
Internationalization Guide
Version 6.3, December 2005

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 09-Dec-2005

Contents

List of Tables v

Preface vii

Chapter 1 Orbix Internationalization 1
Code Sets 2
Locales 5
Orbix Internationalization 8

Chapter 2 CORBA Internationalization 11
Overview 12
Supported Code Sets 14
Code Set Negotiation 16
Configuring the Code Set Plugin 18
Java Internationalization 22
C/C++ Internationalization 24

Chapter 3 Restrictions 29
Translations 30
Property Values 31
COMet 32

Glossary 33

Index 39
iii

CONTENTS
 iv

List of Tables
Table 1: IANA Charset Names 3

Table 2: Popular code sets supported by Orbix 14

Table 3: Code sets supported by the light weight plugin 18

Table 4: IDL to C++ character mappings 24
v

LIST OF TABLES
 vi

Preface
Audience This guide is intended for Orbix programmers who develop products that

might be internationalized.This guide also provides information to
administrators of Orbix deployments where internationalization is required.

Related documentation The Orbix documentation set includes the following related documentation:

• CORBA Programmer’s Guide (C++ and Java)

• CORBA Programmer’s Reference (C++ and Java)

• Orbix Administrator’s Guide

The latest versions of all Orbix documentation can be found online at http:/
/www.iona.com/support/docs.

Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.
vii

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Keying conventions This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.
 viii

PREFACE
[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
ix

PREFACE
 x

CHAPTER 1

Orbix
Internationalization
Orbix includes features that enable development and
deployment of applications that manipulate user data encoded
in characters beyond the traditional ASCII and ISO 8859-1
(Latin 1) code sets.

In this chapter This chapter discusses the following topics:

Code Sets page 2

Locales page 5

Orbix Internationalization page 8
1

CHAPTER 1 | Orbix Internationalization
Code Sets

Overview A coded character set, or code set for short, is a mapping between integer
values and characters they represent. The best known code set is ASCII,
which defines 94 graphic characters and 34 control characters using the
7-bit integer range.

European languages The 94 characters defined by the ASCII code set are sufficient for English,
but they are not sufficient for European languages, such as French, Spanish,
and German.

To remedy the situation, an 8-bit code set, ISO 8859-1, also known as
Latin-1, was invented. The lower 7-bit portion is identical to ASCII. The
extra characters in the upper 8-bit range cover those languages used widely
in the Western European region.

Many other code sets are defined under ISO 8859 framework. These cover
languages in other regions of Europe as well as Russian, Arabic and
Hebrew. The most recent addition is ISO 8859-15, which is a revision of
ISO 8859-1 and it adds the Euro currency symbol and other letters while
removing less used characters. For further information about ISO-8859-x
encoding, refer to the Web site “The ISO 8859 Alphabet Soup”.

Ideograms Asian countries that use ideograms in their writing systems needed more
characters than they fit in an 8-bit integer. Therefore, they invented a
double-byte code set, where a character is represented by a bit pattern of 2
bytes.

These languages also needed to mix the double-byte code set with ASCII in
a single text file. So, character encoding schema, or simply encodings, was
invented as a way to mix characters of multiple code sets.

Some of the popular encodings used in Japan include:

• Shift JIS

• Japanese EUC

• Japanese ISO 2022
 2

http://czyborra.com/charsets/iso8859.html

Code Sets
Unicode Unicode is a new code set that is gaining popularity. It aims to assign a
unique number, or code point, to every character that exists (and even once
existed) in all languages. To accomplish this, Unicode, which began as a
double-byte code set, has been expanded into a quadruple-byte code set.

Unicode, in pure form, can be difficult to use within existing computer
architectures, because many APIs are byte-oriented and assume that the
byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel, or
UTF-8, is frequently used. When browsers list “Unicode” in its encoding
selection menu, they usually mean UTF-8, rather than the pure form of
Unicode.

Visit Unicode Inc. for more information about Unicode and its variants.

Charset names To address the need for computer networks to connect different types of
computers that use different encodings, the Internet Assigned Number
Authority, or IANA, has a registry of encodings at
http://www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME, HTML,
and XML.

Table 1 lists IANA names for some popular charsets.

Table 1: IANA Charset Names

IANA Name Description

US-ASCII 7-bit ASCII for US English

ISO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of 4-byte Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC scheme, used in
Unix

ISO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme
3

http://www.unicode.org
http://www.iana.org/assignments/character-sets

CHAPTER 1 | Orbix Internationalization
CORBA Names

In CORBA code sets are identified by numerical values registered with the
Open Group’s registry, OSF Code Set Registry:
ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt.

Java Names

Java has its own names for charsets. For example, ISO-8859-1 is named
ISO8859_1, Shift_JIS is named SJIS, and UTF-8 is named UTF8.

Java is transitioning to IANA charset names, to be aligned with MIME. JDK
1.3 and above recognizes both names.

