
Micro Focus
®

Modernization Workbench™

PL/I for OS/390 Support Guide

Copyright © 2009 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

1

Contents

Chapter: 1 Supported Platforms . 1

Chapter: 2 PL/I Technical Reference . 3
Support Notes . 3
Supported Complexity Metrics . 9
Relationship Projections from PL/I Statements 16

Chapter: 3 SQL Technical Reference . 21
Support Notes . 21
Complexity Metrics . 22
Relationship Projections from EXEC SQL Statements 23
Relationship Projections from SQL DDL Statements 24

Chapter: 4 JCL Technical Reference . 27
Support Notes . 27
Complexity Metrics . 29
Relationship Projections from JCL Statements 31

Chapter: 5 CICS Technical Reference . 35
Support Notes . 35
Complexity Metrics . 38
Relationship Projections from BMS Statements 41

 2

Relationship Projections from CSD, FCT, and PCT Statements 42
Relationship Projections from CICS Statements 46

Chapter: 6 IMS Technical Reference . 53
IMS Support Notes . 53
IMS Complexity Metrics . 58
Relationship Projections from DBD and PSB Statements 62
Relationship Projections from System Definition Statements 66

 1

1 Supported Platforms

This document describes Modernization Workbench (MW) support for PL/I
and related platforms:

• VisualAge PL/I for OS/390, Version 2. See VisualAge PL/I Language Refer-
ence, Publication No. GC26-9178-00, IBM, 1996.

• CICS Transaction Server for OS/390, Version 1 Release 3

– For CICS commands, see CICS Application Programming Reference,
CICS Transaction Server for OS/390, Release 3, Publication No.
SC33-1688-35, IBM, 2000.

– For Basic Mapping Support (BMS), see CICS Application Program-
ming Reference, CICS Transaction Server for OS/390, Release 3,
Publication No. SC33-1688-35, IBM, 2000.

– For resource definition, see CICS Resource Definition Guide, CICS
Transaction Server for OS/390, Release 3, Publication No.
SC33-1684-34, IBM, 2000.

• IMS, Version 7

– For DL/I calls, see Application Programming: Database Manager,
Publication No. SC26-9422-01, IBM, 2001.

– For PSB and DBD files, see Utilities Reference: System, Publication
No. SC26-9441-01, IBM, 2001.

– For MFS files, see Application Programming: Transaction Manager,
Publication No. SC26-9425-02, IBM, 2002.

• JCL, OS/390 Version 2 Release 10

– For JCL files, see OS/390 MVS JCL Reference, Publication No.
GC28-1757-09, IBM, 2000.

– For sort cards, DFSORT Application Programming Guide, Release
14, Publication No. SC33-4035-21, IBM, 2002.

• SQL. DB2 Universal Database for z/OS, Version 8. See DB2 UDB for z/OS
SQL Reference, Publication No. SC18-7426-02, IBM, 2005.

SUPPORTED PLATFORMS

 2

 3

2 PL/I Technical
Reference

This section describes MW support for PL/I applications:

• “Support Notes” on page 3 describes MW limitations, caveats, and special
usage for PL/I applications.

• “Supported Complexity Metrics” on page 9 describes the supported
complexity metrics for objects in the PL/I model.

• “Relationship Projections from PL/I Statements” on page 16 describes the
relationships generated from PL/I statements in programs and support
files.

Support Notes

These notes describe MW limitations, caveats, and special usage for PL/I appli-
cations. Make sure to check the Release Notes on the installation CD for any
late-breaking support information.

Verification

• Preprocessor %PUSH and %POP statements are ignored.

• The in-place initialization of an array of labels is not supported.

• Built-in subroutines and built-in functions are partially supported. The
parser does not match the argument list of calls to built-in subroutines
with their actual signatures. It may successfully verify source code
containing incorrect usage of built-in subroutines or built-in functions.

• The DATE type is not supported.

• The GENERIC attribute is partially supported.

PL/I TECHNICAL REFERENCE
SUPPORT NOTES

 4

Change Analyzer

• Built-in function calls are not analyzed for synonyms.

• Same memory location synonyms (DEFINED, BASED, UNION) are not
supported.

How Macros Are Modeled in HyperView

Although macro statements are not captured as HyperCode in the HyperView
Source pane, constructs resulting from macro expansion are correctly modeled
in the HyperView Context pane. Clicking on these constructs in the Context
pane moves the focus in the Source pane to the location where the macro is
used.

Execution Path Labelled Variables and Branching

Labelled variables and branching connected with exceptions (ON and SIGNAL
statements) are not supported.

Global Data Element Flow

• Memory release is not taken into account (for example, the FREE state-
ment).

• Entities which can be allocated to several offsets are doubled to convert
dynamic memory allocation into a static allocation. For example:

 DCL 1 DATA1,
 2 B FIXED;
 DCL 1 DATA2 LIKE DATA1;
 DCL 1 A1 BASED(P),
 2 B FIXED;
 DCL 1 A2 BASED(P),
 2 B FLOAT;
 DCL 1 A3 BASED(Q),
 2 B FIXED;
 P = ADDR(DATA1);
 Q = ADDR(DATA2);
 A1.B = 1; /* 1 */
 Q->A1.B = 1; /* 2 */
 P = Q; /* 3 */

• Entities for which memory is not allocated are still included in the Data
View.

PL/I TECHNICAL REFERENCE
SUPPORT NOTES

5

• Fetch and Pointer Add are not currently supported. DataView will be as
follows:

Common IMS, Domain Extraction, and Autoresolve Restrictions

Restrictions described in this section are applicable to:

• IMS Analysis

• Domain-Based Extraction

• Decision Autoresolution

Analysis

• Analysis is call-site independent, that is, all calls of a procedure are consid-
ered simultaneously. First, all the actual parameter values from the call
sites are evaluated and collected at the formal parameters and then the
procedure constant propagation is performed.

• Analysis is performed for a given file without processing other PL/I files
that could be called from the file being analyzed. ‘NonConst’ means that
the variable obtains no value and so will not be substituted. Moreover,
since it has no value, other variables may not be resolved as well.

Variable Value Processing

• When an assignment to a structure field or an array element is interpreted,
the entire structure and array value is calculated and stored to the value
set. Calculation of values of structure fields of array elements avoids this
redundancy, but a ‘Nonconst’ value may appear, or some values may not
be evaluated because of value set overflow.

• Entire alias values are calculated and stored in variables during processing,
with the result that more than one alias value may be stored in a variable
even if the variable has only one proper value. Calculation of proper values
of the variable avoids this redundancy, but a ‘Nonconst’ value may
appear, or some values may not be evaluated because of value set overflow.

• Maximum size of the value set of a variable is 32. This means that analysis
will not be fully complete when the amount of possible values exceeds this

DATA1 B A1 B A2 B

DATA2 B A1 B A2 B A3 B

PL/I TECHNICAL REFERENCE
SUPPORT NOTES

 6

number. A ‘NonConst’ value indicates that there are values that are not
calculated. Warnings about overflow of value sets of variables are not
generated.

• For performance reasons, the maximum size of a memory block is limited
to 32KB. Every access beyond this limit is ignored. (Memory blocks are
used for structures, arrays, and variables accessed through a DEFINED
attribute or pointers). This means that strings, structures and arrays that
do not fit in 32KB are not processed correctly.

• Read variables of a statement are enumerated independently from each
other in the sense that the statement is interpreted for all combinations
(no more than 16) of the values of the variables used in the statement. It
may lead to superfluous write values when the statement is evaluated for
some combinations that cannot occur during real program execution.

• A ‘NonConst’ value is added to a value set if some values cannot be eval-
uated or the number of the values exceeds the value set limit.

• During interpretation of an operator, a ‘NonConst’ value is added to
write variables if the number of combinations of values of read variables
exceeds the limit.

Loop Analysis

• Loops are executed until value sets of variables inside the loop body stop
expanding. Because lower and upper bounds and WHILE conditions are
ignored, the resulting sets of variable values may be superfluous.

• DO statements with a cyclic header are always treated as a loop control
flow construction, though the body of this statement can be executed only
once when the program is executed (for example, DO I=1;).

Array Processing

• If all values of an index in a slice expression cannot be evaluated, then the
slice is interpreted for all index values from the appropriate array bound
interval. The maximum size of the implicit set of index values is 32.

• All arithmetic operations (including built-ins) are performed with
DOUBLE values (there is no artificial increase/decrease of digit number).
Excess precision may be rounded away during arithmetic type casting.

• Assignment to an array is supported only if no two asterisks in the array
reference are separated with an ordinary array index or a structure
member selection. The system would try to minimize the amount of
memory erased by an unsupported array write, but it can destroy the
whole array.

PL/I TECHNICAL REFERENCE
SUPPORT NOTES

7

• Complex DEFINED is not supported (the DEFINED declaration is
mapped to the base field by field and dimension by dimension).
DEFINED(X) is interpreted strictly as if it was BASED(ADDR(X)).

