
Mainframe CORBA Concepts
Guide

Version 6.0, November 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001, 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Dec-2003

M 3 1 6 8

Contents

List of Figures vii

List of Tables ix

Preface xi

Part 1 Object-Oriented Programming, CORBA, and Orbix
Mainframe

Chapter 1 Introduction to Object-Oriented Programming 3
Object-Oriented Programming 4
Client-Server Computing 6

Two-Tier Client-Server Architecture 7
Three-Tier Client-Server Architecture 9
Distributed Systems 11
Distributed Systems and Middleware 14

Object-Oriented Concepts 15
Classes 16
Objects 18
Methods 20
Inheritance 21
Polymorphism 23

Banking Application Example 25
Outline of the Banking Application Example 26
A Procedural Perspective 27
An OO Perspective 31
iii

CONTENTS
Chapter 2 Introduction to CORBA 35
CORBA Object Management 36

The Object Management Group (OMG) 37
The Object Management Architecture (OMA) 38
Object Orientation and CORBA Objects 40
Shortcomings of CORBA 42
Advantages of CORBA 43

Components of a CORBA Distributed System 45
Interface Definition Language 46
Mapping IDL to Implementation Languages 49
CORBA Object References 52
ORB Functionality 53
ORB Structure 55
General Inter-ORB Protocol and Internet Inter-ORB Protocol 58

CORBAservices and CORBAfacilities 59
CORBAservices 60
CORBAfacilities 62

The CORBA Development Process 64

Chapter 3 Introduction to Orbix 67
The Orbix ORB Core 68
Orbix Plug-ins 70
Orbix Interceptors 73
Orbix Location Domain 75
Orbix Configuration Domain 78
The Orbix Portable Object Adapter 80
Orbix Mainframe POA Policy 83

Chapter 4 Introduction to Orbix Mainframe 85
Orbix Applications Model 86
Orbix Development Process 89
Defining IDL Interfaces 91
Orbix IDL Compiler Arguments 94
Running the Orbix IDL Compiler 96
Generated COBOL Members 97
COBOL API Reference Summary 99
 iv

CONTENTS
IDL to COBOL Mapping 101
Mapping for Operations 102
Mapping for Attributes 109
Mapping for User Exceptions 110

Generated PL/I Members 113
PL/I API Reference Summary 115
IDL to PL/I Mapping 116

Mapping for Operations 117
Mapping for Attributes 124
Mapping for User Exceptions 126

Part 2 IDL Design and CORBA Object Location

Chapter 5 IDL Design 133
IDL Constructs 134
IDL Interface Semantics 136
IDL Identifiers and Repository IDs 138

IDL Identifiers 139
Repository IDs 140

IDL Versioning 143
Working with more than One Version of IDL 144
Distinguishing IDL Versions 147
CORBA Object Granularity 148

IDL Data Types and Performance 152
Type of Data Sent 153
Amount of Data Sent 155

IDL Definition Design Guidelines 157
Basic Design Guidelines for IDL 158
Operation Design Guidelines 159
Attribute Design Guidelines 162
Exception Design Guidelines 164
Sequences Versus Arrays 165

IDL Modules and Scoping 166
Reopening modules 167
Scope Resolution Operator 168
The CORBA Module 172
v

CONTENTS
Chapter 6 Locating CORBA Objects 173
CORBA Object Location 174
The CORBA Naming Service 177
Federating Naming Hierarchies 181
Structuring the Naming Hierarchy 183
Custom Object Location Mechanisms 187

Glossary 189

Index 201
 vi

List of Figures

Figure 1: An OO BankAccount Object 19

Figure 2: BankAccount Object Class Inheritance Diagram 22

Figure 3: BankAccount Object Polymorphism Diagram 24

Figure 4: Jackson Structure Diagram for the Banking Application 29

Figure 5: OMA Diagram 38

Figure 6: The Components of an ORB 54

Figure 7: CORBA Development Process 64

Figure 8: Orbix Plug-In Architecture 71

Figure 9: Orbix Plug-Ins that Contain Interceptors 73

Figure 10: An Orbix Banking Application Example 87

Figure 11: Relative Marshalling Cost of Type of IDL Data Sent 153

Figure 12: Throughput Graph for CORBA Messages Across a Network 155

Figure 13: Object Location Model 175

Figure 14: Sample Naming Hierarchy 178

Figure 15: Federated Naming Hierarchy 181

Figure 16: Descriptive Naming Hierarchy 184

Figure 17: Compact Naming Hierarchy 184

Figure 18: Flat Naming Hierarchy 185

Figure 19: Deep Naming Hierarchy 185
vii

LIST OF FIGURES
 viii

List of Tables

Table 1: Mapping Rules for Basic IDL Types for COBOL and PL/I 50

Table 2: CORBAservices 60

Table 3: POA Policies Supported by the COBOL and PL/I Runtimes 83

Table 4: COBOL Members Generated by the Orbix IDL Compiler 97

Table 5: PL/I Members Generated by the Orbix IDL Compiler 113
ix

LIST OF TABLES
 x

Preface
Orbix is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group. Orbix complies with the following specifications:

� CORBA 2.3

� GIOP 1.2 (default), 1.1, and 1.0

Orbix Mainframe is IONA's implementation of Orbix for the OS/390 platform.
Orbix Mainframe documentation is periodically updated. New versions
between releases are available from the IONA documentation web page.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience This guide is intended for COBOL and PL/I application programmers with no
object-oriented programming knowledge who want to develop Orbix
Mainframe applications in a native OS/390 environment.

A working knowledge of the COBOL or PL/I programming language is
essential. Experience in Client/Server architecture and distributed systems is
helpful, but not essential. Also, the chapter on IDL design assumes that the
reader is familiar with the concepts of IDL, as presented in the COBOL
Programmer�s Guide and Reference and PL/I Programmer�s Guide and
Reference.
xi

mailto:support@iona.com
mailto:docs-support@iona.com
http://www.iona.com/support/docs/index.xml

PREFACE
Organization of this guide This guide is divided as follows:

Chapter 1, �Introduction to Object-Oriented Programming�

This chapter discusses the development of the client-server technology
model from a two-tier architecture to a disturbed system architecture. It also
introduces the fundamental concepts of object-oriented computing relevant
to CORBA development.

Chapter 2, �Introduction to CORBA�

This chapter introduces CORBA which is a specification for a specific type of
distributed system. It also introduces Interface Definition Language (IDL)
and the Object Request Broker (ORB) which are the two foundation stones
of CORBA.

Chapter 3, �Introduction to Orbix�

This chapter introduces Orbix, which is IONA�s implementation of the
CORBA 2.4 specification. It provides an overview of the Orbix architecture
relative to Orbix Mainframe, which comprises the Adaptive Runtime
Technology (ART) framework and an open-ended set of plug-ins that provide
the required functionality.

Chapter 4, �Introduction to Orbix Mainframe�

This chapter introduces Orbix Mainframe, which is IONA�s implementation
of Orbix for the OS/390 environment. It illustrates how Orbix Mainframe can
be used to develop a COBOL or PL/I server which can be part of an Orbix
distributed system.

Chapter 5, �IDL Design�

This chapter introduces considerations for designing IDL interfaces. It is
assumed that for this chapter the reader is familiar with the concepts of IDL
as presented in either the COBOL or PL/I programmer�s guide and reference.

Chapter 6, �Locating CORBA Objects�

This chapter introduces the fundamental tenants of CORBA object location,
including how clients in a CORBA distributed system obtain object
references. It also introduces the CORBA Naming Service. Several
approaches to publishing and locating objects are discussed, and their
strengths and weaknesses are explored.
 xii

PREFACE
�Glossary�

This glossary contains definitions for object-oriented, CORBA, and Orbix
terminology used in this document.

�Index�

The index in this document is sorted in letter-by-letter order, that is in a
strictly alphabetical way. Spaces and hyphens are ignored.

Related documentation The document set for Orbix Mainframe includes the following:

� The COBOL Programmer's Guide and Reference, which provides
details about developing Orbix applications in COBOL in a native
OS/390 environment.

� The PL/I Programmer's Guide and Reference, which provides details
about developing Orbix applications in PL/I in a native OS/390
environment.

� The Mainframe Migration Guide, which provides details of migration
issues for users who have migrated from IONA's Orbix 2.3-based
solution for OS/390 to IONA�s ART-based Orbix Mainframe solution.

The latest updates to Orbix Mainframe documentation can be found at the
Orbix Mainframe documentation web page.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products.

The IONA update center contains the latest releases and patches for IONA
products.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
xiii

//www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 xiv

Part 1
Object-Oriented

Programming, CORBA, and
Orbix Mainframe

In this part This part contains the following chapters:

Introduction to Object-Oriented Programming page 3

Introduction to CORBA page 35

Introduction to Orbix page 67

Introduction to Orbix Mainframe page 85

CHAPTER 1

Introduction to
Object-Oriented
Programming
Summary This chapter provides a brief overview of how
Object-Oriented programming and client-server computing
evolved. It also describes the concepts of object-oriented
programming, and illustrates these concepts with real world
examples.

In this chapter This chapter discusses the following topics:

Object-Oriented Programming page 4

Client-Server Computing page 6

Object-Oriented Concepts page 15

Banking Application Example page 25
3

CHAPTER 1 | Introduction to Object-Oriented Programming
Object-Oriented Programming

Overview This section summarizes the fundamental concepts of object-oriented (OO)
programming relative to non-OO programming. It also lists the languages
that interoperate with Common Object Request Broker Architecture
(CORBA).

This section discusses the following topics:

� Non-OO programming

� OO programming

� OO languages

� Languages that interoperate with CORBA

Non-OO programming Non-OO programming languages, otherwise known as procedural languages
and in existence long before OO programming languages, are still very much
in use today. Applications are still developed using only procedural
languages. However, the range of problems that programming languages
have to solve in today�s enterprise environment is much wider than was the
case when procedural languages were initially being developed. Solving
these problems has lead to the development of a fundamentally different
approach to programming.

OO programming There are two basic concepts behind the development of OO programming:
interoperability and reusability. OO programming is a fundamentally
different way of writing applications than procedural programming, because
in OO programming, objects (refer to �What are objects?� on page 18 for a
definition) are (usually) not designed from scratch each time they are
required, but adapted from previously tried and tested objects. The real
difference in the two approaches becomes apparent at the design stage of
an application. An OO approach examines how objects, already developed
and publicly available, can be adapted to meet the requirements of a
specific application.
 4

Object-Oriented Programming
OO languages The two most widely used OO languages for commercial applications are
C++ and Java, which draw on many concepts that are closely related.
There are many other OO languages, but those of interest to us are those
that interoperate with CORBA.

Languages that interoperate with
CORBA

Currently languages that interoperate with CORBA include Ada, C, COBOL,
C++, LISP, Java, PL/I, Python, Smalltalk, and XML.
5

CHAPTER 1 | Introduction to Object-Oriented Programming
Client-Server Computing

Overview This section provides a brief historical overview of client-server architecture
and how it evolved into distributed systems architecture. It also outlines the
relationship between distributed systems and OO programming.

In this section This section discusses the following topics:

Two-Tier Client-Server Architecture page 7

Three-Tier Client-Server Architecture page 9

Distributed Systems page 11

Distributed Systems and Middleware page 14
 6

Client-Server Computing
Two-Tier Client-Server Architecture

Overview This section summarizes the development of two-tier client-server
architecture, and provides a simple example of this model. It also
summarizes the main problems of the two-tier model.

This subsection discusses the following topics:

� Basic client-server architecture

� History of client-server architecture

� A Simple Example

� Problems with two-tier architecture

Basic client-server architecture The basic paradigm for client-server architecture is as follows: when an
application executes, a client makes a request to a server, which processes
that request and then notifies clients that it has completed the process. If
requested, the server also returns information to the client.

The whole point of client-server architecture is to distribute components of
an application between a client and a server so that, for example, a
database can reside on a server machine (for example a UNIX box or
mainframe), a user interface can reside on a client machine (a desktop PC),
and the business logic can reside in either or both components. The
client-server architecture, outlined here, is known as two-tier client-server
architecture.

History of client-server
architecture

Client-server architecture only became a reality with the advent of personal
computers (PCs). Before PCs, programmes were written for mainframes.
Software written for mainframes was often coded in a monolithic format�
that is, the user interface, business logic, and data access functionality are
all contained in a single application. Because the entire application ran
within the mainframe this was not a problem.

With the advent of PCs, it became possible to off load some application
processing onto a PC user�s desktop. Because of this possibility and because
it was economically expedient for many applications to use this paradigm,
client-server architecture developed. The proliferation of UNIX-based servers
about the same time as the advent of PCs helped to boost the development
of client-server architecture.
7

CHAPTER 1 | Introduction to Object-Oriented Programming
A Simple Example The UNIX print spooler is an example of a two-tier client-server architecture.
The client (the UNIX lp command) reads a file to be printed and passes the
file�s contents to the server. The server performs a service by printing the
file. All the basic characteristics of client-server computing are present in
this example.

Problems with two-tier
architecture

Two-tier client-server architecture has a number of problems. For example,
if database access functionality (such as embedded database queries) and
business logic are contained in the client component, any changes to the
business logic, database access, or even the database itself often requires a
new client component to be deployed for all users of the application.
Usually, the effects of such changes would break earlier versions of the
client component, resulting in a fragile system. The problems of two-tier
client-server architecture led to the development of three-tier client-server
architecture.
 8

Client-Server Computing
Three-Tier Client-Server Architecture

Overview This section summarizes the development of three-tier client-server
architecture from the two-tier model. It also describes the characteristics
and advantages of the three-tier model.

This subsection discusses the following topics:

� The three-tier model

� Characteristics of Three-Tier Applications

� Advantages of three-tier architecture

The three-tier model The most popular type of n-tier client-server architecture to evolve from
two-tier architecture was three-tier architecture, which separated
application components into three logical tiers: the user interface tier, the
business logic tier, and the database access tier. In this type of system, the
user interface tier communicates only with the business logic tier, never
directly with the database access tier. The business logic tier communicates
both with the user interface tier and the database access tier. For this
model:

� The user interface tier is a client only, in that it only makes requests to
the business logic tier.

� The database access tier is a server only, in that it only responds to
requests from the business logic tier.

� The business logic tier acts as both a client and a server: a server
relative to the user interface tier, because it process its request, and a
client to the database access tier, because it sends a request to it.

Characteristics of Three-Tier
Applications

Three-tier client-server architecture has the following characteristics:

� Three-tier applications partition an application logically into three
components.

� Communication between each logical tier can be tightly controlled.

Note: Although the business logic tier and the database access tier are
logically separate entities, there is no reason why they can�t reside on the
same server machine.
9

CHAPTER 1 | Introduction to Object-Oriented Programming
Advantages of three-tier
architecture

Three-tier client-server architecture has the following advantages over a
typical mainframe architecture:

� The ability to separate logical components of an application ensures
that applications are easy to manage.

� Because communication can be controlled between each logical tier of
an application, changes in one tier, for example, the database access
tier, do not have to affect the client component tier, which would have
to be redistributed if any changes are made to it.

Quiet often in COBOL and PL/I applications, changes to one part of the
application can cause unforeseen changes to other parts of the application.
 10

Client-Server Computing
Distributed Systems

Overview This section summarizes the development of distributed systems from the
multi-tier client-server model. It also describes the characteristics,
advantages, and disadvantages of distributed systems.

This subsection discusses the following topics:

� Distributed system model

� The nature of distributed systems

� Characteristics of distributed systems

� Advantages of distributed systems

� Disadvantages of distributed systems

Distributed system model Distributed systems are a logical extension of multi-tier client-server
architecture. Distributed systems invariably tend to be heterogeneous�that
is composed of several operating systems, running applications developed in
several languages, running on various operating systems. Instead of
separating the business logic tier and the data access tier, distributed
systems simply exposes all functionality of the application as objects, each
of which can use any of the services provided by any of the other objects in
the system, or even objects in another system. This architecture blurs the
distinction between client and server, because clients can create objects
that behave like servers, and servers can make requests (and thus act as
clients) to other servers. There is no logical limit to the number of objects a
system can have.

The nature of distributed systems Most organizations find themselves with a variety of hardware platforms,
operating systems, programming languages, and networking technologies.
IT infrastructure grows by adding new components, based on the technology
available. The technology changes as business requirements change, and as
the available technology options evolve.

Note: Not all distributed systems are object oriented. Some distributed
systems use remote procedure calls and are therefore not object oriented.
All references to distributed systems referred in this document however are
CORBA based and therefore object oriented.
11

CHAPTER 1 | Introduction to Object-Oriented Programming
It is unlikely that homogeneous systems, where all components use the
same hardware, operating system, networking technology, and
programming language will ever be realized. All of these different tools have
strengths and weaknesses that make them more or less suitable for different
tasks. To remain competitive, organizations must be able to use the right
tools for each task, but still have all this different software working together.

Characteristics of distributed
systems

In a distributed system:

� Clients actively issue requests to objects in servers.

� Servers passively provide access to objects that respond to client
requests.

� Clients and servers are usually in different address spaces.

� Clients and servers usually execute on several machines.

As outlined in �What Are Objects?� on page 20, an object is defined by its
data and the operations that can be performed on that data. In a distributed
system, this information must be contained in the object�s interface so that
other objects in the system can communicate with it. Separating an object�s
interface from its implementation means that other objects in the system
that communicate with it do not need to know how and where the object is
implemented.

The effect of this separation is that any changes to an object�s
implementation do not affect its interface. This means that one object can
be implemented in many different ways. This allows previously unthinkable
flexibility.

Advantages of distributed systems Distributed systems offer a number of advantages:

� Users can be geographically separate.

This is important for large corporations, where business decisions must
be made by people in different locations, but those decisions must be
based on company-wide data.

� Multiple machines can improve performance and scalability.

Note: It is important to realize that clients and servers are just roles that
programs can play, and a single program can play both roles during
execution.
 12

Client-Server Computing
Because a client-server system is distributed over several machines,
you can improve the performance and scalability in several ways.
There might be multiple replicas of a server running on separate
machines, so each handles only a fraction of the total number of
clients. Redundant servers on separate machines can provide fail-over
capability, to ensure service in the event of a problem on one machine.

� Heterogeneous systems can use the best tools for each task.

Different components of an application can run on hardware that is
optimized for a specific task. For example, an application might need
to retrieve large amounts of statistical or experimental data from a
database, perform complex computations on that data (such as
computing a weather model), and display the results of that
computation in the form of maps. By running the database, the
computational engine, and the graphics rendering engine on hardware
that is optimized for each task, performance can improve dramatically.

� Distributed systems can reduce maintenance costs.

For example, by upgrading an application image on a single server, it is
possible to upgrade thousands of clients.

Disadvantages of distributed
systems

Often, organizations that attempt to create a client-server architecture
themselves quickly run into serious problems, especially in heterogeneous
environments. Almost every aspect of client-server computing presents very
serious technical challenges. Organizations must take care of issues relating
to the integration of different networking technologies, hardware
architectures, operating systems, communication protocols, as well as error
recovery, support for multiple languages, and a whole host of other issues.
Attempting to accomplish these tasks internally leads to massive
expenditure on infrastructure, and with little chance of success: the
technology is complex, few organizations have the skills to solve all the
problems or, if they do, might not be able to solve the problems on time.
Moreover, any home-grown solution is likely to be proprietary and therefore
not open to integration with products from other vendors.
13

CHAPTER 1 | Introduction to Object-Oriented Programming
Distributed Systems and Middleware

Overview This section summarizes how distributed systems brought about the need
for middleware. It also notes how the internet has highlighted the
importance of middleware.

This subsection discusses the following topics:

� The need for middleware

� Middleware and the internet

The need for middleware Middleware is a generic term used to describe software that mediates with
other software and allows for communication between disparate
applications in a heterogeneous system. The need for middleware arises
when distributed systems become too complex to manage efficiently without
a common interface. The need to make heterogeneous systems work
efficiently across a network, and be flexible enough to incorporate frequent
upgrades and additions, led to the development of middleware, which hides
the underlying complexity of distributed systems.

Middleware is particularly appropriate in situations where:

� A company does not wish to replace legacy systems completely, but
opts instead for a mixture of old and new technologies.

� Hardware platforms and software packages, used because of their
special features, deviate from the corporate norm.

� Deregulatory legislation requires that computer systems be more
flexible and open.

� There is the technical challenge of successfully integrating respective
computer networks of companies as a result of a merger or acquisition.

Middleware and the internet Middleware has come of age with the importance that organizations have
given to the Internet as a means of exposing integrated applications, both
inside the firewall and externally with business partners.
 14

Object-Oriented Concepts
Object-Oriented Concepts

Overview This sections presents the most fundamental concepts of OO programming.

In this section This section discusses the following topics:

Classes page 16

Objects page 18

Methods page 20

Inheritance page 21

Polymorphism page 23
15

CHAPTER 1 | Introduction to Object-Oriented Programming
Classes

Overview This subsection defines what a class in an OO application is. It explains the
relationship between classes and objects, and how instances of objects are
created from classes.

This subsection discusses the following topics:

� What are classes?

� Class instances

� Abstract classes

� Benefits of abstract classes

What are classes? A class is a template for creating objects. It embodies all the information
needed to create objects of a particular type. For example, an account class,
which is used to create account objects, defines what type of data an
account object can have and all the operations that can be carried out on
that data.

Class instances Objects created from a particular class are said to be instances of that class.
For example, account objects are instances of an account class.

Abstract classes An abstract class is a class that contains abstract methods and, therefore,
an instance of it cannot be created. Abstract classes are defined so that
other non-abstract classes (often called derived classes) can extend them
and can be instantiated, by implementing the abstract methods.

Benefits of abstract classes Abstract classes are used because they enable application design to be more
efficient. For example I want to design an bank account application where a
client requests that different operations be performed on various types of
bank account objects, savings account, checking account and so on. If I can
design a generic bank account object that has characteristics common to all
bank account objects and possible new ones that I might want to add at
some point in the future, I can use it as a template to create bank account
objects that I actually want to use in the application by creating derived
classes and adding (or extending them) with the extra characteristics I want.
 16

Object-Oriented Concepts
The reason I want the generic bank account class to remain abstract is that
if there are any changes or additions to the derived classes, this does not
mean changes to the client, because the abstract class remains unchanged.
In a procedural application program however, quiet often changes in one
part of the program means changes in many other parts of the program and
thus makes an application subject to changes very difficult to maintain.
17

CHAPTER 1 | Introduction to Object-Oriented Programming
Objects

Overview This subsection defines what an object is, how it is created, and how it is
uniquely identified. It also provides some real-world examples of objects,
and describes how to access them.

This subsection discusses the following topics:

� What are objects?

� Creating objects

� Object identifiers

� Real-world examples

� Accessing an object

What are objects? An object is an encapsulation of an item of data and the methods (or
operations) that can be used to operate on the data. The object�s attributes
(the type or types of data that an object has) and methods are defined in an
interface (that is separated from its implementation) through which it
exposes its behavior. For an example of an object interface in Interface
Definition Language (IDL) see �IDL Example� on page 94. All objects have a
state. An object�s state changes when an object�s methods manipulate its
data.

Creating objects All OO languages must provide a means of creating objects from classes. In
the case of Java a constructor method is used, and for C++ a constructor
function is used. For both these languages the constructor must have the
same name as the class. Also constructors never return data. Constructors
are implemented in different ways depending on the language, refer to the
appropriate reference material for more information on constructors.

Object identifiers Each object in an OO application has a unique identifier, which is allocated
when the object is created and is retained for the lifetime of the object.
Objects that exist for only a single process (transient objects) are destroyed
(along with their identifier) when the process that contains the object ends.
Objects that exist after a process terminates (persistent objects), must retain
their unique identifier so that they can be re-used. Often it is a database key
that is used to retrieve the state of the object from the database. Object
 18

Object-Oriented Concepts
identifiers should not be confused with object references. For more
information about object references see �CORBA Object References� on
page 53.

Real-world examples Objects in an OO application often correspond to real-world examples. A
banking system, for example, could include objects that represent
customers, accounts, ledgers, and so on. A BankAccount object could
include a Balance attribute and Credit, Debit, and GetBalance methods, as
shown in Figure 1:

 Accessing an object You can only find out about or change an object�s attributes by making a
request to (sending a message to) the object, specifying which method you
want to invoke. An object�s interface describes each message that the object
responds to. A message consists of an instance name, a method name, and
if required, a method�s arguments.

Figure 1: An OO BankAccount Object
19

CHAPTER 1 | Introduction to Object-Oriented Programming
Methods

Overview This subsection defines what methods are, and the types of data they can
access. It also tells you how a method�s arguments are used.

This subsection discusses the following topics:

� What are methods?

� Instance methods and class methods

� Arguments

What are methods? A method is the code that implements the behavior (or a particular
behaviors) of an object. For example, the Credit method is the code that is
executed when the credit message is sent to an BankAccount object. An
object�s methods are the only way to access an object�s data. An object�s
data is encapsulated when only its methods can access it. In OO
programming there are different categories of methods depending on how
the method is defined. Abstract methods are methods that can not be
implemented, class methods are defined within a class and can only
manipulate class data not class instance data, and instance methods
manipulate a class instance (object�s) data.

Instance methods and class
methods

The fundamental difference between an instance method and a class
method is that a class method can not access an object�s (class instance�s)
data and an instance method can not access class data. Class methods are
generally used where efficient design calls for access to class data rather
than class instance data.

