
 Contents

Micro Focus
RM/COBOL

XML Extensions User’s Guide

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or registered trademarks of
Micro Focus Development Limited or its subsidiaries or affiliated companies in the United States, United Kingdom,
and other countries. All other marks are the property of their respective owners.

Revised 2018-04-18 for version 12.15

 Contents

 XML Extensions User's Guide iii

Contents

Preface .. 1

Welcome to XML Extensions .. 1
About Your Documentation ... 2
Related Publications... 3
Symbols and Conventions .. 3
Technical Support .. 4

Support Guidelines ... 4
Test Cases ... 5

Chapter 1: Installation and Introduction ... 7

Before You Start .. 7
System Requirements ... 7

For Windows ... 7
For UNIX... 8

XML Extensions Components .. 8
Development .. 8
Deployment ... 9

Installing XML Extensions .. 9
Installing on Windows .. 10

Install the Development System on Windows ... 10
Install the Deployment System on Windows ... 10
Temporary Files on Windows ... 10

Installing on UNIX ... 10
Install the Development System on UNIX .. 10
Install the Deployment System on UNIX .. 11
Temporary Files on UNIX ... 11

Introducing XML Extensions... 11
What is XML? .. 12

COBOL as XML ... 12
XML as COBOL ... 14

Chapter 2: Getting Started with XML Extensions 17

Overview .. 17
Typical Development Process Example... 18

Design the COBOL Data Structure and Program Logic ... 18
Compile the Program .. 19
Execute the COBOL Program .. 19

Making a Program Skeleton .. 19
Making a Program that Exports an XML Document ... 21
Populating the XML Document with Data Values .. 21

Deploy the Application ... 23
Environment Variables .. 23

iv XML Extensions User's Guide

How XML Extensions Locates Files ... 25

Chapter 3: XML Extensions Statements Reference 27

What are XML Extensions Statements? .. 27
Memory Management with XML Extensions .. 28
Searching for Files .. 28

Document Processing Statements .. 28
XML EXPORT FILE ... 29
XML EXPORT TEXT .. 31
XML IMPORT FILE .. 34
XML IMPORT TEXT .. 36
XML TEST WELLFORMED-FILE... 38
XML TEST WELLFORMED-TEXT ... 39
XML TRANSFORM FILE ... 39
XML TRANSFORM TEXT ... 41
XML VALIDATE FILE ... 42
XML VALIDATE TEXT ... 43

Document Management Statements ... 44
XML COBOL FILE-NAME .. 45
XML FREE TEXT ... 45
XML GET TEXT ... 46
XML PUT TEXT .. 46
XML REMOVE FILE .. 47
XML RESOLVE DOCUMENT-NAME .. 48
XML RESOLVE MODEL-NAME .. 49
XML RESOLVE SCHEMA-FILE ... 50
XML RESOLVE STYLESHEET-FILE ... 51

Directory Management Statements .. 51
XML FIND FILE .. 52
XML GET UNIQUEID .. 53

State Management Statements ... 54
XML CLEAR XSL-PARAMETERS ... 56
XML COMPATIBILITY MODE ... 57
XML DISABLE ALL-OCCURRENCES ... 57
XML DISABLE ATTRIBUTES .. 58
XML DISABLE CACHE ... 58
XML ENABLE ALL-OCCURRENCES .. 58
XML ENABLE ATTRIBUTES ... 59
XML ENABLE CACHE .. 60
XML FLUSH CACHE ... 61
XML GET FLAGS ... 61
XML GET STATUS-TEXT ... 62
XML GET WHITESPACE-FLAGS... 63
XML INITIALIZE .. 63
XML SET ENCODING.. 64
XML SET FLAGS .. 65
XML SET WHITESPACE-FLAGS ... 65
XML SET XSL-PARAMETERS ... 67
XML TERMINATE ... 67
XML TRACE ... 68

Chapter 4: COBOL Considerations ... 71

File Management ... 71
Automatic Search for Files ... 71

 Contents

 XML Extensions User's Guide v

File Naming Conventions ... 72
External XSLT Stylesheet File Naming Conventions ... 72
Other Input File Naming Conventions ... 72
Other Output File Naming Conventions .. 72

Data Conventions ... 72
Data Representation .. 73

COBOL and Character Encoding .. 73
RM_ENCODING Environment Variable... 73
Windows Character Encoding .. 74
UNIX Character Encoding ... 74

FILLER Data Items .. 75
Missing Intermediate Parent Names ... 75

Unique Element Names ... 75
Unique Identifier.. 76

Sparse COBOL Records ... 77
Copy Files .. 78

Statement Definitions ... 78
REPLACE Statement Considerations ... 78
Displaying Status Information .. 79
Application Termination ... 80

Anonymous COBOL Data Structures .. 81
Limitations ... 81

Data Items (Data Structures) ... 81
Edited Data Items ... 82
Wide and Narrow Characters .. 82
Data Item Size... 82
Data Naming ... 82
OCCURS Restrictions .. 83
Reading, Writing, and the Internet .. 83

Optimizations ... 83
Occurs Depending .. 83
Empty Occurrences ... 83
Cached XML Documents ... 84

Chapter 5: XML Considerations .. 85

XML and Character Encoding ... 85
XSLT Stylesheet Files ... 85
Form (or “Flat”) Document Import .. 86
Handling Spaces and Whitespace in XML .. 87
Schema Files .. 88
Temporary Files ... 88

Appendix A: XML Extensions Examples .. 89

Example 1: Export File and Import File ... 90
Development for Example 1 ... 90
Batch File for Example 1 .. 90
Program Description for Example 1 ... 90
Data Item for Example 1 ... 91
Other Definitions for Example 1 .. 92
Program Structure for Example 1 ... 92
Execution Results for Example 1 .. 94

Example 2: Export File and Import File with XSLT Stylesheets .. 95
Development for Example 2 ... 95
Batch File for Example 2 .. 96

vi XML Extensions User's Guide

Program Description for Example 2 ... 96
Data Item for Example 2 ... 97
Other Definitions for Example 2 .. 97
Program Structure for Example 2 ... 98
XSLT Stylesheets for Example 2 .. 99
Execution Results for Example 2 .. 101

Example 3: Export File and Import File with OCCURS DEPENDING 102
Development for Example 3 ... 103
Batch File for Example 3 .. 103
Program Description for Example 3 ... 103
Data Item for Example 3 ... 104
Other Definitions for Example 3 .. 104
Program Structure for Example 3 ... 105
Execution Results for Example 3 .. 107

Example 4: Export File and Import File with Sparse Arrays .. 108
Development for Example 4 ... 109
Batch File for Example 4 .. 109
Program Description for Example 4 ... 109
Data Item for Example 4 ... 110
Other Definitions for Example 4 .. 110
Program Structure for Example 4 ... 111
Execution Results for Example 4 .. 113

Example 5: Export Text and Import Text ... 118
Development for Example 5 ... 119
Batch File for Example 5 .. 119
Program Description for Example 5 ... 119
Data Item for Example 5 ... 120
Other Definitions for Example 5 .. 120
Program Structure for Example 5 ... 121
Execution Results for Example 5 .. 123

Example 6: Export File and Import File with Directory Polling ... 124
Development for Example 6 ... 125
Batch File for Example 6 .. 125
Program Description for Example 6 ... 125
Data Item for Example 6 ... 126
Other Definitions for Example 6 .. 126
Program Structure for Example 6 ... 126
Execution Results for Example 6 .. 129

Example 7: Export File, Test Well-Formed File, and Validate File 131
Development for Example 7 ... 132
Batch File for Example 7 .. 132
Program Description for Example 7 ... 132
Data Item for Example 7 ... 133
Other Definitions for Example 7 .. 133
Program Structure for Example 7 ... 134
Execution Results for Example 7 .. 136

Example 8: Export Text, Test Well-Formed Text, and Validate Text 137
Development for Example 8 ... 137
Batch File for Example 8 .. 137
Program Description for Example 8 ... 138
Data Item for Example 8 ... 138
Other Definitions for Example 8 .. 139
Program Structure for Example 8 ... 139
Execution Results for Example 8 .. 142

Example 9: Export File, Transform File, and Import File... 143
Development for Example 9 ... 143

 Contents

 XML Extensions User's Guide vii

Batch File for Example 9 .. 143
Program Description for Example 9 ... 144
Data Item for Example 9 ... 144
Other Definitions for Example 9 .. 145
Program Structure for Example 9 ... 145
Execution Results for Example 9 .. 148

Example A: Diagnostic Messages ... 150
Development for Example A .. 151
Batch File for Example A ... 151
Program Description for Example A .. 151
Data Item for Example A .. 152
Other Definitions for Example A .. 152
Program Structure for Example A .. 153
Execution Results for Example A ... 155

Example B: Import File with Missing Intermediate Parent Names 158
Development for Example B .. 159
Batch File for Example B ... 159
Program Description for Example B ... 160
Data Item for Example B .. 160
Other Definitions for Example B .. 160
Program Structure for Example B ... 161
Execution Results for Example B ... 163

Example Batch Files .. 164
cleanup.bat .. 165
example.bat ... 165
examples.bat ... 166

Appendix B: XML Extensions Example Application Programs 167

Accessing the Example Application Programs .. 167

Appendix C: XML Extensions Error Messages 169

Error Message Format.. 169
Message Text .. 169
COBOL Traceback Information ... 170
Filename or Data Item in Error ... 170
Parser Information .. 170
Additional Information ... 170

Summary of Error Messages .. 171

Appendix D: slicexsy Utility Reference ... 181

What is the slicexsy Utility? .. 181
Things to Consider Before Using slicexsy ... 181
Using the slicexsy Utility ... 182

File Naming Conventions ... 182
Model File Naming Conventions ... 183

Backward Compatibility .. 183
Command Line Interface ... 184

Command Line Options .. 186
Banner Options .. 186
Schema Options ... 186

Model Files .. 187
Template File .. 187
Internal XSLT Stylesheet File .. 188
Schema File .. 188

viii XML Extensions User's Guide

Referencing XML Model Files ... 189

Appendix E: Summary of Enhancements ... 191

Version 12 .. 191
Version 9 .. 193
Version 2 .. 194
Version 1 .. 195

Glossary of Terms ... 197

Terminology and Definitions ... 197

Index ... 203

List of Tables
Table 1: Environment Variables ... 23
Table 2: Exported Attributes ... 59
Table 3: XML Extensions Error Messages ... 171

Welcome to XML Extensions
Preface

 XML Extensions User's Guide 1

Preface

Welcome to XML Extensions
XML Extensions is Micro Focus’ resource that allows RM/COBOL applications to access
Extensible Markup Language (XML) documents. XML is the universal format for structured
documents and data on the World Wide Web. Adding “structure” to documents facilitates
searching, sorting, or any one of a variety of operations that can be performed on an electronic
document.

XML Extensions has many capabilities. The major features support the ability to import and
export XML documents to and from COBOL working storage. Specifically, XML Extensions
allows data to be imported from an XML document by converting data elements (as
necessary) and storing the results into a matching COBOL data structure. Similarly, data is
exported from a COBOL data structure by converting the COBOL data elements (as
necessary) and storing the results in an XML document.

Version 12 of XML Extensions runs on Microsoft Windows 32-bit and 64-bit operating
systems and selected 32-bit and 64-bit UNIX platforms. See Support Resources | Product
Availability and Support Schedule at https://supportline.microfocus.com for supported
Windows, UNIX and Linux operating systems. XML Extensions requires RM/COBOL
version 12 or later. The new features for the most recent release of XML Extensions are
described in Appendix E: Summary of Enhancements (on page 191). (Information on the
significant enhancements in previous releases of XML Extensions is also included in this
appendix.) Deficiencies that are version-specific or are discovered after publication are
described in the README files contained on the delivered media.

Notes

• The term “Windows” in this document refers to supported Microsoft Windows operating
systems. See Support Resources | Product Availability and Support Schedule at
https://supportline.microfocus.com for supported Windows operating systems.

• The term “UNIX” in this document refers to supported UNIX and Linux operating
systems. See Support Resources | Product Availability and Support Schedule at
https://supportline.microfocus.com for supported UNIX and Linux operating systems.

• XML Extensions makes use of underlying XML parsers from other vendors. On
Windows, Micro Focus develops XML Extensions with a specific version and service
pack of Microsoft’s MSXML, which is included with your installation. Microsoft will
occasionally ship updates to a given version and service pack that either enhance security

https://supportline.microfocus.com/
https://supportline.microfocus.com/
https://supportline.microfocus.com/

About Your Documentation
Preface

2 XML Extensions User's Guide

or fix problems. You may monitor their web site for the latest updates, although it may
not be advisable to update to a higher version or service pack. Check with Micro Focus
Customer Care to ensure that the update is necessary. On UNIX or Linux systems, XML
Extensions links to specific libxml2, libxslt and libexslt libraries from the GNOME
project for each release. It is not possible for the developer or end-user to upgrade these
libraries.

About Your Documentation
XML Extensions documentation consists of a user’s guide, which is distributed electronically
in Portable Document Format (PDF) as part of the XML Extensions software distribution. It
is also available on the Micro Focus web site at https://supportline.microfocus.com.

Note To view and print PDF files, you need to install Adobe Acrobat Reader, a free program
available from Adobe’s web site at http://www.adobe.com.

The XML Extensions User’s Guide is designed to allow you to quickly locate the information
you need. The following lists the topics that you will find in the manual and provides a brief
description of each.

Chapter 1—Installation and Introduction describes the installation process and system
requirements, and provides a general overview of XML Extensions.

Chapter 2—Getting Started with XML Extensions presents the basic concepts used in
XML Extensions by creating an example XML-enabled application.

Chapter 3—XML Extensions Statements Reference describes the statements that are used
by XML Extensions at runtime.

Chapter 4—COBOL Considerations provides information specific to using RM/COBOL
when developing an XML-enabled application.

Chapter 5—XML Considerations provides information specific to using XML when using
XML Extensions with RM/COBOL to develop an XML-enabled application.

Appendix A—XML Extensions Examples contains descriptions of programs or program
fragments that illustrate how the XML Extensions statements are used. These example
programs are included with the development system in the XML Extensions examples
directory, Examples.

Appendix B—XML Extensions Sample Application Programs provides information about
the self-contained XML Extensions sample application programs that are included with the
development system in the XML Extensions samples directory, Samples.

Appendix C—XML Extensions Error Messages lists and describes the messages that can
be generated during the use of XML Extensions.

Appendix D—slicexsy Utility Reference describes the optional slicexsy utility (slicexsy.exe
on Windows and slicexsy on UNIX) that is provided for backward compatibility and for
schema validation.

Appendix E—Summary of Enhancements provides an overview of the new features in the
current release, and reviews the changes and enhancements that were added to earlier releases
of XML Extensions.

The XML Extensions User's Guide also includes a glossary (on page 197) and an index (on
page 203).

https://supportline.microfocus.com/
http://www.adobe.com/

Related Publications
Preface

 XML Extensions User's Guide 3

Related Publications
For additional information, refer to the following publications:

CodeBridge User’s Guide

RM/COBOL Language Reference Manual

RM/COBOL Syntax Summary

RM/COBOL User’s Guide

Xcentrisity Business Information Server (BIS) User’s Guide

Symbols and Conventions
The following typographic conventions are used throughout this manual to help you
understand the text material and to define syntax:

1. Words in all capital letters indicate COBOL reserved words, such as statements, phrases,
and clauses; acronyms; configuration keywords; environment variables, and RM/COBOL
Compiler and Runtime Command line options.

