField.

IDOL Server (12.12) Page 193 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

For simple restrictions that do not include wildcards (for example dog: Animal1e), or thatinclude only
aleading */ wildcard, Agentstore can create the required fields and you do not need to use a dummy
document.

However, if you use wildcards that can expand to different field names (for example Animal*), you
must use a dummy document to add all the relevant fields to your index.

IMPORTANT: Agentstore creates new fields under any document root fields that exist in the
agent index (that is, the current document root and any fields that match
DocumentDelimitercCSvs).

Agentstore does not add the field to every possible XML field path. For example, if your field
restriction contains the NAME field, Agentstore does not match a value in
XML/DOCUMENT/USER/NAME. In this case you can:

e use USER/NAME in your restriction (and configure XML/DOCUMENT as a document root, if it not
already)

¢ index an XML dummy document that includes USER/NAME as a field.

Create and Index the Dummy IDX

A dummy IDX document contains all fields that you use in field restrictions, with empty values. For
example, create a copy of your alert documents, and remove the values from each field. For
example:

#DREREFERENCE dummy document
#DRETITLE DummyDocument
#DREFIELD Animalle=""
#DREFIELD Animalll=""
#DRECONTENT

#DREENDDOC

To ensure that Agentstore does not subsequently return the dummy document in queries, index it
into the Deactivated Agentstore database. You can delete the document after indexing.

NOTE: You must index the dummy IDX before you index or create the agents.

Related Topics
e Manually Create IDX Files , on page 571

Customize Agent Content

In large systems that experience heavy load, you can optimize the performance of AgentBoolean
queries by creating optimized agents or categories. This optimization is most useful when you use
IDOL Server to:

¢ Return agents that match a non-indexed document, for example to alert users to new content
that matches their agents.

¢ Return categories that match a non-indexed document, for example to categorize a document
and add the category information to a field before indexing.

IDOL Server (12.12) Page 194 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

When Agentstore matches query text against agents or categories, it uses the following matching
order:

1. It matches the query text against the Index fields in the agents or categories (for example the
TRAINING or DRECONTENT fields).

2. For agents that match in Step 1, it matches the query text against any Boolean restrictions in
the agents or categories.

3. Foragents that match in Step 2, it matches the query text against any FieldText restrictions in
the agents or categories.

Agentstore checks the Boolean restriction only if the agent or category content matches the
document.

To optimize performance, choose your category or agent content carefully to ensure that it matches
only query text that is also likely to match the Boolean expression.

Use a Minimal List of Rare Terms

For many Boolean restrictions, you can select one or two terms that queries must contain to match
the Boolean expression. If you select the rarest of these combinations, fewer documents match the
agent content. This process reduces the number of Boolean expressions that Agentstore must
match.

For example, if your Boolean restriction is:
“New Zealand” AND “French Champagne”
you can set the agent content to:

Zealand

In this Boolean expression, the query text must contain all four terms, so you can choose any of them
as the agent content. Zealand is the rarest term, so fewer documents match this agent.

For other expressions, you can often similarly choose a minimal list of terms to reduce the number of
documents that match against the Boolean restriction.

To find the minimal list of terms
» Send the DocumentStats action with the QueryStats parameter set to True. For example:

http://localhost:9050/action=DocumentStats&Text=“New Zealand” AND “French
Champagne”&QueryStats=True

This action returns a minimal list of terms that text must contain to match the Boolean expression. It
provides the rarest terms where possible. The action returns the following information:

<autnresponse>
<action>DOCUMENTSTATS</action>
<response>SUCCESS</response>
<responsedata>
<autn:wildrequired>false</autn:wildrequired>
<autn:numberrequired>1</autn:numberrequired>
<autn:required>ZEALAND</autn:required>

IDOL Server (12.12) Page 195 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

</responsedata>
</autnresponse>

Using this method to choose the agent or category content can improve performance, especially in
systems that receive a large number of queries.

Use AlwaysMatchType Fields

For some Boolean expressions that include Wildcards and DREFUZZY or SOUNDEX expressions, the
minimal list of terms must include a Wildcard value.

For these expressions, the DocumentStats action with QueryStats set to True returns the following
line:

<autn:wildrequired>true</autn:wildrequired>

The agent or category content cannot contain a Wildcard value, so you must use a different approach
to ensure that Agentstore checks the Boolean expression.

You can ensure that Agentstore checks any documents that contain one of these expressions by
configuring an AlwaysMatchType field in the Agentstore component and adding it to the agents.

Agentstore always matches the content of an agent or a category that contains an AlwaysMatchType
field. It then attempts to match the query text against the Boolean restriction, and returns any agents
or categories that match at this stage.

To configure AlwaysMatchType fields
1. Open the IDX or XML files that contain your AgentBoolean documents.
2. Decide which fields you want to always match. For a document to always match, the
AlwaysMatchType field must have a non-empty string.

NOTE: For IDOL Server categories, you must use the NOCONTENTCAT field.

3. Open the IDOL Agentstore component configuration file in a text editor.

4. Inthe [FieldProcessing] section, add a new process to the list of processes. This process
identifies the fields in the IDX or XML document that you want to always match. For
example:

[FieldProcessing]
0=SetIndexFields

15=SetAlwaysMatchFields

5. Create a new section for the process that you added. In this section, create a property for
the process (you define the property, later by setting one or more applicable configuration
parameters). Set PropertyFieldCSVs to a list of fields to associate with the process. For
example:

[SetAgentBooleanFields]
Property=AlwaysMatchFields
PropertyFieldCSVs=*/MARKERFIELD,*/NOCONTENTCAT

IDOL Server (12.12) Page 196 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

6. Create a new section for the property that you added, in which you set AlwaysMatchType to
True. This property indicates that Agentstore must always match the associated fields in
queries. For example:

[AlwaysMatchFields]
AlwaysMatchType=True

7. Save and close the configuration file.

8. Restart the IDOL Agentstore component for your changes to take effect.

After you configure the AlwaysMatchType field, you must manually create agents as IDX or XML
documents.

For each agent, send the Boolean restriction in a DocumentStats action to IDOL Server to return the
minimal list of terms.

 |f the result does not contain a Wildcard value, you can create agents in the normal way.
« |fthe result contains a Wildcard, add the AlwaysMatchType field to the agent IDX. For example:

#DREREFERENCE WineAgent

#DRETITLE My Wine Agent

#DREFIELD BOOLEANRESTRICTION=""Champ*" AND "Merlot""
#DREFIELD MARKERFIELD="1"

#DRECONTENT

#DREENDDOC

You can index your agent IDX or XML document into the Agentstore component agent database by
using a DREADD or DREADDDATA index action. For example:

http://localhost:9051/DREADD?C: \data\Agents.idx&DREDBName=Agent
NOTE: Micro Focus recommends that you do not use AwaysMatchType fields without also

specifying either the Boolean or FieldText restriction. If you add an AlwaysMatchType field to the
agent or category without any other restriction, it returns for every query.

If you do have agents or categories of this kind, you can use FieldText in your agent or category
query to filter them out. For example:

FieldText=EXISTS{}:BOOLEANRESTRICTION OR EXISTS{}:FIELDTEXTRESTRICTION

This example restricts the results of the query to agents and categories that have one of the
restriction fields.

Related Topics
e Fields, on page 83

IDOL Server (12.12) Page 197 of 611

Administration Guide
Chapter 11: AgentBoolean Agents and Categories

IDOL Server (12.12) Page 198 of 611

Chapter 12: Cluster Information

The IDOL Category component can automatically cluster information to make trends and
developments in this information visible. Clustering is the process of taking a large repository of
unstructured data and automatically partitioning it, so that similar information is clustered together.
Each cluster represents a concept area in the knowledge base, and contains a set of items with
common properties.

NOTE: The IDOL Category component provides several methods of clustering, including
dynamic clustering and index tagging. See Cluster Results, on page 328, and Tag Documents
into Clusters, on page 80.

For details of all the available types of clustering, and information about which one to choose,

refer to IDOL Expert.
® Generate SNaPSNOtS ... 199
® Generate Spectrograph Data 201
* Generate WhatsNew and WhatsHot Information 202
® Configure CIUSIEIS 204
® Setup Schedules .. . 208
¢ Partition Documents into CIUSIErs ... 210

Generate Snapshots

To cluster information, take a snapshot of data in your IDOL data index. You can then automatically
cluster the data in this snapshot (you do not need to set up an initial taxonomy).

IDOL Server (12.12) Page 199 of 611

Administration Guide
Chapter 12: Cluster Information

IDOL
server

ClusterSnapshot

| Snapshot || Snapshot ” Snapshot ‘ | Snapshot || Snapshot | Snapshot |

ClusterSGDataGen ClusterCluster ClusterCluster

| Categories

e
WhatsHot

WhatsHot
oo map |4 [Twonemysenert
ClusterSGPicServe ClusterSGDataServe ClusterSGDocsServe

IF /PN

{ JPEG | XML | XML ‘ ClusterResults ClusterServezDMap
GIF TPNG
XML ‘ ‘
l:l Client side output ‘ 1/ JPEG

|:| Server side output

Action Actions used internally by applets

Action User accessible actions

The IDOL Category component takes a snapshot of the data in your IDOL Content component and,
based on these snapshots, clusters related information together. Each cluster represents a concept
area that contains a set of items, which share common properties.

IDOL
server

\

Snapshot || Snapshot || Snapshot | | Snapshot || Snapshot |---| Snapshot

The ClusterSnapshot action allows you to take a snapshot of the data stored in the IDOL Content
component data index. By default this includes data for the Content databases News and Archive. A
snapshot represents the content of the data index at a particular time, and enables you to generate
cluster information and spectrographs at a later point, even if the data index has changed. You can

use a single snapshot to generate both cluster information and spectrograph data to save processing
time.

The action adds a timestamp to each snapshot (with the AUTNDATE) and stores it in binary . c1s format
in the Snapshots subdirectory of the Cluster directory in your IDOL Category component installation

IDOL Server (12.12) Page 200 of 611

Administration Guide
Chapter 12: Cluster Information

directory. This process allows you to have several snapshots with the same name (for example, of
one particular IDOL Content component) and snapshots with different names (for example, of
different data sets).

The results of ClusterSnapshot are saved as a named snapshot job. You can specify that job name
when taking other actions on the snapshot data. You can also set up a schedule that runs the
ClustersSnapshot action at regular intervals.

NOTE: The Content data index that you take a snapshot of must ideally contain at least several
thousand documents with good quality content (that is, relevant text for various topics).

Related Topics
» Setup Schedules, on page 208

Generate Spectrograph Data

The ClusterSGDataGen action allows you to generate spectrograph data from a set of snapshots that
you took using the ClusterSnapshot action.

Snapshot || Snapshot || Snapshot

ClusterSG DataGen

|

SGData
GIF / PHG * +
Client side output
/ JPEG XML XML

Server side output

Each spectrograph dataset takes a succession of clusters from different time periods, calculates
cluster similarity measures across days, and applies a graph theoretic matching algorithm. The

IDOL Category component makes calculations about the conceptual spread of a cluster and its
general quality. The spectrograph uses lines to represent the size (number of documents in a cluster)
and quality of a cluster. The brighter a spectrograph line is, the more documents the cluster contains,
and the thicker the line is, the higher the cluster quality.

All spectrograph data sets that you generate are stored in the Sgdata subdirectory of the Cluster
directory in your IDOL Category component installation directory.

You can set up a schedule that runs the ClusterSGDataGen action at regular intervals.

IDOL Server (12.12) Page 201 of 611

Administration Guide
Chapter 12: Cluster Information

You can retrieve the spectrograph image, data, or documents by using the ClusterSGPicServe,
ClusterSGDataServe, and ClusterSGDocsServe actions.

For more information about the ClusterSGDataGen action and the results that it returns, refer to the
IDOL Server Reference.

Related Topics
e Setup Schedules, on page 208

Generate WhatsNew and WhatsHot
Information

The ClusterCluster action allows you to analyze clusters in a snapshot that you took using the
ClusterSnapshot action.

Snapshot || Snapshot Snapshot

Cluster Cluster Cluster Cluster
|—> WhatsN ew
Whats Hot [«
Whats Hot
2D map -

ClusterFesults

!

Client side output GIF / PNG
— / JPEG

Server side output

Clustering is a multistage hybrid algorithm. After the IDOL Adaptive Probabilistic Concept Modelling
(APCM) technology identifies similar documents, a hierarchical agglomerative clustering algorithm
groups documents into conceptually similar areas. Dynamic binding and fixating produces the
required clusters. The title is generated automatically by cross-correlating important concepts in a
cluster with concepts in the titles of documents in that cluster.

The IDOL Category component saves the results of clustering as a named cluster job. You can
specify that job name when taking other actions on the clustered data. You can also setup a
schedule that runs the ClusterCluster action at regular intervals.

IDOL Server (12.12) Page 202 of 611

Administration Guide
Chapter 12: Cluster Information

Depending on which parameters you combine the action with, you can generate WhatsNew or
WhatsHot information.

Related Topics
e Setup Schedules, on page 208

WhatsNew Information

WhatsNew information is the latest information that is available for the clusters that Category
identifies in your snapshot.

You can generate WhatsNew information by comparing two snapshots (that have the same name or
different names).

Category saves the results of the ClusterCluster action in configuration files (. cfg) in the Clusters
subdirectory of the Cluster directory of your IDOL Category component installation. You can use the
ClusterResults action to retrieve them in XML format.

If you configured the ClusterCluster action to generate a 2-D map of WhatsHot cluster information,
you can use the ClusterServe2DMap action to return this map in one of the supported image formats
(thatis, GIF, PNG or JPEG).

WhatsHot Information

WhatsHot information is the most relevant information that is available for the clusters that the
IDOL Category component identifies in your snapshot. Unlike WhatsNew information, this is not
restricted to new information, which means that it can follow the progress of particular news items
over time.

You can cluster WhatsHot information from a snapshot display this information in your user interface.
You can also generate a 2-D map from WhatsHot information.

The 2-D map gives a visualization of the similarities and difference between clusters. Category uses
a dimensionality reduction algorithm to maintain intercluster similarity measures so that similar
clusters are close together and very different clusters are not close together. Category uses the
distribution of documents throughout the space, along with nonlinear remapping, to create the
landscape.

Generate a Cluster Map after You Cluster

Typically, to create a 2-D map from your clustered data, you send a ClusterCluster action with the
DoMapping parameter set to True. You then send the ClusterServe2DMap action.

If you clustered your data with DoMapping set to False, you can still generate a cluster map of the
data by using the ClusterMapFromResults action.

You pass the job name from your ClusterCluster action as the SourceJobName parameter to
ClusterMapFromResults, and it returns a 2-D cluster map as binary image data.

IDOL Server (12.12) Page 203 of 611

Administration Guide
Chapter 12: Cluster Information

Related Topics
e Create a Cluster Map, on page 342

Configure Clusters

You can take a snapshot of the data content that IDOL Server stores. This snapshot identifies
clusters of conceptually similar documents, which enables you to generate a view of trends in the
data. You do not need to generate an initial taxonomy to take a snapshot.

A set of data can contain a few large clusters or many small clusters, as well as several outliers that
are not part of any cluster. Clusters can consist of highly similar documents or of less closely related
ones. What constitutes optimal clustering depends on how you intend to use your clusters. However,
the aim of clustering is always to generate an accurate characterization of the data content in your
IDOL Server.

By default IDOL Server uses internal settings to produce clusters. You do not usually need to change
these default settings. However, in some cases you might require more or less detail in your clusters,
or the amount and nature of your data might mean that default clustering is not satisfactory.

You can adjust the size of the units on which to base clusters, the degree of conceptual similarity that
documents within clusters must have, or the number of clusters to create.

Change the Number and Size of Clusters

There are two main stages to the clustering process:

¢ Build Seeds

¢ Group Seeds into Clusters

Build Seeds

The IDOL Category component builds seeds when you send the ClusterSnapshot action. Category
takes a sample of the documents that it stores, and tries to associate individual documents with each
other, based on the similarity of the concepts that the documents contain. Each group produced at
this stage, containing a sample document and similar documents, is a seed.

Category stops trying to build a seed when the seed meets the requirements that SeedSize specifies
or when there are no more documents that meet the similarity requirement that SeedBindLevel
specifies (whichever condition is reached first). Category discards any seeds that do not reach the
required size.

The number of clusters that you specify with NumClusters affects the number of sample documents
that Category tries to create seeds from. You can adjust the relationship between the number you
specify here and the size of the sample used by changing the value of
StartingSuggestOverrideFactor.

IDOL Server (12.12) Page 204 of 611

Administration Guide
Chapter 12: Cluster Information

Group Seeds into Clusters

Category groups seeds into clusters when you send the ClusterSGDataGen or ClusterCluster
actions. Category tries to create clusters by grouping seeds together. The grouping is based on the
similarity of the concepts that the seeds or clusters contain.

Clustering is complete when one of the following conditions is met:
¢ Category creates the number of clusters specified by NumClusters.

¢ Category cannot create any more clusters that meet the similarity requirement specified by
BindLevel.

Category discards clusters that do not meet the quality requirement set by BindLevel or the size
requirement set by MinClusterDocs.

For details of the clustering actions, and the settings you can make to generate the clusters from your
data, refer to the IDOL Server Reference.

Related Topics
« Display Online Help, on page 32

Configuration Parameters

The ideal values for the parameters that affect clustering depend on the nature and amount of data in
your IDOL Content component data index. You can use the SentientClustering parameter for the
ClusterSnapshot action to automatically determine the correct values for SeedSize and
SeedBindLevel.

This section makes general recommendations about how to manually alter these parameters
according to your data. Parameters are closely interdependent, so make these changes in
combination with each other (rather than just changing one of the settings). Change values in small
steps.

Although you can make many changes to clustering, the number and size of clusters that the
IDOL Category componentcan identify depends ultimately on the data content that it contains. You
can:

¢ cluster a small amount of data.
 cluster alarge amount of data.
¢ cluster very similar data.
 cluster very different data.
¢ change the data view.

Cluster a Small Amount of Data

If your IDOL Content component has a small amount of data, it is likely to identify fewer clusters,
because it is less likely that your data contains a lot of similar documents for several different topics.
You can edit the following parameters to change clustering in this situation.

NOTE: Ideally, your IDOL Content component must contain at least 500 documents.

IDOL Server (12.12) Page 205 of 611

Administration Guide
Chapter 12: Cluster Information

SeedSize Decrease SeedSize (by three to four points at a time). This
option reduces the size that seeds must reach, which
means that more seeds are likely to be successfully
created.

MinClusterDocs Decrease MinClusterDocs so that clusters that contain
fewer documents are not discarded.

