
CORBA Tutorial C++
Version 6.2, December 2004

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001–2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 07-Dec-2004

Contents

Chapter 1 Getting Started with Orbix 1

Creating a Configuration Domain 2
Setting the Orbix Environment 11
Hello World Example 12
Development Using the Client/Server Wizard 14
Development from the Command Line 25

Index 31
iii

CONTENTS
 iv

CHAPTER 1

Getting Started
with Orbix
You can use the CORBA Code Generation Toolkit to develop
an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the
client and server application code, including makefiles. You then complete
the distributed application by filling in the missing business logic.

In this chapter This chapter contains the following sections:

Creating a Configuration Domain page 2

Setting the Orbix Environment page 11

Hello World Example page 12

Development Using the Client/Server Wizard page 14

Development from the Command Line page 25
1

CHAPTER 1 | Getting Started with Orbix
Creating a Configuration Domain

Overview This section describes how to create a simple configuration domain, simple,
which is required for running basic demonstrations. This domain deploys a
minimal set of Orbix services.

Prerequisites Before creating a configuration domain, the following prerequisites must be
satisfied:

• Orbix is installed.

• Some basic system variables are set up (in particular, the
IT_PRODUCT_DIR, IT_LICENSE_FILE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing The location of the license file, licenses.txt, is specified by the
IT_LICENSE_FILE system variable. If this system variable is not already set
in your environment, you can set it now.

Steps To create a configuration domain, simple, perform the following steps:

1. Run itconfigure.

2. Choose the domain type.

3. Specify service startup options.

4. Specify security settings.

5. Specify fault tolerance settings.

6. Select services.

7. Confirm choices.

8. Finish configuration.
 2

Creating a Configuration Domain
Run itconfigure To begin creating a new configuration domain, enter itconfigure at a
command prompt. An Orbix Configuration Welcome dialog box appears, as
shown in Figure 1.

Select Create a new domain and click OK.

Figure 1: The Orbix Configuration Welcome Dialog Box
3

CHAPTER 1 | Getting Started with Orbix
Choose the domain type A Domain Type window appears, as shown in Figure 2.

In the Configuration Domain Name text field, type simple. Under
Configuration Domain Type, click the Select Services radiobutton.

Click Next> to continue.

Figure 2: The Domain Type Window
 4

Creating a Configuration Domain
Specify service startup options A Domain Type window appears, as shown in Figure 3.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

Figure 3: The Service Startup Window
5

CHAPTER 1 | Getting Started with Orbix
Specify security settings A Security window appears, as shown in Figure 4.

You can leave the settings in this Window at their defaults (no security).

Click Next> to continue.

Figure 4: The Security Window
 6

Creating a Configuration Domain
Specify fault tolerance settings A Fault Tolerance window appears, as shown in Figure 5.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

Figure 5: The Fault Tolerance Window
7

CHAPTER 1 | Getting Started with Orbix
Select services A Select Services window appears, as shown in Figure 6.

In the Select Services window, select the following services and components
for inclustion in the configuration domain: Location, Node daemon,
Management, CORBA Interface Repository, CORBA Naming, and demos.

Click Next> to continue.

Figure 6: The Select Services Window
 8

Creating a Configuration Domain
Confirm choices You now have the opportunity to review the configuration settings in the
Confirm Choices window, Figure 7. If necessary, you can use the <Back
button to make corrections.

Click Next> to create the configuration domain and progress to the next
window.

Figure 7: The Confirm Choices Window
9

CHAPTER 1 | Getting Started with Orbix
Finish configuration The itconfigure utility now creates and deploys the simple configuration
domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and
OrbixInstallDir/var directories.

If the configuration domain is created successfully, you should see a
Summary window with a message similar to that shown in Figure 8.

Click Finish to quit the itconfigure utility.

Figure 8: Configuration Summary
 10

Setting the Orbix Environment
Setting the Orbix Environment

Prerequisites Before proceeding with the demonstration in this chapter you need to
ensure:

• The CORBA developer’s kit is installed on your host.

• Orbix is configured to run on your host platform.

The Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Setting the Domain The scripts that set the Orbix environment are associated with a particular
domain, which is the basic unit of Orbix configuration. Consult the
Installation Guide, and the Administrator’s Guide for further details on
configuring your environment.

To set the Orbix environment associated with the domain-name domain,
enter:

Windows

UNIX

config-dir is the root directory where the Appliation Server Platform stores
its configuration information. You specify this directory while configuring
your domain. domain-name is the name of a configuration domain.

Note: OS/390, both native and UNIX system services, do not support the
code generation toolkit and distributed genies. For information about
building applications in a native OS/390 environment, see the readme files
and JCL that are supplied in the DEMO data sets of your iPortal OS/390
Server product installation.

> config-dir\etc\bin\domain-name_env.bat

% . config-dir/etc/bin/domain-name_env
11

CHAPTER 1 | Getting Started with Orbix
Hello World Example
This chapter shows how to create, build, and run a complete client/server
demonstration with the help of the CORBA code generation toolkit. The
architecture of this example system is shown in Figure 9.

The client and server applications communicate with each other using the
Internet Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a
client invokes a remote operation, a request message is sent from the client
to the server. When the operation returns, a reply message containing its
return values is sent back to the client. This completes a single remote
CORBA invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

The IDL declares a single Hello interface, which exposes a single operation
getGreeting(). This declaration provides a language neutral interface to
CORBA objects of type Hello.

Figure 9: Client makes a single operation call on a server

C lien t M a ch in e

C lien t A p p lic a tio n

ID L In te r fa c e

S e r ve r A pp lic a tio n

S e r ve r M ach in e

O R B O R B

C o d e C od e

O p e ra tio n C a ll

R e su lt

C O R B A
O b je c t

//IDL
interface Hello {
 string getGreeting();
};
 12

Hello World Example
The concrete implementation of the Hello CORBA object is written in C++
and is provided by the server application. The server could create multiple
instances of Hello objects if required. However, the generated code
generates only one Hello object.

The client application has to locate the Hello object—it does this by reading
a stringified object reference from the file Hello.ref. There is one operation
getGreeting() defined on the Hello interface. The client invokes this
operation and exits.
13

CHAPTER 1 | Getting Started with Orbix
Development Using the Client/Server Wizard

Overview On the Windows NT platform, Orbix provides a wizard add-on to the
Microsoft Visual Studio integrated development environment (IDE) that
enables you to generate starting point code for CORBA applications.

If you are not working on a Windows platform or if you prefer to use a
command line approach to development, see “Development from the
Command Line” on page 25.

Installing the client/server wizard You can install the Orbix v6.2 Client/Server wizard into the Microsoft Visual
C++ 6.0 development environment either automatically or manually.

Automatic Install

To install the client/server wizard automatically, use Windows Explorer to
navigate to the following directory:

OrbixInstallDir\asp\6.2\etc\wizard

Double-click setup.exe in this directory to install the wizard files.

Manual Install

To install the client/server wizard manually, copy the following files from the
OrbixInstallDir\asp\6.2\etc\wizard directory:

it_artwiz5_vc60.awx
it_artwiz5_vc60.hlp

Paste these files into the VisualStudioInstallDir\Common\MSDev98\Template
directory. The value of VisualStudioInstallDir is usually C:\Program
Files\Microsoft Visual Studio.
 14

Development Using the Client/Server Wizard
Prerequisites You must ensure that the Orbix include and library directories are added to
the Microsoft Visual Studio configuration. Start up the Microsoft Visual C++
6.0 IDE, select Tools|Options... from the menu bar, and click on the
Directories tab. Use this dialog box to add the following Orbix directories to
the Visual Studio configuration:

Orbix Include Directory
OrbixInstall\asp\6.2\include

Orbix Library Directory
OrbixInstall\asp\6.2\lib

Steps to implement Hello World You implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate the server.

3. Complete the server program by implementing the single IDL
getGreeting() operation.

4. Build the server program.

5. Generate the client.

6. Complete the client program by inserting a line of code to invoke the
getGreeting() operation.

7. Build the client program.

8. Run the demonstration.

Define the IDL interface Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

Create an IDL file C:\OCGT\HelloExample\hello.idl using a text editor.