Arguments One or more arguments can be supplied as part of a method. For example,
the Credit method contains an argument that specifies the amount to be
credited to the balance of the account. A method�s arguments are contained
in brackets, for example; Credit(float amount) tells you the amount of
money in the account defined as a float type, for instance 3445.67.

Note: The name of a method and the arguments it takes is usually
referred to as the method signature.
 20

Object-Oriented Concepts
Inheritance

Overview This subsection defines the principle of inheritance with respect to classes.
It also outlines the main benefit of inheritance and illustrates the principle
with an example.

This subsection discusses the following topics:

� Inheriting from a class

� Benefits of inheritance

� Example of inheritance

Inheriting from a class A subclass (or a derived class) can be created from any existing class. The
subclass inherits the methods (and therefore the behavior) of the class it is
derived from (its parent class, or superclass).

Benefits of inheritance The main benefit of inheritance is that, for any given application, classes do
not have to be designed from scratch. Instead new classes can be written
merely by stating how they are different from another, already existing class.
Generally, the more general the characteristics of a class, the more
re-usable it is. For example if I design an abstract BankAccount class, I can
re-use it by simply inheriting its methods and attributes to write a new
SavingsAccount class, a CheckingAccount class, and so on. In this way the
SavingsAccount and CurrentAccount classes are extensions of the
BankAccount class, but they do not modify it.

The beauty of inheriting from a class in this way is that creating a new
derived class does not in any way affect derived classes already created, and
of course new classes can be created more quickly and easily using
inheritance than creating them from scratch.

Example of inheritance At the planning stage of writing an OO program, you can establish which
classes share a common set of attributes and operations and define an
economical class inheritance hierarchy accordingly. For example, you can
create an abstract class called BankAccount and two subclasses called
SavingsAccount, and CheckingAccount. Each of the subclasses inherit all
the BankAccount class�s attributes (balance) and operations (Credit, Debit,
21

CHAPTER 1 | Introduction to Object-Oriented Programming
and GetBalance), but can have their own individual attributes and
operations (InterestAllowed, OverdraftLimit, and so on), as shown in
Figure 2:

Figure 2: BankAccount Object Class Inheritance Diagram
 22

Object-Oriented Concepts
Polymorphism

Overview This subsection explains what polymorphism means and provides a simple
example of how it is used in OO programming.

This subsection discusses the following topics:

� What is polymorphism?

� Illustration of polymorphism

What is polymorphism? In general terms, polymorphism refers to the quality of being able to assume
different forms. In OO programming terms, polymorphism means that
objects from different classes but that are related to each other in an
inheritance hierarchy behave in a different way to each other when the same
method signature manipulates the object�s data. The client does not need to
know or understand these different behaviors, it just knows that the method
signatures are identical.

Illustration of polymorphism Consider the abstract BankAccount class in Figure 3 on page 24. Both
CheckingAccount and SavingsAccount inherit, extend, and implement
BankAccount. The class itself is not modified. When the GetInterest()
method is called on the CheckingAccount and SavingsAccount objects they
both return a different value, but a value of the same data type (for example
a float type).
23

CHAPTER 1 | Introduction to Object-Oriented Programming
Figure 3: BankAccount Object Polymorphism Diagram
 24

Banking Application Example
Banking Application Example

Overview The purpose of the banking application outlined here is to illustrate the
contrast between a procedural model and an OO model. It also highlights
some benefits of an OO model. No sample code is provided.

In this section This section discusses the following topics:

Note: The banking application outlined here is not a completely
comprehensive example of a real world banking application.

Outline of the Banking Application Example page 26

A Procedural Perspective page 27

An OO Perspective page 31
25

CHAPTER 1 | Introduction to Object-Oriented Programming
Outline of the Banking Application Example

Overview This subsection introduces the banking application example.

This subsection discusses the following topics:

� Application program description

� Data input

Application program description The theoretical application program reads a sorted file of transaction records
as input and iterates over the file until no more records are left. Each record
contains an indicator of the transaction type and details of each transaction,
which for this application is a sum of money to be credited or debited.
Transactions are processed according to transaction type (that is, credit or
debit) causing updates to be written to a database.

Also, a report is written at runtime detailing for auditing purposes date,
time, all transactions processed, and the number of failed transactions
including subtotals for each bank. For every failed transaction an error
record should be written to a file for later examination and eventual
reprocessing. A report of all failed transactions should be generated noting
the key details of each transaction, that is, bank sort code, and account
number.

Data input The data input for this application is a sorted file of transaction records.
Each record contains key details for each transaction, these are the bank
sort code, and the account number. The file is sorted according to account
number within the bank sort code. Each record contains an indicator of the
transaction type and details of each transaction, which for this example is a
sum of money to be credited or debited.
 26

Banking Application Example
A Procedural Perspective

Overview This subsection presents the banking application from a procedural
programming perspective.

This subsection discusses the following topics:

� Modelling the application

� Jackson structure diagram concepts

� JSD actions for the banking application

� The JSD

� Explanation of the JSD

� COBOL and PL/I (procedural) approach

Modelling the application Jackson Structure Diagrams (JSDs) are an effective technique for analyzing
the logical structure of a procedural program. They are especially useful for
logical flows that depend on a constant input source as often is the case in
batch processing.

Jackson structure diagram
concepts

The concepts defined here are only those used in �The JSD� on page 29.

Entity

is an object (either physical or abstract) that causes activity in a system or is
affected by the system activity, or both.

Action

An action is an event that happens to an entity or that is carried out by an
entity. Each action can be decomposed into smaller actions.

Sequence

A sequence is a decomposition of an entity or action into one or more
actions, in which these actions are to be executed in a certain order. In the
JSDs the actions in a sequence should always be executed from left to right.
27

CHAPTER 1 | Introduction to Object-Oriented Programming
Selection

A selection is a decomposition of an JSD-component into two or more
actions in which only one of the containing actions is executed. Which
action is executed is based upon a certain condition. A selection can best be
compared with an If Then Else-statement, where the Else-clause must be
present.

Iteration

An iteration is a decomposition of an JSD-component which contains only
one action. Based upon a condition this action occurs (iterates) zero or more
times. Thus the parent is formed of zero or more occurrences of the child.

JSD actions for the banking
application

The banking application procedural program can be modelled by
decomposing the program into the following JSD actions:

1. open input transaction file.

2. open output files.

3. write report header - date, time and title.

4. write error report header - date, time and title.

5. read first transaction record

6. process transaction

7. build and write error record if error

8. accumulate subtotal

9. accumulate master total

10. read next transaction record

11. write bank subtotal

12. write report footer(s) with master total.

13. close output files
 28

Banking Application Example
The JSD The JSD should be read from left to right and top to bottom.

Explanation of the JSD This diagram effectively describes the program logic flow for the banking

application, albeit at a very high level. The symbols have the following

meaning:

The * represents an iteration, accompanying it is normally text which
defines the condition on which the iteration ends. This implies that all
actions defined on the substructure below this box are performed for each
iteration.

In the banking application you are performing actions for each bank. In the
complete structure above you also iterate over all account transactions for
each bank, this allows us to perform bank specific processing at the end of
each iteration, for example, print totals for each bank.

Figure 4: Jackson Structure Diagram for the Banking Application
29

CHAPTER 1 | Introduction to Object-Oriented Programming
The O symbol represents a branch of a logical condition. In the banking
application you test if you are dealing with a current or savings account and
define the actions for each separately.

COBOL and PL/I (procedural)
approach

A program written in PL/I or COBOL based on this model would typically
have an initialization and finalization section. The main body would be
represented by one main loop comprising of an if branch for recording and
dealing with bank specific actions. Importantly there might be one section or
subprogram for executing the actual transaction regardless of whether it is a
debit or credit on a checking or savings account. There could be separate
modules for lodgment and withdrawal. Within these modules, database
sources are freely accessed. If during a maintenance cycle, processing for
current account debit changes, then the resulting regression testing must
include savings account as well. This is because the implementation for
both is physically in the same module and can be to some extent shared.
There can also be an online version of this program, that is, running in IMS
or CICS and serving a network of ATMs. There is no guarantee that the same
modules for credit and debit have been used in this program. It could be the
case that the credit and debit code in the online case is completely different
to the batch case and that it makes updates to the underlying database in a
different way. Generally this leads to a maintenance headache. This lack of
separation of concerns is the major drawback of this model.
 30

Banking Application Example
An OO Perspective

Overview This subsection presents the banking application from an OO programming
perspective.

This subsection discusses the following topics:

� An OO approach of the banking application

� An OO model of the banking application

� Application maintenance and implementation

� Initialization and finalization

� Encapsulation

� Polymorphism and inheritance

� Procedural versus OO approach

An OO approach of the banking
application

The corner stone concepts of object oriented design and programming are
polymorphism, inheritance, and encapsulation. In most object oriented
programming languages an object is implemented as a class definition.
Instances of this class are the objects themselves. Use of inheritance
hierarchies enables you to specify the interface of a family of objects. In this
case the BankaAccount object specifies the BankAccount interface in its
most general form. You then derive concrete class from this in order to
represent CheckingAccount and SavingsAccount. There are many other
types of accounts in a real banking environment and they can be further
derived from CheckingAccount or SavingsAccount or also directly from
BankaAccount. Because derived classes inherit methods from the super
classes you can then overwrite methods such as Credit() and Debit() (latter
case above) or inherit ready implementations of them as in the former case
above. In other words this structure also allows code reuse.

An OO model of the banking
application

Based on the �Application Program Description� on page 27 a typical OO
model for the banking application might have objects that are instances of
the following classes:

� An abstract BankAccount class which has abstract Credit() and
Debit() methods.
31

CHAPTER 1 | Introduction to Object-Oriented Programming
♦ A CheckingAccount class that inherits from, extends, and
implements the BankAccount class.

♦ SavingsAccount class which inherits from, extends, and
implements the BankAccount class.

Indeed, the BankAccount class can be extended any number of times

without affecting CheckingAccount or SavingsAccount.

� An abstract Report class that has abstract methods WriteHeader()
and WriteFooter() and Date, Time, and Title attributes.

♦ A TransactionSuccessfulReport class that inherits from and
implements the Report class, and also extends it with a
Write_report() method.

♦ A TransactionErrorReport class that inherits from and
implements the Report class, and also extends it with a
Write_error() method.

� A Transaction class with the methods openfile(), readrecord(),
process_transaction(), accumulate_subtotal(),
accumulate_master total(), and closefile().

There is a clear distinction between reports and accounts. Reports are also
represented by an inheritance hierarchy. There is an abstract base class
called Report - this means there are no direct instances of this class. This
serves to define a common interface to all reports. Status and error reports
are derived from report.

Application maintenance and
implementation

Object orientation gives us a very clear separation of concerns. The
implementation of BankAccount is separated from the implementation of
Report. This makes maintenance much easier. Furthermore the
implementation of credit() and Debit() for CheckingAccount and
SavingsAccount is also separate.

Initialization and finalization In object oriented programming initialization and finalization are performed
by class constructors and destructors. Constructors provide a uniform means
to create an instance of a class and perform those actions necessary to
create an instance in a consistent manner. A class destructor performs those
actions necessary to destroy it again. The class destructor is called
automatically at various times depending on programming language. For
example for C++ automatic variables when the variable goes out of scope.
 32

Banking Application Example
For Java, free store variables when garbage collection runs. Constructors
and destructors are very often used to acquire and free up resources needed
by an object. For example, an error report constructor would typically open
an output file for the report whereas the destructor would close it again.

Encapsulation It is important to understand that BankAccount data can only be accessed
through the methods defined in the BankAccount interface, that is
encapsulation. This ensures that data is accessed in a consistent manner
from every point in the system.

Polymorphism and inheritance If you call Credit() with an instance of CheckingAccount then you invoke
the corresponding method in the CheckingAccount class implementation. If
you call credit() with an instance of the SavingsAccount class then you
invoke the credit() method in the SavingsAccount class implementation.
Furthermore you can pass instances of CheckingAccount and
SavingsAccount where instances of BankAccount are expected.

For example you can safely pass instances of CheckingAccount or
SavingsAccount to have the following method.

In the implementation you can call credit() or Debit() without having to
test what kind of an account this is. This is because CheckingAccount and
SavingsAccount are derived from BankAccount and have methods credit()
and Debit(), and object oriented programming languages are able to
determine which class instance is passed. This ability to pass a derived
class instance where a base is expected is called polymorphism.

Procedural versus OO approach In procedural programming you can typically have a module that performs
an action such as �place an order� or �make a lodgment�. In this module the
first task is to further characterize the input parameters and follow a certain
specific logical path through the module. Also underlying data can be
accessed in any way. In object oriented programming this catch all module
is replaced by classes representing the different characters of the input
parameters above. The classes typically form an inheritance hierarchy and
you can therefore ensure:

� A uniform interface to data sources underneath.

� You can reuse code through direct implementation inheritance.

Boolean Transfer_funds(in account from, in account to)
33

CHAPTER 1 | Introduction to Object-Oriented Programming
� You can define implementations specific to the derived class for the
methods defined in the class.
 34

CHAPTER 2

Introduction to
CORBA
This chapter outlines the historical development of Common
Object Request Broker Architecture (CORBA). It also outlines
the structure and function of its various elements, and gives
a generic overview of the development of a CORBA system.

In this chapter This chapter discusses the following topics:

CORBA Object Management page 36

Components of a CORBA Distributed System page 45

CORBAservices and CORBAfacilities page 59

The CORBA Development Process page 64
35

CHAPTER 2 | Introduction to CORBA
CORBA Object Management

Overview This section discusses at a high level how CORBA object management came
about, the basic architecture for CORBA object management, characteristics
of CORBA objects, the shortcomings and advantages of CORBA objects.

In This Section This section discusses the following topics:

The Object Management Group (OMG) page 37

The Object Management Architecture (OMA) page 38

Object Orientation and CORBA Objects page 40

Shortcomings of CORBA page 42

Advantages of CORBA page 43
 36

CORBA Object Management
The Object Management Group (OMG)

Background The OMG was founded in 1989 by a group of eleven companies; it now has
about eight hundred members worldwide. Its main aim is to provide
technically sound, commercially viable, vendor- independent specifications
for the software industry, which combine two strands of technology: remote
procedure calls and object orientation.

This subsection discusses the following:

� Achievement of the OMG

� Operation of the OMG

Achievement of the OMG The OMG produced a complete infrastructure for distributed computing, (see
�The Object Management Architecture (OMA)� on page 38). A core part of
the OMA which describes the basic software infrastructure needed to
support distributed objects, is the Request Broker Architecture (ORB)
standard.

Operation of the OMG OMG produces specifications - that is, documents that precisely describe
what something should do, and how it should act, perhaps in response to
various inputs. The OMG CORBA specification describe software; OMG IDL
describes language. Implementations of the OMG CORBA specifications �
such as ORBs, and IDL compilers � are not produced by OMG. They are,
instead, produced by software vendors.

Specifications are available free of charge and are downloadable1. These
free, downloadable specifications, can be implemented by anyone.
Specifications are frequently added to and updated in response to the
changing needs of CORBA users and enterprise requirements.

1. http://www.omg.org
37

http://www.omg.org

CHAPTER 2 | Introduction to CORBA
The Object Management Architecture (OMA)

Overview The OMA is a set of standard interfaces for standard objects that support
CORBA applications. It includes the CORBAservices, the CORBAfacilities,
and a set of Domain Specifications.

This section discusses the following:

� The OMA and CORBA

� OMA�s central component

� OMA diagram

� OMA Components

The OMA and CORBA When the basic model was established, the OMG set about defining the
framework for CORBA, CORBAservices, and CORBAfacilities, the three
components that constitute the OMG�s implementation of the OMA.

OMA�s central component The central component of the architecture is the Object Request Broker
(ORB) which acts as the communication backbone, or object bus that
objects use to communicate. CORBA specifies the architectural framework
for ORBs, but the ORB design is vendor specific

OMA diagram Figure 5 illustrates the OMA.

Figure 5: OMA Diagram
 38

CORBA Object Management
OMA Components The architecture identifies three different kinds of object:

Application Objects

These are objects created specifically for individual applications by the
developer of the application.

Object Services

These are objects that provide horizontal services, such as object naming,
event delivery, and transaction coordination. These services are useful to a
wide variety of applications and are standardized by the OMG.

Common Facilities

These are objects that provide vertical, or application-specific services and
are also specified by the OMG. Examples are a workflow facility, telecom
logging, or a printing service. None of the services and facilities objects are
privileged in any way, anyone can implement them. The objects that provide
these services and facilities are not distinguished in any way as far as the
ORB is concerned. They are like any application object that plugs into the
bus. (It just so happens that they are standardized by the OMG; that is, as
CORBAservices, and CORBAfacilities.
39

CHAPTER 2 | Introduction to CORBA
Object Orientation and CORBA Objects

Overview This section introduces CORBA objects in the context of a distributed system
with OMA. It also discusses how they are accessed, created and destroyed,
and their states.

This section discusses the following:

� CORBA objects

� CORBA object messages

� CORBA object states

� Transient CORBA objects

� Persistent CORBA objects

� Creating a persistent CORBA object

� Destroying a CORBA object

CORBA objects In C++ or Java an object�s interface and implementation can be described
in the same language. For CORBA objects, the object�s interface is defined
in Interface Definition Language (IDL) which is a description language not
an implementation language. It can only be implemented in one of the
languages ratified by the OMG, including COBOL, PL/I, C++ and Java. The
IDL compiler compiles CORBA object interfaces and produces
implementation code for example in COBOL and PL/I.

CORBA object messages In CORBA terminology, a client invokes an operation on a CORBA object
located on a server. To make a successful invocation on a CORBA object,
the client must obtain the object reference, for that particular object. The
object reference is a unique identifier that encapsulates the location and all
other necessary information needed to access and manipulate the object.
Each object reference is unique to that object for the object�s lifetime and
can be used to access the object any number of times by invoking an
operation (or set or get an attribute) on the object via its reference.

CORBA object states A CORBA object is an abstraction that exists independently of servers,
servants, or any other computing artifact. A servant is a programming
language object that provides the implementation for one or more methods
defined for a CORBA object. In effect it is simply an instance of an
 40

CORBA Object Management
implementation of an IDL interface for a CORBA object. At runtime, COBOL
and PL/I developers perceive CORBA objects as implementations in either
PL/I or COBOL.

Servers can be shut down and restarted without affecting the existence of a
CORBA object that lives in that server. The minimum requirement for a
CORBA object to exist is that it must have an ObjectId. The way ObjectIds
are created depends on the nature of the CORBA object they are associated
with. So, at this point it necessary to make a fundamental distinction
between two different types of CORBA object:

� Transient CORBA object.

� Persistent CORBA object.

Transient CORBA objects Transient CORBA objects are CORBA objects that last only as long as the
server process that uses them.

Persistent CORBA objects Persistent CORBA objects, are CORBA objects that exist beyond a particular
instance of a server process. They are therefore stored (usually in a
database), when they are not actively being used.

Creating a persistent CORBA
object

The necessary prerequisite for creating a persistent CORBA object is that an
ObjectId has already been created, and is stored in some database. When
the server process begins, it associates a servant with the CORBA object�s
ObjectId. The object reference is then created and can be passed to the
client, enabling the client to invoke operations on the CORBA object. When
the server process ceases, the CORBA object becomes dormant, and is only
reactivated when the server process is restarted.

Destroying a CORBA object Destroying a CORBA object not only means that is it not active; it also
means that it cannot be activated to respond to a client request. Clients
calling on a reference to an object that has been destroyed receive the
following error message (commonly called an exception)�
OBJECT_NOT_EXIST. The OMG have ratified a CORBAservice which describes
a paradigm for creating and destroying CORBA objects.
41

CHAPTER 2 | Introduction to CORBA
Shortcomings of CORBA

Summary of CORBA shortcomings The shortcomings of CORBA are discussed as follows:

� OMG and Source Code

� CORBA backward compatibility

� CORBA and application design

OMG and Source Code There is no definitive reference implementation for CORBA. This places a
larger burden on the specification, because it must define semantics
sufficiently well to eliminate portability and interoperability problems.

CORBA backward compatibility Occasionally, specifications are found to have defects that must be
addressed by publishing a revised specification. Revisions sometimes (but
fortunately only rarely) are not backward-compatible with existing
implementations, forcing source-code changes in application code.

CORBA and application design CORBA provides you with considerable freedom in how to implement an
application. This is both a boon and a bane. While CORBA can be used in a
wide variety of applications and deployment scenarios, like any other
powerful tool, it can be used in detrimental ways. For example, no amount
of CORBA magic can compensate for a poor design; the large number of
choices offered by CORBA means that, if you do not understand the
consequences of design decisions, you could run into serious problems.
 42

CORBA Object Management
Advantages of CORBA

Summary of CORBA advantages The advantages of CORBA are discussed as follows:

� Object location transparency

� Server Transparency

� Language Transparency

� Implementation Transparency

� Architecture Transparency

� Operating System Transparency

� Protocol Transparency

Object location transparency The client does not need to know where an object is physically located. An
object can either be linked into the client, run in a different process on the
same machine, or run in a server on the other side of the planet. A request
invocation looks the same regardless, and the location of an object can
change over time without, breaking applications.

Server Transparency The client is, as far as the programming model is concerned, ignorant of the
existence of servers. The client does not know (and cannot find out) which
server hosts a particular object, and does not care whether the server is
running at the time the client invokes a request.

Language Transparency Client and server can be written in different languages. This fact
encapsulates the whole point of CORBA; that is, the strengths of different
languages can be utilized to develop different aspects of a system, which
can interoperate through IDL. A server can be implemented in a different
language without clients being aware of this.

Implementation Transparency The client is unaware of how objects are implemented. A server can use
ordinary flat files as its persistent store today and use an OO database
tomorrow, without clients ever noticing a difference (other than
performance).
43

CHAPTER 2 | Introduction to CORBA
Architecture Transparency The idiosyncrasies of CPU architectures are hidden from both clients and
servers. A little-endian client can communicate with a big-endian server
with different alignment restrictions.

Operating System Transparency Client and server are unaffected by each other�s operating system. In
addition, source code does not change if you need to port the source from
one operating system to another2.

Protocol Transparency Clients and servers do not care about the data link and transport layer. They
can communicate via token ring, Ethernet, wireless links, ATM
(Asynchronous Transfer Mode), or any number of other networking
technologies.

2. Of course, this is true only for CORBA-related code. If you use features that are
specific to a particular operating system in your application code, you must still
port the application.
 44

Components of a CORBA Distributed System
Components of a CORBA Distributed System

Overview This section discusses the core components of a CORBA distributed system.
There is an overview of IDL and how its basic types are mapped to COBOL
and PL/I, an introduction to object references, an introduction to the generic
functionality and structure of ORBs, an introduction to the most common
transport protocol used to communicate between distributed ORBs and
finally CORBAservices and CORBAfacilities are summarized.

In This Section This section discusses the following topics:

Interface Definition Language page 46

Mapping IDL to Implementation Languages page 49

CORBA Object References page 52

ORB Functionality page 53

ORB Structure page 55

General Inter-ORB Protocol and Internet Inter-ORB Protocol page 58
45

CHAPTER 2 | Introduction to CORBA
Interface Definition Language

Overview The first key concept in CORBA is (IDL). IDL is a neutral language for
defining abstract interfaces. IDL interfaces have no executable statements.
You cannot code with IDL, only type definitions. IDL only defines the
operations that are available, and the data types of their parameters. These
interface definitions can be implemented in the application source code. It
does not say anything about the implementation of the interface: in
particular it does not give any clues about what language the source code
the interface might be implemented in, or what networking protocols might
be used to reach an object with that interface.

This subsection discusses:

� IDL interfaces

� Implementing source code

� Interface components

� Operation definitions

� Attribute definitions

� Exception definitions

� Data type definitions

� Constant Types

IDL interfaces Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that object
supports in a distributed enterprise application. Every CORBA object has
exactly one interface. However, the same interface can be shared by many
CORBA objects in a system. CORBA object references specify CORBA
objects (that is, interface instances). Each reference denotes exactly one
object, which provides the only means by which that object can be accessed
for operation invocations. Because an interface does not expose an object's
implementation, all members are public. A client can access variables in an
object's implementation only through an interface's operations and
attributes.
 46

Components of a CORBA Distributed System
Implementing source code IDL can be implemented by languages for which the OMG specify a
language mapping. Implementation is achieved by the IDL compiler, which
produces client stub and server skeleton code for the implementation
language you choose when you compile you IDL.

Interface components An IDL interface definition typically has the following elements:

� Operation definitions.

� Attribute definitions.

� Exception definitions.

� Data type definitions.

� Constant definitions.

Operation definitions IDL operations define the signatures of an object�s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three parts:

� Return value data type.

� Parameters and their direction.

� Exception clause.

An operation�s return value and parameters can use any data types that IDL
supports.

Attribute definitions An interface�s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are accessible
to clients. Unqualified attributes map to a pair of get and set functions in
the implementation language, which let client applications read and write
attribute values. An attribute that is qualified with the keyword read-only
maps only to a get function.

Exception definitions IDL operations can raise one or more CORBA-defined system exceptions.
System exceptions are not, and should not be defined in IDL. You can also
define you own exceptions (called user exceptions) by means of a raises
clause, and explicitly specify these in an IDL operation. An IDL exception is
a data structure that can contain one or more member fields.
47

CHAPTER 2 | Introduction to CORBA
Data type definitions IDL defines its own data-type definitions, which map to various languages
that the OMG supply mapping rules for.

