
COMet Migration Guide
Version 6.3, December 2005

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 9-Dec-2005

Contents

Preface v

Chapter 1 Why Migrate? 1
Advantages of Migrating 2
Implications of Migrating 3

Chapter 2 Usage Models and Interoperability Issues 5
Overview of Supported Usage Models 6
COM/Automation Clients of CORBA Servers 8

Orbix 6.x-based COMet Clients of Orbix 6.x Servers 9
OrbixCOMet 3 Clients of Orbix 6.x Servers 10

CORBA Clients of COM/Automation Servers 12

Chapter 3 Code Changes and Feature Changes 13
Code Changes 14
Feature Changes 18
iii

CONTENTS
 iv

Preface
This guide is provided as an addendum to the CORBA Migration and
Interoperability Guide. It is aimed at customers who have been using IONA’s
OrbixCOMet generation 3 product to develop and deploy distributed
applications that combine COM and CORBA objects. This guide provides
detailed technical guidelines specifically relating to the migration of COMet
applications from an Orbix generation 3-based solution to an Orbix
6.x-based solution.

Orbix 6.x complies with the following specifications:

• CORBA 2.3.

• GIOP 1.2 (default), 1.1, and 1.0.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience This guide is aimed at existing users of the OrbixCOMet generation 3
product who want to migrate their applications to an Orbix 6.x-based
solution.

Organization of this guide This guide is divided as follows:

Chapter 1, “Why Migrate?”

This chapter outlines the reasons for and advantages of migrating your
COMet applications from an Orbix generation 3-based solution to an Orbix
6.x-based solution.
v

mailto:support@iona.com
mailto:docs-support@iona.com

PREFACE
Chapter 2, “Usage Models and Interoperability Issues”

This chapter outlines the various usage models that are supported by Orbix
6.x-based COMet. It also describes any interoperability issues associated
with each usage model.

Chapter 3, “Code Changes and Feature Changes”

This chapter provides details of the code changes required to COMet clients
for successful interoperation with Orbix 6.x servers. It also describes
OrbixCOMet 3 features that have been deprecated in Orbix 6.x-based
COMet, because they are either not compatible with or not required in an
Orbix 6.x-based solution.

Related documentation The related documentation provided includes:

• CORBA Migration and Interoperability Guide

• COMet Programmer’s Guide and Reference

The latest updates to Orbix 6.x documentation can be found at
http://www.iona.com/support/docs/.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/knowledge_base/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/updates/

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
 vi

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/docs/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
vii

PREFACE
 viii

CHAPTER 1

Why Migrate?
This chapter outlines the reasons for and advantages of
migrating your COMet applications from an Orbix generation
3-based solution to an Orbix 6.x-based solution.

In this chapter This chapter discusses the following topics:

Advantages of Migrating page 2

Implications of Migrating page 3
1

CHAPTER 1 | Why Migrate?
Advantages of Migrating

Advantages Migrating your COM or Automation clients to Orbix 6.x-based COMet brings
the following advantages:

• Orbix 6.x-based COMet results in a much smaller and simpler client
deployment than OrbixCOMet 3.

• Orbix 6.x-based COMet can use the Orbix 6.x Configuration Repository,
which means that all clients can access a central configuration
repository instead of the need for separate client configurations.

• Orbix 6.x-based COMet is more tightly integrated with Orbix 6.x.

• Orbix 6.x-based COMet is easier to deploy and configure in large-scale
projects.
 2

Implications of Migrating
Implications of Migrating

Legacy Support Although it is possible to continue running your COM or Automation clients
on OrbixCOMet 3 instead of migrating them, there are no real advantages in
doing this. After upgrading to Orbix 6.x on your server side, the task of
upgrading your COM or Automation clients to Orbix 6.x-based COMet is
relatively straightforward and simple.

Required Code Changes Certain code changes are required to your client applications to allow them
to interoperate successfully with Orbix 6.x servers. Such changes are
required regardless of whether you choose to migrate your clients to Orbix
6.x-based COMet or leave them running on OrbixCOMet 3. In fact, more
configuration changes are required if you decide to leave your clients on
OrbixCOMet 3. Refer to “OrbixCOMet 3 Clients of Orbix 6.x Servers” on
page 10 for details of those further changes.

Note: If you have COMet applications that feature CORBA clients
communicating with COM or Automation servers, you can continue to use
OrbixCOMet 3 on the client or server side.
3

CHAPTER 1 | Why Migrate?
 4

CHAPTER 2

Usage Models and
Interoperability
Issues
This chapter outlines the various usage models that are
supported by Orbix 6.x-based COMet. It also describes any
interoperability issues associated with each usage model.