2. Text that is displayed in a monospaced font indicates user input or system output
(according to context as it appears on the screen). This type style is also used for sample
command lines, program code and file listing examples, and sample sessions.

3. Bold, lowercase letters represent filenames, directory names, programs, C language
keywords, and attributes.

Words you are instructed to type appear in bold. Bold type style is also used for
emphasis, generally in some types of lists.

4. Italic type identifies the titles of other books and names of chapters in this guide, and it is
also used occasionally for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for information you
supply, as described below.

5. The symbols found in the COBOL syntax charts are used as follows:

a. italicized words indicate items for which you substitute a specific value.

b. UPPERCASE WORDS indicate items that you enter exactly as shown (although not
necessarily in uppercase).

c. ... indicates indefinite repetition of the last item.

d. | separates alternatives (an either/or choice).

e. [] enclose optional items or parameters.

f. { } enclose a set of alternatives, one of which is required.

g. {| |} surround a set of unique alternatives, one or more of which is required, but each
alternative may be specified only once; when multiple alternatives are specified, they
may be specified in any order.

6. All punctuation must appear exactly as shown.

7. Key combinations are connected by a plus sign (+), for example, Ctrl+X. This notation
indicates that you press and hold down the first key while you press the second key. For

Technical Support
Preface

4 XML Extensions User's Guide

example, “press Ctrl+X” means to press and hold down the Ctrl key while pressing the X
key. Then release both keys.

8. Note the distinction of the following terminology:

• The term “window” refers to a delineated area of the screen, normally smaller than
the full screen.

• The term “Windows” in this document refers to supported Microsoft Windows
operating systems. See Support Resources | Product Availability and Support
Schedule at https://supportline.microfocus.com for supported Windows operating
systems.

XML Extensions was never supported on Windows 95. Beginning with version 11,
XML Extension no longer supports earlier Microsoft Windows operating systems,
including Microsoft Windows 98, Windows 98 SE, Windows Me, and Windows
NT 4.0.

• The term “UNIX” in this document refers to supported UNIX and Linux operating
systems. See Support Resources | Product Availability and Support Schedule at
https://supportline.microfocus.com for supported UNIX and Linux operating
systems.

9. RM/COBOL Compile and Runtime Command line options may be preceded by a
hyphen. If any option on a command line is preceded by a hyphen, then a leading hyphen
is required for all options. When assigning a value to an option, the equal sign is optional
if leading hyphens are used.

Technical Support
Micro Focus is dedicated to helping you achieve the highest possible performance from the
RM/COBOL family of products. The technical support staff is committed to providing you
with prompt and professional service when you have problems or questions about your
RM/COBOL products.

These technical support services are subject to Micro Focus’ prices, terms, and conditions in
place at the time the service is requested.

While it is not possible to maintain and support specific releases of all software indefinitely,
we offer priority support for the most current release of each product. For customers who
elect not to upgrade to the most current release of the products, support is provided on a
limited basis, as time and resources allow.

Support Guidelines
When you need assistance, you can expedite your call by having the following information
available for the technical support representative:

1. Company name and contact information.

2. Micro Focus RM/COBOL product serial number (found on the media label, registration
card, or product banner message).

3. Product version number.

4. Operating system and version number.

5. Hardware, related equipment, and terminal type.

https://supportline.microfocus.com/
https://supportline.microfocus.com/

Technical Support
Preface

 XML Extensions User's Guide 5

6. Exact message appearing on screen.

7. Concise explanation of the problem and process involved when the problem occurred.

Test Cases
You may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

• The smaller the test case is, the faster we will be able to isolate the cause of the problem.

• Do not send full applications.

• Reduce the test case to one or two programs and as few data files as possible.

• If you have very large data files, write a small program to read in your current data files
and to create new data files with as few records as necessary to reproduce the problem.

• Test the test case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. You may need to include an
RM/COBOL configuration file.

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include information
regarding the hardware, operating system, and versions of all relevant software (including
the operating system and all Micro Focus products). It must also include step-by-step
instructions to reproduce the behavior.

2. Program source files. We require source for any program that is called during the
course of the test case. Be sure to include any copy files necessary for recompilation.

3. Data files required by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

Before You Start
Chapter 1: Installation and Introduction

 XML Extensions User's Guide 7

Chapter 1: Installation and
Introduction

This chapter describes the system requirements and installation processes for development
and deployment on both Windows and UNIX operating systems. It also provides a general
overview of XML Extensions and the benefits it offers to the COBOL programmer.

Note You should have a basic understanding of XML in order to use XML Extensions.
Depending on the complexity of your application, you may also need to know about
XSLT (Extensible Stylesheet Language Transformations) stylesheets.

Before You Start
Before you follow the instructions for installing XML Extensions (on page 9), make sure that
your computer configuration meets the following minimum hardware and software
requirements for each of the supported architectures, and that your XML Extensions package
contains the necessary components for development and deployment.

Note You may wish to use Microsoft Internet Explorer, version 6 or greater, as a convenient
tool for viewing XML documents.

System Requirements
To run XML Extensions, you must have certain hardware and software installed on your
computer.

For Windows

The system requirements for Windows include the following:

• The 32-bit XML Extensions hardware and software requirements are the same as
RM/COBOL version 12 for 32-bit Windows. The 64-bit XML Extensions hardware and
software requirements are the same as RM/COBOL version 12 for 64-bit Windows. (See
the RM/COBOL User’s Guide.) Additionally, XML Extensions may be used in
conjunction with Terminal Server. See Support Resources | Product Availability and
Support Schedule at https://supportline.microfocus.com for supported Windows
operating systems.

https://supportline.microfocus.com/

Before You Start
Chapter 1: Installation and Introduction

8 XML Extensions User's Guide

• Microsoft’s XML parser, MSXML 6.0 or greater, is also required. (A schema processor
and an XSLT transformation processor are included in the Microsoft MSXML 6.0
parser.)

Note The MSXML 6.0 parser may fail to install correctly if the target system does not
have either Microsoft Windows Installer or Internet Explorer installed. Both of these
products are freely available from Microsoft. To obtain these applications, follow the
www.microsoft.com/downloads/search.asp link and search for the keywords “Windows
Installer 2.0” or “Internet Explorer”, as needed.

• An accessible temporary folder as described in Temporary Files on Windows (on page
10).

For UNIX

The system requirements for UNIX include the following:

• The XML Extensions hardware and software requirements are the same as RM/COBOL
version 12 for UNIX. (See the RM/COBOL User’s Guide.) There are 32-bit and 64-bit
XML Extensions. The 32-bit XML Extensions requires a supported 32-bit or 64-bit
UNIX system. The 64-bit XML Extensions requires a supported 64-bit UNIX system.
See Support Resources | Product Availability and Support Schedule at
https://supportline.microfocus.com for supported UNIX operating systems.

Notes

• The XML parser (libxml2) and the XSLT transformation processor (libxslt and
libexslt) from the C libraries for the Gnome project are included in XML Extensions.

• An accessible temporary directory as described in Temporary Files on UNIX (on
page 11).

XML Extensions Components
The XML Extensions package contains the following components for development and
deployment.

Development

The XML Extensions development system includes the following:

• The RM/COBOL compiler, which has been specifically licensed for XML Extensions.

• Deployment files. These files are listed in Deployment (on page 9).

• Copy files (lixmlall.cpy, lixmldef.cpy, lixmldsp.cpy, lixmlrpl.cpy, and lixmltrm.cpy).
For more details, see Copy Files (on page 78).

• Example files. These programs or program fragments illustrate how XML Extensions
statements are used. For further information, see Appendix A: XML Extensions
Examples (on page 89). The example programs can be found in the XML Extensions
example directory, Examples.

• Sample files. These self-contained, working application programs, which include the
complete source, can be used in your own applications by modifying or customizing
them, as necessary. See Appendix B: XML Extensions Sample Application Programs

http://www.microsoft.com/downloads/search
https://supportline.microfocus.com/

Installing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions User's Guide 9

(on page 167) for more details. The sample application programs can be found in the
XML Extensions sample directory, Samples.

• slicexsy command line utility (slicexsy.exe on Windows and slicexsy on UNIX). For
more information, see Appendix D: slicexsy Utility Reference (on page 181).

• XML document files used by the slicexsy utility (scstrict.xsl and toxsln.xsl).

Deployment

The XML Extensions deployment system consists of the following files:

• xmlif COBOL-callable subprogram library (xmlif.dll on Windows and xmlif.so on
UNIX). For more information, see Chapter 3: XML Extensions Statements Reference
(on page 27).

• For Windows, MSXML 6.0, the Microsoft XML parser, schema processor, and XSLT
transformation processor (msxml6.dll, msxml4a.dll, and msxml4r.dll).

For UNIX, the XML parser and XSLT transformation processor (libxml2, libxslt and
libexslt, respectively). Currently, these libraries are linked into the xmlif.so file and do
not need to be installed separately. The Schema processor is also now functional in
libxml2.

Note If the slicexsy utility is used to generate model files, then at least the template file
(.xtl extension) must be deployed when the XML symbol table is omitted from the deployed
COBOL object file. If schema validation is to be performed, then all three model files (.xtl,
.xsl, and .xsd) must be deployed along with the COBOL object files. Normally, model files
are stored in the same location as the COBOL object files. For more information, see
Appendix D: slicexsy Utility Reference (on page 181).

Installing XML Extensions
The following sections describe the distribution media options, and how to install the XML
Extensions development and deployment systems on Windows (on page 10) and UNIX (on
page 10). XML Extensions is available as a development system and a deployment system.
The development system is designed to operate in conjunction with an RM/COBOL
development system and the software is provided with the RM/COBOL development system.
The deployment system is designed to operate in conjunction with an RM/COBOL runtime
system and the software is delivered with the RM/COBOL runtime system.

For development, both the XML Extensions development system and Micro Foucs’
RM/COBOL version 12 development system are required. In addition, an XML Extensions
license is required for development of XML-enabled applications.

For deployment, both the XML Extensions deployment system and the RM/COBOL version
12 runtime system are required. The XML Extensions deployment system does not require an
additional license beyond the license requirements of the RM/COBOL runtime system.
However, the XML Extensions deployment system is only useful for an application that has
been created using the XML Extensions development system, which is licensed.

Installing XML Extensions
Chapter 1: Installation and Introduction

10 XML Extensions User's Guide

Installing on Windows
This section contains instructions on how to install the XML Extensions development system
and deployment system on Windows.

Install the Development System on Windows

The XML Extensions development system is included with the RM/COBOL development
system, but requires a separate license. The license certificate file is normally obtained
electronically in an email. Once obtained, the license is installed using the licverifyall.exe
utility that is provided with the RM/COBOL development system. The license should be
installed into the same license.vlt file that contains the RM/COBOL development system, that
is, the license.vlt file in the installation directory of the RM/COBOL development system.

Install the Deployment System on Windows

The XML Extensions deployment system is included with the RM/COBOL runtime system.
The end user of the application must have a licensed RM/COBOL runtime system installed,
but does not need any additional license or software to use an application developed with the
XML Extensions development system.

Temporary Files on Windows

XML Extensions no longer writes any temporary files, but does generate temporary
pathnames as an internal bookkeeping key for tracking documents in the DOM maintained by
the XML library functions.

XML Extensions on Windows generates temporary file pathnames with the temporary folder
determined by the Windows GetTempPath function. This function searches for a path in the
following order: the environment variable TMP, the environment variable TEMP, the
environment variable USERPROFILE and the Windows folder. The first path value found is
returned by the function without verifying that the path exists or that the current process has
any kind of access rights to the path.

Installing on UNIX
This section contains instructions on how to install the XML Extensions for RM/COBOL
development system and deployment system on UNIX.

Install the Development System on UNIX

The XML Extensions development system is included with the RM/COBOL development
system, but requires a separate license. The license certificate file is normally obtained
electronically in an email. Once obtained, the license is installed using the licverifyall utility
that is provided with the RM/COBOL development system. The license should be installed
into the same license.vlt file that contains the RM/COBOL development system, that is, the
license.vlt file in the installation directory of the RM/COBOL development system.

Introducing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions User's Guide 11

For additional information on how to access the license certificate file when, for example, it is
provided on a diskette, see Chapter 2: Installation and System Considerations for UNIX of
the RM/COBOL User’s Guide.

Install the Deployment System on UNIX

The XML Extensions deployment system is included with the RM/COBOL runtime system.
The end user of the application must have a licensed RM/COBOL runtime system installed,
but does not need any additional license or software to use an application developed with the
XML Extensions development system

Temporary Files on UNIX

XML Extensions no longer writes any temporary files, but does generate temporary
pathnames as an internal bookkeeping key for tracking documents in the DOM maintained by
the XML library functions.

XML Extensions on UNIX or Linux generates temporary file pathnames with the temporary
directory defined by the TMPDIR environment variable. If the TMPDIR environment
variable is not defined, the temporary directory defaults to \tmp or \var\tmp depending on the
operating system.

Introducing XML Extensions
XML Extensions for RM/COBOL allows RM/COBOL applications to interoperate freely and
easily with other applications that use the Extensible Markup Language (XML) standard. To
accomplish this, XML Extensions leverages the similarities between the COBOL data model
and the XML data model in order to turn RM/COBOL into an “XML engine.” Of primary
importance to this goal is the ability to import and export XML documents to and from
standard COBOL data structures.

Note A COBOL data structure, as used in this document, is a COBOL data item. In general,
it is a group data item, but in some cases, it may be a single elementary data item. An XML
Extensions-enabled RM/COBOL compiler generates and embeds an XML-format symbol
table in the COBOL object file. The XML-format symbol table provides a map between the
COBOL data structure specified in an XML Extensions statement and the XML
representation of the COBOL data structure. This map can be used to move data in either
direction at runtime. Extensible Stylesheet Language Transformations (XSLT) of the XML
data representation can be used to match XML element names to COBOL data-names in cases
where the names differ.

By allowing standard COBOL data structures to be imported from and exported to XML
documents, XML Extensions enables the direct processing and manipulation of XML-based
electronic documents by the RM/COBOL application programmer. Furthermore, XML
Extensions does this without requiring the application programmer to become thoroughly
familiar with the numerous XML-related specifications and the time-consuming process
required to emit and consume well-formed XML.

Specifically, an XML document may be imported into a COBOL data structure under
COBOL program control using a single, simple COBOL statement, and, similarly, the content
of a COBOL data structure may be used to generate an XML document with equal simplicity.
XML Extensions’ approach handles both simple and extremely complex structures with ease.

Introducing XML Extensions
Chapter 1: Installation and Introduction

12 XML Extensions User's Guide

Individual data elements are automatically converted as needed between their COBOL
internal data types and the external coding used by XML. Not only can the transition to and
from XML take place when this happens, but powerful transforms, which are coded using
XSLT, can be applied at the same time. This powerful mechanism gives XML Extensions
the capabilities needed to be useful in a wide range of e-commerce and Web applications.

In order to add this powerful document-handling capability to a COBOL application, the
programmer need only describe the information to be received or transmitted to the external
components as COBOL data definitions. In many cases, this description will simply be the
already-existing data area defined in the COBOL application.

