IONA

fgl Orbix®

COMet Programmer’s Guide

and Reference
Version 6.2, December 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrigval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 04-Jul-2005

Contents

List of Figures
List of Tables

Preface

Part 1 Introduction

Chapter 1 COM and CORBA Principles
Main Similarities and Differences
CORBA Overview
COM Overview
COM
Automation

Chapter 2 Introduction to COMet
The Interworking Model
How COMet Implements the Model
COMet System Components

Chapter 3 Usage Models and Bridge Locations

Automation Client to CORBA Server
COM Client to CORBA Server

Xi

Xiii

XV

CONTENTS

Part 2 Programmer’s Guide

Chapter 4 Getting Started

Prerequisites
Developing Automation Clients
Introduction
Using the Visual Basic Genie
Writing a Visual Basic Client without the Genie
Writing a PowerBuilder Client
Running the Client
Using DCOM with COMet
Introduction
Launching the COMet Bridge Out-of-Process
DCOM Security
Using COMet with Internet Explorer
Specifying the Bridge Location
The Supplied Demonstration
Automation Dual Interface Support
Developing COM Clients
Generating Microsoft IDL from OMG IDL
Compiling Microsoft IDL
Writing a COM C+ + Client
Priming the COMet Type Store Cache

Chapter 5 Developing an Automation Client

The Telephone Book Example

Using Automation Dual Interfaces

Writing the Client
Obtaining a Reference to a CORBA Object
The Visual Basic Client Code in Detail
The PowerBuilder Client Code in Detail

Building and Running the Client

35

36
38
39
43
47
50
53
54
55
57
60
61
62
64
68
71
72
74
75
78

79
80
84
85
86
89
92
95

CONTENTS

Chapter 6 Developing a COM Client 97
The Telephone Book Example 98
Prerequisites 101
Writing the Client 102

Obtaining a Reference to a CORBA Object 103
The COM C+ + Client Code in Detail 107
Building and Running the Client 110

Chapter 7 Exception Handling 113
CORBA Exceptions 114
Example of a User Exception 115
Exception Properties 118

General Exception Properties 119
Additional System Exception Properties 120
Exception Handling in Automation 122
Exception Handling in Visual Basic 123
Inline Exception Handling 125
Using Type Information 128
Exception Handling in COM 131
Catching COM Exceptions 132
Using Direct-to-COM Support 134

Chapter 8 Client Callbacks 137
Introduction to Callbacks 138
Implementing Callbacks 139
Defining the OMG IDL Interfaces 140
Generating Stub Code for the Callback Objects 142
Implementing the Client 143

Implementing the Client in Visual Basic 144
Implementing the Client in PowerBuilder 146
Implementing the Client in COM C++ 148

Implementing the Server 150

CONTENTS

Chapter 9 Deploying a COMet Application
Deployment Models
Bridge In-Process to Each Client
Bridge Out-of-Process on Each Client Machine
Bridge on Intermediary Machine
Bridge on Server Machine
Internet Deployment
Deployment Steps
Minimizing the Client-Side Footprint
Deploying Multiple Hosts

Chapter 10 Development Support Tools
The COMet Type Store
The Central Role of the Type Store
The Caching Mechanism of the Type Store
The COMet Tools Window
Adding New Information to the Type Store
Using the GUI Tool
Using the Command Line
Deleting the Type Store Contents
Dumping the Type Store Contents
Creating a Microsoft IDL File
Using the GUI Tool
Using the Command Line
Creating a Type Library
Using the GUI Tool
Using the Command Line
Creating Stub Code for Client Callbacks
Replacing an Existing DCOM Server
Generating Visual Basic Client Code
Introduction
Using the GUI Tool
Using the Command Line

Vi

151
152
153
155
157
159
161
162
164
166

171
173
174
176
178
180
181
182
184
185
186
187
189
190
191
193
194
196
199
200
202
213

CONTENTS

Part 3 Programmer’s Reference

Chapter 11 COMet API Reference 217
Common Interfaces 218
[ForeignObject 219
IMonikerProvider 221
Automation-Specific Interfaces 222
DICORBAAny 223
DICORBAFactory 228
DICORBAFactoryEx 230
DICORBAODbject 232
DICORBAStruct 234
DICORBASystemException 235
DICORBATypeCode 236
DICORBAUnion 240
DICORBAUserException 241
DIForeignComplexType 242
DIForeignException 243
DIObject 244
DIObjectinfo 245
DI0rbixORBObject 246
DIORBObject 249
COM-Specific Interfaces 251
ICORBA_Any 252
ICORBAFactory 254
ICORBAODbject 256
ICORBA_TypeCode 258
ICORBA_TypeCodeExceptions 262
|0rbixORBObject 263

IORBODbject 266

vii

CONTENTS

Chapter 12 Introduction to OMG IDL 269
IDL 270
Modules and Name Scoping 271
Interfaces 272

Introduction to Interfaces 273
Interface Contents 275
Operations 276
Attributes 279
Exceptions 280
Empty Interfaces 281
Inheritance of Interfaces 282
Multiple Inheritance 283
Inheritance of the Object Interface 285
Inheritance Redefinition 286
Forward Declaration of IDL Interfaces 287
Local Interfaces 288
Valuetypes 290
Abstract Interfaces 291
IDL Data Types 292
Built-in Data Types 293
Extended Built-in Data Types 296
Complex Data Types 299
Enum Data Type 300
Struct Data Type 301
Union Data Type 302
Arrays 304
Sequence 305
Pseudo Object Types 306
Defining Data Types 307
Constants 308

Constant Expressions 311

viii

CONTENTS

Chapter 13 Mapping CORBA to Automation 313
Mapping for Basic Types 315
Mapping for Strings 317
Mapping for Interfaces 318

Basic Interface Mapping 319
Mapping for Attributes 321
Mapping for Operations 323
Mapping for Interface Inheritance 325
Mapping for Single Inheritance 326
Mapping for Multiple Inheritance 328
Mapping for Complex Types 331
Creating Constructed OMG IDL Types 332
Mapping for Structs 333
Mapping for Unions 335
Mapping for Sequences 339
Mapping for Arrays 342
Mapping for System Exceptions 343
Mapping for User Exceptions 345
Mapping for the Any Type 347
Mapping for Object References 348
Mapping for Modules 351
Mapping for Constants 352
Mapping for Enums 353
Mapping for Scoped Names 355
Mapping for Typedefs 356

Chapter 14 Mapping CORBA to COM 357
Basic Types 359
Mapping for Strings 360
Mapping for Interfaces 361

Mapping Interface Identifiers 362
Mapping for Nested Types 363
Mapping for Attributes 364
Mapping for Operations 366
Mapping for Interface Inheritance 368
Mapping for Complex Types 372
Creating Constructed OMG IDL Types 373

Mapping for Structs 374

CONTENTS

Mapping for Unions 376
Mapping for Sequences 378
Mapping for Arrays 380
Mapping for System Exceptions 381
Mapping for User Exceptions 385
Mapping for the Any Type 388
Mapping for Object References 390
Mapping for Modules 392
Mapping for Constants 393
Mapping for Enums 395
Mapping for Scoped Names 397
Mapping for Typedefs 398
Chapter 15 COMet Configuration 399
Overview 400
COMet:Config Namespace 401
COMet:Mapping Namespace 403
COMet:Debug Namespace 404
COMet:TypeMan Namespace 405
COMet:Services Namespace 409
Chapter 16 COMet Utility Arguments 411
Typeman Arguments 412
Ts2idl Arguments 414
Ts2tlb Arguments 415
Aliassrv Arguments 416
Custsur Arguments 417
Tlibreg Arguments 418
Idigen vb_genie.tcl Arguments 419

Index 421

List of Figures

Figure 1: Role of the ORB in Client-Server Communication 8
Figure 2: The Standard Interworking Model 18
Figure 3: COMet's Implementation of the Interworking Model 21
Figure 4: View Object in COMet 22
Figure 5: Automation Client to CORBA Server 28
Figure 6: COM Client to CORBA Server 31
Figure 7: Visual Basic Client GUI for the COMet Grid Demonstration 41
Figure 8: PowerBuilder Client GUI for the COMet Grid Demonstration 42
Figure 9: Development Overview Using Code Generation 44
Figure 10: Telephone Book Example with Automation Client 81
Figure 11: Phone List Search Client GUI Interface 83
Figure 12: Binding to the CORBA PhoneBook Object 88
Figure 13: Telephone Book Example with COM Client 99
Figure 14: Binding to the CORBA PhoneBook Object 105
Figure 15: Bridge In-Process to Each Client 154
Figure 16: Bridge Out-Of-Process On Each Client Machine 156
Figure 17: Bridge on Intermediary Machine 158
Figure 18: Bridge on Server Machine 160
Figure 19: Deploying Multiple Hosts 166
Figure 20: COMet Type Store and the Development Utilities 174
Figure 21: COMet Tools Window 178
Figure 22: Creating a Microsoft IDL File from OMG IDL 188
Figure 23: Creating a Type Library from OMG IDL 191
Figure 24: Creating Stub Code for Callbacks 194
Figure 25: Aliasing the Bridge 197

Figure 26: Visual Basic Project Dialog Window 202

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

Xii

COMet Wizard - Introduction Window

COMet Wizard - Step 1 Window

Select the IDL File Window

Step 1 Window Displaying Full Path to the Selected File
COMet Wizard - Step 2 Window

COMet Wizard - Step 3 Window

Selecting a Folder

Step 3 Window Displaying Full Path to the Selected Folder
COMet Wizard - Finished Window

Example of a Generated Client Application

Inheritance Hierarchy for PremiumAccount Interface
Automation View of the Bank Interface

Example of a CORBA Interface Hierarchy

Automation View of the OMG IDL AccoutDetails Struct
Automation View of the OMG IDL Union, U

Automation View of Bank_Reject

Example of a CORBA Interface Hierarchy

203
204
205
206
207
208
209
210
211
212
284
320
328
334
338
346
369

List of Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:

Main Differences between COM and CORBA

Differences between COM and Automation Interfaces
CORBA::LocalObject Pseudo-Operations and Return Values
Built-in IDL Data Types, Sizes, and Values

Extended built-in IDL Data Types, Sizes, and Values
CORBA-to-Automation Mapping Rules for Basic Types
CORBA-to-COM Mapping Rules for Basic Types

Using Error Object for CORBA System Exceptions

14
289
293
296
315
359
382

xiii

LIST OF TABLES

Xiv

Audience

Preface

COMet combines the best of both the object management group (OMG)
common object request broker architecture (CORBA) and Microsoft
component object model (COM) standards. It provides a high performance
dynamic bridge, which enables transparent communication between COM
clients and CORBA servers.

COMet is designed to allow COM programmers—who use tools such as
Visual C++, Visual Basic, PowerBuilder, Delphi, or Active Server Pages on
the Windows desktop—to easily access CORBA applications running in
Windows, UNIX, or 0S/390 environments. It means that COM programmers
can use the tools familar to them to build heterogeneous systems that use
both COM and CORBA components within a COM environment.

The interworking model and mapping standards described in this guide are
based on chapters 17, 18, and 19 of the OMG Common Object Request
Broker: Architecture and Specification at ftp://ftp. ong. or g/ pub/ docs/
formal / 01- 12- 35. pdf .

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs- suppor t @ona. com

This guide is intended for COM application programmers who want to use
COMet to develop and deploy distributed applications that combine CORBA
and COM components within a COM environment. This guide assumes that
the reader already has a working knowledge of COM-based and
Automation-based tools, such as Visual Basic, PowerBuilder, and Visual
C++. (See “COM Overview” on page 9 for a distinction between COM and
Automation.)

Xv

mailto:support@iona.com
mailto:docs-support@iona.com

PREFACE

Organization of this guide

Related reading

Xvi

This guide is divided as follows:

Part 1 “Introduction”

This part first provides an introductory overview of the main principles of
both COM and CORBA. It then provides an introduction to COMet and an
overview of the various ways you can use it in a distributed system.

Part 2 “Programmer’s Guide”

This part describes how to:

® Use COMet to develop COM and Automation clients that can
communicate with a CORBA server.

® Implement exception handling and client callbacks in your COMet
applications.

®* Deploy a distributed COMet application.

® Use the various development utilities that are supplied with COMet.

Part 3 “Programmer’s Reference”

This part describes:

® The application programming interfaces (APIs) supplied with COMet.

® The semantics of CORBA IDL for defining interfaces to CORBA
applications.

® The rules for mapping CORBA IDL types to COM and Automation.

® The configuration variables associated with COMet.

® The arguments available with each COMet utility.

The following related reading material is recommended:

® The Common Object Request Broker: Architecture and Specification at
ftp://ftp.omg.org/pub/docs/formal/01-12-35.pdf.

® COM-CORBA Interoperability, Ronan Geraghty et al., (Prentice Hall,
1999).

Additional resources

Typographical conventions

PREFACE

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

htt p: // waw. i ona. cond suppor t/ know edge_base/

The IONA update center contains the latest releases and patches for IONA

products:

http://wmv i ona. cond support/ updat es/

This guide uses the following typographical conventions:

Constant wi dth

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (oj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with jtalic words or characters.

Xvii

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{1} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

xviii

Part 1

Introduction
In This Part This part contains the following chapters:
COM and CORBA Principles page 3
Introduction to COMet page 17

Usage Models and Bridge Locations page 27

In This Chapter

CHAPTER 1

COM and CORBA
Principles

COMet is an implementation of the Object Management Group
(OMG) Interworking Architecture specification for allowing
component object model (COM) clients to communicate with
common object request broker architecture (CORBA) servers. 1
Both CORBA and COM are standards for distributed object
technology. This chapter provides an introductory overview of
the main principles of both COM and CORBA.

This chapter discusses the following topics:

Main Similarities and Differences page 4
CORBA Overview page 6
COM Overview page 9

Note: A more in-depth study of COM and CORBA is outside the scope of
this guide.

1. The Interworking Architecture specification is part of the CORBA Specification
available at ftp: //ft p. onmy. or g/ pub/ docs/ f or mal / 01- 12- 35. pdf . COMet
is not a full implementation of the Interworking Architecture specification,
because it does not also allow CORBA clients to communicate with COM servers.

CHAPTER 1 | COM and CORBA Principles

Main Similarities and Differences

Overview

Similarities

Differences

This section outlines the main similarities and differences between COM and
CORBA. The following topics are discussed:

® “Similarities” on page 4.
®* “Differences” on page 4.

COM and CORBA share the following principles:

® The system architecture is based around the concept of objects.

® An object is a discrete unit of functionality.
® An object exposes its behavior through a set of well defined interfaces.
® The details of an object’s implementation are hidden from the clients

that want to make requests on it.

Table 1 summarizes the main differences between COM and CORBA.

Table 1: Main Differences between COM and CORBA (Sheet 1 of 2)

CoM

CORBA

An object is typically a
subcomponent of an application
that represents a point of exposure
to other components of that
application, or to other
applications.

An object is an independent
component with a related set of
behaviors, transparently available
to any CORBA client, regardless of
where the object or client are
implemented in the system.

The domain of an object is
typically a single-user,
multitasking visual desktop
environment, such as Microsoft
Windows.

The domain of an object is
typically an arbitrarily scalable
distributed network.

Table 1:

Main Similarities and Differences

Main Differences between COM and CORBA (Sheet 2 of 2)

com

CORBA

The purpose of COM is to expedite
collaboration and information
sharing among applications using
the same desktop, by allowing a
user to manipulate visual elements
on the screen.

The purpose of CORBA is to allow
independent components of a
distributed system to be shared
among a wide variety of possibly
unrelated applications and objects
in that distributed system.

CHAPTER 1 | COM and CORBA Principles

CORBA Overview

Overview

CORBA Objects

Object IDs and References

CORBA Object Interfaces

CORBA is a standard for distributed object technology from the OMG. This
section provides a brief overview of the fundamental principles of a CORBA
object management system. The following topics are discussed:

® “CORBA Objects” on page 6.

® “Object IDs and References” on page 6.

® “CORBA Object Interfaces” on page 6.

® “CORBA Client Requests” on page 7.

® “CORBA Object Lifetime” on page 7.

® “Object Request Broker” on page 7.

® “Multiple Inheritance” on page 8.

A CORBA object is a discrete, independent unit of functionality, comprising
a related set of behaviors. A particular CORBA object can be described as an
entity that exhibits a consistency of interface, behavior (or functionality),
and state over its lifetime.

CORBA uses the concept of a portable object adapter (POA), which is used
to map abstract CORBA objects to their actual implementations. A CORBA
object can be implemented in any programming language that CORBA
supports, such as C++ or Java.

A CORBA object has both an object ID and an object reference. An object ID
identifies an object with respect to a particular POA instance. An object
reference contains unique details about an object, including its object ID
and POA identifier, which can be used by clients to locate and invoke on
that object. See “CORBA Client Requests” on page 7 for more details about
the use of object references.

A CORBA object presents itself to its clients through a published interface,
defined in OMG interface definition language (IDL). The concept of keeping
an object’s interface separate from its implementation means that a client
can make requests on an object without needing to know how or where that
object is implemented.

CORBA Client Requests

CORBA Object Lifetime

Object Request Broker

CORBA Overview

The IDL interfaces for CORBA objects can be stored (registered) in an
interface repository. CORBA identifies an interface by means of an interface
repository ID. Even if you update a particular interface in some way, its
repository ID can remain the same.

In CORBA, a client can access an object’s interface and its underlying
functionality by making one or more requests on that object. Each client
request is made on a specific instance of an object, which is identifiable and
contactable via an object reference that is unique to that object instance. An
object reference is a name that is used to consistently identify a particular
object during that object’s lifetime. An object reference in CORBA is roughly
equivalent to the concept of an interface pointer in COM.

CORBA client requests can contain parameters consisting of object
references or data values that correspond to particular types of data
supported by the system. A client request can be dynamically created at
runtime (rather than simply being statically defined at compile time) on any
object whose interfaces are stored in an interface repository.

The in-memory lifetime of a CORBA object is independent of the lifetime of
any clients that hold a reference to it. This means that a client that is no
longer running can continue to maintain object references. It also means
that a server object can deactivate and remove itself from memory when it
becomes idle (although this does consequently mean that the server
application must be made to explicitly decide when this should happen).

A CORBA system is based on an architectural abstraction called the object

request broker (ORB). An ORB allows for:

® Interception and transfer of client requests to servers across the
network, and the return of output from the server back to the client.

® Registration of data types and their interfaces, defined in OMG IDL.

® Registration of object instance identities, from which the ORB can
construct appropriate object references for use by clients that want to
make requests on those object instances.

® |ocation (and activation, if necessary) of objects.

Orbix is IONA’s implementation of an ORB.

CHAPTER 1 | COM and CORBA Principles

Figure 1 provides an overview of the role of the ORB in CORBA client-server
communication.

Client Host Server Host

Client

Function
Call

=)

Client Object
Stub Skeleton
Code Code

Object Request Broker

Multiple Inheritance

Figure 1: Role of the ORB in Client-Server Communication

CORBA supports the concept of multiple interface inheritance. This basically
means that a CORBA object interface can be extended by making it derive
from one or more other interfaces. The derived interface ends up having not
only its own defined functionality, but also the functionality of the
interface(s) from which it derives. Interfaces can also be evolved
dynamically at runtime, by having new interfaces derive from existing
interfaces.

A CORBA object reference refers to a CORBA object that exposes a single,
most-derived interface in which any and all parent interfaces are joined.
CORBA does not support the concept of objects with multiple, disjoint
interfaces. See “Introduction to OMG IDL" on page 269 for more details of
multiple inheritance.

COM Overview

COM Overview

Overview For the purposes of clarity, this overview of COM is divided into two
subsections. The first provides an overview of COM itself, and the second
provides an overview of Automation, which is an extension of COM.

In This Section This section discusses the following topics:

COM page 10

Automation page 13

CHAPTER 1 | COM and CORBA Principles

COM

Overview

Background

COM Objects

COM Class

10

COM is a standard for distributed object technology from Microsoft
Corporation. This subsection provides a brief overview of the fundamental
principles of a COM object management system. The following topics are
discussed:

® “Background” on page 10.

® “COM Objects” on page 10.

® “COM Class” on page 10.

® “COM Object Interfaces” on page 11.

® “COM Client Requests” on page 11.

® “COM Object Lifetime” on page 11.

® “Multiple Inheritance” on page 12.

COM is an object programming standard that evolved from the object linking
and embedding (OLE) standard, which specifies how an object created with
one end-user application could be linked or embedded within another
end-user application (for example, an Excel spreadsheet within a Word
document). This subsection provides a brief overview of the fundamental
principles of a COM object management system.

A COM object is typically a subcomponent of an application, representing a
point of exposure to other components of the same application, or to other
applications. A particular COM object can be described as an active
instance of an implementation; an instance in this case can be described as
an entity whose interface (or one of whose interfaces) is returned by calling
the COM |1 A assFact ory: : O eat el nst ance method.

COM supports an implementation typing mechanism that is centered around
the concept of a COM class. A COM class implements an interface and has
a well-defined identity. Implementations are identified by class IDs. An
implementation repository, called the Windows system registry, maps
implementations to specific units of executable code that embody their

COM Object Interfaces

COM Client Requests

COM Object Lifetime

COM Overview

actual code realizations. A single instance of a COM class can be registered
in COM'’s active object registry. The only inherently available reference for a
COM instance is its Unknown pointer.

The identity and management of object state are generally kept separate
from the identity and lifecycle of COM class instances. For example, files
that contain the state of a document object are persistent. A single COM
instance of a document type could load, manipulate, and store several
different document files over its lifetime; similarly, multiple COM instances
of different object types could load and use the the same file.

A COM object exposes its interfaces in a virtual function table (also called a
vtable), which contains entries corresponding to each operation defined in
an interface. COM interfaces are usually described in Microsoft interface
definition language (IDL). COM identifies an interface by means of a COM
interface ID (IID). If you update a COM interface in some way, it is normal
practice to use a different IID for the updated interface.

In COM, a client can make a request on an object if it has both compile-time
knowledge of the object’s interface structure and a reference to an instance
offering that interface. A COM client can call the COM Get Act i vehj ect
function to obtain an I (nknown pointer for an active object.

A COM client can use a COM interface pointer to make requests on an
object. Interface pointers in COM are roughly equivalent to the concept of
object references in CORBA. COM interfaces cannot be invoked by a client
that does not have compile-time knowledge of them.

The in-memory lifetime of a COM object is linked to the lifetime of the
clients that hold a reference to it. This means that the object is destroyed
when no more clients are attached to it. This can lead to problems,
however, if a client crashes without releasing its references to the object. To
avoid this, COM provides support for clients to ping servers, so that if a
client ping is not received within a designated timeframe, the references it
held can then be released.

As an alternative to having clients ping servers, an alternative form of
binding can be used in COM, through the use of monikers (that is, persistent
interface references). Monikers are conceptually equivalent to CORBA object
references. Although the use of monikers can help in determining when

11

CHAPTER 1 | COM and CORBA Principles

Multiple Inheritance

12

deactivation should occur, it does, however, mean that a COM client must
be explicitly set up to use this alternative form of binding, to allow the server
to release its references if necessary.

Unlike CORBA, COM does not support the concept of multiple interface
inheritance. This has consequences for the way in which multiply-inherited
CORBA interfaces are mapped to COM—see “Mapping for Interface
Inheritance” on page 368 for more details. You can use the COM

Queryl nterface() method to find out and explore the interfaces that a
particular COM object supports.

COM Overview

Automation

Overview

Extension of COM

Automation Object Interfaces

Automation Client Requests

This subsection provides a brief overview of the fundamental principles of
Automation. The following topics are discussed:

® ‘“Extension of COM” on page 13.

® “Automation Object Interfaces” on page 13.

® “Automation Client Requests” on page 13.

® “Dual Interfaces” on page 14.

¢ “Automation Object Lifetime” on page 14.

® “Multiple Inheritance” on page 14.

® “Summary of Differences between COM and Automation” on page 14.

Automation is an extension of COM and is implemented through it.
Automation provides a mechanism for dynamic operation invocation at
runtime (unlike a pure COM call that relies on static information known at
compile time). However, the data types that Automation supports are only a
subset of the types supported by COM (for example, Automation does not
support complex, user-defined constructed types, such as structs or unions).
Microsoft Excel is an example of a typical Automation application.

Automation interfaces can be described in Microsoft object definition
language (ODL). Automation interfaces can be registered in a binary type
library, which allows for runtime checking of client requests.

Unlike COM interfaces, Automation interfaces can be invoked dynamically
at runtime, through a special COM interface, called | D spat ch. This is also
known as late binding. An Automation client can use the Automation

Get (oj ect function (equivalent to the COM Get Acti veQj ect function) to
obtain an | Unknown pointer for an active object in COM'’s active object
registry.

13

CHAPTER 1 | COM and CORBA Principles

Dual Interfaces

Automation Object Lifetime

Multiple Inheritance

Summary of Differences between
COM and Automation

14

Some Automation controllers (for example, Visual Basic) provide the option
of using either straight | D spat ch interfaces or dual interfaces for invoking
on a server. An Automation dual interface is a COM vtable-based interface
that derives from the I D spat ch interface. It is therefore a hybrid form of
interface, which supports both an Automation and a COM-like interface.

The use of dual interfaces means that client invocations can be routed
directly through the vtable. This is known as early binding, because
interfaces are known at compile time. One advantage to early binding is that
it removes the performance overhead associated with late binding at
runtime.

As for COM objects, the in-memory lifetime of an Automation object is
linked to the lifetime of the clients that hold a reference to it. See “COM
Object Lifetime” on page 11 for more details.

Because COM does not support the concept of multiple interface
inheritance, neither does Automation. This has consequences for the way in
which multiply-inherited CORBA interfaces are mapped to Automation—see
“Mapping for Interface Inheritance” on page 325 for more details.

Automation objects typically provide all Automation operations in a single

| D spat ch interface, in a flat format. In an Automation controller that
provides the option of using dual interfaces, you can use dual interfaces to
expose multiple | D spat ch interfaces for a particular COM co-class. For
example, a D mX as new Y statement in Visual Basic can be used to invoke
a Queryl nterface() on the Y interface.

The following is a summary of the main differences between COM and
Automation interfaces:

Table 2: Differences between COM and Automation Interfaces

COM Interfaces Automation Interfaces

Support a full range of COM types, | Support only a subset of COM
including user-defined constructed | types. Automation does not, for
types such as unions or structs. example, support user-defined
constructed types.

COM Overview

Table 2: Differences between COM and Automation Interfaces

COM Interfaces Automation Interfaces
Can only be invoked by clients Can be invoked at runtime (if
with compile-time knowledge of required) through a special COM
them. interface, called | D spat ch.
Define methods only. Define both properties and
methods.

Note: The interface syntax and semantics for COM and Automation are
not the same. The OMG therefore presents separate sets of rules for
mapping CORBA types to COM and for mapping CORBA types to
Automation. See “Mapping CORBA to COM” on page 357 and “Mapping
CORBA to Automation” on page 313 for more details of these rules.

15

CHAPTER 1 | COM and CORBA Principles

16

In This Chapter

CHAPTER 2

Introduction to
COMet

COMet enables transparent communication between clients
that are running in a Microsoft COM environment and servers

that are running in a CORBA environment. This chapter
introduces COMet, first by outlining the concepts of the

standard interworking model on which it is based, and then by

describing how COMet implements these concepts.

This chapter discusses the following topics:

The Interworking Model page 18
How COMet Implements the Model page 20
COMet System Components page 24

Note: COMet supports development and deployment of COM or
Automation clients that can communicate with CORBA servers. Any
CORBA C+ + server examples provided in this guide are supplied for
reference purposes only. It is assumed that you already have a CORBA
server implementation product. The examples provided are for use with
Orbix 6.1.

17

CHAPTER 2 | Introduction to COMet

The Interworking Model

Overview

Interworking Architecture
Specification

Overview of Interworking Model

18

This section describes the principles of the interworking model on which
COMet is based. The following topics are discussed:

® ‘“Interworking Architecture Specification” on page 18.

® “Overview of Interworking Model” on page 18.

® “Bridge” on page 19.

® “Bridge View of Target Object” on page 19.

The Interworking Architecture specification, which is part of the OMG
Common Object Request Broker: Architecture and Specification at
ftp://ftp. omy. org/ pub/ docs/ f or mal / 01- 12- 35. pdf , defines the standard
interworking model that specifies how the integration between COM or
Automation clients and CORBA object models is achieved.

Figure 2 provides an overview of the interworking model, which involves a
client in one object system (in this case, COM or Automation) that wants to
send a request to an object in another object system (in this case, CORBA).

Object model A (client) Object model B (server)

Object reference in A ‘

Target

’ H Object

Object reference in B

Bridge

Figure 2: The Standard Interworking Model

Bridge

Bridge View of Target Object

The Interworking Model

The interworking model shown in Figure 2 on page 18 provides a bridge
that acts as an intermediary between the two object systems. The bridge
provides the mappings that are required between the object systems. It
provides these mappings transparently, so that the client can make requests
in its familiar object model.

To effect the bridge, the interworking model provides an object called a view
in the client’s system. The view object exposes the interface of the target
foreign object in the model that is understood by the client. See Figure 4 on
page 22 for an overview of how the view object is implemented in COMet.

The client makes requests on the view object’s interface in the bridge. The
bridge then maps these requests into requests on the target object’s
interface, and forwards them to the target object across the system
boundary. The workings of the bridge are transparent to the client, so the
client does not have to know that the objects it is using belong to another
object system.

The bridge can consist of multiple view objects. Each view object in the
bridge is bound to an Orbix object reference that corresponds to a real target
object across the system boundary. See Figure 4 on page 22 for more
details.

19

CHAPTER 2 | Introduction to COMet

How COMet Implements the Model

Overview This section describes how COMet implements the interworking model. The
following topics are discussed:

“Role of COMet” on page 20.

“Graphical Overview of Role” on page 21.

“COM View of CORBA Objects” on page 21.
“Graphical Overview of View” on page 22.
“Creating a View” on page 22.

“Advantages for the COM Programmer” on page 23.
“Supported Protocols” on page 23.

Role of COMet COMet supports application integration across network boundaries, different
operating systems, and different programming languages. It provides a high
performance dynamic bridge that enables integration between COM or
Automation and CORBA objects. It allows you to develop and deploy COM
or Automation client applications that can interact with existing CORBA
server applications that might be running on Windows or another platform.

20

Graphical Overview of Role

How COMet Implements the Model

Figure 3 provides a conceptual overview of how COMet implements the
interworking model.

COM or Automation
Client

Visual Basic,

PowerBuilder,

C++, VJ++,
and so on

CORBA Server

COMet
UNIX, 0S/390,
Windows NT, Java,
and so on

COM View of CORBA Objects

Type Store

— = |

'\ (Machine/Process Boundary)

Figure 3: COMet’s Implementation of the Interworking Model

Figure 3 shows no process boundary between the client and COMet, which
is the only supported scenario for COM clients. In the case of Automation
clients, however, you can choose to have a process and machine boundary
between the client and COMet, or to have no machine boundary between
COMet and the server. See “Usage Models and Bridge Locations” on

page 27 for more details.

As explained in “Bridge View of Target Object” on page 19, the interworking
model provides the concept of a view object in the bridge, which allows a
client to make requests on an object in a foreign object system as if that
object were in the client’s own native system. It follows that COMet supports
the concept of COM or Automation views of CORBA objects.

21

CHAPTER 2 | Introduction to COMet

Graphical Overview of View

Creating a View

22

COM Interface

This in turn means that a corresponding COM or Automation interface must
be generated for each CORBA interface that is implemented by the CORBA
objects a client wants to invoke. (COMet supplies utilities that allow you to
generate such COM or Automation interfaces from CORBA interfaces, and
these are described in more detail in “Development Support Tools” on

page 171.) At application runtime, a client can create and subsequently
invoke on view objects that implement and expose these COM or
Automation interfaces (see “Creating a View” on page 22 for more details).

Figure 4 provides a graphical overview of how a view object is implemented
in COMet.

T

O

Automation Igten‘ace

COM or Automation
View Object

COMet Address Space

Figure 4: View Object in COMet

A view object is created in the COMet bridge when a client calls the
COMet-supplied (D)l GCRBAFact ory: : Get Cbj ect () method on a particular
CORBA object. As shown in Figure 4 on page 22, a view exposes COM or
Automation interfaces, which correspond to the CORBA interfaces on the
object that the client wants to invoke. The view object is automatically
bound on creation to an Orbix object reference for the target object. This
object reference is returned to the client, to allow it to invoke operations on

Advantages for the COM
Programmer

Supported Protocols

How COMet Implements the Model

the target object. See Part 2 “Programmer’s Guide” and “COMet API
Reference” on page 217 for more details of how to use
Dl CORBAFAct ory: : Get Chj ect () .

Note: All COM views that are mapped from a particular OMG IDL
interface must share the same COM IIDs. See “Mapping Interface
Identifiers” on page 362 for more details.

COMet provides two main advantages to COM programmers:

1. COMet provides access to existing CORBA servers, which can be
implemented on any operating system and in any language supported
by a CORBA implementation. Orbix supports a range of operating
systems, such as Windows, UNIX, and 0S/390. It also supports
different programming languages, including C++ and Java.

2. Using COMet, a COM programmer can use familiar COM-based and
Automation-based tools to build heterogeneous systems that use both
COM and CORBA components within a COM environment. COMet,
therefore, presents a programming model that is familiar to the COM
programmer.

COMet supports both the internet inter-ORB protocol (II0OP) and Microsoft's
distributed component object model (DCOM) protocol. This means that any
[IOP-compliant ORB can interact with a COMet application.

Note: There are some restrictions in the use of DCOM with COMet. These
are explained in more detail in “Usage Models and Bridge Locations” on
page 27. The recommended approach is to load the bridge in-process to
the client (that is, in the client’s address space) and hence allow the client
machine to use IIOP to communicate with the server.

23

CHAPTER 2 | Introduction to COMet

COMet System Components

Overview This section describes the various components that comprise a COMet
system. The following topics are discussed:

® “Bridge” on page 24.

® “Type Store” on page 24.

® “Automation Client” on page 24.
® “COM Client” on page 25.

® “COM Library” on page 25.

¢ “CORBA Server” on page 25.

Bridge The bridge is a synonym for COMet itself. It is implemented as a set of DLLs
that are capable of dynamically mapping requests from a COM or
Automation environment to a CORBA environment. The bridge provides the
mappings and performs the necessary translation between COM or
Automation and CORBA types.

As shown in Figure 4 on page 22, a view object in the bridge contains both
a COM/Automation object interface and an Orbix object interface. This
means that the bridge can expose an appropriate COM or Automation
interface to its clients.

Type Store As shown in Figure 3 on page 21, COMet uses a component called the type
store. The type store is used to hold a cache of information about all the
CORBA types in your system. COMet can retrieve this information from the
Interface Repository at application runtime, and then automatically update
the type store with this information for subsequent use, instead of having to
query the Interface Repository for it again. The type store holds its cache of
type information in a neutral binary format. See “Development Support
Tools” on page 171 for more details about the workings of the type store.

Automation Client An Automation client can use COMet to communicate with a CORBA server.
This is a regular Automation client written in a language such as Visual
Basic, PowerBuilder, or any other Automation-compatible language.

24

COM Client

COM Library

CORBA Server

COMet System Components

A COM client can use COMet to communicate with a CORBA server. This is
a pure COM client (that is, not an Automation-based client) written in C++
or any language that supports COM clients.

This is part of the operating system that provides the COM and Automation
infrastructure.

A CORBA server can be contacted by COM or Automation clients, using
COMet. This is a normal CORBA server written in any language and running
on any platform supported by an ORB. Depending on the location of the
COMet bridge in your system, the CORBA server might need to be running
on Windows (if so, preferably Windows 2000, for reasons of scalability).
See “Usage Models and Bridge Locations” on page 27 for more details.

25

CHAPTER 2 | Introduction to COMet

26

CHAPTER 3

Usage Models and
Bridge Locations

You can use COMet to develop and deploy distributed
applications consisting of COM or Automation clients that can
call objects in a CORBA server. This chapter explains how
COMet supports this usage model for both COM and

Automation.
In This Chapter This chapter discusses the following topics:
Automation Client to CORBA Server page 28
COM Client to CORBA Server page 31

Note: See “Deploying a COMet Application” on page 151 for more details
and examples of the various ways you can use COMet when deploying
your applications.

27

CHAPTER 3 | Usage Models and Bridge Locations

Automation Client to CORBA Server

Overview

Graphical Overview

Automation Client

This section describes a usage model involving an Automation client and a
CORBA server. The following topics are discussed:

® “Graphical Overview” on page 28.

® “Automation Client” on page 28.

¢ “Automation Client with Bridge In-Process” on page 29.

® “Automation Client with Bridge Out-of-Process” on page 29.
® “CORBA Server” on page 29.

® “Bridge” on page 30.

Figure 5 shows a graphical overview of this usage model.

CORBA Server

DCOM
O
Automation Interface Pointer
(IDispatch pointer)

Automation View
(a real Automation object)

Automation Client

28

/\ Bridge
O lloP

*

CORBA Object Reference

Figure 5: Automation Client to CORBA Server

An Automation client can be written in any Automation-based programming
language, such as Visual Basic or PowerBuilder. The client does not need to
know that the target object is a CORBA object.

An Automation client can have the bridge loaded in any of the following
ways:

® In-process (that is, in the client's address space).

Automation Client with Bridge
In-Process

Automation Client with Bridge
Out-of-Process

CORBA Server

Automation Client to CORBA Server

® Qut-of-process on the client machine.
® Qut-of-process on a separate machine.

The recommended deployment scenario for an Automation client with
COMet is to load the bridge in-process (that is, in the client's address
space). This involves the use of IIOP as the wire protocol for communication
between the Automation client machine and CORBA server.

When the bridge is loaded in-process, an Automation client can use dual
interfaces instead of I Di spat ch interfaces. COMet does not support the use
of dual interfaces when the bridge is loaded out-of-process. The use of either
dual interfaces or | Di spat ch interfaces determines whether early binding or
late binding is allowed. (See “Automation Client Requests” on page 13 and
“Dual Interfaces” on page 14 for a definition of early and late binding.)

Figure 5 on page 28 shows a scenario where the Automation client is using
DCOM to communicate with the bridge, which means the bridge is loaded
out-of-process on a separate machine. Although this is a supported
deployment scenario for Automation clients, it is not recommended unless
the bridge machine is running on Windows 2000, because it otherwise
limits the number of clients that can be handled.

Note: If you want to load the bridge out-of-process, your Automation
client must use | D spat ch interfaces instead of dual interfaces.

As shown in Figure 5 on page 28, the Automation client uses an | b spat ch
pointer to make method calls on an Automation view object in the bridge.
The bridge uses a CORBA object reference to make a corresponding
operation call on the target object in the CORBA server.

The dynamic marshalling engine of COMet allows for automatic mapping of
I D spat ch pointers to CORBA interfaces and object references at runtime.

The CORBA server presents an OMG IDL interface to its objects. The server
application can exist on platforms other than Windows. However, if you
choose to locate the bridge on the server machine, the server must be
running on Windows (preferably Windows 2000 for reasons of scalability).
It can be written in any language supported by a CORBA implementation,
such as C++ or Java.

29

CHAPTER 3 | Usage Models and Bridge Locations

Bridge

30

The bridge can be located on the Automation client machine, on an
intermediary machine, or on the CORBA server machine. If the bridge is not
located on the client machine, the bridge machine must be running on
Windows (preferably Windows 2000 for reasons of scalability).

The bridge acts as an Automation server, because it accepts requests from
the Automation client. The bridge also acts as a CORBA client, because it

translates requests from the Automation client into requests on the CORBA
server.

If the bridge is not located on the client machine, the Automation client uses
DCOM to communicate with it. The bridge uses IIOP to communicate with
the CORBA server.

COM Client to CORBA Server

COM Client to CORBA Server

Overview

Graphical Overview

This section describes a usage model involving a COM client and a CORBA
server. The following topics are discussed:

® “Graphical Overview” on page 31.
® “COM Client” on page 31.

¢ “CORBA Server” on page 32.

® “Bridge” on page 32

Figure 6 shows a graphical overview of this usage model.

Client Process

————————————————————————— - CORBA Server

COM Client

O
A

COM Interface Pointer

COM View (a real COM object)

lIOP

COM Client

CORBA Object Reference

Figure 6: COM Client to CORBA Server

The only supported deployment scenario for a COM client with COMet is to
load the bridge in-process (that is, in the client’s address space). This
involves the use of [IOP as the wire protocol for communication between the
COM client machine and CORBA server. Figure 6 provides a graphical
overview of this scenario.

31

CHAPTER 3 | Usage Models and Bridge Locations

CORBA Server

Bridge

32

The COM client can use a COM interface pointer to make method calls on a
COM view object in the bridge. The bridge uses a CORBA object reference to
make a corresponding operation call on the target object in the CORBA
server.

The dynamic marshalling engine of COMet allows for automatic mapping of
COM interface pointers to CORBA interfaces and object references at
runtime.

The client does not need to know that the target object is a CORBA object. A
COM client can be written in C++ or any language that supports COM
clients.

The CORBA server presents an OMG IDL interface to its objects. The server
application can exist on platforms other than Windows. It can be written in
any language supported by a CORBA implementation, such as C++ or
Java.

The bridge must be located in-process to the COM client. The bridge acts as
a COM server, because it accepts requests from the COM client. The bridge
also acts as a CORBA client, because it translates requests from the COM
client into requests on the CORBA server.

Part 2

Programmer’s Guide

In This Part This part contains the following chapters:
Getting Started page 35
Developing an Automation Client page 79
Developing a COM Client page 97
Exception Handling page 113
Client Callbacks page 137
Deploying a COMet Application page 151
Development Support Tools page 171

In This Chapter

CHAPTER 4

Getting Started

This chapter is provided as a means to getting started quickly
in application programming with COMet. It explains the basics
you need to know to develop a simple COMet application that
consists of a COM or Automation client, written in
PowerBuilder, Visual Basic, or COM C++, which can call
objects in an existing CORBA C++ server.

This chapter discusses the following topics:

Prerequisites page 36
Developing Automation Clients page 38
Using DCOM with COMet page b4
Using COMet with Internet Explorer page 61
Automation Dual Interface Support page 68
Developing COM Clients page 71
Priming the COMet Type Store Cache page 78

35

CHAPTER 4 | Getting Started

Prerequisites

Overview

Client-Side Requirements

Server-Side Requirements

Registering OMG IDL Type
Information

36

This section describes the prerequisites to starting application development
with COMet. The following topics are discussed:

® “Client-Side Requirements” on page 36.

® “Server-Side Requirements” on page 36.

® “Registering OMG IDL Type Information” on page 36.
® “Priming the Type Store” on page 37.

Ensure that both Orbix and COMet are installed and configured correctly.
See the Orbix 6.1 Installation Guide for more details about installation. See
the Orbix 6.1 Deployment Guide and Configuration Reference for details
about configuring both Orbix and COMet.

COMet requires no changes to existing CORBA servers. See the Orbix
documentation set for details of how to manage servers. This chapter
assumes that you are using Orbix as your server-side object request broker
(ORB).

As explained in “How COMet Implements the Model” on page 20, COMet is
a fully dynamic bridge that enables integration between COM or Automation
clients and CORBA servers. The bridge is driven by OMG IDL type
information derived from a CORBA Interface Repository.

Before you run an application, ensure that your OMG IDL is registered in the
Interface Repository. This is because COMet is designed to automatically
retrieve the required type information from the Interface Repository at
application runtime. COMet then saves this information to the type store for
subsequent use. See the Orbix documentation set for details of how to
register OMG IDL.

Priming the Type Store

Prerequisites

As an alternative to having COMet retrieve the type information from the
Interface Repository at application runtime, you can manually configure the
type store with the required type information before the first run of an
application. This is also known as priming the cache and is described in
more detail in “Priming the COMet Type Store Cache” on page 78. This also
requires that the OMG IDL is registered in the Interface Repository.

37

CHAPTER 4 | Getting Started

Developing Automation Clients

Overview You can use COMet to develop Automation client applications, using any
Automation-based tool. This section describes how to use COMet to develop
Automation clients in Visual Basic and PowerBuilder.

In This Section This section discusses the following topics:
Introduction page 39
Using the Visual Basic Genie page 43
Writing a Visual Basic Client without the Genie page 47
Writing a PowerBuilder Client page 50
Running the Client page 53

38

Developing Automation Clients

Introduction

Overview This subsection provides an introduction to the Automation client
demonstrations provided. The following topics are discussed:

“The Grid Demonstration” on page 39.

“OMG IDL grid Interface” on page 39.

“Automation Dlgrid Interface” on page 40.

“Visual Basic Client GUI Interface” on page 41.
“Location of Visual Basic Source Files” on page 41.
“PowerBuilder Client GUI Interface” on page 42.
“Location of PowerBuilder Source Files” on page 42.

The Grid Demonstration The examples developed in this section are Automation clients, written in
Visual Basic and PowerBuilder, which can access and modify values that
are assigned to cells within a grid that is implemented as an object in a
supplied CORBA server.

OMG IDL grid Interface The grid object in the CORBA server implements the following OMG IDL
grid interface:

/l QMG | DL
interface grid {

readonly attribute short height;

readonly attribute short width;

void set(in short n, in short m in long value);
long get(in short n, in short n;

39

CHAPTER 4 | Getting Started

Automation Dlgrid Interface The corresponding Automation interface for the preceding OMG IDL
interface is called DI gri d, and is defined as follows:

[odl, .]
interface Digrid : |D spatch {
[i d(0x00000001)]
HRESULT _stdcal | get(
[in] short n,
[in] short m
[out, optional] VAR ANT* excep_CBJ,
[out, retval] long* val);
[i d(0x00000002)]
HRESULT _stdcal | set(
[in] short n,
[in] short m
[in] long val ue,
[out, optional] VAR ANT* excep_(BJ);
[i d(0x00000003), propget]
HRESULT _stdcall height([out, retval] short* val);
[i d(0x00000004), propget]
HRESULT _stdcall wdth([out, retval] short* val);
i

The Automation view of the target CORBA object must implement the
D grid interface.

40

Developing Automation Clients

Visual Basic Client GUI Interface Figure 7 shows the Visual Basic client GUI interface implemented in this
section.

iw. OrbixDCOM Grid Demo
OrbixDCOM Gnid
= Y
Demo
v [Dizpatch Hast I I
Width Height
Connect \ [NEcommest et [5et

Figure 7: Visual Basic Client GUI for the COMet Grid Demonstration

Location of Visual Basic Source The source for the Visual Basic demonstration is in
install-dir\denos\conet\grid\ivb client,whereinstall-dir represents

the Orbix installation directory.

Files

41

CHAPTER 4 | Getting Started

PowerBuilder Client GUI Interface Figure 8 shows the PowerBuilder client GUI interface implemented in this
section.

: I =] E3

Bridge Host | |

Grid Dimensions : Current Cell :

Heigt [] Xcel YCel
[]

Width | | | |

“alue I:I

et | (5Et |

Connect | DisCDnnectl

Figure 8: PowerBuilder Client GUI for the COMet Grid Demonstration

Location of PowerBuilder Source The source for the PowerBuilder demonstration is in
Files instal | -dir\denos\conet\grid\ pb_client,whereinstall-dir represents

the Orbix installation directory.

42

Developing Automation Clients

Using the Visual Basic Genie

Overview

Visual Basic Genie

C++ Genie

This subsection provides an introduction to using the supplied Visual Basic
genie for development of Automation clients. The following topics are
discussed:

® ‘“Visual Basic Genie” on page 43.

® “C++ Genie” on page 43.

® “Overview of Client Development Process” on page 44.

® ‘“Explanation of Client Development Process” on page 44.

® “Development Steps Using Code Generation” on page 45.

® “Files Generated by the Visual Basic Genie” on page 45.

COMet is shipped with a Visual Basic code generation genie that can
automatically generate the bulk of the application code for a Visual Basic
client, based on OMG IDL definitions. Both a GUI and command-line
version of the genie are supplied. The use of the Visual Basic genie is not
compulsory for creating Visual Basic clients, using COMet. However, using
the genie makes the development of Visual Basic clients much faster and
easier.

The Visual Basic genie is designed to create Visual Basic clients that can
communicate with C++ servers that have been created using the C+ +
genie supplied with the CORBA Code Generation Toolkit. (See the CORBA
Code Generation Toolkit Guide for details about the C++ genie.)

43

CHAPTER 4 | Getting Started

Overview of Client Development
Process

Explanation of Client
Development Process

44

Figure 9 provides an overview of how the client development process works

with the genie.

Visual Basic
Client Program

Client
evelope

Modified
Visual Basic
Client Program

Figure 9: Development Overview Using Code Generation

Figure 9 on page 44 can be explained as follows:

1. The code generation genie takes the OMG IDL file as input and
generates a complete client program. See “Files Generated by the
Visual Basic Genie” on page 45 for details of the Visual Basic files that
the genie generates.

Note: The generated client is a dummy implementation that invokes
every operation on each interface in the IDL file exactly once. The
dummy client is a working application that can be built and run
immediately.

2. The client developer can then modify the client to complete the
application.

Development Steps Using Code

Generation

Files Generated by the Visual
Basic Genie

Developing Automation Clients

The main steps to develop a client-server application, using code
generation, are as follows:

Step Action

1 | Generate the CORBA server code, using the C++ genie
supplied with the CORBA Code Generation Toolkit. See the
CORBA Code Generation Toolkit Guide for more details.

2 | Generate the Visual Basic client, using the Visual Basic genie
supplied with COMet. See “Generating Visual Basic Client
Code” on page 199 for details of how to use the genie.

3 | Register the appropriate OMG IDL file with the Orbix Interface
Repository.? See the CORBA Administrator’s Guide for details.

4 | Load the client. vbp file into the Visual Basic IDE. Then build
the client as normal.

a. You only need to perform this step if you are using the command-line version
of the genie. The GUI version of the genie automatically registers the OMG
IDL, if it has not already been registered.

The Visual Basic genie creates the following files:

client.vbp This is the Visual Basic project file for the client.
client.frm This is the main Visual Basic form for the client.
Findl QR frm This form contains the functions needed by the client to

select a . ref file. The . ref file is written by the server
and contains the server object’s IOR.

Cal | _Funcs. bas This contains Visual Basic code for implementing the
operations defined in the selected interface(s).