In this chapter This chapter discusses the following topics:

Overview of Supported Usage Models page 6

COM/Automation Clients of CORBA Servers page 8

CORBA Clients of COM/Automation Servers page 12
5

CHAPTER 2 | Usage Models and Interoperability Issues
Overview of Supported Usage Models

Supported Usage Models The following table summarizes and compares the usage models that are
supported by OrbixCOMet generation 3 and Orbix 6.x-based COMet:

Table 1: Summary of Supported and Not Supported Usage Models

Usage Models OrbixCOMet 3 Orbix 6.x-based
COMet

Automation client to CORBA server
IDispatch for late binding Bridge
loaded in-process

Supported Supported

Automation client to CORBA server
IDispatch for late binding Bridge
loaded out-of-process

Supported but
not
recommended

Supported but
not
recommended

Automation client to CORBA server
Dual interfaces for early binding
Bridge loaded in-process

Supported Supported

Automation client to CORBA server
Dual interfaces for early binding
Bridge loaded out-of-process

Supported Not Supported

COM client to CORBA serverBridge
loaded in-process

Supported Supported

COM client to CORBA serverBridge
loaded out-of-process

Supported Not Supported

CORBA client to COM server Not Supported Not Supported

CORBA client to Automation server Supported Not Supported

Note: Launching the bridge out-of-process dramatically reduces the
number of clients that can be handled on certain versions of Windows NT.
 6

Overview of Supported Usage Models
The rest of this chapter describes in more detail any issues relating to these
usage models. Going from having a bridge launched out-of-process to
having a bridge launched in-process requires little or no change in your
application code.
7

CHAPTER 2 | Usage Models and Interoperability Issues
COM/Automation Clients of CORBA Servers

Overview Certain code changes are required to your client applications, regardless of
whether you migrate them to Orbix 6.x-based COMet or leave them running
on OrbixCOMet 3. Refer to “Code Changes and Feature Changes” on
page 13 for details of those code changes.

In This Section The following topics are discussed in this section:

Orbix 6.x-based COMet Clients of Orbix 6.x Servers page 9

OrbixCOMet 3 Clients of Orbix 6.x Servers page 10
 8

COM/Automation Clients of CORBA Servers
Orbix 6.x-based COMet Clients of Orbix 6.x Servers

Client Code Changes No changes are required to your migrated clients, apart from the code
changes described in “Code Changes and Feature Changes” on page 13.

Clients and Server States • Loading the bridge in-process to each client is recommended for
Automation clients and required for COM clients.

• Loading the bridge out-of-process is supported for Automation clients
that are using IDispatch interfaces. However, it is not recommended,
because it dramatically reduces the scale in terms of the number of
clients that can be handled on certain versions of Windows NT.

• Loading the bridge out-of-process is not supported for Automation
clients that are using dual interfaces, or for any COM clients.
9

CHAPTER 2 | Usage Models and Interoperability Issues
OrbixCOMet 3 Clients of Orbix 6.x Servers

Overview After upgrading to Orbix 6.x on your server side, the task of upgrading your
COM or Automation clients to Orbix 6.x-based COMet is relatively
straightforward and simple.

Migration Impact Although it is possible to continue running your COM or Automation clients
on OrbixCOMet 3 instead of migrating them, there are no real advantages in
doing this.

If you choose to leave your clients running on OrbixCOMet 3, you must
make further configuration changes to your client side on top of the code
changes described in “Code Changes” on page 14. Specifically, these
further changes relate to the following:

• Interface Repository.

• Configuration Repository.

• Naming Service.

Interface Repository The OrbixCOMet 3 type store must use the Orbix generation 3 Interface
Repository rather than the Orbix 6.x Interface Repository. There are three
possible solutions to this:

1. Install an Orbix generation 3 Interface Repository on each client
machine.

2. Install an Orbix generation 3 Interface Repository on a single
intermediary machine for use by all clients.

3. Build the type store cache files and distribute them as part of your
OrbixCOMet 3 deployment on each client machine.

Configuration Repository OrbixCOMet 3 cannot use the Orbix 6.x Configuration Repository. The
solution to this is to distribute the relevant configuration files as part of your
OrbixCOMet 3 deployment on each client machine.

Naming Service OrbixCOMet 3 clients can use either the Orbix 3 Naming Service or the Orbix
6.x Interoperable Naming Service (INS). If you want your clients to use the
Orbix 6.x INS, you must set the Common.Services.INS configuration variable
 10

COM/Automation Clients of CORBA Servers
in the common.cfg configuration file so that its value is equal to the IOR
string for the root naming context of the Orbix 6.x INS. OrbixCOMet 3 then
uses this value to locate the INS in any client calls to GetObject() that have
a parameter in the format interface:NAME_SERVICE:naming service
compound name.
11

CHAPTER 2 | Usage Models and Interoperability Issues
CORBA Clients of COM/Automation Servers

Migration Impact If you want to have a deployment scenario that features CORBA clients
communicating with COM or Automation servers, you can continue to use
OrbixCOMet 3. It is relatively straightforward to integrate such a deployment
scenario into an Orbix 6.x-based system, because OrbixCOMet 3 is fully
interoperable with Orbix 6.x.