Note: IANA names are case insensitive. For example, US-ASCII can be
spelled as us-ascii or US-ascii.

Note: This guide uses IANA charset names even for CORBA code sets.
 4

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

Locales
Locales

Concept of locale Most of modern operating systems are multilingual. Users can choose their
language, and the operating system behaves according to the linguistic
convention of the chosen language. For example, the user the number
1234.56 can be displayed as 1,234.56 to the English users and 1.234,56
to the German users.

However, language alone is not enough to determine a behavior, especially
for languages that are used in many countries. For example, French
speakers in Canada expect to see 1,234.56 while European French speakers
expect to see 1.234,56.

The concept of locale addresses these issues. A locale combines charsets
and display behavior for specific regions.

ISO standards The International Standard Organization, ISO, defines two standards to
specify locale. In general, ISO 639 specifies the language code and ISO
3166 specifies the country code.

These standards can be down loaded from the ISO web site at www.iso.org.

Operating system locales Windows

On Windows, the Regional and Language Option control panel is used to
select a locale. Locales are listed by language. For languages that are
spoken in multiple countries, such as English, you must choose the setting
for your region. Regions are listed next to the language in parenthesis. For
example a Spanish speaker in Mexico would select Spanish (Mexico).

UNIX

On Solaris and other POSIX conformant platforms, a set of environment
variables, LANG and LC_xxxx, are used to select a language. Usually, only
LANG is used to set locale behavior to the specified locale.

Typical locale values on Solaris are en (English, generic), en_GB (British
English), or en_GB.ISO8859-15 (British English using ISO-8859-15
encoding). The two-letter code, en, means English, and is taken from the
language code standard from ISO, and GB means Great Britain and is taken
5

www.iso.org

CHAPTER 1 | Orbix Internationalization
from another ISO standard on the country code. As the last example
indicates, an OS locale name can also include an encoding name
(ISO8859-15).

When no encoding name appears as a component of the locale name, a
default encoding is implied. For example, the locale ja on Solaris implies
use of EUC-JP encoding, eucJP in the Solaris naming convention. Therefore,
ja and ja_JP.eucJP are synonymous on Solaris.

All Unix-derived operating systems share similar locale semantics although
the naming conventions vary widely.

Java locales Java has its own locale mechanism. Its notational convention is similar to
Solaris, except that there is no encoding specifier as Java's internal encoding
is always UTF-16. Typical locales include:

• en_US

• fr_FR

• de_DE

• zh_CN

• zh_TW

• ja_JP

• ko_KR

Java’s default locale is automatically inherited from the JVM’s current
operating system locale. Example 1 shows how to use the Java Locale class
to determine the locale and file encoding settings for your system.

Note: The name of the encoding does not follow IANA charset registry.

Example 1: Printing the Java locale and file encoding setting

// Java
import java.util.Locale;

public class printLocale
{
 public static void main(String [])
 {
 Locale default_locale = Locale.getDefault();
 System.out.println("Default locale: " +

default_locale.toString());
 6

Locales
For more information, see the JDK API document for the Locale class.

Language on the Internet The Hyper Text Transfer Protocol, HTTP, has two headers,
Accept-Language and Content-Language, that relate to locale. These two
headers take a language value (or list of values) which has the form
language[-subtag].

According the HTTP specification, language and subtag can be any string
value. In practice, the ISO two-letter language code and country code are
used. Therefore, the values in these two fields are almost same as the Java
locales.

 String file_encoding = System.getProperty("file.encoding");
 System.out.println("File encoding: " + file_encoding);
 }
}

Example 1: Printing the Java locale and file encoding setting
7

CHAPTER 1 | Orbix Internationalization
Orbix Internationalization

Feature list The following internationalization features are available in Orbix:

• CORBA Internationalization Features

This includes IDL wchar and wstring datatypes, code set negotiation,
and extended code set support.

• Java 2 Enterprise Edition (J2EE) 1.3

This includes the servlet response.setContentType() and
request.setCharacterEncoding() methods and JSP pageEncoding
and contentType attributes in the page directive.

• Locale-to-encoding mapping enhancement to J2EE

An encoding can be associated with a locale via configuration. When a
JSP or Servlet specifies a locale attribute for a response using the
response.setLocale() method, the encoding associated with the
locale is used in the charset component of the Content-Type header of
the response.

• Configurable fall-back encoding of servlet for J2EE

A fall-back encoding for requests on a servlet or JSP can be configured
using the URL mapping for the servlet. If the servlet does not associate
an encoding with a request programmatically (for example, using
request.setContentType()) then the fall-back encoding is used, if
configured.

• IANA-charset-name to Java-converter-name mapping for J2EE

In a small number of cases it is necessary to decode HTTP request
body data using a Java converter with a different name from the name
of the IANA charset used in the request header. ASP provides a
mechanism to map IANA charset names to Java converter names via
configuration.
 8

Orbix Internationalization
• Character encoding support in WSDL Test Client

WSDL Test Client has a menu to specify the encoding

• Large number of code sets/character encoding supported.