StartingSuggestOverrideFactor Increase StartingSuggestOverrideFactor (by one or two
points only). This increases the number of sample
documents from which Category creates seeds, which in
some cases increases the possibility of finding clusters in
the data.

SeedBindLevel Decrease SeedBindLevel (by one point at a time) to reduce
the similarity threshold for clusters. Do not change this
value until you try changing SeedSize, because lowering
SeedBindLevel is more likely to allow less-relevant
documents into clusters.

Cluster a Large Amount of Data

If your IDOL Content component has a large amount of data, you probably do not need to edit any
clustering parameters, because this is the situation in which clustering is most successful. In some
cases (for example, if Content contains more than a million documents), it can be beneficial to alter
the following parameter.

StartingSuggestOverrideFactor Increase the value of this parameter to increase the
number of sample documents from which Category creates
seeds. This is sometimes necessary to allow a broader
section of the data content to be represented by the
clusters that are created.

Cluster Very Similar Data

If the documents in your IDOL Content component contain highly similar concepts, the

IDOL Category component might identify a small number of large clusters. For example, if your

IDOL Content component contains mostly documents about sports, then you might get one large
sports cluster. This situation is a realistic characterization of the data in your data index, but in many
circumstances is not useful. You can edit the following parameters to generate smaller, more specific
clusters (for example, breaking sports into football, tennis, golf, and so on).

SeedBindLevel Increase SeedBindLevel to require greater similarity between the documents
that form a seed, which can reduce the breadth of topics covered by the
concepts in the seed documents.

NOTE: Increase SeedBindLevel one point at a time. Increasing by too much
can result in seeds being discarded because they do not contain enough
documents.

IDOL Server (12.12) Page 206 of 611

Administration Guide
Chapter 12: Cluster Information

BindLevel Increase BindLevel to require greater similarity between the concepts in
seeds or clusters that merge to create a cluster. This change can decrease the
size of clusters, as well as increase the number of clusters identified, because
merging seeds and clusters together stops at an earlier stage.

Cluster Very Different Data

If the documents in your IDOL Content component contain a wide variety of concepts, there might not
be enough similar documents for Category to create seeds or clusters that characterize the data that
it stores. You can lower the similarity requirement with the following parameters.

SeedBindLevel Decrease SeedBindLevel to reduce the similarity requirement between the
documents that form a seed, which can increase the breadth of topics covered
by the concepts in the seed documents.

NOTE: Decrease SeedBindLevel one point at a time. Decreasing by too
much can result in seeds and clusters that contain documents that are less
relevant, because the similarity requirement is too low.

BindLevel Decrease BindLevel to reduce the similarity requirement between the
concepts in seeds or clusters that merge to create a cluster. This change can
increase the size of clusters, as well as increase the number of clusters
identified (because fewer are discarded for not meeting the quality
requirement).

Change the Data View

It might be the case that although Category identifies clusters that characterize your data
successfully, you want to change the view of the data that clustering creates. The following
parameters enable you to change the data view that clusters generate.

NumClusters Increase NumClusters to obtain a more low-level view of your data by
identifying more clusters. Decrease NumClusters to obtain a more high-level
view by identifying fewer clusters.

MinClusterDocs Decrease MinClusterDocs to reduce the number of clusters that are
discarded. This option allows you to identify smaller clusters. Increase
MinClusterDocs to increase the number of clusters that it discards. Only
larger clusters are kept.

BindLevel Decrease BindLevel to reduce the similarity requirement between the
concepts in seeds or clusters that merge to create a cluster. This option can
increase the size of clusters, as well as increase the number of clusters
identified (because it discards fewer clusters for not meeting the quality
requirement). Increase BindLevel to increase the similarity requirement
between the concepts in seeds or clusters that merge to create a cluster. This
can decrease the size of clusters, as well as increase the number of clusters
identified, because merging seeds and clusters together stops at an earlier
stage.

IDOL Server (12.12) Page 207 of 611

Administration Guide
Chapter 12: Cluster Information

Set up Schedules

You can set up to 1,024 schedules, which allow you to run the following actions at regular intervals.
e ClusterSnapshot
e ClusterCluster
e ClusterSGDataGen

e TaxonomyGenerate

For details on the settings that each [AnalysisSchedule] section can contain and on how you can
configure them, refer to the IDOL Server Reference.

Related Topics
e Display Online Help, on page 32
To set up schedules
1. Open the IDOL Category component configuration file in a text editor.

2. Create an [AnalysisScheduleN] section for each schedule that you want to run. Start
numbering the [AnalysisScheduleN] sections from zero (so that the first schedule section
is [AnalysisSchedule@]). For example:

[AnalysisSchedule@]
[AnalysisSchedulel]
[AnalysisSchedule2]
[AnalysisSchedule3]
[AnalysisSchedule4]
[AnalysisSchedule5]

In this example six schedules were created. Note that the schedules are listed in
consecutive order, starting from zero.

3. Specify the settings for each schedule in the appropriate section. You can specify the action
to schedule, the interval in which each schedule runs, the number of times each schedule
runs, what job name to give the action, and so on. For example:

[AnalysisSchedule@]
ScheduleStartTime=now
ScheduleInterval=1 day
ScheduleCycles=1
ScheduleAction=ClusterSnapshot
TargetJobName=myjob

[AnalysisSchedulel]
ScheduleStartTime=now
ScheduleInterval=1 day
ScheduleCycles=1

IDOL Server (12.12) Page 208 of 611

Administration Guide
Chapter 12: Cluster Information

ScheduleAction=ClusterCluster
SourceJobName=myjob
TargetJobName=myjob_clusters
DoMapping=True

[AnalysisSchedule2]
ScheduleStartTime=now
ScheduleInterval=1 day
ScheduleCycles=1
ScheduleAction=ClusterCluster
SourceJobName=myjob
TargetJobName=myjob_clusters_new
WhatsNew=True

Interval=86400

[AnalysisSchedule3]
ScheduleStartTime=now
ScheduleInterval=1 day
ScheduleCycles=1
ScheduleAction=ClusterSGDataGen
Interval=604800
SourceJobName=myjob
TargetJobName=myjob_sg

[AnalysisSchedule4]
ScheduleStartTime=now
ScheduleInterval=1 day
ScheduleCycles=1
ScheduleAction=ClusterSGDataGen
Interval=86400
SourceJobName=myjob_content
TargetJobName=compare_snapshots_sg

[AnalysisSchedule5]
ScheduleStartTime=now
ScheduleInterval=1 day
ScheduleCycles=1
ScheduleAction=TaxonomyGenerate
Cluster=o,1,2,3,4,5,6,7,8,9
SourceJobName=myjob_clusters
TargetJobName=myjob_taxonomy
WriteTaxonomy=true
NumResults=25

4. Save and close the configuration file.

5. Restart the IDOL Category component for your changes to take effect.

TIP: As an alternative to setting up schedules in the configuration file, you can also use the
Category Queue page in the Control section of IDOL Admin to schedule ClusterSnapshot,

IDOL Server (12.12) Page 209 of 611

Administration Guide
Chapter 12: Cluster Information

ClusterCluster, ClusterSGDataGen, and TaxonomyGenerate actions. For more information, refer
to the IDOL Admin User Guide.

Partition Documents into Clusters

Partition clustering is a different method of clustering that allows you to create a specified number of
clusters, and to place all documents into a cluster. This method is faster than using
ClusterSnapshot.

This method adds all documents into a cluster, which means that the clusters generated are relatively
broad and might represent several topics. You might want to use this method if you want to cluster
the results of a query into a predefined number of clusters.

To partition documents into clusters

¢ Send the ClusterPartition action to the IDOL Category component. Set the following action

parameters:
DREQuery The query that you want to cluster the results for.
NumResults The number of results from the specified query that you want to return and

cluster.

NumClusters The number of clusters to create.

For more information about the ClusterPartition action, refer to the IDOL Server Reference.

IDOL Server (12.12) Page 210 of 611

Chapter 13: Profiles

This section describes how to create interest and expertise profiles for users for collaboration and
locating experts.

® AboUt Profiles 211
® PrOfile @ USer .. 211
® Manipulate Profiles ... 213
® Collaboration and Expertise with Profiles 214

About Profiles

IDOL Server automatically creates interest and expertise profiles for users in real time. You can
configure the IDOL Community component to create up to four different profile types. By default,
Community creates an interest and an expertise profile for each user.

You can create an interest profile by tracking the content that a user views and extracting a
conceptual understanding of it. Community then uses this understanding to keep the user interest
profile up to date. You can use interest profiles to target information at users, recommend content to
users, alert users to the existence of content, and put users in touch with other users with similar
interests.

You can create an expertise profile by tracking the content that a user creates and extracting a
conceptual understanding of it. Community then uses this understanding to keep the expertise profile
for that user current. You can use expertise profiles to trace users who are experts in particular
subject areas.

Profile a User

You can use the ProfileUser action to profile a user. For details on this action, refer to the
IDOL Server Reference.

Related Topics
e Display Online Help, on page 32

Create an Interest Profile for a User

Run the ProfileUser action when a user views a document. The IDOL Community component
analyzes the document that the user is viewing, and determines if it is similar to any of the concepts in
their interest profile (using MatchThreshold).

IDOL Server (12.12) Page 211 of 611

Administration Guide
Chapter 13: Profiles

If the content of the viewed document is similar to an existing interest profile concept, Community
updates the existing concept with the new document. If several concepts are similar, only the most
similar one updates. If the document content is not similar to an existing interest profile concept,
Community creates a new concept in the interest profile.

NOTE: Community uses only the five strongest concepts in a user interest profile for
recommendations, alerting, and similar user matching.

For example:

http://12.3.4.56:4000/action=ProfileUser&UserName=Administrator&Document=3422+5776&M
atchThreshold=60&NamedArea=Interest

This action instructs the IDOL Community component to analyze the content in the 3422 and 5776
documents. If the content has a conceptual relevance of at least 60 percent to a conceptin the
interest profile of the Administrator user, Community uses it to update the matching interest profile
concept (if several concepts are similar, only the most similar one updates). If the document content
does not have a conceptual relevance of at least 60 percent to an existing interest profile concept,
Community creates a new interest profile concept from it.

Create an Expertise Profile for a User

Run the ProfileUser action when a user creates text (for example, a document in the IDOL Content
component that was authored by a user, or text that a user enters in a help desk environment). The
IDOL Community component analyzes the text that the user created, and determines if it is similar to
any concepts in the existing expertise profile (using MatchThreshold).

If the content of the viewed text is similar to an existing expertise profile concept, Community updates
the existing concept with the text (if several concepts are similar, only the most similar one updates).
If the text is not similar to an existing expertise profile concept, Community creates a new concept in
the expertise profile.

NOTE: Community uses only the five strongest concepts in a user expertise profile for expertise
matching.

For example:

http://12.3.4.56:4000/action=ProfileUser&UserName=Administrator&ocument=The
chemical structure of everyone's DNA is the same. The only difference between people
(or any animal) is the order of the base pairs&
MatchThreshold=60&NamedArea=Expertise

This action instructs the IDOL Community component to analyze the specified text. If the text has a
conceptual relevance of at least 60 percent to any concept in the Administrator user expertise
profiles, Community uses it to update the matching expertise profile concept (if several concepts are
similar, only the most similar one updates). If the text does not have a conceptual relevance of at
least 60 percent to an existing expertise profile concept, Community creates a new expertise profile
concept from it.

IDOL Server (12.12) Page 212 of 611

Administration Guide
Chapter 13: Profiles

Manipulate Profiles

Manipulating profiles consists of editing, querying, viewing, and deleting them.
Related Topics
e Display Online Help, on page 32

Edit a Profile

The IDOL Community component stores interest and expertise profiles in the IDOL Agentstore
component in the form of terms and weights. You can use the ProfileEdit action to edit profile
terms and weights. For details on this action, refer to the IDOL Server Reference. For example:

action=ProfileEdit&PID=1-P2.3&TermCOLOR=2322

This action changes the weight of the COLOR term in the 1-P2. 3 profile to 2322.

Query with a Profile

You can use the ProfileGetResults action to query with a profile. For details on this action, refer to
the IDOL Server Reference. When you query with a profile, by default it matches against the
IDOL Content component data index.

View Profile Details

You can use the ProfileRead action to view profile details. For details on this action, refer to the
IDOL Server Reference. For example:

action=ProfileRead&UserName=Administrator&PID=3422

This action requests the details of the 3422 profile for the Administrator user.

Delete a Profile

You can use the ProfileClear action to delete a profile from the IDOL Server profile index (in the
IDOL Agentstore component). For details on this action, refer to the IDOL Server Reference. For
example:

action=ProfileClear&UserName=Administrator&PID=450-P0.1

This action deletes the 450-P@. 1 profile for the Administrator user.

IDOL Server (12.12) Page 213 of 611

Administration Guide
Chapter 13: Profiles

Collaboration and Expertise with Profiles

You can use IDOL Server profiles to collaborate with other users or to locate experts in your field of
interest.

Collaboration

The IDOL Community component automatically matches users with common explicit interest agents
or similar implicit profiles. You can use this information to create virtual expert knowledge groups.

You can use the Community action to find agents or profiles in the community that match the agents
or the profiles of a specific user. For example:

action=Community&UserName=JSmith&Agents=True&Profiles=True&AgentsFindProfiles=True&P
rofilesFindAgents=True

This action finds agents and profiles in the user community that match both the agents and the
profiles of the user JSmith.

Expertise

The IDOL Community component accepts a natural language or Boolean search string and returns
users who own matching agents or profiles. This process allows you to identify experts in any
subject, eliminating time-consuming searches for specialists and unnecessary researching of
subjects for which expert knowledge is already available.

You can use the Community action to find agents or profiles in the community that match a natural
language or Boolean search string.

For example:

action=Community&Text=how does the cost of funds, such as the costs of performing a
credit evaluation on the business requesting a loan, determine the spread between
the federal funds rate and the prime
rate&AgentsFindProfiles=True&ProfilesFindAgents=True

This action finds agents and profiles in the user community that match the specified text.

IDOL Server (12.12) Page 214 of 611

Part IV: Results

This section describes the processes of querying IDOL Server, retrieving results, and displaying those
results to users.

e Search and Retrieve

¢ Customize Results

¢ Manipulate Result Relevance
¢ Manipulate the Results Set

¢ View Documents

IDOL Server (12.12) Page 215 of 611

Administration Guide
Part IV: Results

IDOL Server (12.12) Page 216 of 611

Chapter 14: Search and Retrieve

You can search the IDOL Content component with actions by using a Web browser, an Micro Focus
interface application (for example, IDOL Admin), or a third-party user interface application.

O A ONS . 217
® Conceptual MatChes 220
® Keyword SEarCh 222
® Phrase SearCh 228
® Boolean and Proximity Search ... 233
® Simple Field Restricted Search ... 242
® FieldText Search 243
O FUZZY SearCh . 278
® Parametric SearCh 279
® Proper Names SearCh 282
® Soundex Keyword Search 286
® SYNONYM SEAICH ... 287
® Analytics FUNCHIONS 294
O LINK QUETIES .. 300
® Combine Different Search Typeso 303
® Wildcards in QUEeries ... 306
¢ Query for Nonalphanumeric Characters ... 309
® Optimize Retrieval of Tagged Documents 311

Actions

You query the IDOL Content component by using actions. The following actions are available to all
users that have permission to query Content (users that belong to an authorization role with the
Query standard role. See [AuthorizationRoles] Section, on page 486).

TIP: You can view information on the permissions that are available on the Overview tab in the
Status section of IDOL Admin, or by using the ShowPermissions ACI action.

GetContent Displays the content of one or more specified documents.
GetQueryTagValues Returns the values of parametric fields in query results.

GetTagNames Returns all fields of a specified type.

IDOL Server (12.12) Page 217 of 611

Administration Guide
Chapter 14: Search and Retrieve

GetTagValues Performs a parametric search.

Highlight Highlights link terms in text.

Query Submits different query types to the IDOL Content component.
Suggest Retrieves documents that are conceptually similar to one or more

specified documents.

SuggestOnText Retrieves documents that are conceptually similar to the terms with the
highest weighting in specified text.

Summarize Generates a summary for documents or text.

TermGetBest Lists the conceptually most important terms in one or more specified
documents.

TermGetInfo Returns the weight and other available information for specified terms.

In addition, the following actions are available to administrative users of the IDOL Content
component (users that belong to an authorization role with the Admin standard role. See
[AuthorizationRoles] Section, on page 486).

DetectLanguage Determines the language of a piece of text.
GetStatus Displays configured details about the IDOL Content component setup.

IndexerGetStatus Displays the status of index actions in the IDOL Content component index
queue.

List Lists all documents that are stored in the IDOL Content component or any
of its databases.

TermGetAll Lists all terms that are stored in the IDOL Content component .

Related Topics
¢ Display Online Help, on page 32
e Send Actions to IDOL Server, on page 32

Asynchronous Actions

By default, the IDOL Content component processes all actions synchronously. In this case, Content
does not respond to the action until it has completed the request. The result of the action is in the
response to the request.

With additional configuration, you can also process query actions asynchronously. In this case,
Content responds to the action immediately. The request is added to a queue of actions. The
response to the request contains a token. You can use this token to determine whether the request
has finished, and obtain the results of the action. To do this, use the QueueInfo action.

IDOL Server (12.12) Page 218 of 611

Administration Guide
Chapter 14: Search and Retrieve

You might want to use asynchronous actions to run operations that take a long time, and that do not
require an immediate response. For example, you might have synchronous queries to return results
to users, and then use an asynchronous action to run a query summary.

Configure Asynchronous Actions
You must configure the IDOL Content component to allow asynchronous actions.
To configure asynchronous functionality

1. Open the IDOL Content component configuration file in a text editor.

2. Create an [Actions] configuration section.

3. Inthe [Actions] section, add the Async parameter, and set it to AsyncActions.
4. Create an [AsyncActions] section.
5

In the [AsyncActions] section, set the Threads parameter to the number of threads that
you want to use for asynchronous actions.

6. Save and close the configuration file.

7. Restart the IDOL Content component for your changes to take effect.
For example:
[Actions]

Async=AsyncActions

[AsyncActions]
Threads=2

Send Asynchronous Actions

To send an asynchronous action, you use the same action syntax as normal, but add the
Synchronous parameter, set to False.

You can send the following actions asynchronously:

DetectLanguage GetTagValues Summarize
DocumentStats Highlight TermExpand
GetAllRefs List TermGetAll
GetContent Query TermGetBest
GetQueryTagValues Suggest TermGetInfo
GetTagNames SuggestOnText

Retrieve Results for Asynchronous Actions

The QueueInfo action allows you to retrieve the status and results of asynchronous actions.