Constant Types IDL lets you define constants of all IDL supported basic-data types except
the any type, refer to the COBOL Programmer�s Guide and Reference or
PL/I Programer�s Guide and Reference for more details of the any type. To
define a constant�s value, you can either use another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.
 48

Components of a CORBA Distributed System
Mapping IDL to Implementation Languages

Overview IDL is mapped onto various programming languages by standard mapping
rules, defined by the OMG, that relate IDL data types, operations, and
interfaces to their corresponding form in a particular programming language.
The OMG currently supports language mappings for the following languages:
Ada, C, COBOL, C++, COM, LISP, Java, PL/I, Python, Smalltalk, and XML.

This subsection discusses:

� Language mapping for OO languages

� Language mappings for COBOL and PL/I

� IDL basic types mapped to COBOL and PL/I

Language mapping for OO
languages

Java and C++ are the two most commonly used OO programming
languages for commercial applications. CORBA IDL data types are very
similar to C++ and Java data types. IDL interfaces map easily to C++ and
Java classes, and IDL operations map to C++ member functions and Java
methods.

If C++ programmers are implementing CORBA objects, they implement
them as C++ objects. They only need to understand the mapping rules that
relate IDL data types, interfaces, and operations to C++ data types,
classes, and member functions. If Java programmers are implementing
CORBA clients for the same objects, they only need to understand the Java
mapping that relates IDL data types, interfaces, and operations to Java data
types, interfaces, classes, and methods.

Language mappings for COBOL
and PL/I

Because COBOL and PL/I are not OO languages, CORBA objects are not
implemented in COBOL and PL/I in the same way they are in OO languages
such as C++ and Java.
49

CHAPTER 2 | Introduction to CORBA
IDL basic types mapped to COBOL
and PL/I

Table 1 shows the mapping rules for basic IDL types (types not currently
supported by Orbix COBOL are denoted by italic text).

Table 1: Mapping Rules for Basic IDL Types for COBOL and PL/I

IDL Type COBOL Representation PL/I Representation

short PIC S9(05) BINARY FIXED BIN(15)

long PIC S9(10) BINARY FIXED BIN(31)

unsigned short PIC 9(05) BINARY FIXED BIN (15)a

unsigned long PIC 9(10) BINARY FIXED BIN (31)a

float COMP-1 FLOAT DEC (6)

double COMP-2 FLOAT DEC (16)

char PIC X CHAR (1)

boolean PIC 9(01) BINARY CHAR (1)

octet PIC X CHAR (1)

enum PIC S9(10) BINARY FIXED BIN (31)a,b

fixed<d,s> PIC S9(d-s)v(s)
PACKED-DECIMAL

FIXED DEC (d,s)

fixed<d,-s> PIC S9(d)P(s)
PACKED-DECIMAL

FIXED DEC (d,s)

any See the COBOL
Programmer�s Guide
and Reference for
details.

See the PL/I
Programmer�s Guide
and Reference for
details.

long long PIC S9(18) BINARY FIXED BIN (31)

unsigned long long PIC 9(18) BINARY FIXED BIN (31)

wchar PIC G GRAPHIC

a. UNSIGNED FIXED BIN is not supported by the PL/I compiler for MVS & VM.
Therefore, the maximum length for a PL/I unsigned short is half that of the
CORBA-defined equivalent. The same applies for a PL/I unsigned long
CORBA type.
 50

Components of a CORBA Distributed System
Mapping IDL operations to
COBOL and PL/I

For COBOL each IDL interface maps to a group of data definitions. There is
one definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation.

For PL/I each IDL interface maps to a group of data definitions. There is one
structure defined for each IDL operation. A structure contains each of the
parameters for the relevant IDL operation in their corresponding PL/I
representation.

Mapping IDL attributes to COBOL
and PL/I

For both COBOL and PL/I write attributes map to two operations (get and
set), and read-only attributes map to a single get operation. Storage of
Mapped Data For COBOL, the mapped data is contained in copybooks that
are generated by the IDL compiler. For a summary of the COBOL generated
files see, �Generated COBOL Members� on page 97.

For PL/I, the mapped data is contained in include files that are generated by
the IDL is compiler. For a summary of the generated PL/I files see,
�Generated PL/I Members� on page 113.

b. The maximum number of digits allowed in a FIXED BIN is 31 bits.
51

CHAPTER 2 | Introduction to CORBA
CORBA Object References

Overview This section introduces the essential components of an object reference.

This subsection discusses:

� What�s in a reference?

� Protocol-specific information

� Object key

What�s in a reference? All object references carry three essential items of information:

� Repository ID

� Protocol-specific information

� Object key

Repository ID The repository ID encodes the IDL information of the object as a unique
identifier string in the Interface Repository (IFR)F at the time the object
reference is created. Every named IDL type is associated with a repository
ID.

Protocol-specific information This part of the reference carries one or more addresses that identify a
communication end point. For IIOP (�General Inter-ORB Protocol and
Internet Inter-ORB Protocol� on page 58), each address is an Internet
domain name or IP address, and a TCP port number. The address (or
addresses) can either identify the server, or identify a location broker that
can return the address of the server. Logically, the protocol information
serves to identify the process that should handle requests made via the
object reference.

Object key The object key contains the ObjectId and ORB-specific information. It is in a
format that is not specified by the OMG. The proprietary information does
not get in the way of interoperability, because it is never looked at, except by
the ORB that created that information.
 52

Components of a CORBA Distributed System
ORB Functionality

Overview This section summarizes ORB functionality.

This subsection discusses the following topics:

� Basic functions of an ORB

� ORBs and clients

� Orb components

Basic functions of an ORB The following are the most fundamental functions of an ORB. An ORB must:

� Bridge the separation of an object�s interface from its implementation.

� Provide, to the client, an interface to access objects.

� Locate the correct object for each client request.

� Transmit messages from the client to the object.

� Start the object�s server, if it is not already started.

� Invoke the application code in the object�s server.

� Return results or errors to the client.

� Deactivate the server, if required.

ORBs and clients The ORB must transparently dispatch requests sent by a client to the correct
object and return the results of requests back to the client. The client need
not know an object�s implementation details (such as what language it is
implemented in, where it is physically located, and how it can be reached).
In other words, all clients care about is the interface of an object, its
behavior, and its identity. The details of how to communicate with the
object are handled by the ORB.
53

CHAPTER 2 | Introduction to CORBA
Orb components Figure 6 shows the components of an ORB.

Figure 6: The Components of an ORB
 54

Components of a CORBA Distributed System
ORB Structure

Overview The ORB core, which is proprietary to each implementation, handles the
basic communication functions of the platform. The interface to the core is
vendor-specific. However, application components never access this
interface directly.

This subsection discusses the following topics:

� ORB interface

� IDL stubs

� IDL skeletons

� Dynamic invocation interface

� Dynamic skeleton interface

� Object adapter

� Portable object adapter

ORB interface The ORB interface is identical for both clients and servers, and
standardized. It is concerned with tasks such as initialization and
finalization.

IDL stubs IDL stubs are files produced by a compiler that converts IDL definitions into
an Application Programming Interface (API) for a specific programming
language. Clients use the generated stubs to access objects. The precise API
that is generated depends on the interface definition, and so varies for each
type of object. However, the rules for converting IDL into stubs are specified
by the OMG. The code that is generated for the stubs takes care of
marshaling parameters that are sent from the client to an object, and
unmarshaling of values that are returned from an operation invocation to the
client.

IDL skeletons An IDL skeleton�which is a superset of the stub code�is the server-side
equivalent of a stub. It provides an interface from the ORB into the
application code. Like stubs, IDL skeletons are compiled and therefore
provide a type-specific API between the ORB and the server application
code. The skeletons contain the code that marshals and unmarshals values
on the server-side.
55

CHAPTER 2 | Introduction to CORBA
Dynamic invocation interface IDL stubs are compiled from IDL, and therefore require compile-time
knowledge of the interfaces a client wants to use. With DII, invocations can
be constructed at runtime by specifying the target object reference, the
operation or attribute name, and the parameters to pass. A server that
receives a dynamically constructed invocation request does not differentiate
between it and static requests. The DII is used mostly by generic
applications, such as debuggers or protocol bridges.

Dynamic skeleton interface The Dynamic Skeleton Interface (DSI) is the server-side equivalent of the
DII. It permits a server to implement objects whose interface definition was
not known at compile time. Because the type information is not known at
compile time the ORB must be able to retrieve the necessary type
information it needs at runtime from the IFR. Therefore the IDL needs to be
registered in the IFR.

You can use DSI and DII together to construct a bidirectional gateway. This
gateway receives messages from the non-CORBA system and uses the DII to
make CORBA client calls. It uses DSI to receive requests from clients on a
CORBA system and translate these into messages in the non-CORBA
system.

Object adapter Object adapters mediate between the ORB core and programming-language
objects. Object adapters are responsible for a variety of tasks, such as
keeping track of which objects exist in memory, allowing the server to create
and destroy objects. In addition, object adapters are responsible for
mapping an incoming request onto whatever language construct is used to
represent an object.

By necessity, object adapters are language-specific, because it is the object
adapter that bridges the gap between the abstract concept of an object and
its specific implementation in a particular programming language.

Note: Neither DII nor DSI are available with current versions of IONA�s
mainframe products.
 56

Components of a CORBA Distributed System
Portable object adapter The OMG defines the Portable Object Adapter (POA), but, the
characteristics of the POA are defined by POA policies. POA policies
determine how the POA implements and manages objects, and processes
client requests.

The language-specific interfaces of the POA are defined separately for each
language for which CORBA standardizes a mapping. COBOL, and PL/I,
specific interfaces of the POA support only one set of POA policies. For a list
of these policies, refer to �Orbix Mainframe POA Policy� on page 83.
57

CHAPTER 2 | Introduction to CORBA
General Inter-ORB Protocol and Internet Inter-ORB Protocol

Overview A protocol is a set of formal rules describing how to transmit data, especially
across a network. High level protocols deal with the data formatting,
including the syntax of messages, the terminal to computer dialogue,
character sets, sequencing of messages. In order to bridge the gap between
different programming languages, platforms, and so-on, CORBA needs a
common protocol that can carry requests to objects regardless of where they
are located on a network, or how they are implemented. From a
programmer�s perspective, the protocol details are irrelevant. Programmers
deal with making calls on objects; the ORB automatically and transparently
turns those calls into network messages in the appropriate protocol.

This subsection discusses the following topics:

� GIOP

� Other transport protocols

GIOP The General Inter-ORB Protocol (GIOP) is an abstract meta-protocol. It
specifies a standard transfer syntax (how data is represented as bits and
bytes) and a set of message formats for object requests. The GIOP is
designed to work over many different transport protocols. IIOP The Internet
Inter-ORB Protocol (IIOP) (see) specifies how GIOP messages are
exchanged, using TCP/IP connections. IIOP provides interoperability
between different vendors ORBs. TCP/IP, which underpins the Internet, is
the most popular product-neutral and vendor-neutral transport layer used.

Other transport protocols CORBA requires that all ORBs support IIOP, but leaves the field open for
other transports that are suitable to special situations. For example, Orbix
supports shared memory and SSL-based variations of the GIOP. Other
transports (including multi-cast) will be available in the future.
 58

CORBAservices and CORBAfacilities
CORBAservices and CORBAfacilities

Overview CORBAservices and CORBAfacilities are a group of basic services and
facilities that are commonly needed by a wide variety of applications.
CORBAservices and CORBAfacilities are specified as CORBA objects with
IDL interfaces, and can therefore, be accessed and manipulated like any
other object in a CORBA distributed system.

Most up-to-date services and
facilities

For the most complete and up to date information on CORBAservices and
CORBAfacilities see http://www.omg.org.

In this section This sections discusses the following topics:

CORBAservices page 60

CORBAfacilities page 62
59

http://www.omg.org

CHAPTER 2 | Introduction to CORBA
CORBAservices

Overview CORBAservices are basic services that can be used in a wide variety of
applications and are ratified by the OMG. Table 2 gives the current
complete list of services. This list is subject to change.

Table 2: CORBAservices (Sheet 1 of 2)

Service Description

Collection Manages and moves groups of CORBA objects.

Concurrency Enables the performance of distributed locking
used by the Object Transaction Service (OTS).

Event Basic messaging service that controls clients or
servers sending messages (events) to receivers.

Externalization Enables CORBA data types to be stored
externally.

Interoperable Naming Basic directory service which stores name to
object reference bindings in a central location.

Licensing Manages the licensing of a distributed
application.

Life Cycle Describes a paradigm for remotely creating and
destroying CORBA objects.

Notification A messaging service that allows configuration
for quality-of-service and message filtering.

Persistent State CORBA-type persistence mechanism for
defining how objects stored in databases are
reused.

Property Associates names with properties.

Query Manipulates groups of CORBA objects.

Relationship Defines relationships between pairs of CORBA
objects.
 60

CORBAservices and CORBAfacilities
Security Describes an ORB�s provision of secure
communications and the various security levels
obtainable.

Time Provides current time and various other
time-relevant services.

Trading Object Facilitates object discovery by querying an
object�s properties.

Transactions Provides support for distributed transactions,
thus allowing secure simultaneous updates of
databases.

Table 2: CORBAservices (Sheet 2 of 2)

Service Description
61

CHAPTER 2 | Introduction to CORBA
CORBAfacilities

Overview CORBAfacilities are services that many applications can share, but are not
as fundamental as the CORBAservices.

This subsection discusses the following topics:

� CORBAfacilities

� Internationalization and time

� Mobile Agent Facility

CORBAfacilities To date, the OMG have ratified two CORBAfacilities:

� Internationalization and Time.

� Mobile Agent Facility.

Internationalization and time This CORBA Facility is concerned with culturally specific representations of
data, such as representations of time, monetary formatting, collation order,
and other culturally specific ways of representing data.

Mobile Agent Facility This CORBAfacility is concerned with interoperability between various
mobile agent facilities. An agent is a computer program that acts
autonomously on behalf of a person or an organization, and has its own
thread of execution, allowing tasks to be performed on the program�s own
initiative.

A mobile agent is one that is not confined to the system where it was
executed, in that it can move itself from one system in a network to another.

Vertical CORBAfacilities Vertical CORBAfacilities are domain-specific facilities that are developed by
OMG working groups for particular industries. Currently there are
specifications for the following domains:

� CORBA Business

� CORBA E-Commerce

� CORBA Finance

� CORBA Life Sciences

� CORBA Manufacturing
 62

CORBAservices and CORBAfacilities
� CORBA Medicine

� CORBA Telecoms

� CORBA Transportation
63

CHAPTER 2 | Introduction to CORBA
The CORBA Development Process

Overview This section outlines how the elements of a CORBA system are used to
develop distributed applications.

This section discusses the following topics:

� CORBA development process

� Key points of the development process

CORBA development process Figure 7 illustrates the CORBA development process.

Figure 7: CORBA Development Process
 64

The CORBA Development Process
Key points of the development
process

The key points are:

IDL allows separation of client and server development: The only thing
that client and server developers need to agree on is the IDL interface. They
can use different programming languages, hardware platforms, even
different vendors ORBs.

IDL compiler maps the IDL to programming languages: developers use
their ORB�s IDL compiler to map the IDL interface onto their chosen
programming language. For example, the client developer might be
implementing a Java client, whereas the server developer might be
implementing a COBOL server.

Proxy objects provide client-side transparency: The IDL compiler creates
stub code that contains a class defining proxy objects for a particular
interface. The ORB creates a proxy object based on this class when an
object reference (for the object that implements that interface) enters the
clients address space. This gives the illusion that the remote object is in the
local address space. The ORB then forwards the client calls on the proxy
object to the corresponding target object across the network.

Skeletons provide server-side transparency: The IDL compiler creates a
server-side skeleton in your chosen server implementation language (for
example COBOL). This server skeleton code allows the ORB to transfer
client request through to target server objects, and allows the server to
service these client requests on the target object.

The ORB and POA mediate the request: The client-side ORB sends a
CORBA request across the network to the server-side ORB, which locates
the appropriate POA for the object. The POA turns the CORBA request into a
function call on the correct programming language object.

Note: The Orbix IDL compiler cannot generate COBOL and PL/I
client stub code.
65

CHAPTER 2 | Introduction to CORBA
 66

CHAPTER 3

Introduction to
Orbix
This chapter describes the basic components of Orbix that are
relevant to Orbix Mainframe. Orbix consists of the ORB core,
which contains the Adaptive Runtime Technology framework
and an open-ended set of plug-ins that provide the required
functionality for specific systems.

In this chapter This chapter discusses the following topics:

The Orbix ORB Core page 68

Orbix Plug-ins page 70

Orbix Interceptors page 73

Orbix Location Domain page 75

Orbix Configuration Domain page 78

The Orbix Portable Object Adapter page 80

Orbix Mainframe POA Policy page 83
67

CHAPTER 3 | Introduction to Orbix
The Orbix ORB Core

Overview The ORB core handles the most basic CORBA abstractions: CORBA objects,
requests, interceptors, and plug-ins. The ORB core presents a uniform
programming interface to developers. In the ORB core, everything is a
CORBA object. These CORBA objects� have IDL interfaces. The ORB core
passes requests between these objects via their IDL interfaces hiding the
implementation details. This means the ORB can allow many different ways
of implementing key objects transparently to the rest of the framework.

This section discusses the following topics:

� Adaptive runtime technology

� The ORB core and CORBA objects

� The ORB core and interceptors

Adaptive runtime technology The Adaptive Runtime Technology (ART) framework encapsulates the ORB
core and plug-ins and insulates them from each other. Operation of the ORB
Core The ORB core handles invocations (requests) on remote objects. To the
developer, invocations on remote objects appear to be exactly the same as
invocations on local objects. This location transparency is a key feature of
the ORB.

The ORB core does not contain any networking code; support for networking
protocols, for example, the standard IIOP protocol is provided by a separate
plug-in. Different features (such as alternative transport protocols) are
provided by alternative implementations of key interfaces in this abstract
framework.

The ORB core and CORBA objects The ORB uses memory-management and memory-sharing techniques to
minimize memory use of CORBA objects on both the client-side and
server-side. It is designed to handle large numbers of objects, and to make
fine-grained object designs practical.
 68

The Orbix ORB Core
The ORB core and interceptors Plug-ins that manipulate requests (for example the transport plug-ins)
provide an interceptor to the ORB core. The ORB core does not care how
any particular transport works, it simply passes a request to its interceptor.
Supporting new or multiple transports, does not require any changes to the
ORB core.
69

CHAPTER 3 | Introduction to Orbix
Orbix Plug-ins

Overview This section discusses the following topics:

� Plug-ins

� ART plug-in architecture

� Plug-in examples

� The Orbix IDL compiler

� WTO announce plug-in

� SAF plug-in

� Log-stream plug-in example

� Transport protocol plug-ins

Plug-ins A plug-in is a dynamically loaded shared object library that registers with
the ORB plug-in framework. Most ORB functionality is implemented by
plug-ins. The set of plug-ins is determined by configuration settings, so the
ORB core also knows how to load configuration data. Plug-ins are loaded at
run-time, so the features you want can be selected using run-time
configuration settings. You can change the plug-in feature set by
re-configuring your application�you don�t have to re-compile it.
 70

Orbix Plug-ins
ART plug-in architecture The plug-in architecture allows IONA to add new capabilities to Orbix as
plug-ins, without modifying the ORB core. This allows IONA to support new
features more quickly and easily, and with fewer version-incompatibility
problems than a monolithic ORB architecture. Figure 8 illustrates the Orbix
plug-in architecture:

Plug-in examples The standard IIOP protocol, the optimized shared-memory protocol, and the
POA server-side support are all packaged as plug-ins. Plug-ins allow a
degree of flexibility, both in choice of plug-in and the time a plug-in is
activated. For example, suppose an application is sometimes deployed on a
single host, and sometimes spread across multiple hosts. You can deploy
identical executables, but configure a single-host deployment to load just
the shared-memory transport, whereas a multi-host deployment loads the
IIOP transport.

The Orbix IDL compiler In Orbix, the IDL compiler follows the same plug-in architecture as IIOP, the
POA, and so on. You must specify the language you wish to use for the
client and server. For example, if the client is to be implemented in Java and
the server in COBOL, the IDL compiler produces client stub code in Java

Figure 8: Orbix Plug-In Architecture
71

CHAPTER 3 | Introduction to Orbix
and server skeleton code in COBOL. For more detailed information on IDL
compiler output for COBOL see �IDL to COBOL Mapping� on page 101, and
for PL/I see �IDL to PL/I Mapping� on page 116.

WTO announce plug-in For external monitoring and automation purposes, the following messages
can be written when an Orbix server starts up and later ends on OS/ 390:

These messages can be enabled in any server without code changes, by
configuring the orb_plugins list for the server to include the name
wto_announce.

SAF plug-in This Orbix plug-in provides optional Principal-based access control. A server
can accept or reject incoming requests based on a CORBA::Principal value
in the request header. The value is treated as an OS/390 user ID and access
is checked against an operation-specific SAF profile name. Access can
therefore be controlled on a per-operation basis, or (using generic profiles)
on a per-server basis

Log-stream plug-in example Orbix logs diagnostic messages to a log-stream object. Several log-stream
implementations are provided as plug-ins. When developing an application,
you would most likely use the local log stream, which logs to standard
output or to a file. However, in a deployed system you might want to use the
system log stream that logs to the operating system�s logging service (UNIX
syslogd or Windows NT logging service). You can configure the same
executable to load either (or both) of these plug-ins, depending on the
context in which you run the application.

Transport protocol plug-ins Most applications use the IIOP transport plug-in, but other protocols are
possible. For optimized communication on a single host, Orbix provides a
shared-memory transport. No particular transport is special to the ORB
core, so you can load whatever transport set you need for your application.
This architecture makes it easy for IONA to add support for additional
transports in the future; for example, multi-cast or support for
special-purpose network protocols.

+ORX2001I ORB orbname STARTED (app-id)
+ORX2002I ORB orbname ENDED (app-id)
 72

Orbix Interceptors
Orbix Interceptors

Overview This section discusses the following topics:

� Interceptors

� Plug-ins and interceptors

� Interceptor set-up

� Bindings

Interceptors An interceptor is an implementation of an interface that the ORB uses to
process requests. These are abstract request handlers that can implement
transport protocols (like IIOP or shared memory), or manipulate requests on
behalf of a service (for example, adding transaction identity). Plug-ins that
manipulate requests (for example, the transport plug-ins) provide an
interceptor to the ORB core. These plug-ins can adapt the ORB to new
network protocols. The ORB core does not care how any particular transport
works, it simply passes a request to its interceptor. Supporting a new
transport, or multiple transports, does not require any changes to the ORB
core.

Plug-ins and interceptors Figure 9 shows an example of plug-ins that contain interceptors.

Figure 9: Orbix Plug-Ins that Contain Interceptors
73

CHAPTER 3 | Introduction to Orbix
Interceptor set-up Interceptors can be set up in chains. The ORB passes a request to the first
interceptor in the chain, which passes it to the next, and so on. For
example, an implementation of the transaction service would provide an
interceptor to add transaction context to a request before it is passed to the
transport interceptor.

Bindings Choosing an interceptor chain to use for an object reference is called
binding. Binding is controlled by:

� Configuration settings, which specify the default bindings that the ORB
should try.

� Information in an object reference, which specifies which protocols the
object understands.

The same application can be re-configured to use different protocols, by
simply changing the binding configuration, or passing an object reference
that uses a new protocol. There is no need to change or re-compile
application code to change protocols.
 74

Orbix Location Domain
Orbix Location Domain

Overview A location domain is a collection of servers under the control of a single
server�the locator daemon. The locator daemon acts as a forwarding
agent, forwarding clients to the appropriate server.

This section discusses the following topics:

� The locator daemon

� Locator daemon benefits

� Components of an Orbix location domain

� Invoking on persistent objects

� Object references

� Load balancing

� The server process

The locator daemon A single locator daemon can:

� Locate servers on many hosts.

� Start servers remotely, using a stateless node daemon running on the
host where the server is started.

� Maintain the Implementation Repository (IMR), which is a database of
available servers.

� Provide transparent load balancing across a group of objects, without
any special action by clients.

� Correctly re-direct clients, regardless of where the server is running.

� Transparently redirect connected clients to a new location

Locator daemon benefits Using the locator daemon provides two benefits:

� By interposing the locator daemon between client and server, a
location domain isolates the client from changes in the server address.
If the server changes location - for example, it restarts on a different
host, or moves to another port - the IORs for persistent objects remain
valid. The locator daemon supplies the server's new address to clients.
75

CHAPTER 3 | Introduction to Orbix
� Because clients contact the locator daemon first when they initially
invoke on an object, the locator daemon can launch the server on
behalf of the client. Thus, servers can remain dormant until needed,
thereby optimizing use of system resources.

Components of an Orbix location
domain

An Orbix location domain consists of two components: a locator daemon
and a node daemon:

locator daemon: A CORBA service that acts as the control center for the

entire location domain. The locator daemon has two roles:

♦ Manage the configuration information used to find, validate, and
activate servers running in the location domain.

♦ Act as the contact point for clients trying to invoke on servers in
the domain.

node daemon: Acts as the control point for a single host machine in the
system. Every machine that runs an application server must run a node
daemon. The node daemon starts, monitors, and manages application
servers on its machine. The locator daemon relies on node daemons to start
processes and tell it when new processes are available.

Invoking on persistent objects When a client invokes on a persistent object, Application Server Platform

locates the object as follows:

1. When a client initially invokes on the object, the client ORB sends the
invocation to the locator daemon.

2. The locator daemon searches the implementation repository for the
actual address of a server that runs this object in the implementation
repository. The locator daemon returns this address to the client.