Enter the following text into the hello.idl file:

> mkdir C:\OCGT\HelloExample

//IDL
interface Hello {
 string getGreeting();
};
15

CHAPTER 1 | Getting Started with Orbix
This interface mediates the interaction between the client and the server
halves of the distributed application.

Generate the server Generate files for the server application using the CORBA Code Generation
Toolkit.

To create a server project using the IONA Orbix client/server wizard:

1. Open the Microsoft Visual C++ 6.0 integrated development
environment (IDE).

2. From the Visual C++ menus, select File|New

3. In the New dialog, click on the Projects tab.

4. In the Projects tab, perform these actions:

♦ Select IONA Orbix v6.2 Client/Server Wizard

♦ In the Project name text box, enter server

♦ Under the Location text box, enter
C:\OCGT\HelloExample\server

5. Click OK.

The client/server wizard dialog displays.
 16

Development Using the Client/Server Wizard
6. Answer two questions as follows:

♦ What CORBA IDL file would you like to use for this project?

Enter the location of hello.idl.

♦ Would you like to generate a working client or server?

Select Server

7. Advance to the next screen by clicking Next.
17

CHAPTER 1 | Getting Started with Orbix
8. The server wizard displays the following dialog:

9. Accept the default settings and click Finish to generate the server.

10. The New Project Information scrollbox tells you about the generated
files. Browse the information and select OK.

11. The server workspace is generated with the following source files:

12. Read the text file ReadmeOrbixServer.txt.
 18

Development Using the Client/Server Wizard
Complete the server program Complete the implementation class, HelloImpl by providing the definition of
getGreeting(). This method implements the IDL operation
Hello::getGreeting().

Delete the generated boilerplate code that occupies the body of
HelloImpl::getGreeting() and replace it with the highlighted line of code:

The function CORBA::string_dup() allocates a copy of the string on the free
store. This is needed to be consistent with the style of memory management
used in CORBA programming.

Build the server program From within the Visual C++ IDE select Build|Build server.exe to compile
and link the server.

By default, the project builds with debug settings and the server executable
is stored in C:\OCGT\HelloExample\server\Debug\server.exe.

Close the server workspace by selecting File|Close Workspace

Generate the client Generate files for the client application using the Orbix code generation
toolkit.

To create a client project using the IONA Orbix client/server wizard:

1. Open the Microsoft Visual C++ 6.0 IDE.

2. From the Visual C++ menus, select File|New

3. In the New dialog, click on the Projects tab.

//C++
...
char*
HelloImpl::getGreeting()
{
 char* _result;

 _result = CORBA::string_dup("Hello World!");

 return _result;
}
...
19

CHAPTER 1 | Getting Started with Orbix
4. In the Projects tab, perform the following actions:

♦ Select IONA Orbix v6.2 Client/Server Wizard

♦ In the Project name text box, enter client

♦ Under the Location text box, enter
C:\OCGT\HelloExample\client

5. Click OK.

6. The client/server wizard displays.
 20

Development Using the Client/Server Wizard
7. Answer two questions as follows:

♦ What CORBA IDL file would you like to use for this project?

Enter the location of hello.idl

♦ Would you like to generate a working client or server?

Select Client

8. To generate the client project, click Finish

9. The New Project Information scrollbox tells you about the generated
files. Browse the information and select OK

10. The client workspace is generated with the following source files:

11. Read the text file ReadmeOrbixClient.txt
21

CHAPTER 1 | Getting Started with Orbix
Complete the client program Complete the implementation of the client main() function in the
client.cxx file. You must add a couple of lines of code to make a remote
invocation of the operation getGreeting() on the Hello object.

Search for the line where the call_Hello_getGreeting() function is called.
Delete this line and replace it with the two lines of code highlighted in bold
font below:

The object reference Hello1 refers to an instance of a Hello object in the
server application. It is already initialized for you.