IDOL Server (12.12) Page 219 of 611

Administration Guide
Chapter 14: Search and Retrieve

To return the results of all asynchronous actions, send a QueueInfo action, with the QueueName
parameter set to Async, and the QueueAction parameter set to GetStatus. You can set the Token
parameter to the token for a specific action to retrieve results for only that action.

NOTE: If you do not specify the Token parameter, all results for the server return. Micro Focus
does not recommend that you return all results for a server that has been running for a long time,
because the response might time out.

NOTE: There are no user restrictions for viewing the queue list, so all users can see all results
that the original action returns. Micro Focus does not recommend that you use asynchronous
actions if you have strict document security requirements.

TIP: You can use the QueueInfo action to return information about the queue, and to cancel or
change the priority of actions. For more information, refer to the IDOL Server Reference.

You can use the Asynchronous Queues page in the Monitor section of IDOL Admin to view details of
the asynchronous actions that the server is processing, view the results of those actions, and cancel
actions. For more information, refer to the IDOL Admin User Guide.

Conceptual Matches

You can use Query, Suggest, and SuggestOnText actions to perform conceptual searches. The
IDOL Content component uses advanced pattern-matching technology to conceptually match the
data that you query with (using actions) against the content it holds.

Types of Matches

Content searches. You can submit natural language text or a piece of content to the
IDOL Content component. It returns references to conceptually related documents ranked by
relevance or contextual distance.

Natural language queries make it possible for users to find results without having to be familiar
with search algorithms or syntax. Online shoppers, for example, can find specific items without
knowing the exact product or brand name.

Community searches. You can create agents from natural language and then match them
conceptually. You can also submit profiles or natural language text to the IDOL Agentstore
component. It returns agents ranked by conceptual similarity. This process determines which
users have similar interests, which promotes collaboration, and identifies experts in a field.

Category searches. You can submit a piece of content to the IDOL Agentstore component, for
which it returns categories ranked by conceptual similarity. This process determines which
categories the piece of content is most appropriate for, so that IDOL Server can tag, route, or
file the piece of content accordingly.

Clusters. You can use the IDOL Content component to organize large volumes of content or
large numbers of profiles into self-consistent clusters. Clustering is an automatic agglomerative

IDOL Server (12.12) Page 220 of 611

Administration Guide
Chapter 14: Search and Retrieve

technique that allows the IDOL Content component to partition data by grouping together
information that contains similar concepts.

Example Queries

This section shows some examples of the different types of queries.

Agent or Category Query

You can add agent (or category) weights to terms in your query. The IDOL Agentstore component
returns documents that contain highly weighted terms with a higher relevance than documents that
contain only terms with lower weights. Use the TermGetInfo action to find out the weight of the term.
Specify weights as a number in brackets next to the term. The maximum weight is 4095, but Micro
Focus recommends that you use a maximum weight of 511.

For example:
http://localhost:9050/action=Query&Text=Cat[50] OR Dog

This query returns documents that contain the term cat or the term dog. If the term dog has a higher
weight than 50 in Agentstore, documents that contain the term dog return with higher relevance than
documents that contain only the term cat. If the term dog has a lower weight than 50, documents that
contain the term cat return with higher relevance.

http://localhost:9050/action=Query&Text=Cat[30] OR Dog[10]

This query returns documents that contain the term cat or the term dog. Documents that contain only
the term cat return with three times the relevance than documents that contain only the term dog.

You can apply term weights to phrases. For example:
http://localhost:9050/action=Query&Text="cats and dogs"[100]

This query returns documents that contain the phrase "cats and dogs" and applies a weight of 100
to this phrase.

You can apply weights to terms in parentheses. In this case, the weight applies to all terms within the
parentheses. For example:

http://localhost:9050/action=Query&Text=(cat OR dog)[100] AND (fish OR dolphin)[150]

This query returns documents that contain at least one of the terms cat or dog, and at least one of the
terms fish or dolphin. It assigns the terms cat and dog a weight of 100, and it assigns the terms fish
and dolphin a weight of 150.

You can use multipliers to multiply the original term weight. Enter a term as *N, where N is the amount
to multiply by. You can use up to two decimal places. For example:

http://localhost:9050/action=Query&Text=cat[*2.25] OR dog[*@.5]

This query returns documents that contain the term cat or the term dog. The term cat has 2. 25 times
its normal relevance. The term dog has 0.5 times its normal relevance.

You can also use any combination of these examples to apply term weights to complex phrases or
expressions. For example:

IDOL Server (12.12) Page 221 of 611

Administration Guide
Chapter 14: Search and Retrieve

http://localhost:9050/action=Query&Text="cats and dogs"[*3] OR (fish[100]+dolphin
[150])[*1.5]

This query applies 3 times the normal weight to the phrase "cats and dogs". It assigns a weight of
100 to the term fish and a weight of 150 to the term dolphin. It then multiplies the weights for fish and
dolphinby 1.5.

Profile Query

http://localhost:9050/action=Query&Text= CHAMPIONLEAGU~[551] EVERTON~[407] BAYERN~
[402] UEFA~[391] PREMIERSHIP~[383] FIFA~[257] STRIKER~[226] WORLDCUP~[215] EURO~
[124] SOCCER~[114] CUP~[66]

This action sends a profile query to the IDOL Agentstore component. The query contains the terms
that the profile training contains, and the weight of each of the terms. Agentstore can return agents,
profiles, categories, or documents that conceptually match the terms of the query.

Text Query
http://localhost:9010/action=Query&Text=Gene analysis discovered methods to
determine the exact sequence of nucleotides that compose a specific gene.

This action sends a text query to the IDOL Content component. Content can return agents, profiles,
categories, or documents that conceptually match the query text.

Suggest Query

http://localhost:9010/action=Suggest&ID=10

This action sends a Suggest query to the IDOL Content component. Content can return agents,
profiles, categories, or documents that conceptually match the specified document (that is, the
document with the ID 10).

SuggestOnText Query
http://localhost:9010/action=SuggestOnText&Text=Gene analysis discovered methods to
determine the exact sequence of nucleotides that compose a specific gene

This action sends a SuggestOnText query to IDOL Content component. Content can return agents,
profiles, categories, or documents that conceptually match the terms with the highest weighting in the
query text.

Keyword Search

By default, the IDOL Content component conceptually matches queries that consist of a single
keyword. It stems the keyword, and then it finds documents that contain words that have the same
stem as the keyword.

IDOL Server (12.12) Page 222 of 611

Administration Guide
Chapter 14: Search and Retrieve

For example, if you query Content with the word lovely, it stems the word to /ove and finds documents
that contain words that also stem to love, for example, lovely, love, loved, loving, and so on.

Keyword Occurrence Search

You can restrict the documents that match a query term to documents in which the number of
occurrences of the term or phrase is within a specified range. Specify the range with a colon-
separated pair of numbers. The maximum value that you can specify in the range is 32000.

For example:
action=Query&Text=Gene[3:7]

This query returns only documents in which Gene appears between three and seven times
(inclusively).

action=Query&Text="Gene Therapy"[5:8]

This query returns only documents in which the phrase Gene therapy appears between five and eight
times (inclusively).

action=Query&Text=Gen*[2:4]

This query returns only documents in which a term that starts with Gen (such as Gene or Generation)
appears between two and four times, inclusively.

action=Query&Text=(Gene OR DNA)[4:8] AND Therapy

This query returns only documents in which the term Gene or the term DNA appear between 4 and 8
times (inclusively), and the term Therapy occurs.

You can specify open-ended ranges. For example:
action=Query&Text=Gene[10:]

This query returns only documents in which Gene appears 10 or more times.
You can also specify term weights and field restrictions. For example:

action=Query&Text=cat[2:4]:DRETITLE + AND + cat[100][2:4]

Exact Keyword Search

To find documents that contain exact matches of a keyword, enable the AdvancedSearch setting
before you index content into the IDOL Content component.

If you set AdvancedSearch to True in the [Server] section of the IDOL Content component
configuration file before you index content, you can query for exact matches of keywords by putting
the keyword in quotation marks when you perform the query (this setting also switches Content to an
advanced weighting algorithm which improves conceptual querying).

For example, if you query Content with "1lovely", it finds only documents that contain the exact term
lovely.

IDOL Server (12.12) Page 223 of 611

Administration Guide
Chapter 14: Search and Retrieve

If you do not put the word in quotation marks, Content matches it conceptually; that is, the query
lovely matches documents that stem to the same value as lovely (for example, it matches documents
that contain, lovely, love, loved, loving, and so on).

You can also suffix a keyword with a tilde (~) to indicate that the term is already stemmed. In this
case, Content does not stem the query term. However, unlike an exact keyword search using
quotation marks, this query might return documents that contain other terms that stem to your query
term. For example, searching for Love~ returns documents that contain the term love, but also other
terms that stem to love, for example, lovely, love, loved, and loving.

NOTE: Using the tilde suffix to search for a term that is not its own stem does not return
documents that contain the original term. For example, searching for loving~ matches terms that
stem to loving. The term loving stems to love, so this search does not return documents that
contain the term loving.

You can use the TermGetInfo action to find the stem of a term.

Case-Sensitive Exact Keyword Search

To find documents that contain case-sensitive exact matches of a keyword, enable the
AdvancedCaseSearch setting before you index content into the IDOL Content component:

If you set AdvancedCaseSearch to True in the IDOL Content component configuration file [Server]
section before you index content, you can query for case-sensitive exact matches of keywords by
prefixing the keyword with a tilde (~) and putting it in quotation marks when you perform the query.

For example, if you query Content with "~Lovely", it does not stem the word, and finds only
documents that contain Lovely.

If you put a word into quotation marks but do not prefix it with a tilde (~), Content matches it exactly
but not case-sensitively (that is, the query "Lovely" matches documents that contain, for example,
Lovely, lovely, IOvelLy, and so on).

If you prefix a word with a tilde (~) and do not put it into quotation marks, Content matches it
conceptually and case-sensitively (that is, the query Lovely matches documents that contain, for
example, Lovely, Love, Loved, Loving, and so on).

For more information about case-sensitive searching, refer to IDOL Expert.

Paragraph and Sentence Keyword Search

To find documents that contain groups of keywords within the same sentence or paragraph, enable
the AdvancedPlus setting before you index content into the IDOL Content component. This
parameter also enables the functionality of AdvancedSearch and AdvancedCaseSearch.

To query for keywords in the same paragraph or sentence by using the PARAGRAPH and SENTENCE
operators, set AdvancedPlus to True in the [Server] section of the IDOL Content component
configuration file before you index content.

For example, if you query Content with cat SENTENCE dog, it returns only documents that contain the
word cat and the word dog in the same sentence. If you query Content with cat PARAGRAPH dog, it
returns only documents that contain the word cat and the word dog in the same paragraph.

IDOL Server (12.12) Page 224 of 611

Administration Guide
Chapter 14: Search and Retrieve

Keyword Search Examples

The word lovely stems to love. The following words also stem to love.

TIP: To determine the stem of a word, use the TermGetInfo action. To determine the words to
which a stem expands, use the TermExpand action.

LOVE LOVELY LOVING

LOVED LOVES LOVINGLY

LOVELIES LOVEST LOVINGS

Example 1 (Conceptual)

action=Query&Text=Lovely
¢ Default matching
e AdvancedSearch=True

e AdvancedCaseSearch=True

Content matches this query conceptually, in the default configuration or when you set
AdvancedSearch or AdvancedCaseSearch to True. The query word is neither in quotation marks nor
prefixed with a tilde (~), so Content finds documents that contain words that have the same stem as
lovely (ignoring their case).

Example matching words Example nonmatching words

lovely lover
love lovelorn
loved loveless
loving

Example 2 (Conceptual or Exact)

action=Query&Text="Lovely"
¢ Default matching

In the Content default configuration, Content ignores the quotation marks and matches the
word conceptually. It finds documents that contain words that have the same stem as lovely
(ignoring their case).

IDOL Server (12.12) Page 225 of 611

Administration Guide
Chapter 14: Search and Retrieve

Example matching words Example nonmatching words

lovely lover
love lovelorn
loved loveless
loving

e AdvancedSearch=True or AdvancedCaseSearch=True

If you set AdvancedSearch or AdvancedCaseSearch to True, Content matches the exact form of
the term, because the query word is in quotation marks. It finds only documents that contain the
word lovely. Because the word is not prefixed with a tilde (~), Content ignores its case.

Example matching words Example nonmatching words
lovely love

loved

loving

lover

Example 3 (Conceptual)

action=Query&Text=~Lovely
¢ Default matching

In the default configuration, Content ignores the tilde (~) and matches the word conceptually. It
finds documents that contain words that have the same stem as lovely (ignoring their case).

Example matching words Example nonmatching words

lovely lover
love lovelorn
loved loveless
loving

e AdvancedSearch=True

If you set AdvancedSearch to True, Content ignores the tilde (~) and matches the word
conceptually, because the query word is not in quotation marks. It finds documents that contain
words that have the same stem as lovely (ignoring their case).

IDOL Server (12.12) Page 226 of 611

Administration Guide
Chapter 14: Search and Retrieve

Example matching words
lovely

love

loved

loving

e AdvancedCaseSearch=True

Example nonmatching words
lover
lovelorn

loveless

If you set AdvancedCaseSearch to True, Content matches conceptually and case-sensitively,
because the query word is prefixed with a tilde (~) but not in quotation marks. It finds documents
that contain words that have the same stem as Lovely.

Example matching words
Lovely

Love

Loved

Loving

Example nonmatching words
lovely

love

loved

loving

Example 4 (Conceptual or Exact)

action=Query&Text="~Lovely"

¢ Default matching

In the default configuration, Content ignores the tilde (~) and the quotation marks, and matches
the word conceptually. It finds documents that contain words that have the same stem as lovely

(ignoring their case).
Example matching words
lovely
love
loved

loving

e AdvancedSearch=True

Example nonmatching words
lover
lovelorn

loveless

If you set AdvancedSearch to True, Content ignores the tilde (~) and matches the exact form of
the term. It finds only documents that contain the word lovely (ignoring its case).

IDOL Server (12.12)

Page 227 of 611

Administration Guide
Chapter 14: Search and Retrieve

Example matching words Example nonmatching words

lovely love
Lovely loved
loving

AdvancedCaseSearch=True

If you set AdvancedCaseSearch to True, Content matches it exactly and case-sensitively
because the query word is prefixed with a tilde (~) and in quotation marks. It finds only
documents that contain the word Lovely.

Example matching words Example nonmatching words
Lovely lovely

love

loved

loving

Phrase Search

The IDOL Content component provides these phrase searching options:

Phrase occurrence search. Use a phrase occurrence search to find documents that contain a
certain number of occurrences of a phrase.

Default phrase search. Put your search string in quotation marks to treat the string as a
phrase and return only documents in which a matching phrase occurs (a phrase in a document
qualifies as a match if it stems the same way as the query phrase).

Exact phrase search. Enable AdvancedSearch before you index content into the

IDOL Content component to find exact matches for terms or phrases. In this case, if you query
Content with a term or a phrase in quotation marks, it matches them in their exact (unstemmed)
form.

Case-sensitive exact phrase search. Enable AdvancedCaseSearch before you index content
into the IDOL Content component to find case-sensitive exact matches for terms or phrases.
You can then query Content with a term or a phrase in quotation marks, to match them in their
exact (unstemmed) form, or prefix a term with a tilde (~) to find only case-sensitive matches.
For more information about case-sensitive searching, refer to IDOL Expert.

IDOL Server (12.12) Page 228 of 611

Administration Guide
Chapter 14: Search and Retrieve

Phrase Occurrence Search

You can restrict the documents that match a query phrase to documents in which the number of
occurrences of the phrase is within a specified range. Specify the range with a colon-separated pair
of numbers. You can use a maximum value of 32000. For example:

action=Query&Text="Gene therapy"[5:8]

This query returns only documents in which the phrase Gene therapy appears between five and eight
times (inclusive). This also applies for Wildcard terms.

You can specify open-ended ranges. For example:
action=Query&Text="Gene therapy"[10:]

This query returns only documents in which the phrase Gene therapy appears 10 or more times.

Default Phrase Search

If you query Content with a phrase in quotation marks, by default it returns only documents in which a
matching phrase occurs (a phrase in a document qualifies as a match if it stems the same way as the
query phrase).

For example:
action=Query&Text="fresh and lovely"

Content removes any stop words that the query contains (the example query above contains the stop
word and) and applies stemming. Itis as if the query were this:

action=Query&Text="fresh love"

When it matches the query, Content returns only documents that contain a phrase that stems the
same way as the phrase in the query string. The query "fresh and lovely" can return only
documents that contain a phrase that stems to fresh love (for example, fresh love, freshest loving,
fresh and lovely, freshly loved, and so on).

Exact Phrase Search

If you enable AdvancedSearch before you index content into the IDOL Content component, and
submit a phrase in quotation marks, Content matches the phrase in its exact (unstemmed) form (this
setting also switches Content to an advanced weighting algorithm that improves conceptual

querying).
For example:

action=Query&Text="fresh and lovely"

Content removes any stop words that the query contains (the example query above contains the stop
word and) but matches only documents that contain the exact (unstemmed) form of the terms. Itis as
if the query were:

action=Query&Text="fresh lovely"

IDOL Server (12.12) Page 229 of 611

Administration Guide
Chapter 14: Search and Retrieve

When it matches the query, Content returns only documents that contain a phrase that matches the
phrase in the query string. The query "fresh and lovely" returns only documents that contain a
phrase that matches the phrase fresh lovely (for example, fresh lovely, fresh and lovely, fresh or
lovely, and so on).

NOTE: During the exact phrase search process, IDOL Server stems the terms, matches
documents that contain the stem, and then finds occurrences that match your exact unstemmed
form. This stemming step means that an exact phrase search might not match a documentin a
different language that contains the exact unstemmed term, because the stemming rules are
different. To match these documents, you must use GenericStemming.

Case-Sensitive Exact Phrase Search

If you enable AdvancedCaseSearch before you index content into the IDOL Content component, and
submit a phrase in quotation marks, Content matches the exact unstemmed phrase (the same way it
matches if AdvancedSearch is enabled). If you prefix a term with a tilde (~), Content matches the term
case-sensitively.

For example:
action=Query&Text="fresh and ~Lovely"

Content removes any stop words that the query contains (the example query above contains the stop
word and) but matches only documents that contain the exact unstemmed form of the terms. ltis as if
the query were:

action=Query&Text="fresh ~Lovely"

When it matches the query, Content returns only documents that contain a phrase that matches the

phrase in the query string. The query "fresh and ~Lovely" can return only documents that contain
a phrase which matches the phrase fresh Lovely (for example, fresh Lovely, fresh and Lovely, Fresh
or Lovely, and so on).

For more information about case-sensitive searching, refer to IDOL Expert.

Phrase Search Examples

The word fresh stems to fresh, and the word lovely stems to love. The following words also stem to
fresh and love.