• POSITION for variables defined on bit strings is not supported. Also, no
alignment other than on a one-byte boundary is supported.

• DEFINED on sparse areas is not supported. In a real system, one can write
DEFINED(A(*,4)) and if structures match it would map the newly
defined array on top of sparse array A(*,4). Structure matching,
however, is unsupported. This means that although this type of definition
is valid in a real system, it is not supported.

NOTE: With one possible exception: A(4,*) might work as expected if
structures are not only matching but strictly equivalent

• Array expressions are not supported, so A(*) = B(*) + 5 will not
work.

• Out-of-bounds access is always ignored and a warning is issued.

• Dynamic-sized arrays are not supported and are interpreted as fixed-sized
arrays with extent 10.

External Call Processing

• When external calls and unresolved dynamic internal calls are interpreted,
values of whole aliases are passed, so that such calls are treated as rewriting
their parameters, with the result that the values of the whole aliases are
assumed to be rewritten and are set to ‘NonConst’.

• It is assumed that interprocedure dynamic calls do not rewrite any context
variables (except parameters).

Unsupported Constructions

• Dynamic control flow is unsupported. The following cases are classified as
dynamic control flow:

– Jumps to expression of label type, such as label-variable, element of
array of labels, field of structure, and so forth (treated as program
stop).

– Jumps by GOTO outside procedure (treated as program stop).

• Condition handling:

– Control flow is constructed as if condition-handling operators are
replaced by empty operators. Nested operators are also skipped.

PL/I TECHNICAL REFERENCE
SUPPORT NOTES

 8

• Alias analysis processing:

– Aliases induced by RETURN(<addr expression>) are not supported

• Non-null pointers in structures are lost when the structure is passed as a
parameter to a top-level procedure (except PSB pointers).

Unsupported Evaluations

• Calculation of values of CONTROLLED or AREA variables.

• Calculation of initial values of variables declared in packages is unlike the
declaration of the variables in contained procedures.

• SUBSTR as a pseudovariable will not assign a value to a string with a previ-
ously undetermined value even if the substring covers the entire string.

• Assignment to the first argument of SUBSTR when this argument is an
array.

• VARYINGZ strings are handled as simple VARYING, that is, as using a
length field instead of a zero terminator.

• ALLOCATE is only supported if it is used on a single BASED variable and
each statement produces only one value of the pointer, no matter how
many times it may be called.

• Calculation with multibyte character set values for variables may or may
not work correctly.

PL/I TECHNICAL REFERENCE
SUPPORTED COMPLEXITY METRICS

9

Supported Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the PL/I model.

PL/I File Complexity Metrics

The table below describes the supported complexity metrics for the PL/I File
object.

Metric Description

Blank Lines Number of blank lines of source. Blank lines
in a comment block are not included.

Comment Lines Number of lines of source containing
comments only and no code. Includes blank
lines in a comment block.

Include Statements Number of include statements: %INCLUDE,
EXEC SQL INCLUDE.

Lines with Both Comments and Code Number of lines of source containing both
comments and code.

Macro Assignments Number of assignments to global macro
variables outside any macro procedure.

Macro Declarations Number of global macro variables. Macro
variables within macro procedures are not
counted.

Macro Lines Number of lines for include statements,
declarations, macro procedures, and other
%-statements, excluding macro invocations.
Blank lines and comments lines are ignored.

Macro Procedures Number of macro procedures declared in
the file.

Macro Statements Number of %-statements and statements
inside a macro procedure, excluding macro
invocations.

PL/I TECHNICAL REFERENCE
SUPPORTED COMPLEXITY METRICS

 10

PL/I Include File Complexity Metrics

The table below describes the supported complexity metrics for the PL/I Include
File object.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of include statements in the file and
any used include files.

Metric Description

Metric Description

Blank Lines Number of blank lines of source. Blank lines
in a comment block are not included.

Comment Lines Number of lines of source containing
comments only and no code. Includes blank
lines in a comment block.

Include Statements Number of include statements: %INCLUDE,
EXEC SQL INCLUDE.

Lines with Both Comments and Code Number of lines of source containing both
comments and code.

Macro Assignments Number of assignments to global macro
variables outside any macro procedure.

Macro Declarations Number of global macro variables. Macro
variables within macro procedures are not
counted.

Macro Lines Number of lines for include statements,
declarations, macro procedures, and other
%-statements, excluding macro invocations.
Blank lines and comments lines are ignored.

Macro Procedures Number of macro procedures declared in
the file.

Macro Statements Number of %-statements and statements
inside a macro procedure, excluding macro
invocations.

PL/I TECHNICAL REFERENCE
SUPPORTED COMPLEXITY METRICS

11

PL/I Program Complexity Metrics

The table below describes the supported complexity metrics for the PL/I
program object.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Metric Description

Absolute Complexity Binary Decisions divided by the number of
statements.

Asynchronous Calls Number of asynchronous calls, such as
Cobol INITIATE statements.

Binary Decisions Number of branching conditions in the flow
graph with two possible outcomes. Includes
statements with implicit condition
evaluation (loops, AT END, and so on): IF,
DO, SELECT.

Computational Statements Number of statements performing
arithmetic calculations.

Conditional Complexity Binary Decisions plus Unique Operands in
Conditions.

Conditional Statements Number of branching statements with
nested statements executed under certain
conditions: IF, DO, SELECT.

Cyclomatic Complexity v(G) = e - n + 2, where v(G) is the
cyclomatic complexity of the flow graph (G)
for the program in question, e is the number
of edges in G, and n is the number of nodes.
Quantity of decision logic. The number of
linearly independent paths (minimum
number of paths to be tested). v(G) = DE +
1, where DE is the number of binary
decisions made in the program.

Data Elements Number of declared data items (elementary
structures and their fields). The implicit
variable DFHEIBLK for CICS statements is
counted as a data element.

PL/I TECHNICAL REFERENCE
SUPPORTED COMPLEXITY METRICS

 12

Dead Data Elements Number of declared data items in dead
internal procedures.

Dead Data Elements from Includes Number of dead data elements in include
files. Dead data elements are unused
structures at any data level, all of whose
parents and children are unused.

Dead Lines Number of dead lines in programs and used
include files before macro preprocessing.
Dead lines are source lines containing Dead
Data Elements or Dead Statements. If an
include file is included multiple times, it is
counted each time.

Dead Lines from Includes Number of dead lines in include files and
used include files before macro
preprocessing. Dead lines are source lines
containing Dead Data Elements from
Includes or Dead Statements from Includes.
If an include file is included multiple times,
it is counted each time.

Dead Statements Number of dead statements in programs
and used include files. A dead statement is a
procedural statement that can never be
reached during program execution.
DECLARE statements are not calculated as
dead statements.

Dead Statements from Includes Number of dead statements in include files.
A dead statement is a procedural statement
that can never be reached during program
execution.

Difficulty D = (n1 / 2) * (N2 / n2), where n1 is Unique
Operators, N2 is Operands, and n2 is
Unique Operands.

Entry Points Number of program entry points:
PROCEDURE (top-level), ENTRY.

Error Estimate B = E**(2/3) / 3000, where E is
Programming Effort.

Essential Complexity Quantity of unstructured logic (a loop with
an exiting GOTO statement, for example).
v(G) for reduced graph without
D-structured primes.

Metric Description

PL/I TECHNICAL REFERENCE
SUPPORTED COMPLEXITY METRICS

13

Executable Statements All statements, except BEGIN, DECLARE,
DO (block), END, ENTRY, PACKAGE, and
PROCEDURE.

Extended Cyclomatic Complexity Cyclomatic Complexity plus Logical
Operators in Conditions. Number of all
paths in the program.

Function Points Lines of Code/K, where K=67. Estimate of
the number of end-user business functions
implemented by the program.

GoTo Statements Number of GOTO statements, including
conditional GOTOs.

Inner Call Statements Number of statements that invoke Inner
Procedures.

Inner Procedures Number of structured pieces of code that
cannot be invoked from external programs:
inner PL/I procedures.

Intelligent Content I = L * V, where L is Program Level and V is
Program Volume. Complexity of a given
algorithm independent of the language used
to express the algorithm.

IO Statements Number of statements performing
input/output operations: DISPLAY, PUT,
GET, READ, REWRITE, WRITE, DELETE,
OPEN, CLOSE, LOCATE, UNLOCK.

Lines of Code Number of lines of code before macro
preprocessing, including include files, but
not including comments and blank lines. If
an include file is included multiple times, it
is counted each time.

Logical Operators in Conditions Number of binary logical operators used in
conditions.

Loop Statements Number of repetitively executing
statements: DO.