3. The client connects to the returned server address and directs this and
all subsequent requests for this object to that address.

All of this work is transparent to the client. The client never needs to contact
the locator daemon explicitly to obtain the server's location.
 76

Orbix Location Domain
Object references There is no change to object references held by clients or stored in a
repository such as the Naming or Trader service. A server3 can be moved to
a new host without invalidating references to an object in the server. Moving
a server does not require updates to the Naming Service, Trader Service, or
any other repository of object references.

Load balancing In Orbix, the locator daemon is extended to balance client load over a group
of objects that have the same object reference. This is completely
transparent to the client, and does not require that the object reference
come from any particular source (for example the Naming Service). If the
client connection is broken, the client transparently reconnects�it does not
need to go back to the source of the reference to locate a new instance of
the object.

The server process The server process is just a container for a collection of POAs (each POA
implements some collection of CORBA objects). It is actually the POAs that
are registered, not the servers, so individual POAs can move between
servers or hosts.

3. Most applications migrate entire servers, but actually the unit of migration is a
POA, which can be a subset of the objects in a server.

Note: The IORs of persistent objects are exported from their server with
the address of the domain's locator daemon. This daemon is associated
with a database, or implementation repository, which dynamically maps
persistent objects to their server's actual address.
77

CHAPTER 3 | Introduction to Orbix
Orbix Configuration Domain

Overview The configuration domain is a collection of applications under common
administrative control.

This section discusses the following topics:

� Orbix configuration

� System size and configuration

� Configuration options

� IONA default settings

Orbix configuration Almost everything about Orbix can be set by configuration. The plug-in
architecture lets you configure what ORB capabilities you need, and each
plug-in has its own configuration settings to fine tune its behavior (for
example, network time-outs and error logging). Configuration is organized
into domains and scopes, so you can control the configuration of specific
applications or sets of applications independently.

System size and configuration Since configuration is so fundamental, Orbix provides a flexible configuration
mechanism:

� Configuration can be loaded from a simple text file during
development, or for small-scale deployment.

� For larger deployments, Orbix provides a distributed configuration
server that enables centralized configuration for all applications spread
across a network from a single point of control.

The configuration system is open to extension, so ORB configuration could
come from any kind of configuration repository.

Configuration options Within a configuration domain, the configuration database has a

hierarchical structure that lets you fine tune your system. You can:

� Specify global configuration settings for all the clients and servers in
your system.

� Override specific settings for particular groups of applications.
 78

Orbix Configuration Domain
� Specify detailed configuration for specific clients and servers.

Depending on your needs, you can make the configuration as fine-grained or

as coarse-grained as you wish.

IONA default settings IONA provides sensible defaults for all configuration values, so that you
don�t have to worry about specific settings until you need them.
79

CHAPTER 3 | Introduction to Orbix
The Orbix Portable Object Adapter

Overview The Portable Object Adapter (POA) is a runtime library of routines that are
built into the server application executable instance. The POA maps objects
to their actual implementations. It converts requests which have come from
network clients via the ORB into appropriate calls to server application code.
The POA is the only OMG-ratified object adapter.

This section discusses the following topics:

� POA states

� POA functions

� Servants

� ObjectId

� Object activation

� Object deactivation

� Root POA

� POA policies

POA states POAs can be transient or persistent. Their state depends on the state of the
CORBA objects that are implemented by the POA. Orbix Mainframe does
not support transient POAs.

POA functions All POAs perform the following functions:

� Create object references to all objects used by application.

� Manage object states for all objects used by an application.

� Map object references to servants when clients make requests.

� Support the portability of object implementations between different
ORB products.

Note: The POA functionality outlined in this section is not relevant to
COBOL or PL/I development. It is therefore included as background
information only, to present a complete view of Orbix.
 80

The Orbix Portable Object Adapter
� Create servants and use them to activate objects on demand, as
requests for these objects arrive.

Servants Each POA has a number (possibly zero) of associated servants, each of
which incarnates one or more CORBA objects. Often, a POA has many
servants, but, depending on how you want to structure your application, you
can also have POAs that only have a single servant. As a rule, each servant
belongs to exactly one POA at a time4.

ObjectId The POA uses the ObjectId, see �Persistent CORBA objects� on page 41, to
identify the object and choose the correct servant. An ObjectId must be
unique within a POA, but different POAs can use the same ObjectId to refer
to different objects.

The associations between ObjectIds and servants are very flexible and, by
setting POA policies, you can control how associations are established and
for how long they are remembered. This fine-grained control is one of the
major scalability features of the POA, because it enables you decide on the
most appropriate memory consumption versus performance trade-off.

Object activation When you activate an object, you inform the POA of the association
between an ObjectId and the programming language servant for that ID. In
other words, you tell the POA which servant should handle requests for this
particular object.

Object deactivation When you deactivate an object, you break the association between the
ObjectId and the servant. A deactivated object cannot accept requests,
because it has no associated servant. Deactivating an object does not imply
destruction of the servant or the object; it merely means that, for a certain
time, no servant is associated with the CORBA object.

4. In principle it is possible to use a single servant with more than one POA, but
there are few reasons to do so and it significantly complicates memory
management in your server.

Note: An incoming request can be processed only if the server-side
runtime knows which servant can handle the request.
81

CHAPTER 3 | Introduction to Orbix
Root POA A server always has at least one POA, namely the root POA. The root POA
has a fixed set of standard policies that cannot be changed. The root POA
has default values for all policies except ImplicitActivationPolicy, and
allows implicit activation.

POA policies Every POA has an associated set of policies. Policies govern aspects of how
the POA associates requests with servants. For example, there are policies
to control whether the POA uses multiple threads to dispatch requests. All
servants for a particular POA share the same set of policies. You assign
policies when you create the POA; they remain in effect until the POA is
destroyed.
 82

Orbix Mainframe POA Policy
Orbix Mainframe POA Policy

Overview The Orbix COBOL and PL/I runtimes can use only one set of POA policies.
The arguments for these policies are set and cannot be changed for COBOL
and PL/I development, unlike C++ and Java development where POA
policies play a very important role in application development. They are
outlined here merely to illustrate an implementation detail.

Summary Table 3 describes the policies that are supported by the Orbix COBOL and
Orbix PL/I runtimes, and the argument used with each policy.

Note: The POA policies described in this chapter are the only POA
policies that the Orbix COBOL and PL/I runtimes support. Orbix COBOL
and PL/I programmers have no control over these POA policies. They are
outlined here simply for the purposes of illustration and the sake of
completeness.

Table 3: POA Policies Supported by the COBOL and PL/I Runtimes
(Sheet 1 of 2)

Policy Argument Used Description

Id
Assignment

USER_ID This policy determines whether ObjectIds are generated by
the POA or the application. The USER_ID argument specifies
that only the application can assign ObjectIds to objects in
this POA. The application must ensure that all user-assigned
IDs are unique across all instances of the same POA.

USER_ID is usually assigned to a POA that has an object
lifespan policy of PERSISTENT (that is, it generates object
references whose validity can span multiple instances of a
POA or server process, so the application requires explicit
control over ObjectIds).

Id
Uniqueness

MULTIPLE_ID This policy determines whether a servant can be associated
with multiple objects in this POA. The MULTIPLE_ID
argument specifies that any servant in the POA can be
associated with multiple ObjectIds.
83

CHAPTER 3 | Introduction to Orbix
Implicit
Activation

NO_IMPLICIT_ACTIVATION This policy determines the POA�s activation policy. The
NO_IMPLICIT_ACTIVATION argument specifies that the POA
only supports explicit activation of servants.

Lifespan PERSISTENT This policy determines whether object references outlive the
process in which they were created. The PERSISTENT
argument specifies that the IOR contains the address of the
location domain�s implementation repository, which maps all
servers and their POAs to their current locations. Given a
request for a persistent object, the Orbix daemon uses the
object�s virtual address first, and looks up the actual location
of the server process via the implementation repository.

Request
Processing

USE_ACTIVE_OBJECT_MAP_ONLY This policy determines how the POA finds servants to
implement requests. The USE_ACTIVE_OBJECT_MAP_ONLY
argument assumes that all ObjectIds are mapped to a
servant in the active object map. The active object map
maintains an object-servant mapping until the object is
explicitly deactivated via deactivate_object().

This policy is typically used for a POA that processes
requests for a small number of objects. If the ObjectId is not
found in the active object map, an OBJECT_NOT_EXIST
exception is raised to the client. This policy requires that the
POA has a servant retention policy of RETAIN.

Servant
Retention

RETAIN The RETAIN argument with this policy specifies that the POA
retains active servants in its active object map.

Thread SINGLE_THREAD_MODEL The SINGLE_THREAD_MODEL argument with this policy
specifies that requests for a single-threaded POA are
processed sequentially. In a multi-threaded environment, all
calls by a single-threaded POA to implementation code (that
is, servants and servant managers) are made in a manner
that is safe for code that does not account for
multi-threading. This policy determines whether the POA
works in a single-threaded or a multi-threaded environment.

Table 3: POA Policies Supported by the COBOL and PL/I Runtimes
(Sheet 2 of 2)

Policy Argument Used Description
 84

CHAPTER 4

Introduction to
Orbix Mainframe
This chapter provides an overview of the CORBA development
process applied to Orbix Mainframe.

In this chapter This chapter discusses the following topics:

Orbix Applications Model page 86

Orbix Development Process page 89

Defining IDL Interfaces page 91

Orbix IDL Compiler Arguments page 94

Running the Orbix IDL Compiler page 96

Generated COBOL Members page 97

COBOL API Reference Summary page 99

IDL to COBOL Mapping page 101

Generated PL/I Members page 113

PL/I API Reference Summary page 115

IDL to PL/I Mapping page 116
85

CHAPTER 4 | Introduction to Orbix Mainframe
Orbix Applications Model

Overview This section presents a model for an Orbix banking application called First
Northern Bank (FNB). It discusses the following topics:

� Orbix banking model

� FNB business architecture

� Mainframe back-end

� Bank teller applications

� ATM network

� Internet banking

� System administration

� Overseas banking network
 86

Orbix Applications Model
Orbix banking model Figure 10 shows how Orbix can be used to integrate various software and
hardware environments in a sample banking application.

FNB business architecture This is the middle tier in the bank's new architecture. It is based on Orbix
and all clients (such as the ATMs and tellers) use this system to gain access
to the bank's resources. Since it is based on Orbix, features such as fault
tolerance, load balancing, and security are available.

Figure 10: An Orbix Banking Application Example
87

CHAPTER 4 | Introduction to Orbix Mainframe
Mainframe back-end Because a lot of the bank's data and functionality are stored on a
mainframe, migrating from it at this point would be too costly and fraught
with risk. Using the Orbix Mainframe, a CORBA wrapper has been placed
around the mainframe, enabling access to it from any CORBA-compliant
client. This represents the bank-end of the bank's three-tier architecture.

Bank teller applications These Windows-based applications can be written in a language such as
Visual Basic (VB) and use COMet to access the FNB Business Architecture.
A new GUI front-end is used to display information to the bank teller in a
more useful way.

ATM network The ATMs use Orbix to communicate with the FNB Business Architecture.

Internet banking The Internet banking site has been upgraded to use the Orbix Application
Server to provide a Java-based Internet banking site. Security is provided
using Secure Sockets Layer (SSL) and Transport Layer Security (TLS).

System administration Key to the success of this network is the ability to examine and re-configure
elements of the middle-tier system. The ability to get this information is
provided using the IONA Administrator.

Overseas banking network Any additional banks can use SSL and the Internet Inter-ORB Protocol
(IIOP) to allow secure, standards-based communication to take place. The
FNB Business Architecture exposes IDL interfaces, which can be used by
these banks to update their systems and allow better integration.
 88

Orbix Development Process
Orbix Development Process

Overview This section describes the basic CORBA development process applied to the
preceding banking application where a Java applet running in a browser
window (a client), communicates with a COBOL server program that
manages database access (a server).

This section discusses the following topics:

� Summary of development steps

� Development steps

Summary of development steps Every Orbix application begins with the creation of the IDL interfaces, which
are then compiled by the Orbix IDL compiler. The Orbix IDL compiler uses
the Java plug-in for the client program, resulting in Java class stub code for
each client-side IDL interface. The COBOL IDL compiler plug-in is used for
the server program, which generates three copybooks and two source
members for each server-side IDL interface. When the application is ready
to execute, the client locates the server in its OS/390 environment, supports
the interface or interfaces, establishes an Object Reference to this service,
and calls operations on the service (in Java these appear as simple local
object calls).

Development steps The development steps are as follows (steps to execute the application are
not included):

Note: The development steps outlined here represent only a small part of
the model outlined in the previous section.

Step Action

1 Define public IDL interfaces to the objects defined in your
system.

2 Compile the IDL definitions, using the Orbix IDL compiler.
89

CHAPTER 4 | Introduction to Orbix Mainframe
3 Develop the server programs that implement the IDL interface,
using the IDL compiler output as a starting point.

The generated COBOL code can be used to call legacy COBOL
applications.

4 Develop the client program(s), using the IDL compiler output as
a starting point.

Step Action
 90

Defining IDL Interfaces
Defining IDL Interfaces

Overview This section defines and explains the IDL interfaces Bank and Account from
the Bankdemo IDL member, which ships as one of the demonstrations with
Orbix Mainframe. This IDL is used to illustrate the �Orbix Development
Process� on page 89.

This section discusses the following topics:

� IDL example

� IDL example explained

IDL example The Bankdemo IDL contains two interfaces, Bank and Account:

Example 1: Bankdemo IDL

//IDL

// Bank interface...used to create Accounts

interface Bank

 {

 exception AccountAlreadyExists { AccountId account_id; };

 exception AccountNotFound { AccountId account_id; };

 Account

 find_account(

 in AccountId account_id

) raises(AccountNotFound);

 Account
91

CHAPTER 4 | Introduction to Orbix Mainframe
 create_account(

 in AccountId account_id,

 in CashAmount initial_balance

) raises (AccountAlreadyExists);

 void

 shutdown_bank();

 };

// Account interface...used to deposit, withdraw, and query

// available funds.

interface Account

 {

 exception InsufficientFunds {};

 readonly attribute AccountId account_id;

 readonly attribute CashAmount balance;

 void

 withdraw(

 in CashAmount amount

) raises (InsufficientFunds);

 void

Example 1: Bankdemo IDL
 92

Defining IDL Interfaces
IDL example explained The preceding IDL Bank interface defines operations which:

� Create new accounts.

� Find existing accounts.

It also defines exceptions that can be raised by these operations and an
operation to shut down the application.

The preceding IDL Account interface defines two attributes:

� account_id which is of type AccountId.

� balance which is of type CashAmount.

It defines operations to withdraw money from an account or deposit money
to it. It also defines an exception that can be raised by the withdraw
operation if there are insufficient funds in the account balance.

 deposit(

 in CashAmount amount

);

 };

Example 1: Bankdemo IDL
93

CHAPTER 4 | Introduction to Orbix Mainframe
Orbix IDL Compiler Arguments

Overview This section describes the various arguments that you can specify as
parameters to the Orbix IDL compiler.

For a complete description of these options see the COBOL Programmer�s
Guide and Reference or PL/I Programmer�s Guide and Reference.

This section discusses the following topics:

� Summary of the Arguments for COBOL

� Summary of the Arguments for PL/I

� The IDLPARM DD name

� IDLPARM line format

Summary of the Arguments for
COBOL

The Orbix IDL compiler arguments can be summarized as follows:

All of these arguments are optional.

Summary of the Arguments for
PL/I

The Orbix IDL compiler arguments can be summarized as follows:

-D Generates source code and copybooks into specified directories
rather than the current working directory. (This is relevant to OS/390
UNIX System Services only.)

-Q Indicate whether single or double quotes are to be used for string
literals in COBOL copybook members.

-M Set up an alternative mapping scheme for data names.

-Z Generate server implementation source code.

-S Generate server mainline source code.

-T Indicate whether server code is for batch, IMS, or CICS.

-O Override default copybook names with a different name.

-D Generates source code and include files into specified directories
rather than the current working directory. (This is relevant to OS/390
UNIX System Services only.)
 94

Orbix IDL Compiler Arguments
All of these arguments are optional.

The IDLPARM DD name To denote the arguments that you want to specify as parameters to the
compiler, you can use the DD name, IDLPARM, in the JCL that you use to run
the compiler.

IDLPARM line format The parameters for the IDLPARM entry in the JCL take the following format:

-M Set up an alternative mapping scheme for data names.

-O Override default include member names with a different name.

-S Generate server implementation skeleton code.

-T Indicate whether server code is for batch, IMS, or CICS.

-V Do not generate the server mainline code.

// IDLPARM='-cobol[:-M[option][membername]][:-Omembername]
 [:-Q[option]][:-S][:-T[option]][:-Z]'
95

CHAPTER 4 | Introduction to Orbix Mainframe
Running the Orbix IDL Compiler

Overview You can use the Orbix IDL compiler to generate COBOL source modules and
copybooks, and PL/I modules and include members from IDL definitions.

This section discusses the following topics:

� Orbix IDL Compiler Configuration

� Required DD Cards

� Running the Orbix IDL Compiler

Orbix IDL Compiler Configuration The Orbix IDL compiler uses the Orbix configuration member for its settings.
The JCL that runs the compiler uses the IDL member in the
orbixhlq.CONFIG configuration PDS.

Required DD Cards Before you run the Orbix IDL compiler to create COBOL or PL/I source,
ensure that the IDLMAP DD card is defined. This PDS contains the mapping
member, which is generated if you use the -M argument with the Orbix IDL
compiler.

Running the Orbix IDL Compiler For the purposes of this example, the source module is generated in the first
step of the following job (that is, the JCL supplied with the bankdemo
demonstration). For COBOL this is:

For PL/I this is:

orbixhlq.DEMOS.COBOL.BLD.JCL(BANKDEMO)

orbixhlq.DEMOS.PLI.BLD.JCL(BANKDEMO)
 96

Generated COBOL Members
Generated COBOL Members

Overview This section describes the various COBOL source code and copybook
members that the Orbix IDL compiler generates.

This section discusses the following topics:

� Generated members

� Member name restrictions

Generated members Table 4 provides an overview and description of the COBOL members that
the Orbix IDL compiler generates, based on the IDL member name.

Table 4: COBOL Members Generated by the Orbix IDL Compiler (Sheet
1 of 2)

Member Name Member
Type

Compiler
Argument Used

to Generate

Description

idlmembernameS Source code -Z This is server implementation source code member.
It contains stub paragraphs for all the callable
operations. It is only generated if you specify the -Z
argument.

idlmembernameSV Source code -S This is the server mainline source code member. It
is only generated if you specify the -S argument.

idlmembername Copybook Generated by
default

This copybook contains data definitions that are
used for working with operation parameters and
return values for each interface defined in the IDL
member.

idlmembernameX Copybook Generated by
default

This copybook contains data definitions that are
used by the Orbix COBOL runtime to support the
interfaces defined in the IDL member. This
copybook is automatically included in the
idlmembername copybook.
97

CHAPTER 4 | Introduction to Orbix Mainframe
Member name restrictions If the IDL member name exceeds six characters, the Orbix IDL compiler uses
only the first six characters of the IDL member name when generating the
source and copybook member names. This allows space for appending the
two-character SV suffix to the name for the server mainline code member,
while allowing it to adhere to the eight-character maximum size limit for
OS/390 member names. In such cases, each of the other generated
member names is also based on only the first six characters of the IDL
member name, and is appended with its own suffix, as appropriate.

idlmembernameD Copybook Generated by
default

This copybook contains procedural code for
performing the correct paragraph for the request
operation. This copybook is automatically included
in the idlmembernameS source code member.

Table 4: COBOL Members Generated by the Orbix IDL Compiler (Sheet
2 of 2)

Member Name Member
Type

Compiler
Argument Used

to Generate

Description
 98

COBOL API Reference Summary
COBOL API Reference Summary

Overview This section provides a summary of the API functions, in alphabetic order,
which appear in the sample code in IDL to COBOL Mapping.

Summary Listing The following is a list of COBOL APIs that appear in the sample code
produced by the IDL compiler for the bankdemo IDL. For a complete list of
the COBOL APIs available refer to the COBOL Programmer�s Guide and
Reference.

Example 2: COBOL APIs used in the bankdemo IDL Output

COAERR(in buffer user-exception-buffer)

// Allows a COBOL server to raise a user exception for an
// operation.

COAGET(in buffer operation-buffer)

// Marshals in and inout arguments for an operation on the server
// side from an incoming request.

COAPUT(out buffer operation-buffer)

// Marshals return, out, and inout arguments for an operation on
// the server side from an incoming request.

COAREQ(in buffer request-details)

// Provides current request information.

ORBEXEC(in POINTER object-reference,
 in X(nn) operation-name,
 inout buffer operation-buffer,
 inout buffer user-exception-buffer)
// Invokes an operation on the specified object.

ORBSTAT(in buffer status-buffer)

// Registers the status information block.
// Frees the memory allocated to a bounded string.
99

CHAPTER 4 | Introduction to Orbix Mainframe
STRGET(in POINTER string-pointer,
 in 9(09) BINARY string-length,
 out X(nn) string)

// Copies the contents of an unbounded string to a bounded
string.

Example 2: COBOL APIs used in the bankdemo IDL Output
 100

IDL to COBOL Mapping
IDL to COBOL Mapping

Overview This section illustrates how IDL is mapped by the Orbix IDL compiler to
COBOL code. It uses the bankdemo IDL to illustrate how IDL operations,
attributes, and user defined exceptions are mapped to COBOL. For a
complete list of the IDL to COBOL mappings refer to the COBOL
Programmer's Guide and Reference.

In This Section This section discusses the following topics:

Mapping for Operations page 102

Mapping for Attributes page 109

Mapping for User Exceptions page 110
101

CHAPTER 4 | Introduction to Orbix Mainframe
Mapping for Operations

Overview This subsection describes how IDL operations are mapped to COBOL. The
code samples are based on the bank interface in the �IDL example� on
page 91.

IDL-to-COBOL Mapping for
Operations

An IDL operation maps to a number of statements in COBOL, as follows:

1. A 01 group level is created for each operation. This group level is
defined in the bank copybook and contains a list of the parameters and
the return type of the operation. If the parameters or the return type are
of a dynamic type (for example, sequences, unbounded strings, or
anys), no storage is assigned to them. The 01 group level is always
suffixed by -ARGS (that is, BANK-FIND-ACCOUNT-ARGS).

2. A 01 level is created for each interface, with a PICTURE clause that
contains the longest interface name of the interface operations
contained in the bank copybook. The value of the PICTURE clause
corresponds to the largest operation name length plus one, which is,
for the preceding IDL:

The extra space is added because the operation name must be
terminated by a space when it is passed to the COBOL runtime by
ORBEXEC.

A level 88 item is also created as follows for each operation, with a
value clause that contains the string literal representing the operation
name. For the find_account, create_account, and shutdown_bank

* COBOL
01 BANK-FIND-ACCOUNT PICTURE X(create_account+1)
 102

IDL to COBOL Mapping
operations in the bank interface the following level 88 items are
generated:

A level 01 item is also created, as follows, that defines the length of the
maximum string representation of the interface operation. For the bank
interface this 01 level item is:

3. The preceding identifiers in point 2 are referenced in a select clause
that is generated in the bankdemoD copybook. This select clause calls
the appropriate operation paragraphs, which are discussed next.

 * COBOL
88 BANK-FIND-ACCOUNT VALUE
 "find_account:IDL:BankDemo/Bank:1.0".
88 BANK-CREATE-ACCOUNT VALUE
 "create_account:IDL:BankDemo/Bank:1.0".
88 BANK-SHUTDOWN-BANK VALUE
 "shutdown_bank:IDL:BankDemo/Bank:1.0".

 * COBOL
01 BANK-OPERATION-LENGTH PICTURE 9(09) BINARY
 VALUE 37.
103

CHAPTER 4 | Introduction to Orbix Mainframe
4. The operation procedures are generated in the bankdemoS source
member when you specify the -Z argument with the Orbix IDL
compiler. For example:

i. Consider the bank interface IDL:

//IDL
interface Bank
{
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };

 Account
 find_account(
 in AccountId account_id
) raises(AccountNotFound);

 Account
 create_account(
 in AccountId account_id,
 in CashAmount initial_balance
) raises (AccountAlreadyExists);

 void
 shutdown_bank();
};
 104

IDL to COBOL Mapping
ii. Based on the preceding IDL, the following COBOL is generated in
the bankdemo copybook:

* COBOL

* Interface: BankDemo/Bank
*
* Inherits interfaces:(none)

* Operation: find_account
* Mapped name: Bank-find_account
* Arguments: <in> BankDemo/AccountId account_id
* Returns: BankDemo/Account
* User Exceptions: BankDemo/Bank/AccountNotFound

01 BANK-FIND-ACCOUNT-ARGS.
 03 ACCOUNT-ID POINTER
 VALUE NULL.
 03 RESULT POINTER
 VALUE NULL.

* Operation: create_account
* Mapped name: Bank-create_account
* Arguments: <in> BankDemo/AccountId account_id
* <in> BankDemo/CashAmount initial_balance
* Returns: BankDemo/Account
* User Exceptions: BankDemo/Bank/AccountAlreadyExists

01 BANK-CREATE-ACCOUNT-ARGS.
 03 ACCOUNT-ID POINTER
 VALUE NULL.
 03 INITIAL-BALANCE COMPUTATIONAL-1.
 03 RESULT POINTER
 VALUE NULL.