TIP: To determine the stem of a word, use the TermGetInfo action. To determine the words to
which a stem expands, use the TermExpand action.

FRESH FRESHEST FRESHLY
FRESHES FRESHING FRESHNESS
LOVE LOVELY LOVING

IDOL Server (12.12) Page 230 of 611

Administration Guide
Chapter 14: Search and Retrieve

LOVED LOVES LOVINGLY
LOVELIES LOVEST LOVINGS

Example 1 (Conceptual)

action=Query&Text=fresh and Lovely
¢ Default matching
¢ AdvancedSearch=True
* AdvancedCaseSearch=True

The IDOL Content component matches this query conceptually in all configurations, because the
phrase is not in quotation marks and none of its words are prefixed with a tilde (~).

Content first finds documents that contain both words that have the same stem as fresh and words
that have the same stem as lovely (ignoring their case), and then documents that contain either
words that have the same stem as fresh or words that have the same stem as lovely (ignoring their

case).
Example matching Example Example Example
words nonmatching words matching words nonmatching words
fresh fresher lovely lover
freshness freshman love lovelorn
freshly freshwater loved loveless
freshest loving

Example 2 (Conceptual or Exact)

action=Query&Text="fresh and Lovely"
¢ Default matching

In the default configuration, the quotation marks indicate that this is a phrase search. Content
removes any stop words in the phrase, and applies stemming. It finds only documents in which
a word whose stem matches the stem of fresh occurs immediately before a word that matches
the stem of lovely (ignoring their case).

Example matching phrases Example nonmatching phrases
fresh lovely freshman lover

freshest love fresher lovelorn

IDOL Server (12.12) Page 231 of 611

Administration Guide
Chapter 14: Search and Retrieve

Example matching phrases Example nonmatching phrases
freshly loved lovely and fresh

fresh and lovingly

e AdvancedSearch=True or AdvancedCaseSearch=True

If you set AdvancedSearch or AdvancedCaseSearch to True, Content removes any stop words
that the phrase contains, and then matches the exact terms, because the phrase is in quotation
marks. Because none of the words are prefixed with a tilde (~), it finds only documents that
contain the phrase fresh lovely (ignoring its case).

Example matching phrases Example nonmatching phrases

fresh lovely freshest love
fresh and lovely freshly loved
fresh or lovely fresh and lovingly

lovely and fresh

Example 3 (Conceptual or Exact)

action=Query&Text="fresh and ~Lovely"
¢ Default matching

In the default configuration, the quotation marks indicate that this is a phrase search. Content
ignores the tilde (~). It removes any stop words that the phrase contains, and applies stemming.
It finds only documents in which a word whose stem matches the stem of fresh occurs
immediately before a word that matches the stem of lovely (ignoring their case).

Example matching phrases Example nonmatching phrases

fresh lovely freshman lover
freshest love fresher lovelorn
freshly loved lovely and fresh

fresh and lovingly

e AdvancedSearch=True

If you set AdvancedSearch to True, Content removes any stop words that the phrase contains
and then matches the exact terms, because the phrase is in quotation marks. It ignores the tilde
(~). Content finds only documents that contain the phrase fresh lovely (ignoring its case).

IDOL Server (12.12) Page 232 of 611

Administration Guide
Chapter 14: Search and Retrieve

Example matching phrases Example nonmatching phrases

fresh lovely freshest love
fresh and lovely freshly loved
fresh or lovely fresh and lovingly

lovely and fresh

e AdvancedCaseSearch=True

If you set AdvancedCaseSearch to True, Content removes any stop words that the phrase
contains and then matches the exact terms, because the phrase is in quotation marks. Because
Lovely is prefixed with a tilde (~), it is matched case-sensitively. Content finds only documents
that contain the phrase fresh Lovely.

Example matching phrases Example nonmatching phrases

fresh Lovely fresh lovely
fresh and Lovely fresh and lovely
Fresh and Lovely fresh or lovely
Fresh or Lovely Lovely fresh

Boolean and Proximity Search

You can use the Query action to submit standard Boolean searches to the IDOL Content component,
and to submit proximity searches, which allow you to give words that appear close together in the
search string a higher weighting.

| NOTE: You must specify all operators in capital letters.

Boolean Search Operators

The following operators allow you to manipulate a query by applying them to words, exact phrases, or
other Boolean expressions. The IDOL Content component uses APCM (Adaptive Probabilistic
Concept Modeling) to rank the results that match the Boolean query.

Boolean search operators

Operator Explanation

AND Binary operator. Ensures that every document that returns contains both terms. For
example:

IDOL Server (12.12) Page 233 of 611

Administration Guide
Chapter 14: Search and Retrieve

Boolean search operators, continued

Operator Explanation

action=Query&Text=cat+AND+dog

This query returns only documents that contain both cat and dog.

NOT Unary operator. Ensures that the term following NOT is excluded from all the
returned documents. For example:

action=Query&Text=cat+NOT+dog

This query returns only documents that contain cat and not dog.

NOTE: NOT applies only to the term that immediately follows it. To exclude
multiple terms, place them in brackets. To exclude a phrase, put the phrase in
quotation marks and in brackets. For example:

Doc 1: I went to the city for the New Year

Doc 2: I went to New York City for the New Year

The following query does not match either of these documents:
action=Query&Text=city NOT (New York)

The following query matches the first document but not the second:

action=Query&Text=city NOT ("New York")

OR Binary operator. One or both terms must appear for the document to return. This is
the default behavior if no explicit operator is given between two terms. For example:
action=Query&Text=cat+OR+dog

This query returns only documents that contain either cat, dog, or both terms.

EOR Binary operator. Logical exclusive OR. Only one of the terms is permitted to appear
or for the document to return. This operator is rarely used. For example:
XOR action=Query&Text=cat+XOR+dog
This query returns only documents that contain either the term cat or the term dog.
Documents that contain both cat and dog do not return.
() Bracketed expressions. These expressions are evaluated left to right and can be

nested. They dictate the precedence and behavior of combined operator
statements. For example:

action=Query&Text=(fish EOR pie) AND (chips EOR mash)

This query returns only documents that contain one of these combinations:
fish and chips

fish and mash

pie and chips

IDOL Server (12.12) Page 234 of 611

Administration Guide
Chapter 14: Search and Retrieve

Boolean search operators, continued

Operator Explanation

pie and mash

Proximity Search Operators

You can apply proximity operators to words, exact phrases, or Boolean expressions to perform a
proximity search. Note the following details:

« If the two specified words are adjacent to each other, their proximity is 1. If one word separates
them, their distance is 2, and so on.

¢ Proximity operators do not count stop words. For example, because and is a stop word, the
terms cat and dog have the proximity 1 in the text:

° catdog
° catand dog.

¢ The IDOL Content component uses APCM (Adaptive Probabilistic Concept Modeling) to rank
results.

¢ Proximity operators work recursively so that nested Boolean queries can have proximity
operators apply to brackets or phrases. For example, in the expression

(terml) NEAR1O ((term2) DNEAR2 (term3))

the NEAR10 operator ensures that ferm1 is in proximity to an occurrence of term2 within two of
term3.

Proximity search operators

Operator Explanation

NEARN Returns only documents in which the second term is within N words of the first
term—that is, the terms are N or fewer words apart. If you do not specify N, NEAR
defaults to 5. For example:

action=Query&Text=red+NEAR1+green

This query returns only documents in which the term red is adjacent to the term
green. For example, documents that contain red green or green red return.
Documents that contain red orange green do not return (because the terms are not
close enough to each other).

DNEARN Directed NEAR. Returns only documents in which the second term is within N words
of the first term, in the specified order. If you do not specify N, DNEAR defaults to 5.
For example:

action=Query&Text=red+DNEAR2+green

IDOL Server (12.12) Page 235 of 611

Administration Guide
Chapter 14: Search and Retrieve

Proximity search operators, continued

Operator

WNEARN

YNEARN

BEFORE

AFTER

Explanation

This query returns only documents in which the term green follows the term red,
and is no more than two words away from the term red. For example, documents
that contain red orange green return, but documents that contain green orange red
or red orange blue green do not return.

Weighted NEAR (with OR operation). This proximity operator returns documents that
contain either of the two terms. It promotes relevance when the terms are N or fewer
words apart (closer together implies higher relevance). If you do not specify N,
WNEAR defaults to 5. For example:

action=Query&Text=dog+WNEAR7+cat

This query returns documents that contain either dog or cat. It gives extra relevance
to documents in which dog and cat appear seven or fewer words apart in a piece of
text. This weight increases as the terms get closer to each other. Documents in
which the terms occur more than seven words apart, or in which only one term
occurs, return with normal relevance.

Weighted NEAR (with AND operation). This proximity operator returns documents
that contain both of the terms. It promotes relevance when the terms are N or fewer
words apart (closer together implies higher relevance). If you do not specify N,
YNEAR defaults to 5. For example:

action=Query&Text=dog+YNEAR7+cat

This query returns documents that contain both dog and cat. It gives extra
relevance to documents in which dog and cat appear seven or fewer words apart in
a piece of text. This weight increases as the terms get closer to each other.
Documents in which the terms occur more than seven words apart return with the
normal relevance.

Returns only documents in which the first term precedes the second one. For
example:

action=Query&Text=red+BEFORE+green

This query returns only documents in which the term green appears later than the
term red.

You can also use BEFORE for FieldText queries. Fora FieldText query to
successfully compare two occurrences of the same field, you must set the
XMLFullStructure configuration parameter to True in the [Server] section of the
IDOL Content component configuration file.

Returns only documents in which the first term appears later than the second one.
For example:

action=Query&Text=red+AFTER+green

This query returns only documents in which the term red appears later than the

IDOL Server (12.12) Page 236 of 611

Administration Guide
Chapter 14: Search and Retrieve

Proximity search operators, continued

Operator

XNEAR

SENTENCE

SENTENCENN

DSENTENCE

Explanation

term green.

You can also use AFTER for FieldText queries. For a FieldText query to
successfully compare two occurrences of the same field, you must set the
XMLFullStructure configuration parameter to True in the [Server] section of the
IDOL Content component configuration file.

Returns only documents in which the second term is exactly N words from the first
term.

For example:
action=Query&Text=cats+XNEAR2+dogs

This query returns only documents in which the term dogs follows the term cats and
is exactly two words away from the term cats. This means that documents which
contain cats and dogs return, but documents that contain dogs and cats or cats,
dogs do not return.

Returns only documents in which the second term is in the same sentence as the
first term.

For example:
action=Query&Text=cats+SENTENCE+dogs

This query returns only documents in which the term dogs appears in the same
sentence as the word cats.

The IDOL Content component breaks the document into sentences by using a
number of criteria. The most important criteria is the detection of an end of
sentence marker, which includes a period (.), question mark (?), or exclamation
point (!), as well as their multibyte variants. However, the presence of one of these
characters is not always sufficient to mark the end of a sentence, because these
characters are often used in abbreviations, names, and other items for purposes
other than the end of a sentence. To locate a more accurate sentence boundary,
Content also uses characteristics such as capitalization and syntactic observations.

Returns only documents in which the second term is in the same sentence as the
first term, and they are within NNV words of each other. For example:

action=Query&Text=cats+SENTENCE10+dogs

This query returns only documents in which the term dogs occurs in the same
sentence as, and within 10 words of, the word cats.

NOTE: SENTENCE® has the same behavior as SENTENCE.

Returns only documents in which the second term occurs later than the first term, in
the same sentence. For example:

IDOL Server (12.12) Page 237 of 611

Administration Guide
Chapter 14: Search and Retrieve

Proximity search operators, continued

Operator Explanation

action=Query&Text=cats+DSENTENCE+dogs

This query returns only documents in which the term dogs occurs later than the
word cats, in the same sentence.

DSENTENCE Returns only documents in which the second term occurs later than the first term,
NN and within NN words in the same sentence. For example:

action=Query&Text=cats+DSENTENCE10+dogs

This query returns only documents in which the term dogs occurs later in the same
sentence than, and within 10 words of, the word cats.

NOTE: DSENTENCE® has the same behavior as DSENTENCE.
PARAGRAPH Returns only documents in which the second term is in the same paragraph as the
first term.
For example:
action=Query&Text=red+PARAGRAPH+green

This query returns only documents in which the term green appears in the same
paragraph as the word red. The words do not have to be in the same sentence in
the paragraph.

PARAGRAPH Returns only documents in which the second term is in the same paragraph as the
NN first term, and they are within NN words of each other. For example:

action=Query&Text=cats+PARAGRAPH20+dogs

This query returns only documents in which the term dogs occurs in the same
paragraph as, and within 20 words of, the word cats.

| NOTE: PARAGRAPHO has the same behavior as PARAGRAPH.

WHEN and NOTWHEN Search Operators

If you set XMLFullStructure to True in the configuration file, you can use the WHEN and NOTWHEN
search operators to return documents in which XML fields occur with a common parent field. When
you set XMLFullStructure to True, The IDOL Content component gives each occurrence of the
same XML field name a different field code, so that it can identify each one uniquely.

To return only XML documents in which fields or attributes that have a specific value occur together,
apply the WHEN operator to words or phrases. You can use the WHEN operator to return only those XML
documents in which:

» two fields with the same parent field contain specified terms or phrases. See Example 1, on the
next page.

IDOL Server (12.12) Page 238 of 611

Administration Guide
Chapter 14: Search and Retrieve

¢ two attributes that occur in the same field contain specified terms or phrases. See Example 2,
on the next page.

 afield contains a specified term or phrase, and has an attribute with a specific value. See
Example 3, on the next page

To return only XML documents in which one field or attribute that has a specific value does not occur
in the same parent field as another specified field or attribute and value, use the NOTWHEN operator.
You can use the NOTWHEN operator in the same way as the WHEN operator. See Example 4, on the next
page.

Example 1

You can use WHEN to return only XML documents in which two fields with the same parent field
contain specified terms or phrases.

For example:
action=Query&Text=audi:make+WHEN+red:color

This query returns only XML documents in which the make and color fields are children of the same
parent field, and contain the values audi and red respectively.

For example, this query returns the following document:

<XML>
<car>
<make>audi</make>
<color>red</color>
</car>
<car>
> <make>mercedes</make>
<color>silver</color>
</car>
</DOC>
</XML>

It does not return the following document:

<XML>
<DOC>
<car>
<make>audi</make>
<color>silver</color>
</car>
<car>
<make>mercedes</make>
<color>red</color>
</car>
</DOC>
</XML>

You can also use complex nested expressions with the WHEN operator in query text. For example:

action=Query&Text=(London:CITY WHEN English:LANG) WHEN ("United Kingdom":COUNTRY)

IDOL Server (12.12) Page 239 of 611

Administration Guide
Chapter 14: Search and Retrieve

Example 2

You can use WHEN to return only XML documents in which two attributes that occur in the same field
contain specified terms or phrases. For example:

action=Query&Text=English: ATTR_LANG WHEN "Cape Town":_ATTR_CAPITAL

This query returns only XML documents in which the LANG and CAPITAL attributes occur in the same
field, and contain the values English (in the LANG attribute) and Cape Town (in the CAPITAL attribute).

For example, this query returns the following document:

<XML>
<DOC>
<COUNTRY CAPITAL="Cape Town" LANG="English" POP="44">South Africa</COUNTRY>
<COUNTRY CAPITAL="Berlin" LANG="German" POP="80">Germany</COUNTRY>
</DOC>
</XML>

It does not return the following document:

<XML>
<DOC>
<COUNTRY CAPITAL="Cape Town" LANG="Afrikaans" POP="10">South Africa</COUNTRY>
<COUNTRY CAPITAL="London" LANG="English" POP="8@">England</COUNTRY>
</DOC>
</XML>

Example 3

You can also use WHEN to return only XML documents in which a field contains a specified term or
phrase, and has an attribute that has a specific value. For example:

action=Query&Text=Fr.html: ATTR_HREF WHEN France:A

This query returns only XML documents in which an A field contains the value France, and has an
HREF attributes with the value Fr.html.

For example, this query returns the following document:

<XML>
<DOC>
France
</DOC>
</XML>

Example 4

You can use NOTWHEN to return XML documents that contain one field with a specified term and
phrase, but that do not contain another field and value in the same parent field.

action=Query&Text=audi:make+NOTWHEN+red:color

IDOL Server (12.12) Page 240 of 611

Administration Guide
Chapter 14: Search and Retrieve

This query returns only XML documents in which the make field contains the value audi, under a
parent field that does not also have a color field with the value red.

For example, this query returns the following document:

<XML>
<DOC>
<car>
<make>audi</make>
<color>silver</color>
</car>
<car>
<make>mercedes</make>
<color>red</color>
</car>
</DOC>
</XML>

It does not return the following document:

<XML>
<DOC>
<car>
<make>audi</make>
<color>red</color>
</car>
<car>
<make>mercedes</make>
<color>silver</color>
</car>
</D0OC>
</XML>

Specify the Number of Levels from the XML Root

You can add a numeric value to the WHEN operator to indicate the number of hierarchical levels from
the XML root from which to match the terms or phrases.

For example, if you have the following XML document:

<?xml version="1.0"?>
<XML>
<DOCUMENT>
<DREREFERENCE>Reference_1</DREREFERENCE>
<car>
<make>ford</make>
<color>
<exterior>blue</exterior>
<interior>black</interior>
</color>
</car>
</DOCUMENT>
<DOCUMENT >

IDOL Server (12.12) Page 241 of 611

Administration Guide
Chapter 14: Search and Retrieve

<DREREFERENCE>Reference_2</DREREFERENCE>
<car>
<make>ferrari</make>
<color>
<exterior>blue</exterior>
<interior>brown</interior>
</color>
</car>
<car>
<make>ford</make>
<color>
<exterior>yellow</exterior>
<interior>blue</interior>
</color>
</car>
</DOCUMENT >
</XML>

The following query returns both documents, because the exterior and make fields share the same
parent field (<DOCUMENT>), which is two levels from the root, and contain blue and ford respectively.

action=Query&Text=blue: EXTERIOR+WHEN2+ford:MAKE

The following query returns only Reference_1, because the exterior and make fields share the same
parent field (<car>), which is three levels from the root, and contain blue and ford respectively.

action=Query&Text=blue:EXTERIOR+WHEN3+ford:MAKE

The following query does not return either document, because the exterior and make fields do not
share the same parent field four levels from the root.

action=Query&Text=blue: EXTERIOR+WHEN4+ford:MAKE

Precedence of Search Operators

Boolean and proximity operators have the following precedence:

Highest: NOT

NEAR; DNEAR; XNEAR; YNEAR

AND; BEFORE; AFTER; WHEN; SENTENCE; DSENTENCE; PARAGRAPH
Lowest: OR; WNEAR; EOR

Operators that have the same level of precedence have neither left or right associativity. You can use
brackets to bind terms together as appropriate. Proximity operators must have terms on either side,
and cannot be adjacent to brackets.