A remote invocation is made by invoking getGreeting() on the Hello1
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the
HelloImpl::getGreeting() function in the server application.

The returned string is put into a C++ object, strV, of the type
CORBA::String_var. The destructor of this object will delete the returned
string so that there is no memory leak in the above code.

Build the client program From within the Visual C++ IDE select Build|Build client.exe to compile
and link the client.

By default, the project will build with debug settings and the client
executable will be stored in
C:\OCGT\HelloExample\client\Debug\client.exe.

Close the client workspace by selecting File|Close Workspace.

//C++
//File: ‘client.cxx’
...
 if (CORBA::is_nil(Hello1))
 {
 cerr << "Could not narrow reference to interface "
 << "Hello" << endl;
 }
 else
 {
 CORBA::String_var strV = Hello1->getGreeting();
 cout << "Greeting is: " << strV << endl;
 }
...
 22

Development Using the Client/Server Wizard
Run the demonstration Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Where domain-name is the name of your configuration domain.

2. Set the Application Server Platform’s environment.

3. Run the server program.

A new window opens and the server outputs the following lines:

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to
the file C:\temp\Hello.ref.

♦ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

4. Run the client program.

> start_domain-name_services.bat

> domain-name_env.bat

> cd C:\OCGT\HelloExample\server\Debug
> start server.exe

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...

> cd C:\OCGT\HelloExample\client\Debug
> client.exe
23

CHAPTER 1 | Getting Started with Orbix
The client outputs the following lines to the screen:

The client performs the following steps when it is run:

♦ It reads the stringified object reference for the Hello object from
the C:\temp\Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking
on the object reference. This causes a connection to be
established with the server and the remote invocation to be
performed.

5. When you are finished, terminate all processes.

♦ The server can be shut down by typing Ctrl-C in the window
where it is running.

6. Stop the Orbix services (if they are running).

From a DOS prompt enter:

Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

> stop_domain-name_services
 24

Development from the Command Line
Development from the Command Line
Starting point code for CORBA client and server applications can also be
generated using the idlgen command line utility, which offers equivalent
functionality to the client/server wizard presented in the previous section.

The idlgen utility can be used on Windows and UNIX platforms.

You implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate starting point code.

3. Complete the server program by implementing the single IDL
getGreeting() operation.

4. Complete the client program by inserting a line of code to invoke the
getGreeting() operation.

5. Build the demonstration.

6. Run the demonstration.

Define the IDL interface Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

Windows

UNIX

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.

Enter the following text into the file hello.idl:

> mkdir C:\OCGT\HelloExample

% mkdir -p OCGT/HelloExample

//IDL
interface Hello {
 string getGreeting();
};
25

CHAPTER 1 | Getting Started with Orbix
This interface mediates the interaction between the client and the server
halves of the distributed application.

Generate starting point code Generate files for the server and client application using the CORBA Code
Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample
(UNIX) enter the following command:

This command logs the following output to the screen while it is generating
the files:

You can edit the following files to customize client and server applications:

Client:
client.cxx

Server:
server.cxx
HelloImpl.h
HelloImpl.cxx

Complete the server program Complete the implementation class, HelloImpl, by providing the definition
of the HelloImpl::getGreeting() function . This C++ function provides
the concrete realization of the Hello::getGreeting() IDL operation.

idlgen cpp_poa_genie.tcl -all hello.idl

hello.idl:
cpp_poa_genie.tcl: creating it_servant_base_overrides.h
cpp_poa_genie.tcl: creating it_servant_base_overrides.cxx
cpp_poa_genie.tcl: creating HelloImpl.h
cpp_poa_genie.tcl: creating HelloImpl.cxx
cpp_poa_genie.tcl: creating server.cxx
cpp_poa_genie.tcl: creating client.cxx
cpp_poa_genie.tcl: creating call_funcs.h
cpp_poa_genie.tcl: creating call_funcs.cxx
cpp_poa_genie.tcl: creating it_print_funcs.h
cpp_poa_genie.tcl: creating it_print_funcs.cxx
cpp_poa_genie.tcl: creating it_random_funcs.h
cpp_poa_genie.tcl: creating it_random_funcs.cxx
cpp_poa_genie.tcl: creating Makefile
 26

Development from the Command Line
Edit the HelloImpl.cxx file, and delete most of the generated boilerplate
code occupying the body of the HelloImpl::getGreeting() function.
Replace it with the line of code highlighted in bold font below:

The function CORBA::string_dup() allocates a copy of the "Hello World!"
string on the free store. It would be an error to return a string literal directly
from the CORBA operation because the ORB automatically deletes the
return value after the function has completed. It would also be an error to
create a copy of the string using the C++ new operator.