What is XML?
In this document, XML refers to the entire set of specifications and products related to a
particular approach to representing structured information in text-based form. Specifically,
the World Wide Web Consortium (W3C) has specified a markup-based language called
XML. Closely related to HTML, XML was designed to build on what had been learned
with that technology. Among other things, XML was designed to be much more generally
useful than HTML, while exhibiting the simplest possible expression. HTML is about
displaying information. It was designed to display data and to focus on how the data looks.
XML, meanwhile, is about describing information. It was designed to describe data and
focus on what the data is. Since XML’s invention, a constellation of XML-related
specifications has been produced and is in progress to leverage the power of this new form
of information expression.

For the COBOL programmer, it is best to view XML not as a markup language for text
documents, but rather as a text-based encoding of a general abstract data model. It is this data
model, and its similarity to COBOL’s data model, that yields its power as an adjunct to new
and legacy COBOL applications needing to interact with other applications and systems in the
most modern way possible.

XML is extremely important to the COBOL programmer for two key reasons. First, it is
rapidly becoming the standard way of exchanging information on the Web, and second, the
nearly perfect alignment of the COBOL way of manipulating data and the XML information
model results in COBOL being arguably the best possible language for expressing business
data processing functions in an XML-connected world.

COBOL as XML

What does XML look like? Start with the assumption that it is a textual encoding of COBOL
data (although this is not quite accurate, it is sufficient for now). Suppose you have the
following COBOL definition in the Working-Storage Section:

01 contact.
 10 firstname pic x(10) value "John".
 10 lastname pic x(10) value "Doe".
 10 address.
 20 streetaddress pic x(20) value "1234 Elm Street".
 20 city pic x(20) value "Smallville".
 20 state pic x(2) value "TX".
 20 postalcode pic 9(5) value "78759".
 10 email pic x(20) value "jd@aol.com".

http://www.w3.org/
mailto:jd@aol.com

Introducing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions User's Guide 13

What does this information look like if you simply WRITE it out to a text file? It looks like
this:

John Doe 1234 Elm Street Smallville TX78759jd@aol.com

You can see that all the “data” is here, but the “information” is not. If you received this, or
tried to read the file and make sense out of it, you would need to know more about the data.
Specifically, you would have to know how it is structured and the sizes of the fields. It would
be helpful to know how the author named the various fields as well, since that would probably
give you a clue as to the content.

This is not a new problem; it is one that COBOL programmers (as well as other application
programmers) have had to deal with on an ad hoc basis since the beginning of the computer
age. But now, XML gives us a way to encode all of the information in a generally
understandable way.

Here is how this information would be displayed in an XML document:

<contact>
 <firstname>John</firstname>
 <lastname>Doe</lastname>
 <address>
 <streetaddress>1234 Elm Street</streetaddress>
 <city>Smallville</city>
 <state>TX</state>
 <postalcode>78759</postalcode>
 </address>
 <email>jd@aol.com</email>
</contact>

In XML, the COBOL group-level item is coded in what is called an “element.” Elements
have names, and they contain both text and other elements. As you can see, an XML element
corresponds to a COBOL data item. In this case, the 01-level item “contact” becomes the
<contact> element, coded as a start “tag” (“<contact>”) and an end tag (“</contact>”) with
everything in between representing its “content.” In this case, the <contact> element has as
its content the elements <firstname>, <lastname>, <address>, and <email>. This corresponds
precisely to the COBOL Data Division declaration for “contact.” Similarly, the 10-level
group item, “address”, becomes the element <address>, made up of the elements
<streetaddress>, <city>, <state>, and <postalcode>. Each of the COBOL elementary items is
coded with text content alone. Notice that in the XML form, much of the semantic
information is missing from the raw COBOL output form of the data. As a bonus, you no
longer have the extraneous trailing spaces in the COBOL elementary items, so they are
removed. In other words, the XML version of this record contains both the data itself and the
structure of the data.

Now, what if the COBOL data had looked like the following:

01 contact.
 10 email pic x(20)
 10 firstname pic x(10).
 10 lastname pic x(10).
 10 address.
 20 city pic x(20).
 20 state pic x(2).
 20 postalcode pic 9(5).
 20 streetaddresslines pic 9.
 20 streetaddresses.

Introducing XML Extensions
Chapter 1: Installation and Introduction

14 XML Extensions User's Guide

 30 streetaddresses occurs 1 to 9 times
 depending on streetaddresslines pic x(20).

Two things have changed in this example: the initial values have been removed and there can
now be up to nine “streetaddress” items. This is much more similar to what you might expect
in a real application. After the application code sets the values of the various items from the
Procedure Division, the XML coding of the result might look like this:

<contact>
 <email>bs@aol.com</email>
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcode>61401</postalcode>
 <streetaddresslines>3</streetaddresslines>
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
 </address>
</contact>

Notice the repeating item “streetaddress” has become three <streetaddress> elements. In this
example, COBOL acts as an XML programming language, providing both the structure
(schema) of the data and the data itself.

Even though these examples are very simple, they illustrate how powerful the compatibility
between the COBOL data model and the XML information model can be. COBOL structures
of arbitrary complexity have a straightforward XML representation. There are, it turns out,
some things that you can specify in a COBOL data definition that cannot be coded as XML,
but these can easily be avoided if you are programming your application for XML.

XML as COBOL

In the previous cases, you saw how structured COBOL data could be coded as an XML
document. In this section, you will examine how an arbitrary XML document can be
represented as a COBOL structure. This requires that you look at some other aspects of the
XML information model that are not needed to represent COBOL structures, but might be
present in XML, nonetheless.

So far, you have seen that XML has elements and text. Although, these are the primary
means of representing data in XML documents, there are some other ways of representing and
structuring data in XML. Suppose you have the following XML document:

<contact type="student">
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address form="US">
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
 <city>Galesburg</city>
 <state>IL</state>

Introducing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions User's Guide 15

 <postalcode zipplus4="N">61401</postalcode>
 </address>
 <email>bs@aol.com</email>
</contact>

In the example document shown here is now a new kind of data, known as an “attribute” in
XML. Notice that the <contact> element tag has what appears to be some kind of parameter
named “type.” This is, in fact, an attribute whose value is set to the text string “student.” In
XML, attributes are another way of coding element content, but in a way that does not affect
the text content of the element itself. In other words, attributes are “out-of-band” data
associated with an element. This concept has no parallel in standard COBOL. In COBOL, all
data associated with a data item is part of the COBOL record content. This means that if you
are to capture all of the content of an XML document, you must have a way to capture and
store attributes.

You do this with the help of an important XML tool called an external XSLT stylesheet (see
page 85). (In this document, “external XSLT stylesheet” is used to differentiate an XSLT
stylesheet provided by the user from the “internal XSLT stylesheet” generated as one of the
model files by the optional slicexsy utility.) For now, assume that an XSLT stylesheet can
transform an XML document into any desired alternative XML document. If this is true (and
it is), you must code the incoming attributes as something that has a direct COBOL
counterpart. This would be as a data item represented as a text element in XML.

The example document, after external XSLT stylesheet transformation, might look like this:

<contact>
 <email>bs@aol.com</email>
 <attr-type>student</attr-type>
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address>
 <attr-form>US</attr-form>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcodegroup>
 <attr-zipplus4>N</attr-zipplus4>
 <postalcode>61401</postalcode>
 </postalcodegroup>
 <streetaddresslines>3</streetaddresslines>
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
 </address>
</contact>

Several things have been changed. The attributes have been turned into elements, but with a
special name prefixed by “attr-“ and a new element, <streetaddresslines> has been added
containing a count of the number of <streetaddress> elements. In the case of <postalcode>, a
new element has been added to wrap both the real <postalcode> value, and the new attribute.
All of these changes are very easy to make using a simple XSLT stylesheet, and you now
have a document with a direct equivalent in COBOL:

01 contact.
 10 email pic x(20).
 10 attr-type pic x(7).
 10 firstname pic x(10).

Introducing XML Extensions
Chapter 1: Installation and Introduction

16 XML Extensions User's Guide

 10 lastname pic x(10).
 10 address.
 20 city pic x(20).
 20 state pic x(2).
 20 postalcodegroup.
 30 attr-zipplus4 pic x.
 30 postalcode pic 9(5).
 20 attr-form pic xx.
 20 streetaddresslines pic 9.
 20 streetaddresses.
 30 streetaddress occurs 1 to 9 times
 depending on streetaddresslines pic x(20).

Overview
Chapter 2: Getting Started with XML Extensions

 XML Extensions User's Guide 17

Chapter 2: Getting Started with
XML Extensions

This chapter presents the basic concepts used in XML Extensions by creating an example
XML-enabled application. It also discusses how XML Extensions locates files.

Overview
Because the COBOL information model can largely be expressed by the XML information
model, there is a natural relationship between XML documents and COBOL data structures.
Both present similar views of the data; that is, the entire data is visible. You may view the
content of a COBOL data record and you may view the text of an XML document. In XML,
markup is used both to name and describe the text elements of a document. In COBOL, the
data structure itself provides names and descriptions of the elements within a document.

XML Extensions has many capabilities. The major features support the ability to import and
export XML documents to and from a COBOL program’s Data Division. Note that data may
be anywhere in the Data Division. Specifically, XML Extensions allows data to be imported
from an XML document by converting data elements, as necessary, and storing the results
into a matching COBOL data structure. Similarly, data is exported from a COBOL data
structure by converting the COBOL data elements, as necessary, and storing the results in an
XML document.

XML Extensions consists of the following main components:

• The RM/COBOL compiler, which has been specifically licensed for XML Extensions.

• A COBOL-callable runtime library (xmlif.dll on Windows and xmlif.so on UNIX). This
library is used to implement a set of XML Extensions statements specified in a COBOL
program that are available to the developer for directing the importing and exporting of
COBOL data as XML. For more information, see Chapter 3: XML Extensions
Statements Reference (on page 27).

• The optional slicexsy utility (slicexsy.exe on Windows and slicexsy on UNIX), which
runs as a post-compile step. This program creates a set of XML documents, called model
files (on page 187), which describe a selected COBOL data structure as a set of XML
documents.

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

18 XML Extensions User's Guide

Typical Development Process Example
This section provides an example of how to produce an XML-enabled application. These
instructions assume that both the XML Extensions development system and the RM/COBOL
development system (version 12 or later) are installed on your computer.

Note More examples and information about complete sample application programs can be
found in Appendix A: XML Extensions Examples (on page 89), Appendix B: XML
Extensions Sample Application Programs (on page 167), and in the XML Extensions
examples and samples directories (Examples and Samples, respectively).

The basic steps to developing an XML-enabled application are as follows:

1. Design the COBOL data structure and program logic (see page 18). Develop a COBOL
program, or modify an existing one, using XML Extensions statements.

2. Compile the program (see page 19). Use an RM/COBOL compiler that is licensed for
XML Extensions with the configuration file option, COMPILER-OPTIONS SUPPRESS-
XML-SYMBOL-TABLE, set to a value of NO, which, by default, results in the
production of the XML-format symbol table.

Note On the development machine, a large XML-format symbol table may necessitate
an increase in system resources, including the addition of hardware (for example,
memory and/or disc space) or system configuration modifications.

3. Execute the COBOL program (see page 19). Test the program and repeat steps 1 and 2,
as necessary.

4. Deploy the application (see page 23). Distribute the XML Extensions deployable files.
These files consist of the xmlif library and the underlying XML parser that this library
uses.

Note As an alternative to specifying the data structure name using the
ModelFileName#DataFileName parameter of the XML IMPORT FILE statement (see page
34), you can run the optional slicexsy utility (see page 181) in order to select a portion, or
"slice," of the XML-format symbol table that contains a single data structure. The slicexsy
utility generates a set of XML model files that describe a data structure within the COBOL
program. If the slicexsy utility generates a schema file, it also generates a stylesheet. Both
should be deployed with the application.

The sections that follow describe each of the basic steps involved in the example provided,
and they include explanations of how more functionality is added to the program.

Design the COBOL Data Structure and Program Logic
The first step is to design a COBOL data structure that describes the data to be placed in a
corresponding XML document. The following simple example illustrates this step using
typical mailing address information. An adequate program skeleton has been included to
allow the program to compile without error.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

 XML Extensions User's Guide 19

 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Binary.

This structure contains only one numeric element: the zip code. For demonstration purposes,
it is represented as binary.

Compile the Program
The generation of an XML-format symbol table is controlled by whether or not the
RM/COBOL compiler is licensed for XML Extensions and also by the following
configuration file option:

COMPILER-OPTIONS SUPPRESS-XML-SYMBOL-TABLE=<value>

where, <value> may be YES or NO. The default value of the SUPPRESS-XML-SYMBOL-
TABLE keyword is NO, resulting in the production of an embedded XML-format symbol
table by default when the RM/COBOL compiler is licensed for XML Extensions.

Compile the program with the following command line:

rmcobol getstarted

The symbol table is compressed (zlib compression) in the object file. Thus, it is not obviously
visible to a casual inspection of the object file. However, it is not encrypted in any way.
When XML Extensions uses the symbol table for import or export, the information is
extracted (decompressed) from the object file into memory, not a file.

Execute the COBOL Program
Next, you execute and test the program.

The following sections explain—in several stages—how you can build upon the preceding
step by adding increasingly more functionality to the COBOL data structure (designed in
step 1 of this example), and then compiling and running the program after each stage.

In the first stage, the original program fragment is developed into a working COBOL program
that calls the xmlif library. Next, the XML EXPORT FILE statement is used to create an
XML document from the content of the COBOL data structure. Finally, the XML document
is fully populated with data values. With each iteration, the program is recompiled.

Making a Program Skeleton

Step 1 started with just a fragment of the program in order to show the COBOL data structure.

The interface to the xmlif library, a COBOL-callable subprogram, is simplified by using some
COBOL copy files that perform source text replacement. This means that the developer may
use XML Extensions statements, which are much like COBOL statements, rather than writing
CALL statements that directly access entry points in the xmlif library. The COBOL copy
files also define program variables that are used in conjunction with the XML Extensions

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

20 XML Extensions User's Guide

statements. The copy file, lixmlall.cpy (or at least the copy files referenced by lixmlall.cpy),
must be copied in the Working-Storage Section of the program in order to use XML
Extensions. For more information, see Copy Files (on page 78).

To call the xmlif library, add the following lines (shown in blue) to the COBOL program
fragment from step 1:

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

< insert COBOL PROCEDURE DIVISION logic here >

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

The COPY statement is placed in the Working-Storage Section after the data structure.

The Procedure Division header is entered, followed by the paragraph-name, A..

The XML INITIALIZE statement produces a call to the xmlif library. The XML
INITIALIZE statement may be thought of as similar to a COBOL OPEN statement.

Termination logic is placed at the end of the program. The paragraph-name, Z., is used as a
GO TO target for error or other termination conditions.

The copy file, lixmltrm.cpy, is used to generate a correct termination sequence. A call to
XML TERMINATE (similar to a COBOL CLOSE statement) is in this copy file. If errors are
present, the logic in this copy file will perform a procedure defined in the copy file,
lixmldsp.cpy, which will display any error messages.

The original program fragment is now a working COBOL program that calls the xmlif library.
Its only function is to open and close the interface to the library.