Simple Field Restricted Search

You can use simple field restrictions within a Query action Text parameter to return results that
contain specific values in specific fields. You can also combine query text with a field restriction to

IDOL Server (12.12) Page 242 of 611

Administration Guide
Chapter 14: Search and Retrieve

increase the relevance of results that contain specific values in specific fields. For these field
restrictions:

¢ you can use only fields that the IDOL Content component stores as Index fields.
¢ you can use Wildcards.
¢ you cannot match more than one value, or a value that contains spaces or punctuation.

+ each individual field restriction must contain fewer than 512 characters.

Related Topics
« Setup the Field Index Process, on page 46

Example Queries

action=Query&Text=cat:DRETITLE
This query returns only documents that contain the value cat in their DRETITLE field.
action=Query&Text=cat dog:DRETITLE

This query returns documents that contain the term cat in any field and the term dog in their DRETITLE
field. Documents that contain either cat (in any field) or dog in their DRETITLE field also return, but with
a lower relevance.

action=Query&Text=cat:CREATURE: FAUNA dog:ANIMAL

This query returns only documents that contain the value cat in their CREATURE or FAUNA field and the
value dog in their ANIMAL field. Documents that contain either cat in their CREATURE or FAUNA field or
dog in their ANIMAL field also return, but with a lower relevance.

action=Query&Text=engin*:Title

This query returns only documents whose title field contains the specified string (for example,
engineer, engineering and so on). Note that Content expands Wildcards before it stems terms.

FieldText Search

FieldText queries are Query, Suggest, or SuggestOnText actions that include the FieldText
parameter. You can combine this parameter with the Text parameter to restrict the results that your
query returns to documents that contain a specific value in a specified field. You can also use the
FieldText parameter on its own to query for documents that contain specific values in specific fields.
Micro Focus does not recommend this type of query because it slows the IDOL Content component
processing speed.

To specify how documents must match fields and field values to return as results, the FieldText
parameter uses field specifiers which identify the pattern of values in fields. These field specifiers fall
into three groups, described in these sections:

IDOL Server (12.12) Page 243 of 611

Administration Guide
Chapter 14: Search and Retrieve

» Field Specifiers for Common Restrictions, on the next page
» Field Specifiers for Advanced Restrictions, on page 254
¢ Field Specifiers to Bias Result Scores, on page 277

NOTE: FieldText queries that include commas and braces within the query have specific percent-
encoding requirements. For information about percent-encoding, see FieldText, on page 310.

FieldText Query Guidelines

¢ In addition to document fields, you can also apply FieldText restrictions to metafields, such as
autn_date, autn_database, autn_section, autn_langtype, and autn_language. For example:

FieldText=STRING{Archiv}:autn_database

In this example, the autn_database metafield must contain the substring Archiv for this
document to return. For example, if the autn_database metafield has the value Archive or
Archives, this document returns.

FieldText=WILD{eng*}:autn_langtype

In this example, the autn_langtype metafield must contain a value that starts with eng (for
example, englishASCII or English_UTF8) for this document to return as a result.

¢ You can use multiple field specifiers simultaneously by combining them with the Boolean
operators AND, NOT, and OR. For example:

FieldText=GREATER{6.95}:PRICE:PREIS+AND+MATCH{Brown}:AUTHOR :AUTOR

In this example, the PRICE or PREIS field must contain a number greater than 6.95, and the
AUTHOR or AUTOR field must have the value Brown, for the document to return as a result.

FieldText=(LESS{10}:PRICE+AND+MATCH{Penguin}:PUBLISHER)+OR+(NRANGE
{20,30} :PRICE+AND+MATCH{George Orwell}:AUTHOR)

In this example, the documents must meet one of these two criteria:

° the PRICE field contains a number smaller than 10, and its PUBLISHER field has the value
Penguin.

o the PRICE field contains a number between 20 and 30, and its AUTHOR field has the value
George Orwell.

¢ You can use the proximity operators BEFORE and AFTER to specify the order in which certain
fields must occur in a document. For example:

FieldText=FieldText=MATCH{Penguin}:PUBLISHER BEFORE MATCH{George Orwell}:AUTHOR

This example returns only documents where the PUBLISHER field contains the value Penguin
earlier in the document than the AUTHOR field that contains the value George Orwell.

NOTE: For a FieldText query to successfully compare two occurrences of the same field,
you must set the XMLFullStructure configuration parameter to True in the [Server]

IDOL Server (12.12) Page 244 of 611

Administration Guide
Chapter 14: Search and Retrieve

section of the configuration file.

FieldText=MATCH{George Orwell}:AUTHOR AFTER MATCH{Thomas Brown}:AUTHOR

This example returns only documents where one occurrence of the AUTHOR field contains the
value George Orwell later in the document than another occurrence of the AUTHOR field that
contains the value Thomas Brown. This query returns results only if you have set

XMLFullStructure to True.

¢ Toidentify the fields, use the format /FieldName to match root-level fields, */FieldName to
match all fields except root-level, or /Path/FieldName to match fields that the specified path

points to.

To identify XML attributes, use the format <tag name>/_ATTR_<attribute name>, for example,
FARM/_ATTR_ANIMAL. You can also use Wildcards when identifying fields, for example, /Fi*d1

or /Field*.

¢ All string matching is case insensitive, unless you set the CaseSensitive parameter to True
(this parameter does not apply for TERM, TERMPHRASE, and TERMALL, which are always case

insensitive).

Strings can contain punctuation, except braces ({ }). You must percent-encode ampersands (&)
in strings as %26. To distinguish commas within strings from separator commas, percent-
encode commas twice within strings (%252C).

You must not percent-encode commas that separate multiple items, and braces that start and

end lists.

For example, to match the two strings hello,world and goodbye, again:

FieldText=MATCH{hello%252Cworld, goodbye%252Cagain}:FIELD

Related Topics

* Metadata Fields, on page 107

Field Specifiers for Common Restrictions

Specifier

MATCH

REGEXMATCH

EQUAL, GREATER, LESS, NOTEQUAL,
NRANGE

GTNOW, LTNOW, or RANGE

WILD

IDOL Server (12.12)

Finds documents in which a specified field
contains...

a value that exactly matches one or more specified
strings

a value that exactly matches a regular expression

a number

adate

a value that matches a specified Wildcard string

Page 245 of 611

Administration Guide
Chapter 14: Search and Retrieve

Fields whose Value Exactly Matches One or More Strings

You can use the following field specifier to return documents with fields that contain a specified string.

MATCH

The MATCH field specifier (case sensitive) finds documents in which a specified field contains a value
that exactly matches a specified string.

FieldText=MATCH{yourStrings}:yourFields

where:

yourStrings is one or more strings. A document returns only if one of these strings is matched
by one of yourFields exactly.

The matching is case insensitive.

FieldText queries which include commas and braces within the query have
specific percent-encoding requirements. For information about percent-
encoding, see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if the value in this field exactly matches one of yourStrings.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:
FieldText=MATCH{Archive,Web,docs}:DB:DATABASE

The DB or DATABASE field must have the value Archive, Web, or docs for the document to return as a
result.

FieldText=MATCH{Premier league}:DB
The DB field must have the value Premier League for the document to return as a result.
FieldText=MATCH{©-226-10389-7}:ISBN

The ISBN field must have the value 0-226-710389-7 for the document to return as a result.

Fields that Contain a Number

You can use the following field specifiers (case sensitive) to return documents with fields that contain
numbers. To optimize the processing time of queries for fields that contain numbers, store them as
numeric fields in the IDOL Content component during the indexing process.

Related Topics
e NumericType Fields, on page 98

IDOL Server (12.12) Page 246 of 611

Administration Guide
Chapter 14: Search and Retrieve

EQUAL

The EQUAL field specifier (case sensitive) allows you to find documents in which a specified field
contains a number that matches one of the numbers specified by you.

FieldText=EQUAL{yourNumbers}:yourFields

where:

yourNumbers is one or more numbers. A document returns only if one of yourFields contains
one of these numbers.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if this field contains one of yourNumbers.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:

FieldText=EQUAL{1234567890123}:ACCOUNT :KONTO

The ACCOUNT or KONTO field must contain the number 1234567890123 for the document to return.
FieldText=EQUAL{3.9,4.9,7}:ID

The 1D field must contain the number 3.9, 3.90, 4.9, 4.90, 7, or 7.0 for the document to return.

GREATER

The GREATER field specifier (case sensitive) allows you to find documents in which a specified field
contains a number that is greater than a number you specify.

FieldText=GREATER{yourNumber}:yourFields

where:

yourNumber is a number. A document returns only if one of yourFields contains a number that
is greater than this number.

By default, the range is exclusive. You can add an equals sign (=) to include the
number that you specify.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if the number in this field is greater than yournumber.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:
FieldText=GREATER{66}:1ID
The 1D field must contain a number greater than 66 for the document to return.

FieldText=GREATER{5.59}:PRICE:PREIS

IDOL Server (12.12) Page 247 of 611

Administration Guide
Chapter 14: Search and Retrieve

The PRICE or PREIS field must contain a number greater than 5.59 for the document to return.
FieldText=GREATER{=61}:QUANTITY

The QUANTITY field must contain a value of 6 or greater for the document to return.

LESS

The LESS field specifier (case sensitive) allows you to find documents in which a specified field
contains a number that is smaller than a number that you specify.

FieldText=LESS{yourNumber}:yourFields

where:

yourNumber is a number. A document returns only if one of yourFields contains a number that
is smaller than this number.

By default, the range is exclusive. You can add an equals sign (=) to include the
number that you specify.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if the number in this field is smaller than yourNumber.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:

FieldText=LESS{66}:ID

The 1D field must contain a smaller number than 66 for the document to return.
FieldText=LESS{5.59}:PRICE:PREIS

The PRICE or PREIS field must contain a smaller number than 5.59 for the document to return.
FieldText=LESS{=6}:QUANTITY

The QUANTITY field must contain a value of 6 or lower for the document to return.

NOTEQUAL

The NOTEQUAL field specifier (case sensitive) allows you to find documents in which a specified field
contains a number that does not match a number that you specify.

FieldText=NOTEQUAL{yourNumber}:yourFields

where:

yourNumber is a number. A document returns only if one of yourFields does not contain this
number.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field does not contain yourNumber.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

IDOL Server (12.12) Page 248 of 611

Administration Guide
Chapter 14: Search and Retrieve

Examples:

FieldText=NOTEQUAL{1234567890123}:ACCOUNT:KONTO

The ACCOUNT or KONTO field must not contain the number 7234567890123 for the document to return.
FieldText=NOTEQUAL{3.9}:ID

The 1D field must not contain the number 3.9 for this document to return.

NRANGE

The NRANGE field specifier (case sensitive) allows you to find documents in which a specified field
contains a number that falls in the inclusive range of two numbers that you specify.

FieldText=NRANGE{yourNumbers}:yourFields

where:

yourNumbers is two numbers, separated by a comma (there must be no space before or after
the comma). A document returns only if one of yourFields contains a number
that falls within the inclusive range of the specified numbers (including decimal
numbers).

By default, the range is inclusive. You can use the greater than (<) and less than
(>) symbols to specify an exclusive range. You can make either or both ends of
the range exclusive.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if this field contains a number that falls within the inclusive range of
yourNumbers.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:

FieldText=NRANGE{1,99}:CODE

The CODE field must contain a number between 7 and 99 (inclusive) for the document to return.
FieldText=NRANGE{1234567890123,2345678901234} : ACCOUNT : KONTO

The ACCOUNT or KONTO field must contain a number between 1234567890123 and 2345678901234
(inclusive) for the document to return.

FieldText=NRANGE{36.5,42.3}:CODE
The CODE field must contain a number between 36.5 and 42.3 (inclusive) for the document to return.
FieldText=NRANGE{>1,5}:CODE

The CODE field must contain a value that is greater than 7, up to and including 5 for the document to
return.

IDOL Server (12.12) Page 249 of 611

Administration Guide
Chapter 14: Search and Retrieve

Fields that Contain a Date

You can use the following field specifiers (case sensitive) to return documents with fields that contain
dates.

NOTE: To optimize the processing time of queries for fields that contain dates, store them as
numeric date fields in the IDOL Content component during the indexing process.
Related Topics
¢ NumericDateType Fields, on page 97

GTNOW

The GTNOW field specifier (case sensitive) allows you to find documents in which a specified field
contains a date that is greater than the AUTNDATE (that is, all documents that were indexed with dates
after the current time).

FieldText=GTNOW{}:yourFields

where:

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains a date that is greater than the AUTNDATE (that is, all documents
that were indexed with dates after the current time).

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:
FieldText=GTNOW{}:TIME

The TIME field must contain a date that is greater than the AUTNDATE (that is, all documents that were
indexed with dates after the current time) for the document to return.

FieldText=GTNOW{}:TIME:DATE

The TIME or DATE field must contain a date that is greater than the current time (that is, all documents
that were indexed with dates after the current time) for the document to return.

LTNOW

The LTNOW field specifier (case sensitive) allows you to find documents in which a specified field
contains a date that is smaller than the AUTNDATE (that is, all documents that were indexed with dates
before the current time).

FieldText=LTNOW{}:yourFields

where:

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains a date that is smaller than the current time.

IDOL Server (12.12) Page 250 of 611

Administration Guide
Chapter 14: Search and Retrieve

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:
FieldText=LTNOW{}:*/TIME

The TIME field must contain a date that is smaller than the AUTNDATE (that is, all documents that were
indexed with dates before the current time) for the document to return.

FieldText=LTNOW{}:TIME:DATE

The TIME or DATE field must contain a date that is smaller than the AUTNDATE (that is, all documents
that were indexed with dates before the current time) for the document to return.

RANGE

The RANGE field specifier (case sensitive) allows you to find documents in which a specified field
contains a date that falls within the inclusive range of two dates that you specify.

FieldText=RANGE{yourDates}:yourFields
where:
yourDates is two dates separated by a comma (there must be no space before or after the
comma). A document returns only if one of yourFields contains a date that falls

within the inclusive time span of the specified dates. You can use the formats in
the table below to specify each date.

By default, the range is inclusive. You can use the greater than (<) and less than
(>) symbols to specify an exclusive range. You can make either or both ends of the
range exclusive.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains a date that falls within the inclusive range of yourDates.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Date formats

Format Explanation

D+/M+/#YY+ A date. For example, 1/3/05, 23/12/1999, 10/07/40, Or 8/5/2012.

If the year is a number less than 40, it is read as a year in the 2000s. If the yearis a
number between 40 and 99, it is read as a year in the 1900s. For example,
01/02/0lis read as 1 February 2001, and ©1/03/40 is read as 1 March 1940.

HH:NN:SS Atime and date. For example, 10:30:45 1/3/05,18:55:00 23/12/99,01:23:45
D+/M+/#YY+ 10/07/1940,0r 07:15:00 8/5/2012.

If the year is a number less than 40, it is read as a year in the 2000s. If the yearis a

IDOL Server (12.12) Page 251 of 611

Administration Guide

Chapter 14: Search and Retrieve

Date formats, continued

Format

HH:NN:SS
D+/M+/#YY+
#ADBC

Ns

Ne

Explanation

number between 40 and 99, it is read as a year in the 1900s. For example,
01/02/0lis read as 1 February 2001, and ©1/03/40 is read as 1 March 1940.

A time and date with a time period. For example, 10:30:45 1/3/05 AD, 18:55:00
23/12/99 CE.

For the time period, you can use AD, CE, BC, BCE or any predefined list of EPOCH
indicators.

A positive or negative number of days from the current date.

For example, -1 specifies yesterday's date, @ specifies today's date, 1 specifies
tomorrow's date, 2 specifies two days from now (the current date plus two), and so
on.

A positive or negative number of seconds from now.

For example,-60s specifies one minute ago, -900s specifies 15 minutes ago, -
3600s specifies one hour ago and so on. 60s specifies one minute from now, 900s
specifies 15 minutes from now, 3600s specifies one hour from now, and so on.

Epoch seconds (seconds since 1 January 1970).

For example, 1012345000e specifies 22:56:40 on 29 January 2002.

NOTE: Content uses the local time zone to match epoch values. For example, if
your local time zone is GMT-6, 1012345000e is 03:56:40 on 29 January 2002. If
you use this value as the beginning of a range, Content retrieves documents
after 03:56:40 on 29 January 2002.

For RANGE, you can specify an open-ended range by using a period (.):

« If you type a period for the first point in time, the beginning of the time period is not restricted
(the period ranges up to the specified date, including any earlier date).

¢ If you type a period for the second point in time, the end of the time period is not restricted (the
period ranges from the specified date, including any later date).

Examples:

FieldText=RANGE{01/01/90,1/1/01}:DATE

The DATE field must contain a date between 01/01/1990 and 1/1/2001 for the document to return.

FieldText=RANGE{01/01/02,01/01/2003} :DATE:DATUM

The DATE or DATUM field must contain a date between 01/01/2002 and 01/01/2003 for the document to

return.

FieldText=RANGE{-14,-7}:DATE

The DATE field must contain a date 14 to 7 days before the current date for the document to return.

IDOL Server (12.12)

Page 252 of 611

Administration Guide
Chapter 14: Search and Retrieve

FieldText=RANGE{@,1}:DATE

The DATE field must contain today's or tomorrow's date (which is possible, for example, if the
document originates from a different time zone or if the field contains an expiration date) for the
document to return.

FieldText=RANGE{01/01/99, .}:DATE:FECHA

The DATE or FECHA field can contain any date after 01/01/1999 for the document to return.
FieldText=RANGE{.,10/10/04}:DATE

The DATE field can contain any date before 10/10/2004 for the document to return.
FieldText=RANGE{-172800s,-1}:DATE

The DATE field must contain a time between 48 and 24 hours ago.

FieldText=RANGE{198765e, .} :DATE

The DATE field must contain a date between 198765 seconds after the epoch and the current time.
FieldText=RANGE{>05/06/2013,05/06/2014} :DATE

The DATE field must contain a date after 05/06/2013, up to and including 05/06/2014.

Fields whose Value Matches Wildcard Strings

WILD

The WILD field specifier (case sensitive) allows you to find documents in which a specified field
contains a string that matches a specified Wildcard string.

If the query does not contain any Wildcard characters (? or *), the WILD field specifier acts in the same
way as the MATCH field specifier.

FieldText=WILD{yourStrings}:yourFields
where:
yourStrings is one or more strings that contain Wildcards. A document returns only if one of
yourFields matches one of these strings.

FieldText queries which include commas and braces within the query have
specific percent-encoding requirements. For information about percent-
encoding, see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if this field contains one of yourStrings.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:
FieldText=WILD{*.html,*.htm}:URL

The URL field value must end with .html or .htm for this document to return as a result.