* Operation: shutdown_bank
* Mapped name: Bank-shutdown_bank
* Arguments: None
* Returns: void
* User Exceptions: none

01 BANK-SHUTDOWN-BANK-ARGS.
 03 FILLER PICTURE X(01).
105

CHAPTER 4 | Introduction to Orbix Mainframe
iii. The following code is also generated in the bankdemo copybook:

iv. The following code is generated in the bankdemoD copybook
member:

v. The following is an example of the code in the bankdemoS source
member:

* COBOL

* Operation List section
* This lists the operations and attributes which an
* interface supports

01 BANK-OPERATION PICTURE X(37).
 88 BANK-FIND-ACCOUNT VALUE
 "find_account:IDL:BankDemo/Bank:1.0".
 88 BANK-CREATE-ACCOUNT VALUE
 "create_account:IDL:BankDemo/Bank:1.0".
 88 BANK-SHUTDOWN-BANK VALUE
 "shutdown_bank:IDL:BankDemo/Bank:1.0".
01 BANK-OPERATION-LENGTH PICTURE 9(09) BINARY
 VALUE 37.

* COBOL
EVALUATE TRUE
 WHEN BANK-FIND-ACCOUNT
 PERFORM DO-BANK-FIND-ACCOUNT
 WHEN BANK-CREATE-ACCOUNT
 PERFORM DO-BANK-CREATE-ACCOUNT
 WHEN BANK-SHUTDOWN-BANK
 PERFORM DO-BANK-SHUTDOWN-BANK
END-EVALUATE

* COBOL
PROCEDURE DIVISION.
 ENTRY "DISPATCH".
 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
 CALL "COAREQ" USING REQUEST-INFO.
 SET WS-COAREQ TO TRUE.
 PERFORM CHECK-STATUS.

* Resolve the pointer reference to the interface name which
* is the fully scoped interface name
 106

IDL to COBOL Mapping
CALL "STRGET" USING INTERFACE-NAME
 WS-INTERFACE-NAME-LENGTH
 WS-INTERFACE-NAME.
 SET WS-STRGET TO TRUE.
 PERFORM CHECK-STATUS.

* Interface(s) :

 MOVE SPACES TO BANK-OPERATION.

* Evaluate Interface(s) :

 EVALUATE WS-INTERFACE-NAME
 WHEN 'IDL:BankDemo/Bank:1.0'

* Resolve the pointer reference to the operation information
 CALL "STRGET" USING OPERATION-NAME
 BANK-OPERATION-LENGTH
 BANK-OPERATION
 SET WS-STRGET TO TRUE
 PERFORM CHECK-STATUS
 WHEN 'IDL:BankDemo/Account:1.0'
 END-EVALUATE.

 COPY BANKD.
 GOBACK.

 DO-BANK-FIND-ACCOUNT.
 SET D-NO-USEREXCEPTION TO TRUE.
 CALL "COAGET" USING BANK-FIND-ACCOUNT-ARGS.
 SET WS-COAGET TO TRUE.
 PERFORM CHECK-STATUS.

* TODO: Add your operation specific code her

 EVALUATE TRUE
 WHEN D-NO-USEREXCEPTION
 CALL "COAPUT" USING BANK-FIND-ACCOUNT-ARGS
 SET WS-COAPUT TO TRUE
 PERFORM CHECK-STATUS
107

CHAPTER 4 | Introduction to Orbix Mainframe
 END-EVALUATE.

 DO-BANK-CREATE-ACCOUNT.
 SET D-NO-USEREXCEPTION TO TRUE.
 CALL "COAGET" USING BANK-CREATE-ACCOUNT-ARGS.
 SET WS-COAGET TO TRUE.
 PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

 EVALUATE TRUE
 WHEN D-NO-USEREXCEPTION
 CALL "COAPUT" USING BANK-CREATE-ACCOUNT-ARGS
 SET WS-COAPUT TO TRUE
 PERFORM CHECK-STATUS
 END-EVALUATE.

 DO-BANK-SHUTDOWN-BANK.
 CALL "COAGET" USING BANK-SHUTDOWN-BANK-ARGS.
 SET WS-COAGET TO TRUE.
 PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

 CALL "COAPUT" USING BANK-SHUTDOWN-BANK-ARGS.
 SET WS-COAPUT TO TRUE.
 PERFORM CHECK-STATUS.

* Check Errors Copybook

 COPY CHKERRS.
 108

IDL to COBOL Mapping
Mapping for Attributes

Overview This section describes how IDL attributes are mapped to COBOL.

This subsection discusses the following topics:

� IDL-to-COBOL Mapping for Attributes

� Mapping Example

IDL-to-COBOL Mapping for
Attributes

IDL attributes are mapped to COBOL declarations, with a _GET_ and _SET_
prefix. If an attribute is not read-only, two declarations are created for it
(that is, one declaration with a _GET_ prefix, and one declaration with a
SET prefix). If an attribute is read-only, only one declaration is created for
it, with a _GET_ prefix.

Mapping Example The example can be broken down as follows:

Consider the two attributes in the account interface in the bankdemo IDL:

The preceding IDL maps to the following COBOL:

//IDL
interface Account
{
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;
};

* COBOL
01 ACCOUNT-OPERATION PICTURE X(41).
 88 ACCOUNT-GET-ACCOUNT-ID VALUE
 "_get_account_id:IDL:BankDemo/Account:1.0".
 88 ACCOUNT-GET-BALANCE VALUE
 "_get_balance:IDL:BankDemo/Account:1.0".
01 ACCOUNT-OPERATION-LENGTH PICTURE 9(09) BINARY
 VALUE 41.
109

CHAPTER 4 | Introduction to Orbix Mainframe
Mapping for User Exceptions

Overview This section describes how IDL user exceptions are mapped to COBOL.

This subsection discusses the following topics:

� IDL-to-COBOL Mapping for User Exceptions

� Raising a User Exception

� Example of IDL-to-COBOL Mapping for Exceptions

IDL-to-COBOL Mapping for User
Exceptions

An IDL exception maps to the following in COBOL:

� A level 01 group item that contains the definitions for all the user
exceptions defined in the IDL. This group item is defined in COBOL as
follows:

The group item contains the following level 03 items:

♦ An EXCEPTION-ID string that contains a textual description of the
exception.

♦ A D data name that specifies the ordinal number of the current
exception. Within this, each user exception has a level 88 data
name generated with its corresponding ordinal value.

♦ A U data name.

♦ A data name for each user exception, which redefines U. Within
each of these data names are level 05 items that are the
COBOL-equivalent user exception definitions for each user
exception, based on the standard IDL-to-COBOL mapping rules.

� A level 01 data name with an EX-FQN-userexceptionname format,
which has a string literal that uniquely identifies the user exception.
FQN stands for the Fully Qualified Name which is the name and the
name of the enclosing interface and the enclosing module. For the
bankdemo IDL which has no modules the FQN for AccountNotFound
exception is bank and the corresponding 01 data name is
EX-bank-AccountNotFound

01 bank-USER-EXCEPTIONS.
 110

IDL to COBOL Mapping
� A corresponding level 01 data name with an
EX-FQN-userexceptionname-LENGTH format, which has a value
specifying the length of the string literal.

Raising a User Exception Use the COAERR function to raise a user exception. Refer to the COBOL
Programmer's Guide and Reference for more details.

Example of IDL-to-COBOL
Mapping for Exceptions

The example can be broken down as follows:

1. Consider the exceptions in the bank and account interfaces in the
bankdemo IDL:

2. The preceding IDL maps to the following COBOL:

Note: If D and U are used as IDL identifiers, they are treated as reserved
words. This means that they are prefixed with IDL- in the generated
COBOL. For example, the IDL identifier, d, maps to the COBOL identifier,
IDL-D.

 //IDL
interface Bank
{
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };
};
interface Account
{
 exception InsufficientFunds {};
};

* COBOL

* User Exceptions: bank/AccountAlreadyExists
* bank/AccountNotFound

01 EXAMPLE-ADDNAME-ARGS.
 03 NAME POINTER
 VALUE NULL.

* User exception block

111

CHAPTER 4 | Introduction to Orbix Mainframe
01 EX-BANK-ACCOUNTALREADYEXISTS PICTURE X(42)
 VALUE
 "IDL:BankDemo/Bank/AccountAlreadyExists:1.0".
01 EX-BANK-ACCOUNTALREADYEXI-8E46 PICTURE 9(09) BINARY
 VALUE 42.
01 EX-BANK-ACCOUNTNOTFOUND PICTURE X(37)
 VALUE
 "IDL:BankDemo/Bank/AccountNotFound:1.0".
01 EX-BANK-ACCOUNTNOTFOUND-LENGTH PICTURE 9(09) BINARY
 VALUE 37.
01 EX-ACCOUNT-INSUFFICIENTFUNDS PICTURE X(42)
 VALUE
 "IDL:BankDemo/Account/InsufficientFunds:1.0".
01 EX-ACCOUNT-INSUFFICIENTFU-3EA4 PICTURE 9(09) BINARY
 VALUE 42.
01 BANK-USER-EXCEPTIONS.
 03 EXCEPTION-ID POINTER
 VALUE NULL.
 03 D PICTURE 9(10) BINARY
 VALUE 0.
 88 D-NO-USEREXCEPTION VALUE 0.
 88 D-BANK-ACCOUNTALREADYEXISTS VALUE 1.
 88 D-BANK-ACCOUNTNOTFOUND VALUE 2.
 88 D-ACCOUNT-INSUFFICIENTFUNDS VALUE 3.
 03 U PICTURE X(04)
 VALUE LOW-VALUES.
 03 EXCEPTION-BANK-ACCOUNTALR-71CB REDEFINES U.
 05 ACCOUNT-ID POINTER.
 03 EXCEPTION-BANK-ACCOUNTNOTFOUND REDEFINES U.
 05 ACCOUNT-ID POINTER.
 03 EXCEPTION-ACCOUNT-INSUFFI-DDCB REDEFINES U PICTURE

X(04).
 112

Generated PL/I Members
Generated PL/I Members

Overview This section describes the various PL/I source code and include members
that the Orbix IDL compiler generates.

This section discusses the following topics:

� Generated Members

� Member name restrictions

Generated Members Table 5 provides an overview and description of the PL/I members that the
Orbix IDL compiler generates, based on the IDL member name.

Table 5: PL/I Members Generated by the Orbix IDL Compiler

Member Name Member Type Compiler
Argument Used

to Generate

Description

bankI Source code -S This is the server implementation source code
member. It is only generated if you use the -S
argument with the Orbix IDL compiler.

bankV Source code Generated by
default

This is the server mainline source code member.
It is generated by default unless you specify the
-V argument with the Orbix IDL compiler.

bankD Include member Generated by
default

This is the select include member. It selects the
appropriate implementation function for the
attribute or operation being called.

bankL Include member Generated by
default

This is the alignment include member. It contains
procedures to perform the PL/I alignment
calculations on behalf of the PL/I runtime.

bankM Include member Generated by
default

This is the main include member. It stores all the
PL/I structures and declarations.
113

CHAPTER 4 | Introduction to Orbix Mainframe
Member name restrictions If the IDL member name exceeds six characters, the Orbix IDL compiler uses
only the first six characters of the IDL member name when generating the
source and include member names. This allows space for appending a
one-character suffix to each generated member name, while allowing it to
adhere to the seven-character maximum size limit for PL/I external
procedure names, which are based by default on the generated member
names.

bankT Include member Generated by
default

This is the typedef include member. It stores the
based identifier information (that is, the PL/I
structure definitions for which no storage is
allocated).

bankX Include member Generated by
default

This is the runtime include member. It contains
information for the PL/I runtime about the
contents of each interface.

Table 5: PL/I Members Generated by the Orbix IDL Compiler

Member Name Member Type Compiler
Argument Used

to Generate

Description
 114

PL/I API Reference Summary
PL/I API Reference Summary

Introduction This section provides a summary of the API functions, in alphabetic order
that appear in the code in IDL to PL/I Mapping. For details of all PL/I APIs
refer to the PL/I Programmer's Guide and Reference.

Summary Listing The following is a list of COBOL APIs that appear in the sample code
produced by the IDL compiler for the bankdemo IDL.

// Allows a PL/I server to raise a user exception for an
// operation.

PODEXEC(in PTR object_reference,
 in CHAR(*) operation_name,
 inout PTR operation_buffer,
 inout PTR user_exception_buffer)
// Invokes an operation on the specified object.

PODGET(in PTR operation_buffer)
// Marshals in and inout arguments for an operation on the server
// side from an incoming request.

PODPUT(out PTR operation_buffer)
// Marshals return, out, and inout arguments for an operation on
// the server side from an incoming request.
STRSET(out PTR string_pointer,
 in CHAR(*) string,
 in FIXED BIN(31) string_length)
// Creates an unbounded string from a CHAR(n) data item.
115

CHAPTER 4 | Introduction to Orbix Mainframe
IDL to PL/I Mapping

Overview This section illustrates how IDL is mapped by the Orbix IDL compiler to PL/I
code. It uses the bankdemo IDL to illustrate how IDL operations, attributes,
and user defined exceptions are mapped to PL/I. For a complete list of the
IDL to PL/I mappings refer to the PL/I Programmer's Guide and Reference.

In This Section This section discusses the following topics:

Mapping for Operations page 117

Mapping for Attributes page 124

Mapping for User Exceptions page 126
 116

IDL to PL/I Mapping
Mapping for Operations

Overview This section describes how IDL operations are mapped to PL/I. The code
samples are based on the bank interface in the IDL Example.

This subsection discusses the following topics:

� The Bankdemo IDL bank Interface

� IDL-to-PL/I Mapping for Operations

The Bankdemo IDL bank Interface The bank interface:

IDL-to-PL/I Mapping for
Operations

An IDL operation maps to a number of statements in PL/I as follows:

1. A structure is created for each operation. This structure is declared in
the bankT include member as a based structure and contains a list of
the parameters and the return type of the operation. An associated
declaration, which uses this based structure, is declared in the bankM
include member. Memory is allocated only for non-dynamic types,

//IDL
interface Bank
{
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };

 Account
 find_account(
 in AccountId account_id
) raises(AccountNotFound);

 Account
 create_account(
 in AccountId account_id,
 in CashAmount initial_balance
) raises (AccountAlreadyExists);

 void
 shutdown_bank();
};
117

CHAPTER 4 | Introduction to Orbix Mainframe
such as bounded strings and longs. The top-level identifier (that is, at
dcl 1 level) for each operation declaration is suffixed with _type in the
bankT include member, and with _args in the bankM include member.

2. A declaration is generated in the bankT include member for every IDL
operation. The declaration contains the fully qualified operation name
followed by a space, which is used when calling PODEXEC to invoke that
operation on a server.

Based on the bank interface IDL, the following operation structures are
generated in the bankT include member:

Example 3: The bankT Include Member for the bank Interface (Sheet 1
of 2)

/*---*/
/* Interface: */
/* BankDemo/Bank */
/* */
/* Mapped name: */
/* Bank */
/* */
/* Inherits interfaces: */
/* (none) */
/*---*/
/*---*/
/* Operation: find_account */
/* Mapped name: Bank_find_account */
/* Arguments: <in> BankDemo/AccountId account_id */
/* Returns: BankDemo/Account */
/* User Exceptions: BankDemo/Bank/AccountNotFound */
/*---*/
dcl 1 Bank_find_account_type based,
 3 account_id ptr init(sysnull()),
 3 result ptr init(sysnull());
/*---*/
/* Operation: create_account */
/* Mapped name: Bank_create_account */
/* Arguments: <in> BankDemo/AccountId account_id */
/* <in> BankDemo/CashAmount initial_balance*/
/* Returns: BankDemo/Account */
/* User Exceptions: BankDemo/Bank/AccountAlreadyExists */
/*---*/
 118

IDL to PL/I Mapping
Based on the bank interface IDL, the following operation structures are
generated in the bankM include member:

 dcl 1 Bank_create_account_type based,
 3 account_id ptr init(sysnull()),
 3 initial_balance float dec(6) init(0.0),
 3 result ptr init(sysnull());
/*---*/
/* Operation: shutdown_bank */
/* Mapped name: Bank_shutdown_bank */
/* Arguments: None */
/* Returns: void */
/* User Exceptions: none */
/*---*/
dcl 1 Bank_shutdown_bank_type based,
 3 filler_0002 char(01);

Example 3: The bankT Include Member for the bank Interface (Sheet 2
of 2)

Example 4: The bankM Include Member for the bank Interface

/*PL/I */
%include BANKT;
/*---*/
/* Interface: */
/* BankDemo/Bank */
/* */
/* Mapped name: */
/* Bank */
/* */
/* Inherits interfaces: */
/* (none) */
/*---*/
/*---*/
/* Operation: find_account */
/* Mapped name: Bank_find_account */
/* Arguments: <in> BankDemo/AccountId account_id */
/* Returns: BankDemo/Account */
/* User Exceptions: BankDemo/Bank/AccountNotFound */
/*---*/
dcl 1 Bank_find_account_args aligned like

Bank_find_account_type;
/*---*
119

CHAPTER 4 | Introduction to Orbix Mainframe
3. The operation declaration is also used in the bankD include member. It
is used within the select clause, which is used by the server program to
call the appropriate operation procedure described next in point 4.

4. The following select statement is also generated in the bankD include
member for the bank interface:

/* Operation: create_account */
/* Mapped name: Bank_create_account */
/* Arguments: <in> BankDemo/AccountId account_id */
/* <in> BankDemo/CashAmount initial_balance*/
/* Returns: BankDemo/Account */
/* User Exceptions: BankDemo/Bank/AccountAlreadyExists */
/*---*/
dcl 1 Bank_create_account_args aligned like

Bank_create_account_type;
/*---*/
/* Operation: shutdown_bank */
/* Mapped name: Bank_shutdown_bank */
/* Arguments: None */
/* Returns: void */
/* User Exceptions: none */
/*---*/
 dcl 1 Bank_shutdown_bank_args aligned like

Bank_shutdown_bank_type;

Example 4: The bankM Include Member for the bank Interface

Example 5: PL/I bankD Include Member select Statement Code (Sheet 1
of 2)

/*PL/I*/
select(operation);
 when (Bank_find_account) do;
 BANK_user_exceptions.d=0;
 call podget(addr(Bank_find_account_args));
 if check_errors('podget') ^= completion_status_yes then

return;

 call proc_Bank_find_account(addr(Bank_find_account_args));

 if BANK_user_exceptions.d=0 then
 do;
 call podput(addr(Bank_find_account_args));
 if check_errors('podput') ^= completion_status_yes then

return;
 120

IDL to PL/I Mapping
 end;
 end;
when (Bank_create_account) do;
 BANK_user_exceptions.d=0;
 call podget(addr(Bank_create_account_args));
 if check_errors('podget') ^= completion_status_yes then

return;

 call
 proc_Bank_create_account(addr(Bank_create_account_args));

 if BANK_user_exceptions.d=0 then
 do;
 call podput(addr(Bank_create_account_args));
 if check_errors('podput') ^= completion_status_yes

then
 return;
 end;
 end;
 end;

 when (Bank_shutdown_bank) do;
 call podget(addr(Bank_shutdown_bank_args));
 if check_errors('podget') ^= completion_status_yes then

return;

 call

proc_Bank_shutdown_bank(addr(Bank_shutdown_bank_args));

 call podput(addr(Bank_shutdown_bank_args));
 if check_errors('podput') ^= completion_status_yes then

return;
 end;
 otherwise do;
 put skip list('ERROR! Operation :',operation);
 put skip list('is not defined in:',interface);
 return;
 end;
 end;

Example 5: PL/I bankD Include Member select Statement Code (Sheet 2
of 2)
121

CHAPTER 4 | Introduction to Orbix Mainframe
5. When you specify the -S argument with the Orbix IDL compiler, an
empty server procedure is generated in the bankI source member for
each IDL operation. (You must specify the -S argument, to generate
these operation procedures.). The following skeleton procedures are
generated in the bankI member:

Example 6: PL/I bankI Source Member for bank Interface (Sheet 1 of 2)

/*PL/I */
BANKI: PROC(OPERATION);

dcl operation char(*);
dcl addr builtin;
dcl low builtin;
dcl sysnull builtin;

%include CORBA;
%include CHKERRS;
%include BANKM;

/* ============= Start of global user code ==============*/
/* ============= End of global user code ================*/
/*---*/
/* Dispatcher : select(operation) *

/*---*/
%include BANKD;
/*---*/
/* Interface: */
/* BankDemo/Bank */
/* */
/* Mapped name: */
/* Bank */
/* */
/* Inherits interfaces: */
/* (none) */
/*---*/
/*---*/
/* Operation: find_account */
/* Mapped name: Bank_find_account */
/* Arguments: <in> BankDemo/AccountId account_id */
/* Returns: BankDemo/Account */
/* User Exceptions: BankDemo/Bank/AccountNotFound */
/*---*/
 122

IDL to PL/I Mapping
proc_Bank_find_account: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like Bank_find_account_type;

/* =============== Start of operation specific code ======*/
/* ================ End of operation specific code =======*/

END proc_Bank_find_account;
/*---*/
/* Operation: create_account */
/* Mapped name: Bank_create_account */
/* Arguments: <in> BankDemo/AccountId account_id */
/* <in> BankDemo/CashAmount initial_balance*/
/* Returns: BankDemo/Account */
/* User Exceptions: BankDemo/Bank/AccountAlreadyExists */
/*---*/
 proc_Bank_create_account: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 likeBank_create_account_type;
/* ============ Start of operation specific code =========*/
/* ========== End of operation specific code =============*/

END proc_Bank_create_account;
/*---*/
/* Operation: shutdown_bank */
/* Mapped name: Bank_shutdown_bank */
/* Arguments: None */
/* Returns: void */
/* User Exceptions: none */
/*---*/
proc_Bank_shutdown_bank: PROC(p_args);

dcl p_args ptr;
dcl 1 args aligned based(p_args)
 like

/* ========= Start of operation specific code ============*/
/* ========= End of operation specific code ==============*/

END proc_Bank_shutdown_bank;

Example 6: PL/I bankI Source Member for bank Interface (Sheet 2 of 2)
123

CHAPTER 4 | Introduction to Orbix Mainframe
Mapping for Attributes

Overview This section describes how IDL attributes are mapped to PL/I.

This subsection discusses the following topics:

� IDL-to-PL/I Mapping for Attributes

� Example Mapping

IDL-to-PL/I Mapping for Attributes IDL attributes are mapped to PL/I declarations, with a _get_ and _set_
prefix. If an attribute is not read-only, two declarations are created for it
(that is, one declaration with a _get_ prefix, and one declaration with a
set prefix). If an attribute is read-only, only one declaration is created for
it, with a _get_ prefix.

Example Mapping The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following operation list in the bankT
include member:

3. The following operation procedure names are generated in the bankI
member:

 //IDL
interface Account
 {
 readonly attribute AccountId account_id;
 readonly attribute CashAmount balance;
 }

 /*PL/I */
/*---*/
/* Operation List section */
/* Contains a list of the interface's operations and
/* attributes.*/
/*---*/
dcl Account_get_account_id char(41) init('_get_account_id:
 IDL:BankDemo/Account:1.0 ');
dcl Account_get_balance char(38) init('_get_balance:IDL
 :BankDemo/Account:1.0 ');
 124

IDL to PL/I Mapping
Example 7: PL/I Operation Procedure Code in the bankI Member

/*PL/I */
/*---*/
/* Attribute: account_id (get) */
/* Mapped name: Account_account_id */
/* Type: BankDemo/AccountId (readonly) */
/*---*/
 proc_Account_get_account_id: PROC(p_args);

 dcl p_args ptr;
 dcl 1 args aligned based(p_args)
 like Account_account_id_type;

/* ========== Start of operation specific code ========= */
/* ========= End of operation specific code ============ */

 END proc_Account_get_account_id;
/*---*/
/* Attribute: balance (get) */
/* Mapped name: Account_balance */
/* Type: BankDemo/CashAmount (readonly) */
/*---*/
 proc_Account_get_balance: PROC(p_args);

 dcl p_args ptr;
 dcl 1 args aligned based(p_args)
 like Account_balance_type;

/* ========== Start of operation specific code ==========*/
/* ============= End of operation specific code =========*/
 END proc_Account_get_balance;
125

CHAPTER 4 | Introduction to Orbix Mainframe
Mapping for User Exceptions

Overview This section describes how IDL exceptions are mapped to PL/I.