Metric Description

PL/I TECHNICAL REFERENCE
SUPPORTED COMPLEXITY METRICS

 14

Maintainability Index MI = 171 - 5.2 * ln (PgmVolume) - 0.23 *
ExtCycComp - 16.2 * ln (LOC) + 50 * sin
(sqrt (2.46 * CommentLines/SourceLines)),
where PgmVolume is Program Volume,
ExtCycComp is Extended Cyclomatic
Complexity, LOC is Lines of Code,
CommentLines is Comment Lines, and
SourceLines is Source Lines.

Nesting Level Maximum nesting of conditional statements
within conditional statements (0 if no
conditional statements, 1 if no nesting).

Non-returning Calls Number of non-returning calls, such as
CICS XCTL statements.

Operands Number of operand occurrences (N2).
Operands are variables and literals used in
operators. Compare Unique Operands.

Operators Number of operator occurrences (N1).
Operators are executable statements and
unary and binary operations: +, -, *, /, **, ||,
^, &, |, NOT, AND, OR, <, <=, >, >=, =,
(subscript). Compare Unique Operators.

Parameters Number of PL/I PROCEDURE parameters.

Pointers Number of data elements declared as
pointers.

Program Length N = N1 + N2, where N1 is Operators and N2
is Operands.

Program Level L = 1 / D, where D is Difficulty.

Program Volume V = N * log2(n), where N is Program Length
and n is Vocabulary. Minimum number of
bits required to code the program.

Programming Effort E = V / L, where V is Program Volume and L
is Program Level. Estimated mental effort
required to develop the program.

Programming Time T = E / 18, where E is the Programming
Effort and 18 is Stroud’s Number. Estimated
amount of time required to implement the
algorithm, in seconds.

Returning Calls Number of returning calls.

Metric Description

PL/I TECHNICAL REFERENCE
SUPPORTED COMPLEXITY METRICS

15

Sliceable Dead Lines Number of Dead Lines that can be sliced
using the Application Architect Dead Code
Elimination method. Dead procedures
containing either preprocessor statements or
statements subject to macro preprocessor
replacement are not counted as sliceable
dead lines, since it is not always possible to
determine whether they can be safely
removed. Lines from include files are not
counted.

Unique Operands Number of distinct operands (n2).
Operands are variables and literals used in
operators. Uniqueness of literals is
determined by their notation. Compare
Operands.

Unique Operands in Conditions Number of distinct operands used in
conditions.

Unique Operators Number of distinct operators (n1).
Operators are executable statements and
unary and binary operations. Compare
Operators.

Vocabulary n = n1 + n2, where n1 is the number of
Unique Operators and n2 is the number of
Unique Operands.

Metric Description

PL/I TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM PL/I STATEMENTS

 16

Relationship Projections from PL/I Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for PL/I model objects from the state-
ments in programs and support files.

PL/I File Relationship Projections

The PL/I File object represents the source file for a PL/I program. The table
below describes the relationships generated from PL/I statements in the source
file.

Pl/I Include File Relationship Projections

The PL/I Include File object represents a PL/I include file. The table below
describes the relationships generated from PL/I statements in the include file.

Statement Format Relationship Entities

%INCLUDE %INCLUDE
member

PL/I File Includes PL/I
Include File

For resolved files:
PliInclude.Name =
<resolved-name>
For unresolved files:
PliInclude.Name =
<member>

PROCEDURE name: PROC
[(parms)]
[options(...)] ...

options(Main)

PL/I File Defines
Program

Program.Name =
<name>

Program.
MainProgram= True

Statement Format Relationship Entities

%INCLUDE %INCLUDE
member

PL/I Include File
Includes PL/I Include
File

For resolved files:
PliInclude.Name =
<resolved-name>
For unresolved files:
PliInclude.Name =
<member>

PL/I TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM PL/I STATEMENTS

17

PL/I Program Relationship Projections

The Program object represents a PL/I program. The table below describes the
relationships generated from PL/I statements in the program.

Statement Format Relationship Entities

CALL DCL name
ENTRY;
...
CALL name ...

Program Calls
Program Entry Point

ProgramEntry.Name =
<name>

CALL
(dynamic)

DCL varname
ENTRY
VARIABLE;
...
CALL varname ...

Program Calls
Program Entry
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
#Also Known As =
<program-name>.
Calls.<varname>
Decision Type =
PROGRAMENTRY…

ENTRY name: ENTRY ... Program Has Program
Entry Point

ProgramEntry.Name =
<name>
ProgramEntry.
MainEntry = False

PROCEDURE name: PROC
[(parms)]
[options(...)] ...

Program Has Program
Entry Point

Program.Name =
<name>

ProgramEntry.
MainEntry = True

PL/I TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM PL/I STATEMENTS

 18

File Description DCL name FILE;
OPEN FILE
(name);
DCL name FILE;
OPEN FILE
(name) TITLE
(‘title’);

See CRUD statements
below.

external-file-name =
<name>
external-file-name =
<title>
File attributes:
Name =
<program-name>.
external-file-name
DD Name =
external-file-name
File Type = FILE

NOTE: A File object is
generated only when the
first CRUD statement
for the file is encoun-
tered. File attributes do
not depend on the
CRUD statement itself.

File Description
(dynamic)

DCL varname
FILE VARIABLE;
OPEN FILE
(varname);
DCL name FILE;
OPEN FILE
(name) TITLE
(vartitle);

See CRUD statements
below.

decision-var =
<varname>
decision-var = <name>
Decision attributes:
Name =
 <program-name>@
<internal-name>
#Also Known As
=<program-name>.
<decision-rel>.
<decision-var>
Decision Type =
DATAPORT

NOTE: A Decision object
is generated only when
the first CRUD state-
ment for the file is
encountered. Only the
Also Known As attribute
depends on the CRUD
statement itself.

DELETE DELETE FILE
(name) …

Program Deletes From
File

See File Description for
File attributes.

DELETE
(dynamic)

DELETE FILE
(varname) …

Program Deletes From
File Decision

See File Description
(dynamic) for Decision
attributes.

GET GET FILE (name)
…

Program Reads File See File Description for
File attributes.

Statement Format Relationship Entities

PL/I TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM PL/I STATEMENTS

19

GET (dynamic) GET FILE
(varname) …

Program Reads File
Decision

See File Description
(dynamic) for Decision
attributes.

PUT PUT FILE (name)
…

Program Inserts Into
File

See File Description for
File attributes.

PUT (dynamic) PUT FILE
(varname) …

Program Inserts Into
File Decision

See File Description
(dynamic) for Decision
attributes.

READ READ FILE
(name) …

Program Reads File See File Description for
File attributes.

READ (dynamic) READ FILE
(varname) …

Program Reads File
Decision

See File Description
(dynamic) for Decision
attributes.

REWRITE REWRITE FILE
(name) …

Program Updates File See File Description for
File attributes.

REWRITE
(dynamic)

REWRITE FILE
(varname) …

Program Updates File
Decision

See File Description
(dynamic) for Decision
attributes.

WRITE WRITE FILE
(name) …

Program Inserts Into
File

See File Description for
File attributes.

WRITE
(dynamic)

WRITE FILE
(varname) …

Program Inserts Into
File Decision

See File Description
(dynamic) for Decision
attributes.

Statement Format Relationship Entities

PL/I TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM PL/I STATEMENTS

 20

 21

3 SQL Technical
Reference

This section describes MW support for EXEC SQL statements in programs and
SQL DDL statements in DDL files:

• “Support Notes” on page 21 describes MW limitations, caveats, and
special usage for SQL.

• “Complexity Metrics” on page 22 describes the supported complexity
metrics for objects in the SQL model.

• “Relationship Projections from EXEC SQL Statements” on page 23
describes the relationships generated from EXEC SQL statements in
programs.

• “Relationship Projections from SQL DDL Statements” on page 24
describes the relationships generated from SQL DDL statements in DDL
files.

Support Notes

These notes describe MW limitations, caveats, and special usage for SQL. Make
sure to check the Release Notes on the installation CD for any late-breaking
support information.

Renaming DCLGEN Include Files

Installations that use DCLGEN include files with the same names as ordinary
include files should rename the DCLGEN includes with a DCLGEN prefix and
dot (.) separator, so that both types of file can be registered: ATTR.<valid exten-
sion>, for example, and DCLGEN.ATTR.<valid extension>. When the parser
encounters EXEC SQL INCLUDE <name>, it first searches for
DCLGEN.<name>.<valid extension>, and if not found, then <name>.<valid
extension>.

SQL TECHNICAL REFERENCE
COMPLEXITY METRICS

 22

NOTE: Unresolved references to library members are always reported with the
longest name. This means that if you subsequently register a missing include file
with a short name, the referencing source file will not be invalidated. It’s up to you
to remember that the referencing source needs to be reverified.

Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the SQL model.

DDL File Complexity Metrics

The table below describes the supported complexity metrics for the DDL File
object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Columns Number of columns.

Foreign Keys Number of foreign keys.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Primary Keys Number of primary keys.