Compile and run the program from the command line as follows:

rmcobol getstarted
runcobol getstarted

The first parameter is the name of the COBOL object program.

If you place the xmlif library in the rmautold directory, as this action assumes, you do not
have to specify the library name on the command line.

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

 XML Extensions User's Guide 21

Making a Program that Exports an XML Document

The next stage is to create an XML document from the content of a COBOL data structure.
To do this, more logic is added to the original COBOL program. The added text is shown
in blue.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Value 0 Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

 XML EXPORT FILE
 Customer-Address
 "Address"
 "getstarted#customer-address".
 If Not XML-OK Go To Z.

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

The XML EXPORT FILE statement is used to create an XML document from the content of a
COBOL data structure. This statement has three arguments: the data structure name, the
desired filename, and the root name of the model files.

A value of zero is added to the zip code field so that the field has a valid numeric value.

As you would expect, the data structure name is customer-address. Almost all of the
XML statements may set an unsuccessful or warning status value; that is, a status value for
which the condition-name XML-OK is false following the execution of the XML statement.
It is good practice to follow every XML statement with a status test, such as, If Not
XML-OK Go To Z.

The program is again compiled and run from the command line as follows:

rmcobol getstarted
runcobol getstarted

Populating the XML Document with Data Values

The next stage is to populate the COBOL program with data values. Changes to the program
are again shown in blue.

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

22 XML Extensions User's Guide

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Value 0 Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

 Move "Micro Focus" to Name.
 Move "8310 North Capital of Texas Highway"
 to Address-1.
 Move "Building 1, Suite 155" to Address-2.
 Move "Austin" to City.
 Move "TX" to State.
 Move 78731 to Zip.

 XML EXPORT FILE
 Customer-Address
 "Address"
 "getstarted#customer-address".
 If Not XML-OK Go To Z.

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

A series of simple MOVE statements is used to provide content for the data structure.

Again, the program is compiled and run from the command line as follows:

rmcobol getstarted
runcobol getstarted

This time the XML document is fully populated with data values, as shown below:

<?xml version="1.0" encoding="UTF-8" ?>
 <customer-address xmlns:xtk="http://microfocus.com/rmcobol
 /xml-extensions/symbol-table/"
 <name>Micro Focus</name>
 <address-1>8310 North Capital of Texas Highway</address-1>
 <address-2>Building 1, Suite 155</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78731</zip>
 </address-3>
 </customer-address>

Environment Variables
Chapter 2: Getting Started with XML Extensions

 XML Extensions User's Guide 23

Deploy the Application
The final step is to deploy the application. For deploying COBOL applications that use XML
Extensions, install the XML Extensions deployment system on each platform that runs the
application. You may do this by using the XML Extensions installation disk.

Deploy the xmlif library and the underlying XML parser that it uses. If you chose to run the
slicexsy utility, deploy the model files that it generates. Normally, these files are stored in the
same location as the COBOL program files.

Environment Variables
XML Extensions makes use of several environment variables. These are individually detailed
in the following topics, but here is a summary table for quick reference:

Table 1: Environment Variables

Environment Variable Name Description of Use

PATH Used in locating executable files. See RMPATH
Environment Variable (on page 25) for details on
the use of the variable.

RMPATH Used by the compiler to locate source files,
including copybook files. See RMPATH
Environment Variable (on page 25) for details on
the compiler’s use of the variable.

RM_ENCODING On UNIX, used to set the local character encoding
of value strings fetched from or stored into the
COBOL program data. (Note that XML documents
are consumed and created in UTF-8 encoding on
both Windows and UNIX.) See RM_ENCODING
Environment Variable (on page 73) for details on
XML Extensions’ use of this variable. On
Windows, the local character set is the Windows
ANSI or OEM codepage as determined by the
runtime. The XML SET ENCODING statement
establishes whether to use local encoding or UTF-8
encoding for data in the COBOL program; when
UTF-8 encoding is selected, the RM_ENCODING
variable is ignored on UNIX.

Environment Variables
Chapter 2: Getting Started with XML Extensions

24 XML Extensions User's Guide

Table 1: Environment Variables

Environment Variable Name Description of Use

RM_KEEP_XML_SYMTAB_FILE Used by the compiler to specify the path where the
XML symbol table(s) are to be saved as *.xsy files.
When not set, the symbol tables are written to the
temporary directory and deleted at the end of each
program after placement in the object file for use at
application runtime. The *.xsy file(s) can be useful
when debugging an XML Extensions application.
Advanced applications might use the symbol table,
likely with a suitable transform stylesheet, to
dynamically adjust the application to the data
structures defined by the program.

Note: There is also a compiler configuration
keyword KEEP-TEMP-XML-SYMBOL-TABLE-
FILE of the COMPILER-OPTIONS configuration
record, which can be used to configure the compiler
to accomplish this without setting an environment
variable.

RM_MISSING_HASH Used at application runtime to specify how a model
file specification to XML Extensions should treat a
string that does not contain a hash (‘#’) character.
See the discussion of the
ModelFileName#DataFileName parameter for any
of the export, import or resolve model file
statements, for example RM_MISSING_HASH
Environment Variable for XML EXPORT FILE (on
page 29).

RM_XML_EXPORT_EMPTY_ARRAY Used at application runtime during an export
operation to specify output of empty arrays, that is
arrays that contain only numeric zero values and
string space values. See the discussion of Empty
Occurrences (on page 83) for further information on
this environment variable.

RM_XML_EXPORT_OUTLINE Used at application runtime during an export
operation to specify that an outlining stylesheet
should be applied to the output XML document.
This environment variable is normally useful only
during debugging when human readability of the
output document may be helpful. See the
discussion of environment variable
RM_XML_EXPORT_OUTLINE in the description
of the XML EXPORT FILE and XML EXPORT
TEXT statements. This environment variable is
ignored when the export statement specifies its own
external stylesheet.

RUNPATH Used in locating data files that are not specified as
URL references during application runtime. Data
files can include XML documents, stylesheets and
schemas in the context of XML Extensions. For
XML Extensions use of RUNPATH, see
RUNPATH Environment Variable (on page 26).
(The RM/COBOL User’s Guide explains how
RUNPATH is used by the runtime in general,
particularly in locating COBOL object programs.)

How XML Extensions Locates Files
Chapter 2: Getting Started with XML Extensions

 XML Extensions User's Guide 25

Table 1: Environment Variables

Environment Variable Name Description of Use

TEMP On Windows, the value may specify the location of
temporary files for XML Extensions during
application runtime. See Temporary Files on
Windows (on page 10) for further information.

TMP On Windows, the value may specify the location of
temporary files for XML Extensions during
application runtime. See Temporary Files on
Windows (on page 10) for further information.

TMPDIR On UNIX, the value may specify the location of
temporary files for XML Extensions during
application runtime. See Temporary Files on UNIX
(on page 11) for further information.

USERPROFILE On Windows, the value may specify the location of
temporary files for XML Extensions during
application runtime. See Temporary Files on
Windows (on page 10) for further information.

How XML Extensions Locates Files
Like other RM/COBOL products, XML Extensions uses the following environment variables
to locate various files:

• PATH. The PATH environment variable is used to locate executable programs, such as
slicexsy. This environment variable should contain a reference to the RM/COBOL
installation directory, which allows the operating system to locate the slicexsy utility.
For example:

On Windows

set PATH=C:\RMCOBOL

On UNIX

setenv PATH /usr/bin

• RMPATH. The RMPATH environment variable is used by the RM/COBOL compiler to
locate source files. This environment variable should contain a reference to the
RM/COBOL installation directory, which allows the RM/COBOL compiler to locate
copy files that are referenced by COBOL programs that use XML Extensions statements.
For example:

On Windows

set RMPATH=C:\RMCOBOL

On UNIX

setenv RMPATH=/usr/rmcobol

How XML Extensions Locates Files
Chapter 2: Getting Started with XML Extensions

26 XML Extensions User's Guide

• RUNPATH. The RUNPATH environment variable is used by the RM/COBOL runtime
and by the xmlif support module (a 32-bit dynamic link library on Windows named
xmlif.dll, and a shared object on UNIX named xmlif.so) to locate files at runtime. For
example:

On Windows

set RUNPATH=C:\MYFILES

On UNIX

setenv RUNPATH=/usr/myfiles

The use of RUNPATH by the xmlif support module is similar but not completely
identical to that used by the RM/COBOL runtime. The RUNPATH search sequence for
XML Extensions has been modified to ignore directory names that use the Universal
Naming Convention (UNC) notation (for example, "//system/directory"). UNC names
are normally used in an application that uses RM/InfoExpress. XML Extensions cannot
access files directly through RM/InfoExpress. By ignoring UNC directory names,
unnecessary time delays are avoided when performing a RUNPATH search.

For additional information on how XML Extensions locates files, see the following:

• Automatic Search for Files (on page 71)

• File Naming Conventions (on page 72)

• UNIX Character Encoding (on page 74)

• Windows Character Encoding (on page 74)

What are XML Extensions Statements?
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 27

Chapter 3: XML Extensions
Statements Reference

This chapter describes the statements that are used by XML Extensions at runtime.

What are XML Extensions Statements?
XML Extensions statements allow you to process, manipulate, and validate XML documents.
The statements are contained in the 32-bit dynamic link library on Windows (xmlif.dll) or the
shared object on UNIX (xmlif.so) that is callable from RM/COBOL object programs.

On Windows, XML Extensions statements use the Microsoft MSXML 6.0 parser; on UNIX,
XML Extensions statements use the XML parser (libxml2) and the XSLT transformation
processor (libxslt and libexslt) from the C libraries for the Gnome project. For additional
information,
see Installing XML Extensions (on page 9) and the “Deployment” section in XML Extensions
Components (on page 8).

XML Extensions statements are grouped into the following categories:

• Document Processing Statements (on page 28). These statements are used to process,
manipulate, or validate XML documents.

• Document Management Statements (on page 44). These statements are used to copy an
XML document from an external file to an internal text string and vice versa.

• Directory Management Statements (on page 51). These statements are useful when
implementing directory-polling schemes.

• State Management Statements (on page 54). These statements are used to control the
state or condition of XML Extensions statements.

Note Each statement contains zero or more positional parameters. These parameters are
used to specify such items as the source or destination data item, source or destination
XML document, flags, and any model files produced by the optional slicexsy utility (see
Appendix D: slicexsy Utility Reference on page 181). In some statements, trailing positional
parameters are optional and may be omitted, as specified in the statement descriptions in
this chapter.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

28 XML Extensions User's Guide

Memory Management with XML Extensions
At execution time, XML Extensions allocates memory and caches stylesheets and other
artifacts of the XML document handling process. This is a standard technique to enhance
performance, trading reduced execution time for additional memory usage. However, it is
possible for a long running program that processes a substantial number of different XML
documents to cause enough additional memory allocation that performance degrades,
typically due to virtual memory swapping. As an example, a program might sit in a loop,
waiting for an XML document to arrive in a directory; see the example for XML FIND FILE
(on page 52).

The program may use the XML TERMINATE statement to cause all memory allocated by
XML Extensions (with the exception of the document returned by the XML GET TEXT
and XML IMPORT TEXT statements) for the run unit to be released. However, the XML
INITIALIZE statement and any other XML Extensions statements that control optional
behavior (for example, XML ENABLE ALL-OCCURRENCES) must be called to
re-establish the XML environment before additional XML documents are processed.

Searching for Files
Model files are the XML documents generated by the optional slicexsy utility. XML
Extensions uses model files only as input files. When XML Extensions references a model
file, the appropriate predetermined extension is added, regardless of the presence or lack of an
extension on the model file parameter supplied by the COBOL program. For more
information, see Referencing XML Model Files (on page 189).

XML Extensions uses the RUNPATH environment variable to locate a model file (with the
appropriate extension added) except when:

• the model filename contains a directory separator character (such as “\” on Windows);

• the file exists; or

• the filename is a URL (that is, the name begins with “http:// “,“https://“, or “file://“).

Document Processing Statements
Document processing statements are used to process, manipulate, or validate XML
documents. They are grouped by function as follows:

• Export statements. XML EXPORT FILE (on page 29) and XML EXPORT TEXT (on
page 31) are available to convert the content of a COBOL data item to an XML document
that may be represented as an external file or an internal text string.

• Import statements. XML IMPORT FILE (on page 34) and XML IMPORT TEXT (on
page 36) are available to convert the content of an XML document—either an external
file or an internal text string—to a COBOL data item.

• Test and validation statements. XML TEST WELLFORMED-FILE (on page 38),
XML TEST WELLFORMED-TEXT (on page 39), XML VALIDATE FILE (on
page 41), and XML VALIDATE TEXT (on page 43) are available to verify that an
XML document—either an external file or an internal text string—is well-formed
or valid.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 29

• Transformation statement. Lastly, XML TRANSFORM FILE (on page 39) transforms
an XML document in an external file into a new external file by applying an XSLT
stylesheet; XML TRANSFORM TEXT (on page 41) transforms an XML document in an
internal memory string into a new internal memory string by applying an XSLT
stylesheet The resulting file or internal memory string may have almost any form,
including XML, HTML, PDF, RTF, and so forth; that is, the output might can be a binary
string if that is what the stylesheet produces.

XML EXPORT FILE
This statement has the following parameters:

Parameter Description

DataItem An identifier of the COBOL data item that contains the data to be
exported. This is not necessarily the same data item as the one
that produced the model template file description of the data to be
exported, but must be at least as large as so described. The
identifier may refer to a linkage data item that has been passed to
a subprogram that does the export. The identifier may be that of
a table element specified with any necessary subscripting or
indexing when the application has a table of export areas.

DocumentName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which is the name of a file that will receive the
exported output XML document upon successful completion of
the statement.

ModelFileName#DataFileName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which may be any of the following:

• The name of the data structure. If the # (hash) character is
missing, it is assumed that the hash character was intended to
be placed at the beginning of the parameter (as the specified
name is a data item name). Previously, it was assumed that
the # character was placed at the end of the parameter (as the
specified name was a filename).

Everything to the left of the "#" character is the filename.
Everything to the right is the data structure name. Either
component is optional; that is, model names of "file#", "file",
"#data", "#" and "" are allowed. If the filename is omitted
and a default has not been provided from the XML COBOL
FILE-NAME statement (see page 45), then the current
program is assumed. If the data name is not found, then
calling programs are used (in order of the call stack).

If the data name is omitted, then the entire program is used.

If a hash "#" character is missing from the ModelFileName
parameter, one will be assumed to be present at the beginning
(the ModelFileName is assumed to be a data name). This is
the default action. The default may be overridden by setting
the RM_MISSING_HASH environment variable to either
"trailing" or "file" to indicate a filename is present. The
default may be explicitly specified by setting the
RM_MISSING_HASH environment variable to either
"leading" or "data" to indicate that a data name is present.

Furthermore, a hierarchical specification of data names may
be used; that is, "file#a//b//c" is valid. It has the same
meaning as the COBOL specification of "C of B of A".

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

30 XML Extensions User's Guide

Parameter Description
Either data names or program names may be specified in the
data name hierarchy; that is, A and B could be the names of
programs, assuming B is a program contained in A.

• The name of the set of XML files produced by the slicexsy
utility that describe the COBOL data item. For more
information, see Model Files (on page 187).

