
Administrator’s Guide
Version 6.2, June 2005

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 27-Nov-2006

Contents

List of Figures xvii

List of Tables xix

Preface xxi

Part I Introduction

Chapter 1 The Orbix Environment 1
Basic CORBA Model 2
Simple Orbix Application 4

Portable Object Adapter 5
Broader Orbix Environment 7

Managing Object Availability 8
Scaling Orbix Environments with Configuration Domains 11
Using Dynamic Orbix Applications 14

Orbix Administration 15

Chapter 2 Selecting an Orbix Environment Model 17
Orbix Development Environment Models 18

Independent Development Environments 19
Distributed Development and Test Environments 22

Configuration Models 23
Getting the Most from Your Orbix Environment 26

Using Capabilities of Well-Designed Orbix Applications 27
Using the Right Data Storage Mechanism 29

Getting the Most from Orbix Configuration 30
iii

CONTENTS
Part II Managing an Orbix Environment

Chapter 3 Managing Orbix Configuration 33
How an ORB Gets its Configuration 34

Locating the Configuration Domain 36
Obtaining an ORB�s Configuration 38

Configuration Variables and Namespaces 45
Managing Configuration Domains 47

Chapter 4 Managing Persistent CORBA Servers 49
Introduction 50
Registering Persistent Servers 51
Server Environment Settings 56

Windows Environment Settings 57
UNIX Environment Settings 58

Managing a Location Domain 60
Managing Server Processes 61
Managing the Locator Daemon 62
Managing Node Daemons 64
Listing Location Domain Data 67
Modifying a Location Domain 68
Ensuring Unique POA Names 69

Using Direct Persistence 71
CORBA Applications 72
Orbix Services 76

Chapter 5 Configuring Scalable Applications 79
Fault Tolerance and Replicated Servers 81

About Replicated Servers 82
Automatic Replica Failover 85
Direct Persistence and Replica Failover 86

Building a Replicated Server 89
Example 1: Building a Replicated Server to Start on Demand 90
Example 2: Updating a Replicated Server 93
Example 3: Dynamically Changing the Load Balancing Algorithm 94

Replicating Orbix Services 95
Master-Slave Replication 98
 iv

CONTENTS
Active Connection Management 102
Setting Buffer Sizes 104

Chapter 6 Managing the Naming Service 107
Naming Service Administration 109

Naming Service Commands 111
Controlling the Naming Service 112
Building a Naming Graph 113

Creating Naming Contexts 115
Creating Name Bindings 116

Maintaining a Naming Graph 118
Managing Object Groups 119
Deploying Naming Service Replicas on z/OS 121

Chapter 7 Managing an Interface Repository 133
Interface Repository 134
Controlling the Interface Repository Daemon 135
Managing IDL Definitions 136

Browsing Interface Repository Contents 137
Adding IDL Definitions 139
Removing IDL Definitions 140

Chapter 8 Managing the Firewall Proxy Service 143
Orbix Firewall Proxy Service 144
Configuring the Firewall Proxy Service 145
Known Restrictions 148

Chapter 9 Managing Orbix Service Databases 149
Berkeley DB Environment 150
Performing Checkpoints 151
Managing Log File Size 152
Troubleshooting Persistent Exceptions 153
Database Recovery for Orbix Services 154
Replicated Databases 159
v

CONTENTS
Chapter 10 Configuring Orbix Compression 161
Introduction 162
Configuring Compression 164
Example Configuration 168
Message Fragmentation 170

Chapter 11 Configuring Advanced Features 171
Configuring Java NIO 172
Configuring Shared Memory 174
Configuring Bidirectional GIOP 176

Enabling Bidirectional GIOP 177
Migration and Interoperability Issues 180

Starting the Locator Under a Heavy Client Load 183

Chapter 12 Orbix Mainframe Adapter 185
CICS and IMS Server Adapters 186
Using the Mapping Gateway Interface 187
Locating Server Adapter Objects Using itmfaloc 191

Part III Monitoring Orbix Applications

Chapter 13 Setting Orbix Logging 197
Setting Logging Filters 198
Logging Subsystems 200
Logging Severity Levels 202
Redirecting Log Output 204

Chapter 14 Monitoring GIOP Message Content 207
Introduction to GIOP Snoop 208
Configuring GIOP Snoop 209
GIOP Snoop Output 212

Chapter 15 Debugging IOR Data 217
IOR Data Formats 218
Using iordump 221
 vi

CONTENTS
iordump Output 223
Stringified Data Output 227
ASCII-Hex Data Output 228

Data, Warning, Error and Information Text 229
Errors 230
Warnings 233

Part IV Command Reference

Starting Orbix Services 237
Starting and Stopping Configured Services 238
Starting Orbix Services Manually 239

itconfig_rep run 239
itlocator run 241
itnode_daemon run 242
itnaming run 243
itifr run 244
itevent run 245
itnotify run 246

Stopping Services Manually 248

Event Log 249
logging get 249
logging set 250

Managing Orbix Services With itadmin 251
Using itadmin 252
Command Syntax 255
Services and Commands 258

Bridging Service 259
bridge create 260
bridge destroy 261
bridge list 261
bridge show 261
bridge start 261
vii

CONTENTS
bridge stop 261
bridge suspend 261
endpoint_admin show 262
endpoint destroy 262
endpoint list 262
endpoint show 263

JMS Broker 264
jms start 264
jms stop 264

Configuration Domain 265
Configuration Repository 266

config dump 266
config list_servers 267
config show_server 267
config stop 268
file_to_cfr.tcl 268

Namespaces 270
namespace create 270
namespace list 271
namespace remove 272
namespace show 272

Scopes 273
scope create 273
scope list 273
scope remove 274
scope show 274

Variables 275
variable create 275
variable modify 277
variable remove 278
variable show 278

Event Service 279
Event Service Management 280

event show 280
event stop 281
 viii

CONTENTS
Event Channel 282
ec create 282
ec create_typed 283
ec list 283
ec remove 284
ec remove_typed 284
ec show 284
ec show_typed 285

Interface Repository 287
IDL Definitions 288

idl -R=-v 288
Repository Management 289

ifr cd 289
ifr destroy_contents 290
ifr ifr2idl 290
ifr list 290
ifr pwd 290
ifr remove 291
ifr show 291
ifr stop 291

Location Domain 293
Locator Daemon 294

locator heartbeat_daemons 294
locator list 295
locator show 295
locator stop 296

Named Key 297
named_key create 298
named_key list 298
named_key remove 299
named_key show 299

Node Daemon 300
node_daemon list 300
node_daemon remove 301
node_daemon show 301
node_daemon stop 302
ix

CONTENTS
add_node_daemon.tcl 302
ORB Name 304

orbname create 304
orbname list 305
orbname modify 305
orbname remove 306
orbname show 307

POA 308
poa create 308
poa list 310
poa modify 311
poa remove 312
poa show 313

Server Process 314
process create 314
process disable 317
process enable 317
process kill 317
process list 318
process modify 319
process remove 321
process show 322
process start 323
process stop 324

Mainframe Adapter 325
mfa add 327
mfa change 327
mfa delete 328
mfa -help 328
mfa list 328
mfa refresh 329
mfa reload 329
mfa resetcon 329
mfa resolve 330
mfa save 330
mfa stats 331
mfa stop 331
mfa switch 331
 x

CONTENTS
Naming Service 333
Names 334

ns bind 334
ns list 335
ns list_servers 335
ns newnc 336
ns remove 336
ns resolve 336
ns show_server 337
ns stop 337
ns unbind 337

Object Groups 338
nsog add_member 339
nsog bind 339
nsog create 340
nsog list 340
nsog list_members 340
nsog modify 341
nsog remove 341
nsog remove_member 342
nsog set_member_timeout 342
nsog show_member 343
nsog update_member_load 344

Notification Service 345
Notification Service Management 346

notify checkpoint 346
notify post_backup 347
notify pre_backup 347
notify show 347
notify stop 349

Event Channel 350
nc create 350
nc list 351
nc remove 352
nc show 352
nc set_qos 353
xi

CONTENTS
Object Transaction Service 357
tx begin 357
tx commit 358
tx resume 358
tx rollback 359
tx suspend 359

Object Transaction Service Encina 361
encinalog add 362
encinalog add_mirror 363
encinalog create 363
encinalog display 364
encinalog expand 365
encinalog init 366
encinalog remove_mirror 366
otstm stop 367

Persistent State Service 369
pss_db archive_old_logs 370
pss_db checkpoint 370
pss_db delete_old_logs 371
pss_db list_replicas 371
pss_db name 371
pss_db post_backup 371
pss_db pre_backup 372
pss_db remove_replica 372
pss_db show 373

Security Service 375
Logging On 377

admin_logon 377
Managing Checksum Entries 378

checksum confirm 378
checksum create 379
checksum list 379
checksum new_pw 380
checksum remove 380
 xii

CONTENTS
Managing Pass Phrases 381
kdm_adm change_pw 381
kdm_adm confirm 382
kdm_adm create 382
kdm_adm list 383
kdm_adm new_pw 384
kdm_adm remove 384

Trading Service 385
Trading Service Administrative Settings 386

trd_admin get 386
trd_admin set 388
trd_admin stop 390

Federation Links 391
trd_link create 391
trd_link list 392
trd_link modify 392
trd_link remove 393
trd_link show 394

Regular Offers 395
trd_offer list 395
trd_offer remove 395
trd_offer show 396

Proxy Offers 397
trd_proxy list 397
trd_proxy remove 397
trd_proxy show 398

Type Repository 399
trd_type list 399
trd_type mask 399
trd_type remove 400
trd_type show 400
trd_type unmask 401
xiii

CONTENTS
Part V Appendices

Appendix A Orbix Windows Services 405
Managing Orbix Services on Windows 407
Orbix Windows Service Commands 408

continue 408
help 409
install 409
pause 409
prepare 409
query 410
run 410
stop 410
uninstall 410

Orbix Windows Service Accounts 411
Running Orbix Windows Services 413
Logging Orbix Windows Services 414
Uninstalling Orbix Windows Services 415
Troubleshooting Orbix/Windows Services 416

Appendix B Run Control Scripts for Unix Platforms 417
Solaris 419
AIX 422
HP-UX 426
IRIX 430
Red Hat Linux 433

Appendix C ORB Initialization Settings 437
Domains directory 438
Domain name 438
Configuration directory 439
ORB name 439
Initial reference 440
Default initial reference 440
Product directory 441
 xiv

CONTENTS
Appendix D Development Environment Variables 443
IT_IDL_CONFIG_FILE 443
IT_IDLGEN_CONFIG_FILE 444

Appendix E Named Keys for Orbix Services 445
Orbix Service Named Key Strings 446
Configuration for Advertising Services 449

Glossary 451

Index 459
xv

CONTENTS
 xvi

List of Figures

Figure 1: Basic CORBA Model 3

Figure 2: Overview of a Simple Orbix Application 4

Figure 3: A POA�s Role in Client�Object Communication 5

Figure 4: Simple Configuration Domain and Location Domain 12

Figure 5: Multiple Configuration Domains 13

Figure 6: An Independent Development and Test Environment 19

Figure 7: Multiple Independent Development and Test Environments 20

Figure 8: A Distributed Development and Test Environment 22

Figure 9: Orbix Environment with Local Configuration 24

Figure 10: Orbix Environment with Centralized Configuration 25

Figure 11: How an Orbix Application Obtains its Configurations 34

Figure 12: Hierarchy of Configuration Scopes 38

Figure 13: Replicated Naming Service 96

Figure 14: Naming Context Graph 113

Figure 15: Overview of ZIOP Compression 162

Figure 16: Locator Service Details 411
xvii

LIST OF FIGURES
 xviii

List of Tables
Table 1: Configuration Domain Management Tasks 47

Table 2: Commands that List Location Domain Data 67

Table 3: Commands that Modify a Location Domain 68

Table 4: Commands that Remove Location Domain Components 68

Table 5: Naming Graph Maintenance Commands 118

Table 6: Orbix Logging Subsystems 200

Table 7: Orbix Logging Severity Levels 202

Table 8: Commands to Manually Start Orbix Services. 239

Table 9: Commands for Stopping Orbix Services 248

Table 10: Event Log Commands 249

Table 11: Bridging Service Commands 259

Table 12: JMS Broker Commands 264

Table 13: Configuration Repository Commands 266

Table 14: Configuration Namespace Commands 270

Table 15: Configuration Scope Commands 273

Table 16: Configuration Variable Commands 275

Table 17: Event Service Commands 280

Table 18: Event Channel Commands 282

Table 19: Interface Repository Commands 289

Table 20: Locator Daemon Commands 294

Table 21: Named Key Commands 297

Table 22: Node Daemon Commands 300

Table 23: ORB Name Commands 304

Table 24: POA Commands 308

Table 25: Server Process Commands 314
xix

LIST OF TABLES
Table 26: Mainframe Adapter itadmin Commands 325

Table 27: Naming Service Commands 334

Table 28: Object Group Commands 338

Table 29: Notification Service Commands 346

Table 30: Event Channel Commands 350

Table 31: Object Transaction Service Commands 357

Table 32: Persistent State Service Commands 369

Table 33: Checksum Entry Commands 378

Table 34: Pass Phrase Commands 381

Table 35: Trading Service Commands 386

Table 36: Federation Link Commands 391

Table 37: Regular Offer Commands 395

Table 38: Proxy Offer Commands 397

Table 39: Server Type Repository Commands 399

Table 40: Orbix Service Key Strings 446

Table 41: Advertise Service Configuration Variables 449
 xx

Preface
Introduction Orbix is a software environment for building and integrating distributed

object-oriented applications. Orbix provides a full implementation of the
Common Object Request Broker Architecture (CORBA) from the Object
Management Group (OMG). Orbix is compliant with version 2.4 of the
OMG�S CORBA specification. This guide explains how to configure and
manage the components of an Orbix environment.

Audience This guide is aimed at administrators managing Orbix environments, and
programmers developing Orbix applications.

Organization This guide is divided into the following parts:

� Introduction introduces the Orbix environment, and the basic concepts
required to understand how it works.

� Managing an Orbix Environment explains how to manage each
component of an Orbix environment. It provides task-based information
and examples.

� Command Reference provides a comprehensive reference for all Orbix
configuration variables and administration commands.

� Appendices explain how to use Orbix components as Windows NT
services. They also provide reference information for initialization
parameters and environment variables.
xxi

PREFACE
Related documentation Orbix documentation also includes the following related books:

� Management User�s Guide

� Deployment Guide

� CORBA Programmer�s Guide

� CORBA Programmer�s Reference

� CORBA Code Generation Toolkit Guide

Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Document conventions This guide uses the following typographical conventions:

Constant width Constant width font in normal text represents
commands, portions of code and literal names of
items (such as classes, functions, and variables). For
example, constant width text might refer to the
itadmin orbname create command.

Constant width paragraphs represent information
displayed on the screen or code examples. For
example the following paragraph displays output from
the itadmin orbname list command:

ifr
naming
production.test.testmgr
production.server

Italic Italic words in normal text represent emphasis and
new terms (for example, location domains).

Code italic Italic words or characters in code and commands
represent variable values you must supply; for
example, process names in your particular system:

itadmin process create process-name
 xxii

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
The following keying conventions are observed:

Code bold Code bold font is used to represent values that you
must enter at the command line. This is often used in
conjunction with constant width font to distinguish
between command line input and output. For
example:

itadmin process list
ifr
naming
my_app

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

... Horizontal ellipses in format and syntax descriptions
indicate that material has been eliminated to simplify
a discussion.

[] Italicized brackets enclose optional items in format
and syntax descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices.
Individual items can be enclosed in {} (braces) in
format and syntax descriptions.
xxiii

PREFACE
 xxiv

Part I
Introduction

In this part This part contains the following chapters:

The Orbix Environment page 1

Selecting an Orbix Environment Model page 17

CHAPTER 1

The Orbix
Environment
Orbix is a network software environment that enables
programmers to develop and run distributed applications.

Overview This chapter introduces the main components of an Orbix environment,
explains how they interact, and gives an overview of Orbix administration.

In this chapter This chapter contains the following sections:

Basic CORBA Model page 2

Simple Orbix Application page 4

Broader Orbix Environment page 7

Orbix Administration page 15
1

CHAPTER 1 | The Orbix Environment
Basic CORBA Model

Overview An Orbix environment is a networked system that makes distributed
applications function as if they are running on one machine in a single
process space. Orbix relies on several kinds of information, stored in various
components in the environment. When the environment is established,
programs and Orbix services can automatically store their information in the
appropriate components.

To establish and use a proper Orbix environment, administrators and
programmers need to know how the Orbix components interact, so that
applications can find and use them correctly. This chapter starts with a
sample application that requires a minimal Orbix environment. Gradually,
more services are added.

The basic model for CORBA applications uses an object request broker, or
ORB. An ORB handles the transfer of messages from a client program to an
object located on a remote network host. The ORB hides the underlying
complexity of network communications from the programmer. In the CORBA
model, programmers create standard software objects whose member
methods can be invoked by client programs located anywhere in the
network. A program that contains instances of CORBA objects is known as a
server.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 1, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.
 2

Basic CORBA Model
Figure 1: Basic CORBA Model

Client Host Server Host

ObjectClient

Object Request Broker

Function Call
3

CHAPTER 1 | The Orbix Environment
Simple Orbix Application

Overview A simple Orbix application might contain a client and a server along with
one or more objects (see Figure 2). In this model, the client obtains
information about the object it seeks, using object references. An object
reference uniquely identifies a local or remote object instance.

How an ORB enables remote
invocation

Figure 2 shows how an ORB enables a client to invoke on a remote object:

1. When a server starts, it creates one or more objects and publishes their
object references in a naming service. A naming service uses simple
names to make object references accessible to prospective clients.
Servers can also publish object references in a file or a URL.

2. The client program looks up the object reference by name in the
naming service. The naming service returns the server�s object
reference.

3. The client ORB uses the object reference to pass a request to the server
object

Figure 2: Overview of a Simple Orbix Application

Network

Client Host

Object
Client

ORB ORB

12

3

Server Host

Naming
Service
 4

Simple Orbix Application
Portable Object Adapter

Overview For simplicity, Figure 2 on page 4 omits details that all applications require.
For example, Orbix applications use a portable object adapter, or POA, to
manage access to server objects. A POA maps object references to their
concrete implementations on the server, or servants. Given a client request
for an object, a POA can invoke the referenced object locally.

POA functionality A POA can divide large sets of objects into smaller, more manageable
subsets; it can also group related objects together. For example, in a
ticketing application, one POA might handle reservation objects, while
another POA handles payment objects.

Figure 3 shows how the POA connects a client to a target object. In this
instance, the server has two POAs that each manage a different set of
objects.

Figure 3: A POA�s Role in Client�Object Communication

Naming
Service

Network

Process
Client

ORB

Process

POA
Server

ORB

Objects

POA

Objects
5

CHAPTER 1 | The Orbix Environment
POA names Servers differentiate between several POAs by assigning them unique names
within the application. The object reference published by the server contains
the complete or fully qualified POA name (FQPN) and the object�s ID. The
client request embeds the POA name and object ID taken from the
published object reference. The server then uses the POA name to invoke
the correct POA. The POA uses the object ID to invoke the desired object, if
it exists on the server.

Limitations of a simple application This simple model uses a naming service to pass object references to
clients. It has some limitations and does not support all the needs of
enterprise-level applications. For example, naming services are often not
designed to handle frequent updates. They are designed to store relatively
stable information that is not expected to change very often. If a process
stops and restarts frequently, a new object reference must be published with
each restart. In production environments where many servers start and stop
frequently, this can overwork a naming service. Enterprise applications also
have other needs that are not met by this simple model�for example,
on-demand activation, and centralized administration. These needs are met
in a broader Orbix environment, as described in the next section.
 6

Broader Orbix Environment
Broader Orbix Environment

Overview Along with the naming service, Orbix offers a number of features that are
required by many distributed applications, for flexibility, scalability, and
ease of use. These include:

� Location domains enable a server and its objects to move to a new
process or host, and to be activated on demand.

� Configuration domains let you organize ORBs into independently
manageable groups. This brings scalability and ease of use to the
largest environments.

� The interface repository allows clients to discover and use additional
objects in the environment�even if clients do not know about these
objects at compile time.

� The event service allows applications to send events that can be
received by multiple objects.

In this section This section discusses the following topics:

Managing Object Availability page 8

Scaling Orbix Environments with Configuration Domains page 11

Using Dynamic Orbix Applications page 14
7

CHAPTER 1 | The Orbix Environment
Managing Object Availability

Overview A system with many servers cannot afford the overhead of manually
assigned fixed port numbers, for several reasons:

� Over time, hardware upgrades, machine failures, or site reconfiguration
require you to move servers to different hosts.

� To optimize resource usage, rarely used servers only start when they
are needed, and otherwise are kept inactive.

� To provide fault tolerance and high availability for critical objects, they
can be run within redundant copies of a server. In case of server
overload or failure, clients can transparently reconnect to another
server

Orbix location domains provide all of these benefits, without requiring
explicit programming.

Transient and persistent objects A server makes itself available to clients by publishing interoperable object
references, or IORs. An IOR contains an object�s identity and address. This
address can be of two types, depending on whether the object is transient or
persistent:

� The IORs of transient objects always contain the server host machine�s
address. A client that invokes on this object sends requests directly to
the server. If the server stops running, the IORs of its transient objects
are no longer valid, and attempts to invoke on these objects raise the
OBJECT_NOT_EXIST exception.

� The IORs of persistent objects are exported from their server with the
address of the domain�s locator daemon. This daemon is associated
with a database, or implementation repository, which dynamically
maps persistent objects to their server�s actual address.
 8

Broader Orbix Environment
Invocations on persistent objects When a client invokes on a persistent object, Orbix locates the object as
follows:

1. When a client initially invokes on the object, the client ORB sends the
invocation to the locator daemon.

2. The locator daemon searches the implementation repository for the
actual address of a server that runs this object in the implementation
repository. The locator daemon returns this address to the client.

3. The client connects to the returned server address and directs this and
all subsequent requests for this object to that address.

All of this work is transparent to the client. The client never needs to contact
the locator daemon explicitly to obtain the server's location.

Locator daemon benefits Using the locator daemon provides two benefits:

� By interposing the locator daemon between client and server, a
location domain isolates the client from changes in the server address.
If the server changes location�for example, it restarts on a different
host, or moves to another port� the IORs for persistent objects remain
valid. The locator daemon supplies the server�s new address to clients.

� Because clients contact the locator daemon first when they initially
invoke on an object, the locator daemon can launch the server on
behalf of the client. Thus, servers can remain dormant until needed,
thereby optimizing use of system resources.
9

CHAPTER 1 | The Orbix Environment
Components of an Orbix location
domain

An Orbix location domain consists of two components: a locator daemon
and a node daemon:

locator daemon: A CORBA service that acts as the control center for the
entire location domain. The locator daemon has two roles:

� Manage the configuration information used to find, validate, and
activate servers running in the location domain.

� Act as the contact point for clients trying to invoke on servers in the
domain.

node daemon: Acts as the control point for a single host machine in the
system. Every machine that runs an server must run a node daemon. The
node daemon starts, monitors, and manages servers on its machine. The
locator daemon relies on node daemons to start processes and tell it when
new processes are available.
 10

Broader Orbix Environment
Scaling Orbix Environments with Configuration Domains

Overview Small environments with a few applications and their ORBs can be easy to
administer manually: you simply log on to systems where the ORBs run and
adjust configuration files as needed. However, adding more ORBs can
substantially increase administrative overhead. With configuration domains,
you can scale an Orbix environment and minimize overhead.

Grouping related applications Related application ORBs usually have similar requirements. A configuration
domain defines a set of common configuration settings, which specify
available services and control ORB behavior. For example, these settings
define libraries to load at runtime, and initial object references to services.

File- and repository-based
configurations

Configuration domain data can be maintained in two ways:

� As a set of files distributed among domain hosts.

� In a centralized configuration repository.

Each ORB gets its configuration data from a domain, regardless of how it is
implemented. Orbix environments can have multiple configuration domains
organized by application, by geography, by department, or by some other
appropriate criteria. You can divide large environments into smaller,
independently manageable Orbix environments.
11

CHAPTER 1 | The Orbix Environment
Simple configuration domain and
location domain

Figure 4 shows a simple configuration, where all ORBs are configured by
the same domain. Such a configuration is typical of small environments. In
fact, many environments begin with this configuration and grow from there.

Multiple configuration and
location domains

Figure 5 shows an environment with multiple configuration domains. This
environment can be useful in a organization that must segregate user
groups. For example, separate configurations can be used for production
and finance departments, each with different security requirements. In this
environment, all clients and servers use the same locator daemon; thus, the
two configuration domains are encompassed by a single location domain.

Figure 4: Simple Configuration Domain and Location Domain

Configuration Domain
& Location Domain

ORB

Client

ORB

Client

ORB

Client

ORB

Application

Configuration
Locator
 12

Broader Orbix Environment
Figure 5: Multiple Configuration Domains

Location Domain
Locator used by
Configuration
Domains 1 and 2

Configuration Domain 1

ORB

Client

ORB

Client

ORB

Client

ORB

Application

ORB

Client

ORB

Client

ORB

Client

ORB

Client

Configuration Domain 2

Configuration
Configuration

Locator
13

CHAPTER 1 | The Orbix Environment
Using Dynamic Orbix Applications

Overview Within the CORBA model, client programs can invoke on remote objects,
even if those objects are written in a different programming language and
run on a different operating system. CORBA�s Interface Definition Language
(IDL) makes this possible. IDL is a declarative language that lets you define
interfaces that are independent of any particular programming language and
operating system.

Orbix includes a CORBA IDL compiler, which compiles interface definitions
along with the client and server code. A client application compiled in this
way contains internal information about server objects. Clients use this
information to invoke on objects.

This model restricts clients to using only those interfaces that are known
when the application is compiled. Adding new features to clients requires
programmers to create new IDL files that describe the new interfaces and to
recompile clients along with the new IDL files.

Orbix provides an interface repository, which enables clients to call
operations on IDL interfaces that are unknown at compile time. The
interface repository (IFR) provides centralized persistent storage of IDL
interfaces. Orbix programs can query the interface repository at runtime, to
obtain information about IDL definitions.

Managing an interface repository Administrators and programmers can use interface repository management
commands to add, remove, and browse interface definitions in the
repository. Interfaces and types that are already defined in a system do not
need to be implemented separately in every application. They can be
invoked at runtime through the interface repository. For more details on
managing an interface repository, see Chapter 7.
 14

Orbix Administration
Orbix Administration

Overview Orbix services, such as the naming service, and Orbix components, such as
the configuration repository, must be configured to work together with
applications. Applications themselves also have administration needs.

This section identifies the different areas of administration. It explains the
conditions in the environment and in applications that affect the kind of
administration you are likely to encounter. Orbix itself usually requires very
little administration when it is set up and running properly. Applications
should be easy to manage when designed with management needs in mind.

Administration tasks Orbix administration tasks include the following:

� Managing an Orbix environment

� Application deployment and management

� Troubleshooting

Managing an Orbix environment

This involves starting up Orbix services, or adding, moving, and removing
Orbix components. For example, adding an interface repository to a
configuration domain, or modifying configuration settings (for example,
initial references to Orbix services). Examples of location domain
management tasks include starting up the locator daemon and adding a
node daemon. See Part II of this manual for more information.

Application deployment and management

An application gets its configuration from configuration domains, and finds
persistent objects through the locator daemon. Both the configuration and
location domains must be modified to account for application requirements.
For more information, see Chapter 3.

Troubleshooting

You can set up Orbix logging in order to collect system-related information,
such as significant events, and warnings about unusual or fatal errors. For
more information, see Chapter 13.
15

CHAPTER 1 | The Orbix Environment
Administration tools The Orbix itadmin command interface lets you control all aspects of Orbix
administration. Administration commands can be executed from any host.
For detailed reference information about Orbix administration commands,
see Part IV of this manual.
 16

CHAPTER 2

Selecting an Orbix
Environment
Model
This chapter shows different ways in which Orbix can be
configured in a network environment.

In this chapter This chapter contains the following sections:

Orbix Development Environment Models page 18

Configuration Models page 23

Getting the Most from Your Orbix Environment page 26

Getting the Most from Orbix Configuration page 30
17

CHAPTER 2 | Selecting an Orbix Environment Model
Orbix Development Environment Models

Overview Business applications must be capable of scaling to meet enterprise level
needs. Such applications often extend beyond departments, and even
beyond corporate boundaries. Orbix domain and service infrastructures offer
a framework for building and running applications that range from small,
department-level applications to full-scale enterprise applications with
multiple servers and hundreds or thousands of clients.

This chapter offers an overview of Orbix environment models that can
handle one or many applications. It also explains Orbix configuration
mechanisms, and how to scale an Orbix environment to support more
applications, more users, and a wider geographical area. For detailed
information on how to set up your Orbix environment, see the Orbix
Deployment Guide.

Orbix development environments Orbix development environments are used for creating or modifying Orbix
applications. A minimal Orbix development environment consists of the
Orbix libraries and the IDL compiler, along with any prerequisite C++ or
Java files and development tools.

Application testing requires deployment of Orbix runtime services, such as
the configuration repository and locator daemon, naming service, and
interface repository.

In environments with multiple developers, each developer must install the
Orbix development environment, and the necessary C++ or Java tools.
Runtime services can either be installed in each development environment,
or distributed among various hosts and accessed remotely.

In this section This section discusses the following topics:

Independent Development Environments page 19

Distributed Development and Test Environments page 22
 18

Orbix Development Environment Models
Independent Development Environments

Overview This section discusses some typical models of Orbix development (and
testing) environments. Actual development environments might contain any
one or a blend of these models.

Testing and deployment
environment

Figure 6 shows a simple environment that can support application
development and testing.

To test an application, it must first be deployed. This involves populating the
necessary Orbix repositories (for example, the configuration domain,
location domain, and naming service), with appropriate Orbix application
data.

This private environment is useful for testing applications on a local scale
before introducing them to an environment distributed across a network.
Figure 6 shows this environment on Windows NT, but it can be established
on any supported platform.

Figure 6: An Independent Development and Test Environment

Windows NT

Orbix
Dev Kit

C++ or Java development tools (Note)

Note. C++ or Java tools must exist on each development platform.

IMR Naming
Service IFRConfiguration

Orbix Runtime Services

A dotted outline indicates an optional runtime service.
19

CHAPTER 2 | Selecting an Orbix Environment Model
Multiple private environments Figure 7 is a variant of the model shown in Figure 6 on page 19. In this
model, multiple private environments are established on a single multi-user
machine. Each of these private environments can be used to create, deploy,
and test applications.

Figure 7: Multiple Independent Development and Test Environments

Multi-User Machine

Note. C++ or Java tools must exist on each development platform.

A dotted outline indicates an optional runtime service.

Windows NT

Orbix
Dev Kit

IMR Naming
Service IFRConfiguration

Orbix Runtime Services

C++ or Java development tools (Note)

Solaris

Orbix
Dev Kit

IMR Naming
Service IFRConfiguration

Orbix Runtime Services

C++ or Java development tools (Note)

Linux

Orbix
Dev Kit

IMR Naming
Service IFRConfiguration

Orbix Runtime Services

C++ or Java development tools (Note)
 20

Orbix Development Environment Models
Setting up independent
environments

To establish independent development and test environments, first ensure
that the appropriate C++ or Java libraries are present. You should then
install Orbix on the desired platforms. For information on what C++ or Java
libraries are required, and instructions on how to install Orbix, see the Orbix
Installation Guide.

For information on how to configure and deploy Orbix runtime services in
your environment (for example, a locator daemon), see the Orbix
Deployment Guide.
21

CHAPTER 2 | Selecting an Orbix Environment Model
Distributed Development and Test Environments

Overview Figure 8 on page 22 illustrates a runtime test environment shared by
multiple development platforms. This scenario more closely models the
distributed environments in which applications are likely to run. Most
applications should be tested in an environment like this before they are
deployed into a production environment.

To establish this environment, install the Orbix runtime services in your
environment. Ensure that the appropriate C++ or Java libraries are present
on your development platforms. Then install the Orbix developer�s kit on
each platform. For information on how to configure and deploy Orbix
runtime services such as the interface repository in your environment, see
Orbix Deployment Guide.

Figure 8: A Distributed Development and Test Environment

CORBA Transports

Naming
Service

IFRLocation
Service

Orbix Runtime Services

Configuration

Windows NT Solaris HP-UX

Orbix
E2A

C++ or Java
development

tools

Orbix
E2A

C++ or Java
development

tools

Orbix
E2A

C++ or Java
development

tools

A dotted outline indicates an optional runtime service.
 22

Configuration Models
Configuration Models

Overview Orbix provides two configuration mechanisms:

� Local file-based configuration

� Configuration repository

For information on managing Orbix configuration domains, see Chapter 3.

Local file-based configuration A local configuration model is suitable for environments with a small
number of clients and servers, or when configuration rarely changes. The
local configuration mechanism supplied by Orbix uses local configuration
files. Figure 9 on page 24 shows an example Orbix environment where the
configuration is implemented in local files on client and server machines.

The Orbix components in Figure 9 on page 24 consist of Orbix management
tools, the locator daemon, and configuration files that store the
configuration of the Orbix components. When Orbix is installed, it stores its
configuration in the same configuration file, but in a separate configuration
scope. Application clients store their configurations in files on their host
machines. Application clients and servers also include necessary Orbix
runtime components, but for simplicity these are not shown in Figure 9 on
page 24.

This simple model is easy to implement and might be appropriate for small
applications with just a few clients. Keeping these separate files properly
updated can become difficult as applications grow or more servers or clients
are added.

You can minimize administrative overhead by using a centralized
configuration file, which is served to many ORBs using NFS, Windows
Networking, or a similar network service. A centralized file is easier to
maintain than many local files, because only one file must be kept updated.
23

CHAPTER 2 | Selecting an Orbix Environment Model

Configuration repository A centralized configuration model is suitable for environments with a
potentially large number of clients and servers, or when configuration is
likely to change. The Orbix configuration repository provides a centralized
database for all configuration information.

The Orbix components in Figure 10 on page 25 consist of the Orbix
management tools, the locator daemon, and a configuration repository. The
configuration repository stores the configuration for all Orbix components.
When servers and clients are installed, they store their configuration in
separate configuration scopes in the configuration repository. Application
clients and servers also include their own Orbix runtime components, but
these are not shown.

Figure 9: Orbix Environment with Local Configuration

Distribution CD
Orbix Runtime
Location Service, Configuration, Naming,
Interface Repository, Administration
(Mgmt) tools

Config File

CORBA Transports

Host (NT)

Host (Solaris)

Config
File

Mgmt

Host (NT)

Host (NT)
Client

Config File

Client

Config File

Application
Server

Legend:
Gray shapes identify Orbix components and files.

Client

Dotted outlines identify application components (usually installed after Orbix is installed).

Location
service
 24

Configuration Models
This model is highly scalable because more applications can be added to
more hosts in the environment, without greatly increasing administration
tasks. When a configuration value changes, it must be changed in one place
only. In this model, the host running Orbix, the configuration repository, and
locator daemon must be highly reliable and always available to all clients
and servers.

Figure 10: Orbix Environment with Centralized Configuration

Distribution CD
Orbix Location Service, Configuration,
Naming, Interface Repository,
Administration tools

CORBA Transports

Host (NT)

Host (HP/UX)

Location
Service

Mgmt

Host (NT)

Host (NT)

Application
Server

Legend:

Gray shapes identify Orbix components and files.

Dotted outlines identify application components .

Client Client

Client

Cfg.
Repository
25

CHAPTER 2 | Selecting an Orbix Environment Model
Getting the Most from Your Orbix Environment

Overview As you add more or larger applications to your Orbix environment, scalability
becomes more crucial. This section discusses some Orbix features that
support scalability, and shows how to use them. The following topics are
discussed:

� �Using Capabilities of Well-Designed Orbix Applications� on page 27

� �Using the Right Data Storage Mechanism� on page 29

Moving other Orbix services (for example, a naming service), or moving
servers also requires some administration to ensure continuation of these
services. However, handling these changes is relatively simple and does not
involve much administration.
 26

Getting the Most from Your Orbix Environment
Using Capabilities of Well-Designed Orbix Applications

Orbix optimizations Like a major highway, Orbix is designed to handle a lot of traffic. For
example, when Orbix clients seek their configuration from a centralized
configuration mechanism, they compare the version of the locally cached
configuration to the version of the live configuration. If versions match, the
client uses the cached version. Not reading the entire configuration from the
central repository saves time and network bandwidth. Many other
programmatic techniques are used throughout Orbix to make it efficient. On
the administrative side, proper domain management keeps applications and
their clients in an orderly, efficient, and scalable framework.

For such reasons, most applications and environments will not come close
to any limitations imposed by Orbix. It is more likely that other network or
host-related limitations will get in the way first. Nevertheless, extremely
large applications, or large environments with huge numbers of applications
and users, are special cases and there are guidelines for keeping such
applications and their environments running smoothly.

Special cases For example, imagine a very large database application with thousands of
POAs registered with the locator daemon. If a server restarts, programmatic
re-registering of POA state information with the locator daemon can take
some time, and even slow down other applications that are using the locator
daemon. In such cases, programmers should use the Orbix dynamic
activation capability to avoid an unnecessary server-side bottleneck. With
dynamic activation, POAs are registered during application deployment.
POA state information is handled only if an object is invoked, and only for
the POA that is hosting the object.
27

CHAPTER 2 | Selecting an Orbix Environment Model
Looking now at the client side of very large applications, imagine a locator
daemon with thousands of registered POAs (for example, an airline ticketing
application) handling thousands of client requests per minute.
Programmatic optimizations (for example, efficient use of threads, proper
organization of the application's POA system or load balancing) help to
minimize bottlenecks here. Administrators can take additional steps, such
as active connection management, to optimize performance.

Other issues Other application design issues include multi-threading, how to partition
objects across POAs, how to partition POAs across servers, and what POA
policies would be best to use under certain circumstances). For more
information, see the CORBA Programmer�s Guide.
 28

Getting the Most from Your Orbix Environment
Using the Right Data Storage Mechanism

Overview Orbix provides standard storage mechanisms for storing persistent data used
by Orbix and by applications. Access to these standard mechanisms uses
the CORBA persistent state service. This service allows alternative storage
mechanisms to be used within an environment for storing data for
configuration, location, and the naming service. If your applications
encounter limitations imposed by a specific storage mechanism, consider
moving to an industrial strength database (for example, Oracle or Sybase) at
the backend.

Information about implementing alternative storage mechanisms is outside
the scope of this guide. Consult your Orbix vendor for more information.
29

CHAPTER 2 | Selecting an Orbix Environment Model
Getting the Most from Orbix Configuration

Overview This section answers some basic questions administrators might have about
using:

� Separate Orbix environments

� Multiple configuration domains

Separate Orbix environments Companies can use separate Orbix environments to insulate development,
test, and production environments from each other. While you can use
separate configuration scopes for this, having separate sets of Orbix services
reduces the risk of development and test efforts interfering with production-
level Orbix services.

Multiple configuration domains Development environments might use separate configuration domains to
isolate development and test efforts from one another. Security policies
might also require multiple configuration domains within a single customer
environment. For example, separate organizations in a company might have
different administrators with different network security credentials.

Geographic separation or network latency issues might also drive a decision
to have separate configuration domains.
 30

Part II
Managing an Orbix

Environment

In this part This part contains the following chapters:

Managing Orbix Configuration page 33

Managing Persistent CORBA Servers page 49

Configuring Scalable Applications page 79

Managing the Naming Service page 107

Managing an Interface Repository page 133

Managing the Firewall Proxy Service page 143

Managing Orbix Service Databases page 149

Configuring Orbix Compression page 161

Configuring Advanced Features page 171

CHAPTER 3

Managing Orbix
Configuration
All Orbix clients and servers, including Orbix services such as
the locator daemon or naming service, belong to a
configuration domain that supplies their configuration
settings.

Orbix identifies a client or server by the name of its ORB, which maps to a
configuration scope. This scope contains configuration variables and their
settings, which control the ORB�s behavior. Configuration domains can be
either based on a centralized configuration repository, or on configuration
files that are distributed among all application hosts. Both configuration
types operate according to the principles described in this chapter.

In this chapter This chapter contains the following sections:

Note: For detailed information on how to set up an Orbix environment,
see the Orbix Deployment Guide.

How an ORB Gets its Configuration page 34

Locating the Configuration Domain page 36

Obtaining an ORB�s Configuration page 38

Managing Configuration Domains page 47
33

CHAPTER 3 | Managing Orbix Configuration
How an ORB Gets its Configuration

Overview Every ORB runs within a configuration domain, which contains variable
settings that determine the ORB�s runtime behavior. Figure 12 summarizes
how an initializing ORB obtains its configuration information in a
repository-based system, where services are distributed among various
hosts.

Figure 11: How an Orbix Application Obtains its Configurations

2

Host

Naming
Service

Host

Locator

Host

Interface
Repository

Host
Initializing

ORB

Local
Disk

Configuration Domain File

plugins:iiop, giop

domain:itconfig://IOR...

1

3

Standard orb plug-ins
orb_plugins = "iiop_profile, giop, iiop"

Standard initial references
initial_references:NamingService:reference ="IOR:0100..."
initial_references:InterfaceRepository:reference = "IOR"
initial_references:Locator:reference = "IOR:01000..."

Other configuration variables,
configuration scopes, and
 ORB-specific variables.

Host
Configuration

Repository
 34

How an ORB Gets its Configuration
1. The initializing ORB reads the local configuration file, which is used to
contact the configuration repository.

2. The ORB reads configuration data from the configuration repository,
and obtains settings that apply to its unique name. This establishes the
normal plug-ins and locates other CORBA services in the domain.

3. The fully initialized ORB communicates directly with the services
defined for its environment.

Configuration steps An initializing ORB obtains its configuration in two steps:

1. Locates its configuration domain.

2. Obtains its configuration settings.

The next two sections describe these steps.

Note: In repository-based configuration domains, the local
configuration file contains a domain configuration variable, which is
set to the repository�s IOR. For example:

domain = "itconfig://00034f293b922...00d3";

In a file-based configuration, the domain-name.cfg file does not
contain a domain variable; instead, the local configuration file itself
contains all configuration data.
35

CHAPTER 3 | Managing Orbix Configuration
Locating the Configuration Domain
An ORB locates its configuration domain as described in the following
language-specific sections.

C++ applications In C++ applications, the ORB obtains the domain name from one of the
following, in descending order of precedence:

1. The -ORBconfig_domain command-line parameter

2. The IT_CONFIG_DOMAIN environment variable

3. default-domain.cfg

The domain is located in one of the following, in descending order of
precedence:

1. The path set in either the -ORBconfig_domains_dir command line
parameter or the IT_CONFIG_DOMAINS_DIR.environment variable.

2. The domains subdirectory to the path set in either the -ORBconfig_dir
command-line parameter or the IT_CONFIG_DIR.environment variable.

3. The default configuration directory:

UNIX

Windows

Java applications In Java applications, the ORB obtains the domain name from one of the
following, in descending order of precedence:

1. The -ORBconfig_domain command-line parameter.

2. The ORBconfig_domain Java property.

3. default-domain.cfg.

/etc/opt/iona

%IT_PRODUCT_DIR%\etc
 36

How an ORB Gets its Configuration
The domain is located in one of the following, in descending order of
precedence:

1. The path set in either the -ORBconfig_domains_dir command-line
parameter or the ORBconfig_domains_dir Java property.

2. The domains subdirectory to the path set in either the -ORBconfig_dir
command-line parameter or the ORBconfig_dir Java property.

3. All directories specified in the classpath.

Note: Java properties can be set for an initializing ORB in two ways, in
descending order of precedence:

� As system properties.

� In the iona.properties properties file. See �Java properties� on
page 437 for information on how an ORB locates this file.
37

CHAPTER 3 | Managing Orbix Configuration
Obtaining an ORB�s Configuration

Overview All ORBs in a configuration domain share the same data source�either a
configuration file or a repository. Configuration data consists of variables
that determine ORB behavior. These are typically organized into a hierarchy
of scopes, whose fully-qualified names map directly to ORB names. By
organizing configuration variables into various scopes, you can provide
different settings for individual ORBs, or common settings for groups of
ORBs.

Configuration scopes apply to a subset of ORBs or a specific ORB in an
environment. Orbix services such as the naming service have their own
configuration scopes. Orbix services scopes are automatically created when
you configure those services into a new domain.

Applications can have their own configuration scopes and even specific
parts of applications (specific ORBs) can have ORB-specific scopes.

Scope organization Figure 12 shows how a configuration domain might be organized into
several scopes:

Five scopes are defined:

� company

� company.production

Figure 12: Hierarchy of Configuration Scopes

company

production

operations

finance

hr

company

production

operations

finance

hr
 38

How an ORB Gets its Configuration
� company.operations

� company.operations.finance

� company.operations.hr

Given these scopes, and the following ORB names:

All ORBs whose names are prefixed with company.operations.finance
obtain their configuration information from the
company.operations.finance configuration scope.

Variables can also be set at a configuration�s root scope�that is, they are
set outside all defined scopes. Root scope variables apply to all ORBs that
run in the configuration domain.

Scope name syntax An initializing ORB must be supplied the fully qualified name of its
configuration scope. This name contains the immediate scope name and the
names of all parent scopes, delimited by a period (.). For example:

ORB name mapping An initializing ORB maps to a configuration scope through its ORB name.
For example, if an initializing ORB is supplied with a command-line
-ORBname argument of company.operations, it uses all variable settings in
that scope, and the parent company and root scopes. Settings at narrower
scopes such as company.operations.finance, and settings in unrelated
scopes such as company.production, are unknown to this ORB and so have
no effect on its behavior.

If an initializing ORB doesn�t find a scope that matches its name, it
continues its search up the scope tree. For example, given the hierarchy
shown earlier, ORB name company.operations.finance.payroll will fail to
find a scope that matches. An ORB with that name next tries the parent
scope company.operations.finance. In this case, ORB and scope names
match and the ORB uses that scope. If no matching scope is found, the
ORB takes its configuration from the root scope.

company.operations.finance.ORB001
company.operations.finance.ORB002
company.operations.finance.ORB003
company.operations.finance.ORB004

company.operations.hr
39

CHAPTER 3 | Managing Orbix Configuration
Defining configuration scopes After you create a configuration domain, you can modify it to create the
desired scopes:

� A file-based configuration can be edited directly with any text editor, or
with itadmin commands scope create and scope remove.

� A repository-based configuration can only be modified with itadmin
commands scope create and scope remove.

File-based configuration

In a file-based configuration, scopes are defined as follows:

scope-name
{
 variable settings
 ...
 nested-scope-name
 {
 variable settings
 ...
 }
}

 40

How an ORB Gets its Configuration
For example, the following file-based Orbix configuration information defines
the hierarchy of scopes shown in Figure 12 on page 38:

itadmin commands

You can create the same scopes with itadmin commands, as follows:

company
{
 # company-wide settings
 operations
 {
 # Settings common to both finance and hr

 finance
 {
 # finance-specific settings
 }
 hr
 {
 # hr-specific settings
 }

 } # close operations scope
 production
 {
 # production settings
 }

} # close company scope

itadmin scope create company
itadmin scope create company.production
itadmin scope create company.operations
itadmin scope create company.operations.finance
itadmin scope create company.operations.hr
41

CHAPTER 3 | Managing Orbix Configuration
Precedence of variable settings Configuration variables set in narrower configuration scopes override
variable settings in wider scopes. For example, the
company.operations.orb_plugins variable overrides
company.orb_plugins. Thus, the plug-ins specified at the company scope
apply to all ORBs in that scope, except those ORBs that belong specifically
to the company.operations scope and its child scopes, hr and finance.
Example 1 shows how a file-based configuration might implement settings
for the various configurations shown in Figure 12 on page 38:

Example 1: File-Based Configuration

1 company
{
 # company-wide settings

 # Standard ORB plug-ins
 orb_plugins =
 ["local_log_stream", "iiop_profile", "giop", "iiop"];

 # Standard initial references.
 initial_references:RootPOA:plugin = "poa";
 initial_references:ConfigRepository:reference
 = "IOR:010000002000...00900";
 initial_references:InterfaceRepository:reference
 = "IOR:010000002000...00900";
 # Standard IIOP configuration
 policies:iiop:buffer_sizes_policy:max_buffer_size = -1

2 operations
 {
 # Settings common to both finance and hr

 # limit binding attempts
 max_binding_iterations = "3";

 3 finance
 {
 # finance-specific settings

 # set 5-second timeout on invocations
 policies:relative_binding_exclusive_request_timeout =
 "5000"
 }
 42

How an ORB Gets its Configuration
1. The company scope sets the following variables for all ORBs within its
scope:

♦ orb_plugins specifies the plug-ins available to all ORBs.

♦ Sets initial references for several servers.

♦ Sets an unlimited maximum buffer size for the IIOP transport.

2. ORBs in the operations scope limit all invocations to three rebind
attempts.

3. All ORBs in the finance scope set invocation timeouts to 5 seconds.

4. All ORBs in the hr scope set invocation timeouts to 15 seconds.

5. The production scope overrides the company-scope setting on
policies:iiop:buffer_sizes_policy:max_buffer_size, and limits
maximum buffer sizes to 4096.

4 hr
 {
 # hr-specific settings

 # set 15-second timeout on invocations
 policies:relative_binding_exclusive_request_timeout =
 "15000"
 }

 } # close operations scope
5 production

 {
 # production settings
 policies:iiop:buffer_sizes_policy:max_buffer_size =
 "4096";

 }

} # close company scope

Example 1: File-Based Configuration
43

CHAPTER 3 | Managing Orbix Configuration
Sharing scopes All ORBs in a configuration domain must have unique names. To share
settings among different ORBs, define a common configuration scope for
them. For example, given two ORBs with common configuration settings, a
file-based configuration might define their scopes as follows:

Thus, the two ORBs�common.server1 and common.server2�share common
scope settings.

If an ORB has no settings that are unique to it, you can omit defining a
unique scope for it. For example, if common.server2 has no unique settings,
you might modify the previous configuration as follows:

When the common.server2 ORB initializes, it fails to find a scope that
matches its fully qualified names. Therefore, it searches up the configuration
scope tree for a matching name, and takes its settings from the parent
scope, common.

common {
 # common settings here
 # ...
 server1 {
 #unique settings to server1
 }
 server2 {
 #unique settings to server2
 ...
 }
} # close common scope

common {
 # common settings here
 # ...
 server1 {
 #unique settings to server1
 }
} # close common scope
 44

Configuration Variables and Namespaces
Configuration Variables and Namespaces

Variable components Configuration variables determine an ORB�s behavior, and are organized into
namespaces. For example, a configuration might contain the following
entry:

This variable consists of three components:

� The initial_references:IT_Locator namespace.

� The variable name reference.

� A string value.

Namespaces Configuration namespaces are separated by a colon (:). Configuration
namespaces group related variables together�in the previous example,
initial references. Orbix defines namespaces for its own variables. You can
define your own variables within these namespaces, or create your own
namespaces.

Data types Each configuration variable has an associated data type that determines the
variable�s value. When creating configuration variables, you must specify the
variable type.

Data types can be categorized into two types:

� Primitive types

� Constructed types

Primitive types

Three primitive types, boolean, double, and long, correspond to IDL types
of the same name. See the CORBA Programmer�s Guide for more
information.

Constructed types

Orbix supports two constructed types: string and ConfigList (a sequence
of strings).

initial_references:IT_Locator:reference ="IOR:010000...0900";
45

CHAPTER 3 | Managing Orbix Configuration
A string type is an IDL string whose character set is limited to the
character set supported by the underlying configuration domain type. For
example, a configuration domain based on ASCII configuration files could
only support ASCII characters, while a configuration domain based on a
remote configuration repository might be able to perform character set
conversion.

Variables of the string type also support string composition. A composed
string variable is a combination of literal values and references to other
string variables. When the value is retrieved, the configuration system
replaces the variable references with their values, forming a single complete
string.

The ConfigList type is simply a sequence of string types. For example:

Setting configuration variables itadmin provides two commands for setting configuration domain variables:

� itadmin variable create creates a variable or namespace in the
configuration domain.

� itadmin variable modify changes the value of a variable or
namespace in a configuration domain.

In a file-based domain, you can use these commands, or you can edit the
configuration file manually. In a file-based configuration, all variable values
must be enclosed in quotes ("") and terminated by a semi-colon (;).

orb_plugins = ["local_log_stream", "iiop_profile",
"giop","iiop"];
 46

Managing Configuration Domains
Managing Configuration Domains
Configuration management generally consists of the tasks outlined in
Table 1.

Table 1: Configuration Domain Management Tasks

Perform this task... By running...

Start the configuration repository One of the following:

start_domain-name_services script
starts the configuration repository and
other domain services.

itconfig_rep run starts the configuration
repository only.