Print_Funcs.bas This contains functions for printing the values of all the
CORBA simple types supported by COMet. It also
contains functions for printing any user-defined types
declared in the IDL file.

Random Funcs. bas This contains functions for generating random values
for all the CORBA simple types supported by COMet. It
also contains functions for generating random values
for any user-defined types declared in the IDL file.

45

CHAPTER 4 | Getting Started

I T_Randomcl s This class is a random number generator that is used in
the generated Random Funcs. bas file.

46

Developing Automation Clients

Writing a Visual Basic Client without the Genie

Overview

Step 1—Declaring Global Data

Step 2—Connecting to Server and
Obtaining Object Reference

This subsection describes the steps to use COMet to develop a simple Visual
Basic client of a CORBA server, if you are not using the code generation
genie. The steps are:

Step Action

1 | Declare global data.

2 | Connect to the Orbix gri d server, and obtain an object
reference for the gri d object.

3 | Invoke operations on the gri d object.

4 | Disconnect.

Any filenames mentioned in this subsection refer to files contained in the
instal | -dir\denos\conet\grid\vb_client directory.

Start by declaring global variables for the bridge (bri dge), the CORBA object
factory (f act), and the Automation view object (gri dbi sp).

' Visual Basic

D mbridge As bj ect
D mfact As (bj ect
DmagridD sp As (bj ect

The following code is executed when you click Connect on the Visual Basic
client window shown in Figure 7 on page 41:

Example 1:

" Misual Basic
Private Sub Connect Qi ck()

Set fact = Oreate(hject (" CORBA Factory")
Set gridDisp = fact.Getoject("grid:" + sIR

w dth_val . Caption = gridDi sp. Wdth

47

CHAPTER 4 | Getting Started

Example 1:

hei ght _val . Caption = gri dD sp. Hei ght
Comrandl. Enabl ed = Fal se

Command2. Enabl ed = True

Set But t on. Enabl ed = True

Get But t on. Enabl ed = True

End Sub

The preceding code can be explained as follows:

1. The call to O eat e(hj ect results in the creation of an instance of a
CORBA object factory in the bridge. It is assigned a ProgID,

CCRBA. Factory.

2. After a GCRBA Fact ory object has been returned, the client can call
Get oj ect () on the object factory, to request a particular object. The
call to Get (uj ect () achieves a connection between the client’s
gri dDi sp object reference (for the view) and the target gri d object in
the server.

The call to Get bj ect () causes the following:

i. The object factory creates an Automation view object that
implements the D gri d interface.

ii. The view object is bound to an instance of the CORBA gri d
object named in the parameter for Get Quj ect ().

iii. The grid object is mapped onto a CORBA object reference. (This
object reference is then bound to the view.)

iv. A reference to the Automation view is returned to the client.

See “Obtaining a Reference to a CORBA Object” on page 86 and
“DICORBAFactory” on page 228 for more details about Get (j ect ().

Step 3—Invoking Operations After calling Get bj ect (), the client can implement the Get and Set buttons
on the client GUI interface, by using the gri dD sp object reference to invoke
the OMG IDL operations on the gri d object in the server. For example:

.gridD sp.set(..)

48

Developing Automation Clients

Step 4—Disconnecting When disconnecting, it is important to release all references to objects in the
bridge, to allow the process to terminate. In the gri d demonstration, this is
performed by the following subroutine:

' Visual Basic

Private Sub D sconnect Qi ck()
Set gridD sp = Not hing

Set fact = Nothing

Set bridge = Nothing

End Sub

49

CHAPTER 4 | Getting Started

Writing a PowerBuilder Client

Overview

Step 1—Declaring Global Data

Step 2—Connecting to the Orbix
Grid Server

1

50

This subsection describes the steps to use COMet to develop a simple
PowerBuilder client of a CORBA server. The steps are:

Step Action

1 | Declare global data.

2 | Connect to the Orbix gri d serverm and obtain an object
reference for the target CORBA gri d object.

3 | Invoke operations on the grid object.

4 | Disconnect.

Note: There is no code generation genie available for PowerBuilder.

Any filenames mentioned in this subsection refer to files contained in the
i nstal | -dir\denos\conet\grid\ pb_client directory.

Start by declaring global variables for the bridge (bri dge), the CORBA object
factory (f act), and the Automation view object (gri d_cl i ent).

/1 Power Bui | der

d eChj ect bridge

d ehj ect fact
deChject grid_client

The following code is executed when you click Connect on the PowerBuilder
client window shown in Figure 8 on page 42:

Example 2:

/1 Powerscri pt

// create the OCRBA factory object
fact = OREATE A e(yj ect

f act . Connect ToNew(hj ect (" CORBA Fact ory")

Developing Automation Clients

Example 2:

/|l Exception paranmeter in case a OCRBA exception occurs
d e(hj ect ex
ex = CREATE d eyj ect

grid_client
grid_client

CREATE d e(j ect
fact. Getoject("grid:" + sIR

hei ght _val . Text = string(grid_client.Height)
wi dth_val . Text = string(grid_client. Wdth)

connect _butt on. Enabl ed = Fal se
unpl ug_but t on. Enabl ed = True
set _button. Enabl ed = True

get _button. Enabl ed = True

The preceding code can be explained as follows:

1. The call to Connect ToNewhj ect results in the creation of an instance
of a CORBA object factory in the bridge. It is assigned a ProglD,
COCRBA. Factory.

2. After a GORBA Fact ory object has been returned, the client can call
Get oj ect () on the object factory, to request a particular object. The
call to Get (oj ect () achieves a connection between the client’s
grid_client object reference (for the view) and the target gri d object
in the server.

The call to Get (oj ect () causes the following:

i. The object factory creates an Automation view object that
implements the DI gri d interface.

ii. The view object is bound to an instance of the CORBA gri d
object named in the parameter for Get Coj ect ().

iii. The grid object is mapped onto a CORBA object reference. (This
object reference is then bound to the view.)

iv. A reference to the Automation view is returned to the client.

See “Obtaining a Reference to a CORBA Object” on page 86 and
“DICORBAFactory” on page 228 for more details about Get oj ect () .

51

CHAPTER 4 | Getting Started

Step 3—Invoking Operations

Step 4—Disconnecting

52

After calling Get (bj ect (), the client can implement the Get and Set buttons
on the client GUI interface, by using the gri d_cl i ent object reference to

invoke the OMG IDL operations on the gri d object in the server. For
example:

.grid_client.set(.)

When disconnecting, it is important to release all references to objects in the
bridge, to allow the process to terminate. In the gri d demonstration, this is
performed by the following subroutine:

/1 Power Bui | der

grid_client.D sconnect Cbj ect ()
DESTROY grid_client

fact. D sconnect (bj ect ()
DESTROY f act

bri dge. D sconnect (bj ect ()
DESTROY bri dge

Developing Automation Clients

Running the Client

Overview This subsection describes the steps to run the client application.
Steps The steps to run the client are:
Step Action

1 | If you are using:

® Visual Basic, run vbgri d. exe.
This opens the client window shown in Figure 7 on
page 41.

® PowerBuilder, run gri d. exe.

This opens the client window shown in Figure 8 on
page 42.

2 | Specify the hostname in the appropriate field and click
Connect. This contacts the supplied grid C+ + server, and
obtains the width and height of the grid.

3 | Type x and y values for the grid coordinates.

4 | Click Set to modify values in the grid, or Get to obtain values
from the grid.

5 | Click Disconnect when you are finished.

53

CHAPTER 4 | Getting Started

Using DCOM with COMet

Overview

In This Section

54

This section describes how to use COMet to develop Automation clients that

launch the COMet bridge out-of-process, and hence use DCOM as the wire
protocol for communication.

This section discusses the following topics:

Introduction

page 55
Launching the COMet Bridge Out-of-Process page 57
DCOM Security page 60

Using DCOM with COMet

Introduction

Overview

In-Process versus Out-of-Process

Automation Clients versus COM
Clients

IDispatch Interfaces

This subsection provides an introduction to the concept of launching the
bridge out-of-process, and the mandates and recommendations associated
with it. The following topics are discussed:

® “In-Process versus Out-of-Process” on page 55.

® “Automation Clients versus COM Clients” on page 55.
®* “IDispatch Interfaces” on page 55.

® “Windows 2000” on page 56.

The examples provided in “Developing Automation Clients” on page 38
create an instance of the OCRBA. Fact ory object in the Automation client’s
address space, which means the COMet bridge is launched in-process to the
client. Launching the bridge in-process is the recommended deployment
scenario with COMet, because it involves the use of IIOP as the wire
protocol for communication between the client machine and the CORBA
server.

Launching the bridge out-of-process involves the use of DCOM as the wire
protocol for communication between the client and the COMet bridge. If the
bridge is launched out-of-process on the same machine as the client, it is
referred to as a local server. If the bridge is launched on a separate machine,
it is referred to as a remote server. Launching the bridge out-of-process
comes with certain mandates and recommendations, which are described
next.

COMet only allows Automation clients to launch the bridge out-of-process. It
does not support COM clients with the bridge loaded out-of-process. COM
clients must launch the bridge in-process.

If you want to launch the bridge out-of-process, your Automation clients
must use | D spat ch interfaces. The use of dual interfaces is not supported
with DCOM.

55

CHAPTER 4 | Getting Started

Windows 2000 If you want to launch the bridge out-of-process, the bridge machine must be
running on Windows. For reasons of scalability, it is recommended that the
bridge machine is running on Windows 2000. Running the bridge on any
other version of Windows limits the number of clients that it can handle.

56

Using DCOM with COMet

Launching the COMet Bridge Out-of-Process

Overview

Example

This subsection describes how to write a client that can launch the bridge
out-of-process. The following topics are discussed:

® “Example” on page 57.

¢ “Explanation” on page 58.

® “Required Setting” on page 58.

® “The custsur.exe Executable” on page 58.

® “The CreateObject() Method” on page 59.

Example 3 shows a sample Visual Basic client that can launch the bridge
out-of-process.

Example 3: Sample Visual Basic Client for Out-of-Process Launching

' Misual Basic
Private Sub ConnectBtn_Q i ck()
Oh Error GTo errortrap
I f inprocess. Val ue <> Checked Then
set obj Factory = Oreate(j ect (" OORBA Factory”, Host Nane. Text)
B se
set obj Factory = O eateChj ect (" CORBA Factory")
End | f
i nprocess. Enabl ed = Fal se
Set srvhj = obj Factory. Get hject ("grid:" + sICR
StartBtn. Enabl ed = True
Gonnect Bt n. Enabl ed = Fal se
Exit Sub
errortrap:
MsgBox (Err.Description &", in" & Err. Source)
End Sub

57

CHAPTER 4 | Getting Started

Explanation

Required Setting

The custsur.exe Executable

58

The client code shown in Example 3 can be explained as follows:

1.

The client implements a check button (i nprocess), to let the user
decide at runtime whether to launch the bridge in-process or
out-of-process. Because the decision is controlled by a simple I f . H se
statement, both configurations are equally easy to use from the client
programmer’s point of view.

The Visual Basic O eat etbj ect () method allows you to specify a
hostname as an optional, extra parameter. The hostname specified is
the name of the machine on which you want to launch the bridge. The
call to O eat e(hj ect () creates an instance of the CORBA Fact ory
object in the bridge.

The Visual Basic O eat eQbj ect () method is similar to the COM
CoQr eat el nst anceEx() method. Most Automation controllers allow
you to specify an optional hostname to their equivalent of the Visual
Basic Oreat eQbj ect () method.

The client calls Get (bj ect () on the object factory, to invoke on the
target gri d object. The call to Get vj ect () achieves a connection
between the client’s srvnj object reference (for the view) and the
target gri d object in the server.

If you want to launch the bridge out-of-process, the i nstal | -di r\ bi n
directory must be set on the system path. This might already have been
done automatically at installation time. If not, you must do it manually.

When COMet is launched in-process to the client, the COMet DLLs are
hosted by a default surrogate executable, called DLLHOST. exe. However,
when COMet is launched out-of-process, the COMet DLLs are instead
hosted by a surrogate executable, called cust sur. exe, on the bridge host.

The cust sur. exe executable is supplied with your COMet installation. It is
indicated by the following Windows registry value that is set during
installation (where ver si on represents the Orbix version number):

HKEY_CLASSES ROOM Appl D\ { A8B553C5- 3B72- 11CF- BBFC 444553540000}

[DlSurrogate] = install-dir\asp\version\bin\custsur.exe

The CreateObject() Method

Using DCOM with COMet

The Visual Basic O eat eQoj ect () method is completely independent of
COMet, and can therefore be used on dedicated DCOM client machines.
This is of particular use when you are using COMet with Internet Explorer.
See “Using COMet with Internet Explorer” on page 61 for more details.

59

CHAPTER 4 | Getting Started

DCOM Security

Overview

Addressing Security Issues

For More Information

60

This subsection addresses the subject of DCOM security, which is important
for launching the bridge out-of-process. The following topics are discussed:

® “Addressing Security Issues” on page 60.
® “For More Information” on page 60.

Using DCOM as the wire protocol for communication between the client
machine and the bridge machine requires that DCOM security issues are
addressed. Security can be dealt with either by using DOOMONFG EXE, or
programmatically via APl security functions, or using a combination of these
two approaches.

A full treatment of COM security is outside the scope of this guide. For more
details see the COM security FAQ at:

http://support.mcrosoft.com support/kb/articl es/ q158/ 5/ 08. asp

Using COMet with Internet Explorer

Using COMet with Internet Explorer

Overview This section describes how to use a tool such as VBScript to set up a
web-based Automation client that runs in Internet Explorer and uses COMet
to communicate with CORBA objects in a remote web server.

Note: Before reading this section, ensure that you have read “Using
DCOM with COMet” on page 54.

In This Section This section discusses the following topics:
Specifying the Bridge Location page 62
The Supplied Demonstration page 64

61

CHAPTER 4 | Getting Started

Specifying the Bridge Location

Overview

Supplied DLL

Referencing the DLL in HTML

62

This subsection describes how to specify the location of the bridge for use
with an Internet Explorer client. The following topics are discussed:

® “Supplied DLL"” on page 62.
® “Referencing the DLL in HTML" on page 62.
® “Attributes for the OBJECT Tag” on page 63.

Unlike the Visual Basic O eat e(hj ect () method, the O eat e(oj ect ()
method used in VBScript does not have the ability to pass an optional
hostname parameter. COMet therefore supplies a file, called

I T_C2K_ OO ExW apper 0_VG560. DLL, which contains an ActiveX control used
for wrapping the COM CoQr eat el nst anceEx() method. You can reference
the I T_C2K_ 0O ExW apper 0_V050. DLL file in HTML, by using the CBJECT tag.

The following is an example of how to use the CBIECT tag in HTML, to
reference the | T_C2K_0Q ExW apper 0_VGCB0. DLL file:

<OBJECT | D="bridge" <

CLASS| D=" CLSI D: 3DA5B85F- F2FC- 11D0- 8D97- 0060970557AC"
change this to reflect the |ocation of

| T_CQK OO ExW apper 0_VG50. DLL on your machi ne
OCDEBASE="\ \ nachi ne- nane\i nst al | - di r\ asp\ x. x\ bi n\

I T_C2K OO ExW apper 0_\VC60. DLL"
>

</ BJECT>

In the preceding example, i nstal | -di r represents the full path to your
installation, and x. x represents the Orbix version number.

Attributes for the OBJECT Tag

Using COMet with Internet Explorer

The CBIECT tag that is used to reference the DLL contains attributes that can
be explained as follows:

ID The value for this attribute specifies the object name. In
the preceding example it is bri dge.
CLASSI D The value for this attribute specifies the object type (that

is, the object implementation). The syntax for this
attribute is LSl D cl ass-i dentifier for registered
ActiveX controls.

QCDEBASE The value for this attribute specifies the object location,
by supplying a URL that identifies the codebase for the
object. You might need to modify the machi ne- nane in
the HTML file before the demonstration can work.

63

CHAPTER 4 | Getting Started

The Supplied Demonstration

Overview

Downloading the HTML
Demonstration

VBScript Example

64

This subsection describes the sample Internet Explorer client demonstration
supplied with your COMet installation. The following topics are discussed:

® “Downloading the HTML Demonstration” on page 64.
® “VBScript Example” on page 64.

® “VBScript Explanation” on page 65.

® “Location of the VBScript Example” on page 65.

® “Setting Internet Explorer Security” on page 65.

® “Specifying the Machine Name” on page 66.

® “Running the Demonstration” on page 66.

When the HTML file for the supplied demonstration is first downloaded to
the client machine, the ActiveX control for wrapping CoQ eat el nst anceEx()
is also retrieved and registers itself on your client machine (provided you
agree, of course). This allows use of COMet from client machines, with no
configuration effort required on the client’s part.

The only requirement is that you must configure COMet on the server side
with respect to type information, access permissions, and so on, and place
the HTML file for the demonstration on the server where the bridge resides.

DCOM is used as the wire protocol for communication between the client
and the bridge.

The HTML file can contain VBScript or JavaScript for calling methods on the
remote CORBA objects. For the purposes of this example, it contains
VBScript. Example 4 shows the VBScript example. client connects to the
gri d object on the "advi ce. i ona. comi machine and obtains the height and
the width of the grid:

Example 4: Sample VBScript Client

<SCR PT LANGUAGE="VBScri pt ">
<l--

Dm@id

D m fact

VBScript Explanation

Location of the VBScript Example

Setting Internet Explorer Security

Using COMet with Internet Explorer

Example 4: Sample VBScript Client

Sub bt nConnect _Oncl i ck
I bl Status. Val ue = "Connecting.."

DOCMon the wire...

the paraneter should be the name of the

machi ne where the bridge is | ocated

Set fact = bridge.|T_O eateRenot eFact ory("advi ce. i ona. cont)

#11CP on the wire
Set fact = O eate(hj ect (" CORBA Factory")

Set @id =fact.Getject("grid:" + sIOR
I bl Status. Val ue = " bt ai ni ng di nensi ons.."

sleWdth.Value = Qid.width
sl eHei ght. Val ue = @i d. hei ght

I bl St atus. Val ue = " Connect ed.."
End Sub

==

</ SCRI PT>

The code shown in Example 4 can be explained as follows:

1. The client creates an instance of the remote CORBA object factory on
the advi ce. i ona. com machine (that is, the host on which the bridge is
to be launched).

2. The client calls Get oj ect () on the object factory, to invoke on the
target gri d object. The call to Get vj ect () achieves a connection
between the client’'s Gi d object reference (for the view) and the target
gri d object in the server.

The full version of the preceding VBScript example is supplied in
install-dir\denos\conet\gridiie_client.

To use the supplied VBScript example, you must set your Internet Explorer
security settings to medium in your Windows Control Panel. A security
setting of medium means that you are prompted whenever executable

65

CHAPTER 4 | Getting Started

content is being downloaded. That is all you need to do. You do not need to
have Orbix installed. You can now open the
instal | -dir\denos\conet\grid\ie_client\griddeno. ht mfile.

Specifying the Machine Name You must complete the following steps in the gri ddeno. ht mfile (where x. x
represents the Orbix version number), to specify the name of the machine
that is to be contacted (that is, the machine where the bridge is located)
when the demonstration is downloaded to a client:

Step Action

1 | Edit the following line:

QCDEBASE="\\ machi ne- nane\i nstal | -di r\asp\ x. x\ bi n
\ I T_C2K_OO ExW apper 0_VO50. DLL"

2 | Edit either of the following lines:

Set fact = bridge.| T _O eatel nstanceEx("{ ABB553C5- 3B72-
11CF BBFG 444553540000} ", " machi ne- nane")

or

Set fact = bridge. | T_C eat eRenot eFact or y(" machi ne-
nane")

Note: In the preceding example, | T_Q eat el nst anceEx takes
a stringified CLSID as the first parameter, which in this case is
the CLSID for GORBA. Fact ory. On the other hand, the CLSID for
QCRBA Fact ory is hard-coded in the implementations of

I T_O eat eRenot eFact ory.

When these changes have been made, the HTML file can be accessed from
any Windows machine with Internet Explorer. Neither Orbix nor COMet are
required on the client side for the demonstration to work.

Running the Demonstration The first time you access the HTML page, a dialog box opens to tell you that
unsigned executable content is being downloaded, which is acceptable in
this case. You should be presented with a simple GUI, similar to the Visual
Basic or PowerBuilder GUI screens in Figure 7 on page 41 and Figure 8 on
page 42. The steps to use the demonstration are:

66

Using COMet with Internet Explorer

Step Action

1 | Select Connect.

2 | Type x and y values for the grid coordinates.

3 | Select Set to modify values in the grid, or Get to obtain values
from the grid.

4 | Select Disconnect when you are finished.

67

CHAPTER 4 | Getting Started

Automation Dual Interface Support

Overview Some Automation controllers (for example, Visual Basic) provide clients the
option of using either straight | Di spat ch interfaces or dual interfaces for
invoking on a server. This section describes the use of dual interfaces. The
following topics are discussed:

® “What is a Dual Interface?” on page 68.

® ‘“Early Binding” on page 68.

® “Type Libraries” on page 69.

® “The ts2tlb Utility” on page 69.

®* “Viewing the Type Library” on page 70.

® “Using the Type Library in a Client” on page 70.
® “Registering the Type Library” on page 70.

What is a Dual Interface? An Automation dual interface is a COM vtable-based interface that derives
from the 1 D spat ch interface. The vtable, a standard feature of
object-oriented programming, is a function table that contains entries
corresponding to each operation defined in an interface. This means that its
methods can be either late-bound, using | D spat ch: : I nvoke, or
early-bound through the vtable portion of the interface.

Note: If you want to use dual interfaces with COMet, you must load the
bridge in-process to the client. COMet does not support the use of dual
interfaces with the bridge loaded out-of-process.

Early Binding The use of dual interfaces means that client invocations can be routed
directly through the vtable. This is known as early binding, because
interfaces are known at compile time. The alternative to early binding is /ate
binding, where client invocations are routed dynamically through I D spat ch
interfaces at runtime. The advantage of using dual interfaces and early
binding is that it helps to avoid the I D spat ch marshalling overhead at
runtime that can be associated with late binding.

68

Type Libraries

The ts2tlb Utility

Automation Dual Interface Support

The use of dual interfaces requires the use of a type library. To use dual
interfaces in an Automation client that wants to communicate with a
CORBA server, you must create a type library that is based on the OMG IDL
type information implemented by the target CORBA server. This allows the
Automation client to be presented with an Automation view of the target
CORBA objects.

COMet provides a type library generation tool, called t s2t1 b, which
produces type libraries, based on OMG IDL type information in the COMet
type store. For example, the following t s2t1 b command createsagrid.tlb
type library in the I T_gri d library, based on the OMG IDL gri d interface:

ts2tlb -f grid.tlb -1 IT grid grid

For more complicated OMG IDL interfaces (for example, those that pass
user-defined types as parameters), t s2t| b attempts to resolve all those
types from the disk cache, the Interface Repository, or both. It can only
create a type library, however, if it finds all the OMG IDL types it looks for.

Note: You must ensure that your OMG IDL is registered with the Interface
Repository before you add it to the type store and use ts2t| b to create
type libraries from it. See “Development Support Tools” on page 171 for
full details about ts2t | b and creating type libraries from OMG IDL.

69

CHAPTER 4 | Getting Started

Viewing the Type Library

Using the Type Library in a Client

Registering the Type Library

70

The generated type library, based on the OMG IDL gri d interface, appears
as follows when viewed using oleview:

[odl, .]
interface Digrid : |D spatch {
[i d(0x00000001)]
HRESULT _stdcal | get(
[in] short n,
[in] short m
[out, optional] VAR ANT* excep_CBJ,
[out, retval] long* val);
[i d(0x00000002)]
HRESULT _stdcal | set(
[in] short n,
[in] short m
[in] long val ue,
[out, optional] VAR ANT* excep_(BJ);
[i d(0x00000003), propget]
HRESULT _stdcall height([out, retval] short* val);
[i d(0x00000004), propget]
HRESULT _stdcall wdth([out, retval] short* val);
i

Note: All UUIDs are generated by using the MD5 algorithm, which is
described in the OMG Interworking Architecture specification at
ftp://ftp.ony. org/ pub/ docs/ f or mal / 01- 12- 55. pdf .

Having created a reference to the type library, it can be used in Visual Basic,
for example, as follows:

' VMisual Basic
Dmcust@id As IT grid.Digrid

If you want to register the generated type library in the Windows registry,

use the supplied t1i breg utility. You can also use t i breg to unregister a
type library. See “COMet Utility Arguments” on page 411 for more details
about t1i breg.

Developing COM Clients

Developing COM Clients

Overview

In This Section

COMet provides support for COM customized interfaces. In other words,
COMet not only supports standard Automation interfaces; it also supports
COM interfaces, with all the extended types that they provide. This support
is aimed primarily at C++ programmers writing COM clients who want to
make use of the full set of COM types, rather than being restricted to types
that are compatible with Automation. This section describes how to use
COMet to develop COM clients in C+ +.

This section discusses the following topics:

Generating Microsoft IDL from OMG IDL page 72
Compiling Microsoft IDL page 74
Writing a COM C+ + Client page 75

71

CHAPTER 4 | Getting Started

Generating Microsoft IDL from OMG IDL

Overview The first step in implementing a COM client that can communicate with a
CORBA server is to generate the Microsoft IDL definitions required by the
COM client from existing OMG IDL for the CORBA objects. This allows the
COM client to be presented with a COM view of the target CORBA objects.

This subsection describes how to generate Microsoft IDL from OMG IDL.
The following topics are discussed:

® “The ts2idl Utility” on page 72.
® “OMG IDL grid Interface” on page 73.
® “Microsoft IDL Igrid Interface” on page 73.

The ts2idl Utility COMet provides a COM IDL generation tool, called ts2i dI , which produces
Microsoft IDL, based on OMG IDL type information in the COMet type store.
For example, the following t s2i dl command creates a grid.idl Microsoft
IDL file, based on the OMG IDL gri d interface:

ts2id -f grid.idl grid

For more complicated OMG IDL interfaces that employ user-defined types,
you can specify a -r argument with ts2i dl , to completely resolve those
types and to produce COM IDL for them also.

Note: You must ensure that your OMG IDL is registered with the Interface
Repository before you add it to the type store and use ts2i dl to create
COM IDL from it. See “Development Support Tools” on page 171 for full
details about t s2i dl and creating COM IDL from OMG IDL.

72

OMG IDL grid Interface

Microsoft IDL lIgrid Interface

Developing COM Clients

The gri d object in the CORBA server implements the following OMG IDL
gri d interface:

/l OMG | DL

interface grid {

readonly attribute short height;

readonly attribute short width;

void set(in short n, in short m in long val ue);
long get(in short n, in short m;

IE

The corresponding COM interface for the preceding OMG IDL interface is
called I grid, and is defined as follows:

//Mcrosoft |DL
[obj ect, .]
interface Igrid : |Unknown
{
HRESULT get ([in] short n,
[in] short m
[out] long *val);
HRESULT set ([in] short n,
[in] short m
[in] long val ue);
HRESULT _get _height ([out] short *val);
HRESULT _get_width([out] short *val);
¥
#endi f

73

CHAPTER 4 | Getting Started

Compiling Microsoft IDL

Overview

The midl.exe Compiler

Resulting Output

Building the Proxy/Stub DLL

74

After generating the required Microsoft IDL definitions from OMG IDL, you
must compile the Microsoft IDL. This subsection describes how to compile it
and the resulting output. The following topics are discussed:

® “The midl.exe Compiler” on page 74.

® “Resulting Output” on page 74

® “Building the Proxy/Stub DLL" on page 74.

Use the m dl . exe compiler to compile the Microsoft IDL.

The nidl . exe compiler produces:

® The C++ interface definitions to be used within the COM client
application.

® A proxy/stub DLL to marshal the customized Microsoft IDL interface.

This procedure is standard practice when writing COM applications.

You can use t s2i dl to produce a makefile that subsequently allows you to
build and register the proxy/stub DLL. The steps are:

Step Action

1 | Use the - p argument with t s2i dl to produce the makefile. For
example, the following command produces a gri d. nk file in
addition to the grid.idl file already shown in “Generating
Microsoft IDL from OMG IDL"” on page 72:

ts2idl -p -f grid.idl grid

The generated makefile contains information on how to build
and register the proxy/stub DLL.

2 | Use the generated makefile to build the proxy/stub DLL as
normal.

Note: You need Visual C++ 6.0, to build the proxy/stub DLL.

Developing COM Clients

Writing a COM C+ + Client

Overview

Step 1—General Declarations

This subsection describes the steps to use COMet to write a COM C++
client of a CORBA server. The steps are:

Step Action

1 | Make general declarations.

Connect to the CORBA factory.

2
3 | Connect to the CORBA server.
4

Invoke operations on the gri d object.

Note: The source for this demonstration is in
instal | -dir\denmos\conet\grid\ comclient, whereinstall-dir
represents the Orbix installation directory.

Declare a reference to the CORBA object factory and to a gri d COM view
object:

/] COOM C++

HRESULT hr = NCERRCR

| Unknown *pUnk = NULL;

| CCRBAFactory *pQCRBAFact = NULL;
DWORD ctx;

// our custominterface

lgrid *pl Basi ¢ = NULL;
MALTI _Q nyi ;

75

CHAPTER 4 | Getting Started

Step 2—Connecting to the
CORBA Object Factory

Step 3—Connecting to the
CORBA Server

76

Create a remote instance of the CORBA object factory, which implements
the | GCCRBAFact or y interface, on the client machine. This involves calling the
COM oCr eat el nst anceEx() method as normal, to obtain a pointer to

| CCRBAFact ory. The remote instance of the CORBA object factory is
assigned the 11 D_| CORBAFact ory ID:

/1 COM C++

/l Call to Golnitialize(), sone error handling,
/1l and so on, onmtted for clarity

nenset (&ngi, 0x00, sizeof (MALTI_Q));

ngi . pl 1D = & | D | CORBAFact ory;

ctx = CLSCTX | N°PROC_SERVER,

hr = GoCreat el nst anceEx(| 1 D | GORBAFact ory, NULL, ctx, NULL, 1,
&myi);

CheckHRESULT(" GoCr eat el nst anceEx() ", hr, FALSE);

pOCRBAFact = (| CCRBAFact ory*) ngi . pltf;

Call Get oj ect () on the CORBA object factory, to get a pointer to the
| Uhknown interface of the COM view of the target gri d CORBA object.

/1l OCM C++

sprintf(szQoj ect Nane, "grid: %",sIR);

hr = pOORBAFact - >Get (hj ect (szoj ect Nane, &pUnk) ;

i f(!CheckErrlnfo(hr, pOORBAFact, || D | GORBAFactory))
{

pOCRBAFact - >Rel ease() ;

return;

}
pOCRBAFact - >Rel ease() ;

In the preceding code, CheckError i nfo() is a utility function used by the
demonstrations to check the thread’s Error | nf o object after each call. This
is useful for obtaining information about, for example, a CORBA system
exception that might be raised during the course of a call. See “Exception
Handling” on page 113 for more details about exception handling.

See “Obtaining a Reference to a CORBA Object” on page 103 and
“ICORBAFactory” on page 254 for more details about Get Qoj ect ().

Step 4—Invoking Operations on
the Grid Object

Developing COM Clients

Call Queryl nterface() on the pointer to the I Unknown interface of the COM
view object, to obtain a pointer to the customized 1 gri d interface. The client
can then use the pl F object reference to invoke operations on the target
grid object in the server:

/]l OOM C++

short width, height;

lgrid *pl F= 0;

hr = pUnk->Querylnterface(lID Igrid, (PPVOD & plF);

i f(!CheckErrlnfo(hr, pUnk, I1DIgrid))

{

pUnk- >Rel ease() ;

return;

}

hr = pl F->_get _wi dt h(&wi dth);
CheckErrinfo(hr, plF, 11D Igrid);
cout << "width is " << width << endl;
hr = pl F->_get hei ght (&hei ght);
CheckErrinfo(hr, plF, 11D Igrid);
cout << "height is " << height << endl;
pl F->Rel ease();

77

CHAPTER 4 | Getting Started

Priming the COMet Type Store Cache

Overview This section describes the concept of priming the type store cache. The
following topics are discussed:

® “What is Priming?” on page 78.
® “Relevance of Priming” on page 78.
® “For More Information” on page 78.

What is Priming? When you are ready to run your application for the first time, you have the
option of improving the runtime performance by adding the OMG IDL type
information required by the application to the COMet type store. This is also
known as priming the type store cache. Priming the cache means that the
type store already holds the required OMG IDL type information in memory
before you run your application. Therefore, the application does not have to
keep contacting the Interface Repository for each IDL type required.

Relevance of Priming Priming the type store cache is a useful but optional step that is only
relevant before the first run of an application that will be using type
information previously unseen by the type store. On exiting an application,
new entries in the memory cache are written to persistent storage and are
automatically reloaded the next time the application is executed. Therefore,
the cache can satisfy all subsequent queries for previously obtained type
information.

For More Information See “Development Support Tools” on page 171 for details about the
workings of the COMet type store cache and how to prime it.

78

In This Chapter

CHAPTER 5

Developing an
Automation Client

This chapter expands on what you learned in “Getting Started”
on page 35. It uses the example of a distributed telephone
book application to show how to write Automation clients in
PowerBuilder or Visual Basic that can communicate with an
existing CORBA C+ + server.

This chapter discusses the following topics:

The Telephone Book Example page 80
Using Automation Dual Interfaces page 84
Writing the Client page 85
Building and Running the Client page 95

Note: This chapter assumes that you are familiar with the CORBA
Interface Definition Language (OMG IDL). See “Introduction to OMG IDL”
on page 269 for more details.

79

CHAPTER 5 | Developing an Automation Client

The Telephone Book Example

Overview This section provides an introduction to the telephone book application
developed in this chapter. The following topics are discussed:
® “Application Summary” on page 80.
® “Graphical Overview” on page 81.
¢ “OMG IDL PhoneBook Interface” on page 81.
® “Location of Source Files” on page 82.
® “Client GUI Layout” on page 82.

Note: You do not need to understand how the demonstration server is
implemented, to follow the examples in this chapter.

Application Summary In the supplied telephone book application, the Automation client makes
requests on a PhoneBook object implemented in a CORBA C++ server. As
explained in “How COMet Implements the Model” on page 20, the client
actually makes its method calls on a view object in the COMet bridge. The
principal task of the Automation client in this example is, therefore, to
obtain a reference to an Automation PhoneBook view object in the bridge.

The PhoneBook view object exposes an Automation D PhoneBook interface,
generated from the OMG IDL PhoneBook interface. (See “Mapping CORBA to
Automation” on page 313 for details of how CORBA types are mapped to
Automation.) When the client makes method calls on the PhoneBook view
object, the bridge forwards the client requests to the target CORBA
PhoneBook object.

80

Graphical Overview

The Telephone Book Example

Figure 10 provides a graphical overview of the components of the telephone

book application.

Automation
Client

COMet

—

OMG IDL PhoneBook Interface

CORBA Server

PhoneBook
Object

numberOfEntries ()

addNumber ()

lookupNumber ()

Orbix Object
(Implemented in C++)

Figure 10: Telephone Book Example with Automation Client

The PhoneBook object in the CORBA server implements the following OMG
IDL PhoneBook interface:

/I QM5 | DL

interface PhoneBook {
readonly attribute |ong nunber O Entri es;

bool ean addNunber (i n string nane, in | ong nunber);
| ong | ookupNunber (i n string nare);

IE

81

CHAPTER 5 | Developing an Automation Client

Automation DIPhoneBook The corresponding Automation interface for the “OMG IDL PhoneBook
Interface Interface” on page 81 is called Di PhoneBook, and is defined as follows:
[odl, .]

interface D PhoneBook : |Di spatch {
[i d(0x00000001)]
HRESULT addNunber (
[in] BSTR nane,
[in] long nunber,
[in, out, optional] VAR ANT* excep_CBJ,
[out, retval] VAR ANT_BOOL* val);
[i d(0x00000002)]
HRESULT | ookupNunber (
[in] BSTR nane,
[in, out, optional] VAR ANT* excep_CBJ,
[out, retval] |ong* val);
[i d(0x00000003), propget]
HRESULT nunber fEntries([out, retval] long* val);
ik

Location of Source Files You can find versions of the Automation client application described in this
chapter at the following locations, where i nstal | - di r represents the Orbix
installation directory:

Visual Basic i nstal | - di r\ denos\ conet \ phonebook\ vb_cl i ent
PowerBuilder i nstal | -di r\ denos\ conet \ phonebook\ pb_cl i ent
Internet Explorer i nstal | - di r\ denos\ coret \ phonebook\ i e_cl i ent

The CORBA server application is supplied in the
i nstal | -di r\ denos\ conet \ phonebook\ cxx_ser ver directory.

Client GUI Layout Figure 11 shows the layout of the client GUI interface that is developed in
this chapter.

82

The Telephone Book Example

#. Phone List Search Client

prdlate:

Figure 11: Phone List Search Client GUI Interface

83

CHAPTER 5 | Developing an Automation Client

Using Automation Dual Interfaces

Overview

IDispatch versus Dual Interfaces

Creating Type Libraries

84

This section describes the use of Automation dual interfaces. The following
topics are discussed:

® “IDispatch versus Dual Interfaces” on page 84.
® “Creating Type Libraries” on page 84.

“Automation Dual Interface Support” on page 68 has already explained that,
when using an Automation client, you have the option in some controllers
(for example, Visual Basic) of using straight I Di spat ch interfaces or dual
interfaces, which determines whether your application can use early or late
binding.

Note: The use of dual interfaces is only supported when the bridge is
loaded in-process to the client. If the bridge is loaded out-of-process, you
must use | D spat ch.

If you want to use dual interfaces, you must create a type library. To create
an Automation client that uses dual interfaces and communicates with a
CORBA server, you must create a type library that is based on the OMG IDL
interfaces exposed by the CORBA server. You can create a type library,
based on existing OMG IDL information in the type store, using either the
GUI or command-line version of the COMet t s2t| b utility. See “Creating a
Type Library” on page 190 for more details.

Writing the Client

Writing the Client

Overview

In This Section

This section describes how to write a Visual Basic version of the client,
without using the code generation genie. It also describes how to write a
PowerBuilder version of the client.

Note: There is no code generation genie available for PowerBuilder. If you
want to use the code generation genie for Visual Basic, see “Using the
Visual Basic Genie” on page 43 for a detailed introduction, and
“Generating Visual Basic Client Code” on page 199 for full details of how
to use it.

This section discusses the following topics:

Obtaining a Reference to a CORBA Object page 86
The Visual Basic Client Code in Detail page 89
The PowerBuilder Client Code in Detail page 92

85

CHAPTER 5 | Developing an Automation Client

Obtaining a Reference to a CORBA Object

Overview

Visual Basic Example

PowerBuilder Example

86

This subsection provides Visual Basic and PowerBuilder examples of the
client code that is used to obtain a reference to a CORBA object. See “The
Visual Basic Client Code in Detail” on page 89 and “The PowerBuilder
Client Code in Detail” on page 92 for the complete client code. The
following topics are discussed:

® ‘“Visual Basic Example” on page 86.

® “PowerBuilder Example” on page 86.

“Explanation of Examples” on page 87.

“Format of Parameter for GetObject()” on page 87.
® “Purpose of GetObject()” on page 88.

® “Explanation of GetObject()” on page 88.

The following is a Visual Basic example of how to obtain a CORBA object
reference:

Example 5:

" Misual Basic

D m (oj Factory As (bj ect
D m phoneBookChj As (bj ect

Set oj Factory = O eat e(oj ect (" CCRBA. Fact ory")

Set phoneBookChj = (bj Fact ory. Get (bj ect (" PhoneBook: " + sl CR)

The following is a PowerBuilder example of how to obtain a CORBA object
reference:

Example 6:

/1 Power Bui | der

d e(hj ect oj Factory
d e(hj ect phoneBookhj

(bj Factory = CREATE A e(j ect
(bj Fact ory. Connect ToNewbj ect (" CCRBA. Fact ory")

Explanation of Examples

Format of Parameter for
GetObject()

Writing the Client

Example 6:
phoneBookChj = CREATE QA eQvj ect
phoneBookChj = Cbj Fact ory. Get Cbj ect (" PhoneBook: " + sl CR)

The preceding examples can be explained as follows:

1.

The client instantiates a CORBA object factory in the bridge. The
CORBA object factory is a factory for creating view objects. It is
assigned the CORBA. Fact ory ProglD.

The client calls Get bj ect () on the CORBA object factory. It passes
the name of the PhoneBook object in the CORBA server in the
parameter for Get (oj ect () .

The parameter for Get (oj ect () takes the following format:

"interface: TAG Tag Data"

The TAG variable can be either of the following:

ICR
In this case, Tag dat a is the hexadecimal string for the stringified IOR.
For example:

fact. Get (oj ect (" enpl oyee: | CR 123456789..")

NAMVE_SERVI CE

In this case, Tag data is the Naming Service compound name
separated by ". ". For example:

fact. Get (oj ect (" enpl oyee: NAME_SERVI CE: | ONA st af f . PD. Tont')

Note: If the interface is scoped (for example, "Modul e: : | nt er f ace"), the
interface token is " Modul e/ | nt er f ace" .

87

CHAPTER 5 | Developing an Automation Client

Purpose of GetObject() The purpose of the call to Get (vj ect () is to achieve the connection between

the client’s phoneBook(hj object reference and the target PhoneBook object
in the server. Figure 12 shows how the call to Get bj ect () achieves this.

Automation Client

Ref. Ref.
to to To PhoneBook
Factory PhoneBook object in remote

v CORBA server
~

~
3\\ 2/
~
3

<~ &

Automation
View
DIPhoneBook

>

Bridge

Figure 12: Binding to the CORBA PhoneBook Object

Explanation of GetObject() In Figure 12, Get vj ect () :

88

1. Creates an Automation view object in the COMet bridge that
implements the DI PhoneBook dual interface.

2. Binds the Automation view object to the CORBA PhoneBook
implementation object named in the parameter for Get (hj ect () .

3. Returns a reference to the Automation view object.

After the call to Get Quj ect (), the client in this example can use the
phoneBookQvj object reference to invoke operations on the target PhoneBook
object in the server. This is further illustrated for Visual Basic in “Step 4—
Invoking Operations on the PhoneBook Object” on page 90 and for
PowerBuilder in “Step 4—Invoking Operations on the PhoneBook Object”
on page 93.

Writing the Client

The Visual Basic Client Code in Detail

Overview

Step 1—General Declarations

Step 2—Connecting to the
CORBA Object Factory

This subsection describes the steps to write the complete Visual Basic client
application. It shows how the Visual Basic code extracts shown in
“Obtaining a Reference to a CORBA Object” on page 86 fit into the overall
client program. The steps are:

Step Action

1 | Make general declarations.

Create the form.

Connect to the CORBA server.

2
3
4 | Invoke operations on the PhoneBook object.
5

Unload the form.

Declare a reference to the object factory and to the phonebookQbj
Automation view object:

' Misual Basic
D m Qoj Factory As (bj ect
D m phoneBookChj As (bj ect

Create an instance of the the CORBA object factory when the Visual Basic
form is created, and assign the ProglD, CORBA Factory, to it:

' Misual Basic

Private Sub Form Load()

Set oj Factory = O eat e(hj ect (" OCRBA. Factory")
End Sub

89

CHAPTER 5 | Developing an Automation Client

Step 3—Connecting to the
CORBA Server

Step 4—Invoking Operations on
the PhoneBook Object

90

Implement the Connect button, call Get Cbj ect () on the CORBA object
factory, and pass the name of the PhoneBook object as the parameter to
Get Chj ect () :

M sual Basic
Private Sub ConnectBtn_Q i ck()
Set phoneBookChj = (hj Fact ory. Get (bj ect (" PhoneBook: " + sl CR)

End Sub

In the preceding code, the implementation of the Connect button connects
to the PhoneBook object in the CORBA server. After the call to Get (bj ect (),
the client can use the phoneBook(hj object reference to invoke operations on
the target PhoneBook object in the server. This is illustrated next in “Step
4—Invoking Operations on the PhoneBook Object”.

Implement the Add, Lookup, and Update buttons, which call the OMG IDL
operations on the PhoneBook object in the CORBA server:

Vi sual Basic
Private Sub AddBtn_d i ck()
I f phoneBookChj . addNunber (Per sonal Narre. Text, Nunber. Text) Then
MsgBox "Added " & Personal Nane. Text & " successful | y"
E se ...
End If

Updat e the display of the current nunber of
' entries in the phonebook
Ent ryGount . Capti on = phoneBookj . nunber CfEntri es
End Sub

Private Sub LookupBtn_d i ck()
D m num
num = phoneBook(j . | ookupNunber (Per sonal Nane. Text)

End Sub

Private Sub UpdateBtn_d i ck()
Updat e the display for the nunber of entries
' in the renote phonebook
Ent ryCount . Capti on = phoneBookj . nunber Cf Entri es
End Sub

Writing the Client

Step 5—Unloading the Form Release the CORBA object factory and the Automation view object, using
the For m Unl oad() subroutine:

' Visual Basic

Private Sub For m Unl oad(Cancel As Integer)
Set hj Factory = Not hi ng

Set phoneBookChj = Not hi ng

End Sub

91

CHAPTER 5 | Developing an Automation Client

The PowerBuilder Client Code in Detail

Overview

Step 1—General Declarations

Step 2—Connecting to the
CORBA Object Factory

92

This subsection describes the steps to write the complete PowerBuilder
client application. It shows how the PowerBuilder code extracts shown in
“Obtaining a Reference to a CORBA Object” on page 86 fit into the overall
client program. The steps are:

Step Action

1 | Make general declarations.

Load the window.

Connect to the CORBA server.

2
3
4 | Invoke operations on the PhoneBook object.
5

Unload the window.

Declare global variables for the object factory and the phonebook (hj
Automation view object:

/1 Power Bui | der
d eChj ect hj Factory
d e(hj ect phoneBookhj

Create an instance of the CORBA object factory within the open event for
the Phone List Search Client window, and assign it ProgID, OORBA. Fact ory,
to it:

/1 Power Bui | der
(bj Fact ory = CREATE d e(vj ect
(bj Fact ory. Connect ToNew(bj ect (" CORBA. Fact ory")

Step 3—Connecting to the
CORBA Server

Step 4—Invoking Operations on
the PhoneBook Object

Writing the Client

Implement the clicked event for the Connect button, call Get (bj ect () on
the CORBA object factory, and pass the name of the PhoneBook object as
the parameter to Get oj ect () :

/1 Power Bui | der
phoneBookChj = CREATE A e(vj ect
phoneBookoj = Cbj Fact ory. Get oj ect (" PhoneBook: " + sl CR)

In the preceding code, the clicked event for the Connect button connects to
the PhoneBook object in the CORBA server. After the call to Get vj ect (),
the client can use the phoneBook(hj object reference to invoke operations on
the target PhoneBook object in the server. This is illustrated next in “Step
4—Invoking Operations on the PhoneBook Object”.

Implement the clicked event for the Add, LookUp, and Update buttons,
which call the OMG IDL operations on the PhoneBook object in the CORBA
server:

/1 Power Bui | der
// Add Button
If sle_phone. Text <> "" and sle_name. Text <> "" then
I f phoneBookQvj . addNunber (sl e_nare. Text, sl e_phone. Text) Then
MessageBox ("Success!", "Added " + sle_nane. Text
+ " successfully.")
EntryGount . Text = String(phoneBookQj . nunber &f Entri es)

End | f
End if

// Lookup Button
if sle name. Text <> "" then

Resul t = phoneBook@j . | ookupNunber (sl e_nane)
end if

/1 Update Button
EntryGount. Text = String(phoneBookQbj . nunber & Entri es)

93

94

CHAPTER 5 | Developing an Automation Client

Step 5—Unloading the Window Release the CORBA object factory and the Automation view object when
unloading the window:

/1 Power Bui | der

(bj Fact ory. D sconnect (oj ect ()
DESTROY (hj Factory
DESTROY phoneBook(hj

Building and Running the Client

Building and Running the Client

Overview

Building the Client

Running the Client

This section describes how to build and run the client. The following topics
are discussed:

® “Building the Client” on page 95.
® “Running the Client” on page 95.

You can build your client executable as normal for the language you are
using.

The steps to run the client are:

Step Action

1 | Ensure that an activator daemon is running on the CORBA
server's host. This allows the locator daemon to automatically
activate the server. (See the CORBA Administrator’s Guide for
more details.)

2 | Register the CORBA server with the Implementation
Repository. (Usually, it is not necessary to register a server, if
the server has been written and registered by someone else.)
See the Orbix documentation set for more details.

3 | Run the client.

On the Phone List Search Client screen, shown in Figure 11
on page 83, type the server's hostname in the Host text box,
and select Connect. You can now add and look up telephone
book entries.

Note: If your client is inactive for some time, the PhoneBookSr v server is
timed-out and exits. It is reactivated automatically if the client issues
another request.

95

CHAPTER 5 | Developing an Automation Client

96

In This Chapter

CHAPTER 6

Developing a COM
Client

This chapter expands on what you learned in “Getting Started”
on page 35. It uses the example of a distributed telephone
book application to show how to write a COM C+ + client that
can communicate with an existing CORBA C++ server.

This chapter discusses the following topics:

The Telephone Book Example page 98

Writing the Client page 102
Writing the Client page 102
Writing the Client page 102
Building and Running the Client page 110

Note: This chapter assumes that you are familiar with the CORBA
Interface Definition Language (OMG IDL). See “Introduction to OMG IDL”
on page 269 for more details.

97

CHAPTER 6 | Developing a COM Client

The Telephone Book Example

Overview This section provides an introduction to the telephone book application
developed in this chapter. The following topics are discussed:

“Application Summary” on page 98.

“Graphical Overview” on page 99.

“OMG IDL PhoneBook Interface” on page 99.
“Microsoft IDL IPhoneBook Interface” on page 100.

“Location of Source Files” on page 100.

Note: You do not need to understand how the demonstration server is
implemented, to follow the example in this chapter.

Application Summary In the supplied telephone book application, the COM client makes requests
on a PhoneBook object implemented in a CORBA C+ + server. As explained
in “How COMet Implements the Model” on page 20, the client actually
makes its method calls on a view object in the COMet bridge. The principal
task of the COM client in this example is, therefore, to obtain a reference to
a COM PhoneBook view object in the bridge.