Source Lines Number of lines of source, including blank
lines and comments.

Tables Number of tables.

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM EXEC SQL STATEMENTS

23

Relationship Projections from EXEC SQL
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for SQL model objects from the EXEC
SQL statements in programs.

Program Relationship Projections

The Program object represents a Cobol program. The table below describes the
relationships generated from EXEC SQL statements in the program.

Statement Format Relationship Entities

ALTER TABLE ALTER TABLE
<table-name> …

Program Manipulates
Table

Table.Name =
<table-name>

CREATE INDEX CREATE INDEX
<index-name>
ON <table-name>
…

Program Manipulates
Table

Table.Name =
<table-name>

CREATE TABLE CREATE TABLE
<table-name>...

Program Manipulates
Table

Table attributes:
Name = <table-name>
Origin =
<source-file-path>

DELETE DELETE FROM
<table-name>…

Program Deletes From
Table

Table.Name =
<table-name>

DROP TABLE DROP TABLE
<table-name>

Program Manipulates
Table

Table.Name =
<table-name>

INSERT INSERT INTO
<table-name> …

Program Inserts Into
Table

Table.Name =
<table-name>

SELECT SELECT …
FROM
table-name

Program Reads Table Table.Name =
<table-name>

UPDATE UPDATE
<table-name> …

Program Updates
Table

Table.Name =
<table-name>

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SQL DDL STATEMENTS

 24

Relationship Projections from SQL DDL
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for SQL model objects from the SQL DDL
statements in DDL files.

DDL File Relationship Projections

The DDL File object represents a Data Definition Language file. The table below
describes the relationships generated from SQL DDL statements in the file.
Note the following:

• To maintain uniqueness of ERD entity names, MW specifies SQL names
with an SQLID prefix, defined by a corresponding SET CURRENT SQLID
statement. Names of Table objects are prefixed with CURRENT SQLID
when it is set by a preceding SET CURRENT SQLID statement.

Statement Format Relationship Entities

ALTER TABLE ALTER TABLE
table-name …

DDL File Refers To
Table

Table attributes:
Name = <table-name>
Is View = False

COMMENT COMMENT ON
[TABLE]
table-name …

DDL File Refers To
Table

Table.Name =
<table-name>

CREATE ALIAS CREATE ALIAS
alias-name ON
table-name …

DDL File Defines
Table

Table Represents
Table

Table attributes:
Name = <alias-name>
Is View = True
Source =
"DBSchema.mdb’
Origin =
<source-file-path>

Table.Name =
<table-name>

CREATE INDEX CREATE INDEX
index-name ON
table-name …

DDL File Refers To
Table

Table.Name =
<table-name>

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SQL DDL STATEMENTS

25

CREATE
SYNONYM

CREATE
SYNONYM
synonym FOR
authorization-na
me.table-name…

DDL File Defines
Table

Table Represents
Table

Table attributes:
Name = <synonym>
Is View = True
Source =
"DBSchema.mdb"
Origin =
<source-file-path>

Table.Name =
<table-name>

CREATE TABLE CREATE TABLE
table-name …

DDL File Defines
Table

Table attributes:
Name = <table-name>
Is View = False
Source =
"DBSchema.mdb"
Origin =
<source-file-path>

CREATE VIEW CREATE VIEW
view-name …AS
SELECT …
FROM
table-name

DDL File Defines
Table

Table Represents
Table

Table attributes:
Name = <view-name>
Is View = True
Source =
"DBSchema.mdb"
Origin =
<source-file-path>

Table.Name =
<table-name>

Referential
constraint

FOREIGN KEY
key
REFERENCES
base-table…

DDL File Refers To
Table

Table.Name =
<base-table>

SET CURRENT
SQLID

SET CURRENT
SQLID =
'user-name'

sqlid = <user-name>

Statement Format Relationship Entities

SQL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SQL DDL STATEMENTS

 26

 27

4 JCL Technical
Reference

This section describes MW support for JCL files, JCL procedures, and control
card files:

• “Support Notes” on page 27 describes MW limitations, caveats, and
special usage for JCL applications.

• “Complexity Metrics” on page 29 describes the supported complexity
metrics for objects in the JCL model.

• “Relationship Projections from JCL Statements” on page 31 describes the
relationships generated from statements in JCL files and procedures.

Support Notes

These notes describe MW limitations, caveats, and special usage for JCL appli-
cations. Make sure to check the Release Notes on the installation CD for any
late-breaking support information.

External Control Cards Registration Requirements

Both inline cards (DD *) and external cards (DSN=) are supported. Source files
for external cards are registered in the repository as Control Cards files, and
must be named as follows, where .srt is the default file extension:

For an ordinary dataset:

//SYSIN DD DSN=MY.SORTCARDS.LIB.FILE1

the source file name must be MY.SORTCARDS.LIB.FILE1.srt.

For a PDS member:

//SYSIN DD DSN=MY.SORTCARDS.LIB(FILE2)

JCL TECHNICAL REFERENCE
SUPPORT NOTES

 28

the source file name must be MY.SORTCARDS.LIB(FILE2).srt, or if the
member name is unique, FILE2.srt.

For a generation dataset:

//SYSIN DD DSN=MY.SORTCARDS.LIB.FILE3(+1)

the source file name must be MY.SORTCARDS.LIB.FILE3.srt, without the
generation number.

Sort Cards Verification Requirements

Before verification, specify the names of the sort utilities you use in the Sort
Program Aliases workspace verification option for JCL files. The defaults are
SORT, DFSORT, and SYNCSORT.

Sort Cards Parser Output

The parser creates an artificial program entity that defines the inputs and
outputs for each sort utility invocation. The program has a name of the form
JCLFileName.JobName.StepName.SequenceNumber, where SequenceNumber
identifies the order of the step in the job. For every sort invocation in the
program, you can view data structures for sort input and output records and the
data movements between them in the HyperCode for the JCL file.

Detecting Programs Started by Driver Utilities

Use the Driver Utility Analysis feature to model programs started by a driver
utility. For more information, see the Parser Reference Manual in the work-
bench documentation set.

JCL TECHNICAL REFERENCE
COMPLEXITY METRICS

29

Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the JCL model.

JCL File Complexity Metrics

The table below describes the supported complexity metrics for the JCL File
object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Control Cards Usages Number of DD statements referencing
control cards identified in Legacy.xml to
generate program to control card
relationships.

EXEC Cataloged Procedure Steps Number of EXEC statements invoking
cataloged procedures.

EXEC In-stream Procedure Steps Number of EXEC statements invoking
instream procedures.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Steps Number of top-level steps in the job (not
including steps in invoked procedures).

Total EXEC Cataloged Procedure Steps Number of EXEC statements invoking
cataloged procedures in the job and invoked
procedures. If a procedure is invoked
multiple times, it is counted each time.

Total Include Statements Number of include statements in the job,
invoked procedures, and any include files.

JCL TECHNICAL REFERENCE
COMPLEXITY METRICS

 30

JCL Procedure Complexity Metrics

The table below describes the supported complexity metrics for the JCL Proce-
dure File object.

Job Complexity Metrics

The table below describes the supported complexity metrics for the Job object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Control Cards Usages Number of DD statements referencing
control cards identified in Legacy.xml to
generate program to control card
relationships.

EXEC Cataloged Procedure Steps Number of EXEC statements invoking
cataloged procedures.

EXEC In-stream Procedure Steps Number of EXEC statements invoking
instream procedures.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Steps Number of steps in the procedure.

Metric Description

Steps Number of steps in the job and invoked
procedures. If a procedure is invoked
multiple times, it is counted each time.

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

31

Control Cards File Complexity Metrics

The table below describes the supported complexity metrics for the Control
Cards File object.

Relationship Projections from JCL Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for JCL model objects from the statements
in JCL files and procedures.

JCL File Relationship Projections

The JCL File object represents a Job Control Language file. The tables below
describe the relationships generated from JCL statements in the file.

Note the following:

• Job steps are enumerated from the beginning of the job, after all proce-
dures are expanded. The EXEC PROC= command is counted first, as a
separate step. Thereafter, all steps inside the invoked procedure are
enumerated. The number of job steps, then, is the number of all EXEC
commands processed during job execution.

• No relationships are generated for EXECs to internal procedures.

• For steps placed directly in a job, the Step Full Name attribute of the Data
Connector object generated from DD statements is <execName> if speci-

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

 32

fied, or “Ln <line-number>” if <execName> is empty. For steps within
procedures, the following is the path to the step from the EXEC PROC=
command placed inside the job through all intermediate procedures:

 <jobExecName>[/<ProcName>.<procExecName>]…

• An invoked program is known as a system program if it is defined with a
sort utility alias in the workspace verification options for a JCL file, or
specified in the <SystemPrograms> section of the Legacy.xml file.