Stop the configuration repository itadmin config stop

View configuration repository
contents

itadmin config dump

List all replicas of the
configuration repository

itadmin config list_servers

Convert from a file to a
configuration repository

itadmin file_to_cfr.tcl

Create scope itadmin scope create

List scopes itadmin scope list

View scope contents itadmin scope show

Create namespace itadmin namespace create

List namespaces itadmin namespace list

View namespace contents itadmin namespace show

Remove namespace itadmin namespace remove

Create variable itadmin variable create

View variable itadmin variable show
47

CHAPTER 3 | Managing Orbix Configuration
Troubleshooting configuration
domains

By default, itadmin manages the same configuration that it uses to initialize
itself. This can be problematic if you need to run itadmin in order to repair a
configuration repository that is unable to run. In this case, you can run
itadmin in another configuration domain by supplying the following
command-line parameters (or the equivalent environment variable or Java
property):

For example, the following itadmin command runs the itadmin tool in the
temp-domain domain, and adds the orb_plugins variable to the repository
of the acme-products domain:

Modify variable itadmin variable modify

Remove variable itadmin variable remove

Table 1: Configuration Domain Management Tasks

Perform this task... By running...

-ORBdomain_name Specifies the configuration for itadmin.
This is typically a temporary file-based
configuration created for this purpose only.

-ORBadmin_domain_name Specifies the configuration domain
repository to modify.

-ORBadmin_config_domains_dirSpecifies the directory in which to find the
the administered configuration. This
parameter is required only if the
configuration�s location is different from the
default domain�s directory.

itadmin -ORBdomain_name temp-domain
 -ORBadmin_domain_name acme-products
 variable create -type list
 -value iiop_profile,giop,iiop orb_plugins
 48

CHAPTER 4

Managing
Persistent CORBA
Servers
Location and activation data for persistent CORBA servers are
maintained by the locator daemon in the implementation
repository.

In this chapter This chapter explains how to register and manage server information in a
location domain. It contains the following sections:

Introduction page 50

Registering Persistent Servers page 51

Server Environment Settings page 56

Managing a Location Domain page 60

Using Direct Persistence page 71
49

CHAPTER 4 | Managing Persistent CORBA Servers
Introduction

Overview CORBA servers that export persistent objects must be registered with a
locator daemon using its implementation repository. Servers that are
registered with the same locator daemon comprise a location domain.
Through the implementation repository, a locator daemon can locate
persistent objects on any server in its domain. A server can also be
configured for automatic activation, if necessary, through a node daemon
that runs on each domain host.

Management tasks After you register persistent servers in an implementation repository, servers
and clients use this repository transparently. A configured location domain
typically requires very little outside management. However, occasional
circumstances might require you to manage a location domain. For
example:

� The locator daemon stops and needs to be restarted, or runtime
parameters need to be updated.

� An application is installed, moved, or removed, and application data
needs to be updated.

� Activation parameters need to be changed�for example, the
command line arguments passed into a server.

itadmin commands itadmin commands lets you update and view data in the implementation
repository. You can issue these commands manually from the command line
or the itadmin command shell, or automatically through an application
setup script. You can execute these commands from any host that belongs
to the location domain.
 50

Registering Persistent Servers
Registering Persistent Servers

CORBA persistent servers A persistent CORBA server is one whose ORB contains persistent POAs. All
persistent POAs must be registered in the implementation repository of that
server�s location domain. When the server initializes, the following occurs:

1. The server�s ORB creates communication endpoints for its persistent
POAs, where POA managers listen for incoming object requests.

2. The ORB sends POA endpoint addresses to the locator daemon, which
registers them in the implementation repository against the
corresponding entry.

3. The locator daemon returns its own address to the server�s ORB.
Persistent POAs that run in this ORB embed that address in all
persistent object references.

Because a persistent object�s IOR initially contains the locator daemon�s
address, the locator daemon receives the initial invocation and looks up the
object�s actual location in the implementation repository. It then returns this
address back to the client, which sends this and later invocations on the
object directly to the server.

By relying on the locator daemon to resolve their location, persistent objects
and their servers can exist anywhere in the location domain. Furthermore,
an implementation repository can register server processes for on-demand
activation and for per-client activation.

Persistent server registration
process

In general, registration of a persistent server is a three-step process:

1. �Register the server process for on-demand activation�.

2. �Register the ORB� that runs in that process.

3. �Register POAs� that run in the ORB.

This section shows how to use itadmin commands to perform these tasks.
You can enter these commands either on the command line, or using a
script.

Per-client activation is a special case of on-demand activation that provides
a one-to-one mapping between clients and server processes. See �Per-client
activation� on page 54 for more details.
51

CHAPTER 4 | Managing Persistent CORBA Servers
Register the server process for
on-demand activation

itadmin process create lets you register a process with a location domain
for on-demand activation. When a locator daemon receives an invocation for
an object whose server process is inactive, it contacts the node daemon that
is registered for that process, which activates the process.

The following example registers the my_app server process with the oregon
node daemon:

In this example, the process create command takes the following
parameters:

For more about these and other parameters, see process create.

Register the ORB After you register a server process, associate it with the name of the ORB
that it initializes, using itadmin orbname create. This name must be the
same as -ORBname argument that you supply the server during startup. For
example, the following command associates the registered process, my_app,
with the my_app.server_orb ORB:

itadmin process create
 -node_daemon iona_services.node_daemon.oregon
 -pathname "d:/bin/myapp.exe"
 -startupmode on_demand
 -args "training.persistent.my_server
 -ORBname my_app.server_orb" my_app

-node_daemon Specifies the node daemon that resides on the process�s
host. This node daemon is responsible for starting the
process.

-startupmode When set to on_demand, this specifies that the node
daemon restarts the server process when requested.

-args Specifies command-line arguments. Use the -args
argument to specify the ORB name and (for Java
executables) the Java class name. You can also use this
argument to set the Java class path.

itadmin orbname create -process my_app my_app.server_orb
 52

Registering Persistent Servers
The ORB name must be unique in the location domain; otherwise an error is
returned.

Register POAs After you register a server process and its ORB, register all persistent POAs
and their ancestors�whether persistent or transient�using itadmin poa
create. Persistent POAs must be registered with the ORB name (or in the
case of replicated POAs, ORB names) in which they run. For example, the
following command registers the banking_service/account/checking
persistent POA and its immediate ancestors banking_service/checking
and banking_service with the my_app.server_orb ORB:

All POA names within a location domain must be unique. For more
information about avoiding name conflicts, see �Ensuring Unique POA
Names� on page 69.

Transient POAs

A transient POA does not require state information in the implementation
repository. However, you must register its POA name in the implementation
repository if it is in the path of any persistent POAs below it. In the previous
example, the banking_service/account transient POA is registered as the
parent of the banking_service/account/checking persistent POA.

POA replicas

Orbix implements server replication at the POA level. To create POA
replicas, specify the ORB names in which they run using the -replicas
argument. For more details, refer to �Building a Replicated Server� on
page 89.

Note: If you change an ORB name to make it unique in the location
domain, also be sure to change the ORB name that is specified for the
server. If an ORB-specific scope has been established in the configuration
domain, also change the configuration scope name.

itadmin poa create -orbname my_app.server_orb \
 banking_service
itadmin poa create \
 banking_service/account -transient
itadmin poa create -orbname my_app.server_orb \
 banking_service/account/checking
53

CHAPTER 4 | Managing Persistent CORBA Servers
Per-client activation You can register a process for per-client activation using the itadmin
process create command. In this case, instead of multiple clients sharing
the same server, a new process is created for each client. When the locator
daemon receives an invocation for an object whose server process is
registered as per_client, it creates a new ORB name and process, and
contacts the registered node daemon to launch the server.

The following example registers the my_app server process with the oregon
node daemon for per-client activation:

In this example, the process create command takes the following
parameters:

itadmin process create
 -node_daemon iona_services.node_daemon.oregon
 -pathname "d:/bin/myapp.exe"
 -startupmode per_client
 -args "training.persistent.my_server
 -ORBname %o" my_app

-node_daemon Specifies the node daemon that resides on the
process�s host. This node daemon is responsible for
starting the process.

-startupmode When set to per_client, specifies that the locator
creates a new process and ORB name for each client
invoking on objects in the associated persistent POA,
and requests the node daemon to start the process.

-args Specifies the command-line arguments. Because the
locator generates the ORB name, any string matching
%o in the process's argument list is replaced with the
name of the new ORB. Similarly, any string matching
%p is replaced with the name of the process created by
the locator.
 54

Registering Persistent Servers
To ensure that multiple servers containing the same object can co-exist, the
locator creates a new ORB name and a new process for each client. The
new ORB name is created by appending an id string to the registered ORB
name, where id is an integer value. In this example, the created ORB
names might be my_app.12 and my_app.3. This naming scheme ensures
that configuration variables can be shared between the server processes.
New process names are created in a similar manner. When a server process
has terminated, the locator can reuse the ORB name and process name.

The persistent POA associated with a per-client activated process must
support dynamic addition of replicas. This support is automatically enabled
when creating a POA whose associated process's startup-mode is per-client.
See poa create and poa modify for more details.

For more information about these and other parameters, see process
create.

WARNING: The locator or node daemons do not terminate the server
process when the server's associated client terminates. It is the
application�s responsibility to terminate the server process by, for example:

� adding a shutdown operation that is invoked by the client before the
client terminates;

� using the leasing plug-in to detect when the client has completed;

� making the server to terminate after a certain amount of time has
elapsed without any invocation.
55

CHAPTER 4 | Managing Persistent CORBA Servers
Server Environment Settings

Overview When a registered server process starts, it is subject to its current
environment.

In this section The following sections discuss:

Windows Environment Settings page 57

UNIX Environment Settings page 58
 56

Server Environment Settings
Windows Environment Settings

Creation flag settings The following creation flag settings apply:

DETACHED_PROCESS for console processes, denies the newly created
process access to the console of the parent process.

CREATE_NEW_PROCESS_GROUP identifies the created process as the
root process of a new process group. The process group includes all
processes that are descendants of this root process.

CREATE_DEFAULT_ERROR_MODE specifies that the created process does
not inherit the error mode of the calling process.

NORMAL_PRIORITY_CLASS indicates a normal process with no special
scheduling needs.

Handle inheritance Open handles are not inherited from the node daemon.

Security The new process�s handle and thread handle each get a default security
descriptor.
57

CHAPTER 4 | Managing Persistent CORBA Servers
UNIX Environment Settings

File access permissions You can set user and group IDs for new processes using the -user and
-group arguments to itadmin process create. Before setting user or group
IDs for the target process, ensure that the following applies on the host
where the target process resides:

� The specified user exists in the user database.

� The specified group exists in the group database.

� The specified group matches the primary group of the specified user in
the user database.

If the specified group does not match the primary group in the users
database, the specified user must be a member of the specified group in the
group database.

Before a server starts, the file access privilege of the activated process is
lowered if the node daemon is the superuser. If the node daemon is not the
superuser, the activated process has the same privileges as the node
daemon.

Check whether newly activated target processes have set-uid/set-gid
permissions. These allow the server to change the effective user and group
IDs, enabling a possible breach of security.

The user and group ID settings affect the working directory settings (if
directory paths are created) and the open standard file-descriptor
processing.

File creation permissions The file mode creation mask is set by supplying the -umask argument to
itadmin process create. By default, the umask is 022 and the actual
creation mode is 755 (rwxr-xr-x).

The umask setting affects the current directory setting (if directory paths are
created) and the open standard file-descriptor processing.

Note: If you cannot edit the /etc/group file, specify the user�s primary
group. This allows the server to operate normally, even if the /etc/group
file is not well maintained.
 58

Server Environment Settings
Open file descriptors The activated server has only standard input, output, and error open for both
reading and writing, and is connected to /dev/null instead of to a terminal.

Resource limits Resource limits are inherited from the node daemon.

Session leader The activated server creates a new session and becomes leader of the
session and of a new process group. It has no controlling terminal.

Signal disposition All valid signals between 1 and NSIG-1 are set to their default dispositions
for the activated server.
59

CHAPTER 4 | Managing Persistent CORBA Servers
Managing a Location Domain

Management tasks Location domain management generally consists of the following tasks:

� Managing server processes.

� Managing the locator daemon.

� Managing node daemons.

� Listing location domain data.

� Modifying a location domain.

� Ensuring that all POA names within a domain are unique.
 60

Managing a Location Domain
Managing Server Processes

Starting and stopping registered
server processes

Server processes that are registered for on-demand activation do not require
any manual intervention. You only need to explicitly start and stop processes
that are not set for on-demand activation.

To manually start a registered target server process on a host where a node
daemon resides, use the itadmin process start command. For example:

To stop a registered target server process on the host where the node
daemon resides, use the itadmin process stop command. For example:

Securing server processes You can specify that the node daemon can launch processes only from a list
of secure directories, in one of two ways:

� Set the itnode_daemon run�s -ORBsecure_directories parameter.

� Set the secure_directories configuration variable.

Both specify a list of secure directories in which the node daemon can
launch processes. When the node daemon attempts to launch a registered
process, it checks its pathname against the secure_directories list. If a
match is found, the process is activated; otherwise, the node daemon
returns a StartProcessFailed exception to the client.

Moving manually launched
processes

A process that is not registered to be launched on demand can be moved to
a new host by stopping it on its current host, and restarting it on the new
host.

This behavior can be disabled by setting the following configuration variable
to false, and restarting the locator:

plugins:locator:allow_node_daemon_change

Attempting to move a process that is already active or is registered to be
launched on demand results in an error.

itadmin process start my_app

itadmin process stop my_app
61

CHAPTER 4 | Managing Persistent CORBA Servers
Managing the Locator Daemon

Overview A locator daemon enables clients to locate servers in a network
environment. Normally, a locator daemon runs as root on UNIX, or with
administrator privileges on Windows NT. To start and stop a locator
daemon, you must be logged on as UNIX root or with Windows NT
administrator privileges.

This section assumes that Orbix has been installed and configured to run
within your network environment. For more on configuring and deploying
Orbix, see Orbix Deployment Guide.

Starting a locator daemon To start a locator daemon:

1. On the machine where the locator daemon runs, log on as root or NT
administrator.

2. Open a terminal or command window.

3. Enter itlocator run

By default, this runs the locator daemon in the foreground.

4. Complete the appropriate actions for your platform as specified below.

Windows

Leave the command window open while the locator is running.

UNIX

Leave the terminal window open or use operating system commands to
run the process in the background.

Stopping a locator daemon To stop a locator daemon, use the itadmin locator stop command. This
command has the following syntax:

Note: In a configuration repository domain, the configuration repository
must be running before starting the locator daemon.

itadmin locator stop locator-name
 62

Managing a Location Domain
Stopping all daemons and
monitored processes

To stop the locator, all registered node daemons, and monitored processes
running in the location domain, use the -alldomain argument:

Restarting a locator daemon If a locator daemon is stopped and restarted while server processes are
active, it recovers information about the active processes when it starts up
again. The locator daemon validates that server processes, ORBs and POAs
that were active when it was shutdown are still responding. If these server
processes are no longer running, the locator daemon can detect this.

itadmin locator stop -alldomain locator-name
63

CHAPTER 4 | Managing Persistent CORBA Servers
Managing Node Daemons

Overview In an Orbix location domain, the node daemon is responsible for activating
and managing server processes. Every host running an server must also run
a node daemon. The node daemon performs the following tasks:

� Starts processes on demand.

� Monitors all child processes of registered server processes, and informs
the locator daemon about any events relating to these child
processes�in particular, when a child process terminates. This
enables the locator daemon to remove the outdated dynamic process
state information from the implementation repository, and to restart
the process if necessary.

� Monitors all services via heartbeating. If a manually started service
crashes, the node daemon detects this and returns all requests routed
to this server with the appropriate exception.

� Acts as the contact point for servers starting on this machine. When an
server starts on a machine, it contacts the locally running node
daemon to announce its presence. The node daemon informs the
locator daemon of the new server�s presence.

Target server processes that are manually started do not need to register
their process information with the locator daemon. Even when process
information is not registered with the locator daemon, these processes
should behave normally with respect to other location domain capabilities
(for example, object location).

However, if you enter process information for a manually started server, you
can still use manual starting by setting its automatic start-up mode to
disabled. You might wish to store this information, to keep a record of all
processes installed in the location domain.

Starting a node daemon To start a node daemon, log on to the host where you want to run the
daemon and enter itnode_daemon run.

By default, at startup, the node daemon attempts to contact the CORBA
servers that it managed during the previous time it ran. If the node daemon
was managing a large number of CORBA servers, this can take up to several
minutes, and delay the node daemon from starting up.
 64

Managing a Location Domain
In certain circumstances�for example, restarting after a reboot�it is not
necessary for the node daemon to contact running CORBA servers. This is
because it can be guaranteed that those servers are not running. You can
use the following configuration variable to turn off this default behavior:

plugins:node_daemon:recover_processes="false";

This enables the node daemon to complete its initialization more quickly.
You should set this variable in the node daemon's configuration scope.

Running multiple node daemons
on a single host

One node daemon can control multiple server processes; and normally one
node daemon runs on a given host. Sometimes an application might require
a separate node daemon (for example, to launch servers as different users).
In this case, you can run multiple node daemons on a single host. For
example, one node daemon might run as root, and another as a different
user with fewer privileges.

Multiple node daemons on the same host must have different names, which
should reflect their application name in some way.

To configure multiple node daemons, perform the following steps:

1. In the default node_daemon configuration scope, create a sub-scope (for
example, node_daemon.engineering).

2. Provide a value for the node daemon name configuration variable. For
example:

3. Run the node daemon in the new scope, using the -ORBname argument:

For example, the following commands start two node daemons on the
same host:

itadmin variable create -scope node_daemon.engineering
-type string -value "eng_node_daemon"
plugins:node_daemon:name

itnode_daemon
itnode_daemon �ORBname node_daemon.engineering
65

CHAPTER 4 | Managing Persistent CORBA Servers
Stopping a node daemon To terminate a node daemon, use itadmin node_daemon stop. This
command also stops all the server processes that the node daemon
monitors. For example, the following command stops the node daemon on
alaska:

Viewing a node daemon�s
processes

Before you stop a node daemon, you might want to list all the active
processes that it currently monitors. To do so, run itadmin process list
-active. For example, this command lists the active processes for the node
daemon on alaska:

itadmin node_daemon stop alaska

itadmin process list -active -node_daemon alaska
my_server_process
 66

Managing a Location Domain
Listing Location Domain Data
With itadmin commands, you can list the names and attributes of
registered entries in the implementation repository.

Table 2: Commands that List Location Domain Data

Command Action

process list Lists the names of all target processes registered in
the location domain.

process show Lists the attributes of server processes registered with
the locator daemon.

orbname list Lists all ORB names in the location domain.

orbname show Lists the attributes of ORB names registered with the
locator daemon.

poa list Lists the names of all POAs in the location domain.

poa show Lists the attributes of all registered POA names.
67

CHAPTER 4 | Managing Persistent CORBA Servers
Modifying a Location Domain

Overview With itadmin commands, you can modify and remove registered processes,
ORB names, and POA names from the implementation repository. For
detailed information, see Chapter 23 on page 293.

Modifying entries The itadmin commands listed in Table 3 modify entries for processes, ORB
names, and POA names that are registered with a location domain.

Removing entries You can remove any entry from the implementation repository, whether the
target object is running or not. The itadmin commands listed in Table 4
remove entries for processes, ORB names, and POA names that are
registered with a location domain.

Table 3: Commands that Modify a Location Domain

Command Action

process modify Modifies the specified process entry.

orbname modify Associates an ORB name with the specified
process name.

poa modify Modifies the specified POA name.

Table 4: Commands that Remove Location Domain Components

Command Action

process remove Removes a process entry.

orbname remove Removes an ORB name from the location
domain. If there is an active ORB entry for the
ORB name in the locator's active ORB table,
this is also removed.

poa remove Removes the entry for the specified POA and its
descendants from the location domain. By
default, all active entries for the POA and its
descendants are also removed.
 68

Managing a Location Domain
Ensuring Unique POA Names

Overview The locator daemon finds persistent objects by looking up their POA names
in the implementation repository. Consequently, POA names must be
unique in a location domain.

If you use a repository-based configuration, the implementation repository
prevents name duplication and raises the following error:

If different Orbix applications use the same POA names, you can avoid
name conflicts by setting plugins:poa:root_name. The root_name variable
names the application�s root POA, which is otherwise unnamed. By setting
this variable for each application�s ORB to a unique string, you can ensure
unique names for all POAs.

Procedure The following procedure shows how to register a root POA�s name within a
location domain, and use it with all descendant persistent POAs:

1. To define a root POA name for a server, create a
plugins:poa:root_name configuration variable in the server ORB�s
configuration scope:

When the server initializes, it reads its root POA name and applies this
to all its POA names.

2. Register the root POA�s name in the implementation repository:

3. When you register persistent POAs for this server in the
implementation repository, prefix their names (and the names of all
ancestor POAs) with the root POA�s prefix. The following commands
register two persistent POAs:

ERROR: Unable to add an implementation repository entry for the

POA: EntryAlreadyExists

itadmin variable create
 -scope production.test.servers.server001 -type string
 -value "my_app" plugins:poa:root_name

itadmin poa create -transient my_app
69

CHAPTER 4 | Managing Persistent CORBA Servers
itadmin poa create -transient my_app/poa1
itadmin poa create -orbname

production.test.servers.server001 my_app/poa1/poa2
itadmin poa create -orbname

production.test.servers.server001 my_app/poa1/poa2/poa3
 70

Using Direct Persistence
Using Direct Persistence
Using direct persistence enables Orbix to bypass the locator daemon when
resolving persistent object references or contacting Orbix services.

In this section This section discusses the following topics:

CORBA Applications page 72

Orbix Services page 76
71

CHAPTER 4 | Managing Persistent CORBA Servers
CORBA Applications
In general, a CORBA applications rely on the location daemon to resolve
persistent object references. Alternatively, you might want to avoid the
overhead that is incurred by relying on the location daemon. In this case,
you can set up a server that generates direct persistent object references�
that is, object references whose IORs contain a well-known address for the
server process. This section includes:

� �Requirements�.

� �Example�.

� �Setting direct persistence in configuration only�.

Requirements Two requirements apply:

� The server that generates the object references must set its POA
policies to PERSISTENT, DIRECT_PERSISTENCE. The POA must also have
a WELL_KNOWN_ADDRESSING_POLICY whose value is set to prefix (see
the CORBA Programmer�s Guide).

� The configuration must contain a well-known address configuration
variable, with the following syntax:

address-prefix::transport:addr_list=[address-spec [,...]]

where address-spec has the following syntax:

"[+]host-spec:port-spec"

The plus (+) prefix is optional, and only applies to replicated servers,
where multiple addresses might be available for the same object
reference (see �Direct Persistence and Replica Failover� on page 86).

Note: These requirements involve setting direct persistence
programatically. As an alternative for C++ servers, see also �Setting direct
persistence in configuration only�.
 72

Using Direct Persistence
Example For example, you might create a well-known address configuration variable
in scope MyConfigApp as follows:

Given this configuration, a POA created in the MyConfigApp ORB can have
its PolicyList set so it generates persistent object references that use direct
persistence, as follows:

C++

MyConfigApp {
 ...
 my_server:iiop:addr_list=["host.com:1075"];
 ...
}

CORBA::PolicyList policies;
policy.length(4);
CORBA::Any persistence_mode_policy;
CORBA::Any well_known_addressing_policy;
persistence_mode_policy_value <<=

IT_PortableServer::DIRECT_PERSISTENCE;
well_known_addressing_policy_value <<=

CORBA::Any::from_string("wka", IT_TRUE);

policy[0] = poa�>create_lifespan_policy
 (PortableServer::PERSISTENT);
policy[1] = poa�>create_id_assignment_policy
 (PortableServer::USER_ID);
policy[2] = orb->create_policy
 (IT_PortableServer::PERSISTENCE_MODE_POLICY_ID,
 persistence_mode_policy);
policy[3] = orb->create_policy
 (IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
 well_known_addressing_policy);
73

CHAPTER 4 | Managing Persistent CORBA Servers
Java

Setting direct persistence in
configuration only

Orbix has two configuration variables that enable POAs to use direct
persistence and well-known addressing, if the policies have not been set
programatically. Both variables specify the policy for individual POAs by
specifying the fully qualified POA name for each POA. They take the form of
poa:fqpn:variable-name (fqpn is frequently used POA name). For example,
to set the well-known address for a POA whose fully qualified POA name is
darleen you would set the variable poa:darleeen:well_known_address.

poa:fqpn:direct_persistent specifies if a POA runs using direct persistence.
If this is set to true the POA generates IORs using the well-known address
that is specified in the well_known_address variable. Defaults to false.

import com.iona.corba.*;
import com.iona.IT_CORBA.*;
import com.iona.IT_PortableServer.*;

// Set up IONA policies
org.omg.CORBA.Any persistent_mode_policy_value =

global_orb.create_any();
org.omg.CORBA.Any well_known_addressing_policy_value =

global_orb.create_any();
PersistenceModePolicyValueHelper.insert(
 persistent_mode_policy_value,
 PersistenceModePolicyValue.DIRECT_PERSISTENCE);
well_known_addressing_policy_value.insert_string("wka");

org.omg.CORBA.Policy[] policies=new Policy[]
{
 root_poa.create_lifespan_policy(
 LifespanPolicyValue.PERSISTENT),
 root_poa.create_id_assignment_policy(
 IdAssignmentPolicyValue.USER_ID),
 global_orb.create_policy(
 PERSISTENCE_MODE_POLICY_ID.value,
 persistence_mode_policy_value),
 global_orb.create_policy(
 WELL_KNOWN_ADDRESSING_POLICY_ID.value,
 well_known_addressing_policy_value),
};
...
 74

Using Direct Persistence
poa:FQPN:well_known_address specifies the address used to generate IORs
for the associated POA when that POA�s direct_persistent variable is set
to true.

For example, by default, the simple_persistent demo creates an indirect
persistent POA called simple_persistent. If you want to run this server
using direct persistence, and well known addressing, add the following to
your configuration:

simple_orb {
 poa:simple_persistent:direct_persistent = "true";
 poa:simple_persistent:well_known_address = "simple_server";
 simple_server:iiop:port = "5555";
 };

All object references created by the simple_persistent POA will now be
direct persistent containing the well known IIOP address of port 5555.

Obviously, if your POA name was different the configuration variables would
need to be modified. The scheme used is the following:

poa:FQPN:direct_persistent=<BOOL>;
poa:FQPN:well_known_address=<address_prefix>;
AddressPrefix:iiop:port=<LONG>;

FQPN is the fully qualified POA name. This introduces the restriction that
your POA name can only contain printable characters, and may not contain
white space.

AddressPrefix is the string that gets passed to the well-known addressing
POA policy. Specify the actual port used using the variable
AddressPrefix:iiop:port. You can also use iiop_tls instead of iiop.

Note: This functionality is currently only implemented in the C++ ORB.
If you are using the Java ORB, you must set the direct persistence and well
known addressing policies programmatically.
75

CHAPTER 4 | Managing Persistent CORBA Servers
Orbix Services
In general, Orbix uses the locator daemon to resolve the initial reference for
each of the services. Alternatively, you might want to avoid the overhead
that is incurred by relying on the location daemon. In this case, you would
configure the service to run in direct persistence mode.

Technical details When a service runs in direct persistence mode it listens on a fixed host and
port number. This information is embedded into the IOR that the service
exports as an initial reference.

When a CORBA client asks for the service�s initial reference, it receives the
IOR containing the host and port information for the service. The client uses
the embedded information to directly contact the service, bypassing the
locator and node daemon normally used by Orbix services.

Performance issues While direct persistence reduces the overhead of using the locator and node
daemons, it also has a cost in terms of fault tolerance and flexibility. When
running in direct persistence mode a service cannot be started on demand
and it must always listen on the configured host and port number.

Configuration variables To configure a service to run in direct persistence mode, three configuration
variables need to be modified:

plugins:ServiceName:direct_persistence Indicates whether the service
uses direct or indirect persistence. The default value is FALSE, which
indicates indirect persistence.

plugins:ServiceName:iiop:port Specifies the port number that the service
will listen on. If security is installed, then a TLS port is also required.

initial_references:ServiceReferenceString:reference specifies the IOR of
the service.

If the service is clustered, plugins:ServiceName:iiop:host must also be
set.
 76

Using Direct Persistence
Configuring direct persistence To configure a service to run in direct persistence mode complete the
following steps:

1. If the service is running, shut it down.

2. Set plugins:ServiceName:direct_persistence to TRUE within the
service�s configuration scope.

3. Within the same configuration scope, set
plugins:ServiceName:iiop:port to some open port number.

4. Prepare the service. This causes the service to generate a new IOR for
itself. The new IOR will be printed to the console. Save it for use in the
next step.

5. Within the same configuration scope as used in steps 2 and 3, replace
the value of
initial_references:ServiceReferenceString:reference with the
IOR returned in step 4.

6. Restart the service.
77

CHAPTER 4 | Managing Persistent CORBA Servers
 78

CHAPTER 5

Configuring
Scalable
Applications
Enterprise-scale systems, which are distributed across
multiple hosts, networks, and applications, must be designed
to handle a wide variety of contingencies.

For example, mechanical or electrical malfunctions can cause host
machines to stop working. A network can be cut apart by an excavator that
accidentally slices through phone lines. Operating systems can encounter
fatal errors and fail to reboot. Compiler or programming errors can cause
software applications to crash.

Poor design can also cause problems. For example, you might run multiple
copies of a web server to handle higher levels of browser activity. However,
if you run all copies on the same underpowered host machine, you may
reduce, rather than increase, system performance and scalability. Running
all web servers on the same host also makes the entire web site dependent
on that machine�if it fails, it brings down the entire site.

In general, a distributed enterprise system must facilitate reliability and
availability. Otherwise, users and applications are liable to encounter service
bottlenecks and outages.
79

CHAPTER 5 | Configuring Scalable Applications
In this chapter This chapter contains the following sections:

Further information See Chapter 11 for information on additional features that are designed to
enhance scalability and performance (for example, Java new I/O and shared
memory).

Fault Tolerance and Replicated Servers page 81

Building a Replicated Server page 89

Replicating Orbix Services page 95

Fault Tolerance and Replicated Servers page 81

Setting Buffer Sizes page 104
 80

Fault Tolerance and Replicated Servers
Fault Tolerance and Replicated Servers

Overview Reliable and available CORBA applications require an ORB that supports
fault tolerance�that is, an ORB that avoids any single point of failure in a
distributed application. With the enterprise edition of Orbix, you can protect
your system from single points of failure through replicated servers.

A replicated server is comprised of multiple instances, or replicas, of the
same server; together, these act as a single logical server. Clients invoke
requests on the replicated server, and Orbix routes the requests to one of the
member replicas. The actual routing to a replica is transparent to the client.

Benefits Orbix replicated servers provide the following benefits:

Client transparency: Client applications can invoke requests on replicated
servers without requiring any changes.

Transparent failover: If one replica in a replicated server fails, Orbix
automatically redirects clients to another replica, without the clients�
knowledge.

Dynamic management: You can modify a replicated server by adding or
removing replicas at runtime, without affecting client applications or other
replicas.

Replicated infrastructure: Critical services such as the locator daemon,
configuration repository, and naming service are configured as replicated
servers. This ensures that they are always available.

Load balancing: Client invocations can be routed to different replicas within
a replicated server, thus balancing the client load across all, and improving
system performance. Orbix provides out-of-the-box round robin and random
load-balancing strategies. The Orbix load-balancing framework is pluggable,
so you can easily implement your own strategies.
81

CHAPTER 5 | Configuring Scalable Applications
About Replicated Servers

Overview Orbix replicates servers with the same infrastructure that supports persistent
CORBA objects�that is, objects that are maintained in POAs with a lifetime
policy of PERSISTENT. Orbix locates persistent objects using the locator
daemon, which maintains their addresses on a physical server (see
�Managing Object Availability� on page 8). A client that invokes on a
persistent object for the first time sends its request to the locator daemon,
which redirects the request to the server�s current host and port. Thus, a
client invoking on these objects is insulated from any knowledge of their
actual location.

Orbix uses the locator daemon to support replicated servers. If a persistent
object is instantiated on a replicated server, its references contain the
address of the locator daemon. The locator daemon is responsible for
redirecting client requests on that object to one of the server�s replicas.

POA replicas Object persistence is always set by POA policies. Therefore, Orbix
implements replication through registration of multiple instances, or
replicas, of a POA, in a location domain�s implementation repository. This
provides the necessary level of granularity without adding significant
administrative overhead. POA replicas ensure continuous access to
persistent objects; and the Orbix infrastructure is required only to monitor
POA activity, which it does in any case.

Deployment of a replicated server For example, you might want to deploy a replicated server that implements
the replicated POA ozzy on hosts zep, floyd, and cream. To do this,
complete the following steps:

Note: The following procedure assumes that a locator daemon and a
naming service are already deployed.
 82

Fault Tolerance and Replicated Servers
1. Register replicas of POA ozzy in the location domain�s implementation
repository. At runtime, each server sends the replica�s actual address
to the domain�s locator daemon. For details on registering POA
replicas, see �Example 1: Building a Replicated Server to Start on
Demand� on page 90.

2. Make persistent object references in a replicated server available to
prospective clients�typically, by advertising object references through
the CORBA naming service.

3. Ensure that the node daemon activates servers on the initial client
request. Otherwise, you must manually activate those servers.

Replicated server startup When the servers start up, the following occurs:

1. Each server�s ORB creates communication endpoints for its persistent
POAs, where POA managers listen for incoming object requests.

2. The ORB sends POA endpoint addresses to the locator daemon, which
registers them in the implementation repository against the
corresponding POA entry. If a persistent POA is replicated across
multiple servers, each replica�s address is registered against the
corresponding replica entry. Thus, the locator daemon can maintain
multiple addresses for the same POA.

3. The locator daemon returns its own address to each ORB. Persistent
POAs that run in this ORB embed that address in all persistent object
references.

Invocations on replicated
persistent objects

When a client invokes on a persistent object in the replicated server, the
following occurs:

1. The client ORB sends a locate request to the object reference�s
communication endpoint, which is the locator daemon.

2. When the locator daemon receives the locate request, it searches the
implementation repository for the target object's POA. In this case, it
finds that the ozzy POA is replicated across three servers that run on
zep, floyd, and cream.
83

CHAPTER 5 | Configuring Scalable Applications
3. The locator daemon uses the load-balancing algorithm that is
associated with the ozzy POA to determine which POA replica should
handle the request�for example, the replica on zep.

4. The locator daemon obtains the address to the ozzy POA on zep, and
returns a direct object reference that contains this address to the
requesting client's ORB.

5. The client's ORB sends another locate request for the object, this time
with the direct object reference, to zep. The replica confirms the
object�s existence with an object-here reply.

6. When the client ORB receives the object-here reply, it resends the
client's request to the object instantiated in the ozzy replica on zep.

Except for the original invocation, all steps in this process are transparent to
the client. Thus, clients can invoke on a server in exactly the same way,
whether it exists alone or as a replica within a replicated server.
 84

Fault Tolerance and Replicated Servers
Automatic Replica Failover

Replica Failure If a replica becomes unavailable�for example, because of machine or
network failure�another replica enables clients to access the same objects
as follows:

1. As soon as a direct object reference fails, the client ORB retrieves the
object�s original IOR, and sends a locate request to the locator
daemon.

2. The locator daemon reapplies the load balancing algorithm for the
target POA against the remaining viable replicas, to determine which
one should handle requests on this object. It then returns a direct
object reference to the client for the chosen replica.

3. All client invocations on the object, including the forwarded one, are
handled by the new replica.

Replica restoration If a failed replica is restored, it can transparently rejoin the replicated server
by reregistering its address with the locator daemon. The locator daemon
reassociates that replica with the name of the replicated POA in its
database, thus making that replica available for subsequent client requests.

Restarting on a different host A replica must be restarted on the host with which it is registered. If the
failed replica needs to be restarted on a different host, you must modify the
replicas registration using the following command:

itadmin process modify -node_daemon <new-node-daemon> <process>

Because persistent object references are addressed initially to the locator
daemon, it is always safe to remove replicas from a replicated server and
add new ones at runtime, without affecting client invocations.
85

CHAPTER 5 | Configuring Scalable Applications
Direct Persistence and Replica Failover

Overview The failover mechanism described thus far relies upon the locator daemon
to forward persistent object references from a failed replica to another
replica that is still active. However, you can also create a persistent POA
that circumvents the overhead of a locator daemon. This POA publishes
persistent object references that embed a well-known address�that is, the
address where the POA listens for incoming requests.

Requirements To ensure failover in a replicated POA with direct persistence, the following
requirements apply:

� The well-known address list that each replica obtains from its
configuration must specify all addresses for each replica, including its
own. Thus, the object references published by each replica must list
the addresses of all replicas.

� The well-known address list for a given replica must always single out
one address as its listening address. In the IORs that it generates, all
other addresses are for publication only.

When a client request uses a direct object reference, it is directed to the first
replica address in the list. If that replica is not available, it tries the next
replica in the list, and so on, until it finds an available replica.

Example configuration For example, given replicas that are instantiated on host1 and host2, you
can create the following configuration for each replica as follows:

MyConfigApp {
 ...
 wka_1:iiop:addr_list=["host1.com:1075", "+host2.com:2075"];
 wka_2:iiop:addr_list="+host1.com:1075", "host2.com:2075"];
 ...
}

 86

Fault Tolerance and Replicated Servers
The plus (+) prefix indicates that an address is for publication only in the
IOR; a non-prefixed address is for publication and listening. Each POA
replica obtains a different listening address as follows:

� The replica on host1 specifies well-known address prefix wka_1, so it
listens on the non-prefixed address host1.com:1075.

� The replica on host2 specifies well-known address prefix wka_2, so it
listens on the non-prefixed address host2.com:2075.

Example server code The server code shown earlier is modified on each host as follows:

C++

Note: For full details of all configuration required for direct persistence
and well-know addressing, see �Setting direct persistence in configuration
only� on page 74.

// on host1:
// ...
CORBA::Any well_known_addressing_policy_value;
well_known_addressing_policy_value <<=
 CORBA::Any::from_string("wka_1", IT_TRUE);

// ...

policies[3] = orb->create_policy(
 IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
 well_known_addressing_policy_value);

// on host2:
// ...
CORBA::Any well_known_addressing_policy_value;
well_known_addressing_policy_value <<=
 CORBA::Any::from_string("wka_2", IT_TRUE);

// ...

policies[3] = orb->create_policy(
 IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
 well_known_addressing_policy_value);
87

CHAPTER 5 | Configuring Scalable Applications
Java

The object references for both replicas contain the same address list. Thus,
requests on these IORs are first directed to host1 address. If the replica on
host1 is unavailable, the request is redirected to the address on host2.

//on host1:
// ...
PersistenceModePolicyValueHelper.insert(
 persistent_mode_policy_value,
 PersistenceModePolicyValue.DIRECT_PERSISTENCE);
well_known_addressing_policy_value.insert_string(
 "wka_1");
// ...

//on host2:
// ...
PersistenceModePolicyValueHelper.insert(
 persistent_mode_policy_value,
 PersistenceModePolicyValue.DIRECT_PERSISTENCE);
well_known_addressing_policy_value.insert_string(
 "wka_2");
// ...
 88

Building a Replicated Server
Building a Replicated Server

Overview The following sections walk you through the process of building a replicated
server, including the ability to load balance clients across multiple servers,
activate multiple servers in response to a single client request, and
dynamically change replicas in a replicated server.

Sample code These examples are based on several demos in the Orbix
demos\corba\enterprise\clustering directory. These demos consist of a
simple client and server. The server program exports a single object,
SimpleClusteredObject, which has the following interface:

SimpleClusteredObject has a single operation, server_name(), which
returns the name of the server as passed on the server command line. This
is used to demonstrate the Orbix load-balancing features. Each server that
runs the simple object is passed a different server name on the command
line. Clients that connect to the object get and display the server name,
thereby showing the server that they have been connected to.

module Clustering
{
 interface SimpleClusteredObject
 {
 string
 server_name();
 };
};
89

CHAPTER 5 | Configuring Scalable Applications
Example 1: Building a Replicated Server to Start on Demand
The following example shows how to register a replicated server for
on-demand activation in a location domain.

1. Build the application. For example:

2. Start an itadmin session, and use the process create command to
create an entry in the implementation repository for each replica in a
replicated server:

$ cd c:\iona\asp\version\demos\enterprise\clustering
$ nmake

$ itadmin
% process create \
 -pathname
 /opt/iona/asp/version/demos/enterprise/clustering/ \
 cxx_server/server \
 -node_daemon daemon_name \
 -startupmode on_demand \
 -args "--ORBname demos.clustering.server_1 server_1" \
 demos.clustering.server_process_1
%
% process create \
 # same arguments as before \
 ... \
 -args "--ORBname demos.clustering.server_2 server_2"\
 demos.clustering.server_process_2
%
% process create \
 ... same arguments as before \
 -args "--ORBname demos.clustering.server_3 server_3" \
 demos.clustering.server_process_3
%

 90

Building a Replicated Server
These process create commands create entries for three servers to
start on demand. This command requires the following arguments:

♦ The path name for the server executable.

♦ The name of the node daemon to start the server.

♦ A list of command line arguments passed to the server using the
-args argument. These include a unique ORB name that is
associated with each server replica.

3. Call orbname create to associate an ORB name with each server
instance. The -process argument associates the new ORB name with
the corresponding process name created in step 3. The process name
must be the same one that specified the new ORB name:

4. Call poa create to create a replicated POA, supplying two arguments:

♦ The -replicas argument replicates the POA ClusterDemo on the
three ORB names created in step 3.

♦ The -load_balancer argument specifies the load-balancing
strategy to associate with the replicated POA; this tells the locator
daemon how to route requests to the POA replicas. In this case,
the random strategy is specified, which routes requests randomly
among the POA�s available replicas.

Note: The server must always be started on the same host as its
associated node daemon. Otherwise, you will receive a
PROCESS_IN_DIFFERENT_NODE_DAEMON exception.

% orbname create \
 -process demos.clustering.server_process_1 \
 demos.clustering.server_1
% orbname create
 -process demos.clustering.server_process_2 \
 demos.clustering.server_2
% orbname create \
 -process demos.clustering.server_process_3 \
 demos.clustering.server_3

$ itadmin
% poa create -replicas demos.clustering.server_1, \
 demos.clustering.server_2, demos.clustering.server_3 \
 -load_balancer random ClusterDemo
91

CHAPTER 5 | Configuring Scalable Applications
5. Run the servers.

Each server is passed an -ORBname parameter to identify the server.
This parameter is passed to ORB_init(), which passes it on to the
locator to identify the server when it creates the POA. Each of the
servers must also be passed a server name parameter (for example,
server_1), which is returned to the client to identify the server.

The following shows how you might run these servers.

6. Run the client against the server.

The client output shows how the locator randomly selects a server for
each client that is running, load balancing the clients across the set of
servers. If you kill one of the servers, the locator continues to forward
clients to the remaining two servers, choosing between them at
random.

$ # cd $IT_PRODUCT_DIR/asp/version/demo/clustering
$./server -ORBname demos.clustering.server_1 server_1

../object.ior &
$./server -ORBname demos.clustering.server_2 server_2 &
$./server -ORBname demos.clustering.server_3 server_3 &
 92

Building a Replicated Server
Example 2: Updating a Replicated Server
Orbix replication is implemented so that you can add new servers on-the-fly
without shutting down your system. The following commands add a server
replica to the set already registered in the clustering demo:

1. process create registers a new location domain process,
demos.clustering.server_process_4.

2. orbname create associates a new ORB name,
demos.clustering.server_4, with the new process.

3. poa modify redefines the ClusterDemo POA, specifying a fourth POA
replica to run in the demos.clustering.server_4 ORB.

After following these steps, run the clients against the server again. As
before, the client output shows how the locator randomly selects a server for
each client that is running, and eventually prints out the name of the fourth
server.

Example 2: Commands for Updating a Replicated Server

1 process create \
 -pathname $server_name \
 -node_daemon $daemon_name \
 -startupmode on_demand \
 -args "--ORBname demos.clustering.server_4 server_4" \
 demos.clustering.server_process_4

2 orbname create
 -process demos.clustering.server_process_4

demos.clustering.server_4
3 poa modify \

 -replicas \
 demos.clustering.server_1, \
 demos.clustering.server_2, \
 demos.clustering.server_3, \
 demos.clustering.server_4 \
 ClusterDemo
93

CHAPTER 5 | Configuring Scalable Applications
Example 3: Dynamically Changing the Load Balancing
Algorithm

Orbix enables you to dynamically change the load-balancing algorithm used
for a replicated POA. Orbix supports the following load-balancing
algorithms:

For example, you can change the load-balancing algorithm used by the
clustering demo by issuing the following itadmin poa modify command:

You can verify this by running several clients. The names of the servers now
print out in the order in which they were started.

Per-Request Load Balancing By default the locator load balancing is performed on a per-client ORB basis
therefore once a binding to a replica has been established all requests from
that ORB use the initial binding. You can choose to select an option that will
allow load balancing to occur within the ORB, on a per-request basis.

To activate per-request load balancing set the policy in the configuration file
as follows:

policies:per_request_lb = "true"

round_robin The locator uses a round-robin algorithm to select from the
list of active servers�that is, the first client is sent to the
first server, the second client to the second server, and so on

random The locator randomly selects an active server to handle the
client.

$ itadmin poa modify -load_balancer round_robin ClusterDemo
 94

Replicating Orbix Services
Replicating Orbix Services

Overview Clients that use replicated Orbix services, such as the locator, are
automatically routed to the first available server. If a server fails, clients are
transparently rerouted to another server. Orbix services are normally
replicated across a number of hosts, but it is also possible to replicate
services on the same host.

The following Orbix services can be replicated:

� Locator daemon.

� Naming service.

� Configuration repository (CFR).

� Security service.

Figure 13 shows an example of a replicated naming service. This shows
updates being pushed across from the master naming service to the slave
naming service.

Replicating locator daemon and
naming service

Continuous availability is especially important for the locator daemon and
naming service. Replicating these services ensures that:

� Clients can always access persistent servers.

� New persistent servers can be activated on demand.

� itadmin commands that read the implementation repository always
work (for example, itadmin poa list, and itadmin process show).

� Clients can always obtain object references from the naming service.
95

CHAPTER 5 | Configuring Scalable Applications
CFR-based versus file-based
replication domains

Orbix services can be replicated in both CFR-based domains and in
configuration file-based domains.

In a CFR-based domain, it is recommended that the CFR service is
replicated, in addition to any other replicated services (for example, the
security service). This ensures that all clients and servers can continue to
run in the event of a failure.

Figure 13: Replicated Naming Service
 96

Replicating Orbix Services
Replicating the security service In a secure domain, replicating the security service is important to ensure
that all services are accessible even in the event of a host failure.

To replicate the security service, use the Orbix Configuration GUI tool to
specify a replica host, like with other services (see the Orbix Deployment
Guide). The generated configuration will contain the all relevant CORBA
clustering information. However, with the security service, you must also
edit your is2.properties file, and create a cluster.properties file. For
details on these files, see the Orbix Security Guide.

Master and slave replicas The locator daemon, naming service, and configuration repository use the
persistent state service (PSS) to replicate their state. The PSS uses a
master-slave model where a single replica is designated the master, and can
process both read and write operations. All other replicas are slaves and can
only process read operations. For more details, see �Master-Slave
Replication� on page 98.

Adding and removing replicas New server replicas can be added dynamically into a running system, and
existing replicas can also be removed. For more details, see the Orbix
Deployment Guide.

Note: All replicas in a PSS-based replicated service must be run on
identical operating systems.
97

CHAPTER 5 | Configuring Scalable Applications
Master-Slave Replication

Overview In PSS master-slave replication, one replica is designated as the master,
and the remaining replicas are designated as slaves. Only the master can
perform both read and write access, while slave replicas provide read-only
access. In addition, only the master can process any read operation that is
part of a distributed transaction.

If a slave replica receives a write or a read request in a distributed
transaction, this request is either delegated to the master, or rejected if there
is no master available. If the master fails, the remaining slaves hold an
election to determine the new master. The automatic promotion of a slave to
master is transparent to clients. This section includes the following:

� �Startup of master-slave services�.

� �Master election protocol�.

� �Setting replica priorities�.

� �Setting master heartbeats�.

� �Setting a refresh master interval�.

� �Relaxing majority rule�.

� �Replica administration�.

Startup of master-slave services When a group of replicated services has been deployed, all services are
started as slaves. A majority of a service�s replicas must have started before
an election to select the master replica can take place.

This means, for example, in a replica group with four replicas (including the
master), that at least three replicas must be running before an election can
take place and write requests are possible.

Having a majority of replicas running ensures that a network partition can
not result in duplicate masters. It also guarantees that previously committed
updates are not lost.
 98

Replicating Orbix Services
Master election protocol When the master is unavailable, an election protocol is used to determine
the new master. If a majority of replicas are running, the slave that is most
up-to-date with updates from the master is elected as the new master. If
there is a tie, a priority system is used to elect the master. If there is still a
tie, a random selection is made.

To support the automatic promotion of a slave, the minimum number of
replicas in a group is three (one master and two slaves). For more details,
see �Relaxing majority rule�.

Setting replica priorities You can configure the priority of a replica in elections using the following
configuration variable:

The default value is 1. Higher values mean a higher priority, and a priority of
0 means that slave is not to be promoted. For more details, see
plugins:pss_db:envs:env-name in the Orbix Configuration Reference.

By default, the first replica deployed is given a higher priority than the
remaining replicas. This increases the likelihood that the first replica runs as
master when the services are started. This avoids unnecessary delegation for
write operations.

Replica priorities are more likely to be honoured if services are shutdown
cleanly (using the stop_domain_name_services command).

Setting master heartbeats Slave replicas monitor the health of the master using periodic heartbeat
messages. This enables a slave to be promoted in a timely manner. You can
configure the interval between these heartbeats using the following
configuration variable:

The Orbix Configuration tool (itconfigure) sets the variable for each service
to 30 seconds. For example, the setting for the locator daemon is:

For more details, see plugins:pss_db:envs:env-name in the Orbix
Configuration Reference.

plugins:pss_db:envs:env-name:replica_priority = "1";

plugins:pss_db:envs:env-name:master_heartbeat_interval= "10";

plugins:pss_db:envs:it_locator:master_heartbeat_interval = "30";
99

CHAPTER 5 | Configuring Scalable Applications
If is it necessary to disable heartbeats, you can set this variable to 0 (for
example, to reduce network traffic). Disabling heartbeats means that the
election of a new master normally occurs only when a slave attempts to
delegate a request to the failed master.

Setting a refresh master interval Each of the replicated Orbix services that use PSS replication enable you to
configure the amount of time that a slave replica waits for a new master to
be elected:

This interval specifies the maximum number of seconds that a write request
is blocked at a slave while waiting for a master to be elected. For example,
to set a time limit on the naming service to 30 seconds:

For more details, see the following sections in the Orbix Configuration
Reference:

plugins:naming
plugins:locator
plugins:config_rep
plugins:pss_db:envs:env-name

Relaxing majority rule To promote a slave, a majority of replicas must be running. This means that
in a replica group with two replicas (one master and one slave), the slave
can never be promoted. As a special case, it is possible to allow the slave to
be promoted. You can do this by setting the following variable to true:

For more details, see plugins:pss_db:envs:env-name in the Orbix
Configuration Reference.

plugins:naming:refresh_master_interval
plugins:locator:refresh_master_interval
plugins:config_rep:refresh_master_interval

plugins:naming:refresh_master_interval = �30�;

plugins:pss_db:envs:env-name:allow_minority_master = "true";
 100

Replicating Orbix Services

Replica administration The itadmin tool provides several commands to examine the state of
replicated services:

For more details on these itadmin commands, see the following:

� �Naming Service� on page 333.

� �Location Domain� on page 293.

� �Configuration Domain� on page 265.

� �Persistent State Service� on page 369.

In addition, for details on administration of PSS databases, see �Managing
Orbix Service Databases� on page 149.

Note: Setting allow_minority_master to true means that it is possible
for duplicate masters to exist if there is a network partition. It also means
that updates may be lost if services are started in different orders. To
minimize the possibility of this, perform the following steps:

1. Only set the allow_minority_master variable to true on one replica
(the one most likely to be the slave).

2. The replica with this variable set to true should always be started
second.

3. If the master fails, and the slave is promoted, the previous master
must be restarted only when the new master is running.

itadmin ns list_servers
itadmin ns show_server
itadmin locator list_servers
itadmin locator show
itadmin config list_servers
itadmin config show_server
itadmin pss_db list_replicas
itadmin pss_db show
101

CHAPTER 5 | Configuring Scalable Applications
Active Connection Management

Overview Orbix active connection management lets servers scale up to large numbers
of clients without encountering connection limits. Using active connection
management, Orbix recycles least recently used connections as new
connections are required.