The PhoneBook view object exposes a COM | PhoneBook interface, generated
from the OMG IDL PhoneBook interface. (See “Mapping CORBA to COM” on
page 357 for details of how CORBA types are mapped to COM.) When the
client makes method calls on the PhoneBook view object, the bridge
forwards the client requests to the target CORBA PhoneBook object.

98

Graphical Overview

The Telephone Book Example

Figure 13 provides a graphical overview of the components of the telephone

book application.

COM Client

COMet

—

OMG IDL PhoneBook Interface

CORBA Server

PhoneBook
Object

numberOfEntries ()

addNumber ()

lookupNumber ()

Orbix Object
(Implemented in C++)

Figure 13: Telephone Book Example with COM Client

The PhoneBook object in the CORBA server implements the following OMG
IDL PhoneBook interface:

/I QM5 | DL

interface PhoneBook {
readonly attribute |ong nunber O Entri es;

bool ean addNunber (i n string nane, in | ong nunber);
| ong | ookupNunber (i n string nare);

IE

929

CHAPTER 6 | Developing a COM Client

Microsoft IDL IPhoneBook The corresponding COM interface for the preceding OMG IDL interface is
Interface called 1 PhoneBook, and is defined as follows:

// oM | DL

[object, .]

interface | PhoneBook : | Unknown

{

HRESULT addNunber ([in, string] LPSTR nare,
[in] long nunber,
[out] bool ean *val);
HRESULT | ookupNunber ([in, string] LPSTR nare,
[out] long *val);
HRESULT _get _nunber O Entries([out] long *val);
b

Location of Source Files You can find a version of the COM client application described in this
chapter ininstal | -di r\ denos\ conet \ phonebook\ cxx_cl i ent, where
instal | -dir represents the Orbix installation directory. This directory
contains Visual C++ COM client code.

The CORBA server application is supplied in the
i nstal | -di r\ denos\ conet \ phonebook\ cxx_ser ver directory.

100

Prerequisites

Prerequisites

Overview

Generating Microsoft IDL from
OMG IDL

Building a Proxy/Stub DLL

This section describes the prerequisities to writing a COM client with
COMet. The following topics are discussed:

® “Generating Microsoft IDL from OMG IDL" on page 101.

® “Building a Proxy/Stub DLL" on page 101.

As explained in “Generating Microsoft IDL from OMG IDL” on page 72, the
normal procedure for writing a client in COM is to first obtain a COM IDL
definition for the object interface. In this case, you want to create a COM
client that can communicate with a CORBA server, so you must create COM
IDL definitions that are based on the OMG IDL interfaces exposed by the
CORBA server.

You can generate COM IDL, based on existing OMG IDL information in the
type store, using either the GUI or command-line version of the COMet
ts2idl utility. See “Development Support Tools” on page 171 for details of
how to use it.

If the COMet bridge is not being loaded in-process to your COM client
application, you must create a standard DCOM proxy DLL for the interfaces
you are using. This is necessary to allow the DCOM protocol to correctly
make a connection to the remote COMet bridge from the client. You can use
the supplied t s2i dI utility to create the sources for the proxy/stub DLL. For
this example, use the following command:

ts2idl -f PhoneBook.idl -s -p PhoneBook

The - p argument with ts2i di creates a Visual C++ makefile that you can
use to compile your proxy/stub DLL. For this example, this makefile is called
Phonebookps. M and is supplied in the

i nstal | -di r\ denos\ conet \ phonebook\ com cl i ent directory.

101

CHAPTER 6 | Developing a COM Client

Writing the Client

Overview

In This Section

102

The section describes how to write the COM C+ + client.

This section discusses the following topics:

Obtaining a Reference to a CORBA Object

page 103

The COM C++ Client Code in Detail

page 107

Writing the Client

Obtaining a Reference to a CORBA Object

Overview This subsection shows how the COM C+ + client obtains a reference to a
CORBA object. See the “The COM C+ + Client Code in Detail” on page 107
for the complete client code. The following topics are discussed:

® “Example” on page 103.

® “Explanation” on page 104.

® “Format of Parameter for GetObject()” on page 104.
® “Purpose of GetObject()” on page 105.

® “Explanation of GetObject()” on page 105.

® “Using CoCreatelnstance()” on page 106.

Example The following is a COM C++ example of how to obtain a CORBA object
reference:

Example 7:

// OOM G+

I/ Ceneral Declarations

I Unknown * pUnk=NULL;

| PhoneBook *pl PhoneBook=NULL;

// Connecting to the CORBA Factory
1 hr = GOeatelnstanceEx (11D | CORBAFactory, NJUL, ctx, NUL, 1,
&nyi) ;
pCCRBAFact = (| CCRBAFact ory*)ngi . pltf;

/1 Connecting to the OORBA Server
// Read IR fromfile
/...

sprintf (szQoj ect Nang, " PhoneBook: %", szl (R);

2 hr
hr

pOCRBAFact - >CGet (hj ect (sz(hj ect Narre, &pLnk) ;
pUnk- >Queryl nt erface(l | D_I PhoneBook, (PPVA D) &pl PhoneBook) ;

103

CHAPTER 6 | Developing a COM Client

Explanation The preceding example can be explained as follows:

1. The client first instantiates a CORBA object factory in the bridge. The
CORBA object factory is a factory for creating view objects. It is
assigned the I D_| OCRBAFact ory IID.

2. The client then calls Get (oj ect () on the CORBA object factory. It

passes the name of the PhoneBook object in the CORBA server in the
parameter for Get Cj ect ().

Format of Parameter for The parameter for Get (oj ect () takes the following format:
GetObject()

"interface: TAG Tag Data"

The TAG variable can be either of the following:
® IR

In this case, Tag dat a is the hexadecimal string for the stringified I0R.
For example:

fact. Get (oj ect ("enpl oyee: | CR 123456789..")

® NAME SERVI CE

In this case, Tag data is the naming service compound name
separated by ".". For example:

fact. Get (oj ect (" enpl oyee: NAME_SERVI CE: | ONA st af f. PD. Tont')

Note: If the interface is scoped (for example, "Modul e: : I nt er f ace"), the
interface token is " Modul e/ I nter f ace" .

104

Purpose of GetObject()

Writing the Client

The purpose of the call to Get oj ect () is to get a pointer to the | Unknown
interface (punk) of the COM view of the target PhoneBook object. Figure 14
shows how the call to Get (oj ect () achieves this.

COM Client
Ref. Ref.
to to To PhoneBook
Factory PhoneBook object in remote
CORBA server

Explanation of GetObject()

v
~
\ 3 \\ 2/
~

COM View
IPhoneBook

Bridge

Figure 14: Binding to the CORBA PhoneBook Object

In Figure 14, Get (oj ect () :

1. Creates a COM view object in the COMet bridge that implements the
COM | PhoneBook interface.

2. Binds the COM view object to the CORBA PhoneBook implementation
object named in the parameter for Get (bj ect () .

3. Sets the pointer specified by the second parameter (punk) to point to
the 1 Unknown interface of the COM view object.

After the call to Get bj ect (), the client in this example can obtain a pointer

to the 1 PhoneBook interface (pl PhoneBook) by performing a

Queryl nterface() on the pointer to the | nknown interface of the COM view
object. The client can then use the pl PhoneBook object reference to invoke

105

CHAPTER 6 | Developing a COM Client

operations on the target PhoneBook object in the server. This is further
illustrated in “Step 5—Invoking Operations on the PhoneBook Object” on
page 108.

Using CoCreatelnstance() The CORBA object factory allows you to obtain a reference to a CORBA
object in a manner that is compliant with the OMG specification. However,
as an alternative, COMet also allows a COM client to use the standard
CoCr eat el nst ance() COM API call, to connect directly to a CORBA server.

106

Writing the Client

The COM C+ + Client Code in Detail

Overview

Step 1—Include Statements

Step 2—General Declarations

This subsection describes the steps to write the complete COM C+ + client
application. It shows how the code extracts shown in “Obtaining a
Reference to a CORBA Object” on page 103 fit into the overall client
program. The steps are:

Step Action

1 | Make include statements.

Make general declarations.

Connect to the CORBA factory.

2
3
4 | Connect to the CORBA server.
5

Invoke operations on the PhoneBook object.

Include the phoneBook. h header file created from the MIDL file, which was
generated from the OMG IDL for the CORBA object in the type store:

/] COOM C++
// Header file created fromthe MDL file

/1l generated by the TypeStore Manager Tool
/1l

#i ncl ude " phoneBook. h"

Declare a reference to the CORBA object factory and to a PhoneBook COM
view object:

/] OOM C++

I Unknown* pUnk = NULL;

| PhoneBook* pl PhoneBook = NULL;

| CCRBAFact or y* pOCRBAFact = NULL;
char szQbj ect Nane[128] ;

107

CHAPTER 6 | Developing a COM Client

Step 3—Connecting to the
CORBA Object Factory

Step 4—Connecting to the
CORBA Server

Step 5—Invoking Operations on
the PhoneBook Object

108

Use the DCOM CoCr eat el nst anceEx() call to create a remote instance of

the CORBA object factory on the client machine, and assign it the
|1 D | GCCRBAFact ory IID.

/1 COM ++

hr = CoCreat el nst anceEx (11 D_| CORBAFact ory,
NULL, ctx, NUL, 1, &mi);
pCCRBAFact = (| CCRBAFact ory*) nui . pltf;

Call Get oj ect () on the CORBA object factory, and pass the name of the
PhoneBook object as the parameter:

/1l OQOM C++
sprintf(szQoj ect Nane, " PhoneBook: %", szl OR);

hr

pCCRBAFact - >CGet (hj ect (szChj ect Narre, &Unk) ;
hr

pUnk- >Queryl nt erface(l | D_I PhoneBook, (PPVA D) &pl PhoneBook) ;

After the call to Get vj ect (), the client in this example can obtain a pointer
to the I PhoneBook interface (pl PhoneBook) by performing a

Queryl nterface() on the pointer to the I nknown interface of the COM view
object. The client can then use the pl PhoneBook object reference to invoke
operations on the target PhoneBook object in the server. This is illustrated
next in “Step 5—Invoking Operations on the PhoneBook Object”.

Invoke operations on the PhoneBook object in the CORBA server, which
allow you to add a number to the telephone book and look up entries:

Writing the Client

// COOM Ct+

bool ean | Added=0;

cout << "About to add | ONA Freephone USA' << endl ;

hr = pl F->addNunber (" | ONA Freephone USA", 6724948, & Added);
if (1Added)

cout << "Successfully added the nunber" << endl;

el se

cout << "Failed to add the nunber" << endl;

I/ see how many entries there are in the phonebook

| ong nNunEnt ri es=0;

hr = plF->_get _nunber O Entri es(&MNunEntri es);

cout << "There are " << nNunEntries << " entries" << endl;

// then | ookup a coupl e of nunbers
| ong phoneNunber =0;
pl F- >l ookupNurber ("1 ONA Freephone USA', &phoneNunber);

cout << "The nunber for | ONA Freephone USAis " << phoneNunber <<

endl ;

109

CHAPTER 6 | Developing a COM Client

Building and Running the Client

Overview

Building the Client

Running the Client

110

This section describes how to build and run the client. The following topics
are discussed:

® “Building the Client” on page 110.

® “Running the Client” on page 110.

¢ “Client Output” on page 111.

You can now build your client executable as normal, by running the
makefile.

The steps to run the client are:

Step Action

1 | Ensure that an activator daemon is running on the CORBA
server's host. This allows the locator daemon to automatically
activate the server. (See the CORBA Administrator’s Guide for
more details.)

2 | Register the CORBA server with the Implementation
Repository. (Usually, it is not necessary to register a server, if
the server has been written and registered by someone else.)
See the Orbix documentation set for more details.

3 | Run the client.

Building and Running the Client

Client Output The client produces output such as the following:

98846 App begi nning - -

9886 Usi ng i n- process server

[392: New || CP Connection (axi om 1570)]

[392: New || CP Connection (192.122.221.51: 1570)]
[392: New || CP Connection (axi om 1607)]

[392: New || CP Connection (192.122.221.51: 1607)]
[392: New || CP Connection (axi om 1611)]

[392: New |1 GP Connection (192.122.221.51: 1611)]
About to add | ONA Freephone USA

Successful | y added the nunber

There are 11 entries

The nunber for | ONA Freephone USA is 6724948
98846 Test end

111

CHAPTER 6 | Developing a COM Client

112

CHAPTER 7

Exception
Handling

Remote method calls are much more complex to transmit than
local method calls, so there are many more possibilities for
error. Exception handling is therefore an important aspect of
programming a COMet application. This chapter explains how
CORBA exceptions can be handled in a client, and how a server
can raise a user exception.

In This Chapter This chapter discusses the following topics:
CORBA Exceptions page 114
Example of a User Exception page 115
Exception Properties page 118
Exception Handling in Automation page 122
Exception Handling in COM page 131

Note: See the Orbix documentation set for details of system exceptions.

113

CHAPTER 7 | Exception Handling

CORBA Exceptions

Overview

Standard System Exceptions

Application-Specific User
Exceptions

Exception Handling versus
Exception Raising

114

This section introduces the concept of CORBA exceptions. The following
topics are discussed:

® “Standard System Exceptions” on page 114
® “Application-Specific User Exceptions” on page 114.
® “Exception Handling versus Exception Raising” on page 114.

CORBA defines a standard set of system exceptions that can be raised by
the ORB during the transmission of remote operation calls, and reported to a
client or server. COMet can raise system exceptions either during a remote
invocation or through calls to COMet. These exceptions range from reporting
network problems to failure to marshal operation parameters.

CORBA also allows users to define application-specific exceptions that allow
an application to define the set of exception conditions associated with it.
These user exceptions are defined in the rai ses clause of an OMG IDL
operation, and can be raised by a call to that OMG IDL operation. See the
Orbix documentation set for more details.

Applications do not (and should not) explicitly raise system exceptions.
However, client applications should be able to handle both standard system
exceptions and application-specific user exceptions. See “Exception
Handling in Automation” on page 122 and “Exception Handling in COM” on
page 131 for details of how clients can handle exceptions.

Example of a User Exception

Example of a User Exception

Overview

OMG IDL Example

Explanation

This section provides an example of a typical user exception. The following
topics are discussed:

® “OMG IDL Example” on page 115.

® ‘“Explanation” on page 115.

® “Corresponding Automation Interface” on page 116.
® “Corresponding COM Interface” on page 117.

The following is an example of an OMG IDL Bank interface, which contains a
newAccount operation that raises a Rej ect exception:

Example 8:

/1 OM5 | DL
interface Bank {

exception Reject {
string reason;
IE
Account newAccount (in string owner) raises (Reject);
b

An operation can raise more than one user exception. For example:

Account newAccount (in string owner) raises (Reject, Bankd osed);

The preceding example can be explained as follows:
1. The Bank interface defines a user exception called Rej ect .

2. The Rej ect exception contains one member, of the stri ng type, which
is used to specify the reason why the request for a new account was
rejected.

115

CHAPTER 7 | Exception Handling

3. The newAccount () operation can raise the Rej ect user exception (for
example, if the bank cannot create an account, because the owner
already has an account at the bank).

Note: If COMet encounters some problem during the operation
invocation, the newAccount () operation can then, of course, raise a system
exception. However, system exceptions are not listed in a rai ses clause,
and user code should never explicitly raise a system exception.

Corresponding Automation The Automation view of the preceding OMG IDL is as follows:
Interface

// GOM | DL
interface DIBank : |D spatch {
HRESULT newAccount (
[in] BSTR owner,
[optional ,out] VAR ANT* | T Ex,
[retval ,out] IDi spatch** |IT retval);

}

interface D Bank_Reject : D CCRBAUser Exception {
[propput] HRESULT reason([in] BSTR reason);
[propget] HRESULT reason([retval,out] BSTR* I T retval);

}

See “Mapping CORBA to Automation” on page 313 for details of how OMG
IDL interfaces and exceptions map to Automation.

116

Example of a User Exception

Corresponding COM Interface The COM view of the preceding OMG IDL is as follows:
// COM | DL
interface |Bank: |Unknown
{

typedef struct tagbank_rej ect
{
LPSTR r eason;
} bank_rej ect;
HRESULT del et eAccount ([in] laccount *a);
HRESULT newAccount ([in, string] LPSTR nane,
[out] laccount **val,
[in,out, uni que] bankExceptions **ppException);
HRESULT newQurrent Account ([in, string] LPSTR nane,
[in] float limt,
{out] IcurrentAccount **val,
[in,out, unique] bankExceptions **ppException);

b

See “Mapping CORBA to COM” on page 357 for details of how OMG IDL
interfaces and exceptions map to COM.

117

CHAPTER 7 | Exception Handling

Exception Properties

Overview This section describes system and user exception properties.

In This Section This section discusses the following topics:
General Exception Properties page 119
Additional System Exception Properties page 120

118

Exception Properties

General Exception Properties

Overview

(D)IForeignException Definition

Explanation

This subsection describes the general exception properties that allow you to
find information about a system or user exception that has occurred. The
following topics are discussed:

® “(D)IForeignException Definition” on page 119.

¢ “Explanation” on page 119.

All exceptions expose the (D) For ei gnExcept i on interface. It is defined as
follows:

interface D Forei gnException : D Forei gnConpl exType {
[propget] HRESULT EX maj or Code([retval, out] |ong*
IT retval);

[propget] HRESULT EX Id([retval,out] BSTR* IT retval);

The methods relating to (D)I For ei gnExcept i on can be described as follows:

EX_maj or Code() This indicates the category of exception raised. It can be
any of the following, defined in the I TStdinterfaces.tlb
file:

EXCEPTI ON_NO
EXCEPTI ON_USER
EXCEPTI ON_SYSTEM

EX_1d() This indicates the type of exception raised. For example,
QOCRBA: : OOMM FAI LURE is an example of a system
exception. Bank: : Rej ect is an example of a user
exception (based on the Bank interface in “Example of a
User Exception” on page 115).

119

CHAPTER 7 | Exception Handling

Additional System Exception Properties

Overview This subsection describes the additional system exception properties. The
following topics are discussed:

* “(D)ICORBASystemException Definition” on page 120.
® “Explanation” on page 120.

System exceptions have additional properties, which are defined in the
(D)l OORBASYst enExcept i on interface.

(D)ICORBASystemException Additional system exceptions are defined in the (D)l OORBASyst enExcept i on
Definition interface. It is defined as follows:

interface D CCRBASyst enException : D Forei gnException {
[propget] HRESULT EX m nor Code([retval, out] |ong*

IT retval);
[propget] HRESULT EX conpl etionStatus([retval,out] |ong*
I T retval);
b
Explanation The methods relating to (D)l GCCRBASyst enExcept i on can be described as
follows:

EX conpl etionStatus() This indicates the status of the operation at the
time the system exception is raised. The status
can be as follows:

OOWPLETI ONLYES This means the operation had
completed before the exception
was raised.

OOWPLETION_NO This means the operation had
not completed before the
exception was raised.

COWPLETI ON_MAYBEThis means the operation was
initiated, but it cannot be
determined whether or not it
had completed.

120

EX_m nor Code()

Exception Properties

This returns a code describing the type of system
exception that has occurred. See the CORBA
Programmer’s Guide, C+ + for details of minor
exception codes and their associated textual
descriptions.

121

CHAPTER 7 | Exception Handling

Exception Handling in Automation

Overview CORBA exceptions are mapped to Automation exceptions by the bridge.
This means that exceptions raised by calls to CORBA objects can be
handled in whatever way your development tool handles Automation
exceptions.

User exceptions can define members as part of their OMG IDL definition. For
example, in “Example of a User Exception” on page 115, the Rej ect
exception contains one member, which is called r eason and is of the stri ng
type. However, using Automation’s native exception handling, exception
members cannot be accessed by a client.

In This Section This section discusses the following topics:
Exception Handling in Visual Basic page 123
Inline Exception Handling page 125
Using Type Information page 128

122

Exception Handling in Automation

Exception Handling in Visual Basic

Overview

Example

Triggering an Automation
Exception

The Err Object

This subsection describes how to use the On Error GoTo clause and
standard Err object for exception handling, in a controller such as Visual
Basic. The following topics are discussed:

® “Example” on page 123.

® “Triggering an Automation Exception” on page 123.

® “The Err Object” on page 123.

In Visual Basic, exceptions can be trapped using the On Error GoTo clause,
and handled using the standard Err object. (See your Visual Basic
documentation for full details of the Err object.) The following Visual Basic
code shows how a client can trap and handle an exception:

' Misual Basic

D m account bj As BankBri dge. D Account
D m bankCbj As BankBri dge. Dl Bank

Oh Error Goto errorTrap

' (ptain a reference to a Bank object:
Set bank@j = ...
Set account Cbj = bankCbj . newAccount (owner)

Exit Sub
error Trap:

MsgBox(Err. Description & " occurred in " & Err. Source)
End Sub

Even though the client cannot call the COM GetError i nfo() function, to
retrieve the error information, most controllers can trigger an Automation
exception when the view calls the Set Error| nfo() function to populate the
Err object with exception details. In the case of Visual Basic, for example,
the currently active error trap is called and the Err object is used to contain
the details of the exception that occurred.

The standard Err object contains properties that provide details of any
exception that occurs. These properties can be described as follows:

123

CHAPTER 7 | Exception Handling

124

Err. Description This provides details of the exception, including the name

Err. Sour ce

of the exception; for example, CORBA: : COMM FAl LURE or
Bank: : Rej ect .

For a user exception, an example of the string in
Err.Description is as follows:

CORBA User Exception :[Bank::Reject]

For a system exception, an example of the string in
Err. Description is as follows:
QCORBA Syst em Excepti on : [CORBA : COM FAI LURE]
m nor code [10087] [NJ
This indicates the operation that raised the exception (for
example, Bank. newAccount).

Exception Handling in Automation

Inline Exception Handling

Overview

How It Works

Example

This subsection describes exception handling in Automation controllers that
do not support the concept of the standard Err object. The following topics
are discussed:

® “How It Works” on page 125.

® “Example” on page 125.

® “IT_Ex Parameter” on page 126.

® “Disabling Standard Exception Handling” on page 126.
® “Uses of Inline Exception Handling” on page 126.

Automation controllers that do not support the concept of the standard Err
object can use inline exception handling as an alternative. Inline exception
handling involves passing an additional parameter to each method, to
obtain any error information that might occur. Any exception that does
occur, in this case, is returned to the client via the Dl CORBASyst enExcept i on
interface, whose properties allow access to the error information.

Note: You must use inline exception handling if you want to access the
members in a user exception. See “Mapping CORBA to Automation” on
page 313 for details of how OMG IDL user exceptions map to Automation.

As described in “Mapping for System Exceptions” on page 343, an OMG
IDL operation maps to an Automation method that has an additional
optional parameter. For example:

1. Consider the following OMG IDL:

// QMG | DL
interface Account {

voi d nmakeDeposit(in float anount, out float bal ance);

}

125

CHAPTER 7 | Exception Handling

2. This maps to the following COM IDL:

/] GOM | DL
interface D Account : |D spatch {

HRESULT nakeDeposit([in] float amount,
[out] float* bal ance,
[optional, in, out] VARIANT* |T _Ex);

IT_Ex Parameter A client can pass the | T_Ex parameter, shown in the preceding example, in
a method call, and check to see if it contains an exception after the call. To
use exceptions in this manner, however, the | T_Ex parameter must first be
initialized to Not hi ng in the client code, as follows:

DmIT_Ex As (hj ect
Set | T_Ex = Nothing

When the | T_Ex parameter is subsequently passed in a method call, COMet
does not translate any CORBA exceptions that might occur during the call
into an Automation exception. Instead, an instance of

Dl QCRBASyst enExcept i on is created and inserted into the |1 T_Ex parameter.
This means that the | T_Ex parameter is populated with error information
relating to any CORBA exception that occurs. This allows the client to
retrieve the exception parameter in the context of the invoked method.

Disabling Standard Exception Passing the | T_Ex parameter means that standard Automation exception

Handling handling is disabled, so the view makes no calls to SetErrorinfo(). The
corresponding operation returns HRESULT_FALSE, which prevents an active
error trap from being called.

Uses of Inline Exception Handling A user exception can define one or more members that translate to COM IDL
methods. The client can pass the | T_Ex parameter in calls to these
methods, so that if a user exception does occur, the | T_Ex parameter is
populated with additional error information that the client in turn can
extract.

126

Exception Handling in Automation

Because the error-handling code must be written inline, the value of the
exception can be examined inline. The ability to handle user exceptions
inline is useful, because user exceptions can be thrown to indicate logical
errors rather than unrecoverable errors.

127

CHAPTER 7 | Exception Handling

Using Type Information

Overview This subsection describes how you can use type information to check the
type of exception that occured. The following topics are discussed:

® “Example for Type Library Usage” on page 128.
® “Explanation” on page 129.
® “Example for Non-Usage of Type Library” on page 129.

Example for Type Library Usage Consider the following Visual Basic example, which assumes that a type
library is being used:

M sual Basic
D mex As Variant
Set ex = Not hi ng

Optional exception param passed, therefore COMet will not
convert a OCRBA exception into an Automati on exception
Set account D sp = bankChj . newAccount (Nanebox. Text, ex)

any exception occur?

I f ex. EX maj or Code <> CCRBA CRBI X. EXCEPTI ON_NO Then
Is it a user exception?

If Typed ex |s CORBA CRBI X. Dl CORBAUser Except i on Then

Wi ch user exception?
If Typed ex |s IT_Library_bank. D bank_reject Then
D m exRej ect As | T_Li brary_bank. D bank_r ej ect
Set exRej ect = ex
MsgBox exReject.EX Id, "User Exception EXId :"

MsgBox exRej ect. | NSTANCE repositoryld, , "User
Exception | NSTANCE repositoryld : "
MsgBox exRej ect.reason, , "User Exception reason :"

End If

Is it a system exception?
Hself Typed ex |Is CORBA CRBI X. Dl CORBASyst enExcepti on Then
D m exSyst enExcepti on As
CCRBA_CRBI X. DI CORBASyst enExcept i on
Set exSyst enExcepti on = ex

128

Exception Handling in Automation

MsgBox " System exception has occurred : " &
exSyst enException. EX | d
Sel ect Case exSystenExcepti on. EX conpl eti onSt at us
Case COORBA CRBI X. COMPLETI ON_MAYBE
MsgBox " System exception Conpl etion Status : Mybe "
Case OORBA CRBI X. COMPLETI ON_NO
MsgBox " System exception Conpl etion Status : No "
Case CORBA CRBI X. COMPLETI ON_YES
MsgBox " System exception Conpl etion Status : Yes "

Case H se
MsgBox " Uhknown System exception Conpl etion Stat us"
End Sel ect
End If
End If
Explanation In the preceding example, ex is declared as a Vari ant type, and it is

initalized to Not hi ng. This sets up a variant that contains an object equal to
nothing. This is the correct way to interface from Visual Basic to COMet
when using late binding (that is, when using I Di spat ch interfaces) in an
Automation client.

Example for Non-Usage of Type The following Visual Basic example assumes that a type library is not being
Library used:

129

CHAPTER 7 | Exception Handling

M sual Basic
D mex As Vari ant
Set ex = Not hi ng

' Optional exception param passed, therefore COvet will not
' convert a COORBA exception into an Autonmation exception
Set account D sp = bankChj . newAccount (Nanebox. Text, ex)
' any exception occur?
I f ex. EX maj or Code <> CCRBA CRBI X. EXCEPTI ON_NO Then
' Is it a user exception?
If Typer ex |s OCORBA CRBl X. Dl OCCRBAUser Excepti on Then
' Wi ch user exception?
If ex. EX Id = bank::reject
MsgBox ex. EX | d, "User Exception EXId :"
MsgBox ex. | NSTANCE repositoryld, , "User
Exception | NSTANCE repositoryld : "
MsgBox ex.reason, , "User Exception reason :"
End | f
' Is it a systemexception?
Hself Typed ex |Is CORBA CRBI X Dl CORBASyst enException Then
D m exSyst enException As
CCORBA _CRBI X. DI GORBASyst enExcept i on
Set exSyst enExcepti on = ex

MsgBox " System exception has occurred : " &
exSyst enException. EX | d
Sel ect Case exSystenExcepti on. EX conpl eti onSt at us
Case CORBA CRBI X. COWPLETI ON_MVAYBE
MsgBox " System exception Conpl etion Status : Mybe "
Case CORBA CRBI X. COMPLETI CN_NO
MsgBox " System exception Conpl etion Status : No "
Case CORBA CRBI X. COWPLETI ON_YES
MsgBox " System exception Conpl eti on Status : Yes "

Case H se
MsgBox " Unknown System exception Conpl etion Status”
End Sel ect
End If
End | f

130

Exception Handling in COM

Exception Handling in COM

Overview As explained in “Mapping for System Exceptions” on page 381, a CORBA
exception maps to a COM IDL interface and an exception structure that
appears as the last parameter of any mapped operation. This section
describes two alternative ways of handling exceptions in COM. The one you
use depends on how you build your COM client.

Note: See the Orbix documentation set for details of system exceptions.

In This Section This section discusses the following topics:
Catching COM Exceptions page 132
Using Direct-to-COM Support page 134

131

CHAPTER 7 | Exception Handling

Catching COM Exceptions

Overview This subsection describes the standard method of CORBA exception
handling in COM clients. The following topics are discussed:
® “How It Works” on page 132.
® “Example” on page 132.
® ‘“Explanation” on page 133.
® “Memory Handling” on page 133.

How It Works COMet maps CORBA exceptions to standard COM exceptions. There are two
parts to the exception. The first part, HRESULT, gives the class of the
exception. The second part is a human-readable form of the exception,
which is exposed through the | Support Error I nf o interface that is
supported by all COM views of CORBA objects.

Example Consider the following client example:

HRESULT hRes;
IErrorinfo *plErrinfo = O;
| Support Errorlnfo *pl SupportErrinfo = 0O;

i f (SUCCEEDED(hr))
return TRUE

i f (SUCCEEDED(pnk->Queryl nt erface(l|D_| SupportErrorlnfo,
PPVA D) &pl Support Errlnfo)))
{
i f (SUCCEEDED(pl Support Err | nf o- > nt er f aceSuppor t sErrorlnfo
(riid)))
{
hRes = GetErrorlnfo(0, &l Errlnfo);
if(hRes == S X)
{
pl Err | nf o- >Get Sour ce(&src);
pl Errl nf o- >Get Descri pti on(&lesc) ;
nbsrc = WETR2CHAR(src) ;
nbdesc = WBTR2CHAR(desc) ;
SysFreeString(src);
SysFreeString(desc);

132

Explanation

Memory Handling

Exception Handling in COM

nbmsg = new char [strlen(nbsrc) + strlen(nbdesc) + _
strlien(* : ")+1];

sprintf(nbnsg, “% : 9", nbsrc, nbdesc);

pl Errl nf o- >Rel ease() ;

CheckHRESULT(nbnsg, hr);

delete [] nbsrc;

del ete [] nbdesc;

delete [] nbnsg;

} else
cout << “No error object found” << endl;
} pl Support Errl nf o- >Rel ease{};
} CheckHRESUWLT(“Error : ", hr);

If the bridge makes a call to the server that subsequently raises a system or
user exception, the COM view in the bridge calls the COM Set Error | nf o()
function, to set the COM error object in the client thread. This allows the
client code to subsequently call the Get Error I nf o() function, to retrieve the
error object for reporting to the user.

The preceding code does the same as a COM client would do to report a
COM exception, if a COM server were using the COM Set Error | nf o()
method.

If no exception is raised, the COM view in the bridge calls Set Error | nf o()
with a null value for the | Suppor t Err I nf o pointer parameter. This assures
the error object that the client thread is thoroughly destroyed.

The client can indicate that no exception information should be returned, by
specifying null as the value for the operation’s exception parameter.

If the client expects to receive exception information, it must pass the
address of a pointer to the memory in which the exception information is to
be placed. The client must subsequently release this memory when it is no
longer required.

The COM view is responsible for the allocation of memory used to hold
exception information being returned.

133

CHAPTER 7 | Exception Handling

Using Direct-to-COM Support

Overview

How It Works

Example

134

This subsection describes an alternative to standard CORBA exception
handling in COM clients. The following topics are discussed:

® “How It Works” on page 134.
® “Example” on page 134.
® ‘“Explanation” on page 135.

In some cases, the IDL for a CORBA operation can define that it raises only
one user exception, GOV ERRCR. This happens, for example, in the case of a
CORBA implementation of an already existing COM interface. Specifying
QOOM ERRCRin an OMG IDL rai ses clause indicates that the operation was
originally defined as a COM operation.

Consider the following client example:In this case, CORBA exceptions are
mapped to the standard _com error exception. For example:

Example 9: Using Direct-to-COM Exception Handling (Sheet 1 of 2)

try

{

short h, w

Dl bankPt r bank;

Dl account Ptr acc;

Dl CORBAFact oryPtr fact;

fact. Creat el nst ance(" CCRBA. Factory");

bank = fact->Cet (bj ect (szChj ect Narme, NULL);
acc = bank->newAccount (" Ronan", NULL);

cout << "Created new account ‘Ronan’" << endl;
acc- >makelLodgenent (100, NULL);

cout << “Deposited $100" << endl;

cout << “New bal ance is ” << acc->Getbal ance() << endl;
bank- >del et eAccount (acc, NULL);

cout << “Del eted account” << endl;

}

catch (_comerror &e)

{

print_error(e);

}

Exception Handling in COM

Example 9: Using Direct-to-COM Exception Handling (Sheet 2 of 2)

catch (.)

{

cerr << “Caught unknown exception ” << endl;
}

1. The szoj ect Nane parameter to Get (bj ect () takes the format

Explanation
"bank: | GR xxxxxxxx" (where xxxxxxxx represents the IOR string).

2. CORBA exceptions are mapped to, and caught by, the standard

_comerror exception.

135

CHAPTER 7 | Exception Handling

136

In This Chapter

CHAPTER 8

Client Callbacks

Usually, CORBA clients invoke operations on objects in CORBA
servers. However, CORBA clients can implement some of the
functionality associated with servers, and all servers can act
as clients. A callback invocation is a programming technique
that takes advantage of this. This chapter describes how to

implement client callbacks.

This chapter discusses the following topics:

Introduction to Callbacks page 138
Implementing Callbacks page 139
Defining the OMG IDL Interfaces page 140
Generating Stub Code for the Callback Objects page 142
Implementing the Client page 143
Implementing the Server page 150

137

CHAPTER 8 | Client Callbacks

Introduction to Callbacks

Overview

What Is a Callback?

Typical Use

138

This chapter introduces the concept of client callbacks. The following topics
are discussed:

® “What Is a Callback?” on page 138.
® “Typical Use” on page 138.

A callback is an operation invocation made from a server to an object that is
implemented in a client. A callback allows a server to send information to
clients without forcing clients to explicitly request the information.

Callbacks are typically used to allow a server to notify a client to update
itself. For example, in the bank application, clients might maintain a local
cache to hold the balance of accounts for which they hold references. Each
client that uses the server's account object maintains a local copy of its
balance. If the client accesses the balance attribute, the local value is
returned if the cache is valid. If the cache is invalid, the remote balance is
accessed and returned to the client, and the local cache is updated.

Note: The COMet bridge holds an Orbix proxy object, as well as a COM or
Automation view object, for each implementation object to which it has a
reference.

When a client makes a deposit to, or withdrawal from, an account, it
invalidates the cached balance in the remaining clients that hold a reference
to that account. These clients must be informed that their cached value is
invalid. To do this, the real account object in the server must notify (that is,
call back) its clients whenever its balance changes.

Implementing Callbacks

Implementing Callbacks

Overview This section describes how to implement callbacks.

In This Section This section discusses the following topics:
Defining the OMG IDL Interfaces page 140
Generating Stub Code for the Callback Objects page 142
Implementing the Client page 143
Implementing the Server page 150

Note: A demonstration that implements callback functionality is provided
ininstall -dir\denos\ corba\COMet \ cal | back, where i nstal | -dir
represents your Orbix installation directory.

139

CHAPTER 8 | Client Callbacks

Defining the OMG IDL Interfaces

Overview

Client Interface Example

Client Interface Explanation

Server Interface Example

Server Interface Explanation

140

This section describes the first step in implementing client callback
functionality, which is to define the OMG IDL interfaces for the server
objects and client objects. The following topics are discussed:

® “Client Interface Example” on page 140.
® “Client Interface Explanation” on page 140.
® “Server Interface Example” on page 140.
® “Server Interface Explanation” on page 140.

The client implements an IDL interface that the server uses to call back
clients. A suitable IDL interface for the client might be defined as follows:

// QM5 | DL
interface NotifyCal | back{
oneway void notifydient();

}

In the preceding example, the notifyQient () operation is declared as
oneway, because it is important that the server is not blocked when it calls
back its clients.

The server implements an IDL interface that allows it to maintain a list of
clients that should be notified of changes in its objects’ data. A suitable IDL
interface for the server might be defined as follows:

/1 QMG | DL

interface Regi sterCall back{
void registerdient(in NotifyCallback client);
void unregisterdient(in NotifyCallback client);

The preceding example can be explained as follows:

Defining the OMG IDL Interfaces

The regi sterdient () operation registers a client with the server. The
parameter to regi sterd i ent () is of the Noti f yCal | back type, so that
the client can pass a reference to itself to the server. The server can
maintain this reference in a list of clients that should be notified of
events of interest.

The unregi sterdient () operation tells the server that the client is no
longer interested in receiving callbacks. The server can remove the
client from its list of interested clients.

141

CHAPTER 8 | Client Callbacks

Generating Stub Code for the Callback Objects

Overview After you have defined the OMG IDL interfaces for the server and client, you
can generate the stub code for the callback objects from the OMG IDL.

For More Information See “Creating Stub Code for Client Callbacks” on page 194 for full details of
how to do this.

142

Implementing the Client

Implementing the Client

Overview

In This Section

To write a client, you must implement the Not i f yCal | back interface defined
for the client objects. You can use the generated stub code for the callback
objects as a starting point.

This section discusses the following topics:

Implementing the Client in Visual Basic page 144
Implementing the Client in PowerBuilder page 146
Implementing the Client in COM C+ + page 148

Note: Because it implements an interface, the client is acting as a server.
However, the client does not have to register its implementation object
with the bridge, and it is not registered in the Implementation Repository.
Therefore, the server cannot bind to the client’s implementation object.

143

CHAPTER 8 | Client Callbacks

Implementing the Client in Visual Basic

Overview

Code for Generated Class File

Code for Client Form

144

This subsection describes how to implement the client in Visual Basic. The
following topics are discussed:

® “Code for Generated Class File” on page 144.
® “Code for Client Form” on page 144.
® ‘“Explanation” on page 145.

The following is the code in the generated Noti f yCal | back. cl s file:

' Visual Basic
Public Sub notifydient(Qptional ByRef | T_Ex As Variant)

Your code goes here

End Sub

The following is the code in the cli ent. f r mfile for the Visual Basic client’s
form:

Example 10:

' Visual Basic
Dmclientj as New NotifyCal |l back

D m Qoj Factory As (bj ect
Set oj Factory = O eat e(hj ect (" OCRBA. Fact ory")

D m serverChj as clientBridge. D Regi st erCal | back
Set serverhj =

Chj Factory. Get (hj ect (" Regi sterCal | back: "& CR file)
server(oj .registerdient clientQj

Implementing the Client

Explanation The preceding client code can be explained as follows:

1.

It creates an implementation object, cl i ent Qoj , which is of the

Noti fyCal | back type.

It binds to an object of the Regi st er Cal | back type in the server. At this

point, the client holds both of the following:

+ An implementation object for the Noti f yCal | back type.

. A reference to an Automation view object, server Quj , for an
object of the Regi st er Cal | back type.

To allow the server to invoke operations on the Not i f yCal | back object,

the client must pass a reference to its implementation object to the

server. Thus, the client calls the regi sterd i ent () operation on the

server (bj view object, and passes it a reference to its implementation

object, client Quj .

145

CHAPTER 8 | Client Callbacks

Implementing the Client in PowerBuilder

Overview This subsection describes how to implement the client in PowerBuilder. The
following topics are discussed:
® ‘“Example” on page 146.

® “Explanation” on page 146.

Example The following is the code for the PowerBuilder client:
Example 11:

/| Power Bui | der
i nteger success
d e(hj ect client hj
d eChj ect oj Factory
1 success = clientChj.Connect ToNewhj ect
(" PBcal | back. Not i f yCal | back")

(bj Factory = CREATE A e(j ect
server (j = CREATE A e(j ect

if success !'= 2 then

2 server (bj = (bj Factory. Get (hj ect (“Cal | Back: "& CR fil e)
3 server (bj . Regi ster(clientChj)

Explanation The preceding client code can be explained as follows:

1. It creates an implementation object, cl i ent Qoj , which is of the
Not i f yCal | back type.

2. It binds to an object of the Cal | Back type in the server. At this point,
the client holds both of the following:

+ An implementation object for the Not i f yCal I back type.

¢ A reference to an Automation view object, server Qbj , for an
object of the Cal | Back type.

146

Implementing the Client

To allow the server to invoke operations on the Not i f yCal | back object,
the client must pass a reference to its implementation object to the
server. Thus, the client calls the Regi st er () operation on the

server Qbj view object, and passes it a reference to its implementation
object, client Qoj .

147

CHAPTER 8 | Client Callbacks

Implementing the Client in COM C+ +

Example The following is the code for the COM C+ + client:
Example 12:

I Cal | Back *pl F = NULL;

hr = CoCreatel nstanceEx (11D | CORBAFactory, NULL, ctx, NUL, 1,
&ni) ;
CheckHRESULT(" GoCr eat el nst anceEx()", hr, FALSE);

pOCRBAFact = (| CCRBAFact ory*) ngi . pltf;

// connect to the target CCRBA server
char *slCR
/] read IR
char *szCbj ect Narre;
/l allocate memory for string
sprintf(szQoj ect Nane, " Cal | back: 9%6", sIR);
hr = pOCRBAFact - >Get (bj ect (szj ect Nane, &Unk) ;
i f(!CheckErrlnfo(hr, pOCRBAFact, |1D | CCRBAFactory))
{
pCCRBAFact - >Rel ease() ;
return;

}
pCCRBAFact - >Rel ease() ;

hr = pUnk->Querylnterface(llD_| Cal | Back, (PPVAD)&plF);
i f(!CheckErrinfo(hr, pUnk, I1D_|ICallBack))
{

plhk->Rel ease() ;

return;

}
pUnk- >Rel ease() ;

/Il Create our inplenentation for the call back object
| GOMzal | Backl npl * pol npl = | GOMZal | Backl npl : : Create();

// make the call to the server passing in our object
pl F->Regi st er (pol npl) ;

// wait until we explicitly quit for the none consol e application

148

Implementing the Client

Example 12:

St ar t GOVBer ver LOCP(10000) ;
pol npl - >Rel ease();

149

CHAPTER 8 | Client Callbacks

Implementing the Server

Overview This section describes the steps to implement a server for the purpose of
client callbacks. The steps are:

Step Action

1 | Implement the Regi st er Cal | back interface.

2 | Invoke the notifyQient () operation.

Note: See the CORBA Programmer’s Guide, C+ + for more details of how
to implement servers.

Step 1—Implementing the You must provide an implementation class for the Regi st er Cal | back
RegisterCallback Interface interface. You can use the stub code generated for the callback objects as a
starting point to do this.

The implementation of the regi sterd i ent () operation receives an object
reference from the client. When this object reference enters the server
address space, a CORBA view for the client’s Not i f yCal | back object is
created in the client’s bridge.

The server uses the created view to call back to the client. The
implementation of the regi sterdient () operation should store the
reference to the view for this purpose.

Step 2—Invoking the After the COM or Automation view for the client’s Not i f yCal | back object
notifyClient() Operation has been created in the server address space, the server can then invoke the
noti fyQient() operation on the view.

150

In This Chapter

CHAPTER 9

Deploying a
COMet Application

This chapter provides examples of the various deployment
models you can adopt when deploying a distributed
application with COMet. It also describes the steps you must
follow to deploy a distributed COMet application.

This chapter discusses the following topics:

Deployment Models page 152
Deployment Steps page 162
Minimizing the Client-Side Footprint page 164
Deploying Multiple Hosts page 166

151

CHAPTER 9 | Deploying a COMet Application

Deployment Models

Overview

In This Section

152

“Usage Models and Bridge Locations” on page 27 outlines the various
deployment scenarios that are supported with COMet. When it comes to
Automation clients, COMet supports communication using either DCOM or
IIOP. When it comes to COM clients, COMet only supports communication
using IIOP. This means Automation clients enjoy a good deal of flexibility
about where the bridge can be installed, whereas COM clients enjoy no such
flexibility. This section provides some more details about the various
possible deployment scenarios that COMet offers.

This section discusses the following topics:

Bridge In-Process to Each Client page 153
Bridge Out-of-Process on Each Client Machine page 155
Bridge on Intermediary Machine page 157
Bridge on Server Machine page 159
Internet Deployment page 161

Deployment Models

Bridge In-Process to Each Client

Overview

Details

Graphical Overview

This subsection describes a scenario where the bridge is loaded in-process
to each client. The following topics are discussed:

® “Details” on page 153.
® “Graphical Overview” on page 153.

This has the COMet bridge loaded in-process to each COM or Automation

client (that is, in each client's address space). In this case:

® The bridge on each client machine uses IIOP to communicate with the
CORBA server.

® Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

® Each client can be COM-based or Automation-based.

® The CORBA server machine can be running on any platform, such as
Windows, UNIX, or 0S/390.

For Automation clients, this is the recommended COMet deployment

scenario. For COM clients, this is the only supported COMet deployment
scenario.

Figure 15 provides a graphical overview of a scenario where the COMet
bridge is loaded in-process to each COM or Automation client.

153

CHAPTER 9 | Deploying a COMet Application

COM or Automation Client Machine 1
(Windows NT, Windows 98, or Windows 2000)

Client Process

COMet
. CORBA Server Machine
Client Program |

- : (Windows, UNIX, 0S/390, and so on)
(Visual Basic,
PowerBuilder, View 1IOP
*o—

Visual C++, Object Server
and so on) Application
COM or Automation Client Machine 2 CORBA
(Windows NT, Windows 98, or Windows 2000) Object
Client Process
COMet /

Client Program

(Visual Basic,]

PowerBuilder, o View

Visual C++, Object

and so on) loP

Figure 15: Bridge In-Process to Each Client

154

Deployment Models

Bridge Out-of-Process on Each Client Machine

Overview

Details

Graphical Overview

This subsection describes a scenario where the bridge is launched
out-of-process on each client machine. The following topics are discussed:

“Details” on page 155.
“Graphical Overview” on page 155.

This has the COMet bridge launched out-of-process on each client machine.
In this case:

The bridge is referred to as a local server.

The bridge on each client machine uses [IOP to communicate with the
CORBA server.

Each client machine should preferably be running on Windows 2000,
for reasons of scalability. Otherwise, it limits the number of clients that
can be handled.

Each client must be Automation-based and using | D spat ch interfaces
rather than dual interfaces.

The CORBA server machine can be running on any platform, such as
Windows, UNIX, or 0S/390.

Figure 16 provides a graphical overview of a scenario where the COMet
bridge is loaded out-of-process on each Automation client machine.

155

CHAPTER 9 | Deploying a COMet Application

Automation Client Machine 1
(Windows (2000 preferably))

Client Process

COMet
Client Program _
(Visual Basic, -
PowerBuilder, PR Vlgw
Object
and so on)

Automation Client Machine 2
(Windows (2000 preferably))

Client Process

COMet
Client Program
(Visual Basic, View
PowerBuilder, b Object
and so on)

CORBA Server Machine

loP (Windows, UNIX, 0S/390, and so on)
Server
Application
CORBA
Object
IIOP

Figure 16: Bridge Out-Of-Process On Each Client Machine

156

Deployment Models

Bridge on Intermediary Machine

Overview

Details

Creating a Remote Instance of the
CORBA Object Factory

This subsection describes a scenario where the bridge is launched on a
single intermediary machine. The following topics are discussed:

“Details” on page 157.

“Creating a Remote Instance of the CORBA Object Factory” on
page 157.

“TYPEMAN_READONLY Configuration Setting” on page 158.
“Graphical Overview” on page 158.

This has the COMet bridge launched on a single intermediary machine. In
this case:

The bridge is referred to as a remote server.

Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

Each client must be Automation-based and using | D spat ch interfaces
rather than dual interfaces.

Each client uses DCOM to communicate with the bridge.

The bridge machine must be running on Windows. It should preferably
be running on Windows 2000, for reasons of scalability. Otherwise, it
limits the number of clients that can be handled.

The bridge uses [IOP to communicate with the CORBA server.

The CORBA server machine can be running on any platform, such as
Windows, UNIX, or 0S/390.

For the purposes of this deployment scenario, you only need to be able to
create a remote instance of the CORBA obj ect factory on your client
machines. This is normally done using the COM CoCr eat el nst anceEx()
method. Most Automation controllers now allow you to supply a hostname
as an optional extra parameter to their equivalent of the Visual Basic

O eat ethj ect () method, similar to the CoCr eat el nst anceEx() method.

157

CHAPTER 9 | Deploying a COMet Application

TYPEMAN_READONLY When using multiple DCOM clients with a single bridge, as shown in

Configuration Setting Figure 17, the setting of the cOvet . Typeman. TYPEMAN READONLY
configuration variable is particularly important. See “COMet Configuration”
on page 399 for details.

Graphical Overview Figure 17 provides a graphical overview of a scenario where the COMet
bridge is installed on a single separate machine.

Automation Client Machine 1
(Windows NT, Windows 98, or

Windows 2000)
CORBA Server Machine
Client Program 1 COMet Bridge Machine (Windows, UNIX, 0S/390,
(Visual Basic, (Windows (2000 preferably)) and so on)
PowerBuilder, DCOM
and so on) Server
COMet II0P Application
h
Automation Client Machine 2 o | View
(Windows NT, Windows 98, or Object
Wind 2000) CORBA
indows Object
Client Program
(Visual Basic,
PowerBuilder, DCOM
and so on)

Figure 17: Bridge on Intermediary Machine

158

Deployment Models

Bridge on Server Machine

Overview

Details

Creating a Remote Instance of the
CORBA Object Factory

TYPEMAN_READONLY
Configuration Setting

This subsection describes a scenario where the bridge is launched on the
CORBA server machine. The following topics are discussed:

® “Details” on page 159.