163 built-in code sets are supported for CORBA. All character
encodings (code sets) supported by the underlying JDK can be used by
J2EE programs.

Enabling tools With Orbix, you can enable applications from different locales or using
different code sets to interoperate. However, Orbix does not provide tools to
help you applications capable of working with multiple locales or code sets.
9

CHAPTER 1 | Orbix Internationalization
 10

CHAPTER 2

CORBA
Internationalization
Orbix lets you run applications in numerous locales.

In this chapter This chapter discusses the following topics:

Overview page 12

Supported Code Sets page 14

Code Set Negotiation page 16

Configuring the Code Set Plugin page 18

Java Internationalization page 22

C/C++ Internationalization page 24
11

CHAPTER 2 | CORBA Internationalization
Overview

Wide characters CORBA 2.1 introduced the datatypes wchar (wide character) and wstring
(wide string). Wide characters allow a character to be stored in a fixed
length datatype whether it is a one byte character, a double-byte character,
or a quad-byte character. This makes programming for multiple languages
easier.

Example 2 shows an IDL definition that uses wide datatypes.

Mixing wide and narrow data The traditional string datatype, sometimes called a narrow string, can also
represent a multibyte character string. A character in this form has a varying
byte length, usually 1 to 3 bytes. The number of bytes depends on the code
set in use.

The char datatype, however, cannot store a multibyte character because its
size is limited to one byte. Example 3 shows an IDL definition of an
interface that mixes narrow and wide strings.

Note: The actual size of a wide character varies by operating system.
Typical sizes are two bytes or four bytes.

Example 2: Sample IDL using wide datatypes

// IDL
interface WideEcho
{
 wstring echo(in wstring ws);
 wstring echoSingleWChar(in wchar wc);
};

Example 3: Mixing narrow and wide strings

// IDL
interface WideEcho
{
 wstring echo(in wstring ws);
 wstring echoSingleWChar(in wchar wc);
 wstring echoNarrowString(in string ns);
};
 12

Overview
Code set negotiation Because CORBA is designed to work in a heterogeneous networking
environment, the server’s native code set might differ from the client’s native
code set. CORBA defines a mechanism for ensuring that both client and
server can exchange meaningful data efficiently. This process is called code
set negotiation.
13

CHAPTER 2 | CORBA Internationalization
Supported Code Sets

Popular code sets Table 2 shows some of the code sets that Orbix supports.

Java CORBA For Java CORBA, Orbix supports 163 code sets. It uses the Java native
encoding converters listed for JDK 1.4
(http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html) and for
JDK 1.3 (http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html).

Because Java does not use OSF code set IDs to name the encodings, an
OSF code set ID must first be mapped to a Java encoding name.

Because the mapping between OSF code set IDs and IANA and Java naming
schema is not one-to-one, Orbix maps the most popular code set among the
code sets that are almost identical. For example, Orbix supports code set id
0x05000011 (OSF Japanese SJIS-1) but not 0x05020002 (JVC_SJIS). Please
make sure to use the code set that Orbix supports.

Table 2: Popular code sets supported by Orbix

OSF code set name OSF code set id IANA charset Java encoding

ISO 8859-1:1987 0x00010001 ISO-8859-1 ISO8859_1

UCS-2, Level 1 0x00010100 UCS-2 UTF-16

UCS-4, Level 1 0x00010104 UCS-4 UCS-4

X/Open UTF-8 0x05010001 UTF-8 UTF8

JIS eucJP 0x00030010 EUC-JP EUC_JP

OSF Japanese SJIS-1 0x05000011 Shift_JIS SJIS

WARNING: The mapping is subject to change without notice in future
releases.
 14

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

Supported Code Sets
One of the most popular code sets used in Japan, ISO-2022-JP, is missing
from OSF registry therefore Orbix does not support it. ISO-2022-JP is mainly
used in e-mail, and it is rarely used in inter-process communication or in
storage.

C/C++ CORBA For C and C++ CORBA, Orbix supports 112 code sets. It uses the code set
converters from ICU (http://oss.software.ibm.com/icu), an open-source
project supported by IBM.

Custom code set plugins The Java encoders and the ICU encoders built in to Orbix do not support all
code sets in use today. For situations where conversion is needed for an
unsupported code set, Orbix has a plugable code set converter architecture
which makes it possible to write and add a custom code set converter
plugin.

IONA Professional Service can write a custom code set plugin for you.
Contact your local IONA sales office for details.
15

http://www-124.ibm.com/developerworks/oss/icu/project/

CHAPTER 2 | CORBA Internationalization
Code Set Negotiation

Overview Code set negotiation is the process by which two CORBA processes which
use different native code sets determine which code set to use as a
transmission code set. Occasionally, the process requires the selection of a
conversion code set to transmit data between the two processes. The
algorithm is defined in section 13.10.2.6 of the CORBA specification
(http://cgi.omg.org/docs/formal/02-12-06.pdf).