You can control active connection management in Orbix with configuration
variables, that specify the maximum number of incoming and outgoing
client�server connections. Two settings are available for both client-side and
server-side connections:

� A hard limit specifies the number of connections beyond which no new
connections are permitted.

� A soft limit specifies the number of connections at which Orbix begins
closing connections.

Setting incoming server-side
connections

To limit the number of incoming server-side connections, set the following
configuration variables:

plugins:iiop:incoming_connections:hard_limit specifies the maximum
number of incoming (server-side) connections permitted to IIOP. IIOP does
not accept new connections above this limit. This variable defaults to -1
(disabled).

plugins:iiop:incoming_connections:soft_limit specifies the number of
connections at which IIOP starts closing incoming (server-side) connections.
This variable defaults to -1 (disabled).

For example, the following file-based configuration entry sets a server�s hard
connection limit to 1024:

The following itadmin command sets this variable:

plugins:iiop:incoming_connections:hard_limit=1024;

itadmin variable create -type long -value 1024
 plugins:iiop:incoming_connections:hard_limit
 102

Active Connection Management
Setting outgoing client-side
connections

To limit the number of outgoing client-side connections, set the following
configuration variables:

plugins:iiop:outgoing_connections:hard_limit specifies the maximum
number of outgoing (client-side) connections permitted to IIOP. IIOP does
not allow new outgoing connections above this limit. This variable defaults
to -1 (disabled).

plugins:iiop:outgoing_connections:soft_limit specifies the number of
connections at which IIOP starts closing outgoing (client-side) connections.
This variable defaults to -1 (disabled).

For example, the following file-based configuration entry sets a hard limit for
outgoing connections to 1024:

The following itadmin command sets this variable:

plugins:iiop:outgoing_connections:hard_limit=1024;

itadmin variable create -type long -value 1024
 plugins:iiop:outgoing_connections:hard_limit
103

CHAPTER 5 | Configuring Scalable Applications
Setting Buffer Sizes

Overview If the IIOP buffer size within an ORB is configured to a sufficiently large
number, fragmentation is not required by the ORB and does not occur. This
section describes how to set the buffer size in the C++ and Java CORBA
ORBs.

C++ configuration policies:<protocol-name>:buffer_sizes_policy:default_buffer_size

This variable is used as the initial size for the buffer and also as the
increment size if the buffer is too small.

For example, when sending a message of 60,000 bytes (including GIOP
header overhead, remember depending on the types used by GIOP, this
overhead may be large), if the default_buffer_size value is set to 10000,
the buffer is initially 10,000 bytes. The C++ ORB then sends out 6
message fragments of 10,000 bytes each. If the default_buffer_size
value is set to 64000, only one unfragmented message is sent out.

Java configuration policies:<protocol-name>:buffer_sizes_policy:default_buffer_size

This variable is used as the initial size for the buffer unless it is less than the
system defined minimum buffer size.

policies:<protocol-name>:buffer_sizes_policy:max_buffer_size

This value is used as the initial size for the buffer if smaller than
default_buffer_size. For example, when sending a message with an
overall size of 60,000 bytes, if the lower of the buffer_size values
mentioned above is set to 10000, the buffer is initially 10,000 bytes. The
Java ORB then sends out 6 message fragments of 10,000 bytes each. If the
lower of the buffer_size values mentioned above is set to 64000, only one
unfragmented message is sent out.
 104

Setting Buffer Sizes

Data fragmentation For a CORBA ORB to be considered compliant with the OMG GIOP 1.1
specification, the ORB implementation must support data fragmentation.

Some CORBA ORB implementations do not support data fragmentation but
claim GIOP 1.1 compliance. Orbix ORBs support fragmentation and are fully
compliant with the GIOP 1.1 specification.

Note: These configuration settings apply to secure or non-secure IIOP,
depending on whether the iiop or iiop_tls scope is used. For alignment
purposes, buffer size values should be a multiple of 8 (i.e. 32,000 or
64,000).
105

CHAPTER 5 | Configuring Scalable Applications
 106

CHAPTER 6

Managing the
Naming Service
The naming service lets you associate abstract names with
CORBA objects in your applications, enabling clients to locate
your objects.

The interoperable naming service is a standard CORBA service, defined in
the Interoperable Naming Specification. The naming service allows you to
associate abstract names with CORBA objects, and enables clients to find
those objects by looking up the corresponding names. This service is both
very simple and very useful. Most CORBA applications make some use of
the naming service. Locating a particular object is a common requirement in
distributed systems and the naming service provides a simple, standard way
to do this. The naming service is installed by default as part of every Orbix
installation.

In addition to naming service functionality, Orbix also provides
naming-based load balancing, using object groups. An object group is a
collection of objects that can increase or decrease in size dynamically. When
a bound object is an object group, clients can resolve object names in a
naming graph, and transparently obtain references to different objects.

In this chapter This chapter contains the following sections:

Naming Service Administration page 109
107

CHAPTER 6 | Managing the Naming Service
Controlling the Naming Service page 112

Building a Naming Graph page 113

Maintaining a Naming Graph page 118

Managing Object Groups page 119

Deploying Naming Service Replicas on z/OS page 121
 108

Naming Service Administration
Naming Service Administration

Overview The naming service maintains hierarchical associations of names and object
references. An association between a name and an object is called a
binding. A client or server that holds a CORBA object reference binds a
name to the object by contacting the naming service. To obtain a reference
to the object, a client requests the naming service to look up the object
associated with a specified name. This is known as resolving the object
name. The naming service provides interfaces, defined in IDL, that enables
clients and servers to bind to and resolve names to object references.

The naming service has an administrative interface and a programming
interface. These enable administrators and programmers to create new
bindings, resolve names, and delete existing bindings. For information about
the programming interface to the naming service, see the CORBA
Programmer�s Guide.

Typical administration tasks While most naming service operations are performed by programs,
administrative tasks include:

� Controlling the naming service (for example, starting and stopping the
naming service).

� Viewing naming information (for example, bindings between names
and objects).

� Adding or modifying naming information that has not been properly
maintained by programs. For instance, you might need to remove
outdated information left behind by programs that have been moved or
removed from the environment.

You can perform these tasks administratively with itadmin commands. This
is especially useful when testing applications that use the naming service.
You can use itadmin commands to create, delete, and examine name
bindings in the naming service.
109

CHAPTER 6 | Managing the Naming Service
Name formats and naming graphs Naming service names adhere to the CORBA naming service format for
string names. You can associate names with two types of objects: a naming
context or an application object. A naming context is an object in the
naming service within which you can resolve the names of application
objects.

Naming contexts are organized into a naming graph. This can form a
naming hierarchy, much like that of a filing system. Using this analogy, a
name bound to a naming context would correspond to a directory and a
name bound to an application object would correspond to a file.

The full name of an object, including all the associated naming contexts, is
known as a compound name. The first component of a compound name
gives the name of a naming context, in which the second component is
accessed. This process continues until the last component of the compound
name has been reached.

A compound name in the CORBA naming service can take two forms:

� An IDL sequence of name components

� A human-readable StringName in the Interoperable Naming Service
(INS) string name format
 110

Naming Service Administration
Naming Service Commands
itadmin provides commands for browsing and managing naming service
information. Many naming service commands take a path argument. This
specifies the path to the context or object on which the command is
performed.

For reference information about these itadmin commands, see �Naming
Service� on page 333. The rest of this chapter uses itadmin commands to
build an example naming graph and populate it with name bindings.

Note: Many of these commands take object references as command-line
arguments. These object references are expected in the string format
returned from CORBA::ORB::object_to_string(). By default, this string
format represents an interoperable object reference (IOR).
111

CHAPTER 6 | Managing the Naming Service
Controlling the Naming Service

Starting the naming service You must start up the naming service on the machine where it runs. To start
the naming service:

1. Log in as root on UNIX, or as administrator on Windows NT.

2. Open a terminal or command window.

3. Enter itnaming run

4. Do the following depending on your platform:

Windows

Leave the command window open.

UNIX

Leave the terminal window open, or push the process into the
background and close the window.

Stopping the naming service itadmin ns stop stops the naming service.
 112

Building a Naming Graph
Building a Naming Graph

Overview A naming context is an object in the naming service that can contain the
names of application objects. Naming contexts are organized into a
hierarchical naming graph. This section uses itadmin commands to build
the naming graph shown in Figure 14.

Figure 14: Naming Context Graph

root

company

engineering

support

james.
person

john.
person

paula.
person

staff

james

john manager.
person

paula

manager.
person

denotes a naming context

denotes an application object
113

CHAPTER 6 | Managing the Naming Service
Names are given in the INS string name format id.kind (for example,
john.person). The kind component can be empty (for example, john). The
combination of id and kind fields must unambiguously specify the name.

In this section Using the example naming graph in Figure 14, this section explains the
following tasks:

� Creating Naming Contexts.

� Creating Name Bindings.

� Listing name bindings.

� Finding object references by name.

� Removing name bindings.

� Rebinding a name to an object or naming context
 114

Building a Naming Graph
Creating Naming Contexts
itadmin ns newnc provides the simplest way to create a naming context.
This command takes an optional path argument, which takes the form of an
INS string name. For example, the following command creates a new
context that is bound to a simple name with an id of company, and an empty
kind value:

The following example creates a new naming context that is bound to the
name company/engineering; the context company must already exist.

The following example creates a new context that is bound to the name
company/engineering/support; the context company/engineering must
already exist.

Creating an unbound naming
context

You can also use itadmin ns newnc to create an unbound context. If the
path argument is not specified, itadmin ns newnc prints the IOR to
standard out. For example:

On UNIX, to bind the context created with ns newnc, use the ns bind
-context command, as follows:

This binds the new context to the name company/staff.

itadmin ns newnc company

itadmin ns newnc company/engineering

itadmin ns newnc company/engineering/support

itadmin ns newnc
"IOR:000000000002356702b4944c3a6f6d672e6f7267...."

itadmin ns bind -c -path company/staff �itadmin ns newnc�
115

CHAPTER 6 | Managing the Naming Service
Creating Name Bindings
To bind a name to an object, use itadmin ns bind -object. Given the
naming context graph shown in Figure 14 on page 113, this section
assumes the application objects are associated with the following object
reference strings:

You can bind these objects to appropriate names within the company/staff
naming context, as follows:

These commands assign a kind of person in the final component of each
employee name.

itadmin ns bind takes an IOR from the command line. For example, on
UNIX, if you have Paula�s IOR in a file named paula.ior, you can bind it, as
follows:

james IOR:0000000037e276f47a4b94874c64648e949...

john IOR:0000028e276f47a40b9248474c64646F3E5...

paula IOR:00000000569a2e8034b94874d6583f09e24...

itadmin ns bind -o -path company/staff/james.person
"IOR:0000000037e276f47a4b94874c64648e949..."

itadmin ns bind -o -path company/staff/john.person
"IOR:0000028e276f47a40b9248474c64646F3E5..."

itadmin ns bind -o -path company/staff/paula.person
"IOR:00000000569a2e8034b94874d6583f09e24..."

itadmin ns bind -o -path company/staff/paula.person �cat
paula.ior�
 116

Building a Naming Graph
To build the naming graph further, create additional bindings that are based
on the departments that employees are assigned to. The following example
takes IORs from files printed to standard input.

To enable an application to find the manager of a department easily, add
the following bindings:

The following names now resolve to the same object:

The naming contexts and name bindings created by this sequence of
commands builds the complete naming graph shown in Figure 14 on
page 113.

itadmin ns bind -o -path
company/engineering/support/james.person �cat james.ior�

itadmin ns bind -o -path company/engineering/john.person �cat
john.ior�

itadmin ns bind -o -path company/engineering/paula.person �cat
paula.ior�

itadmin ns bind -o -path company/engineering/manager.person �cat
paula.ior�

itadmin ns bind -o -path
company/engineering/support/manager.person �cat paula.ior�

company/staff/paula.person
company/engineering/paula.person
company/engineering/manager.person
company/engineering/support/manager.person
117

CHAPTER 6 | Managing the Naming Service
Maintaining a Naming Graph

Maintenance commands After you create a naming graph, it is likely you will need to periodically
modify its contents�for example, remove bindings, or to change the
bindings for an object reference. Table 5 describes the itadmin commands
that you can use to maintain naming contexts and bindings.

Rebinding a name to an object or
naming context

To change the binding for an object reference, perform the following steps:

1. Use itadmin ns resolve to obtain the object reference bound to the
current path and write it to a file:

The path argument takes the form of a string name.

2. Call itadmin ns unbind to unbind the current path:

3. Call itadmin ns bind to bind the saved object reference to the new
path. For example, on UNIX:

Table 5: Naming Graph Maintenance Commands

Command Task

ns list List all bindings in a naming context

ns resolve Print the object reference for the application object or
naming context to which a name is bound.

ns unbind Unbind the binding for an object reference.

ns remove Unbind and destroy a name binding.

Note: unbind and remove can be disabled by setting
plugins:naming:destructive_methods_allowed to false.

itadmin ns resolve path > file

itadmin ns unbind path

itadmin ns bind -c newpath �cat file�
 118

Managing Object Groups
Managing Object Groups

Overview An object group is a naming service object that provides transparent
naming-based load balancing for clients. An object group contains
application objects, and can increase or decrease in size dynamically when
member objects are added or removed.

An object group object can be bound to a path in a naming graph like any
other object. Each object group contains a pool of member objects
associated with it. When a client resolves the path that an object group is
bound to, the naming service returns one of the member objects according
to the group�s selection policy.

Creating an object group You can create an object group using the itadmin commands in the
following steps:

1. Create the object group using itadmin nsog create and specify the
desired selection algorithm (see �Selection algorithms� on page 119).

2. Add application objects to the newly created object group using
itadmin nsog add_member on it.

3. Bind an existing naming context to the object group using itadmin
nsog bind.

When you create the object group, you must supply a group identifier. This
identifier is a string value that is unique among other object groups.

Similarly, when you add a member to the object group, you must supply a
reference to the object and a corresponding member identifier. The member
identifier is a string value that must be unique within the object group.

Selection algorithms Each object group has a selection algorithm that is set when the object
group is created. This algorithm is applied when a client resolves the name
associated with the object group. Three selection algorithms are supported:

� Round-robin

� Random

� Active load balancing
119

CHAPTER 6 | Managing the Naming Service
The naming service directs client requests to objects according to the
group�s selection algorithm.

Active load balancing In an object group that uses active load balancing, each object group
member is assigned a load value. The naming service satisfies client
resolve() invocations by returning references to members with the lowest
load values.

Default load values can be set administratively using the configuration
variable plugins:naming:lb_default_initial_load. Thereafter, load
values should be updated programmatically by periodically calling
ObjectGroup::update_member_load(). itadmin provides an equivalent
command, nsog update_member_load, in cases where manual intervention
is required.

You should also set or modify member timeouts using itadmin nsog
set_member_timeout, or programmatically using
ObjectGroup::set_member_timeout(). You can configure default timeout
values by updating plugins:naming:lb_default_load_timeout. If a
member�s load value is not updated within its timeout interval, its object
reference becomes unavailable to client resolve() invocations. This
typically happens because the object itself or an associated process is no
longer running, and therefore cannot update the object�s load value.

A member reference can be made available again to client resolve()
invocations by resetting its load value using
ObjectGroup::update_member_load() or itadmin nsog
update_member_load. In general, an object�s timeout should be set to an
interval greater than the frequency of load value updates.

Commands �Object Groups� on page 338 describes the itadmin commands that you
can use to create and administer object groups.
 120

Deploying Naming Service Replicas on z/OS
Deploying Naming Service Replicas on z/OS

Overview To deploy Naming Service replicas on z/OS, perform the following steps:

� �Performing initial setup� on page 121.

� �Updating configuration to accommodate replicas� on page 121.

� �Deploying the first Naming Service� on page 123.

� �Deploying additional replicas� on page 128.

� �Performing post-deployment setup� on page 131.

� �Running the replicas� on page 131.

Performing initial setup Before deploying Naming Service replicas, ensure that the first deploy job in
orbixhlq.JCLLIB(DEPLOY1) has been run (where orbixhlq represents the
high-level qualifier for your Orbix Mainframe installation). Additionally,
submit the following JCL to ensure that the locator and node daemon are
running:

� orbixhlq.JCLLIB(LOCATOR)
� orbixhlq.JCLLIB(NODEDAEM)

Updating configuration to
accommodate replicas

By default, configuration information is stored in
orbixhlq.DOMAINS(FILEDOMA). However, the member name for a user�s
configuration domain might be user-defined. The configuration domain
contains a scope for the Naming Service, called naming. This scope must be
updated, as follows, to accommodate replicas:

1. Ensure that a comment character (that is, #) precedes the
plugins:pss_db:envs:it_naming_store:replica_priority
configuration item. This will be defined instead in new replica scopes.

2. Ensure that a comment character (that is, #) precedes the
plugins:pss_db:envs:it_naming_store:db_home configuration item.
This will be defined instead in new replica scopes.

3. Add the configuration item plugins:pss_db:envs:it_naming_store:
allow_minority_master = "true";.

4. Add a scope for the first Naming Service.
121

CHAPTER 6 | Managing the Naming Service
The following is an example of these updates. In this example, the first
Naming Service has a scope called replica1:

�
naming
{
 event_log:filters = ["IT_NAMING=*",
 "IT_PSS_DB=WARN+ERROR+FATAL"];

 configuration:hostname = "%{LOCAL_HOSTNAME}";

 plugins:naming:allow_nil = "true";
 plugins:naming:lb_default_load_timeout = "1000000000";
 plugins:naming:lb_default_initial_load = "0.0";

 plugins:pss_db:envs:it_naming_store:master_heartbeat_interval\
 = "30";
plugins:pss_db:envs:it_naming_store:replica_priority = "2";

plugins:pss_db:envs:it_naming_store:db_home
= "%{LOCAL_HFS_ROOT}/filedomain/dbs/naming";

 #
 # Settings for well known addressRun JCLLIB(NSLIST) - see 3 naming contextsing:
 # (mandatory is direct_persistence is enabled)
 #
 # LOCAL_NAMING_PORT = 5004;
 # plugins:naming_cluster:iiop_addr_list =
 # ["+%{LOCAL_HOSTNAME}:%{LOCAL_NAMING_PORT}"];
 # plugins:naming:iiop:port = "%{LOCAL_NAMING_PORT}";
 # plugins:naming:iiop:host = "%{LOCAL_HOSTNAME}";

 plugins:naming:direct_persistence = "false";

 policies:iiop:server_address_mode_policy:local_hostname
 = "%{LOCAL_HOSTNAME}";

 plugins:orb:is_managed = "false";

 plugins:it_mgmt:managed_server_id:name
 = "iona_services.naming";

 plugins:pss_db:envs:it_naming_store:allow_minority_master = "true";
 122

Deploying Naming Service Replicas on z/OS
Deploying the first Naming
Service

Follow these steps to deploy the first Naming Service:

1. Create an NSARGS1 member in the orbixhlq.CONFIG PDS. The
orbixhlq.CONFIG(NSARGS1) member should typically consist of the
following:

2. Create a JCL member called DEPNS1 in the orbixhlq.JCLLIB PDS. The
DEPNS1 JCL should be as follows (where orbixhlq represents the
high-level qualifier for your Orbix Mainframe installation):

 replica1
 {
 plugins::pss_db:envs:it_naming_store:replica_priority = "2";

 plugins:pss_db:envs:it_naming_store:db_home
 = "%{LOCAL_HFS_ROOT}/filedomain/dbs/naming_replica1";
 plugins:orb:is_managed = "false";
 plugins:it_mgmt:managed_server_id:name
 = "iona_services.naming.replica1";
 };
 �
};

-ORBdomain_name DEFAULT@
-ORBname iona_services.naming.replica1

Note: If your configuration domain name is a user-defined name
other than DEFAULT@, ensure that the correct name is specified. Also,
ensure that the value specified for -ORBname references the scope that
is defined in the configuration for the first Naming Service.

//DEPNS1 JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=OM,
// TIME=1440,
// COND=(0,NE)
//*
// JCLLIB ORDER(orbixlq.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
123

CHAPTER 6 | Managing the Naming Service
//**
//* JCL to deploy first naming service
//* Requires locator and node_daemon to be running
//**
//*
//* Make the following changes before running this JCL
//*
//* 1. If you ran DEPLOY1 (or DEPLOYT) to configure in a domain
//* other than the default, please ensure that dataset
//* &ORBIXCFG(ORBARGS) has the domain name used by DEPLOY1
//* (or DEPLOYT).
//*
//**
//*
//* Prepare the Naming Service
//*
//PREPNAM EXEC PROC=ORXG,
// PROGRAM=ORXNAMIN,
// PPARM=�prepare -publish_to_file=DD:ITCONFIG(IORNAM) �
//ORBARGS DD DSN=&ORBIXCFG(NSARGS1), DISP=SHR
//*
//* Update configuration domain with naming service IOR
//*
//ITCFG1 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from_file:6 //DD:ITCONFIG(IORNAM) \
 NS_1
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
//*
//* Create a named key for the Naming Service
//*
//ITCFG2 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from file:3 //DD:ITCONFIG(IORNAM) \
 LOCAL_NAMING_REFERENCE
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS), DISP=SHR
//*
//ITCFG3 EXEC ORXADMIN
//SYSIN DD *
 named_key create \
 124

Deploying Naming Service Replicas on z/OS
3. Run the orbixhlq.JCLLIB(DEPNS1) JCL to deploy the first Naming
Service.

4. Create a JCL member called MNSPOAS1 in the orbixhlq.JCLLIB PDS.
The MNSPOAS1 JCL should be as follows (where orbixhlq represents
the high-level qualifier for your Orbix Mainframe installation):

 named_key create \
 -key NameService \
 --from_file:6 //DD:ITCONFIG(IORNAM)
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR

//REP1 JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=OM,
// TIME=1440,
//*
// JCLLIB ORDER(orbixlq.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. If you ran DEPLOY1 (or DEPLOYT) to configure in a domain
//* other than the default, please ensure that dataset
//* HLQ.ORBIX62.CONFIG(ORBARGS) has the domain
//* name used by DEPLOY1 (or DEPLOYT).
//*
//MFARELD EXEC ORXADMIN
//SYSIN DD *
 poa modify -allowdynreplicas yes IT_NamingContextExt
 poa modify -allowdynreplicas yes IT_ObjectGroupFactory
 poa modify -allowdynreplicas yes IT_ObjectGroup
 poa modify -allowdynreplicas yes \
 IT_NamingServiceAdmin_iona_services.naming.replica1
 poa modify -allowdynreplicas yes \
 IT_MasterNamingContextExt_iona_services.naming.replica1
 poa modify -allowdynreplicas yes \
 IT_MasterObjectGroupFactory_iona_services.naming.replica1
 poa modify -allowdynreplicas yes \
 IT_MasterObjectGroup_iona_services.naming.replica1
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
125

CHAPTER 6 | Managing the Naming Service
5. Run the orbixhlq.JCLLIB(MNSPOAS1) JCL to allow for naming service
replicas.

6. Update the configuration in orbixhlq.DOMAINS(FILEDOMA) to make use
of the first Naming Service, as follows:

As shown in the preceding example:

♦ Ensure that the existing IT_NameServiceReplicas configuration
item is preceded by a comment character.

♦ Ensure that the specified ORBname matches the name of the
configuration scope for the first Naming Service. In this example,
the name is iona_services.naming.replica1.

♦ Ensure that the specified configuration value, represented by NS_1
in this case, matches the value used in
orbixhlq.JCLLIB(DEPNS1) to deploy the first Naming Service.
The ITCFG1 step of the DEPNS1 JCL updates this configuration
variable.

Note: The itadmin commands in the preceding example make reference
to the first Naming Service scope, which is replica1 in this case. These
commands must match the Naming Service scope that is defined in the
configuration.

#IT_NameServiceReplicas =
["iona_services.naming=%{LOCAL_NAMING_REPLICA_REFERENCE}"];
IT_NameServiceReplicas =
[
 "iona_services.naming.replica1=%{NS_1}
];
 126

Deploying Naming Service Replicas on z/OS
7. Create a JCL member called NSREP1 in the orbixhlq.JCLLIB PDS. The
NSREP1 JCL should be as follows (where orbixhlq represents the
high-level qualifier for your Orbix Mainframe installation):

8. Run the orbixhlq.JCLLIB(NSREP1) JCL to start the first Naming
Service.

//NS1 JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=OM,
// TIME=1440,
//*
// JCLLIB ORDER(orbixlq.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Orbix Naming service
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change SET DOMAIN=�DEFAULT@� to your configuration
//* domain name.
//*
// SET DOMAIN=�DEFAULT@�
//*
//GO EXEC PROC=ORXG,
// PROGRAM=ORXNAMIN,
// PPARM=�run -ORBname iona_services.naming.replica1�
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

Note: Ensure that the specified ORBname matches the name of the
configuration scope for the first Naming Service. In the preceding example,
the name is iona_services.naming.replica1.
127

CHAPTER 6 | Managing the Naming Service
Deploying additional replicas Follow these steps for each additional replica you want to deploy:

1. In orbixhlq.DOMAINS(FILEDOMA), add a sub-scope for the Naming
Service replica within the naming scope, as follows:

In this case, set the first three configuration items as appropriate for
the replica you want to deploy.

2. Create a JCL member called NSARGS2 in the orbixhlq.CONFIG PDS.
The NSARGS2 JCL should be as follows:

Note: In this example, the replica is called replica2.

replica1
�
replica2
{
 plugins:pss_db:envs:it_naming_store:replica_priority = "3";
 plugins:pss_db:envs:it_naming_store:prevent_unilateral_promotion = "true";

 plugins:pss_db:envs:it_naming_store:db_home
 = "%{LOCAL_HFS_ROOT}/filedomain/dbs/naming_replica2";

 plugins:orb:is_managed = "false";
 plugins:it_mgmt:managed_server_id:name = "iona_services.naming.replica2";
};
�

-ORBdomain_name DEFAULT@
-ORBname iona_services.naming.replica2

Note: Ensure that the specified ORBname matches the name of the
configuration scope for the Naming Service replica. In the preceding
example, the name is iona_services.naming.replica2.
 128

Deploying Naming Service Replicas on z/OS
3. Create a JCL member called DEPNS2 in the orbixhlq.JCLLIB PDS. The
DEPNS2 JCL should be as follows:

//DEPNS2 JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=OM,
// TIME=1440,
// COND=(0,NE)
//*
// JCLLIB ORDER(orbixlq.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//**
//* JCL to deploy first naming service
//* Requires locator and node_daemon to be running
//**
//*
//* Make the following changes before running this JCL
//*
//* 1. If you ran DEPLOY1 (or DEPLOYT) to configure in a domain
//* other than the default, please ensure that dataset
//* &ORBIXCFG(ORBARGS) has the domain name used by DEPLOY1
//* (or DEPLOYT).
//*
//**
//*
//* Prepare the Naming Service
//*
//PREPNAM EXEC PROC=ORXG,
// PROGRAM=ORXNAMIN,
// PPARM=�prepare -publish_to_file=DD:ITCONFIG(IORNAM) �
//ORBARGS DD DSN=&ORBIXCFG(NSARGS2), DISP=SHR
//*
//* Update configuration domain with naming service IOR
//*
//ITCFG1 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from_file:6 //DD:ITCONFIG(IORNAM) \
 NS_2
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
129

CHAPTER 6 | Managing the Naming Service
4. Run the orbixhlq.JCLLIB(DEPNS2) JCL to deploy the naming service
replica.

5. Create a JCL member called MNSPOAS2 in the orbixhlq.JCLLIB PDS.
The MNSPOAS2 JCL should be as follows (where orbixhlq represents
the high-level qualifier for your Orbix Mainframe installation):

6. Run the orbixhlq.JCLLIB(MNSPOAS2) JCL to allow for the naming
service replica.

//REP2 JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=OM,
// TIME=1440,
//*
// JCLLIB ORDER(orbixlq.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. If you ran DEPLOY1 (or DEPLOYT) to configure in a domain
//* other than the default, please ensure that dataset
//* HLQ.ORBIX62.CONFIG(ORBARGS) has the domain
//* name used by DEPLOY1 (or DEPLOYT).
//*
//MFARELD EXEC ORXADMIN
//SYSIN DD *
 poa modify -allowdynreplicas yes \
 IT_NamingServiceAdmin_iona_services.naming.replica2
 poa modify -allowdynreplicas yes \
 IT_MasterNamingContextExt_iona_services.naming.replica2
 poa modify -allowdynreplicas yes \
 IT_MasterObjectGroupFactory_iona_services.naming.replica2
 poa modify -allowdynreplicas yes \
 IT_MasterObjectGroup_iona_services.naming.replica2
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
 130

Deploying Naming Service Replicas on z/OS
Performing post-deployment
setup

Follow these steps to perfom post-deployment setup:

1. After all naming service replicas have been deployed, stop the Naming
Service.

2. Edit orbixhlq.DOMAINS(FILEDOMA) to update the
IT_NameServiceReplicas configuration item as follows:

Running the replicas Create a separate JCL member in the orbixhlq.JCLLIB PDS for each
naming service replica. In each case, the JCL should be similar to the
following:

ITNameServiceReplicas =
[
 "iona_services.naming.replica1=%{NS_1}",
 "iona_services.naming.replica2=%{NS_2}",
 "iona_services.naming.replica3=%{NS_3}"
];

Note: The preceding example assumes that the first Naming Service
and two replicas were deployed.

//NS1 JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SUSUID,
// REGION=OM,
// TIME=1440,
//*
// JCLLIB ORDER(orbixhlq.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Orbix Naming Service
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change SET DOMAIN=�DEFAULT@� to your configuration
//* domain name.
//*
// SET DOMAIN=�DEFAULT@�
131

CHAPTER 6 | Managing the Naming Service
Ensure that the JCL for each replica specifies the correct ORBname for that
replica. For example, the preceding example specifies an ORBname of
iona_services.naming.replica1. Then submit each JCL member to run
each of the naming service replicas.

//*
//GO EXEC PROC=ORXG,
// PROGRAM=ORXNAMIN,
// PPARM=�run -ORBname iona_services.naming.replica1�
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR
 132

CHAPTER 7

Managing an
Interface
Repository
An interface repository stores information about IDL
definitions, and enables clients to retrieve this information at
runtime. This chapter explains how to manage the contents of
an interface repository.

In this chapter This chapter contains the following sections:

Interface Repository page 134

Controlling the Interface Repository Daemon page 135

Managing IDL Definitions page 136
133

CHAPTER 7 | Managing an Interface Repository
Interface Repository

Overview An interface repository maintains information about the IDL definitions
implemented in your system. Given an object reference, a client can use the
interface repository at runtime to determine the object�s type and all
information about that type. Clients can also browse the contents of an
interface repository. Programmers can add sets of IDL definitions to an
interface repository, using arguments to the IDL compiler command.

Interface repository
administration

An interface repository database is centrally located. When Orbix
environments have more than one interface repository, they are often
organized so that each application or set of related applications uses a
common interface repository. When an interface repository has been
configured, it requires minimal administrative intervention. Typical tasks
include stopping and restarting the interface repository, when necessary,
removing outdated definitions, when applications are removed, and
troubleshooting, when necessary.

This chapter provides information for administrators on how start and stop
the interface repository. It also provides information for programmers on
how to add, examine, and remove IDL definitions.

For details on advanced interface repository features, see the CORBA
Programmer�s Guide.
 134

Controlling the Interface Repository Daemon
Controlling the Interface Repository Daemon

Overview The primary interface repository tasks for administrators are starting and
stopping the interface repository daemon.

Starting the interface repository
daemon

Run the interface repository daemon on the machine where the interface
repository runs. To start the interface repository:

1. Log in as root on UNIX, or as administrator on Windows.

2. Open a terminal or command window.

3. Enter itifr run.

4. Follow the directions for your platform:

Windows

Leave the command window open.

UNIX

Leave the terminal window open, or push the process into the
background and close the window.

Stopping the interface repository
daemon

itadmin ifr stop stops the interface repository daemon.
135

CHAPTER 7 | Managing an Interface Repository
Managing IDL Definitions

Overview Orbix includes an API that offers applications complete programmatic
control over managing and accessing IDL definitions in the interface
repository. Occasionally, you might require manual control to list definitions,
remove invalid definitions, and so on. This is especially useful during
application development and troubleshooting.

The interface repository has a structure that mirrors the natural containment
of the IDL types in the repository. Understanding these types and their
relationships is key to understanding how to use the interface repository.
Refer to the CORBA Programmer�s Guide for more information.

In this section This section provides information on using the interface repository to
perform the following tasks manually:

For a complete reference of the commands used to manage the interface
repository, see �Repository Management� on page 289.

Browsing Interface Repository Contents page 137

Adding IDL Definitions page 139

Removing IDL Definitions page 140
 136

Managing IDL Definitions
Browsing Interface Repository Contents

Overview This section shows how to use itadmin commands to perform these tasks:

� List the current container

� Display the containment hierarchy

� Navigate to other levels of containment

The foo.idl interface provides a simple example of containment, in which
interface Foo contains a typedef and two operations:

List the current container itadmin ifr list lists the specified or current container�s contents.

Display the containment hierarchy itadmin ifr show displays the entire containment hierarchy, beginning with
the current container. For example:

// Begin foo.idl

interface Foo {
 typedef long MyLong;
 MyLong op1();
 void op2();
};

itadmin ifr list
Foo/

itadmin ifr show Foo
 interface Foo
 {
 ::Foo::MyLong
 op1() ;
 typedef long MyLong;
 void
 op2() ;
 };
137

CHAPTER 7 | Managing an Interface Repository
Navigate to other levels of
containment

itadmin ifr cd lets you navigate to other levels of containment. For
example:

itadmin ifr cd Foo
itadmin ifr list
op1 MyLong op2
 138

Managing IDL Definitions
Adding IDL Definitions

Overview Adding IDL definitions to an interface repository makes application objects
available to other applications that have access to the same interface
repository.

Procedure You can add IDL definitions to the interface repository with the idl -R=-v
command, as follows:

1. Go to the directory where the IDL files are located.

2. Enter the following command:

Example The following example shows how to add a simple IDL interface definition to
the interface repository with the IDL command. The interface definition is:

The command to add this IDL definition to the interface repository is:

idl -R=-v filename

// Begin foo.idl

interface Foo {
 typedef long MyLong;
 MyLong op1();
 void op2();
};

$ idl -R=-v foo.idl
Created Alias MyLong.
Created Operation op1.
Created Operation op2.
Created Interface Foo.
$

139

CHAPTER 7 | Managing an Interface Repository
Removing IDL Definitions

Overview You might wish to remove IDL definitions from the interface repository when
they are invalid, or make them unavailable to other applications. To remove
an IDL definition, use itadmin ifr remove scoped-name.

Alternatively, to remove the entire contents of the interface repository, use
itadmin ifr destroy_contents.

Removing an IDL definition The following example removes the operation op2 from the foo.idl
definition:

Removing the entire contents of
the IFR

To remove the entire contents of the interface repository, use ifr
destroy_contents. This destroys the entire contents of the interface
repository, leaving the repository itself intact.

If you have loaded a very large number of IDL interfaces into the interface
repository, and then want destroy the contents of the IFR, you should first
increase the value of the following configuration variable:

plugins:pss_db:envs:ifr_store:lk_max

This variable specifies the maximum number of locks available to the
Berkeley DB. The default is 1000.

itadmin ifr list
Foo/
itadmin ifr cd Foo
itadmin ifr list
op1 MyLong op2
itadmin ifr remove op2
itadmin ifr list
op1 MyLong
itadmin ifr quit
 140

Managing IDL Definitions
The following example increases this value to 10000

This prevents the IFR from crashing with the following entry in the IFR log
file:

iona_services {
 ...
 ifr {
 ...
 plugins:pss_db:envs:ifr_store:lk_max = "10000";
 };
 };

ERROR: DB del failed; env is ifr_store, db is
IRObjectPSHomeImpl:1.0, errno is 12 (Not enough space)
141

CHAPTER 7 | Managing an Interface Repository
 142

CHAPTER 8

Managing the
Firewall Proxy
Service
The Orbix firewall proxy service provides an added layer of
security to your CORBA servers by placing a configurable proxy
between the server and its clients.

In this chapter This chapter discusses the following topics:

Orbix Firewall Proxy Service page 144

Configuring the Firewall Proxy Service page 145

Known Restrictions page 148
143

CHAPTER 8 | Managing the Firewall Proxy Service
Orbix Firewall Proxy Service

Overview The main goal of the firewall proxy service is to enable the firewall
administrator to reduce the number of ports that need to be opened to
enable access from clients outside the firewall to services inside the firewall.
To accomplish this the firewall proxy service creates and registers a proxy for
each POA created by a server using the service. The proxies then intercept
requests made by clients and forwards the requests on to the appropriate
server.

Server registration Any server using the firewall proxy service will exchange IOR template
information with the firewall proxy service during a registration process that
is kicked off by the creation of a POA. When a server creates a new POA,
the firewall proxy service creates a separate proxy which will forward client
requests.

Request forwarding When a server has registered with the firewall proxy service, it will generate
IORs that point clients to proxies managed by the firewall proxy service.
When a client invokes a request on one of these IORs, the request is
intercepted by the firewall proxy service. The firewall proxy service then uses
the stored template information to forward the request to the appropriate
server.

Persistence of registrations The firewall proxy service maintains a persistent store of registration
information. When the firewall proxy service initializes, it recreates the
bindings for any server that registered with the service during a previous
execution. This assures that server registration is persistent across many
executions of the firewall proxy service.
 144

Configuring the Firewall Proxy Service
Configuring the Firewall Proxy Service

Overview The firewall proxy service is designed to act as an application level proxy
mechanism for servers configured to utilize the service at run time.
Configuration from the server's point of view is trivial and only requires that
a plug-in be initialized in the ORB.

Configuring a server to use the
firewall proxy service

Any server that wishes to use the firewall proxy service needs to include the
firewall proxy plug-in to the list of plug-ins that are loaded for the server�s
ORB. You add the plug-in to the ORB�s plug-in list using itadmin. The
itadmin command is:

Once the firewall proxy plug-in has been added to the ORB�s plug-in list and
the firewall proxy service is running, the server will automatically register
with the firewall proxy service and the service will relay requests on the
client�s behalf.

For example, you could configure the typetest demo to use the firewall proxy
service. To do this complete the following steps:

1. Create a configuration scope for the typetest demo.

2. Add the ORB�s plug-in list to the scope.

3. Run the typetest demo server and specify the ORB name.

Java libraries To use Java services, such as trader, with the firewall proxy service, you
need to ensure that the firewall proxy service�s registration agent�s jar file,
fps_agent.jar, is added to the services CLASSPATH.

itadmin variable modify -scope ORBName -type list -value
iiop_profile,giop,iiop,fps orb_plugins

itadmin scope create typetest

itadmin variable create -scope ORBName -type list -value
iiop_profile,giop,iiop,fps orb_plugins

server -ORBname typetest
145

CHAPTER 8 | Managing the Firewall Proxy Service
Managing the number of proxies By default, the firewall proxy service imposes no restrictions on the number
of servers for which it will proxy requests. The maximum is a factor of
system resources. However, you can configure the firewall proxy service to
employ a least recently used (LRU) eviction algorithm to select which server
bindings to remove. The LRU eviction strategy has configurable soft and
hard limits that affect its behavior. The soft limit specifies the point at which
the firewall proxy service should proactively begin attempting to reclaim
resources. The hard limit specifies the point at which new registrations
should be rejected.

The limits are controlled by the following configuration variables:

Setting the hard limit to zero effectively disables the services resource
control features.

Disabling POA registration If you develop an application containing a number of �outward� facing
objects that you want to place behind the firewall proxy service as well as a
number of �inward� facing objects that do not need to be placed behind the
firewall proxy service, you can use the INTERDICTION POA policy.

The INTERDICTION policy controls the behavior of the firewall proxy service
plug-in, if it is loaded. The INTERDICTION policy has two settings:

The following code samples demonstrate how to set the INTERDICTION
policy on a POA. In the examples, the policy is set to DISABLE which
disables the proxification of the POA. For more information on POA policies
read the CORBA Programmer�s Guide.

fps:proxy_evictor:soft_limit
fps:proxy_evictor:hard_limit

ENABLE This is the default behavior of the firewall proxy service
plug-in. A POA with its INTERDICTION policy set to ENABLE
will be proxified.

DISABLE This setting tells the firewall proxy service plug-in to not
proxify the POA. POAs with their INTERDICTION policy set
to DISABLE will not use the firewall proxy service and
requests made on objects under its control will come
directly from the requesting clients.
 146

Configuring the Firewall Proxy Service
Java

C++

import com.iona.corba.IT_FPS.*;

// Create a PREVENT interdiction policy.
Any interdiction = m_orb.create_any();
InterdictionPolicyValueHelper.insert(interdiction,

InterdictionPolicyValue.DISABLE);

Policy[] policies = new Policy[1];
polices[0] = m_orb.create_policy(INTERDICTION_POLICY_ID.value,

interdiction);

// Create and return new POA.
return m_poa.create_POA("no_fps_poa", null, policies);

#include <orbix/fps.hh>

// Create a PREVENT interdiction policy.
CORBA::Any interdiction;
interdiction <<= IT_FPS::DISABLE;

CORBA::PolicyList policies(1);
policies.length(1);
policies[0] =

m_orb->create_policy(IT_FPS::INTERDICTION_POLICY_ID,
interdiction);

 // Create and return new POA.
return m_poa->create_POA("no_fps_poa", 0, policies);
147

CHAPTER 8 | Managing the Firewall Proxy Service
Known Restrictions
The current implementation of the firewall proxy service has the following
known restrictions:

� There have are problems using the firewall proxy service and POA
collocated calls on UNIX platforms. Calls which should be collocated
are being routed through the firewall proxy service in a CORBA
mediated call and the call being blocked. The work-around is to
remove POA_Coloc from the client_binding_list configuration
parameter.

� Transport Layer Security (TLS) is not supported by the firewall proxy
service. This means that the firewall proxy service does not work with
Iona�s IS2 security infastructure or any other systems that use TLS.

� The J2EE portion of your systems cannot be hidden behind a proxy.
 148

CHAPTER 9

Managing Orbix
Service Databases
This chapter explains how to manage databases that store
persistent data about Orbix services. It explains the Berkeley
DB database management system embedded in Orbix.

A number of Orbix services maintain persistent information (for example, the
locator daemon, node daemon, naming service, IFR and CFR). By default,
these Orbix services use an embedded Berkeley DB database management
system. Typically, Berkeley DB requires little or no administration. The
default settings are sufficient for most environments. Tasks that you might
want to perform include performing checkpoints, and managing backups,
recoveries and log files.

In this chapter This chapter contains the following sections:

Berkeley DB Environment page 150

Performing Checkpoints page 151

Managing Log File Size page 152

Troubleshooting Persistent Exceptions page 153

Database Recovery for Orbix Services page 154

Replicated Databases page 159
149

CHAPTER 9 | Managing Orbix Service Databases
Berkeley DB Environment

Overview A Berkeley DB environment consists of a set of database files and log files.
In Orbix, only a single Berkeley DB environment can be used by one process
at a time. Multiple processes using the same Berkeley DB environment
concurrently can lead to crashes and data corruption. This means that
different Orbix services must use different Berkeley DB environments.

This section explains Berkeley DB environment file types and how they
should be stored.

Berkeley DB environment files A Berkeley DB environment consists of two kinds of files:

Data files contain the real persistent data. By default, these files are stored
in the data subdirectory of the Berkeley DB environment home directory.
For example:

install-dir\var\domain-name\dbs\locator\data

Transaction log files record changes made to the data files using
transactions. By default, these files are stored in the logs subdirectory of the
Berkeley DB environment home directory. For example:

install-dir\var\domain-name\dbs\locator\logs

All Orbix services use only transactions to update their persistent data.

Transaction log files can be used to recreate the data files (for example, if
these files are corrupted or accidently deleted).

Storing environment files To maximize performance and facilitate recovery, store all the Berkeley DB
environment files on a file system that is local to the machine where the
Berkeley DB environment is used.

Log files are of more value than data files because data files can be
reconstructed from log files (but not vice-versa). Using different disks and
disk controllers for the data and the log files further facilitates recovery.
 150

Performing Checkpoints
Performing Checkpoints

Overview The Berkeley DB transaction logs must be checkpointed periodically to force
the transfer of updates to the data files, and also to speed up recovery. By
default, each Orbix service checkpoints the transaction logs of its Berkeley
DB environment every 15 minutes.

Using configuration variables You can control checkpoint behavior using the following configuration
variables:

plugins:pss_db:envs:env_name:checkpoint_period
plugins:pss_db:envs:env_name:checkpoint_min_size

For example, the following variable sets the checkpoint period for the locator
database to 10 minutes.

plugins:pss_db:envs:locator:checkpoint_period = 10;

For more information, see the section on the plugins:pss_db namespace in
the Configuration Reference Guide.

Using the command line You can also checkpoint the transaction logs of a Berkeley DB environment
using the itadmin command. For example:

itadmin pss_db checkpoint env-home/env.ior

For more information, see �Persistent State Service� on page 369.
151

CHAPTER 9 | Managing Orbix Service Databases
Managing Log File Size

Setting log file size The Berkeley DB transaction logs are not reused. They grow until they reach
a specified level. By default, a transaction log file grows until its size reaches
10 MB. Berkeley DB then creates a new transaction log file.

You can control the maximum size of transaction log files using the following
configuration variable:

lg_max is measured in bytes and its value must be to the power of 2.

Deleting and archiving old log files When a transaction log file does not contain any information pertaining to
active transactions, it can be archived or deleted by either of the following:

Using configuration settings By default, each Orbix service checks after
each periodic checkpoint to see if any transaction log files are no longer
used. By default, old log files are then deleted. You can disable the deletion
of old log files by setting the following configuration variable to false:

plugins:pss_db:envs:env_name:checkpoint_deletes_old_logs

Old log files can also be archived (moved to the old_logs directory). To
archive old log files, set the following variable to true:

plugins:pss_db:envs:env_name:checkpoint_archives_old_logs

Using itadmin commands You can also delete or archive the old
transaction logs of a Berkeley DB environment using itadmin commands:

For more information, see �Persistent State Service� on page 369.

plugins:pss_db:envs:env_name:lg_max

itadmin pss_db archive_old_logs env-home/env.ior
itadmin pss_db delete_old_logs env-home/env.ior

WARNING: Deleting old transaction log files can make recovery from a
catastrophic failure impossible. See �Database Recovery for Orbix
Services� on page 154.
 152

Troubleshooting Persistent Exceptions
Troubleshooting Persistent Exceptions

Overview This section explains what has happened if you received a PERSIST_STORE
exception from your Orbix service, and how to recover.

PERSIST_STORE exception When you see an IDL:omg.org/CORBA/PERSIST_STORE:1.0 error from an
Orbix service, it typically means that the service's persistent storage has
become corrupted. The exception is usually accompanied with a minor code
representing a Persistent State Service (PSS) exception (for example,
IT_PSS_DB). Such an error is usually caused by some form of corruption in
the underlying database. This corruption can be caused by the following:

� There is limited space on the disk for the underlying database files, and
thus it is no longer possible to log transactions. If you find this to be
the problem, free disk space immediately and restart the service.

� A service has been shutdown ungracefully (without using the
stop_<domain_name>_services scripts). For example, this could be
caused by executing kill -9 on the service. This can possibly cause
corruption on the database due to unfinished transactions.

� You have put your Orbix services databases on an NFS mounted drive,
which is either not available, or your machine�s NFS client might have
a problem.

When the IDL:omg.org/CORBA/PERSIST_STORE:1.0 error occurs, contact
IONA support with a copy of logs that show the exact exception, and a
description of any unusual activity that may have led up to the problem.

How to recover from a
PERSIST_STORE error

To recover from the PERSIST_STORE error, it is likely you will need to recover
the most recent stable state of your underlying database. If precautions are
taken beforehand, your system can be brought back to this stable state with
minimal downtime. It is important to determine the level of recovery that is
acceptable within your production environment.

For example, you may wish to recover all data prior to the system going
down. Alternatively, there may not be as much concern for loss of data, and
it may be satisfactory to simply get back to a stable state such that the
services can be restarted.
153

CHAPTER 9 | Managing Orbix Service Databases
Database Recovery for Orbix Services

Overview Each time you start an Orbix service that uses Berkeley DB, the service
performs a normal recovery. If the service was stopped in the middle of an
update, the transaction is rolled back, and the service persistent data is
restored to a consistent state.

In some cases, however, the data files or the log files are missing or
corrupted, and normal recovery is not sufficient. Then you must perform a
catastrophic recovery. This section explains how to back up your data and
log files and perform a full or incremental recovery. It includes the following:

� �Full backup�.

� �Performing a full backup�.

� �Full backup recovery�.

� �Incremental backup�.

� �Enabling incremental backup�.

� �Performing an incremental backup�.

� �Performing an incremental recovery�.

Full backup It is important that you archive a stable snapshot of your services database,
which can be used in case a recovery is needed. This is referred to as a full
backup and can be performed by making a backup of the entire dbs
directory. The purpose of this backup is that if a PERSIST_STORE error occurs
for any Orbix services, you can replace the corrupted directory with the
backup. The services should then start without a problem.

The backup can be made at any time. The only requirement is that the
service be in a stable state (can run and function without errors). You can
take the backup directly after configuring your domain, or after the system
has been running for a while. The backup that you make will determine the
snapshot that your system will return to in the case of a recovery. For
example, if you have numerous entries into the IMR (registered POAs,
ORBs, and so on), you may wish to add these entries before backing up the
locator database. This prevents you from having to do the extra
re-configuration if you ever need to recover.
 154

Database Recovery for Orbix Services
Performing a full backup To do a full backup, perform the following steps:

1. You must first disable the default periodic deletion and/or archival of
old log files during the period while you are backing up the database
To disable run the following command:

itadmin pss_db pre_backup env.ior

The env.ior represents a handle to the database. Each service should
have its corresponding env.ior file within the dbs/<service name>.

2. Make a backup of the following directories

dbs/<service name>/data directory
dbs/<service name>/ logs directory

Store these backups in a safe location. After a successful full backup,
you can discard older full backups (if any).

3. Re-enable the default periodic deletion and/or archival of old log files:

itadmin pss_db post_backup env.ior

Full backup recovery To do a full backup recovery, perform the following steps:

1. Determine which service is failing on startup.

2. Ensure that your Orbix services are stopped.

3. Make a temporary backup the dbs/<service_name> directory for the
service you wish to recover.

4. Delete the dbs/<service_name> directory for the service you wish to
recover.

5. Replace the deleted dbs/<service_name> directory in your
environment with the latest full backup of this directory.

6. Restart the services.

The environment should now be in the state that it was in at the time the
last full backup was performed.

Note: If you can bring the services down before doing the backup, you
can skip the first step. If you have a live system, and are unable to bring
down the services, you can do a backup while the services are running.
155

CHAPTER 9 | Managing Orbix Service Databases
Incremental backup You should determine whether you also need to do regular incremental
backups. Generally, these are performed in an environment that requires a
large amount of additional configuration beyond initial domain creation, or
undergoes constant changes to the configuration. For example, it might
make sense to do incremental backups of the locator database in an
environment where POA and ORB names are being created or modified
constantly, and you need to be able to recover to the most recent state
possible. Similarly, if the naming service is constantly undergoing changes
of objects references, naming contexts, and so on, and any recovery needs
to reflect the most recent state of the underlying database. Another
candidate would be for a configuration repository where variables are added
or modified regularly.

Enabling incremental backup If you determine that you need to do regular incremental backups, you
should perform the following steps first. These steps apply to the locator,
but similarly can be applied to naming service, CFR, and so on.

1. To enable incremental backup, you should tell the service not to
automatically delete old log files. By default, old log files are
automatically deleted when it is determined the log file is no longer
being used. To disable this default behavior, set the following
configuration variable:

plugins:pss_db:envs:it_locator:checkpoint_deletes_old_logs =
�false�

You can easily apply this to other services by changing it_locator to
another service (for example, it_naming).

2. To enable the automatic archival of old log files, set the following
configuration variable:

plugins:pss_db:envs:it_locator:checkpoint_archives_old_logs

This will specify whether old log files are automatically archived to the
old_logs directory. To archive old log files, set this variable to true.
This defaults to false.

3. To specify where the old log files get archived to, set a value for the
following:

plugins:pss_db:envs:it_locator:old_logs_dir =
"<path/to/old_logs>"
 156

Database Recovery for Orbix Services
The path is usually set relative to db_home directory. You must ensure
you have sufficient space in the above directory, and also, in the
location specified by:

plugins:pss_db:envs:it_locator:db_home

Performing an incremental
backup

The following assumes that you have previously performed a complete
backup (see �Full backup� on page 154) at least once in your environment.
An incremental backup performs a backup of the log files that have changed
or have been created since the last full or incremental backup.