® “Creating a Remote Instance of the CORBA Object Factory” on
page 159.

® “TYPEMAN_READONLY Configuration Setting” on page 159.

® “Graphical Overview” on page 160.

This has the COMet bridge installed on the CORBA server machine. In this

case:

® The bridge is referred to as a remote server.

® Each client machine can be running on Windows NT, Windows 98, or
Windows 2000.

® Each client must be Automation-based and using I Di spat ch interfaces
rather than dual interfaces.

® Each client uses DCOM to communicate with the CORBA server
machine.

® The CORBA server machine must be running on Windows. It should
preferably be running on Windows 2000, for reasons of scalability.
Otherwise, it limits the number of clients that can be handled.

For the purposes of this deployment scenario, you only need to be able to
create a remote instance of the CORBA obj ect factory on your client
machines. This is normally done using the COM CoCr eat el nst anceEx()
method. Most Automation controllers now allow you to supply a hostname
as an optional extra parameter to their equivalent of the Visual Basic

QO eat e(oj ect () method, similar to the CoOr eat el nst anceEx() method.

When using multiple DCOM clients with a single bridge, as shown in
Figure 18 on page 160, the setting of the

QOvet . Typenan. TYPEMAN_READONLY configuration variable is particularly
important. See “COMet Configuration” on page 399 for details.

159

CHAPTER 9 | Deploying a COMet Application

Graphical Overview Figure 18 provides a graphical overview of a scenario where the COMet
bridge is installed on the CORBA server machine.

Automation Client Machine 1
(Windows NT, Windows 98,
or Windows 2000)

1 CORBA Server Machine

Client Program DCOM (Windows (2000 preferably))
(Visual Basic,

PowerBuilder,
and so on) IIOP
TN

COMet Server Program

Automation Client Machine 2
(Windows NT, Windows 98, View CORBA
or Windows 2000) Object Object

Client Program /

(Visual Basic,

PowerBuilder,
and so on)

DCOM

Figure 18: Bridge on Server Machine

160

Deployment Models

Internet Deployment

Overview

Dowloading the Bridge to the
Client

Leaving the Bridge on the Internet
Server

This subsection discusses deploying a COMet application on the Internet.
There are two deployment options to choose from. The following topics are
discussed:

® “Dowloading the Bridge to the Client” on page 161.
® “lLeaving the Bridge on the Internet Server” on page 161.

You can choose to download the entire COMet bridge to the client machine.
To do this, you can bundle the bridge files, for example, in a single CAB file.
In this case, your ActiveX control uses I1IOP to communicate with your
Internet server.

You can alternatively choose to download only the

| T_C2K_ OO ExW apper 0_V50. DLL file and leave the bridge on the Internet
server. In this case, your ActiveX control uses DCOM to communicate with
your Internet server.

161

CHAPTER 9 | Deploying a COMet Application

Deployment Steps

Overview

Installing Your Application
Runtime

Installing the Development
Language Runtime

Installing the Orbix Deployment
Environment

Configuring COMet

162

This section describes the steps you must follow to deploy a COMet
application. The following topics are discussed:

® ‘“Installing Your Application Runtime” on page 162.

® ‘“Installing the Development Language Runtime” on page 162.
® ‘“Installing the Orbix Deployment Environment” on page 162.
® “Configuring COMet” on page 162.

® ‘“Installing and Registering Type Libraries” on page 163.

The components associated with your COMet application consist of:
® Your application executables.
® Any other DLLs needed by your application.

The runtime requirements for your development language normally consist
of:

® Runtime libraries (such as Visual Basic or PowerBuilder runtime
libraries).
® Support libraries (such as Roguewave tools or extra libraries).

See the documentation set for the specific development language you are
using for details of the runtime requirements of that language.

Regardless of the model you adopt in deploying your COMet applications,
the Orbix deployment environment requirements remain the same. See the
Orbix 6.1 Deployment Guide for full details of Orbix deployment
environment requirements.

You must set the COMet configuration variables required by your COMet
application at the location where the COMet runtime is installed. You must
modify the configuration entries in the configuration domain appropriately
for your system.

Installing and Registering Type
Libraries

Deployment Steps

When specifying a path name for a specific directory, you must provide the
full path name and ensure it is valid. You must also ensure the activator and
locator daemons have read/write permissions on the directories specified in
these path names.

See “COMet Configuration” on page 399 for details of the COMet
configuration variables. See the CORBA Administrator’s Guide for details of
the core Orbix configuration variables.

If your client references any type libraries, they must be installed on the
client machine, and registered in the Windows registry. You can use the
supplied tlibreg utility to register a type library. See “Creating a Type
Library” on page 190 and “Tlibreg Arguments” on page 418 for more
details.

163

CHAPTER 9 | Deploying a COMet Application

Minimizing the Client-Side Footprint

Overview

Zero-Install Configuration

Internet-Based Deployment

Automation-Based Clients

164

This section describes how to minimize the client-side footprint in your
COMet deployment. The following topics are discussed:

® “Zero-Install Configuration” on page 164.

® ‘“Internet-Based Deployment” on page 164.

¢ “Automation-Based Clients” on page 164.

® “COM-Based Clients” on page 165.

In certain scenarios, COMet allows you to deploy your client application
without requiring any COMet footprint on the client machine. This is
normally referred to as a zero-install configuration. This means you can use
a centralised installation of the COMet bridge for your clients that provides
the deployment option of using DCOM as the wire protocol for
communication between the client and the bridge.

This deployment scenario allows you to download your client application
over the Internet. Because COMet supports the DCOM wire protocol, your
web-based clients can use DCOM to communicate with your installation of
COMet, which then forwards the calls to the appropriate CORBA server. If
your scripting language supports the creation of a remote DCOM object, no
COMet runtime needs to be downloaded to that machine.

If you are developing client applications that use Automation late binding
(that is, they use I D spat ch interfaces), you can choose to use DCOM as the
wire protocol. In this scenario, you do not need any COMet installation on
your client machine, provided the Automation language supports connection
to a remote DCOM object (which in this case is the COMet bridge).

If your client applications use early binding (that is, they use dual interfaces
rather than straight | Di spat ch interfaces), the type library that you created
via the COwet O g tool or the t s2t I b command-line utility must be included
with your client application. (This means that the type library file must be

COM-Based Clients

Minimizing the Client-Side Footprint

copied along with the client executable file to any machine on which you
want to run the application.) This allows DCOM to use the standard type
library, Marshal | er, to manage the client-side marshalling of your client.

The normal DCOM deployment rules state that you must deploy and register
a proxy/stub DLL for all the COM interfaces that your client uses. COMet can
automatically generate the COM IDL definitions and makefile, which are
needed to create this DLL, by using the COvet Cf g tool or the ts2i di
command line tool.

If your COM client application uses the standard COMet interfaces, such as
| CCRBAFact ory, you must also include the COMet proxy/stub DLL. This is
called | T_C2K_PROXY_STUB5 V(50. DLL and is located in the

i nstal | -di r\asp\version\ bi n directory, where ver si on represents the
Orbix version number.

If your COM client uses pure DCOM calls, you must register forwarding
entries in your client-side registry, to indicate the COMet CORBA location
information for your CORBA server. You can use the SrvA i as utility to
create the extra registry entries. For deployment purposes, you can use the
AliasSrv. exe to restore these settings during installation. See the

deno\ COM coQr eat e demonstration for an example. See “Replacing an
Existing DCOM Server” on page 196 for more details about the Al i asSrv
and SrvA i as utilities.

165

CHAPTER 9 | Deploying a COMet Application

Deploying Multiple Hosts

Overview

Graphical overview

166

Client Machine 1

Client Program

(Visual Basic,

PowerBuilder,
and so on)

A typical scenario might involve multiple clients running simultaneously,
with each client configured to connect to a different server on a different
host. This section describes how this scenario can be easily achieved.

Figure 19 provides a graphical overview of a deployment scenario involving
different COMet clients, each of which contacts a different server host at
application runtime.

Development Machine

Client Machine 2

Client Program

(Visual Basic,

PowerBuilder,
and so on)

Client Machine 3

Client Program

(Visual Basic,

PowerBuilder,
and so on)

» COMet bridge » Server Application
QA Machine
» COMet bridge » Server Application

Production Machine

> COMet bridge .

Server Application

Figure 19: Deploying Multiple Hosts

Deploying Multiple Hosts

Note: In reality, the COMet bridge could be deployed in a number of
different ways, as explained in “Deployment Models” on page 152. Even
though it is possible to deploy just one COMet bridge to mediate between
all clients and servers, this is not recommended because of the
performance overheads it could incur at application runtime.

Steps The steps to deploy this type of scenario are:

1.

Ensure that your server-side configuration includes the Naming Service
and IFR. See the Orbix Deployment Guide and Orbix Administrator’s
Guide for more details of how to set up configuration domains and
configuration scopes. See the Orbix Configuration Reference for more
details of how to configure Orbix services such as the Naming Service
and IFR.

Ensure that your client program calls Get Qbj ect () to obtain the
relevant object references via the Naming Service. For example:

I/l Visual Basic

obj = fact. Get (bj ect ("i nterface_type: NAVE_SERVI CE: narre")

See “Format of Parameter for GetObject()” on page 87 for more details
of the format of the preceding example.
Ensure that your client-side configuration includes the
initial _references: NameSer vi ce: r ef er ence and
initial _references:|nterfaceRepository:reference configuration
items. The values that can be specified for these items can take either
of the following formats:
. "TAR L
In this case, the IOR string for the Naming Service or IFR can be
obtained from the server-side configuration.
* "corbal oc:iiop:host:port:/NameService" or
"corbal oc:iiop:host:port:/InterfaceRepository"
In this case, host and port specify where the locator daemon is
running. This format is particularly useful in allowing you to
quickly change the details of the host (for example, Development

167

CHAPTER 9 | Deploying a COMet Application

machine, QA machine, Production machine) to which you want
to point the client.
By encapsulating these variables in configuration scopes specific to
each deployment scenario, as shown in the following example, it is
possible at runtime to dynamically change the configuration. For
example:

Devel opnent

{
host =" 123. 45. 67. 89" ;
port =" 3075";

initial_references: Nam ngSer vi ce: r ef erence="corbal oc: i i op: "
+host +": " +por t +*/ NarmeSer vi ce"

initial _references:|nterfaceRepository:reference="corbal oc:
i iop:"+host+":"+port+"/|nterfaceRepository";

}

QA

{

host =" 123. 45. 66. 123" ;
port="3075";

initial_references: Nam ngSer vi ce: r ef er ence="cor bal oc: i i op: "
+host +": " +por t +*/ NarmeSer vi ce"

initial _references:|nterfaceRepository:reference="corbal oc:
iiop:"+host+":"+port+"/InterfaceRepository";

}

Producti on

{

host =" 123. 45. 70. 14";
port="3075";

i nitial_references: Nam ngSer vi ce: r ef erence="cor bal oc: i i op: "
+host +": " +por t +"/ NarmeSer vi ce"

initial_references:|nterfaceRepository:reference="corbal oc:
i i op:"+host+":"+port+"/|nterfaceRepository";

I

Note: Any variable defined in the global configuration scope can also be
included within scopes such as those in the preceding example. This
allows you to fine-tune your configuration for specific clients.

168

Deploying Multiple Hosts

To specify which ORB is to be used, ensure that the form load at the
start of your client program calls Set O bNane(), passing the name of
the relevant configuration scope (that is, " Devel opnent ", "Qa", or
"Production") as a parameter.

An alternative to setting the ORB name programatically is to set the

| T_CRB_NAME environment variable with the relevant ORB name. You
can set this environment variable either globally through the Windows
Control Panel or locally through a batch file.

169

CHAPTER 9 | Deploying a COMet Application

170

In This Chapter

CHAPTER 10

Development
Support Tools

This chapter first describes the central role played by the
COMet type store in terms of the development support tools
supplied with COMet. It then describes the tools you can use
to manage the type store cache and to generate Microsoft IDL
and type library information from existing OMG IDL, which is
necessary to allow COM or Automation clients to communicate
with CORBA servers. It also describes how to generate stub
code, if you want to avail of client callback functionality in
your applications. Finally, it describes the tools you can use
to generate Visual Basic code from OMG IDL, and to replace
an existing COM or Automation server with a CORBA server.

This chapter discusses the following topics:

The COMet Type Store page 173
The COMet Tools Window page 178
Adding New Information to the Type Store page 180
Deleting the Type Store Contents page 184
Dumping the Type Store Contents page 185

171

CHAPTER 10 | Development Support Tools

Creating a Microsoft IDL File page 186
Creating a Type Library page 190
Creating Stub Code for Client Callbacks page 194
Replacing an Existing DCOM Server page 196
Generating Visual Basic Client Code page 199

Note: The typenan, ts2idl, and ts2t| b command-line utilities described
in this chapter are located in i nstal | -di r\ bi n, where i nstal | - dir
represents your Orbix installation directory.

172

The COMet Type Store

The COMet Type Store

Overview

In This Section

This section describes the COMet type store in terms of its role and how it
works.

This section discusses the following topics:

The Central Role of the Type Store page 174

The Caching Mechanism of the Type Store page 176

173

CHAPTER 10 | Development Support Tools

The Central Role of the Type Store

Overview

Graphical Overview

174

This subsection describes the role of the type store. The following topics are
discussed:

® “Graphical Overview” on page 174.

“Role” on page 175.

Figure 20 provides a graphical overview of the central role played by the
type store in the use of the COMet development utilities.

OMG IDL

_ﬂ/—\

idl -R=-v

—

Interface
Repository

T

typeman

!

g ——
COMet
Type Store

ts2tlb ts2idl cometcfg

Stub for
Type
Library COM IDL Callbacks

Figure 20: COMet Type Store and the Development Utilities

Role

The COMet Type Store

As shown in Figure 20 on page 174, the type store plays a central role in
the use of the COMet development utilities. The t ypenan utility manages the
OMG IDL information in the type store cache. The ts2tl b, ts2idl, and
conet cf g utilities use the OMG IDL type information in the cache to
respectively generate the Microsoft IDL, type library information, and
callback stub code used by your COM or Automation clients for
communicating with CORBA servers.

175

CHAPTER 10 | Development Support Tools

The Caching Mechanism of the Type Store

Overview

OMG IDL

Memory and Disk Cache

Type Information Management

176

This subsection describes how type information is stored in the type store.
The following topics are discussed:

® “OMG IDL" on page 176.
¢ “Memory and Disk Cache” on page 176.
® “Type Information Management” on page 176.

OMG IDL files define the IDL interfaces for CORBA objects. (See
“Introduction to OMG IDL” on page 269 for more details.) As shown in
Figure 20 on page 174, you can register OMG IDL in a CORBA Interface
Repository, where it is stored in binary format. (See the Orbix
documentation set for full details of how to register OMG IDL.)

COMet uses the OMG IDL type information available in the Interface
Repository. The type information can consist of module names, interface
names, or data types.

A possible performance bottleneck might result at application runtime, if
COMet needs to contact the Interface Repository for each OMG IDL
definition. This is because every query might involve multiple remote
invocations.

To avoid any bottlenecks, COMet uses a memory and disk cache of type
information. The t ypenan utility converts OMG IDL type information into an
ORB-neutral binary format, and caches it in memory. The use of a memory
cache means that COMet has to query the Interface Repository only once for
each OMG IDL definition.

At application runtime, when COMet is marshalling information, and
method invocations are being made, the type store cache holds the required
type information in memory. The type information is handled on a
first-in-first-out basis in the memory cache. This means that the most
recently accessed information becomes the most recent in the queue.

On exiting the application process, or when the memory cache size limit has

been reached, new entries in the memory cache are written to persistent
storage, and are reloaded on the next run of a COMet application.

The COMet Type Store

The memory cache and disk cache are quite separate. Initially, on starting
up, the memory cache is primed with the most recently accessed elements
of the disk cache. (The number of elements in the memory cache depends
on the configuration settings, as described in “COMet Configuration” on
page 399.) When lookups are performed, if the required type information is
not already in the memory cache, t ypeman pulls it out of the disk cache. If
the required type information is not in the disk cache, t ypenan pulls it out of
the Interface Repository. The related type information then becomes the
most recent item in the queue in the type store memory cache.

177

CHAPTER 10 | Development Support Tools

The COMet Tools Window

Overview

Window Layout

This section describes the COMet Tools window, which allows you to:
® Add new OMG IDL information to the type store.

® Delete the type store contents.

® Create Microsoft IDL from cached OMG IDL.

® Create Automation type libraries from cached OMG IDL.

Note: You can ignore this section if you intend using only the t ypeman,
ts2idl, and ts2tl b utilities from the command line.

Figure 21 shows the layout of the COMet Tools window.

E¢: CoMet Tools =10 x|
— TypeStore Contents — Types to use
Lecldf= < Hemoye

[Interface] s grid -
[Interface] pazsSeq
[Interface] paszsStruct
[Interface] ::PhoneB ook
[Interface] ArmDemo::testhny
[Interface] CallBack
[Interface] Client0bject
[Interface] DCOM_Tests:BasicTypesTest
[Interface] arid
[Interface] pazzSeq
[Interface] passShuct
[Interface] PhoneB ool
[Struct] ArwDemo:structS
[Struct] pazzStruct: structFisedlength LI

I | e] e | |

Fefresh Display | Delete TypeStare | [Ereate il | [Sreate Stut., | Ereate TILE . |

Disk Cache Size: 2000 Memoary Cache Size: 250 About .. | Exit |

&

178

Figure 21: COMet Tools Window

The COMet Tools Window

Opening the COMet Tools Window To open the COMet Tools window, enter conet cf g on the command line, or
select the Configure COMet icon in the Orbix Configuration panel on
the IONA Central window. (You can open the IONA Central window by
enteringitcentral onthe command line.) When you open the COMet Tools
window, the TypeStore Contents panel automatically lists all the OMG IDL
type information that is currently held in the type store cache.

Viewing Command-Line Changes If you are using both the GUI and the t ypeman command-line utility to
manage the type store, changes made via the t ypeman command-line utility
do not appear automatically in the TypeStore Contents panel on the COMet
Tools window, shown in Figure 21 on page 178. In this case, you must
select Refresh Display, to allow the GUI tool to reflect any changes that
were made via the command line.

179

CHAPTER 10 | Development Support Tools

Adding New Information to the Type Store

Overview

In This Section

180

This section describes how to add new OMG IDL type information to the
COMet type store, by using either the GUI tool or the t ypeman command-line
utiilty.

“The Caching Mechanism of the Type Store” on page 176 describes how
the type store cache can obtain its information on an as-needed basis at
application runtime. However, users can choose to add the required OMG
IDL type information to the cache before the first run of an application. This
is known as priming the cache, and it can lead to a notable performance
improvement.

Priming the cache is a useful but optional step that helps to optimize the
first run of a COMet application that is using previously unseen OMG IDL
types. After COMet has obtained the type information from the Interface
Repository, either through cache priming or during the first run of an
application, all subsequent queries for that type information are satisfied by
the cache.

This section discusses the following topics:

Using the GUI Tool page 181

Using the Command Line page 182

Note: An OMG IDL interface must be registered in the Interface
Repository before you can add it to the COMet type store. See the CORBA
Administrator’s Guide for more details about registering OMG IDL.

Adding New Information to the Type Store

Using the GUI Tool

Overview This subsection describes how to use the GUI tool to add OMG IDL type
information to the type store.

Steps The steps to add new information to the type store are:
Step Action

1 | Open the COMet Tools window shown in Figure 21 on
page 178.

2 | In the field beside the LookUp button, enter the name of an
OMG IDL interface that you want to add.
This enables the LookUp button.

3 | Select the LookUp button.

COMet searches both the Interface Repository and the type
store cache for the specified name. If the relevant name is not
already in the cache, and it is found in the Interface Repository,
it is then automatically added to the cache.

181

CHAPTER 10 | Development Support Tools

Using the Command Line

Overview This section describes how to use the t ypeman command-line utility to add
OMG IDL type information to the type store. (See “COMet Utility Arguments”
on page 411 for details of each of the arguments available with t ypenan.)

Example The following command adds the gri d interface to the type store:

typenan -e grid

Usage String You can call up the usage string for t ypeman as follows:
typenan -?
The usage string for t ypenan is:

TypeMan [fil enane | -e name| uui d| TLBNane] [-v[s[i] nethod]]
[opti ons]

filename: Nanme of input text file.
-e: Look up entry (name, {uuid} or type library
pat hnane) .
-c[n][u]: List disk cache contents, n: Natural order,
u: display uuid.
-wnj: Delete (wipe) cache contents. [n]: Delete uuid-
napper contents.
-f: List type store data files.
-r: Resolve all references (use to generate static
bri dge conpati bl e nanes for OORBA sequences) .

-i: Always connect to | FR (for perfornmance conpari sons).

-v[s[i] method]: Log v-table for interface/struct.
[s:search for nethod].
[i]: Ignore case. Wse -v with -e option.

-b: Log mem cache hash-tabl e bucket sizes.

-h: Log cache hits/msses.

-z: Log mem cache size after each addition.

-l [+ tlblunion]: Log TS basic contents ['+ shows new s/
delete's]. tlb: TypeLib, union: Logs OMG
IDL for unions.

-?2: Priming input file format info.

182

Priming the Type Store with an
Individual Entry

Priming the Type Store with
Multiple Entries

Adding New Information to the Type Store

To prime the type store with the OMG IDL nygri d interface, enter:

typeman -e nynodul e: : nygrid

In this case, the - e argument instructs t ypeman to query the Interface
Repository for the specified nygri d interface, and then add it to the type
store. Ensure that you enter the fully scoped name of the OMG IDL type, as
shown. This means you must precede the interface name with the module
name (that is, nymodul e: : in the previous example).

To prime the type store with multiple OMG IDL entries simultaneously,
create a text file that lists any number of OMG IDL typenames. You can call
the text file any name you want (for example, pri ne. t xt). Each entry in the
text file must be on a separate line. For example:

M/Account
Chat:: Chatd i ent
Chat : : Chat Ser ver

As shown in the preceding example, OMG IDL typenames must be fully
scoped (that is, precede the interface name with modul enare: :). You can
comment out a line by putting // at the start of it. If you insert a double
blank line, it is treated as the end of the text file. The - 22 option with

t ypeman allows you to view the format that the text file entries should take.

After you have created the text file, enter the following command (assuming
you have called the file pri ne. t xt), to prime the cache with the type
information relating to the text file entries:

typerman prine. t xt

This can be a convenient way of managing the cache, and repriming it with
a modified list of types.

183

CHAPTER 10 | Development Support Tools

Deleting the Type Store Contents

Overview

Using the GUI Tool

Using the Command Line

184

You can use either the GUI tool or the command-line utilities to delete the
entire contents of the type store. It is not possible to selectively delete only
some type store entries. To delete entries, you must delete the entire cache.

To delete the entire contents of the cache, select Delete TypeStore on the
COMet Tools window shown in Figure 21 on page 178.

Either of the following commands deletes the entire contents of the type
store:

typenman -wm
or
del c:\tenp\typenan.*

In this case, the second command assumes that the t ypenan data files are
held in c:\tenp. (The COvet . TypeMan. TYPEMAN_CACHE FI LE configuration
variable determines where the data files are stored. See “COMet
Configuration” on page 399 for more details.)

The t yperman data files include:

typeman. _dc This is the disk cache data file.

t ypenan. i dc This is the disk cache index.

t ypeman. edc This is the disk cache empty record index.
t ypenan. map This is the UUID name mapper.

Note: The typeman -wcommand does not delete the t ypeman. nap file.
You must specify t ypeman -wmto ensure that this file is also deleted.

Dumping the Type Store Contents

Dumping the Type Store Contents

Overview The t ypeman utility is also a useful diagnostic utility, because it allows you to
dump the contents of the type store cache.

Example The following command prints the methods of the gri d interface in both
alphabetic and vtable order (the vtable order is determined by the OMG
Interworking Architecture specifiction at
ftp://ftp.ony. org/ pub/ docs/ f or mal / 01- 12- 55. pdf):

[c:\] typeman -e grid -v

MD5/ Nane or | FR | ook up: grid

Nane sorted V-table Displd Cfset
get get 1 0

hei ght get set 2 1

set hei ght 3 2

w dth get wi dt h 4 3

Note: The second column in the preceding example denotes operations
for the get attribute. The absence of hei ght set and wi dth set implies
that these are readonly attributes.

185

CHAPTER 10 | Development Support Tools

Creating a Microsoft IDL File

Overview

In This Section

186

The normal procedure for writing a COM or Automation client to
communicate with a CORBA server is to first obtain a Microsoft IDL
definition of the target CORBA interface, which the COM or Automation
client can understand. You can generate Microsoft IDL definitions from
existing OMG IDL information in the type store. To minimize manual
lookups, you should ensure that each IDL file contains a module.

Note: Creating Microsoft IDL in this way allows you to create a standard
DCOM proxy/stub DLL that can be installed with a COM or Automation
client. This means that you do not have to install any CORBA components
on the client machine. In this case, the distribution model is exactly the
same as for a standard DCOM application. This means that it includes a
COM or Automation client and a proxy/stub DLL.

This section discusses the following topics:

Using the GUI Tool page 187

Using the Command Line page 189

Creating a Microsoft IDL File

Using the GUI Tool

Overview

Steps

This subsection describes how to use the GUI tool to create a Microsoft IDL
file from OMG IDL.

The steps to create a Microsoft IDL file are:
1. Open the COMet Tools window shown in Figure 21 on page 178.

2. From the TypeStore Contents panel, select the item of OMG IDL type
information on which you want to base the Microsoft IDL file.

3. Select Add. This adds the item to the Types to use panel.

Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the Microsoft IDL file.

4. Select Create MIDL. This opens the COMet ts2idl client window
shown in Figure 22 on page 188.

5. If you want to:

¢ Ensure that Microsoft IDL is created for all dependent types not
defined within the scope of (for example) your interface, select
the Resolve References check box.

+ Copy the contents of the Microsoft IDL file to your development
environment, select the Copy All button.

. Refresh the window, select the Clear button.
. Assign a Microsoft IDL filename, select the Save As button.
6. Select the Generate IDL button. This creates the Microsoft IDL file.

187

CHAPTER 10 | Development Support Tools

COMet ts2idl Client Window Figure 22 shows the COMet ts2idl client window, which you can use to
create a Microsoft IDL file from OMG IDL.

f4-COMet tsZidl client

* File generated by tz2idl version 2.0.7 at
061927 PM on Wednesday 12 December, 2001

=

* Contents: MIDL

Hifndef __GRID_
fdefine _ GRID_

impoart "oaidlidl;

I

A interface |_grid :

AAUUID [(1B303970-394CF-3C37-1D4B-3FAT11EBFDEFE)
/MDE YES

/f Source C IFR

I

Figure 22: Creating a Microsoft IDL File from OMG IDL

188

Creating a Microsoft IDL File

Using the Command Line

Overview This subsection describes how to use the ts2i di command-line utility to
create a Microsoft IDL file from existing OMG IDL type information. (See
“COMet Utility Arguments” on page 411 for details of each of the arguments
available with ts2idl .)

Example The following command creates a gri d.idl file, based on the OMG IDL
grid interface:

ts2id -f grid.id grid

Usage String You can call up the usage string for t s2i dl as follows:
ts2idl -v
The usage string for t s2i dl is:

Usage:
ts2idl [options] <type name | type library name> [[<type name>]

pti ons:
-c : Don't connect to the IFR (e.g. if cache is fully primed).
-r : Resol ve referenced types.
-m: CGenerate Mcrosoft IDL (default).
-p : Cenerate makefile for proxy/stub DLL.
-s : Force inclusion of standard types (ITStdcon.idl /
orb.idl).
-f : <fil enane>.
-v : Print this nmessage.

Tip: We -p to generate a nakefile for the marshal ling DLL.

189

CHAPTER 10 | Development Support Tools

Creating a Type Library

Overview

Using IDispatch Interface

Using Dual Interfaces

190

When using an Automation client, you have the option in some controllers
(for example, Visual Basic) of using straight | Di spat ch interfaces or dual
interfaces.

If you want to develop an Automation client that is to only use the straight
I D spat ch interface, there is no need to create a type library from existing
OMG IDL information in the type store. This is because COMet automatically
copies the related type information into the type store when it uses

Get oj ect to perform a lookup on the target CORBA object.

The following is a Visual Basic example of how an Automation client can
use Get (oj ect () to get an object reference to a CORBA object:

' Misual Basic requesting an Automation obj ect
' reference to OMG I DL interface nod:: Cor baSrv
srvobj = factory. Get Chj ect ("nod/ CorbaSrv")

If you want to develop an Automation client that uses dual interfaces,
instead of using the straight | D spat ch interface, you must use either the
GUI tool or the t s2t1 b command-line utility to create a type library from
existing OMG IDL information in the type store.

Note: If you intend to use dual interfaces, the bridge must be loaded
in-process to the client (that is, in the client’s address space). The use of
dual interfaces is not supported with the bridge loaded out-of-process.

Creating a Type Library

Using the GUI Tool

Overview This subsection describes how to use the GUI tool to create a type library
from OMG IDL.
Steps The steps to create a type library are:

1. Open the COMet Tools window shown in Figure 21 on page 178.

2. From the TypeStore Contents panel, select an item of OMG IDL type
information on which you want to base the type library.

3. Select Add. This adds the item to the Types to use panel.
Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the type library.

4. Select Create TLB. This opens the Typelibrary Generator window
shown in Figure 23.

!‘T Typelibrary Generator

Libraty Name ~ Interface prototypes appear as:

I " Dispatch only.

¢ Interface name.
Tuvpelibrary pathname

I ves | [Apply identifier prefiv ta avaid name clashes.

Generate TLE | Cloze |

Figure 23: Creating a Type Library from OMG IDL

191

CHAPTER 10 | Development Support Tools

192

In the Library Name field, type the internal library name. This can be
the same as the type library path name if you wish, but ensure that the
library does not have the same name as any of the types that it
contains.

In the Typelibrary pathname field, type the full path name for the type
library.

If you want interface prototypes to:

. Appear as | D spat ch, select IDispatch only.

. Use the specific interface name, select Interface name.

To apply an identifier prefix to avoid name clashes, select the
corresponding check box. This helps to avoid potential name clashes
between OMG IDL and Microsoft IDL keywords.

Click Generate TLB. This creates the type library.

Creating a Type Library

Using the Command Line

Overview

Example

Usage String

This subsection describes how to use the t s2t1 b command-line utility to
create a type library from existing OMG IDL type information. (See “COMet
Utility Arguments” on page 411 for details of each of the arguments
available with ts2t1 b.)

The following command creates a grid. t1b file in the I T_gri d library,
based on the OMG IDL gri d interface:

ts2tlb -f grid.tlb -1 1T grid grid

You can call up the usage string for t s2t1 b as follows:
ts2tlb -v
The usage string for t s2t1 b is:

Usage:
ts2tl b [options] <type name> [[<type name>] .]
-f : File nane (defaults to <type nane #1>.tlb).
-l : Library name (defaults to IT_Library <type nane #1>).
-p : Prefix parameter names with "it_
-i : Pass a pointer to interface Foo as |ID spatch*
rather than D Foo* - necessary for some controllers.
-v : Print this message.

Tip: Wse tlibreg.exe to register your type library.

193

CHAPTER 10 | Development Support Tools

Creating Stub Code for Client Callbacks

Overview

Steps

!:'.'-':Stuh Code Generator

Cutput Directary

When you want your application to have client callback functionality, you
must provide an implementation for the callback objects. This section
describes how to use the GUI tool to generate Visual Basic or PowerBuilder
stub code for callbacks.

Note: There is no equivalent command-line utility available for creating
stub code for callbacks.

The steps to create stub code for callbacks are:

1. Open the COMet Tools window shown in Figure 21 on page 178.

2. From the TypeStore Contents panel, select the item of OMG IDL type
information on which you want to base the stub code.

3. Select the Add button. This adds the item to the Types to use panel.
Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the stub code.

4. Select the Create Stub button. This opens the Stub Code Generator
window shown in Figure 24.

=10/]

Igc:

Language

= isual Bazick.0 class file [.CLS)

£ demos
A COMet
9 callback

(1 dual
(27 idizpatch

" Powerbuilder 6.0 user-abject impoart file [.SRU]

El
A
4 Generate Cloze

194

Figure 24: Creating Stub Code for Callbacks

Creating Stub Code for Client Callbacks

5. Select the radio button corresponding to the language you are using.
6. Select the output directory where you want the stub code to be saved.

7. Click Generate. This generates the stub code.

195

CHAPTER 10 | Development Support Tools

Replacing an Existing DCOM Server

Overview

Background

The srvAlias Utility

196

This section describes the concept of replacing an existing DCOM server
with a CORBA server, and how to do it. The following topics are discussed:

® “Background” on page 196.

® “The srvAlias Utility” on page 196.

® “The Server Aliasing Registry Editor Window” on page 197.
® “Using the Window” on page 197.

® “The aliassrv Utility” on page 198.

At some stage, it might become necessary to replace an existing COM or
Automation server with a CORBA server, without the opportunity to modify
existing COM or Automation clients. However, such clients are not aware of
the (D)l OCRBAFact ory interface that has so far been the usual way for clients
to obtain initial references to CORBA objects.

The solution is to allow such clients to continue to use their normal

CoQr eat el nst anceEx() or O eat ehj ect () calls. This means that you must
retrofit the bridge to serve these clients’ activation requests. In other words,
you must alias the bridge to the legacy COM or Automation server. This
ensures that when the client is subsequently run, the bridge is activated in
response to the client’'s CoQr eat el nst anceEx() or O eat eQoj ect () calls.

COMet supplies a srvAl i as utility, which you can enter at the command
line, to open the Server Aliasing Registry Editor window shown in Figure 25
on page 197.

Replacing an Existing DCOM Server

The Server Aliasing Registry Figure 25 shows the layout of the Server Aliasing Registry Editor window,
Editor Window which you can open by running srvAlias from the command line.

wm. Server Aliazing Begistry Editor

CLSID: I {F7BEAYSE-30BF-1101-8E10-0050970557AC)

D escription II:IrI:ui:-: Replace Server demo

[+ Create Key Loadkey | Festore
ProglD IIT_DCDmTest.IT_DcDmTest
GetOhject Sting IIIT_D comT estreplace|

Alias | Delete | Save

Figure 25: Aliasing the Bridge

Using the Window The Server Aliasing Registry Editor window allows you to place some
entries in the registry, to allow server 'aliasing’. You must enter the CLSID
for the server to be replaced, and then supply, in the appropriate text box,
the string that should be passed to (D)l OCCRBAFact ory: : Get (hj ect () if the
CORBA factory were being used. This string is then stored in the registry
(under a COwet | nf o subkey, under the server's CLSID entries). In addition,
I Tunknown. di | is registered as the server executable. Nothing else is
required.

197

CHAPTER 10 | Development Support Tools

The aliassrv Utility

198

The srvAl i as utility allows users to save the new registry entries in binary
format, so that an accompanying al i assrv utility can be used at application
deployment time to restore the entries on the destination machine. For
example, given a file called repl ace. r eg, which contains the modified
registry entries, the following command aliases the specified CLSID to
COMet:

aliassrv -r replace.reg -c {F7B6A75E- 90BF- 11D1- 8E10- 0060970557AC
The next time a DCOM client of the server is run, COMet is used instead.

Generating Visual Basic Client Code

Generating Visual Basic Client Code

Overview

In This Section

This section describes how to use the Visual Basic genie, to generate Visual
Basic client code from OMG IDL definitions.

This section discusses the following topics:

Introduction page 200
Using the GUI Tool page 202
Using the Command Line page 213

199

CHAPTER 10 | Development Support Tools

Introduction

Overview

Introduction to the Genie

Development Steps

200

This subsection provides an introduction to the concept of using the genie to
generate Visual Basic client code. The following topics are discussed:

® ‘“Introduction to the Genie” on page 200.
® “Development Steps” on page 200.
® ‘“Generated Files” on page 201.

COMet is shipped with a Visual Basic code generation genie that can
automatically generate the bulk of the application code for a Visual Basic
client, based on OMG IDL definitions. The use of the Visual Basic genie is
not compulsory for creating Visual Basic clients with COMet. However,
using the genie makes the development of Visual Basic clients much faster
and easier.

The genie is designed to generate Visual Basic clients. These clients can
communicate with C++ servers that have been generated via the C++
genie supplied with the CORBA Code Generation Toolkit. (See the CORBA
Code Generation Toolkit Guide for more details about the C++ genie.)

The steps to create and build a distributed COMet client-server application
via code generation are:

Step Action

1 | Generate the CORBA server code, by using the i dl gen
cpp_poa_geni e supplied with the CORBA Code Generation
Toolkit. See the CORBA Code Generation Toolkit Guide for
more details.

2 | Generate the Visual Basic client, by using the i dl gen vb_geni e
supplied with COMet. The following subsections describe how
to use either the command-line or GUI version of the genie to
do this. See “Generated Files” on page 201 for a list of the files
that the Visual Basic genie creates.

Generated Files

Generating Visual Basic Client Code

Step

Action

3 | Register the OMG IDL file with the Orbix Interface Repository.
This step is only required if using the command-line version of
the genie.

4 | Load the client. vbp file into the Visual Basic IDE, and build
the client.

The files that the Visual Basic genie creates are:

client.vbp
client.frm
FindiCR frm

Cal | _Funcs. bas

Print_Funcs. bas

This is the Visual Basic project file for the client.
This is the main Visual Basic form for the client.

This form contains the functions needed by the client to
select a . ref file. The .ref file is written by the server
and contains the server object’s IOR.

This contains the Visual Basic code for implementing the
operations defined in the selected interface(s).

This contains functions for printing the values of all the
CORBA simple types supported by COMet. It also
contains functions for printing any user-defined types
declared in the IDL file.

Random Funcs. bas This contains functions for generating random values for

I T_Randomcl s

all the CORBA simple types supported by COMet. It also
contains functions for generating random values for any
user-defined types declared in the IDL file.

This class is a random number generator that is used in
the generated Random Funcs. bas file.

201

CHAPTER 10 | Development Support Tools

Using the GUI Tool

Overview This subsection describes the steps to use the GUI tool to generate Visual
Basic client code from existing OMG IDL are:

1 From the Visual Basic project dialog shown in Figure 26, select the COMet
Wizard icon.

New | E xisting I Recent I

Q 4 -
Standard EXE AckiveX EXE Activei DLL Ackivex
Conkral
A L < %
o a\,
P8 Fa
VB Application VB Wizard Activer Ackivex
wizard IManager Document Ol Document Exe
P & P & P & P &

[Don't show this dislog in the: future

Figure 26: Visual Basic Project Dialog Window

This opens the COMet Wizard Introduction window shown in Figure 27 on
page 203.

202

Generating Visual Basic Client Code

2 Select the Next button on the COMet Wizard - Introduction window shown
in Figure 27.

COMet Wizard - Introduction

The COMet VB Client Wizard Creates a WE
automation client which can communicate
through COMet 2000 with a COREA server
implementing the interfaces defined in the
selected I0L File.

[Skip this screen in the Fukure,

Zancel | = Banl | Mext = | FEme

Figure 27: COMet Wizard - Introduction Window

This opens the COMet Wizard - Step 1 window shown in Figure 28 on
page 204.

203

CHAPTER 10 | Development Support Tools

3 Select the Browse button on the COMet Wizard - Step 1 window in
Figure 28.

COMet Wizard - Step 1

Making CO# and CORBA Wosk Together

Figure 28: COMet Wizard - Step 1 Window

This opens the Select the IDL file window shown in Figure 29 on page 205.

204

Generating Visual Basic Client Code

4 From the Select the IDL file window in Figure 29, select the OMG IDL file

on which you want to base the Visual Basic client.

Select the IDL file.

Igc: j

o
3 Program Files
EF10MA
3 orbiv_art
£320
9 demos
£ COMet
9 qrid

& comman

Filenarme:

|E:"~F'ru:ugram Filez\IOMANarbix_arts2. Dhdemoz W COket

Cancel | Ok

Figure 29: Select the IDL File Window

The Filename field displays the full path to the OMG IDL file that you select

Select the Ok button on the Select the IDL file window.

This opens the COMet Wizard - Step 1 window again, this time with the full

path to the selected OMG IDL file displayed, as shown in Figure 30 on
page 206.

205

CHAPTER 10 | Development Support Tools

6 Select the Next button on the COMet Wizard - Step 1 window in Figure 30.

COMet Wizard - Step 1

Select an IDL file containing the interface that
wou wish ko implement,

|C:'|,F‘ru:ugram Files\IOMA orbix_arth 2, 0Ydemos

Zancel | < Back, Mext = FEme

Figure 30: Step 1 Window Displaying Full Path to the Selected File

This opens the COMet Wizard - Step 2 window shown in Figure 31 on
page 207.

206

Generating Visual Basic Client Code

7 Select the appropriate radio button on the COMet Wizard - Step 2 window
in Figure 31, depending on whether you want to connect to the server by
using an IOR or the Naming Service.

Note: The option you choose must correspond with the option selected
for the C++ server when it was created via the CORBA Code Generation
Toolkit.

COMet Wizard - Step 2

Do wou wish ko connect ko locate the
server using an object reference (IOR)
writken ko a file or using the Maming
Service,

™ Use the Maming service

& Use an IOR

Zancel |

Figure 31: COMet Wizard - Step 2 Window

8 Select the Next button on the COMet Wizard - Step 2 window.

This opens the COMet Wizard - Step 3 window shown in Figure 32 on
page 208.

207

CHAPTER 10 | Development Support Tools

208

COMet Wizard - Step 3

9 Select the Browse button on the COMet Wizard - Step 3 window in
Figure 32.

Select the Folder in which you would like
the project to be created. IF the Folder
does not exist a new one will be
created,

Browse |

Zancel |

< Back | :

FEme |

Figure 32: COMet Wizard - Step 3 Window

This opens the Select the Folder window shown in Figure 33 on page 209.

Generating Visual Basic Client Code

10 From the Select the Folder window in Figure 33, select the path to the
folder in which you want to store your Visual Basic client project.

Select the Folder

o
S Temp
a test

Folder: |E:'xTemp'xtest'va

Cancel | Ok |

Figure 33: Selecting a Folder

The Folder field displays the full path to the folder that you select.

11 Select the Ok button on the Select the Folder window.

This opens the COMet Wizard - Step 3 window again, this time with the full
path to the selected folder displayed, as shown in Figure 34 on page 210.

209

CHAPTER 10 | Development Support Tools

12 Select the Next button on the COMet Wizard - Step 3 window in Figure 34.

COMet Wizard - Step 3

Select the Folder in which you would like
the project to be created. IF the Folder
does not exist a new one will be
created,

|C:'|,Temp'l,test'l,vl:u

Zancel | < Back, Mext = FEme

Figure 34: Step 3 Window Displaying Full Path to the Selected Folder

This opens the COMet Wizard - Finished window shown in Figure 35 on
page 211.

210

Generating Visual Basic Client Code

13 Select the Finish button on the COMet Wizard - Finished window in
Figure 35.

COMet Wizard - Finished!

The CoMet Wizard is finished collecting
information, Click the Finish button bo
generate the client project. This may take a
few minutes on slower machines,

[Save settings For next use

Zancel | < Back, | (et = | Finish

Figure 35: COMet Wizard - Finished Window

This automatically generates the Visual Basic client project for you. It also
automatically registers the corresponding OMG IDL file in the Interface
Repository.

When the genie has completed its processing, the generated client
application appears, as shown in Figure 36 on page 212.

211

CHAPTER 10 | Development Support Tools

‘#;, Client - Microsoft Visual Basic [design] 18] x|

Ele Edt View Project Format Debug Run Query Diagram Jools Add-Ins Window Help

ient

E
£ 135 Client (client.vbp)

H 0 &5 Forms

A [abl oien: 131 Formd. {Client Frm)
[=45 Modules

(|

o8 Call_Funcs (Call_Funcsbas)

g Connect : 443 Prirk_Funcs (Print_Funcs.bas)
5 : .« Rendom_Funcs (Random_Func

ER
A ﬁ Discornect |
ve ppr T —
o un Clien —
& ~ [Form1 Form 5

]

Alphabetic | categarized |

Appesrance |1-3D
= AutoRedraw False
_'|J Backolar [&Henooo00Fe.
Borderstyle 1 - Fixed Single

L

* Server I0R fe fointerace: [irgrit o C‘aptlun ‘ Clent
Ciprontols True

ControlBax False

Drantode 13 - Copy Pen

Dranstyle 0- Sold

Drantiidth 1

Ensbled True

Filolor M &Ho0000000B:

Filstyle 1 - Transparent

Fort M5 Sans Serif |

4| (Name)

Returs the name used in code ko identify an
object,
formiayout K]

1 _'IJ

Figure 36: Example of a Generated Client Application

212

Generating Visual Basic Client Code

Using the Command Line

The i dl gen vb_geni e utility can create the bulk of a Visual Basic client
application from existing OMG IDL definitions. The command-line syntax for
the genie is as follows, where fi| ename represents the name of the OMG
IDL file:

idlgen vb_genie.tcl [options] filenane.idl [interface w |dcard]*

You can generate a Visual Basic client, based on any of the following:
® Allinterfaces in an OMG IDL file.

For example, the following command creates a Visual Basic client,
based on all the interfaces contained in the grid.idl file:

idlgen vb_genie.tcl grid.id *

® A specific interface in an OMG IDL file.

For example, the following command creates a Visual Basic client,
based on the grid interface in the grid.idl file:

i dlgen vb_genie.tcl nodul enane::grid grid.idl

In this case, you must supply the fully scoped name of the interface
(that is, the interface name preceded by module name and : :).

® Arange of selected interfaces in an OMG IDL file, by using wildcard
characters.

For example, the following command creates a Visual Basic client,
based on all interfaces in foo. i dl that are within the Test module,
and which have names that begin with Foo or end with Bar :

idl gen vb_genie.tcl Test::* foo.idl "Foo*" "*Bar"

Note: Remember that the command-line version of the genie does not
automatically register OMG IDL in the Interface Repository. You must do
this manually after the genie has created the Visual Basic client
application. For example, to register the OMG IDL in a file called
grid.idl, enterthe commandid -R=v grid.idl.

213

CHAPTER 10 | Development Support Tools

You can call up the usage string for the genie as follows:
idlgen vb_genie -h
The usage string for the genie is:

usage: idlgen vb genie.tcl [options] file.idl [interface

wi | dcard] *
[opti ons]
-I<directory> Passed to preprocessor.
- D<narmre>[=val ue] Passed to preprocessor.
-h Prints this hel p message.
-V Ver bose node.
-s Silent node (opposite of -v option).
-dir <directory> Put generated files in the specified
directory.
-incl ude Process interfaces in #include'd file too.
-(no)ns Use the Naming Service (default no).

See “Idigen vb_genie.tcl Arguments” on page 419 for details of each of the
arguments available with the genie.

214

Part 3

Programmer’s Reference

In This Part This part contains the following chapters:
COMet API Reference page 217
Introduction to OMG IDL page 269
Mapping CORBA to Automation page 313
Mapping CORBA to COM page 357
COMet Configuration page 399
COMet Utility Arguments page 411

In This Chapter

CHAPTER 11

COMet API
Reference

This chapter describes the application programming interface
(API) for COMet, which is defined in Microsoft IDL.

This chapter discusses the following topics:

Common Interfaces page 218
Automation-Specific Interfaces page 222
COM-Specific Interfaces page 251

217

CHAPTER 11 | COMet API Reference

Common Interfaces

Overview This section describes the interfaces that are common to both COM and
Automation.
In This Section This section discusses the following topics:
|IForeignObject page 219
IMonikerProvider page 221

218

Common Interfaces

IForeignObject

Synopsis

Description

typedef [public] struct objSystem Ds {
unsi gned | ong cbMaxSi ze;
unsi gned | ong cbLengt hUsed;
[size_ i s(cbMaxS ze), |ength_is(cbLengthUsed), unique]
long * pVal ue;
} obj Systen Ds;

[object, uuid(.), pointer_default(unique)]

interface | Forei gnChj ect : | Unknown

{

HRESULT Get For ei gnRef erence ([in] obj Systeni Ds systen Ds,
[out] long * system D
[out] LPSTR * obj Ref);

HRESULT Get Uniqueld ([out] LPSTR * uniqueld);

b

Mapping object references through views, and passing those object
references back and forth through the bridge, could potentially lead to the
creation of indefinitely long chains of views that delegate to other views, and
so on indefinitely. The | For ei gnQoj ect interface is provided as a deterrent
to this potential problem, in that it provides a mechanism to extract a valid
CORBA object reference from a view.

To effect this solution, each COM and Automation view object must map
onto one and only one CORBA object reference, and it must also expose the
| For ei gnQbj ect interface. This in turn means that an unambiguous CORBA
object reference can be obtained via | For ei gnChj ect from any COM or
Automation view.

Note: The matching Automation interface for a constructed OMG IDL
type (such as struct, union, or exception) exposes Dl For ei gnConpl exType
instead of | For ei gnQuj ect .

219

CHAPTER 11 | COMet API Reference

Methods The methods for the | For ei gnoj ect interface are:

Get For ei gnRef erence() This extracts an object reference in string form
from a proxy.

The syst em Ds parameter is an array of long
values, where a value in the array identifies an
object system (for example, CORBA) for which
the caller is interested in obtaining object
references. The value for the CORBA object
system is the long value, 1. If the proxy is a proxy
for an object in more than one object system, the
order of IDs in the systemlIDs array indicates the
caller's order of preference.

The out parameter, syst eni D, identifies an object
system for which the proxy can produce an object
reference. If the proxy can produce a reference for
more than one object system, the order of
preference specified in the syst em Ds parameter
is used to determine the value returned in this
parameter.

The out parameter, obj Ref , contains the object
reference in string form. In the case of the CORBA
object system, this is a stringified interoperable
object reference (I0R).

Get Uni quel d() This returns a unique identifier for the object.
UuID {204f 6242- 3aec- 11cf - bbf c- 444553540000}
Notes COM/CORBA-compliant.

