IDOL

KeyView

Software Version 12.9

Filter SDK C++ Programming Guide

Document Release Date: June 2021
Software Release Date: June 2021

Filter SDK C++ Programming Guide

Legal notices

Copyright notice
© Copyright 2016-2021 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are as may be set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. Micro Focus shall not be liable
for technical or editorial errors or omissions contained herein. The information contained herein is subject to
change without notice.

Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support

Visit the MySupport portal to access contact information and details about the products, services, and
support that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

Search for knowledge documents of interest

Access product documentation

View software vulnerability alerts

Enter into discussions with other software customers
Download software patches

Manage software licenses, downloads, and support contracts
Submit and track service requests

Contact customer support

View information about all services that Support offers

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted
to sign in. To learn about the different access levels the portal uses, see the Access Levels descriptions.

IDOL KeyView (12.9) Page 2 of 270

https://www.microfocus.com/support-and-services/documentation/
https://mysupport.microfocus.com/
https://mysupport.microfocus.com/web/softwaresupport/access-levels

Filter SDK C++ Programming Guide

Contents
Part I: Overview of Filter SDK .. 11
Chapter 1: Introducing Filter SDK .. 12
OV IV W . 12
Features il 12
Platforms, Compilers, and Dependencies 13
Supported Platforms ... 13
Supported Compilers il 14
CH+ Filter SDK .. 14
Software DependenCies L 15
Windows Installation 15
UNIX Installation .. il 16
Package Contentso 17
License Information il 17
Enable Advanced Document Readers 18
Pass License Information to KeyView ... 18
Directory Structure 19
Chapter 2: Getting Started 21
Use the C++ Language Implementation of the APl 21
BUIld the CH+ APl 21
Create a KeyView SesSiON 22
Configure yoUr SESSIONo 23
Detectthe Format of a File 23
Filter a il L 23
Extract Subfiles .. 23
Extract Metadata 24
EXCePtiONS . . 24
Generic O TYPES . il 25
Part ll: Use Filter SDK L 27
Chapter 3: Use the File Extraction APl ... 28
INErOAUC T ON L 28
Extract Subfiles .. 29
EXtract IMages ... il 30
Extract Mail Metadata . il 30
Default Metadata Set . 30
Extract the Default Metadata Set 31
Extract Subfiles from Outlook Express Files 31
Extract Subfiles from Mailbox Files 31
Extract Subfiles from Outlook Personal Folders Files 32
Choose the Readertouse for PST Files 32

IDOL KeyView (12.9) Page 3 of 270

Filter SDK C++ Programming Guide

MAPI Attachment Methods .. . 34
Open Secured PST Files 34
Detect PST Files While the Outlook Clientis Running _.................................... 35
Extract Subfiles from Lotus Domino XML Language Files 35
Extract DXL Files to HTML . L 36
Extract Subfiles from Lotus Notes Database Files 36
System Requirements ... 36
Installation and Configurationl 37
WiNAOWS 37
SOlaMIS L 37

ADX B X il 38

LiNUX . . 38

Open Secured NSF Files L 39
Format Note Subfiles ...l 39
Extract Subfiles from PDF Files 39
Improve Performance for PDFs with Many Small Images 39
Extract Embedded OLE Objects 39
Extract Subfiles from ZIP Files ... 40
Extract Metadata 40
Chapter 4: Use the Filter AP il 41
Generate an Ermor LOg ...l 41
Enable or Disable Error Logging 42
USethe AP L 42

Use Environment Variables 42
Change the Path and File Name of the Log File 42
Report Memory Ermors L. 43
USethe AP L 43

Use Environment Variables 43
Specify aMemory Guard 43
Specify the Maximum Size ofthe Log File 43
Extract Metadata ... il 44
Convert Character Sets 44
Determine the Character Set of the Output Text 44
Guidelines for Character Set Conversion 45

Set the Character Set During Filtering 45
Set the Character Set During Subfile Extraction 46
Customize Character Set Detection and Conversion 46
Extract Deleted Text Marked by Tracked Changes, 46
Filter a il L 47
Filter PDF Files 47
Filter PDF Files to a Logical Reading Order 47
Enable Logical Reading Order o i 48
Usethe CHt AP L 48
Usethe formats.ini File .. . 49
Rotated TexXt ... 49
Extract Custom Metadata from PDF Files 49

IDOL KeyView (12.9) Page 4 of 270

Filter SDK C++ Programming Guide

Extract All Custom Metadata 49

Filter Tagged PDF Content ... e 50
Skip Embedded Fonts 50
Usetheformats.ini File ... e 50
Usethe CH+ APl L 51
Control Hyphenation ... 51
Usetheformats.ini File ... L 51
Usethe CH+ AP L 51

Filter Portfolio PDF Files ... 52
Filter Spreadsheet Files 52
Filter Worksheet Names 52
Filter Hidden Text in Microsoft Excel Files oo . 52
Specify Date and Time Format on UNIX Systems 52
Filter Very Large Numbers in Spreadsheet Cells to Precision Numbers 53
Extract Microsoft Excel Formulas 53
Configure Headers and Footers i, 55
Filter Hidden Data 56
Hidden Datain HTML Documents 56
Tab Delimited Output for Embedded Tables 56
Table Detection for PDF Files el 56
Exclude Japanese Guide Text 57
Source Code ldentification 57
Chapter 5: Sample Programs . 59
INtrodUCtiON .. 59
Build the Sample Programs 59
Runthe Sample Programs il 60
deteCt il 60
OXUraC il 61
filter_document . 61
Metadata L 62
SUDTIIES L 62
filter_container . il 62
Partlll: C++ APl Reference ... 63
Chapter 7: InputTypes and OUtpULTYPES 65
Chapter 8: The keyview Namespace o e 67
The SessioN Class ... 67
CONS UC O il 67
CONFIG . L 68
AeOCt 68

L1 L= 69
get_summary_information ... 69
Mmetadata. map ...l 69
SUDTIIES 69
The Configuration Classl 70

IDOL KeyView (12.9) Page 5 of 270

Filter SDK C++ Programming Guide

CoONStrUCYOr il 70
character_set_detection 70
custom_pdf_metadata 70
date_time_field_codes 71
extraction_timeout 71
filename_field Code 71
formatted_mail . il 71
header_and _footer . il 72
header_and footer tags 72
NiddeN eXt 72
NO_encoding_CONVEIrSION 72
OO 73
out_Of process 10g 73
out_of_process_memory _|0g ... 73
PASSWOIA . . il 73
pdf_logical_reading 74
FEVISION MaAIKS . 74
SKID COMMENES . 74
skip_embedded _fonts 75
skip_thumbnail ... 75
SOft _NYPNeNS il 75
SOUrCe_eNCOAING . 75
tagged_pdf_content ... 76
target_encoding 76
string& temporary _directory ... iiiiiiiiiiiiil. 76
HMIEOUL .. 76
unicode_byte order_marker .. 77
The Detectioninfo Class 77
appleDoubleEncoded ... iiiiiiiiiiiiil.. 77
appleSingleEncoded 77
CalOgONY . 77
CategoOrY _NAME ... 78
AeSCIIPION .. L 78
ENCIY P e il 78
X NS ON il 78
fOMMat . 78
macBinaryEncoded ... iiiiiiiiiiiil.. 79
VBT S ON L 79
wangGDLencoded 79
windowRMSENCrypted L 79
The Container Class 79
The Subfile Class 80
OXAaC .. 80
Children il 80
1T [80
SR (o] [0 /=] S 81
mail_metadata ... 81

IDOL KeyView (12.9) Page 6 of 270

Filter SDK C++ Programming Guide

PN 81
FAWNAMIE 81

SIZ il 81

1010 TS 82

1877 01 2 82

The SummaryInfoltem Class 82
apPPlY VIS Or . 82
convert_to StiNG 83

DA . 83

137/ 01 2 S 83

The SummarylInfoVisitorBase Class 83
ViSit_boolean ... 84
Visit_datetime . 84
Visit_double .. 84
VISt N eger . 84
visit_target_encoding_String 84
Visit_ Ut 8 StriNg 85
ENUMEratioNS . 85
LogicalPDF Direction .. 85
SUBFIlE: TY P il 86
SummaryInfoType 87
EXCOPONS . 87
Chapter 9: The keyview::io Namespace 89
INPULFIle . 89
CoNStUCtOrS il 89
OULPULFILE 89
CoONStIUCIOrS il 89
OUtPUL S AOUL . 90
CoNStIUCIOrS il 90
INMemMOryFile .. e 90
CoONStIUCIOrS il 90
APPENAIXES 91
Appendix A: Supported Formats 92
Key to Supported Formats Table 92
Supported Formats ... 94
Appendix B: Document Readers 172
Key to Document Readers Tablel 172
Document Readers L 174
Appendix C: Character Sets 204
Multibyte and Bidirectional Support 204
Coded Character Sets 212
Appendix D: Extract and Format Lotus Notes Subfiles 218
OV IV W il 218

IDOL KeyView (12.9) Page 7 of 270

Filter SDK C++ Programming Guide

Customize XML Templates oo 218
UseDemo Templates ... 219
Use Old Templates ... 219
Disable XML Templates 219
Template Elements and Attributes 220
Conditional Elements 220
CoNtrol Elements .. oL 221
Data Elements L 222
Date and Time Formats 225
Lotus Notes Date and Time Formats 225
KeyView Date and Time Formats 226
Appendix E: File Format Detection 231
INtrOdUCH ON 231
Extract Format Information el 231
Determine Format SUPPOM ... 232
Example formats.inifile entries 232
Refine Detection of Text Files o . 232
Allow Consecutive NULL BytesinaTextFile 233
Translate Format Information 234
Distinguish Between Formats 235
Determine a Document Reader 235
Category Values informats.ini 235
Appendix F: List of Required Files for Redistribution 239
GO FHlES 239
SUPPOM FileS . ..o 240
Document Readers 241
Appendix G: Develop a Custom Reader 248
INtrOdUCH ON 248
How to Write a Custom Reader 249
Naming Conventions 249
BaSiC S OPS ... 250
ToKen BUIer 250
M aCIOS L 252
Reader Interface ... o 252
FUNCHion FlOW .. 253
Example Development of fffFillBuffer() 253
Implementation 1—fpFillBuffer() Function 253
Structure of Implementation 1 254
Problems with Implementation 1 254
Implementation 2—Processing a Large Token Stream 254
Structure of Implementation 2 255
Problems with Implementation 2 256
Boundary Conditions 256
Implementation 3—Interrupting Structured Access LayerCalls 257
Structure of Implementation 3 259

DevelopmeNnt TIPS 259

IDOL KeyView (12.9) Page 8 of 270

Filter SDK C++ Programming Guide

FUNCHIONS . L 260
XXXSTAULOD €() . . . 260
XXXANOCatEC Ot Xt () .. L 261
xxxFreeContext()l 262
XXX D OC) .« L 262
XXXFIIBUIT I () - 263
XXXGetSummaryINfo() ... 264
XXXOPEN St aM() ... 265
XXXCloseStream () .. il 266
XXX A S O () <o 266

Appendix H: Password Protected Files 268

Supported Password Protected File Types 268

Send documentation feedback 270

IDOL KeyView (12.9) Page 9 of 270

Filter SDK C++ Programming Guide

IDOL KeyView (12.9) Page 10 of 270

Part I: Overview of Filter SDK

This section provides an overview of the Micro Focus KeyView Filter SDK and describes how to use the C++
implementation of the API.

« Introducing Filter SDK, on page 12
« Getting Started, on page 21

IDOL KeyView (12.9) Page 11 of 270

Chapter 1: Introducing Filter SDK

This section describes the Filter SDK package.

O OV IV W il 12
O R eatUreS il 12
*® Platforms, Compilers, and Dependencies 13
® Windows Installation 15
® UNIX Installationl 16
® Package ContentS . L 17
® License INformatioN ... 17
® Directory StIUCTUNE . . . 19
o
Overview

Micro Focus KeyView Filter SDK enables you to incorporate text extraction functionality into your own
applications. It extracts text and metadata from a wide variety of file formats on numerous platforms,
and can automatically recognize over 1000 document types. It supports both file-based and stream-
based 1/0O operations, and provides in-process or out-of-process filtering.

Filter SDK is part of the KeyView suite of products. KeyView provides high-speed text extraction,
conversion to web-ready HTML and well-formed XML, and high-fidelity document viewing.

Features

« Document readers are threadsafe. The benefit of a threadsafe technology is that you can
successfully extract text from hundreds of documents simultaneously. Documents are not
queued for sequential filtering, but are actually filtered at the same time.

« Filter supports popular word processing, spreadsheet, and presentation formats. Body text,
endnotes, footnotes, and additional items such as document metadata are all included as part of
the filtering process.

« Sample programs are provided to demonstrate the functionality of the APIs.

« You can extract files embedded within files, such as email attachments or embedded OLE
objects, by using the File Extraction API.

« Filter allows for redirected input and output. You can provide an input stream that is not restricted
to file system access.

IDOL KeyView (12.9) Page 12 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

« Filterautomatically recognizes the file type being filtered and uses the appropriate filter. Your
application does not need to rely on file name extensions to determine file types.

« You can filter documents to specific character encodings, such as Unicode or UTF-8.

« You can write custom document readers for formats not directly supported by KeyView.

Platforms, Compilers, and Dependencies

This section lists the supported platforms, supported compilers, and software dependencies for the
KeyView software.

Supported Platforms

« CentOS 7 x86, x64, and AArch64

o IBMAIXL6.1 PowerPC 32-bit and 64-bit

o IBMAIXL7.1 PowerPC 32-bit and 64-bit

« macOS 10.13 or later on 64-bit Apple-Intel architecture
« macOS 11 or later on Apple M1.