Native code set A native code set (NCS) is a code set that a CORBA program speaks
natively. For Java, this is UTF-8 (0x05010001) for char and String, and
UTF-16(0x00010109) for wchar and wstring. For C and C++, this is the
encoding that is set by setlocale(), which in turn depends on the LANG
and LC_xxxx environment variables.

Conversion code set A conversion code set (CCS) is an alternative code set that the application
registers with the ORB. More than one CCS can be registered for each of the
narrow and wide interfaces. CCS should be chosen so that the expected
input data can be converted to and from the native code set without data
loss. For example, Windows code page 1252 (0x100204e4) can be a
conversion code set for ISO-8859-1 (0x00010001), assuming only the
common characters between the two code sets are used in the data.

Each application has its own native code set and a set of conversion code
sets for char and string. Each application also has a separate native code
set and conversion code sets for wchar and wstring. The CCS for wchar and
wstring can be same as or different from those for char and string.

Transmission code set A transmission code set (TCS) is the code set agreed upon after the code set
negotiation. The data on the wire uses this code set. It will be either the
native code set, one of the conversion code sets, or UTF-8 for the narrow
interface and UTF-16 for the wide interface.

Note: For CORBA programing in Java, you can specify codeset other than
the true native codeset.
 16

http://cgi.omg.org/docs/formal/02-12-06.pdf

Code Set Negotiation
Negotiation algorithm Code set negotiation uses the following algorithm to determine which code
set to use in transferring data between client and server:

1. If the client and server are using the same native code set, no
translation is required.

2. If the client has a converter to the server’s code set, the server’s native
code set is used as the transmission code set.

3. If the client does not have an appropriate converter and the server does
have a converter to the client’s code set, the client’s native code set is
used as the transmission code set.

4. If neither the client nor the server has an appropriate converter, the
server ORB tries to find a conversion code set that both server and
client can convert to and from without loss of data. The selected
conversion code set is used as the transmission code set.

5. If no conversion code set can be found, the server ORB determines if
using UTF-8 (narrow characters) or UTF-16 (wide characters) will
allow communication between the client and server without loss of
data. If UTF-8 or UTF-16 is acceptable, it is used as the transmission
code set. If not, a CODESET_INCOMPATIBLE exception is raised.

Code set compatibility The last steps involves a compatibility test, but the CORBA specification
does not define when a code set is compatible with another. The
compatibility test algorithm employed in Orbix is outlined below:

1. ISO 8859 Latin-n code sets are compatible.

2. UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode), and UTF-x
are compatible.

3. All other code sets are not compatible with any other code sets.

This compatibility algorithm is subject to change without notice in future
releases. Therefore, it is best to configure the code set variables as explicitly
as possible in order to reduce dependency on the compatibility algorithm.
17

CHAPTER 2 | CORBA Internationalization
Configuring the Code Set Plugin

Configuration variables In order for an ORB to transmit character data in a code set other than ISO
8859-1, the ORB must be configured properly. Four configuration variables
control the code set plugin:

plugins:codeset:char:ncs specifies the native code sets used to represent
narrow characters.

plugins:codeset:char:ccs specifies the list of conversion code sets
supported for narrow characters.

plugins:codeset:wchar:ncs specifies the native code sets used to represent
wide characters.

plugins:codeset:wchar:ccs specifies the list of conversion code sets
supported for wide characters.

For more information on these variables, see the Orbix Configuration
Reference.

Light weight code set plugin The standard code set plugin for C/C++ requires 8MB of memory. If
memory is limited or if you are planning to use only the code sets listed in
Table 3, a light weight replacement, it_basic_codeset, is available.

Note: For CORBA programing in Java, you can specify a codeset other
than the true native codeset. Please see “Native code set” on page 23.

Table 3:Code sets supported by the light weight plugin

UCS-2

UTF-4

UTF-16

ISO-8859-1

EBCDIC
 18

Configuring the Code Set Plugin
To use this plugin instead of the standard one, modify the configuration with
this setting

Choice of conversion code sets When choosing code sets to use as conversion code sets, three points
should be considered:

• Data compatibility

Conversion code sets should be chosen to minimize the of loss or
corruption of data. At minimum, the code sets chosen must cover all
the characters that need to be handled by the application. Shift_JIS
and EUC-JP are based on the same base character sets, except that
EUC-JP includes an extra code set that is in rare use. If the application
does not expect to handle the extra code set, these code sets can be
treated as compatible. Usually, Shift_JIS and ISO-8859-1 are not
considered compatible because many of the letters with diacritics in
ISO-8859-1 do not exist in Shift_JIS. However, if the application is not
expected to handle data that includes these incompatible characters,
you can consider them compatible. Ultimately, it is up to the
application designer to decide whether a code set is compatible with
another.