IDOL Server (12.12) Page 253 of 611

Administration Guide
Chapter 14: Search and Retrieve

FieldText=WILD{passi*incarnata}:Climbers:Plants

The Climbers or P1lants field value must contain a phrase that begins with passi and ends with
incarnata (for example, passionflower incarnata or passiflora incarnata) for this document to return
as aresult.

FieldText=WILD{*www.example.com*.txt}:PATH

The PATH field value must contain a path that contains www.example.com and ends with .txt (for
example, http:.//www.example.com/files/doc.txt) for the document to return as a result.

FieldText=WILD{wom?n }:Clothes

The Clothes field value must contain a word that matches the specified Wildcard string (for example,
woman or women) for this document to return as a result.

Field Specifiers for Advanced Restrictions

Field specifiers

Specifier Use to find documents in which a specified field...
ARANGE contains a value that falls within a specific alphabetical
range

BITAND, BITANDHEX, BITANDOFFHEX contains a value that results in a nonzero value when a
bitwise AND operation is carried out against it

BITSET contains a value in a BitFieldType field where the
specified bit is set

BOOLEANFIELD contains a Boolean agent

DISTCARTESIAN contains Cartesian (x/y) coordinates values within a
specified distance from a specified point

DISTSPHERICAL contains latitude and longitude values within a specified
distance from a specified point

EMPTY does not exist or does not contain a value

EXISTS exists, irrespective of its value

Fuzzy contains a value that is similar to a specified string

MATCHALL or EQUALALL contains multiple instances, whose values include at least
one match for each of the specified strings or numeric
values

MATCHCOVER or EQUALCOVER contains multiple instances, all of whose values are

matched in the specified strings or numeric values

IDOL Server (12.12) Page 254 of 611

Administration Guide
Chapter 14: Search and Retrieve

Field specifiers, continued

Specifier Use to find documents in which a specified field...

MATCHRECURSE contains a specified reference in a
ReferenceMemoryMappedType field recursively to a
maximum number of times

NOTMATCH, NOTSTRING, NOTWILD contains multiple instances, at least one of whose values
does not match the specified string

POLYGON contains Cartesian (x/y) coordinate values within a
specified polygonal shape

GEOCONTAINS contains a geospatial region that wholly contains a
specified point or polygonal shape.

GEOINTERSECTS contains a point or geospatial region that intersects a
specified point or polygonal shape

GEOWITHIN contains a point or geospatial region that is wholly within
the specified polygonal shape.

STRING, STRINGALL, SUBSTRING contains a specified string

TERM, TERMALL, TERMEXACT, whose value match specific terms or phrases
TERMEXACTALL, TERMEXACTPHRASE,

TERMPHRASE

Fields whose Value Falls within a Specific Alphabetical Range

ARANGE

The ARANGE field specifier (case sensitive) allows you to find documents in which a specified field
contains a term that falls within the inclusive alphabetical range of two terms that you specify.

FieldText=ARANGE{yourTerms}:yourFields
where:
yourTerms is two terms separated by a comma (there must be no space before or after the

comma). A document returns only if one of yourFields contains a term that falls
within the inclusive alphabetical range of the specified terms.

You can use a period (.) in place of one of the terms to represent an unrestricted
value.

 If you use the period in place of the first term, it includes all values up to the
second term.

 If you use the period in place of the second term, it includes all values after
the first term.

IDOL Server (12.12) Page 255 of 611

Administration Guide
Chapter 14: Search and Retrieve

It uses unicode tables to determine alphabetical order. This means that non-7-bit
ASCllI characters (a, &, &, ¢, 0, &, &, @, 6, U, 0, B, y, and so on) come after z in the
alphabet.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains a term that falls within the inclusive alphabetical range of
yourTerms.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:
FieldText=ARANGE{aardvark,alligator}:ANIMAL

The ANIMAL field must contain a value that alphabetically falls between aardvark and alligator. If the
ANIMAL field contains the value aardvark, ant, anteater, antelope, or alligator, the document returns. If
the ANIMAL field contains the value armadillo, it does not return.

FieldText=ARANGE{bear,buffalo}:ANIMAL:TIER

The ANIMAL or TIER field must contain a value that alphabetically falls between bear and buffalo. If the
field contains the value bear, bee, Biene, bird, or buffalo, the document returns. If the ANIMAL field
contains the value Biliffel or chipmunk, it does not return.

FieldText=ARANGE{dog, .}:ANIMAL AND ARANGE{.,cat}:PET

The ANIMAL field must contain a value that alphabetically falls after dog, and the PET field must
contain a value that alphabetically falls before cat.

Fields with a Nonzero Value for Bitwise AND

You can use the following field specifiers (case sensitive) to return documents with fields whose
value result in a nonzero value when a bitwise AND operation is carried out against a specified value.

BITAND

The BITAND field specifier (case sensitive) allows you to find documents with a field whose integer
value does not result in 0 when a bitwise AND operation is carried out between this value and an
integer value that you specify.

FieldText=BITAND{yourInteger}:yourBitFields

where:

yourInteger is an integer. A document returns only if one of yourBitFields contains a
value that results in a nonzero value when a bitwise AND operation is carried
out between this value and the specified integer.

yourBitFields is one or more fields. A document returns only if it contains one of these fields,
and if this field contains an integer that results in a nonzero value when a
bitwise AND operation is carried out between it and yourInteger.

If you want to specify multiple fields, separate them with colons (there must be
no space before or after a colon).

IDOL Server (12.12) Page 256 of 611

Administration Guide
Chapter 14: Search and Retrieve

Example:
FieldText=BITAND{128}:BitField

The binary representation of the integer value 128 is compared with the binary representations of the
integer values that BitField fields in the IDOL Content component contain. Only documents whose
BitField values resultin a nonzero value when they are compared to the binary representation of
128 return.

For example, if the BitField of a document contains the integer value 129, it returns, but a document
whose BitField contains the value 127 does not return.

The following tables show the field value comparison.

Integer Binary
128 1000 0000
129 1000 0001

1000 0000 this evaluates to True

Integer Binary
128 1000 0000
127 0111 1111
0000 0000 this evaluates to False

BITANDHEX

The BITANDHEX field specifier (case sensitive) allows you to find documents with a field whose
hexadecimal string value does not result in zero when a bitwise AND operation is carried out between
this value and a hexadecimal string that you specify.

FieldText=BITANDHEX{yourHexString}:yourBitFields

where:

yourHexString is a hexadecimal string. A document returns only if one of yourBitFields
contains a value that results in a nonzero value when a bitwise AND operation
is carried out between this value and the specified hexadecimal string.

yourBitFields is one or more fields. A document returns only if it contains one of these fields,
and if this field contains a hexadecimal string that results in a nonzero value
when a bitwise AND operation is carried out between it and yourHexString.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Example:

FieldText=BITANDHEX{7F}:BitField

IDOL Server (12.12) Page 257 of 611

Administration Guide
Chapter 14: Search and Retrieve

The binary representation of the hexadecimal value 7F is compared with the binary representations
of the hexadecimal values that BitField fields in IDOL Server contain. Only documents whose
BitField values resultin a nonzero value when they are compared to the binary representation of 7F
return.

For example, if the BitFieldof a document contains the hexadecimal value Co, it returns, but a
document whose BitField contains the hexadecimal value 80 does not return.

The following tables show the field value comparison.

Hex Binary
7F 01111111
Co 1100 0000

0100 0000 this evaluates to True

Hex Binary
7F 01111111
80 1000 0000

0000 0000 this evaluates to False

BITANDOFFHEX

The BITANDOFFHEX field specifier (case sensitive) allows you to find documents with a field whose
hexadecimal string value does not result in zero when a bitwise AND operation is carried out between
this value and an offset hexadecimal string you specify.

FieldText=BITANDOFFHEX{NN, yourHexString}:yourBitFields
where:
NN is the number of 16-bit chunks by which the value in yourHexString andin

yourBitFields is shifted before the bitwise AND operation is carried out (this
allows you to store sparse bit masks more efficiently).

yourHexString is a hexadecimal string. A document returns only if one of yourBitFields
contains a value that results in a nonzero value when a bitwise AND operation is
carried out between this value and the specified hexadecimal string.

yourBitFields is one or more fields. A document returns only if it contains one of these fields,
and if this field contains a hexadecimal string that results in a nonzero value
when a bitwise AND operation is carried out between it and yourHexString.

If you want to specify multiple fields, separate them with colons (there must be
no space before or after a colon).

Example:

FieldText=BITANDOFFHEX{@1,0a001}:BitOffField

IDOL Server (12.12) Page 258 of 611

Administration Guide
Chapter 14: Search and Retrieve

The binary representation of the hexadecimal value 01,0a001 is compared with the binary
representations of the hexadecimal values that BitOffField fields in the IDOL Content component
contain. Only documents whose BitOffField values result in a nonzero value when they are
compared to the binary representation of 01, 8aee1 (after they have been shifted left by one 16-bit
chunk) return.

For example, if the BitOffField contains the value 1, bce1, the document returns, but a document
whose BitOffField contains the value 0, 5ffeffff does not return.

The following tables show the field value comparison.

nn,hexstring Hex Binary
01,0a001 A0010000 1010 0000 0000 0001 0000 0000 0000
0000
1,bc01 BC010000 1011 1100 0000 0001 0000 0000 0000
0000
1010 0000 0000 0001 0000 0000 0000 this evaluates to
0000 True
nn,hexstring Hex Binary
01,0a001 A0010000 1010 0000 0000 0001 0000 0000 0000
0000
0, 5ffeffff S5FFEFFFF 0101 111111111110 1111 1111 1111
1111

0000 0000 0000 0000 0000 0000 0000 this evaluates to
0000 False

Fields that Contain BitFieldType Information

BITSET

The BITSET field specifier (case sensitive) allows you to find documents with a BitFieldType field
that contains a value where the specified bit is set. This allows you to search for documents that
belong to a particular set of documents.

NOTE: You can use the BITSET field specifier only for BitFieldType fields.

FieldText=BITSET{yourBitSets}:yourFields

where:

yourBitSets are one or more set numbers, separated by commas. These set numbers must
be in normal decimal form.

yourFields are one or more BitFieldType fields. A document returns only if it contains one

IDOL Server (12.12) Page 259 of 611

Administration Guide
Chapter 14: Search and Retrieve

of these fields, and if this field contains a value where the bit corresponding to
yourBitSets is set.

To specify multiple fields, you must separate them with colons (there must be no
space before or after a colon).

Examples:
FieldText=BITSET{0,4}:BitField

This example matches any document where the binary representation of the hexadecimal value
contained in BitField has the bit set (the binary digit is 1) for set 0 or set 4.

For example, if a document has a BitField that contains the hexadecimal value A4, it does not
match the query. The binary representation is 16100100, where the bits for set 0 and 4 are both @, so
the document is not part of these sets.

If the document has a BitField that contains the hexadecimal value A8, it does match the query. The
binary representation is 10101000, where the bit for set 4 is a 1, so the document is part of set 4.

FieldText=BITSET{2}:BitField AND BITSET{15}:BitField

The binary representation of the hexadecimal value contained in BitField must have the bits
switched on for both sets 2 and 15.

For example, if a document has a BitField that contains the hexadecimal value B118, it does not
match the query. The binary representation is 1011000100010000, where the bit is set to 1 for set 15,
but not for set 2.

If the document has a BitField that contains the hexadecimal value B114 it matches the query. The
binary representation is 1011000100010100, where the bit is set to 1 for both set 15 and set 2.

Fields whose Values are Boolean Agents

BOOLEANFIELD

The BOOLEANFIELD field specifier (case sensitive) allows you to find documents in which a specified
Boolean agent field contains an expression that matches text you specify. A Boolean agent is a
Boolean or proximity expression that legacy technologies use to categorize documents.

NOTE: If you are using a Query action, Micro Focus recommends that you use the
AgentBooleanField action parameter rather than the BOOLEANFIELD field specifier. However, if
you want to match more than one Boolean agent field, you must use the BOOLEANFIELD field
specifier.

FieldText=BOOLEANFIELD{yourText}:yourFields

where:

yourText is text. A document returns only if one of yourFields contains a Boolean or
proximity expression that matches the specified text.

yourFields is one or more Boolean agent fields. A document returns only if it contains one of

IDOL Server (12.12) Page 260 of 611

Administration Guide
Chapter 14: Search and Retrieve

these fields, and if this field contains a Boolean or proximity expression that
matches yourText.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

For example:
BOOLEANFIELD{The cat sat on the mat}:MyFirstBooleanField:MySecondBooleanField

Any document that has a MyFirstBooleanField or MySecondBooleanField field that contains a
Boolean or proximity expression that matches the specified text returns. For example, the Boolean
and proximity expressions cat AND mat, cat OR mat, cat BEFORE mat, and cat DNEAR1 sat could
match The cat sat on the mat. Therefore, documents that contain any of these Boolean and proximity
expressions are returned.

Documents whose MyFirstBooleanField or MySecondBooleanField fields contain, for example, cat
AND mat AND dogormat BEFORE cat are notreturned.

Fields that are within a Specified Distance from a Specified Point

DISTCARTESIAN

The DISTCARTESIAN field specifier allows you to find documents that contain fields that define a point
(Xand Y coordinates) or region that is within a specified distance from a specified point.

You can specify the document position fields either as a pair of fields (corresponding to X and Y
coordinate fields), or as a single field (for example a unified GeospatialType field).

FieldText=DISTCARTESIAN{coordX,coordY,dist}:POSITION

The following example matches all documents whose (X,Y) position is within a distance of 5 units of
the point (10,11). The position of a document in this example is contained in the POSITION field.

FieldText=DISTCARTESIAN{10,11,5}:POSITION

For more information about using this field specifier, refer to the IDOL Content Component
Reference.

DISTSPHERICAL

The DISTSPHERICAL field specifier allows you to find documents that contain location fields that define
a point (latitude and longitude) or region that is within a specified distance from a specified point.

You can specify the document location fields either as a pair of fields (corresponding to latitude and
longitude fields), or as a single field (for example a unified GeospatialType field).

FieldText=DISTSPHERICAL{Lat,long,dist}:LOCATION

The following example matches all documents whose position is within a 20 kilometer radius of San
Francisco (37.75N,122.4W). The latitude and longitude position of a document in this example is
contained in the fields LAT and LONG, respectively.

FieldText=DISTSPHERICAL{37.75,-122.4,20}:LAT:LONG

IDOL Server (12.12) Page 261 of 611

Administration Guide
Chapter 14: Search and Retrieve

The following example matches all documents whose position is within a 20 kilometer radius of
Cambridge (52.2N,0.1W). The latitude and longitude position of a document in this example is
contained in the LOCATION field.

FieldText=DISTSPHERICAL{52.2,0.1,20}:LOCATION

For more information about using this field specifier, refer to the IDOL Content Component
Reference.

Fields that Contain Coordinates within a Specified Area

POLYGON

The POLYGON field specifier finds documents that contain a location that wholly fits within a specified
polygonal shape. For information about using this field specifier, refer to the IDOL Content
Component Reference.

The POLYGON field specifier is equivalent to using the GEOWITHIN field specifier (if you query with a
polygon).

Fields that Contain a Geospatial Region or Point

The GEOINTERSECTS field specifier finds documents that describe a geospatial region that intersects a
specified point, line, or polygonal shape.

The GEOCONTAINS field specifier finds documents that describe a geospatial region that contains a
specified point, line, or polygonal shape.

The GEOWITHIN field specifier finds documents that describe a geospatial region that wholly fits within
a specified point, line, or polygonal shape.

For more information about constructing geospatial queries and using these field specifiers, refer to
the IDOL Content Component Reference.

Fields that Do Not Exist or Contain No Value

EMPTY

The EMPTY field specifier (case sensitive) allows you to find documents in which a specified field does
not exist or contains no value.

FieldText=EMPTY{}:yourFields

where:

yourFields is one or more fields. A document returns only if it does not contain any of these
fields or if these fields are empty.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).
Examples:

FieldText=EMPTY{}:ID

IDOL Server (12.12) Page 262 of 611

Administration Guide
Chapter 14: Search and Retrieve

A document must not contain an 1D field, or must hold no value in its ID field, to return.
FieldText=EMPTY{}:ID:Name

A document must not contain an ID or Name field, or must hold no value in its ID or Name field, to
return.

Specific Fields, Irrespective of their Value

EXISTS

The EXISTS field specifier (case sensitive) allows you to find documents that contain a specified field
even if this field contains no value.

FieldText=EXISTS{}:yourfFields

where:

yourFields is one or more fields. A document returns only if it contains one of these fields
(even if the field is empty).

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:

FieldText=EXISTS{}:ID

A document must contain an 1D field to return.
FieldText=EXISTS{}:ID:NAME

A document must contain an ID or NAME field (or both) to return.
Fields whose Values are Similar to a Specified String

FUZZY

The Fuzzy field specifier (case sensitive) allows you to find documents in which a specified field
contains a term that is similar to a specified term or phrase.

FieldText=FUZZY{yourTerms}:yourFields

where:
yourTerms is one or more terms (or phrases). A document returns only if one of these
terms (or phrases) is similar to a string in one of yourFields.
FieldText queries which include commas and braces within the query have
specific percent-encoding requirements. For information about percent-
encoding, see FieldText, on page 310.
yourFields is one or more fields. A document returns only if it contains one of these fields,

IDOL Server (12.12) Page 263 of 611

Administration Guide
Chapter 14: Search and Retrieve

and if the value in this field is similar to one of yourTerms.

If you want to specify multiple fields, separate them with colons (there must be
no space before or after a colon).

Example:
FieldText=FUZZY{Bisiness News,Arkive}:DRETITLE

The DRETITLE field value must be similar to the term Bisiness News, or Arkive for the document to
return. For example, a document whose DRETITLE field contains Business News returns, but a
document whose DRETITLE field contains Document Arkive does not.

At Least One Field Instance Matches a Specified String or Number

You can use the following field specifiers (case sensitive) to return documents with multiple instances
of the same fields and at least one field instance contains a specified string or number.

MATCHALL

The MATCHALL field specifier (case sensitive) allows you to find documents in which a specified field
occurs in multiple instances, and in which there is at least one match among those instances for each
of a set of strings that you specify.

NOTE: You can optimize the field specifier speed by restricting the field to the MatchType property
type.
FieldText=MATCHALL{yourStrings}:yourField
where:
yourStrings is one or more strings. A document returns only if all these strings have exact

matches among the instances of yourField. Separate the strings with commas
(there must be no space before or after a comma).

FieldText queries which include commas and braces within the query have
specific percent-encoding requirements. For information about percent-
encoding, see FieldText, on page 310.

yourField is the name of the field to match against. A document returns only if it contains
the field and only if all yourStrings are matched at least once in various
instances of the field.