« Microsoft Windows Server 2012 x64

« Microsoft Windows Server 2016 x64

« Microsoft Windows Server 2019 x64

« Microsoft Windows 8 x86 and x64

« Microsoft Windows 10 x64

« Oracle Solaris 10 SPARC

« Oracle Solaris 10 x86 and x64

« Red Hat Enterprise Linux 6 x86 and x64

« Red Hat Enterprise Linux 7 x64

« Red Hat Enterprise Linux 8 x64

o SuSE Linux Enterprise Server 11 x86 and x64
o SuSE Linux Enterprise Server 12 x64

o SuSE Linux Enterprise Server 15 x64

IDOL KeyView (12.9) Page 13 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

Supported Compilers

Platform Architecture

Microsoft x86

Windows
x64
Sun x86 64-bit
Solaris
SPARC 64-
bit
Linux x86
x64

IBMAIX Power

macOS Apple-Intel
64-bit

Apple M1

Compiler Compiler Version

Name

cl

cl

Sun
Studio 12

Sun
Studio 11

gcc/g++
gcc/ g++

xIC _r/
cc_r

LLVM

LLVM

Microsoft 32-bit C/C++ Optimizing Compiler for x86 Version
17 (Visual Studio 2012) to Version 19 (Visual Studio 2019)

Microsoft C/C++ Optimizing Compiler for x64 Version 17
(Visual Studio 2012) to Version 19 (Visual Studio 2019).

Sun C 5.9 SunOS_i386 Patch 124868-01
2007/07/12

Sun C 5.8 Patch 121015-06 2007/10/03

4.1.0t04.9.2
4.1.0t04.9.2
IBM XL C/C++ Enterprise Edition V8.0

Apple LLVM 5.1 (clang-503.0.40) (based on LLVM 3.4svn)

Apple LLVM 12.0.0 (clang 1200.0.32.28).

Supported Compilers for Java Components

Component

Java components

C++ Filter SDK

The C++ Filter SDK is supported on:

o Linux using GCC 5 or later

Compiler

Java7

« Windows using Visual Studio 2015 or later

IDOL KeyView (12.9)

Page 14 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

Software Dependencies

Some KeyView components require specific third-party software:

Java Runtime Environment (JRE) or Java Software Developer Kit (JDK) version 7 or 8 is required
for Java API and graphics conversion in Export SDK.

Outlook 2002 or later is required to process Microsoft Outlook Personal Folders (PST) files using
the MAPI-based reader (pstsr). The native PST readers (pstxsr and pstnsr) do not require
Outlook.

NOTE: You must install an edition of Microsoft Outlook (32-bit or 64-bit) that matches the
KeyView software. For example, if you use 32-bit KeyView, install 32-bit Outlook. If you use
64-bit KeyView, install 64-bit Outlook.

If the editions do not match, KeyView returns Error 32: KVError_PSTAccessFailed and an
error message from Microsoft Office Outlook is displayed: Either there is a no default
mail client or the current mail client cannot fulfill the messaging request.
Please run Microsoft Outlook and set it as the default mail client.

Lotus Notes or Lotus Domino is required for Lotus Notes database (NSF) file processing. The
minimum requirement is 6.5.1, but version 8.5 is recommended.

The Microsoft .NET Framework is required if you are using the .NET implementation of the API.

Microsoft Visual C++ 2019 Redistributables (Windows only).

Windows Installation

To install the SDK on Windows, use the following procedure.

To install the SDK

1.

Run the installation program, KeyViewProductNameSDK_VersionNumber_0S .exe, where
ProductName is the name of the product, VersionNumber is the product version number, and 0S is
the operating system.

For example:

KeyViewFilterSDK_12.9 Windows_X86_64.exe
The installation wizard opens.

Read the instructions and click Next.

The License Agreement page opens.

Read the agreement. If you agree to the terms, click | accept the agreement, and then click
Next.

The Installation Directory page opens.

IDOL KeyView (12.9) Page 15 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

4. Select the directory in which to install the SDK. To specify a directory other than the default, click
r&, and then specify another directory. After choosing where to install the SDK, click Next.
The Pre-Installation Summary opens.

5. Review the settings, and then click Next.
The SDK is installed.

6. Click Finish.

UNIX Installation

Toinstall the SDK, use one of the following procedures.

To install the SDK from the graphical interface

« Run the installation program and follow the on-screen instructions.

To install the SDK from the console
1. Run the installation program from the console as follows:
./KeyViewFilterSDK_VersionNumber_Platform.exe --mode text

where:

VersionNumber is the product version.

Platform is the name of the platform.

2. Read the welcome message and instructions and press Enter.
The first page of the license agreement is displayed.

3. Read the license information, pressing Enter to continue through the text. After you finish
reading the text, and if you accept the agreement, type Y and press Enter.

You are asked to choose an installation folder.
4. Type an absolute path or press Enter to accept the default location.
The Pre-Installation summary is displayed.
5. If you are satisfied with the information displayed in the summary, press Enter.

The SDK is installed.

IDOL KeyView (12.9) Page 16 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

Package Contents

The Filter SDK installation contains:
« All the libraries and executables necessary for extracting text from a wide variety of formats.

« Theinclude files that define the functions and structures used by the application to establish an
interface with Filter:

adapi.h kvfilter.h
adinfo.h kvioobj.h

kvcfsr.h kvtoken.h

kvcharset.h kvtypes.h

kverrorcodes.h kvxtract.h
kvfilt.h kwautdef.h
kvfilt2.h

« The Java APl implemented in the package com.verity.api.filter containedin the file
KeyView. jar.

« The .NET APl implemented in the namespace Autonomy .API.Filter inthe library
FilterDotNet.d1l.

« The C++ SDK, which can be found in the cppapi folder.
« Sample programs that demonstrate File Extraction and Filter functionality using the APIs.

« Thefiles necessary to create a custom document reader, and the source for a sample document
reader for UTF-8. See Develop a Custom Reader, on page 248.

License Information

Your license key controls whether you have the full version of the KeyView SDK, or a trial version. It
also determines whether the following advanced features are enabled:

« Advanced character set detection with the character set detection library (kvlangdetect).
« Advanced document readers:

o Microsoft Outlook Personal Folders (PST) readers (pstsr, pstnsr, and pstxsr)

o Lotus Notes database (NSF) reader (nsfsr)

o Mailbox (MBX) reader (mbxsr)

« Processing of documents protected by Microsoft RMS encryption.

IDOL KeyView (12.9) Page 17 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

« Optical Character Recognition (OCR) to attempt to filter text that might be visible in rasterimage
files.

If you obtain a new license key from Micro Focus, you must update the licensing information that you
pass to KeyView. See Pass License Information to KeyView.

Enable Advanced Document Readers

To enable advanced readers, you must obtain an appropriate license key from Micro Focus and pass
the license key to KeyView as described in Pass License Information to KeyView.

If you are enabling the MBX reader in an existing installation of Filter, in addition to updating the license
key, change the parameter 208=eml to 208=mbx in the formats. ini file.

Pass License Information to KeyView

To provide license information to KeyView, do one of the following:
« Provide the license information through the API. Micro Focus recommends using this approach.

« Provide the license information as a text file named kv. 1ic. In earlier versions of KeyView,
license information had to be stored in a file and included in the bin folder with the KeyView
libraries. The ability to provide license information as a file has been deprecated and might be
removed in future. You should no longer include license information in your application as afile.
Micro Focus recommends that you pass license information to KeyView through the APl instead.

If you have an evaluation version of KeyView and purchase a full version of the SDK, or you are adding
a document reader (for example, the PST reader), you must update the license information that you
pass to KeyView.

To provide license information through the API

« Inthe C API, provide license information when you initialize KeyView by calling
fpInitWithLicenseData().

« Inthe C++ API, provide license information when you start a new session (see the constructor for
the Session class).

« Inthe .NET API, provide license information to KeyView when you instantiate the Filter object.

« Inthe Java API, provide license information to KeyView when you instantiate the Filter object.

To provide license information as a file

1. Open or create the license key file, kv. lic, in a text editor. The file must be saved in the same
directory as the KeyView libraries, and must contain your organization name and license key.

COMPANY NAME
XXXXXXX = XXXXXXX = XXXXXXX = XXXXXXX

2. Replace the text COMPANY NAME with the company name that appears at the top of the License
Key Sheet provided by Micro Focus. Enter the text exactly as it appears in the document.

IDOL KeyView (12.9) Page 18 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

3. Replace the characters XXXXXX-XXXXXXX - XXXXXXX-XXXXXXX with the appropriate license key
from the License Key Sheet provided by Micro Focus. The license key is listed in the Key column
in the Standalone Products table. The key is a string that contains 31 characters, for example,
2TQD22D-2M6FV66-2KPF23S-2GEM5AB. Enter the characters exactly as they appearin the
document, including the dashes, but do not include a leading or trailing space.

4. Thefinished kv.lic file looks similar to the following:

Autonomy

24QD22D-2M6FV66-2KPF23S-2G8M59B

5. Save thefile.

Directory Structure

The following table describes the contents of the Filter SDK.

The variable 0S is the operating system for which the SDK is installed. For example, the bin directory
on a standard 32-bit Windows installation would be located at KeyviewFilterSDK\WINDOWS\bin.

Installed directory structure

Directory

0S\bin

0S\1ib

dotnetapi
dotnetapildotnethelp
dotnetapil\sample
cppapi

cppapil\sample

guide

include
javaapi\javadoc
javaapi\sample

rel notes

IDOL KeyView (12.9)

Description

Contains the libraries, the format detection file formats.ini, and other
supporting files, as well as the C programs filter and filtertest,
which you can use to test your custom document readers (see Develop a
Custom Reader, on page 248).

(Solaris installations only) Contains the redistributable 1ibstlport.so.1
library, which is required to run KeyView on Solaris platforms.

Contains the source files for the .NET API.
Contains the help for the .NET API.

Contains the sample programs for the .NET API.
Contains the source files for the C++ API.
Contains the sample programs for the C++ API.

Contains the KeyView Filter SDK programming guides in PDF and HTML
format.

Contains the header files required for Filter.
Contains the Javadoc for the Java API.
Contains the source files and sample programs for the Java API.

Contains the KeyView Filter SDK Release Notes in PDF format.

Page 19 of 270

Filter SDK C++ Programming Guide
Chapter 1: Introducing Filter SDK

Installed directory structure, continued

Directory Description

samples\filter Contains the source code for the filter sample program demonstrating
the Filter interface for the C API.

samples\pdfini Contains the initialization file used to extract custom metadata from PDF
documents.

samples\tstxtract Contains a C sample program demonstrating the File Extraction interface.

samples\utf8sr Contains the source for the sample document reader for UTF-8 files. You

can use this to create your own custom document readers.

IDOL KeyView (12.9) Page 20 of 270

Chapter 2: Getting Started

This section provides an overview of Filter SDK, and describes how to use the C++ implementation of
the API.

® Use the C++ Language Implementation of the APl . . 21
¢ Build the CH+ AP e 21
® Create a KeyView SesSiON . 22
® Detectthe Format of @ File L 23
O Filter a File il 23
® Extract SUDiles .. 23
® Extract Metadata oL 24
O EXCEP I ONS L 24
® GeNEriC IO TYPES ..o 25

Use the C++ Language Implementation of the
API

The C++ APl is designed to make extraction of content from documents as straightforward as
possible. The primary advantage over the C API is the use of C++ features to provide a simpler
interface that is easy to use.

The API consists of:

« Header files that define all of the classes and methods required to provide access to document
content. These can be included in your own code to provide easy access to the API.

« Source files that should be compiled into a static library that you can then link to from your code.
These implement the functionality that you can access through the headers.

You can find details of all the classes and methods mentioned in this section in the C++ AP| Reference
section of this guide. The C++ Filter SDK also comes with a number of Sample Programs.

Build the C++ API

This section describes the build process for Windows and Linux.

To build the C++ APl on Windows

| NOTE: To build on Windows, you need at least Microsoft Visual Studio 2015.

IDOL KeyView (12.9) Page 21 of 270

Filter SDK C++ Programming Guide
Chapter 2: Getting Started

1. Switch to the cppapi/bin directory.
2. Atthe Visual Studio command prompt, run nmake -f Makefile.

This command creates a file called filtersdk.1lib. You can statically link this into your own
binaries in order to use the Filter SDK.

To build the C++ API on Linux
1. Switch to the cppapi/bin directory.
2. Run the appropriate command:
GCC 5

export CXXFLAGS="-std=c++11"
make

GCC 6
make

This command creates afile called filtersdk.a. You can link this into your own binaries in order
to use the Filter SDK.

To build the C++ APl on macOS
1. Switch to the cppapi/bin directory.
2. Run the following command:
export CXXFLAGS="-stdlib=1ibc++ -std=c++11"
3. Run the following command:

make -f GNUmakefile

Create a KeyView Session

To use the C++ Filter SDK, link the library built in Build the C++ API, and include the following headers
in your code:

#include "Keyview_FilterSDK.hpp"
#include "Keyview_ IO.hpp"

To use the SDK, you must create a KeyView session:
auto KV = keyview::Session{license_organization, license_key, bin_path};
bin_path should be an std: : string that holds the location of the KeyView Filter SDK binaries.

The Session class provides methods to detect, filter, get metatdata, and open container files. It also
maintains a configuration state that can affect the behaviour of the other API methods.

IDOL KeyView (12.9) Page 22 of 270

Filter SDK C++ Programming Guide
Chapter 2: Getting Started

Configure your session

You can set additional optional configuration options by using the config() method of the Session
object, which returns a reference to the active configuration. The following example provides a
password for filtering password-protected files:

KV.config().password("myPassword");
You can also chain configuration options:
KV.config().password("abcde").hidden_text(true).header_and_footer(true);

The full set of configuration options you can set are documented in The Configuration Class, on
page 70.