220

Common Interfaces

IMonikerProvider

Synopsis

Description

Methods

uuIiD

Notes

[object, uuid(.)]

interface | MnikerProvider : |Unknown

{

HRESULT get _noni ker ([out] | Moniker ** val);
}

The COM standard does not provide any mechanism for clients to deal with
server objects that are inherently persistent (that is, server objects that store
their own state instead of having their state stored through an external
interface such as | Per si st St or age). Databases are a typical example of
inherently persistent server objects. COM does have the concept of
monikers, which are the conceptual equivalent of CORBA persistent object
references, but they are used in only a limited capacity in the COM world.

The 1 Moni ker Provi der interface allows clients to obtain an I Moni ker
interface pointer from COM and Automation views. The resulting moniker
can be used as a persistent reference to the CORBA object that relates to the
view from which the moniker was obtained.

Both COM and Automation views can support the | Moni ker Pr ovi der
interface. It allows clients to persistently save object references for later use,
without needing to keep the view in memory.

The methods for the | Moni ker Provi der interface are:

get _noni ker () This returns a moniker that allows the CORBA object to
be converted to persistent form for storage in a file, and
so on. Once it is stored in persistent form, by means of
this moniker, the CORBA object can be reconnected to
again, by using the standard COM moniker semantics.

{ecce76f e- 39ce- 11cf - 8e92- 080000970dac7}

COM/CORBA-compliant.

221

CHAPTER 11 | COMet API Reference

Automation-Specific Interfaces

Overview

In This Section

222

This section describes the interfaces that are specific to Automation.

This section discusses the following topics:

DICORBAAny page 223
DICORBAFactory page 228
DICORBAFactoryEx page 230
DICORBAObject page 232
DICORBAStruct page 234
DICORBASystemException page 235
DICORBATypeCode page 236
DICORBAUnion page 240
DICORBAUSserException page 241
DIForeignComplexType page 242
DIForeignException page 243
DIObject page 244
DIObjectinfo page 245
DIOrbixORBODbject page 246
DIORBODbject page 249

Automation-Specific Interfaces

DICORBAAny

Synopsis

typedef enum {
tk_null, tk_void, tk_short, tk_|ong, tk_ushort,
tk_ulong, tk_float, tk_double, tk_octet, tk_any,
tk_typeCode, tk_principal, tk_objref, tk_struct,
tk_union, tk_enum tk_string, tk_sequence, tk_array,
tk_alias, tk_except, tk_bool ean, tk_char

} OCRBAT(Ki nd;

[ol eaut omati on, dual , uui d(..)]
interface D OQCRBAAny : Dl Forei gnConpl exType {
[id(0), propget] HRESUWLT val ue([retval,out] VAR ANT*
I T_retval);
[id(0), propput] HRESWLT val ue([in] VAR ANT val);
[propget] HRESULT kind([retval,out] OCRBATCKi nd* I T retval);

/1 tk_objref, tk_struct, tk_union, tk_ alias, tk_except
[propget] HRESULT id([retval,out] BSTR* IT retval);
[propget] HRESULT nane([retval ,out] BSTR* I T retval);

/1 tk_struct, tk_union, tk_enum tk_except
[propget] HRESULT menber_count ([retval,out] long* IT retval);
HRESULT nenber _nane([in] long index, [retval,out] BSTR*
I T retval);
HRESUWLT nenber _type([in] long index, [retval,out] VAR ANT*
IT retval);

/1 tk_union
HRESULT nenber _| abel ([in] long index, [retval,out] VAR ANT*

I T retval);

[propget] HRESULT discrimnator_type([retval,out] VAR ANT*
I T retval);

[propget] HRESULT defaul t _i ndex([retval,out] |ong*
I T retval);

/1 tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long* IT retval);

/1 tk_array, tk_sequence, tk_alias
[propget] HRESULT content _type([retval,out] VAR ANT*
I T retval);

/1l tk_array, tk_sequence

223

CHAPTER 11 | COMet API Reference

Description

Methods

224

HRESULT insert_safearray([in] VARIANT val, [in] BSTR
typeNane) ;

The OMG IDL any type maps to the Dl GCRBAAny Automation interface. You
can use Dl CCRBAAny to find details about the type of value stored by an any.
The particular methods that you can call on DI GCRBAAny depend on the kind
of value it contains. A BadKi nd exception is raised if a method is called on
Dl GCRBAAny that is not appropriate to the kind of value it contains.

You can use the ki nd() method to find the kind of value contained. The
ki nd() method returns an enumerated value of the CCRBATCK nd type. For
example, a Dl GCRBAAny containing a struct is of the tk_struct kind; a

Dl GCRBAAny containing an object is of the t k_obj ref kind; a Dl CCRBAANY
containing a typedef is of the tk_al i as kind.

Because DI GCRBAAny derives from the DI For ei gnConpl exType interface,
objects that implement it are effectively pseudo-objects.

If the any contains a CORBA sequence or array type, the VAR ANT value
property contains an Automation safearray or an OLE collection. If the any
contains a complex CORBA type, such as a struct or union, the VAR ANT
value property contains an |1 D spat ch pointer to the Automation interface to
which that type is mapped.

The methods for the Dl CCRBAANny interface are:

val ue() These propput and propget methods can be
called on every kind of DI GCRBAANY.

The propget method returns the actual value
stored in DI CORBAANY.

The propput method inserts a value into a
DI CCRBAANY .

ki nd() This can be called on every kind of DI CCRBAANY.

It finds the type of OMG IDL definition described
by the any. It returns an enumerated value of the
QORBATCKI nd type. For example, an any that
contains a sequence is of the t k_sequence kind.
Once the kind of value stored by the any is known,
the methods that can be called on the any are
determined.

id()

narre()

menber _count ()

nmenber _nane()

Automation-Specific Interfaces

This can be called on a Dl CCRBAANY of the
tk_objref, tk_struct, tk_union, tk_enum
tk_alias, or tk_except kind. If called on a

Dl QCRBAAny of a different kind, it raises a Badki nd
exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires runtime access to the
Interface Repository.

This can be called on a Dl GCRBAANy of the
tk_objref, tk_struct, tk_union, tk_enum
tk_alias, ortk_except kind. If called on a

D 0CRBAAny of a different kind, it raises a BadKi nd
exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on a Dl GCRBAANy of the
tk_struct, tk_union, tk_enum ortk_except kind.
If called on a D CORBAANyY of a different kind, it
raises a BadKi nd exception.

It returns the number of members that make up
the type.

This can be called on a Dl GCRBAANy of the
tk_struct, tk_uni on, tk_enum ortk_except kind.
If called on a Dl QCRBAANY of a different kind, it
raises a BadKi nd exception.

It returns the name of the member specified in the
i ndex parameter. The returned name does not
contain any scoping information.

A Bounds exception is raised if the i ndex
parameter is greater than or equal to the number
of members that make up the type. The index
starts at 0.

225

CHAPTER 11 | COMet API Reference

226

nenber _type()

menber _| abel ()

di scrimnator_type()

def aul t _i ndex()

I engt h()

This can be called on a D GCRBAAny of the
tk_struct, tk_union, or t k_except kind. If called
on a DI GCrRBAANy of a different kind, it raises a
BadKi nd exception.

It returns the type of the member identified by the
i ndex parameter.

A Bounds exception is raised if the i ndex
parameter is greater than or equal to the number
of members that make up the type. The index
starts at 0.

This can be called on a Dl GCRBAAnY of the
t k_uni on kind. If called on a Dl CCRBAAny of a
different kind, it raises a BadKi nd exception.

It returns the case label of the union member
identified by the i ndex parameter. (The case label
is an integer, char, boolean, or enum type.)

A Bounds exception is raised if the i ndex
parameter is greater than or equal to the number
of members that make up the type. The index
starts at 0.

This can be called on a Dl GCRBAANY of the
t k_uni on kind. If called on a Dl CCRBAANy of a
different kind, it raises a BadKi nd exception.

It returns the type of the union’s discriminator.

This can be called on a Dl GCRBAANY of the
t k_uni on kind. If called on a Dl CCRBAAnyY of a
different kind, it raises a BadKi nd exception.

It returns the index of the default member; it
returns - 1 if there is no default member.

This can be called on a Dl GCRBAANY of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, it returns the
value of the bound; a return value of 0 indicates an
unbounded string or sequence. For an array, it
returns the length of the array.

uuID

Notes

content _type()

insert_safearray()

Automation-Specific Interfaces

This can be called on a Dl CCRBAANY of the
tk_sequence, tk_array, or tk_alias kind. If
called on a Dl CORBAANy of a different kind, it raises
a BadKi nd exception.

For a sequence or array, it returns the type of
element contained in the sequence or array. For
an alias, it returns the type aliased by the typedef
definition.

This can be called on a Dl CCRBAANY of the

t k_sequence or tk_array kind. If called on a

Dl QCRBAANY of a different kind, it raises a Badki nd
exception.

This is used to insert sequences or arrays into
anys. The typename of the sequence or array must
be supplied along with the array itself.

{ ABB553C4- 3B72- 11CF- BBFG- 444553540000}

Automation/CORBA-compliant.

227

CHAPTER 11 | COMet API Reference

DICORBAFactory

Synopsis

Description

228

[ol eaut onati on, dual , uui d(.)]

interface DIQORBAFactory : | D spatch

{

HRESULT Get (hj ect ([in] BSTR obj ect Nane,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] |Dispatch** |IT retval);

The DI OORBAFact ory interface is used to make CORBA objects available to
Automation clients, in a manner that is similar to the Get Act i veQuj ect
method in Automation (already described in “COM and CORBA Principles”
on page 3). It is a factory class that allows an Automation client to create
new CORBA object instances and bind to existing CORBA objects. It is
designed to be similar to the Visual Basic O eat eChj ect and Get (oj ect
functions.

The Automation/CORBA-compliant ProglD for this class is CORBA Factory.
An instance of this class must be registered in the Windows system registry
on the client machine.

In COMet, the name GORBA. Fact ory. O bi x is also registered as an alias for
QCRBA Fact ory. This allows access to the Orbix instance in the event of a
subsequent installation of an ORB other than Orbix.

Automation-Specific Interfaces

Methods The methods for the Dl CORBAFact ory interface are:

Get (hj ect ()

This allows a client to specify the name of a target object
to which it wants to connect. It creates an Automation
view of the specified target object, binds this view to the
target, and provides the client with a reference to the
view, which the client can then use to makes its
requests.

The obj ect Name parameter specifies the target CORBA
object to which the client wants to connect. In COMet,
the format of this parameter is as follows:

"interface: TAG Tag data"

The i nter f ace component represents the IDL interface
that the target object supports. If the interface is scoped
(for example, "nodul e_nane: : i nt erf ace_nane"), the
interface token is " modul e_nare/ i nt er f ace_nane".

The TAG component can be either of the following:

i I CR
In this case, the Tag dat a is the hexadecimal string
for the stringified IOR. For example:
fact. Get (oj ect (" enpl oyee: | OR 123456789..")

i NAME_SERVI CE
In this case, the Tag dat a is the Naming Service
compound name separated by ".". For example:

fact. Get (oj ect (" enpl oyee: NAME_SERVI CE: | ONA
staf f. PD. Ton')

uuliD {204F6241- 3AEC 11CF- BBFG 444553540000}

Notes Automation/CORBA-compliant.

229

CHAPTER 11 | COMet API Reference

DICORBAFactoryEx

Synopsis

Description

Methods

uuID

230

[ol eaut onati on, dual , uui d(.)]
interface D CORBAFact oryEx : D CORBAFactory {
HRESUWLT OreateType([in] |D spatch* scopi ngQj,
[in] BSTR typeNane,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] VAR ANT* | T retval);
HRESULT O eateTypeByl d([in] |D spatch* scopi ngQyj,
[in] BSTR repl D
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] VARANT* |IT retval);

}

Dl CCORBAFact or yEx is a factory class that allows creation of Automation
objects that are instances of CORBA complex types, such as structs, unions,

and exceptions.

DI QCRBAFact or yEx derives from DI OORBAFact ory. You can call
DI QCRBAFact or yEx methods on an instance of Dl OCORBAFact ory.

The methods for Dl CORBAFact or yEx are:

O eat eType()

QO eat eTypeByl d()

This creates an Automation object that is an instance
of an OMG IDL complex type. The scopi ngbj
parameter indicates the scope in which the type
contained in the t ypeNane parameter should be
interpreted. Global scope is indicated by passing the
Not hi ng parameter.

This creates an instance of a complex type, based on
its repository ID. The repository ID can be determined
by calling Di For ei gnConpl exType: :

I NSTANCE r eposi toryl) .

This method requires runtime access to the Interface
Repository.

{ A8B553C5- 3B72- 11CF- BBFG- 444553540000}

Automation-Specific Interfaces

Notes Automation/CORBA-compliant. There is no corresponding | CCRBAFact or yEx
COM API, because CORBA structures map to native COM structures.

231

CHAPTER 11 | COMet API Reference

DICORBAObject

Synopsis

Description

Methods

232

[ol eaut onati on, dual , uui d(.)]
interface DOORBAMhj ect : IDispatch {
HRESULT Getlnterface([optional,in,out] VAR ANT* |T_EX,
[retval ,out] |D spatch** IT retval);
HRESULT Get | npl enentation([optional,in,out] VAR ANT* |T_EX,
[retval ,out] BSTR* | T_retval);
HRESUWLT IsA([in] BSTR repositoryl D,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] VAR ANT_BOOL* |T_retval);
HRESULT IsN | ([optional,in,out] VAR ANT* |T_Ex,
[retval ,out] VARIANT_BOOL* | T_retval);
HRESUWLT | sEquival ent([in] |ID spatch* obj,
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] VARIANT_BOOL* | T_retval);
HRESUWLT NonExi stent ([optional,in,out] VAR ANT* |T_EX,
[retval ,out] VAR ANT_BOOL* | T retval);
HRESULT Hash([in] |ong nmaxi mum
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] long* IT retval);

}

All Automation views of CORBA objects expose the DI GCCRBAM] ect
interface. It provides a number of Automation/CORBA-compliant methods
that all CORBA (and hence, Orbix) objects support.

An Automation client must call Di CRBObj ect : : Get OORBA(hj ect (), to obtain
an | D spat ch pointer to the Dl OCORBAWj ect interface.

The methods for the DI GORBAMj ect interface are:

GetInterface() This returns a reference to an object in the Interface
Repository that provides type information about the
target object. This method requires runtime access
to the Interface Repository.

Get I npl enent ation() This finds the name of the target object’s server, as
registered in the Implementation Repository. For a
local object in a server, it is that server's name, if it
is known. For an object created in a client program,
it is the process identifier of the client process.

I'sA()

IsN1()

| sEqui val ent ()

NonExi st ent ()

Hash()

Automation-Specific Interfaces

This returns true if the object is either an instance
of the type specified by the repositoryl D
parameter, or an instance of a derived type of the
type contained in the reposi t or yl D parameter.
Otherwise, it returns f al se.

This returns t r ue if an object reference is nil.
Otherwise, it returns f al se.

This returns t r ue if the target object reference is
known to be equivalent to the object reference in the
obj parameter. A return value of f al se indicates
that the object references are distinct; it does not
necessarily mean that the references indicate
distinct objects.

This returns t r ue if the object has been destroyed.
Otherwise, it returns f al se.

Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same
hashed value. However, if two object references
return different hash values, these object references
are for different objects.

The Hash() method allows you to partition the space
of object references into sub-spaces of potentially
equivalent object references.

The maxi numparameter specifies the maximum
value that is to be returned by the Hash() method.
For example, by setting maxi numto 7, the object
reference space is partitioned into a maximum of
eight sub-spaces (because the lower bound of the
method is 0).

uuib {204F6244- 3AEG- 11CF- BBFG 444553540000}

Notes Automation/CORBA-compliant.

233

CHAPTER 11 | COMet API Reference

DICORBAStruct

Synopsis

Description

uuID

Notes

234

[ol eaut onati on, dual , uui d(.)]
interface DIQORBAStruct : D Forei gnConpl exType {};

The DI OCRBASt ruct interface is used to show that an Automation interface
has been translated from an OMG IDL struct definition. Any Automation
interface that results from the translation of an OMG IDL struct supports
D CORBASt ruct .

Dl QCRBASt ruct derives from the DI For ei gnConpl exType interface. It has no
associated methods.

{ A8B553Cl- 3B72- 11CF- BBFC 444553540000}

Automation/CORBA-compliant.

Automation-Specific Interfaces

DICORBASystemException

Synopsis

Description

Methods

uuID

Notes

[ol eaut onati on, dual , uui d(.)]
i nterface D OCRBASyst enException : D Forei gnException {
[propget] HRESULT EX_m nor Code([retval,out] long* I T retval);
[propget] HRESULT EX conpl etionStatus([retval,out] |ong*
I T retval);

}s

The D OORBASyst enExcept i on interface is used to show that an Automation
interface has been translated from a CORBA system exception. (CORBA
system exceptions are not defined in OMG IDL.) Any Automation interface
that results from the translation of a CORBA system exception supports

DI OCRBASyst enExcept i on, which in turn derives from DI For ei gnExcept i on.

The methods for the Dl OCORBASyst enExcept i on interface are:

EX_ni nor Code() This describes the system exception.

EX_conpl etionStatus() This indicates the status of the operation at the
time the exception occurred. Possible return
values are:

OOMPLETION_YES = 0 This indicates that the
operation had completed
before the exception was
raised.

QOWPLETION NO = 1 This indicates that the
operation had not
completed before the
exception was raised.

OOMPLETI ON_MAYBE = 2 This indicates that it
cannot be determined at
what stage the exception
occurred.

{ A8B553C9- 3B72- 11CF- BBFC- 444553540000}

Automation/CORBA-compliant.

235

CHAPTER 11 | COMet API Reference

DICORBATypeCode

Synopsis

Description

236

[ol eaut onati on, dual , uui d(.)]

interface D CORBATypeCode : DI Forei gnConpl exType {
[propget] HRESULT kind ([retval ,out] CORBA TCKind * val);
/1l tk_objref, tk_struct,

/1 tk_union, tk_alias,

/'l tk_except

[propget] HRESUWT id ([retval,out] BSTR * val);

[propget] HRESULT nane ([retval,out] BSTR * val);

/1 tk_struct, tk_union,
/1 tk_enum tk_except
[propget] HRESULT menber_count ([retval,out] long* val);
HRESUWLT nenber _nane ([in] long index, [retval,out] BSTR* val);
HRESULT nenber _type ([in] long index, [retval, out]

Dl CORBATypeCode** val);

/1 tk_union

HRESUWLT menber _| abel ([in] |ong index,
[retval,out] VAR ANT* val);

[propget] HRESULT discrimnator_type ([retval,out] |D spatch **
val);

[propget] HRESULT default _index ([retval,out] long* val);

/1l tk_string, tk_array,
/'l tk_sequence
[propget] HRESULT length ([retval,out] long* val);

/1 tk_array, tk_sequence,
/1l tk_alias
[propget] HRESULT content _type ([retval,out] |ID spatch** val);

b

The D OCRBATypeCode interface is used to show that an Automation
interface has been translated from an OMG IDL typecode definition. Any
Automation interface that results from the translation of an OMG IDL
typecode supports Dl OCCRBATypeCode, which in turn derives from

Dl For ei gnConpl exType.

Automation-Specific Interfaces

Methods The methods for the Dl CORBATypeCode interface are:

ki nd()

id()

narre()

menber _count ()

This can be called on all typecodes. It finds the type
of OMG IDL definition described by the typecode. It
returns an enumerated value of the CORBA TCKi nd
type. For example, a typecode that contains a
sequence is of the t k_sequence kind. Once the kind
of value stored by the typecode is known, the
methods that can be called on the typecode are
determined.

This can be called on a Dl OCCRBATypeCode of the
tk_objref, tk_struct, tk_union, tk_enum
tk_alias, or tk_except kind. If called on a

Dl GCRBATypeCode of a different kind, it raises a
BadKi nd exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires runtime access to the
Interface Repository.

This can be called on a Dl OCCRBATypeCode of the
tk_objref, tk_struct, tk_union, tk_enum
tk_alias, ortk_except kind. If called on a

D GCRBATypeCode of a different kind, it raises a
BadKi nd exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

This can be called on a Dl OCCRBATypeCode of the
tk_struct, tk_union, tk_enum or tk_except kind.

If called on a DI GCRBATypeCode of a different kind, it
raises a BadKi nd exception.

It returns the number of members that make up the
type.

237

CHAPTER 11 | COMet API Reference

238

nenber _nane()

menber _type()

nmenber _| abel ()

di scrim nator_type()

This can be called on a Dl CCRBATypeCode of the
tk_struct, tk_uni on, tk_enum or t k_except kind.
If called on a Dl OCORBATypeCode of a different kind, it
raises a BadKi nd exception.

It returns the name of the member identified by the
i ndex parameter. The returned name does not
contain any scoping information.

A Bounds exception is raised if the i ndex parameter
is greater than or equal to the number of members
that make up the type. The index starts at 0.

This can be called on a Dl CCRBATypeCode of the
tk_struct, tk_union, or tk_except kind. If called
on a Dl CCRBATypeCode of a different kind, it raises a
BadKi nd exception.

It returns the type of the member specified in the
i ndex parameter.

A Bounds exception is raised if the i ndex parameter
is greater than or equal to the number of members
that make up the type. The index starts at 0.

This can be called on a Dl CORBATypeCode of the
t k_uni on kind. If called on a D OCRBATypeCode of a
different kind, it raises a BadKi nd exception.

The nenber _| abel () method returns the case label
of the union member specified in the i ndex
parameter. (The case label is an integer, char,
boolean, or enum type.)

A Bounds exception is raised if the i ndex parameter
is greater than or equal to the number of members
that make up the type. The index starts at 0.

This can be called on a Dl CCRBATypeCode of the
t k_uni on kind. If called on a Dl CCRBATypeCode of a
different kind, it raises a BadKi nd exception.

It returns the type of the union’s discriminator.

def aul t _i ndex()

I engt h()

content _type()

Automation-Specific Interfaces

This can be called on a Dl OCCRBATypeCode of the
t k_uni on kind. If called on a DI CCRBATypeCode of a
different kind, it raises a BadKi nd exception.

The def aul t _i ndex() method returns the index of
the default member; it returns - 1 if there is no
default member.

This can be called on a Dl OCCRBATypeCode of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, it returns the
bound value. A return value of O indicates an
unbounded string or sequence.

For an array, it returns the length of the array.

This can be called on a Dl OQCRBATypeCode of the
tk_sequence, tk_array, or tk_al i as kind. If called
on a D OCRBATypeCode of a different kind, it raises a
BadKi nd exception.

For a sequence or array, it returns the type of
element contained in the sequence or array. For an
alias, it returns the type aliased by the typedef
definition.

uuib { A8B553C3- 3B72- 11CF- BBFC- 444553540000}

Notes Automation/CORBA-compliant.

239

CHAPTER 11 | COMet API Reference

DICORBAUnNion

Synopsis

Description

Methods

uuIiD

Notes

240

[ol eaut onati on, dual , uui d(.)]

interface D QORBAUni on : Dl Forei gnConpl exType {
[id(400)] HRESULT Wnion_d ([retval,out] VAR ANT * val);
b

The DI OORBAUNI on interface is used to show that an Automation interface
has been translated from an OMG IDL union definition. Any Automation
interface that results from the translation of an OMG IDL union supports
Dl QORBALNI on, which in turn derives from DI For ei gnConpl exType.

The methods for the DI GCRBAUNI on interface are:

Uni on_d() This returns the current value of the union’s discriminant.

{ A8B553C2- 3B72- 11CF- BBFC 444553540000}

Automation/CORBA-compliant.

Automation-Specific Interfaces

DICORBAUserException

Synopsis

Description

uuID

Notes

[ol eaut onati on, dual , uui d(.)]
interface D OCRBAUser Exception : D Forei gnException {};

The D OORBAUser Except i on interface is used to show that an Automation
interface has been translated from an OMG IDL user-defined exception. Any
Automation interface that results from the translation of an OMG IDL
user-defined exception supports Dl CORBAUser Except i on, which in turn
derives from DI For ei gnExcept i on. Dl CCRBAUser Except i on has no
associated methods.

{ ABB553C8- 3B72- 11CF- BBFG- 444553540000}

Automation/CORBA-compliant.

241

CHAPTER 11 | COMet API Reference

DIForeignComplexType

Synopsis [ol eaut omat i on, dual , uui d(.)]
i nterface Dl Forei gnConpl exType : | D spatch {
[propget] HRESULT | NSTANCE repositoryld([retval,out] BSTR
I T_retval);
HRESULT | NSTANCE cl one([in] |D spatch* obj,
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] |D spatch** IT retval);

}

Description The DI For ei gnConpl exType interface is used to show that an Automation
interface has been translated from an OMG IDL complex type (for example,
a struct, union, or exception). Any Automation interface that results from the
translation of an OMG IDL complex type supports DI For ei gnConpl exType.

The interfaces that derive from D For ei gnConpl exType are Dl CCRBAAny,

Dl QORBAS r uct , DI CCRBATypeCode, DI QORBAUNI on, and DI For ei gnExcept i on
(that is, the matching Automation interface for any CORBA constructed
type).

Methods The methods for the DI For ei gnConpl exType interface are:

I NSTANCE reposi toryld() This returns the repository ID of a complex type.
The DI GORBAFact or yEx: : Or eat eTypeBy!l d()
method can subsequently use the repository ID
to create an instance of a complex type, based
on the repository ID.

I NSTANCE_cl one() This creates a new instance that is an identical
copy of the target instance.

Note: Both of these methods are deprecated since CORBA 2.2. The
approved way to get a repository ID is to use DI Qoj ect I nf o: : uni que_i d(),
and then use DI (j ect I nfo: : cl one() .

uuib { A8B553Q0- 3B72- 11CF- BBFC- 444553540000}

Notes Automation/CORBA-compliant.

242

Automation-Specific Interfaces

DIForeignException
Synopsis [ol eaut omat i on, dual , uui d(..)]
interface D Forei gnException : D Forei gnConpl exType {
[propget] HRESULT EX maj or Code([retval ,out] long* I T retval);
[propget] HRESULT EX Id([retval,out] BSTR* |IT retval);
Iy
Description The D For ei gnExcept i on interface is used to show that an Automation

interface has been translated from either an OMG IDL user-defined
exception or a CORBA system exception. Any Automation interface that
results from the translation of either an OMG IDL user-defined or system
exception supports Dl For ei gnExcept i on.

The interfaces that derive from DI For ei gnExcept i on are
Dl QORBASyst enExcept i on and DI GORBAUser Exception The
Dl For ei gnExcept i on interface in turn derives from Di For ei gnConpl exType.

Methods The methods for the DI For ei gnExcept i on interface are:
EX _naj or Code() This defines the category of exception raised. Possible
return values are:
® | T_NoException
® | T_UserException
® | T_SystenkException

EX_1d() This returns a unique string that identifies the exception.
uuiD { ABB553C7- 3B72- 11CF- BBFG 444553540000}
Notes Automation/CORBA-compliant.

243

CHAPTER 11 | COMet API Reference

DIObject

Synopsis [ol eaut omat i on, dual , uui d(.)]
interface Di(oject : |D spatch {};

Description The Dl oj ect interface is the object wrapper for the OMG IDL Qbj ect type.
It has no associated methods.

uuliD {49703179- 4414- a552- 1ddf - 90151ac3b54b}

Notes Automation/CORBA-compliant.

244

Automation-Specific Interfaces

DIObjectinfo

Synopsis [ol eaut omat i on, dual , uui d(..)]
interface D (ojectInfo : D OORBAFact or yEx {
HRESULT type_name ([in] |D spatch* target,
[optional,in,out] VAR ANT * |T_EX,
[retval ,out] BSTR* typeNane);
HRESUWLT scoped_nane ([in] |Dispatch* target,
[optional ,in,out] VAR ANT * |T_EX,
[retval ,out] BSTR* repositorylD);
HRESUWLT unique_id ([in] |ID spatch* target,
[optional ,in,out] VAR ANT * |T_EX,
[retval ,out] BSTR* uni quel D;
HRESUWLT clone ([in] ID spatch * target,
[optional ,in,out] VAR ANT * |T_EX,
[retval ,out] |D spatch ** resultQj);
b

Description The DI Obj ect I nf o interface allows you to retrieve information about a
complex data type (such as a union, structure, or exception) that is held as
an | D spat ch pointer. It derives from the Dl CORBAFact or yEx interface..

Note: The recommended way to obtain a repository ID is to call
D oj ect | nf o: : uni que_i d() , followed by Dl Qbj ect I nf o: : cl one() .

Methods The methods for the D oj ect I nf o interface are:

t ype_nane() This retrieves the simple type name of the data type.
scoped_nane() This retrieves the scoped name of the data type.

uni que_i d() This retrieves the repository ID of the data type.

cl one() This creates a new instance that is identical to the target
instance.
uuliD {6dd1b940- 21a0- 11d1- 9d47- 00a024a73e4f }
Notes Automation/CORBA-compliant.

245

CHAPTER 11 | COMet API Reference

DIOrbixORBObject

Synopsis

Description

246

[ol eaut onati on, dual , uui d(.)]
interface D O bi xORB(hj ect : D GRBMyj ect {

b

HRESUWLT Get ConfigVal ue([in] BSTR nare, [out] BSTR *val ue,
[in, out, optional] VAR ANT *IT_Ex,
[retval, out] VAR ANT_BOOL * |T_ retval);

HRESUWLT StartU([in, out, optional] VAR ANT *IT_Ex,
[retval, out] VARIANT BOOL * IT retval);

HRESULT Shut Down([in, out, optional] VAR ANT *IT_Ex,
[retval, out] VARIANT_BOCOL * | T retval);

HRESULT Runninglnl DE([in, out, optional] VAR ANT *IT_EX,
[retval, out] VAR ANT_BOOL * |T_retval);

HRESULT Rel easeCORBAVi ew([in] | D spatch* poQyj,
[in] VAR ANT_BOO. 1ToDestruction,
[in, out, optional] VAR ANT* |T_Ex,
[retval, out] VARIANT_BOCOL * I T retval);

HRESULT ProcessEvents([in, out, optional] VAR ANT* |T_Ex,
[retval, out] VAR ANT_BOOL * |T_ retval);

HRESUWLT Narrow([in] |Di spatch* poQhj,
[in] BSTR cNew FaceNare,
[in, out, optional] VAR ANT* |T_Ex,
[out, retval] |D spatch** poDerived(j);

HRESULT Set O bNane([in] BSTR strQ bNane,
[in, out, optional] VAR ANT* |T_Ex,
[out, retval] VARIANT_BOCL* |IT_retval);

The D O bi xORBOyj ect interface provides Orbix-specific methods that allow

you to control some aspects of the ORB (that is, Orbix) or to request it to
perform actions. D O bi xORBObj ect derives from DI CRBObj ect . The

Dl O bi xCRBoj ect methods augment the Automation/CORBA-compliant
methods defined in DI CRBuj ect .

The ORB has the QORBA. ORB. 2 ProglD, which is the

Automation/CORBA-compliant name. In COMet, the CORBA CRB. Or bi x hame

is registered as an alias for GCRBA CGRB. 2. This allows access to the Orbix
instance in the event of a subsequent installation of an ORB other than
Orbix.

Methods

Automation-Specific Interfaces

The methods for the DI O bi xCRBMyj ect interface are:

Get Conf i gVal ue()

Start U()

Shut Down()

Runni ngl nl DE()

Rel easeCORBAVI ew()

Pr ocessEvent s()

This obtains the value of the configuration entry
specified in the name parameter.

See the Orbix documentation set for information on
configuration values.

This initializes the bridge. Invoking this method is
optional. If StartUp() is not invoked, the bridge is
automatically initialized when the first object is
created. However, it is a CORBA guideline that an
ORB should be initialized before being used.
Therefore, you should call this method before doing
anything else (that is, before you make any calls to
Get (bj ect or O eat eType on DI GCRBAFact ory).

This shuts down the bridge. Invoking this method
might be necessary if, for example, you are
experiencing hang-on-exit problems or the

OQMet . Conf i g. COMET_SHUTDOMN PCLI CY
configuration variable is set to Di sabl ed. After this
method is called, no more invocations can be made
using CORBA.

This changes the internal shutdown policy, so
COMet can run in the Visual Basic studio debugger.
This call has no effect on the

QQvet . Conf i g. COVET_SHUTDOMN _PQLI CY
configuration variable.

This is used by clients to free the CORBA view of a
DCOM callback object when receipt of callbacks is
no longer required.

This causes any outstanding CORBA events to be
dispatched to a client or server application for
processing. It might be necessary to call this method
in a client application, if the client is asynchronously
receiving callbacks from a server object. This
depends primarily on your development
environment.

If you want to use this method, set the
COMet . Confi g. S| NGLE_THREADED CALLBACK
configuration variable to YES.

247

CHAPTER 11 | COMet API Reference

uuID

Notes

248

Nar row()

Set Or bName()

A client that holds an object reference for an object
of one type, and knows that the (remote)
implementation object is a derived type, can narrow
the object reference to the derived type.

The following Visual Basic code shows how to use
this function:

Set obj Fact = Oreate(j ect (" COORBA Factory")
Set orb = Oreate(j ect ("CORBA CRB. 2")
Set atbj = obj.Fact.Getoject("A" + ior)
Set cCbj = orb. Narrow(atoj, "C')
If cthj I's Nothing Then

MsgBox "Error: narrow fail ed"
End | f

Every ORB is associated with a configuration
domain that provides it with configuration
information. A single configuration domain can hold
configuration information for multiple ORBs, with
each ORB using its ORB name as a "key" or
configuration scope in which the particular
configuration information relating to that ORB is
located.

This method lets you programmatically specify, in
the form load at the start of your applications, the
ORB name that you want your COMet applications
to use. This means that you can specify at runtime
what configuration information is to be used by your
COMet applications.

If you do not use this method to specify an ORB
name, the configuration information relating to the
default ORB name in the configuration repository is
used instead.

Note: Only one COMet ORB object should be
created in any COMet application. Therefore,

Set O bNarre should only be called once during each
run of an application, and it should be the first call
that is made.

{036A6A33- 0BB3- CF47- 1DCB- A2CAE4C5417A}

Automation/CORBA-compliant.

Automation-Specific Interfaces

DIORBODbject

Synopsis

Description

Methods

[ol eaut onati on, dual , uui d(.)]
interface D ORBObj ect : | D spatch {
HRESULT bj ect ToString([in] |D spatch* obj,
[optional,in,out] VAR ANT* |T_EX,
[retval ,out] BSTR* IT_retval);
HRESUWLT StringToChject([in] BSTR ref,
[optional ,in,out] VAR ANT* |T_EX,
[retval ,out] |D spatch** IT retval);
HRESULT CGetlnitial References([optional,in,out] VAR ANT*
I T_Ex,
[retval ,out] VARIANT* I T retval);
HRESUWLT Resol vel nitial Reference([in] BSTR nane,
[optional ,in,out] VAR ANT* |T_EX,

[retval ,out] |D spatch** IT retval);
HRESULT Get OCRBACHj ect ([in] | D spatch* obj,
[optional ,in,out] VAR ANT* |T_EX,

[retval ,out] |D spatch** IT retval);

}

All Automation views of CORBA objects expose the DI CRBj ect interface.
It provides Automation/CORBA-compliant methods that allow Automation

clients to request the ORB to perform various operations. You can call the

Dl QORBAFact ory: : Get (bj ect () method, to obtain a reference to

D CRBMhj ect .

The ORB has the CORBA. CRB. 2 ProglD. In COMet, the CORBA. CRB. O bi x
name is registered as an alias for CORBA. CRB. 2. This allows access to the
Orbix instance in the event of a subsequent installation of an ORB other
than Orbix.

The methods for the Dl GRBbj ect interface are:

oj ect ToStri ng() This converts the target object’s reference to
an IOR.
Stri ngToQj ect () This accepts a string produced by

vj ect ToString() and returns the
corresponding object reference.

249

CHAPTER 11 | COMet API Reference

Get I ni ti al Ref erences() The Interface Repository and the CORBA
services can only be used by first obtaining a
reference to an object, through which the
service can be used. The Automation/CORBA
standard defines Get I ni ti al Ref erences() as
a way to list the available services.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service.)

Resol vel ni ti al Ref erence() This returns an object reference through which
a service (for example, the Interface
Repository or one of the CORBA services) can
be used. The name parameter specifies the
desired service. A list of supported services
can be obtained, using
D ORBMpj ect:: Getlnitial References().

Get OCRBAMj ect () This returns an object that allows access to
the methods defined on the DI CORBAj ect
interface, to gain access to operations on the
CORBA object reference interface.

uuiD {204F6246- 3AEC- 11CF- BBFC- 444553540000}

Notes Automation/CORBA-compliant.

250

COM-Specific Interfaces

COM-Specific Interfaces

Overview This section describes the interfaces that are specific to COM.

In This Section This section discusses the following topics:
ICORBA_Any page 252
ICORBAFactory page 254
ICORBAObject page 256
ICORBA_TypeCode page 258
ICORBA_TypeCodeExceptions page 262
10rbixORBObject page 263
IORBODbject page 266

251

CHAPTER 11 | COMet API Reference

ICORBA_Any

Synopsis typedef [public,vl_enun] enum CCRBAAnyDat aTagEnum {

anySi npl eVal Tag=0,
anyAnyVal Tag,
anySeqVal Tag,
any St ruct Val Tag,
anyUnhi onVal Tag,
any(hj ect Val Tag

} CORBAANy Dat aTag;

interface | CORBA ANY;
interface | OCORBA TypeCode;

typedef uni on CORBAAnyDat aUhi on swi t ch(CCRBAAnyDat aTag whi chQne)
case anyAnyVal Tag:
| CORBA_Any *anyVal ;
case anySeqVal Tag:
struct tagMiltiVal {
[string, uni que] LPSTR repositoryld;
unsi gned | ong cbMaxSi ze;
unsi gned | ong cbLengt hUsed;
[si ze_i s(cbMaxSi ze), | engt h_i s(cbLengt hUsed), uni que]
uni on CCRBAAnyDat alni on * pVal ;
} nultiVval;
case anyUni onVal Tag:
struct tagUni onVal {
[string,unique] LPSTR repositoryld |ong disc;
uni on CCRBAAnyDat alni on * pVal ;
} unionval ;
case any(vj ect Val Tag:
struct tagChjectVal {
[string, unique] LPSTR repositoryld VAR ANT val ;
} objectVal;
case anySi npl eVal Tag:
VAR ANT si npl eVal ;
} CCRBAAnyDat a;

[obj ect, uui d(.), poi nt er_def aul t (uni que)]

interface | GCORBA Any : | Unknown

{

HRESULT _get _val ue([out] VARIANT * val);

HRESULT _put_val ue([in] VAR ANT val);

HRESULT _get _OCORBAAnyDat a([out] CORBAAnyData * val);
HRESULT _put _CORBAAnyDat a([i n] CORBAAnyData val);

252

Description

Methods

uuID

Notes

COM-Specific Interfaces

HRESULT _get _typeCode([out] | CORBA TypeCode ** tc);

The OMG IDL any type maps to the | CCRBA_Any COM interface. You can use
| GCRBA Any to get the type of an any, and to get or set its value.

The methods for the | GCRBA Any interface are:

_get _val ue() This returns the value of a CORBA any that can be
contained by a VAR ANT (that is, if the value of the
any is a simple type or an interface pointer).

_put _val ue() This sets the value of a CORBA any that can be
contained by a VAR ANT (that is, if the value of the
any is a simple type or an interface pointer).

_get_QCORBAAnyData() This returns the value of a CORBA any that cannot
be contained by a VAR ANT (that is, if the value of
the any is a complex type, such as a struct or
union).

_put_CCORBAAnyData() This sets the value of a CORBA any that cannot be

contained by a VARIANT (that is, if the value of the
any is a complex type, such as a struct or union).

_get _typeCode() This returns the type of the any.

{74105f 50- 3c68- 11cf - 9588- aa0004004a09}

COM/CORBA-compliant.

253

CHAPTER 11 | COMet API Reference

ICORBAFactory

Synopsis

Description

254

[obj ect, uui d(.)]
interface | CORBAFactory : | Unknown
{
HRESULT Get (hject ([in] LPSTR objectNane, [out] | Unknown **
val);

}s

The | OCORBAFact ory interface is used to make CORBA objects available to
COM clients, in a manner that is similar to Get (bj ect method in COM
(already described in “COM and CORBA Principles” on page 3). ltis a
factory class that allows a COM client to create new CORBA object
instances and bind to existing CORBA objects.

An instance of this class must be registered in the Windows system registry
on the client machine, using the following settings:

{913D82Q0- 3B00- 11cf - BBFG 444553540000}

DEFI NE_GU (| | D_| CCRBAFact ory, 0x913d82c0, 0x3b00, Ox1icf, Oxbb,
Oxfc, O0x44, 0x45, 0x53, 0x54, 0x0, O0xO0);

" CORBA. Fact ory. GOM

Your COM clients can obtain a pointer to | GCRBAFact ory, by making the
COM CoQr eat el nst anceEx() call as normal. The IID that the client assigns
to the factory (for example, |1 D_| OORBAFact ory) is specified in the
parameter to CoQr eat el nst anceEx() . The call to CoOr eat el nst anceEx()
creates a remote instance of the CORBA object factory on the client
machine.

Methods

uuID

Notes

COM-Specific Interfaces

The methods for the | CORBAFact ory interface are:

Get (hj ect ()

This allows a client to specify the name of a target object
to which it wants to connect. It creates a COM view of
the specified target object, binds this view to the target,
and sets up a pointer to the I Unknown interface of the
view object. After calling Get (bj ect (), the COM client
can then call Queryl nterface() on the pointer to

| Unknown, to obtain a reference to the view, which the
client can then use to makes its requests.

The obj ect Nane parameter specifies the target CORBA
object to which the client wants to connect. In COMet,
the format of this parameter is as follows:

"interface: TAG Tag data"

The i nt er f ace component represents the IDL interface
that the target object supports. If the interface is scoped
(for example, "Modul e: : I nter face"), the interface token
is "Modul e/ I nterface".

TAGcan be either of the following:

d I CR
In this case, the Tag dat a is the hexadecimal string
for the stringified IOR. For example:
fact. Get (oj ect (" enpl oyee: | OR 123456789..")

®* NAME SERVI CE
In this case, the Tag dat a is the Naming Service
compound name separated by ".". For example:

fact. Get (oj ect (" enpl oyee: NAME_SERVI CE: | ONA
staff. PD Tont)

{204F6240- 3AEC- 11CF- BBFG- 444553540000}

COM/CORBA-compliant.

255

CHAPTER 11 | COMet API Reference

ICORBAObject

Synopsis

Description

Methods

256

[obj ect, uui d(.)]

interface | CCRBAChj ect : | Unknown

{

HRESULT GetlInterface ([out] |Unknown ** val);

HRESULT Get | npl enentation ([out] LPSTR * val);

HRESUWLT IsA ([in] LPSTR repositoryl D, [out] bool ean* val);
HRESULT IsN | ([out] bool ean* val);

HRESULT | sEquivalent ([in] |Unknown* obj, [out] bool ean*

val);

HRESULT NonExi stent ([out] bool ean* val);
HRESULT Hash ([in] long maxi num [out] |ong* val);

}

All COM views of CORBA objects expose the | GORBAhj ect interface. It
provides a number of COM/CORBA-compliant methods that all CORBA (and
hence, Orbix) objects support.

| CCRBAMyj ect allows COM clients to have access to operations on the
CORBA object references, which are defined on the CORBA: : (oj ect
pseudo-interface. A COM client can call Queryl nterface() to obtain a
pointer to | CCRBAHj ect .

The methods for the | CORBALj ect interface are:

Getlnterface()

Get | npl enent at i on()

I'sA()

This returns a reference to an object in the Interface
Repository that provides type information about the
target object. This method requires runtime access
to the Interface Repository.

This finds the name of the target object’s server, as
registered in the Implementation Repository. For a
local object in a server, it is that server's name, if it
is known. For an object created in a client program,
it is the process identifier of the client process.

This returns true if the object is either an instance
of the type specified in the r eposi t or yl D parameter,
or an instance of a derived type of the type specified
in the reposi t oryl D parameter. Otherwise, it
returns f al se.

COM-Specific Interfaces

IsNI() This returns t rue if an object reference is nil.
Otherwise, it returns f al se.

I sEqui val ent () This returns t r ue if the target object reference is
known to be equivalent to the object reference
specified in the obj parameter.

A return value of f al se indicates that the object
references are distinct; it does not necessarily mean
that the references indicate distinct objects.

NonExi st ent () This returns t r ue if the object has been destroyed.
Otherwise, it returns f al se.

Hash() Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same
hashed value. However, if two object references
return different hash values, these object references
are for different objects.

The Hash() method allows you to partition the
space of object references into sub-spaces of
potentially equivalent object references.

The maxi numparameter specifies the maximum
value that is to be returned from the Hash() method.
For example, by setting maxi numto 7, the object
reference space is partitioned into a maximum of
eight sub-spaces (because the lower bound value of
the method is 0).

uuib {204F6243- 3AEG- 11CF- BBFG 444553540000}

Notes COM/CORBA-compliant.

257

CHAPTER 11 | COMet API Reference

ICORBA TypeCode

Synopsis [uuid(.), object, pointer_default(unique)]
interface | CORBA TypeCode : | Unknown
{
HRESULT equal ([in] | CORBA TypeCode * pTc,
[out] bool ean * pval,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT kind ([out] OCRBA TCKind * pval,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT id ([out] LPSTR * pld,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT nare ([out] LPSTR * pNane,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT nenber _count ([out] unsigned | ong * pCount,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESUWLT menber _nane ([in] unsigned | ong nlndex,
[out] LPSTR * pNane,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESUWLT menber _type ([in] unsigned |ong nlndex,
[out] | GORBA TypeCode ** pRetval,
[out] OCRBATypeCodeExceptions ** ppExcept);
HRESUWLT menber _| abel ([in] unsigned | ong nl ndex,
[out] | GORBA Any ** pRetval,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT discrinminator_type ([out] | GORBA TypeCode ** pRetval,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT default _index ([out] unsigned long * pRetval,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT length ([out] unsigned long * nLen,
[out] OCRBA TypeCodeExceptions ** ppExcept);
HRESULT content _type ([out] | CORBA TypeCode ** pRetval,
[out] OCRBA TypeCodeExceptions ** ppExcept);
Iy

Description The | OCORBA TypeCode interface is used to show that a COM interface has
been translated from an OMG IDL typecode definition. Any COM interface
that results from the translation of an OMG IDL typecode supports
| OCCRBA TypeCode. It describes arbitrarily complex OMG IDL type structures
at runtime.

258

Methods

COM-Specific Interfaces

The methods for the | CORBA TypeCode interface are:

equal () This returns t r ue if the typecodes are equal.
Otherwise, it returns f al se.

ki nd() This can be called on all typecodes. It finds the
type of OMG IDL definition described by the
typecode. It returns an enumerated value of the
QCRBA_TCKi nd type. For example, a typecode that
contains a sequence is of the t k_sequence kind.
Once the kind of value stored by the typecode is
known, the methods that can be called on the
typecode are determined.

id() This can be called on an | OCORBA TypeCode of the
tk_objref, tk_struct, tk_union, tk_enum
tk_alias, or tk_except kind. If called on an
| OCRBA_TypeCode of a different kind, it raises a
BadKi nd exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires runtime access to the
Interface Repository.

nane() This can be called on an | GORBA TypeCode of the
tk_objref, tk_struct, tk_union, tk_enum
tk_alias, or tk_except kind. If called on an
| GCRBA_TypeCode of a different kind, it raises a
BadKi nd exception.

It returns the name that identifies the type. The
returned name does not contain any scoping
information.

menber _count () This can be called on an | GORBA TypeCode of the
tk_struct, tk_union, tk_enum or tk_except kind.
If called on an | OCRBA TypeCode of a different kind,
it raises a BadKi nd exception.

It returns the number of members that make up the
type.

259

CHAPTER 11 | COMet API Reference

260

nenber _nane()

nenber _type()

menber _| abel ()

di scrimnator_type()

This can be called on an | GORBA TypeCode of the
tk_struct, tk_uni on, tk_enum or t k_except kind.
If called on an | OCRBA TypeCode of a different kind,
it raises a BadKi nd exception.

The nenber _nane() method returns the name of
the member specified in the nl ndex parameter. The
returned name does not contain any scoping
information.

A Bounds exception is raised if the nl ndex
parameter is greater than or equal to the number of
members that make up the type. The index starts
at 0.

This can be called on an | GORBA TypeCode of the
tk_struct, tk_union, or tk_except kind. If called
on an | CORBA_TypeCode of a different kind, it raises
a BadKi nd exception.

It returns the type of the member specified in the
nl ndex parameter.

A Bounds exception is raised if the nl ndex
parameter is greater than or equal to the number of
members that make up the type. The index starts
at 0.

This can be called on an | GORBA TypeCode of the
t k_uni on kind. If called on an | OCCRBA TypeCode of
a different kind, it raises a BadKi nd exception.

It returns the case label of the union member
specified in the nl ndex parameter. (The case label
is an integer, char, boolean, or enum type.)

A Bounds exception is raised if the nl ndex
parameter is greater than or equal to the number of
members that make up the type. The index starts
at 0.

This can be called on an | OCCRBA TypeCode of the
t k_uni on kind. If called on an | CCRBA TypeCode of
a different kind, it raises a Badki nd exception.

It returns the type of the union’s discriminator.

def aul t _i ndex()

I engt h()

content _type()

COM-Specific Interfaces

This can be called on an | GORBA TypeCode of the
t k_uni on kind. If called on an | GCRBA TypeCode of
a different kind, it raises a Badki nd exception.

The def aul t _i ndex() method returns the index of
the default member; it returns - 1 if there is no
default member.

This can be called on an | GORBA TypeCode of the
tk_string, tk_sequence, or tk_array kind.

For a bounded string or sequence, it returns the
bound value. A return value of 0 indicates an
unbounded string or sequence.

For an array, it returns the length of the array.

This can be called on an | GORBA TypeCode of the
tk_sequence, tk_array, ortk_al i as kind. If called
on an | CORBA_TypeCode of a different kind, it raises
a Badki nd exception.

For a sequence or array, it returns the type of
element contained in the sequence or array. For an
alias, it returns the type aliased by the t ypedef
definition.

uuiD {9556EA21- 3889- 11cf - 9586AA0004004A09}

Notes COM/CORBA-compliant.