Examples:
FieldText=MATCHALL{Archive,Web,docs}:DIRECTORY

The DIRECTORY fields must include at least the values Archive and Web and docs for the document to
return as a result.

FieldText=MATCHALL{Smith,Garcia, Lee}:SURNAME

The values Smith, Garcia, and Lee must all have matches in the SURNAME fields for the document to
return as a result.

IDOL Server (12.12) Page 264 of 611

Administration Guide
Chapter 14: Search and Retrieve

FieldText=MATCHALL{Smith%5C, John, Garcia%5C, Joaquin}:FULLNAME

The values Smith, John and Garcia, Joaquin must both have matches in the FULLNAME fields for the
document to return as a result.

EQUALALL

The EQUALALL field specifier (case sensitive) allows you to find documents in which a specified field
occurs in multiple instances, and in which there is at least one value among those instances that is
equal to each of a set of numeric values that you specify.

NOTE: You can optimize the field specifier speed by restricting the field to the NumericType
property type.
FieldText=EQUALALL{yourValues}:yourNumericField

where:

yourValues is one or more numeric values. A document returns only if all these values
occur among the instances of yourNumericField. Separate the numbers
with commas (there must be no space before or after a comma).

yourNumericField is the name of the field to match against. A document returns only if it
contains the field and only if all yourvalues are matched at least once in
various instances of the field.

Example:
FieldText=EQUALALL{32,98.6,212}:FAHRENHEIT

The FAHRENHEIT fields mustinclude at least the values 32, 98.6, and 272 for the document to return
as a result.

FieldText=EQUALALL{1999,2000,2001}:YEAR

The values 7999, 2000, and 2001 must all appear in YEAR fields for the document to return as a result.

All Field Instances Match a Specified String or Number
You can use the following field specifiers (case sensitive) to return documents with multiple instances

of the same fields and all field instances contain a specified string or number.

MATCHCOVER

The MATCHCOVER field specifier (case sensitive) allows you to find documents in which the values in all
instances of a specified field have matches in the set of values provided in the specifier. In other
words, the specifier must cover all instances of the field. A search that uses MATCHCOVER is slower
than one that uses MATCH.

NOTE: You can optimize the field specifier speed by restricting the field to the MatchType and
CountType property types. You must specify both property types.

FieldText=MATCHCOVER{yourStrings}:yourfField

IDOL Server (12.12) Page 265 of 611

Administration Guide
Chapter 14: Search and Retrieve

where:

yourStrings is one or more strings. A document returns only if the value in each of its
instances of yourField matches one of the strings in yourStrings. Separate the
strings with commas (there must be no space before or after a comma).

FieldText queries which include commas and braces within the query have
specific percent-encoding requirements. For information about percent-
encoding, see FieldText, on page 310.

yourField is the name of the field to match against. A document returns only if:

+ jt contains one or more instances of the field and the value of each instance
is found in yourStrings.

it does not contain the field at all.

Example:
FieldText=MATCHCOVER{Confidential,Secret,TopSecret,FBI}:SECURITYLEVEL

For a document to return as a result, its SECURITYLEVEL fields must not contain any values that are
not in the specified list. For example, if a document includes a SECURITYLEVEL field with the value
MI5, it does not return. (If a document has no SECURITYLEVEL field at all, it returns.)

EQUALCOVER

The EQUALCOVER field specifier (case sensitive) allows you to find documents in which the values in all
instances of a specified field are found in the set of values provided in the specifier. In other words,
the specifier must cover all instances of the field.

NOTE: You can optimize the field specifier speed by restricting the field to the NumericType and
CountType property types. You must specify both property types.
FieldText=EQUALCOVER{yourValues}:yourField
where:
yourValues is one or more numeric values. A document returns only if the value in each of its

instances of yourField equals one of the values in yourvalues. Separate the
numbers with commas (there must be no space before or after a comma).

FieldText queries which include commas and braces within the query have
specific percent-encoding requirements. For information about percent-encoding,
see FieldText, on page 310.

yourField is the name of the field to match against. A document returns only if:

« it contains one or more instances of the field and the value of each instance
equals a value in yourVvalues.

« it does not contain the field at all.
Example:

FieldText=EQUALCOVER{9,10,11,12}:GRADELEVEL

IDOL Server (12.12) Page 266 of 611

Administration Guide
Chapter 14: Search and Retrieve

For a document to return as a result, its GRADELEVEL fields must have no values that are not in the
specified list. For example, if a document includes a GRADELEVEL field with the value 8, it does not
return. (If a document has no GRADELEVEL field, it returns.)

Fields that Contain a Specified ReferenceMemoryMappedType Field

MATCHRECURSE

The MATCHRECURSE field specifier matches documents that contain a specified reference in a
ReferenceMemoryMappedType field recursively to a maximum number of times. You must restrict this
field specifier to a single ReferenceMemoryMappedType field. It has the following syntax:

action=Query&FieldText=MATCHRECURSE{Ref,RecurseNumber}:yourfield

where:

Ref is the initial reference.

RecurseNumber is the maximum number of times to recursively return references by using the
value of the ReferenceMemoryMappedType field.

yourField is the name of the ReferenceMemoryMappedType field.

For example, if you define PARENT as a ReferenceMemoryMapped field, the query
action=Query&FieldText=MATCHRECURSE{MyRef,1}:PARENT

matches the document with the reference MyRef (parent) and documents whose PARENT field
contains MyRef (children). The query

action=Query&FieldText=MATCHRECURSE{MyRef,2}:PARENT

matches the document with the reference MyRef (parent), documents whose PARENT field contains
MyRef (children), and documents whose PARENT field contains the references in the returned child
documents (grandchildren).

Fields that Do Not Contain a Specified Value

NOTMATCH

The NOTMATCH field specifier (case sensitive) allows you to find documents in which at least one
instance of the specified fields contains a value that does not match the specified string.

If there are one or more instances of a particular field in the document, the document returns as long
as at least one instance does not contain any of the specified strings, even if another instance of the
field does match. The document does not return if all instances of the specified fields contain an
exact match of one of the specified strings.

FieldText=NOTMATCH{yourStrings}:yourfields

where:

IDOL Server (12.12) Page 267 of 611

Administration Guide
Chapter 14: Search and Retrieve

yourStrings is one or more strings. A document returns only if at least one instance of one of
yourFields contains a value that is not an exact match for these strings.

The matching is case insensitive.

FieldText queries which include commas and braces in the query have specific
percent-encoding requirements. For information about percent-encoding, see
FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if the value in at least one instance of the field does not exactly match any of
yourStrings.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

For example:
FieldText=NOTMATCH{cat}:ANIMAL

At least one instance of the ANIMAL field must have a value other than cat for the document to return
as aresult.

For example, if a document contains only:
#DREFIELD ANIMAL="cat"

it does not return as a result.

However, if the document contains:

#DREFIELD ANIMAL="cat"
#DREFIELD ANIMAL="dog"

it returns as a result, because one of the ANIMAL fields does not contain the value cat.

If you want to find documents in which the specified string is not present in any instance of the
specified field, use the MATCH specifier with the Boolean operator NOT. For example,
FieldText=NOT+MATCH{cat}:ANIMAL does not return any documents that have an ANIMAL field with
the value cat, even if there are other ANIMAL fields with different values.

Related Topics
e MATCH, on page 246

NOTSTRING

The NOTSTRING field specifier (case sensitive) allows you to find documents in which at least one
instance of the specified fields contains a value that does not contain any of the specified strings as a
substring.

If there are one or more instances of a particular field in the document, the document returns as long
as at least one instance does not contain any of the specified strings, even if another instance of the
field does contain the string. The document does not return if all instances of the specified fields
contain one of the specified strings as a substring.

FieldText=STRING{yourStrings}:yourFields

where:

IDOL Server (12.12) Page 268 of 611

Administration Guide
Chapter 14: Search and Retrieve

yourStrings is one or more strings. A document returns only if at least one instance of one of
yourFields contains a value that is not a substring of any of these strings.

FieldText queries which include commas and braces within the query have
specific percent-encoding requirements. For information about percent-
encoding, see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if the value in at least one instance of the field does not contain any of
yourStrings as a substring.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

For example
FieldText=NOTSTRING{cat,dog}:ANIMAL:TOPIC

At least one instance of the ANIMAL or TOPIC field value must contain a value that does not contain the
substring cat or dog for the document to return.

For example, if a document contains only:
#DREFIELD ANIMAL="old cat"
or

#DREFIELD TOPIC="dogs like playing catch "
#DREFIELD ANIMAL="dog"

it does not return as a result.
However, if the document contains:

#DREFIELD TOPIC="dogs have trouble catching mice"
#DREFIELD ANIMAL="dog"
#DREFIELD ANIMAL="mouse"

it returns as a result, because one of the ANIMAL fields does not contain the substring cat or dog.

If you want to find documents in which the specified string is not present in any instance of the
specified field, use the STRING specifier with the Boolean operator NOT. For example,
FieldText=NOT+STRING{cat,dog}:ANIMAL does not return any documents that have an ANIMAL field
with the substring cat or dog, even if there are other ANIMAL fields with different values.

Related Topics
e STRING, on page 271

NOTWILD

The NOTWILD field specifier (case sensitive) allows you to find documents in which at least one
instance of the specified field contains a value that does not match the specified Wildcard string.

If there are one or more instances of a particular field in the document, the document returns as long
as at least one instance does not contain the specified string, even if another instance of the field
does match. The document does not return if all instances of the specified fields contain the specified
string.

IDOL Server (12.12) Page 269 of 611

Administration Guide
Chapter 14: Search and Retrieve

If the query does not contain any Wildcard characters (? or *), the NOTWILD field specifier acts in the
same way as the NOTMATCH field specifier.

FieldText=NOTWILD{yourStrings}:yourFields
where:
yourStrings is one or more strings that contain Wildcards. A document returns only if at least
one instance of one of yourFields does not contain any of these strings.

FieldText queries that include commas and braces in the query have specific
percent-encoding requirements. For information about percent-encoding, see
FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if the value in at least one instance of the field does not contain any of
yourStrings.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

For example:
FieldText=NOTWILD{passi*incarnata}:Climbers:Plants

At least one instance of the Climbers or Plants field must contain a value which does not contain a
phrase that begins with passi and ends with incarnata (for example, passionflower incarnataor
passiflora incarnata) for this document to return as a result.

For example, if a document contains only:
#DREFIELD Climbers="passiflora incarnata"
or

#DREFIELD Climbers="passiflora incarnata"
#DREFIELD Plants="passionflower incarnata"

it does not return as a result.
However, if the document contains:

#DREFIELD Climbers="passiflora incarnata"
#DREFIELD Plants="passionflower incarnata"
#DREFIELD Climbers="bindweed"

it returns, because one of the Climbers fields contains a value that does not match the Wildcard
string passi*incarnata.

If you want to find documents in which the specified string is not present in any instance of the
specified field, use the WILD specifier with the Boolean operator NOT. For example,
FieldText=NOT+WILD{passi*incarnata}:Climbers does not return any documents that have a
Climbers field with a phrase that begins with passi and ends with incarnata, even if there are other
Climbers fields with different values.

IDOL Server (12.12) Page 270 of 611

Administration Guide
Chapter 14: Search and Retrieve

Related Topics
e WILD, on page 253
e MATCH, on page 246

Fields that Contain a Specified String

You can use the following field specifiers (case sensitive) to return documents with fields that contain
a specified string.

STRING

The STRING field specifier (case sensitive) allows you to specify one or more strings, of which one
must be contained as a substring in a specified field.

FieldText=STRING{yourStrings}:yourFields
where:
yourStrings is one or more strings. A document returns only if one of these strings is a
substring of the value in one of yourFields.

FieldText queries that include commas and braces in the query have specific
percent-encoding requirements. For information about percent-encoding, see
FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if the value in this field contains one of yourStrings as a substring.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:
FieldText=STRING{cat,dog}:ANIMAL

The ANIMAL field value must contain the substring cat or dog for the document to return. For example,
if the ANIMAL field has the value scattering, the document returns.

FieldText=STRING{old cat}:ANIMAL:TOPIC

The ANIMAL or TOPIC field value must contain the substring old cat for the document to return. For
example, if the ANIMAL field has the value old cat, old caterpillar, or bold cats, the document returns.

FieldText=STRING{example.com}:COMPANY

The COMPANY field value must contain the substring example.com for the document to return. For
example, if the COMPANY field has the value example.com or http.//www.example.com/content/home,
the document returns.

FieldText=STRING{a\,b}:MISC

The MISC field value must contain the substring a,b for the document to return. For example, if the
MIsc field has the value a,b or a,b,c, the document returns.

IDOL Server (12.12) Page 271 of 611

Administration Guide
Chapter 14: Search and Retrieve

STRINGALL

The STRINGALL field specifier (case sensitive) allows you to specify one or more strings, which must
all be contained as a substring in a specified field.

FieldText=STRINGALL{yourStrings}:yourFields
where:
yourStrings is one or more strings. A document returns only if all these strings are substrings
of the value in one of yourFields.

If you want to specify multiple strings, separate them with commas (there must
be no space before or after a comma). FieldText queries which include commas
and braces in the query have specific percent-encoding requirements. For
information about percent-encoding, see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if the value in this field contains yourStrings as substrings.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:
FieldText=STRINGALL{cat,dog}:ANIMAL

The ANIMAL field value must contain the substrings cat and dog for the document to return. For
example, if the ANIMAL field has the value grooming cats and dogs or doggedly scattering seeds, the
document returns.

FieldText=STRINGALL{old cat,young dog}:ANIMAL:TOPIC

The ANIMAL or TOPIC field value must contain the substrings old cat and young dog for this document
to return. For example, if the ANIMAL field has the value old cat chases young dog, or young doggedly
chasing bold cats, the document returns.

FieldText=STRINGALL{a\,b,e\,f}:MISC

The MISC field value must contain the substrings a,b and e, ffor this document to return. For example,
if the MISC field, for example, has the value a,b,c,d,e,for O=e,fx 1=da,ba, the document returns.

SUBSTRING

The SUBSTRING field specifier (case sensitive) allows you to return documents whose field value is a
substring of a specified string (or equal to a specified string).

FieldText=SUBSTRING{yourStrings}:yourFields

where:

yourStrings is one or more strings. A document returns only if one of yourFields contains a
substring of one of the specified strings.

If you want to specify multiple strings, separate them with commas (there must

IDOL Server (12.12) Page 272 of 611

Administration Guide
Chapter 14: Search and Retrieve

be no space before or after a comma). FieldText queries that include commas
and braces in the query have specific percent-encoding requirements. For
information about percent-encoding, see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields,
and if the value in this field is a substring of yourStrings.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:
FieldText=SUBSTRING{Telecommunications,Technology}:SECTOR

The SECTOR field must contain a string that is a substring of Telecommunications or Technology. For
example, if the SECTOR field has the value Telecom or Technology, the document returns. If the
SECTOR field has the value Latest Technology, the document does not return.

Fields whose Values Match Specific Terms or Phrases

You can use the following field specifiers (case sensitive) to return documents in which specified
fields contain specified terms or phrases.

TERM

The TERM field specifier (case sensitive) allows you to find documents with a specified field whose
value contains a conceptual match for one or more terms that you specify. A conceptual match exists
if a term you specify matches a term in a specified field after it has been stemmed.

NOTE: If the language that you use does not match the DefaultLanguageType specified in the
IDOL Content component configuration file, add the LanguageType parameter to your query

action (see Specify the Language Type of a Query, on page 123).

FieldText=TERM{yourTerms}:yourFields

where:
yourTerms is one or more terms. A document returns only if one of yourFields contains a
value that includes a term which conceptually matches of one of the specified
terms.

To specify multiple terms, separate them with commas (there must be no space
before or after a comma). FieldText queries that include commas and braces in
the query have specific percent-encoding requirements. For information about
percent-encoding, see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if a term in this field conceptually matches one of yourTerms.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:

IDOL Server (12.12) Page 273 of 611

Administration Guide
Chapter 14: Search and Retrieve

FieldText=TERM{shopping,centers}:DRETITLE

The DRETITLE field must contain a term that conceptually matches shopping or centers for the
document to return. For example, if the DRETITLE field has the value shop the document returns, but if
it has the value bookshopping, it does not return.

FieldText=TERM{training,football}:ITEM:PRODUCT

The ITEM or PRODUCT field must contain a term that conceptually matches trainers or football for the
document to return. For example, if the ITEM or PRODUCT field has the value train or footballers, the
document returns, while if it has the value trainer or soccer, it does not return.

TERMALL

The TERMALL field specifier (case sensitive) allows you to find documents with a specified field whose
value contains conceptual matches of several terms that you specify. A conceptual match exists if the
terms that you specify match terms in a specified field after they have been stemmed.

NOTE: If the language that you are using does not match the DefaultLanguageType specified in
the IDOL Content component configuration file, add the LanguageType parameter to your query
action (see Specify the Language Type of a Query, on page 123).
FieldText=TERMALL{yourTerms}:yourFields
where:
yourTerms is multiple terms. A document returns only if one of yourFields contains a value
that includes terms which conceptually match the specified terms.

Separate the terms with commas (there must be no space before or after a
comma). FieldText queries that include commas and braces in the query have
specific percent-encoding requirements. For information about percent-encoding,
see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if a term in this field conceptually matches one of yourTerms.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:
FieldText=TERMALL{shopping,centers}:DRETITLE

The DRETITLE field value must contain a term that conceptually matches shopping or centers for the
document to return. For example, if the DRETITLE field has the value town center shop, the document
returns.

FieldText=TERMALL{walk,climb}:DRETITLE:TITLE

The DRETITLE or TITLE field value must contain a term that conceptually matches walking or climbing
for the document to return. For example, if the DRETITLE or TITLE field has the value hill walking and
rock climbing, the document returns.

IDOL Server (12.12) Page 274 of 611

Administration Guide
Chapter 14: Search and Retrieve

TERMEXACT
The TERMEXACT field specifier (case sensitive) allows you to find documents with a specified field that
contains an exact match of any of the terms that you specify.

NOTE: If the language that you are using does not match the DefaultLanguageType specified in
the IDOL Content component configuration file, add the LanguageType parameter to your query
action (see Specify the Language Type of a Query, on page 123).
FieldText=TERMEXACT{yourTerms}:yourFields
where:
yourTerms is one or more terms. A document returns only if one of yourFields contains a
value that exactly matches one of the specified terms.

To specify multiple terms, separate them with commas (there must be no space
before or after a comma). FieldText queries that include commas and braces in
the query have specific percent-encoding requirements. For information about
percent-encoding, see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains an exact match of one of yourTerms.