[StyleSheetName] Optional. A nonnumeric literal or an identifier of an
alphanumeric data item, the value of which is the name of a file
containing an XSLT stylesheet that will be used to transform the
generated XML document before it is serialized to the output file.
This parameter value may specify a filename or URL for the
stylesheet.

Description

The XML EXPORT FILE statement exports the content of the COBOL data item indicated by
the DataItem parameter. The content of the data item is converted to an XML document
using one or more files indicated by the ModelFileName#DataFileName parameter. The
output of this conversion is to the file specified by the DocumentName parameter. If the
optional StyleSheetName parameter is present, the external XSLT stylesheet is used to
transform the document after it has been generated but before it is stored in the data file.

When the StyleSheetName parameter is omitted, the exported document is directly serialized
to the output file, except that, if the environment variable RM_XML_EXPORT_OUTLINE is
specified with the value “Y”, “y”, “1”, “T”, “t” or “on”, a built-in outlining stylesheet is
applied to the document before serialization. The outlining stylesheet inserts whitespace,
including newlines and spaces that make the file more easily readable by a human reviewer.
This whitespace might not be desirable in the production application after debugging is
complete. The environment variable RM_XML_EXPORT_OUTLINE is ignored when a
StyleSheetName parameter is present.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Examples

Without an External XSLT Stylesheet:

XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet:

XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 31

With an External XSLT Stylesheet and Parameters:

XML SET XSL-PARAMETERS
 "MY-COUNT", 7.
IF NOT XML-OK GO TO Z.
XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z

XML EXPORT TEXT
This statement has the following parameters:

Parameter Description

DataItem An identifier of the COBOL data item that contains the data to
be exported. This is not necessarily the same data item as the
one that produced the model template file description of the data
to be exported, but must be at least as large as so described. The
identifier may refer to a linkage data item that has been passed
to a subprogram that does the export. The identifier may be that
of a table element specified with any necessary subscripting or
indexing when the application has a table of export areas.

DocumentPointer An identifier of a COBOL pointer data item that will point to
the generated XML document as a text string after successful
completion of the statement.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

32 XML Extensions User's Guide

Parameter Description

ModelFileName#DataFileName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which may be any of the following:

• The name of the data structure. If the # (hash) character is
missing, it is assumed that the hash character was intended
to be placed at the beginning of the parameter (as the
specified name is a data item name). Previously, it was
assumed that the # character was placed at the end of the
parameter (as the specified name was a filename).

Everything to the left of the "#" character is the filename.
Everything to the right is the data structure name. Either
component is optional; that is, model names of "file#",
"file", "#data", "#" and "" are allowed. If the filename is
omitted and a default has not been provided from the XML
COBOL FILE-NAME statement (see page 45), then the
current program is assumed. If the data name is not found,
then calling programs are used (in order of the call stack).

If the data name is omitted, then the entire program is used.

If a hash "#" character is missing from the ModelFileName
parameter, one will be assumed to be present at the
beginning (the ModelFileName is assumed to be a data
name). This is the default action. The default my be
overridden by setting the RM_MISSING_HASH
environment variable to either "trailing" or "file" to indicate
a filename is present. The default may be explicitly
specified by setting the RM_MISSING_HASH environment
variable to either "leading" or "data" to indicate that a data
name is present.

Furthermore, a hierarchical specification of data names may
be used; that is, "file#a//b//c" is valid. It has the same
meaning as the COBOL specification of "C of B of A".
Either data names or program names may be specified in the
data name hierarchy; that is, A and B could be the names of
programs, assuming B is a program contained in A.

• The name of the set of XML files produced by the slicexsy
utility that describe the COBOL data item. For more
information, see Model Files (on page 187).

[StyleSheetName] Optional. A nonnumeric literal or an identifier of an
alphanumeric data item, the value of which is the name of a file
containing an XSLT stylesheet that will be used to transform the
generated XML document before it is serialized to the output
text string. This parameter value may specify a filename or
URL for the stylesheet.

Description

The XML EXPORT TEXT statement exports the content of the COBOL data item indicated
by the DataItem parameter. The content of the data item is converted to an XML document
using one or more files indicated by the ModelFileName#DataFileName parameter, and then
it is output as a text string. The address of the text string is placed in the COBOL pointer data
item specified by the DocumentPointer parameter. If the optional StyleSheetName parameter
is present, the external XSLT stylesheet is used to transform the document after it has been
generated but before it is stored as a text string.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 33

A block of memory is allocated to hold the generated XML output document. The descriptor
of this memory block overrides any existing address descriptor in the COBOL pointer data
item’s value prior to execution of this statement. The COBOL application is responsible for
releasing this memory when it is no longer needed by using XML FREE TEXT (see page 45);
this release must happen before the pointer data item’s value is lost by reusing the pointer data
item in another XML Extensions statement that stores a new value.

When a stylesheet is specified to transform the generated document, the output document
might not be an XML document, depending on the transform specified by the stylesheet.

The output document can be written to a file with the XML PUT TEXT statement for
inspection during debugging of the application.

Note A temporary file is no longer used during an XML EXPORT TEXT statement. The
operation of this statement is entirely in memory, except for the external stylesheet input file,
if one is specified.

When the StyleSheetName parameter is omitted, the exported document is directly serialized
to the output memory area, except that, if the environment variable
RM_XML_EXPORT_OUTLINE is specified with the value “Y”, “y”, “1”, “T”, “t” or “on”, a
built-in outlining stylesheet is applied to the document before serialization. The outlining
stylesheet inserts whitespace, including newlines and spaces that make the output more easily
readable by a human reviewer. This whitespace might not be desirable in the production
application after debugging is complete. The environment variable
RM_XML_EXPORT_OUTLINE is ignored when a StyleSheetName parameter is present.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Examples

Without an External XSLT Stylesheet:

XML EXPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet:

XML EXPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet and Parameters:

XML SET XSL-PARAMETERS
 "MY-COUNT", 7,
 "MY-PARAM2", "OTHER".
IF NOT XML-OK GO TO Z.
XML EXPORT TEXT

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

34 XML Extensions User's Guide

 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML IMPORT FILE
This statement has the following parameters:

Parameter Description

DataItem An identifier of the COBOL data item that is to receive the
imported data. This is not necessarily the same data item as the
one that produced the model template file description of the data
to be imported, but must be at least as large as so described.
The identifier may refer to a linkage data item that has been
passed to a subprogram that does the import. The identifier may
be that of a table element specified with any necessary
subscripting or indexing when the application has a table of
import areas.

DocumentName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which is the name of a file that contains the
input XML document to be imported.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 35

Parameter Description

ModelFileName#DataFileName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which may be any of the following:

• The name of the data structure. If the # (hash) character is
missing, it is assumed that the hash character was intended
to be placed at the beginning of the parameter (as the
specified name is a data item name). Previously, it was
assumed that the # character was placed at the end of the
parameter (as the specified name was a filename.

Everything to the left of the "#" character is the filename.
Everything to the right is the data structure name. Either
component is optional; that is, model names of "file#",
"file", "#data", "#" and "" are allowed. If the filename is
omitted and a default has not been provided from the XML
COBOL FILE-NAME statement (on page 45), then the
current program is assumed. If the data name is not found,
then calling programs are used (in order of the call stack).

If the data name is omitted, then the entire program is used.

If a hash "#" character is missing from the ModelFileName
parameter, one will be assumed to be present at the
beginning (the ModelFileName is assumed to be a data
name). This is the default action. The default my be
overridden by setting the RM_MISSING_HASH
environment variable to either "trailing" or "file" to indicate
a filename is present. The default may be explicitly
specified by setting the RM_MISSING_HASH environment
variable to either "leading" or "data" to indicate that a data
name is present.

Furthermore, a hierarchical specification of data names may
be used; that is, "file#a//b//c" is valid. It has the same
meaning as the COBOL specification of "C of B of A".
Either data names or program names may be specified in the
data name hierarchy; that is, A and B could be the names of
programs, assuming B is a program contained in A.

• The name of the set of XML files produced by the slicexsy
utility that describe the COBOL data item. For more
information, see Model Files (on page 187).

[StyleSheetName] Optional. A nonnumeric literal or an identifier of an
alphanumeric data item, the value of which is the name of a file
containing an external XSLT stylesheet that will be used to
transform the input XML document before it is imported into
the target data item. This parameter value may specify a
filename or URL for the stylesheet.

Description

The XML IMPORT FILE statement imports the content of the file indicated by the
DocumentName parameter. If the optional StyleSheetName parameter is present, the external
XSLT stylesheet is first used to transform the document. The content of the XML document
is converted to COBOL format using the file specified by the ModelFileName#DataFileName
parameter, and then is stored in the data item specified by the DataItem parameter.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

36 XML Extensions User's Guide

Examples

Without an External XSLT Stylesheet:

XML IMPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet:

XML IMPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet and Parameters:

XML SET XSL-PARAMETERS
 "MY-COUNT", 7.
IF NOT XML-OK GO TO Z.
XML IMPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML IMPORT TEXT
This statement has the following parameters:

Parameter Description

DataItem An identifier of the COBOL data item that is to receive the
imported data. This is not necessarily the same data item as the
one that produced the model template file description of the data
to be imported, but must be at least as large as so described.
The identifier may refer to a linkage data item that has been
passed to a subprogram that does the import. The identifier may
be that of a table element specified with any necessary
subscripting or indexing when the application has a table of
import areas.

DocumentPointer An identifier of a COBOL pointer data item that points to the
input XML document stored in memory as a text string.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 37

Parameter Description

ModelFileName#DataFileName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which may be any of the following:

• The name of the data structure. If the # (hash) character is
missing, it is assumed that the hash character was intended
to be placed at the beginning of the parameter (as the
specified name is a data item name). Previously, it was
assumed that the # character was placed at the end of the
parameter (as the specified name was a filename.

Everything to the left of the "#" character is the filename.
Everything to the right is the data structure name. Either
component is optional; that is, model names of "file#", "file",
"#data", "#" and "" are allowed. If the filename is omitted
and a default has not been provided from the XML COBOL
FILE-NAME statement (on page 45), then the current
program is assumed. If the data name is not found, then
calling programs are used (in order of the call stack).

If the data name is omitted, then the entire program is used.

If a hash "#" character is missing from the ModelFileName
parameter, one will be assumed to be present at the beginning
(the ModelFileName is assumed to be a data name). This is
the default action. The default my be overridden by setting
the RM_MISSING_HASH environment variable to either
"trailing" or "file" to indicate a filename is present. The
default may be explicitly specified by setting the
RM_MISSING_HASH environment variable to either
"leading" or "data" to indicate that a data name is present.

Furthermore, a hierarchical specification of data names may
be used; that is, "file#a//b//c" is valid. It has the same
meaning as the COBOL specification of "C of B of A".
Either data names or program names may be specified in the
data name hierarchy; that is, A and B could be the names of
programs, assuming B is a program contained in A.

• The name of the set of XML files produced by the slicexsy
utility that describe the COBOL data item. For more
information, see Model Files (on page 187).

[StyleSheetName] Optional. A nonnumeric literal or an identifier of an
alphanumeric data item, the value of which is the name of a file
containing an external XSLT stylesheet that will be used to
transform the input XML document before it is imported into
the target data item. This parameter value may specify a
filename or URL for the stylesheet.

Description

The XML IMPORT TEXT statement imports the content of the text string indicated by the
DocumentPointer parameter. If the optional StyleSheetName parameter is present, the
external XSLT stylesheet is used to transform the document before being converted to
COBOL data format. The content of the XML document is converted to COBOL format
using the file specified by the ModelFileName#DataFileName parameter, and then is stored in
the data item specified by the DataItem parameter.

Note A temporary file is no longer used during an XML IMPORT TEXT statement. The
operation of this statement is entirely in memory, except for the external stylesheet input file,
if one is specified.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

38 XML Extensions User's Guide

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Examples

Without an External XSLT Stylesheet:

XML IMPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet:

XML IMPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet and Parameters:

XML SET XSL-PARAMETERS
 "MY-COUNT", 7.
IF NOT XML-OK GO TO Z.
XML IMPORT TEXT
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML TEST WELLFORMED-FILE
This statement has the following parameter:

Parameter Description

DocumentName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the file name of the file containing the input
XML document to be tested for correct syntax.

Description

The XML TEST WELLFORMED-FILE statement tests the XML document specified by the
DocumentName parameter to see if it is well-formed. A well-formed XML document is one
that conforms to XML syntax rules, but is not necessarily valid with respect to any schema.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 39

See XML VALIDATE FILE (on page 41) and XML VALIDATE TEXT (on page 43) for
testing whether a document is valid with respect to a schema.

A status value is returned in the XML-data-group data item, which is defined in the
copy file, lixmldef.cpy.

Example

XML TEST WELLFORMED-FILE
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML TEST WELLFORMED-TEXT
This statement has the following parameter:

Parameter Description

DocumentPointer An identifier of a COBOL pointer data item that points to the input
XML document stored in memory as a text string that is be tested
for correct syntax.

Description

The XML TEST WELLFORMED-TEXT statement tests the XML document specified by the
DocumentPointer parameter to see if it is well-formed. A well-formed XML document is one
that conforms to XML syntax rules, but is not necessarily valid with respect to any schema.
See XML VALIDATE FILE (on page 41) and XML VALIDATE TEXT (on page 43) for
testing whether a document is valid with respect to a schema.

Note A temporary file is no longer used during an XML TEST WELLFORMED-TEXT
statement. The operation of this statement is entirely in memory

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Example

XML TEST WELLFORMED-TEXT
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML TRANSFORM FILE
This statement has the following parameters:

Parameter Description

InputDocumentName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the file name of the file containing the input
XML document to be transformed.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

40 XML Extensions User's Guide

Parameter Description

StyleSheetName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the name of a file containing an XSLT
stylesheet that will be used to transform the input document.

OutputDocumentName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the file name of the output file, which will
contain the transformed XML document after successful
completion of the statement. The output document is not
necessarily an XML document because XSLT can transform an
XML document to a non-XML output.

Description

The XML TRANSFORM FILE statement transforms the XML document specified by the
InputDocumentName parameter using the XSLT stylesheet specified by the StyleSheetName
parameter into a new document specified by the OutputDocumentName parameter. The new
document may or may not be an XML document depending on the XSLT stylesheet.
Parameters for the transformation may be set by a prior XML SET XSL-PARAMETERS
statement.

The specified stylesheet can result in an output document that is not an XML document.

Note Specifying the internal XSLT stylesheet file (one of the model files, discussed on page
187, created by the optional slicexsy utility) specified for the StyleSheetName parameter can
be used to test the internal XSLT stylesheet transform, which is occasionally helpful in
debugging problems with importing documents into COBOL.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Examples

With an External XSLT Stylesheet:

XML TRANSFORM FILE
 "MY-IN-DOCUMENT"
 "MY-STYLESHEET"
 "MY-OUT-DOCUMENT.
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet and Parameters:

XML SET XSL-PARAMETERS
 "MY-COUNT", 7,
 “MY-PARAM2”, "YES".
IF NOT XML-OK GO TO Z.