Complete the client program Complete the implementation of the client main() function in the
client.cxx file. You must add a couple of lines of code to make a remote
invocation of the getGreeting() operation on the Hello object.

//C++
//File ’HelloImpl.cxx’
...
char *
HelloImpl::getGreeting() throw(
 CORBA::SystemException
)
{
 char * _result;

 _result = CORBA::string_dup("Hello World!");

 return _result;
}
...
27

CHAPTER 1 | Getting Started with Orbix
Edit the client.cxx file and search for the line where the
call_Hello_getGreeting() function is called. Delete this line and replace
it with the two lines of code highlighted in bold font below:

The object reference Hello1 refers to an instance of a Hello object in the
server application. It is already initialized for you.

A remote invocation is made by invoking getGreeting() on the Hello1
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the
HelloImpl::getGreeting() function in the server application.

The returned string is put into a C++ object, strV, of the type
CORBA::String_var. The destructor of this object will delete the returned
string so that there is no memory leak in the above code.

Build the demonstration The Makefile generated by the code generation toolkit has a complete set of
rules for building both the client and server applications.

To build the client and server complete the following steps:

1. Open a command line window.

2. Go to the ../OCGT/HelloExample directory.

3. Enter:

Windows

//C++
//File: ‘client.cxx’
...
 if (CORBA::is_nil(Hello1))
 {
 cerr << "Could not narrow reference to interface "
 << "Hello" << endl;
 }
 else
 {
 CORBA::String_var strV = Hello1->getGreeting();
 cout << "Greeting is: " << strV << endl;
 }
...

> nmake
 28

Development from the Command Line
UNIX

Run the demonstration Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a DOS prompt in Windows, or xterm in UNIX. Enter:

Where domain-name is the name of the configuration domain.

2. Set the Application Server Platform’s environment.

3. Run the server program.

Open a DOS prompt, or xterm window (UNIX). From the
C:\OCGT\HelloExample directory enter the name of the executable
file—server.exe (Windows) or server (UNIX).The server outputs the
following lines to the screen:

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to
the local Hello.ref file.

♦ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

4. Run the client program.

% make -e

start_domain-name_services

> domain-name_env

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...
29

CHAPTER 1 | Getting Started with Orbix
Open a new DOS prompt, or xterm window (UNIX). From the
C:\OCGT\HelloExample directory enter the name of the executable
file—client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:

The client performs the following steps when it is run:

♦ It reads the stringified object reference for the Hello object from
the Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking
on the object reference. This causes a connection to be
established with the server and the remote invocation to be
performed.

5. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is
running.

6. Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:

The passing of the object reference from the server to the client in this way
is suitable only for simple demonstrations. Realistic server applications use
the CORBA naming service to export their object references instead (see
Chapter 18).

Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

stop_domain-name_services
 30

Index

A
Application

running 23, 28

C
Client

building 22
generating 19, 26
implementing 22, 27

Code generation toolkit
idlgen utility 26
wizard 14

cpp_poa_genie.tcl 26

H
Hello World! example 12

M
Memory management

string type 27

O
Object reference

passing as a string 13

S
Server

building 19
generating 16, 26
implementing 19, 26

Services 23, 24, 29, 30
string_dup() 27
String_var 28

W
Wizard

for code generation 14
31

INDEX
 32

	CORBA Tutorial C++
	Getting Started with Orbix
	Creating a Configuration Domain
	Setting the Orbix Environment
	Hello World Example
	Development Using the Client/Server Wizard
	Development from the Command Line

	Index