Statement Format Relationship Entities

DD
(program)

//[execName]
EXEC PGM =
ProgName
…//ddName DD
DSN =
DSName,…

Job Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
Refers To File

Data Connector
attributes:
Name =
<Job.Name>.
<UniqueID>
Program Entry Point =
<ProgName>
DD Name = <ddName>
Step Name =
<execName>
Step Full Name =
<StepPath>
Step Number =
<StepNumber>

Datastore.Name =
<dsn-name>
Datastore.DSN =
<dsn-name>

File.Name =
<ProgName>.
<ddName>
File.PortName =
<ddName>

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

33

DD
(system
program)

//[execName]
EXEC PGM =
SysProgName
…//ddName DD
DSN =
DSName,…

Job Has Data
Connector

Data Connector
Refers To Data Store

Connector Is Read In
System Program

Connector Is Written
In System Program

Data Connector
attributes:
Name =
<Job.Name>.
<UniqueID>
Program Entry Point =
<ProgName>
DD Name = <ddName>
Step Name =
<execName>
Step Full Name =
<StepPath>
Step Number =
<StepNumber>

Datastore.Name =
<dsn-name>
Datastore.DSN =
<dsn-name>

Sysprogram.Name =
<SysProgName>

EXEC
(program)

//EXEC PGM =
ProgName

Job Runs Program
Entry Point

ProgramEntry.Name =
<ProgName>

EXEC
(system
program)

//EXEC PGM =
SysProgName

Job Runs System
Program

Sysprogram.Name =
<SysProgName>

EXEC
(procedure)

//[execName]
EXEC [PROC =]
ExternalProc
Name

JCL File Executes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<ExternalProcName>

INCLUDE //INCLUDE
MEMBER =
member

JCL File Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
Jclproc.Name =
<member>

-INC (Librarian) -INC member JCL File Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
Jclproc.Name =
<member>

Statement Format Relationship Entities

JCL TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM JCL STATEMENTS

 34

JCL Procedure Relationship Projections

The JCL Procedure File object represents a Job Control Language Procedure
file. The tables below describe the relationships generated from JCL statements
in the file.

JOB //jobName JOB
[parameters]

JCL File Defines Job Job.Name =
<Jcl.Name>.
<jobName>
Job.JobName =
<jobName>
Job.StepsNum =
<JobStepsNumber>

Statement Format Relationship Entities

Statement Format Relationship Entities

EXEC //[execName]
EXEC
[PROC=]External
ProcName

JCL File Executes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<ExternalProcName>

INCLUDE // INCLUDE
MEMBER =
member

JCL Procedure
Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<member>

-INC (Librarian) -INC member JCL Procedure
Includes JCL
Procedure

For resolved files:
JclProc.Name =
<resolved-name>
For unresolved files:
JclProc.Name =
<member>

 35

5 CICS Technical
Reference

This section describes MW support for BMS files and copybooks, CSD, FCT,
and PCT files, and CICS statements in programs:

• “Support Notes” on page 35 describes MW limitations, caveats, and
special usage for CICS applications.

• “Complexity Metrics” on page 38 describes the supported complexity
metrics for objects in the CICS model.

• “Relationship Projections from BMS Statements” on page 41 describes the
relationships generated from statements in BMS files and copybooks.

• “Relationship Projections from CSD, FCT, and PCT Statements” on page
42 describes the relationships generated from statements in CSD, FCT,
and PCT files.

• “Relationship Projections from CICS Statements” on page 46 describes
the relationships generated from CICS statements in programs.

Support Notes

These notes describe MW limitations, caveats, and special usage for CICS appli-
cations. Make sure to check the Release Notes on the installation CD for any
late-breaking support information.

Deprecated CICS Statements

Deprecated CICS statements are supported. Programs containing these state-
ments verify successfully.

CICS TECHNICAL REFERENCE
SUPPORT NOTES

 36

Keyword Permutations

Keywords without parameters cannot be permuted if they start a statement.
SEND TEXT NOEDIT, for example, must start with SEND TEXT NOEDIT.
TEXT or NOEDIT should not be placed after other statement’s keywords and
parameters. The following statement is invalid, for example:

EXEC CICS SEND TEXT LENGTH (10) NOEDIT

Generally, you can permute statement keywords with parameters in any order,
keeping in mind that the first keyword should not be permuted with the others.
Below is a list of statements for which you cannot permute the second keyword.
That is, the keywords must appear in the order shown:

• CHANGE PASSWORD

• CHANGE TASK

• CHECK ACQPROCESS

• CHECK ACTIVITY

• CHECK ACQACTIVITY

• CHECK TIMER

• DEFINE ACTIVITY

• DEFINE COMPOSITE

• DEFINE INPUT EVENT

• DEFINE PROCESS

• DEFINE TIMER

• DELETE CONTAINER

• DELETE COUNTER

• DELETE DCOUNTER

• EXTRACT CERTIFICATE

• GET CONTAINER

• GETNEXT ACTIVITY

• GETNEXT CONTAINER

• GETNEXT EVENT

• GETNEXT PROCESS

• INQUIRE ACTIVITYID

CICS TECHNICAL REFERENCE
SUPPORT NOTES

37

• INQUIRE CONTAINER

• INQUIRE EVENT

• INQUIRE TIMER

• LINK PROGRAM

• RETRIEVE SUBEVENT

• WAIT CONVID

• WAIT JOURNALNAME

• WAIT JOURNALNUM

• WRITE JOURNALNAME

• WRITE JOURNALNUM

Statements Taken to Be the Same

The statements in each set of statements below are recognized as the same state-
ment and assumed to handle a united set of conditions:

• DOCUMENT CREATE, DOCUMENT INSERT, DOCUMENT
RETRIEVE, DOCUMENT SET

• ENDBROWSE ACTIVITY, ENDBROWSE CONTAINER,
ENDBROWSE EVENT, ENDBROWSE PROCESS

• START, START CHANNEL

• SYNCPOINT, SYNCPOINT ROLLBACK

• WEB ENDBROWSE HTTPHEADER, WEB ENDBROWSE FORM-
FIELD

• WEB READ FORMFIELD, WEB READ HTTPHEADER

• WEB READNEXT FORMFIELD, WEB READNEXT

• WEB STARTBROWSE FORMFIELD, WEB STARTBROWSE HTTP-
HEADER

BTS and CHANNEL versions of statements are not distinguished and assumed
to handle a united set of conditions.

CICS TECHNICAL REFERENCE
COMPLEXITY METRICS

 38

Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the CICS model.

BMS File Complexity Metrics

The table below describes the supported complexity metrics for the BMS File
object.

BMS Copybook File Complexity Metrics

The table below describes the supported complexity metrics for the BMS Copy-
book File object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Screens Number of screens.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of include statements in the file and
any used include files.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

CICS TECHNICAL REFERENCE
COMPLEXITY METRICS

39

Screen Complexity Metrics

The table below describes the supported complexity metrics for the Screen
object.

CSD File Complexity Metrics

The table below describes the supported complexity metrics for the CSD File
object.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Metric Description

Hidden Fields Number of hidden fields.

Input Fields Number of input fields.

Input/Output Fields Number of input/output fields.

Output Fields Number of output fields.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

CICS TECHNICAL REFERENCE
COMPLEXITY METRICS

 40

FCT File Complexity Metrics

The table below describes the supported complexity metrics for the FCT File
object.

PCT File Complexity Metrics

The table below describes the supported complexity metrics for the PCT File
object.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM BMS STATEMENTS

41

Relationship Projections from BMS Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for CICS model objects from the state-
ments in BMS files and copybooks.

BMS File Relationship Projections

The BMS File object represents a BMS file in a CICS application. The table
below describes the relationships generated from statements in the BMS file.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Statement Format Relationship Entities

COPY COPY member BMS File Includes
BMS Copybook File

For resolved files:
BmsCopy.Name =
<resolved-name>
For unresolved files:
BmsCopy.Name =
<member>

DFHMDI mapset
DFHMSD...
map DFHMDI ...

BMS File Defines
Screen

Map.Name=
<mapset>.<map>

DFHMDI
(no mapset)

map DFHMDI ... BMS File Defines
Screen

Map.Name =
<source-filename-
without-extension>.
<map>

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

 42

BMS Copybook File Relationship Projections

The BMS Copybook File object represents a BMS copybook included in a BMS
file or in another BMS copybook. The table below describes the relationships
generated from statements in the BMS copybook file.

Relationship Projections from CSD, FCT, and
PCT Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for CICS model objects from statements
in CSD, FCT, and PCT files.

CSD File Relationship Projections

The CSD File object represents a CICS System Definition dataset. The table
below describes the relationships generated from statements in the CSD file.

Statement Format Relationship Entities

COPY COPY member BMS Copybook File
Includes BMS
Copybook File

For resolved files:
BmsCopy.Name =
<resolved-name>
For unresolved files:
BmsCopy.Name=
<member>

Statement Format Relationship Entities

DEFINE
DOCTEMPLATE

DEFINE
DOCTEMPLATE
(doc-name)
 GROUP
 (group-name)...