XML TRANSFORM FILE
 MY-IN-DOCUMENT-FILENAME
 "MY-STYLE-SHEET"
 MY-OUT-DOCUMENT-FILENAME
IF NOT XML-OK GO TO Z.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 41

XML TRANSFORM TEXT
This statement has the following parameters:

Parameter Description

InputDocumentPointer An identifier of a COBOL pointer data item that points to an input
XML document stored in memory as a text string that is to be
transformed.

StyleSheetName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the name of a file containing an XSLT
stylesheet that will be used to transform the input document.

OutputDocumentPointer An identifier of a COBOL pointer data item that will point to the
transformed XML document as a text string after successful
completion of the statement. The output document is not
necessarily an XML document because XSLT can transform an
XML document to a non-XML output.

Description

The XML TRANSFORM TEXT statement transforms the XML document specified by the
InputDocumentPointer parameter using the XSLT stylesheet specified by the StyleSheetName
parameter into a new document specified by the OutputDocumentPointer parameter. The new
document may or may not be an XML document depending on the XSLT stylesheet.
Parameters for the transformation may be set by a prior XML SET XSL-PARAMETERS
statement.

A block of memory is allocated to hold the transformed XML output document. The
descriptor of this memory block overrides any existing address descriptor in the COBOL
pointer data item’s value prior to execution of this statement. The COBOL application is
responsible for releasing this memory when it is no longer needed by using XML FREE
TEXT (see page 45); this release must happen before the pointer data item’s value is lost by
reusing the pointer data item in another XML Extensions statement that stores a new value.

The specified stylesheet can result in an output document in memory that is not an XML
document.

Note A temporary file is not used during an XML TRANSFORM TEXT statement. The
operation of this statement is entirely in memory, except for the stylesheet input file.

Note Specifying the internal XSLT stylesheet file (one of the model files, discussed on page
187, created by the optional slicexsy utility) specified for the StyleSheetName parameter can
be used to test the internal XSLT stylesheet transform, which is occasionally helpful in
debugging problems with importing documents into COBOL. The XML PUT TEXT
statement can be used to write the transformed text string to a file for inspection.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Examples

With an External XSLT Stylesheet:

XML TRANSFORM TEXT
 MY-IN-DOCUMENT-POINTER
 "MY-STYLESHEET"

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

42 XML Extensions User's Guide

 MY-OUT-DOCUMENT-POINTER.
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet and Parameters:

XML SET XSL-PARAMETERS
 "MY-COUNT", 4,
 “MY-PARAM2”, "NO".
IF NOT XML-OK GO TO Z.

XML TRANSFORM TEXT
 MY-IN-DOCUMENT-POINTER
 MY-STYLESHEET-FILENAME"
 MY-OUT-DOCUMENT-POINTER
IF NOT XML-OK GO TO Z.

XML VALIDATE FILE
This statement has the following parameters:

Parameter Description

DocumentName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which is the file name of the file containing the
input XML document to be validated against the schema
specified by the SchemaName parameter.

SchemaName/ModelFileName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which is the name of the schema file or set of
model files that will be used to validate the document specified
by the DocumentName parameter. This parameter value may
specify a filename or URL for the schema.

Note If the slicexsy utility is used, SchemaName refers to a
model filename. The template file produced by slicexsy
(modelfilename.xtl) is parsed to determine the version of the
model files. If the version is 12 or later, XML Extensions uses a
two-step validation process: 1) DocumentName is transformed
using a stylesheet (modelfilename.xsl); and 2) the schema
validation is performed. If the version is prior to 12, XML
Extensions performs validation using SchemaName.

Description

The XML VALIDATE FILE statement tests the XML document specified by the
DocumentName parameter to see if it is well-formed and valid.

A well-formed XML document is one that conforms to XML syntax rules. A valid XML
document is one that is both well-formed and has content that conforms to rules specified by
an XML schema file. This schema file may be any of the following:

• one created using the optional slicexsy utility, as described in Appendix D: slicexsy
Utility Reference (on page 181);

• one created by the cobtoxml utility used in XML Extensions prior to version 12; or

• one supplied by the user.

Document Processing Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 43

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Note In the Windows implementation of XML Extensions, the Microsoft XML parser 4.0
ignores the document type definition (DTD) when validating an XML document against a
schema file. Thus, any entities declared in the DTD will not be defined and cannot be
referenced. Any XML document that contains entity references, other than the predefined
XML entities, must be transformed with an XSLT stylesheet prior to validation against a
schema file when using the Microsoft XML parser 4.0 so that any non-predefined entity
references are removed. Otherwise, the document will fail validation.

Example

XML VALIDATE FILE
 "MY-DOCUMENT"
 "MY-SCHEMA".
IF NOT XML-OK GO TO Z.

XML VALIDATE TEXT
This statement has the following parameters:

Parameter Description

DocumentPointer An identifier of a COBOL pointer data item that points to the
input XML document stored in memory as a text string that is to
be validated against the schema specified by the SchemaName
parameter.

SchemaName/ModelFileName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which is the name of the schema file or set of
model files that will be used to validate the document specified
by the DocumentPointer parameter. This parameter value may
specify a filename or URL for the schema.

Note If the slicexsy utility is used, SchemaName refers to a
model filename. The template file produced by slicexsy
(modelfilename.xtl) is parsed to determine the version of the
model files. If the version is 12 or later, XML Extensions uses a
two-step validation process: 1) DocumentPointer is transformed
using a stylesheet (modelfilename.xsl); and 2) the schema
validation is performed. If the version is prior to 12, XML
performs the validation using SchemaName.

Description

The XML VALIDATE TEXT statement tests the XML document specified by the
DocumentPointer parameter to see if it is well-formed and valid.

A well-formed XML document is one that conforms to XML syntax rules. A valid XML
document is one that is both well-formed and has content that conforms to rules specified by
an XML schema file. This schema file may be any of the following:

• one created using the optional slicexsy utility, as described in Appendix D: slicexsy
Utility Reference (on page 181);

• one created by the cobtoxml utility used in XML Extensions prior to version 12; or

Document Management Statements
Chapter 3: XML Extensions Statements Reference

44 XML Extensions User's Guide

• one supplied by the user.

Note A temporary file is no longer used during an XML VALIDATE TEXT statement. The
operation of this statement is entirely in memory, except for the schema input file, and if
relevant, the model file stylesheet input file.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Note In the Windows implementation of XML Extensions, the Microsoft XML parser 4.0
ignores the document type definition (DTD) when validating an XML document against a
schema file. Thus, any entities declared in the DTD will not be defined and cannot be
referenced. Any XML document that contains entity references, other than the predefined
XML entities, must be transformed with an XSLT stylesheet prior to validation against a
schema file when using the Microsoft XML parser 4.0 so that any non-predefined entity
references are removed. Otherwise, the document will fail validation.

Example

XML VALIDATE TEXT
 "MY-DOCUMENT"
 "MY-SCHEMA".
IF NOT XML-OK GO TO Z.

Document Management Statements
A number of statements are available to copy an XML document from an external file to an
internal text string and vice versa. These document management statements include the
following:

• XML COBOL FILE-NAME (on page 45)

• XML FREE TEXT (on page 45)

• XML GET TEXT (on page 46)

• XML PUT TEXT (on page 46)

• XML REMOVE FILE (on page 47)

• A set of RESOLVE statements allows the developer to obtain a fully resolved pathname
(for example, c:\mystuff\stuff.xml rather than stuff.xml), thus providing a globally unique
name that can be passed as a parameter to a called sub-program. This is useful in cases
where global resources are defined in the top-level program and then referenced in a
called (possibly nested) subprogram that may include another resource having the same
name. The RESOLVE statements (on page 48) include the following:

− XML RESOLVE DOCUMENT-NAME

− XML RESOLVE MODEL-NAME

− XML RESOLVE STYLESHEET-NAME

− XML RESOLVE SCHEMA-NAME

Document Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 45

XML COBOL FILE-NAME
This statement has the following parameter:

Parameter Description

[FileName] Optional. A nonnumeric literal or an identifier of an alphanumeric
data item, the value of which specifies the default ModelFileName
value (the string before the #) in the
ModelFileName#DataFileName parameter for subsequent
statements that do not explicitly specify a ModelFileName. If
omitted or specified with a value of spaces, the default
ModelFileName value is reset to spaces, eliminating any previously
set default ModelFileName value. If the parameter value is #, the
name of the COBOL object file for the currently running COBOL
program is used to set the default ModelFileName value.
Otherwise, the current value of the parameter is used “as is” to set
the default ModelFileName value.

Description

The XML COBOL FILE-NAME statement allows the developer to set the default
ModelFileName (the string before the #) in the ModelFileName#DataFileName parameter of
various subsequent XML Extensions statements. The default value will be used when the
ModelFileName string is not specified in the ModelFileName#DataFileName parameter of
those subsequent statements.

Example

XML COBOL FILE-NAME
 MY-FILE.
IF NOT XML-OK GO TO Z.

XML FREE TEXT
This statement has the following parameter:

Parameter Description

DocumentPointer An identifier of a COBOL pointer data item that points to an in-
memory text string. This text string is not necessarily an XML
document.

Description

The XML FREE TEXT statement releases the COBOL memory referred to by the COBOL
pointer data item specified by the DocumentPointer parameter, which should have a value
that has been set by the XML EXPORT TEXT statement (see page 31), XML GET TEXT
statement (see page 46) or XML TRANSFORM TEXT (see page 41).

Document Management Statements
Chapter 3: XML Extensions Statements Reference

46 XML Extensions User's Guide

Example

XML FREE TEXT
 MY-POINTER
IF NOT XML-OK GO TO Z.

XML GET TEXT
This statement has the following parameters:

Parameter Description

DocumentPointer An identifier of a COBOL pointer data item that will point to the
in-memory text string after successful completion of the statement.

DocumentName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the filename of the file containing the text to
load into memory. This text string is not necessarily an XML
document. The text string may be binary data, such as an image.

Description

The XML GET TEXT statement copies the content of a file specified by the DocumentName
parameter to COBOL memory. A block of memory is allocated to contain the document.
The address and size of the memory block are returned in the DocumentPointer parameter.

The file may be a binary file on Windows or UNIX. The word “text” in the statement is used
in the sense of an XML Extensions reference to in-memory operations using a pointer, not to
the file being a text file. (Windows treats text files differently than binary files. UNIX files
have no such difference.)

When the program has finished using the in-memory document, a call to XML FREE TEXT
(see page 45) should be made to release the allocated memory.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Example

XML GET TEXT
 MY-POINTER
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML PUT TEXT
This statement has the following parameters:

Parameter Description

DocumentPointer An identifier of a COBOL pointer data item that points to the text
to be written to a file. This text string is not necessarily an XML
document. The text string may be binary data, such as an image.

Document Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 47

Parameter Description

DocumentName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the filename of the file which will contain the
text after completion of the statement.

Description

The XML PUT TEXT statement copies the content of the in-memory XML document
specified by the DocumentPointer parameter to the external file specified by the
DocumentName parameter.

The file may be a binary file on Windows or UNIX. The word “text” in the statement is used
in the sense of an XML Extensions reference to in-memory operations using a pointer, not to
the file being a text file. (Windows treats text files differently than binary files. UNIX files
have no such difference.)

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Example

XML PUT TEXT
 MY-POINTER
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML REMOVE FILE
This statement has the following parameter:

Parameter Description

FileName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the filename of the file to be removed. The
file does not necessarily contain an XML document.

Description

The XML REMOVE FILE statement deletes the file specified by the FileName parameter. If
the specified filename does not contain an extension, then .xml is appended to the name. If
the file does not exist, no error is returned.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Example

XML REMOVE FILE
 MY-FILE-NAME.
IF NOT XML-OK GO TO Z.

Document Management Statements
Chapter 3: XML Extensions Statements Reference

48 XML Extensions User's Guide

XML RESOLVE DOCUMENT-NAME
This statement has the following parameter:

Parameter Description

DocumentName An identifier of an alphanumeric data item, the value of which is
the document filename to be resolved. The resolved filename is
stored in this same data item upon successful completion of the
statement.

Description

The XML RESOLVE DOCUMENT-NAME statement is used to resolve the name of an
XML document file. The resolution process is the same as that for the DocumentName
parameter of an XML IMPORT statement.

If the name is a URL, it is used “as is.” Otherwise, if the name does not contain an extension,
the extension .xml is added. If the file does not exist using the name as entered, then the
RUNPATH environment variable is used to search for the file.

Resolution of a filename includes obtaining the complete path of the file; relative paths are
converted to absolute paths.

Example

XML RESOLVE DOCUMENT-NAME
 MY-DOCUMENT.
IF NOT XML-OK GO TO Z.

Document Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 49

XML RESOLVE MODEL-NAME
This statement has the following parameter:

Parameter Description

ModelFileName#DataFileName A nonnumeric literal or an identifier of an alphanumeric data
item, the value of which may be any of the following:

• The name of the data structure. If the # (hash) character is
missing, it is assumed that the hash character was intended
to be placed at the beginning of the parameter (as the
specified name is a data item name). Previously, it was
assumed that the # character was placed at the end of the
parameter (as the specified name was a filename.

Everything to the left of the "#" character is the filename.
Everything to the right is the data structure name. Either
component is optional; that is, model names of "file#",
"file", "#data", "#" and "" are allowed. If the filename is
omitted and a default has not been provided from the XML
COBOL FILE-NAME statement (see page 45), then the
current program is assumed. If the data name is not found,
then calling programs are used (in order of the call stack).

If the data name is omitted, then the entire program is used.

If a hash "#" character is missing from the ModelFileName
parameter, one will be assumed to be present at the
beginning (the ModelFileName is assumed to be a data
name). This is the default action. The default my be
overridden by setting the RM_MISSING_HASH
environment variable to either "trailing" or "file" to indicate
a filename is present. The default may be explicitly
specified by setting the RM_MISSING_HASH environment
variable to either "leading" or "data" to indicate that a data
name is present.

Furthermore, a hierarchical specification of data names may
be used; that is, "file#a//b//c" is valid. It has the same
meaning as the COBOL specification of "C of B of A".
Either data names or program names may be specified in the
data name hierarchy; that is, A and B could be the names of
programs, assuming B is a program contained in A.

• The name of the set of XML files produced by the slicexsy
utility that describe the COBOL data item. For more
information, see Model Files (on page 187).

The resolved ModelFileName#DataName value is stored in this
same data item upon successful completion of the statement.

Description

The XML RESOLVE MODEL-NAME statement is used to resolve the name of a model
file/data name combination. The resolution process is the same as that for the
ModelFileName#DataFileName parameter of the XML IMPORT FILE, XML IMPORT
TEXT, XML EXPORT FILE, or XML EXPORT TEXT statements.

If the name is a URL, it is used “as is.” Otherwise, the name is examined with an .xtl
extension and then a .cob extension. If the file does not exist using the name as entered,
then the RUNPATH environment variable is used to search for the file. If the name

Document Management Statements
Chapter 3: XML Extensions Statements Reference

50 XML Extensions User's Guide

component is absent, the current executing COBOL program is searched, followed by
calling COBOL programs (if present). Whatever data name (following the "#" character) is
present is carried forward.

Resolution of a filename includes obtaining the complete path of the file; relative paths are
converted to absolute paths.

Example

XML RESOLVE MODEL-NAME
 MY-MODEL-DATA-FILE.
IF NOT XML-OK GO TO Z.