Detect the Format of a File

You can detect the format of a file by using the detect method. For example:

auto myinput = keyview::io::InputFile{ std::string("InputFile.docx") };
auto detection_info = KV.detect(myinput);

// Print out what we found

std::cout << "Format:\t" << static_cast<int>(detection_info.format()) << "\n";
std::cout << "Description:\t" << detection_info.description() << "\n";

std::cout << "Version:\t" << detection_info.version() << "\n";

std::cout << "Category:\t" << static_cast<int>(detection_info.category()) << "\n";
std::cout << "Category Name:\t" << detection_info.category name() << "\n";
std::cout << "Encrypted:\t" << std::boolalpha << detection_info.encrypted() <<
"\n";

Filter a File

You can get a plain text version of the file content by using the filter method:

auto myinput = keyview::io::InputFile{ std::string("InputFile.docx") };
auto myoutput = keyview::io::OutputFile{ std::string("out.txt") };
KV.filter(myinput, myoutput);

Extract Subfiles

You can iterate over subfile information using the subfiles method. Each element returned by the
iterator contains information about the subfile, and a method to let you extract it if you want to:

IDOL KeyView (12.9) Page 23 of 270

Filter SDK C++ Programming Guide
Chapter 2: Getting Started

auto myinput = keyview::io::InputFile{ std::string("InputFile.zip") };
for (const auto& subfile : KV.subfiles(myinput))

{
auto subfile_path = subfile.rawname();
auto myoutput = keyview::io::OutputFile{ subfile_path };
subfile.extract(myoutput);

}

NOTE: This very simple example does not account for folders within container files. For a more
complete example, see the extract sample program.

NOTE: The subfiles method actually returns an instance of the keyview: : Container class,
defined in Keyview_Container.hpp (see The Container Class, on page 79 for more information).
This provides access to information about the container, and access to each subfile. Please note
that the container maintains a reference to the input file, and so cannot be used after the input file
has been destroyed.

Extract Metadata

You can obtain the metadata for a file by calling the metadata_map method:

auto myinput = keyview::io::InputFile{ std::string("InputFile.docx") };
auto metadata = KV.metadata_map(myinput);
for (const auto& it : metadata)

{

std::cout << it.first << << it.second << '\n';

}

The metadata map contains a mapping from field names to field values.

Exceptions

All of the C++ API methods can throw exceptions. KeyView errors take the form of an instance of
keyview_error, which is itself derived from std: : exception. The exceptions that can be thrown are
defined in Keyview_Errors. hpp.

In application code, it is possible to catch and correctly handle many of these exceptions. For example,
while processing many files, a format_not_supported_error might be thrown. The correct behavior
for an application might be to skip this file, or to add it to a list of files that could not be recognized.
Similarly, if a password_protected_error is thrown and caught, an application might prompt a user to
enter a password and then retry.

IDOL KeyView (12.9) Page 24 of 270

Filter SDK C++ Programming Guide
Chapter 2: Getting Started

Generic IO Types

The C++ APl makes use of generic types for input and output. For example, the signature of the filter
method is:

template <typename Input_Type, typename Output_Type>
void filter(Input_Type& input, Output_Type& output);

Some input and output types are defined in Keyview_I0.hpp. These are InputFile, on page 89,
OutputFile, on page 89, and InMemoryFile, on page 90. You can create your own input and output types
if required.

The requirements of an InputType are that it provides read, seek, and tell methods that conform to the
example signatures of the keyview: : InputFile. The requirement of an OutputType is that it provides
a write method that conforms to the example signature of the keyview: :OutputFile. A class can be
valid as both an InputType and OutputType.

IDOL KeyView (12.9) Page 25 of 270

Filter SDK C++ Programming Guide
Chapter 2: Getting Started

IDOL KeyView (12.9) Page 26 of 270

Part ll: Use Filter SDK

This section explains how to perform some basic tasks by using the File Extraction and Filter APIs, and
describes the sample programs.

o Usethe File Extraction API, on page 28
« Use the Filter API, on page 41

o Sample Programs, on page 59

IDOL KeyView (12.9) Page 27 of 270

Chapter 3: Use the File Extraction API

This section describes how to extract subfiles from a container file by using the File Extraction API.

O INtrOdUCH ON . 28
® Extract SUDfiles . il 29
O EXtraCt IMageS .. 30
® Extract Mail Metadata 30
® Extract Subfiles from Outlook Express Files 31
¢ Extract Subfiles from Mailbox Files il 31
® Extract Subfiles from Outlook Personal Folders Files 32
® Extract Subfiles from Lotus Domino XML Language Files 35
® Extract Subfiles from Lotus Notes Database Files 36
® Extract Subfiles from PDF Files .. . 39
® Extract Embedded OLE Objects 39
® Extract Subfiles from ZIP Files 40
® Extract Metadata 40
Introduction

Tofilter a file, you must first determine whether the file contains any subfiles (attachments, embedded
OLE objects, and so on). A file that contains subfiles is called a containerfile. A container file has a
main file (parent) and subfiles (children) embedded in the main file.

The following are examples of container files:
« Archive files such as ZIP, TAR, and RAR.
« Mail messages such as Outlook (MSG) and Outlook Express (EML).

« Mail stores such as Microsoft Outlook Personal Folders (PST), Mailbox (MBX), and Lotus Notes
database (NSF).

« PDF files that contain file attachments.
« Compound documents with embedded OLE objects such as a Microsoft Word document with an

embedded Excel chart.

NOTE: Document Readers, on page 172 indicates which formats are treated as container files and
are supported by the File Extraction API.

IDOL KeyView (12.9) Page 28 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

The subfiles might also be container files, creating a file hierarchy of multiple levels. For example, an
MSG file (the root parent) might contain three attachments:

« aMicrosoft Word document that contains an embedded Microsoft Excel spreadsheet.
« an AutoCAD drawing file (DWG).

« an EML file with an attached Zip file, which in turn contains four archived files.

MSG file
Microsoft Word DWG EML MSG body text
Embedded OLE | |
object (XLS)
Zip EML body text
Archived file 1 Archived file 2 Archived file 3 Archived file 4

NOTE: The parent MSG file contains four first-level children. The body text of a message file,
although not a standalone file in the container, is considered a child of the parent file.

Extract Subfiles

Tofilter all files in a container file, you must open the container and extract its subfiles to either a file or
a stream by using the File Extraction API. The extraction process is done repeatedly until all subfiles
are extracted and exposed for filtering. After a subfile is extracted, you can call Filter APl methods to
filter the data.

If you want to filter a container file and its subfiles, to a single file, you must extract all files from the
container, filter the files, and then append each filtered output file to its parent.

You can iterate over subfile information using the subfiles method. Each element retumed by the
iterator contains information about the subfile, and a method to let you extract it:

auto myinput = keyview::io::InputFile{ std::string("InputFile.zip") };
for (const auto& subfile : KV.subfiles(myinput))
{

auto subfile_path = subfile.rawname();
auto myoutput = keyview::io::OutputFile{ subfile_path };

IDOL KeyView (12.9) Page 29 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

subfile.extract(myoutput);
}

NOTE: This very simple example does not account for folders within container files. For a more
complete example, see the extract, on page 61 sample program.

NOTE: The subfiles method returns an instance of the keyview: : Container class, definedin
Keyview_Container.hpp. This provides access to information about the container, and access to
each subfile. The container maintains a reference to the input file, and so cannot be used after the
input file has been destroyed.

Extract Images

You can use the File Extraction API to extract images within the file by specifying the following in the
formats.ini file;

[Options]
ExtractImages=TRUE

If you set this option, images within the file behave in the same way as any other subfile. Extracted
images have the name image[X].[Y], where [X] is an integer, and [Y] is the extension. The format of
the image is the same as the format in whichit is stored in the document.

This option can also be enabled by passing KVFLT_EXTRACTIMAGES to the fpFilterConfig function.

| NOTE: Turning on ExtractImages can reduce the speed of the filtering operation.

Extract Mail Metadata

You can extract metadata, such as subject, sender, and recipient, from subfiles of mail formats, by
calling the metadata_map() function on a Session object (see The Session Class, on page 67 for more
information).

Default Metadata Set

KeyView internally defines a set of common mail metadata fields that you can extract as a group from
mail formats. This default metadata set is listed in the following table.

IDOL KeyView (12.9) Page 30 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

Default Mail Metadata List

Field Name (string to = Description

specify)

From The display name and email address of the sender.

Sent The time that the message was sent.

To The display names and email addresses of the recipients.

Cc The display names and email addresses of recipients who receive copies
of the email.

Bcc The display names and email addresses of recipients who received blind
copies of the email.

Subject The text in the subject line of the message.

Priority The priority applied to the message.

Because mail formats use different terms for the same fields, the format’s reader maps the default field
name to the appropriate format-specific name. For example, when retrieving the default metadata set,
the NSF field Importance is mapped to the name Priority and is returned.

Extract the Default Metadata Set

To extract the default metadata set, call themail_metadata() function on a Subfile object. See The
Subfile Class, on page 80 and the subfiles, on page 62 sample program provided with the API for more
information.

Extract Subfiles from Outlook Express Files

If the Outlook file contains a non-mail attachment, the attachment is extracted in its native format to the
same directory as the message text file. If the Outlook file contains a mail attachment, the complete
attachment (including message text and attachments), the message text file, and any non-mail
attachments are extracted to the same directory as the main message.

NOTE: When the MBX reader (mbxsr) is enabled, it is used to filter MBX and EML files. If the MBX
reader is not enabled, the EML reader (emlsr)is used.

Extract Subfiles from Mailbox Files

A Mailbox (MBX) file is a collection of individual emails compiled with RFC 822 and RFC 2045 - 2049
(MIME), and divided by message separators. There are many mail applications that export to an MBX
format, such as Eudora Email and Mozilla Thunderbird.

IDOL KeyView (12.9) Page 31 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

In Eudora MBX files, attachments are inserted as a link and are stored externally from the message.
These attachments are not extracted, but the path to the attachment can be accessed by calling the
rawname () function on a Subfile object (see The Subfile Class, on page 80 for more information). You
can write code to retrieve the attachment based on the returned path.

For MBX files from other clients, KeyView extracts attachments when they are embedded in the
message.

The Mailbox (MBX) reader is an advanced feature and is sold and licensed separately. To enable this
reader in a KeyView SDK, you must obtain the appropriate license key from Micro Focus. See Pass
License Information to KeyView, on page 18 for information on adding a new license key to an existing
installation.

Extract Subfiles from Outlook Personal
Folders Files

KeyView can extract Outlook items such as messages, appointments, contacts, tasks, notes, and
journal entries from a PST file.

If an Outlook item contains a non-mail attachment, the attachment is extracted in its native format to a
subdirectory. If an Outlook item contains an Outlook attachment, the attached item’s text and any
attachments are extracted to a subdirectory.

NOTE: The Microsoft Outlook Personal Folders (PST) readers are an advanced feature and are sold
and licensed separately. To enable these readers in a KeyView SDK, you must obtain an
appropriate license key from Micro Focus. For information about adding a new license key to an
existing installation, see Pass License Information to KeyView, on page 18.

Choose the Reader to use for PST Files

KeyView provides several ways of processing PST files:

« Indirectly, using the Microsoft Messaging Application Programming Interface (MAPI). MAPl is a
Microsoft interface that enables different applications to exchange messages and attachments
with each other. MAPI allows KeyView to open a PST file, traverse the folders, and extract items.
The pstsr reader uses MAPI, but works only on Windows and requires that Microsoft Outlook is
installed.

« Directly, without relying on the Microsoft interface to the PST format. Accessing the file directly
does not require Microsoft Outlook. The pstxsr reader is available for Windows (32-bit and 64-bit)
and Linux (64-bit only). The pstnsr reader is an alternative native reader, for the platforms not
supported by pstxsr.

On Windows, the MAPI-based reader is used by default but you can choose pstxsr if you prefer. On
UNIX platforms, only one of the native readers is available (pstxsr on Linux x64 and pstnsr on other
platforms).

IDOL KeyView (12.9) Page 32 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

The differences between the readers are summarized in the following table.

Feature Native Reader Native Reader MAPI-based Reader
(pstxsr) (pstnsr) (pstsr)

Platforms supported Windows x86 and x64 All platforms not Windows x86 and x64
Linux x64 supported by pstxsr

Outlook required No No Yes

MAPI properties Yes. All properties defined in mapitags.h. Object properties are not

supported supported.

Password protection Yes Yes Yes (using

supported KVCredential

structure)

Compressible Yes Yes Yes

encryption supported

High encryption No No Yes

supported

To change the reader used to process PST files, change the PST entry (file category value 297) in the
formats.ini file. For example, to use pstxsr:

297=pstx

NOTE: You must make sure that the PST that you are extracting is not open in the Outlook client,
and that the Outlook process is not running.

NOTE: When extracting subfiles from PST files, information on the distribution list used in an email
is extracted to a file called emailname.dist. This applies to the MAPI reader (pstsr) only.

System Requirements

MAPI is supported on Windows platforms only and relies on functionality in Outlook. If you want to use
the MAPI-based reader, pstsr, Microsoft Outlook must be installed on the same machine as your
application. Outlook must also be the default email application. KeyView supports the following PST
formats and Outlook clients:

o Outlook 97 or later PST files

NOTE: The Outlook client must be the same version as, or newer than, the version of Outlook
that generated the PST file.

« Outlook 2002 or later clients
NOTE: You must install an edition of Microsoft Outlook (32-bit or 64-bit) that matches the

KeyView software. For example, if you use 32-bit KeyView, install 32-bit Outlook. If you use
64-bit KeyView, install 64-bit Outlook.