CSD File Defines
Document
Template

DocTemplate.Name =
<doc-name>

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

43

DEFINE FILE DEFINE
 FILE
 (file-name)
 GROUP
 (group-name)
 DSNAME
 (dsn-name)
 LOAD(YES)…

NOTE: Nothing is
generated if LOAD
(NO) is specified.

CSD File Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
attributes:
Name =
CICS.<file-name>
DD Name =
<file-name>
Program Entry
Point = *

Datastore.Name =
<dsn-name>

DEFINE FILE
(base file)

NSRGROUP
(base-group)

Base file:
DEFINE FILE
(base-group)
DSNAME
(base-dsn-name)

Data Store Based On
Data Store

BaseDatastore.Name
= <base-dsn-name>

DEFINE
TRANSACTION

DEFINE
 TRANSACTION
 (tran-name)
 GROUP
 (group-name)
 PROGRAM
 (prg-name)...

CSD File Defines
Transaction

Transaction Initiates
Program Entry
Point

Transaction.Name =
<tran-name>

ProgramEntry.Name
= <prg-name>
Program.Root = True

NOTE: Root is empty if
Program does not exist
in the repository before
CSD file verification.

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

 44

FCT File Relationship Projections

The FCT File object represents a CICS File Control Table. The table below
describes the relationships generated from statements in the FCT file.

Statement Format Relationship Entities

DFHFCT
DATASET

DFHFCT TYPE =
DATASET,
DATASET =
data-set, DSNAME
= dsn-name...

FCT File Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
attributes:
Name =
CICS.<file-name>
DD Name =
<file-name>
Program Entry
Point = *

Datastore.Name =
<dsn-name>

DFHFCT
DATASET
(base file)

BASE = base-name

Base file:
DFHFCT TYPE =
DATASET,
DATASET =
base-name,
DSNAME =
base-dsn-name…

NOTE: Base file may
be defined with any
TYPE = FILE or
TYPE = DATASET
statement.

Data Store Based On
Data Store

BaseDatastore.Name
= <base-dsn-name>

DFHFCT FILE DFHFCT TYPE =
FILE,
FILE = file-name,
DSNAME =
dsn-name...

FCT File Has Data
Connector

Data Connector
Refers To Data Store

Data Connector
attributes:
Name =
CICS.<file-name>
DD Name =
<file-name>
Program Entry
Point = *

Datastore.Name =
<dsn-name>

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CSD, FCT, AND PCT STATEMENTS

45

PCT File Relationship Projections

The PCT File object represents a CICS Program Control Table. The table below
describes the relationships generated from statements in the PCT file.

DFHFCT FILE
(base file)

BASE = base-name

Base file:
DFHFCT TYPE =
FILE,
FILE =
base-name,
DSNAME =
base-dsn-name...

NOTE: Base file may
be defined with any
TYPE=FILE or
TYPE=DATASET
statement.

NOTE: Root is empty if
Program does not exist
in the repository
before PCT file verifi-
cation.

Data Store Based On
Datastore

BaseDatastore.Name
= <base-dsn-name>

Statement Format Relationship Entities

Statement Format Relationship Entities

DFHPCT DFHPCT TYPE =
ENTRY, TRANSID
= tran-name,
PROGRAM =
prg-name

PCT File Defines
Transaction

Transaction Initiates
Program Entry
Point

Transaction.Name =
<tran-name>

ProgramEntry.Name
= <prg-name>
Program.Root = True

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 46

Relationship Projections from CICS Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for CICS model objects from CICS state-
ments in programs.

Program Relationship Projections

The Program object represents a Cobol program. The tables below describe the
relationships generated from CICS statements in the program.

Statement Format Relationship Entities

any EXEC CICS Program.EnvFlags =
+CICS

NOTE: EnvFlags may
contain other environ-
ment codes, so search as
follows: Like '*+CICS*'

DELETE DELETE FILE
 ('file-name') …

Program Deletes From
File

File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

DELETE
(dynamic)

DELETE FILE
 (file-name) …

Program Deletes From
File Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
DeletesDataPort.
<file-name>
Decision Type =
DATAPORT…

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

47

DOCUMENT DOCUMENT
CREATE
TEMPLATE
('name') …
DOCUMENT
INSERT
TEMPLATE
('name') …

Program Uses
Document Template

DocTemplate.Name =
<name>

DOCUMENT
(dynamic)

DOCUMENT
CREATE
TEMPLATE
(name) …
DOCUMENT
INSERT
TEMPLATE
(name) …

Program Uses
Document Template
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program- name>.
UsesDocTemplate
<name>
Decision Type =
DOCTEMPLATE…

INVOKE INVOKE
WEBSERVICE
('name')
OPERATION
('opname') …

Program Invokes
Service

Service.Name =
<name>.<opname>

INVOKE
(dynamic)

INVOKE
WEBSERVICE
(name)
OPERATION
('opname') …
INVOKE
WEBSERVICE
('name')
OPERATION
(opname) …
INVOKE
WEBSERVICE
(name)
OPERATION
(opname) …

Program Invokes
Service Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program- name>.
InvokesService.<name>
Decision Type =
SERVICE…

LINK LINK
PROGRAM
('pgm-name') …

Program Links
Program Entry Point

ProgramEntry.Name =
<program-name>

NOTE: If literal is long,
only 8 leading characters
are used as program
name.

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 48

LINK
(dynamic)

LINK
PROGRAM
(pgm-name) …

Program Links
Program Entry Point
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program- name>.
Links.
<program-name>
Decision Type =
PROGRAMENTRY…

READ
READNEXT
READPREV

READ FILE
 ('file-name') …
READNEXT
 FILE
 ('file-name') …
READPREV
 FILE
 ('file-name') …

Program Reads File File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

READ
READNEXT
READPREV
(dynamic)

READ FILE
 (file-name) …
READNEXT
 FILE
 (file-name) …
READPREV
 FILE
 (file-name) …

Program Reads File
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program-name>.
ReadsDataPort.
<file-name>
Decision Type =
DATAPORT…

RECEIVE RECEIVE … Program.OnlineFlag =
true

RECEIVE MAP RECEIVE
 MAP
 ('map-name')
 MAPSET
 ('mapset') …
RECEIVE
 MAP
 ('map-name')

Program Receives
Screen

Screen.Name =
<mapset>.
<map-name>
Program.OnlineFlag =
true
Screen.Name = <map-
name>.<map-name>
Program.OnlineFlag =
true

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

49

RECEIVE MAP
(dynamic)

RECEIVE
 MAP
 (map-name)
 MAPSET
 (‘mapset’) …
RECEIVE
 MAP
 (map-name)
RECEIVE
 MAP
 (‘map-name’)
 MAPSET
 (mapset) …
RECEIVE
 MAP
 (map-name)
 MAPSET
 (mapset) …

Program Receives
Screen Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
Receives. <map-name>
Decision Type = MAP
…
Program.OnlineFlag =
true

RETURN RETURN
 TRANSID
 ('name') …

Program Starts
Transaction

Transaction.Name =
<name>

NOTE: If literal is long,
only 4 leading characters
are used as program
name.

RETURN
(dynamic)

RETURN
 TRANSID
 (name) …

Program Starts
Transaction Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program-name>.
Starts.<name>
Decision Type =
TRANSACTION

REWRITE REWRITE
 FILE
 ('file-name') …

Program Updates File File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 50

REWRITE
(dynamic)

REWRITE
 FILE
 (file-name) …

Program Updates File
Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
UpdatesDataPort.
<file-name>
Decision Type =
DATAPORT…

SEND MAP SEND MAP
 ('map-name')
 MAPSET
 ('mapset') …
SEND MAP
 ('map-name')

Program Sends Screen Screen.Name =
<mapset>.
<map-name>
Program.OnlineFlag =
true
Screen.Name = <map-
name>.<map-name>
Program.OnlineFlag =
true

SEND MAP
(dynamic)

SEND MAP
 (map-name)
 MAPSET
 ('mapset') …
SEND MAP
 (map-name)
SEND MAP
 (‘map-name’)
 MAPSET
 (mapset) …
SEND MAP
 (map-name)
 MAPSET
 (mapset) …

Program Sends Screen
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
<program-name>.
Sends.<mapset>
Decision Type = MAP
…
Program.OnlineFlag =
true

SEND SEND Program.OnlineFlag =
true

START START
 TRANSID
 ('name') …

Program Starts
Transaction

Transaction.Name =
<name>

NOTE: If literal is long,
only 4 leading characters
are used as program
name.