• Performance

The choice of the transmission code set greatly affects the
performance. In general, fixed-length code sets such as ISO-8859-x,
EBCDIC, UCS-2 and UCS-4 can achieve better performance than the
variable-length code sets such as UTF-8, EUC-JP and Shift_JIS.

• Compatibility with legacy CORBA services

It is often the case that an application uses multiple CORBA servers.
Some servers might not support code sets other than ISO-8859-1,

initial_references:IT_CodeSet_Registry:plugin= "basic_codeset";

Note: Changing the code set plugin in this way has no effect on Java.

Note: Although UTF-16 is a variable length code set, Orbix implements it
as fixed-width code set because the characters beyond Basic Multilingual
Plain (BMP) are not supported.
19

CHAPTER 2 | CORBA Internationalization
which is the only code set that is mandated to be supported by
CORBA. Some servers might also not support wchar or wstring. In
fact, most of the IONA services such as naming, locator, etc. belong to
this category. For this reason, ISO-8859-1 should be included in
plugins:codeset:char:ccs.

Example configurations Example 4 shows a basic configuration that works in a mixed Java/C++
environment. This configuration works in Latin-1 based locales.

Example 5 shows a configuration for a heterogeneous system environment
where some servers are written in Java and not configured to accept
ISO-8859-1, and some servers are hosted on a mainframe. Because EBCDIC
(IBM code page 037) does not include characters needed for European
languages, this configuration can only be used for English.

Example 4: Basic code set configuration

plugins:codeset:char:ncs = "0x05010001"; # UTF-8
plugins:codeset:char:ccs = ["0x00010001"]; # ISO-8859-1;
plugins:codeset:wchar:ncs = "0x00010109"; # UTF-16
plugins:codeset:wchar:ccs = [];

Example 5: Mixed environment configuration

plugins:codeset:char:ncs = "0x00010001"; # ISO-8859-1
plugins:codeset:char:ccs = ["0x05010001", "0x10020025"]; # UTF-8, EBCDIC(IBM-037)
plugins:codeset:wchar:ncs = "0x00010001"; # ISO-8859-1
plugins:codeset:wchar:ccs = ["0x00010109";]; # UTF-16
 20

Configuring the Code Set Plugin
For the language such as Japanese, where multiple code sets are used in a
heterogeneous system environment, all of the used code sets should be put
in the conversion code set list. Example 6 shows a configuration for a
Japanese system with servers running on both Windows and Solaris
systems.

Logging The code set plugin outputs informational event messages using the event
subsystem IT_CODESET. To view these events make sure the configuration
variable event_log:filters includes the entry "IT_CODESET=*" or
"IT_CODESET=INFO".

Default configuration If any code set configuration variables are missing from the configuration,
the default values shown in the Orbix Configuration Reference are used.

Example 6: Japanese mixed environment configuration

plugins:codeset:char:ncs = "0x05010001"; # UTF-8
plugins:codeset:char:ccs = ["0x00030010", "0x05000011", "0x00010001"]; # JIS eucJP,

OSF SJIS, ISO-8859-1
plugins:codeset:wchar:ncs = "0x00010109"; # UTF-16
plugins:codeset:wchar:ccs = ["0x00030010", "0x05000011", "0x00010104", "0x00010100"];

JIS eucJP, OSF SJIS, UCS-4 Level 1, UCS-2 Level 1
21

CHAPTER 2 | CORBA Internationalization
Java Internationalization

IDL-to-Java mapping As specified by the OMG’s IDL-to-Java mapping specification, the string
and wstring IDL datatypes are mapped to the Java String class, and the
char and wchar IDL datatypes are mapped to the Java char datatype.

The latest version of the CORBA IDL-to-Java Language Mapping
Specification can be obtained at
http://www.omg.org/cgi-bin/doc?formal/02-08-05.pdf.

Coding Because Java treats both narrow and wide IDL datatypes alike, there is little
that a CORBA developer using Java needs to consider when thinking about
internationalization.

To use WideEcho.idl, shown in Example 3 on page 12, apply idlgen using
the following command:

To implement the server, WideEchoImpl.java needs to have its operation
defined. Each operation in the WideEcho class simply echoes the string that
is passed into it. Example 7 shows the implementation of the WideEcho
operations.

Note: Although a Java char is two-bytes wide, any attempt to transmit a
Java char that is bigger than 0xff through the IDL char interface will
throw the exception of org.omg.CORBA.DATA_CONVERSION.

idlgen java_poa_genie.tcl -jP WideEchoDemo -all WideEcho.idl

Example 7: WideEcho Java server

// Java
public java.lang.String echo(java.lang.String ws)
throws org.omg.CORBA.SystemException
{
 return ws;
}

 22

http://www.omg.org/cgi-bin/doc?formal/02-08-05.pdf

Java Internationalization
The Java implementation of the IDL operation wstring echo(wstring) is
identical to the Java implementation of the IDL operation wstring
echoNarrowString(string). This is because Java makes no distinction
between an IDL string and IDL wstring.