XML RESOLVE SCHEMA-FILE
This statement has the following parameter:

Parameter Description

SchemaFileName An identifier of an alphanumeric data item, the value of which is
the schema filename to be resolved. The resolved schema filename
is stored in this same data item upon successful completion of the
statement.

Description

The XML RESOLVE SCHEMA-FILE statement is used to resolve the name of an XML
schema file (one of the model files, discussed on page 187, created using the optional slicexsy
utility) specified for the SchemaFileName parameter. The resolution process is similar to that
for the ModelFileName#DataFileName parameter of an XML IMPORT FILE, XML
IMPORT TEXT, XML EXPORT FILE, or XML EXPORT TEXT statement. The value of
this parameter must specify an existing template file (.xtl extension) and not a COBOL object
file (.cob extension).

XML Extensions uses the model files only as input files. When XML Extensions references a
model file, the appropriate predetermined extension is added, regardless of the presence or
lack of an extension on the model file parameter supplied by the COBOL program. For more
information, see Referencing XML Model Files (on page 189).

XML Extensions uses the RUNPATH environment variable to locate a model file (with the
appropriate extension added) except when:

• the model filename contains a directory separator character (such as “\” on Windows);

• the file exists; or

• the filename is a URL (that is, the name begins with “http://“, “https://“, or “file://“). If
the name is a URL, it is used “as is.” Otherwise, the file extension is forced to be .xsd. If
the name does not exist, then the RUNPATH environment variable is used to search for
the file.

Resolution of a filename includes obtaining the complete path of the file; relative paths are
converted to absolute paths.

Directory Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 51

Example

XML RESOLVE SCHEMA-NAME
 MY-SCHEMA-FILE.
IF NOT XML-OK GO TO Z.

XML RESOLVE STYLESHEET-FILE
This statement has the following parameter:

Parameter Description

StyleSheetName An identifier of an alphanumeric data item, the value of which is
the stylesheet filename to be resolved. The resolved stylesheet
filename is stored in this same data item upon successful
completion of the statement.

Description

The XML RESOLVE STYLESHEET-FILE statement is used to resolve the name of an XML
stylesheet file. The resolution process is the same as that for the StyleSheetName parameter of
an XML IMPORT or XML EXPORT statement.

If the name is a URL, it is used “as is.” Otherwise, if the name does not contain an extension,
the extension .xsl is added. If the file does not exist using the name as entered, then the
RUNPATH environment variable is used to search for the file.

Resolution of a filename includes obtaining the complete path of the file; relative paths are
converted to absolute paths.

Example

XML RESOLVE STYLESHEET-NAME
 MY-STYLESHEET-FILE.
IF NOT XML-OK GO TO Z.

Directory Management Statements
This section describes the statements that are useful when implementing directory-polling
schemes:

• XML FIND FILE (on page 52)

• XML GET UNIQUEID (on page 53)

Directory polling, as related to XML documents, allows two or more independent processes to
pass XML documents between the processes. For example, one or more writer processes may
place XML documents in a well-known directory (a well-known directory is a directory name
that is known to all of the interested processes). Each XML document must have been given
a unique name. A reader process finds, processes, and removes XML documents from the
same well-known directory.

Directory Management Statements
Chapter 3: XML Extensions Statements Reference

52 XML Extensions User's Guide

Directory polling may be used to communicate with message-driven communications
systems. It is a technique that may also be used between various RM/COBOL applications.

The RM/COBOL runtime is not scalable in the traditional sense; however, scalability can be
achieved by using multiple RM/COBOL runtime systems (preferably running on separate
hardware platforms) on the same local area network (LAN). Each of these separate runtime
systems can use directory polling (to a directory that is available on the network) as a means
of improving throughput.

It is not feasible to use multiple reader processes on the same directory because the XML
FIND FILE statement, invoked from separate processes, could find the same file. For the
Windows implementation, a sample C language program (DirSplit) is provided that will poll
a single directory and distribute files to subdirectories as they arrive. This will allow separate
COBOL programs each to process a separate subdirectory.

Note The following problems have been encountered on Windows systems running the older
FAT32 file system:

• When a program is adding XML document files to a directory concurrently with another
program that is moving XML document files to different directory using the C library
function rename or the Windows API function MoveFile, it is possible for the wrong file
to be moved or for the file to be moved to the wrong location. This failure can occur
without the participation of XML Extensions.

• When a large number of XML document files are written to a directory by XML
Extensions using XML EXPORT FILE (on page 29), it is possible that files will not be
placed in the directory and no error will be returned by the operating system either to
XML Extensions or to the program issuing the statement. It appears that the FAT32 file
system may be limited to 65,535 files per directory (at least under certain conditions).
Furthermore, if long filenames are used, multiple directory entries may be needed for
each filename, further reducing the number of files per directory.

For these reasons, Micro Focus recommends that directory polling not be used on Windows
running with FAT32 file systems. Windows with the NTFS file system and UNIX file
systems do not demonstrate this problem.

XML FIND FILE
This statement has the following parameters:

Parameter Description

DirectoryName A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which is the name of the directory to search for files
having the suffix specified by Extension.

FileName An identifier of an alphanumeric data item that will contain the
name of a found file upon successful completion of the statement.

[Extension] Optional. A nonnumeric literal or an identifier of an alphanumeric
data item, the value of which is the extension having the format
“.aaa”. The leading dot must be specified in the value, if needed.
The extension is not limited in length other than reasonable file
name length limits. When omitted, the default extension name is
".xml". The search for files in the directory is for ones named
“*Ext”, where Ext is the value specified by this parameter.

Directory Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 53

Description

The XML FIND FILE statement looks in the directory specified by the DirectoryName
parameter for an XML document (a file with the .xml extension, unless the Extension
parameter is specified). If there are one or more such files in the specified directory, the name
of one of the files will be returned in the FileName parameter.

If the statement succeeds (the condition XML-IsSuccess is true), the file specified by the
FileName parameter may be processed by using XML IMPORT FILE (on page 34) if it is an
XML document.

Before calling XML FIND FILE again (to process the next file), you must call XML
REMOVE FILE (on page 47) to delete the XML document that was just processed.
Otherwise, the next call to the XML FIND FILE statement may return the same file.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy. The condition XML-IsDirectoryEmpty will be true if the directory
is empty.

Example

FIND-DOCUMENT.
 PERFORM WITH TEST AFTER UNTIL 0 > 1
 XML FIND FILE
 "MY-DIRECTORY"
 MY-FILE-NAME
 IF XML-IsSuccess
 EXIT PERFORM
 END-IF
 IF XML-IsDirectoryEmpty
 CALL "C$DELAY" USING 0.1
 END-IF
 IF NOT XML-OK GO TO Z.
 END-PERFORM
*> Process found document

XML GET UNIQUEID
This statement has the following parameter:

Parameter Description

UniqueID An identifier of an alphanumeric data item that is at least 38
characters in length. The generated unique identifier is placed in
this data item upon successful completion of the statement.

Description

The XML GET UNIQUEID statement generates a unique identifier that may be used to form
a unique filename. Please note that the return value might not contain any alphabetic
characters. Therefore, it would be a good programming practice to add an alphabetic
character to the name for those systems where filenames require at least one alphabetic
character (see the following example).

State Management Statements
Chapter 3: XML Extensions Statements Reference

54 XML Extensions User's Guide

The unique value returned by this statement is a string representation having the same format
as a Windows UUID (Universal Unique Identifier). The string is a series of hexadecimal
digits with embedded hyphen characters. The string is enclosed in brace characters ({ and }).
The entire string is 38 characters in length.

On Windows systems, the unique value is an actual Windows UUID.

On UNIX systems, the value is a string having the same format as a Windows UUID, but
constructed by an internal algorithm; this algorithm uses various components, including the
system ID, the start time of the run unit, the current time, and an internal counter, to generate
a unique value. This statement may be used in conjunction with the COBOL STRING
statement to generate a unique filename.

A status value is returned in the XML-data-group data item, which is defined in the copy
file, lixmldef.cpy.

Example

MOVE SPACES TO MY-FILE-NAME.
XML GET UNIQUEID
 MY-UNIQUEID.
IF NOT XML-OK GO TO Z.
STRING "mydir\a" DELIMITED BY SIZE
 MY-UNIQUEID DELIMITED BY SPACE
 ".xml" DELIMITED BY SIZE
 INTO MY-FILE-NAME.

State Management Statements
Calls to the following XML statements control several states or conditions, including:

• Compatibility between current and previous versions. The XML COMPATIBILITY
MODE (on page 56) statement allows version 12 of XML Extensions to be compatible
with existing data and applications.

• Initialization and termination. Before issuing a call to any other XML Extensions
statement, XML INITIALIZE (on page 63) must be called. (If XML INITIALIZE has
not been called, any subsequent calls, for example, XML EXPORT FILE, will fail.)
Similarly, XML TERMINATE (on page 67) should be called when the COBOL
application is finished using XML Extensions statements. (If XML TERMINATE has
not been called prior to program termination, there are no consequences.)

• Empty array occurrences. As an optimization, trailing “empty” occurrences of arrays
are normally not generated by the statements XML EXPORT FILE (on page 29) or XML
EXPORT TEXT (on page 31). Arrays in XML correspond to tables in COBOL. When
attributes are enabled by the statement XML ENABLE ATTRIBUTES (on page 59),
even embedded empty occurrences are suppressed in the exported array because the
attributes include the subscript, which allows proper positioning of the non-empty array
occurrences when imported into a COBOL table.

An empty occurrence of an array is defined to be one where the numeric items have a
zero value and the nonnumeric items have a value equivalent to all spaces. Optimizing
the output (via suppression) of empty occurrences is the default state and is equivalent to
calling XML DISABLE ALL-OCCURRENCES (on page 57). It is possible to force all

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 55

occurrences to be output by calling XML ENABLE ALL-OCCURRENCES (on page
58).

Further information on empty occurrences is provided in the topic Empty Occurrences
(on page 83).

• COBOL attributes. For each element generated by the statements, XML EXPORT
FILE (on page 29) or XML EXPORT TEXT (on page 31), there is a series of COBOL
attributes that describe that element.

The default state is not to output these attributes. However, it is sometimes necessary for
a following activity (such as an XSLT stylesheet transformation) to have access to these
attributes (specifically, length and subscript are often important to a follow-on activity).
Using XML DISABLE ATTRIBUTES (on page 58) prevents attributes from being
written (this is the default). Using XML ENABLE ATTRIBUTES (on page 59) forces
these attributes to be written.

• Document caching. XML documents, such as XSLT stylesheets, templates, and
schemas, are normally considered to be static during the use of a production version of
the application. That is, they are generated when the application is developed and are not
modified until the application is modified.

To optimize performance, when XML Extensions loads an XSLT stylesheet, a template,
or a schema, the document is cached (that is, retained in memory) for an indefinite period
of time. This is the default behavior. However, even with the default behavior, a
document in the cache may be flushed from memory if the cache is full and an XSLT
stylesheet, template, or schema document not already in the cache is required for the
current operation.

If XSLT stylesheets, templates, or schemas are being generated dynamically, the user
may selectively enable or disable caching. Executing XML ENABLE CACHE (on
page 60), which sets the default behavior, enables caching of documents. Executing
XML DISABLE CACHE (on page 58) disables caching, thus forcing all documents to be
loaded each time they are referenced. Executing XML FLUSH CACHE (on page 61)
flushes all documents and local memory from the cache without changing the state of
caching (that is, if caching was enabled it remains enabled). Executing any of the
following statements causes the contents of the cache to be flushed: XML INITIALIZE,
XML ENABLE CACHE, XML DISABLE CACHE, XML FLUSH CACHE, and XML
TERMINATE. Executing XML ENABLE CACHE, XML DISABLE CACHE, or XML
FLUSH CACHE also causes local memory to be flushed.

For more information, see Memory Management with XML Extensions (on page 28).

• CodeBridge flags. The data conversions performed by the statements, XML EXPORT
FILE (on page 29), XML EXPORT TEXT (on page 31), XML IMPORT FILE (on page
34), and XML IMPORT TEXT (on page 36), use the CodeBridge library (which is built
into the RM/COBOL runtime) to perform these conversions. By default, the following
CodeBridge flags are set: PF_TRAILING_SPACES, PF_LEADING_SPACES,
PF_LEADING_MINUS, and PF_ROUNDED.

Note The CodeBridge flags are C macros. They are case sensitive and require the use of
the underscore character in the C language. The file lixmldef.cpy defines corresponding
COBOL data-names that are case-insensitive and require the use of a hyphen, for
example, PF-Leading-Spaces, PF-Trailing-Spaces, PF-Leading-Minus, and PF-Rounded;
the XML Extensions COBOL program can use these flag names. Refer to the
CodeBridge User’s Guide manual for a more complete presentation of the CodeBridge
conversion library.

State Management Statements
Chapter 3: XML Extensions Statements Reference

56 XML Extensions User's Guide

XML GET FLAGS (on page 61) and XML SET FLAGS (on page 65) statements are
available to obtain or change, respectively, the conversion (CodeBridge) flags settings in
XML Extensions.

• Whitespace flags. The handling of whitespace by the statements XML IMPORT FILE
(on page 34) and XML IMPORT TEXT (on page 36) use the whitespace handling flags
built into XML Extensions. By default, the whitespace flags are set to WHITESPACE-
DEFAULT-FLAGS (value 0).

XML GET WHITESPACE-FLAGS (on page 62) and XML SET WHITESPACE-
FLAGS (on page 65) are available to obtain or change, respectively, the setting of the
whitespace flags. The XML Extensions handling of whitespace during import is
explained in the topic Handling Spaces and Whitespace in XML (on page 86).

• Internal character encoding. Characters within alphanumeric data elements in a
COBOL program are normally encoded using the conventions of underlying operating
systems. Under some conditions, it may be desirable to encode these same data items
using UTF-8 encoding. (UTF-8 is a format for representing Unicode.) XML SET
ENCODING (on page 63) is provided to switch between the local encoding format
and UTF-8.

Note Both the UNIX and Windows implementations of XML Extensions allow the in-
memory representation of element content to use UTF-8 encoding. This may be useful
for COBOL applications that wish to pass UTF-8-encoded data to other processes. XML
documents are normally encoded using Unicode. XML Extensions always generates
UTF-8 data. For more information, see COBOL and Character Encoding (on page 73)
and XML and Character Encoding (on page 85).

• Tracing. Trace information can be generated to a designated file using the XML
TRACE statement (on page 62).

• Stylesheet parameters. The passing of parameters to stylesheets can be controlled by
the statements XML SET XSL-PARAMETERS (on page 65) and XML CLEAR XSL-
PARAMETERS (on page 56).

XML CLEAR XSL-PARAMETERS
This statement has no parameters.

Description

The XML CLEAR XSL-PARAMETERS statement clears all sets of name/value pairs that
have been stored in XML Extensions by the XML SET XSL-PARAMETERS statement.

Example

XML CLEAR XSL-PARAMETERS.
IF NOT XML-OK GO TO Z.

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 57

XML COMPATIBILITY MODE
This statement has the following parameter:

Parameter Description

Flags A numeric integer literal or an identifier of a numeric integer data
item, the value of which is used to set the compatibility mode for
XML Extensions. Flag values are as follows:

0 = Compatibility mode is off.
1 = Compatibility mode is on.