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

51

START
(dynamic)

START
 TRANSID
 (name) …

Program Starts
Transaction Decision

Decision attributes:
Name =
 <program-name>@
 <internal-name>
Also Known As =
<program-name>.
Starts.<name>
Decision Type =
TRANSACTION

WRITE WRITE FILE
 ('file-name') …

Program Inserts Into
File

File attributes:
Name =
<program-name>.
file-name
DD Name = file-name
File Type = FILE
Online Flag = true

WRITE
(dynamic)

WRITE FILE
 (file-name) …

Program Inserts Into
File Decision

Decision attributes:
Name =
<program-name>@
<internal-name>
Also Known As =
<program-name>.
InsertsDataPort.
<file-name>
Decision Type =
DATAPORT…

XCTL XCTL
 PROGRAM
 ('pgm-name') …

Program Xctls To
Program Entry Point

ProgramEntry.Name =
<pgm-name>

NOTE: If literal is long,
only 8 leading characters
are used as program
name.

XCTL
(dynamic)

XCTL
 PROGRAM
 (pgm-name) …

Program Xctls To
Program Entry Point
Decision

Decision attributes:
Name =
 <program-name>@
<internal-name>
Also Known As =
 <program-name>.
Xctls.<pgm-name>
Decision Type =
PROGRAMENTRY…

Statement Format Relationship Entities

CICS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM CICS STATEMENTS

 52

 53

6 IMS Technical
Reference

This section describes RTW support for MFS files and MFS include files, DBD,
PSB, and PSB copybook files, System Definition files, and call-level (CALL
‘CBLTDLI’) and command-level (EXEC DLI) statements in programs:

• “IMS Support Notes” on page 53 describes RTW limitations, caveats, and
special usage for IMS applications.

• “IMS Complexity Metrics” on page 58 describes the supported complexity
metrics for objects in the IMS model.

• “Relationship Projections from DBD and PSB Statements” on page 62
describes the relationships generated from statements in DBD and PSB
files.

• “Relationship Projections from System Definition Statements” on page 66
describes the relationships generated from statements in System Defini-
tion files.

IMS Support Notes

These notes describe RTW limitations, caveats, and special usage for IMS appli-
cations. Make sure to check the Release Notes on the installation CD for any
late-breaking support information.

Impact Analysis and Interprogram Data Flows

Impact analysis and interprogram data flows are not supported.

IMS TECHNICAL REFERENCE
IMS SUPPORT NOTES

 54

Extra Dependencies between Variables

There may be extra dependencies between variables in IMS calls (in intrapro-
gram analysis, computational components, and so forth) because all CALL
arguments except function-code are considered as being used in INOUT mode
while in fact some CALLs have input-only and output-only parameters. This
also may cause decisions to appear not to have been resolved, when in fact they
have been.

When PCB Content Is Considered to Be Altered

PCB content is considered to be altered only by CBLTDLI(PLITDLI) calls or via
a group MOVE of the whole PCB structure to another structure. Presence of
MOVEs to subfields of a PCB may lead to incorrect analysis results. GU call is
not considered as nullifying alternate PCBs.

Port Analysis for IMS Database Calls

For unqualified IMS database calls (without SSAs), port analysis uses only PCB
information and does not analyze preceding IMS calls (for example, GNP after
GU). Similarly, dependencies between any other IMS calls are not traced except
the CHNG – ISRT pair.

For qualified database calls, only the unqualified portion of SSA is analyzed.
Command codes are not supported (for example, a path call will be interpreted
as a call reading only the last segment in a path).

Parmcount Parameter

The Parmcount parameter is accepted but not analyzed. All CALL parameters
are considered as valid.

CHNG Calls

All CHNG calls are treated as setting transaction code destinations because,
with no indicators of destination type, it is impossible to distinguish between
transaction and terminal names. System tables with transactions and terminal
names are needed to check type.

IMS TECHNICAL REFERENCE
IMS SUPPORT NOTES

55

ISRT Calls

ISRT calls to IO-PCB without MOD name are ignored. Most likely they repre-
sent the construction of multi-segment messages.

Parsing of Macro Statements

PSB/DBD parsers do not perform full semantic checks of corresponding macro
statements. Moreover, the PSB parser does not check that all referenced
segments and fields are defined in corresponding DBDs.

Online CICS Applications Using IMS

Online CICS applications using IMS do no need System Definition files. They
need only native CICS PCT files.

Call-Level and Command-Level Programming

Only call-level programming (CALL ‘CBLTDLI’) is supported. Command-level
programming (EXEC DLI) is not supported.

More than One Value for DBPCB Parameter at IMS CALL

Only one port per operator is allowed in the HyperCode model. If more than
one value is found for DBPCB at IMS CALL, then ImsUnknown is generated
instead of a list of ports.

Code Sample Ports Found Actual Ports

A:PROC;
 ...
 ... IF J>0 THEN
 DBPCB = EHL1_1;
 ELSE
 DBPCB = EUDV_1;
 ...
 ... CALLPLITDLI
 (K4,GNP,DBPCB,ALT_UKARUK,
 SSA_HORUK_U);
END A;

ImsUnknown EHL1.HORUK,
EUDV.HORUK

IMS TECHNICAL REFERENCE
IMS SUPPORT NOTES

 56

Non-Const Values of DBPCB or OPCODE Parameters

Non-const values of DBPCB or OPCODE parameters are not taken into
account when generating IMS ports.

Multiple Unsupported Ports

Multiple unsupported ports are represented as a single port in the HyperView
model.

Called Procedure Rewrites Parameters

During interprogram analysis processing, some values can be lost if a called
procedure rewrites parameters either directly or by locator reference.

Code Sample Ports Found Actual Ports

A:PROC;
 ...
 DCL P POINTER;
 DCL OP CHAR(10);
 IF E>0 THEN
 BEGIN;
 P = EPUF_1;
 OP = 'P8CCLA';
 END;
 ... CALLPLITDLI
 (K4,ISRT,P,OP,SEG_SSA(10));
END A;

EPUF.P8CCLA EPUF.P8CCLA,I
msUnknown

Code Sample Ports Found Actual Ports

A:PROC;
 ...
 DCL P POINTER;
 DCL OP CHAR(10);
 ISRT = 'ISRT';
 IF E>0 THEN
 ISRT = 'REPL';
 ... CALLPLITDLI
 (K4,ISRT,P,OP,SEG_SSA(10));
 ...
END A;

ImsREPL ImsISRT,
ImsREPL

IMS TECHNICAL REFERENCE
IMS SUPPORT NOTES

57

Multiple Ports at an IMS CALL inside a Loop Body

DO <VAR>=E1,…,E2 can produce ImsUnknown if there are multiple ports at
an IMS CALL inside a loop body.

Code Sample Ports Found Actual Ports

A:PROC;
 DBPCB = EHL1_1;
 CALL B(DBPCB);
 CALL PLITDLI
 (K4,GNP,DBPCB,ALT_UKARUK,
 SSA_HORUK_U);
 …
END A;
/* FILE2.PLI */
B:PROC(DBPCB);
…DBPCB = EUDV_1;
…
END B;

EHL1.HORUK EUDV.HORUK

Code Sample Ports Found Actual Ports

A:PROC(...); … DCL SEG CHAR(10);
DBPCB = EPUF_1; DO SEG
='PAMSGS','PPPROF'; CALL PLITDLI
(K4,ISRT,DBPCB,P0ROOTX,SEG); END; …
END A;

ImsUnknown EPUF.PAMSGS,
EPUF.PPPROF

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

 58

IMS Complexity Metrics

The complexity of an object is an estimate of how difficult it is to maintain,
analyze, transform, and so forth. This section describes the supported metrics
for objects in the IMS model.

MFS File Complexity Metrics

The table below describes the supported complexity metrics for the MFS File
object.

MFS Include File Complexity Metrics

The table below describes the supported complexity metrics for the MFS
Include File object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Screens Number of screens.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of Include Statements in the file
and any used include files.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

59

Screen Complexity Metrics

The table below describes the supported complexity metrics for the Screen
object.

DBD File Complexity Metrics

The table below describes the supported complexity metrics for the DBD File
object.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

Metric Description

Metric Description

Hidden Fields Number of hidden fields.

Input Fields Number of input fields.

Input/Output Fields Number of input/output fields.

Output Fields Number of output fields.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Segments Number of segments.

Source Lines Number of lines of source, including blank
lines and comments.

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

 60

PSB File Complexity Metrics

The table below describes the supported complexity metrics for the PSB File
object.

PSB Copybook File Complexity Metrics

The table below describes the supported complexity metrics for the PSB Copy-
book File object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Number of PCBs Number of PCBs.

Source Lines Number of lines of source, including blank
lines and comments.

Total Include Statements Number of Include Statements in the file
and any used include files.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

IMS TECHNICAL REFERENCE
IMS COMPLEXITY METRICS

61

System Definition File Complexity Metrics

The table below describes the supported complexity metrics for the System
Definition File object.

Metric Description

Blank Lines Number of blank lines of source (sequence
number area content is ignored).