This section discusses the following topics:

� IDL-to-PL/I Mapping for Exceptions

� Raising a User Exception

� Example of Raising a User Exception

� Example of Testing a User Exception

IDL-to-PL/I Mapping for
Exceptions

1. An IDL exception type maps to a PL/I structure and a character data
item with a value that uniquely identifies the exception. Consider the
bank interface:

 //IDL
interface Bank
{
 exception AccountAlreadyExists { AccountId account_id; };
 exception AccountNotFound { AccountId account_id; };
};
interface Account
{
 exception InsufficientFunds {};
};
 126

IDL to PL/I Mapping
2. Based on the preceding IDL, the Orbix IDL compiler generates the
following code in the bankT include member:

/*PL/I */
/*---*/
/* User Exception: BankDemo/Bank/AccountAlreadyExists */
/*---*/
 dcl 1 Bank_AccountAlreadyExists_type based,
 3 account_id ptr init(sysnull());
/*---*/
/* User Exception: BankDemo/Bank/AccountNotFound */
/*---*/
 dcl 1 Bank_AccountNotFound_type based,
 3 account_id ptr init(sysnull());
/*---*/
/* User Exception: BankDemo/Account/InsufficientFunds */
/*---*/
 dcl 1 Account_InsufficientFunds_type based,
 3 filler_0003 char(01);
127

CHAPTER 4 | Introduction to Orbix Mainframe
3. The Orbix IDL compiler generates the following code in the bankM
include member:

Raising a User Exception The server can raise these user exceptions by performing the following
sequence of actions:

/*PL/I */
/*---*/
/* Defined User Exceptions */
/*---*/
 dcl 1 BANK_user_exceptions static ext,
 3 exception_id ptr,
 3 d fixed bin(31) init(0),
 3 u area(04);

 dcl 1 Bank_AccountAlreadyExists_exc_d
 fixed bin(31) init(1);
 dcl 1 Bank_AccountNotFound_exc_d fixed bin(31) init(2);
 dcl 1 Account_InsufficientFunds_exc_d
 fixed bin(31) init(3);

 dcl 1 Bank_AccountAlreadyExists_exc
 based(addr(BANK_user_exceptions.u)),
 3 account_id ptr

init(sysnull());

 dcl 1 Bank_AccountNotFound_exc

based(addr(BANK_user_exceptions.u)),
 3 account_id ptr

init(sysnull());

 dcl 1 Account_InsufficientFunds_exc
 based(addr(BANK_user_exceptions.u)),
 3 filler_0001 char(01);

Stage Description

1 It calls STRSET to set the exception_id identifier of the user
exception structure with the appropriate exception identifier
defined in the bankT include member. The exception identifier
in this case is suffixed with _exid.
 128

IDL to PL/I Mapping
Example of Raising a User
Exception

The following code shows how to raise the AccountNotFound user exception
defined in the preceding example:

Example of Testing a User
Exception

To test for the AccountNotFound user exception, the client side tests the
discriminator value of the user exception structure after calling PODEXEC on
the server function, which is able to raise a user exception. For example, the
following code shows how the client can test whether the server set an
exception after the call to:

2 It sets the d discriminator with the appropriate exception
identifier defined in the bankM include member. The exception
identifier in this case is suffixed with _d.

3 It fills in the exception branch block associated with the
exception.

4 It calls PODERR with the address of the user exception
structure.

Stage Description

/*PL/I */
/* Server implementation code */
if name='' then
 do;
 strset(bank_user_exceptions.exception_id,
 SimpleObject_AccountNotFound_exid,
 length(SimpleObject_AccountNotFound_exid));
 bank_user_exceptions.d=bank_bad_exc_d;
 call poderr(addr(bank_user_exceptions));
 end;

Example 8: PL/I Code for Testing User Exceptions (Sheet 1 of 2)

/*PL/I */
/* Call podexec to perform operation addName. */
/* Note the user exception block in the fourth parameter. */
call podexec(bank_obj,
 bank_find_account,
 bank_find_account_account_id,
 addr(BANK_user_exceptions));
129

CHAPTER 4 | Introduction to Orbix Mainframe
if BANK_user_exceptions.d ^= 0 then
 do;
 /* a user exception has been thrown */
 put skip list('Operation find_account threw a user

exception!');
 put skip list(' Discriminator: ',EXCEPT_AccountNotFound.d);

 select(BANK_user_exceptions.d);
 when(bank_AccountNotFound_exc_d)
 do;
 put list('Exception thrown: AccountNotFound_exc');
 put skip

list('value1:',bank_AccountNotFound_exc.value1);
 put skip

list('reason:',bank_AccountNotFound_exc.reason);
 end;
 otherwise
 put list('Unrecognized exception!');
 end;
 end;
else /* no exception has been thrown */
 do;
 put skip list('Operation find_account completed

successfully');
 end;

Example 8: PL/I Code for Testing User Exceptions (Sheet 2 of 2)
 130

Part 2
IDL Design and CORBA

Object Location

In this part This part contains the following chapters:

IDL Design page 133

Locating CORBA Objects page 173

CHAPTER 5

IDL Design
Before reading this chapter you should already be familiar with
the IDL concepts as described in either the COBOL or PL/I
Programmer�s Guides as well as the section on IDL in part one
of this document. This chapter explores design issues for
writing efficient IDL.

In this chapter This chapter discusses the following topics:

IDL Constructs page 134

IDL Interface Semantics page 136

IDL Identifiers and Repository IDs page 138

IDL Versioning page 143

IDL Data Types and Performance page 152

IDL Definition Design Guidelines page 157

IDL Modules and Scoping page 166
133

CHAPTER 5 | IDL Design
IDL Constructs

Overview IDL in syntax and semantics is similar to Java interface or C++ type
definitions. However, because of the need to cater for distribution and to
remain language independent, IDL constructs sometimes differ in a number
of ways from their C++ and Java counterpart.

This section discusses the following topics:

� Storing IDL definitions

� Storing IDL definitions in OS/390 data sets

� IDL keywords

� Layout and Indentation styles

� The IDL preprocessor

� Order of definitions in a source file

Storing IDL definitions The CORBA specification states that IDL definitions must be placed in
source files with a .idl extension. For file systems that have case-sensitive
names, you must use a lowercase file name extension (.IDL is illegal with
such file systems). For file systems that are case-insensitive, such as
Windows, .IDL is legal.

Storing IDL definitions in OS/390
data sets

In regard to OS/390 data sets, there is no requirement that the lowest
qualifier should end in .idl; however, it is generally used (by IONA) for the
purpose of clarity.

IDL keywords Keywords are in lowercase, except for the Object keyword and the FALSE
and TRUE Boolean constants, which must be capitalized as shown.
 134

IDL Constructs
Layout and Indentation styles You can use any layout and indentation style you prefer. IDL is a free-form
language that does not place meaning on white space or indentation.
Comments can use either // (that is, C++ style) or /*…*/ (that is, C style)
syntax. For example:

The IDL preprocessor IDL files are preprocessed by the preprocessor which behaves exactly the
same as a C++ preprocessor. This means that you can use the usual
preprocessor directives such as #define, #ifdef, macro definitions, and so
on. The most common use of the preprocessor is inclusion of another
specification using #include.

Order of definitions in a source file Definitions in a source file can appear in any order, with the usual caveat
that you must define or declare things before using them

//IDL

//Example of a comment extending to the end of this line

/*

* Example of a multi-line comment

* that runs on to the next line

*/
135

CHAPTER 5 | IDL Design
IDL Interface Semantics

Overview This section discusses the semantics of passing IDL interfaces across a
network.

This section discusses the following topics:

� Passing IDL interface instances

� Semantics of passing an object reference

Passing IDL interface instances IDL interfaces are types and interface instances can be passed as
parameters. In the following example, the eat operation is passed a
parameter of the Haystack type. Passing an interface as a parameter,
passes a reference to a particular CORBA object to the operation. The called
operation has full access to the passed object via the object�s reference. In
this example, the implementation of eat can invoke the destroy operation
on the haystack. This results in a message to the haystack object.

//IDL

 interface Haystack {

 void destroy(); // Ends life cycle of haystack

// ...

};

 interface Camel {

 void eat(in Haystack hs);

// ...

};
 136

IDL Interface Semantics
Semantics of passing an object
reference

Conceptually, passing an object reference is like passing a pointer to the
object. However, an object reference can point across a network to an object
in a different address space (which can be on a different host). When a
client invokes an operation via a reference, it makes an RPC call that is
delivered to the object implementation.

Interface Support in IMS or CICS For environments such as IMS and CICS, where state is typically not
maintained across multiple server-side operation invocations, this pattern is
not suitable and is therefore not supported. This scenario would involve the
passing of an object reference from a factory type service implemented in an
IMS or CICS Orbix server (written in COBOL or PL/I) that is to be invoked on
by the client in a subsequent IDL operation.

If the "factory" resides in some other CORBA environment, the IMS or CICS
Orbix application can invoke on it to obtain and use an object reference from
a client-side perspective. For example, this is a common pattern used when
interacting with the CORBA Naming Service.

Note: References are strongly typed. The eat operation expects a
reference of the Haystack type and the ORB ensures that it impossible to
pass a reference of the wrong type. With statically typed languages, such
as C++ and Java, type checking happens at compile time, so if you
attempt to pass a reference to an object that does not support the
Haystack interface, your code won�t compile. For languages such as
Smalltalk, which use dynamic type checking, the type mismatch is
detected at runtime instead.
137

CHAPTER 5 | IDL Design
IDL Identifiers and Repository IDs

Overview This section discusses the basics of IDL identifiers and repository IDs

In this section This section discusses the following topics:

IDL Identifiers page 139

Repository IDs page 140
 138

IDL Identifiers and Repository IDs
IDL Identifiers

Overview IDL identifiers must begin with a letter or underscore, followed by any
number of letters, digits, and underscores. Because CORBA 2.3 supports an
IDL identifier with a leading underscore, it avoids clashes with IDL
keywords. For example, in the CosLifecycle specification, the old factory
interface is now the _factory interface, to avoid clashing with the new
reserved IDL keyword, factory. OMG specifications adhere to a naming
convention that uses mixed case identifiers with a leading uppercase letter
(or underscore) for module, interface, and type names, and uses lowercase
identifiers with an underscore separator for operation, attribute, parameter,
and member names. You might wish to adopt the same convention.

This section discusses the following topics:

� Capitalization

� Programming keywords

Capitalization IDL enforces consistent capitalization. Within the same scope, identifiers
that differ only in case are not allowed. This means that if you define the
identifier foo in a scope, all other capitalizations of the same identifier, such
as FOO and fOo, are �used up� within that scope. When you have introduced
foo into a scope, you must continue to refer to it with that capitalization;
otherwise, the compiler complains. IDL uses these capitalization rules to
make it easier to map identifiers into different target languages. The
capitalization rules ensure that identifiers can be mapped easily into
languages that consider case to be significant (such as C++ and Java), as
well as into languages that ignore case (such as Pascal).

Programming keywords It is good practice to avoid IDL identifiers that are keywords in some
programming language. For example, PROCEDURE, EVALUATE, USING, CALL,
BINARY, DO and DECLARE are legal IDL identifiers, but are also keywords in
COBOL or PL/I.

If a reserved COBOL or PL/I keyword is used as an IDL interface or module
name, the Orbix IDL compiler prefixes it with IDL-. This mechanism avoids
a keyword conflict in the target language but also results in less-readable
code; it is better to avoid keywords in the first place.
139

CHAPTER 5 | IDL Design
Repository IDs

Overview This section illustrates how the IDL compiler assigns repository IDs to each
IDL identifier it parses.

This section discusses the following topics:

� Repository ID structure

� Repository ID example

� Repository IDs and ORBs

� Avoiding repository ID clashes

� #pragma prefix directives

Repository ID structure Every IDL name is assigned a unique Repository ID, which is a string. IDL
allows for the unique identification of all components in your IDL files. All of
the following are assigned Repository Identifiers: modules, interfaces,
constants, type definitions, exceptions, attributes, operations.

The Repository ID consists of 3 parts separated by colons:

format name: identifier: version.

The default format name is IDL, although others are valid. The identifier
is typically the scoped name for the IDL object�scoped by the containing
module, interface, and so on. The version is made up of a major and minor
version number.
 140

IDL Identifiers and Repository IDs
Repository ID example The IDL compiler automatically assigns a repository ID to each IDL
identifier. The repository ID is formed by concatenating the names of the
nested scopes with slashes and adding an IDL: prefix and a :1.0 suffix: The
following IDL illustrates this process.

Repository IDs and ORBs The repository IDs formed this way are the ORBs only handle to the
meaning of a type. In particular, if in any two IDL files the same name is
used to describe different IDL entities a name clash results.

Avoiding repository ID clashes You can avoid repository ID clashes by enclosing all of your IDL in a module
with a suitably unique name. For example:

This approach has the drawback that it leads to very long identifiers at the
implementation language level. All identifiers have to be qualified with
AcmePtyLtd, which is awkward. In addition, large modules such as this can
lead to version control problems and make it difficult to decouple developers
working in different teams.

#pragma prefix directives It is a good idea to add a #pragma prefix directive to all your IDL definitions.
You should use a prefix that you own in some sense, and that therefore
doesn�t clash with other developers. An Internet domain name makes for a
good prefix because it is registered with a naming authority.

//IDL

module M { // IDL:M:1.0

 interface I { // IDL:M/I:1.0

 typedef long T; // IDL:M/I/T:1.0

 T op(); // IDL:M/I/op:1.0

 };

};

//IDL

module AcmePtyLtd {

// All of the definitions for Acme's software here...

};
141

CHAPTER 5 | IDL Design
A #pragma prefix directive affects all definitions that are at the same scope
or in nested scopes following the pragma; the directive qualifies the
repository IDs with the specified prefix. This mechanism guarantees
uniqueness of the generated IDs for a domain (barring malicious reuse of the
same prefix). The biggest advantage of the pragma over using a module
name for the same purpose is that the effects of the pragma are invisible at
the language mapping level. In other words, you do not end up with long
and cumbersome identifiers or an additional level of namespace or package
nesting.

If two IDL definitions use the same qualified name for different types but
each have a different prefix, the ORB�s type system stays same because,
internally, types are identified by their repository IDs. This means that
identical type names for different types can coexist in the same CORBA
domain (assuming they have different prefixes). Note that it is still
impossible to use both these types from within the same program because,
at the language mapping level, the prefix is not visible and the two types
become indistinguishable. However, different programs can each use their
respective version of the identically named types without problems.

Note: CORBA also defines a version pragma, but as its semantics are
currently undefined, its use can cause interoperability problems. Use of the
version pragma is not recommended.
 142

IDL Versioning
IDL Versioning

Overview One area of concern in CORBA systems is the versioning of IDL interfaces.
Given that most systems change over time, changes to IDL must be handled
smoothly.

In this section This section discusses the following topics:

Working with more than One Version of IDL page 144

Distinguishing IDL Versions page 147
143

CHAPTER 5 | IDL Design
Working with more than One Version of IDL

Overview IDL can change either by having additions made to it, or by being modified.
When you release (and deploy) a CORBA system, you inevitably continue to
work on it, and at some point later have a new version to be deployed.
Typically, you have changed the IDL that the system uses. These IDL
changes might be due to additional requirements imposed on the system, or
design errors that have appeared as the system has been deployed. In any
case, accompanying your IDL changes are new client and server
applications that have been modified to use the new interface.

This subsection discusses the following topics:

� Additions to IDL

� Problems with additional IDL

� Modifications to IDL

� Problems with modified IDL

Additions to IDL If new interfaces, methods, data structures, or other components are simply
added to the IDL (but no existing interfaces are changed) then old clients
can simply use the new servers. This is due to the way that requests are
marshaled in IIOP. Operations (method or attribute invocations on objects)
are identified by the operation name only, so new attributes or methods
added to an interface has no effect on calls to existing methods.

Problems with additional IDL If you are very careful, you can run new servers without affecting existing old
clients�If all your IDL changes are additive, and do not involve changes to
any interface component currently in use, and if there are no changes to the
semantics of the calls. For instance, if you add a new method, login() to
some interface, and update the server so that a client is required to login
before it can invoke any other method. In this case, even though existing
client programs are required to logon by the new server but won�t be able to
do so until they are updated, so they are not be able to do any work. Here,
application-level logic is preventing the client from working, even though the
changes to the IDL are strictly additive.
 144

IDL Versioning
Modifications to IDL If the IDL is changed, then existing clients are not able to interact with the
modified interfaces. Consider the following fragments of IDL, showing
modifications:

Problems with modified IDL In this situation, old clients are not be able to interact with the new server.
The server is unable to properly unmarshal the request, since it is missing
the expected initialDeposit argument. The server either interprets the
memory near the request as its missing parameter, or throw an exception.

In the cases where the server accesses memory near the request, looking for
its expected additional parameters, bogus values, unpredictable behavior,
and process terminations occur.

If additional parameters are sent, the server program generally ignores them,
but might exhibit unexpected or unpredictable behavior as well. You must
not send requests to a server (or replies to a client) with an incorrect set of
parameters. CORBA requests are sent in a very efficient format, without any
unnecessary type information. In particular, no type code information is sent
along with the requests. This protocol, specified by the OMG, increases the
speed and efficiency of processing requests. However, it does prevent a
server from performing type-checking. The client simply sends a sequence of
bytes to the server, which assumes that it knows the proper order and
structure of the data. In the case where a client inadvertently sends an
incorrect set of parameters, or an incorrect version of a structure, the server
is unable to determine this, and simply attempts to extract the correct
parameters from the request object. The results of this behavior are
undefined. In general, mismatched clients and servers result in unexpected
behavior, and program termination.

//IDL
// Original IDL file
interface Broker {
Account newAccount(in string name);
};

//IDL
// Updated IDL file
interface Broker {
Account newAccount(in string name, in Money initialDeposit);
};
145

CHAPTER 5 | IDL Design
What you need is to have two versions of the Broker object available�one
supporting the original interface, and one supporting the new interface.
 146

IDL Versioning
Distinguishing IDL Versions

Overview The advantages and disadvantages of distinguishing IDL versions in the
following ways are discussed in this subsection.

This subsection discusses the following topics:

� Distinguishing IDL versions at the application level

� Distinguishing IDL versions at the ORB level

� Distinguishing IDL versions using the module keyword

Distinguishing IDL versions at the
application level

This approach keeps the IDL elements named the same, and only changes
their contents. This approach is very confusing, since both of these IDL
elements map to the same programming language elements. The ORB
cannot distinguish between them, so the application programmer has to.
This approach is not recommended, since it is so likely to result in
confusion.

Distinguishing IDL versions at the
ORB level

A better approach is to use different IDL elements for different versions of
application elements. One approach is to modify the original Customer
interface and rename it Customer2. The ORB treats them as distinct
elements, so that there can be no confusing the two. They are not related by
inheritance, or in any other way, so you cannot mistakenly treat a Customer2
as a Customer.

Distinguishing IDL versions using
the module keyword

The recommended approach is through the IDL module keyword. This
allows you to version all enclosed IDL elements with only a one-line change
to your IDL file. This also gives you a coarse, freshening granularity, so that
each and every IDL element does not have to be individually freshened. In
COBOL and PL/I, modules map to 01 levels 1 levels respectively.
147

CHAPTER 5 | IDL Design
CORBA Object Granularity

Overview Object granularity refers to the number of CORBA objects in an application:
the more objects the finer the granularity. This section discusses some of the
issues concerning object granularity when designing CORBA applications.

This section discusses the following topics:

� The consequences of using CORBA object

� Clients and object references

� Search-and-select scenario

� Search-and-select use case (first try)

� Search-and-select use case (second try)

� Object granularity summary

� Manager objects and data structures

The consequences of using
CORBA object

As discussed earlier, CORBA objects are relatively expensive to send,
because they require the construction of a proxy on the receiving side. In
addition, When a client has an object reference, retrieving any of the
object�s data requires additional remote calls.

Clients and object references Sometimes, clients do not really need object references, and the use cases
could more efficiently be satisfied by the use of data structures instead. This
is the area of object granularity, where you need to consider the size of your
CORBA objects, based on the amount of data and functionality they contain.
A system with fine-grained objects tends to have many �small� objects,
which means that clients typically hold proxies to many objects, and make
many remote invocations. Compare this with a coarse-grained system,
which has fewer CORBA objects, each of which manages a relatively large
amount of data, functionality, or both.

Search-and-select scenario Examine the use case for the classic search-and-select-one-customer

situation, as follows:

� User enters a last name.

� Application searches customers by last name.
 148

IDL Versioning
� Application displays summary information (name/addresses/account
number) of all matching customers.

� User chooses the customer to work with.

Consider an OO approach to this.

Search-and-select use case (first
try)

Search-and-select use case (first try) shows the first try at the IDL for the
system.

All customer data and behavior is encapsulated in the Customer interface.
This is object oriented, but has the downside of performing poorly in the use
case. The search-and-select requires (at least) N+1 remote calls to display
the information on the N matching customers (depending on the IDL, this
approach could actually require N*M calls to retrieve each of the M attributes
from the N matching customers).

//IDL
// IDL—First try
interface Customer {
string getFirstName();
string getLastName();
string getAddress();
string getCity();
string getState();
string getZip();
string getPhoneNumber();
// add some interesting & realistic methods
Date getDateOfMostRecentPurchase();
};
149

CHAPTER 5 | IDL Design
Search-and-select use case
(second try)

The code shown below is optimized for the use case�you can retrieve
matching customer information in one remote invocation, because you
receive a sequence of CustomerInfo data structures as output.

Object granularity summary IDL generally has a mixture of data structures and objects. Often, the same
data can be manipulated as both structures and as objects. This is because
the IDL has different facets, intended for use by different use cases. That is,
it is commonly not strictly segregated to one type. Very often, the same data
is accessible via multiple structures as well as via an object. This often
brings up the question of why even bother with representing business
objects as CORBA objects at all; why not just represent everything as data
structures. This is discussed next.

Manager objects and data
structures

Can persistent CORBA objects be replaced by manager-style objects and
data structures? The short answer is yes, but you don�t want to, because:

//IDL
// IDL—Second try
typedef struct CustomerInfo {
string firstName;
string lastName;
string address;
string city;
string state;
string zip;
string phoneNumber;
Date dateOfBirth;
string creditCardNumber;
};
interface Customer {
CustomerInfo getCustomerInfo(void);
void setCustomerInfo(in CustomerInfo newInfo);
// other set and get methods as before...
};

Note: You are still encapsulating the behavior in a customer object. This
balanced approach treats things as objects when it makes sense, and as
data structures when it makes sense.
 150

IDL Versioning
� This is not an object oriented approach. This means that client and
server programmers have to be able to work with this
remote-procedure-call style interface from within their OO
programming language. Also, this approach no longer relies on the
ORB for object management features, but instead burdens application
programmers with this effort. This approach is no longer
location-transparent, which means that client programmers have to
associate ObjectIds with their server-side management objects.

� The CORBA services are focused around object instances, not around
ObjectIds. Systems relying solely on manager-style objects are not able
to make use of services such as naming, transactions, or security.
151

CHAPTER 5 | IDL Design
IDL Data Types and Performance

Overview There are three general ways that IDL design affects system performance:
number of remote invocations, the type of data sent or returned, and the
amount of data sent or returned.

Clearly, the number of remote invocations has a large impact on the
performance of a system. Each remote invocation typically causes the
invoking process to block until a reply is received. Each remote call involves
formatting a message buffer, sending across the network, and waiting for a
reply, plus waiting for any business processing to occur. It is important to
understand this, because it is too easy to treat remote invocations as if they
are the same as local invocations�syntactically, this is true, but
performance-wise it is not true.

In this section This section discusses the following topics:

Type of Data Sent page 153

Amount of Data Sent page 155
 152

IDL Data Types and Performance
Type of Data Sent

Overview This subsection discusses the marshalling cost for IDL data types and IORs.

This subsection discusses the following topics:

� Cost of marshalling IDL data types

� Cost of marshalling IORs

Cost of marshalling IDL data types Different IDL data types have different marshalling and unmarshalling costs.
Every time a message is sent (whether a request or a reply), the data has to
be copied from variables into a buffer by the sender, and extracted from the
buffer into variables by the receiver. Because IDL data types map to
different programming language constructs, they have different costs
associated with them. For instance, an IDL short is relatively fast to marshal
and unmarshal in Java, since it is small and of fixed size, and maps to a
native data type. An IDL string, on the other hand, is more expensive, since
it is of variable length, and maps to an instance of the String class.

Figure 11 shows the relative cost for sending or receiving IDL data types.
Keep in mind that for the container types (such as an any or a struct), the
timing shown only includes the cost of the container, and not that of the
contained data items.

Cost of marshalling IORs Object references are somewhat special for several reasons:

Figure 11: Relative Marshalling Cost of Type of IDL Data Sent
153

CHAPTER 5 | IDL Design
� They are variable length; the size of an object reference depends on the
length of the interface, the size of the ORB-specific object key, and the
number of additional profiles associated with the IOR.

� Unmarshalling an IOR within a receiving process involves more than
simply extracting data from a buffer. A proxy object must be
instantiated and initialized, which generally involves some non-trivial
interaction with the ORB runtime.

As such, object references are the most expensive type of object to transfer.

Note: Returning an IOR usually implies that it will be used, which results
in additional remote calls. In this regard, if the use cases are such that
IORs are typically immediately used to retrieve state from the object, they
are doubly inefficient.
 154

IDL Data Types and Performance
Amount of Data Sent

Overview The amount of data sent affects a system�s performance�the more data
being sent, the longer it takes.

This subsection discusses the following topics:

� Measuring throughput performance

� Sending raw data

� Iterators

Measuring throughput
performance

The throughput graph shown in Figure 12 is non-linear. If your system has a
large amount of data to transmit, it is important to send it in chunks that are
large enough, but not too large. Exact measurements are very platform,
product, and environment-specific, which is why they are not shown here.
The key point is that if you expect to send relatively large amounts of data
(anything over 100K), you should measure the performance of your ORB in
your environment with varying chunk sizes, to determine where performance
begins to degrade.

If your expected amount of data is close to this figure (or, to be safe, close to
fifty percent of this figure), you should strongly consider breaking up the
data and sending it in chunks, rather than in one large block.

Figure 12: Throughput Graph for CORBA Messages Across a Network
155

CHAPTER 5 | IDL Design
Sending raw data The most common way of doing this is through an Iterator, which is
discussed next. Another approach is to avoid sending the raw data
altogether. In some environments, clients do not need the raw data, but are
just retrieving the data in order to perform some kind of processing on it. It
might be possible to perform some or all of this processing on the server,
and have the server return just the (smaller) results. For example, if a client
needs to display a graph showing trends in some data, it might be possible
for the server to render the graph and return a bitmap, rather than returning
the large amount of underlying data to the client for local processing.