The Java implementation of the IDL operation wstring
echoSingleWChar(char) is more complicated than the others only because
it needs to convert a Java char to a Java String.

On the client side, the code is similar to a traditional Java CORBA program.
IDL wchar and IDL char are both represented as Java char. IDL wstring
and IDL string are represented as Java String.

Native code set For Java-written CORBA programs, the real native code set is always
UTF-16, as mandated by the Java language specification. However, you can
declare any code set as the native code set for the purpose of CORBA, as
long as the code set supports the language you need to support.

One limitation applies: only byte-oriented code sets. code sets that do not
include null, can be set to plugins:codeset:char:ncs and
plugins:codeset:char:ccs. For plugins:codeset:wchar:ncs and
plugins:codeset:wchar:ccs, any code set can be used, whether it is
byte-oriented or not.

public java.lang.String echoSingleWChar(char wc)
throws org.omg.CORBA.SystemException
{
 // Returns a String consisting of just one char.
 char [] x = new char[1];
 x[0] = wc;
 return new String(x);
}
public java.lang.String echoNarrowString(java.lang.String ns)
throws org.omg.CORBA.SystemException
{
 return ns;
}

Example 7: WideEcho Java server
23

CHAPTER 2 | CORBA Internationalization
C/C++ Internationalization

IDL-to-C++ mapping Although both C and C++ have different IDL mapping specifications, most
CORBA platforms using C map wchar and wsring with the C++ mappings.
Table 4 shows IDL to C++ mappings for both narrow and wide character
data.

The latest version of the CORBA C Language Mapping Specification can be
obtained at http://www.omg.org/cgi-bin/doc?formal/99-07-35.pdf.

The latest version of the CORBA C++ Language Mapping Specification can
be obtained at http://www.omg.org/cgi-bin/doc?formal/99-07-41.pdf.

Coding Because C++ maps wide character data to special datatypes, coding
internationalizable applications requires a few modifications:

• C and C++ programs must include the file locale.h. This file contains
the definitions and headers used to support code sets and locale
functionality.

• setlocale(LC_ALL, "") must be called in the application’s main()
routine. This operation determines the system’s locale settings and
initializes the appropriate code sets. The encoding of the char[] and
wchar_t is determined by setlocale().

• The stream output operator << does not take wchar_t (IDL wchar) or
wchar_t * (IDL wstring) properly when applied to cout. In order to
print these datatypes, use the wide-oriented stream object wcout.

Table 4: IDL to C++ character mappings

IDL C++

char char

string char *

wchar wchar_t (CORBA::WChar)

wstring wchar_t * (CORBA::WChar *)
 24

http://www.omg.org/cgi-bin/doc?formal/99-07-35.pdf
http://www.omg.org/cgi-bin/doc?formal/99-07-41.pdf

C/C++ Internationalization
• idlgen generates a class named IT_GeniePrint which has two
methods that appear to print wide data, print_wstring() and
print_wchar(). However, these methods print all characters in the
hex form \xNNNN and can only be used when a hex dump is needed
during debug. All wide data must be converted before being printed.

Example To implement the WideEcho.idl example, Example 3 on page 12, run
idlgen as follows:

This generates a makefile for the Visual C++ nmake utility. To run the IDL
compiler on Unix systems, run nmake.

On the server side, the operations echo(), echoSingleWchar() and
echoNarrowString() must be implemented in WideEchoImpl.cxx.
Example 8 shows an implementation of the operations.

idlgen cpp_poa_genie.tcl -all WideEcho.idl

Example 8: C++ server implementation of WideEcho.idl

// C++
#include <locale.h>
CORBA::WChar* WideEchoImpl::echo(const CORBA::WChar* ws)
IT_THROW_DECL((CORBA::SystemException))
{
 return CORBA::wstring_dup(ws);
}
CORBA::WChar* WideEchoImpl::echoSingleWChar(CORBA::WChar wc)
IT_THROW_DECL((CORBA::SystemException))
{
 wchar_t x[2];
 x[0] = wc;
 x[1] = (wchar_t) 0;
 return CORBA::wstring_dup(x);
}

25

CHAPTER 2 | CORBA Internationalization
Because C++ maps string and wstring to different datatypes, the
implementation of echoNarrowString() must explicitly convert ns from
char * into wchar_t * using the ANSI C standard function mbstowcs().

On the client side, in client.cxx, the calling convention is no different from
the traditional CORBA convention. Example 9 shows a client
implementation.