IDOL KeyView (12.9) Page 33 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

If the editions do not match, KeyView returns Error 32: KVError_PSTAccessFailed andan
error message from Microsoft Office Outlook is displayed: Either there is a no default
mail client or the current mail client cannot fulfill the messaging request.
Please run Microsoft Outlook and set it as the default mail client.

MAPI Attachment Methods

The way in which you can access the contents of a PST message attachment is determined by the
MAPI attachment method applied to the attachment. For example, if the attachment is an embedded
OLE object, it uses the ATTACH_OLE attachment method. KeyView can access message attachments
that use the following attachment methods:

ATTACH_BY_VALUE
ATTACH_EMBEDDED_MSG
ATTACH_OLE
ATTACH_BY_REFERENCE
ATTACH_BY_REF_ONLY
ATTACH_BY_REF_RESOLVE

Attachments using the ATTACH_BY_VALUE, ATTACH_EMBEDDED_MSG, or ATTACH_OLE attachment
methods are extracted automatically when the PST file is extracted. An "attach by reference" method
means that the attachment is not in Outlook, but Outlook contains an absolute path to the attachment.
Before you can extract these types of attachments, you must retrieve the path to access the
attachment.

To extract "attach by reference" attachments

1. Determine whether the attachment uses an ATTACH_BY_REFERENCE, ATTACH_BY_REF_ONLY, or
ATTACH_BY_REF_RESOLVE method by retrieving the MAPI property PR_ATTACH_METHOD.

2. If the attachment uses one of the "attach by reference" methods, get the fully qualified path to the
attachment by retrieving the MAPI properties PR_ATTACH_LONG_PATHNAME or PR_ATTACH_
PATHNAME.

3. You can then either copy the files from their original location to the path where the PST file is
extracted, or use the Filter API functions to filter the attachment.

Open Secured PST Files

KeyView enables you to specify a user name and password to use to open a secured PST file for
extraction.

NOTE: To open password-protected PST files that use high encryption, you must use the MAPI-

based PST reader (pstsr). The native PST readers (pstxsr and pstnsr) return the error message
KVERR_PasswordProtected if a PST file is encrypted with high encryption.

IDOL KeyView (12.9) Page 34 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

Detect PST Files While the Outlook Client is Running

If you are running an Outlook client while running the File Extraction API, the KeyView format detection
module (kwad) might not be able to open the PST file to determine the file’s format because Outlook has
the file locked. In this case, you can do one of the following:

o Close Outlook when using the Extraction API.

« Detect PST files by extension only and bypass the format detection module. To enable this
option, add the following lines to the formats. ini file:

[container_flags]
detectPSTbyExtension=1

NOTE: The detectPSTbyExtension option applies only when you are using the MAPI reader
(pstsr).

NOTE: If you use this option, you must make sure in your code that valid PST files are passed
to KeyView, because the format detection module is not available to verify the file type and
pass the file to the appropriate reader.

Extract Subfiles from Lotus Domino XML
Language Files

When you extract a Lotus Domino XML Language (.DXL) file, the message text and header information
(To, From, Sent, and so on) is extracted to a text file.

You can make sure that dates and times extracted from Lotus Domino .DXL files are displayedina
uniform format.

To extract custom date/time formats
o Inthe formats.ini file, set the DateTimeFormat option in the [dx1sr] section. For example:

[dx1sr]
DateTimeFormat=%m/%d/%Y %I:%M:%S %p

In this example, dates and times are extracted in the following format:
02/11/2003 11:36:09 AM

The format arguments are the same as those for the strftime () function. See
http://msdn.microsoft.com/en-us/library/fe06s4ak %28V S.71%29.aspx for more information.

IDOL KeyView (12.9) Page 35 of 270

http://msdn.microsoft.com/en-us/library/fe06s4ak(VS.71).aspx

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

Extract .DXL Files to HTML

You can use the file extraction API to process .DXL files with an XSLT engine. The XSLT engine then
transforms the extracted .DXL to .mail HTML files.

To extract .DXL files to HTML
« Set the following options in the formats. ini file:

[nsfsr]
ExportDXL=1
ExportDXL_PureXML=1

[dx1sr]
LNDParser=2

Extract Subfiles from Lotus Notes Database
Files

A Lotus Notes database is a single file that contains multiple documents called notes. Notes include
design notes (such as forms, views, folders, navigators, outlines, pages, framesets, agents, and
resources), data document notes, profile document notes, access control list notes, and collection
(index) notes. KeyView can extract text items, attachments, and OLE objects from data document
notes only. Data document notes include emails, journal entries, discussion threads, documents
(Microsoft Office and Lotus SmartSuite), and so on.

All components of a note are prefixed by field names such as "SendTo:", "Subject:", and "Body:".
When a note is extracted, the field names are not included in the extracted output; only the field values
are extracted.

When a mail message in an NSF file is extracted to disk, the body text and header information (such as
the values from the SendTo, From, and DeliveredDate fields) in each message is extracted to a text
file.

NOTE: The Lotus Notes Database (NSF) reader is an advanced feature and is sold and licensed
separately. To enable this reader in a KeyView SDK, you must obtain the appropriate license key
from Micro Focus. See Pass License Information to KeyView, on page 18 for information on adding
anew license key to an existing installation.

System Requirements
The NSF format is proprietary. Therefore, KeyView accesses NSF files indirectly by using the Lotus

Notes API. Because the NSF reader relies on functionality in Lotus Notes, a Lotus Notes client or
Lotus Domino server must be installed and configured on the same machine as the application filtering

IDOL KeyView (12.9) Page 36 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

NSF files. On UNIX and Linux, the Lotus Domino server is required. On Windows, the Lotus Notes
client or Lotus Domino server is required.

KeyView supports the following Lotus Notes clients and Domino servers:
« Lotus Notes 6.5.1

o Lotus Domino 6.5.1

KeyView supports NSF files on the same platforms supported by Lotus Notes and Lotus Domino.

Installation and Configuration

Before KeyView can filter NSF files, you must set up the Lotus Notes client or Lotus Domino server.
Full configuration is not required. The following steps outline the minimal setup for NSF filtering:

Windows

1. Install the Lotus Notes client or Lotus Domino server. You do not need to configure the client or
server.

2. Make sure that the notes. ini file is in the proper location.

« If Lotus Notes is installed, the file should appear in the instal l\lotus\notes directory,
where install is the installation directory.

« If only Lotus Domino is installed, the file should appear in the install\lotus\domino
directory, where install is the installation directory.

If the file does not exist, create an ASCII file named notes. ini, and add the following text:
[Notes]

3. Addthe KeyView bin directory and the install\lotus\notes or install\lotus\domino
directory to the PATH environment variable (the KeyView bin directory must be first in the path).
Micro Focus recommends that you add the KeyView bin directory because the Lotus Notes or
Domino server installation might contain older KeyView OEM libraries.

Solaris

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes.ini fileis inthe install/lotus/notes/latest/sunspa directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
3. Addthe install/lotus/notes/latest/sunspa directory to the PATH environment variable:
setenv PATH install/lotus/notes/latest/sunspa:$PATH

4. Addthe install/lotus/notes/latest/sunspa andthe KeyView bin directory tothe LD_
LIBRARY_PATH environment variable:

IDOL KeyView (12.9) Page 37 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

setenv LD_LIBRARY_PATH keyview_bin:install/lotus/notes/latest/sunspa:$LD_
LIBARY_PATH

where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

AIX 5.x

1.

Install the bos.iocp.rte file set if it is not already installed, and reboot the machine. See the
Lotus Domino server documentation for more information.

Install Lotus Domino server. You do not need to configure the server.

Make sure that the notes.ini fileis inthe install/lotus/notes/latest/ibmpow directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]

4. Addthe install/lotus/notes/latest/ibmpow directory to the PATH environment variable:
setenv PATH install/lotus/notes/latest/ibmpow:$PATH

5. Addthe install/lotus/notes/latest/ibmpow and the KeyView bin directory to the LIBPATH
environment variable:
setenv LIBPATH keyview_bin:install/lotus/notes/latest/ibmpow:$LIBPATH
where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

Linux

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes.ini fileis inthe install/lotus/notes/latest/1linux directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]

3. Addthe install/lotus/notes/latest/linux directory to the PATH environment variable:
setenv PATH 1install/lotus/notes/latest/linux:$PATH

4. Addthe install/lotus/notes/latest/1linux and the KeyView bin directory tothe LD_

LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview bin:install/lotus/notes/latest/linux:$LD_
LIBRARY_PATH

where keyview b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

IDOL KeyView (12.9) Page 38 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

Open Secured NSF Files

KeyView enables you to specify a user ID file and password to use to open a secured NSF file for
extraction.

Format Note Subfiles

The KeyView NSF reader uses XML templates to format note subfiles. You can customize the
templates to approximate the look and feel of the original notes as closely as possible. For more
information, see Extract and Format Lotus Notes Subfiles, on page 218.

Extract Subfiles from PDF Files

KeyView can extract document-level and page-level attachments from a PDF document. Document-
level attachments are added by using the Attach A File tool, and can include links to or from the parent
document or to other file attachments. Page-level attachments are added as comments by using
various tools. Page-level or comment attachments display the File Attachment icon or the Speaker icon
on the page where they are located. KeyView can also extract the files from Portfolio PDFs.

When a PDF’s attachments are extracted to disk, the attachments are saved in their native format.

Improve Performance for PDFs with Many Small Images

To improve performance when processing PDF files that contain many small images, you can choose
to ignore images unless they exceed a minimum width and/or height. If an image is smaller than the
minimum width or height, KeyView does not extract the image.

For example, to ignore images that are less than 16 pixels wide or less than 16 pixels in height, add the
following to the [pdf_flags] section of the formats. ini file:

[pdf_flags]
process_images_with_min_width=16
process_images_with_min_height=16

Exiract Embedded OLE Objects

The File Extraction API can extract embedded OLE objects from the following types of documents:
« Lotus Notes (DXL)
« Microsoft Excel

o Microsoft Word

IDOL KeyView (12.9) Page 39 of 270

Filter SDK C++ Programming Guide
Chapter 3: Use the File Extraction API

« Microsoft PowerPoint
« Microsoft Outlook

« Microsoft Visio

« Microsoft Project

« OASIS Open Document
« Rich Text Format (RTF)

When an embedded OLE object is extracted from its parent file, the location of the embedded file in the
original document is not available. The parent and child are extracted as separate files.

Extract Subfiles from ZIP Files

You can extract ZIP files that are not password-protected by using the general method (see Extract
Subfiles, on page 29). However, some ZIP files use password protection, in which case you must use
a different method to enter the required credentials. See Password Protected Files, on page 268 for
more information.

Extract Metadata

You can obtain the metadata for a file by calling the metadata_map, on page 69 method:

auto myinput = keyview::io::InputFile{ std::string("InputFile.docx") };
auto metadata = KV.metadata_map(myinput);

for (const auto& it : metadata)

{

std::cout << it.first << << it.second << '\n';

}

The metadata map contains a mapping from field names to field values.

IDOL KeyView (12.9) Page 40 of 270

Chapter 4: Use the Filter API

This section describes how to perform some basic filtering tasks by using the Filter API.

® Generate an Ermor LOg il 41
® Extract Metadata 44
® Convert Character Sets .. 44
® Extract Deleted Text Marked by Tracked Changes L 46
® Filtera File ol 47
® Filter PDF Files 47
® Filter Spreadsheet Files ... 52
® Configure Headers and FOOters 55
® Filter Hidden Data 56
® Tab Delimited Output for Embedded Tables 56
® Table Detection for PDF Files ... 56
® Exclude Japanese Guide TexXt ... 57
® Source Code ldentification 57

Generate an Error Log

You can monitor and debug filtering operations by enabling a detailed error log. This enables you to see
errors that are generated at run time, and to track problem files in stream or file mode.

NOTE: Error logs are not generated when in-process filtering is enabled.

The error log might include the following information:
« Generated error codes.
« Atime stamp.
« The path and file name of the file in which the error occurred.

« Thelength of the file in which the error occurred. If the name of the original file or the name of the
temporary file are not obtained in stream mode, the file length is reported.

The following is a sample log file:

-KVOOPE 12 # Time: 11:14:32 # File Len = 68140

-KVOOPE 13 # Time: 11:23:05 # H:\files\WP\Word97\fnldmsa.doc
-KVOOPE 5 # Time: 12:15:54 # H:\files\SS\XL2000\corporate.xsl
-KVOOPE 5 # Time: 12:45:19 # H:\files\WP\WPerf5\wp501.doc
-KVOOPE 12 # Time: 14:25:33 # H:\files\PG\PPoint95\95.ppt

IDOL KeyView (12.9) Page 41 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

19117568
19117568

-KVOOPE 26 # Time: 16:26:04 # File Len
-KVOOPE 10 # Time: 20:27:40 # File Len

You can specify the information that is written to the log file by using either the API or environment
variables. To configure a log file for a single filtering session, use environment variables. To configure a
log file for all filtering sessions, use the API. Configuring the log file by using the API overrides the
same settings in the environment variables. You can also specify additional settings in the
formats.ini file.

You can configure the following features of the log file:
« Enable or disable logging. See Enable or Disable Error Logging, below.

« Change the default path and file name of the log file. See Change the Path and File Name of the
Log File, below.

« Include memory errors in the log file. See Report Memory Errors, on the next page.

« Specify a memory guard that is used to generate memory overwrite errors in the log. See Specify
a Memory Guard, on the next page.

« Specify the maximum size of the log file. See Specify the Maximum Size of the Log File, on the
next page.

Enable or Disable Error Logging

You can enable or disable error logging by using either the API or environment variables. By default, a
file called kvoop. log is created in the system temporary directory; however, you can change the path
and file name of this file (see Change the Path and File Name of the Log File, below).