While this design might lighten the load on the network it does so at the
cost of overburdening the server�s CPU. Clearly, this is a non-trivial design
area that warrants early and earnest proof-of-concepts to try out different
approaches in a specific deployment environment.

Iterators Iterators are a very common and powerful design pattern. Rather than
returning the entire result set to the caller (which is potentially very large),
servers instead return an initial chunk of data plus an object reference (the
Iterator). Clients then make invocations on this iterator to obtain further
chunks of data.

// IDL
interface StockPriceHistory {
 void getHistory(in Date start, in Date end, out

PriceHistorySeq initialChunk, out PriceHistoryIterator
iterator);

};
interface PriceHistoryIterator {
 PriceHistorySeq getNextChunk() raises endOfData;
};

Note: Iterators are useful if clients generally only use a subset of the data.
If clients always use the full set of data, they actually slow things down by
imposing additional calls. However, if the data is such that it can begin to
be used incrementally, then iterators are useful. Also, it helps by reducing
message size and not overwhelming the ORB with really large messages.
 156

IDL Definition Design Guidelines
IDL Definition Design Guidelines

Overview The golden rule of IDL design is that just because something is implemented
in a certain way does not necessitate that its IDL reflect that
implementation. You might have an OO model that accurately reflects your
business, and implementation of these business entities as objects.
However, you might not want to expose all these elements as CORBA
objects. The remainder of this chapter discusses some of the reasons behind
this.

In this section This section discusses the following topics:

Basic Design Guidelines for IDL page 158

Operation Design Guidelines page 159

Attribute Design Guidelines page 162

Exception Design Guidelines page 164

Sequences Versus Arrays page 165
157

CHAPTER 5 | IDL Design
Basic Design Guidelines for IDL

Overview This sections the basic considerations for designing IDL interfaces.

This section discusses the following topics:

� IDL design and remote invocations

� IDL basic guidelines

IDL design and remote
invocations

IDL design fundamentally affects system performance and usability, much
more so than for non-distributed systems. This is because remote method
invocations are much more expensive than local invocations. If there are any
inefficiencies, they become more readily apparent in a distributed system
than in a local system.

IDL basic guidelines There are a number of basic IDL rules that are driven by the CORBA
specification that you need to be aware of:

� IDL is case sensitive in the following way; identifiers are case sensitive,
but cannot differ only in case. That is, the customer interface is distinct
from the Customer interface, but they cannot both exist within the
same scope.

� IDL does not support overloading of operations, either within a single
interface or in a derived interface. Attempting to compile IDL that has
multiple operations with the same name (and different arguments or
return values) result in an IDL compilation error.

� IDL attributes have restrictions/features that make them arguably
undesirable. Some people view these features as restrictive or
confusing enough to recommend avoiding the use of attributes
altogether. Others do not mind, and use attributes.
 158

IDL Definition Design Guidelines
Operation Design Guidelines

Overview This subsection discusses basic design considerations for designing IDL
operations.

This subsection discusses the following topics:

� Operation examples

� Operation design considerations

� inout parameters

Operation examples The following interface illustrates a number of operation definitions:

Operation design considerations The three prime number operations illustrated in the preceding IDL all
achieved the same thing using a different style of interface. The question is,
which interface should you use?

� The first version, unsigned long next_prime1 (in unsigned long
n), which returns the prime number as the return value, is probably
best from a stylistic point of view. If there is only one output value,
make that value the return value; this style is simple and familiar to
programmers.

� For operations that return several values of equal importance, it is best
to make all of them out parameters. This avoids giving the caller the
impression that the return value is somehow special or different.

//IDL
interface Example {
exception Failed { };

 void may_fail () raises (Failed);
 unsigned long rand();
 unsigned long next_prime1 (in unsigned long n);
 void next_prime2 (in unsigned long n,
 out unsigned long next_prime);
 void next_prime3 (inout unsigned long n);
};
159

CHAPTER 5 | IDL Design
� On the other hand, iterator operations frequently return two values but
have one return value that has special significance because it indicates
end of iteration:

This operation returns the next count items from some collection as an
out parameter, and uses the return value to indicate if there are more
items in the collection.

Using the return value instead of an out parameter in such operations
allows for a natural coding style, because the caller can write
something like the following.

If the boolean return value is an out parameter instead, the caller could
not control the loop as easily.

//IDL
// An example of an operation with one special return value.

interface Iterator {
 boolean get_next(// True indicates end of iteration
 in Position start_pos,
 in unsigned short count,
 out ItemSequence items,
 out Position new_pos
);
// ...
};

// The interface above allows the following type of code:

while (it.get_next(cursor, batch_size, item_list,
new_cursor)) {

// Process batch of items...
cursor = new_cursor;
}

//IDL

interface Example {

void op1(inout ValType inout_param);

void op2(in ValType in_param, out ValType out_param);

}

 160

IDL Definition Design Guidelines
inout parameters In general, you should avoid using inout parameters because they dictate
interface policy. An inout parameter overwrites its initial value with a new
value. In other words, if, as the designer, you choose to use an inout
parameter, you are making an implicit assumption that the caller does not
want to keep the parameter value. If the caller wants to keep the parameter
for some reason, it must make a copy first. On the other hand, if you use an
in and an out parameter, you leave the choice as to when to discard a
parameter up to the caller. As far as performance is concerned, there is no
difference between the following two styles of operation definition:

If the object instance is remote, the marshaling effort is the same for either
style of definition: a value of the ValType type is marshaled from client to
server, and a value of the ValType type is marshaled from server to client. It
is secondary whether you use a single parameter or two separate
parameters because call dispatch overhead is largely dominated by the cost
of marshaling.

If ValType denotes a very large type, then the inout version of the operation
is slightly more efficient because less memory is required for the duration of
the call (only one ValType copy must be held in memory in each client and
server, whereas the two parameter version requires two copies at either
end). However, you notice the difference only in extreme cases (for
parameters consuming several hundred kB or more).

//IDL

interface Example {

void op1(inout ValType inout_param);

void op2(in ValType in_param, out ValType out_param);

}

161

CHAPTER 5 | IDL Design
Attribute Design Guidelines

Overview This subsection discusses basic design considerations for designing IDL
attributes.

This subsection discusses the following topics:

� Attributes and exceptions

� Error reporting

� Attributes versus operations

� Attributes versus variables

Attributes and exceptions Attributes do not support user exceptions. Consider a phoneNumber attribute.

Because phone numbers follow a specific format, you might want your
server to impose some validation on them when they are set by the client.
For instance, your Customer interface might contain the following method:
This approach is appealing to some because it publicly exposes the fact that
the server imposes phone number validation, by including the raises clause.
Compare this to the case where phoneNumber is exposed as an attribute. You
cannot raise a user exception with attributes, so you must either validate the
phone number on the client-side, allow your server to accept a
mis-formatted phone number, or raise a CORBA system exception. The
latter approach is unappealing, misuses the system exception, and is open
to misinterpretation by clients.

Error reporting Because of the limited error reporting associated with attributes, they are
not recommended. If you decide to use attributes, it is probably best to
restrict yourself to read-only attributes. Writable attributes are problematic if

//IDL

void setPhoneNumber(in string theNumber) raises (InvalidNumber);

Note: Many system designers want to place these kinds of data integrity/
validation on the client-side, and therefore don�t view attributes as being
restricted in this regard.
 162

IDL Definition Design Guidelines
not all values in the range of the attribute�s type are legal, because the best
form of error reporting you can have is to raise a BAD_PARAM or other system
exception.

Attributes versus operations The following two sections of IDL is semantically equivalent.

There is no difference as far as performance is concerned between attributes
and operations. Attributes are in fact implemented as a pair of operations or,
in case of a read-only attribute, as a single accessor operation. However,
IDL does not permit you to add a raises expression to an attribute definition,
or define an attribute as oneway. This means that error reporting for reading
and writing of attributes is limited to system exceptions, which are less
informative than user exceptions.

Attributes versus variables Attributes are not member variables, even though they appear to be. An
attribute need not correspond to a variable (or any other piece of object
state) in an object�s implementation. As far as CORBA is concern, attribute
access is the same as any other remote procedure call.

//IDL
interface Thermostat {
readonly attribute TempType temperature;
attribute TempType nominal_temp;
};

//IDL
// Attributes are not necessary. The equivalent IDL without
attributes:
interface Thermostat {
TempType get_temperature();
TempType get_nominal_temp();
void set_nominal_temp(in TempType t);
};
163

CHAPTER 5 | IDL Design
Exception Design Guidelines

Overview The following guidelines help you to design APIs that are easier to use and
understand, which result in code that is easier to develop and maintain, and
has lower defect rates.

This section discusses the following topics:

� When to use exceptions

� What information exception should contain

� What information exceptions should not contain

� Multiple error conditions and exceptions

When to use exceptions Do not raise exceptions for expected outcomes. For example, a database
lookup operation should not raise an exception if a lookup does not locate
anything; it is normal for clients to occasionally look for things that are not
there. It is substantially harder for the caller to deal with exceptions than
with return values because exceptions break the normal flow of control. Do
not force the caller to handle an exception when a return value is sufficient.

What information exception
should contain

Ensure that exceptions carry all of the data the caller requires to handle an
error. If an exception carries insufficient information, the caller has to make
a second call to retrieve whatever information is missing. However, if the
first call failed, there is a good chance that subsequent calls will fail as well.

What information exceptions
should not contain

Do not add exception members that are irrelevant to the caller. In particular,
telling the caller something it already knows is worse than useless.

Multiple error conditions and
exceptions

Do not lump multiple error conditions into a single exception type. Instead,
use a different exception for each semantic error condition; otherwise, the
caller can no longer distinguish between different causes for an error.
 164

IDL Definition Design Guidelines
Sequences Versus Arrays

Overview This section provides basic guidelines for using sequences and arrays.

This section discusses the following topics:

� Differences between sequences and arrays

� Guidelines to using sequences and arrays

Differences between sequences
and arrays

The main difference between sequences and arrays is that the number of
elements in a sequence can vary at runtime, whereas the number of
elements in an array is fixed at compile time.

Guidelines to using sequences and
arrays

The following guidelines help you to decide whether to use a sequence or an
array:

� Use a sequence if you have a variable number of values in a collection.

� Use an array if you have a fixed number of values, all of which exist at
all times.

� Use an array of char to implement fixed-length strings.

� Use a sequence to model sparse arrays, for efficiency.

� Use a sequence to model a recursive (self-referential) data structure.
165

CHAPTER 5 | IDL Design
IDL Modules and Scoping

Overview Modules group related IDL definitions into an enclosing naming scope: The
main purpose of modules is to prevent pollution of the global scope. By
choosing an appropriate module name, you make it less likely that clashes
with other developers� IDL definitions occur.

This section discusses the following topics:

Reopening modules page 167

Scope Resolution Operator page 168

The CORBA Module page 172
 166

IDL Modules and Scoping
Reopening modules

Overview Modules can be reopened (in the same or in a different source file). This
feature allows you to define the contents of a module incrementally, as
shown in the sample IDL in this subsection.

Uses of reopened modules The main uses of reopened modules are to decouple developers from each
other and to limit the amount of code that must be recompiled after a
change. By splitting parts of modules across different IDL source files, you
reduce the amount of code that requires recompiling (provided that the
change does not affect all source files). For example the ICS module is
opened in the sample IDL.

//IDL
module ICS { // Irrigation Control System
interface RainGauge {
 ...
 };
};

module ICS {
typedef float RainfallType; // Precipitation
typedef string LocType; // Location
typedef string ModelType; // Model description
};
module Weather {
 interface CurrentData {
 ICS::RainfallType todays_rainfall();
 ...
 };
// ...
};
module ICS { // Reopen ICS module
 interface RainGauge {
 RainfallType get_rainfall();
 ...
 };
 ...
};
167

CHAPTER 5 | IDL Design
Scope Resolution Operator

Overview You can use the :: scope resolution operator to explicitly refer to an
identifier that is defined inside an interface.

This section discusses the following topics:

� Scope resolution example

� Scope resolution rules

� Scope resolution examples

Scope resolution example Consider the following example:

Here, the qualified name Haystack::NeedleID is used to refer to the
NeedleID type defined inside the Haystack interface. a leading :: scope
resolution operator indicates the global scope, so ::Haystack::NeedleID
could have been used instead.

Scope resolution rules IDL applies the same scope resolution rules as Java and C++:

� To locate the definition of a name whose enclosing scope is not an
interface, the compiler successively searches enclosing scopes toward
the global scope.

� When searching in an interface, the compiler first searches that
interface for the definition.

� If the name cannot be found in that interface, the compiler
successively searches base interfaces toward the Object root.

//IDL
// You can use the :: scope resolution operator to refer to
// identifiers defined inside an interface
interface Haystack {
typedef short NeedleID;
 ...
};
interface Camel {
void go_through(in Haystack::NeedleID needle);
};
 168

IDL Modules and Scoping
� If the name cannot be found in a base interface, the compiler
successively searches the enclosing scopes of the derived interface
toward the global scope.

Scope resolution examples The following examples illustrate the scope resolution rules outlined in the

previous section.

� The following IDL definition redefines RainfallType inside the
RainGauge interface. This is legal because interfaces form a naming
scope.

� When the compiler parses the definition of get_rainfall, it searches
the immediately enclosing scope for a definition of RainfallType and
locates the alias for long. On the other hand, for the definition of
rainfall, the qualified name ICS::RainfallType means that rainfall
returns a float.

//IDL

// Example of scope resolution rules - NOT a good example of

// IDL style!

//

module ICS {

typedef float RainfallType; // (1)

interface RainGauge {

typedef long RainfallType; // (2) Confusing

but legal

RainfallType get_rainfall(); // Returns a long

(2)

ICS::RainfallType rainfall(); // Returns a

float (1)

};

};
169

CHAPTER 5 | IDL Design
� In the presence of inheritance, base interfaces are searched before
enclosing scopes, and the enclosing scopes of base interfaces are not
searched at all, as shown in the following example.

In this example, RainGauge::get_rainfall returns a long because the
local definition of RainfallType hides the definition in the enclosing
scope (Sensors::RainfallType).

For the definition of Sprinkler::current_setting, the return value is
a long (not a double) because base interfaces are searched before the
enclosing scopes, so inside interface Sprinkler,

//IDL

// Example of scope resolution with inheritance.

// Base interfaces are searched before enclosing scopes.

// Definitely not a good example of IDL style.

module Sensors {

typedef short RainfallType; // (1)

typedef string ModelType; // (2)

interface RainGauge {

typedef long RainfallType; // (3)

RainfallType get_rainfall(); // Returns a long (1)

ModelType model(); // Returns a string

(2)

};

};

module Regulators {

typedef double RainfallType; // (4)

interface Sprinkler : Sensors::RainGauge {

RainfallType current_setting(); // Returns a

long (1)!

ModelType my_model(); // Error

};

};
 170

IDL Modules and Scoping
Sensors::RainGague::RainfallType takes precedence over
Regulators::RainfallType.

The definition of Sprinkler::my_model is in error. Even though
ModelType is defined in the enclosing scope of Sensors::RainGauge
(which is a base interface), the compiler never searches the enclosing
scopes of base interfaces to locate a definition.

Looking at the preceding two examples, you probably find that they are
difficult to understand and confusing. If so, you should avoid using the same
name in different scopes. That way, you have a more readable specification
and avoid having to know the scope resolution rules in intricate detail.
171

CHAPTER 5 | IDL Design
The CORBA Module

Overview The ORB provides a number of APIs to clients and servers, for example, to
initialize and finalize the ORB runtime. The OMG publishes APIs in IDL
because this permits a single specification to cover the APIs for all possible
implementation languages. The mapping rules from IDL to each particular
implementation language take care of defining the precise appearance of
each API in its target language.

This subsection discusses the following topics:

� Location of the ORB runtime APIs

� The orb.idl

Location of the ORB runtime APIs APIs related to the ORB runtime (also called the CORBA Core) are grouped
into the CORBA module. The prefix omg.org is used for all specifications
published by the OMG to ensure unique repository IDs.

The orb.idl File If you want to use IDL types defined in the CORBA module, such as
CORBA::TypeCode, you must include orb.idl in your IDL source file to
import the relevant definitions. Note that this is necessary only if you
actually use types defined in the CORBA module. If you include orb.idl in
specifications that do not require it, it unnecessarily bloats the size of the
generated code.

Orbix COBOL and PL/I application servers stores all OMG-specified IDL files
in the orbixhlq.ORBXE2A.INCLUDE.OMG.IDL data set. CORBA does not
specify where standard IDL files should be stored, so this is an
IONA-specific detail.
 172

CHAPTER 6

Locating CORBA
Objects
This chapter introduces the fundamental concepts of CORBA
object location. Clients know that services exist, but require
an object reference before being able to make any invocations
on the service. How do clients obtain these object references?
This chapter discusses the contents of an IOR, and introduces
the CORBA Naming Service used for publishing and obtaining
IORs. Several approaches to publishing and locating objects
are discussed, and their strengths and weaknesses are
explored.

In this chapter This chapter discusses the following topics:

CORBA Object Location page 174

The CORBA Naming Service page 177

Federating Naming Hierarchies page 181

Structuring the Naming Hierarchy page 183

Custom Object Location Mechanisms page 187
173

CHAPTER 6 | Locating CORBA Objects
CORBA Object Location

Overview A fundamental question that every CORBA system must answer is: How do
clients obtain object references? Before a client can make use of any server,
it must first have a reference to the server object in question. In every
distributed system, clients must know where to go to find their services.
Clients can obtain this information in a number of ways; for instance, it can
be stored in a client-side configuration file, or provided by a user upon
application startup. The business applications used every day (such as
email clients and web browsers) are examples of these. CORBA objects can
be located on many different hosts, or even different hosts over time, so
clients need a flexible way to be able to find objects.

This section discusses the following topics:

� Object location goals

� Object location model

� Interoperable object references (IORs)

� Locating the naming service

Object location goals A client can be hard coded with an object's location, but this is very
restrictive. If the object is relocated to a different host, you want an easy
way to point the clients to the new location. One possibility is to use some
information stored on the client side (such as a configuration file or
environment variable) to find the object. This is an improvement over
hard-coding, but still poses difficulties. Whenever an object's location
changes, all clients have to be updated with the new location. A better
solution is to remove the object's location from the client side entirely, and
have the client determine the object location at runtime. This also gives us
the potential for fault tolerance and load balancing. So, the goals for an
object location solution are as follows:

� A client should be able to efficiently obtain a reference to, and begin
using an arbitrary object on an arbitrary host.

� The client program should be unaware of the host and server in which
the object lives.
 174

CORBA Object Location
� The solution should support easy reconfiguration of the client. If object
implementations are moved from one host to another, an ideal solution
would involve no reconfiguration of the client, and no recompilation.
An acceptable solution might involve reconfiguration of the client.

If the client's environment is flexible, it is easier to introduce and support
mechanisms that support fault tolerance and load balancing. For example,
load balancing might be implemented by having the client use a mechanism
to determine, at runtime, which of a pool of servers should supply the object
reference.

Object location model One approach to solving the problem is to introduce a level of indirection
between the client and the server, as shown in Figure 13.

This makes use of an Object Repository, where object references are stored.
Conceptually, the following steps are involved.

1. The server publishes an object reference to the repository.

2. The client obtains the object reference from the repository, by
specifying some information that identifies the object.

3. The client uses the object, invoking directly on the server.

Figure 13: Object Location Model
175

CHAPTER 6 | Locating CORBA Objects
Interoperable object references
(IORs)

IORs are data structures, in a standard format, that contain:

� Information that clients use to establish connections to servers.

� Information that servers use to identify target objects.

The primary elements of an IOR are:

� IP host address: using a dotted IP address or a DNS name. To ensure
correct operation in a Dynamic Host Configuration Protocol
(DHCP)-configured network, Orbix should be configured to insert the
DNS name into the IOR.

� TCP port number: identifies a listening TCP port on the host.

� Object key: vendor specific information interpreted by the server to
identify an object.

� Repository ID: identifies the IDL type as described in its IDL of a
CORBA object.

IORs contain enough information for a client to be able to find the target
object. The IOR is not usually interpreted by the application; the application
typically retrieves the IOR from a repository, and just uses it. The ORB is
responsible for interpreting and locating the IOR.

Locating the naming service In order to locate your application objects, you can make use of the CORBA
Naming Service. The question then becomes how you obtain references to
this service.

Fortunately, the CORBA specification provides a standard API that ORB
vendors must implement, to give applications access to these bootstrap
services in a standard way.

For COBOL and PL/I this API is OBJRIR, "NamingService" must be supplied
as its argument. The ORB then returns a reference to the Naming Service.
Refer to either of the COBOL or PL/I Programmer�s Guide and Reference for
more details of OBJRIR.
 176

The CORBA Naming Service
The CORBA Naming Service

Overview The Naming Service is an example of an object repository. It is a standard
CORBA service, implementing the IDL specified by the OMG. Application
servers export object references into the naming service, providing an
associated name. The naming service stores these object references in its
database, keyed by the supplied name. Later, clients retrieve objects from
the naming service by providing a name. The naming service returns the
object reference with the matching name.

The client and server have been successfully decoupled from one another.
The client no longer has to have any configuration information about the
server or host in which the object lives. The client simply asks for the object
by name, then begins using it. If the object is relocated, the object reference
stored in the naming service database can simply be updated. The next time
a client asks for the object by name, it automatically obtains the new object
reference.

This section discusses the following topics:

� Sample naming service hierarchy

� Naming service IDL interface

� The bind operation

� The resolve operation
177

CHAPTER 6 | Locating CORBA Objects
Sample naming service hierarchy The naming service stores its object references in a hierarchical format,
analogous to a file system. The naming service stores object references and
naming contexts (which can contain object references and other naming
contexts).

Shows a simple naming service hierarchy that contains several objects and
naming contexts.

Naming service IDL interface The naming service is a CORBA server, and thus has an IDL interface
describing it. This interface is used by servers and clients, to store and
retrieve object references from the naming service database. All the IDL
components are defined in the CosNaming module:

Figure 14: Sample Naming Hierarchy

//IDL
Name components are stored in an IDL structure
struct NameComponent {
 Istring id;
 Istring kind;
};
 178

The CORBA Naming Service
(where Istring is simply type defined to a string).

A compound name (IDL type Name) is simply a sequence of these
NameComponent structures:

The primary object that applications interact with is the NamingContext
interface. Within this interface are a number of operations, only two of
which are discussed here:

The bind operation The bind operation takes a Name (a sequence of Name-Component
structures), and an Object as input. Servers use the NamingContext::bind
method to store an object reference in the naming service database. The
naming service stores the object reference in the appropriate place in its
hierarchy. The name specified is interpreted relative to the NamingContext
object on which the method has been invoked. If the name passed to
bind() is a compound name (a sequence) with more than one component,
then all except the last name component are used to find the naming
context to which to add the binding (these naming contexts must already
exist). The last name component in the sequence denotes the object
reference. The bind() operation raises an exception if the specified name is
already bound within the final naming context.

The resolve operation The resolve operation is invoked on a NamingContext object by clients, to
obtain object references. The application specifies a name sequence, and
the naming context returns an object that matches the specified name. Note
that the specified name is interpreted relative to the target naming context.
The return type from this method is Object (CORBA::Object_ptr in C++).
The application program must narrow this reference (using the generated

//IDL

typedef sequence<NameComponent> Name;

//IDL

void bind (in Name n, in Object obj) raises (NotFound,

CannotProceed, InvalidName, AlreadyBound);

Object resolve (in Name n) raises (NotFound, CannotProceed,

InvalidName);
179

CHAPTER 6 | Locating CORBA Objects
_narrow() method) to a reference of the appropriate interface class. For
both bind and resolve, there are a number of exceptions that can be thrown
when errors are encountered.
 180

Federating Naming Hierarchies
Federating Naming Hierarchies

Overview Naming contexts can contain object references as well as other naming
contexts. These naming contexts can be remote as well as local (that is, you
can federate naming hierarchies together). A naming context from a remote
host's naming service can be placed into the local naming service hierarchy,
as shown in Figure 15. When an application is browsing the hierarchy, (or,
simply obtaining an object reference), it is redirected to the remote naming
service.

This section discusses the following topics:

� Initial connection to the naming service

� Naming service applicability

Initial connection to the naming
service

There is no central root naming context (unlike file systems). Instead, the
initial naming context seen by an application is simply the top-level naming
context on the host to which an application initially connects.

Note: Applications must be configured with the host name on which to
find the naming service.

Figure 15: Federated Naming Hierarchy
181

CHAPTER 6 | Locating CORBA Objects
Naming service applicability Using the naming service is often a good solution when:

� Clients look up objects based on a fixed and consistent set of criteria.

� Clients only want a single object reference returned.

� Lookup properties have static values.
 182

Structuring the Naming Hierarchy
Structuring the Naming Hierarchy

Overview A naming hierarchy is a two-dimensional space that can be structured in
many ways. The best structure depends on how the system uses it. Consider
who navigates the hierarchy (people, programs, or both). For:

� Human users, a more descriptive hierarchy is often preferred.

� Programs, a more compact hierarchy is often preferred.

Hierarchies can also be flat or deep, depending on how you choose to
identify the objects in them.

This section discusses the following topics:

� Descriptive hierarchy

� Compact hierarchy

� Flat hierarchy

� Deep hierarchy

� Proprietary ORB solutions
183

CHAPTER 6 | Locating CORBA Objects
Descriptive hierarchy The descriptive hierarchy shown in Figure 16 is well-suited to human
browsing (and not well-suited to browsing by a computer program). The
descriptions of the objects in particular are irregular and would be difficult
for a program to handle.