To specify multiple fields, separate them with colons (there must be no space
before or after a colon).

Examples:
FieldText=TERMEXACT{help,helped}:DRETITLE

The DRETITLE field value must contain the term help or helped for the document to return. For
example, if the DRETITLE field has the value helps or helping, the document does not return.

FieldText=TERMEXACT{Word,Excel}:FILE:DATEI

The FILE or DATEI field value must contain the term Word or Excel for the document to return. For
example, if the FILE or DATEI field has the value WordPerfect, the document does not return.

TERMEXACTALL

The TERMEXACTALL field specifier (case sensitive) allows you to find documents with a specified field
that contains an exact match of all terms that you specify.

NOTE: If the language that you are using does not match the DefaultLanguageType specified in
the IDOL Content component configuration file, add the LanguageType parameter to your query
action (see Specify the Language Type of a Query, on page 123).

FieldText=TERMEXACTALL{yourTerms}:yourFields

IDOL Server (12.12) Page 275 of 611

Administration Guide
Chapter 14: Search and Retrieve

where:

yourTerms is multiple terms. A document returns only if one of yourFields contains exact
matches of the specified terms.

Separate the terms with commas (there must be no space before or after a
comma). FieldText queries that include commas and braces in the query have
specific percent-encoding requirements. For information about percent-encoding,
see FieldText, on page 310.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains an exact match of all yourTerms.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:
FieldText=TERMEXACTALL{rabbits,eating,carrots}:DRETITLE

This query returns only documents whose DRETITLE field contains all the specified terms (in their
specified form). For example, a document whose DRETITLE field has the value Rabbits like eating
carrots, or The carrots were there but the rabbits ate all the cabbage, returns as a result, but a
document with a field that contains Rabbits like to eat a carrot each day does not return.

FieldText=TERMEXACTALL{flour,milk,eggs}:DRETITLE:TITLE

This query returns only documents whose DRETITLE or TITLE field contains all the specified terms (in
their specified form). For example, a document whose DRETITLE or TITLE field has the value Most
cake recipes include milk, eggs and flour return as a result, but a document with a field that contains
Use a cup of milk, two cups of flour and one egg does not return.

TERMEXACTPHRASE

The TERMEXACTPHRASE field specifier (case sensitive) allows you to return documents in which a
specified field contains an exact match of a phrase specified by you. IDOL Server matches your
phrase before it applies stemming (it does not remove stop words). It ignores any punctuation in the
specifier or field.

NOTE: If the language that you are using does not match the DefaultLanguageType specified in

the IDOL Content component configuration file, add the LanguageType parameter to your query

action (see Specify the Language Type of a Query, on page 123).
FieldText=TERMEXACTPHRASE{yourPhrase}:yourFields

where:

yourPhrase is a phrase. A document returns only if one of yourFields contains an exact
match of the specified phrase.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains an exact match of yourPhrase.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

IDOL Server (12.12) Page 276 of 611

Administration Guide
Chapter 14: Search and Retrieve

Examples:
FieldText=TERMEXACTPHRASE{Batman! and Robins}:FILM

A document whose FILM field contains Showing now, Batman and Robin's film, returns as a result,
but a document whose FILM field contains Showing now, '‘Batman and Robin' the movie does not
return.

FieldText=TERMEXACTPHRASE{gift horse }:DRETITLE:TITLE

A document whose DRETITLE or TITLE field contains looking a gift horse in the mouth returns as a
result, but a document whose DRETITLE or TITLE field contains the gift horse's mouth had rotting
teeth does not return.

TERMPHRASE

The TERMPHRASE field specifier (case sensitive) allows you to return documents in which a specified
field contains a conceptual match of a phrase that you specify. Content matches your phrase after it
applies stemming (it does not remove stop words). It ignores any punctuation in the specifier or field.

NOTE: If the language that you are using does not match the DefaultLanguageType specified in

the IDOL Content component configuration file, add the LanguageType parameter to your query

action (see Specify the Language Type of a Query, on page 123).
FieldText=TERMPHRASE{yourPhrase}:yourFields

where:

yourPhrase is a phrase. A document returns only if one of yourFields contains a conceptual
match of the specified phrase.

yourFields is one or more fields. A document returns only if it contains one of these fields, and
if this field contains a conceptual match of yourPhrase.

If you want to specify multiple fields, separate them with colons (there must be no
space before or after a colon).

Examples:

FieldText=TERMPHRASE{Batman! and Robins}:FILM

A document whose FILM field contains Showing now: '‘Batman and Robin', returns as a result.
FieldText=TERMPHRASE{gift horse }:DRETITLE:TITLE

A document whose DRETITLE or TITLE field contains the gift horse's mouth had rotting teeth returns.

Field Specifiers to Bias Result Scores

e BIAS. The BIAS field specifier (case sensitive) allows you to bias the score of results according
to the numerical proximity of the specified field to a particular value.

IDOL Server (12.12) Page 277 of 611

Administration Guide
Chapter 14: Search and Retrieve

You can also boost the percentage relevance that is given to query results by setting up specific
field process or by using multipliers. See Manipulate Result Relevance, on page 345 for details
on BIAS and other methods that allow you to manipulate result scores.

¢ BIASDATE. The BIASDATE field specifier (case sensitive) allows you to boost the score of result
documents by a specified percentage, based on how close the date in a specified field is to a
specified date.

e BIASDISTCARTESIAN. The BIASDISTCARTESIAN field specifier allows you to boost the score of
any document according to its distance from a specified point using Cartesian coordinates
(X7Y).

¢ BIASDISTSPHERICAL. The BIASDISTSPHERICAL field specifier allows you to boost the score of
any document according to its distance from a specified point using spherical coordinates
(latitude and longitude).

¢ BIASVAL. The BIASVAL field specifier (case sensitive) allows you to bias the score of result
documents by a specified percentage, based on whether they include a specific value in the
specified field.

Field Specifier for Linked Queries

Linking queries allows you to query for documents based on criteria in the document, and in a
connected document. For example, you might want to connect documents written by a particular user
with values in the user profile.

The LINK field specifier allows you to form linked queries. For more information, see Link Queries, on
page 300.

Fuzzy Search

If you are not quite sure how to spell some of the words that you want to query for, you can use the
Query action to submit a fuzzy query to the IDOL Content component. A fuzzy query returns results
that contain words which are similar to the query string.

Fuzzy Query Syntax

If you want to submit a fuzzy query, you must specify the Query action Text parameter in one of the
following formats:

e Text=myQueryTextDREFUZZY (fuzzyQueryText)
For example:
http://IDOLhost:port/action=Query&Text=best selling author DREFUZZY(Rowlling)

e Text=DREFUZZY (fuzzyQuerytext)

IDOL Server (12.12) Page 278 of 611

Administration Guide
Chapter 14: Search and Retrieve

For example:

http://IDOLhost:port/action=Query&Text=DREFUZZY(Caroll Jabberwalky)
¢ You can also use Boolean and proximity operators within fuzzy queries.

Text=DREFUZZY (fuzzyQueryTextOPERATOROtherFuzzyQueryText)

For example:

http://IDOLhost:port/action=Query&Text=DREFUZZY(Caroll AND Jabberwalky)

Adjust the Tolerance Level of a Fuzzy Search

By default, DREFUZzY internally determines an appropriate tolerance level when it judges whether
words in a result document are similar enough to the words that you specify in the query. However, in
exceptional circumstances you can postfix DREFUZZY with a numerical value to adjust this tolerance
level:

DREFUZZYN(fuzzyQuerytext)

This value operates like a slider that increases or decreases the tolerance level. The higher the value
is, the more words in result documents count as eligible matches to the words specified in the query.
The lower the value is, the fewer words in result documents count as eligible matches to the words
specified in the query.

Micro Focus does not recommend you specify a value higher than 6, because this can result in fuzzy
matching that is so flexible that results are not related to the query.

Examples:
action=Query&Text=DREFUZZY1(Caroll Jabberwalky)
action=Query&Text=DREFUZZY3(Caroll Jabberwalky)

The second query in this example is more tolerant in accepting matches for the specified words than
the first query, which means that it might return more results.

Parametric Search

The GetTagValues and GetQueryTagValues actions allow you to perform parametric searches.

A parametric search allows you to search for items by their characteristics (values in certain fields).
When you provide fixed values in parametric fields, the parametric search returns consistent values
in the nonfixed parametric fields. For example, you can search an IDOL wine database for specific
wine varieties from a specific region by specifying which fields must match these characteristics.
Only wines that match the specified variety and region return.

IDOL Server (12.12) Page 279 of 611

Administration Guide
Chapter 14: Search and Retrieve

Configure the IDOL Content component for Parametric Fields

Before you perform parametric searches, configure the IDOL Content component to recognize
parametric fields.

NOTE: You must configure parametric field recognition before you index the data that you want to
search.

To configure the IDOL Content component to recognize parametric fields

1.
2.

Open the IDOL Content component configuration file in a text editor.

In the [Server] section, set the ParametricRefinement parameter to True. (If the section
does not contain this parameter, add it.)

NOTE: If you want to define parametric fields or add extra parametric fields, but have
already indexed content into the IDOL Content component, also set
RegenerateParametricIndex to True. This parameter allows Content to generate the
files that it requires to internally identify parametric fields on startup, so that you need
only to restart Content to use parametric fields, rather than having to reindex all your
data.

You can also use the DREREGENERATE index action to regenerate the parametric index
while the server is running.

List a parametric field process in the [FieldProcessing] section.
For example:

[FieldProcessing]
0=MyFirstProcess
1=ParametricFields

Create a section for each field process that you listed, in which you create a property for the
process (you define the property later by setting one or more applicable configuration
parameters). Identify the fields that you want to associate with the process. For example:

[MyFirstProcess]
Property=MyProperty
PropertyFieldCSVs=*/MyField, */MyOtherField

[ParametricFields]
Property=Parametric
PropertyFieldCSVs=*/Grape, */Color,*/Region, */Price

NOTE: The properties that you create must not have the same name as the processes.
Create a section for the parametric property in which you set the ParametricType

parameter to True. This property enables Content to recognize the associated
PropertyFieldCSVs fields as parametric fields. For example:

IDOL Server (12.12) Page 280 of 611

Administration Guide
Chapter 14: Search and Retrieve

[Parametric]
ParametricType=True

6. Save and close the configuration file.

7. Restart the IDOL Content component for your changes to take effect.

You can now index your data into IDOL Server.

Perform a Parametric Search

After you configure the IDOL Content component to index and recognize parametric fields, you can
use the following actions to perform a parametric search.

GetTagValues

This action allows you to specify one or more parametric fields and return all values that these fields
contain in the IDOL Content component. It includes values in documents that you do not have access
to, and values in documents that were deleted (unless you compacted the IDOL Content component
data index after the documents were deleted).

For example:
action=GetTagValues&FieldName=Grape

This action requests the different values of the IDOL Content component Grape fields. It returns a list
of all grape varieties stored in an IDOL Content component wine database, for example.

You can also restrict the action, so that it returns Grape field values only if they are in a document that
also contains other specific fields that have specific values. For example:

action=GetTagValues&FieldName=Grape&Restriction=MATCH{Barossa Valley}:Region+MATCH
{Red}:Color

This action returns Grape field values only if they are in a document that also contains a Region field
that has the value Barossa Valley and a Color field that has the value Red.

GetQueryTagValues

This action combines query text with one or more parametric fields. When Content performs the
query, it finds documents that match the specified query text, and returns the values of the specified
parametric fields for these documents. Unlike the GetTagValues action, the GetQueryTagValues
action does not return field values in documents that you do not have access to, or in documents that
were deleted.

For example:

http://localhost:5552/action=GetQueryTagValues&FieldName=GRAPE,COUNTRY&Text= A
smooth red wine that complements game

This action requests the different values of the GRAPE and COUNTRY fields of documents that are
conceptually similar to the specified Text.

You can also restrict the action by combining it with various action parameters. For example:

IDOL Server (12.12) Page 281 of 611

Administration Guide
Chapter 14: Search and Retrieve

http://localhost:5552/action=GetQueryTagValues&FieldName=GRAPE,COUNTRY&Text= A
smooth red wine that complements game&MaxValues=10&Sort=Alphabetical

This action requests the 10 top values of the GRAPE and COUNTRY fields of documents that are
conceptually similar to the specified Text. Content displays the values in alphabetical order when it
returns them.

http://localhost:5552/action=GetQueryTagValues&FieldName=GRAPE,COUNTRY&Text= A
smooth red wine that complements game&DocumentCount=True

This action requests the different values of the GRAPE and COUNTRY fields of documents that are
conceptually similar to the specified Text. The DocumentCount parameter instructs Content to return
the number of documents that contain each value.

http://localhost:5552/action=GetQueryTagValues&FieldName=GRAPE,COUNTRY&Text= A
smooth red wine that complements game&FieldDependence=True

This action requests the different values of the GRAPE and COUNTRY fields of documents that are
conceptually similar to the specified Text. The FieldDependence parameter instructs Content to find
sets of values that occur together. If Content finds documents that contain the first parametric field
listed, it checks if they also contain the subsequently listed parametric fields and returns them. You
can also use the FieldDependenceMultilLevel parameter to display these results in a hierarchical
structure.

For further details on available parameters for the GetTagValues and GetQueryTagValues actions,
refer to the IDOL Server Reference.

Related Topics
e Display Online Help, on page 32

Proper Names Search

If you want the IDOL Content component to recognize names and treat them as a unit, you must
enable proper names searches.

NOTE: To search for exact matches of phrases as well as names, enable AdvancedSearch before
you index your content into the IDOL Content component, and set the ProperNames parameter to
7 (see below).

Related Topics
» Phrase Search, on page 228

Enable Proper Names Searches

NOTE: You must enable proper names searches before you index the data that you want to query
against.

IDOL Server (12.12) Page 282 of 611

Administration Guide
Chapter 14: Search and Retrieve

To enable proper names searches
1. Open the IDOL Content component configuration file in a text editor.

2. Before you store content in the IDOL Content component, terms are always stemmed and
stop words are always discarded. If you want to store proper name terms (adjacent terms
that begin with a capital letter) in addition to the normal content, you can set the
ProperNames parameter in the [LanguageTypes] section to one of the following values.

Value Meaning
0 Proper name terms are not stored.

1 Adjacent capitalized terms are compounded, then stemmed and indexed as a
unit. For example, Sam James is indexed as SAMJAM.

2 Adjacent terms are compounded (regardless of capitalization), then stemmed
and indexed as a unit. For example, bottlenose dolphins is indexed as
BOTTLENOSEDOLPHIN.

NOTE: This setting considerably increases the number of terms in the
IDOL Content component index, which can slow down its performance.

Use the following ProperNames options only if you need to query for proper names that
contain stop words (for example, The Who or The Queen).

Value Meaning

3 Adjacent capitalized stop words are compounded, then stemmed and indexed
as a unit. For example, And His is indexed as ANDHI.

Adjacent capitalized terms are compounded, then stemmed and indexed as a
unit. For example, Sam James is indexed as SAMJAM.

Capitalized stop words adjacent to capitalized terms are treated as individual
terms. For example, The Queen is treated as THE and QUEEN, according to
your stop word rules.

4 Capitalized stop words are compounded with adjacent capitalized terms, then
stemmed and indexed as a unit. For example, The Bells is indexed as
THEBEL, and Calling Will is indexed as CALLINGWIL.

Adjacent capitalized stop words are compounded, then stemmed and indexed
as a unit.

Adjacent capitalized terms are compounded, then stemmed and indexed as a
unit.

5 Adjacent capitalized stop words are compounded and indexed unstemmed as
a unit. For example, And His is indexed as ANDHIS.

Adjacent capitalized terms are compounded and indexed unstemmed as a unit.

IDOL Server (12.12) Page 283 of 611

Administration Guide
Chapter 14: Search and Retrieve

Value Meaning

For example, Sam James is indexed as SAMJAMES

Capitalized stop words adjacent to capitalized terms are treated as individual
terms.

6 Capitalized stop words are compounded with adjacent capitalized terms, and
indexed unstemmed as a unit. For example, The Bells is indexed as
THEBELLS, and Calling Will is indexed as CALLINGWILL.

Adjacent capitalized stop words are compounded and indexed unstemmed as
a unit.

Adjacent capitalized terms are compounded and indexed unstemmed as a unit.

7 Capitalized stop words are compounded with adjacent capitalized terms, and
indexed unstemmed as a unit.

Adjacent capitalized stop words are compounded and indexed unstemmed as
a unit.

Adjacent capitalized terms are treated as individual terms. For example, Sam
James is indexed as SAM and JAME.

NOTE: Micro Focus recommends that you use this setting if you set
AdvancedSearch to True in the [Server] section of the IDOL Content
component configuration file.

You must set this parameter for each of the languages that you want to enable name
recognition for (if the language settings do not include the ProperNames parameter, you
must add it). For example:

[LanguageTypes]

DefaultlLanguageType=English
LanguageDirectory=C:\HewlettPackardEnterprise\IDOLServer\common\langfiles
0=English

1=Deutsch

2=Francais

[English]
Encodings=UTF8:englishUTF8
ProperNames=1

[Deutsch]
Encodings=UTF8:germanUTF8
ProperNames=1

[Francais]

Encodings=UTF8:frenchUTF8
ProperNames=1

IDOL Server (12.12) Page 284 of 611

Administration Guide
Chapter 14: Search and Retrieve

3. Save and close the configuration file.
4. Restart the IDOL Content component for your changes to take effect.

5. Index documents into the IDOL Content component. After you finish indexing, Content
treats any Query action as a proper name query.

Example Proper Name Searches

The following table describes how the ProperNames setting affects the terms that the IDOL Content
component stores for the sentence Tom Jones And His greatest hits.

Original Tom Jones And His greatest hits
(4] TOM JONE GREAT HIT
1 TOM TOMJON JONE GREAT HIT
2 TOM TOMJON JONE GREAT GREATESTHIT HIT
3 TOM TOMJON JONE ANDHI GREAT HIT
4 TOM TOMJON JONE JONESAND ANDHI GREAT HIT
5 TOM TOMJIONES JONE ANDHIS GREAT HIT
6 TOM TOMJONES JONE JONESAND ANDHIS GREAT HIT
7 TOM JONE JONESAND ANDHIS GREAT HIT

If the IDOL Content component contains these documents, the following queries produce different
results according to your ProperNames settings.

Doc 1: Doc 2:
Tom Waits and The The in concert with Norah Tom Jones and the the in concert with Katie
Jones Melua

e action=Query&Text=Tom Jones

If you set ProperNames to @ or 7, both documents return with the same relevance (in both cases,
the query to Content has the terms TOM and JONE, which match both documents).

If you set ProperNames to 1, 2, 3, 4, 5, or 6, Doc 2 returns with a higher relevance than