Use the API

To enable or disable logging, call out_of_process_log() ona Configuration object with the
appropriate Boolean value. See The Configuration Class, on page 70 for more information.

Use Environment Variables

To enable logging, add the KVOOPLOGON environment variable, and set the variable value to 1. To disable
logging, do not set the KVOOPLOGON environment variable.

Change the Path and File Name of the Log File

You can change the default path and file name of the log file. The default is C: \temp\kvoop.logon
Windows and /tmp/kvoop.log on UNIX.

To change the path and file name of the log file, add the following to the formats. ini file:

[kvooplog]
KvoopLogName=f1ilepath

IDOL KeyView (12.9) Page 42 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

Report Memory Errors

You can report memory leaks and memory overwrites in the log file by enabling the memory trace
system, either by using the API or environment variables. If the memory trace system is enabled, the
extended error codes for memory leaks and memory overwrites (26 and 27, respectively) are reported in
the log file when they are generated. The extended error codes are defined in KVErrorCodeEx in
kverrorcodes.h.

NOTE: To report memory overwrites, you must also set a memory guard. See Specify a Memory
Guard, below.

Use the API

To enable or disable the memory trace system, call out_of_process_memory_log() ona
Configuration object with the appropriate Boolean value. See The Configuration Class, on page 70
for more information.

Use Environment Variables

To enable the memory trace system, add the KVOOPMT environment variable, and set its value to 1. To
disable the memory trace system, do not set the KVOOPMT environment variable.

Specify a Memory Guard

To report memory overwrites in the log file, you must set a memory guard that protects against memory
overwrites. Normally, this is set in the range of 100-200 bytes. For example, if a memory guard of 100 is
set and 20 bytes of memory are specified, a total of 120 bytes of memory are allocated. The additional
memory is used to monitor and identify memory overwrites.

To configure the memory guard, add the following section to the formats. ini file:

[Kvooplog]
mg=100

Specify the Maximum Size of the Log File

You can specify the maximum size of the log file. When this size is reached and new entries are
logged, either the first entry in the file is overwritten or the new entries are not reported.

To configure the maximum log size and whether old entries are overwritten, add the following section to
the formats. ini file

[Kvooplog]
LogFileSize=10
OverWritelog=1

IDOL KeyView (12.9) Page 43 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

Option Description

LogFileSize This option specifies the maximum size of the log file in KB. The minimum is 1 K. If
you do not specify a size, the default of 2 MB is used.

OverWriteLog This option determines whether the log file is overwritten when the maximum log file
size (LogFileSize)is reached. If you set this option to 1, the first entry in the log
file is overwritten. If you set this option to @, new entries are not reported in the log
file.

Extract Metadata

When a file format supports metadata, KeyView can extract and process that information. Metadata
includes document information fields such as title, author, creation date, and file size. Depending on
the file's format, metadata is referred to in a number of ways: for example, "summary information,"
"OLE summary information," "file information," and "document properties."

The metadata in mail formats (MSG and EML) and mail stores (PST, NSF, and MBX) is extracted
differently than other formats. For information on extracting metadata from these formats, see Extract
Mail Metadata, on page 30.

NOTE: KeyView can only extract metadata from a document if metadata is defined in the
document, and if the document reader can extract metadata for the file format. The section
Document Readers, on page 172 lists the file formats for which metadata can be extracted.
KeyView does not generate metadata automatically from the document contents.

The sample program metadata, on page 62 demonstrates how to extract metadata.

Convert Character Sets

Filter can convert the character set of a document to an arbitrary character set specified in the API, or
to the character set of the operating system on which the output text is viewed. For this conversion to
occur, a source character set must be identified. The source character set can either be determined by
the document reader, or can be set in the API. The section Document Readers, on page 172 lists file
formats for which character set information can be determined by the document reader. The character
sets are enumerated in Character Sets, on page 204.

Determine the Character Set of the Output Text

To determine the output character set of a filtered document, Filter considers the following:

« Whether the document reader can determine the character set of the file format. If the document
reader cannot determine the character set information for the document type, set the source
character set in the API.

IDOL KeyView (12.9) Page 44 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

« Whether the source character set is specified in the API.

« Whether the target character set is specified in the API.

Guidelines for Character Set Conversion

Below are some rules for the determination of character set mapping:

« If the source is not determined by the document reader or configured in the API, the character set
of the output text is always unknown, regardless of the target character set configuration. The
document cannot be converted to a target character set or the operating system's code page
unless the source character set is known.

« If the target character set is not specified in the API, and the source character set is identified, the
operating system's code page is used for the output text.

« If the source character set is identified, and the target character set is specified in the API, the
target character set specified in the API is used for the output text.

« Fordocuments that contain multiple character sets, Micro Focus recommends that the target
character set be forced to UNICODE or UTF-8.

The following table illustrates how Filter determines the character set of the output text.

Determining the Output Character Set—Example

Source charset read by Source charset specified Target charset specified Output

Filter in API in API charset

No No No no
conversion

No KVCS_ 936 No OS code
page

No No UNICODE no
conversion

No KVCS_936 UNICODE UNICODE

Yes No No OS code
page

Yes KVCS_ 936 No OS code
page

Yes No UNICODE UNICODE

Yes KVCS 936 UNICODE UNICODE

Set the Character Set During Filtering

You can convert the character set of a file at the time the file is filtered.

IDOL KeyView (12.9) Page 45 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

To specify the source character set of afile, invoke source_encoding() onaConfiguration object,
before creating a session, using any value in the enumerated list Encoding in Keyview_
Enumerations.hpp. See The Configuration Class, on page 70 for more information.

To specify the target character set, invoke target_encoding() onaConfiguration object with any
value in the enumerated list Encoding in Keyview_Enumerations.hpp.

Not all values of the enumerated list can be used as a target character set. Coded Character Sets, on
page 212 lists character sets that can be used as output.

Set the Character Set During Subfile Extraction

You can convert the character set of a subfile at the time the subfile is extracted from the container and
before it is filtered. This is most often used to set the character set of a mail message's body text. See
Filter PDF Files, on the next page for more information.

To specify the source character set of a subfile, call config->source_encoding() with the appropriate
value from the enumerated list Encoding in Keyview_Enumerations.hpp.

To specify the target character set of a subfile, call config->target_encoding() with the appropriate
value from the enumerated list Encoding in Keyview_Enumerations.hpp.

Customize Character Set Detection and Conversion

KeyView attempts to detect the character set of an input file by default. Some character sets (including
ANSI, UTF-8, and UTF-16) can be detected by core KeyView functionality but others can only be
detected if your license includes advanced character set detection.

If your license includes advanced character set detection, it is enabled by default. However, it can
increase the time required to filter some documents. You can disable advanced character set detection
on a file-by-file basis, by setting character_set_detection to FALSE. Before setting this, be aware that
KeyView can not perform character set conversion unless it detects the character set of the source file,
or you set source_encoding.

When the character set of the input file is known, KeyView performs character set conversion. You can
prevent the default conversion of text to the operating system code page, and specify that Filter retain
the original character encoding of the document. Any document identified as containing more than one
character encoding is converted to the first encoding encountered in the file.

To prevent the default conversion, set no_encoding_conversion to TRUE. This setting overrides any
source or target character set specified through the API.

Exiract Deleted Text Marked by Tracked
Changes

The revision tracking feature in applications—such as Microsoft Word's Track Changes—marks
changes to a document (typically, strikethrough for deleted text and underline for inserted text) and
tracks each change by reviewer name and date.

IDOL KeyView (12.9) Page 46 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

If revision tracking was enabled when text was deleted from a source document, you can configure
Filter to extract the deleted text. Filter does not extract the reviewer name and revision date.

To extract deleted text from a document and include it in the filtered output
1. Create aSession object.
2. Enable revision tracking by calling revision_marks (true) onthe Configuration object.

3. Call filter() onthe Session object.

See The Session Class, on page 67 for more information.

Filter a File

You can get a plaintext version of the file content by using the filter, on page 69 method:

auto myinput = keyview::io::InputFile{ std::string("InputFile.docx") };
auto myoutput = keyview::io::OutputFile{ std::string("out.txt") };
KV.filter(myinput, myoutput);

Filter PDF Files

Filter has special configuration options that allow greater control over the conversion of Adobe Acrobat
PDF files.

Filter PDF Files to a Logical Reading Order

The PDF format is primarily designed for presentation and printing of brochures, magazines, forms,
reports, and other materials with complex visual designs. Most PDF files do not contain the logical
structure of the original document—the correct reading order, for example, and the presence and
meaning of significant elements such as headers, footers, columns, tables, and so on.

KeyView can filter a PDF file either by using the file's internal unstructured paragraph flow, or by
applying a structure to the paragraphs to reproduce the logical reading order of the visual page. Logical
reading order enables KeyView to output PDF files that contain languages that read from right-to-left
(such as Hebrew and Arabic) in the correct reading direction.

NOTE: The algorithm used to reproduce the reading order of a PDF page is based on common page
layouts. The paragraph flow generated for PDFs with unique or complex page designs might not
emulate the original reading order exactly.

For example, page design elements such as drop caps, callouts that cross column boundaries, and
significant changes in font size might disrupt the logical flow of the output text.

By default, KeyView produces an unstructured text stream for PDF files. This means that PDF
paragraphs are extracted in the order in which they are stored in the file, not the order in which they

IDOL KeyView (12.9) Page 47 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

appear on the visual page. For example, a three-column article could be output with the headers and
title at the end of the output file, and the second column extracted before the first column. Although this
output does not represent a logical reading order, it accurately reflects the internal structure of the PDF.

You can configure KeyView to produce a structured text stream that flows in a specified direction. This
means that PDF paragraphs are extracted in the order (logical reading order) and direction (left-to-right
or right-to-left) in which they appear on the page.

The following paragraph direction options are available:

Paragraph Description
Direction
Option

Left-to-right Paragraphs flow logically and read from left to right. You should specify this option
when most of your documents are in a language that uses a left-to-right reading order,
such as English or German.

Right-to- Paragraphs flow logically and read from right to left. You should specify this option
left when most of your documents are in a language that uses a right-to-left reading order,
such as Hebrew or Arabic.

Dynamic Paragraphs flow logically. The PDF filter determines the paragraph direction for each
PDF page, and then sets the direction accordingly. Filter uses this option when a
paragraph direction is not specified.

NOTE: Filtering might be slower when logical reading order is enabled. For optimal speed, use an
unstructured paragraph flow.

The paragraph direction options control the direction of paragraphs on a page; they do not control the
text direction in a paragraph. For example, a PDF file might contain English paragraphs in three
columns that read from left to right, but 80% of the second paragraph might contain Hebrew characters.
If the left-to-right logical reading order is enabled, the paragraphs are ordered logically in the output—
title paragraph, then paragraph 1, 2, 3, and so on—and flow from the top left of the first column to the
bottom right of the third column. However, the text direction of the second paragraph is determined
independently of the page by the PDF filter, and is output from right to left.

NOTE: Extraction of metadata is not affected by the paragraph direction setting. The characters
and words in metadata fields are extracted in the correct reading direction regardless of whether
logical reading order is enabled.

Enable Logical Reading Order

You can enable logical reading order by using either the API or the formats. ini file. Setting the
paragraph direction in the API overrides the setting in the formats. ini file.

Use the C++ API

Invoke pdf_logical_reading() onaConfiguration object with any value from the enumerated list
LogicalPDFDirectioninKeyview_Enumerations.hpp. SeeThe Configuration Class, on page 70 for

IDOL KeyView (12.9) Page 48 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

more information.

Use the formats.ini File

To enable logical reading order by using the formats.ini file

1. Change the PDF reader entry in the [Formats] section of the formats. ini file as follows:

[Formats]
200=1pdf

2. Optionally, add the following section to the end of the formats. ini file:

[pdf_flags]
pdf_direction=paragraph _direction

where paragraph_direction is one of the following:

Flag

LPDF_
LTR

LPDF_
RTL

LPDF_
AUTO

LPDF_
RAW

Description

Left-to-right paragraph direction.

Right-to-left paragraph direction.

The PDF reader determines the paragraph direction for each PDF page, and then sets
the direction accordingly. Filter uses this option when a paragraph direction is not
specified.

Unstructured paragraph flow. This is the default behavior. If logical reading order is
enabled, and you want to return to an unstructured paragraph flow, set this flag.

Rotated Text

When a PDF that contains rotated text is filtered, the rotated text is extracted after the text at the end of
the PDF page on which the rotated text appears. If the PDF is filtered with logical order enabled, and
the amount of rotated text on a page surpasses a predefined threshold, the page is automatically output
as an unstructured text stream. You cannot configure this threshold.

Extract Custom Metadata from PDF Files

You can extract custom metadata from PDF files either by specifying individual metadata tag names,
or by extracting all custom metadata at once.

Extract All Custom Metadata

You can extract all metadata through the API.

IDOL KeyView (12.9) Page 49 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

To extract all metadata by using the API
1. Create aSession object.
2. Call custom_pdf_metadata(true) onaConfiguration object.

3. Invoke metadata_map() on a Session object.

See The Session Class, on page 67 for more information.

Filter Tagged PDF Content

A tagged PDF contains an additional layer of text for visually impaired readers. This text is used in text-
to-speech features in various PDF viewing programs. You can enable filtering of tagged PDF text in the
API.

Filtering the extra layer of tagged content might result in duplicate text in the output. This is the
expected behavior.

To filter tagged PDF content
1. Create aSession object.

2. Tofilter tagged PDF Content using the C++ API, invoke tagged_pdf_content(true) ona
Configuration object, and call filter() ona Session object.