On a predetermined schedule (once a day or week), do a incremental
backup of each service as follows:

1. Disable the default periodic deletion and/or archival of old log files
during the period while you are doing an incremental backup of the
database. To disable, run the following command:

itadmin pss_db pre_backup env.ior

The env.ior represents a handle to the database. Each service should
have its corresponding env.ior file within the dbs/<service name>.

2. Make a backup of files (if any) in <service_name>/old_logs directory.
When you have made the backup, it is then safe to remove the
contents of the <service_name>/old_logs directory in your production
database.

3. Make a backup of the <service_name>/logs directory. This contains
the most recent (current) transaction log.

Performing an incremental
recovery

The following explains the steps needed to recover if data and/or log files
have been corrupted. These steps assume you have taken regular
incremental backups as described in �Incremental backup� on page 156.
Perform the following steps:

1. Determine which service is failing on startup.

2. Ensure that your Orbix services are stopped.

Note: It is critical to the stability of your system that you have sufficient
space in these locations to hold the database files and transaction logs for
the service.
157

CHAPTER 9 | Managing Orbix Service Databases
3. Make a temporary backup the dbs/<service_name> directory for the
service you wish to recover.

4. Delete the dbs/<service_name> directory for the service you wish to
recover.

5. Replace the deleted dbs/<service_name> directory in your
environment with the latest full backup of this directory (see �Full
backup recovery� on page 155).

6. In the order of oldest to the newest, copy the files from
<service_name/old_logs and <service_name>/logs from each
incremental backup. Put the incremental backup versions of the log
files in <service_name/old_logs and <service_name>/logs into the
dbs/<service_name>/logs directory of your environment.

7. Set the following configuration variable to true:

plugins:pss_db:envs:env_name:recover_fatal

8. Start the Orbix services.

9. Set the following configuration variable to false:

plugins:pss_db:envs:env_name:recover_fatal

The environment should now be in the state it was in when the last archived
log file was written. These steps apply to the locator but similarly can be
applied to naming service, CFR, and so on.

Further information For more information, SleepyCat Software provides full details of Berkeley
DB administration at http://www.sleepycat.com/docs/.
 158

http://www.sleepycat.com/docs

Replicated Databases
Replicated Databases

Overview The Berkeley DB supports replicated databases using the master-slave
model with automatic promotion of slaves. The following Orbix services use
this functionality to increase their availability:

� Locator daemon

� Naming service

� Configuration repository

Using configuration variables You can control replicated databases with the following configuration
variables:

For more details, see plugins:pss_db:envs:env-name in the Orbix
Configuration Reference.

Using the command line You can examine the state of a replicated database and remove replicas
using the itadmin commands. For example:

For more details on these commands, see �Persistent State Service� on
page 369.

pss_db:envs:env-name:allow_minority_master
pss_db:envs:env-name:always_download
pss_db:envs:env-name:election_backoff_ratio
pss_db:envs:env-name:election_delay
pss_db:envs:env-name:election_init_timeout
pss_db:envs:env-name:init_rep
pss_db:envs:env-name:master_heartbeat_interval
pss_db:envs:env-name:max_elections
pss_db:envs:env-name:replica_priority

itadmin pss_db list_replicas env-home/env.ior
159

http://www.iona.com/support/docs/orbix/6.2/admin/config_ref/index.html
http://www.iona.com/support/docs/orbix/6.2/admin/config_ref/index.html

CHAPTER 9 | Managing Orbix Service Databases
 160

CHAPTER 10

Configuring Orbix
Compression
This chapter explains how to configure the Orbix ZIOP
compression plug-in. This can enable significant performance
improvements on low bandwidth networks.

In this chapter This chapter includes the following topics

Introduction page 162

Configuring Compression page 164

Example Configuration page 168

Message Fragmentation page 170.
161

CHAPTER 10 | Configuring Orbix Compression
Introduction

Overview The Orbix ZIOP compression plug-in provides optional
compression/decompression of GIOP messages on the wire. Compressed
and uncompressed transports can be mixed together. This can enable
significant performance improvements on low bandwidth networks.

These performance improvements depend on the network and the message
data. For example, if the requests contain already compressed data, such as
.jpeg images, there is virtually no compression. However, with repetitive
string data, there is good compression.

ZIOP stands for Zipped Inter-ORB Protocol, which is an proprietary IONA
feature. Figure 15 shows a simple overview of ZIOP compression in a
client-server environment.

Figure 15: Overview of ZIOP Compression

Client Host Server Host

ObjectClient

ZIOP Compression

GIOP message
 162

Introduction
Implementation Orbix ZIOP compression has been implemented in both C++ and Java and
is available on all platforms. The Orbix compression plug-in (ziop) supports
the following compression algorithms:

� gzip

� pkzip

� bzip2

The compression is performed using a configurable compression library.
Compression can be configured on a per-ORB basis, and also on a
per-binding basis (using ORB policies).

Per-ORB settings can be made in the client or server scope of your
configuration file (described in this chapter). More fine grained per-binding
settings can be made programmatically (see the Orbix CORBA
Programmer�s Guide for details).

Additional components The following Orbix components have also been updated for ZIOP
compression:

� The giop_snoop plug-in has been updated to detect ZIOP compressed
messages.

� The iordump tool has been updated to parse the new IOR component
for ZIOP compression.
163

CHAPTER 10 | Configuring Orbix Compression
Configuring Compression

Overview Orbix uses symbolic names to configure plug-ins and then associates them
with a Java or a C++ implementation. The compression/decompression
plug-in is named ziop. This is implemented in Java by the
com.iona.corba.ziop.ZIOPPlugIn class, and in C++ by the it_ziop
shared library.

This section shows how to configure the behavior of the compression plug-in
for your client or servers. It includes the following:

� �Configuring the ziop plug-in�.

� �Configuring binding lists�.

� �Enabling compression�.

� �Setting the compression algorithm�.

� �Setting the compression level�.

� �Setting the compression threshold�.

Configuring the ziop plug-in To configure the ziop plug-in, perform the following steps:

1. Ensure that the following entries are present in your Orbix configuration
file:

2. Include the ziop plug-in the ORB plug-ins list:

For example:

Note: These settings must be added to your client or server configuration
scope, as appropriate.

plugins:ziop:shlib_name = "it_ziop";
plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";

orb_plugins = [.... "ziop" ...];

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"ziop", "iiop"];
 164

Configuring Compression
Configuring binding lists To enable compression/decompression for CORBA IIOP communication,
ensure that your binding lists contain the following entries.

For clients:

For servers:

The client or server binding lists can be much more complicated than these
simple examples, although these are adequate for compressed GIOP/IIOP
communication. Here is an example of more complex binding lists:

Enabling compression To enable or disable compression, use the
policies:ziop:compression_enabled configuration variable. For example:

The default value is true. This means that even when this entry does not
appear in the configuration, compression is enabled. However, the ziop
plug-in must first be loaded in the orb_plugins list, and selected by a server
or client binding.

binding:client_binding_list = ["GIOP+ZIOP+IIOP"];

plugins:giop:message_server_binding_list = ["ZIOP+GIOP"];

binding:client_binding_list = ["OTS+GIOP+ZIOP+IIOP_TLS",
"CSI+GIOP+ZIOP+IIOP_TLS", "GIOP+ZIOP+IIOP_TLS",
"CSI+GIOP+ZIOP+ZIOP+IIOP", "GIOP+ZIOP+IIOP"];

plugins:giop:message_server_binding_list = ["BiDir_GIOP",
"ZIOP+GIOP", "GIOP"];

policies:ziop:compression_enabled = "true";
165

CHAPTER 10 | Configuring Orbix Compression
Setting the compression algorithm The default compression algorithm can be set using the
policies:ziop:compressor_id configuration variable. For example:

Possible values are as follows:

If this configuration variable is not specified, the default value is 1 (gzip
compression).

The ZIOP compression plug-in can be extended with additional compression
algorithms using the IT_ZIOP::CompressionManager API. See the Orbix
CORBA Programmer's Guide for details.

Setting the compression level To set compression levels, use the
policies:ziop:compressor:compressor_id:level variable.

Using this variable, you can specify the compression level for each of the
algorithms registered in the ziop plug-in. The permitted values are specific
to the selected algorithm. For example:

For the gzip and pkzip algorithms, possible values are in the range between
0 (no compression) and 9 (maximum compression). The default value is 9.

For the bzip2 algorithm, (compressor_id = 3), possible values are in the
range between 1 (least compression) and 9 (maximum compression). The
default value is 9.

policies:ziop:compressor_id = "1";

1 gzip algorithm

2 pkzip algorithm

3 bzip2 algorithm

policies:ziop:compressor:1:level = "9";
 166

Configuring Compression
Setting the compression threshold The compression threshold defines the message size above which
compression occurs.

To specify the minimum message size that is compressed, use the
policies:ziop:compression_threshold variable. For example:

Using this setting, messages smaller than 50 bytes are not compressed.The
default setting is 0, which means that all messages are compressed.

If you set this to a negative value, the compression threshold is equal to
infinity, which means that messages are never compressed. This can be of
use if you want to enable compression in one direction only. For example,
you can compress messages sent from the server to the client, while in the
other direction, messages from the client to the server remain
uncompressed.

policies:ziop:compression_threshold = "50";
167

CHAPTER 10 | Configuring Orbix Compression
Example Configuration

Overview This section shows some example compression configurations. It includes
the following:

� �Standard ziop configuration�.

� �Debug configuration with giop_snoop�.

Standard ziop configuration The following example shows a standard compression configuration in the
ziop_test configuration scope:

Depending on the particular circumstances, these settings must be added to
the client or the server scope, as appropriate.

If you do not use a scope for your client or server, you can put the settings
into the global scope, however, this is not recommended.

ziop_test {
#These settings are necessary for the ziop plug-in
plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";
plugins:ziop:shlib_name = "it_ziop";
orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"ziop", "iiop"];
binding:client_binding_list = ["GIOP+ZIOP+IIOP"];
plugins:giop:message_server_binding_list = ["ZIOP+GIOP"];

#These settings are optional
policies:ziop:compression_enabled = "true";
policies:ziop:compressor_id = "1";
policies:ziop:compression_level = "9";
policies:ziop:compression_threshold = "80";
};
 168

Example Configuration
Debug configuration with
giop_snoop

The following example shows a debug configuration using the giop_snoop
plug-in:

Using this configuration, you can trace the compression/decompression
behavior. The giop_snoop plug-in logs the parameters to standard out
before or after the ziop plug-in (depending on its position before or after the
ZIOP plug-in).

To send the output to a file instead of standard out, use the following
setting:

ziop_test {

plugins:ziop:ClassName = "com.iona.corba.ziop.ZIOPPlugIn";
plugins:ziop:shlib_name = "it_ziop";

plugins:giop_snoop:shlib_name = "it_giop_snoop";
plugins:giop_snoop:ClassName =

"com.iona.corba.giop_snoop.GIOPSnoopPlugIn";

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"giop_snoop", "ziop", "iiop"];

binding:client_binding_list = ["GIOP+ZIOP+GIOP_SNOOP+IIOP"];
plugins:giop:message_server_binding_list =

["GIOP_SNOOP+ZIOP+GIOP"];

event_log:filters = ["IT_GIOP=*"];
policies:ziop:compression_enabled = "true";
policies:ziop:compressor_id = "1";
policies:ziop:compression_level = "9";
policies:ziop:compression_threshold = "80";
};

plugins:local_log_stream:filename = "c:\temp\test.log";
169

CHAPTER 10 | Configuring Orbix Compression
Message Fragmentation

Overview The GIOP/IIOP protocol from version 1.1 can fragment messages. The
default setting for Orbix is to use message fragmentation. The default
fragment size is 16 KB.

This is relevant to the ziop plug-in, because the compression algorithm can
access at most a single fragment at a time. The compression plug-in
therefore operates at the granularity of a single fragment. In this way,
message fragmentation can potentially have a large effect on the
compression rate.

Increasing message fragment size Depending on the structure of your data, it might make sense to increase the
fragment size so that the compression algorithm is optimized for larger
blocks of data. You can configure the fragment size using the
policies:iiop:buffer_sizes_policy:default_buffer_size configuration
variable. For example:

This sets the fragment size to 64 KB.

Fragmentation example Only the overall message size is transmitted. For example, if the message is
only 4 KB, only these 4 KB are transmitted. Only if the message is larger
than the maximum fragment size will it be transmitted in fragments.

For example, if the maximum fragment size is 16 KB. And the message size
is 44 KB. The message will be sent in fragments of 16 KB, 16 KB, and 12
KB.

policies:iiop:buffer_sizes_policy:default_buffer_size = "65536";
 170

CHAPTER 11

Configuring
Advanced
Features
This chapter explains some how to configure advanced
features such as Java new I/O, shared memory, and
bidirectional GIOP.

In this chapter This chapter includes the following topics

Configuring Java NIO page 172

Configuring Shared Memory page 174

Configuring Bidirectional GIOP page 176
171

CHAPTER 11 | Configuring Advanced Features
Configuring Java NIO

Overview Java�s new I/O (NIO) provides enhanced connection scalability. It enables
you to manage more connections with fewer resources (specifically, fewer
threads). This section includes the following:

� �ATLI2/Java NIO�.

� �Requirements�.

� �Enabling Java NIO�.

� �Further information�.

ATLI2/Java NIO IONA�s current transport layer implementation is called the Abstract
Transport Layer Interface, version 2 (ATLI2). Orbix offers an ATLI2
implementation based on Java NIO. The default ATLI2 plugin is based on
Java classic I/O (CIO).

In addition to allowing more connections to be managed with fewer threads,
ATLI2/Java NIO also performs better than ATLI2/Java CIO in the presence of
many incoming connections.

Requirements To use ATLI2/Java NIO, you must have JDK version 1.4.x installed.

Note: Applications that use either Transport Layer Security (TLS) or
Endpoint Granularity Multicast Inter-ORB Protocol (EGMIOP) must use the
default Java CIO. Java NIO does not support Java Secure Socket
Extensions (JSSE) or multicast sockets.
 172

Configuring Java NIO
Enabling Java NIO To enable Java NIO, change the plugins:atli2_ip:ClassName
configuration variable setting from the following:

to the following:

Further information For more information about Java NIO, see the Sun web site:

http://java.sun.com/j2se/1.4.1/docs/guide/nio/

plugins:atli2_ip:ClassName
=com.iona.corba.atli2.ip.cio.ORBPlugInImpl

plugins:atli2_ip:ClassName
=com.iona.corba.atli2.ip.nio.ORBPlugInImpl
173

http://java.sun.com/j2se/1.4.1/docs/guide/nio/

CHAPTER 11 | Configuring Advanced Features
Configuring Shared Memory

Overview Shared memory is an inter-process communication mechanism, available on
certain operating systems. It provides an efficient means of passing data
between programs that are executing on the same host. One process creates
a memory portion that other processes can access.

When the client and server are located on the same host, using shared
memory to communicate is usually faster than using network calls. This
section includes the following:

� �Shared memory segment size�.

� �Enabling shared memory�.

� �Shared memory logging�.

� �Shared memory segment size�.

Platform availability The shared memory plug-in is available for C++ ORBs on the following
platforms:

� Solaris

� HP-UX

� Windows

Enabling shared memory Orbix provides the shmiop transport plugin, which uses shared memory as
its underlying communication mechanism.

To use shared memory with Orbix, perform the following steps:

1. Modify the orb_plugins list in your configuration to include the
SHMIOP plugin. For example:

Note: Java ORBs can not read their orb_plugins list if it specifies the
shared memory plug-in. For this reason, a shared memory configuration
domain should not be shared between C++ and Java ORBs.

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "shmiop"];
 174

Configuring Shared Memory
2. On the client side, add the shmiop plugin to the client_binding_list,
for example:

When the client_binding_list is set, Orbix first attempts to bind to
the server using the faster shared memory transport. If this is
unsuccessful�for example, if the server is not on the same host as the
client�Orbix then uses the standard IIOP transport as normal.

Shared memory logging To enable logging output from the shared memory plugin, turn on the log
stream, and add the following filter in your configuration:

IONA�s transport layer implementation is referred to as the Abstract
Transport Layer Interface, version 2 (ATLI2).

Shared memory segment size You can configure the size of the shared memory segment created (for
example, in the call to mmap on Solaris). You can set this using the following
configuration variable:

The default value is 8*1024*1024. This size should be larger than the largest
data payload passed between a client and server. If the setting is too small,
the shared memory transport will run out of memory, and will be unable to
marshal the data. If there is danger of this occurring, add GIOP+IIOP to your
client_binding_list setting. This enables the ORB to use the normal
network transport if a large payload can not make it through shared
memory.

Further information For information on additional shared memory configuration variables, see
the plugin:atli2_shm and policies:shmiop namespaces in the
Configuration Reference. The default configuration settings are sufficient for
most cases.

binding:client_binding_list = ["GIOP+SHMIOP", "GIOP+IIOP"];

event_log:filters = ["IT_ATLI2_SHM=*"];

plugin:atli2_shm:shared_memory_size
175

CHAPTER 11 | Configuring Advanced Features
Configuring Bidirectional GIOP

Overview This section explains how to set up your system to use bidirectional GIOP.
This allows callbacks to be made using a connection opened by the client,
instead of requiring the server to open a new connection for the callback.

Bidirectional GIOP is decoupled from IIOP, and is applicable over arbitrary
connection-oriented transports (for example, IIOP/TLS or SHMIOP).
Bidirectional GIOP may be used regardless of how the callback IOR is
passed to the server. For example, it can be passed over an IDL interface,
using a shared file, or using a naming or trader service.

GIOP specifications Orbix supports bidirectional GIOP (General Inter-ORB Protocol), as
described in the firewall submission:

http://www.omg.org/docs/orbos/01-08-03.pdf.

As originally specified, GIOP connections were restricted to unidirectional.
This proved to be very inconvenient in certain deployment scenarios where
the callback pattern was in use, and clients could not accept incoming
connections (for example, due to sandbox restrictions on Java applets, or
the presence of client-side firewalls). This restriction was relaxed for GIOP
1.2, allowing bidirectional connections to be used under certain conditions.

This section includes the following:

� �Enabling Bidirectional GIOP� on page 177.

� �Migration and Interoperability Issues� on page 180.
 176

http://www.omg.org/docs/orbos/01-08-03.pdf

Configuring Bidirectional GIOP
Enabling Bidirectional GIOP

Overview Bidirectional GIOP is enabled by overriding policies in the client and server
applications. To enable bidirectional GIOP, perform the following steps:

1. �Set the export policy to allow�.

2. �Set the offer policy to allow�.

3. �Set the accept policy to allow�.

Set the export policy to allow The POA used to activate the client-side callback object must have an
effective BiDirPolicy::BiDirExportPolicy set to BiDirPolicy::ALLOW.
You can do this programmatically by including this policy in the list that is
passed to POA::create_POA(). Alternatively, you can do this in
configuration, using the following setting:

This results in including an IOP::TAG_BI_DIR_GIOP component in the
callback IOR. This indicates that bidirectional GIOP is enabled and
advertising a GIOP::BiDirId generated for that POA.

If necessary, you can control the lifespan of the BiDirId by using the
proprietary IT_BiDirPolicy::BiDirIdGenerationPolicy, either allowing
random or requiring repeatable IDs be generated. This is only an issue if the
callback POA is persistent, in which case repeatable IDs are required. This
would be unusual because callbacks are usually purely transient, in which
case the default BiDirIdGenerationPolicy is appropriate.

Set the offer policy to allow A bidirectional offer is triggered for an outgoing connection by setting the
effective BiDirPolicy::BiDirOfferPolicy to ALLOW for an invocation. This
policy may be overridden in the usual way�in descending order of

policies:giop:bidirectional_export_policy="ALLOW";

Note: Setting policies programatically gives more fine-grained control
than setting policies in configuration. See �Implications for pre-existing
application code� on page 180 for more details.
177

CHAPTER 11 | Configuring Advanced Features
precedence, either on the object reference, current thread, ORB policy
manager. Alternatively, you can do this in configuration, using the following
setting:

The client_policy demo illustrates the different ways of overriding client
policies. This results in an IOP::BI_DIR_GIOP_OFFER service context being
passed with the request, unless the policies effective for the callback POA
conflict with the outgoing connection (for example, if the former requires
security but the latter is insecure).

Set the accept policy to allow On the server side, the effective BiDirPolicy::BiDirAcceptPolicy for the
callback invocation must be set to ALLOW. You can do this in configuration,
using the following setting:

This accepts the client's bidirectional offer, and uses an incoming
connection for an outgoing request, as long the policies effective for the
invocation are compatible with the connection.

Confirming bidirectional GIOP is
in use

The simplest way to check that bidirectional GIOP is in use is to examine
your log file. First, ensure that the level configured for the IT_GIOP
sub-system includes INFO_LOW events, for example:

For each client binding established, LocateRequest/Request and/or
LocateReply/Reply sent or received in the bidirectional sense, the log
message includes a [bidirectional] suffix.

You can also use the iordump utility to check that the TAG_BI_DIR_GIOP
component is present in the callback IOR. For information on using iordump,
see Appendix 15 on page 217.

Server and client binding lists In a generated configuration domain, by default, your client and server
binding lists are set to include BiDir_GIOP. You do not have to configure
these configuration settings manually. The default settings are explained as
follows:

policies:giop:bidirectional_offer_policy="ALLOW";

policies:giop:bidirectional_accept_policy="ALLOW";

event_log:filters = ["IT_GIOP=INFO_LOW+WARN+ERROR+FATAL", ...];
 178

Configuring Bidirectional GIOP
� On the server-side, the binding:client_binding_list includes an
entry for BiDir_GIOP, for example:

This enables the existing incoming message interceptor chain to be
re-used, so that the outgoing client binding dispatches the callback
invocation.

� On the client-side, the plugins:giop:message_server_binding_list
includes an entry for BiDir_GIOP, for example:

This enables the existing outgoing message interceptor chain to be
re-used for an incoming server binding.

 binding:client_binding_list = ["OTS+BiDir_GIOP",
"BiDir_GIOP", "OTS+GIOP+IIOP", "GIOP+IIOP", ...];

plugins:giop:message_server_binding_list=
["BiDir_GIOP","GIOP"];
179

CHAPTER 11 | Configuring Advanced Features
Migration and Interoperability Issues

Overview This section includes the following bidirectional GIOP issues:

� �Implications for pre-existing application code�.

� �Incompatible ORBs�.

� �Interoperability with Orbix 3�.

� �Orbix 6.x restrictions�.

Implications for pre-existing
application code

There are no implications for existing applications that do not need
bidirectional GIOP. This feature is disabled by default.

Otherwise, the code impact can be minimized by setting the relevant
policies using configuration, as explained �Enabling Bidirectional GIOP� on
page 177. However, this is quite a coarse grained approach, and often its
not necessary or desirable to enable bidirectional GIOP for the entire ORB.
The recommended approach is to selectively override the relevant
programmatic policies in a fine-grained manner on exactly those elements
(POAs, ORBs, threads, object references) that require it.

Also, currently existing persistent callback IORs (for example, those bound
in the naming service) must be regenerated to include the TAG_BI_DIR_GIOP
component. However, this is unlikely to impact many real applications as
callback references are usually transient and regenerated every time the
client application is run.

Incompatible ORBs There are several incompatible bidirectional schemes in use. For example,
Orbacus uses a proprietary mechanism, and several commercial and open
source ORBs support the soon-to-be obsolete bidirectional standard; while
Orbix 2000 and Orbix E2A 5.x/6.0 do not have any analogous functionality.

All of these schemes are mutually incompatible and non-interoperable.
Hence, Orbix 6.x reverts to unidirectional GIOP when interoperating with
any of these ORBs.
 180

Configuring Bidirectional GIOP
Interoperability with Orbix 3 Orbix 6.x includes support for interoperability with Orbix 3.x (Generation 3).
This enables an Orbix 6.x server to invoke on an Orbix 3.x callback reference
in a bidirectional fashion. To configure interoperability with Orbix 3.x,
perform the following steps:

1. Set the IT_BiDirPolicy::BidirectionalGen3AcceptPolicy to ALLOW.
This is a proprietary policy analogous to
BiDirPolicy::BidirectionalAcceptPolicy. It enables an Orbix 6.x
server to accept an Orbix 3.x bidirectional offer.

You can do this either programmatically or using the following
configuration setting:

2. Include the appropriate BiDir_Gen3 entry in the server's configured
binding:client_binding_list. For example,

For more details, see �Server and client binding lists� on page 178.

Orbix 3 restrictions The following restrictions apply to bidirectional GIOP in
Orbix 3:

� Orbix 3 bidirectional callback references may only be passed to the
server as a request parameter. Orbix 6.x bidirectional callback
references can be passed in any way (for example, using the naming
service, or a shared file).

� Orbix 3 bidirectional callback references may only be invoked on in a
bidirectional fashion during the lifetime of the connection over which it
was received. Orbix 6.x bidirectional invocations may be made after
the connection is reaped by Active Connective Management and
re-established.

The Orbix 6.x and Orbix 3 bidirectional mechanisms will co-exist peacefully.
An incoming connection can only be considered for bidirectional invocations
by, at most, one of the two schemes, depending on whether the client is
based on Orbix 6.x or Orbix 3.x.

policies:giop:bidirectional_gen3_accept_policy="ALLOW";

binding:client_binding_list =
["OTS+BiDir_GIOP", "BiDir_GIOP", "BiDir_Gen3",

"OTS+GIOP+IIOP", "GIOP+IIOP", ...];
181

CHAPTER 11 | Configuring Advanced Features
Orbix 6.x restrictions Orbix 6.x includes the following restrictions:

� Orbix 6.x support for Orbix 3 bidirectional GIOP is asymmetric. An
Orbix 6.x server can invoke on a Orbix 3 callback reference using
bidirectional GIOP. However, an Orbix 6.x client can not produce a
callback reference that an Orbix 3 server could invoke on using
bidirectional GIOP.

� To be compatible with GIOP 1.2 (that is, not be dependent on GIOP
1.4 NegotiateSession messages), only weak BiDirIds are used, and
the challenge mechanism to detect client spoofing is not supported.
This functionality will be added in a future release, when GIOP 1.4 is
standardized.
 182

Starting the Locator Under a Heavy Client Load
Starting the Locator Under a Heavy Client
Load

Overview Where a server is receiving a large number of requests from clients, a
server�s node daemon may not be able to register itself with the locator, thus
preventing the server from starting properly.

To handle this situation Orbix provides a message-level interceptor plugin
that closes the connection on locator requests from hosts other than those
specified. It will do this until a node daemon has registered - at this point
the filter is effectively switched off. The clients need to be able to handle the
CORBA::Exception as a result of the connection being closed.

Configuring the interceptor The following shows how to configure the interceptor:

plugins:connection_filter:shlib_name = "it_connection_filter";

Add the connection filter to the locator binding list
plugins:giop:message_server_binding_list = ["BiDir_GIOP",

"FILTER+GIOP", "GIOP"];

Add the connection filter to the locator orb plugins list
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"connection_filter", "ots", "iiop"];

enable the interceptor
plugins:node_daemon:registration:required = "true";

Accept connections from these hosts
plugins:connection_filter:address:list = ["10.2.2.127"];

Optional
Limit the number of threads that are getting created in the

locator - you don't have to do this but it could prevent core
dumps thread_pool:high_water_mark = "200";

See what the filter is doing
event_log:filters = ["IT_POA_LOCATOR=*", "IT_LOCATOR=*",
"IT_PSS_DB=INFO_HIGH+WARN+ERROR+FATAL",

"IT_CONNECTION_FILTER=*"];
183

CHAPTER 11 | Configuring Advanced Features
 184

CHAPTER 12

Orbix Mainframe
Adapter
The Orbix Mainframe Adapter (MFA) plugin enables you to
communicate with Orbix Mainframe CICS and IMS server
adapters from Windows and UNIX. It includes a Mapping
Gateway interface and an itmfaloc URL resolver. This chapter
introduces the CICS and IMS server adapters, and explains
how to use the Mapping Gateway interface and the itmfaloc
URL resolver.

In this chapter This chapter contains the following sections:

CICS and IMS Server Adapters page 186

Using the Mapping Gateway Interface page 187

Locating Server Adapter Objects Using itmfaloc page 191

Note: In addition to Orbix, you must have Orbix Mainframe installed and
running before you can use the MFA.
185

CHAPTER 12 | Orbix Mainframe Adapter
CICS and IMS Server Adapters

Overview The Orbix Mainframe product includes a CICS server adapter and an IMS
server adapter. This section gives a brief description of each of these
adapters and includes the following to topics:

� CICS server adapter

� IMS server adapter

� More information

CICS server adapter The Orbix CICS server adapter is an Orbix Mainframe service that can be
deployed in either a native OS/390 or UNIX System Services environment.
The CICS server adapter acts as a bridge between CORBA/EJB clients and
CICS servers. It enables you to set up a distributed system that combines
the powerful online transaction processing capabilities of CICS with the
consistent and well-defined structure of a CORBA environment.

IMS server adapter The Orbix IMS server adapter is an Orbix Mainframe service that can be
deployed in a native OS/390 or UNIX System Services environment. It
provides a simple way to integrate distributed CORBA and EJB clients on
various platforms with existing and new IMS transactions running on
OS/390. The IMS server adapter allows you to develop and deploy Orbix
COBOL and PL/I servers in IMS, and to integrate these IMS servers with
distributed CORBA clients running on various platforms. It also facilitates
the integration of existing IMS transactions, not developed using Orbix, with
distributed CORBA clients, without the need to change these existing
transactions.

More information For more information, see the Orbix Mainframe CICS Adapters
Administrator�s Guide and IMS Adapters Administrator�s Guide, which are
available on the IONA documentation web pages at:

http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml
 186

http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml

Using the Mapping Gateway Interface
Using the Mapping Gateway Interface

Overview The Mapping Gateway interface is used to control CICS or IMS server
adapters running on the mainframe. You can use the Mapping Gateway
interface to list the transaction mappings that the server adapter supports,
to add or delete individual interfaces and operations, or to change the
transaction that an operation is mapped to. A new mapping file can be read,
or the existing mappings can be written to a new file. Access to the Mapping
Gateway interface using itadmin is provided as a plug-in. This plug-in is
selected with the mfa keyword.

In this section This section provides some examples of how you can to use the itadmin
mfa plugin to control CICS and IMS server adapters running on the
mainframe. The following topics are covered:

� Configuring the Mapping Gateway interface

� Listing itadmin mfa commands

� Printing a list of supported mappings

� Changing an operation�s transaction mapping

� Saving mappings to a specified file and reloading current mappings

� Switching the mapping file

� Invoking on exported interfaces

� Selecting a specific server adapter
187

CHAPTER 12 | Orbix Mainframe Adapter
Configuring the Mapping Gateway
interface

The Mapping Gateway interface is configured by default. The following
configuration values are added to the configuration file:

You must, however, add the mainframe IOR to the configuration file as
follows:

For details of how to obtain the IOR, see the CICS Adapters Administrator�s
Guide and the IMS Adapters Administrator�s Guide.

Listing itadmin mfa commands To obtain a list of all the commands provided by the itadmin mfa plug-in,
use the following command:

The output is follows:

Items shown in angle brackets (<�>) must be supplied and items shown in
square brackets ([�]) are optional. Modules names form part of the
interface name and are separated from the interface name with a /
character. For detailed information on these commands, see Chapter 24.

plugins:mfa_adm:grammar_db = "admin_plugins = [..., "mfa_adm"];
plugins:mfa_adm:shlib_name = "it_mfa_adm";
plugins:mfa_adm:grammar_db = "mfa_adm_grammar.txt";
plugins:mfa_adm:help_db = "mfa_adm_help.txt";

initial_references:IT_MFA:reference = "IOR:";

$ itadmin mfa �help

mfa list
 add -interface <name> -operation <name> <mapped value>
 change -interface <name> -operation <name> <mapped value>
 delete -interface <name> -operation <name>
 resolve <interface name>
 refresh [-operation <name>] <interface name>
 reload
 save [<mapping_file name>]
 switch <mapping_file name>
 stats
 resetcon
 stop
 188

Using the Mapping Gateway Interface
Printing a list of supported
mappings

To print a list of the mappings (interface, operation and name) that the
server adapter supports, use the following command:

itadmin mfa list

For example, the output is as follows:

Changing an operation�s
transaction mapping

You can use the mfa change command to change the transaction to which
an existing operation is mapped. For example, to change the transaction to
which the call_me operation is mapped, from SIMPLESV to NSTSEQSV, use
the following command:

To view the result, use the mfa list command:

itadmin mfa list

For example, the output is as follows:

Saving mappings to a specified file
and reloading current mappings

You can use the mfa save command to get the server adapter to save its
current mappings to either its current mapping file or to a filename that you
provide. For example, to cause the server adapter to save its current
mappings to a file called myMappings.map, but reload the list of mappings
from its mapping file, use the following commands:

To view the result, use the mfa list command:

itadmin mfa list

Simple/SimpleObject,call_me, SIMPLESV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa change -interface Simple/SimpleObject -operation
call_me NSTSEQSV

Simple/SimpleObject,call_me, NSTSEQSV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa save "c:\myMappings.map"
itadmin mfa reload
189

CHAPTER 12 | Orbix Mainframe Adapter
For example, the output is as follows:

Switching the mapping file You can get the server adapter to switch to using a new mapping file and
export only the mappings contained within it. For example, to get the server
adapter to switch from its current mapping file to myMappings.map, use the
following command:

To view the result, use the mfa list command:

itadmin mfa list

The output looks as follows:

Invoking on exported interfaces The Mapping Gateway interface provides the means by which IIOP clients
can invoke on the exported interfaces. Using the resolve operation, an IOR
can be retrieved for any exported interface. This IOR can then be used
directly by IIOP clients, or registered with an Orbix naming service as a way
of publishing the availability of the interface. For example, to retrieve an IOR
for Simple IDL, use the following command:

Selecting a specific server adapter To select a specific server adapter, provide the ORBname for the server
adapter on a request. For example, to specify the CICS server adapter and
obtain the IOR for the Simple interface, use the following command:

Simple/SimpleObject,call_me, SIMPLESV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa switch "c:\myMappings.map"

Simple/SimpleObject,call_me, NSTSEQSV
nested_seqs,test_bounded,NSTSEQSV
nested_seqs,test_unbounded,NSTSEQSV

itadmin mfa resolve Simple/SimpleObject

itadmin -ORBname iona_utilities.cicsa mfa resolve
Simple/SimpleObject
 190

Locating Server Adapter Objects Using itmfaloc
Locating Server Adapter Objects Using
itmfaloc

Overview The CICS and IMS server adapter maintains object references that identify
CORBA server programs running in CICS and IMS respectively. A client must
obtain an appropriate object reference in order to access the target server.
The itmfaloc URL resolver plug-in facilitates and simplifies this task.

In this section This section discusses how you can use the itmfaloc URL resolver as an
alternative to the itadmin mfa resolve command. The following topics are
covered:

� Locating server adapters using IORs

� Locating objects using itmfaloc

� Format of an itmfaloc URL

� What happens when itmfaloc is used

� Example of using itmfaloc

Locating server adapters using
IORs

One way of obtaining an object reference for a target server, managed by the
CICS or IMS server adapter, is to retrieve the IOR using the itadmin tool.
This calls the resolve() method on the server adapter's Mapping Gateway
interface and returns a stringified IOR. For example, to retrieve an IOR for
Simple IDL, use the following command:

When retrieved, the IOR can be distributed to the client and used to invoke
on the target server running inside CICS.

Note: The itmfaloc URL resolver is only available in C++.

itadmin mfa resolve Simple/SimpleObject
191

CHAPTER 12 | Orbix Mainframe Adapter
Locating objects using itmfaloc In some cases, the use of itadmin and the need to persist stringified IORs is
not very manageable, and a more dynamic approach is desirable. The
itmfaloc URL resolver is designed to provide an alternative approach. It
follows a similar scheme to that of the corbaloc URL technique.

In this way, the Orbix CORBA client can specify a very simple URL format
which identifies the target service required. This text string can be used
programmatically in place of the rather cumbersome stringified IOR
representation.

Format of an itmfaloc URL An itmfaloc URL is a string of the following format:

<InterfaceName> is the fully-scoped name of the IDL interface implemented
by the target server (as specified in the server adapter mapping file).

What happens when itmfaloc is
used

When an itmfaloc URL is used in place of an IOR, the Orbix client
application contacts the server adapter to attain an object reference for the
desired CICS or IMS server. The itmfaloc URL string only encodes the
interface name and not the server adapter�s location. To establish the initial
connection to the server adapter, the value of the
IT_MFA:initial_references variable is used.

If multiple server adapters are deployed, the client application must specify
the correct IT_MFA:initial_references setting in order to contact the
correct server adapter. You can do this by specifying the appropriate ORB
name, which represents the particular configuration scope. For example, for
the CICS server adapter, -ORBname iona_utilities.cicsa

If the client application successfully connects to the server adapter, it calls
the resolve() operation on the Mapping Gateway object reference,
retrieving an object reference for the target server managed by the server
adapter.

itmfaloc:<InterfaceName>
 192

Locating Server Adapter Objects Using itmfaloc
Example of using itmfaloc The simple demo client code that is shipped with Orbix uses a file-based
mechanism to access the target server's stringified IOR. If the target server
resides in CICS or IMS, an alternative approach is to specify an itmfaloc
URL string in the string-to-object call; for example:

objref = orb->string_to_object("itmfaloc:Simple/SimpleObject");
if (CORBA::is_nil(objref))
 {
 return 1;
 }
simple = Simple::SimpleObject::_narrow(objref);
193

CHAPTER 12 | Orbix Mainframe Adapter
 194

Part III
Monitoring Orbix

Applications

In this part This part contains the following chapters:

Setting Orbix Logging page 197

Monitoring GIOP Message Content page 207

Debugging IOR Data page 217

CHAPTER 13

Setting Orbix
Logging
Orbix logging lets you collect system-related information, such
as significant events, and warnings about unusual or fatal
errors.

Through a configuration domain�s logging variables, you can specify the
kinds of messages to collect, and where to direct them.

In this chapter This chapter covers the following topics:

Note: For information on logging Orbix Windows NT Services, refer to
�Logging Orbix Windows Services� on page 414.

Setting Logging Filters page 198

Logging Subsystems page 200

Logging Severity Levels page 202

Redirecting Log Output page 204
197

CHAPTER 13 | Setting Orbix Logging
Setting Logging Filters

Overview The event_log:filters configuration variable sets the level of logging for
specified subsystems, such as POAs or the naming service. This variable is
set to a list of filters, where each filter sets logging for a specified subsystem
with the following format:

For example, the following filter specifies that only errors and fatal errors for
the naming service should be reported:

The subsystem field indicates the name of the Orbix subsystem that reports
the messages (see Table 6 on page 200). The severity field indicates the
severity levels that are logged by that subsystem (see Table 7 on page 202).

You can set this variable by directly editing a configuration file, or using
itadmin commands. In the examples that follow, logging is enabled as
follows:

� For POAs, enable logging of warnings, errors, fatal errors, and
high-priority informational messages.

� For the ORB core, enable logging of all events.

� For all other subsystems, enable logging of warnings, errors, and fatal
errors.

Set in a configuration file In a configuration file, event_log:filters is set as follows:

The following entry in a configuration file explicitly sets message severity
levels for the POA and ORB core, and all other subsystems:

subsystem=severity-level[+severity-level]...

IT_NAMING=ERR+FATAL

event_log:filters=["log-filter"[,"log-filter"]...]

event_log:filters = ["IT_POA=INFO_HI+WARN+ERROR+FATAL",
 "IT_CORE=*", "*=WARN+ERR+FATAL"];
 198

Setting Logging Filters
Set with itadmin You can use itadmin commands variable create and variable modify to
set and modify event_log:filters. For example, the following command
creates the same setting as shown before, this time specifying to set this
logging for the locator daemon:

itadmin variable modify -scope locator -type list -value\
 IT_POA=INFO_HI+WARN+ERROR+FATAL, \
 IT_CORE=*, \
 *=WARN+ERR+FATAL \
 event_log:filters
199

CHAPTER 13 | Setting Orbix Logging
Logging Subsystems
You can apply one or more logging severity levels to any or all ORB
subsystems. Table 6 shows the available ORB subsystems. By default,
Orbix logs warnings, errors, and fatal errors for all subsystems.

Table 6: Orbix Logging Subsystems

Subsystem Description

* All logging subsystems.

IT_ACTIVATOR Activator daemon.

IT_ATLI2_IOP Abstract Transport Layer Inter-ORB Protocol.

IT_ATLI2_IP Abstract Transport Layer Internet Protocol Plug-in.

IT_ATLI2_ITMP Abstract Transport Layer Multicast Plug-in.

IT_ATLI2_ITRP Abstract Transport Layer Reliable Multicast Plug-in.

IT_ATLI2_SHM Abstract Transport Layer Shared Memory Plug-in.

IT_ATLI_TLS Abstract Transport Layer (secure).

IT_ClassLoading Classloading plug-in (Java).

IT_CODESET Internationalization plug-in.

IT_CONFIG_REP Configuration repository.

IT_CORE Core ORB.

IT_CSI Common Secure Interoperability.

IT_GIOP General Inter-Orb Protocol (transport layer).

IT_GSP Generic Security Plug-in.

IT_IFR Interface repository.

IT_IIOP Internet Inter-Orb Protocol (transport layer).

IT_IIOP_PROFILE Internet Inter-Orb Protocol profile (transport layer).
 200

Logging Subsystems
IT_IIOP_TLS Internet Inter-Orb Protocol (secure transport layer).

IT_JAVA_SERVER Java server plug-in

IT_LEASE Session management service.

IT_LOCATOR Server locator daemon.

IT_MGMT Management instrumentation plug-in.

IT_MGMT_SVC Management service.

IT_NAMING Naming service.

IT_NOTIFICATION Event service.

IT_NodeDaemon Node daemon.

IT_OTS_LITE Object transaction service.

IT_POA Portable object adapter.

IT_POA_LOCATOR Server locator daemon (POA specific).

IT_PSS Persistent state service.

IT_PSS_DB Persistent state service (raw database layer).

IT_PSS_R Persistent state service (database driver).

IT_SCHANNEL Microsoft Schannel (Windows only).

IT_TLS Transport Layer Security.

IT_TS Threading/synchronization package.

IT_XA X/Open XA standard (transactions).

Table 6: Orbix Logging Subsystems

Subsystem Description
201

CHAPTER 13 | Setting Orbix Logging
Logging Severity Levels

Overview Orbix supports four levels of message severity:

� Informational

� Warning

� Error

� Fatal error

Informational Informational messages report significant non-error events. These include
server startup or shutdown, object creation or deletion, and information
about administrative actions.

Informational messages provide a history of events that can be valuable in
diagnosing problems. Informational messages can be set to low, medium, or
high verbosity.

Warning Warning messages are generated when Orbix encounters an anomalous
condition, but can ignore it and continue functioning. For example,
encountering an invalid parameter, and ignoring it in favor of a default value.

Error Error messages are generated when Orbix encounters an error. Orbix might
be able to recover from the error, but might be forced to abandon the current
task. For example, an error message might be generated if there is
insufficient memory to carry out a request.

Fatal error Fatal error messages are generated when Orbix encounters an error from
which it cannot recover. For example, a fatal error message is generated if
the ORB cannot connect to the configuration domain.

Table 7 shows the syntax used to specify Orbix logging severity levels.

Table 7: Orbix Logging Severity Levels

Severity Level Description

INFO_LO[W] Low verbosity informational messages.
 202

Logging Severity Levels
INFO_MED[IUM] Medium verbosity informational messages.

INFO_HI[GH] High verbosity informational messages.

INFO_ALL All informational messages.

WARN[ING] Warning messages.

ERR[OR] Error messages.

FATAL[_ERROR] Fatal error messages.

* All messages.

Table 7: Orbix Logging Severity Levels

Severity Level Description
203

CHAPTER 13 | Setting Orbix Logging
Redirecting Log Output

Overview By default, Orbix is configured to log messages to standard error. You can
change this behavior for an ORB by setting a logstream plug-in to be loaded
by the ORB. For example, you can set the output stream to a local file
owned by the ORB, or to the host�s system error log.

As with all other configuration variables, these can be set using the itadmin
commands variable create and variable modify.

This section includes the following:

� �Setting the output stream to a local file�.

� �Using rolling log files�.

� �Setting the output stream to the system log�.

� �Buffering the output stream before writing to a file�.

Setting the output stream to a
local file

To set the output stream to a local file, set the following configuration
variable:

The following example uses the itadmin variable modify command:

If your configuration domain is file-based, you can also set this variable in
your configuration file. For example:

plugins:local_log_stream:filename = filename

itadmin variable modify -type string -value
"/var/adm/mylocal.log" plugins:local_log_stream:filename

plugins:local_log_stream:filename = "/var/adm/mylocal.log";
 204

Redirecting Log Output
Using rolling log files Normally, the local log stream uses a rolling file to prevent the log from
growing indefinitely. In this model, the stream appends the current date to
the configured filename. This produces a complete filename (for example,
/var/adm/art.log.02172002). A new file begins with the first event of the
day and ends at 23:59:59 each day.

You can disable rolling file behavior by setting the rolling_file variable to
false. For example:

Setting the output stream to the
system log

The system log stream reports events to the host's system log�syslog on
UNIX, and the event log on Windows. Each log entry is tagged with the
current time and logging process ID, and the event priority is translated into
a format appropriate for the native platform.

To set the output stream to the system log, add the system_log_stream
value to the orb_plugins configuration variable. You can use the
system_log_stream output stream concurrently with the local_log_stream,
if necessary.

The following orb_plugins variable includes the system_log_stream value:

Buffering the output stream before
writing to a file

You can also set the output stream to a buffer before writing to a local log
file. Use the plugins:local_log_stream:buffer_file configuration
variable to specify this behavior. When this variable is set to true, by default,
the buffer is output to the local file every 1000 milliseconds when there are
more than 100 messages logged. The log interval and the number of log
elements can also be configured.

For example, the following configuration writes the log output to the
/var/adm/art.log file every 400 milliseconds if there are more then 20 log
messages in the buffer.

plugins:local_log_stream:rolling_file = "false";

orb_plugins=["system_log_stream", "iiop_profile", "giop",
"iiop",];

plugins:local_log_stream:filename = "/var/adm/art.log";
plugins:local_log_stream:buffer_file = "true";
plugins:local_log_stream:milliseconds_to_log = "400";
plugins:local_log_stream:log_elements = "20";
205

CHAPTER 13 | Setting Orbix Logging
 206

CHAPTER 14

Monitoring GIOP
Message Content
Orbix includes the GIOP Snoop tool for intercepting and
displaying GIOP message content.

In this chapter This chapter contains the following sections:

Introduction to GIOP Snoop page 208

Configuring GIOP Snoop page 209

GIOP Snoop Output page 212
207

CHAPTER 14 | Monitoring GIOP Message Content
Introduction to GIOP Snoop

Overview GIOP Snoop is a GIOP protocol level plug-in for intercepting and displaying
GIOP message content. This plug-in implements message level interceptors
that can participate in client and/or server side bindings over any
GIOP-based transport. The primary purposes of GIOP Snoop are to provide a
protocol level monitor and debug aid.

GIOP plug-ins The primary protocol for inter-ORB communications is the General
Inter-ORB Protocol (GIOP) as defined the CORBA Specification. Orbix
provides several GIOP based plug-ins that map GIOP to a number of
transports. For example, CORBA IIOP (for TCP/IP), and proprietary IONA
transport mappings, such as SIOP (a shared memory transport), and MPI (a
multicast transport for GIOP). GIOP Snoop may be used with these (and any
future) GIOP-based plug-ins.
 208

Configuring GIOP Snoop
Configuring GIOP Snoop

Overview GIOP Snoop can be configured for debugging in client, server, or both
depending on configuration. This section includes the following
configuration topics:

� �Loading the GIOP Snoop plug-in�.

� �Client-side snooping�.

� �Server-side snooping�.

� �GIOP Snoop verbosity levels�.

� �Directing output to a file�.

� �Using the Java version of GIOP Snoop�

Loading the GIOP Snoop plug-in For either client or server configuration, the GIOP Snoop plug-in must be
included in the Orbix orb_plugins list (... denotes existing configured
settings):

In addition, the giop_snoop plug-in must be located and loaded using the
following settings:

orb_plugins = [..., "giop_snoop", ...];

// C++
plugins:giop_snoop:shlib_name = "it_giop_snoop";

// Java
plugins:giop_snoop:ClassName =
 "com.iona.corba.giop_snoop.GIOPSnoopPlugIn";
209

CHAPTER 14 | Monitoring GIOP Message Content
Client-side snooping To enable client-side snooping, include the GIOP_SNOOP factory in the client
binding list. In this example, GIOP Snoop is enabled for IIOP-specific
bindings:

Server-side snooping To enable server-side snooping, include the GIOP_SNOOP factory in the server
binding list.

GIOP Snoop verbosity levels You can use the following variable to control the GIOP Snoop verbosity level:

The verbosity levels are as follows:

These verbosity levels are explained with examples in �GIOP Snoop Output�
on page 212.

binding:client_binding_list =
 [..., "GIOP+GIOP_SNOOP+IIOP", ...];

plugins:giop:message_server_binding_list =
 [..., "GIOP_SNOOP+GIOP", ...];

Note: For Orbix 6.x, the ordering of this setting has been reversed to
correct consistency issues in previous releases of Orbix across Java and
C++ configuration.

plugins:giop_snoop:verbosity = "1";

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH
 210

Configuring GIOP Snoop
Directing output to a file By default, output is directed to standard error (stderr). However, you can
specify an output file using the following configuration variable:

A month/day/year time stamp is included in the output filename with the
following general format:

As a result, for a long running application, each day results in the creation of
a new log file. To enable administrators to control the size and content of
output files GIOP Snoop does not hold output files open. Instead, it opens
and then closes the file for each snoop message trace. This setting is
enabled with:

Using the Java version of GIOP
Snoop

To use the Java version of the GIOP Snoop plug-in, add the giop_snoop.jar
file to your classpath. For example:

UNIX

Windows

plugins:giop_snoop:filename = "<some-file-path>";

<filename>.MMDDYYYY

plugins:giop_snoop:rolling_file = "true";

export CLASSPATH=
 $CLASSPATH:$IT_PRODUCT_DIR/asp/6.0/lib/asp-corba.jar

set CLASSPATH=

 %CLASSPATH%;%IT_PRODUCT_DIR%\asp\6.0\lib\asp-corba.jar
211

CHAPTER 14 | Monitoring GIOP Message Content

0

GIOP Snoop Output

Overview The output shown in this section uses a simple example that shows
client-side output for a single binding and operation invocation. The client
establishes a client-side binding that involves a message interceptor chain
consisting of IIOP, GIOP Snoop, and GIOP. The client then connects to the
server and first sends a [LocateRequest] to the server to test if the target
object is reachable. When confirmed, a two-way invocation [Request] is
sent, and the server processes the request. When complete, the server
sends a [Reply] message back to the client.

Output detail varies depending on the configured verbosity level. With level
1 (LOW), only basic message type, direction, operation name and some GIOP
header information (version, and so on) is given. More detailed output is
possible, as described under the following examples.

LOW verbosity client-side
snooping

An example of LOW verbosity output is as follows:

This example shows an initial conversation from the client-side perspective.
The client transmits a [LocateRequest] message to which it receives a
[LocateReply] indicates that the server supports the target object. It then
makes an invocation on the operation null_op.

The Conn indicates the logical connection. Because GIOP may be mapped to
multiple transports, there is no transport specific information visible to
interceptors above the transport (such as file descriptors) so each
connection is given a logical identifier. The first incoming and outgoing GIOP
message to pass through each connection are indicated by (first for
binding).

[Conn:1] Out:(first for binding) [LocateRequest] MsgLen: 39 ReqId:
[Conn:1] In: (first for binding) [LocateReply] MsgLen: 8 ReqId: 0
 Locate status: OBJECT_HERE
[Conn:1] Out: [Request] MsgLen: 60 ReqId: 1 (two-way)
 Operation (len 8) 'null_op'
[Conn:1] In: [Reply] MsgLen: 12 ReqId: 1
 Reply status (0) NO_EXCEPTION
 212

GIOP Snoop Output
The direction of the message is given (Out for outgoing, In for incoming),
followed by the GIOP and message header contents. Specific information
includes the GIOP version (version 1.2 above), message length and a unique
request identifier (ReqId), which associates [LocateRequest] messages
with their corresponding [LocateReply] messages. The (two-way) indicates
the operation is two way and a response (Reply) is expected. String lengths
such as len 8 specified for Operation includes the trailing null.