Compact hierarchy The compact hierarchy shown in Figure 17 is not very meaningful to a
human (all the entries in the hierarchy are uniform). This would be
well-suited to browsing/management by an application, rather than by a
person.

Figure 16: Descriptive Naming Hierarchy

Figure 17: Compact Naming Hierarchy
 184

Structuring the Naming Hierarchy
Flat hierarchy Objects in the flat hierarchy shown in Figure 18 are uniquely identified by
only their Name�their id and kind fields must be unique. Names can be
either descriptive or compact, but must be unique within the context.

Deep hierarchy Objects in the deep hierarchy shown in Figure 19 are uniquely identified by
their position as well as their Name. Their id and kind fields can be repeated
in different contexts In the sample hierarchy shown, two objects have the
same (simple) name� their id is Laser Printer, and their kind is HP5.
However, they reside in different contexts, so they have unique (compound)
names. If your domain is such that more than one object has the name
simple name, you must construct different naming contexts to contain these
objects.

Figure 18: Flat Naming Hierarchy

Figure 19: Deep Naming Hierarchy
185

CHAPTER 6 | Locating CORBA Objects
Proprietary ORB solutions ORBs (including Orbix) sometimes offer proprietary solutions that are now
generally deprecated. These solutions generally require clients to have some
knowledge of server location, registration information, or internal object
keys. In addition, they�re non-standard and un-interoperable.

CORBA location services or custom solutions are the preferred approaches.
Orbix offers only standard solutions
 186

Custom Object Location Mechanisms
Custom Object Location Mechanisms

Overview Often an application needs a customized location service to best meet its
requirements. Application design might include interfaces that act as factory
or look-up objects (these objects act as entry points and can be advertised
via the naming service). This avoids the requirement that every object be
registered with the naming service.

This section discusses the following topics:

� Look-up service

� Advantages of standard interfaces

� CORBA interoperable naming service

Look-up service An optimized, application-specific look-up service might out-perform generic
services like the Naming Service. For example, if names correspond directly
to database keys or object markers, then an in-server look-up object can
resolve the names very efficiently, because it has direct access to the
server�s underlying database and object tables.

Advantages of standard interfaces However, standard interfaces offer important advantages, even if the
application requires specialized implementations. For example, suppose a
server provides a large number of account objects, where the account
number acts as the name of the account. Performance requirements
demand a specialized look-up object that is implemented in the account
server and has direct access to the account implementation objects and the
database where they live.

How can this approach be reconciled with a desire to provide a transparent,
standard, easy-to-use location scheme? You can implement the standard
CosNaming::NamingContext interface for the look-up object. The optimized
resolve() method uses direct access to the server�s internal data structures
to efficiently locate the appropriate object; however from a clients
perspective this is just a normal naming context, which can be embedded
seamlessly into a larger name-space, implemented using a standard naming
service.
187

CHAPTER 6 | Locating CORBA Objects
Often, application designers implement their own object-location
mechanisms, customized/optimized for their specific environment

These might use CORBA-standard APIs such as:

� object_to_string() in C++ which is equivalent to OBJTOSTR in
COBOL and OBJ2STR in PL/I.

� string_to_object() in C++ which is equivalent to STRTOOBJ in
COBOL and STR2OBJ in PL/I.

Implementing (or extending) the standard CORBA IDL in a customized
manner is an appealing combination:

� Efficient and customized implementation to meet your specific needs.

� Standard interfaces are familiar and interoperable (and can be
federated into standard CORBA services).

CORBA interoperable naming
service

The CORBA Interoperable Naming Service is an extension to the Naming
Service specification and standardizes a number of elements in the original
Naming Service specification, including:

� A standard string representation of names.

� A URL format for names (both with IOR and stringified names).

� Standard configuration of returning a single initial naming context to all
clients via resolve_initial_references.

� A few other clarifications and enhancements to the specification.
 188

Glossary
A Abstract class

A class that contains one or more abstract methods, and therefore can never
be instantiated. Abstract classes are defined so that other classes scan extend
them and make them concrete by implementing the abstract methods.

Adaptive Runtime Technology
IONA�s innovative, plug-in runtime architecture supporting dynamic
deployment and configuration of core middleware services, as well as
application code.

ART plug-in
A code library that can be loaded into an Orbix application at link time or
runtime.

Asynchronous communication
A form of communication in which applications operate independently and
do not have to be running or available simultaneously. A process sends a
request and may or may not wait for a response. It is a non-blocking
communications style.

Attribute
An IDL attribute is shorthand for a pair of operations that get and, optionally,
set the values of an object.

C Class
In an object-oriented programming paradigm, refers to a template from which
objects can be instantiated. A class defines the state (attributes) and the
behavior (methods) that characterize all objects that are instances of that
class. Typically, a class can inherit state and behavior from other classes.

Class method
A method that is invoked without reference to a particular object. Class
methods affect the class as a whole, not a particular instance of the class.
Also called a static method. See also instance method.
189

CHAPTER 7 |
Client
An application (process) that typically runs on the desktop and requests
services from other applications that often run on different machines (that is,
server processes). In CORBA, a program that requests services from a CORBA
object.

Client/Server
A relationship between two processes in which one sends requests to the
other. Usually a client sends requests to a server. It is possible, however, for
the server to send a request to the client and thereby reverse the roles.

Component Object Model (COM)
A model specified by Microsoft to define objects and how they interoperate.
A COM object can be accessed by any COM-compliant application. COM is
different from CORBA in many ways; for example, there are differences in the
mechanisms by which objects are referenced, and in the process by which
objects are created.

Configuration domain
A set of common configuration settings that defines the available services,
and controls the behavior of ORBs. Related application ORBs usually share
configuration domains, which are divided into nested configuration scopes.
Configuration domain information can be implemented as either a set of local
configuration files or as a centralized configuration repository. A configuration
domain can contain multiple location domains.

CORBA Naming Service
The CORBA service that provides the ability to associate a name with an
object reference. It provides a standardized service to allow users to locate
objects in a system using common names that are bound to the objects. The
naming service can be searched to find an object by using, as a reference,
the name that is bound to the object. The IONA CORBA naming service is
called OrbixNames, and is included in Orbix.

CORBA object
A virtual object that has an associated IDL interface and can receive requests
from clients through an ORB. CORBA objects are implemented by servants.
 190

CORBAservices
A set of system services for CORBA objects that were developed for
programmers. These services were specified by the OMG and implemented
by CORBA vendors. They provide users with CORBA standardized services to
create objects, track objects and object references, and control the
relationships between types of object. Examples include the CORBA
Interoperable Naming Service�a basic directory service which stores name
to object reference bindings in a central location and the CORBA persistent
state service�a CORBA-type persistence mechanism for defining how objects
stored in databases are reused.

D Daemon
A daemon (pronounced demon) is a program that runs continuously and exists
for the purpose of handling periodic service requests that a computer system
expects to receive. The daemon program forwards the requests to other
programs (or processes) as appropriate. In an Orbix system there is an Orbix
daemon called orbixd, which locates and activates CORBA servers and
services.

Data type
Identifies the set of values that a programming-language object can take, and
the operations that can be carried out on them.

Declaration
A statement that establishes an identifier and associates attributes with it,
without necessarily reserving its storage (for data) or providing the
implementation (for methods). See also definition.

Definition
A declaration that reserves storage (for data) or provides implementation (for
methods). See also declaration.

Distributed application
An application made up of distinct components running in separate runtime
environments, usually on different platforms connected via a network. Typical
distributed applications are two-tier (client-server), three-tier
(client-middleware-server), and multi-tier (client-multiple
middleware-multiple servers).
191

CHAPTER 7 |
Distributed Environment
A configuration of hardware and software that is physically and geographically
dispersed but networked together for communication.

Dynamic Invocation Interface (DII)
The component of an ORB that allows clients to access CORBA objects
without knowing the object interface at compile-time.

Dynamic Skeleton Interface (DSI)
The component of an ORB that allows a server to receive and process requests
for IDL interfaces, without knowing those interfaces at compile-time.

G Generic Inter-ORB Protocol (GIOP)
A CORBA standard abstract protocol that defines the data representation and
basic message formats used by other CORBA protocols, such as IIOP.

Granularity
The relative size, scale, level of detail, or depth of penetration that
characterizes an object or activity. If, for example, a bank system is built in
which each element of a person�s bank account�such as balance, name,
account number�is treated as an object, it is consider more fine-grained than
a system in which the entire account is treated as a single object.

I IDL Compiler
The compiler provided with an ORB, it generates stub and skeleton code from
supplied IDL definitions.

Implementation Repository (IMR)
The component of an ORB that stores definitions of the servers available in a
distributed system. It is managed by the locator daemon. It is a CORBA
database that maintains information about servers and controls their
activation. An Implementation Repository maintains a mapping from a server
name to the file name of the executable code (for example, COBOL or PL/I)
that implements the server. A server must be registered in the Implementation
Repository to be launched automatically by the Orbix daemon. Users should
maintain records in the Implementation Repository of each server in a system.
 192

Inheritance
The ability to incorporate the features and functionality of an existing object
into a new object or objects. This is key to code reuse and is a basic property
of all objects.

Instance
A specific object within a class. For example, BankAccount1 is a specific
instance of the class BankAccount.

Instance Variable
The data associated with a specific instance of a class. Sometimes referred
to as the attributes of an object.

Interface
The fundamental abstraction mechanism of CORBA. An interface describes
a type of object, including the operations and attributes that the object
supports in a distributed enterprise application. The definitions of operations
and attributes must be defined within the naming scope of an interface.
Definitions of exceptions, types, and constants can be defined within the scope
of an interface or at a higher scope.

Interface Definition Language (IDL)
The CORBA standard language that allows a programmer to define the
interfaces to CORBA objects. Clients use these interfaces to access objects
across a network. It is a technology-independent language that describes all
component interface characteristics used by CORBA applications. It enables
the exchange, flow and control of information between systems.

Interface Repository (IFR)
The component of an ORB that stores IDL definitions for objects in a
distributed system. A client can query this repository at runtime to determine
information about an object's interface, and then use the DII to make calls to
the object.

Internet Protocol (IP)
A protocol that provides the routing mechanism to store and forward data
packets from one network to another.
193

CHAPTER 7 |
Internet Inter-ORB Protocol (IIOP)
A standard messaging protocol (format for the layout of messages sent over
a network) defined by the OMG for communications between ORBs. It is the
CORBA standard protocol for communications between distributed
applications. IIOP is defined as a protocol layer above TCP/IP.

Interoperable Object Reference (IOR)
Specifies the location of, the unique identity of, and the services supported
by a CORBA object. It also has a standard format that allows an ORB
implementation that is different to the one that created it to use it to
communicate with the object.

L Location domain
A collection of servers on any number of hosts across a network that is under
the control of a single locator daemon. The locator daemon automatically
activates remote servers, using stateless activator daemons running on the
remote hosts.

Locator daemon
A server host facility that manages an implementation repository. Orbix clients
use the locator daemon, often in conjunction with a naming service, to locate
the objects they seek. Together with the implementation repository, it also
stores server process data for activating servers and objects.

M Marshalling
The process of converting native programming language data types to a format
suitable for transmission across a network.

Message
Information sent between applications (processes). Messages can include
data, program instructions, or both.

Method
The object-oriented programming term for the behavior associated with an
object. It is the Java equivalent of a C++ function or IDL operation.
 194

Module
An IDL module contains, and provides a naming context for, all or part of an
application's IDL definitions. Modules and interfaces form naming scopes.

Middleware
Software that interfaces both the operating system and applications that run
on it, providing services that are common to a number of applications but
independent of the operating system. Middleware approaches for
implementing n-tier client/server applications include remote procedure call,
distributed transaction processing, object components, and message-oriented
middleware.

Multithreading
Multithreading is the creation of multiple threads in a single program. A thread
is placeholder information associated with a single use of a program that can
handle multiple concurrent users. From the program�s point of view, a thread
is the information needed to serve one individual user or a particular service
request. If multiple users are using the program or concurrent requests from
other programs occur, a thread is created and maintained for each of them.
Each thread identifies for the program which user is being served as the
program is re-entered on behalf of different users. For any system to scale it
needs to be able to support multiple concurrent users. All versions of Orbix
are multi threaded.

N Naming context
An object in the naming service that you can use to resolve the names of
application objects. Naming contexts and application objects are organized
into naming graphs.

Naming graph
A hierarchy of naming contexts and application objects.

Naming scope
IDL modules and interfaces form naming scopes, so identifiers defined inside
an interface need only be unique within that interface. To resolve a name, the
IDL compiler conducts a search among the following scopes, in the order
shown:

� The current interface.
195

CHAPTER 7 |
� The base interfaces of the current interface, if any.

� The scopes that enclose the current interface.

Naming service
IONA Technologies implementation of the CORBA Interoperable Naming
Service. It allows you to associate abstract names with CORBA objects in your
application, thus allowing clients to locate the objects, by looking up the
corresponding names.

N-Tier Client/Server
An application development approach that partitions application logic across
three or more environments� the desktop computer, one or more application
servers, and a database server. The main advantage of the n-tier client/server
application development approach is that it extends the benefits of
client/server applications to an enterprise level. Other advantages include
added manageability, scalability, security, and higher performance.

O Object
In object-oriented programming, a single software entity that consists of both
data and procedures that manipulate that data. In CORBA, objects can be
located anywhere in a network. The functionality of a CORBA object is
accessed through interfaces defined in IDL. By encapsulating object interfaces
within a common language, IDL facilitates interaction between objects,
regardless of their actual implementation, thereby ensuring interoperability
between different languages and platforms.

Object Interface
The interface to an object, as defined in an application�s OMG IDL statements.
The object interface identifies the set of operations and attributes that can be
performed on an object. For example, the interface for a teller object identifies
the types of operation that can be performed on that object, such as
withdrawals, transfers, and deposits.

Object Management Architecture (OMA)
A definition of a standard object model from the Object Management Group
that defines the behavior of objects in a distributed environment. The
communications component of OMA is the Common Object Request Broker
Architecture (CORBA).
 196

Object Management Group (OMG)
A consortium that aims to define a standard framework for distributed,
object-oriented programming. The OMG is responsible for the CORBA and
OMA specifications.

Object Model
A model that describes the overall design of an application or system in terms
of objects.

Object reference
When a server starts, it creates one or more objects and publishes their
references, usually in a naming service (a file or a URL can also be used).
When a client program makes a request on an object, it passes the name of
the required object to the ORB, which passes it to the naming service. The
naming service returns the corresponding object reference to the ORB, which
uses the reference to pass the request to the server object.

Object Request Broker (ORB)
A middleware component that acts as an intermediary between a client and
a distributed object. It is responsible for delivering messages between the
client and object across a network. It hides the underlying complexity of the
distributed system, such as differences in hardware, operating systems, and
programming languages, from the application programmer. When a client
invokes a member function on a remote CORBA object, the ORB intercepts
the function call, formats it as a CORBA request, and redirects it across the
network to the target object.

An ORB uses the CORBA Interface Repository to find out how to locate and
communicate with a requested component. When creating a component, a
programmer uses either CORBA�s Interface Definition Language (IDL) to
declare the component�s public interfaces, or the compiler of the
programming language translates the language statements into appropriate
IDL statements. These statements are stored in the Interface Repository as
metadata or definitions of how a component's interface works. Orbix and
OrbixWeb are ORBs.
197

CHAPTER 7 |
Operation
The IDL equivalent of a function in C++ or method in Java. Operations are
defined in IDL interfaces and can be called on CORBA objects. When a client
invokes a member function on a CORBA object, the ORB intercepts the
function call, formats it as a CORBA request, and redirects it across the
network to the target object whether the object is in the same address space
as the client, in another address space in the same machine, or on a remote
machine.

Orbix daemon
In an Orbix system there is an Orbix daemon called orbixd, which locates and
activates CORBA servers and services. Orbix runtime environments The
runtime environments contain the services (configuration domains, location
domains, and naming service) needed to make Orbix applications work. They
can exist as part of a complete built-in Orbix solution or as an independently
manageable Orbix-ready application.

P Portable Object Adapter (POA)
The adapter that delivers requests from the ORB (via the network) to the
programming language objects that implement CORBA objects. POAs can be
transient or persistent. The POA is an addition to the CORBA specification to
unify and extend the capabilities of a CORBA server. It is a replacement for
the Basic Object Adapter (BOA) and is a runtime library of routines that are
built into the server application executable image. A POA creates and manages
object references to all objects used by the application, manages object state,
and provides the infrastructure to support persistent objects and the portability
of object implementations between different ORB products. The POA is the
only standard CORBA object adapter.

R Request
A message sent by a client application that identifies an operation to be
fulfilled. The message is sent to the ORB and is relayed to the appropriate
server application, which fulfills the request.
 198

S Servant
The programming language object that implements the interface defined in
an application's OMG IDL statements. A servant contains the method code
that can perform operations on one or more CORBA objects.

Server
A program that provides services to clients. CORBA servers act as containers
for CORBA objects, allowing clients to access those objects using IDL
interfaces.

Server Object
The object that performs server application initialization functions, creates
one or more servants, and performs server application shut-down and
clean-up procedures.

Skeleton
The ORB component that is specific to the object interface and that assists a
Portable Object Adapter in passing requests to particular methods. The
skeleton is connected to both the server application and the ORB. It is
produced by the IDL compiler and is used at runtime to invoke method code.

Superclass
A class from which a particular class is derived, perhaps with one or more
classes in between. See also subclass, subtype.

T Two-Tier Client/Server
An application development approach that splits an application into two parts
and divides the processing between a desktop workstation and a server
machine.

U Unmarshalling
The conversion of data, received over a network, from its on-the-wire
representation to data types appropriate to the receiving application.
199

CHAPTER 7 |
V Variable
A programming language object that can contain any one of a defined set of
values, often of a particular data type. Contrast with constant.

W

X

Y

Z

 200

Index

A
abstract classes 16
Adaptive Runtime Technology 68
arrays 165
ART plug-in architecture 71

B
bindings 74
bind operation 179

C
capitalization and IDL identifiers 139
classes 16

inheriting from 21
class methods 20
clients

and iterators 156
and object references 148
locating objects 174

client-server architecture
history 7
simple example 8
three-tier 9
two-tier 7

COAERR 111
COBOL IDL compiler generated members 97
COBOL member name restrictions 98
configuration

and system size 78
IONA default settings 79
options 78
runtime settings 70

CORBA
advantages 43
development process 64
languages interoperate with 5
shortcomings 42

CORBAfacilities 62
CORBA Interoperable Naming Service 188
CORBA module 172
CORBA Naming Service 177

locating 176
CORBA object messages 40
CORBA object references 52
CORBA objects

granularity 148
IDL interface instances 136
ORB core 68

CORBA object states 40
CORBA requests 145
CORBAservices 60
CORBA specification 134

Naming Service 176
CORBA system exceptions

IDL attributes 162
CORBA transport protocols 58
CosNaming module 178

D
data-type definitions, IDL 48
derived class 21
DII 56
distributed systems 11

middleware 14
DSI 56

E
encapsulation 33
error reporting attributes 162
exceptions 110
exceptions, designing 164

F
federated naming hierarchies 181

G
GIOP 58

I
IDL

and implementation languages 49
distinguishing versions 147
implementing 47
201

INDEX
interface components 47
modifing 144
versioning 144

IDL attributes 47, 158
design guidelines 162
mapping to COBOL and PL/I 51

IDL basic types mapped to COBOL and PL/I 50
IDL capitalization 158
IDL compiler See Orbix IDL compiler 65
IDL constant types 48
IDL data-type definitions 48
IDL data types

cost of marshalling 153
IDL definitions

order in source file 135
pragma prefix directive 141
storing 134

IDL design
basic guidelines 158

IDL exceptions 47, 110, 164
attributes 162

IDL identifiers 139
IDL interfaces 46

bankdemo 91
Naming Service 178
passing instances of 136

IDL keywords 134
IDL modules

reopening 167
IDL operations 47

inout parameters 161
mapping to COBOL and PL/I 51
overloading 158

IDL preprocessor 135
IDL skeleton 55
IDL stubs 55
IDL-to-COBOL mapping

attributes 109
operations 102
user exceptions 110

IFR repository ID 52
IIOP 58, 71
IMR 75
inheritance 21, 33
initial naming context seen 181
inout parameters 161
instance methods 20
interceptors

and plug-ins 73
 202
ORB core 69
setting up 74

IORs 176
iterators 156

J
Jackson Structure Diagrams 27

K
keywords

module 147
programming 139

L
load balancing 75, 77
location domain 75

components 76
locator daemon 75
log-stream objects 72

M
member variables, and attributes 163
methods 20

arguments 20
method signature 23
middleware 14
module keywords 147

N
NamingContext::bind 179
naming hierarchies 183
Naming Service 77, 177
node daemon 76
non-OO programming 4
non-OO programming languages

and IDL 49

O
OBJ2STR 188
object adapters 56
ObjectId 81
object identifiers 18
ObjectIds 151
object key 52
object location mechanisms, custom 187

INDEX
object references 52
and clients 148
cost if marshalling 153
interceptors 74
passing semantics 137
repositories 77

Object Repository 175
objects 18

accessing 19
OBJRIR 176
OBJTOSTR 188
OMA 38

components 38
OMG 37
omg.org prefix 172
OO languages 5
OO programming 4
orb.idl file 172
ORB core 68

plug-ins 70
Orbix application development steps 89
Orbix IDL compiler 71

arguments 94
repository IDs 140
running 96

ORB runtime APIs 172
ORBs

and OMA 38
components 54
functionality 53
interface 55
measuring performance 155
naming hierarchies 186
repository IDs 141
structure 55

P
persistent objects, invoking on 76
POA policies 82

Orbix Mainframe 83
POAs 57

functions 80
object activation and deactivation 81
server process 77

polymorphism 23, 33
pragma prefix directive 141
preprocessor directives, IDL 135
programming keywords 139
proxy objects 65
R
repository IDs 52, 140
resolve_initial_references 188
resolve operation 179
root POA 82

S
SAF plug-in 72
scope resolution operator 168
search-and-select scenario 148
sequences 165
servants 81
server process 77
server-side skeleton code 65
STR2OBJ 188
STRTOOBJ 188
stub code 65
subclass 21
system exceptions 163
system exceptions, CORBA defined 47

T
Trader Service 77
transient CORBA objects 41
transport protocol plug-ins 72
transport protocols 58
two-tier client-server architecture 7

U
user exceptions 110, 162, 163

raising 111

W
WTO announce plug-in 72
203

INDEX
 204

	List of Figures
	List of Tables
	Preface
	Object-Oriented Programming, CORBA, and Orbix Mainframe
	Introduction to Object-Oriented Programming
	Object-Oriented Programming
	Client-Server Computing
	Two-Tier Client-Server Architecture
	Three-Tier Client-Server Architecture
	Distributed Systems
	Distributed Systems and Middleware

	Object-Oriented Concepts
	Classes
	Objects
	Methods
	Inheritance
	Polymorphism

	Banking Application Example
	Outline of the Banking Application Example
	A Procedural Perspective
	An OO Perspective

	Introduction to CORBA
	CORBA Object Management
	The Object Management Group (OMG)
	The Object Management Architecture (OMA)
	Object Orientation and CORBA Objects
	Shortcomings of CORBA
	Advantages of CORBA

	Components of a CORBA Distributed System
	Interface Definition Language
	Mapping IDL to Implementation Languages
	CORBA Object References
	ORB Functionality
	ORB Structure
	General Inter-ORB Protocol and Internet Inter-ORB Protocol

	CORBAservices and CORBAfacilities
	CORBAservices
	CORBAfacilities

	The CORBA Development Process

	Introduction to Orbix
	The Orbix ORB Core
	Orbix Plug-ins
	Orbix Interceptors
	Orbix Location Domain
	Orbix Configuration Domain
	The Orbix Portable Object Adapter
	Orbix Mainframe POA Policy

	Introduction to Orbix Mainframe
	Orbix Applications Model
	Orbix Development Process
	Defining IDL Interfaces
	Orbix IDL Compiler Arguments
	Running the Orbix IDL Compiler
	Generated COBOL Members
	COBOL API Reference Summary
	IDL to COBOL Mapping
	Mapping for Operations
	Mapping for Attributes
	Mapping for User Exceptions

	Generated PL/I Members
	PL/I API Reference Summary
	IDL to PL/I Mapping
	Mapping for Operations
	Mapping for Attributes
	Mapping for User Exceptions

	IDL Design and CORBA Object Location
	IDL Design
	IDL Constructs
	IDL Interface Semantics
	IDL Identifiers and Repository IDs
	IDL Identifiers
	Repository IDs

	IDL Versioning
	Working with more than One Version of IDL
	Distinguishing IDL Versions
	CORBA Object Granularity

	IDL Data Types and Performance
	Type of Data Sent
	Amount of Data Sent

	IDL Definition Design Guidelines
	Basic Design Guidelines for IDL
	Operation Design Guidelines
	Attribute Design Guidelines
	Exception Design Guidelines
	Sequences Versus Arrays

	IDL Modules and Scoping
	Reopening modules
	Scope Resolution Operator
	The CORBA Module

	Locating CORBA Objects
	CORBA Object Location
	The CORBA Naming Service
	Federating Naming Hierarchies
	Structuring the Naming Hierarchy
	Custom Object Location Mechanisms

	Glossary
	Index