OMG IDL Changes Some modifications are required to the OMG IDL that is generated in
OrbixCOMet 3 by the ts2idl utility, to allow the Orbix 6.x IDL compiler to
use that generated OMG IDL. An IONA Knowledge Base article, 3659.191,
is available which describes this in more detail. See the IONA Knowledge
Base at www.iona.com/support/kb/ for more details of this.
 12

CHAPTER 3

Code Changes and
Feature Changes
This chapter provides details of the code changes required to
COMet clients for successful interoperation with Orbix 6.x
servers. It also describes OrbixCOMet 3 features that have
been deprecated in Orbix 6.x COMet, because they are either
not compatible with or not required in an Orbix 6.x-based
solution.

In this chapter This chapter discusses the following topics:

Code Changes page 14

Feature Changes page 18
13

CHAPTER 3 | Code Changes and Feature Changes
Code Changes

Overview Code changes are required in the following areas:

• “Object Location and Binding” on page 14

• “Binding” on page 15

• “Resizing the Object Table” on page 15

• “Client Callbacks” on page 15

• “Timeouts for Remote Calls” on page 15

• “Connection Management” on page 15

• “Handler DLLs” on page 16

• “Configuration Value Handlers” on page 16

• “Output Handlers” on page 16

• “Automation Collections Mapping for CORBA Sequences” on page 16

• “Base Interfaces” on page 16

• “Collocation” on page 17

• “Setting Configuration Values” on page 17

• “Using Transient Port Numbers in Exported IORs” on page 17

Object Location and Binding Orbix 6.x-based COMet clients use the (D)ICORBAFactory ::GetObject()
method to bind to CORBA objects. However, Orbix 6.x-based COMet does
not support the following format for the parameter to GetObject():

interface:marker:server:host

This means that if your client applications bind to CORBA objects by
specifying the object marker, server, and host, you must modify those
clients so that the parameter to every GetObject() call takes the following
format instead:

interface:TAG:Tag data

In the preceding example, TAG can be either of the following:

• IOR

In this case, Tag data is the hexadecimal string for the stringified IOR.
For example:

fact.GetObject("employee:IOR:123456789…")
 14

Code Changes
• NAME_SERVICE

In this case, Tag data is the Naming Service compound name
separated by ".". For example:

fact.GetObject("employee:NAME_SERVICE:IONA.employees.PD.Tom")

Binding Orbix 6.x-based COMet does not support the _bind() function for
establishing connections between clients and serves. To this extent, the
(D)IOrbixORBObject::PingDuringBind() method has been deprecated in
Orbix 6.x-based COMet. You must update your client applications to remove
any calls to _bind() and PingDuringBind().

Resizing the Object Table The (D)IOrbixORBObject::ReSizeObjectTable() method has been
deprecated in Orbix 6.x-based COMet. You must update your client
applications to remove any calls to resize the object table.

Client Callbacks Client callbacks are supported in Orbix 6.x-based COMet. However, the
(D)IOrbixORBObject::ReclaimCallbackStore() method that was available
with OrbixCOMet 3 has been deprecated in Orbix 6.x-based COMet. You
must update your client applications, so that they do not make calls to this
method.

Timeouts for Remote Calls The (D)IOrbixORBObject::DefaultTxTimeout() method has been
deprecated in Orbix 6.x-based COMet. You must update your client
applications to remove any calls to this method.

Connection Management The following API methods in the (D)IOrbixORBObject interface have been
deprecated in Orbix 6.x-based COMet:

• ConnectionTimeout()

• MaxConnectRetries()

• NoReconnectOnFailure()

• AbortSlowConnects()

• CloseChannel()

• EagerListeners()

You must remove any calls to these methods in your client applications.
15

CHAPTER 3 | Code Changes and Feature Changes
Handler DLLs Orbix 6.x-based COMet does not support the use of handler DLLs, because
they are used to provide a transport for features such as smart proxies and
filters, which are not supported in Orbix 6.x. To this extent the
(D)IOrbixORBObject::LoadHandler() method has been deprecated in Orbix
6.x-based COMet. You must update your client applications, so that they do
not make calls to this method to try to load handler DLLs at application
runtime.

Configuration Value Handlers Configuration value handlers are not supported in Orbix 6.x-based solutions.
To this extent the following API methods in the (D)IOrbixORBObject
interface have been deprecated in Orbix 6.x-based COMet:

• ActivateCVHandler()

• DeactivateCVHandler()

• ReinitialiseConfig()

Output Handlers Output handlers are not supported in Orbix 6.x-based solutions. To this
extent the following API methods in the (D)IOrbixORBObject interface have
been deprecated in Orbix 6.x-based COMet:

• ActivateOutputHandler()

• DeactivateOutputHandler()

You must update your client applications to remove any calls to these API
methods.