MEDIUM verbosity client-side
snooping

An example of MEDIUM verbosity output is as follows:

For MEDIUM verbosity output, extra information is provided. The addition of
time stamps (in hh:mm:ss) precedes each snoop line. The byte order of the
data is indicated (Endian) along with more detailed header information such
as the target address shown in this example. The target address is a GIOP
1.2 addition in place of the previous object key data.

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest] GIOP v1.2 MsgLen: 39
 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'

16:24:39 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 MsgLen: 8
 Endian: big ReqId: 0
 Locate status: OBJECT_HERE

16:24:39 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11........\..A..........'
 Operation (len 8) 'null_op'

16:24:39 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
213

CHAPTER 14 | Monitoring GIOP Message Content
HIGH verbosity client side
snooping

The following is an example of HIGH verbosity output:

This level of verbosity includes all header data, such as service context data.
ASCII-hex pairs of GIOP header and message header content are given to
show the exact on-the-wire header values passing through the interceptor.
Messages are also separated showing inter-message boundaries.

16:24:39 [Conn:1] Out:(first for binding) [LocateRequest] GIOP v1.2 MsgLen: 39
 Endian: big ReqId: 0
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][03][00][00][00][27]
 Msg Hdr (len 39): [00][00][00][00][00][00][00][00][00][00][00][1b][3a][3e]
[02][31][31][0c][00][00][00][00][00][00][0f][05][00][00][41][c6][08][00][00][00]
[00][00][00][00][00]
[---- end of message ----]

16:31:37 [Conn:1] In: (first for binding) [LocateReply] GIOP v1.2 MsgLen: 8
 Endian: big ReqId: 0
 Locate status: OBJECT_HERE
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][04][00][00][00][08]
 Msg Hdr (len 8): [00][00][00][00][00][00][00][01]
[---- end of message ----]

16:31:37 [Conn:1] Out: [Request] GIOP v1.2 MsgLen: 60
 Endian: big ReqId: 1 (two-way)
 Target Address (0: KeyAddr)
 ObjKey (len 27) ':>.11...........A..........'
 Operation (len 8) 'null_op'
 No. of Service Contexts: 0
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][00][00][00][00][3c]
 Msg Hdr (len 60): [00][00][00][01][03][00][00][00][00][00][00][00][00][00]
[00][1b][3a][3e][02][31][31][0c][00][00][00][00][00][00][0f][05][00][00][41][c6]
[08][00][00][00][00][00][00][00][00][00][00][00][00][08][6e][75][6c][6c][5f][6f]
[70][00][00][00][00][00]
[---- end of message ----]

16:31:37 [Conn:1] In: [Reply] GIOP v1.2 MsgLen: 12
 Endian: big ReqId: 1
 Reply status (0) NO_EXCEPTION
 No. of Service Contexts: 0
 GIOP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][0c]
 Msg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
[---- end of message ----]
 214

GIOP Snoop Output
VERY HIGH verbosity client side
snooping

This is the highest verbosity level available. Displayed data includes HIGH
level output and in addition the message body content is displayed. Because
the plug-in does not have access to IDL interface definitions, it does not
know the data types contained in the body (parameter values, return values
and so on) and simply provides ASCII-hex output. Body content display is
truncated to a maximum of 4 KB with no output given for an empty body.
Body content output follows the header output, for example:

...
GIOP Hdr (len 12): [47][49][4f][50][01][02][00][01][00][00][00][0c]
Msg Hdr (len 12): [00][00][00][01][00][00][00][00][00][00][00][00]
Msg Body (len <x>): <content>
...
215

CHAPTER 14 | Monitoring GIOP Message Content
 216

CHAPTER 15

Debugging IOR
Data
Orbix includes iordump tool for analyzing IOR data and finding
possible causes for badly formed IORs.

In this chapter This chapter contains the following sections:

IOR Data Formats page 218

Using iordump page 221

iordump Output page 223

Data, Warning, Error and Information Text page 229
217

CHAPTER 15 | Debugging IOR Data
IOR Data Formats

Overview CORBA Inter-operable Object Reference (IOR) data can be presented in one
of two forms:

� Stringified form which is coded by converting each binary byte of
coded data into an ASCII pair of characters representing the hex
equivalent in readable form.

� CDR encoded (and aligned) binary data, which encodes each CORBA
defined data type on its natural boundary. Short values are encoded on
a 2-byte boundary, long values on a 4-byte boundary and, so on. Data
contains padding between data types in order to ensure aligned data.

Stringified IOR data Stringified IOR data is in the format IOR: followed by a series of hex value
pairs. For example:

It is best known as the CORBA IOR: URL passed to the IDL operation
CORBA::ORB::string_to_object(). The stringified IOR data format of an
encoded IOR can be obtained by using the IDL operation
CORBA::ORB::object_to_string().

IDL definition Raw IOR data is encoded as the CDR representation of the IOR structure,
defined in the CORBA GIOP specification, declared by the IDL shown in
Example 3:

IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a6
 218

IOR Data Formats
Example 3: IOR data IDL definition

// IDL
typedef unsigned long ProfileId;

const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

// A TaggedProfile contains opaque profile and component
// data and a tag to indicate the type and format of the data.
struct TaggedProfile
 {
 ProfileId tag;
 sequence <octet> profile_data;
 };

// IOR is a sequence of object specific protocol profiles
// (TaggedProfiles) plus a type id.
struct IOR
 {
 string type_id;
 sequence <TaggedProfile> profiles;
 };

// A MultipleComponentProfile is contained in a TaggedProfile
// with the tag TAG_MULTIPLE_COMPONENTS.
typedef unsigned long ComponentId;

struct TaggedComponent
 {
 ComponentId tag;
 sequence <octet> component_data;
 };

typedef sequence <TaggedComponent> MultipleComponentProfile;
219

CHAPTER 15 | Debugging IOR Data
// This declares IIOP ProfileBody data contained in a
// TaggedProfile with the tag TAG_INTERNET_IOP.
// IIOP 1.0/1.1/1.2 revisions are given.
struct Version
 {
 octet major;
 octet minor;
 };

struct ProfileBody_1_0
 {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence <octet> object_key;
 };

struct ProfileBody_1_1
 {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence <octet> object_key;
 sequence <IOP::TaggedComponent> components; // Added in 1.1
 };

typedef ProfileBody_1_1 ProfileBody_1_2; // Same as 1.1

Example 3: IOR data IDL definition
 220

Using iordump
Using iordump

Overview iordump is a utility that decodes CORBA inter-operable object reference
(IOR) content and presents it in readable format through stdout. This
utility�s output also includes debugging information to assist in analyzing the
cause of malformed IOR data.

Synopsis iordump [-no_host_check] {file | -}

iordump [-no_host_check] IOR:...

Description iordump reads the IOR data either from a specified file (- for stdin), or given
as a command line argument, and prints the detailed contents of the IOR
data. The IOR may be specificed either in the standard CORBA defined
stringified form or raw binary CDR encoded data. The IOR content is displayed
in both stringified and ASCII-hex formats. The tools emphasis is on reporting
all possible erroneous values or suspect data, while also displaying the
meaning and value of each data item.

Parameters iordump takes the following parameters:

-no_host_check The default behavior is to attempt a host lookup on each
host specified in the IOR. This option prevents this host
lookup check.

file Specifies the name of the file from which to read the IOR
data.

- Specifies that the IOR data is to be read from stdin.

IOR:... Specifies the IOR to decode on the command line.
221

CHAPTER 15 | Debugging IOR Data
Examples To analyze the contents of a stringified IOR read from stdin:

To analyze the contents of the IOR generated by the simple CORBA demo:

To analyze the contents of a stringified IOR specified as a command line
argument:

Notes Data other than a single IOR in a file will result in the whole data being
analyzed as a single IOR. Only in the case of stringified IORs are trailing
newlines, carriage returns and nulls removed.

> echo �IOR:...� | iordump -

> iordump simple1.ior

> iordump IOR:000001.....
 222

iordump Output
iordump Output

Overview iordump decodes the IOR data provided and outputs the data to the screen
in both stringified format and ASCII-hex fomat. All lines beginning with a
�>>� prefix contain ASCII-hex data. Interspersed with the ASCII-hex data
may be errors, warnings, and other data messages. These are explained in
�Data, Warning, Error and Information Text� on page 229.

Example Example 4 shows a sample output from iordump.

Example 4: Sample iordump Output

C:\>iordump simple1.ior

Stringified IOR is: ([string/coded data] length: 312 / 154 bytes)

>>
IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a6
563743a312e300001000000000000006a000000010102000e00000036332e
36352e3133332e32353000a70f1b0000003a3e0231310c00000000ec09000
08d2000000800000000000000000002000000010000001800000001000000
0100010000000000000101000100000009010100060000000600000001000
0001100

--

>> +0 [01]
 Byte order of IOR: (1) Little Endian
>> +1 [00][00][00]
 (padding)
>> +4 [1c][00][00][00]
 TypeId length: 28 bytes (including null)
>> +8

[49][44][4c][3a][53][69][6d][70][6c][65][2f][53][69][6d][70][
6c][65][4f][62][6a][65][63][74][3a][31][2e][30][00]

 TypeId value: 'IDL:Simple/SimpleObject:1.0.'
>> +36 [01][00][00][00]
 Number of tagged profiles: 1
223

CHAPTER 15 | Debugging IOR Data
>> +0 [01]
 Byte order of IOR: (1) Little Endian
>> +1 [00][00][00]
 (padding)
>> +4 [1c][00][00][00]
 TypeId length: 28 bytes (including null)
>> +8

[49][44][4c][3a][53][69][6d][70][6c][65][2f][53][69][6d][70][
6c][65][4f][62][6a][65][63][74][3a][31][2e][30][00]

 TypeId value: 'IDL:Simple/SimpleObject:1.0.'
>> +36 [01][00][00][00]
 Number of tagged profiles: 1
 224

iordump Output
 Profile 1:
>> +40 [00][00][00][00]
 Tag: (0) TAG_INTERNET_IOP
>> +44 [6a][00][00][00]
 Profile length: 106 bytes
>> +48 [01]
 Byte Order: (1) Little Endian
>> +49 [01][02]
 Version: 1.2
>> +52 [0e][00][00][00]
 Host length: 14 bytes (including null)
>> +56 [36][33][2e][36][35][2e][31][33][33][2e][32][35][30][00]
 Host string: '63.65.133.250.'
 * host IP address lookup succeeded, but failed to

find a hostname (warning)
>> +70 [a7][0f]
 Port: 4007
>> +72 [1b][00][00][00]
 Object Key length: 27 bytes (including any

trailing null)
>> +76

[3a][3e][02][31][31][0c][00][00][00][00][ec][09][00][00][8d][
20][00][00][

08][00][00][00][00][00][00][00][00]
 Object key data: ':>.11..........'
 (looks like an Orbix ART Transient key)
>> +103 [00]
 (padding)
>> +104 [02][00][00][00]
 Number of tagged components: 2

Example 4: Sample iordump Output
225

CHAPTER 15 | Debugging IOR Data
 Component 1:
>> +108 [01][00][00][00]
 Tag: (1) CODE_SETS
>> +112 [18][00][00][00]
 Component length: 24 bytes
>> +116 [01]
 Component Byte Order: (1) Little Endian
>> +117 [00][00][00]
 (padding)
>> +120 [01][00][01][00]
 Native CodeSet id (for char): 65537
 (ISO 8859-1:1987; Latin Alphabet No. 1)
>> +124 [00][00][00][00]
 Number of conversion code sets (CCS): 0
>> +128 [00][01][01][00]
 Native CodeSet id (for wchar): 65792
 (ISO/IEC 10646-1:1993; UCS-2, Level 1)
>> +132 [01][00][00][00]
 Number of conversion code sets (CCS): 1
>> +136 [09][01][01][00]
 CCS(1) CodeSet Id 65801
 (ISO/IEC 10646-1:1993; UTF-16, UCS

Transformation Format 16-bit form)

 Component 2:
>> +140 [06][00][00][00]
 Tag: (6) ENDPOINT_ID_POSITION
>> +144 [06][00][00][00]
 Component length: 6 bytes
>> +148 [01]
 Component Byte Order: (1) Little Endian
>> +149 [00]
 (padding)
>> +150 [00][00]
 EndpointId begin (index): 0
>> +152 [11][00]
 EndpointId end (index): 17

Example 4: Sample iordump Output
 226

iordump Output
Stringified Data Output
All output begins with the stringified IOR such as:

The first line gives the string length as the number of characters in the
following IOR string, including the IOR: prefix. The coded data length
indicates the number of bytes of encoded data which is represented by the
stringified IOR, as per the CDR rules for encoding IOR data.

Stringified IOR is: ([string/coded data] length: 312 / 154 bytes)

>>
IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a6
563743a312e300001000000000000006a000000010102000e00000036332e
36352e3133332e32353000a70f1b0000003a3e0231310c00000000ec09000
08d2000000800000000000000000002000000010000001800000001000000
0100010000000000000101000100000009010100060000000600000001000
0001100
227

CHAPTER 15 | Debugging IOR Data
ASCII-Hex Data Output

Display format All ASCII-hex pairs are printed as [ab] pairs in the output, where ab is a
character pair in the range 00 to FF.

Each line of ASCII-hex output contain segments of ASCII-hex data taken
from the stringified IOR, including the byte offset of the data relative to the
start of the equivalent binary coded IOR, beginning at byte zero:

Example For example, the following output text:

indicates the four ASCII pairs which are coded four bytes into the IOR binary
data, in this case being the TypeId string length value of 24 bytes.

Note also that all printed data is shown in the byte order as coded into the
IOR. The above, for example, is the value 24 as coded on a Big Endian
machine and is displayed as such regardless of the byte order of the
machine iordump is running on. Iordump only byte-swaps the values, if
needed, in order to decode and print their actual value.

>> +offset [ab][ab][ab]...

>> +4 [00][00][00][18]
 228

Data, Warning, Error and Information Text
Data, Warning, Error and Information Text

Overview All other output consists of data text for each data type and its value, and
any relevant text to inform of errors, warnings or simple informative message
text of conditions detected for each specific data item.

Example For example, the following output shows the data type/value output TypeId
length:... and an error message indicating an invalid data value.

In this section This section discusses the following topics:

>> +4 [40][32][40][32]
 TypeId length: 843067968 bytes (including null)
 * bad TypeId sequence length (843067968)

Errors page 230

Warnings page 233
229

CHAPTER 15 | Debugging IOR Data
Errors
The errors include the following:

* unknown General error indicating the specified data value is not a known
or standard value. This typically includes Tag values and other well known
values.

* number of profiles is zero (should at least have one!) The IOR
TaggedProfile sequence length value indicates there are no tagged profiles,
only a TypeId string. If this is not the case, the length value may be set
incorrectly to zero.

* empty profile (zero length); skip to next profile ATaggedProfile is of zero
length. This may be possible although it is currently flagged as a possible
error.

* gone beyond the end of the profile data; must exit (number of profiles
suggests more data) The number of profiles value has caused iordump to
skip beyond the end of the data. The tool expects to see more profiles. This
occurs because the value is corrupt or has been coded in the IOR
incorrectly. A few reasons for this error is: a value is encoded using the
wrong alignment, or a value is decoded based on an incorrect byte order
setting, or the wrong value was encoded.

* unknown IIOP version (attempting to read as 1.0 data) The ProfileBody
is not one of the supported IIOP versions recognized by iordump. An attempt
is made to interpret the initial part of the data as 1.0 IIOP profile data.

* unknown profile tag/format The profile tag is unknown, either because it
is corrupt or because it is an unknown vendor-defined tag not registered
with the OMG.

* gone beyond the end of the component data; skip component An invalid
length has caused the component data to be exhausted. If possible, iordump
will skip the invalid component data and move onto the next to the next
component.
 230

Data, Warning, Error and Information Text
* only one ORB_TYPE component allowed The OMG specification only
allows one TAG_ORB_TYPE component per profile, so the IOR is not
OMG-compliant.

* missing CodeSetComponent for wchar / * missing conversion code sets
for wchar ATAG_CODE_SETS component consists of two CodeSetComponents,
one for char conversions and one for wchar conversions. Each
CodeSetComponent is a struct containing a native CodeSetId, specified as a
ulong and conversion code sets, specified as a sequence of CodeSetId. The
encapsulated data contained in the tagged component is a
CodeSetComponentInfo which is defined as follows:

These errors are reported if part of this data structure is missing from the
IOR tagged component.

* null wchar native code set; client will throw INV_OBJREF The CORBA
specification includes a requirement that a native code set is specified at
least for a server that supports the IDL wchar type because there is no
default wchar conversion code set. If the native code set for wchar is set to
zero this is an error and according to the spec; the client will throw an
INV_OBJREF exception.

* a zero string length is illegal, client will throw MARSHAL A string is
encoded as <length><characters> where the length includes a terminating
null. All strings contain a null, therefore a zero length is illegal.

* should be 0 or 1; assuming (1) Little Endian The octet containing the
byte order flag in an IOR may only contain the values 0 or 1 to indicate Big
or Little Endian.

typedef unsigned long CodeSetId;
struct CodeSetComponent
 {
 CodeSetId native_code_set;
 sequence<CodeSetId> conversion_code_sets;
 };
struct CodeSetComponentInfo
 {
 CodeSetComponent ForCharData;
 CodeSetComponent ForWcharData;
 };
231

CHAPTER 15 | Debugging IOR Data
* bad <data type> sequence length (<n>) The length check on a
sequence<octet> coded length value indicates an invalid length field.

* stringified IOR should have an even length; added trailing�0� to continue

The stringified IOR always contains an even number of characters because it
contains ASCII-Hex pairs. An additional 0 is added to the data to allow it to
be decoded and analyzed. Possible errors will result when analyzing the last
bytes.

* tried to skip <n> byte(s) of padding beyond the remaining data; exit..

Tried to align for a data type when the alignment has skipped beyond the
amount of remaining data.

* attempt to read <n> byte data type, only <m> remaining; exit.. After
skipping padding bytes and aligning to read the next data item, a check is
also made that the number of bytes required to read the data type does not
exceed what data is actually left to read.

* no more data; exit.. Unexpectedly ran over the end of data.
 232

Data, Warning, Error and Information Text
Warnings
The warnings include the following.

* non zero padding (warning) This indicates that unused octets in the data
contain non-zero values. Unused bytes exist because of required padding
bytes between data values in order to maintain the correct data alignment.
The CORBA specification does not insist on having all padding zeroed
although this potentially creates problems when an IOR is published, or
used for hashing, or any situation which results in two IORs being
considered different simply because of differences in unused padding data.

* no null character at end (warning) In some cases, a sequence<octet>
may be used to store string values. This warning indicates that a data value
that can be interpreted as a string does not contain a terminating null. If
the data is meant to be used as a string, this can cause problems when
trying to decode and use the string. An example is the use of strings to
represent the object key by some vendors. Otherwise, this warning may be
ignored.

A simple mistake made when coding such a string is in using the string
length given by strlen(1) to code the sequence length, without adding 1
for the null.

* should TypeId begin with �IDL:� prefix? (warning) A check was made on
the TypeId string and the expected IDL: prefix was not found.

* num profiles sounds excessive, only printing <n> If the value containing
the number of profiles exceeds a reasonable limit (100 as set by iordump),
only the number of profiles up to the limit is printed.

* IOR contains <n> garbage trailing byte(s): Any remaining bytes in the
data, beyond the last decoded data value are printed before exit.

* empty component data, zero length (warning) A TaggedComponent length
field indicates a zero length component.
233

CHAPTER 15 | Debugging IOR Data
* previous component sequence length may be wrong (warning) The
sequence length of a previous component may be wrong and caused the
data of the following component to be considered part of it. This is only a
possible explanation for a missing component, particularly if the previous
component reported an unknown or illegal data value.

* host unknown; possibly unqualified (warning) An attempt is made to do
a lookup of the host contained in an IIOP profile. If the host lookup fails, this
is printed as a warning. This would result if the host is really unknown, or is
not fully qualified with the complete domain.

* host name lookup succeeded, but failed to find an IP address (warning)

The specified host lookup succeeded, but an attempt to lookup the IP
address mapping for the specified host failed.

* host IP address lookup succeeded, but failed to find a hostname (warning)

The specified IP address lookup succeeded, but an attempt to lookup the
host mapping for the specified address failed.
 234

Part IV
Command Reference

In this part This part contains the following chapters:

Starting Orbix Services page 237

Managing Orbix Services With itadmin page 251

CHAPTER 16

Starting Orbix
Services
This chapter describes commands that start Orbix services. For
information on starting Orbix services as Windows NT services,
see Appendix A on page 405.

In this chapter This chapter contains the following sections:

Starting and Stopping Configured Services page 238

Starting Orbix Services Manually page 239

Stopping Services Manually page 248
237

CHAPTER 16 | Starting Orbix Services
Starting and Stopping Configured Services

Start and stop scripts The Orbix configuration tool generates two scripts that start and stop all
configured Orbix services:

UNIX

Windows

The startup script starts all Orbix services you configured using the
configuration tool. For example, given a domain name of AcmeServices, the
following command starts all services on Windows:

Start-up order Orbix services, when configured, start up in the following order:

1. Configuration repository

2. Locator daemon

3. Node daemon

4. Naming service

5. Interface repository

6. Event service

For example, you might decide to configure the event service but not the
naming service. In this case, the event service takes a priority of 5.

start_domain-name_services.sh
stop_domain-name_services.sh

start_domain-name_services.bat
stop_domain-name_services.bat

start_AcmeServices_services.bat
 238

Starting Orbix Services Manually
Starting Orbix Services Manually
Orbix also provides separate commands for starting each service manually,
with the following syntax:

run is optional. For example, the following commands both start the
interface repository:

Table 8 lists all commands for running services manually:

itconfig_rep run

Synopsis itconfig_rep -ORBdomain_name cfr-domain-name [-ORBname ORB-name]
[run] [-background]

itservice-name [run]

itifr
itifr run

Table 8: Commands to Manually Start Orbix Services.

Command Starts

itconfig_rep run Configuration repository

itlocator run Locator daemon

itnode_daemon run A node daemon

itnaming run Naming service database

itifr run Interface repository

itevent run Event service

itnotify run Notification service

Note: In a repository-based configuration domain, the configuration
repository must be running before starting additional services.
239

CHAPTER 16 | Starting Orbix Services
Description Starts the configuration repository. The configuration repository must already
be configured in your Orbix environment. This command requires you to be
logged in as administrator (Windows) or root (UNIX).

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBdomain_name
cfr-domain-name

The configuration repository�s domain file name,
which is generated when you create the domain.
The generated configuration domain file has the
name cfr-domain-name.cfg.

For example, given configuration domain
acmeproducts, the configuration repository
initializes itself from cfr-acmeproducts.cfg.

-ORBname ORB-name Directs the initializing configuration repository to
retrieve its configuration from the specified
configuration scope.

By default, this is the config_rep scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itconfig_rep -ORBname config_rep.config2 run

-background Runs the configuration repository in the
background. Control returns to the command line
only after the service successfully launches. If you
omit the -background argument, the configuration
repository runs in the foreground. This argument
can be abbreviated to -bg. For example:

itconfig_rep run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.
 240

Starting Orbix Services Manually
itlocator run

Synopsis itlocator [-ORBname ORB-name] run [-background]

Description Starts the locator daemon. The locator daemon must already be configured
in your Orbix environment. In a location domain, the locator daemon controls
read and write operations to the implementation repository. By default,
entering itlocator without specifying the run command starts the default
locator daemon.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBname ORB-name Directs the initializing locator daemon to retrieve its
configuration from the specified configuration
scope.

By default, this is the locator scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itlocator -ORBname locator.locator2 run

-background Runs the locator daemon in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the locator daemon runs in
the foreground. You can abbreviate this argument
to -bg. For example:

itlocator run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.
241

CHAPTER 16 | Starting Orbix Services
itnode_daemon run

Synopsis itnode_daemon [-ORBname ORB-name] run [-background]

Description Starts a node daemon. A node daemon controls registered server processes
to ensure that they are always running, starts processes on demand, or
disables them from starting. The node daemon also monitors all child
processes of registered server processes, and informs the locator daemon
about any events relating to these child processes�in particular, when a child
process terminates. By default, entering itnode_daemon without specifying
the run command starts the default node daemon.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBname ORB-name Directs the initializing node daemon to retrieve its
configuration from the specified configuration
scope.

By default, this is the
iona_services.node_daemon scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itnode_daemon -ORBname
iona_services.node_daemon.nd2 run

-background Runs the node daemon in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the node daemon runs in
the foreground. You can abbreviate this argument
to -bg. For example:

itnode_daemon run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.
 242

Starting Orbix Services Manually
itnaming run

Synopsis itnaming [-ORBname ORB-name] run

Description Starts the naming service, assuming it is already configured in your Orbix
environment. By default, entering itnaming without specifying the run
command starts the naming service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-ORBsecure_directories Specifies a list of secure directories in which the
node daemon launches processes. This overrides
the path specified for the registered process. For
example:

itnode_daemon -ORBsecure_directories
[c:\Acme\bin,c:\my_app]

You must enclose the directory list in square
brackets. If you omit this argument, the node
daemon launches processes from the path
specified in the location domain.

-ORBname ORB-name Directs the initializing naming service to retrieve its
configuration from the specified configuration
scope.

By default, this is the naming scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itnaming -ORBname naming.naming2 run
243

CHAPTER 16 | Starting Orbix Services
itifr run

Synopsis itifr [-ORBname ORB-name] run [-background]

Description Starts the interface repository daemon. The interface repository must already
be configured in your Orbix environment. By default, entering itifr without
specifying the run command starts the interface repository.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-background Runs the naming service in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the naming service runs in
the foreground. You can abbreviate this argument
to -bg. For example:

itnaming run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

-ORBname ORB-name Directs the initializing interface repository to
retrieve its configuration from the specified
configuration scope.

By default, this is the ifr scope. Use the -ORBname
argument to specify a different configuration scope.
For example:

itifr -ORBname ifr.ifr2 run
 244

Starting Orbix Services Manually
itevent run

Synopsis itevent [-ORBname ORB-name] run [-background]

Description Starts the event service. The event service must already be configured in your
Orbix environment. By default, entering itevent without specifying the run
command starts the event service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-background Runs the interface repository in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the interface repository
runs in the foreground. You can abbreviate this
argument to -bg. For example:

itifr run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

-ORBname ORB-name Directs the initializing event service to retrieve its
configuration from the specified configuration
scope.

By default, this is the event scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itevent -ORBname event.event2 run
245

CHAPTER 16 | Starting Orbix Services
itnotify run

Synopsis itnotify [-ORBname ORB-name] run [-background]

Description Starts the notification service. The notification service must already be
configured in your Orbix environment. By default, entering itnotify without
specifying the run command starts the event service.

UNIX

You can push the process into the background.

Windows

Leave the command window open.

Options

-background Runs the event service in the background. Control
returns to the command line only after the service
successfully launches. If you omit the -background
argument, the event service runs in the foreground.
You can abbreviate this argument to -bg. For
example:

itevent run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.

-ORBname ORB-name Directs the initializing notification service to
retrieve its configuration from the specified
configuration scopes.

By default, this is the notify scope. Use the
-ORBname argument to specify a different
configuration scope. For example:

itnotify -ORBname notify.notify2 run
 246

Starting Orbix Services Manually
-background Runs the notification service in the background.
Control returns to the command line only after the
service successfully launches. If you omit the
-background argument, the notification service
runs in the foreground. You can abbreviate this
argument to -bg. For example:

itnotify run -bg

The -background argument is especially useful in
scripts that start multiple services. It guarantees
that services always launch in the same sequence
as the script specifies.
247

CHAPTER 16 | Starting Orbix Services
Stopping Services Manually
Any service that can be started manually can also be stopped manually
using itadmin commands. The order in which you shut down services
should be determined by the dependencies among them. For example, in a
repository-based domain, you should not shut down the configuration
repository until all other services are shut down.

Shut-down commands have the following syntax:

Table 9 lists the itadmin commands for shutting down Orbix services:

itadmin service-name stop

Table 9: Commands for Stopping Orbix Services

Service Shut-down command

Configuration repository itadmin config stop

Locator itadmin locator stop

Node daemon itadmin node_daemon stop

Naming service itadmin ns stop

Interface repository itadmin ifr stop

Event service itadmin event stop
 248

Event Log
Overview The event log commands enable the Orbix event log filters to be displayed or

updated dynamically using the itadmin command line. You can also
perform these actions using the IONA Administrator Web Console:

logging get

Synopsis logging get -orbname orb_name

Description Displays the event log filter settings for the specified ORB name.

Arguments

Examples

This command displays the event log filter settings that are used by the
currently running naming service.

Table 10: Event Log Commands

logging get Displays the event log filter settings.

logging set Updates the event log filter.

-orbname The specified ORB name of the event log to display.

itadmin logging set -orbname iona_services.naming
249

CHAPTER 17 | Event Log
logging set

Synopsis logging set -orbname orb_name -value new_event_log_filter

Description Updates the event log filter settings for the specified ORB name.

Arguments

Examples

This command updates the event log filters that are used by the currently
running naming service.

-orbname The specified ORB name of the event log to update.

-value The new event log setting.

itadmin logging set -orbname iona_services.naming -value
IT_GIOP=*,IT_MGMT=*
 250

CHAPTER 18

Managing Orbix
Services With
itadmin
This chapter provides an overview of using the command-line
tool itadmin to manage Orbix services. Typical management
tasks in Orbix include creating, viewing, and removing data
stored in service repositories.

In this chapter This chapter contains the following sections:

Using itadmin page 252

Command Syntax page 255

Services and Commands page 258
251

CHAPTER 18 | Managing Orbix Services With itadmin
Using itadmin

Overview itadmin lets you manage information used by Orbix services. You can use
itadmin in various modes and contexts:

� Command-line utility

� Command shell

� Tcl script

� Transactions

Command-line utility To use itadmin as a command-line utility, simply enter the appropriate
command at the command prompt. For example, the following command
registers an ORB name with the locator daemon:

In command-line mode, you must specify the itadmin prefix before each
command. For a list of itadmin commands, see �Services and Commands�
on page 258.

Command shell To use the itadmin shell, enter itadmin at the command line. The itadmin
prompt is displayed. Once you have entered the command shell, you do not
need to enter itadmin before each command. For example:

To leave the itadmin shell mode, enter exit.

Nested itadmin commands

In shell and Tcl script mode, you can use nested itadmin commands by
enclosing each command in square brackets. When itadmin commands are
nested, innermost command are executed first.

itadmin orbname create my_orb_name

itadmin
% orbname create my_orb_name
 252

Using itadmin
Tcl script You can write your own Tcl scripts that incorporate itadmin commands. For
example, you could develop a Tcl script called my_script that contains one
itadmin command per line. You would invoke this script by entering:

You can use Tcl scripts at the command prompt and in the command shell.
Incorporating itadmin commands in reusable Tcl scripts provides an
extremely powerful way of automating administration tasks (for example,
populating a configuration domain or location domain).

Sample scripts

The following example shows the contents of a simple Tcl script that calls
an itadmin variable create command:

This command creates a configuration variable named
initial_references:POACurrent:plugin and assigns it a value of poa. The
remaining Tcl in this simple example is used for Tcl script management. For
example, catch prevents a Tcl stack dump if an exception is thrown during
execution.

itadmin my_script.tcl

if { [catch {variable create -type string -value poa
 initial_references:POACurrent:plugin} result] } {
 puts $result
 flush stdout
 exit 1
 }
253

CHAPTER 18 | Managing Orbix Services With itadmin
The following is a more realistic example of how to use itadmin commands
within Tcl scripts:

The do_cmd procedure installs an exception handler for each itadmin
command. Each itadmin command is in turn sent as a parameter to
do_cmd. For example, the first call to do_cmd creates
initial_references:RootPOA:plugin and assigns it a value of poa.

Transactions itadmin supports the object transaction service (OTS). Using itadmin
commands in transactions provides itadmin with multiple undo capability.

Orbix provides itadmin commands to start, commit, rollback, suspend, and
resume transactions. This enables you to use other itadmin commands in
transactional mode. For more details, see �Object Transaction Service� on
page 357.-

Multiple itadmin sessions itadmin does not perform any record locking while it is making changes to
the configuration database. Therefore, running multiple sessions of itadmin
in parallel will corrupt your Orbix configuration.

do_cmd installs an exception handler for each itadmin command

proc do_cmd {cmd} {
 set fail [catch {eval $cmd} result]
 if {$fail} {
 puts stderr "Problem in \"$cmd\": $result"
 flush stderr
 exit 1
 }
}

Each itadmin command is sent as a parameter to do_cmd

 do_cmd {variable create -type string -value poa
 initial_references:RootPOA:plugin}
 do_cmd {variable create -type string -value poa
 initial_references:POACurrent:plugin}
 do_cmd {variable modify ... }
 do_cmd {poa create ...}
 exit 0
 254

Command Syntax
Command Syntax

Overview itadmin syntax takes the following general form:

actor [actor modifiers] action [action modifiers] [target]

For example, the following command registers a process name with the
locator daemon:

In this example, the actor is orbname, the action is create, the action
modifier is -process, and the target is ORB-name.

In this section The following topics are discussed in this section:

Specifying lists When a command takes a list, separate the list elements with spaces and
enclose the entire list in double quotation marks. For example, the following
command creates a server process entry in the location domain with the
specified environment values:

In this example, the value of the -env modifier is a list with three elements,
and the equal sign is treated as a character.

orbname create -process process-name ORB-name

Note: The order of itadmin components is significant. Each component
must be separated by a space.

Specifying lists page 255

Specifying negative values page 256

Abbreviating command parameters page 256

Obtaining help page 257

% process create -env "mode=listen priority=low startup=yes"
process-name
255

CHAPTER 18 | Managing Orbix Services With itadmin
Double quotation marks group a set of elements into a single entity in which
spaces are not significant. For example, the -args argument to the process
create command is treated as a single list element, which must be enclosed
by double quotes:

When using itadmin in command line mode, the quotation marks must be
escaped or they will be stripped away by the command line interpreter. It is
unnecessary to escape the quotation marks when using itadmin in shell or
script modes.

Specifying negative values When the first character of a value supplied to an argument is a minus sign
or hyphen, you must supply an additional hyphen. For example:

When the first character is not a hyphen, an additional hyphen is not
necessary. For example:

You must supply an additional hyphen even if the first character is enclosed
in quotation marks. For example:

Abbreviating command
parameters

You can abbreviate all itadmin command parameters. For example, the
following commands all have the same effect:

Abbreviations must be unique. For example, if two parameters begin with
the same letter, their abbreviations must use at least the minimum number
of letters that differentiate between them.

% process create -args "foo bar baz" process-name

-modifier --3

-modifier 4,-1,99

% variable create -type long -value "--99" my_variable

% orbname list -p process-name
% orbname list -pr process-name
% orbname list -pro process-name
 ...
% orbname list -process process-name
 256

Command Syntax
Obtaining help To obtain command line help for itadmin, enter:

You can obtain context-sensitive help by entering a command (in its
entirety, or in part) and adding the keyword help. For example, for help on
the orbname create command, enter any of the following:

itadmin -help

% orbname -help
% orbname create -help
% orbname create -process -help
% orbname create -process process-name -help
% orbname create -process process-name ORB-name -help
% orbname create ORB-name -help
257

CHAPTER 18 | Managing Orbix Services With itadmin
Services and Commands

In this section The following sections group itadmin commands according to Orbix
services:

Bridging Service page 259

Configuration Domain page 265

Event Log page 249

Event Service page 279

Interface Repository page 287

Location Domain page 293

Naming Service page 333

Notification Service page 345

Object Transaction Service page 357

Object Transaction Service Encina page 361

Persistent State Service page 369

Security Service page 375

Trading Service page 385
 258

Bridging Service
Overview The bridge service allows JMS and CORBA notification clients to share

messages. itadmin provides a set of commands for managing the bridging
service:

Table 11: Bridging Service Commands

bridge create Creates a bridge.

bridge destroy Destroys a bridge.

bridge list Lists all of the instantiated bridges in
a deployment.

bridge show Displays the status of a bridge.

bridge start Starts the flow of messages through a
bridge.

bridge stop Stops the flow of messages through a
bridge.

bridge suspend Suspends the flow of messages
through a bridge.

endpoint_admin show Displays a bridge�s endpoint admin�s
name and the type of endpoints it
supports.

endpoint destroy Destroys an endpoint.

endpoint list Lists the endpoints associated with
an endpoint admin.

endpoint show Display the status and attributes of a
particular endpoint for the specified
bridge.
259

CHAPTER 19 | Bridging Service
bridge create

Synopsis bridge create [-source_admin IOR | INIT_REF_KEY] [-source_type topic
| queue | channel] -source_name source name [-sink_admin IOR |
INIT_REF_KEY] -sink_type [topic | queue | channel] -sink_name sink
name bridge name

Description Creates a bridge.

Arguments

�source_admin The IOR or initial reference of the administrative object
used to connect to the message source. To use the
default notification endpoint admin use
�IT_NotificationEndpointAdmin�; to use the
default JMS endpoint admin use
"IT_JMSEndpointAdmin".

-source_type The type of object that passes messages into the bridge.
It can take one of three values: topic if the messages
originate from a JMS topic, queue if the messages
originate from a JMS queue and channel if the
messages originate from a notification channel.

-source_name The name of the object that passes messages to the
bridge.

-sink_admin The IOR or initial reference of the administrative object
used to connect to where messages are being
forwarded. If the message source is a notification
channel, the message sink should be a JMS
Destination. To use the default notification admin use
"IT_NotificationEndpointAdmin"; to use the
default JMS admin use "IT_JMSEndpointAdmin".

-sink_type The type of object that receives messages from the
bridge. It can take one of three values: topic if the
messages are being forwarded to a JMS topic, queue if
the messages are being forwarded to a JMS queue and
channel if the messages are being forward to a
notification channel.

-sink_name The name of the object that receives messages from the
bridge.

bridge name The name of the bridge. This must be a unique string
value that is used to identify this bridge.
 260

bridge destroy

Synopsis bridge destroy bridge name

Description Destroys a bridge.

bridge list

Synopsis bridge list

Description Lists all of the instantiated bridges in a deployment.

bridge show

Synopsis bridge show bridge name

Description Displays the status of a bridge.

bridge start

Synopsis bridge start bridge name

Description Starts the flow of messages through a bridge.

bridge stop

Synopsis bridge stop bridge name

Description Stops the flow of messages through a bridge.

bridge suspend

Synopsis bridge suspend bridge name

Description Suspends the flow of messages through a bridge.
261

CHAPTER 19 | Bridging Service
endpoint_admin show

Synopsis endpoint_admin show [IOR | INIT_REF_KEY]

Description Displays a bridge�s endpoint admin�s name and the type of endpoints it
supports.

endpoint destroy

Synopsis endpoint destroy [-source | -sink] [-admin IOR | INIT_REF_KEY] bridge
name

Description Destroys an endpoint.

Arguments

endpoint list

Synopsis endpoint list [-source | -sink] [-admin IOR | INIT_REF_KEY]

Description Lists the endpoints associated with an endpoint admin.

Arguments

�source | -sink Specify whether the endpoint is a message source or a
message sink.

-admin Specify what type of admin object with which it is
associated.

�source | -sink Specify whether the endpoint is a message source or a
message sink.

-admin Specify what type of admin object with which it is
associated.
 262

endpoint show

Synopsis endpoint show [-source | -sink] [-admin IOR | INIT_REF_KEY] bridge
name

Description Display the status and attributes of a particular endpoint for the specified
bridge.

Arguments

�source | -sink Specify whether the endpoint is a message source or a
message sink.

-admin Specify what type of admin object with which it is
associated.
263

CHAPTER 19 | Bridging Service
JMS Broker

Overview The Java Messaging Service (JMS) provides a native mechanism for Java
applications to participate in messaging systems.

itadmin provides a set of commands for managing the JMS broker:

jms start

Synopsis jms start

Description Starts the JMS broker.

jms stop

Synopsis jms stop

Description Shuts down the JMS broker.

Table 12: JMS Broker Commands

jms start Starts the JMS broker.

jms stop Shuts down the JMS broker.
 264

Configuration
Domain

Overview A subset of itadmin commands let you manage a configuration domain,
both file-based and configuration repository-based. These commands
manage the following components of a configuration domain:

Configuration Repository page 266

Namespaces page 270

Scopes page 273

Variables page 275

Note: To use itadmin in a repository-based configuration domain, the
configuration repository must be running (see �Starting Orbix Services� on
page 237).
265

CHAPTER 20 | Configuration Domain
Configuration Repository

Overview The following commands enable you to manage the configuration repository
(CFR):

config dump

Synopsis config dump [-compatible]

Description Outputs the entire contents of the configuration domain to stdout in a form
similar to a configuration file.

Table 13: Configuration Repository Commands

config dump Displays the entire contents of the
configuration domain.

config list_servers Shows all deployed replicas of the
configuration repository.

config stop Stops the configuration repository.

file_to_cfr.tcl Converts from a file-based to a CFR-based
configuration.

-compatible Formats the CFR configuration so that it can
be used in a file-based configuration. You can
copy the output into a configuration file.
 266

Configuration Repository
Examples The following extract shows the values of some initial object references and
plug-ins in the initial_references configuration namespace:

config list_servers

Synopsis config list_servers [-active]

Description Shows all active deployed replicas of the configuration repository.

Arguments

config show_server

Synopsis config show_server cfr replica name

Description Displays runtime information about the specified CFR server.

itadmin config dump
...
initial_references:IT_Locator:reference =

"IOR:010000002500000049444c3a696...723a312e300000000001000000
00001a00"

initial_references:POACurrent:plugin = "poa"

initial_references:NameService:reference =
"IOR:010000002f00000049444c3a696f6e61...2e6362f49545f4e616d69
6e606000000010000003500"

initial_references:DynAnyFactory:plugin = "it_dynany"

initial_references:ConfigRepository:reference =
"IOR:010000002000000049444c3a495000002000...00006000000010000
000900"

...

-active Displays the total number of active deployed replicas.
267

CHAPTER 20 | Configuration Domain
config stop

Synopsis config stop [replica-name | -ior replica-ior]

Description Stops the configuration repository. An unqualified config stop command
stops all running replicas of the configuration repository.

Arguments

file_to_cfr.tcl

Synopsis file_to_cfr.tcl [-scope scope] [-output_to_file file]

Description Converts from a file-based configuration to a CFR-based configuration.
Running this script creates itadmin variable create arguments in the output
file, which you can then run against a CFR.

Examples The recommended way to run this is to set $IT_DOMAIN_NAME to your file-based
domain name, and execute the script. Then set $IT_DOMAIN_NAME to your CFR
domain name, and finally run the generated output script.

Because a file-based configuration contains no data type information, the
file_to_cfr.tcl script must make educated guesses about the types being
processed. However, you can edit the generated script to ensure that the
correct data types were chosen before running it against your CFR.

replica-name Stops the specified replica of the configuration
repository. You can obtain the replica�s name with
itadmin config list.

-ior replica-ior Stops the specified replica, as specified by its IOR.

Note: Because this tcl script creates a temporary file, the user will need
write access to the current directory.
 268

Configuration Repository
Arguments

If the -scope argument is omitted, the script processes the whole
configuration. If the -output_to_file argument is omitted, the output goes
to stdout instead.

-scope Processes configuration in the specified scope
only.

-output_to_file <filename>Specifies the newly generated script used to
populate a CFR.
269

CHAPTER 20 | Configuration Domain
Namespaces

Overview The following commands let you manage configuration namespaces:

namespace create

Synopsis namespace create [-scope scoped-name] namespace

Description Creates a namespace and any intermediate namespaces, if they do not already
exist.

Arguments

Examples The following example creates the plugins:local_log_stream namespace
within the node_daemon configuration scope:

Table 14: Configuration Namespace Commands

namespace create Creates namespaces in the specified scope.

namespace list Lists the namespaces in the given namespace or
configuration scope.

namespace remove Removes a namespace and all its contained
namespaces and variables from the configuration
domain.

namespace show Displays all sub-namespaces, variables and their
values contained within a namespace.

-scope Creates the namespace in the specified scope. If you omit
this argument, the namespace is created in the root
scope.

itadmin namespace create -scope node_daemon
plugins:local_log_stream
 270

Namespaces
namespace list

Synopsis namespace list [-scope scoped-name] [namespace]

Description Lists the namespaces in the specified namespace or configuration scope. If
you specify a namespace, itadmin lists only the namespaces nested within
it; otherwise, it shows all namespaces within the specified or root scope.

Arguments

Examples The following example lists namespaces in the root configuration scope:

The following example lists namespaces nested within the
initial_references namespace:

-scope Narrows the namespaces to a specific configuration
scope. If you omit this argument, namespaces in the root
scope are listed.

itadmin namespace list
binding
plugins
url_protocols
url_resolvers
domain_plugins
initial_references

itadmin namespace list initial_references
PSS
RootPOA
PICurrent
IT_Locator
POACurrent
NameService
XAConnector
EventService
IT_Activator
DynAnyFactory
IT_NodeDaemon
...
IT_MulticastReliabilityProtocol
271

CHAPTER 20 | Configuration Domain
namespace remove

Synopsis namespace remove [-scope scoped-name] namespace

Description Removes a namespace.

Arguments

namespace show

Synopsis namespace show [-scope scoped-name] namespace

Description Displays all namespaces, variables and their values within the specified
namespace.

Arguments

Examples The following example shows the contents of the initial_references
namespace in the root configuration scope:

-scope Removes the namespace from the specified scope. If you
omit this argument, the namespace is removed from the
root scope.

-scope Narrows the namespaces to a specific scope. If you omit
this argument, namespaces and their contents in the root
scope are displayed.

itadmin namespace show initial_references
initial_references:RootPOA:plugin = "poa";
initial_references:POACurrent:plugin = "poa";
initial_references:DynAnyFactory:plugin = "it_dynany";
initial_references:TransactionCurrent:plugin = "ots_lite";
initial_references:TransactionFactory:plugin = "ots_lite";
initial_references:PSS:plugin = "pss_db";
initial_references:NameService:reference = "IOR:0100...00900";
initial_references:ConfigRepository:reference="IOR:0100...00900"

;
initial_references:IT_Locator:reference = "IOR:0100...00900";
 272

Scopes
Scopes

Overview The following commands let you manage configuration scopes:

scope create

Synopsis scope create scoped-name

Description Creates a configuration scope. Unless qualified by higher-level scope names,
the scope is created in the root configuration scope. To create a scope in a
scope other than the root, specify its fully qualified name.

Examples For example, the following command creates the test scope within
company.production:

After you create the scope, add the desired namespaces and variables
within it with itadmin variable create and itadmin namespace create.

scope list

Synopsis scope list [scoped-name]

Description Lists all the sub-scopes in the specified configuration scope. If no scope is
specified, this command lists the sub-scopes in the root scope.

Table 15: Configuration Scope Commands

scope create Creates a configuration scope.

scope list Displays all sub-scopes defined within a scope.

scope remove Removes a configuration scope and all its contained
namespaces, variables, and scopes.

scope show Displays all namespaces, variables, and their values
defined within a scope.

itadmin scope create company.production.test
273

CHAPTER 20 | Configuration Domain
Examples The following command lists all the sub-scopes defined within the
node_daemon configuration scope:

scope remove

Synopsis scope remove scoped-name

Description Removes the specified scope from the configuration. This includes all its
contained namespaces, variables, and configuration scopes.

scope show

Synopsis scope show [scoped-name] [-compatible] [-output_to_file filename]

Description Displays all sub-namespaces, variables, and their values in the specified
configuration scope. If no scope is specified, this command displays the
contents of the root scope.

Arguments

Examples The following command displays the contents of the node_daemon
configuration scope:

itadmin scope list node_daemon
node_daemon2
node_daemon3

-compatible Formats the displayed configuration so that it
can be used in a file-based configuration. This
enables you to produce file-based
configuration segments from a scope (rather
than the entire CFR).

-output_to_file <filename>Directs the output to the specified file.

itadmin scope show node_daemon
orb_plugins = local_log_stream, iiop_profile, giop, iiop;
event_log:filters=IT_NODE_DAEMON=INFO_ALL+WARN+ERROR+FATAL;
plugins:node_daemon:shlib_name = "it_node_daemon_svr";
plugins:node_daemon:nt_service_dependencies = "IT locator

orbix2000";
plugins:node_daemon:name = "it_node_daemon";
 274

Variables
Variables

Overview The following commands let you manage configuration variables:

variable create

Synopsis variable create [-scope scoped-name] -type long|bool|list|string
-value value var-name

Description Creates the specified variable in the configuration domain. Any configuration
namespaces specified in the variable name that do not exist are also created.

Arguments The following arguments are supported:

Table 16: Configuration Variable Commands

variable create Creates a variable or namespace within the
configuration domain.

variable modify Changes one or more variable values.

variable remove Removes a variable from the configuration
domain.

variable show Displays a variable and its value.

-scope scoped-name The configuration scope in which to define the
variable. If you omit this argument, the variable is
created in the root configuration scope.

-type type The type of the variable. Supply one of the
following types:

� long

� bool

� list (a comma-separated list of strings)

� string

For more about variable types, see �Data types� on
page 45.
275

CHAPTER 20 | Configuration Domain
Examples The following example creates a variable named orb_plugins in the root
configuration scope:

The following example creates variable service_name in scope IFR:

The following example creates a namespace in the root configuration scope:

-value value The variable�s value. The value must match the
type specified by the -type switch.

The following values are valid for the specified
type:

long: any signed long value

bool: true or false

list: list items must be separated by commas.
Empty elements or list items containing spaces
must be quoted�for example:

foo,"bar none",baz

See �Specifying lists� on page 255 for more
details.

string: Enclose values in double quotes.

itadmin variable create -type list -value IIOP,GIOP,PSS
orb_plugins

itadmin variable create -scope IFR -type string -value "ARTIFR"
service_name

itadmin variable create -type string -value
"IOR:004332434235234235933..."
initial_references:IntefaceRepository:reference

Note: In shell mode, do not specify IORs to the -value argument.
Specify IORs in command-line and script modes only.
 276

Variables
variable modify

Synopsis variable modify [-scope scoped-name] -type long|bool|list|string
-value value var-name

Description Modifies the value of a variable or namespace in the configuration domain in
the specified scope.

Arguments The following arguments are supported:

Examples The following example modifies the event log filters for the naming service:

-scope scoped-name The configuration scope in which to modify the
variable or namespace. The default is the root
configuration scope.

-type type The type of the variable. Supply one of the following
types:

� long

� bool

� list (a comma-separated list of strings)

� string

-value value The variable�s value. The value must match the
type specified by the -type switch.

The following values are valid for the specified type:

long: any signed long value

bool: true or false

list: list items must be separated by commas.
Empty elements or list items containing spaces
must be quoted�for example:

foo,"bar none",baz

See �Specifying lists� on page 255 for more details.

string: Enclose values in double quotes.

itadmin variable modify -scope naming -type list -value
IT_NAMING=ERR+FATAL event_log:filters
277

CHAPTER 20 | Configuration Domain
variable remove

Synopsis variable remove [-scope scoped-name] var-name

Description Removes the specified variable from the configuration domain. This operation
does not remove a configuration namespace.

Arguments

variable show

Synopsis variable show [-scope scoped-name] var-name

Description Displays the specified variable and its value, within the specified scope. The
default is the root configuration scope.

Arguments

Examples The following example shows a variable in the default root configuration
scope:

The following example shows the same variable as it is set for the event
service in the configuration scope event:

-scope scoped-name The configuration scope from which to remove
the variable. If you omit this argument, the
variable is removed from the root scope.

-scope Narrows the displayed variable to a specific configuration
scope.

itadmin variable show orb_plugins
orb_plugins = iiop_profile, giop, iiop

itadmin variable show -scope iona_services.event orb_plugins
orb_plugins = iiop_profile, giop, iiop
 278

Event Service
Overview The event service is a CORBA service that enables applications to send

events that can be received by any number of objects. For more about the
event service, see the CORBA Programmer�s Guide.

itadmin commands let you manage the following event service components:

Event Service Management page 280

Event Channel page 282
279

CHAPTER 21 | Event Service
Event Service Management

Overview The following commands let you manage an event service instance:

event show

Synopsis event show

Description Displays the attributes of the default event service.

Multiple instances of the event service are also supported. To show the
attributes of a non-default event service, specify the ORB name used to start
the event service (using the -ORBname parameter to itadmin).

Examples The following command shows the attributes of a default event service:

The following command shows the attributes of a non-default event service:

Each event service instance must have a unique name. You can specify this
is in your configuration, using the plugins:poa:root_name variable. The
event service uses named roots to support multiple instances.