Skip Embedded Fonts

Text in PDF files sometimes contains embedded fonts. If you experience difficulties filtering embedded
fonts, there are options in the API, the formats. ini file, and the filter sample program that enable you
to skip this type of text.

NOTE: If you skip embedded fonts, none of the content that contains embedded fonts is included in
the output.

Use the formats.ini File

When you use formats.ini to skip embedded fonts, you can also specify an embedded font
threshold, which is an arbitrary percentage probability that the glyph in the embedded text maps to a
character value in the output character set (ASCII, UTF-8, and so on).

For example, if you specify a threshold of 75, embedded text glyphs that have a 75% or greater
probability of correctly matching the character in the output character set are included in the output;
glyphs that have a probability of less than 75% of matching the output character set are omitted from
the output.

IDOL KeyView (12.9) Page 50 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

To skip embedded fonts by using the formats.ini file
« Set the following parameters:

[pdf_flags]
skipembeddedfont=TRUE
embedded_font_threshold=threshold

where threshold is a value between 0 and 100. A threshold of 100 skips all embedded font text;
athreshold of @ retains all embedded font text. Set skipembeddedfont to TRUE to enable the
embedded_font_threshold parameter.

The default value of embedded_font_threshold is 100. if you set skipembeddedfont to TRUEand
do not specify the embedded_font_threshold parameter, Filter skips all embedded text.

Use the C++ API

To skip embedded fonts by using the C++ API, invoke skip_embedded_fonts(true) ona
Configuration object. See The Configuration Class, on page 70 and skip_embedded_fonts, on
page 75 for more information.

Control Hyphenation

There are two types of hyphens in a PDF document:

« A soft hyphenis added to a word by a word processor to divide the word across two lines. This is
a discretionary hyphen and is used to ensure proper text flow in justified text.

« A hard hyphen is intentionally added to a word regardless of the word's position in the text flow. It
is required by the rules of grammar or word usage. For example, compound words (such as three-
week vacation and self-confident) contain hard hyphens.

By default, KeyView skips the source document's soft hyphens in the Filter output to provide more
searchable text content. However, if you want to maintain the document layout, you can keep soft
hyphens in the Filter output. To keep soft hyphens, you must enable the soft hyphen flag in
formats.ini orinthe API.

Use the formats.ini File
To keep soft hyphens by using the formats. ini file, set the following parameter:

[pdf_flags]
keepsofthyphen=TRUE

Use the C++ API

To keep soft hyphens by using the C++ API, call the soft_hyphens(true) methodona
Configuration object. See The Configuration Class, on page 70 and soft_hyphens, on page 75 for
more information.

IDOL KeyView (12.9) Page 51 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

Filter Portfolio PDF Files

Portfolio PDF files contain subfiles and an ActionScript interface for navigating between them. You can
use the extraction API to extract the subfiles. See Extract Subfiles from PDF Files, on page 39.

Filter Spreadsheet Files

Filter has special configuration options that enable greater control over the conversion of spreadsheet
files.

Filter Worksheet Names

Normally, Filter does not extract worksheet names from a spreadsheet because it is assumed that the
text should not be exposed. To extract worksheet names, add the following lines to the formats.ini
file:

[Options]
getsheetnames=1

Filter Hidden Text in Microsoft Excel Files

Normally, Filter does not filter hidden text from a Microsoft Excel spreadsheet because it is assumed
that the text should not be exposed. To extract text from hidden rows, columns, and sheets from Excel
spreadsheets, add the following lines to the formats. ini file:

[Options]
gethiddeninfo=1

Specify Date and Time Format on UNIX Systems

In Microsoft Excel you can choose to format dates and times according to the system locale. On
Windows, KeyView uses the system locale settings to determine how these dates and times should be
formatted. In other operating systems, KeyView uses the U.S. short date format (mm/dd/yyyy). You
can change this by specifying the formats you wish to use in the formats.ini file.

To specify the system date and time format on UNIX systems

Inthe formats. ini file, specify the following options:

« SysDateTime. The format to use when a cell is formatted using the system format including both
the date and the time.

« SyslLongDate. The format to use when a cell is formatted using the system long date format.

IDOL KeyView (12.9) Page 52 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

« SysShortDate. The format to use when a cell is formatted using the system short date format.

o SysTime. The format to use when a cell is formatted using the system time format.

NOTE: These values cannot contain spaces.
For example, if you specify SysDateTime=%d/%m/%Y, dates and times are extracted in the following
format:
28/02/2008
The format arguments are the same as those for the strftime () function.

See http://linux.die.net/man/3/strftime for more information.

Filter Very Large Numbers in Spreadsheet Cells to Precision
Numbers

By default, numbers are extracted in the format specified by the Excel file (for example, General,
Currency and Date). Spreadsheets might contain cells that have very large numbers in them. Excel
displays the numbers in a scientific notation that rounds or truncates the numbers.

To extract numbers without formatting, add the following options in the formats. ini file:

[Options]
ignoredefnumformats=1

Extract Microsoft Excel Formulas

Normally, the actual value of a formula is extracted from an Excel spreadsheet; the formula from which
the value is derived is not included in the output. However, KeyView enables you to include the value
as well as the formula in the output. For example, if Filter is configured to extract the formula and the
formula value, the output might look like this:

245 = SUM(B21:B26)

The calculated value from the cell is 245 and the formula from which the value is derived is SUM
(B21:B26).

NOTE: Depending on the complexity of the formulas, enabling formula extraction might result in
slightly slower performance.

To set the extraction option for formulas

« Add the following lines to the formats. ini file:

[Options]
getformulastring=option

where option is one of the following:

IDOL KeyView (12.9) Page 53 of 270

http://linux.die.net/man/3/strftime

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

Option Description

0 Extract the formula value only. This is the default.

If formula extraction is enabled, and you want to return to the default, set this option.

1 Extract the formula only.

2 Extract the formula and the formula value.

If a function in a formula is not supported or is invalid, and option 1 or 2 is specified, only the calculated
value is extracted. See Supported Microsoft Excel Functions, below for a list of supported functions.

When formula extraction is enabled, Filter can extract Microsoft Excel formulas that contain the
functions listed in the following table.

Supported Microsoft Excel Functions

=ABS () =ACOS () =AND() =AREAS ()
=ASIN() =ATAN2() =ATAN2() =AVERAGE ()
=CELL() =CHAR() =CHOOSE () =CLEAN()
=CODE() =COLUMN() =COLUMNS() =CONCATENATE()
=C0S() =COUNT() =COUNTA() =DATE()
=DATEVALUE() =DAVERAGE() =DAY() =DCOUNT ()
=DDB() =DMAX () =DMIN() =DOLLAR()
=DSTDEV() =DSUM() =DVAR() =EXACT()
=EXP() =FACT() =FALSE() =FIND()
=FIXED() =FV() =GROWTH() =HLOOKUP ()
=HOUR () =ISBLANK() =IF() =INDEX()
=INDIRECT() =INT() =IPMT() =IRR()
=ISERR() =ISERROR() =ISNA() =ISNUMBER ()
=ISREF () =ISTEXT() =LEFT() =LEN()
=LINEST() =LN() =LOG() =L0G10()
=LOGEST() =LOOKUP() =LOWER() =MATCH()
=MAX () =MDETERM() =MID() =MIN()
=MINUTE() =MINVERSE() =MIRR() =MMULT ()
=MOD() =MONTH() =N() =NA()
=NOT() =NOW() =NPER() =NPV()

IDOL KeyView (12.9)

Page 54 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

=OFFSET() =OR() =PI() =PMT()
=PPMT () =PRODUCT() =PROPER() =PV ()
=RATE() =REPLACE() =REPT() =RIGHT()
=ROUND () =ROUND () =ROW() =ROWS ()
=SEARCH() =SECOND() =SIGN() =SIN()
=SLN() =SQRT() =STDEV() =SUBSTITUTE()
=SUM() =SYD() =T() =TAN()
=TEXT() =TIME() =TIMEVALUE() =TODAY()
=TRANSPOSE() =TREND() =TRIM() =TRUE()
=TYPE() =UPPER() =VALUE () =VAR()
=VLOOKUP() =WEEKDAY() =YEAR()

Configure Headers and Footers

You can configure custom header and footer tags for word processing and spreadsheet documents by
editing the formats. ini file.

To configure headers and footers
1. Openthe formats.ini file.
2. Inthe [Options] section, add the following items:

header_start_tag=HeaderStart
header_end_tag=HeaderEnd
footer_start_tag=FooterStart
footer_end_tag=Footerknd

For example:

header_start_tag=<myHeaderTag>
header_end_tag=</myHeaderTag>
footer_start_tag=<myFooterTag>
footer_end_tag=</myFooterTag>

NOTE: You must encode custom tags in UTF-8.

IDOL KeyView (12.9) Page 55 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

Filter Hidden Data

Some documents contain hidden information, which is not filtered by default. Depending on the type of
hidden data that you want to filter and the type of document that you are filtering, you can either use the
API or set parameters in the formats. ini file.

Hidden Data in HTML Documents

KeyView can filter comments from HTML documents. To enable comment filtering, you must set a flag
in the formats.ini file.

To enable filtering of comments from HTML files
1. Openthe formats.ini file in a text editor.
2. Under [Options], set the following flag.

GetHTMLHiddenInfo=1

Tab Delimited Output for Embedded Tables

You can use KeyView to convert embedded tables in Word Processing documents (for example,
Microsoft Word) to tab-delimited form, by specifying the following option in the formats. ini file:

[Options]
TabDelimited=TRUE

This option inserts a tab character between each cell, and a line break between each row. Tab and line
break characters in the cells are replaced with spaces.

Table Detection for PDF Files

PDF files often contain data presented in a tabular form. However, there is no information about the
table stored within the PDF itself — the text is simply placed in an arrangement that looks like a table to
the human eye. When this data is filtered, it can be very difficult to reconstruct the table.

If table detection is enabled, KeyView attempts to recognize tables within PDF pages, and to
reconstruct them before they are output. For each page of the document, KeyView outputs the contents
of each table first, and then outputs all remaining text on the page.

Micro Focus recommends that tab delimited output is also enabled when using table detection. This
means that any tables detected appear in the output text in tab delimited format.

To enable table detection and tab delimited output, specify the following in the formats. ini file:

IDOL KeyView (12.9) Page 56 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

[Options]
TableDetection=TRUE
TabDelimited=TRUE

NOTE: Table detection is only available with the pdf2sr reader. To enable this reader, set the
following configuration parameter:

[Formats]
200=pdf2

Exclude Japanese Guide Text

This option prevents output of Japanese phonetic guide text when Microsoft Excel (. x1sx) files are
processed.

To prevent output of Japanese phonetic guide text
o Set NoPhoneticGuides to TRUE in the formats. ini file:

[Options]
NoPhoneticGuides=TRUE

You can also enable this option programatically when filtering by passing KVFLT_NOPHONETICGUIDES to
fpFilterConfig.

Source Code Identification

When KeyView auto-detects a file that contains source code, it can attempt to identify the
programming language that it is written in.

NOTE: Source code identification is available only on Windows 64-bit, Linux 64-bit, and macOS 64-
bit platforms.

You can set source code identification to different levels.

Option Description

KVSOURCECODE_ Do not enable source code identification.
OFF

KVSOURCECODE_ Enable source code identification for the most common source code formats.
ENABLED

KVSOURCECODE_ Enable source code identification for all supported source code formats. This

IDOL KeyView (12.9) Page 57 of 270

Filter SDK C++ Programming Guide
Chapter 4: Use the Filter API

EXTENDED option might lead to false positives in some cases (for example, a C++ file might
get identified as a rarer format).

For the complete list of source code formats supported for both options, see Supported Formats, on
page 94.

You can enable source code identification by setting the appropriate level in the formats.ini file. For
example:

[Options]
SourceCodeDetection=KVSOURCECODE_ENABLED

IDOL KeyView (12.9) Page 58 of 270

Chapter 5: Sample Programs

This section describes the sample programs provided with Filter SDK.

O INtrOdUCH ON 59
O deteCt .. 60
O X TACt . 61
O filter dOCUM BN 61
 metadata ... 62
O SUDTIIES .. 62
O e CONMMAINET . 62
Introduction

The C++ sample programs demonstrate basic usage of the C++ implementation of the Filter API. The
sample code is intended to provide a starting point for your own more advanced applications or to be
used for reference purposes.

The sample programs share a single header, to assist with parsing command-line arguments.
The source code for the programs is in the directory cppapi\samples\src.

The executable for the programs is in the directory instal \KeyviewFilterSDK\0S\bin, where 0S is
the name of the operating system.

Build the Sample Programs

NOTE: To build the sample programs on Windows, you need at least Microsoft Visual Studio 2015.

To build the sample programs on Windows

1. At the Visual Studio command prompt, switch to the cppapi/samples/bin/ directory and run the
following command:

nmake -f Makefile

The sample programs are created in the bin directory.

To build the sample programs on Linux
1. Switchtothe cppapi/samples/bin directory.
2. Run the appropriate command:

GCC 5

IDOL KeyView (12.9) Page 59 of 270

Filter SDK C++ Programming Guide
Chapter 5: Sample Programs

export CXXFLAGS="-std=c++11"
make

GCC 6
make

The sample programs are created in the bin directory.

Run the Sample Programs

You can run a sample program with no arguments to view command-line help. For example:

cppapi/samples/bin$./detect
Basic usage: ./detect [options] input_file

Options:
--bin_path <path> Path to FilterSDK bin directory
--tmp_dir <path> Path to temporary directory

Boolean Options:

--ip Run in process
--oop_log Create out-of-process log
--oop_log mem Add memory error information to the out-of-process log

All the sample programs have options that take a required value, and Boolean options that toggle
behavior. The programs contain simple argument parsing logic to detect invalid usage.