Automation Collections Mapping
for CORBA Sequences

In adherence with the COM/CORBA Interworking specification, Orbix
6.x-based COMet does not support the mapping of Automation Collections
to CORBA sequences. You must update your Automation client applications,
so that they use SafeArrays instead of Collections to map to CORBA
sequences.

Base Interfaces The following API methods in the (D)IOrbixORBObject interface have been
deprecated in Orbix 6.x-based COMet:

• BaseInterfacesOf()

• IsBaseInterfaceOf()

You must update your client applications to remove any calls to these API
methods.
 16

Code Changes
Collocation The (D)IOrbixORBObject::Collocated method has been deprecated in
Orbix 6.x-based COMet. You must update your client applications to remove
any calls to this method.

Setting Configuration Values The (D)IOrbixORBObject::SetConfigValue() method has been deprecated
in Orbix 6.x-based COMet. You must update your client applications to
remove any calls to this method.

Using Transient Port Numbers in
Exported IORs

The (D)IOrbixORBObject::UseTransientPort() method has been
deprecated in Orbix 6.x-based COMet. You must update your client
applications to remove any calls to this method.
17

CHAPTER 3 | Code Changes and Feature Changes
Feature Changes

Overview This section describes the feature changes between OrbixCOMet 3 and
Orbix 6.x-based COMet. Some feature changes result from the removal of
features made obsolete by Orbix 6.x.

Development of CORBA clients
and CORBA Servers

Orbix 6.x-based COMet does not support the development of either CORBA
clients or CORBA servers. The facility to generate Visual Basic or
PowerBuilder server stub code has been removed from the Orbix 6.x_based
COMet set of development support tools.

Surrogate Executable Because Orbix 6.x-based COMet does not support a scenario that features
CORBA clients communicating with COM or Automation servers, you cannot
use the surrogate executable, custsur.exe, in Orbix 6.x-based COMet to
mimic a CORBA server.

However, if you choose to continue using OrbixCOMet 3, to allow Orbix 6.x
clients to communicate with COM or Automation servers, you must either:

• Use the -g argument with custsur to generate IORs for objects
belonging to the server that is being implemented by custsur.

• Place a reference to custsur in the Naming Service.

OMG IDL Types Orbix 6.x supports a larger set of OMG IDL types than Orbix 6.x-based
COMet. For the purposes of your Orbix 6.x-based COMet applications, you
must restrict the IDL for your CORBA objects to the set of types supported
by Orbix 6.x-based COMet. Refer to the COMet Programmer’s Guide and
Reference for details of those IDL types and how they map to both COM
and Automation.
 18

Feature Changes
New SetOrbName method In Orbix 6.x, there is a COMet method called SetOrbName() in the
(D)IOrbixORBObject interface. This method lets you programmatically
specify, in the form load at the start of your applications, the ORB name
that you want your COMet applications to use. This means that you can
specify at runtime what configuration information is to be used by your
COMet applications. See the COMet Programmer’s Guide and Reference for
more details of this method.

Deprecated APIs The following APIs are deprecated in Orbix 6.x-based COMet:

• (D)IOrbixServerAPI

• DCollection

• (D)IOrbixObject

• (D)IOrbixSSL

Deprecated (D)IOrbixORBObject
Methods

The following (D)IOrbixORBObject methods are deprecated in Orbix
6.x-based COMet:

• AbortSlowConnects()

• ActivateCVHandler()

• ActivateOutputHandler()

• BaseInterfacesOf()

• CloseChannel()

• Collocated()

• ConnectionTimeout()

• DeactivateCVHandler()

• DeactivateOutputHandler()

• DefaultTxTimeout()

• EagerListeners()

• GetOrbixSSL()

• IsBaseInterfaceOf()

• LoadHandler()

• MaxConnectRetries()

• NoReconnectOnFailure()

• PingDuringBind()

• PlaceCVHandlerAfter()
19

CHAPTER 3 | Code Changes and Feature Changes
• PlaceCVHandlerBefore()

• ReinitialiseConfig()

• ReSizeObjectTable()

• SetConfigValue()

• UseTransientPort()
 20

	Why Migrate?
	Advantages of Migrating
	Implications of Migrating

	Usage Models and Interoperability Issues
	Overview of Supported Usage Models
	COM/Automation Clients of CORBA Servers
	Orbix 6.x-based COMet Clients of Orbix 6.x Servers
	OrbixCOMet 3 Clients of Orbix 6.x Servers

	CORBA Clients of COM/Automation Servers

	Code Changes and Feature Changes
	Code Changes
	Feature Changes