Entries Number of entries.

Include Statements Number of include statements.

Lines with Comments Number of lines of source containing
comments, including inline comments
placed on lines with statements.

Source Lines Number of lines of source, including blank
lines and comments.

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

 62

Relationship Projections from DBD and PSB
Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for IMS model objects from statements in
DBD and PSB files.

DBD File Relationship Projections

The DBD File object represents an IMS Database Description file. The table
below describes the relationships generated from statements in the DBD file.

Statement Format Relationship Entities

DBD DBD
 NAME=db-name
 ACCESS=
 (db-type, ...) ...

DBD File Defines
Hierarchical
Database

HiDatabase.Name =
<db-name>
HiDatabase.Type =
<db-type>

DATASET (GSAM
only)

DATASET
 DD1=dd-name1,
 DD2=dd-name2,
 ...

Hierarchical
Database Has
Hierarchical
Database Segment

HiSegment.Name =
<db-name>.
<db-name>
HiSegment.Segment
Name = <db-name>
HiSegment.DDName
= <dd-name1>
HiSegment.
DDName2
= <dd-name2>

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

63

PSB File Relationship Projections

The PSB File object represents an IMS Program Specification Block file. The
table below describes the relationships generated from statements in the PSB
file.

SEGM SEGM
 NAME=seg-name,
 ...
 NAME=
 seg-name2, ...
 dbname2))

Hierarchical
Database Has
Hierarchical
Database Segment

Hierarchical
Database Segment
Has Logical Child
Hierarchical
Database Segment

HiSegment.Name =
<db-name>.
<seg-name>
HiSegment.Segment
Name = <seg-name>

HiSegment.Name =
<db-name>.
<seg-name>
HiSegmentChild.
Name = <db-name2>
.<seg-name2>
HiSegmentChild.
SegmentName =
<seg-name2>

LCHILD SEGM NAME=
 seg-name,
 ...
LCHILD=
 NAME=
 (seg-name,
 dbname)

Hierarchical
Database Segment
Has Logical Child
Hierarchical
Database Segment

HiSegment.Name =
<db-name>.
<seg-name>
HiSegmentChild.
Name = <db-name>
.<seg-name>
HiSegmentChild.
SegmentName =
<seg-name>

Statement Format Relationship Entities

Statement Format Relationship Entities

PSBGEN PSBGEN
 LANG=language,
 PSBNAME=
 psb-name, ...

PSB File Defines
PSB Module

PsbModule.Name =
<psb-name>
PsbModule.Language
= <language>

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

 64

PCB PCB
 TYPE=DB,
 DBDNAME=
 dbd-name, ...
PCB
 TYPE=GSAM,
 DBDNAME=
 dbd-name, ...
PCB
 TYPE=DB,
 DBDNAME= ...,
 PROCSEQ=
 dbd-name, ...
PCB
 TYPE=GSAM,
 DBDNAME= ...,
 PROCSEQ=
 dbd-name, ...

PSB Module Refers
To Hierarchical
Database

HiDatabase.Name =
<dbd-name>

SENSEG SENSEG
 NAME= ...,
 INDICES=
 (dbd-name1, ...
 dbd-nameN)

NOTE: You can
specify up to 32 DBD
names of secondary
indices.

PSB Module Refers
To Hierarchical
Database

HiDatabase.Name =
<dbd-name1> ...
HiDatabase.Name =
<dbd-nameN> ...

COPY member [OF
library]

PSB File Includes
PSB Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

++INCLUDE
(Panvalet)

++INCLUDE
member

PSB File Includes
PSB Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

Statement Format Relationship Entities

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM DBD AND PSB STATEMENTS

65

PSB Copybook File Relationship Projections

The PSB Copybook File object represents an IMS Program Specification Block
copybook file. The table below describes the relationships generated from state-
ments in the PSB copybook file.

-INC (Librarian) -INC member PSB File Includes
PSB Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

Statement Format Relationship Entities

Statement Format Relationship Entities

COPY member [OF
library]

PSB Copybook File
Includes PSB
Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

++INCLUDE
(Panvalet)

++INCLUDE
member

PSB Copybook File
Includes PSB
Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

-INC (Librarian) -INC member PSB Copybook File
Includes PSB
Copybook File

For resolved files:
PSBCopy.Name =
<resolved-name>
For unresolved files:
PSBCopy.Name =
[<library>.]
<member>

NOTE: Relationships
are created for every
TRANSACT macro
that follows an
APPLCTN macro,
and for every trans-
action code in the
TRANSACT macro.

IMS TECHNICAL REFERENCE
RELATIONSHIP PROJECTIONS FROM SYSTEM DEFINITION STATEMENTS

 66

Relationship Projections from System
Definition Statements

When you verify application source files, the parser generates a model of the
application that represents the objects it uses and how they interact. This section
describes the relationships generated for IMS model objects from statements in
System Definition files.

System Definition File Relationship Projections

The System Definition File object represents an IMS System Definition file. The
table below describes the relationships generated from statements in the System
Definition file.

Statement Format Relationship Entities

APPLCTN APPLCTN PSB=
psb-name ...
TRANSACT
CODE= (trancode
[rtran-code], ...)...

System Definition
File Defines
Transaction

Transaction Initiates
Program Entry
Point

Program Uses PSB
Module

Transaction.Name =
<tran-code>

ProgramEntry.Name
= <psb-name>
Program.Root = True
Program.Ims
Completed = False

PsbModule.Name =
<psb-name>

	Contents
	Supported Platforms
	PL/I Technical Reference
	Support Notes
	Verification
	Change Analyzer
	How Macros Are Modeled in HyperView
	Execution Path Labelled Variables and Branching
	Global Data Element Flow
	Common IMS, Domain Extraction, and Autoresolve Restrictions
	Analysis
	Variable Value Processing
	Loop Analysis
	Array Processing
	External Call Processing
	Unsupported Constructions
	Unsupported Evaluations

	Supported Complexity Metrics
	PL/I File Complexity Metrics
	PL/I Include File Complexity Metrics
	PL/I Program Complexity Metrics

	Relationship Projections from PL/I Statements
	PL/I File Relationship Projections
	Pl/I Include File Relationship Projections
	PL/I Program Relationship Projections

	SQL Technical Reference
	Support Notes
	Renaming DCLGEN Include Files

	Complexity Metrics
	DDL File Complexity Metrics

	Relationship Projections from EXEC SQL Statements
	Program Relationship Projections

	Relationship Projections from SQL DDL Statements
	DDL File Relationship Projections

	JCL Technical Reference
	Support Notes
	External Control Cards Registration Requirements
	Sort Cards Verification Requirements
	Sort Cards Parser Output
	Detecting Programs Started by Driver Utilities

	Complexity Metrics
	JCL File Complexity Metrics
	JCL Procedure Complexity Metrics
	Job Complexity Metrics
	Control Cards File Complexity Metrics

	Relationship Projections from JCL Statements
	JCL File Relationship Projections
	JCL Procedure Relationship Projections

	CICS Technical Reference
	Support Notes
	Deprecated CICS Statements
	Keyword Permutations
	Statements Taken to Be the Same

	Complexity Metrics
	BMS File Complexity Metrics
	BMS Copybook File Complexity Metrics
	Screen Complexity Metrics
	CSD File Complexity Metrics
	FCT File Complexity Metrics
	PCT File Complexity Metrics

	Relationship Projections from BMS Statements
	BMS File Relationship Projections
	BMS Copybook File Relationship Projections

	Relationship Projections from CSD, FCT, and PCT Statements
	CSD File Relationship Projections
	FCT File Relationship Projections
	PCT File Relationship Projections

	Relationship Projections from CICS Statements
	Program Relationship Projections

	IMS Technical Reference
	IMS Support Notes
	Impact Analysis and Interprogram Data Flows
	Extra Dependencies between Variables
	When PCB Content Is Considered to Be Altered
	Port Analysis for IMS Database Calls
	Parmcount Parameter
	CHNG Calls
	ISRT Calls
	Parsing of Macro Statements
	Online CICS Applications Using IMS
	Call-Level and Command-Level Programming
	More than One Value for DBPCB Parameter at IMS CALL
	Non-Const Values of DBPCB or OPCODE Parameters
	Multiple Unsupported Ports
	Called Procedure Rewrites Parameters
	Multiple Ports at an IMS CALL inside a Loop Body

	IMS Complexity Metrics
	MFS File Complexity Metrics
	MFS Include File Complexity Metrics
	Screen Complexity Metrics
	DBD File Complexity Metrics
	PSB File Complexity Metrics
	PSB Copybook File Complexity Metrics
	System Definition File Complexity Metrics

	Relationship Projections from DBD and PSB Statements
	DBD File Relationship Projections
	PSB File Relationship Projections
	PSB Copybook File Relationship Projections

	Relationship Projections from System Definition Statements
	System Definition File Relationship Projections