You must provide each sample program with the path to the Filter SDK bin directory where the
KeyView dynamic libraries are stored. If you specify the bin directory incorrectly, the sample program
prints a message indicating that the kvfilter library could not be loaded. The bin_path argument
defaults to the current directory.

The following C++ sample programs are provided:
« detect, below
« extract, on the next page
« filter_container, on page 62
« filter_document, on the next page
« metadata, on page 62

« subfiles, on page 62

detect

KeyView can provide information about a very large number of file formats. This sample program
makes use of the file format detection APl method.

IDOL KeyView (12.9) Page 60 of 270

Filter SDK C++ Programming Guide
Chapter 5: Sample Programs

The sample program takes a path to a file and prints the information reported by the API. For example,
the following output is produced when you run the program with an mp3 file:

$./detect my file

Format: 270

Description: MPEG Audio
Version: 3000
Category: 9

Category Name: Audio
Encrypted: false

The Format and Category values are from the C++ enum defined in the Keyview_Enumerations.hpp
file. See Enumerations, on page 85 for more information.

extract

Some files can contain embedded subfiles, including archive formats such as zip and rar, email
containers, and Office formats. This sample program makes use of the subfile extraction API methods.

The sample program takes two positional arguments:
« apathtoafile

« apath to an output directory

The program copies all the subfiles in the file to the output directory, and prints any errors encountered
during extraction. For example, the following output is produced when you run the program on a
password-protected 7zip file:

$./extract pass.7z outputdir/

Error extracting subfile ©

Name: hello.txt

Keyview error: The file is password protected

If you provide the correct password using the optional argument, KeyView can extract the file:

$./extract --password 'pass' pass.7z outputdir/
$ 1s outputdir/
hello.txt

NOTE: In this instance KeyView captures the name of the subfile even without providing a

password. Whether this is possible depends on the file format and the encryption options that were
used to create the file.

filter_document

Filtering is the extraction of text from a document. This sample program makes use of the filter API
method.

The program takes two positional arguments:

IDOL KeyView (12.9) Page 61 of 270

Filter SDK C++ Programming Guide
Chapter 5: Sample Programs

« aninput file
« anoutput text file

By default, the ouput is encoded in UTF-8.

$./filter_document input_file output.txt

CAUTION: Not all document formats can be filtered. For example, trying to filter a PNG file
produces an error message. For some file formats (notably emails), Keyview treats the text as an
embedded subfile that you should access by using the extraction API, not the filter API.

metadata

Some file formats contain additional documentation (metadata) about document contents. This sample
program makes use of the metadata_map APl method to provide metadata fields and values.

The fields that are present vary depending on file type and the individual document. For example,
running the sample program on a PDF file produces output similar to the following:

$./metadata KeyView 11.0 0S3P.pdf

AppName: madbuild

Author: Hewlett Packard Enterprises Development LP

Create_DTM: 2016-02-09T16:15:51Z

LastSave_DTM: 2016-02-09T16:15:517Z

PageCount: 43

Title: IDOL KeyView 11.0 Open Source and Third-Party Software Agreements

subfiles

Like the extract, on the previous page sample program, the subfiles sample program uses the subfile
extraction APl methods. However, rather than copying the files to disk, it prints the number of
embedded subfiles, and the information that could be obtained about each one, such as the file name
and size. The API methods that the sample programs uses are typically very fast compared to the cost
of extracting a large file.

filter_container

This sample program is a slightly more advanced example that combines several APl methods. The
sample program takes an input file and an output text file. The program writes detection information and
the filtered text to the output file. It then recursively extracts all subfiles in the input file, and repeats the
process. This process flattens all of the content of a nested archive file into a single text file.

IDOL KeyView (12.9) Page 62 of 270

Part Ill: C++ API Reference

This section provides detailed reference information for the C++ implementation of the File Extraction and
Filter APIs.

o InputTypes and OutputTypes, on page 65
« The keyview Namespace, on page 67

« The keyview::io Namespace, on page 89

IDOL KeyView (12.9) Page 63 of 270

Filter SDK C++ Programming Guide
Part Ill: C++ API Reference

IDOL KeyView (12.9) Page 64 of 270

Chapter 7: InputTypes and
OutputTypes

Some of the methods in the C++SDK are templated on InputType, OutputType, or both. You can pass
these methods instances of the input and output types defined in the keyview: : io namespace. See
Getting Started, on page 21 for more details and examples.

IDOL KeyView (12.9) Page 65 of 270

Filter SDK C++ Programming Guide
Chapter 7: InputTypes and OutputTypes

IDOL KeyView (12.9) Page 66 of 270

Chapter 8: The keyview Namespace

This section provides details of the classes in the keyview namespace.

® The Session Class 67
® The Configuration Class il 70
® The DetectionInfo Class ... il 77
® The Container Class o i 79
® The Subfile Class L 80
® The Summarylnfoltem Class 82
®* The SummarylInfoVisitorBase Class 83
O ENUMIEIatiONS 85
O EXCEPIONS .. il 87

The Session Class

Defined in: Keyview_Session.hpp

The Session class is the entry point to the C++ API. The Session class has methods to filter, detect,
access subfiles, and get summary information.

The Session class provides functions to:
« Detect afile format.
« Filter the content of a file.
« Get the metatdata of afile.

« Open afile as a container to access subfiles.

Options can be set by the Configuration class. This can be used in the constructor, or modified after
construction. See The Configuration Class, on page 70 for more information.

Constructor

Constructs a new Session with the specified parameters.

Syntax

Session::Session(
const std::string& licenseOrganization,
const std::string& licenseKey,

std::string bin_path = ".",

IDOL KeyView (12.9) Page 67 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

bool in_process = false,
Configuration config = {}

Arguments

licenseOrganization The organization name under which this installation of KeyView is licensed.
This value is the company name that appears at the top of the license key
provided by Micro Focus. Add the text exactly as it appears in this file.

licenseKey This value is the appropriate license key provided by Micro Focus. The key
is a string that contains 31 characters. Type these characters exactly as
they appear in the license key file, including the dashes, but do not include
any leading or trailing spaces.

bin_path The directory of the KeyView installation.
in_process Used to determine whether to filter in process or out of process.
config The set of configurations for this session.

Discussion

« A constructor also exists which does not take the license arguments, but does take the other
arguments. If you use that constructor, then the license is obtained from the kv. 1ic file in your
bin directory. Micro Focus recommends that you pass your license information into the
constructor instead of using the kv . 1ic file on disk.

config

Get a reference to the configuration. This can be used to configure the next API call.

Syntax

const Configuration& Session::config() const
Configuration& Session::config()

detect
Find the autodetected format of a file.

Syntax

template<typename Input_Type >
DetectionInfo Session::detect(Input_Type &input)

IDOL KeyView (12.9) Page 68 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

filter

Filter a file to the provided output type.

Syntax

template<typename Input_Type , typename Output_Type >
void Session::filter(Input_Type &input, Output_Type &output)

get_summary_information

Get document summary information metadata from a file, preserving the ability to access it in the
original type.

Syntax
template<typename Input_Type >

std::multimap<std::string, SummaryInfoIltem> Session::get_summary_information(Input_
Type &input)

metadata_map

Get document metadata from a file.

This function converts all metadata values of any type are converted to UTF-8 strings. It outputs
date/time values in UTC in the ISO-8601 date format YYYY-MM-DDThh:mm:ssZ. For example 2016-
02-09T16:15:51Z.

Syntax

template<typename Input_Type >
std::multimap<std::string, std::string> Session::metadata_map(Input_Type &input)

subfiles
Obtain information about subfiles. The Container holds references to the session and input.

Syntax

template<typename Input_Type>
Container Session::subfiles(Input_Type &input)

IDOL KeyView (12.9) Page 69 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

The Configuration Class

Defined in: Keyview_Configuration.hpp

The Configuration class allows you to set a wide variety of options. You can use this class to
construct a KeyView Session, and to modify a Session that has already been constructed. Each option
has a getter and setter method.

Constructor

Create a new Configuration object.

Syntax

Configuration::Configuration()
Configuration::Configuration(const Configuration&)

character_set_detection

Setting character_set_detection to true enables advanced character set detection. Setting it to
false disables it.

Default value: true

Syntax

bool character_set_detection() const;
Configuration& character_set_detection(bool character_set_detection);

custom_pdf_metadata

Setting custom_pdf_metadata to true results in all custom metadata being filtered from PDF
documents when the metadata APls are used.

Default value: false

Syntax

bool Configuration::custom_pdf_metadata() const
Configuration& Configuration::custom_pdf_metadata(bool emit_custom_metadata)

IDOL KeyView (12.9) Page 70 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

date_time_field_codes

If you set date_time_field_codes to true, date/time field codes are extracted from Microsoft Word,
PowerPoint, and RTF documents, instead of date/time values.

Default value: false

Syntax

bool Configuration::date_time_field_codes() const
Configuration& Configuration::date_time_field_codes(bool use_fieldcode)

extraction_timeout

Sets the timeout for extracting one document.

Default value: 350 seconds

Syntax

long Configuration::extraction_timeout() const
Configuration& Configuration::extraction_timeout(long seconds)

filename_field_code

If you set filename_field_code to true, file name field codes are extracted from Microsoft Word
documents.

Default value: false

Syntax

bool Configuration::filename_field_code() const
Configuration& Configuration::filename_field_code(bool use_fieldcode)

formatted_mail

If you set formatted_mail to true, the formatted version of the message body (HTML or RTF) is
extracted from mail files where possible.

Default value: false

IDOL KeyView (12.9) Page 71 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

Syntax

bool Configuration::formatted_mail() const
Configuration& Configuration::formatted _mail(bool extract_formatted)

header_and_footer

Extracts headers and footers.

Default value: false

Syntax

bool Configuration::header_and_footer() const
Configuration& Configuration::header_and_footer(bool emit_header_text)

header_and_footer_tags

Puts tags around header and footer data.

Default value: false

Syntax

bool Configuration::header_and_footer_tags() const
Configuration& Configuration::header_and_footer_tags(bool tag headers)

hidden_text

If you set hidden_text to true, hidden text in Microsoft Word, Excel, and PowerPoint documents is
extracted.

Default value: false

Syntax

bool Configuration::hidden_text() const
Configuration& Configuration::hidden_text(bool emit_hidden_text)

no_encoding_conversion

Setting no_encoding_conversion to true prevents the default conversion of the text encoding. Filter
retains the original character encoding of the document if it is available.

Default value: false

IDOL KeyView (12.9) Page 72 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

Syntax

bool Configuration::no_encoding_conversion() const
Configuration& Configuration::no_encoding_conversion(bool suppress_conversion)

ocr

Setting ocr to true enables Optical Character Recognition (OCR) on raster image files to attempt to
filter text. This option is available only if OCR is included in your license. Setting ocr to false disables
it.

Default value: true
Syntax

bool ocr() const;
Configuration& ocr(bool ocr);

out_of_process_log

Setting this to true enables out of process logging.
Default value: false
Syntax

bool Configuration::out_of_process_log() const
Configuration& Configuration::out_of_process_log(bool use_log)

out_of_process_memory_log

Eanbles memory trace for the out-of-process error log.
Default value: false
Syntax

bool Configuration::out_of_process_memory log() const
Configuration& Configuration::out_of process_memory_log(bool log _memory)

password

Specifies a password to open a password-protected file for filtering.

Default value: empty string

IDOL KeyView (12.9) Page 73 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

Syntax

const std::string& Configuration::password() const
Configuration& Configuration::password(std::string document_password)

pdf_logical_reading

Specifies the order in which the user would like paragraphs in PDF file to be extracted (logical reading
order).

Default value: raw

Syntax

LogicalPDFDirection Configuration::pdf_logical reading() const
Configuration& Configuration::pdf_logical reading(LogicalPDFDirection mode)

revision_marks

If you set revision_marks to true, text that was deleted from documents with revision tracking
enabled is included in the filtered output.

Default value: false
Syntax

bool Configuration::revision_marks() const
Configuration& Configuration::revision_marks(bool emit_revision_marks)

skip_comments

If you set skip_comments to true, comments from Microsoft Word, PowerPoint, or Excel documents
are not extracted.

Default value: false

Syntax

bool Configuration::skip_comments() const
Configuration& Configuration::skip_comments(bool no_comments)

IDOL KeyView (12.9) Page 74 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

skip_embedded_fonts

If you set skip_embedded_fonts to true, text that contains embedded fonts is not filtered from PDF
documents.

Default value: false

Syntax

bool Configuration::skip_embedded_fonts() const
Configuration& Configuration::skip_embedded_fonts(bool no_embedded_fonts)

skip_thumbnail

If you set skip_thumbnail to true, text from thumbnail images for embedded objects in Microsoft
Word documents is not extracted.

Default value: false
Syntax

bool Configuration::skip_thumbnail() const
Configuration& Configuration::skip_thumbnail(bool no_thumbnail)

soft_hyphens

If you set soft_hyphens to true, soft hyphens are retained when text is filtered from PDF documents.

Default value: false

Syntax

bool Configuration::soft_hyphens() const
Configuration& Configuration::soft_hyphens(bool emit_softhyphens)

source_encoding

Specifies the character encoding of the input file.

Default value: KVCS_UNKNOWN

Syntax

Encoding Configuration::source_encoding() const
Configuration& Configuration::source_encoding(Encoding encoding_of_source)

IDOL KeyView (12.9) Page 75 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

tagged_pdf_content

If you set tagged_pdf_content to true, tagged PDF content is filtered from PDF documents.
Default value: false
Syntax

bool Configuration::tagged_pdf_content() const
Configuration& Configuration::tagged_pdf_content(bool emit_tagged_content)

target_encoding

Sets the encoding of the text in the output file.
Default value: KvCS_UTF8
Syntax

Encoding Configuration::target_encoding() const
Configuration& Configuration::target_encoding(Encoding encoding_of_target)

string& temporary_directory

Sets the path of the temporary directory where temporary files are created during filtering.
Default value: empty string
Syntax

const std::string& Configuration::temporary_directory() const
Configuration& Configuration::temporary_directory(std::string temp_dir)

timeout

Sets the timeout used when filtering a particular document. Note that this is also used for
SummaryInformation and Detection.