261

CHAPTER 11 | COMet API Reference

ICORBA _TypeCodeExceptions

Synopsis

Description

Methods

uuID

Notes

262

typedef struct tagTypeCodeBounds {long 1;} TypeCodeBounds;
typedef struct tagTypeCodeBadKind {long 1;} TypeCodeBadKi nd;

[obj ect, uuid(.), pointer_default(unique)]
interface | CORBA TypeCodeExceptions : | Unknown

{
HRESULT _get Bounds([out] TypeCodeBounds * pExcepti onBody);
HRESULT _get _BadKi nd([out] TypeCodeBadKi nd * pExcepti onBody);
h
typedef struct tagOCRBA TypeCodeExceptions
{

CCRBA_Excepti onType type;

LPSTR reposi toryl d;

| OCRBA TypeCodeExcepti ons *pUser Excepti on;
} OCRBA TypeCodeExcepti ons;

The | OORBA TypeCodeExcept i ons interface allows for the raising of
exceptions that can occur with | GCCRBA TypeCode at runtime.

The methods for the | CORBA TypeCodeExcept i ons interface are:

_get_Bounds() This returns a Bounds exception, which results if the
nl ndex parameter is greater than or equal to the number
of members that make up the type.

_get_BadKind() This returns a Badki nd exception, which results from
performing a method call on an | CORBA TypeCode that
has the wrong kind for that method.

{9556ea20- 3889- 11cf - 9586- aa0004004a09}

COM/CORBA-compliant.

COM-Specific Interfaces

I0rbixORBObject

Synopsis

Description

Methods

[object, wuid(.)]
interface | Obi xCRB(hj ect : | CRBOhj ect {
HRESULT Get Confi gVal ue([in] LPSTR nane,
[out] LPSTR *val ue,
[out] BOOLEAN * | T retval);
HRESULT StartUp([out] BOOLEAN * | T_retval);
HRESULT Shut Down([out] BOOLEAN * I T retval);
HRESULT Rel easeCORBAVi ew([in | D spatch * poQhj,
[in] VAR ANT_BOCL 1ToDestruction,
[optional ,in,out] VAR ANT *|T_EX,
[retval ,out] VARIANT_BOCOL * I T retval);
HRESUWLT ProcessEvents(in, out, optional] VAR ANT* |T_Ex,
[retval, out] VARIANT BOOL * IT retval);
HRESULT Set O bNane([in] LPSTR strQ bNane,
[out] BOOLEAN * | T_retval);
Iy

The I O bi xCRBwj ect interface provides Orbix-specific methods that allow
you to control some aspects of the ORB (that is, Orbix) or to request it to
perform actions. | O bi xORBbj ect derives from | CRBObj ect . The

| O bi xCRBQbj ect methods augment the COM/CORBA-compliant methods
defined in the | CRBLj ect interface.

The ORB has the GCRBA. CRB. 2 ProglD, which is the COM/CORBA-compliant
name. In COMet, the name QCRBA. CRB. O bi x is registered as an alias for
QOCORBA. CRB. 2. This allows access to the Orbix instance in the event of a
subsequent installation of an ORB other than Orbix.

The methods for the | O bi xCRBMyj ect interface are:

Get Conf i gval ue() This obtains the value of the configuration entry
specified in the name parameter.

See the Orbix documentation set for information on
configuration values.

263

CHAPTER 11 | COMet API Reference

264

Start Up()

Shut Down()

Rel easeCORBAVI ew()

ProcessEvent s()

This initializes the bridge. Invoking this method is
optional. If Start Up() is not invoked, the bridge is
automatically initialized when the first object is
created. However, it is a CORBA guideline that an
ORB should be initialized before being used.
Therefore, you should call this method before doing
anything else (that is, before you make any calls to
Get (oj ect () or Oreat eType() on | GCRBAFact ory).

This shuts down the bridge. Invoking this method
might be necessary if, for example, you are
experiencing hang-on-exit problems or the

QOvet : Conf i g: COMET_SHUTDOMN_PCLI CY configuration
variable is set to Di sabl ed. After this method is
called, no more invocations can be made using
CORBA.

This is used by clients to free the CORBA view of a
DCOM callback object when receipt of callbacks is no
longer required.

This causes any outstanding CORBA events to be
dispatched to a client or server application for
processing. It might be necessary to call this method
in a client application, if the client is asynchronously
receiving callbacks from a server object. This depends
primarily on your development environment.

If you want to use this method, set the
QOwvet . Confi g. S| NGLE_THREADED CALLBACK
configuration variable to YES.

COM-Specific Interfaces

Set O bNane() Every ORB is associated with a configuration domain
that provides it with configuration information. A
single configuration domain can hold configuration
information for multiple ORBs, with each ORB using
its ORB name as a "key" or configuration scope in
which the particular configuration information relating
to that ORB is located.

This method lets you programmatically specify the
ORB name that you want your COMet applications to
use. This means that you can specify at runtime what
configuration information is to be used by your COMet
applications.

If you do not use this method to specify an ORB
name, the configuration information relating to the
default ORB name in the configuration repository is
used instead.

Note: Only one COMet ORB object should be created
in any COMet application. Therefore, Set O bNare
should only be called once during each run of an
application, and it should be the first call that is

made.
uuiD { 036A6A33- 0BB3- CF47- 1DCB- A2CAEAC6417A
Notes Automation/CORBA-compliant.

265

CHAPTER 11 | COMet API Reference

IORBObject

Synopsis [public] typedef struct tagOORBA CRBMbj ectldList {
unsi gned | ong cbMaxSi ze;
unsi gned | ong cbLengt hUsed;
[size_ i s(cbMaxSi ze), |ength_is(cbLengthUsed), unique]
LPSTR *pVal ue;
} CCRBA CRBOhj ect | dLi st ;

[object, uuid(.)]
interface | CRB(hj ect : | Unknown

{
HRESULT (bj ectToString ([in] | Ulknown* obj,
[out] LPSTR* val);
HRESULT StringToChject ([in,string] LPSTR cStr,
[out] IUnknown ** val);
HRESULT Getlnitial References ([out] CCRBA CRBObj ect | dLi st *
val);
HRESULT Resol vel nitial Reference ([in,string] LPSTR nane,
[out] IUnknown** I T retval);
b
Description All COM views of CORBA objects expose the | CRBObj ect interface. It

provides COM/CORBA-compliant methods that allow COM clients to request
the ORB to perform various operations. You can call the
| QCRBAFact ory: : Get Qj ect () method, to obtain a reference to | CRBj ect .

The ORB has the CORBA. ORB. 2 ProglD. In COMet, the CORBA. CRB. O bi x
name is registered as an alias for CORBA CRB. 2. This allows access to the
Orbix instance in the event of a subsequent installation of an ORB other

than Orbix.
Methods The methods for the | CRBbj ect interface are:
(bj ect ToString() This converts the target object’s reference to
an IOR.
StringTooj ect () This accepts a string produced by

oj ect ToString() and returns the
corresponding object reference.

266

COM-Specific Interfaces

Get I niti al Ref erences() The Interface Repository and the CORBA
services can only be used by first obtaining an
object reference to an object through which
the service can be used. The COM/CORBA
standard defines Get I ni ti al Ref erences() as
a way to list the available services.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service
and Event Service.)

Resol vel niti al Reference() This returns an object reference through
which a service (for example, the Interface
Repository or one of the CORBA services) can
be used. The nanme parameter specifies the
desired service. A list of supported services
can be obtained via
D CRBMhj ect: : Getlnitial References().

uuibD {204F6245- 3AEC- 11CF- BBFG 444553540000}

Notes COM/CORBA-compliant.

267

CHAPTER 11 | COMet API Reference

268

In This Chapter

CHAPTER 12

Introduction to
OMG IDL

An object’s interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes the semantics and uses of the CORBA
Interface Definition Language (OMG IDL), which is used to
describe the interfaces to CORBA objects.

This chapter discusses the following topics:

IDL page 270
Modules and Name Scoping page 271
Interfaces page 272
IDL Data Types page 292
Defining Data Types page 307

Note: COMet does not support all the OMG IDL types described in this
chapter. See “Mapping CORBA to Automation” on page 313 and
“Mapping CORBA to COM” on page 357 for details of the OMG IDL types
that COMet supports.

269

CHAPTER 12 | Introduction to OMG IDL

IDL

Overview

IDL Standard Mappings

Overall Structure

IDL Definition Structure

270

An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, COBOL, and PL/I. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, COBOL, and PL/I. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbix 2000 IDL compiler uses these mappings to
convert IDL definitions to language-specific definitions that conform to the
semantics of that language.

You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

In the following example, two interfaces, Bank and Account , are defined
within the BankDeno module:

nmodul e BankDeno

i{nterface Bank {
/...
s
interface Account {
/...
i
ba

Modules and Name Scoping

Modules and Name Scoping

Resolving a Name

Referencing Interfaces

Nesting Restrictions

To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.
2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped, with the following syntax:

nmodul e- nane: : i nt er f ace- nanme

For example, the fully scoped names of the Bank and Account interfaces
shown in “IDL Definition Structure” on page 270 are, respectively,
BankDeno: : Bank and BankDeno: : Account .

A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

nodul e A

{
nodul e B
{

interface A {
/...

271

CHAPTER 12 | Introduction to OMG IDL

Interfaces

Overview

In This Section

272

This section provides details about OMG IDL interfaces.

The following topics are discussed in this section:

Introduction to Interfaces page 273
Interface Contents page 275
Operations page 276
Attributes page 279
Exceptions page 280
Empty Interfaces page 281
Inheritance of Interfaces page 282
Multiple Inheritance page 283

Interfaces

Introduction to Interfaces

Overview

What Are Interfaces?

Objects and Interfaces

Public Members

Operations and Attributes

This subsection provides an introductory overview of OMG IDL interfaces.

Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Because an interface does not expose an object’s implementation, all
members are public. A client can access variables in an object’s
implementation only through an interface’s operations and attributes.

An IDL interface generally defines an object’s behavior through operations

and attributes:

® Qperations of an interface give clients access to an object’s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,
whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

® An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

273

CHAPTER 12 | Introduction to OMG IDL

Account Interface IDL Sample In the following example, the Account interface in the BankDeno module
describes the objects that implement the bank accounts:

nmodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
typedef string Accountld; // Type for representing account
/1l ids
/...
interface Account {
readonly attribute Accountld account id;
readonly attribute CashAnount bal ance;
voi d
wi t hdraw(i n CashAnount anount)
rai ses (InsufficientFunds);
voi d
deposi t (i n CashAnount anount);
s
bi
Code Explanation This interface has two readonly attributes, Account I d and bal ance, which

are respectively defined as typedefs of the string and 1 oat types. The
interface also defines two operations, wi t hdraw() and deposit (), which a
client can invoke on this object.

274

Interfaces

Interface Contents

IDL Interface Components An IDL interface definition typically has the following components.
® Operation definitions.
* Attribute definitions
® Exception definitions.
® Type definitions.
® Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.

275

CHAPTER 12 | Introduction to OMG IDL

Operations

Overview

Operation Components

Operations IDL Sample

276

Operations of an interface give clients access to an object’s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

IDL operations define the signature of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

® Return value data type.
® Parameters and their direction.
® Exception clause.

An operation’s return value and parameters can use any data types that IDL
supports.

In the following example, the Account interface defines two operations,
wi t hdraw() and deposit (), and an | nsuf fi ci ent Funds exception:

nmodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
/...
interface Account {
exception I nsufficientFunds {};
voi d
wi t hdraw(i n CashAnount anount)
rai ses (InsufficientFunds);
voi d
deposi t (i n CashAnount anount);
s
ba

Code Explanation

Parameter Direction

Parameter-Passing Mode
Qualifiers

One-Way Operations

Interfaces

On each invocation, both operations expect the client to supply an argument
for the amount parameter, and return voi d. Invocations on the wi t hdr aw()
operation can also raise the I nsuf fi ci ent Funds exception, if necessary.

Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The COBOL runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

There are three parameter-passing mode qualifiers:

in This means that the parameter is initalized only by the client and is
passed to the object.

out This means that the parameter is initialized only by the object and
returned to the client.

inout This means that the parameter is initialized by the client and
passed to the server; the server can modify the value before
returning it to the client.

In general, you should avoid using i nout parameters. Because an i nout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter’s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, i n and out , the caller can decide for
itself when to discard the parameter.

By default, IDL operations calls are synchronous—that is, a client invokes
an operation on an object and blocks until the invoked operation returns. If
an operation definition begins with the keyword oneway, a client that calls
the operation remains unblocked while the object processes the call.

The COBOL runtime cannot guarantee the success of a one-way operation
call. Because one-way operations do not support return data to the client,
the client cannot ascertain the outcome of its invocation. The COBOL

277

CHAPTER 12 | Introduction to OMG IDL

One-Way Operation Constraints

One-Way Operation IDL Sample

278

runtime indicates failure of a one-way operation only if the call fails before it
exits the client’s address space; in this case, the COBOL runtime raises a
system exception.

A client can also issue non-blocking, or asynchronous, invocations. See the
CORBA Programmer’s Guide, C++ for more details.

Three constraints apply to a one-way operation:

® The return value must be set to voi d.

® Directions of all parameters must be set to i n.
® Noraises clause is allowed.

In the following example, the Account interface defines a one-way operation
that sends a notice to an Account object:

nmodul e BankDeno {
/...
interface Account {
oneway void notice(in string text);
/...
i

Interfaces

Attributes

Attributes Overview

Qualified and Unqualified
Attributes

IDL Readonly Attributes Sample

Code Explanation

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are accessible
to clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the r eadonl y keyword
maps only to a get function.

For example the Account interface defines two readonly attributes,

Account | d and bal ance. These attributes represent information about the
account that only the object’s implementation can set; clients are limited to
readonly access:

nmodul e BankDeno
{
typedef float CashAnount; // Type for representing cash
typedef string Accountld; //Type for representing account
i ds
/...
interface Account {
readonly attribute Accountld account id;
readonly attribute CashAnount bal ance;

voi d
w t hdraw(i n CashAnount arount)
rai ses (I nsufficientFunds);

voi d
deposi t (i n CashAnount anount);

The Account interface has two readonly attributes, Account I d and bal ance,
which are respectively defined as typedefs of the string and fl oat types.
The interface also defines two operations, wi t hdraw() and deposit(),
which a client can invoke on this object.

279

CHAPTER 12 | Introduction to OMG IDL

Exceptions

IDL and Exceptions

The raises Clause

Example of IDL-Defined
Exceptions

280

IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

exception exception-name {
[menber;] ...
b

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

After you define an exception, you can specify it through a rai ses clause in
any operation that is defined within the same scope. A rai ses clause can
contain multiple comma-delimited exceptions:

return-val operation-name([parans-list])
rai ses(exception-nane[, exception-nane]);

The Account interface defines the I nsuf fi ci ent Funds exception with a
single member of the stri ng data type. This exception is available to any
operation within the interface. The following IDL defines the wi t hdr aw()
operation to raise this exception when the withdrawal fails:

nmodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
/...
interface Account {
exception I nsufficientFunds {};
voi d
wi t hdraw(i n CashAnount anount)
rai ses (InsufficientFunds);
/...
}
b

Interfaces

Empty Interfaces

Defining Empty Interfaces IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete

derived interfaces.

IDL Empty Interface Sample In the following example, the CORBA Port abl eSer ver module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, Servant Acti vat or and Ser vant Locat or :

nodul e Port abl eServer

{
interface Servant Manager {};
interface ServantActivator : Servant Manager {
/...
I8
interface ServantLocator : Servant Manager {
/...
i
ik

281

CHAPTER 12 | Introduction to OMG IDL

Inheritance of Interfaces

Inheritance Overview

Inheritance Interface IDL Sample

Code Sample Explanation

282

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

interface newinterface : base-interface[, base-interface]...

{3

In the following example, the Checki ngAccount and Savi ngsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

nodul e BankDeno{
typedef float CashAnount; // Type for representing cash
interface Account {
/...

%

i nterface Checki ngAccount : Account {
readonly attribute CashAnrount overdraftLimt;
bool ean or der CheckBook ();

B

i nterface Savi ngsAccount : Account {
float cal culatelnterest ();

%

An object that implements the Checki ngAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a Checki ngAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

Interfaces

Multiple Inheritance

Multiple Inheritance IDL Sample

Multiple Inheritance Constraints

Inheritance Hierarchy Diagram

In the following IDL definition, the BankDeno module is expanded to include
the Preni umAccount interface, which inherits from the Checki ngAccount and
Savi ngsAccount interfaces:

nmodul e BankDerno {

interface Account {
/...

I

i nterface Checki ngAccount : Account {
/...

}

interface Savi ngsAccount : Account {
/...

}

interface Prem umAccount :
Checki ngAccount, Savi ngsAccount {
/...

Multiple inheritance can lead to name ambiguity among elements in the
base interfaces. The following constraints apply:

Names of operations and attributes must be unique across all base
interfaces.

If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Figure 37 shows the inheritance hierarchy for the Account interface, which
is defined in “Multiple Inheritance IDL Sample” on page 283.

283

CHAPTER 12 | Introduction to OMG IDL

| Account |

A

Checki ngAccount | Savi ngsAccount

A

Pr em unAccount

Figure 37: Inheritance Hierarchy for PremiumAccount Interface

284

Interfaces

Inheritance of the Object Interface

User-Defined Interfaces All user-defined interfaces implicitly inherit the predefined bj ect interface.
Thus, all (oj ect operations can be invoked on any user-defined interface.
You can also use (oj ect as an attribute or parameter type, to indicate that
any interface type is valid for the attribute or parameter.

Object Locator IDL Sample For example, the following get AnyQhj ect () operation serves as an
all-purpose object locator:

interface (bjectlocator {
voi d get Any(hj ect (out (bj ect obj);
i

Note: It is illegal in IDL syntax to explicitly inherit the (oj ect interface.

285

CHAPTER 12 | Introduction to OMG IDL

Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance Redefinition IDL In the following example, the Checki ngAccount interface madifies the
Sample definition of the I nsuf fi ci ent Funds exception, which it inherits from the
Account interface:

nodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
/...
interface Account {
exception I nsufficientFunds {};
/...
i
i nterface Checki ngAccount : Account {
exception | nsufficientFunds {
CashAnount overdraftLimt;
ik
s
/..
ik

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C+ +, that support it.
However, COBOL does not support operation overloading.

286

Interfaces

Forward Declaration of IDL Interfaces

Overview

Forward Declaration IDL Sample

An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

In the following example, the Bank interface defines a creat e_account ()
and find_account () operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

nodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/1 Forward decl aration of Account
i nterface Account;
/1l Bank interface...used to create Accounts
i nterface Bank {
exception Account Al readyExi sts { Accountld account _id; };
excepti on Account Not Found { Accountld account_id; };
Account
find_account (i n Accountld account _i d)
rai ses(Account Not Found) ;
Account
creat e_account (
in Accountld account _id,
in CashAmount initial_bal ance
) raises (Account Al readyExi sts);
Ik
I/ Account interface.used to deposit, w thdraw, and query
/] avail abl e funds.
interface Account { //...
ik
b

287

CHAPTER 12 | Introduction to OMG IDL

Local Interfaces

Overview

Characteristics

288

An interface declaration that contains the IDL | ocal keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An
object that implements a local interface is a local object.

Local interfaces differ from unconstrained interfaces in the following ways:

A local interface can inherit from any interface, whether local or
unconstrained. Unconstrained interfaces cannot inherit from local
interfaces.

Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.
Local types cannot be marshalled, and references to local objects
cannot be converted to strings through CORB: : obj ect _to_string(). Any
attempts to do so throw a CORBA: : MARSHAL exception.

Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DIl
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such asis_a() or

val i dat e_connecti on() . Any attempts to do so throw a

QOCRBA: : NO | MPLEMENT exception.

The ORB does not mediate any invocations on a local object. Thus,
local interface implementations are responsible for providing the
parameter copy semantics that a client expects.

Instances of local objects that the OMG defines, as supplied by ORB
products, are exposed either directly or indirectly through

CRB: :resolve_initial _references().

Implementation

Local Object Pseudo-Operations

Interfaces

Local interfaces are implemented by OCRBA: : Local bj ect to provide
implementations of (bj ect pseudo-operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the Local (bj ect type is only defined by each language

mapping.

The Local Qoj ect type implements the bj ect pseudo-operations shown in

Table 3.

Table 3: CORBA::LocalObject Pseudo-Operations and Return Values

Operation

Always returns

is_a()

An exception of NO | MPLEMENT.

get _interface()

An exception of NO | MPLEMENT.

get _domai n_rmanager s()

An exception of NO_| MPLEMENT.

get _policy()

An exception of NO | MPLEMENT.

get_client_policy()

An exception of NO | MPLEMENT.

set_policy_overrides()

An exception of NO | MPLEMENT.

get _policy_overrides()

An exception of NO | MPLEMENT.

val i dat e_connecti on()

An exception of NO | MPLEMENT.

non_exi stent ()

False.

hash()

A hash value that is consistent
with the object’s lifetime.

i s_equival ent ()

True, if the references refer to the
same Local Qbj ect
implementation.

289

CHAPTER 12 | Introduction to OMG IDL

Valuetypes

Overview

Characteristics

Valuetype Support

Valuetype Invocations

Valuetype Implementations

290

Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Valuetypes can be seen as a cross between the following:

® Data types, such as | ong and st ri ng, which can be passed by value
over the wire as arguments to remote invocations.

® Objects, which can only be passed by reference.

When a program supplies an object reference, the object remains in its

original location; subsequent invocations on that object from other address

spaces move across the network, rather than the object moving to the site of
each request.

Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is
passed as an argument to a remote operation, the receiving address space
creates a copy of it. The copied valuetype exists independently of the
original; operations that are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype’s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.

Interfaces

Abstract Interfaces

Overview

IDL Abstract Interface Sample

Abstract Interface IDL Sample

An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

In the following example, the IDL definitions specify that the

Exanpl e: : di spl ay() operation accepts any derivation of the abstract
interface, Descri babl e:

abstract interface Describable {
string get_description();

IE

interface Exanpl e {

voi d di spl ay(in Descri babl e sonehj ect);
ba

Based on the preceding IDL, you can define two derivations of the

Descri babl e abstract interface—the Qurrency valuetype and the Account
interface:

interface Account : Describable {
/1 body of Account definition not shown

I%

val uet ype Qurrency supports Describable {
/1l body of Qurrency definition not shown
ba

Note: Because the parameter for di spl ay() is defined as a Descri babl e

type, invocations on this operation can supply either Account objects or
Qurrency valuetypes.

291

CHAPTER 12 | Introduction to OMG IDL

IDL Data Types

In This Section

The following topics are discussed in this section:

Data Type Categories

292

Built-in Data Types page 293
Extended Built-in Data Types page 296
Complex Data Types page 299
Enum Data Type page 300
Struct Data Type page 301
Union Data Type page 302
Arrays page 304
Sequence page 305
Pseudo Object Types page 306

In addition to IDL module, interface, valuetype, and exception types, IDL

data types can be grouped into the following categories:

® Built-in types such as short, | ong, and fl oat .

¢ Extended built-in types such as | ong | ong and wstri ng.
® Complex types such as enum struct, and string.

® Pseudo objects.

IDL Data Types

Built-in Data Types

List of Types, Sizes, and Values

Floating Point Types

Table 4 shows a list of CORBA IDL built-in data types (where the < symbol
means ’less than or equal to’).

Table 4:

Built-in IDL Data Types, Sizes, and Values

short < 16 bits 215 2151

unsigned short < 16 bits 0..2161

long < 32 bits —231 2311

unsigned long < 32 bits 0..2321

float < 32 bits |IEEE single-precision floating
point numbers

double < 64 bits IEEE double-precision
floating point numbers

char < 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound>

Variable length

ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE
octet < 8 bits 0x0 to Oxff
any Variable length Universal container type

The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

293

CHAPTER 12 | Introduction to OMG IDL

Char Type

String Type

Bounded and Unbounded Strings

Octet Type

Any Type

294

The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

The st ring type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as stri ng<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL
character. Thus, a string<6> can contain the six-character string, cheese.

The declaration statement can optionally specify the string’'s maximum
length, thereby determining whether the string is bounded or unbounded:

string[length] nane

For example, the following code declares the Short Stri ng type, which is a
bounded string with a maximum length of 10 characters:

t ypedef string<10> Short Stri ng;
attribute ShortString shortNane; // max length is 10 chars

Octet types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, because characters might be subject to
translation during transmission. For example, if a client that uses ASCII
sends a string to a server that uses EBCDIC, the sender and receiver are
liable to have different binary values for the string’s characters.

The any type allows specification of values that express any IDL type, which
is determined at runtime, thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this

IDL Data Types

call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the typecode. See
the CORBA Programmer’s Guide, C++ for more details about the any type.

295

CHAPTER 12 | Introduction to OMG IDL

Extended Built-in Data Types

List of Types, Sizes, and Values

Long Long Type

296

Table 5 shows a list of CORBA IDL extended built-in data types (where the
< symbol means ’'less than or equal to’).

Table 5: Extended built-in IDL Data Types, Sizes, and Values

long long? < 64 bits 263 2631
unsigned long long? < 64 bits 0..-204.1
long doubleP < 79 bits IEEE double-extended

floating point number, with
an exponent of at least 15
bits in length and a signed
fraction of at least 64 bits.
The I ong doubl e type is

currently not supported on

Windows NT.
wchar Unspecified Arbitrary codesets
wstring Variable Arbitrary codesets
length
fixed® Unspecified < 31significant digits

a. Due to compiler restrictions, the COBOL range of values for the | ong | ong
and unsi39ned I ong | ong types is the same range as for a | ong type (that
is, 0...2°-1).

b. Due to compiler restrictions, the COBOL range of values for the | ong doubl e
type is the same range as for a double type (that is, < 64 bits).

c. Due to compiler restrictions, the COBOL range of values for the fixed type is
< 18 significant digits.

The 64-bit integer types, | ong | ong and unsi gned | ong | ong, support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

Long Double Type

Wchar Type

Wstring Type

Fixed Type

IDL Data Types

Like 64-bit integer types, platform support varies for the |1 ong doubl e type,
so its use can yield IDL compiler errors.

The wchar type encodes wide characters from any character set. The size of
a wchar is platform-dependent. Because Orbix 2000 currently does not
support character set negotiation, use this type only for applications that are
distributed across the same platform.

The wst ri ng type is the wide-character equivalent of the stri ng type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

IDL specifies that the fi xed type provides fixed-point arithmetic values with
up to 31 significant digits. However, due to restrictions in the COBOL
compiler for 0S/390, only up to 18 significant digits are supported.

You specify a fi xed type with the following format:
typedef fixed<digit-size,scal e> name

The format for the fixed type can be explained as follows:

® Thedigit-size represents the number's length in digits. The
maximum value for di gi t - si ze is 31 and it must be greater than
scal e. A fi xed type can hold any value up to the maximum value of a
doubl e type.

® If scal e is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount , to have a digit size of 10 and a
scale of 2:

typedef fixed<10, 2> CashAnount;

Given this typedef, any variable of the CashAnount type can contain
values of up to (+/-)99999999.99.

297

CHAPTER 12 | Introduction to OMG IDL

Constant Fixed Types

Fixed Type and Decimal Fractions

298

® If scal e is a negative integer, the decimal point moves to the right by
the number of digits specified for scal e, thereby adding trailing zeros
to the fixed data type’s value. For example, the following code declares
a fixed type, bi g\um to have a digit size of 3 and a scale of - 4:

typedef fixed <3, -4> bi g\Num
bi gNum nyBi gNum

If nyBi gNumhas a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant fixed types can also be declared in IDL, where di gi t - si ze and
scal e are automatically calculated from the constant value. For example:

module Grcle {
const fixed pi = 3.142857;
ik

This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEE floating-point values, the fi xed type is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value, 0.1, cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fi xed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

IDL Data Types

Complex Data Types

IDL Complex Data Types

IDL provide the following complex data types:

Enums.

Structs.

Multi-dimensional fixed-sized arrays.
Sequences.

299

CHAPTER 12 | Introduction to OMG IDL

Enum Data Type

Overview

Enum IDL Sample

Ordinal Values of Enum Type

300

An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

For example, you can modify the BankDeno IDL with the bal anceCur r ency
enum type:

nodul e BankDeno {
enum Qurrency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAnount bal ance;
readonly attribute Qurrency bal anceCurrency;
/...
i
ik

In the preceding example, the bal anceQur r ency attribute in the Account
interface can take any one of the values pound, dol | ar, yen, or franc.

The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dol | ar is greater than pound, yen is greater than
dol I ar, and so on. All enumerators are mapped to a 32-bit type.

IDL Data Types

Struct Data Type

Overview

Struct IDL Sample

A struct type lets you package a set of named members of various types.

In the following example, the Qust omer Det ai | s struct has several members.
The get Qust omer Det ai | s() operation returns a struct of the
Cust orrer Det ai | s type, which contains customer data:

nodul e BankDeno{

struct QustonerDetails {
string custl D
string | nane;
string fnare;
short age;
/...

i

interface Bank {
Qust oner Det ai | s get Qust onerDetail s(in string custlD);
/...

}
¥

Note: A struct type must include at least one member. Because a struct
provides a naming scope, member names must be unique only within the
enclosing structure.

301

CHAPTER 12 | Introduction to OMG IDL

Union Data Type

Overview

Union Declaration Syntax

Discriminated Unions

IDL Union Date Sample

302

A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

You declare a union type with the following syntax:

uni on nane switch (discrimnator) {
case | abel 1 : el enent - spec;
case | abel 2 : el enent - spec;
[
case | abeln : el enent - spec;
[default : el enent-spec;]

b

All IDL unions are discriminated. A discriminated union associates a
constant expression (I abel 1. abel n) with each member. The
discriminator’s value determines which of the members is active and stores
the union’s value.

The following IDL defines a Dat e union type, which is discriminated by an
enum value:

enum dat eSt or age
{ nuneric, strMDDYY, strDDVMWY };

struct DateStructure {
short Day;
short Mont h;
short Year;
B
union Date sw tch (dateStorage) {
case nuneric: long digital Fornat;
case strMDDYY:
case strDDMWY: string stringFornat;
defaul t: DateStructure struct Format;

Sample Explanation

Rules for Union Types

IDL Data Types

Given the preceding IDL:

If the discriminator value for Dat e is numeric, the di gi t al For mat
member is active.

If the discriminator’s value is st r MVDDYY or st r DDMWY, the
stringFor mat member is active.

If neither of the preceding two conditions apply, the default

st ruct For mat member is active.

The following rules apply to union types:

A union’s discriminator can be i nt eger, char, bool ean, enum or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

Because a union provides a naming scope, member names must be
unique only within the enclosing union.

Each union contains a pair of values: the discriminator value and the
active member.

IDL unions allow multiple case labels for a single member. In the
previous example, the st ri ngFor mat member is active when the
discriminator is either st r MVDDYY or st r DDMYY.

IDL unions can optionally contain a def aul t case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.

303

CHAPTER 12 | Introduction to OMG IDL

Arrays

Overview

Array IDL Sample

Array Indexes

304

IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where di mensi on- spec must be a non-zero positive
constant integer expression):

[typedef] el ement-type array-nane [di nensi on-spec] ...

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

For example, the following defines a two-dimensional array of bank
accounts within a portfolio:

typedef Account portfolio][MAX_ACCT_TYPES] [MAX_ACCTS]

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.

Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C+ +
array indexes always start at 0, but COBOL, PL/I, and Pascal always start at
1. Consequently, clients and servers cannot exchange array indexes unless
they both agree on the origin of array indexes and make adjustments, as
appropriate, for their respective implementation languages. Usually, it is
easier to exchange the array element itself, instead of its index.

IDL Data Types

Sequence

Overview

Bounded and Unbounded
Sequences

Bounded and Unbounded IDL
Definitions

IDL supports sequences of any IDL data type with the following syntax:
[typedef] sequence < el ement-type[, nax-elements] > sequence- nane
An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration. You can omit a
typedef declaration only for a sequence that is declared within a structure
definition.

A sequence’s element type can be of any type, including another sequence
type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed

(unbounded):

® Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

® Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimtedAccounts {
string bankSort Code<10>;
sequence<Account, 50> accounts; // max sequence |length is 50

¥

struct UnlimtedAccounts {
string bankSort Code<10>;
sequence<Account > accounts; // no max sequence |ength

IE

305

CHAPTER 12 | Introduction to OMG IDL

Pseudo Object Types

Overview

Defining

306

CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

You can use only the following pseudo-object types as attribute or operation
parameter types in an IDL specification:

QOORBA: : NanedVal ue
QOORBA: : TypeCode

To use these types in an IDL specification, include the orb. i dl file in the
IDL file as follows:

#i ncl ude <orb.idl >
/...

This statement instructs the IDL compiler to allow the NanedVal ue and
TypeCode types.

Defining Data Types

Defining Data Types

Overview With t ypedef , you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or
user-defined.

The following code defines the t ypedef identifier, St andar dAccount , so that
it can act as an alias for the Account type in later IDL definitions:

nodul e BankDeno {
interface Account {

/...
IE
typedef Account StandardAccount;
b
In This Section This section contains the following subsections:
Constants page 308
Constant Expressions page 311

307

CHAPTER 12 | Introduction to OMG IDL

Constants

Overview

Integer Constants

Floating-Point Constants

308

IDL lets you define constants of all built-in types except the any type. To
define a constant’s value, you can use either another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

IDL accepts integer literals in decimal, octal, or hexadecimal:

const short 11 =-99;

const |ong 12 =0123; // Cctal 123, decinal 83

const long long |3 = 0x123; // Hexadeci mal 123, decimal 291
const long long |4 = +OxaB; // Hexadeci mal ab, decimal 171

Both unary plus and unary minus are legal.

Floating-point literals use the same syntax as C++:

const fl oat fl1 =3.1e-9; // Integer part, fraction part,
/'l exponent

const doubl e f2 =-3.14; // Integer part and fraction part

const long double f3 = .1 I/ Fraction part only

const doubl e f4a =1 Il Integer part only

1
E.
N

const doubl e f5 // Fraction part and exponent
const doubl e f6 = 2E12 I/ Integer part and exponent

Character and String Constants

Wide Character and String
Constants

Boolean Constants

Defining Data Types

Character constants use the same escape sequences as C++:

const char Cl1 ="'c'; I/ the character c

const char @ = '\007"; // ASA| BEL, octal escape

const char C3 = '\x41"; /1 ASA| A hex escape

const char &4 ='\n'; /1l new ine

const char G5 = "\t'; Il tab

const char @& = "\Vv'; /1 vertical tab

const char C7 = '\b'; I/ backspace

const char G = '\r'; I/ carriage return

const char @ = "\f"'; /1 formfeed

const char ClO = '\a'; /] alert

const char C11 = "\\'; /'l backsl ash

const char C12 = '\?'; /1 question mark

const char C13 = "\'"'; /1 single quote

// String constants support the same escape sequences as G+
const string S1 = "Quote: \""; // string with doubl e quote
const string S2 = "hello world"; /] sinple string

const string S3 = "hello" " world"; // concatenate

const string $4 = "\xA' "B'; I/ two characters

/I ("\xA and 'B),
/1 not the single character '\xAB

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

const wchar C=LX;

const wstring GREETING = L"Hel | 0";

const wchar OVEGA = L'\ u03a9' ;

const wstring QVEGA STR = L"Qrega: \u3A9";

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

/1l There is no need to define bool ean constants:
const CONTRADI CTI ON = FALSE; /1 Pointless and confusi ng
const TAUTALGGY = TRUE; /1 Pointless and confusi ng

309

CHAPTER 12 | Introduction to OMG IDL

Octet Constants

Fixed-Point Constants

Octet constants are positive integers in the range 0-255.

const octet QL
const octet @

23;
0xf O;

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

// Fixed point constants take digits and scale fromthe
/1 initializer:

const fixed vall = 3D, /1l fixed<1, 0>
const fixed val 2 = 03. 14d; /1 fixed<3, 2>
const fixed val3 = -03000.00D, // fixed<4, 0>
const fixed val4 = 0.03D, /1 fixed<3, 2>

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration Constants

310

Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

enum Size { snall, medium large }

const Size DFL_SI ZE = nedi um
const Size MAX_ SIZE = :: | arge;

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

Defining Data Types

Constant Expressions

Overview

Arithmetic Operators

Evaluating Expressions for
Arithmetic Operators

Bitwise Operators

IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for % which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

The following code contains several examples of arithmetic operators:

I/ You can use arithnetic expressions to define constants.
const long MN = -10;

const |ong MAX = 30;

const long DFLT = (MN + MAX) / 2;

// Can't use 2 here
const double TWCE Pl = 3.1415926 * 2.0;

/1 5% di scount
const fixed D SCOUNT = 0. 05D
const fixed PRI CE = 99. 99D,

// Can't use 1 here
const fixed NET PRCE = PRCE * (1.0D - DI SOOUNT);

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

// You can use bitw se operators to define constants.
const long ALL_ONES = -1; [l Oxffffffff
const long LHWNASK = ALL_ONES << 16; /1 Oxffff0000
const |ong RHWNASK = ALL_ONES >> 16; [/ Ox0000f f f f

311

CHAPTER 12 | Introduction to OMG IDL

IDL guarantees two’s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.

312

In This Chapter

CHAPTER 13

Mapping CORBA
to Automation

CORBA types are defined in OMG IDL. Automation types are
defined in object definition language (ODL). To allow
interworking between Automation clients and CORBA servers,
Automation clients must be presented with ODL versions of
the interfaces exposed by CORBA objects. Therefore, it must
be possible to translate CORBA types to ODL. This chapter
outlines the CORBA-to-Automation mapping rules.

This chapter discusses the following topics:

Mapping for Basic Types page 315
Mapping for Strings page 317
Mapping for Interfaces page 318
Mapping for Complex Types page 331
Mapping for Object References page 348
Mapping for Modules page 351
Mapping for Constants page 352
Mapping for Enums page 353

313

CHAPTER 13 | Mapping CORBA to Automation

314

Mapping for Scoped Names page 355

Mapping for Typedefs page 356

Note: For the purposes of illustration, this chapter describes a textual
mapping between OMG IDL and COM IDL. COMet itself does not require
this textual mapping to take place, because it includes a dynamic
marshalling engine. The textual mappings shown in this chapter are
automatically performed by COMet at application runtime.

Mapping for Basic Types

Mapping for Basic Types

Overview OMG IDL basic types translate to compatible types in Automation.

Mapping Rules Table 6 shows the mapping rules for each basic type.

Table 6: CORBA-to-Automation Mapping Rules for Basic Types

OMG IDL Description COM IDL Description
bool ean Unsigned char, 8-bit | VARIANT_BOOL | 16-bit integer
0 = FALSE 0 = FALSE
1 = TRE 1 =TRE
char 8-bit quantity u 1 8-bit unsigned
integer
doubl e IEEE 64-bit float doubl e IEEE 64-bit float
f1 oat IEEE 32-bit float f1 oat IEEE 32-bit float
| ong 32-bit integer | ong 32-bit integer
oct et 8-bit quantity ui 8-bit unsigned
integer
short 16-bit integer short 16-bit integer
unsi gned 32-bit integer | ong 32-bit integer
| ong
unsi gned 16-bit integer | ong 32-bit integer
short
a. Ul is supported in Windows 32-bit programs.
Limitations The types supported by OMG IDL and Automation do not correspond

exactly, because Automation offers a more limited support for basic types.
For example, Automation does not support unsigned types (that is, unsi gned
short or unsi gned | ong). In some cases, the mapping rules involve a type
promotion, to avoid data loss (for example, translating OMG IDL unsi gned

315

CHAPTER 13 | Mapping CORBA to Automation

Bidirectional Translation

Runtime Errors

316

short to Automation | ong.) In other cases, the mapping rules involve a type
demotion (for example, translating OMG IDL unsi gned | ong to Automation
I ong.)

An Automation view interface provides an Automation client with an
Automation view of a CORBA object. An operation of an Automation view
interface uses the mapping rules shown in Table 6 on page 315, to perform
bidirectional translation of parameters and return types between Automation
and CORBA. It translates i n parameters from Automation to CORBA, and
translates out parameters from CORBA back to Automation.

Because there is not an exact correspondence between the types supported

by Automation and CORBA, the following translations performed by an

Automation view operation result in a runtime error:

® Translating an i n parameter of the Automation | ong type to the OMG
IDL unsi gned | ong type, if the value of the Automation | ong parameter
is a negative number.

®* Demoting an i n parameter of the Automation I ong type to the OMG
IDL unsi gned short type, if the value of the Automation I ong
parameter is either negative or greater than the maximum value of the
OMG IDL unsi gned short type.

® Demoting an out parameter of the OMG IDL unsi gned | ong type back
to the Automation I ong type, if the value of the OMG IDL unsi gned
| ong parameter is greater than the maximum value of the Automation
| ong type.

Mapping for Strings

Mapping for Strings

Overview OMG IDL bounded and unbounded strings map to an Automation BSTR.

Note: A runtime error occurs when mapping a fixed-length OMG IDL
string, if the BSTR exceeds the maximum length of the OMG IDL string.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

/I QMG | DL

// This definition mght appear within a struct definition.
string name<20>;

string address;

2. The preceding OMG IDL maps to the following COM IDL:
// CQM | DL

BSTR nane;
BSTR addr ess;

317

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Interfaces

Overview

In This Section

318

This section describes how OMG IDL interfaces map to Automation.

This section discusses the following topics:

Basic Interface Mapping page 319
Mapping for Attributes page 321
Mapping for Operations page 323

Mapping for Interfaces

Basic Interface Mapping

Overview

Example

The DIBank Interface

Standard Automation View
Interfaces

An OMG IDL interface maps to an Automation view interface.

The example can be broken down as follows:

Consider the following OMG IDL interface, Bank:

// OM5 |1 DL
i nterface Bank

{

[/l Attributes and operations here;
Jis

The preceding OMG IDL maps to the following Automation view
interface, DI Bank:

// QoM | DL
// Definitions that are not of interest here.

[ol eaut omati on, dual, uuid(.)]
interface DBank : |D spatch
{

/1 Properties and nethods here.

As shown in Figure 38 on page 320, the Automation view in the bridge
supports the D Bank interface. Any Automation controller can use the

D Bank interface to invoke operations on the Automation view. The view
forwards the request to the target Bank object in the CORBA server.

The D Bank interface is an Automation dual interface. A dual interface is a
COM vtable-based interface that derives from I D spat ch. This means that
its methods can be either late-bound, using I D spat ch: : | nvoke, or
early-bound through the vtable portion of the interface.

The Automation view also supports the following interfaces, by default:

I Unknown and 1 Di spat ch, required by all Automation objects.

319

CHAPTER 13 | Mapping CORBA to Automation

® D Forei gn(bj ect, required by all views.
® D OCRBAMj ect, required by all CORBA objects.
® D O bix(oj ect, supported by all Orbix objects.

Graphical Overview Figure 38 provides a graphical overview of the interfaces that the
Automation view object supports, based on the example of the OMG IDL

Bank interface.

IUnknown

I

IDispatch 0—

| ForeignObject 0——
DICORBAObject 0—
DIOrbixObject O—
DIBank O

Figure 38: Automation View of the Bank Interface

320

Mapping for Interfaces

Mapping for Attributes

Overview

Example

An OMG IDL attribute maps to an Automation property, as follows:

® A normal attribute maps to a property that has a method to set the
value and a method to get the value.

® Areadonly attribute maps to a property that only has a method to get
the value.

The example can be broken down as follows:

1. Consider the following OMG IDL:

/1 OMG | DL

interface Account

{
attribute float bal ance;
readonly attribute string owner;
voi d makelLodgenent (i n float amount,

out float bal ance);
voi d nekeWt hdrawal (i n float anount,

out float bal ance);
bi
2. The preceding OMG IDL maps to the following in Automation:
// COM | DL
[ol eaut omation, dual, uuid(.)]
interface D Account : |D spatch
{
HRESULT nakelLodgenent ([in] float amount,
[out] float * bal ance,
[optional, out] VAR ANT * excep_CRJ);
HRESULT nakeWthdrawal ([in] float amount,
[out] float * bal ance,
[optional, out] VAR ANT * excep_CRJ);
[propget] HRESULT bal ance([retval ,out] float * val);
[propput] HRESULT bal ance ([in] float bal ance);
[propget] HRESULT owner([retval,out] BSTR * val);
}

Note: The get method returns the attribute value contained in the
[retval ,out] parameter.

321

CHAPTER 13 | Mapping CORBA to Automation

Visual Basic Example The following is a Visual Basic example of how to set and get the balance of
an account object, account Quj :

Vi sual Basic
Set account(oj = ..." Get a reference to an Account object.

D m nyBal ance as Single

' Set the bal ance of account (j:
account pj . bal ance = 150. 22

' Get the bal ance of account (j:
nyBal ance = account Cbj . bal ance

PowerBuilder Example The following is a PowerBuilder example of how to set and get the balance
of an account object, account Qvj :

/1 Power Bui | der
...Il Get a reference to an Account object.

i nteger nyBal ance

nyBal ance = account Cbj . bal ance
account (oj . bal ance nyBal ance

322

Mapping for Interfaces

Mapping for Operations

Overview An OMG IDL operation maps to an Automation method.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// QMG | DL
interface Account {

voi d nakeDeposit(in float anount, out float bal ance);
float cal culatelnterest();

IE

2. The preceding OMG IDL maps to the following in Automation:

// GoM | DL
[ol eaut omati on, dual , uui d(..}, hel pstring("Account™)]
interface D Account : |D spatch {
[id(100)] HRESULT makeDeposit (
[in] float it_amount,
[in,out] float *it_bal ance,
[optional ,in,out] VARIANT *IT_Ex);
[id(101)] HRESULT cal cul atel nterest (
[optional ,in,out] VARIANT *|T_EX,
[retval ,out] float *IT retval);

Rules for Parameter Passing The following mapping rules apply for parameter-passing modes:

® An OMG IDL i n parameter maps to an Automation [i n] parameter.
An OMG IDL out parameter maps to an Automation [out] parameter.

An OMG IDL i nout parameter maps to an Automation [i n, out]
parameter.

Rules for Return Types The following mapping rules apply for return types:

® An OMG IDL voi d return type does not need any translation.

323

CHAPTER 13 | Mapping CORBA to Automation

Visual Basic Example

324

An OMG IDL return type that is not voi d maps to an Automation
[retval,out] parameter. A CORBA operation’s return value is
therefore mapped to the last argument in the corresponding operation
of the Automation view interface.

All operations on the Automation view interface have an optional out
parameter of the VAR ANT type. This parameter appears before the
return type and is used to return exception information. See “Mapping
for System Exceptions” on page 343 for more information.

If the CORBA operation has no return value, the optional out
parameter of the VAR ANT type is the last parameter in the
corresponding Automation operation. If the CORBA operation does
have a return value, the optional parameter appears directly before the
return value in the corresponding Automation operation. This is
because the return value must always be the last parameter.

The following is a Visual Basic example, based on the generated definitions
in the preceding COM IDL example:

' Misual Basic
D minterest, amount As Single

' Get a reference to an Account object:
account (bj . makeDeposit anount, bal ance
interest = account (bj . cal cul at el nt erest

Mapping for Interface Inheritance

Mapping for Interface Inheritance

Overview

In This Section

This section describes the CORBA-to-Automation mapping rules for both
single and multiple interface inheritance.

This section discusses the following topics:

Mapping for Single Inheritance page 326

Mapping for Multiple Inheritance page 328

325

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Single Inheritance

Overview

Example

326

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical
hierarchy of Automation view interfaces.

The example can be broken down as follows:

1. Consider the following OMG IDL interface, account , and its derived
interface, checki ngAccount :

// QMG | DL
{
i nterface account
{
attribute float bal ance;
readonly attribute string owner;
voi d nakelLodgenent (in fl oat amount, out float bal ance);
voi d makeWthdrawal (in float amount, out fl oat
t heBal ance) ;
}

i nterface checki ngAccount : account
{
readonly attribute float overdraftLimt;
bool ean or der ChequeBook() ;
Ji
ik

2. The preceding OMG IDL maps to the following Automation view
interfaces:

Mapping for Interface Inheritance

// CaM | DL
[ol eaut omation, dual, uuid(.)]
interface account:|D spatch

{
HRESULT nakelLodgenent ([in] float amount,
[out] float * bal ance),
[optional, out] VAR ANT * excep_CBJ);
HRESULT nakeWthdrawal ([in] float anmount,
[out] float * bal ance),
[optional, out] VAR ANT * excep_CBJ);
[propget] HRESULT bal ance([retval ,out] float * val);
[propput] HRESULT bal ance([in] float bal ance);
[propget] HRESULT owner([retval ,out] BSTR * val);
iE

[ol eaut omati on, dual, uuid(.)]
interface checki ngAccount : account

{
HRESULT order ChequeBook ([optional, out] VAR ANT *
excep_CBJ,
[retval, out] short * val);
[propget] HRESULT overdraftLimt ([retval, out] short *
val);
ba

327

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Multiple Inheritance

Overview Automation does not support multiple inheritance. Therefore, a direct
mapping of a CORBA inheritance hierarchy using multiple inheritance is not
possible. This mapping splits such a hierarchy, at the points of multiple
inheritance, into multiple singly-inherited strands. The mechanism for
determining which interfaces appear on which strands is based on a
left-branch traversal of the inheritance tree.

Interface Hierarchy Example Figure 39 provides a graphical example of a CORBA interface hierarchy.

Bank

/N

Account Simple

\ o/

CheckingDetails

Miscellaneous

Figure 39: Example of a CORBA Interface Hierarchy

Interface Hierarchy Explanation In Figure 39, the hierarchy can be read as follows:
® Account and Sinpl e derive from Bank.
® Checki ngDet ai | s derives from Account and Si npl e.
® Mscel | aneous derives from Checki ngDet ai | s.

328

Code Example

Mapping for Interface Inheritance

In this example, Checki ngDet ai | s is the point of multiple inheritance. The
CORBA hierarchy maps to two Automation single-inheritance hierarchies
(that is, Bank-Account -Checki ngDet ai | s and Bank-Si npl e. The leftmost
strand is the main strand, which is Bank-Account -Checki ngDet ai | s.

To accomodate access to all of the object’s methods, the operations of the
secondary strands are aggregated into the interface of the main strand at the
points of multiple inheritance. The operations of the Si npl e interface are
therefore added to Checki ngDet ai | s. This means Checki ngDet ai | s has all
the methods of the hierarchy, and an Automation controller holding a
reference to Checki ngDet ai | s can access all the methods of the hierarchy
without having to call Queryl nterface.