Table 17: Event Service Commands

event show Displays the attributes of the specified event service.

event stop Stops an instance of the event service.

itadmin event show
Event Service Name: IT_EventNamedRoot
 Host Name: podge
 Event Channel Name List:
 my_channel

itadmin -ORBname event.event2 event show
Event Service Name: IT_EventNamedRoot2
 Host Name: rodge
 Event Channel Name List:
 my_channel
 my_channel2
 280

Event Service Management
In this example, the plugins:poa:root_name variable is set to
IT_EventNamedRoot2 in the event.event2 configuration scope:

event stop

Synopsis event stop

Description Stops the default event service.

Multiple instances of the event service are also supported. To stop a
non-default event service, qualify the itadmin command with the -ORBname
argument and supply the ORB name used to start the event service.

To start the event service, use the itevent command. You can also use the
start_domain-name_services command. For more information, see
�Starting Orbix Services� on page 237.

Examples The following command stops the default event service.

The following command stops the event service that was started with ORB
name event.event2:

...
event{
 plugins:poa:root_name = "IT_EventNamedRoot";
 ...

 event2
 {
 plugins:poa:root_name = "IT_EventNamedRoot2";
 };
}
...

itadmin event stop

itadmin -ORBname event.event2 event stop
281

CHAPTER 21 | Event Service
Event Channel
The following commands let you manage an event channel:

ec create

Synopsis ec create channel-name

Description Creates an untyped event channel with the specified name. If specified with
an unqualified itadmin command, the event channel is created in the default
event service. You can create an event channel in another (non-default) event
service by qualifying the itadmin command with the -ORBname argument and
supplying the ORB name used to start the service.

Examples The following command creates an untyped event channel, my_channel:

Table 18: Event Channel Commands

ec create Creates an untyped event channel with the
specified name.

ec create_typed Creates a typed event channel with the specified
name.

ec list Displays all untyped event channels managed by
the event service.

ec remove Removes the specified untyped event channel.

ec remove_typed Removes the specified typed event channel.

ec show Displays all attributes of the specified untyped
event channel.

ec show_typed Displays all attributes of the specified typed event
channel.

itadmin ec create my_channel
 282

Event Channel
The following command creates an untyped event channel (for a non-default
event service) named my_channel2:

ec create_typed

Synopsis ec create_typed channel_name

Description Creates a typed event channel with the specified name.

ec list

Synopsis ec list [-count]

Description Displays all the untyped event channels managed by an event service.

Arguments

Examples The following example displays the untyped event channels that are in the
default event service:

The following example displays the untyped event channels that are in a
non-default event service:

The following example displays the number of untyped event channels
managed by an event service:

itadmin -ORBname event.event2 ec create my_channel2

-count Displays the total number of untyped event channels.

itadmin ec list
my_channel
mkt_channel
eng_channel

itadmin -ORBname event.event2 ec list
my_channel
my_channel2
mkt_channel
eng_channel

itadmin ec list -count
3

283

CHAPTER 21 | Event Service
ec remove

Synopsis ec remove channel-name

Description Removes the specified untyped event channel.

Examples The following command removes untyped event channel my_channel:

The following command removes untyped event channel my_channel2 from
a non-default event service:

ec remove_typed

Synopsis ec remove_typed channel_name

Description Removes the specified typed event channel.

ec show

Synopsis ec show channel-name

Description Displays all attributes of the specified untyped event channel.

Examples The following command displays the attributes of my_channel:

itadmin ec remove my_channel

itadmin -ORBname event.event2 ec remove my_channel2

itadmin ec show my_channel
Channel Name: my_channel
 Channel ID: 1
 Event Communication: Untyped
 284

Event Channel
The following command displays the attributes of my_channel2 from a
non-default event service:

ec show_typed

Synopsis ec show_typed channel_name

Description Displays all attributes of the specified typed event channel.

itadmin -ORBname event.event2 ec show my_channel2
Channel Name: my_channel2
 Channel ID: 2
 Event Communication: Untyped

Note: For information about event service configuration variables, see the
section on the plugins:notification namespace in the Orbix
Configuration Reference.
285

CHAPTER 21 | Event Service
 286

Interface
Repository

Overview A subset of itadmin commands let you create, browse, and remove IDL
definitions from the interface repository. You can manage the following
interface repository components:

IDL Definitions page 288

Repository Management page 289
287

CHAPTER 22 | Interface Repository
IDL Definitions

Overview itadmin provides a single itadmin idl command, which lets you modify the
contents of an interface repository with new IDL definitions.

idl -R=-v

Synopsis idl -R=-v idl-filename

Description Writes IDL definitions from a single IDL source file into the interface repository.
The -R=-v argument setting causes the interface repository to use verbose
mode to indicate command progress. The idl-filename argument names the
IDL file. You must execute the idl command from the command line.

Examples The following example writes the IDL definitions in the foo.idl file to the
interface repository:

bash $ idl -R=-v foo.idl
 Created Alias MyLong.
 Created Operation op1.
 Created Operation op2.
 Created Interface Foo.

Note: The idl -R=-v command does not require the itadmin command.
 288

Repository Management
Repository Management

Overview The following commands let you browse and modify the contents of an
interface repository:

ifr cd

Synopsis ifr cd [scoped-name | ..]

Description Changes the current container to the specified scoped name. Using the
argument �..� changes the current container to the next outermost container.
If no arguments are given, ifr cd changes the current container to the
interface repository. Use ifr cd in command shell mode only.

Table 19: Interface Repository Commands

ifr cd Changes the current container (in shell
mode).

ifr destroy_contents Destroys the contents of the interface
repository.

ifr ifr2idl Outputs the contents of the interface
repository to the specified file.

ifr list Lists the contents of the current container.

ifr pwd Prints the name of the current container (in
shell mode).

ifr remove Removes an IDL definition from the interface
repository.

ifr show Prints specified IDL definitions contained in
the interface repository.

ifr stop Stops the interface repository.
289

CHAPTER 22 | Interface Repository
Examples The following command changes to the specified scoped name:

ifr destroy_contents

Synopsis ifr destroy_contents

Description Destroys the entire contents of the interface repository, leaving the repository
itself intact.

ifr ifr2idl

Synopsis ifr ifr2idl filename

Description Converts the entire contents of the interface repository to text and writes it to
the specified filename.

ifr list

Synopsis ifr list [-l] [scoped-name | .]

Description Lists the contents of the specified container. If no container name is provided,
this command lists the contents of the current container.

Arguments

ifr pwd

Synopsis ifr pwd

Description Displays the name of the current container. Use ifr pwd in command shell
mode only. Command-line mode does not store persistent state.

itadmin ifr cd MYCO.PRODUCTION.TOOLS

-l Lists the contents in long form: absolute name, kind,
repository ID.

scoped-name Specifies the container to list the contents of. The
default is the root name.

. (dot) Specifies the current container.
 290

Repository Management
ifr remove

Synopsis ifr remove scoped-name

Description Removes the scoped name by invoking the function IRObject::destroy() on
the scoped name. The scoped-name argument is the name of the interface
repository entry to be removed, and is relative to the current container.

ifr show

Synopsis ifr show scoped-name

Description Displays the scoped name in IDL format. The scoped-name argument is
relative to the current container.

ifr stop

Synopsis ifr stop

Description Stops the interface repository.
291

CHAPTER 22 | Interface Repository
 292

Location Domain
Overview This section describes itadmin commands that manage a location domain

and its components. Some commands modify static information in the
implementation repository; others affect runtime components.

itadmin commands let you manage the following location domain
components:

Locator Daemon page 294

Named Key page 297

Node Daemon page 300

ORB Name page 304

POA page 308

Server Process page 314
293

CHAPTER 23 | Location Domain
Locator Daemon

Overview The following commands manage locator daemons:

Locator daemon name Most commands require you to supply the locator daemon name. The
default name has the following format:

For example:

locator heartbeat_daemons

Synopsis locator heartbeat_daemons locator_name

Description Pings all the of the node daemons known to the specified locator, removing
those that are no longer active.

Table 20: Locator Daemon Commands

locator
heartbeat_daemons

Pings all the of the node daemons known to
the specified locator, removing those that are
no longer active.

locator list Displays all locators in the location domain.

locator show Displays all attributes of the specified locator
daemon.

locator stop Stops the locator daemon.

iona_services.locator_daemon.unqualified-hostname

iona_services.locator_daemon.oregon
 294

Locator Daemon
locator list

Synopsis locator list [-count] [-active]

Description Displays all locators in the location domain.

Arguments

locator show

Synopsis locator show [-ior] locator-name

Description Displays all attributes of the specified locator.

Arguments

Examples The following example shows the attributes displayed for a default locator:

The following example shows the attributes for a locator running on
wicklow, port 3076.

-count Displays the number of locators in the location domain.

-active Displays all active locators in the location domain.

-ior Indicates that the target is an IOR, rather than the name of the
Locator.

itadmin locator show iona_services.locator.wicklow
Locator Name: iona_services.locator
 Domain name: enterprise_services
 Host name: wicklow
 Start time: Sun, 05 Aug 2001 07:55:59.5380000 +0500
 Replica type: Master

itadmin locator show -ior corbaloc::1.2@wicklow:3076/IT_Locator
Locator Name: iona_services.locator
 Domain name: enterprise_services
 Host name: wicklow
 Start time: Sun, 05 Aug 2001 07:55:59.5380000 +0500
 Replica type: Master
295

CHAPTER 23 | Location Domain
locator stop

Synopsis locator stop [-alldomain] [-ior] locator-name

Description Stops the specified locator daemon.

Arguments

-alldomain Stops the locator, all registered node daemons, and
monitored processes running in a location domain.

-ior Indicates that the target is an IOR, rather than the name of
the Locator.
 296

Named Key
Named Key

Overview Named keys allow users to specify human readable URLs in place of a
server�s IOR. Named keys work best when used with persistent objects. If
the object�s IOR changes, the named key will need to recreated.

To pass the IOR of a server to a client using a named key, the user will need
to supply an address is the following format:

For example, the corbaloc reference for a replicated locator daemon would
look like:

One instance of the locator daemon is hosted on fox and listens on port
8035. The other instance is hosted on hound and also listens on port 8035.
The named key associated with this replicated locator daemon�s IOR is
hunter.

For more information on corbaloc references read section 13.6.10, �Object
URLs,� of the OMG CORBA specification.

Commands The following commands let you manage named keys:

corbaloc:iiop:ver@host:port/named_key

ver The IIOP version the server uses to communicate.

host The hostname for the machine running the locator
daemon.

port The port used by the locator.

named_key The named key created for the server.

corbaloc:iiop:1.2@fox:8035,iiop:1.2@hound:8035/hunter

Table 21: Named Key Commands

named_key create Creates an association between a specified
well-known object key and a specified object
reference.
297

CHAPTER 23 | Location Domain
named_key create

Synopsis named_key create -key object-key object-reference

Description Associates a well-known object key name with an object reference. The -key
argument specifies the human-readable string name of the key to use when
referring to the specified object-reference.

After entering this command, object requests destined for the specified
object key are forwarded to the specified object reference.

Use named_key create in command-line mode only.

Examples The following example shows the named key created for the default naming
service when Orbix is installed:

named_key list

Synopsis named_key list [-count]

Description Lists all well-known object keys registered in the location domain.

Arguments

named_key list Lists all well known object keys that are registered
with the locator daemon.

named_key remove Removes the specified object-key from the
location domain.

named_key show Displays the object reference associated with the
given key.

Table 21: Named Key Commands

itadmin named_key create -key NameService IOR:010000002...003500

-count Displays the number of well-known object keys in the location
domain.
 298

Named Key
Examples The following command lists the named keys that are created in a default
Orbix environment:

named_key remove

Synopsis named_key remove object-key

Description Removes the specified human-readable object-key from the location
domain.

named_key show

Synopsis named_key show object-key

Description Displays the object reference associated with the specified human-readable
object-key.

Examples

itadmin named_key list
NameService
InterfaceRepository

itadmin named_key show NameService
Named Object Key : NameService
Associated Object Reference:

IOR01000002f0000004944...00100003500
299

CHAPTER 23 | Location Domain
Node Daemon

Overview The following commands manage node daemons:

Node daemon name Most commands require you to supply the node daemon name. The default
name has the following format:

For example:

node_daemon list

Synopsis node_daemon list [-count]

Description Displays all node daemon names implicitly registered with the locator
daemon. Node daemon entries are implicitly created in the implementation
repository (IMR) when the specified node daemon starts.

Table 22: Node Daemon Commands

node_daemon list Displays all node daemon names implicitly
registered with the locator daemon.

node_daemon remove Removes a node daemon from the location
domain that is created implicitly when the
specified node daemon starts.

node_daemon show Displays all attributes of the specified node
daemon.

node_daemon stop Stops the node daemon.

add_node_daemon.tcl Adds node daemons to a host.

iona_services.node_daemon.unqualified-hostname

iona_services.node_daemon.oregon
 300

Node Daemon
Arguments

node_daemon remove

Synopsis node_daemon remove node-daemon-name

Description Removes a node daemon entry from the implementation repository. Node
daemon entries are created implicitly when the specified node daemon starts.

Use this command only when the specified node daemon shuts down
prematurely due to a host crash or termination signal.

node_daemon show

Synopsis node_daemon show node-daemon-name

Description Displays the attributes for the specified node daemon.

Examples The following example shows the attributes displayed for the node daemon
on host dali:

The default node name is host. To change the default name, modify
plugins:node_daemon:name, using itadmin variable modify. In a
file-based configuration domain, you can also edit this variable in your
configuration file.

-count Displays the total node daemon count.

WARNING: Do not use node_daemon remove on a running node daemon.

itadmin node_daemon show dali
Node Daemon Name: dali
 Host Name: dali
 File Access Permissions:
 User: mstephens
 Group: o2kadm
 Start time: Mon, 06 Aug 2001 06:55:53.4480000 +0500
301

CHAPTER 23 | Location Domain
node_daemon stop

Synopsis node_daemon stop node-daemon-name

Description Stops the specified node daemon. This command also stops all the processes
monitored by that node daemon.

To view all processes monitored by the specified node daemon, use process
list -node_daemon.

add_node_daemon.tcl

Synopsis itadmin add_node_daemon.tcl -number<add> -port <base_port>
-script_dir <script_dir> [-host <cluster>] [-out <IOR_file>]

Arguments

add The number of node daemons to add to the host.

base_port The port number to be used by the first new node daemon.
Each additional node daemon will be assigned a port numbers
incrementing upward by one.

script_dirThe directory where the domain�s start and stop scripts reside.
This is typically, <install_dir>\etc\bin.

cluster Indicates the name of the cluster or federated name of which
the host is associated. This parameter is optional.

IOR_file The full path name of the file store the IORs of the new node
daemons. This parameter is optional and the default location is
<current_working_dir>\node_daemons.ior.
 302

Node Daemon
To add node daemons to a host:

1. Ensure that the domain to which additional node daemons are to be
added is running.

2. Source the <domain>_env file to set the configuration environment
variables.

3. Run the command. It silently configures and deploys the new node
daemons into the running configuration. The domain start and stop
scripts will be modified to include the new node daemons.

4. Once the command finishes, stop the domain�s services using the
domain�s stop script, stop_<domain>_services.

5. Manually modify the value of
initial_references:IT_NodeDaemon:reference for the CORBA
servers you want to use the additional node daemons so that it
contains a reference to the new node daemon.

6. If the servers are started on demand, you must also modify their
process information to reflect the server�s new node daemon.

7. Restart the domain using its start script, start_<domain>_services.
303

CHAPTER 23 | Location Domain
ORB Name

Overview The following commands manage ORB names:

orbname create

Synopsis orbname create [-process process-name] ORB-name

Description Creates the specified ORB name in the location domain. This designates a
server-side ORB that is subject to POA or process activation. In the location
domain, the ORB name is associated with a POA name and is used for process
activation.

Arguments

Examples The following command creates a scoped ORB name:

Table 23: ORB Name Commands

orbname create Creates an ORB name in the location domain.

orbname list Displays all ORB names in the location domain.

orbname modify Modifies the specified ORB name entry either by
associating it with another process entry, or by
disassociating it from any process.

orbname remove Removes an ORB name from the location domain.

orbname show Displays attributes for the specified ORB name.

-process Associates the ORB name with the specified process. The
process name must previously be registered with the locator
daemon (see �process create� on page 314).

itadmin orbname create MutualFunds.Tracking.GroInc.Stocks
 304

ORB Name
orbname list

Synopsis orbname list [-active] [-count] [-process process-name]

Description Lists all ORB names in the location domain.

Arguments

Examples The following example lists all registered ORB names in the location domain:

orbname modify

Synopsis orbname modify [-process process-name] ORB-name

Description Modifies the specified ORB name entry by associating it with the specified
process name. If the process name is omitted, the ORB name is disassociated
from any process.

Arguments

-active Lists only the name in the locator's active ORB table.

-count Lists the total number of ORB names in the location domain.

-process Lists only the ORB name entries that are associated with
process-name.

itadmin orbname list
ifr
naming
production.test.testmgr
production.server

process-name The name of the process to which the ORB name will be
associated.
305

CHAPTER 23 | Location Domain
orbname remove

Synopsis orbname remove [-active|-deep|-force] ORB-name

Description Removes an ORB name from the location domain. You might need to remove
an ORB name, if its application is removed from the environment, or if the
ORB name has changed, or to prevent process activation.

If there is an active ORB entry for the ORB name in the locator's active ORB
table, this is also removed.

An ORB name can be the same as the ORB_id (used to identify an ORB
within a process) and has the following syntax:

Arguments The following arguments are mutually exclusive:

Examples The following example removes the production.test ORB name:

ORBNameSegment.ORBNameSegment.ORBNameSegment

-active Removes only the active ORB entry from the locator's active ORB
table, and does not remove the ORB name.

-deep Removes the ORB name and all POA names in the location
domain that refer to it.

-force Forces ORB name removal, even though some POA names in the
location domain might have references to it.

itadmin orbname list
ifr
naming
production.test.testmgr
production.server

itadmin orbname remove -active production.test.testmgr

itadmin orbname list
ifr
naming
production.server
 306

ORB Name
orbname show

Synopsis orbname show ORB-name

Description Displays all the attributes for the specified ORB name.

Examples The following example displays the attributes for the company.sales ORB
name:

itadmin orbname show company.sales
ORB Name: company.sales
Process Name: sales_process
Active: yes
307

CHAPTER 23 | Location Domain
POA

Overview The following commands manage POA entries:

poa create

Synopsis poa create [-orbname ORB-name] [-replicas replica-list]

 [-persistent] [-transient] [-allowdynamic]

 [-allowdynreplicas] [-clear_replicas]

 [-load_balancer lb-name] FQPN

Registers a POA in the location domain. The required FQPN argument is the
fully-qualified POA name. An FQPN has the following syntax:

Arguments

Table 24: POA Commands

poa create Creates a POA name in the location domain.

poa list Displays POA names in the location domain.

poa modify Modifies the indicated POA name as specified.

poa remove Removes a POA name from the location domain.

poa show Displays all data that is entered for POA-name.

FQPNsegment/FQPNsegment/FQPNsegment

-orbname ORB-name Associates an ORB name with the specified POA. This
argument requires an ORB-name argument with the
following syntax:

ORBNameSegment.ORBNameSegment.ORBNameSegment

-orbname cannot be combined with -persistent,
-replicas, or -transient
 308

POA
-replicas
replica-list

Associates the specified POA with multiple ORBs
specified in replica-list, where replica-list is a
comma-delimited list of ORBs:

orb[,orb]...

-replicas cannot be combined with -persistent,
-orbname, or -transient.

-persistent Marks the POA as persistent without associating it with
an ORB.

-persistent cannot be combined with -replicas,
-orbname, or -transient.

-transient Marks the POA as transient.

-transient cannot be combined with -replicas,
-orbname, or -persistent

-allowdynamic Enables dynamic registration of a POA in the location
domain. The default is no dynamic registration.
Enabling dynamic creation allows servers to register
information (although administrators must create the
top-level name manually).

-allowdynreplicas Must be set to yes or no:

� yes: (default) Any ORB creating the POA is
automatically added to the POA's replica list.

� no: Only those ORBs that are configured in the
cluster through replicas are allowed to create the
POA.

-load_balancer
lb-name

Determines the load balancer used to select a replica
response to client requests. If a load balancer is not
specified, requests will be routed to the first server that
creates the POA.

The Orbix distribution provides support for the following
algorithms:

� round_robin: the locator uses a round-robin
algorithm to select from the list of active servers�
that is, the first client is sent to the first server, the
second client to the second server, and so on.

� random: the locator randomly selects an active
server to handle the client.
309

CHAPTER 23 | Location Domain
Examples The following command creates a transient POA name in the location domain:

The following command creates a persistent POA name in the location
domain:

The following command creates a persistent POA name associated with
multiple ORBs:

poa list

Synopsis poa list [-active] [-children FQPN] [-count] [-persistent]
[-transient]

Description Shows all POA names in the location domain.

Arguments

itadmin poa create -transient banking_service

itadmin poa create -orbname banking_services_app
banking_service/account

itadmin poa create -replicas bank_server_1,bank_server_2
-load_balancer round_robin banking_service/account

-active Lists only entries for POAs that are currently active.
-active and -transient parameters are mutually
exclusive.

-children FQPN Lists only entries for child POAs of the specified
parent POA.

-count Lists the total number of POA names in the location
domain.

-persistent Lists only POA names for persistent POAs.

-transient Lists only POA names for transient POAs. -transient
and -active arguments are mutually exclusive.
 310

POA
Examples

poa modify

Synopsis poa modify [-allowdynamic] [-allowdynreplicas]

 [-orbname ORB-name]

 [-replicas replica-list]

 [-clear_replicas]

 [-load_balancer lb-name] FQPN

Description Modifies the specified POA name. The required FQPN argument is the
fully-qualified POA name. A FQPN has the following syntax:

Arguments

itadmin poa list
banking_service
banking_service/account
banking_service/account/checking
banking_service/account/checking/deposit

FQPNsegment/FQPNsegment/FQPNsegment

-allowdynamic Enables dynamic registration of a POA in the location
domain. The default is no dynamic registration.
Enabling dynamic creation allows servers to register
information (although administrators must create the
top-level name manually).

-allowdynreplicas Must be set to yes or no:

� yes: (default) Any ORB creating the POA is
automatically added to the POA's replica list.

� no: Only those ORBs that are explicitly configured
in the cluster through replicas are allowed to
create the POA.

-orbname ORB-name Associates the specified ORB name with the specified
POA. This argument requires an ORB-name argument
with the following syntax:

ORBNameSegment.ORBNameSegment.ORBNameSegment
311

CHAPTER 23 | Location Domain
poa remove

Synopsis poa remove [-active|-allactive] FQPN

Description Removes the entry for the specified POA and its descendants from the location
domain. By default, all active entries for the POA and its children are also
removed. Use the -active argument to remove only the active entry for the
specified POA.

Arguments

-replicas
replica-list

Associates the specified POA with multiple ORBs
specified in replica-list, where replica-list is a
comma-delimited list of ORBs:

orb[,orb]...

-replicas cannot be combined with -orbname.

-clear_replicas Disassociates the POA from any ORBs.

-load_balancer Determines the load balancer used to select a replica
response to client requests. If a load balancer is not
specified, requests will be routed to the first server that
creates the POA.

The Orbix distribution provides support for the following
algorithms:

� round_robin: the locator uses a round-robin
algorithm to select from the list of active servers�
that is, the first client is sent to the first server, the
second client to the second server, and so on.

� random:: the locator randomly selects an active
server to handle the client.

-active Removes currently active entries for the specified POA only.
-active and -allactive arguments are mutually exclusive.

-allactive Removes only active entries for the specified POA and all its
children.
 312

POA
Examples The following example removes the specified POA and its children:

poa show

Synopsis poa show FQPN

Description Displays all the attributes for the specified POA name. A FQPN (fully-qualified
POA name) has the following syntax:

Examples The following example shows the attributes for the IFR POA name:

itadmin
% poa list
banking_service
banking_service/account
banking_service/account/checking
banking_service/account/checking/deposit

% poa remove banking_service/account/checking
% poa list
banking_service
banking_service/account

FQPNsegment/FQPNsegment/FQPNsegment

itadmin poa show IFR
FQPN: IFR
 Active: no
 Lifespan: persistent
 ORB Names:
 iona_services.ifr
 Allow Replicas outside this list: no
 Load Balancing Algorithm: <NONE>
 Allow Dynamic Registration: no
 Parent FQPN: <NONE>
 Children FQPN: <NONE>
313

CHAPTER 23 | Location Domain
Server Process

Overview The following commands let you manage server process entries:

process create

Synopsis process create -args "-ORBname orb-name [arg-list]"

 [-description] [-startupmode mode]

 [-node_daemon node-daemon-name] [-pathname pathname]

 [-directory dir] [-env env] [-group group] [-user user]

 [-umask umask] process-name

Table 25: Server Process Commands

process create Creates a server process name in the location
domain.

process disable Disables the specified server process for process
activation, using the node daemon.

process enable Enables a target server process for on-demand
activation by the node daemon.

process kill Kills the specified process that was started by its
associated node daemon.

process list Lists names of server processes in the location
domain.

process modify Modifies the process as specified.

process remove Removes a server process name from the location
domain.

process show Displays a complete server process entry.

process start Starts a registered server process.

process stop Stops a registered server process.
 314

Server Process
Description Registers a server process in a location domain�s implementation�s repository.

Arguments The following arguments apply to all platforms.

-args Arguments supplied to the process when it starts. At a
minimum, supply the -ORBname argument with the name of
the ORB associated with this server process.

Enclose all arguments within quotation marks, and separate
multiple arguments with spaces. For example:

itadmin process create -args "-ORBname
company.production.sver1" my_app

If you are registering a Java server, the argument list
generally includes the class path.

If the process start-up mode is per_client, the locator
creates a new ORB name and a new process entry for each
request from a client to the persistent POA associated with
this process. In this case, the %o and %p strings in the
process's arguments are substituted with the new ORB
name and the new process name respectively. For example:

-args "--ORBname %o"

For more details, see �Per-client activation� on page 54.

-description A brief description of the target process. Enclose the
description in double quotes.

-startupmode Specifies the start-up mode of the target process:

� on_demand (default) starts the process when requested
by a client.

� per_client starts a new process for each client.

� disable disables automatic startup.

-node_daemon The name of the node daemon that starts or modifies this
process.

-pathname The full pathname of the executable to start when the
process is activated.

On Windows platforms, specify a drive letter if not the
current drive of the node daemon. Windows paths can be
expressed with one forward slash separator or two backward
slashes.
315

CHAPTER 23 | Location Domain
-directory Specifies the working directory to which the target process
writes output files, error logs, and so on.

On UNIX the default current working directory is set to the
root file system. On Windows, the default current drive is
the node daemon�s drive, and the current directory is set to
the root directory.

On Windows, specify a drive letter if the working directory
drive differs from the node daemon�s current drive. Windows
paths can be expressed with one forward slash separator or
two backward slashes.

On UNIX, if the current working directory path does not
exist, it is created automatically with permissions
drwx------.

Use this argument in order to:

� Ensure that the server runs in a directory that is in the
root file system. This avoids problems with running
servers in mounted file systems.

� Use relative path names. This means that
administrators can set the working directory for the
activated server, without having to define other paths
and directories.

� Ensure that core files cannot overwrite each other if the
server is configured to run somewhere other than the
root directory.

-env Explicitly sets the process environment. This argument takes
an list of space-delimited variable=value pairs, enclosed in
quotation marks:

env "DISPLAY=circus:0.0 CLOWN=Bozo HOME=/tent"

This option overrides any environment variables set by the
node daemon. By default, the server inherits its environment
from the node daemon. If you use this option, you must
specify all environment variables that the server requires.

For more information about environment settings, see
�Server Environment Settings� on page 56.

-group Group name that starts the target process. The default is
nobody. For more information, see page 58.
 316

Server Process
process disable

Synopsis process disable process-name

Description Disables on-demand activation of the specified server process-name.

process enable

Synopsis process enable process-name

Description Enables on-demand activation of the specified server process-name.

process kill

Synopsis process kill [-signal signal_number] [-force] process_name

Description Kills the specified process that was started by its associated node daemon.
The -signal argument specifies the UNIX signal number to kill the process.
This command has the following effects:

This command only works for processes activated by the node daemon. For
manually launched processes, it has no effect.

Arguments

-user User name that starts the target process. The default is
nobody. For more information, see page 58.

-umask File mode creation mask for the activated target process.
Specify as three octal digits ranging from 000 to 777. The
default is 022 (maximum file permissions: 755, or
rwxr-xr-x).

UNIX Sends a signal to the process. The default is 9.

Windows Calls TerminateProcess().

-signal Specifies the UNIX signal number to kill a process. The
default is 9.
317

CHAPTER 23 | Location Domain
process list

Synopsis process list [-count] [-node_daemon node-daemon-name] [-active]

Description Lists the target process names of all processes registered in the location
domain. Listing process names is useful for verifying a target process name
or its status.

Arguments

Examples The following example lists all registered process names in a location domain

-force Forces the removal of the persistent data for the specified
process from the implementation repository (IMR). This can
be used when a previously active process has died or been
killed, and the persistent data in the IMR was not cleaned up
correctly. If the persistent data held by the locator and node
daemon was not correctly cleaned up, there may be issues
when trying to restart the process.

Note: This command should be used with caution, and only
if the normal cleanup mechanisms have failed for some
unknown reason.

-count Displays the total number of process names in the location
domain.

-node_daemon Lists all monitored processes for a given node daemon.
This is useful if you want to perform the node_daemon stop
command.

-active Lists all currently active processes.

itadmin process list
if
naming
my_app
 318

Server Process
process modify

Synopsis process modify -args �-ORBname orb-name [arg-list]"

 [-description] [-startupmode mode]

 [-node_daemon node-daemon-name]

 [-pathname pathname] [-directory dir]

 [-env env] [-group group] [-user user]

 [-umask umask] process-name

Description Modifies the specified process entry in the implementation repository.

Arguments

-args Arguments supplied to the process when it starts. At a
minimum, supply the -ORBname argument with the name
of the ORB associated with this server process.

Enclose all arguments with quotation marks, and separate
multiple arguments with spaces. For example:

itadmin process create -args "-ORBname
company.production.sver1" my_app

If you are registering a Java server, the argument list
generally includes the class path.

If the start-up mode of the process is per_client, the
locator creates a new ORB name and a new process entry
for each request from a client to the persistent POA
associated with this process. In this case, the %o and %p
strings in the process's arguments are substituted with the
new ORB name and the new process name respectively.
For example:

-args "--ORBname %o"

For more details, see �Per-client activation� on page 54.

-description A brief description of the target process.

-startupmode Specifies the start-up mode of the target process:

� on_demand starts the process when requested by a
client.

� per_client starts a new process for each client.

� disable disables automatic startup.
319

CHAPTER 23 | Location Domain
-node_daemon The name of the node daemon that will start or modify
this process.

-pathname The complete pathname of the executable that will be
started when the process is activated.

For Windows platforms, specify a drive letter if the
executable is not the same as the current drive of the
node daemon. Windows paths can be expressed with one
forward slash separator or two backward slashes.

-directory Specifies the working directory where the target process
writes output files, error logs, and so on.

On UNIX the default current working directory is set to the
root file system. On Windows, the default current drive is
the node daemon�s drive, and the current directory is set
to the root directory.

On Windows, specify a drive letter if the working directory
drive differs from the node daemon�s current drive.
Windows paths can be expressed with one forward slash
separator or two backward slashes.

On UNIX, if the current working directory path does not
exist, it is created automatically with permissions
drwx------.

Use this argument in order to:

� Ensure that the server runs in a directory that is in
the root file system. This avoids problems with
running servers in mounted file systems.

� Use relative path names. This means that
administrators can set the working directory for the
activated server without having to define other paths
and directories.

� Ensure that core files cannot overwrite each other if
the server is configured to run somewhere other than
the root directory.
 320

Server Process
process remove

Synopsis process remove [-force|-deep|-active] process-name

Description Removes a process implementation repository entry created using process
create. If you omit the -force or -deep switch, POA entries that reference
this process are not removed and an error is reported.

Removing a process also removes the active process entry from the locator's
active process table. The -active argument removes only an active process
entry from the locator's active process table; the process remains registered
with the implementation repository.

Arguments The following arguments are mutually exclusive. Choose one:

-env Explicitly sets the process environment. This argument
takes a list of space-delimited variable=value pairs,
enclosed in quotation marks:

env "DISPLAY=circus:0.0 CLOWN=Bozo HOME=/tent"

This option overrides any environment variables set by the
node daemon. By default, the server inherits its
environment from the node daemon. If you use this
option, you must specify all environment variables that
the server requires.

For more information about environment settings, see
�Server Environment Settings� on page 56.

-group Group name that starts the target process. The default is
nobody. For more information, see page 58.

-user User name that starts the target process. The default is
nobody. For more information, see �File access
permissions� on page 58.

-umask File mode creation mask for the activated target process.
Specify as three octal digits, ranging from 000 to 777. The
default is 022 (maximum file permissions: 755, or
rwxr-xr-x).

-active Removes only the active process entry from the locator's active
process table.

-deep Removes the process entry and all object adapter
implementation repository entries that refer to it.
321

CHAPTER 23 | Location Domain
Examples The following example removes the my_app server process name:

process show

Synopsis process show process-name

Description Displays all process data entered for the specified process-name. If the process
is active, process show displays the active node daemon name. Viewing a
target process is useful for verifying whether a process name is registered and
has the appropriate settings.

-force Forces process removal even if other implementation repository
entities have references to it.

itadmin process list
ifr
naming
my_app

itadmin process remove -force my_app

itadmin process list
ifr
naming
 322

Server Process
Examples The following example shows the information registered with the locator
daemon for a target process:

process start

Synopsis process start process-name

Description Starts a target process on the host where the node daemon configured for the
process resides.

itadmin process show my_app
Process Name: my_app
Description: Unknown services provided.
Startup Mode: on_demand
Node Daemon List:
 Node Daemon Name: oregon
 Host Name: oregon
 Max. Retries: 3
 Retry Interval: 2
 Path Name: c:\Program Files\Acme\bin\my_app.exe
 Arguments: -safe -sane
 Environment Variables: Inherited from node daemon
 File Access Permissions:
 User: mstephen
 Group: PC-GROUP
 File Creation Permissions:
 Umask: 022
 Current Directory: /
 Resource Limits: Inherited from node daemon
323

CHAPTER 23 | Location Domain
process stop

Synopsis process stop [-signal number] process-name

Arguments Stops the specified process that was started by its associated node daemon.
Depending on the environment used, this command has the following effect:

Arguments

UNIX/C++ Sends a SIGINT (2) signal to the process.

Windows/C++ Calls GenerateConsoleCtrlEvent(CTRL_BREAK_EVENT, 0).

Java Calls System.exit(0).

-signal Specifies the UNIX signal number to stop a process.

WARNING: The signal number is ignored for a Windows NT process.
 324

Mainframe
Adapter

Overview The following itadmin commands enable you to use the mapping gateway
interface of the Orbix Mainframe Adapter (MFA).

These commands enable you to list transaction mappings supported by your
CICS or IMS server adapter, add or delete interfaces and operations, and
change transactions that operations are mapped to. A new mapping file can
be read, or the existing mappings can be written to a new file.

Table 26: Mainframe Adapter itadmin Commands

mfa add Adds a new mapping.

mfa change Changes the transaction to which an existing
operation is mapped.

mfa delete Causes the server adapter to stop exporting a
specified operation.

mfa -help Prints a list of the operations that the mfa
plugin supports.

mfa list Prints a list of the mappings (interface,
operation, and name) that the server adapter
supports.

mfa refresh Causes the server adapter to obtain
up-to-date type information for the specified
operation.

mfa reload Causes the server adapter to reload the list
of mappings from its mapping file.

mfa resetcon If the IMS server adapter is using OTMA to
communicate with IMS, this command
causes the server adapter to close its
connection and to reconnect.

Has no effect on the CICS server adapter.
325

CHAPTER 24 | Mainframe Adapter
mfa resolve Prints a stringified IOR for the object in the
server adapter that supports the specified
interface.

mfa save Causes the server adapter to save its current
mappings to either its current mapping file
or to a filename that you provide.

mfa stats Causes the server adapter to switch over to a
new mapping file, and to export only the
mappings contained within it.

mfa stats Displays statistical information on the
running server adapter.

mfa stop Instructs the server adapter to shut down.

Note: The add, change, and delete operations only update the CICS or
IMS server adapter internal information. If, however, you use the save
operation the new details are written to the server adapter mapping file.

Table 26: Mainframe Adapter itadmin Commands
 326

mfa add

Synopsis mfa add -interface <name> -operation <name> <mapped value>

Description Adds a new mapping.

Parameters You must supply the name of the interface, name of the operation and the
mapped value that you want added. Module names form part of the interface
name and are separated from the interface name with a / character.

Examples For example, to add a new Simple/SimpleObject mapping, use the following
command:

mfa change

Synopsis mfa change -interface <name> -operation <name> <mapped value>

Description Changes the transaction to which an existing operation is mapped.

Parameters You must supply the name of the interface, name of the operation and the
mapped value that you want added. Module names form part of the interface
name and are separated from the interface name with a / character.

Examples For example, to change the transaction to which the call_me operation is
mapped to SIMPLESV, use the following command:

itadmin mfa add -interface Simple/SimpleObject -operation
call_me SIMPLESV

itadmin mfa change -interface Simple/SimpleObject -operation
call_me SIMPLESV
327

CHAPTER 24 | Mainframe Adapter
mfa delete

Synopsis mfa delete -interface <name> -operation <name>

Description Stops the server adapter exporting the specified operation.

Parameters You must supply the interface name and the operation name that you want
the server adapter to stop exporting. Module names form part of the interface
name and are separated from the interface name with a / character.

Examples For example, to stop the server adapter exporting the call_me operation, use
the following command:

mfa -help

Synopsis mfa -help

Description Lists all the operations provided by the mfa itadmin plugin.

mfa list

Synopsis mfa list

Description Prints a list of the mappings (interface, operation and name) that the adapter
server supports.

Parameters You must supply the interface name. Module names form part of the interface
name and are separated from the interface name with a / character.

itadmin mfa delete -interface Simple/SimpleObject -operation
call_me
 328

mfa refresh

Synopsis mfa refresh [-operation <name>] <interface name>

Description Causes the server adapter to obtain up-to-date type information for the
specified interface.

Parameters You must supply the interface name. Module names form part of the interface
name and are separated from the interface name with a / character. The
-operation <name> argument is optional. If you omit the -operation <name>
argument, all operations mapped in the specified interface are refreshed.

Examples For example, to cause the server adapter to get up-to-date type information
for the Simple interface, use the following command:

mfa reload

Synopsis mfa reload

Description Causes the server adapter to reload the list of mappings from its mapping file.

mfa resetcon

Synopsis mfa resetcon

Description If the IMS server adapter is using OTMA to communicate with IMS, when this
operation is called on the Mapping Gateway interface, the server adapter
closes its connection with OTMA and reconnects. This is done in such a way
that it does not affect any clients connected to the server adapter by briefly
queueing client requests in the server adapter until the connection is
re-established. The purpose of this operation is to free any cached security
ACEE's on the OTMA connection. You should, therefore, use this operation
after changes that affect users access to IMS have been made to user security
profiles in the OS/390 security package; for example, RACF.

itadmin mfa refresh Simple/SimpleObject

Note: This command has no effect on the CICS server adapter.
329

CHAPTER 24 | Mainframe Adapter
mfa resolve

Synopsis mfa resolve <interface name>

Description Prints a stringified IOR for the object in the server adapter that supports the
specified interface. This IOR string can then be given to clients of that
interface, or stored in an Orbix naming service. The IOR produced contains
the TCP/IP port number for the locator if the server adapter is running with
direct persistence set to no. Otherwise, it contains the server adapter�s port
number.

Examples For example, to retrieve an IOR for Simple IDL, use the following command:

Once retrieved, the IOR can be distributed to the client and used to invoke
on the target server running inside CICS or IMS.

mfa save

Synopsis mfa save [<mapping_file name>]

Description Causes the server adapter to save its current mappings to either its current
mapping file, or to a file name that you provide.

Parameters The [<mapping_file name>] argument is optional. You need only provide it
if you want the server adapter to save its current mappings to a specified file.

Examples For example, to get the server adapter to save its current mappings to a
myMappings.map file, use the following command:

itadmin mfa resolve Simple/SimpleObject

itadmin mfa save "C:\myMappings.map"
 330

mfa stats

Synopsis mfa stats

Description Displays some statistical information on the running server adapter.
Information includes the current time according to the server adapter, the
pending request queue length, the total number of worker threads, worker
threads currently active, total number of requests processed by the server
adapter since startup and the server adapter startup time.

mfa stop

Synopsis mfa stop

Description Causes the server adapter to shut down.

mfa switch

Synopsis mfa switch <mapping_file name>

Description Causes the server adapter to switch over to a new mapping file, and to export
only the mappings contained in it.

Parameters You must provide the name of the mapping file that you want the server
adapter to switch over to.

Examples For example, to get the server adapter to switch over to a myMappings.map
mapping file, use the following command:

itadmin mfa switch "c:\myMappings.map"
331

CHAPTER 24 | Mainframe Adapter
 332

Naming Service
Overview A subset of itadmin commands let you manage the naming service and its

contents. You can use these commands to create, list, and remove naming
contexts, objects, and object groups from the naming service.

All paths and compound names in the naming service conform to the
CORBA Interoperable Naming Service (INS) string name format.

Naming service commands operate on two components:

Names page 334

Object Groups page 338
333

CHAPTER 25 | Naming Service
Names

Overview The following ns commands let you manage and browse the naming service:

ns bind

Synopsis ns bind {-context | -object} -path path IOR

Description Creates an association between a context or object reference and the
path-specified compound name. Use this command in command-line mode
only.

Arguments

Table 27: Naming Service Commands

ns bind Creates an association between a context or
object reference and the specified compound
name.

ns list Lists the contents of the specified path.

ns list_servers Lists all active naming servers.

ns newnc Creates a new naming context or object and binds
it to the specified path.

ns remove Removes the specified context or object.

ns resolve Displays a resolved string name form of the IOR
for a specified path.

ns show_server Displays the naming server details for the server
name specified.

ns stop Stops the naming service.

ns unbind Unbinds the path-specified context or object.

-context Binds a context

-object Binds an object.
 334

Names
Examples The following example binds an object to the name james.person,in the
company/staff naming context:

ns list

Synopsis ns list [path]

Description Displays the contents of the specified path. If path resolves to a context, its
contents are displayed. If path resolves to an object, the object is displayed.
If no path is specified, the contents of the initial naming context are displayed.
The path argument takes the form of an INS string name.

The type of the binding is also listed. A binding of type Object names an
object. A binding of type Context names a naming context.

Examples The following command lists the bindings in company/engineering in the
naming service:

ns list_servers

Synopsis ns list_servers [-active]

Description Lists all the active servers.

Arguments

-path Specifies an INS string name as the path to the new binding.

itadmin ns bind -o -path company/staff/james.person
"IOR:0000000037e276f47a4b94874c64648e949..."

itadmin ns list company/engineering
paula (Object)
production (Context)
john (Object)
manager (Object)

-active Displays all active naming servers.
335

CHAPTER 25 | Naming Service
ns newnc

Synopsis ns newnc [path]

Description Creates a naming context or object and binds it to the specified path. If path
is not specified, ns newnc prints the IOR to standard out. The path argument
takes the form of an INS string name.

Examples

ns remove

Synopsis ns remove [-recursive] path

Description Unbinds the specified context or object. If path is a context, the context is
also destroyed. The ns remove command checks whether a context is empty
before destroying it. If the context is empty, ns remove destroys it and then
unbinds it. If the context is not empty and you omit the -recursive argument,
ns remove displays an error message. The required path argument specifies
an INS string name.

Arguments

Examples For example, the following commands destroy the manager bindings:

ns resolve

Synopsis ns resolve path

itadmin
% ns newnc foo.bar/foo3.bar3
% ns list foo.bar
/foo2.bar2 Context
/foo3.bar3 Context

-recursive Recursively destroys and unbinds a context or object if the
context is not empty.

itadmin ns remove company/engineering/manager.person
itadmin ns remove company/engineering/support/manager.person
 336

Names
Description Prints the resolved string form of the IOR for a given path specified by an INS
string name. If a path is not specified, the string form of the root naming
context is displayed. The path argument takes the form of an INS string name.

For example:

Examples The following examples show that the names company/staff/paula.person
and company/engineering/manager.person resolve to the same object:

ns show_server

Synopsis ns show_server server_name

Description Displays the naming server details for the server name specified.

ns stop

Synopsis ns stop server_name

Description Stops the naming service.

ns unbind

Synopsis ns unbind path

Description Unbinds the context or object specified by path. The path argument takes the
form of an INS string name.

itadmin ns resolve company/engineering
"IOR:0003032272d9218a35d9614357f87c93800d7...6f3"

itadmin ns resolve company/staff/paula.person
"IOR:00000000569a2e8034b94874d6583f09e24..."

itadmin ns resolve company/engineering/manager.person
"IOR:00000000569a2e8034b94874d6583f09e24..."
337

CHAPTER 25 | Naming Service
Object Groups

Overview The following nsog commands let you manage object groups:

Table 28: Object Group Commands

nsog add_member Adds the specified member object to the
specified object group.

nsog bind Binds the specified object group to the
specified path.

nsog create Creates the specified object group, with
the specified selection policy.

nsog list Lists all object groups currently existing
in the naming service.

nsog list_members Lists the names of members belonging to
the specified object group.

nsog modify Modifies the selection policy for the
specified object group.

nsog remove Removes the specified object group from
the naming service.

nsog remove_member Removes the specified member object
from the specified object group.

nsog set_member_timeout Sets the load timeout period for a
member of an active object group.

nsog show_member Displays the object reference that
corresponds to the specified member of
an object group.

nsog update_member_load Updates the load value of a member of
an active object group.
 338

Object Groups
nsog add_member

Synopsis nsog add_member -og_name group-name -member_name member-name IOR

Description Adds an object to the specified object group. After being added, the object is
available for selection.

Arguments The following arguments are all required:

Examples The following command adds a member, paula, to the engineers object group
with an object reference of IOR:0001def...:

nsog bind

Synopsis nsog bind -og_name group-name path

Description Binds the specified object group to the specified path in the naming service.
When clients resolve that path, they transparently obtain a member of the
specified object group.

Arguments

Examples The following example binds the engineers object group to the path
company/engineering/engineers.pool:

The company/engineering context must be already created.

-og_name
group-name

Specifies the object group to which the member is added.

-member_name
member-name

Specifies a unique group member name.

IOR Specifies the member�s object reference.

itadmin nsog add_member -og_name engineers -member_name paula
IOR:0001def...

-og_name
group-name

Specifies the name of the object group to bind.

path SPecifies the INS path to bind the object group.

itadmin nsog bind -og_name engineers
company/engineering/engineers.pool
339

CHAPTER 25 | Naming Service
nsog create

Synopsis nsog create -type selection-policy group-name

Description Adds the named object group group-name to the naming service with the
specified selection policy. On creation, an object group contains no member
objects.

The naming service directs client requests to object group members
according to the specified selection algorithm. For more about active load
balancing, see �Active load balancing� on page 120.

Arguments

Examples The following example creates an object group, engineers, with a random
selection policy:

nsog list

Synopsis nsog list

Description Displays all object groups that currently exist in the naming service.

Examples

nsog list_members

Synopsis nsog list_members -og_name group-name

-type
selection-policy

Specifies the object group�s selection algorithm with
one of the following values:

rr: round-robin

rand: random

active: active load balancing

group-name Specifies the name of the new object group.

itadmin nsog create -type rand engineers

itadmin nsog list
Random Groups: engineers
 340

Object Groups
Description Lists the members of the specified object group.

Arguments

Examples The following example lists the members of the engineers object group:

nsog modify

Synopsis nsog modify -type selection-policy group-name

Description Changes the selection algorithm for the specified object group. An object
group�s selection algorithm determines how the naming service directs client
requests to object group members (see �Selection algorithms� on page 119).

Arguments

Examples The following command changes the object group engineers�s selection
algorithm:

nsog remove

Synopsis nsog remove group-name

Description Removes the specified object group from the naming service.

-og_name
group-name

Specifies the target object group.

itadmin nsog list_members engineers

-type
selection-po
licy

Specifies the object group�s selection algorithm with one
of the following values:

rr: round-robin

rand: random

active: active load balancing (see �Active load
balancing� on page 120).

group-name Specifies the object group to modify.

itadmin nsog modify -type rr engineers
341

CHAPTER 25 | Naming Service
Examples The following example removes and unbinds the engineers object group:

nsog remove_member

Synopsis nsog remove_member -og_name group-name member-name

Description Removes an object group member. You might wish to remove a member of
an object group if it no longer participates in the group�for example, the
service it references is inaccessible.

Arguments

Examples The following example removes paula from the engineers object group:

nsog set_member_timeout

Synopsis nsog set_member_timeout -og_name group-name -member_name member
timeout-value

Description Specifies how long an object group member is eligible for load updates, in an
object group that has active load balancing. If the member�s load value is not
updated before timeout-value elapses, the member is removed from the
object group�s selection pool.

This command has no effect on round-robin and random groups. However,
the member timeout is stored and put to use if the object group�s selection
algorithm is modified to active load balancing (see �nsog modify� on
page 341).

itadmin nsog remove engineers
itadmin unbind company/engineering/engineers.pool

Note: If the object group is bound in a naming graph, you must also
unbind it, as shown in this previous example.

-og_name
group-name

The target object group.

member-name The member to remove from group-name.

itadmin nsog remove_member -og_name engineers paula
 342

Object Groups
Arguments

Examples The following command sets the load timeout period to 30 seconds for member
gate3 in the gateway active object group:

nsog show_member

Synopsis nsog show_member -og_name group-name member-name

Description Displays the object reference that corresponds to the specified member of the
specified object group.

Examples For example, to display the IOR of member paula in the object group
engineers:

-og_name
group_name

Specifies the target object group.

-member_name
member

Specifies the target object.

timeout-value Specifies the timeout value in seconds. A value of -1 sets
an infinite timeout value.

nsog set_member_timeout -og_name gateway -member_name gate3 30

itadmin nsog show_member -og_name engineers paula
"IOR:00000000569a2e8034b94874d6583f09e24..."
343

CHAPTER 25 | Naming Service
nsog update_member_load

Synopsis nsog update_member_load -og_name group_name -member_name
member_name load_value

Description Updates the load value for the specified member of an active object group.
This load value is valid for a period of time specified by the timeout assigned
to that member (see �nsog set_member_timeout� on page 342). In an active
selection policy, the naming service selects the group member with the lowest
load value.

This command has no effect on round-robin and random object groups. The
naming service makes no interpretation of a member's load value, and only
uses this information to select the lowest loaded member.

Examples The following command updates the load value to 2.0 for member1 in the
webrouter active object group:

nsog update_member_load -og_name webrouter -member_name member1
2.0
 344

Notification
Service

Overview The CORBA notification service enables applications to send events to any
number of objects. For more details, see the Orbix Enterprise Messaging
Guide.

Orbix itadmin commands enable you to manage the following components
of a notification service:

Notification Service Management page 346

Event Channel page 350
345

CHAPTER 26 | Notification Service
Notification Service Management
The following commands let you manage an notification service instance.

notify checkpoint

Synopsis notify checkpoint

Description Performs checkpoint operations on the notification service�s Berkeley DB
database.

When using transactions, Berkeley DB maintains transaction log files. Each
time a transaction commits, data is appended to the transaction log files,
and the database files are not modified. Data in transaction log files is then
transferred periodically to the database files. This transfer is called a
checkpoint. You can specify the checkpoint interval with the following
configuration variable:

The checkpoint operation performs a Berkeley DB checkpoint. The following
configuration variable determines whether to delete the old log files, or move
them to another directory:

Table 29: Notification Service Commands

notify checkpoint Performs checkpoint operations on the
notification service�s Berkeley DB database.

notify post_backup Performs post-backup operations on the
notification service database.

notify pre_backup Performs pre-backup operations on the
notification service database.

notify show Displays the attributes of the specified
notification service.

notify stop Stops a notification service.

plugins:notify:database:checkpoint_interval

plugins:notify:database:checkpoint_deletes_old_logs
 346

Notification Service Management
The following configuration variable specifies the directory to which log files
should be moved:

notify post_backup

Synopsis notify post_backup

Description Performs post-backup operations on the notification service database.

When backing up data files, it is important that no checkpoint occurs during
the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

notify pre_backup

Synopsis notify pre_backup

Description Performs pre-backup operations on the notification service database.

When backing up data files, it is important that no checkpoint occurs during
the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

notify show

Synopsis notify show

Description Displays the attributes of the default notification service.