Default value: 350 seconds

Syntax

long Configuration::timeout() const
Configuration& Configuration::timeout(long seconds)

IDOL KeyView (12.9) Page 76 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

unicode_byte_order_marker

If you set unicode_byte_order_marker to true, the filtered text in the output begins with a Unicode
byte order marker.

Default value: false

Syntax

bool Configuration::unicode_byte_order_marker() const
Configuration& Configuration::unicode_byte_order_marker(bool emit_bom)

The Detectioninfo Class

Provides information about the format of a file.

Defined in: Keyview Detect.hpp

appleDoubleEncoded

Returns true if the file is AppleDouble encoded

Syntax

bool DetectionInfo::appleDoubleEncoded() const

appleSingleEncoded

Returns true if the file is AppleSingle encoded.

Syntax
bool DetectionInfo::appleSingleEncoded() const
category

Returns the category as an enum.

Syntax

Category DetectionInfo::category() const

IDOL KeyView (12.9) Page 77 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

category_name

Returns the category of this file type.

Syntax

std::string DetectionInfo::category_name() const
description
Returns a brief description of the file format.

Syntax

std::string DetectionInfo::description() const
encrypted
Returns true if the file is encrypted.

Syntax

bool DetectionInfo::encrypted() const

extension

Returns the file extension, or an empty string if no extension is appropriate.
Syntax

std::string DetectionInfo::extension() const

format

Returns the file format as an enum.

Syntax

Format DetectionInfo::format() const

IDOL KeyView (12.9) Page 78 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

macBinaryEncoded

Returns true if the file is MacBinary encoded.

Syntax

bool DetectionInfo::macBinaryEncoded() const

version

Returns the version number of the file format.

Syntax

long DetectionInfo::version() const

wangGDLencoded

Returns true if the file is Wang GDL encoded.

Syntax

bool DetectionInfo::wangGDLencoded() const

windowRMSEncrypted

Returns true if the file is Windows Rights Management Services encrypted.

Syntax

bool DetectionInfo::windowRMSEncrypted() const

The Container Class

Defined in: Keyview Container.hpp

The Container class is a handle on a document that might contain subfiles. This allows access to each
subfile in a document.

The class defines standard methods for a collection:

IDOL KeyView (12.9) Page 79 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

Subfile Container::at(int64_tindex) const;
const_iterator Container::begin() const;
bool Container::empty() const;
const_iterator Container::end() const;
int64_t Container::size() const;

The Subfile Class

Defined in: Keyview_Subfile.hpp

The Subfile class represents a document within a container. It allows the subfile to be extracted, and
information about the subfile to be accessed.

extract

Extracts the subfile to the specified output file.

Syntax
template<typename Output_Type >

Subfile::extract(Output_Type &output) const

children

If the subfiles are arranged in a hierarchy, this returns a vector holding the indexes of all the children of
the subfiles.

Syntax
const std::vector<int64_t>& Subfile::children() const
index

Returns the index of this subfile.

Syntax

int64_t Subfile::index() const

IDOL KeyView (12.9) Page 80 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

is_folder

Returns whether or not this subfile is a folder.

Syntax

bool Subfile::is_folder() const

mail_metadata

Returns the mail metadata for this subfile.

Syntax

std::multimap<std::string, std::string> Subfile::mail_metadata() const

parent

If the subfiles are arranged in a hierarchy, this returns the index of the parent of this subfile. Returns -1
if no other subfile is a parent to this subfile.

Syntax

int64_t Subfile::parent() const

rawname

Returns the name of this subfile as a string.
IMPORTANT: This function returns the name from the source document without any modification.
If you intend to use this name when extracting the subfile, Micro Focus recommends that you

sanitize the value in order to protect your application against directory traversal attacks by malicious
files.

Syntax

std::string Subfile::rawname() const

size

Returns the size of this subfile in bytes.

IDOL KeyView (12.9) Page 81 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

Syntax

int64_t Subfile::size() const

time
Returns the time.

For subfiles that are a mail message, this value is the sent time. Otherwise, when available, it is the
last-modified-time. The time is presented as a single integer, which contains a count of 100-
nanosecond intervals since January 1, 1601.

Syntax

int64_t Subfile::time() const

type
Returns the subfile type.

The subfile types are an enumeration of the possible categories of subfiles, to allow you to handle them
differently. The categories cover structural information (for structured container files such as ZIPs), as
well as other details.

For details of the enumeration, see Enumerations, on page 85.

Syntax

Subfile::Type Subfile::type() const

The Summarylinfoltem Class

Defined in: Keyview_SummaryInformation.hpp

The SummaryInfoItem class is thetype returned by Session:get_summary_information to represent
a single metadata item. The SummaryInfoItem class has methods to inspect the name or type of the
item, provide conversion to string for ease of transition from metadata_map, and to provide access to
the item in its original type (by using a Visitor Pattern implementation).

apply_visitor

A method that allows you to access the summary information values in their original type through a
visitor pattemn.

IDOL KeyView (12.9) Page 82 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

To access the values, you must create a visitor class, with methods that can handle the possible item
value types. Then you pass this class to apply_visitor, which establishes the correct type and calls
the applicable member function on your visitor.

Syntax

template< typename ReturnT >
ReturnT apply_visitor(SummaryInfoVisitorBase< ReturnT >&) const;

convert_to_string

A string representation of the value of the summary information item. This method applies the same
transformations during the conversion to string as the metadata_map, on page 69 method.

Syntax

std::string convert_to_string() const;

name

The name of the summary information item.

Syntax

std::string name() const;

type

An enumeration value specifying the type of the summary information item.

Syntax

SummaryInfoType type() const;

The SummarylinfoVisitorBase Class

Defined in: Keyview_SummaryInformation.hpp

The SummaryInfoVisitorBase class is an abstract base class that operates with the
SummaryInfoItem: :apply visitor, on the previous page function. You use the
SummaryInfoVisitorBase class by defining a class that inherits from it, implementing the required
pure virtual member functions to handle each of the possible summary information types. You then call
apply_visitor, on the previous page with an instance of your new class. The apply_visitor, on the

IDOL KeyView (12.9) Page 83 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

previous page function ensures that the correct member function of your visitor is classed with the
summary information item in its original type.

visit_boolean

A method to handle summary information values of Boolean type.

Syntax

virtual ReturnT visit_boolean(bool val) = 0;

visit_datetime

A method to handle summary information values that are absolute date/time values, fomratted as an
integral number of epoch seconds (that is, seconds since the start of January 1st, 1970).

Syntax

virtual ReturnT visit_datetime(int64_t val) = 0;
visit_double
A method to handle summary information values of double type.

Syntax

virtual ReturnT visit_double(double val) = 0;
visit_integer

A method to handle summary information values of integer type.
Syntax

virtual ReturnT visit_integer(int32_t val) = 0;

visit_target_encoding_string

A method to handle string summary information values (titles, authors, and so on) presented in your
configured target encoding.

IDOL KeyView (12.9) Page 84 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

NOTE: KeyView can provide the string in the configured encoding only when it can determine the
source encoding. When the source encoding cannot be determined, it is likely that unicode string
have been used. See visit_utf8 string, below.

Syntax

virtual ReturnT visit_target_encoding_string(const std::string& val) = 0;

visit_utf8_string
A method to handle string summary information values (titles, authors, and so on) presented in UTF-8.

NOTE: You cancall visit_uft8_string even if your target encoding is configured to be UTF-8.

Syntax

virtual ReturnT visit_utf8_string(const std::string& val) = 0;

Enumerations

The following enumerations are defined in the C++ SDK.

Enumeration Description

Encoding An enumeration of character encodings. SeeCoded Character Sets, on
page 212 for more information.

Category File type categories (e.g. WordProcessor, Spreadsheet etc.) . These are
listed in Category Values in formats.ini under File Classes.

Format File formats (e.g. Word, Excel, PDF etc.). These are listed in Supported
Formats, on page 94.

LogicalPDFDirection This enumeration is used to specify paragraph ordering when filtering a

PDF.
SubFile::Type This enumeration lists the possible categories of subfiles.
SummaryInfoType This enumeration is a return type from the SummaryInfoItem class.

LogicalPDFDirection

The following table lists the values of the LogicalPDFDirection enumeration.

IDOL KeyView (12.9) Page 85 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

Value Description

raw Unstructured paragraph flow. This is the default behavior.

1tr Paragraphs are output from left to right.

rtl Paragraphs are ouput from right to left. This is most useful for languages with a right-to-

left reading order.

automatic The PDF reader determines the paragraph direction for each PDF page, and then sets
the direction accordingly.

SubFile:Type

The following table lists the values of the SubFile: : Type enumeration.

Value

Main
Attachment
OLE

Folder

Uncategorised_
Image

Embedded_Image
Embedded_Icon

Embedded_
Content

Embedded_
Preview

XrML

example:

NOT

IDOL KeyView (12.9)

Description

The subfile is at the top level of the main file. This is the default subfile type.
The subfile is an attachment in afile.

The subfile is an embedded OLE object in a compound document.

The subfile is a folder or the artificial root node.

An embedded image that has not been categorized by the reader.

An embedded image.
Anicon used to represent an embedded file.

An image used to represent content for an embedded file. This could be an
preview image of the actual content, or another representation such as an icon.

A preview of an embedded file. This is usually an image that shows part of the
embedded file.

The subfile contains the XrML that describes the RMS protection used on an
RMS-encrypted main file.

NOTE: The enumeration SubFile: : Type is a scoped enumeration, as well as being a member of
class subfile. Therefore, you must always refer to the values by using a full qualification. For

if(subfile.type() == SubFile::Type::Folder)

if(subfile.type() == Folder)

Page 86 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

SummaryinfoType

The SummaryInfoType enumeration has the following values:

Bool

Int

Double

TargetEncodingString

Utf8String

DateTime

if(item.type() == SummaryInfoType::Double)
NOT

if(item.type() == Double)

Exceptions

Defined in: Keyview_Errors.hpp

The following exceptions can be thrown by calls to the API:

encoding_not_converted_error
encoding_not_supported_error
external_subfile_error
format_not_supported_error
password_protected_error

keyview_error

All the exceptions inherit from keyview_error, which itself inherits from std

IDOL KeyView (12.9)

NOTE: The enumerator names for SummaryInfoType are generic, so SummaryInfoType is a scoped
enumeration; that is, you must always refer to the values by using a qualification with the
enumeration name. For example:

::exception

Page 87 of 270

Filter SDK C++ Programming Guide
Chapter 8: The keyview Namespace

IDOL KeyView (12.9) Page 88 of 270

Chapter 9: The keyview::io Namespace

Defined in: Keyview IO.hpp

The keyview: : io namespace contains predefined Input and Output types. These can be passed to
functions templated on Input_Type or Output_Type.

O INPULFIlE . 89
O OULPULFIle .. 89
O OULPUL S OUL il 90
O INMEMONY Il a0

InputFile

Can be used for: Input_Type

Unbuffered input from a file.

Constructors

InputFile(std::string filename_)

InputFile(std: :wstring filename_)

InputFile(std: :experimental::filesystem::path filename_)
InputFile(InputFile &&other)

OutputFile

Can be used for: Output_Type

Unbuffered output to afile.

Constructors

OutputFile(std::string filename_)
OutputFile(std::wstring filename_)
OutputFile(std::experimental::filesystem::path filename_)

IDOL KeyView (12.9) Page 89 of 270

Filter SDK C++ Programming Guide
Chapter 9: The keyview::io Namespace

OutputStdout

Can be used for: Output_Type

Output to the console.

Constructors

OutputStdout()

InMemoryfFile

Can be used for: Input_Type and Output_Type

Input or output from a std: : deque This class can be used for in-memory storage of afile.

Constructors

InMemoryFile()

IDOL KeyView (12.9) Page 90 of 270

Appendixes

This section lists supported formats, supported character sets, and redistributed files, and provides

information on format detection and developing a custom document reader.

Supported Formats, on page 92

Document Readers, on page 172

Character Sets, on page 204

Extract and Format Lotus Notes Subfiles, on page 218
File Format Detection, on page 231

List of Required Files for Redistribution, on page 239
Develop a Custom Reader, on page 248

Password Protected Files, on page 268

IDOL KeyView (12.9)

Page 91 of 270

Appendix A: Supported Formats

This section lists the file formats that KeyView can detect.

® Key to Supported Formats Table 92
® Supported Formats ... iiiiiiiiiiiill. 94

Key to Supported Formats Table

The supported formats table includes the following information:

Column Description

Format Name The format name that is returned by KeyView format detection.

« Inthe C API, these values are defined in the ENdocFmt enumeration in
adDocFmt. h.

« Inthe .NET API these values are defined in the
Autonomy.API.Filter.DocFormat enumeration.

« Inthe Java API these values are defined in the
com.verity.api.DocFormat enumeration.

« Inthe C++ APl these values are defined in keyview: : Format, used in
DetectionInfo whichis returned by Session: :detect().

Number The format number that is retumed by KeyView format detection. This is the
value associated with the Format Name in the relevant enumeration.

Category This value is used in the KeyView configuration file formats. ini to specify the
reader to use tofilter, export, or view the format. Several formats might have the
same category value.

Description A short description of the file format.
MIME Type The MIME type (if any).
Extension A list of common file extensions for the file format.

N