CORBA::WChar* WideEchoImpl::echoNarrowString(const char* ns)
IT_THROW_DECL((CORBA::SystemException))
{
 CORBA::WChar* _result;

 int xlen = strlen(ns)+1; // Max len of buf needed.
 wchar_t *x = new wchar_t[xlen]; // Temp buffer
 mbstowcs(x, ns, xlen);
 _result = CORBA::wstring_dup(x);
 delete [] x; // Clean up temp buffer
 return _result;
}

Note: CORBA::WChar is equivalent to wchar_t. idlgen generates code
using CORBA::WChar.

Example 8: C++ server implementation of WideEcho.idl

Example 9: C++ client implementation for WideEcho.idl

// C++
#include <locale.h>
main(int argv, char[] argc))
{
 CORBA::Object_var obj;

 setlocale(LC_ALL, "") // set the locale
 ...
 obj = read_reference("WideEcho.ref");
 WideEcho_var WideEcho1 = WideEcho::_narrow(obj);

...
// Replace Hello with your language equivalent
 wcout << WideEcho1->echo(L"Hello in wstring") << endl
 wcout << WideEcho1->echoSingleWChar(L"H") << endl
 wcout << WideEcho1->echoNarrowString("Hello in string") <<

endl;
}

 26

C/C++ Internationalization
Native code set The native code set of C and C++ applications is determined by the
platform’s locale setting. You must set the Orbix native code set to
plugins:codeset:char:ncs and plugins:codeset:wchar:ncs.

On Windows in Western European locales, the native code set for the
narrow char/string (NCS-C) is Windows Code Page 1252 which is ISO
8859-15. Since the OSF registry lacks Window Code Page 1252 or ISO
8859-15, you can use ISO 8859-1 as the best approximation and set the
configuration variable as follows:

On WIndows in a Japanese locale, the NCS-C is Window Code Page 932,
an extension of Shift_JIS. Because the OSF registry also lacks Window Code
Page 932, you can use OSF SJIS as the closest approximation and set the
configuration variable as follows:

On WIndows, the native code set for the wchar/wstring (NCS-W) is always
UCS-2 regardless of locale. Set the configuration variable as follows:

On Solaris, both NCS-C and NCS-W are determined by the current locale.
For the ISO 8859-1 based locales such as C, en, fr, de, es, it and pt, both
NCS-C and NCS-W should be set to ISO-8859-1. So, the configuration
variables are set as follows:

For Solaris in the Japanese ja locale, both NCS-C and NCS-W should be set
to the OSF code set equivalent of EUC-JP as follows:

plugins:codeset:char:ncs = "0x00010001"; # ISO-8859-1

plugins:codeset:char:ncs = "0x05000011"; # OSF SJIS

plugins:codeset:wchar:ncs = “0x00010100”; # UCS-2 Level 1

plugins:codeset:char:ncs = "0x00010001"; # ISO-8859-1
plugins:codeset:wchar:ncs = "0x00010001"; # ISO-8859-1

plugins:codeset:char:ncs = "0x00030010"; # JIS eucJP
plugins:codeset:wchar:ncs = "0x00030010"; # JIS eucJP
27

CHAPTER 2 | CORBA Internationalization
For Solaris in UTF-8 based locales such as en_US.UTF-8, ja_JP.UTF-8,
ko_KR.UTF-8, zh_CN.UTF-8 and zh_TW.UTF-8, NCS-C is UTF-8 and NCS-W
is UCS-4. Set the configuration variables as follows:

plugins:codeset:char:ncs = "0x05010001"; # UTF-8
plugins:codeset:wchar:ncs = "0x00010104"; # UCS-4 Level 1
 28

CHAPTER 3

Restrictions
Orbix has some limitations in its internationalization support.

In this chapter This chapter discusses the following topics:

Translations page 30

Property Values page 31

COMet page 32
29

CHAPTER 3 | Restrictions
Translations
Orbix is internationalized, but it is not localized. All the GUI applications and
messages remain in English.

There are some exceptions. Some GUI elements and messages that
originate from the underlying operating system or Java run-time
environment are localized automatically. For example, the OK button is
translated in some dialog boxes.

Similarly, some messages from the operating systems are in the language of
the locale.
 30

Property Values
Property Values
Generally speaking, various properties that Orbix uses are restricted to the
traditional ASCII range.

For example, the following properties must be in ASCII in order for IONA to
guarantee their proper behavior:

• File path

• User ID

• Password

• URL

• Repository name

• Channel name

• Configuration domain name

• Configuration variable name

• Configuration variable value

• Scope name

• Cluster name

• (J2EE) Application name

The only Orbix property that can have non-ASCII characters is the role
names if Orbix is configured to use an LDAP server that supports non-ASCII.
31

CHAPTER 3 | Restrictions
COMet
COMet supports non-ASCII characters in the same manner as regular ORBs
using the IDL string and char datatypes. It does not support wstring or
wchar.

Be careful that a multibyte character is not passed to a char parameter
because a char is a single byte storage. Attempts to do so result in an
abnormal program termination on the COMet side.
 32

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and managing a
system.