Multiple instances of the notification service are also supported. To show
the attributes of a non-default notification service, specify the ORB name
used to start the notification service (using the -ORBname parameter to
itadmin).

Examples The following command shows the attributes of a default notification service:

plugins:notify:database:old_log_dir

itadmin notify show
Notification Service Name: IT_NotifyNamedRoot
 Host Name: podge
 Notification Channel Name List:
 my_channel
347

CHAPTER 26 | Notification Service
The following command shows the attributes of the specified non-default
notification service:

The notification service name must be unique for each notification service
instance. You can specify this is in your configuration, by setting
plugins:poa:root_name. The notification service uses named roots to
support multiple instances.

In the following example, plugins:poa:root_name is set to
IT_NotifyNamedRoot2 in the notify.notify2 configuration scope:

itadmin -ORBname notify.notify2 notify show
Notification Service Name: IT_NotifyNamedRoot2
 Host Name: rodge
 Notification Channel Name List:
 my_channel
 my_channel2

...
event{
 plugins:poa:root_name = "IT_NotifyNamedRoot";
 ...

 notify2
 {
 plugins:poa:root_name = "IT_NotifyNamedRoot2";
 };
}
...
 348

Notification Service Management
notify stop

Synopsis notify stop

Description Stops the default notification service.

Multiple instances of the notification service are also supported. To stop a
non-default notification service, specify the ORB name used to start the
notification service (using the -ORBname parameter to itadmin).

To start the notification service, use the itnotify run command. You can
also use the start_domain-name_services command. For more
information, see �Starting Orbix Services� on page 237.

Examples The following command stops the default notification service:

The following command stops a notification service that was started with an
ORB name of notify.notify2:

itadmin notify stop

itadmin -ORBname notify.notify2 notify stop
349

CHAPTER 26 | Notification Service
Event Channel
The following commands enable you to manage a notification service�s event
channel:

nc create

Synopsis nc create -event_reliability -connection_reliability channel-name

Creates an untyped event channel, in the default notification service, with
the specified name.

Arguments

Table 30: Event Channel Commands

nc create Creates an untyped event channel with the
specified name.

nc list Displays all untyped event channels managed by
the notification service.

nc remove Removes the specified untyped event channel.

nc show Displays all attributes of the specified untyped
event channel.

nc set_qos Specifies qualities of service for the specified event
channel.

-event_reliability Specifies the level of guarantee given on the
delivery of individual events. Possible values are
best_effort or persistent.

-connection_reliability Specifies the level of guarantee given on the
persistence of a clients connection to its
notification channel. Possible values are
best_effort or persistent.
 350

Event Channel
Examples The following command creates an untyped event channel named
my_channel:

The following command creates an untyped event channel named
my_channel2 in the notify.notify2 notification service:

The event reliability and connection reliability must be set at the time of
creation. When these values are set, they cannot be changed.

nc list

Synopsis nc list -count

Description Displays all the untyped event channels managed by the notification service.

To display the total number of untyped event channels, specify the -count
argument. No value argument is required.

Examples The following command displays the untyped event channels managed by a
default notification service:

itadmin nc create -event_reliability persistent
-connection_reliability persistent my_channel

itadmin -ORBname notify.notify2 nc create -event_reliability
persistent -connection_reliability persistent my_channel2

itadmin nc list
my_channel
mkt_channel
eng_channel
351

CHAPTER 26 | Notification Service
The following command displays the untyped event channels managed by a
non-default notification service:

The following command displays the number of untyped event channels
managed by a notification service:

nc remove

Synopsis nc remove channel-name

Description Removes the specified untyped event channel.

Examples The following command removes an untyped event channel named
my_channel:

The following command removes an untyped event channel (from a
non-default notification service) named my_channel2:

nc show

Synopsis nc show channel-name

Description Displays all attributes of the specified untyped event channel.

itadmin -ORBname notify.notify2 nc list
my_channel
my_channel2
mkt_channel
eng_channel

itadmin nc list -count
3

itadmin nc remove my_channel

itadmin -ORBname notify.notify2 nc remove my_channel2
 352

Event Channel
Examples The following command displays all the attributes of an event channel named
my_channel:

The following command displays the attributes of an event channel (from a
non-default notification service) named my_channel2:

nc set_qos

Synopsis nc set_qos

[-priority] [-order_policy] [-discard_policy]
[-start_time_supported] [-stop_time_supported]
[-max_events_per_consumer] [-max_batch_size] [-max_retries]
[-pacing_interval] [-timeout] [-pull_interval] [-retry_timeout]
[-max_retry_timeout] [-request_timeout] [-retry_multiplier]

channel name

Specifies various qualities of service (QoS) for the specified event channel
name. Values of existing QoS properties can be changed, and new QoS
properties can be added. All set_qos arguments are optional.

itadmin nc show my_channel
Channel Name: my_channel
 Channel ID: 1
 Event Communication: Untyped

itadmin -ORBname notify.notify2 nc show my_channel2
Channel Name: my_channel2
 Channel ID: 2
 Event Communication: Untyped

Note: For information about notification service configuration variables,
see the section discussing the plugins:notification namespace in the
Orbix Configuration Reference.
353

CHAPTER 26 | Notification Service
Arguments

-priority Specifies the order that events are delivered to
a consumer whose -order_policy is set to
priority_order. It also affects the order that
events are dequeued for consumers whose
-discard_policy is set to priority_order.

The -priority indicates the relative priority of
the event compared to other events in the
channel. Values can be in the range of -32,767
and 32,767. Higher priority events are
delivered before lower. The default is 0.

-order_policy Specifies the order to queue events for
delivery. Possible values are:

any_order
fifo_order
priority_order
deadline_order

-discard_policy Specifies the order that events are discarded
when -max_events_per_consumer has been
reached. Possible values are:

any_order
fifo_order
priority_order
deadline_order

-start_time_supported Specifies whether start time is supported. This
is an absolute time (e.g., 20/12/04 at 11:15)
that determines the earliest time a channel
can deliver the event. If set to true, the event
is held until the specified time is reached.

-stop_time_supported Specifies whether stop time is supported. This
is an absolute time (e.g., 20/12/04 at 11:15)
that determines the latest time a channel can
deliver the event. If set to true, events later
than the specified stop time are not sent.

-max_events_per_consumer Specifies the maximum number of events that
a channel queues for a consumer before it
starts discarding them. Events are discarded in
the order specified by -discard_policy. A
setting of 0 specifies the channel to queue an
unlimited number of events.
 354

Event Channel
-max_batch_size Specifies the maximum number of structured
events sent in a sequence to consumers.

-max_retries Specifies the maximum number of times that a
proxy push supplier calls push() on its
consumer before it gives up. The default value
is 0, which means an infinite number of
retries.

-pacing_interval Specifies the maximum amount of time that a
channel is given to assemble structured events
in a sequence, before delivering the sequence
to consumers.

The default value is 0, which specifies an
unlimited time.

-timeout Specifies how long an event remains viable
after the channel receives it. After the
-timeout value expires, the event is discarded.
The default is 0, which means that events
have an infinite lifetime.

-pull_interval Specifies how much time elapses between
attempts by a proxy pull consumer to call
pull() or try_pull() on its supplier. The
default value is 1 second.

-retry_timeout Specifies how much time elapses between
attempts by a proxy push supplier to call
push() on its consumer. The default is 1
second.

-max_retry_timeout Specifies the ceiling for -retry_timeout. This
applies to timeouts directly assigned by
developers as well as values reached by the
multiplication of -retry_multiplier
and-retry_timeout. The default value is 60
seconds.

-request_timeout Specifies how much time is permitted to a
channel object to perform an operation on a
client.

If the operation does not return within the
specified limit, the operation throws a
CORBA::TRANSIENT system exception.
355

CHAPTER 26 | Notification Service
Examples The following simple example sets the order and discard policies for an event
channel named my_channel:

The following example sets the order policy and the priority for an event
channel named sales_channel.

The following enables start time for an event channel named
production_channel:

-retry_multiplier Specifies the number by which the current
value of -retry_timeout is multiplied to
determine the next -retry_timeout value. The
-retry_multiplier value is applied until
either the push() is successful or
-max_retry_timeout is reached. The default
value is 1.0.

itadmin nc set_qos -order_policy fifo_order -discard_policy
fifo_order my_channel

itadmin nc set_qos -order_policy priority_order sales_channel
itadmin nc set_qos -priority 3 sales_channel

itadmin nc set_qos -start_time_supported true production_channel
 356

Object Transaction
Service

Overview itadmin supports the object transaction service (OTS). Using itadmin
commands in transactional mode ensures consistency and reliability in a
distributed environment.

With itadmin, you can start, commit, rollback, suspend, and resume
transactions. This lets you use other itadmin commands in transactional
mode�for example, process create, or orbname modify.

A service can have several readers but only one writer. A transaction takes
the writer thread. So, if you start a transaction in a service and then do not
commit, roll back, or suspend the transaction, the service blocks until the
timeout period expires (30 seconds). The transaction is then rolled back.

Similarly, if a transaction involving a service and the client (itadmin in this
case) is terminated, the service is unaware of this and must be terminated.

You can manage transactions with the following itadmin commands:

tx begin

Synopsis tx begin

Description Starts a transaction. To use itadmin commands in a transaction, call tx begin
followed by the other itadmin commands you wish to execute (for example,
orbname create).

Table 31: Object Transaction Service Commands

tx begin Starts a transaction.

tx commit Commits a transaction.

tx resume Resumes a transaction.

tx rollback Rolls back a transaction.

tx suspend Suspends a transaction.
357

CHAPTER 27 | Object Transaction Service
You must finalize the execution of these commands, using tx commit, or
undo them, using tx rollback.

Examples The following example starts a transaction, and then creates an ORB name:

tx commit

Synopsis tx commit

Description Commits a transaction. The commands executed after the transaction started
using tx begin are finalized.

Examples The following example commits the transaction:

tx resume

Synopsis tx resume

Description Resumes a suspended transaction. Commands that occur after tx resume are
part of the context of the transaction and are committed or rolled back at the
conclusion of the transaction.

Examples The following example resumes the transaction:

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx commit

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx suspend
% tx resume

Note: You can not use more than one transaction at a time. You can not
begin a transaction, suspend it and then begin another transaction. The tx
suspend command should be only used to do non-transactional work
before a subsequent tx resume command.
 358

tx rollback

Synopsis tx rollback

Description Rolls back a transaction. The effects of commands executed after the
transaction started using tx begin are undone.

Examples The following example rolls back the transaction:

tx suspend

Synopsis tx suspend

Description Suspends a transaction. Commands that occur between tx suspend and tx
resume are not part of the transaction, and are not committed or rolled back
at the end of the transaction.

Examples The following example suspends the transaction:

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx rollback

itadmin
% tx begin
% orbname create MutualFunds.Tracking.GroInc.Stocks
% tx suspend
359

CHAPTER 27 | Object Transaction Service
 360

Object Transaction
Service Encina

Overview A subset of itadmin commands support the object transaction service (OTS)
Encina plug-in.

In order to support the two-phase commit (2PC) protocol, an Encina OTS
server needs a medium to log information about transactions�for example,
IORs of the resources participating in a transaction. This medium is the
transaction log, a logical entity consisting of or mirrored by one or more
(physical) Encina volumes. Each volume in turn consists of one or more files
or raw disks, which are said to back up the volume. Each of these volumes,
or mirrors, contain the same information. This ensures recovery in case of
failure of a machine that hosts some or all of a volume�s constituent
files/raw disks.

Transaction logs contain metadata, such as number and location of files or
raw disks backing up the physical volumes that mirror the transaction log.
Two files maintain this information:

� Restart file identifies an initialized transaction log.

� Backup restart file provides a backup to the restart file in case it is lost
or corrupted by hardware failure.

For full information about two-phase commit and the Encina plug-in, see the
CORBA OTS Guide.

You can manage the OTS Encina plug-in with the following itadmin
commands:

encinalog add Adds a file/raw disk to the list of files/raw disks
backing up a physical volume of an Encina
transaction log.

encinalog
add_mirror

Creates a new physical volume and adds this to the
list of volumes mirroring an Encina transaction log.

encinalog create Creates a file for use in a transaction log�that is, a
file that can be used to back up a physical volume
mirroring an Encina transaction log.

encinalog display Displays information about the physical volumes of
an Encina transaction log.
361

CHAPTER 28 | Object Transaction Service Encina
encinalog add

Synopsis encinalog add �restart restart-file [-backup backup-file] [-vol
vol-spec] [-silent] file-spec

Description Adds a file/raw disk to the list of files/raw disks that back up the physical
volume vol-spec, thereby increasing the total size of this volume.

If you omit the -vol argument, the file/raw disk is added to the list of
files/raw disks backing up volume logVol_physicalVol1.

Arguments

Examples The following example adds the file ots2.log to the physical volume
logVol_physicalVol2 which mirrors the transaction log identified by restart
file ots.restart and backup restart file ots.backup:

encinalog expand Expands an Encina transaction log.

encinalog init Initializes an Encina transaction log, thereby creating
restart and backup restart files.

encinalog
remove_mirror

Removes a physical volume from an Encina
transaction log.

otstm stop Stops the otstm service.

Note: The commands described in this chapter assume the use of the
itadmin command shell unless stated otherwise.

�restart restart-file Identifies the target transaction log.

-backup backup-file Optionally identifies the target transaction log. If
no backup restart file is specified, the default path
is derived from restart-file.bak.

�vol vol-spec Specifies a physical volume other than the default
one.

�silent Suppresses the display of the completion status.

file-spec The path to an existing file (created with encinalog
create) or raw disk.

itadmin encinalog add �restart ots.restart -backup ots.backup �
vol logVol_physicalVol2 ots2.log
 362

encinalog add_mirror

Synopsis encinalog add_mirror �restart restart-file -backup backup-file
[-silent] file-spec

Description Creates a physical volume backed up by file-spec, and adds it to the list of
physical volumes mirroring the transaction log.

The new physical volume is named logVol_physicalVoln, where n is the
lowest number for which there is no physical volume mirroring the
transaction log.

Arguments

Examples The following example adds a physical volume backed up by file
otsmirror.log to the to the list of volumes mirroring the transaction log
identified by restart file ots.restart and backup restart file ots.backup:

encinalog create

Synopsis encinalog create [-size-type file-size] [-replace] [-silent]
file-spec

Description Creates a file, file-spec, which can be used to back up a physical volume
of an Encina transaction log. The default size is 4 megabytes.

Note: Use the encinalog display command to list the named of the
individual physical volumes mirroring the transaction log.

�restart
restart-file

Identifies the target transaction log.

-backup
backup-file

Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is
derived from restart-file.bak.

�silent Suppresses the display of the completion status.

file-spec The path name of a file or raw disk created with
encinalog create.

itadmin encinalog add_mirror �restart ots.restart -backup
ots.backup otsmirror.log
363

CHAPTER 28 | Object Transaction Service Encina
Arguments

Examples The following example creates a file of size 2 megabytes and overwrites an
existing file of the same name:

encinalog display

Synopsis encinalog display �restart restart-file [-backup backup-file]

Description Displays information on the physical volumes mirroring the transaction log.

Arguments

-size-type
file-size

Specifies a non-default size, where -size-type is one of
the following literals:

� -msize specifies the size in megabytes.

� -ksize specifies the size in kilobytes.

� -size specifies the size in bytes.

The minimum size is 1 megabyte; the maximum size is
16 megabytes.

�replace Overwrites an existing file.

�silent Suppresses the display of the completion status.

itadmin encinalog create �msize 2 �replace ots.log

�restart
restart-file

Identifies the target transaction log.

-backup
backup-file

Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is
derived from restart-file.bak.
 364

Examples The following example displays information on the physical volumes of a
transaction log identified by ots.restart and the backup restart file
ots.backup:

encinalog expand

Synopsis encinalog expand �restart restart-file [-backup backup-file]
[-silent]

Description Expands the transaction log to its maximum size, which is the minimum of
the individual physical volume sizes. These, in turn, are the accumulated sizes
of the files/raw disks backing up the individual physical volumes. The
operation is necessary after the size of all physical volumes has been increased
by adding files/raw disks to the volumes.

Arguments

Examples The following example expands the logical volume associated with
ots.restart and the backup restart file ots.backup:

itadmin encinalog display �restart ots.restart �backup
ots.backup

%
Logical Volume: logVol
Free Pages: 960
Total Number of Pages: 1016
Physical Volume: logVol_physicalVol1
 File Name: /tmp/ots.log
Physical Volume: logVol_physicalVol2
 File Name: /tmp/otsmirror.log

-restart
restart-file

Identifies the transaction log to expand

-backup
backup-file

Optionally identifies the transaction log to expand. If no
backup restart file is specified, the default path is
derived from restart-file.bak.

�silent Suppresses the display of the completion status.

itadmin encinalog expand �restart ots.restart -mirror ots.backup
365

CHAPTER 28 | Object Transaction Service Encina
encinalog init

Synopsis encinalog init [-replace] [-restart restart-file] [-backup
backup-file] [-silent] file-spec

Description Initializes an Encina transaction log, mirrored by one physical volume
logVol_physicalVol1, and backed up by the file/raw disk file-spec.

The command also creates restart and backup files. You can explicitly name
these files; otherwise, the default restart file and backup restart file names
are file-spec_restart and file-spec_restart.bak, respectively.

Arguments

Examples The following example initializes a transaction log using alternative names for
the restart and backup restart files:

encinalog remove_mirror

Synopsis encinalog remove_mirror �restart restart-file [-backup
backup-file] [-silent] vol-spec

Description Removes the physical volume vol-spec from the list of volumes mirroring the
transaction log.

Arguments

-restart
restart-file

Specifies the restart file name.

-backup
backup-file

Optionally identifies the transaction log to initialize. If
no backup restart file is specified, the default path is
derived from restart-file.bak.

�replace Overwrites the existing restart files.

�silent Suppresses the display of the completion status.

itadmin encinalog init �restart ots.restart �backup ots.backup
ots.log

�restart
restart-file

Identifies the target transaction log.
 366

Examples The following example removes the physical volume logVol_physicalVol1
from the transaction log identified by ots.restart and backup restart file
ots.backup:

otstm stop

Synopsis otstm stop

Description Stops the otstm service.

-backup
backup-file

Optionally identifies the target transaction log. If no
backup restart file is specified, the default path is
derived from restart-file.bak.

�silent Suppresses the display of the completion status.

itadmin encinalog remove_mirror �restart ots.restart -backup
ots.backup logVol_physicalVol1

Note: See encinalog init and encinalog add_mirror for the possible
names of a physical volume, or use the encinalog display command to
get the names of the physical volumes mirroring a transaction log.
Because a transaction log needs at least one mirror, remove_mirror will
not allow you to remove a physical volume if it is the only volume.
367

CHAPTER 28 | Object Transaction Service Encina
 368

Persistent State
Service

Overview A subset of itadmin commands let you manage the persistent state service
(PSS). PSS is a CORBA service for building CORBA servers that access
persistent data and include transactional support. PSS is for use with C++
applications only. For more details about PSS, see the CORBA
Programmer�s Guide.

You can manage a PSS database using the following commands:

Table 32: Persistent State Service Commands

pss_db archive_old_logs Archives old log files for the specified IOR.

pss_db checkpoint Performs checkpoint operations on the
database referenced in the specified file.

pss_db delete_old_logs Deletes old log files for specified IOR.

pss_db list_replicas Lists the replicas for the specified IOR.

pss_db name Returns the name of the object reference
to the database.

pss_db post_backup Performs post-backup operations on the
database referenced in the specified file.

pss_db pre_backup Performs pre-backup operations on the
database referenced in the specified file.

pss_db remove_replica Removes a replica from the database�s
replica group.

pss_db show Returns replication related information for
the specified IOR.
369

CHAPTER 29 | Persistent State Service
pss_db archive_old_logs

Synopsis pss_db archive_old_logs IOR-file

Description Archives old log files for the specified IOR. The IOR-file argument specifies
the full pathname to the file that contains the object reference.

pss_db checkpoint

Synopsis pss_db checkpoint IOR-file
Description Performs checkpoint operations on the database referenced in the file. The

IOR-file argument specifies the full pathname to the file that contains the
object reference.

When using transactions, Berkeley DB maintains transaction log files. Each
time a transaction commits, data is appended to the transaction log files,
and the database files are not modified. Data in transaction log files is then
transferred periodically to the database files. This transfer is called a
checkpoint. You can specify the checkpoint interval, using the following
configuration variable:

For example, plugins:pss_db:envs:locator:checkpoint_interval.

The checkpoint operation performs a Berkeley DB checkpoint. The following
configuration variable specifies whether to delete the old log files, or move
them to another directory:

The following configuration variable specifies the directory to which log files
should be moved:

For more details on these configuration variables, see the section discussing
the plugins:pss_db namespace in the Orbix Configuration Reference.

plugins:pss_db:envs:env_name:checkpoint_interval

plugins:pss_db:envs:env_name:checkpoint_deletes_old_logs

plugins:pss_db:envs:env_name:old_log_dir
 370

pss_db delete_old_logs

Synopsis pss_db delete_old_logs IOR-file

Description Deletes old log files for specified IOR. The IOR-file argument specifies the
full pathname to the file that contains the object reference.

pss_db list_replicas

Synopsis pss_db list_replicas [-active] IOR-file

Returns the names of all replicas for the database specified in the file
containing the object reference.

Arguments

pss_db name

Synopsis pss_db name IOR-file

Description Returns the name of the object reference to the persistent state database.

The IOR-file argument specifies the full pathname to the file that contains
the object reference.

pss_db post_backup

Synopsis pss_db post_backup IOR-file

Description Performs post-backup operations on the database referenced in the file. The
IOR-file argument specifies the full pathname to the file that contains the
object reference.

When backing up data files, it is important that no checkpoint occurs during
the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

-active List only active replicas.

IOR-file Specifies the full pathname to file that contains the
object reference.
371

CHAPTER 29 | Persistent State Service
pss_db pre_backup

Synopsis pss_db pre_backup IOR-file

Description Performs pre-backup operations on the database referenced in the file. The
IOR-file argument specifies the full pathname to file that contains the object
reference.

When backing up data files, it is important that no checkpoint occurs during
the backup. The pre-backup operations force a checkpoint and then
suspend checkpointing. The post-backup operations resume checkpointing.

pss_db remove_replica

Synopsis pss_db remove_replica [-iorfile IOR-file] [-envhome env-dir]
replica-name

Description Removes the replica specified replica-name from the replica group. The
�iorfile or envhome argument must be specified, depending on whether the
service containing the database is running or not.

The remove_replica command should only be used when removing a
service�s replica. See the Orbix Deployment Guide for more details.

Arguments

-iorfile Specifies the path to the file containing the
databases reference. This argument is used to
remove a replica when the replica group is running.

-envhome Specifies the path to the database root directory.
This argument is used when the service containing
the database is not running. It only removes the
replica from the local database.
 372

pss_db show

Synopsis pss_db show IOR-file

Description Returns information about the specified database. This includes:

� database name

� whether the database is replicated

� database replica name

� whether the database is a master or slave.

The IOR-file argument specifies the full pathname to file that contains the
object reference.
373

CHAPTER 29 | Persistent State Service
 374

Security Service
Overview The itadmin tool supports security commands to administer the key

distribution management (KDM) database, which is part of SSL/TLS for
CORBA. The KDM is a security feature that enables automatic activation of
secure Orbix servers�see the CORBA SSL/TLS Guide for details.

Key distribution management Key distribution management (KDM) is a mechanism that distributes pass
phrases to a secure server during automatic activation. Without the KDM, it
is impossible to activate a secure server automatically because pass phrases
must be supplied manually when the server starts up.

The KDM also protects a server�s implementation repository (IMR) entry
from unauthorized tampering. Whenever a process IMR entry is updated,
the KDM requires a security checksum to be generated (using the checksum
create command). The process IMR entry is the part of an IMR record that
stores the server executable location. Before activating a secure server, the
KDM checks that the stored checksum matches the current checksum for
the process IMR entry.

The KDM framework consists of the following elements:

� A KDM server provides security attributes to the locator on request.

� A KDM database is used by the KDM server to store security attributes.

� A KDM administration plug-in provides the security commands
described in this section and communicates directly with the KDM
server. SSL/TLS installs a secure KDM administration plug-in the
itadmin utility.

KDM database The KDM database stores the following kinds of security attributes:

� Pass phrases are associated with an ORB name and stored as a
security attribute in the KDM database. The pass phrases are supplied
to a secure server during automatic activation.

� Checksums are associated with a process name and stored as a
security attribute in the KDM database. The checksum is tested
against the current process IMR record before a server is automatically
activated.
375

CHAPTER 30 | Security Service
The process IMR record used by the checksum algorithm includes all of the
fields associated with the itadmin process command except the process
description.

The security commands are mainly concerned with managing the entries in
the KDM database�creating, updating, and removing security attributes.

All of these commands require a secure connection to the KDM database. It
is therefore necessary to log on to the KDM server, using admin_logon, prior
to issuing any of the security commands.

Commands itadmin commands let you manage the following security service activities:

Logging On page 377

Managing Checksum Entries page 378

Managing Pass Phrases page 381
 376

Logging On
Logging On

Overview You log on to the KDM server with the itadmin admin_logon command.

admin_logon

Synopsis admin_logon login [-password pass-phrase] identity

Description Logs an administrator on to the KDM server. This command must be issued
prior to any of the other secure commands (kdm_adm or checksum).

Arguments

Examples To log on to the KDM server, before issuing any secure commands, enter the
following at the command line:

The Enter password prompt lets you enter the pass phrase for the
my_admin_id.p12 certificate without echoing to the screen.

login This argument specifies the name of an X.509 certificate that
identifies the administrator.

The identity parameter specifies the name of a PKCS#12
certificate file, identity.p12, located in the directory
specified by the itadmin_x509_cert_root configuration
variable.

-password This argument lets you specify the pass phrase for the
identity.p12 certificate on the same line as the command,
instead of being prompted for it.

This argument is provided for scripting in a development
environment and should not be used in a live system.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
%
377

CHAPTER 30 | Security Service
Managing Checksum Entries

Overview The following itadmin commands let you manage checksum entries:

checksum confirm

Synopsis checksum confirm -process process-name

Description Confirms that the process IMR entry for process-name has not been modified
since the checksum entry in the KDM database was created.

Arguments

Table 33: Checksum Entry Commands

checksum confirm Confirms that the process IMR entry for the
specified process has not been changed since
the checksum was created.

checksum create Creates a checksum for the specified process
IMR entry and store the checksum in the KDM
database.

checksum list Lists process names that have security
checksum information in the KDM database.

checksum remove Removes a security checksum entry from the
KDM database.

-process Specifies the name, process-name, of a process IMR entry.
 378

Managing Checksum Entries
Examples To confirm that the checksum previously stored for the my_process_name
process agrees with the checksum for the current my_process_name IMR entry,
enter the following at the command line:

checksum create

Synopsis checksum create -process process-name

Description Creates a checksum entry in the KDM database for the process process-name.
The checksum must be recreated whenever the process IMR entry for the
specified process is modified.

Arguments

Examples To create a checksum entry in the KDM database for my_process_name, enter
the following at the command line:

checksum list

Synopsis checksum list [-count]

Description Lists the names of all processes that have checksum entries in the KDM
database.

Arguments

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum confirm -process my_process_name
The checksum is valid.
%

-process Specifies the name, process-name, of a process IMR entry.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum create -process my_process_name
%

-count Returns a count of the number of checksum entries, instead of
listing them.
379

CHAPTER 30 | Security Service
Examples To list all process names with checksum entries in the KDM database, enter
the following at the command line:

checksum new_pw

Synopsis checksum new_pw

Description Password protects the checksum entry in the KDM database.

checksum remove

Synopsis checksum remove -process process-name

Description Removes the checksum entry associated with the process-name process
name from the KDM database.

Arguments

Examples To remove the checksum entry associated with my_process_name from the
KDM database, enter the following at the command line:

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum list
simple_process
%

-process Specifies the name, process-name, of a process IMR entry.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% checksum remove -process my_process_name
Security checksum associated with process my_process_name has

been removed.
%
 380

Managing Pass Phrases
Managing Pass Phrases

Overview The following itadmin commands let you manage pass phrases:

kdm_adm change_pw

Synopsis kdm_adm change_pw

Description Changes the pass phrase used to encrypt the KDM database. The command
prompts you for the current pass phrase and then prompts you twice for the
new pass phrase (to ensure it was entered correctly).

Table 34: Pass Phrase Commands

kdm_adm change_pw Changes the pass phrase for encrypting the
KDM database.

kdm_adm confirm Confirms that the pass phrase associated with
the specified ORB name has the value you
expect.

kdm_adm create Creates an entry in the KDM database that
associates a pass phrase with the specified ORB
name.

kdm_adm list Lists the ORB names that have pass phrase
information in the KDM database.

kdm_adm new_pw Creates a new pass phrase for encrypting the
KDM database.

kdm_adm remove Removes an entry from the KDM database
associated with the specified ORB name.
381

CHAPTER 30 | Security Service
Examples To change the KDM database pass phrase, enter the following at the
command line:

After entering the admin_logon command, you are prompted for the
my_admin_id.p12 certificate pass phrase.

After entering the kdm_adm change_pw command, you are prompted three
times for pass phrases. In response to the first Enter password prompt,
enter the current KDM database pass phrase. In response to the second and
third Enter password prompts, enter the new KDM database pass phrase.

kdm_adm confirm

Synopsis kdm_adm confirm -orbname ORB-name

Description Confirms the pass phrase associated with the specified ORB name, ORB-name.
The command prompts you for the pass phrase associated with ORB-name and
tells you whether or not you entered the correct pass phrase.

Examples To confirm the pass phrase associated with the my_orb_name ORB name, enter
the following at the command line:

kdm_adm create

Synopsis kdm_adm create -orbname ORB-name [-password pass-phrase]

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm change_pw
Please enter the current KDM password:
Please enter the new KDM password:
Please confirm the new KDM password:
%

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm confirm -orbname my_orb_name
Please enter password for orb my_orb_name :
The password is correct.
%
 382

Managing Pass Phrases
Description Creates an entry in the KDM database to associate a pass phrase with the
specified ORB name, ORB-name. Just one pass phrase can be associated with
an ORB name. If the -password argument is omitted, the command prompts
you for a pass phrase which is not echoed to the screen.

Arguments

Examples To associate a pass phrase with the my_orb_name ORB name and store the
association in the KDM database, enter the following at the command line:

kdm_adm list

Synopsis kdm_adm list [-count]

Lists all ORB names that have associated pass phrases stored in the KDM
database.

Arguments

-orbname Specifies the ORB name, ORB-name, with which the new pass
phrase is associated.

-password Lets you specify a new pass phrase. This argument is provided
for scripting purposes during development and should not be
used in a live system.

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm create -orbname my_orb_name
Please enter password for orb my_orb_name :
%

-count Returns a count of the number of ORB name entries instead of
listing them.

383

CHAPTER 30 | Security Service
Examples To list all ORB names that have associated pass phrases, enter the following
at the command line:

kdm_adm new_pw

Synopsis kdm_adm new_pw

Description Creates a new pass phrase for encrypting the KDM database.

kdm_adm remove

Synopsis kdm_adm remove -orbname ORB-name

Description Removes the security entry in the KDM database associated with the ORB-name
ORB name.

Examples To remove the security entry associated with the my_orb_name ORB name,
enter the following at the command line:

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm list
my_orb_name
%

itadmin
% admin_logon login my_admin_id
Please enter password for identity my_admin_id:
% kdm_adm remove -orbname my_orb_name
Security attributes associated with orbname my_orb_name have been

removed.
%
 384

Trading Service
Overview itadmin provides a set of commands for managing the following trading

service components:

Trading Service Administrative Settings page 386

Federation Links page 391

Regular Offers page 395

Proxy Offers page 397

Type Repository page 399
385

CHAPTER 31 | Trading Service
Trading Service Administrative Settings

Overview The following commands let you mange trading service administrative
settings:

trd_admin get

Synopsis trd_admin get arg

Description Displays administrative settings.

Arguments Supply one of the following arguments:

Table 35: Trading Service Commands

trd_admin get Displays administrative settings.

trd_admin set Modifies administrative settings.

trd_admin stop Stops the trading service.

-request_id_stem Displays the request id stem assigned to this
instance of the trading service.

-def_search_card Displays the default search cardinality-the
default upper bound of offers to be searched.

-max_search_card Displays the maximum search
cardinality-maximum upper bound of offers to be
searched.

-def_match_card Displays the default match cardinality-default
upper bound of matched offers to be ordered.

-max_match_card Displays the maximum match
cardinality-maximum upper bound of matched
offers to be ordered.

-def_return_card Displays the default return cardinality-default
upper bound of ordered offers to be returned.

-max_return_card Displays the maximum return
cardinality-maximum upper bound of ordered
offers to be returned.
 386

Trading Service Administrative Settings
Examples

-max_list Displays the upper bound on the size of any list
returned by the trading service, namely the
returned offers parameter in query, and the
next_n operations in OfferIterator and
OfferIdIterator.

-modifiable_properties Displays whether the trading service supports
properties modification.

-dynamic_properties Displays whether the trading service supports
dynamic properties.

-proxy_offers Displays whether the trading service supports
proxy offers.

-def_hop_count Displays the default hop count-default upper
bound of depth of links to be traversed in a
federated query.

-max_hop_count Displays the maximum hop count-maximum
upper bound of depth of links to be traversed in a
federated query.

-def_follow_policy Displays the default federation link follow policy.

-max_follow_policy Displays the limiting link follow policy for all links
of the trader. This setting overrides both link and
importer policies.

-max_link_follow_policy Displays the most permissive follow policy
allowed when creating new links.

-type_repos Displays the stringified IOR of the service type
type repository.

>itadmin trd_admin get -type_repos
IOR:0000000000000036494�.

> itadmin trd_admin get -proxy_offers
yes

>itadmin trd_admin get -def_follow_policy
always

>itadmin trd_admin get -max_list
2147483647
387

CHAPTER 31 | Trading Service
trd_admin set

Synopsis trd_admin set arg

Description Modifies administrative settings.

Arguments Supply one of the following arguments:

-request_id_stem id_stem Modifies the request id stem of this
instance of the trading service.

-def_search_card value Modifies the default search cardinality-the
default upper bound of offers to be
searched. The value must be a positive
integer.

-max_search_card value Modifies the maximum search
cardinality-the maximum upper bound of
offers to be searched. The value must be
a positive integer.

-def_match_card value Modifies the default match cardinality-the
default upper bound of matched offers to
be ordered. The value must be a positive
integer.

-max_match_card value Modifies the maximum match
cardinality-the maximum upper bound of
matched offers to be ordered. The value
must be a positive integer.

-def_return_card value Modifies the default return cardinality-the
default upper bound of ordered offers to
be returned. The value must be a positive
integer.

-max_return_card value Modifies the maximum return
cardinality-the maximum upper bound of
ordered offers to be returned. The value
must be a positive integer.

-max_list value Modifies the upper bound on the size of
any list returned by the trading service,
namely the returned offers parameter in
query, and the next_n operations in
OfferIterator and OfferIdIterator.
The value must be a positive integer.
 388

Trading Service Administrative Settings
-modifiable_properties
boolean-value

Specifies whether to enable support of
modifiable properties.

-dynamic_properties
boolean-value

Specifies whether to enable support of
dynamic properties.

-proxy_offers boolean-value Specifies whether to enable support of
proxy offers.

-def_hop_count value Sets the default hop count-the default
upper bound of depth of links to be
traversed in a federated query. The value
must be a positive integer.

-max_hop_count Sets the maximum hop count-the
maximum upper bound of depth of links
to be traversed in a federated query.

-def_follow_policy policy Sets the default federation link follow
policy with one of the following values:

� local_only

� if_no_local

� always

-max_follow_policy policy Sets the limiting link follow policy for all
links of the trader. This setting overrides
both link and importer policies. Supply
one of the following values:

� local_only

� if_no_local

� always

-max_link_follow_policy
policy

Specifies the most permissive follow
policy allowed when creating new links
with one of the following values:

� local_only

� if_no_local

� always

-type_repos IOR Sets the IOR, in string format, of the
service type repository.
389

CHAPTER 31 | Trading Service
Examples

trd_admin stop

Stops the trading service.

>itadmin trd_admin set -def_search_card 12
def_search_card set to 12
 390

Federation Links
Federation Links

Overview The following commands let you mange federation links:

trd_link create

Synopsis trd_link create

 -target IOR

 -def_pass_on_follow_rule rule

 -limiting_follow_rule rule

 link-name

Description Creates a federation link.

Arguments

Table 36: Federation Link Commands

trd_link create Creates a federation link.

trd_link list Lists all federation links.

trd_link modify Modifies a federation link.

trd_link remove Removes a federation link.

trd_link show Displays the details on a federation link.

-target IOR Defines the trading service instance the link
points to. An IOR to a CosTrading::Lookup
interface is expected.

-def_pass_on_follow_rule
rule

Defines default link-follow behavior to pass
on for a particular link, if an importer does
not specify its link_follow_rule; it must
not exceed limiting_follow_rule. Supply
one of the following values for rule:

� local_only

� if_no_local

� always
391

CHAPTER 31 | Trading Service
Examples

trd_link list

Synopsis trd_link list

Description Lists names of all federation links in the trading service instance.

Examples

trd_link modify

Synopsis trd_link modify

 -def_pass_on_follow_rule rule

 -limiting_follow_rule rule

 link-name

Description Modifies an existing federation link.

-limiting_follow_rule rule Defines limiting link follow behavior for a
particular link. Supply one of the following
values for rule:

� local_only

� if_no_local

� always

 link-name A string that uniquely identifies the new link
in the trading service instance.

>itadmin trd_link create -target �cat ./trader_B_lookup.ior�
-def_pass_on_follow_rule always -limiting_follow_rule always
Link_to_Trader_B

created link Link_to_Trader_B

>itadmin trd_link list
Link_to_Trader_B
 392

Federation Links
Arguments

Examples

trd_link remove

Synopsis trd_link remove link-name

Description Removes the specified federation link.

Arguments

Examples

-def_pass_on_follow_rule
rule

Defines the default link-follow behavior to be
passed on for a particular link if an importer
does not specify its link_follow_rule; it must
not exceed limiting_follow_rule. Supply
one of the following values for rule:

� local_only

� if_no_local

� always

-limiting_follow_rule ruleDefines limiting link follow behavior for a
particular link. Supply one of the following
values for rule:

� local_only

� if_no_local

� always

link-name A string that uniquely identifies the new link in
the trading service instance.

>itadmin trd_link modify -def_pass_on_follow_rule if_no_local
-limiting_follow_rule always Link_to_Trader_B

modified link Link_to_Trader_B

link-name A string that uniquely identifies the link to be removed from
the trading service instance.

>itadmin trd_link remove Link_to_Trader_B
removed link Link_to_Trader_B
393

CHAPTER 31 | Trading Service
trd_link show

Synopsis trd_link show link-name

Description Displays details on the specified federation link.

Arguments

Examples

link-name A string that uniquely identifies the link whose details are to
be displayed.

>itadmin trd_link show Link_to_Trader_B
name:
 Link_to_Trader_B
def_pass_on_follow_rule:
 if_no_local
limiting_follow_rule:
 always
target:
limiting_follow_rule:
 IOR:000000000000002249�
 394

Regular Offers
Regular Offers

Overview The following commands let you mange regular offers:

trd_offer list

Synopsis trd_offer list

Description Lists the offer IDs of all regular (non-proxy) offers.

Examples

trd_offer remove

Synopsis trd_offer remove offer-id

Description Removes (withdraws) the specified offer.

Arguments

Examples

Table 37: Regular Offer Commands

trd_offer list Lists all regular offers.

trd_offer remove Removes a regular offer.

trd_offer show Displays details on a regular offer.

>itadmin trd_offer list
Printer~1~0

offer-id Offer ID of an existing offer.

>itadmin trd_offer remove Printer~1~0
offer Printer~1~0 removed
395

CHAPTER 31 | Trading Service
trd_offer show

Synopsis trd_offer show offer-id

Description Displays details on the specified offer.

Arguments

Examples

offer-id Offer ID of an existing offer.

>itadmin trd_offer show Printer~1~0
offer id:
 Printer~1~0
object:
 IOR:00000000000000224�
service type:
 Printer
properties:
 boolean color TRUE
 long dpi 3200
 short ppm 30
 396

Proxy Offers
Proxy Offers

Overview The following commands let you manage proxy offers:

trd_proxy list

Synopsis trd_proxy list

Description Lists the offer IDs of all proxy offers

Examples

trd_proxy remove

Synopsis trd_proxy remove offer-id

Description Removes (withdraws) the specified proxy offer.

Arguments

Examples

Table 38: Proxy Offer Commands

trd_proxy list Lists all proxy offers.

trd_proxy remove Removes a proxy offer.

trd_proxy show Displays details on a proxy offer.

>itadmin trd_proxy list
Printer~2~0

offer-id Offer ID of an existing proxy offer

>itadmin trd_proxy remove Printer~2~0
proxy offer Printer~2~0 removed
397

CHAPTER 31 | Trading Service
trd_proxy show

Parameters trd_proxy show offer-id

Description Displays details on the specified proxy offer.

Arguments

Examples

offer-id Offer ID of an existing proxy offer

>itadmin trd_proxy show Printer~2~0
offer id:
 Printer~2~0
service type:
 Printer
target:
 IOR:00000000000000224�
if match all:
 TRUE
constraint recipe:
 ppm > 20
policies to pass on:
 boolean bool_policy FALSE
properties:
 boolean color FALSE
 long dpi 3200
 short ppm 12
 398

Type Repository
Type Repository

Overview They following commands effect the server type repository:

trd_type list

Synopsis trd_type list

Description Lists all service types in the service type repository.

Examples

trd_type mask

Synopsis trd_type mask service-type-name

Description Masks a service type.

Examples

Table 39: Server Type Repository Commands

trd_type list Lists all service types in the service type
repository.

trd_type mask Masks a service type.

trd_type remove Removes a service type from the service type
repository.

trd_type show Displays details on a given service type.

trd_type unmask Unmasks a service type.

>itadmin trd_type list
Printer

>itadmin trd_type mask Printer
service type Printer masked
399

CHAPTER 31 | Trading Service
trd_type remove

Synopsis trd_type remove service-type-name

Description Removes a service type from the service type repository.

Examples

trd_type show

Synopsis trd_type show service-type-name

Description Displays details on a given service type.

Examples

>itadmin trd_type remove Printer
service type Printer removed

>itadmin trd_type show Printer
name:
 Printer
interface:
 IDL:PrintServer:1.0
masked:
 no
incarnation number:
 {0,1}
super types:
 none
properties:
 mandatory read-only boolean color
 mandatory long dpi
 mandatory read-only short ppm
 400

Type Repository
trd_type unmask

Synopsis trd_type unmask service-type-name

Description Unmasks a service type.

Examples

>itadmin trd_type unmask Printer
service type Printer unmasked
401

CHAPTER 31 | Trading Service
 402

Part V
Appendices

In this part This part contains the following:

Orbix Windows Services page 405

Run Control Scripts for Unix Platforms page 417

ORB Initialization Settings page 437

Development Environment Variables page 443

Debugging IOR Data page 217

APPENDIX A

Orbix Windows
Services
During configuration, Orbix services are installed as Windows
services that start up automatically at system startup.

This appendix describes how you can manage Orbix services as Windows
services, and offers solution to typical problems. These services include:

� Configuration repository

� Locator daemon

� Node daemon

� Naming service

� Interface repository

� Event and notification services

� JMS

� Object transaction service

In this appendix This appendix discusses the following topics:

Managing Orbix Services on Windows page 407

Orbix Windows Service Commands page 408

Orbix Windows Service Accounts page 411

Running Orbix Windows Services page 413
405

CHAPTER A | Orbix Windows Services
Logging Orbix Windows Services page 414

Uninstalling Orbix Windows Services page 415

Troubleshooting Orbix/Windows Services page 416
 406

Managing Orbix Services on Windows
Managing Orbix Services on Windows

Overview If you choose to install Orbix services as Windows services, you can use the
control panel�s Services dialog to start, pause, continue, and stop any of the
installed services. Equivalent functionality is provided through Orbix
commands (see �Orbix Windows Service Commands�).

Identifying Orbix services as
Windows services

Each installed Orbix service executable name has a Windows service name.
This is a unique identifier for each service used by the Windows Service
control manager. By default, a Windows service name has the following
format:

Each service can create sub-keys under the following registry key:

A Windows service name is used internally and must be unique. A Windows
display name is shown in the Services dialog only. By default, the Windows
service name and display name are the same.

Note: In order to install and uninstall Orbix services as Windows services,
you must execute the install and uninstall commands.

IT ORB-name domain-name

HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services
407

CHAPTER A | Orbix Windows Services
Orbix Windows Service Commands

Overview You can manage Orbix services from the command-line. Service commands
have the following syntax:

ORB-arguments can be any of the ORB initialization parameters that are
documented in Appendix C on page 437. In general, ORB-arguments is
required only for the configuration repository. Because the configuration
repository has its own domain, any service command that applies to the
configuration repository must supply the -ORBname argument.

For example, the following command installs the configuration repository as
a Windows service in the cfr-AcmeProducts configuration repository
domain:

You can execute the following commands on any Orbix Windows service:

continue
help
install
pause
prepare
query
run
stop
uninstall

continue

Synopsis executable-name continue

Description Resumes execution of the background service from its paused state.

exec-name [ORB-arguments] [exec-arguments] Win-service-command
[Win-service-arguments]

itconfig_rep -ORBname iona_services.config_rep -ORBdomain_name
cfr-AcmeProducts install
 408

Orbix Windows Service Commands
help

Synopsis executable-name help

Description Prints a description message for the specified service.

install

Synopsis executable-name install [-description=service-description]

Description Installs the specified Orbix service as a Windows service. Because the Orbix
configuration tool automatically installs the desired services as Windows
services, you should rarely need to use this command to install a service
manually.

The Windows service control manager starts installed Orbix services
automatically during system startup. The install command specifies a
Windows 32-bit service that runs in its own process.

Use the -description argument to change a display name for each service
used by the Windows Service control manager. This leaves unchanged the
internal service name used in the Windows registry key.

pause

Synopsis executable-name pause

Description Pauses execution of the specified background service.

prepare

Synopsis executable-name prepare [-publish_to_file=name]

Description Prepares the specified Orbix service for running, creating databases and initial
object references. Use the -publish_to_file argument to write object
references to a specified file; otherwise, stdout is used. This command is
implicitly performed when Orbix is configured.

Note: In general, it is recommended that you always install Orbix
Windows services by running the Orbix configuration tool.
409

CHAPTER A | Orbix Windows Services
query

Synopsis executable-name query

Description For the specified service, outputs current status, configuration parameters,
and dependencies on other services.

run

Synopsis executable-name run -service

Description Runs the specified Orbix service as a Windows service. The specified service
must already be installed.

stop

Synopsis executable-name stop

Description Stops execution of the specified service. You must stop a service before you
can uninstall it.

uninstall

Synopsis executable-name uninstall

Description Uninstalls the specified Orbix service as a Windows service. See �Uninstalling
Orbix Windows Services� on page 415 for more details.
 410

Orbix Windows Service Accounts
Orbix Windows Service Accounts

Overview By default, Orbix installs services on Windows under a LocalSystem account
that has no interaction with the desktop. You can change the
domain/user/passwd with the Windows service control manager.

To change this password, use the Services options in the Windows Control
Panel. You can also enable interaction with the desktop for a LocalSystem
account only. Figure 16 shows details displayed for the locator service on
Windows 2000.

Figure 16: Locator Service Details
411

CHAPTER A | Orbix Windows Services
Setting service security A service running under the LocalSystem account has no user account
information associated with it. As a result, the service might have limited
access to network resources. If this is not desired, use the Services options
available in the Windows Control Panel to change the user/group and
passwd for the service.

Orbix node daemons run under the LocalSystem account and activate other
processes as the LocalSystem account. If this is not desired, use the
Services options available in the Windows Control Panel to change the
user/group and passwd for this service.
 412

Running Orbix Windows Services
Running Orbix Windows Services

Overview Before you can run an Orbix Windows service, the specified service must
already be installed. You must supply the -service parameter to run as a
Windows service.

When Orbix Windows services are installed, the order in which they must be
run depends on whether your configuration domain is configuration
repository-based or file-based.

Running in a configuration
repository domain

When running Orbix Windows services in a configuration repository domain,
run the services in the following order:

1. Configuration repository. For example:

2. Locator daemon. For example:

3. Any other persistent service�interface repository, node daemon,
naming service. For example:

Running in a file-based domain When running Orbix services as Windows services in a file-based domain,
run Orbix services in the following order:

1. Locator daemon. For example:

2. Any other persistent service�interface repository, node daemon,
naming service. For example:

itconfig_rep -ORBdomain_name cfr-AcmeProducts run -service

itlocator run -service

itifr run -service

itlocator run -service

itnode_daemon run -service
413

CHAPTER A | Orbix Windows Services
Logging Orbix Windows Services

Overview In a configuration domain, logging is written to a file located in the same
directory as the services, by default. By default, logging shows all
informational messages, warnings, errors, and fatal errors.

The default log file name has the following format:

For example, the locator�s log file might have the following name:

Setting user-defined logging To change the logging output stream to a different file, set the following
configuration variable in the configuration scope for each service:

To add this variable to your configuration domain, use the itadmin
variable create command. You must set this variable in the configuration
scope for each service; for example, in the locator configuration scope:

If your configuration domain is file based, you can manually add variables to
your configuration file in the appropriate configuration scope. For example,
to set logging for the node daemon, add the following in the node_daemon
scope:

See Chapter 13 on page 197 for more information on Orbix logging.

service-name.log.timestamp

locator.log.18012000

plugins:local_log_stream:filename=filename

itadmin variable create -scope iona_services.locator
 -type string -value "c:temp\it_locator.log"
 plugins:local_log_stream:filename

plugins:local_log_stream:filename="c:\temp\it_node_daemon.log";
 414

Uninstalling Orbix Windows Services
Uninstalling Orbix Windows Services

Overview In order to cleanly remove any version of Orbix from your system, you should
first uninstall all Orbix services from the Windows host.

In a configuration repository-based domain, complete the following
procedure:

1. Stop and uninstall all services while the configuration repository and
locator daemon are still running.

2. Stop and uninstall the locator daemon.

3. Stop and uninstall the configuration repository.

Commands for uninstalling
services

The following series of commands show how you should stop and uninstall
Orbix Windows services:

itnode_daemon stop
itnode_daemon uninstall

itifr stop
itifr uninstall

itnaming stop
itnaming uninstall

itevent stop
itevent uninstall

itlocator stop
itlocator uninstall

itconfig_rep -ORBdomain_name cfr-AcmeProducts stop

itconfig_rep -ORBdomain_name cfr-AcmeProducts uninstall
415

CHAPTER A | Orbix Windows Services
Troubleshooting Orbix/Windows Services
The following sections describe several common problems related to
Orbix/Windows services, and how to resolve them.

Handling log-off events in
activated servers

A node daemon that is installed as a Windows service continues to run in
the background after users log off. It also activates server processes under
the LocalSystem account. In order to shield these processes from log-off
events (CTRL_LOGOFF_EVENT), the activated processes must have control
handlers; otherwise, the logoff causes them to shut down.

Configuring for slow service
startup

Occasionally, Windows services might require extra time to restart after
system reboot. This might be due to a slow system, or to recovery of
service-related databases.

Two changes in the configuration can help resolve this problem:

� Reduce the value set for max_binding_iterations, as in the following
example:

� Increase the wait time for a service�s pending operations (for example,
start, pause, resume). The default wait time for all services is set to
900 seconds (15 minutes):

Reset this variable for services, as necessary. For example, the
following variable increases the locator�s wait time to 20 minutes:

policies:binding_establishment:max_binding_iterations = "1";

plugins:plugin-name:nt_service_pending_op_wait = "900";

plugins:locator:nt_service_pending_op_wait = "1200";
 416

APPENDIX B

Run Control
Scripts for Unix
Platforms
Orbix services can be configured to start when the operating
system enters the default run level and to shut down when the
operating system leaves the default run level.

Overview This appendix provides details on how Orbix registers its services with the
operating system for automated startup and shutdown. Procedures for
disabling, enabling and removal of automated startup registration are also
covered.

Sometimes UNIX system administrators choose to customize run levels and
run control scripts of their operating systems. If your run levels are
customized, the details in this appendix will help you manually register your
Orbix services for automated startup and shutdown or to use run control
scripts generated by Orbix as a starting point for customization.

You must have root privileges to perform tasks described in this appendix.

Note: For reliable startup and shutdown of Orbix services, it is
recommended that you install the Java runtime, the Orbix components,
the license file, the domain configuration files, the service databases and
the log files on locally mounted filesystems.
417

CHAPTER B | Run Control Scripts for Unix Platforms
Operating Systems Follow the links below for details on your operating system:

For additional details on run levels and run control scripts refer to your
operating system�s documentation.