The example can be broken down as follows:

1. Consider the following OMG IDL, which represents an interface
hierarchy based on the example shown in Figure 39 on page 328:

/] OM5 | DL
{
interface Bank {
voi d QpBank();
i
interface Account : Bank {
voi d QpAccount ();
i
interface Sinple : Bank {
voi d QpSi npl e();
IE
interface CheckingDetails : Account, Sinple {
voi d QpChecki ngDet ai | s();
IE
interface Mscel |l aneous : CheckingDetails {
voi d QoM scel | aneous() ;
IE
b

2. The preceding OMG IDL maps to the following two Automation view
hierarchies:

329

CHAPTER 13 | Mapping CORBA to Automation

330

// COM | DL

/1l strand 1:Bank- Account - Checki ngDetai | s
[ol eaut omation, dual, uuid(.)]

interface Bank:|D spatch

{
}

[ol eaut omati on, dual, uuid(.)]
i nterface Account: Bank

{
}

[ol eaut omation, dual, uuid(.)]
i nterface Checki ngDet ai | s: Account

HRESULT QpBank([optional, out] VAR ANT * excep (BJ);

HRESULT QpAccount ([optional, out] VAR ANT * excep_CBJ);

{
/1 Aggregated operations of Sinple
HRESULT QpSi npl e([optional, out] VAR ANT * excep_CBJ);
/1 Normal operations of CheckingDetails
HRESULT QpChecki ngDet ai | s([optional, out] VAR ANT *
excep_QBJ);
}

/1 strand 2:Bank-Sinpl e

[ol eaut omati on, dual, uuid(..)]
interface Sinple:Bank

{

}

HRESULT pSi npl e([optional, out] VAR ANT * excep_CBJ);

Mapping for Complex Types

Mapping for Complex Types

Overview Translation is straightforward where there is a direct Automation counterpart
for a CORBA type. However, Automation has no data type corresponding to
a user-defined complex type. CORBA complex types are therefore mapped
to Automation view interfaces. Each element in the complex type maps to a
property in the Automation view, with a get method to retrieve its value,
and a set method to alter its value.

In This Section This section discusses the following topics:
Creating Constructed OMG IDL Types page 332
Mapping for Structs page 333
Mapping for Unions page 335
Mapping for Sequences page 339
Mapping for Arrays page 342
Mapping for System Exceptions page 343
Mapping for User Exceptions page 345
Mapping for the Any Type page 347

Note: There is no standard CORBA-to-Automation mapping specified for
OMG IDL context clauses.

331

CHAPTER 13 | Mapping CORBA to Automation

Creating Constructed OMG IDL Types

Pseudo-Automation Interfaces

Pseudo-Objects

The CreateType() Method

Prototype for CreateType()

Parameters for CreateType()

332

OMG IDL constructed types such as struct, uni on, and excepti on map to
pseudo-Automation interfaces. The OMG Interworking Architecture
specification at ft p: // ft p. ong. or g/ pub/ docs/ f or mal / 01- 12- 55. pdf chose
this translation, because Automation does not allow Automation constructed
types as valid parameter types.

Pseudo-objects, which implement pseudo-Automation interfaces, do not
expose the I For ei gn(j ect interface. Instead, the matching Automation
interface for a constructed type exposes the D For ei gnConpl exType
interface.

To create a complex OMG IDL type, you can use the O eat eType() method,
which is defined on the Dl OCRBAFact or yEx interface. The O eat eType()
method creates an Automation object that is an instance of an OMG IDL
constructed type.

The prototype for O eat eType() is:

O eat eType([in] |D spatch* scope, [in] BSTR typenane)

The parameters for O eat eType() can be explained as follows:

® The scope parameter refers to the scope in which the type should be
interpreted. To indicate global scope, pass Not hi ng in this parameter.

® The typename parameter is the name of the complex type you want to
Create.

You can create an object that represents an OMG IDL constructed type in a
client, to pass it as an i n or i nout parameter to an OMG IDL operation. You
can create an object that represents an OMG IDL constructed type in a
server, to return it as an out or i nout parameter, or return value, from an
OMG IDL operation.

See “Mapping for Structs” on page 333, “Mapping for Unions” on
page 335, and “Mapping for System Exceptions” on page 343 for examples
of how to use Oreat eType() to create structs, unions, and exceptions.

Mapping for Complex Types

Mapping for Structs

Overview An OMG IDL struct maps to an Automation interface of the same name that
supports the DI OCORBASt r uct interface. DI CORBASt r uct , in turn, derives from
the DI For ei gnConpl exType interface. DI OCORBASt ruct does not define any
methods. It is used to identify that the interface is mapped from a struct.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// OM5 | DL
struct AccountDetail s

{

| ong nunber;
fl oat bal ance;

B
2. The preceding OMG IDL is mapped as if it were defined as follows:

/1 OM5 1 DL
interface AccountDetail s

{

attribute | ong nunber;
attribute float bal ance;

333

CHAPTER 13 | Mapping CORBA to Automation

Graphical Overview Figure 40 provides a graphical overview of the interfaces that the
Automation view object supports, based on the example of the OMG IDL
Account Det ai | s struct.

IUnknown

I

IDispatch 0—
DI ForeignComplexType O——

DICORBAStruct 0——

DIAccountDetails O

Figure 40: Automation View of the OMG IDL AccoutDetails Struct

Visual Basic Example The following is a Visual Basic example, based on the preceding OMG IDL
definition:

' Misual Basic

D m (oj Factory As OORBA O bi x. DI CORBAFact or yEx

D mdetails As BankBridge. D Account Detail s

Set details = (bj Fact ory. O eat eType(Not hi ng, "Account Details")

detail s. bal ance = 1297. 66
det ai | s. nunber = 109784

334

Mapping for Complex Types

Mapping for Unions

Overview

DICORBAUnion Interface

DICORBAUnion2 Interface

DICORBAUnion2 Methods

An OMG IDL union maps to an Automation interface that exposes the

Dl GORBAUNI on interface. DI GORBAUNI on, in turn, derives from the

D For ei gnConpl exType interface. DI GCRBAUNi on does not define any
methods. It is used to identify that the interface is translated from a union.

The following is a synopsis of the DI GCCRBAUNI on interface:

[ol eaut omat i on, dual , uui d(.)]

interface D CCRBAUni on : Dl Forei gnConpl exType {
[id(400)] HRESULT Union_d ([retval,out] VAR ANT * val);
b

Dl QCRBALNI on has one method, Wi on_d, which returns the current value of
the union’s discriminant.

The DI GCRBAUNI on2 interface is defined to describe CORBA uni on types that
support multiple case labels for each union branch. All mapped unions
should support the Di GCRBAUNI on2 interface.The DI OORBAUNi on2 provides
two additional accessor methods, as follows:

// GOM | DL
[ol eaut omation, dual, uuid(.)]
i nterface D OCRBAUNi on2: D GCRBAUNI on

{
HRESULT SetVal ue([in] long disc, [in] VARIANT val);
[propget, id(-4)]
HRESULT Qurrent Val ue([out, retval] VARIANT * val);
ba

The methods provided by D QORBALNi on2 can be described as follows:

Set Val ue This can be used to set the discriminant and value
simultaneously.

Qurrent Val ue This uses the current discriminant value to initialize the
VAR ANT with the union element.

335

CHAPTER 13 | Mapping CORBA to Automation

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

/I QM5 I DL
interface A {.};

uni on U swi tch(long) {
case 1: long |;
case 2: float f;
default: A obj;

K

2. The preceding OMG IDL maps to the following Automation
pseudo-union::

// CCM | DL
interface DU : D CCRBAUni on2{
[propget] HRESULT get_UNON d([retval,out] long * val);
[propget] HRESULT 1([retval,out] long * 1);
[propget] HRESULT 1([in] long 1);
[propget] HRESULT f([retval,,out] float * f);
[propget] HRESULT f([in] float f);
[propget] HRESULT A([retval ,out] DA ** val);
[propget] HRESULT A([in] DIA * val);
B

3. The following Visual Basic example is based on the preceding COM
IDL:

Vi sual Basic
D m oj Factory As OCRBA O bi x. DI CORBAFact or yEx
D mnyWnion As DU

Set nylhi on = Cbj Factory. O eat eType(Not hi ng, "U'")
nylnion.s = "This is a string"

Sel ect Case(nyUni on. UNTON d())
Case 1: MsgBox ("Wnion (long):" & Str$(nmyUnion.l)
Case 2: MsgBox ("Wnion (float):" & Str$(nyUnion.f)
Case E se : MsgBox ("Union contains object reference")
End Sel ect

336

Explanation

Graphical Overview

Mapping for Complex Types

The preceding COM IDL example in point 2 can be explained as follows:

The mapped Automation dual interface derives from the

DI GCRBALNIi on2 interface. The UNTON d property returns the value of
the discriminant. The discriminant indicates the type of value that the
union holds. In this example, the value of UNTON d is 2, if the union, U,
contains a float type.

For each member of the union, a property is generated in the matching
COM IDL interface to read the value of the member and to set the
value of the member. The property to set the value of a union member
also sets the value of the discriminant. Do not try to read the value of a
member, using a method that does not match the type of the
discriminant.

The mapping for the OMG IDL default label is ignored, if the cases are
exhaustive over the permissible cases (for example, if the switch type
is bool ean, and a case TRUE and a case FALSE are both defined).

Figure 41 provides a graphical overview of the interfaces that the
Automation view object supports, based on the example of the OMG IDL
union, U.

337

CHAPTER 13 | Mapping CORBA to Automation

IUnknown

I

IDispatch O—
D I ForeignComplexType O——

DICORBAUnion 0——
DICORBAUnion20

Figure 41: Automation View of the OMG IDL Union, U

338

Mapping for Complex Types

Mapping for Sequences

Overview

Mapping to SafeArrays

Example

An OMG IDL sequence maps to an Automation SafeArray.

An OMG IDL sequence maps to a VAR ANT type containing an Automation
SafeArray. An OMG IDL bounded sequence maps to a fixed-size SafeArray. If
you pass a SafeArray that contains a different number of elements than that
required by the bounded sequence, it is automatically resized to the correct
size. An OMG IDL unbounded sequence maps to an empty SafeArray that
can grow or shrink to any size.

The COvet . Mappi ng. SAFEARRAYS_CONTAI N_VARI ANTS configuration value
maps a sequence of any type to a SafeArray of VAR ANT types containing the
real type.

The example can be broken down as follows:

1. Consider the following OMG IDL, which defines both a bounded and
unbounded sequence:

OMG | DL
nmodul e MbdBank {
interface Transaction {.};

/1 A bounded sequence
typedef sequence<Transaction, 30> Transacti onLi st;

interface Account {
readonly attribute TransactionList statenent;
readonly attribute float bal ance;

}

/1 An unbounded sequence
typedef sequence<Account > Account Li st;

interface Bank {

readonly attribute AccountList personal Accounts;
Account Li st sort Account s(in Account Li st toSort)

339

CHAPTER 13 | Mapping CORBA to Automation

340

The preceding OMG IDL maps to the following in Automation:

/] OOM | DL
typedef [public] VAR ANT MbdBank_Transacti onLi st

[ol eaut omati on, dual, uuid(..)]
i nterface Dl MdBank_Transaction: |D spatch {}

typedef [public] VAR ANT MbdBank_Account Li st;
[ol eaut omati on, dual, uuid(..)]
interface D MbddBank_Account: |Dispatch {
[propget] HRESULT statenment ([retval, out] |D spatch**
I T retval);
[propget] HRESULT bal ance ([retval, out] float*
IT retval);

%

[ol eaut omati on, dual, uuid(.)]
i nterface D MddBank_Bank: |Dispatch {
[propget] HRESULT personal Accounts ([retval, out]
| D spatch** | T reval);
HRESULT sort Accounts ([in] |ID spatch* toSort,
[optional, out] VAR ANT* |T_EX,
[retval, out] ID spatch** IT retval);

Mapping for Complex Types

The following Visual Basic example is based on the preceding COM
IDL:

Vi sual Basic
D m nyBank As | T_Li brary_Bank. D ModBank_Bank
D m nyAccounts As Vari ant
D mtnpAccount As | T_Li brary_Bank. Dl ModBank_Account
D m nyBal ance As Single

Cbtain a reference to a Bank obj ect

Set nyBank = ...

Set nyAccounts = CRBFact ory. O eat eType (Not hi ng,
“MbdBank/ Account sLi st ™)

For Each acc in nyAccounts
acc. bal ance = 0.00
Next acc

Access a nmenber of nyAccounts
nyBal ance = nyAccount s(4). bal ance

Cbtain a reference to a nenber of nyAccounts

Set tnpAccount = nyAccount s(7)
nyBal ance = t npAccount . bal ance

341

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Arrays

Overview

Mapping to SafeArrays

Mapping to OLE Collections

342

The mapping for an OMG IDL array is similar to that for an OMG IDL
sequence. OMG IDL arrays can map to either Automation SafeArrays or OLE
collections.

Multidimensional OMG IDL arrays map to VAR ANT types containing
multidimensional SafeArrays. The order of dimensions in the OMG IDL
array, from left to right, corresponds to the ascending order of dimensions in
the SafeArray. An error occurs if the number of dimensions in an input
SafeArray does not match the CORBA type.

Only single-dimension arrays can be supported when mapping to OLE
collections.

Mapping for Complex Types

Mapping for System Exceptions

Overview

Example

Explanation

The CORBA model uses exceptions to report error information. System
exceptions can be raised by any operation. However, system exceptions are
not defined at the OMG IDL level. A standard set of system exceptions is
defined by CORBA, and Orbix provides a number of additional system
exceptions. See the Orbix documentation set for details of the system
exceptions available.

A CORBA system exception maps to the Dl CORBASyst enExcept i on
Automation interface, which is a pseudo-Automation interface (or
pseudo-exception) that derives from Di For ei gnExcept i on. See “COMet API
Reference” on page 217 for more details of these interfaces.

Consider the following example of how a CORBA system exception is
defined in Automation:

// COM | DL
[ol eaut omation, dual, uuid(.)]
interface D OCRBASyst enException : D Forei gnException
{
[propget] HRESULT EX m nor Code([retval,out] long * val);
[propget] HRESULT EX conpl eti onStatus([retval,out] |ong *
val);

The attributes shown in the preceding example for system exceptions can be
described as follows:

EX_m nor Code This defines the type of system exception raised.

343

CHAPTER 13 | Mapping CORBA to Automation

EX conpl etionStatus This takes one of the following values:
® COWLETION YES = 0
b COWPLETI ON_NO = 1
d COMPLETI ON_NMAYBE = 2
These values are specified as an enum in the type
library information, as follows:

typedef enum { COMPLETI ON_YES, COWPLETI ON_NQ

COWPLETI ON_MAYBE}
CCRBA _Conpl et i onSt at us;

344

Mapping for Complex Types

Mapping for User Exceptions

Overview The CORBA model uses exceptions to report error information. User
exceptions are defined in OMG IDL, and an OMG IDL operation can
optionally specify that it might raise a specific set of user exceptions.

An OMG IDL user-defined exception maps to an Automation interface that

has a corresponding property for each member of the exception. The
Automation interface derives from the DI CORBAUser Except i on interface.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

/l OM5 | DL
exception Reject
{

string reason;

}i
2. The preceding OMG IDL maps to the following in Automation:
[/l CGOM | DL

[ol eaut omati on, dual, uuid(..)]
interface Direject : D CCRBAUser Excepti on

{
[propget] HRESULT reason([retval,out] BSTR reason);
}
Graphical Overview for User Figure 42 provides a graphical overview of the interfaces that the
Exceptions Automation view object supports, based on the example of the OMG IDL

Bank: : Rej ect exception.

345

CHAPTER 13 | Mapping CORBA to Automation

IUnknown

I

I Dispatch O—
D IForeignComplexType O—
DIForeignException O—

DICORBAUserException 0—

DIBank_Reject O

Figure 42: Automation View of Bank_Reject

346

Mapping for Complex Types

Mapping for the Any Type

Overview The OMG IDL any type translates to an OLE VAR ANT type.

Containing a Simple Type If the any contains a simple data type, it maps to a VAR ANT type that
contains a corresponding simple type. See Table 6 on page 315 for details

of the mappings for basic types.

Containing a Complex Type If the any contains a complex type, the VAR ANT type contains an | D spat ch
view of the CORBA type.

Containing a Sequence or Array If the any contains a CORBA sequence or array type, the VAR ANT type
contains an Automation SafeArray. See “Mapping for Sequences” on
page 339 and “Mapping for Arrays” on page 342 for more details.

347

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Object References

Overview

Example

348

When an OMG IDL operation returns an object reference, or passes an

object reference as an operation parameter, this is mapped as a reference to
an | D spat ch interface in COM IDL.

The example can be broken down as follows:
1. Consider the following OMG IDL:

/1 OM5 | DL
interface Sinple

{

B
interface bj Ref Test
{

attribute short shortTest;

attribute Sinple sinpleTest;

Sinple sinpleM(in Sinple inTest, out Sinple outTest,
inout Sinple inoutTest);
IE

D

IForeignObject Interface

Visual Basic Example

Mapping for Object References

2. The preceding OMG IDL maps to the following in Automation:

// CoM | DL

[ol eaut omati on, dual, uuid(..)]

interface DSinple : |Dispatch

{
[propget] HRESULT shortTest([retval,out] short * val);
[propput] HRESULT shortTest ([in] short shortTest);

b

[ol eaut omati on, dual, uuid(..)]

interface D (bj Ref Test : 1D spatch

{
HRESULT sinpl eQ([in] D Sinple *inTest,
[out] DI Sinple **outTest,
[in,out] D Sinple **inout Test,
[optional,out] VAR ANT * excep_CBJ,
[retval ,out] DSinple ** val);
[propget] HRESULT sinpl eTest([retval ,out] DI Sinple ** val);
[propput] HRESULT sinpleTest ([in] D Sinple * sinpleTest);
i

An Automation view interface must expose the | For ei gnQoj ect interface in
addition to the interface that is isomorphic to the mapped CORBA interface.
| For ei gnQhj ect provides a mechanism to extract a valid CORBA object
reference from a view object.
Consider an Automation view object, B, that is passed as an i n parameter to
an operation, M in view A. The Moperation must somehow convert the B
view to a valid CORBA object reference. The sequence of events involving
| For ei gnQbj ect : : Get For ei gnRef er ence is as follows:
1. The client calls Aut omati on- Vi ew A : M passing an | D spat ch-derived
pointer to Aut omat i on- Vi ew B.
2. Automation-Vi ew A : Mcalls | Di spatch:: Queryl nterface for
| For ei gn(hj ect .

3. Automation-Vi ew A : Mcalls | Forei gnQhj ect : : Get For ei gnRef er ence
to get the reference to the CORBA object of the B type.

4. Automation-View A : M calls GCRBA- St ub- A : M with the reference,
narrowed to the B interface type, as the object reference i n parameter.

The following Visual Basic example is based on the preceding mapping rules
for object references:

349

CHAPTER 13 | Mapping CORBA to Automation

Vi sual Basic
D m bankCbj As BankBri dge. Dl Bank
D m account Gbj As BankBri dge. Dl Account

Get a reference to a Bank obj ect
Set bankChj = ...

Get a reference to an Account object as a return val ue
Set account Gbj = bankCbj . newAccount " John"

Use the returned object reference
account oj . makeDeposit 231. 98

fini shed, del ete the account
bankobj . del et eAccount account (bj

350

Mapping for Modules

Mapping for Modules

Overview An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding Automation definition, by prefixing the name of
the Automation type definition with the name of the module.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

/l QMG | DL
nodul e Fi nance {
interface Bank {

b
}i
2. The preceding OMG IDL maps to the following in Automation:
/] QoM | DL
[ol eaut omation, dual, uuid(.), helpstring("Fi nance_Bank")]
interface D Finance_Bank : |D spatch {

}

3. The preceding example can then be used as follows, for example, in
Visual Basic:

" Misual Basic
D m bankCbj As D Fi nance_Bank

351

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Constants

Overview There is no Automation definition generated for an OMG IDL constant
definition, because Automation does not have the concept of a constant.
However, code can be generated for an Automation controller, if
appropriate.

If an OMG IDL constant is contained within an interface or module, its
translated name is prefixed by the name of the interface or module in the
Automation controller language. (See “Mapping for Scoped Names” on
page 355 for more details.)

Example The example can be broken down as follows:
1. Consider the following OMG IDL constant definition:

/I QM5 I DL
const |ong Max = 1000;

2. The preceding constant definition can be represented as follows in
Visual Basic:
" Misual Basic
In .BAS file
d obal Const Max = 1000

Alternatively, the preceding constant definition in point 1 can be
represented as follows in PowerBuilder:

/] Power Bui | der
CONSTANT | ong Max=1000

352

Mapping for Enums

Mapping for Enums

Overview A CORBA enum maps to an Automation enum.
Example The example can be broken down as follows:
1. Consider the following OMG IDL:

/1 OvG 1D
{

enum col our { white, blue, red };
interface foo

{
voi d opl(in col our col);
H
b
2. The preceding OMG IDL maps to the following in Automation:
// QM| DL
typedef [public,vl enunj { white, blue, red } col our;
[ol eaut omati on, dual, uuid(.)]
interface foo: D spatch
{
HRESULT opl([in] colour col, [optional, out] VAR ANT *
excep_CBJ);
}
Runtime Errors Because Automation maps enum parameters to the platform’s integer type,

a runtime error occurs in the following situations:

If the number of elements in the CORBA enum exceeds the maximum
value of an integer.

If the actual parameter applied to the mapped parameter in the
Automation view interface exceeds the maximum value of the enum.

353

CHAPTER 13 | Mapping CORBA to Automation

Enums within an Interface or
Module

Enums at Global Scope

354

If an OMG IDL enum is contained within an interface or module, its
translated name is prefixed with the name of the interface or module in the
Automation controller language. (See “Mapping for Scoped Names” on
page 355 for more details.)

If an OMG IDL enum is declared at global OMG IDL scope, the name of the
enum should also be included in the constant name.

Mapping for Scoped Names

Mapping for Scoped Names

Overview An OMG IDL scoped name maps to an Automation identifier where the
scope operator, : :, is replaced with an underscore.
Example The example can be broken down as follows:

1. Consider the following OMG IDL:

/l QMG | DL
nodul e Fi nance {
interface Bank {
struct Personnel Record {

voi d addRecord(in Personnel Record r);

}

2. The preceding OMG IDL yields the scoped name,
Fi nance: : Bank: : Per sonnel Recor d.

3. The preceding scoped name maps to the Automation identifier,
Fi nance_Bank_Per sonnel Recor d.

355

CHAPTER 13 | Mapping CORBA to Automation

Mapping for Typedefs

Overview

Example

356

The mapping of an OMG IDL typedef to Automation depends on the OMG
IDL type for which the typedef is defined. A typedef definition is most often
used for array and sequence definitions.

There is no mapping provided for typedefs for the basic OMG IDL types
listed in Table 6 on page 315. Therefore, a Visual Basic programmer cannot
make use of these typedef definitions for basic types.

The example can be broken down as follows:

1.

Consider the following OMG IDL:

/l QMG | DL
modul e MyModul ef
nodul e Modul e2{
nmodul e Modul e3{
interface foof{};
b
i
IE
typedef M/Modul e: : Modul e2: : Modul e3: : f oo bar;

The preceding OMG IDL can be used as follows in Visual Basic:

' Misual Basic

Dma as (oj ect

Set a = theOb. Get bj ect (“ M/Modul e/ Modul e2/ Modul e3/ f 00”)
' Rel ease the obj ect

Set a = Not hing

' Oeate the object using a typedef alias

Set a = theQb. Get (hj ect (“bar™)

In This Chapter

CHAPTER 14

Mapping CORBA
to COM

CORBA types are defined in OMG IDL. COM types are defined
in Microsoft IDL. To allow interworking between COM clients
and CORBA servers, COM clients must be presented with
Microsoft IDL versions of the interfaces exposed by CORBA
objects. Therefore, it must be possible to translate CORBA
types to Microsoft IDL. This chapter outlines the
CORBA-to-COM mapping rules.

This chapter discusses the following topics:

Basic Types page 359
Mapping for Strings page 360
Mapping for Interfaces page 361
Mapping for Complex Types page 372
Mapping for Object References page 390
Mapping for Modules page 392
Mapping for Constants page 393
Mapping for Enums page 395

357

CHAPTER 14 | Mapping CORBA to COM

Mapping for Scoped Names page 397

Mapping for Typedefs page 398

358

Note: For the purposes of illustration, this chapter describes a textual
mapping between OMG IDL and Microsoft IDL. COMet itself does not
require this textual mapping to take place, because it includes a dynamic
marshalling engine. The textual mappings shown in this chapter are
actually performed by COMet at runtime.

Basic Types

Basic Types

Overview OMG IDL basic types translate to compatible types in COM.

Mapping Rules Table 7 shows the mapping rules for each basic type.

Table 7: CORBA-to-COM Mapping Rules for Basic Types

OMG IDL Description Microsoft Description
IDL

bool ean Unsigned char, 8-bit bool ean 16-bit integer

0 = FALSE 0 = FALSE

1 =TRE 1 =TRE
char 8-bit quantity char 8-bit quantity
doubl e IEEE 64-bit float doubl e IEEE 64-bit float
f1 oat IEEE 32-bit float f1 oat IEEE 32-bit float
| ong 32-bit integer | ong 32-bit integer
oct et 8-bit quantity unsi gned 8-bit quantity

char

short 16-bit integer short 16-bit integer
unsi gned 32-bit integer unsi gned 32-bit integer
| ong | ong
unsi gned 16-bit integer unsi gned 16-bit integer
short short
unsi gned 8-bit quantity unsi gned 8-bit quantity
char char

359

CHAPTER 14 | Mapping CORBA to COM

Mapping for Strings

Overview An OMG IDL string maps to a Microsoft IDL LPSTR, which is a
null-terminated 8-bit character string.

Example for Unbounded Strings The example can be broken down as follows:
1. Consider the following OMG IDL definition for an unbounded string:

/l QMG | DL
typedef string UNBOUNDED STRI NG

2. The preceding OMG IDL maps to the following Microsoft IDL:

/1 Mcrosoft |DL
typedef [string, unique] char * UNBOUNDED STR NG

Example for Bounded Strings The example can be broken down as follows:
1. Consider the following OMG IDL definition for a bounded string:
/1 OM5 | DL
const long N = ...
typdef string<N>BOUNDED STR NG
2. The preceding OMG IDL maps to the following Microsoft IDL:
/1 Mcrosoft |IDL

const long N = ..;
typdef [string, unique] char (*BOUNDED STRNG [N ;

360

Mapping for Interfaces

Mapping for Interfaces

Overview This section describes how OMG IDL interfaces map to COM.

In This Section This section discusses the following topics:
Mapping Interface Identifiers page 362
Mapping for Nested Types page 363
Mapping for Attributes page 364
Mapping for Operations page 366

361

CHAPTER 14 | Mapping CORBA to COM

Mapping Interface Identifiers

Overview

MD5 Algorithm

DCE UUID

Implicit Assumption

362

An OMG IDL repository ID maps to a Microsoft IDL IID. All COM views that
are mapped from a particular CORBA interface must share the same COM
IID.

The mapping for interface identifiers is achieved by using a derivative of the
RSA Data Security Inc. MD5 Message-Digest algorithm. The repository ID
for the CORBA interface is fed into the algorithm to produce the 11D, which
is a 128-bit hash identifier. (A hash is a number generated by a formula
from a text string.) The generated IID is then used for a COM view of a
CORBA interface.

One exception to the rule is if the repository ID is a DCE UUID, and the IID
generated is for a COM interface (as opposed to an Automation or
Automation dual interface). In this case, the DCE UUID (and not the
generated IID) is used as the IID. This is to allow a scenario where CORBA
server developers can implement existing COM interfaces.

The mapping for interface identifiers implicitly assumes that repository 1Ds
are identical across ORBs for the same interface, and unique across ORBs
for different interfaces. This is necessary if 11OP is to function correctly
across ORBs.

Mapping for Interfaces

Mapping for Nested Types

Overview

Example

OMG IDL and Microsoft IDL do not share the same rules for the scoping
level of types declared within interfaces. OMG IDL considers a type to be
scoped within its enclosing module or interface. Microsoft IDL considers all
types to be declared at global scope. To avoid accidental name collisions,
therefore, types declared within OMG IDL interfaces and modules must be
fully qualified in Microsoft IDL.

The example can be broken down as follows:

1.

Consider the following OMG IDL:

// QM5 | DL
nmodul e MyModul e {
interface Minterface {
enumtype {TYPEL, TYPE2};
struct MyStruct {
string nystring;
float nyfloat;
type nyki nd;
B
void nyop (in M/Struct val);
i

The preceding OMG IDL maps to the following Microsoft IDL:

/1 Mcrosoft |DL
[uuid(.), object]
interface | M/Mdul e M/Interface : |Unknown {
typedef [v1l enun]j enum
{M/Modul e M/l nterface TYPEL,
M/Modul e M/l nt erface TYPE2} M/Mbdul e Myl nterface type;
typedef struct {
LPTSTR account ;
M/Mbdul e M/l nterface type nyki nd;
} M/Mdul e MInterface M/Struct;
HRESULT nyop (in M/Mbdul e M/ nterface M/Struct *val);

363

CHAPTER 14 | Mapping CORBA to COM

Mapping for Attributes

Overview An OMG IDL attribute maps to a Microsoft IDL attribute, as follows:
® A normal attribute maps to a property that has a method to set the
value and a method to get the value.
® Areadonly attribute maps to a property that only has a method to get
the value.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// QMG | DL
struct Qust oner Dat a

{
Qustorer | d | d;

string Nane;
string SurNane;
B

#pragna | D “BANK : Account” “I| DL: BANK/ Account : 3. 1"
i nterface Account

{
readonly attribute float Bal ance;
float Deposit(in float anount) raises(lnvalidAnount);
float Wthdrawal (in float anount) raises(|nsufFunds,
I nval i dAnount) ;
float dose();
I

#pragna | D “BANK : Qustoner” “| DL: BANK/ Qust oner: 1. 2"
i nterface Qustoner

{
I

attribute CQustonerData Profile:

364

Mapping for Interfaces

2.

The Profil e attribute in the preceding OMG IDL maps to the following
Microsoft IDL:

// Mcrosoft |DL

[obj ect, uui d(..}, poi nt er _def aul t (uni que)]

interface | BANK CQustorer: | Unknown
{

HRESULT get Profile([out] BANK QustorerData * val);
HRESULT _put_Profile([in] BANK QustonerData * val);
s

The readonly attribute, Bal ance, in the preceding OMG IDL in point 1
maps to the following Microsoft IDL:

/] Mcrosoft IDL
[object,uuid(..)]

interface | BANK Account: | Unknown
{

HRESULT _get _Bal ance([out] float * val);

I

Note: The get method returns the attribute value contained in the [out]
parameter.

365

CHAPTER 14 | Mapping CORBA to COM

Mapping for Operations

Overview

Example

Rules for Parameter Passing and
Return Types

366

An OMG IDL operation maps to a Microsoft IDL method.

The example can be broken down as follows:
1. Consider the following OMG IDL:

/1 OM5 | DL

#pragna I D “BANK : Tel ler” “I1DL: BANK/ Tel l er: 1.2”
interface Teller

{
Account QpenAccount (in float StartingBal ance,
i n Account Types Account Type);
voi d Transfer(in Account Accountl,
in Account Account 2,
in float Arount) raises (InSufFunds);
IK

2. The preceding OMG IDL maps to the following Microsoft IDL:

/1 Mcrosoft |DL
[obj ect, uui d(..), poi nt er _def aul t (uni que)]
interface | BANK Tel |l er: | Unknown
{
HRESULT QpenAccount ([in] float StartingBal ance,
[in] 1 BANK Account Types Account Type,
[out] I BANK Account ** ppi NewAccount);
HRESULT Transfer([in] | BANK Account * Account1,
[in] 1BANK Account * Account 2,
[in] float Amount,
[out] BANK Tel |l er Exceptions ** ppException);

The following mapping rules apply for parameter-passing modes and return
types:

An OMG IDL i n parameter maps to a Microsoft IDL [i n] parameter.
An OMG IDL out parameter maps to a Microsoft IDL [out] parameter.

An OMG IDL i nout parameter maps to a Microsoft IDL [i n, out]
parameter.

Mapping for Interfaces

® An OMG IDL return type maps to a Microsoft IDL [out] parameter as
the last parameter in the signature.

Indirection Levels for Parameters The following rules exist for operation parameters in terms of indirection

levels:

® Integral types (for example, | ong, char, enum are passed by value as
i n parameters, and are passed by reference as out parameters.

® Strings are passed as LPSTRas i n parameters, and are passed as
LPSTR* as out parameters.

® Complex types (for example, uni on, struct, exception) are always
passed by reference.

® QOptional parameters are passed using double indirection (for example,
IntfException ** val).

Operations with Oneway Attribute An OMG IDL operation that is defined with the oneway attribute maps to
Microsoft IDL in the same way as an operation that has no output
arguments.

367

CHAPTER 14 | Mapping CORBA to COM

Mapping for Interface Inheritance

Overview CORBA and COM have different models for inheritance. CORBA interfaces
can be multiply inherited, but COM does not support multiple interface
inheritance.

Mapping Rules The CORBA-to-COM mapping rules for an interface hierarchy are as follows:

® Each OMG IDL interface name is preceded by the letter I in the
corresponding Microsoft IDL definition.

® If the interface is scoped by OMG IDL modules, using : :, this is
replaced by an underscore in Microsoft IDL (for example,
nymodul e: : nyi nt er f ace maps to | nynodul e_nyi nt er f ace).

® Each OMG IDL interface that does not have a parent maps to a
Microsoft IDL interface derived from the I Unknown interface.

® Each OMG IDL interface that inherits from a single parent interface
maps to a Microsoft IDL interface derived from the mapping for the
parent interface.

® Each OMG IDL interface that inherits from multiple parent interfaces
maps to a Microsoft IDL interface derived from the I Unknown interface.
This Microsoft IDL interface then aggregates both base interfaces.

® For each CORBA interface, the mapping for operations precedes the
mapping for attributes.

® Operations are sorted in ascending order, based on the ISO Latin-1
encoding values of the respective operation names.

® Attributes are sorted in ascending order, based on the ISO Latin-1
encoding values of the respective attribute names. For read-write
attributes, the get _attri but e_nane method immediately precedes the
set_attribute_nane method.

368

Interface Hierarchy Example

Interface Hierarchy Explanation

Mapping for Interface Inheritance

Figure 43 shows an example of a CORBA interface hierarchy.

Account Simple

CheckingDetails

Miscellaneous

Figure 43: Example of a CORBA Interface Hierarchy

The hierarchy in Figure 43 can be explained as follows:

® Account and Sinpl e derive from Bank.

Checki ngDet ai | s derives from Account and Si npl e.

® Mscel | aneous derives from Checki ngDet ai | s.

369

CHAPTER 14 | Mapping CORBA to COM

Code Example The example can be broken down as follows:

1. Consider the following OMG IDL, which represents an interface
hierarchy based on the example shown in Figure 43 on page 369:

/l OM5 | DL
i nterface Bank

{
voi d opBank();
attribute long val;

i}'nt erface Account : Bank

{ voi d opAccount () ;

i}’nterface Sinpl e : Bank

{ voi d opSi npl e();

i}7nt erface CheckingDetails : Account, Sinple
{ voi d opChecki ngDet ai | s();

i},nt erface Mscel | aneous : CheckingDetail s

{ voi d opM scel | aneous();

b

2. The preceding OMG IDL maps to the following Microsoft IDL:

370

Mapping for Interface Inheritance

/] Mcrosoft IDL
[obj ect, uui d(..)]
interface | Bank: | Unknown

{
HRESULT opBank();
HRESULT get val ([out] long * val);
HRESULT set val ([in] long val);

I8

[{object, uuid(.)]
interface | Account: |Bank

{

IE

[obj ect, uui d(..)]
interface | Sinple: |Bank
{

b
[obj ect, uui d(..)]
i nterface | CheckingDetails: |Unknown

{

}
[obj ect, uui d(.)]
interface | Mscellaneous: | Unknown

{
I

HRESULT opAccount ();

HRESULT opSi npl e();

HRESULT opChecki ngDet ai | s();

HRESULT opM scel | aneous() ;

371

CHAPTER 14 | Mapping CORBA to COM

Mapping for Complex Types

Overview OMG IDL includes a number of types that do not have counterparts in
Microsoft IDL. This section describes the CORBA-to-COM mapping rules for
these complex types.

In This Section This section discusses the following topics:
Creating Constructed OMG IDL Types page 373
Mapping for Structs page 374
Mapping for Unions page 376
Mapping for Sequences page 378
Mapping for Arrays page 380
Mapping for System Exceptions page 381
Mapping for User Exceptions page 385
Mapping for the Any Type page 388

Note: There is no standard CORBA-to-COM mapping specified for OMG
IDL context clauses.

372

Mapping for Complex Types

Creating Constructed OMG IDL Types

Overview

OMG IDL constructed types such as struct, uni on, sequence, and
except i on map to corresponding struct types in Microsoft IDL.

To create a complex OMG IDL type, you should simply instantiate an
instance of its Microsoft IDL st ruct type. You must create an object
representing an OMG IDL constructed type in a client, to pass it as anin or
i nout parameter to an OMG IDL operation. You can create an object
representing an OMG IDL constructed type in a server, to return it as an out
or i nout parameter, or return value, from an OMG IDL operation.

373

CHAPTER 14 | Mapping CORBA to COM

Mapping for Structs
Overview An OMG IDL struct maps to a Microsoft IDL struct.
Example The example can be broken down as follows:

1. Consider the following OMG IDL:

// QMG | DL

typedef ...TO;
typedef ...T1;
typedef ...T2;

typedef ...Tn;
struct STRUCTURE
{

TO no;

T1 ni;

T2 ng;

Tn m\t
}

2. The preceding OMG IDL maps to the following Microsoft IDL:

/1 Mcrosoft |DL
typedef ...TO;
typedef ...T1;
typedef ...T2;

typedef ...Tn;
typedef struct
{
TO no;
T1 nd;
T2 n2;
Tn n\
}
STRUCTURE,

374

Mapping for Complex Types

Example for Self-Referential Self-referential data types are expanded in the same manner as in the
Types previous example. For example:
1. Consider the following OMG IDL:

// QMG | DL
struct A
{

sequence<A> v1;

}
The preceding OMG IDL maps to the following Microsoft IDL:

/1 Mcrosoft |DL
typedef struct A

{
struct
{
unsi gned | ong cbMaxSi ze;
unsi gned | ong cbLengt hUsed;
[size_i s(cbMaxSi ze), |ength_i s(cbLengt hUsed),
uni que]
struct A * pVal ue;
} vi;
PA

375

CHAPTER 14 | Mapping CORBA to COM

Mapping for Unions

Overview A discriminated union in OMG IDL maps to an encapsulated union in
Microsoft IDL.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

// QM5 | DL
enum UNLON_DI SCRI M NATCR
{
dChar =0;
dShort,
dLong,
dFl oat ,
dDoubl €} ;
uni on UNLON_COF_ CHAR AND AR THVETI C
switch (UN QN D SCRI M NATCR)
{
case dChar: char c;
case dshort: short s;
case dLong: long |;
case dFl oat: float f:
case dDoubl e: doubl e d;
default: octet v[8]; };

2. The preceding OMG IDL maps to the following Microsoft IDL:

376

Mapping for Complex Types

/1 Mcrosoft |1DL
typedef enum [v1_enum public]

dchar =o,
dshort,
dLong,
dFl oat ,
dDoubl e,
} UN ON D SCR M NATCR,
typedef union switch (UN QN D SCR M NATCR DCE d)
{
case dChar: char c;
case dShort: short s;
case dLong: long |;
case dFl oat: float f;
case dDoubl e: doubl e d;
defaul t: byte v[8];
} UNON G- CHAR AND AR TH

377

CHAPTER 14 | Mapping CORBA to COM

Mapping for Sequences

Overview

Example for Unbounded
Sequences

Explanation for Unbounded
Sequences

378

OMG IDL sequences have no direct corresponding type in COM. An OMG
IDL sequence can be bounded (that is, of fixed length) or unbounded (that
is, of variable length). An OMG IDL sequence maps to a COM structure.

The example can be broken down as follows:

1. Consider the following OMG IDL, which defines an unbounded
sequence of some type, T:

/l QMG | DL
typedef ...T;
t ypedef sequence<T> UNBOUNDED SEQUENCE;

2. The preceding OMG IDL maps to the following Microsoft IDL, which
defines a COM structure containing a pointer to the first element, with
a length and member indicating the total number of elements in the
sequence:

// Mcrosoft IDL

typedef ...U
typedef struct
{

unsi gned | ong cbMaxSi ze;
unsi gned | ong cblLengt hUsed;
[size_ i s(cbMaxS ze), |ength_is(cbLengt hUsed), unique] U
*pVal ue;
} UNBOUNDED_SEQUENCE;

In the preceding example, the encoding for the unbounded OMG IDL
sequence of type T is that of a Microsoft IDL struct that contains a unique
pointer to a conformant array of type U, where Uis the Microsoft IDL
mapping of T. The enclosing struct in the Microsoft IDL mapping is
necessary, to provide a scope in which extent and data bounds can be
defined.

Example for Bounded Sequences

Mapping for Complex Types

The example can be broken down as follows:

1. Consider the following OMG IDL, which defines a bounded sequence of
some type, T, which can grow to be Nsize:

/l QMG | DL

const long N = ...

typedef ... T;

typedef sequence<T, N> BOUNDED SEQUENCE CF N

2. The preceding OMG IDL maps to the following Microsoft IDL, which
defines a COM structure containing a fixed-size array of data elements:

// Mcrosoft |DL
const long N = ..;

typedef ...U
typedef struct
{

unsi gned | ong reserved,;

unsi gned | ong cbLengt hUsed;

[l ength_i s(cbLengt hsed)] U Val ue N
} BOUNDED SEQUENCE CF_N

Note: The maximum size of the bounded sequence is declared in the
declaration of the array. A [si ze_i s()] attribute is therefore not needed.

379

CHAPTER 14 | Mapping CORBA to COM

Mapping for Arrays

Overview

Example

Explanation

380

OMG IDL arrays map to corresponding COM arrays. The array element types
follow their standard mapping rules.

The example can be broken down as follows:

1. Consider the following OMG IDL, which defines an array of some type,
T:

/1 OM5 | DL

const long N = ...
typedef ...T;

typedef T ARRAY CF T[N ;

2. The preceding OMG IDL maps to the following Microsoft IDL, which
defines an array of type U:

/1 Mcrosoft |DL

const long N = ...
typedef ...U

typedef U ARRAY CF UN;

In the preceding example, the Microsoft IDL array of type Uis the result of
mapping the OMG IDL, T, into Microsoft IDL.

If the ellipsis (that is, ..) shown in the preceding example represents octet in
the OMG IDL, the ellipsis must be byte in the Microsoft IDL. This is why the
types of the array elements have different names in the OMG IDL and
Microsoft IDL defintions.

Mapping for Complex Types

Mapping for System Exceptions

Overview

Rules

Error Object

The CORBA model uses exceptions to report error information. System
exceptions can be raised by any operation, regardless of the interface on
which the operation was invoked. A standard set of system exceptions is
defined by CORBA, and Orbix provides a number of additional system
exceptions. See the Orbix documentation set for details about the system
exceptions available.

There are two aspects to the mapping of CORBA system exceptions to COM:

® Exceptions must be returned to COM clients via the COM HRESULT
return type. Therefore, the CORBA exception is mapped to one of the
standard COM HRESULT values. When a CORBA system exception is
raised, the COM view in the bridge returns the HRESULT to the client.

® Additional information pertaining to the system exception (for example,
its minor code and repository ID) cannot be mapped to the HRESULT
value. Instead, additional information can be returned to the client via
a standard COM error object. Writing information to an error object is,
however, optional.

Because it is not possible to map information such as a CORBA system
exception’s minor code and repository ID to the HRESULT value, you can
choose to have this additional exception information written to a COM error
object, and returned to the client that way.

If you use an error object, the COM view must support the

| Support Errorlnf o interface. If a COM client call results in a system
exception, the COM view must call the COM Set Error I nfo() function, to
set the error object to the client’s calling thread. This allows the client to
retrieve the error object, to report the error to the user. Even if no system
exception occurs, the COM view must still call Set Errorinfo(), this time
with a null value for the | Error I nf o pointer parameter, to ensure that the
error object on that thread is destroyed.

381

CHAPTER 14 | Mapping CORBA to COM

Error Object Properties

382

The properties of the error object are set as shown in Table 8.

Table 8: Using Error Object for CORBA System Exceptions

Property

Description

bst r Sour ce

This takes the following format:
i nt er f acenane. oper at i onnarne

The interface and operation name pertain to the
CORBA interface that the view represents.

bstrDescription

This takes the following format:

QCRBA System Exception: [repository 1D

m nor code[m nor code] [conpl etion status]
The repository I Dand mnor code are those of
the system exception. The conpl eti on stat us
can be YES, NO, or MAYBE, depending on the value

of the system exception’s CORBA completion
status.

bstrHel pFile This is unspecified.
dwHel pCont ext This is unspecified.
QD This is the IDD of the COM view interface.

Mapping for Complex Types

Example The example can be broken down as follows:

1. Consider the following COM C++ code for a COM view that supports
error objects:

/1 OCM Ct+

SetErrorlnfo(CL, NULL); //Initialise the thread-local error
obj ect

try

{
// Call the CORBA operation

catch(.)
{

QO eateErrorlnfo(&l OeateErrorlnfo);

pl O eat eEr ror | nf 0- >Set Sour ce(..);

pl O eat eError | nf 0- >Set Descri ption(..);

pl GreateErrorlnfo->SetGQUD(.);

pl O eat eError | nf o->Queryl nterface(l1D | Errorlnfo,
&pl Errorlnfo);

pl Great eErrorlnfo->SetErrorlnfo(Q., pl Errorlnfo);

pl Error | nf o- >Rel ease() ;

pl O eat eError | nf o- >Rel ease() ;

}

2. The following COM C+ + client code shows how a client can access
the error object:

383

CHAPTER 14 | Mapping CORBA to COM

/1l OCM C++
I/ After obtaining a pointer to an interface on the COM Vi ew, the
// client does the follow ng one tine
pl MyMappedl nt er f ace- >Queryl nt erface(11D_| Support Errorl nfo,
&pl Support Errorl nfo);
hr = pl Support Error | nf o- >l nt er f aceSuppor t sError | nf o
(11 D_M/Mappedl nt er f ace) ;
BOOL bSupportsErrorinfo = (hr == NCERRCR ? TRUE : FALSE);

// Call to the COM operati on...
HRESULT hr Qperati on = pl M/Mappedl! nt er f ace->...
if (bSupportsErrorlnfo)

{
HRESULT hr = GetErrorlnfo(Q &l Errorlnfo);
// S FALSE neans that error data is not avail abl e
// NOERRCR neans it is availabl e
if (hr == NO ERROR)
{
pl Errorl nf o- >Get Source(.);
I/ Has repository id and mnor code
/1 hrQperation has the conpletion status encoded into it
pl Errorl nf o- >Get Descri ption(..);
}
}

384

Mapping for Complex Types

Mapping for User Exceptions

Overview

Exception Structure

The CORBA model uses exceptions to report error information. User
exceptions are defined in OMG IDL. An OMG IDL operation can optionally
specify that it might raise a specific set of user exceptions. An OMG IDL
operation might also raise a system exception, but this is not defined at the
OMG IDL level.

An OMG IDL user-defined exception maps to a Microsoft IDL interface and
an exception structure that describes the body of information to be returned
for the exception to the client.

For the purpose of allowing access to user exception information, a
Microsoft IDL interface is defined for each OMG IDL interface that can raise
a user exception. The name of the Microsoft IDL interface is based on the
fully scoped name of the OMG IDL interface on which the exception is
raised.

An exception structure is defined for each user exception. The exception
structure is specified as an output parameter, and it appears as the last
parameter of any COM operation signature that has been mapped from any
OMG IDL operation with a rai ses clause. For example, if an operation in
M/Modul e: : Myl nt er f ace raises a user exception, an exception structure
named M/Mbdul e_MI nt er f aceExcept i ons is created and mapped as an
output parameter to Microsoft IDL. This extra parameter is passed by
indirect reference, to allow it to be treated as optional by the target server
side.

Although a COM view can call Set Errorlnfo() to indicate a CORBA user

exception has occurred (as in the case of a CORBA system exception), there

is no mechanism in COM to allow for accessing the additional data

members defined on a user exception object. The additional error

information is therefore mapped to an exception structure instead.

The exception structure contains:

® Members indicating the exception type.

® The repository ID for the exception definition in the CORBA Interface
Repository.

® A pointer to the exception data.

385

CHAPTER 14 | Mapping CORBA to COM

Mapped Operations

HRESULT for Successful
Operations

Example

386

Each exception that can be raised by an operation is mapped to an
operation on the Exception interface. The mapped operation name is
constructed by prefixing the exception name with get _. Each mapped
operation takes one output parameter, of the struct type, which is used to
return the exception information. Each mapped operation is defined to
return a HRESULT value, for which the exact value depends on the type of
exception raised and whether a structure has been specified by the client.

If the call to a particular operation is successful and does not raise a user
exception, a HRESULT value of S Xis returned, to indicate that the operation
has been successful.

The example can be broken down as follows:
1. Consider the following OMG IDL:

/1 OM5 1 DL
nmodul e BANK

{

exception I nsufficientFunds {float bal ance};
exception |nval i dAmount {float anmount};

i nterface Account
{
exception Not Aut hori sed{};
float Deposit(in float Anount) raises(lnvalidAnount);
float Wthdraw(infl oat Amount) rai ses(l nval i dAmount ,
Not Aut hor i sed) ;
B
I

2. The preceding OMG IDL maps to the following Microsoft IDL:

Mapping for Complex Types

// Mcrosoft |IDL
struct BANK | nsuf fi ci ent Funds

{
float bal ance;
iE
struct BANK | nval i dAnmount
{
float anmount;
b
struct BANK Account _Not Aut hori sed
{
B
interface | BANK Account User Excepti ons: | Unknown
{
HRESULT get | nsufficient Funds([out] BANK I nsuffi ci ent Funds
*except i onBody) ;
HRESULT get _I nval i dAnount ([out] BANK | nval i dAnount
*except i onBody) ;
HRESULT get _Not Aut hori sed([out] BANK Account _Not Aut hori sed
*except i onBody) ;
B
typedef struct
{

Except i onType type;

LPSTR reposi toryl d;

| BANK_Account User Excepti ons * pi User Excepti on;
} BANK Account Excepti ons

387

CHAPTER 14 | Mapping CORBA to COM

Mapping for the Any Type

Overview The OMG IDL any type does not map directly to COM.