ART
Adaptive Runtime Technology. IONA’s modular, distributed object
architecture, which supports dynamic deployment and configuration of
services and application code. ART provides the foundation for IONA software
products.

C CFR
See configuration repository.

client
An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from
CORBA objects.

codeset
A coded character set, or code set for short, is a mapping between integer
values and characters they represent. The best known code set is ASCII, which
defines 94 graphic characters and 34 control characters using the 7-bit
integer range.

codeset negotiation
Code set negotiation is the process by which two CORBA processes that use
different native code sets determine which code set to use as a transmission
code set. Occasionally, the process requires the selection of a conversion code
set to transmit data between the two processes. The algorithm is defined in
section 13.10.2.6 of the CORBA specification
(http://cgi.omg.org/docs/formal/02-12-06.pdf)
33

http://cgi.omg.org/docs/formal/02-12-06.pdf

GLOSSARY
configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralized Orbix configuration repository
or as a set of files distributed among domain hosts. Configuration domains
let you organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration file and
configuration repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.

configuration repository
A centralized store of configuration information for all Orbix components
within a specific configuration domain. See also configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically organized into
a root scope and a hierarchy of nested scopes, the fully-qualified names of
which map directly to ORB names. By organizing configuration properties into
various scopes, different settings can be provided for individual ORBs, or
common settings for groups of ORB. Orbix services, such as the naming
service, have their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The
CORBA specification is produced and maintained by the OMG. See also OMG.
 34

GLOSSARY
CORBA objects
Self-contained software entities that consist of both data and the procedures
to manipulate that data. Can be implemented in any programming language
that CORBA supports, such as C++ and Java.

D deployment
The process of distributing a configuration or system element into an
environment.

H HTTP
HyperText Transfer Protocol. The underlying protocol used by the World Wide
Web. It defines how files (text, graphic images, video, and other multimedia
files) are formatted and transmitted. Also defines what actions Web servers
and browsers should take in response to various commands. HTTP runs on
top of TCP/IP.

I IDL
Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public API that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging protocol,
defined by the OMG, for communications between ORBs and distributed
applications. IIOP is defined as a protocol layer above the transport layer,
TCP/IP.

installation
The placement of software on a computer. Installation does not include
configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.
35

GLOSSARY
invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

L locale
A locale combines charsets and display behavior for specific regions.
Language alone is not enough to determine a behavior, especially for
languages that are used in many countries. For example, French speakers in
Canada expect to see 1,234.56 while European French speakers expect to
see 1.234,56. The concept of locale addresses these issues.

O object reference
Uniquely identifies a local or remote object instance. Can be stored in a
CORBA naming service, in a file or in a URL. The contact details that a client
application uses to communicate with a CORBA object. Also known as
interoperable object reference (IOR) or proxy.

OMG
Object Management Group. An open membership, not-for-profit consortium
that produces and maintains computer industry specifications for
interoperable enterprise applications, including CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients and servers,
using the Internet Inter-ORB Protocol (IIOP). Enables clients to make requests
and receive replies from servers in a distributed computer environment. Key
component in CORBA.
 36

http://www.omg.com

GLOSSARY
P POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all
objects used by an application, manages object state, and provides the
infrastructure to support persistent objects and the portability of object
implementations between different ORB products. Can be transient or
persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as containers
for CORBA objects, allowing clients to access those objects using IDL
interfaces.

T TCP/IP
Transmission Control Protocol/Internet Protocol. The basic suite of protocols
used to connect hosts to the Internet, intranets, and extranets.
37

GLOSSARY
 38

Index

A
ASCII 2

C
character encoding schema 2
code set 2, 33
CODESET_INCOMPATIBLE 17
code set negotiation 13, 17
Conversion code set 16
CORBA::WChar 24

I
International Standard Organization 5
Internet Assigned Number Authority 3
ISO 8859 2
it_basic_codeset 18

L
Light weight codeset plugin 18
locale 5
locale.h 24

N
native code set 16

O
org.omg.CORBA.DATA_CONVERSION 22
OSF Code Set Registry 4

P
plugins:codeset:char:ccs 18
plugins:codeset:char:ncs 18, 27
plugins:codeset:wchar:ccs 18
plugins:codeset:wchar:ncs 18, 27
print_wchar() 25
print_wstring() 25

S
setlocale() 24
String 22
T
transmission code set 16

U
Unicode 3

W
wchar 22
wchar_t 24
wide character 12
wide string 12
wstring 22
39

INDEX
 40

	List of Tables
	Preface
	Orbix Internationalization
	Code Sets
	Locales
	Orbix Internationalization

	CORBA Internationalization
	Overview
	Supported Code Sets
	Code Set Negotiation
	Configuring the Code Set Plugin
	Java Internationalization
	C/C++ Internationalization

	Restrictions
	Translations
	Property Values
	COMet

	Glossary
	Index