Solaris page 419

AIX page 422

HP-UX page 426

IRIX page 430

Red Hat Linux page 433
 418

Solaris
Solaris

Run level The default run level is 3; this includes all services from run level 2.

Run control scripts For a domain, <domain>, the following run control scripts are generated:

/etc/init.d/itsvs_<domain> contains the following:

/etc/init.d/itsvs_<domain>
/etc/rc0.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/rc2.d/S97itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/rcS.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved.
#
<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/tart_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services
419

CHAPTER B | Run Control Scripts for Unix Platforms
Disabling automatic services To temporarily disable automatic startup and shutdown for domain
<domain>:

1. Stop <domain> services by running

rval=0
case "$1" in
 'start')
if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_START_SCRIPT}
else
echo �ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \
 domain start script ${DOMAIN_START_SCRIPT} does not

exist or is not executable"
rval=1
fi
 ;;
 'stop')

if [-x ${DOMAIN_STOP_SCRIPT}]; then
 echo "Stopping IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_STOP_SCRIPT}
else
echo �ERROR: Failed to stop IONA Orbix services for domain

${DOMAIN} - \
 domain stop script ${DOMAIN_STOP_SCRIPT} does not exist

or is not executable"
rval=1
fi
 ;;
 *)
 echo "IONA Orbix run control script for domain ${DOMAIN}�
echo �Usage: $0 { start | stop }"
 rval=1
 ;;
 esac
 exit $rval

> stop_<domain>_services
 420

Solaris
2. Rename the following symbolic links by prepending a _ to their names:

Enabling automatic service To enable automatic startup and shutdown for <domain>:

1. Rename the following symbolic links by removing leading _ from their
names:

2. Start domain services by running:

Unregistering automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop <domain> services by running:

2. Remove the following files:

/etc/rc0.d/K27itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain>
/etc/rc2.d/S97itsvs_<domain>
/etc/rcS.d/K27itsvs_<domain>

/etc/rc0.d/_K27itsvs_<domain>
/etc/rc1.d/_K27itsvs_<domain>
/etc/rc2.d/_S97itsvs_<domain>
/etc/rcS.d/_K27itsvs_<domain>

> start_<domain>_services

> stop_<domain>_services

/etc/rc0.d/K27itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain>
/etc/rc2.d/S97itsvs_<domain>
/etc/rcS.d/K27itsvs_<domain>
/etc/init.d/itsvs_<domain>
421

CHAPTER B | Run Control Scripts for Unix Platforms
AIX

Run level The default run level is 2.

Actions For a domain named <domain>, Orbix performs the following actions:

� Makes an entry in /etc/inittab with /usr/sbin/mkitab:

� Creates a run control script /etc/rc.itsvs_<domain> that contains the
following:

itsvs_<domain>:2:wait:/etc/rc.itsvs_<domain> start >/dev/console
2>&1 # IONA Orbix services for domain <domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved.
#

<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

#
DOMAIN_START_SCRIPT=

${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services
DOMAIN_STOP_SCRIPT=

${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services
 422

AIX
rval=0
case "$1" in
'start')
if [-x ${DOMAIN_START_SCRIPT}] ; then
echo "Starting IONA Orbix services for domain ${DOMAIN}"
${DOMAIN_START_SCRIPT}
else
echo " ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \
 domain start script ${DOMAIN_START_SCRIPT}

does not exist or is not executable"
rval=1
fi
;;
'stop')
if [-x ${DOMAIN_STOP_SCRIPT}] ; then
echo "Stopping IONA Orbix services for domain <domain>"
${DOMAIN_STOP_SCRIPT}
else
echo "Can not stop IONA Orbix servies for domain <domain> - \
 domain stop script ${DOMAIN_STOP_SCRIPT} does not exist

or is not executable"
rval=1
fi
;;
*)
echo "IONA Orbix run control script for domain ${DOMAIN}�
echo "Usage: $0 { start | stop }"
rval=1
;;
esac
exit $rval
423

CHAPTER B | Run Control Scripts for Unix Platforms
� Creates /etc/rc.shutdown if it does not exist, and adds the following
code:

Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Comment out the itsvs_<domain> entry in /etc/inittab.

3. Comment out the code between <IONA Orbix <domain> > and </IONA
Orbix <domain> > tags in /etc/rc.shutdown.

Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Uncomment the code between <IONA Orbix <domain> > and </IONA
Orbix <domain> > tags in /etc/rc.shutdown.

2. Uncomment the itsvs_<domain> entry in /etc/inittab.

3. Start domain services by running

#<IONA Orbix <domain> >
if [-x /etc/rc.itsvs_<domain>]; then
/etc/rc.itsvs_<domain> stop
else
echo "ERROR: Failed to stop IONA Orbix services for domain

<domain> - \
 /etc/rc.itsvs_<domain> does not exist or is not

executable"
fi
#</IONA Orbix <domain> >

exit 0

Note: /etc/rc.shutdown must return 0, otherwise the AIX shutdown
sequence is interrupted.

> stop_<domain>_services

> start_<domain>_services
 424

AIX
Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Remove the itsvs_<domain> entry from /etc/inittab by running

2. If <domain> is the only Orbix domain registered for automatic startup
and shutdown, remove file /etc/rc.shutdown. Otherwise, remove the
code between <IONA Orbix <domain> > and </IONA Orbix <domain> >
tags in/etc/rc.shutdown.

3. Remove /etc/rc.itsvs_<domain>.

> rmitab itsvs_<domain>
425

CHAPTER B | Run Control Scripts for Unix Platforms
HP-UX

Run level The default run level is 3. See the output of run control scripts for the last
boot of the machine in /etc/rc.log. The previous boot log is in
/etc/rc.log.old.

Run control scripts For a domain, <domain>, the following files are generated:

The contents of /sbin/init.d/itsvs_<domain> is as follows:

/sbin/rc2.d/K270itsvs_<domain> -> /sbin/init.d/itsvs_<domain>
/sbin/rc3.d/S970itsvs_<domain> -> /sbin/init.d/itsvs_<domain>
/sbin/init.d/itsvs_<domain>
/etc/rc.config.d/itsvs_<domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved
#
<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services

if [-r /etc/rc.config.d/itsvs_ ${DOMAIN}] ;
 then . /etc/rc.config.d/itsvs_${DOMAIN}
else
 echo "WARNING: /etc/rc.config.d/itsvs_${DOMAIN} configuration

file is missing or is not readable"
fi
 426

HP-UX
rval=0

case "$1" in
 'start_msg')
 echo "Starting IONA Orbix services for domain ${DOMAIN}"
 ;;

 �stop_msg')
 echo "Stopping IONA Orbix services for domain ${DOMAIN}"
 ;;

 'start')
if [�ITSVS_${DOMAIN}� -eq 1]; then
 if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_START_SCRIPT}
 rval=4
 else
 echo "ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \ domain start script ${DOMAIN_START_SCRIPT} does
not exist or is not executable"

 rval=1
 fi
else
 # domain is disabled
 rval=2
fi
 ;;

 'stop')
if [�ITSVS_${DOMAIN}� -eq 1]; then
 if [-x ${DOMAIN_STOP_SCRIPT}]; then
 echo "Stopping Orbix services for the ${DOMAIN} domain"

${DOMAIN_STOP_SCRIPT}
 rval=4
 else
 echo "ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - \ domain stop script ${DOMAIN_STOP_SCRIPT} does
not exist or is not executable"

 rval=1
 fi
else
 # domain is disabled
 rval=2
fi
 ;;
427

CHAPTER B | Run Control Scripts for Unix Platforms
/etc/rc.config.d/itsvs_<domain> contains the following:

Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Set ITSVS_<DOMAIN> to 0 in /etc/rc.config.d/itsvs_<domain>.

Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Set ITSVS_<DOMAIN> to 1 in /etc/rc.config.d/itsvs_<domain>.

2. Start domain services by running

*)
 echo "IONA Orbix run control script for domain ${DOMAIN}�
 echo �Usage: $0 { start | stop }"
 rval=1
 ;;
 esac
 exit $rval

#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved
#
IONA Orbix services, domain <domain> configuration
ITSVS_<DOMAIN>: set to 1 to enable Orbix services for

domain <domain>

ITSVS_<DOMAIN>=1

> stop_<domain>_services

> start_<domain>_services
 428

HP-UX
Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Remove the following files:

> stop_<domain>_services

/sbin/rc2.d/K270itsvs_<domain>
/sbin/rc3.d/S970itsvs_<domain>
/sbin/init.d/itsvs_<domain>
/etc/rc.config.d/itsvs_<domain>
429

CHAPTER B | Run Control Scripts for Unix Platforms
IRIX

Run level The default run level is 2.

Run control scripts For a domain, <domain>, the following files are generated:

/etc/init.d/itsvs_<domain> contains the following:

/etc/init.d/itsvs_<domain>
/etc/r0.d/K27itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/etc/r2.d/S97itsvs_<domain> -> /etc/init.d/itsvs_<domain>
/var/config/itsvs_<domain>

#!/bin/sh
#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved.
#

<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services

rval=0

if [! /sbin/chkconfig itsvs_${DOMAIN}]; then
domain is disabled
 exit $rval
fi
 430

IRIX
Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Run

case "$1" in
 'start')
if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting Orbix services for domain ${DOMAIN}"
 ${DOMAIN_START_SCRIPT}
else
 echo "ERROR: Failed to start IONA Orbix services for domain

${DOMAIN} - "
 echo "domain start script ${DOMAIN_START_SCRIPT} does not exist

or is not executable"
 rval=1
fi
;;

 'stop')
if [-x ${DOMAIN_STOP_SCRIPT}] ; then
 echo "Stopping IONA Orbix services for domain ${DOMAIN}"
 ${DOMAIN_STOP_SCRIPT}
else
 echo "ERROR: Failed to stop IONA Orbix servies for domain

${DOMAIN} - "
 echo "domain stop script ${DOMAIN_STOP_SCRIPT} does not exist

or is not executable"
 rval=1
fi
;;

 *)
 echo "IONA Orbix run control script for domain ${DOMAIN}�
 echo �Usage: $0 { start | stop }"
 rval=1
 ;;
 esac
 exit $rval

> stop_<domain>_services

> /sbin/chkconfig itsvs_<domain> off
431

CHAPTER B | Run Control Scripts for Unix Platforms
Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Run

2. Start domain services by running

Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Remove the following files:

> /sbin/chkconfig itsvs_<domain> on

> start_<domain>_services

> stop_<domain>_services

/var/config/itsvs_<domain>
/etc/r0.d/K27itsvs_<domain>
/etc/r2.d/S97itsvs_<domain>
/etc/init.d/itsvs_<domain>
 432

Red Hat Linux
Red Hat Linux

Run level The default run level is either 3 or 5. Orbix determines the default run level.

Run control scripts Run control scripts generated by the Orbix configuration tool are compatible
with chkconfig(8) and linuxconf.

For a domain named <domain>, the following files are generated by the
Orbix configuration tool:

/etc/rc.d/init.d/itsvs_<domain> contains the following:

/etc/rc0.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>
/etc/rc1.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>
/etc/rc2.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>
/etc/rc[3|5].d/S97itsvs_<domain> ->

/etc/rc.d/init.d/itsvs_<domain>
/etc/rc6.d/K27itsvs_<domain> -> /etc/rc.d/init.d/itsvs_<domain>

#!/bin/bash

#
Copyright (c) 1993-2002 IONA Technologies PLC.
All Rights Reserved
#
chkconfig: [3|5] 27 97
description: IONA Orbix services, domain <domain>
#

<deployment-specific portion>
DOMAIN=boot
DOMAINS_ETC_DIR=/etc/opt/iona
DOMAINS_VAR_DIR=/var/opt/iona
</deployment-specific portion>

DOMAIN_START_SCRIPT=
${DOMAINS_ETC_DIR}/bin/start_${DOMAIN}_services

DOMAIN_STOP_SCRIPT=
${DOMAINS_ETC_DIR}/bin/stop_${DOMAIN}_services

DOMAIN_LOCK_FILE=/var/lock/subsys/itsvs_${DOMAIN}
433

CHAPTER B | Run Control Scripts for Unix Platforms
rval=0
case "$1" in
 'start')
check if the domain is running
[-f "${DOMAIN_LOCK_FILE}"] && exit $rval
if [-x ${DOMAIN_START_SCRIPT}]; then
 echo "Starting IONA Orbix services for domain <domain>"
 ${DOMAIN_START_SCRIPT}
 touch ${DOMAIN_LOCK_FILE}
else
 echo "ERROR: Failed to start IONA Orbix services for domain

<domain> - "
 echo "domain start script ${DOMAIN_START_SCRIPT} does not exist

or is not executable"
 rval=1
fi
 ;;

 'stop')
check if the domain is not running
[! -f "${DOMAIN_LOCK_FILE}"] && exit $rval
if [-x ${DOMAIN_STOP_SCRIPT}]; then
 echo "Stopping IONA Orbix services for domain <domain>"
 ${DOMAIN_STOP_SCRIPT}
else
 echo "ERROR: Failed to stop IONA Orbix services for domain

<domain> - "
 echo "domain stop script ${DOMAIN_STOP_SCRIPT} does not exist

or is not executable"
fi
rm -f ${DOMAIN_LOCK_FILE}
 ;;

*)
 echo "IONA Orbix run control script for domain ${DOMAIN}�
 echo �Usage: $0 { start | stop }"
 rval=1
;;
 esac
 exit $rval
 434

Red Hat Linux
Disable automatic services To temporarily disable automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Run

Enable automatic services To enable automatic startup and shutdown for <domain>:

1. Run

2. Start domain services by running

Unregister automatic services To unregister automatic startup and shutdown for <domain>:

1. Stop domain services by running

2. Run

3. Remove the following files:

> stop_<domain>_services

> chkconfig �del itsvs_<domain>

> chkconfig �add itsvs_<domain>

> start_<domain>_services

> stop_<domain>_services

> chkconfig �del itsvs_<domain>

/etc/rc.d/init.d/itsvs_<domain>
/var/lock/subsys/itsvs_<domain>
435

CHAPTER B | Run Control Scripts for Unix Platforms
 436

APPENDIX C

ORB Initialization
Settings
Initialization settings can be set for an ORB through
command-line arguments, which are passed to the initializing
ORB.

In most cases, equivalent environment variables or Java properties are
available. In the absence of command-line arguments, these are used by the
initializing ORB.

Initialization parameters pertain to the immediate requirements of the
initializing ORB; for example, the name of its configuration domain and
location, and the naming scope in which to find the ORB�s configuration.
The ORB�s behavior is further defined by its configuration, as set by
configuration variables. For more information about these, refer to the
Configuration Reference.

Precedence of settings Most initialization parameters can be set in one of the following ways, in
descending order of precedence:

� Command-line arguments.

� Environment variables or Java properties.

� Default values.

Java properties Java properties can be set for an initializing ORB in two ways, in descending
order of precedence:
437

CHAPTER C | ORB Initialization Settings
� Set as system properties. For example:

� Set in the properties file iona.properties.

An initializing ORB searches for the properties file in the following locations,
in this order:

1. Current directory.

2. Directories on the classpath.

3. Jars on the classpath.

Domains directory

The directory that contains the target configuration file; set with:

This directory typically stores a file for each accessible configuration domain
name.

For example:

Nothing else should be stored in this directory. This enables tools to easily
enumerate the list of available domains.

The configuration domains directory defaults to ORBconfig_dir/domains on
UNIX, and ORBconfig_dir\domains on Windows.

Domain name

The name of the configuration domain to use; set with:

java -DORBdomain_name finance corporate.finance_app

Command-line argument: -ORBconfig_domains_dir

Environment variable: IT_CONFIG_DOMAINS_DIR

Java property: ORBconfig_domains_dir

my_app -ORBconfig_domains_dir c:\iona\etc\domains

Command-line argument: -ORBdomain_name

Environment variable: IT_DOMAIN_NAME

Java property: ORBdomain_name
 438

For example:

Configuration directory

The root configuration directory; set with:

Specifies the root configuration directory. The default root configuration
directory is /etc/opt/iona on UNIX, and product-dir\etc on Windows.

ORB name

The ORB name, which specifies the configuration scope for this ORB; set
with:

The following application takes it configuration from the my_orb scope:

You can also use the -ORBname parameter to specify non-default
configuration scopes for Orbix services. For example:

my_app -ORBdomain_name my_domain

Command-line argument: -ORBconfig_dir

Environment variable: IT_CONFIG_DIR

Java property: ORBconfig_dir

Command-line argument only: -ORBname

my_app -ORBname my_orb

itconfig_rep -ORBname config_rep.config2 run
439

CHAPTER C | ORB Initialization Settings
Initial reference

An initial object reference for a service using the interoperable naming
service format; set with:

For example:

Default initial reference

An initial object reference to a service if none is explicitly specified by
-ORBInitRef; set with:.

This parameter takes a URL, which forms a new URL identifying an initial
object reference. For example:

A call to resolve_initial_references("NotificationService") with the
following argument results in a new URL:

The new URL has a '/' character and a stringified object key appended.

Command-line argument only: -ORBInitRef

-ORBInitRef NameService=IOR00023445AB...
-ORBInitRef

NotificationService=corbaloc:555objs.com/NotificationService

-ORBInitRef TradingService=corbaname:555objs.com/Dev/Trader

Command-line argument only: -ORBDefaultInitRef

my_app -ORBDefaultInitRef corbaloc:555objs.com

corbaloc:555.objs.com/NotificationService
 440

Product directory

The directory in which IONA products are installed, set with:

For example:

This directory is read-only and location independent. This enables it to be
shared across systems even if mounted at different locations.

The directory in which products are installed defaults to /opt/iona on
UNIX, and %SystemDrive%\Program Files\IONA on Windows.

Command-line argument: -ORBproduct_dir

Environment variable: IT_PRODUCT_DIR

Java property: ORBproduct_dir

my_app -ORBproduct_dir c:\iona
441

CHAPTER C | ORB Initialization Settings
 442

APPENDIX D

Development
Environment
Variables
For C++ installations, you can specify several environment
variables that pertain to development environments only.

IT_IDL_CONFIG_FILE

Specifies the configuration file for the IDL compiler.

UNIX

Defaults to $IT_INSTALL_DIR/asp/version/etc/idl.cfg.

Windows

Defaults to %IT_INSTALL_DIR%\asp\version\etc\idl.cfg.

Note: Do not modify the default IDL configuration file. This affects demo
programs and other applications. Instead, use this variable to point the
IDL compiler to a customized file if necessary.
443

CHAPTER D | Development Environment Variables
IT_IDLGEN_CONFIG_FILE

Specifies the configuration file for the Orbix code generation toolkit.

UNIX

Defaults to $IT_INSTALL_DIR/asp/version/etc/idlgen.cfg.

Windows

Defaults to %IT_INSTALL_DIR%\asp\version\etc\idlgen.cfg.
 444

APPENDIX E

Named Keys for
Orbix Services
This appendix lists the named keys for the Orbix services and
associated configuration variables.

In this appendix This appendix includes the following sections:

Orbix Service Named Key Strings page 446

Configuration for Advertising Services page 449
445

CHAPTER E | Named Keys for Orbix Services

Se

Secu

Conf
n
Rep
(CFR

Firew
Prox
Serv
(FPS

Man
nt

Loca

Nod
daem
Orbix Service Named Key Strings
Table 40 shows the key strings used by each service.

Table 40: Orbix Service Key Strings

rvice Plain Text Forwarder
Key

IMR Key IOR Prefix Initial Reference

rity IT_SecurityService n/a IT_SecurityService IT_SecurityService

IT_Login n/a IT_Login IT_Login

iguratio

ository
)

ConfigRepository n/a ConfigRepository ConfigRepository

IT_ConfigRepositoryRepli
ca

n/a IT_SingleConfigRepository n/a

all
y
ice
)

IT_FPS_Registry n/a IT_FPS_Registry IT_FPS_Registry

IT_FPS_Manager n/a IT_FPS_Manager IT_FPS_Manager

ageme IT_ManagementService.
User

n/a IT_MgmtServiceUser IT_MgmtServiceUser

IT_ManagementService.
Registration

n/a IT_MgmtService IT_MgmtService

IT_ManagementService.S
ecurity

n/a IT_MgmtServiceSec IT_MgmtServiceSec

tor IT_Locator n/a IT_Locator IT_Locator

IT_LocatorReplica n/a IT_SingleLocator n/a

e
on

IT_NodeDaemon n/a IT_NodeDaemon n/a
 446

Orbix Service Named Key Strings

Tran
mon

Inter
Repo

Nam

Trad

Basi

Even

Noti
Log

Noti

Even

JMS

Se
saction
itor

TransactionServiceAdmin TransactionServiceA
dmin

TransactionServiceAdmin TransactionServiceA
dmin

TransactionFactory TransactionFactory TransactionFactory TransactionFactory

face
sitory

InterfaceRepository InterfaceRepository InterfaceRepository InterfaceRepository

ing NameService NameService NameService NameService

IT_NameServiceReplica n/a IT_SingleNameService n/a

er TradingService TradingService TradingService TradingService

TradingServiceNR n/a n/a n/a

Replicator n/a n/a n/a

c Log DefaultBasicLogFactory BasicLoggingService BasicLoggingService BasicLoggingService

t Log DefaultEventLogFactory EventLoggingService EventLoggingService EventLoggingService

fication DefaultNotifyLogFactory NotifyLoggingServic
e

NotifyLoggingService NotifyLoggingService

fication DefaultEventChannelFact
ory

NotificationService NotificationService NotificationService

DefaultEndpointAdmin n/a IT_NotificationEndpointA
dmin

IT_NotificationEndpo
intAdmin

t DefaultEventChannelFact
ory

 EventService EventService EventService

DefaultTypesEventChann
elFactory

n/a n/a n/a

MessageBroker IT_JMSMessageBro
ker

IT_JMSMessageBroker IT_JMSMessageBrok
er

ServerContext n/a IT_JMSServerContext IT_JMSServerContext

MessagingBridge n/a IT_MessagingBridge IT_MessagingBridge

rvice Plain Text Forwarder
Key

IMR Key IOR Prefix Initial Reference
447

CHAPTER E | Named Keys for Orbix Services

Se
EndpointAdmin n/a IT_JMSEndpointAdmin IT_JMSEndpointAdm
in

rvice Plain Text Forwarder
Key

IMR Key IOR Prefix Initial Reference
 448

Configuration for Advertising Services
Configuration for Advertising Services
Table 41 shows the configuration variables for each service (where
applicable). Setting one of these variables to true prevents registration of a
key with the plain text key forwarder for that service.

Table 41: Advertise Service Configuration Variables

Service Configuration Variable Name

Firewall Proxy Service
(FPS)

fps:advertise_services

Transaction monitor plugins:ots:advertise_services

Interface Repository plugins:ifr:advertise_services

Naming plugins:naming:advertise_services

Trader trader:advertise_services

Basic Log plugins:basic_log:advertise_services

Event Log plugins:event_log:advertise_services

Notification Log plugins:notify_log:advertise_services

Notification plugins:notify:advertise_services

Event plugins:event:advertise_services
449

CHAPTER E | Named Keys for Orbix Services
 450

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and managing a
system.

ART
Adaptive Runtime Technology. IONA�s modular, distributed object
architecture, which supports dynamic deployment and configuration of
services and application code. ART provides the foundation for IONA software
products.

ATLI2
Abstract Transpot Layer Interface, version 2. IONA�s current transport layer
implementation.

C Certificate Authority
Certificate Authority (CA). A trusted third-party organization or company that
issues digital certificates used to create digital signatures and public-private
key pairs. The role of the CA in this process is to guarantee that the individual
granted the unique certificate is, in fact, who he or she claims to be. CAs are
a crucial component in data security and electronic commerce because they
guarantee that the two parties exchanging information are really who they
claim to be.

CFR
See configuration repository.

client
An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from
CORBA objects.

configuration
A specific arrangement of system elements and settings.
451

GLOSSARY
configuration domain
Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralized Orbix configuration repository
or as a set of files distributed among domain hosts. Configuration domains
let you organize ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration file and
configuration repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.

configuration repository
A centralized store of configuration information for all Orbix components
within a specific configuration domain. See also configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically organized into
a root scope and a hierarchy of nested scopes, the fully-qualified names of
which map directly to ORB names. By organizing configuration properties into
various scopes, different settings can be provided for individual ORBs, or
common settings for groups of ORB. Orbix services, such as the naming
service, have their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The
CORBA specification is produced and maintained by the OMG. See also OMG.

CORBA naming service
An implementation of the OMG Naming Service Specification. Describes how
applications can map object references to names. Servers can register object
references by name with a naming service repository, and can advertise those
 452

GLOSSARY
names to clients. Clients, in turn, can resolve the desired objects in the naming
service by supplying the appropriate name. The Orbix naming service is an
example.

CORBA objects
Self-contained software entities that consist of both data and the procedures
to manipulate that data. Can be implemented in any programming language
that CORBA supports, such as C++ and Java.

CORBA transaction service
An implementation of the OMG Transaction Service Specification. Provides
interfaces to manage the demarcation of transactions and the propagation of
transaction contexts. Orbix OTS is such as service.

CSIv2
The OMG Common Secure Interoperability protocol v2.0, which can be used
to provide the basis for application-level security in both CORBA and J2EE
applications. The IONA Security Framework implements CSIv2 to transmit
usernames and passwords, and to assert identities between applications.

D deployment
The process of distributing a configuration or system element into an
environment.

H HTTP
HyperText Transfer Protocol. The underlying protocol used by the World Wide
Web. It defines how files (text, graphic images, video, and other multimedia
files) are formatted and transmitted. Also defines what actions Web servers
and browsers should take in response to various commands. HTTP runs on
top of TCP/IP.
453

GLOSSARY
I IDL
Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public API that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.

IFR
See interface repository.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging protocol,
defined by the OMG, for communications between ORBs and distributed
applications. IIOP is defined as a protocol layer above the transport layer,
TCP/IP.

implementation repository
A database of available servers, it dynamically maps persistent objects to their
server�s actual address. Keeps track of the servers available in a system and
the hosts they run on. Also provides a central forwarding point for client
requests. See also location domain and locator daemon.

IMR
See implementation repository.

installation
The placement of software on a computer. Installation does not include
configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.
 454

GLOSSARY
interface repository
Provides centralized persistent storage of IDL interfaces. An Orbix client can
query this repository at runtime to determine information about an object�s
interface, and then use the Dynamic Invocation Interface (DII) to make calls
to the object. Enables Orbix clients to call operations on IDL interfaces that
are unknown at compile time.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

L location domain
A collection of servers under the control of a single locator daemon. Can span
any number of hosts across a network, and can be dynamically extended with
new hosts. See also locator daemon and node daemon.

locator daemon
A server host facility that manages an implementation repository and acts as
a control center for a location domain. Orbix clients use the locator daemon,
often in conjunction with a naming service, to locate the objects they seek.
Together with the implementation repository, it also stores server process data
for activating servers and objects. When a client invokes on an object, the
client ORB sends this invocation to the locator daemon, and the locator
daemon searches the implementation repository for the address of the server
object. In addition, enables servers to be moved from one host to another
without disrupting client request processing. Redirects requests to the new
location and transparently reconnects clients to the new server instance. See
also location domain, node daemon, and implementation repository.

N naming service
See CORBA naming service.
455

GLOSSARY
node daemon
Starts, monitors, and manages servers on a host machine. Every machine
that runs a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored in a
CORBA naming service, in a file or in a URL. The contact details that a client
application uses to communicate with a CORBA object. Also known as
interoperable object reference (IOR) or proxy.

OMG
Object Management Group. An open membership, not-for-profit consortium
that produces and maintains computer industry specifications for
interoperable enterprise applications, including CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients and servers,
using the Internet Inter-ORB Protocol (IIOP). Enables clients to make requests
and receive replies from servers in a distributed computer environment. Key
component in CORBA.

OTS
See CORBA transaction service.

P POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all
objects used by an application, manages object state, and provides the
infrastructure to support persistent objects and the portability of object
implementations between different ORB products. Can be transient or
persistent.

protocol
Format for the layout of messages sent over a network.
 456

http://www.omg.com

GLOSSARY
S server
A program that provides services to clients. CORBA servers act as containers
for CORBA objects, allowing clients to access those objects using IDL
interfaces.

SSL
Secure Sockets Layer protocol. Provides transport layer security�
authenticity, integrity, and confidentiality�for authenticated and encrypted
communications between clients and servers. Runs above TCP/IP and below
application protocols such as HTTP and IIOP.

SSL handshake
An SSL session begins with an exchange of messages known as the SSL
handshake. Allows a server to authenticate itself to the client using public-key
encryption. Enables the client and the server to co-operate in the creation of
symmetric keys that are used for rapid encryption, decryption, and tamper
detection during the session that follows. Optionally, the handshake also
allows the client to authenticate itself to the server. This is known as mutual
authentication.

T TCP/IP
Transmission Control Protocol/Internet Protocol. The basic suite of protocols
used to connect hosts to the Internet, intranets, and extranets.

TLS
Transport Layer Security. An IETF open standard that is based on, and is the
successor to, SSL. Provides transport-layer security for secure
communications. See also SSL.
457

GLOSSARY
 458

Index

A
active connection management 102

client-side configuration 103
server-side configuration 102

active load balancing 120
admin_logon 377
algorithms, compression 163
-args 54
ATLI2 172

B
backups

full 154
incremental 156

bandwidth 161
Berkeley DB environment 150

checkpoints 151
data files 150
file types 150
recovery 154
store environment files 150
transaction log files 150

archive 152
delete 152
size 152

bidirectional GIOP 176
BiDir_Gen3 181
BiDir_GIOP 179
BiDirIdGenerationPolicy 177
BiDirPolicy::ALLOW 177
BiDirPolicy::BiDirAcceptPolicy 178
BiDirPolicy::BidirectionalAcceptPolicy 181
BiDirPolicy::BiDirExportPolicy 177
BiDirPolicy::BiDirOfferPolicy 177
binding:client_binding_list 165, 175, 179
buffered logging 205
bzip2 163

C
catastrophic recovery 154
checkpoints

Berkeley DB 151
checksum 375
confirm 378
create 379
list 379
list all processes 379
manage 378
remove 380

CICS server adapter
Mapping Gateway interface 187

client_binding_list 175
cluster.properties file 97
command-line parameters

-ORBadmin_config_domains_dir 48
-ORBadmin_domain_name 48
-ORBconfig_domain 36
-ORBdomain_name 48

compression plug-in 161
config dump 266
config list 267
config stop 268
configuration

convert from file to CFR 268
default directory 36
file-based 23
itadmin commands 265
namespace management 270
repository-based 24
scope management 273
variable management 275

configuration domain
obtain for ORB 34

C++ applications 36
Java applications 36

troubleshoot 48
configuration repository 24

converting from file to 268
dump contents 266
list replicas 267
manage 266
start 240
stop 268

configuration scope 38
define 40
459

INDEX
file-based configuration 40
itadmin commands 41

map to ORB name 39
name 39
share 44

configuration variables
components 45
data type 45

constructed 45
namespace 45
precedence of settings 42
set value 46

CREATE_DEFAULT_ERROR_MODE 57
CREATE_NEW_PROCESS_GROUP 57

D
data files

Berkeley DB 150
decompression 162
default-domain.cfg 36
DETACHED_PROCESS 57
direct persistence

failover 86

E
ec

create 282
list 283
remove 284
show 284

EGMIOP 172
election protocol 99
encinalog

add 362
add_mirror 363
create 363
display 364
expand 365
init 366
remove_mirror 366

Encina transactions
add backup files 362
add mirror volume 363
create log backup 363
display mirror volume data 364
expand transaction log 365
initialize transaction log 366
remove mirror 366
 460
stop service 367
environment variables

development 444
ORB initialization 437

event
show 280
stop 281

event channel
create 282, 350, 353
list all 283, 351
manage 282, 350
remove 284, 352
show attributes 284, 352

event log 249
event_log:filters 175, 178
event service

itadmin commands 279
manage 280
show attributes 280
start 245
stop 281

export policy 177

F
failover 81, 85

direct persistence 86
federation links,manage 391
file-based configuration 23
filename 204
file_to_cfr.tcl 268
filters 198
firewall proxy plug-in 145
firewall proxy service 143
fps 145
fps:proxy_evictor:hard_limit 146
fps:proxy_evictor:soft_limit 146
fps_agent.jar 145
FQPN 6
fragmentation 170
full backup 154

G
General Inter-ORB Protocol 176
GenerateConsoleCtrlEvent() 324
GIOP, bidirectional 176
GIOP::BiDirId 177
GIOP Snoop 163, 207
gzip 163

INDEX
H
hard_limit

IIOP 102, 103
heatbeats, master 99
host, moving to a new 61

I
IDL 14

compile 14
IDL definitions, manage 136, 288
ifr

cd 289, 328
destroy_contents 140, 290
ifr2idl 290, 327
list 290, 328
pwd 290, 330
remove 140, 291, 329
show 291, 329
stop 135, 291, 330

IIOP plug-in configuration
hard connection limit

client 103
server-side 102

soft connection limit
client 103
server 102

implementation repository 8
IMS server adapter

Mapping Gateway interface 187
incremental backups 156
initial_references:IT_MFA:reference 188
INTERDICTION policy 146
Interface Definition language. See IDL
interface repository

add IDL definitions 139, 288
browse contents 137
destroy contents 290
display containment hierarchy 137
itadmin commands 287, 325
list container contents 137, 290, 328
list current container 290, 330
maintain 14
manage 287, 325
navigate to other containment levels 138, 289,

328
remove definitions 140, 291, 329
show scoped name 291, 329
start 135
start daemon 244
stop daemon 135, 291, 330
usage 14
write contents to file 290, 327

interfaces
add to interface repository 139, 288
define 14
obtain from interface repository 14
remove definitions from interface repository 140

interoperable object reference. See IOR
IOP::BI_DIR_GIOP_OFFER 178
IOP::TAG_BI_DIR_GIOP 177
IOR 8
iordump 163, 178
is2.properties file 97
IT_ACTIVATOR 200
itadmin commands 252

abbreviations 256
command-line usage 252
configuration domain 265
event service 279
help 257
interface repository 287, 325
lists 255
location domain 293
logging 249
mainframe adapter 188
naming service 334
negative values 256
nested 252
notification service 345
object group 338
OTS 357
OTS Encina 361
PSS 369
shell usage 252
SSL/TLS 375
syntax 255
Tcl scripts 253
trading service 249, 259, 385
undo 254

IT_ATLI2_IOP 200
IT_ATLI2_IP 200
IT_ATLI2_ITMP 200
IT_ATLI2_ITRP 200
IT_ATLI2_SHM 200
IT_ATLI_TLS 200
IT_BiDirPolicy::BidirectionalGen3AcceptPolicy 181
IT_BiDirPolicy::BiDirIdGenerationPolicy 177
461

INDEX
IT_ClassLoading 200
IT_CODESET 200
IT_CONFIG_DIR 439
IT_CONFIG_DOMAIN 36
IT_CONFIG_DOMAINS_DIR 438
IT_CONFIG_REP 200
itconfig_rep run 240
IT_CORE 200
IT_CSI 200
IT_DOMAIN_NAME 438
itevent run 245
IT_GIOP 200
IT_GSP 200
IT_IDL_CONFIG_FILE 443
IT_IDLGEN_CONFIG_FILE 444
IT_IFR 200
itifr run 135, 244
IT_IIOP 200
IT_IIOP_PROFILE 200
IT_IIOP_TLS 201
IT_JAVA_SERVER 201
IT_LEASE 201
IT_LOCATOR 201
itlocator run 62, 241
itmfaloc 192
itmfaloc URL resolver 191
IT_MGMT 201
IT_MGMT_SVC 201
IT_NAMING 201
itnaming run 112, 243
IT_NODE_DAEMON 201
itnode_daemon run 64, 242
IT_NOTIFICATION 201
itnotify run 246
IT_OTS_LITE 201
IT_POA 201
IT_POA_LOCATOR 201
IT_PRODUCT_DIR 441
IT_PSS 201
IT_PSS_DB 153, 201
IT_PSS_R 201
IT_SCHANNEL 201
IT_TLS 201
IT_TS 201
IT_XA 201
it_ziop 164

J
Java CIO 172
 462
Java NIO 172

K
KDM 375

database 375
log on 377

kdm_adm change_pw 381
kdm_adm confirm 382
kdm_adm create 382
kdm_adm list 383
kdm_adm remove 384

L
load balancing

active selection 120
replicated servers 81
selection strategies 119, 340, 341

LocateReply 212
LocateRequest 212
location domain

daemon. See locator daemon
implementation repository 8
itadmin commands 293
list registered entries 67
modify entries 68
register ORB 52
register POA 53
register server process 52
remove entries 68

locator
list 295
show 295
stop 62, 296

locator daemon 8
list all 295
manage 294
restart 63
show attributes 295
start 62, 241
stop 62, 296
usage 10

locator daemon configuration
find persistent objects 9

logging
buffered 205
configuration 204
get 249
local file 204

INDEX
message severity levels 202
output to local file 204
output to system log 205
rolling_file 205
set 250
set filters for subsystems 198
subsystems 200

low bandwidth 161

M
Mainframe Adapter 185

itmfaloc URL resolver 191
Mapping Gateway interface 187

mainframe adapter
itadmin commands 325

majority rule
replicas 100

Mapping Gateway interface 187
IOR 190

master
election protocol 99
heartbeats 99

master-slave replication 97
message fragmentation 170
mfa 187

add 327
change 327
delete 328
list 328
refresh 329
reload 329
resetcon 329
resolve 330
save 330
stats 331
stop 331
switch 331

MPI 208

N
name

bind to object 334
rebind 118

named_key
create 298
list 298
remove 299
show 299
named keys
create 298
list all 298
manage 297
remove 299
show object reference 299

namespace
create 270
list 271
remove 272
show 272

namespaces
create 270
list 271
manage 270
remove from configuration 272
show contents 272

naming context
create 115
unbound 115

naming graph 110
build 113

naming service 4
administer 109
bind name 334
bind name to object 116
build naming graph 113
itadmin commands 334
list contents 335
manage 334
naming context

create 115
unbound 115

naming graph 110
new context 336
object groups 119, 338
rebind name 118
resolve name 336
start 112, 243
stop 112, 337
unbind 336, 337

nc
create 350, 353
list 351
remove 352
set_qos 353
show 352

NegotiateSession 182
NIO
463

INDEX
new I/O 172
-node_daemon 54
node daemon 64

list 300
list active processes 66
manage 300
remove 301
run several on host 65
show attributes 301
start 64, 242
stop 66, 302
usage 10

node_daemon
list 300
remove 301
show 301
stop 66, 302

NORMAL_PRIORITY_CLASS 57
normal recovery 154
notification service

checkpoint operations 346
itadmin commands 345
manage 346
post-backup operations 347
pre-backup operations 347
show attributes 347
start 246
stop 349

notify
checkpoint 346
post_backup 347
pre_backup 347
show 347
stop 349

ns
bind 116, 334
list 335
newnc 115, 336
remove 336
resolve 118, 336
stop 112, 337
unbind 118, 337

nsog
add_member 339
bind 339
create 340
list 340
list_members 340
modify 341
 464
remove 341
remove_member 342
set_member_timeout 342
show_member 343
update_member_load 344

O
object group 119

active load balancing 120
add member 339
bind 339
create 119, 340
identifier 119
itadmin commands 338
list all 340
list members 340
manage 338
member identifiers 119
member IOR 343
member load value updates 344
member timeout 342
modify selection strategy 341
remove 341
remove member 342
selection strategies 119, 340, 341

OBJECT_NOT_EXIST exception 8
object references 4

client invocations on 4
map to servants 5

object request broker. See ORB
objects

persistent 8
transient 8

on_demand 315
on-demand activation 52

replicated server 90
ORB

configuration 38
initialization 35, 437
map name to configuration scope 39
register in location domain 52
register root POA name 69
server 2
share configuration scope 44

-ORBadmin_config_domains_dir 48
-ORBadmin_domain_name 48
-ORBconfig_dir 439
ORBconfig_dir Java property 439
-ORBconfig_domain 36

INDEX
ORBconfig_domain Java property 36
-ORBconfig_domains_dir 438
ORBconfig_domains_dir Java property 438
-ORBDefaultInitRef 440
-ORBdomain_name 48, 438
ORBdomain_name Java property 438
ORB initialization 437

configuration directory 439
default initial reference 440
domain name 438
domains directory 438
initial reference 440
Java properties 437
ORB name 439
precedence of settings 437
product directory 441

-ORBInitRef 440
Orbix services

order of startup 238
start and stop scripts 238
start commands 239
stop commands 248

Orbix services, replication 95
-ORBname 439
ORB name 439

create 304
list all 305
manage 304
modify 305
remove 306
show attributes 307

orbname
create 52, 304

register replicated server 91
list 305
modify 305
remove 306
show 307

orb_plugins 174, 209
-ORBproduct_dir 441
ORBproduct_dir Java property 441
OS/390 186
OTS

itadmin commands 357
manage 357

OTS Encina
itadmin commands 361
manage 361

otstm stop 367
P
pass phrases 375

change 381
confirm 382
create 382
list 383
manage 381
remove 384

per_client 54, 315
per-client activation 54
persistent objects 8

direct persistence
and failover 86

invoke on 9
locate 51
replicated 83

PERSIST_STORE exception 153
pkzip 163
plugin:atli2_shm:shared_memory_size 175
plugins:atli2_ip:ClassName 173
plugins:config_rep:refresh_master_interval 100
plugins:giop:message_server_binding_list 165, 179
plugins:giop_snoop:ClassName 209
plugins:giop_snoop:filename 211
plugins:giop_snoop:rolling_file 211
plugins:giop_snoop:shlib_name 209
plugins:giop_snoop:verbosity 210
plugins:local_log_stream:buffer_file 205
plugins:local_log_stream:filename 169, 205
plugins:local_log_stream:log_elements 205
plugins:local_log_stream:milliseconds_to_log 205
plugins:locator:allow_node_daemon_change 61
plugins:locator:refresh_master_interval 100
plugins:naming:refresh_master_interval 100
plugins:node_daemon:recover_processes 65
plugins:pss_db:envs

env-name:replica_priority 99
plugins:pss_db:envs:env-name:allow_minority_mast

er 100
plugins:pss_db:envs:env-name:master_heartbeat_int

erval 99
plugins:pss_db:envs:env_name:recover_fatal 158
plugins:pss_db:envs:ifr_store:lk_max 140, 141
plugins:pss_db:envs:it_locator:checkpoint_archives_

old_logs 156
plugins:pss_db:envs:it_locator:checkpoint_deletes_ol

d_logs 156
plugins:pss_db:envs:it_locator:db_home 157
plugins:pss_db:envs:it_locator:master_heartbeat_int
465

INDEX
erval 99
plugins:pss_db:envs:it_locator:old_logs_dir 156
plugins:ziop

shlib_name 164
plugins:ziop:ClassName 164
POA 5

FQPN 6
list 310
manage 308
modify 311
name root POA 69
names 6
persistent 51
register in location domain 53, 308
remove 312
replicas 53, 82
show attributes 313
transient 53

POA::create_POA() 177
poa:fqpn:direct_persistent 74
poa:fqpn:well_known_address 75
poa create 53, 308

replicated POA 91
poa list 310
poa modify 311
poa remove 312
poa show 313
policies

per_request_lb = "true" 94
policies:giop:bidirectional_accept_policy 178
policies:giop:bidirectional_export_policy 177
policies:giop:bidirectional_gen3_accept_policy 181
policies:giop:bidirectional_offer_policy 178
policies:iiop:buffer_sizes_policy:default_buffer_size

170
policies:ziop:compression_enabled 165
policies:ziop:compression_threshold 167
policies:ziop:compressor:compressor_id:level 166
policies:ziop:compressor_id 166
portable object adapter. See POA
priorities, replica 99
process

create 52, 314
disable 317
enable 317
list 66, 318
modify 319
moving to a new host 61
remove 321
 466
show 322
start 61, 323
stop 61, 324

process create 54
proxy offers, manage 397
PSS

checkpoint 370
itadmin commands 369
manage 369
obtain IOR to 371
post-backup operations 371
pre-backup operations 372

pss_db
checkpoint 370
name 371
post_backup 155, 371
pre_backup 157, 372

pss_db archive_old_logs 370
pss_db checkpoint 370
pss_db delete_old_logs 371
pss_db list_replicas 371
pss_db name 371
pss_db post_backup 371
pss_db pre_backup 372
pss_db remove_replica 372
pss_db show 373

Q
QoS 353
qualities of service, event channel 353

R
recovery

Berkeley DB 154
refresh master interval 100
regular offers, manage 395
replicated servers 81

add server replicas 93
build 89
deploy 82
failover 85
load balancing 85

change strategy 94
specifying strategy 91

on-demand activation 90
register ORB names 91
register POA 91
register processes 90

INDEX
startup 83
replication

Orbix services 95
priorities 99
security service 97

Reply 212
repository-based configuration 24
Request 212
rolling_file 205
root_name 69
root POA

register name 69

S
scope

create 273
list 273
list sub-scopes 273
manage 273
remove 274
show 274
show contents 274

scope See configuration scope
secure_directories 61
security service

replication 97
server process

disable on-demand activation 317
enable on-demand activation 317
list 318
manage 314
modify 319
moving to a new host 61
register 314
register for on-demand activation 52

on replicated server 90
remove 321
secure directories 61
show attributes 322
start 323
start and stop 61
stop 324

servers, reactivate with node daemon 10
shared memory 174
shmiop plugin 174
simple_persistent demo 75
SIOP 208
soft_limit

IIOP 102, 103
SSL/TLS
itadmin commands 375
KDM 375
manage 375

-startupmode 54
start-up mode 315

T
TAG_BI_DIR_GIOP 178, 180
Tcl scripts, itadmin commands 253
TerminateProcess() 317
trading service

create federation link 391
federation links 391
itadmin commands 249, 259, 385
list federation links 392
list offer IDs 395
list proxy offer IDs 397
list service types 399
manage 249, 259, 385
mask service type 399
modify administrative settings 388
modify federation link 392
obtain administrative settings 386
proxy offers 397
regular offers 395
remove federation link 393
remove offer 395
remove proxy offer 397
remove service type 400
show federation link attributes 394
show offer attributes 396
show proxy offer attributes 398
show service type attributes 400
stop 390
type repositories 399
unmask service type 401

transaction
begin 357
commit 358
resume 358
roll back 359
suspend 359

transaction log files 150
transient objects 8
trd_admin

get 386
set 388
stop 390
467

INDEX
trd_link
create 391
list 392
modify 392
remove 393
show 394

trd_offer
list 395
remove 395
show 396

trd_proxy
list 397
remove 397
show 398

trd_type
list 399
mask 399
remove 400
show 400
unmask 401

tx
begin 357
commit 358
resume 358
rollback 359
suspend 359

type repository, manage 399

U
UNIX System Services 186

V
variable

create 275
manage in configuration 275
modify 277
remove 278
show 278
show setting 278

W
WELL_KNOWN_ADDRESSING_POLICY 72
Windows NT services 405

accounts 411
commands 408
identify Orbix services 407
install Orbix service 409
logging 414
 468
manage 407
obtain data 410
obtain help on service 409
pause background service 409
prepare Orbix service 409
run 410, 413

in file-based configuration 413
in repository-based configuration 413

security 412
stop Orbix service 410
troubleshoot 416
uninstall service 410, 415

Z
ZIOP compression 161
ziop plug-in 164

	List of Figures
	List of Tables
	Preface
	Introduction
	The Orbix Environment
	Basic CORBA Model
	Simple Orbix Application
	Portable Object Adapter

	Broader Orbix Environment
	Managing Object Availability
	Scaling Orbix Environments with Configuration Domains
	Using Dynamic Orbix Applications

	Orbix Administration

	Selecting an Orbix Environment Model
	Orbix Development Environment Models
	Independent Development Environments
	Distributed Development and Test Environments

	Configuration Models
	Getting the Most from Your Orbix Environment
	Using Capabilities of Well-Designed Orbix Applications
	Using the Right Data Storage Mechanism

	Getting the Most from Orbix Configuration

	Managing an Orbix Environment
	Managing Orbix Configuration
	How an ORB Gets its Configuration
	Locating the Configuration Domain
	Obtaining an ORB’s Configuration

	Configuration Variables and Namespaces
	Managing Configuration Domains

	Managing Persistent CORBA Servers
	Introduction
	Registering Persistent Servers
	Server Environment Settings
	Windows Environment Settings
	UNIX Environment Settings

	Managing a Location Domain
	Managing Server Processes
	Managing the Locator Daemon
	Managing Node Daemons
	Listing Location Domain Data
	Modifying a Location Domain
	Ensuring Unique POA Names

	Using Direct Persistence
	CORBA Applications
	Orbix Services

	Configuring Scalable Applications
	Fault Tolerance and Replicated Servers
	About Replicated Servers
	Automatic Replica Failover
	Direct Persistence and Replica Failover

	Building a Replicated Server
	Example 1: Building a Replicated Server to Start on Demand
	Example 2: Updating a Replicated Server
	Example 3: Dynamically Changing the Load Balancing Algorithm

	Replicating Orbix Services
	Master-Slave Replication

	Active Connection Management
	Setting Buffer Sizes

	Managing the Naming Service
	Naming Service Administration
	Naming Service Commands

	Controlling the Naming Service
	Building a Naming Graph
	Creating Naming Contexts
	Creating Name Bindings

	Maintaining a Naming Graph
	Managing Object Groups
	Deploying Naming Service Replicas on z/OS

	Managing an Interface Repository
	Interface Repository
	Controlling the Interface Repository Daemon
	Managing IDL Definitions
	Browsing Interface Repository Contents
	Adding IDL Definitions
	Removing IDL Definitions

	Managing the Firewall Proxy Service
	Orbix Firewall Proxy Service
	Configuring the Firewall Proxy Service
	Known Restrictions

	Managing Orbix Service Databases
	Berkeley DB Environment
	Performing Checkpoints
	Managing Log File Size
	Troubleshooting Persistent Exceptions
	Database Recovery for Orbix Services
	Replicated Databases

	Configuring Orbix Compression
	Introduction
	Configuring Compression
	Example Configuration
	Message Fragmentation

	Configuring Advanced Features
	Configuring Java NIO
	Configuring Shared Memory
	Configuring Bidirectional GIOP
	Enabling Bidirectional GIOP
	Migration and Interoperability Issues

	Starting the Locator Under a Heavy Client Load

	Orbix Mainframe Adapter
	CICS and IMS Server Adapters
	Using the Mapping Gateway Interface
	Locating Server Adapter Objects Using itmfaloc

	Monitoring Orbix Applications
	Setting Orbix Logging
	Setting Logging Filters
	Logging Subsystems
	Logging Severity Levels
	Redirecting Log Output

	Monitoring GIOP Message Content
	Introduction to GIOP Snoop
	Configuring GIOP Snoop
	GIOP Snoop Output

	Debugging IOR Data
	IOR Data Formats
	Using iordump
	iordump Output
	Stringified Data Output
	ASCII-Hex Data Output

	Data, Warning, Error and Information Text
	Errors
	Warnings

	Command Reference
	Starting Orbix Services
	Starting and Stopping Configured Services
	Starting Orbix Services Manually
	Stopping Services Manually

	Event Log
	Managing Orbix Services With itadmin
	Using itadmin
	Command Syntax
	Services and Commands

	Bridging Service
	JMS Broker

	Configuration Domain
	Configuration Repository
	Namespaces
	Scopes
	Variables

	Event Service
	Event Service Management
	Event Channel

	Interface Repository
	IDL Definitions
	Repository Management

	Location Domain
	Locator Daemon
	Named Key
	Node Daemon
	ORB Name
	POA
	Server Process

	Mainframe Adapter
	Naming Service
	Names
	Object Groups

	Notification Service
	Notification Service Management
	Event Channel

	Object Transaction Service
	Object Transaction Service Encina
	Persistent State Service
	Security Service
	Logging On
	Managing Checksum Entries
	Managing Pass Phrases

	Trading Service
	Trading Service Administrative Settings
	Federation Links
	Regular Offers
	Proxy Offers
	Type Repository

	Appendices
	Orbix Windows Services
	Managing Orbix Services on Windows
	Orbix Windows Service Commands
	Orbix Windows Service Accounts
	Running Orbix Windows Services
	Logging Orbix Windows Services
	Uninstalling Orbix Windows Services
	Troubleshooting Orbix/Windows Services

	Run Control Scripts for Unix Platforms
	Solaris
	AIX
	HP-UX
	IRIX
	Red Hat Linux

	ORB Initialization Settings
	Development Environment Variables
	Named Keys for Orbix Services
	Orbix Service Named Key Strings
	Configuration for Advertising Services

	Glossary
	Index