Example The following is the Microsoft IDL interface definition to which the OMG IDL
any type is mapped:

/1 Mcrosoft |DL

typedef [v1l_enum public]

enum CCRBAAnyDat aTagEnun{
anySi npl eVal Tag=0,
anyAnyVal Tag,
anySeqVal Tag,
any St r uct Val Tag,
anyUni onVal Tag

} CCRBAAnyDat aTag;

t ypedef uni on CORBAAnyDat alhi on
swi t ch(CCRBAAnyDat aTag whi chOne) {
case anyAnyVal Tag: | CORBA Any *anyVal ;
case anySeqVal Tag:
case anyStruct Val Tag:
struct {
[string, unique] char * repositoryld;
unsi gned | ong cbMaxSi ze;
unsi gned | ong cblLengt h- Used;
[size_i s(cbMaxSi ze), |ength_i s(cbLengt hUsed),
uni que] uni on CCORBAAnyDat Uni on *pVal ;
mul tiVal ;
case anyUni onVal Tag;
struct {
[string, unique] char * repositoryld;
| ong di sc;
uni on CCRBAAnyDat alni on *val ue;
uni onVal ;
case any(bj ect Val Tag:
struct {
[string, unique] char * repositoryld;
VAR ANT val ;
obj ect Val ;
case anySinpl eVal Tag: //A | other types
VAR ANT si npl eVal ;
} CCRBAAnyDat a;

388

Mapping for Complex Types

Luuidf -]

interface | CORBA Any: | Unknown

{

HRESULT _get _val ue([out] VAR ANT * val);

HRESULT _put _val ue([in] VAR ANT val);

HRESULT _get _OORBAAnyDat a([out] OORBAAnyData * val);
HRESULT _put _CCORBAAnyData([in] OCRBAAnyData val);
HRESULT _get _typeCode([out] | GORBA TypeCode ** tc);
}

389

CHAPTER 14 | Mapping CORBA to COM

Mapping for Object References

Overview

Example

390

When an OMG IDL operation returns an object reference, or passes an

object reference as an operation parameter, this is mapped to a reference to
an | Unknown-based interface in Microsoft IDL.

The example can be broken down as follows:

1. Consider the following OMG IDL:

/1 OM5 | DL
interface Account {

IE
interface Bank {

Account newAccount (i n string nane);
del et eAccount (i n Account a);

b

2. The preceding OMG IDL maps to the following Microsoft IDL:

// Mcrosoft IDL
[object, uuid(.)]

interface | Bank : | Unknown {
HRESULT newAccount ([in] LPSTRit_nane, [out] |Account **
val ue);
HRESULT del et eAccount ([in] |Account * account);
Ik
3.

The following COM C+ + code is based on the preceding Microsoft IDL
definition:

Mapping for Object References

/1 OOM Ct+

/l Get a pointer to the Bank interface (plF) using the Get (bj ect
/1 nmethod of | CCRBAFact ory

HRESULT hr = NCERRCR

LPSTR szNane = “John Smth”;

fl oat bal ance = 0, deposit = 10.0;

| Account *pAcc = 0;

hr = pl F->newAccount (szNanme, &pAcc, NULL);
hr pAcc- >nakelLodgenent (deposi t);

hr pAcc- >_get _bal ance(&al ance) ;

cout << “balance is” << bal ance << endl;
hr = pl F->del et eAccount (pAcc) ;

pAcc- >Rel ease() ;

391

CHAPTER 14 | Mapping CORBA to COM

Mapping for Modules

Overview

Example

392

An OMG IDL definition contained within the scope of an OMG IDL module
maps to its corresponding Microsoft IDL definition, by prefixing the name of
the Microsoft IDL type definition with the name of the module.

The example can be broken down as follows:

1.

Consider the following OMG IDL:

/I QMG | DL
nodul e Fi nance {
interface Bank {

ik
i
The preceding OMG IDL maps to the following Microsoft IDL:
/1 Mcrosoft |DL
[object, uuid(.), helpstring("Fi nance_Bank")]

interface |Finance_Bank : | Unknown {

}

Mapping for Constants

Mapping for Constants

Overview

An OMG IDL const type maps to a Microsoft IDL const type.

Example

The example can be broken down as follows:

1. Consider the following OMG IDL:

/1l OM5 | DL

const
const
const
const
const
const
const
const
const

short S = ..

long L = ..;

unsi gned short US = ..,
unsigned long UL = ..;
float F = ..;

double D = ...

char C= ..

bool ean B = ..

string STR = “.";

2. The preceding OMG IDL maps to the following Microsoft IDL:

/] Mcrosoft IDL

const
const
const
const
const
const
const
const
const

short S = ..

long L = ..;

unsi gned short US = ..
unsigned long UL = ..;
float F = ..

double D = ..,

char C= ..
bool ean B
LPSTR STR

w o

393

CHAPTER 14 | Mapping CORBA to COM

Scoping of Constant Declarations CORBA observes scoping of constant declarations, but COM ignores such
scoping and always treats a constant declaration as though it were globally
defined. To avoid potential name clashes, mapped constants in Microsoft
IDL are prefixed with the enclosing type in which they are declared. For
example, consider the following OMG IDL:

/1 QMG | DL
nodul e PhoneConpany {
interface QustonerServices {
const float Call Rate = 11.7;
IE
b

The preceding OMG IDL maps to the following Microsoft IDL:

/1l Mcrosoft |DL
const float PhoneConpany_Qustoner Servi ces_Cal | Rate = 11.7;

394

Mapping for Enums

Mapping for Enums

Overview

Example

Values and Ordering

Scoping

A CORBA enum maps to a COM enum.

The example can be broken down as follows:
1. Consider the following OMG IDL:

/l OMG | DL

interface MIntf

{
b

enumA or_ B or_C {AB G;

2. The preceding OMG IDL maps to the following Microsoft IDL:

/1 Mcrosoft |DL
[uuid(.), .}
interface | M/l ntf

typedef [v1_enum public]
enumM/Intf_Aor_Bor C{MIntf_A=0 Mintf_B Mintf_CG
M/Intf_A or_B or_C

CORBA has enums that are not explicitly tagged with values. On the other
hand, Microsoft IDL supports enums that are explicitly tagged with values.
Therefore, any language mapping that permits two enums to be compared,
or which defines successor or predecessor functions on enums, must
conform to the ordering of the enums as specified in OMG IDL.

CORBA observes scoping of enum declarations, but COM ignores such
scoping and always treats an enum declaration as though it were globally
defined. To avoid potential name clashes, translated enums in Microsoft IDL
are prefixed with the enclosing type in which they are declared. Therefore, in
the preceding example, the OMG IDL A or _B or_Cenum is mapped to
M/iIntf_A or_B or_C

395

CHAPTER 14 | Mapping CORBA to COM

Transmitting as 32-Bit

Truncation of Identifiers

396

The Microsoft IDL keyword, v1_enum is required for an enum to be
transmitted as 32-bit values. Microsoft recommends that this keyword is
used on 32-bit platforms, because it increases the efficiency of marshalling
and unmarshalling data when such an enum is embedded in a structure or
union.

CORBA supports enums with up to 232 identifiers, but Microsoft IDL only
supports 216 identifiers. Truncation might therefore result.

Mapping for Scoped Names

Mapping for Scoped Names

Overview An OMG IDL scoped name must be fully qualified in Microsoft IDL, to
prevent accidental name collisions.
Example The example can be broken down as follows:

1. Consider the following OMG IDL:

/l QMG | DL
nodul e Bank {
interface ATM {
enum t ype { CHECKS, CASH ;
struct DepositRecord {
string account;
float anount;
type kind;
3
voi d deposit(in DepositRecord val);
b

2. The preceding OMG IDL maps to the following Microsoft IDL:

Mcrosoft |DL
[uuid(.), object]
interface | BANK_ATM | Unknown {
typedef [vl enunj enum BANK ATM type
{ BANK_ATM CHECKS, BANK_ATM CASH} BANK_ATM t ype;
typedef struct

{
LPSTR account ;
float anount;
BANK_ATM t ype ki nd;
}

BANK_ATM Deposi t Recor d;
HRESULT deposit (i n BANK_ATM Deposi t Record * val);
}i

397

CHAPTER 14 | Mapping CORBA to COM

Mapping for Typedefs

Overview A CORBA typedef maps to a Microsoft IDL typedef. A typedef definition is
most often used for array and sequence definitions.

Example The example can be broken down as follows:
1. Consider the following OMG IDL:

/1l OM5 | DL
interface Account {.};

typedef sequence<Account, 100> AccountList;
2. The preceding OMG IDL maps to the following Microsoft IDL:
/1 Mcrosoft |DL
[object, WUD.)]
interface | Account : |Unknown {.};

Typedef struct {

} AccountLi st;

398

In This Chapter

COMet

Configuration

CHAPTER 15

This chapter describes the configuration variables that are
specific to COMet, and their associated values.

This chapter discusses the following topics:

Overview page 400
COMet:Config Namespace page 401
COMet:Mapping Namespace page 403
COMet:Debug Namespace page 404
COMet:TypeMan Namespace page 405
COMet:Services Namespace page 409

399

CHAPTER 15 | COMet Configuration

Overview

Configuration Domains

The COMet: Scope

400

Configuration variables are stored in a configuration domain. A configuration
domain can be based on one of two distinct configuration models,
depending on whether your deployment needs are small scale or large scale.
For small-scale deployment, you can implement a configuration domain as
an ASCII text file that is stored locally on each machine and edited directly.
For large-scale deployment, Orbix provides a distributed configuration
repository server that enables centralized configuration for all applications
spread across a network.

Configuration variables specific to COMet are grouped within various
namespaces within a GOwet : scope, as follows:

® QOwt:Config: ...

® QOwet: Mappi ng: ...
® QOOwet: Debug: ...

® COMet:Typeman:...
® COMet:Services:...

See the CORBA Administrator’s Guide for details of CORBA configuration
variables.

COMet:Config Namespace

COMet:Config Namespace

Overview This section describes the configuration variables within the CQwet : Confi g:

namespace.

OOMVET_SHUTDOM _PCLI CY The default setting for this variable is:

QOwet : Confi g: COMET_SHUTDOMN PCLI CY="inplicit"

The valid settings for this variable are:

"inplicit"

"explicit"

"D sabl ed"

"atExit"

This means that COMet shuts down the first time
D | Canunl oadNow is about to return yes.

This means that you must make a call to
CRB: : Shut Down() to force COMet to shut down.

This means that COMet does not shut down the ORB
when it thinks it is about to unload. That is, the DLL is
not unloaded when D | Canunl oadNow is called by the
COM runtime. Visual Basic and Internet Explorer do this
to cache the DLLs.

A problem arises, however, if the DLL is re-used, because
Orbix has already been shut down.

This means that the COMet bridge only shuts down at
process-exit time. This is the recommended setting when
running in the Visual Basic development environment.

SI NGLE_THREADED CALLBACK The default setting for this variable is:

QOMet : Confi g: SI NGLE_THREADED CALLBACK="NO'

The valid settings for this variable are:

"“NO'

This means that COMet dispatches callbacks as they arrive.

This means that you can implement your own event loop for
processing callbacks.

401

CHAPTER 15 | COMet Configuration

USE_| NTERFACE_I NI CR The default setting for this variable is:
QOWet : Confi g: USE_| NTERFACE | N | CR=" YES"

The valid settings for this variable are:

"YES' This means that COMet uses the type ID that is embedded
in the IOR as the interface name when narrowing to derived
interfaces. This can help to improve performance at
application runtime.

"NO' This means that COMet must make remote calls to
get _interface() and possibly repeated calls on the IFR
when narrowing to derived interfaces. This might have an
adverse affect on performance at application runtime.

402

COMet:Mapping Namespace

COMet:Mapping Namespace

Overview

This section describes the configuration variables within the
QOMWet : Mappi ng: hamespace.

SAFEARRAYS_CONTAI N VAR ANT The default setting for this variable is:
QQMVet : Mappi ng: SAFEARRAYS OCNTAI N VAR ANTS="yes"

There is a problem in Visual Basic when dealing with SafeArrays as out
parameters. Visual Basic does not correctly check the vV_VT type of the
SafeArray contents and automatically assumes they are of the VARI ANT type.
When constructing the out parameter, COMet cannot tell if the parameter
type has been declared (using the di mstatement) as the real type from the
type library or simply as SAFEARRAY.

The valid settings for this variable are:

"yes" This means that COMet should treat, for example, a
sequence of | ong types as mapping to a SafeArray of
VAR ANT types, where each VAR ANT contains a | ong.

"no" This means that COMet should treat, for example, a
sequence of | ong types as mapping to a SafeArray of
| ong types.

KEYWRDS An example setting for this variable is:
QOMWet : Mappi ng: KEYWDRDS="gri d, D al ogBox, bar, Foobar, hei ght"

This variable allows you to specify a list of words that are to be prefixed with
I T_, to avoid clashes when using t s2i dI to generate Microsoft IDL from
existing OMG IDL type information in the type store.

403

CHAPTER 15 | COMet Configuration

COMet:Debug Namespace

Overview

404

This section describes the configuration variable within the Gowvet : Debug:
namespace.

MessagelLevel An example setting for this variable is:
QQOwet : Debug: Messagelevel ="255, c:\tenp\conet. | og"

This variable can take any value in the range 0-255. The higher the value,
the more logging information is available. In the preceding example, a value
of 255 means that all messages are logged, in the specified conet . | og file.

COMet:TypeMan Namespace

COMet:TypeMan Namespace

Overview

This section describes the configuration variables within the
QOMWet : TypeMan: nhamespace.

TYPEMAN_CACHE _FI LE The default setting for this variable is:

QOwet : TypeMan: TYPEVAN CACHE FI LE="instal | -di r\var\it_domai nnane\
dbs\ conet "

COMet uses a memory and disk cache for efficient access to type
information. This entry specifies the name and location of the file used. It is
automatically set by the configuration script. In the preceding example,
instal | -dir represents the Orbix installation directory, and domai nnane
represents your domain name.

TYPEMAN DI SK_CACHE_SI ZE The default setting for this variable is:
OOMet : TypeMan: TYPEMAN DI SK_CACHE S| ZE=" 2000"

This variable is used in conjunction with TYPEMAN MEM CAGHE S| ZE. It
specifies the maximum number of entries allowed in the disk cache. When
this value is exceeded, entries can be flushed from the cache. The nature of
the applications using the bridge affects the value that should be assigned to
this variable. However, as a general rule, the disk cache size should be
about eight to ten times greater than the the memory cache. (See
“TYPEMAN_MEM CACHE _SI ZE" on page 406 for more details about setting
the maximum number of entries for the memory cache.)

A cache “entry” in this case corresponds to a user-defined type. For
example, a union defined in OMG IDL results in one entry in the cache. An
interface containing the definition of a structure results in two entries.

A good rule of thumb is that 1000 cache entries (given a representative
cross section of user-defined types) corresponds to approximately 2
megabytes of disk space. Therefore, the default disk cache size of 2000
allows for a maximum disk cache file size of approximately 4 megabytes.

405

CHAPTER 15 | COMet Configuration

406

When the cache is primed with type libraries for DCOM servers, the size
could be considerably larger. It depends on the size of the type libraries, and
this can vary considerably. Typically, a primed type library is more than
three times the size of the original type library, because the information is
stored in a format that optimizes speed.

TYPEMAN_MEM CACHE_SI ZE The default setting for this variable is:
COwet : TypeMan: TYPEVAN MEM CACHE_S| ZE=" 250"

This variable is used in conjunction with TYPEMAN DI SK_CACHE Sl ZE. It
specifies the maximum number of entries allowed in the memory cache.
When this value is exceeded, entries can be flushed from the cache. The
nature of the applications using the bridge affects the value that should be
assigned to this variable. However, as a general rule, the disk cache size
should be about eight to ten times greater than the the memory cache.
Furthermore, to avoid unnecessary swapping into and out from disk, you
should ensure the memory cache size is no smaller than 100. See
“TYPEMAN DI SK_CACHE_SI ZE' on page 405 for more details.

YPEMAN | FR_| OR_FI LENAME The default setting for this variable is:
QOwet : TypeMan: TYPEVAN | FR | CR_FI LENAVE=" "

When the dynamic marshalling engine in COMet encounters a type for
which it cannot find corresponding type information in the type store, it
must then retrieve the type information from the Interface Repository. The
order in which COMet attempts to connect to the Interface Repository is as
follows:
® |f a name is specified in the COvet : TypeMan: TYPEMAN | FR_NS_NAME
variable, COMet looks up that name in the Naming Service to connect
to the Interface Repository.
® |f a name is not specified in COvet : TypeMan: TYPEMAN | FR_NS_NAME,
COMet checks to see if an IOR is specified in the
initial _references:|nterfaceRepository:reference variable. If so,
it uses the Interface Repository associated with that IOR.

COMet:TypeMan Namespace

® Ifan IOR is not specified in
initial _references:|nterfaceRepository:reference, COMet
checks to see if a filename is specified in the
TYPEMAN | FR | CR_FI LENAME variable.

Consequently, you must set the TYPEMAN | FR_| CR_FI LENAME variable if you
do not set COwet : TypeMan: TYPEMAN | FR_NS_NAME or

initial _references: | nterfaceRepository:reference. In this case, the
value required is the full pathname to the file that contains the IOR for the
Interface Repository you want to use.

TYPEMAN | FR_NS_NAME The default setting for this variable is:
OOMet : TypeMan: TYPEMAN | FR NS NAME=" *

This variable is needed if you are using the Naming Service to resolve the
Interface Repository. It specifies the name of the Interface Repository in the
Naming Service. You should register an IOR for the Interface Repository in
the Naming Service under a compound name. This variable should contain
that compound name. As explained in “ TYPEMAN | FR | CR_FI LENAME’ on
page 406, this is the first configuration variable that COMet always checks if
it needs to contact the Interface Repository for type information that it
cannot find in the type store.

TYPEMAN_READONLY The default setting for this variable is:
QOwvet : TypeMan: TYPEVAN READONLY="no"

The valid settings for this variable are:

"no" This means that clients have write access to the type
store.
"yes" This means that clients have readonly access to the type

store.

This variable specifies whether clients have write access or readonly access
to the type store. If you have a scenario involving multiple Automation
clients sharing a single out-of-process bridge, it means that all your clients
are using one central type store. If clients are granted write access to the

407

CHAPTER 15 | COMet Configuration

408

type store, the type store is blocked whenever it is in use by a particular
client, and all other clients must wait until that client is finished using it.
This can have a negative impact on both performance and scalability. It is
therefore recommended that you set this configuration variable to "yes", to
only allow clients readonly access to the type store.

TYPEMAN_LOGA NG The default setting for this variable is:
COwet : TypeMan: TYPEMAN _LOGAE NG=" none”

The valid settings for this variable are:
"none" This means that no logging information is output for the
COMet type store manager (t ypeman).

" st dout " This means that logging information is used only with
t ypenman. exe.

" DBvoNn" This means that logging information is output to
DBMoN. exe.

"file" This means that logging information is output to the file
specified by the cOvet : Typeman: TYPEMAN LOG FI LE
variable.

TYPEMAN_LQG FI LE An example setting for this variable is:
Qawet : TypeMan: TYPEVAN LOG FI LE="c: \ t enp\ t ypenman. | og"

If the value of the TYPEMAN_LOGA NGvariable is set to "fil e", this variable
specifies the full path to that output file for t ypeman logging information.

COMet:Services Namespace

COMet:Services Namespace

Overview This section describes the configuration variable within the
QOMet : Servi ces: hamespace.

NareSer vi ce The default setting for this variable is:
QOwet : Servi ces: NaneServi ce=" "

By default, COMet uses the Naming Service that is specified in the Orbix
initial _references: NaneServi ce: configuration scope. If (and only if) the
value specified for that configuration variable is blank, or it relates to an
invalid IOR, COMet then uses the Naming Service that is specified by the
QOMet : Servi ces: NameSer vi ce configuration variable. The value specified is
the full pathname to the file that contains the IOR for the Naming Service
you want to use.

409

CHAPTER 15 | COMet Configuration

410

CHAPTER 16

COMet Utility
Arguments

This chapter describes the various arguments that are
available with each of the COMet command-line utilities.

In This Chapter This chapter discusses the following topics:
Typeman Arguments page 412
Ts2idl Arguments page 414
Ts2tlb Arguments page 415
Aliassrv Arguments page 416
Custsur Arguments page 417
Tlibreg Arguments page 418
Idlgen vb_genie.tcl Arguments page 419

411

CHAPTER 16 | COMet Utility Arguments

Typeman Arguments

Overview

Summary of Arguments

412

This section describes the arguments available with the t ypenan utility,
which manages the COMet type store.

The arguments available with typeman are:

-b

This allows you to view the bucket sizes in the memory cache hash
table.

This allows you to view the contents of the type store disk cache.
You can specify - cn to view the contents in the order in which they
have been added to the cache. You can specify - cu to view the UUID
of each type listed. (Every type in the type store has an associated
UUID. COMet generates UUIDs for OMG IDL types, using the MD5
algorithm, as specified by the OMG.)

This instructs t ypenan to search the Interface Repository or a type
library for a specific item of type information, and then add it to the
type store cache. You must qualify - e with an OMG IDL interface
name, a full type library pathname, the UUID of a COM IDL
interface, or the name of a text file that lists the aforementioned in
any combination. See “Adding New Information to the Type Store”
on page 180 for details of how to specify each.

If you specify an OMG IDL interface name that is not already in the
cache, typeman looks up the Interface Repository. If you specify a
type library pathname or UUID that is not already in the cache,

t ypeman looks up the relevant type library. Regardless of where the
type information originates, t ypeman then copies it to the type store
cache.

This allows you to view the type store data files. These include the
disk cache data file (t ypeman. _dc), the disk cache index file
(typeman. i dc), the disk cache empty record index file

(t ypeman. edc), and the UUID name mapper file (t ypeman. map).

This instructs t ypenan to display " Cache niss" on the screen, if a
type it is looking for is not already in the cache. If the type is already
in the cache, t ypeman displays "Mem cache hit" on the screen.

-?2

Typeman Arguments

This instructs t ypenan to always query the Interface Repository for
an item of OMG IDL type information. This can be used to compare
the performance of different ORBs, and so on.

This logs the type store basic contents to the screen. Enter -1 + to log
newly added and deleted entries. Enter -1 t1b to log type library
information. Enter -1 uni on to log OMG IDL information for unions.

This generates static bridge compatible names for OMG IDL
sequences.

This allows you to view the v-table contents for an interface or struct.
This option provides output such as the following:

Nane Sorted V-tabl e Dspld COfset
bal ance get nakelLodgerent 1 0
makelLodgenent nmakeW t hdr aval 2 1
makeW t hdr anal bal ance 3 2
overdraftLimt get overdraftLimt 4 3

This deletes the type store contents. This means that it deletes the
disk cache data file (t ypeman. _dc), the disk cache index file
(typenan. i dc), and the disk cache empty record index file

(t ypeman. edc). If you also want to delete the UUID name mapper
file (t ypenman. map), you must enter - wminstead. Deleting the type
store contents is useful when you want to reprime the cache. You
might want to reprime the cache, for example, if it contains type
information for an interface that has subsequently been modified.

This allows you to view the actual size to which the memory cache
temporarily grows when t ypenman is loading in a containing type
(such as a module) to retrieve a contained type (such as an interface
within that module).

This outputs the usage string for t ypeman.

This allows you to view the format of the entries that you can include
in a text file, which you can specify with the - e option, if you want to
prime the cache simultaneously with any number and combination
of type names, type library pathnames, and COM UUIDs.

413

CHAPTER 16 | COMet Utility Arguments

Ts2idl Arguments

Overview

Summary of Arguments

414

This section describes the arguments available with the ts2idl
utility, which allows you to create COM IDL definitions, based on
existing OMG IDL type information in the type store.

The arguments available with ts2i dl are:

-C

This instructs t s2i dI not to query the Interface Repository for the
specified OMG IDL interface. In this case, ts2i dl searches only the
type store for the relevant information.

Use this to specify the name of the IDL file to be created. You must
qualify this option with the filename (for example, grid.idl). In
turn, you must qualify the filename with the name of the item of type
information on which it is being based. For example:

ts2idl -f grid.id grid

This instructs t s2i dI to generate a COM IDL file, based on OMG IDL
information in the type store. This is a default option. You do not
have to specify - m to create a COM IDL file.

You can use this option when generating COM IDL, based on OMG
IDL information in the type store. It is a useful labor-saving device
that produces a makefile for building the proxy/stub DLL, which
subsequently marshals requests from the COM client to CORBA
objects.

You can use this option when generating COM IDL based on OMG
IDL interfaces that employ user-defined types. This option
completely resolves those types and produces COM IDL for them.

This forces inclusion of standard types from | TSt dcon. i dl and
orb.idl.

This outputs the usage string for t s2i dl . You can also use - ? for
this.

Ts2tlb Arguments

Ts2tlb Arguments

Overview

Summary of Arguments

This section describes the arguments available with the ts2t1 b utility,
which allows you to create a type library, based on existing OMG IDL type
information in the type store.

The arguments available with ts2t| b are:

-f

Use this to specify the name of the type library to be created. You
must qualify this option with the type library filename. The default is
to use the type name on which the type library is based, with a .tlb
suffix (for example, grid. t1b).

This indicates that interface prototypes are to appear as | D spat ch,
instead of using the specific interface name. If you do not specify this
option, the specific interface name is used.

Use this to specify the internal library name in which the type library
is to be created. You must qualify this option with the library name.
The default is to use the type name on which the type library is

based, with an I T_Li brary_ prefix (for example, | T_Li brary_gri d).

This prefixes parameter names with it _.

This outputs the usage string for t s2t I b. You can also use - ? for
this.

415

CHAPTER 16 | COMet Utility Arguments

Aliassrv Arguments

Overview This section describes the arguments available with the al i assrv utility,
which is used in association with the srvAl i as GUI tool, to allow you to
replace a legacy DCOM server with a CORBA server. See “Replacing an
Existing DCOM Server” on page 196 for more details.

Summary of Arguments The arguments available with al i assrv are:

-c This indicates the CLSID of the legacy DCOM server that is being
replaced. You must qualify this argument with the actual CLSID
enclosed in opening and closing braces (that is, { and }).

-d This deletes the registry key denoted by the specified CLSID. You
must qualify - d with the - ¢ argument, which in turn must be
qualified with the CLSID.

-r This aliases the specified CLSID to COMet, so that the next time you
run a DCOM client of the legacy server whose CLSID is specified,
COMet is used instead of the legacy server. You must qualify - r with
the name of the file that contains the modified registry entries, to
restore the registry entries on the destination machine. For example:

aliassrv -r replace.reg -c {Q_SI D}

-V This outputs the usage string for al i assrv. You can also use - ? for
this.

416

Custsur Arguments

Custsur Arguments

Overview

Summary of Arguments

This section describes the arguments available with the cust sur utility,
which is a generic surrogate program that hosts the COMet DLLs when the
bridge is loaded out-of-process. You can use cust sur to generate IORs for
non-Orbix clients.

The arguments available with cust sur are:

-f This specifies the filename to which the IOR is to be written.

-9 This instructs cust sur to generate an IOR.

-i This specifies the interface name for which the IOR is to be created.
-m This specifies the marker name.

-s This specifies the name of the server.

-t This specifies a timeout value, in milliseconds, for the server being
implemented by cust sur.

-V This outputs the usage string for cust sur. You can also use - ? for
this.

417

CHAPTER 16 | COMet Utility Arguments

Tlibreg Arguments

Overview

Summary of Arguments

418

This section describes the arguments available with the t1i breg utility,
which allows you to register and unregister a type library that you have
generated from OMG IDL via ts2tl b. The t1i breg utility registers the type
library with the Windows registry.

The arguments available with t1i breg are:

-u This unregisters a type library. You must qualify this option with the
full type library pathname.

-v This outputs the usage string for t s2sp. You can also use - ? for this.

Idigen vb_genie.tcl Arguments

Idlgen vb_genie.tcl Arguments

Overview

Summary of Arguments

The Visual Basic code generation genie allows for quick, easy, and
automatic development of Visual Basic clients from existing OMG IDL
definitions. It can be run from the command line, using the following
command format:

idlgen vb_genie.tcl [options] filenane.idl [interface w ldcard]*

In the preceding format, fi | ename represents the name of the OMG IDL file
from which the Visual Basic code is generated.

The arguments available with i dl gen vb_genie.tcl are:

-dir

Before i dl gen parses an IDL file, it sends the IDL file through
an IDL preprocessor. The -1 argument is one of two arguments
that allow you to pass information to the IDL preprocessor.
Specifically, -1 lets you specify the include path for the
preprocessor. For example:

idlgen vb_genie.tcl -I/inc -1./lstd/inc bank.idl

The - Dargument also allows you to pass information to the IDL
preprocessor. Specifically, - D lets you define additional
preprocessor symbols. For example:

idl gen vb_genie.tcl -I/inc -DDEBUG

This outputs the usage string for i dl gen vb_genie.tcl .

This indicates that the genie is to run in verbose mode (that is,
diagnostic messages are written to standard output when the
genie is generating an output file).

This indicates that the genie is to run in silent mode (that is,
diagnostic messages are not written to standard output when
the genie is generating an output file).

This specifies the directory path to which the generated file is to
be output. This option must be qualified by a full directory path.
If -di r is not specified, all output files are written to the current
directory.

419

CHAPTER 16 | COMet Utility Arguments

420

-incl ude

-nons

-ns

By default, the genie generates client code for the specified IDL
files only. This argument allows you to specify that the genie
must also generate code for all #i ncl ude files specifed in the
IDL. For example:

id gen vb_genie.tcl -all -include grid.idl

The preceding example specifies that the genie is to generate
Visual Basic client code from grid.idl and any IDL files that
are included in it.

This indicates that stringified object references are to be written
to an IOR file, instead of using the Naming Service. This is the
default setting. The IOR filename consists of the interface name
and . ref suffix. This argument is mutually exclusive with the
-ns argument.

Specify this argument only if it was also specified when
generating the CORBA server with the CORBA Code Generation
Toolkit.

This indicates that the Naming Service is to be used to publish
object references, instead of writing them to an IOR file by
default. This argument is mutually exclusive with the - nons
argument.

Specify this argument only if it was also specified when
generating the CORBA server with the CORBA Code Generation
Toolkit.

Index

A
abstract interfaces in IDL 291
activator daemon 95, 110
algorithm, MD5 70, 362
aliassrv 198
options 416
any type
in IDL 294
any type (in OMG IDL) 224, 253
CORBA-to-Automation mapping 347
CORBA-to-COM mapping 388
API reference
Automation 222-250
COM 251-267
application runtime, installing 162
applications, deploying 151-165
Application Server Platform Deployment
Environment, installing 162
array type
in IDL 304
array type (in OMG IDL)
CORBA-to-Automation mapping 342
CORBA-to-COM mapping 380
attributes
in IDL 279
attributes (in OMG IDL)
CORBA-to-Automation mapping 321
CORBA-to-COM mapping 364
Automation clients
building 95
implementing in PowerBuilder 50, 92
implementing in Visual Basic with code
generation 43, 85

implementing in Visual Basic without code

generation 47, 89
introduction to 24
running 95

Automation interfaces
DICORBAAny 223
DICORBAFactory 228
DICORBAFactoryEx 230
DICORBAObject 232
DICORBAStruct 234

DICORBASystemException 235
DICORBATypeCode 236
DICORBAUnion 240
DICORBAUserException 241
DIForeignComplexType 242
DIForeignException 243
DIObject 244
DIObjectinfo 245
DIOrbixORBObject 246
DIORBObject 249
Automation view interface 316

B
basic types
in IDL 293
basic types (in OMG IDL)
CORBA-to-Automation mapping 315
CORBA-to-COM mapping 359
binding, early and late 14, 29, 68
bitwise operators 311
bounded sequences 379
bridge
aliasing 196
introduction to 24
bridge locations
client machines 153
intermediary machine 157
introduction to 30, 32
server machine 159
built-in types in IDL 293

C
caching mechanism 176
callbacks 137-7?
generating stub code for 142
implementing 139
char type
in IDL 294
clients
writing 143

clients. See Automation clients, COM clients

client-side footprint, minimizing 164

INDEX

clone() 245
CLSID 197
CoCreatelnstance() 106
COM clients
building 110
implementing in C++ 71
introduction to 25
running 110
cometcfg 179
COM exceptions, catching 132

COM IDL, creating from OMG IDL 72, 101, 186

COM interfaces
ICORBA_Any 252
ICORBAFactory 254
ICORBAObject 256
ICORBA_TypeCode 258
ICORBA_TypeCodeExceptions 262
IMonikerProvider 221
I0rbixORBObject 263
IORBODbject 266

COM library 25

command options 411-420

commands
aliassrv 198, 416
custsur 58, 417
idlgen vb_genie 213, 419
srvAlias 196, 416
tlibreg 70, 418
ts2idl 189, 414
ts2tlb 193, 415
typeman 182, 412

COM-to-CORBA model
implementation of 20
introduction to 18

configuration domain 400

configuration namespaces
Config 401
Debug 404
Mapping 403
Services 409
TypeMan 405

configuration repository 400

configuration variables 399-409
COMET_SHUTDOWN_POLICY 401
KEYWORDS 403
Messagelevel 404
NameService 409

SAFEARRAYS_CONTAIN_VARIANTS 403
SINGLE_THREADED_CALLBACK 401, 402

422

TYPEMAN_CACHE_FILE 405

TYPEMAN_DISK_CACHE_SIZE 405

TYPEMAN_IFR_IOR_FILENAME 406

TYPEMAN_IFR_NS_NAME 407

TYPEMAN_LOG_FILE 408

TYPEMAN_LOGGING 408

TYPEMAN_MEM_CACHE_SIZE 406

TYPEMAN_READONLY 407
constant definitions in IDL 308
constant expressions in IDL 311
constant fixed types in IDL 298
constant types (in OMG IDL)

CORBA-to-Automation mapping 352

CORBA-to-COM mapping 393
constructed types (in OMG IDL)

CORBA-to-Automation mapping 332

CORBA-to-COM mapping 373

in Automation 230, 332

in COM 373
content_type() 227, 239, 261
context clause (in OMG IDL) 348, 390
CORBA complex types 331, 372
CORBA exceptions

handling in Automation 122

handling in COM 131

properties of 118
CORBA interface hierarchy 328, 368
CORBA servers

introduction to 25

registering 95, 110

replacing DCOM servers with 196, 416
CORBA-to-Automation mapping 313-356

anys 347

arrays 342

attributes 321

basic types 315

constants 352

constructed types 332

enums 353

exceptions 343

interfaces 318

modules 351

object references 348

operations 323

scoped names 355

sequences 339

strings 317

structs 333

typedefs 356

unions 335
CORBA-to-COM mapping 357-398

anys 388

arrays 380

attributes 364

basic types 359

constants 393

constructed types 373

enums 395

exceptions 381

inheritance 368

interfaces 361

modules 392

object references 390

operations 366

scoped names 397

sequences 378

strings 360

structs 374

typedefs 398

unions 376
CreateType() 230, 332
CreateTypeByld() 230
custsur 58

options 417

D
daemons 95, 110
data types, defining in IDL 307
DCOM
limitations of 23
using with COMet 54
DCOM proxy DLL 101, 186
DCOM servers, replacing with CORBA servers 196,
416
decimal fractions 298
default_index() 226, 239, 261
deploying applications 151-165
deployment
recommended scenario for 55
scenario recommended for Automation 29
scenario supported for COM 31
deployment models
bridge on each client machine 153
bridge on server machine 159
bridge shared by multiple clients 157
internet 161
DICORBAAny 223
DICORBAFactory 196, 228

INDEX

DICORBAFactoryEx 230, 332
DICORBAObject 232

DICORBAStruct 234, 333
DICORBASystemException 120, 235, 343
DICORBATypeCode 236

DICORBAUnion 240, 335
DICORBAUserException 241
DIForeignComplexType 242, 332
DIForeignException 119, 243

DIObject 244

DIObjectinfo 245

DIOrbixORBObject 246

DIORBODbject 249

direct-to-COM support, using in Visual C++ 134
discriminator_type() 226, 238, 260

disk cache 177

dual interfaces 14, 29, 68, 319

E
early binding 14, 29, 68
empty interfaces in IDL 281
enum type
in IDL 300
ordinal values of 300
enum type (in OMG IDL)
CORBA-to-Automation mapping 353
CORBA-to-COM mapping 395
equal() 259
equivalence of object references 233
Err object 123
error-handling code 127
exception handling 113-135
exceptions, in IDL 280
See also system exceptions, user exceptions
exceptions See also system exceptions
CORBA-to-Automation mapping 343
CORBA-to-COM mapping 381
handling in Automation 122
handling in COM 131
properties of 118
exception type (in OMG IDL)
in Automation 230, 332
in COM 373
EX_completionStatus() 235
EX_Id() 243
EX_majorCode() 243
EX_minorCode() 235
extended built-in types in IDL 296

423

INDEX

F

factory. See object factory
fixed type
in IDL 297
floating point type in IDL 293
footprint, minimizing client-side 164
forward declaration of interfaces in IDL 287

G
genies
C++ 43
Visual Basic 43, 85
get BadKind() 262
get Bounds() 262
GetConfigValue() 247, 263
get CORBAAnyData() 253
GetCORBAODbject() 250
GetForeignReference() 220
Getlmplementation() 232, 256
GetlnitialReferences() 250, 267
GetInterface() 232, 256
get_moniker() 221
GetObject() 229, 255
COM C++ example 103
example 144
PowerBuilder example 87
Visual Basic example 86
get_typeCode() 253
GetUniqueld() 220
get value() 253

H

Hash() 233, 257

hierarchy of interfaces in OMG IDL
mapping to Automation 328
mapping to COM 368

|
ICORBA Any 252
ICORBAFactory 196, 254
ICORBAObject 256
ICORBA _TypeCode 258
ICORBA_TypeCodeExceptions 262
id() 225, 237, 259
IDispatch, use in late binding 68
IDispatch interfaces

use in deployment 29
IDL

424

abstract interfaces 291
arrays 304
attributes 279
built-in types 293
constant definitions 308
constant expressions 311
creating COM IDL from 72, 102, 186
creating type libraries from 68, 84, 190
empty interfaces 281
enum type 300
exceptions 280
extended built-in types 296
forward declaration of interfaces 287
inheritance redefinition 286
interface inheritance 282
local interfaces 288
modules and name scoping 271
multiple inheritance 283
object interface inheritance 285
operations 276
pseudo object types 306
registering 180
sequence type 305
struct type 301
structure 270
union type 302
valuetypes 290
idlgen vb_genie.tcl 213, 419
IIOP 23
use in deployment 27, 152
IMonikerProvider 221
Implementation Repository 95, 110
implementing
callbacks 139
server for client callbacks 150
inheritance (in OMG IDL)
CORBA-to-Automation mapping 325
CORBA-to-COM mapping 368
multiple 328
inheritance redefinition in IDL 286
inline exception handling in Automation 125
insert_safearray() 227
INSTANCE clone() 242
INSTANCE _repositoryld() 242
interface (in OMG IDL)
CORBA-to-Automation mapping 318
CORBA-to-COM mapping 361
interface hierarchy (in OMG IDL)
CORBA-to-Automation mapping 328

CORBA-to-COM mapping 368
interface inheritance in IDL 282
internet deployment 161
Internet Explorer 61
Internet Explorer security settings 65
Internet Inter-ORB Protocol. See 1I0P
I0rbixORBObject 263
IORBODbject 266
IsA() 233, 256
IsEquivalent() 233, 257
IsNil() 233, 257

K
kind() 224, 237, 259

L

late binding 13, 29, 68

length() 226, 239, 261

local interfaces in IDL 288

local object pseudo-operations 289
locator daemon 95, 110

long double type in IDL 297

long long type in IDL 296

M

MD5 algorithm 70, 362

member_count() 225, 237, 259

member_label() 226, 238, 260

member_name() 225, 238, 260

member_type() 226, 238, 260

memory cache 177

module (in OMG IDL)
CORBA-to-Automation mapping 351
CORBA-to-COM mapping 392

modules and name scoping in IDL 271

multiple inheritance 328

multiple inheritance in IDL 283

N

name() 225, 237, 259

Narrow() 248

nil object references 233
NonExistent() 233, 257

(0]
object factory 87, 104
creating remote instance of 157, 159

INDEX

object interface inheritance in IDL 285
object references
Automation 86
COM 103
converting to strings 249, 266
CORBA-to-Automation mapping 348
CORBA-to-COM mapping 390
equivalent 233
foreign 220
nil 233
ObjectToString() 249, 266
octet type
in IDL 294
OLE collections 342
OMG IDL See IDL
operation (in OMG IDL)
CORBA-to-Automation mapping 323
CORBA-to-COM mapping 366
operations
in IDL 276

P
parameter-passing modes
CORBA-to-Automation mapping 323
CORBA-to-COM mapping 366
PowerBuilder
example of GetObject() 87
runtime 162
writing clients in 50, 92
ProcessEvents() 247, 264
properties of CORBA exceptions 118
protocols
introduction to 23
limitations in using DCOM 29
pseudo object types in IDL 306
put CORBAAnyData() 253
put_value() 253

R
references. See object references
ReleaseCORBAView() 247, 264
ResolvelnitialReference() 250, 267
return types
CORBA-to-Automation mapping 323
CORBA-to-COM mapping 366
RunningInIDE() 247
runtime errors, mapping from CORBA to
Automation 316

425

INDEX

runtime requirements 162

S

SafeArrays 339, 342

scoped_name() 245

scoped names (in OMG IDL)
CORBA-to-Automation mapping 355
CORBA-to-COM mapping 397

self-referential data types 375

sequence type
in IDL 305

sequence type (in OMG IDL)
CORBA-to-Automation mapping 339
CORBA-to-COM mapping 378

servers
implementing for client callbacks 150
replacing DCOM with CORBA 196

SetOrbName() 248, 265

ShutDown() 247, 264

single inheritance 326

srvAlias 196, 416

StartUp() 247, 264

stringified object references 249, 266

StringToObject() 249, 266

string type
in IDL 294

string type (in OMG IDL)
CORBA-to-Automation mapping 317
CORBA-to-COM mapping 360

struct type
in IDL 301

struct type (in OMG IDL)
CORBA-to-Automation mapping 333
CORBA-to-COM mapping 374
in Automation 230, 332
in COM 373

stub code
generating for callbacks 142

system exceptions 120
CORBA-to-Automation mapping 343
CORBA-to-COM mapping 383
properties of 120

T

target object

binding view object to 88, 105
tlibreg 70

options 418

426

ts2idl 189
location of 172
options 414

ts2tlb 193
location of 172
options 415

typedef (in OMG IDL)
CORBA-to-Automation mapping 356
CORBA-to-COM mapping 398

type libraries
creating from OMG IDL 68, 84, 190
registering 70, 418

typeman 182
location of 172
options 412

type_name() 245

type store
adding OMG IDL to 180
caching mechanism 176
central role of 174
creating COM IDL from 186
creating type libraries from 190
deleting contents of 184
dumping contents of 185
priming 180

U
unbounded sequences 378
Union_d() 240
union type
in IDL 302
union type (in OMG IDL)
CORBA-to-Automation mapping 335
CORBA-to-COM mapping 376
in Automation 230, 332
in COM 373
unique_id() 245
usage models 27-32
Automation client to CORBA server 28
COM client to CORBA server 31
user exceptions
CORBA-to-Automation mapping 345
CORBA-to-COM mapping 383, 386
UUIDs, generating 70

\"
value() 224
valuetypes in IDL 290

INDEX

view object
binding to target object 88, 105
introduction to 19
obtaining reference to in Automation 80
obtaining reference to in COM 98
Visual Basic
example of GetObject() 86
generating clients in, using genie 43
runtime 162
writing clients in 47, 89
Visual C++, using direct-to-COM support in 134
vtable 14, 68, 319

w

wchar type in IDL 297
writing a client 143
wstring type in IDL 297

Z

zero install configuration 164

427

INDEX

428

	Introduction
	COM and CORBA Principles
	Main Similarities and Differences
	CORBA Overview
	COM Overview
	COM
	Automation

	Introduction to COMet
	The Interworking Model
	How COMet Implements the Model
	COMet System Components

	Usage Models and Bridge Locations
	Automation Client to CORBA Server
	COM Client to CORBA Server

	Programmer’s Guide
	Getting Started
	Prerequisites
	Developing Automation Clients
	Introduction
	Using the Visual Basic Genie
	Writing a Visual Basic Client without the Genie
	Writing a PowerBuilder Client
	Running the Client

	Using DCOM with COMet
	Introduction
	Launching the COMet Bridge Out-of-Process
	DCOM Security

	Using COMet with Internet Explorer
	Specifying the Bridge Location
	The Supplied Demonstration

	Automation Dual Interface Support
	Developing COM Clients
	Generating Microsoft IDL from OMG IDL
	Compiling Microsoft IDL
	Writing a COM C++ Client

	Priming the COMet Type Store Cache

	Developing an Automation Client
	The Telephone Book Example
	Using Automation Dual Interfaces
	Writing the Client
	Obtaining a Reference to a CORBA Object
	The Visual Basic Client Code in Detail
	The PowerBuilder Client Code in Detail

	Building and Running the Client

	Developing a COM Client
	The Telephone Book Example
	Prerequisites
	Writing the Client
	Obtaining a Reference to a CORBA Object
	The COM C++ Client Code in Detail

	Building and Running the Client

	Exception Handling
	CORBA Exceptions
	Example of a User Exception
	Exception Properties
	General Exception Properties
	Additional System Exception Properties

	Exception Handling in Automation
	Exception Handling in Visual Basic
	Inline Exception Handling
	Using Type Information

	Exception Handling in COM
	Catching COM Exceptions
	Using Direct-to-COM Support

	Client Callbacks
	Introduction to Callbacks
	Implementing Callbacks
	Defining the OMG IDL Interfaces
	Generating Stub Code for the Callback Objects
	Implementing the Client
	Implementing the Client in Visual Basic
	Implementing the Client in PowerBuilder
	Implementing the Client in COM C++

	Implementing the Server

	Deploying a COMet Application
	Deployment Models
	Bridge In-Process to Each Client
	Bridge Out-of-Process on Each Client Machine
	Bridge on Intermediary Machine
	Bridge on Server Machine
	Internet Deployment

	Deployment Steps
	Minimizing the Client-Side Footprint
	Deploying Multiple Hosts

	Development Support Tools
	The COMet Type Store
	The Central Role of the Type Store
	The Caching Mechanism of the Type Store

	The COMet Tools Window
	Adding New Information to the Type Store
	Using the GUI Tool
	Using the Command Line

	Deleting the Type Store Contents
	Dumping the Type Store Contents
	Creating a Microsoft IDL File
	Using the GUI Tool
	Using the Command Line

	Creating a Type Library
	Using the GUI Tool
	Using the Command Line

	Creating Stub Code for Client Callbacks
	Replacing an Existing DCOM Server
	Generating Visual Basic Client Code
	Introduction
	Using the GUI Tool
	Using the Command Line

	Programmer’s Reference
	COMet API Reference
	Common Interfaces
	IForeignObject
	IMonikerProvider

	Automation-Specific Interfaces
	DICORBAAny
	DICORBAFactory
	DICORBAFactoryEx
	DICORBAObject
	DICORBAStruct
	DICORBASystemException
	DICORBATypeCode
	DICORBAUnion
	DICORBAUserException
	DIForeignComplexType
	DIForeignException
	DIObject
	DIObjectInfo
	DIOrbixORBObject
	DIORBObject

	COM-Specific Interfaces
	ICORBA_Any
	ICORBAFactory
	ICORBAObject
	ICORBA_TypeCode
	ICORBA_TypeCodeExceptions
	IOrbixORBObject
	IORBObject

	Introduction to OMG IDL
	IDL
	Modules and Name Scoping
	Interfaces
	Introduction to Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	Mapping CORBA to Automation
	Mapping for Basic Types
	Mapping for Strings
	Mapping for Interfaces
	Basic Interface Mapping
	Mapping for Attributes
	Mapping for Operations

	Mapping for Interface Inheritance
	Mapping for Single Inheritance
	Mapping for Multiple Inheritance

	Mapping for Complex Types
	Creating Constructed OMG IDL Types
	Mapping for Structs
	Mapping for Unions
	Mapping for Sequences
	Mapping for Arrays
	Mapping for System Exceptions
	Mapping for User Exceptions
	Mapping for the Any Type

	Mapping for Object References
	Mapping for Modules
	Mapping for Constants
	Mapping for Enums
	Mapping for Scoped Names
	Mapping for Typedefs

	Mapping CORBA to COM
	Basic Types
	Mapping for Strings
	Mapping for Interfaces
	Mapping Interface Identifiers
	Mapping for Nested Types
	Mapping for Attributes
	Mapping for Operations

	Mapping for Interface Inheritance
	Mapping for Complex Types
	Creating Constructed OMG IDL Types
	Mapping for Structs
	Mapping for Unions
	Mapping for Sequences
	Mapping for Arrays
	Mapping for System Exceptions
	Mapping for User Exceptions
	Mapping for the Any Type

	Mapping for Object References
	Mapping for Modules
	Mapping for Constants
	Mapping for Enums
	Mapping for Scoped Names
	Mapping for Typedefs

	COMet Configuration
	Overview
	COMet:Config Namespace
	COMet:Mapping Namespace
	COMet:Debug Namespace
	COMet:TypeMan Namespace
	COMet:Services Namespace

	COMet Utility Arguments
	Typeman Arguments
	Ts2idl Arguments
	Ts2tlb Arguments
	Aliassrv Arguments
	Custsur Arguments
	Tlibreg Arguments
	Idlgen vb_genie.tcl Arguments