Description

The XML COMPATIBILITY MODE statement allows version 12 XML Extensions to be
compatible with existing data and applications by inserting <root> as the top-level entry in a
document during an export operation. While versions of XML Extensions prior to version 12
required that <root> be the top-level element of a document, version 12 and later of XML
Extensions will tolerate either the presence or absence or the <root> element. The <root>
element (compatibility mode on) in version 12 is generally necessary only when external
stylesheets refer to the <root> element and the user does not wish to modify the stylesheets to
eliminate those references.

Example

XML COMPATABILITY MODE
 MY-FLAGS.
IF NOT XML-OK GO TO Z.

XML DISABLE ALL-OCCURRENCES
This statement has no parameters.

Description

The XML DISABLE ALL-OCCURRENCES statement causes unnecessary empty array
(COBOL table) occurrences not to be generated by the statements, XML EXPORT FILE (on
page 29) and XML EXPORT TEXT (on page 31). An empty array is one in which all
numeric elements have a zero value and all nonnumeric elements have a value of all spaces.

There is some interoperation with the statements, XML DISABLE ATTRIBUTES (on
page 58) and XML ENABLE ATTRIBUTES (on page 59). If attributes are enabled (that is,
XML ENABLE ATTRIBUTES has been called), then all empty occurrences are not
generated. If attributes are disabled (the default state or if XML DISABLE ATTRIBUTES
has been used), then all trailing empty occurrences are not generated. If attributes are
enabled, then the subscript is present and so leading, or intermediate, empty occurrences are
not needed as placeholders to ensure that the correct subscript is calculated.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

State Management Statements
Chapter 3: XML Extensions Statements Reference

58 XML Extensions User's Guide

Example

XML DISABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

XML DISABLE ATTRIBUTES
This statement has no parameters.

Description

The XML DISABLE ATTRIBUTES statement causes the COBOL attributes of an XML
element to be omitted from an exported XML document. This is the default state.

See XML DISABLE ALL-OCCURRENCES (on page 57) regarding the behavior of array
(COBOL table) output when attributes are enabled or disabled.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML DISABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

XML DISABLE CACHE
This statement has no parameters.

Description

The XML DISABLE CACHE statement disables the caching of XSLT stylesheets, templates,
and schemas. Besides disabling caching, executing this statement also flushes the document
cache as well as local memory.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML DISABLE CACHE.
IF NOT XML-OK GO TO Z.

XML ENABLE ALL-OCCURRENCES
This statement has no parameters.

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 59

Description

The XML ENABLE ALL-OCCURRENCES statement causes all occurrence of an array
(COBOL table) to be generated by the statements, XML EXPORT FILE (on page 29) and
XML EXPORT TEXT (on page 31), regardless of the content of the array.

All occurrences of an array are generated regardless of whether attributes are enabled or
disabled.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML ENABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

XML ENABLE ATTRIBUTES
This statement has no parameters.

Description

The XML ENABLE ATTRIBUTES statement causes the COBOL item descriptions of an
XML element to be generated in an exported XML document. The specific COBOL
attributes are summarized in Table 2: Exported Attributes.

See XML DISABLE ALL-OCCURRENCES (on page 57) regarding the behavior of COBOL
table (XML array) output when attributes are enabled or disabled.

Some of the COBOL attributes (such as length and subscript) may be useful to an external
XSLT stylesheet.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Table 2: Exported Attributes

Attribute Name Description of Attribute Value

cobtoxmlRevision The value is “1.0” in all versions of XML Extensions; the value may
differ in a future version of XML Extensions. This attribute is exported
only once per document on the top level element.

compiledTimeStamp The value is a string that specifies the timestamp of the compilation that
produced the XML symbol table used during the export. This attribute is
exported only once per document on the top level element.

kind The value is a string from the enumeration “ABS”, “ABSE”, “ABSR”,
“ANS”, “ANSE”, “ANSR”, “GRP”, “NBS”, “NBSN”, “NBU”,
“NBUN”, “NBUX”, “NCS”, “NCU”, “NLC”, “NLS”, “NPP”, “NPS”,
“NPU”, “NSE”, “NSU”, “NTC”, “NTS”, “NTU”.

length An integer specifying the length of the COBOL data item.

State Management Statements
Chapter 3: XML Extensions Statements Reference

60 XML Extensions User's Guide

Table 2: Exported Attributes

Attribute Name Description of Attribute Value

dependingIdRef This attribute is exported in XML Extensions v12. The value specifies a
string identifying, by its unique identifier, the OCCURS DEPENDING
ON data item for a variable occurrence table. (In XML Extensions v11,
this attribute had the name uidref.)

maxOccurs An integer specifying the maximum number of occurrences. This
attribute is exported only for COBOL table items, that is, items that are
described with the OCCURS clause.

minOccurs An integer specifying the minimum number of occurrences. This
attribute is exported only for COBOL table items, that is, items that are
described with the OCCURS clause.

offset An integer specifying the offset of the COBOL data item within the
program. (To obtain the structure-relative offset, the offset attribute
value of the first element of the exported group must be subtracted.)

precision An integer that specifies the number of digits in a data item. This
attribute is only present for the export of a COBOL numeric or numeric
edited data item. The integer is always positive. The symbol P in the
PICTURE character-string is not counted in the precision.

scale An integer that specifies the number of digits to the right of the decimal
point in a data item. This attribute is only present for the export of a
COBOL numeric or numeric edited data item. If the value is “0”, the
data item is an integer. The value is negative if the COBOL data item is
described with the PICTURE character-string symbol P to the left of the
assumed decimal point; for example, 9(4)PPV has a precision of 4 and a
scale of -2. Since symbol P in the COBOL data description is not
counted in the precision, it can cause the scale to be larger than the
precision; for example, VPPP9(5) has a precision of 5 and a scale of 8.

span An integer specifying the length of a COBOL occurrence. This attribute
is exported only for COBOL table items, that is, items that are described
with the OCCURS clause. The integer specifies the number of bytes
from one occurrence to the next.

subscript An integer specifying the subscript for a COBOL data item in a table.

type A string specifying the type of the COBOL data item and the
corresponding exported XML element as a string or a numeric from the
enumeration “xsd:string” or “xsd:decimal”, respectively.

uid The unique identifier for the COBOL data item. The value is a string
that can be used to uniquely reference the data item without need for
qualification. The unique identifier strings are assigned when the
compiler builds the symbol table used by XML Extensions.

Example

XML ENABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

XML ENABLE CACHE
This statement has no parameters.

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 61

Description

The XML ENABLE CACHE statement enables the caching of XSLT stylesheets, templates,
and schemas, and flushes the document cache and local memory immediately, even if
document caching was already enabled.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML ENABLE CACHE.
IF NOT XML-OK GO TO Z.

XML FLUSH CACHE
This statement has no parameters.

Description

The XML FLUSH CACHE statement flushes the cache of XSLT stylesheet, templates, and
schema documents, and flushes the document cache and local memory. The enabled or
disabled state of caching is not changed by this statement.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML FLUSH CACHE.
IF NOT XML-OK GO TO Z.

XML GET FLAGS
This statement has the following parameter:

Parameter Description

Flags An identifier of a numeric integer data item where the current data
conversion flag settings are to be stored upon successful
completion of the statement.

Description

The XML GET FLAGS statement retrieves the current setting of the XML Extensions flags
that are used for internal data conversion. Valid flag values are specified in the copy file,
lixmldef.cpy. The initial setting of the flags has the following flag values set: PF-Leading-
Spaces, PF-Trailing-Spaces, PF-Leading-Minus, and PF-Rounded. The setting of the flags
can be changed with the XML SET FLAGS statement.

State Management Statements
Chapter 3: XML Extensions Statements Reference

62 XML Extensions User's Guide

Note These flag values are 78-level constants. They are case insensitive and require the use
of the hyphen character.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML GET FLAGS
 MY-FLAGS.
IF NOT XML-OK GO TO Z.

XML GET STATUS-TEXT
This statement has no named parameters.

Description

Upon completion of an XML statement, any errors or warnings will cause one or more lines
of descriptive text to be placed in a queue. The XML GET STATUS-TEXT statement fetches
the next available line of descriptive text. This status text give additional information beyond
the error or warning number itself.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy. The following condition names are also described in this copy file:

• XML-IsSuccess. A successful completion occurred (no informative, warning, or error
messages).

• XML-OK. An OK (or satisfactory) completion occurred, including informative or
warning messages.

• XML-IsDirectoryEmpty. An informative status indicating that XML FIND FILE
(see page 52) found no XML documents in the indicated directory.

An example of processing the status information in this item is found below and in the copy
file, lixmldsp.cpy. It is recommended that an XML Extensions application fetch all the
additional text lines when the XML status is not XML-IsSuccess. These text lines should
be displayed or logged for diagnosing the problem, as demonstrated here.

Example

Display-Status.
 If Not XML-IsSuccess
 Perform With Test After Until XML-NoMore
 XML GET STATUS-TEXT
 Display XML-StatusText
 End-Perform
 End-If.

Note In the lixmldef.cpy copy file, the definition of the XML-StatusText field may be
edited from the default of 80 to change the size of the buffer used to contain XML status
information. See Displaying Status Information (on page 79).

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 63

XML GET WHITESPACE-FLAGS
This statement has the following parameter:

Parameter Description

WhitespaceFlags An identifier of a numeric integer data item where the current
whitespace flag settings are to be stored upon successful
completion of the statement.

Description

The XML GET WHITESPACE-FLAGS statement retrieves the setting of the XML
Extensions flags that are used for whitespace handling during import. Valid flag values are
specified in the copy file, lixmldef.cpy. The initial setting of the flags is WHITESPACE-
DEFAULT-FLAGS (value 0). The XML SET WHITESPACE-FLAGS statement (on page
65) description lists and describes the possible whitespace flags settings.

Note The whitespace flag values are provided as 78-level constant-names in lixmldef.cpy.
The names are case insensitive and require the use of the hyphen character.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML GET WHITESPACE-FLAGS
 WHITESPACE-FLAGS-SAVE.
IF NOT XML-OK GO TO Z.

XML INITIALIZE
This statement has no parameters.

Description

The XML INITIALIZE statement opens a session with XML Extensions. It ensures that the
RM/COBOL runtime system is the required version (12 or greater) and retrieves required
information from the runtime system. RM/COBOL runtime version 12 or greater is required
because information needed by XML Extensions is not available in prior runtime versions.
The underlying XML parser is also initialized.

The execution of this statement causes the document cache to be flushed from memory.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy. Errors can occur if the RM/COBOL runtime version is not 12 or greater,
or the underlying XML parser initialization fails. It is not considered an error to execute an
XML INTIALIZE statement when XML Extensions has already been initialized and not
terminated.

State Management Statements
Chapter 3: XML Extensions Statements Reference

64 XML Extensions User's Guide

Example

XML INITIALIZE.
IF NOT XML-OK GO TO Z.

XML SET ENCODING
This statement has the following parameter:

Parameter Description

Encoding A nonnumeric literal or an identifier of an alphanumeric data item,
the value of which must be either 'local' or 'utf8'. If the value is
"local", then the character encoding used by the operating system is
used. If the value is 'utf8', then the data is treated as UTF-8
encoded. The parameter value is case insensitive. Any hyphen and
underscore characters are optional. For example, 'LOCAL', 'Local',
and 'local' are equivalent. 'UTF-8', 'Utf_8', and 'utf8' are also
equivalent.

Description

The XML SET ENCODING statement allows the developer to specify the character encoding
of data within a COBOL data structure. The developer may use this statement to switch
between the local character encoding and UTF-8. On Windows, the local character encoding
matches the native character set of the runtime; that is, it is specified by the Windows ANSI
code page or Windows OEM code page depending on the native character set of the runtime
system (see the RM/COBOL User’s Guide for how to select the native character set for the
runtime system). On UNIX, the local character encoding is specified by the value of the
RM_ENCODING environment variable, with a default of RM_LATIN_9 if the variable is not
defined.

Note If the value of the Encoding parameter specifies “utf8”, the RM_ENCODING
environment variable (on page 73) is ignored. For more information on this environment
variable, see COBOL and Character Encoding (on page 73).

Although the XML SET ENCODING statement does not affect the character encoding of the
XML document, it does affect the character encoding of the data in the COBOL program. For
more information, see Data Representation (on page 73).

The XML SET ENCODING statement returns an error status value if the value of the
Encoding parameter is not recognized.

Example

XML SET ENCODING "local".
IF NOT XML-OK GO TO EXIT-1.

The default value is “local”. If XML SET ENCODING is never called, the default is used.

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 65

XML SET FLAGS
This statement has the following parameter:

Parameter Description

Flags A numeric integer literal or an identifier of a numeric integer data
item, the value of which is used to set the data conversion flags for
XML Extensions. These flags are a subset of the flags defined for
CodeBridge.

Description

The XML SET FLAGS statement establishes the setting of the XML Extensions flags that are
used for internal data conversion. Valid flag values are specified in the copy file,
lixmldef.cpy. The initial setting of the flags has the following flag values set: PF-Leading-
Spaces, PF-Trailing-Spaces, PF-Leading-Minus, and PF-Rounded.

Note These flag values are 78-level constants. They are case insensitive and require the use
of the hyphen character.

XML Extensions uses CodeBridge and these flags are the same as the CodeBridge flags. The
flags settings are used by XML Extensions when using CodeBridge to get data from the
COBOL program, as in export to an XML document, and to put data into the COBOL
program data area, as in import from an XML document. The flag settings for XML
Extensions will not affect the CodeBridge flags for the application when it also uses
CodeBridge for its own purposes in calling C subprograms.

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Example

XML SET FLAGS PF-TRAILING-SPACES
IF NOT XML-OK GO TO Z.

XML SET WHITESPACE-FLAGS
This statement has the following parameter:

Parameter Description

WhitespaceFlags A numeric integer literal or an identifier of a numeric integer data
item, the value of which is used to set the whitespace flags for
XML Extensions.

Description

The XML SET WHITESPACE-FLAGS statement establishes the setting of the flags that are
used for whitespace handling during import. Valid flag values are specified in the copy file,
lixmldef.cpy. The initial setting of the flags is WHITESPACE-DEFAULT-FLAGS (value 0).

Note The flag values are provided as 78-level constant-names in lixmldef.cpy. The names
are case insensitive and require the use of the hyphen character.

State Management Statements
Chapter 3: XML Extensions Statements Reference

66 XML Extensions User's Guide

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy.

Whitespace Flags

The lixmldef.cpy file defines the following whitespace flags constant-names, which can be
combined in various ways and have the described purpose.

• WHITESPACE-DEFAULT-FLAGS (value 0) – No flags set, which is the default when
XML Extensions is first initialized and after termination (in case another initialization is
done). When the whitespace flags have the default value, no characters, including
whitespace characters, are removed when importing data from an XML document into
the COBOL data items. This constant-name can be used to set the flags back to their
default value.

• WHITESPACE-STRIP-CONTROL (value 1) – On import, strips all characters less than
space as in the 2009 – 2014 XML Extensions implementation, unless one of the preserve
flags is set.

• WHITESPACE-PRESERVE-TAB (value 16) – When stripping control characters,
preserve any TAB characters for import.

• WHITESPACE-PRESERVE-LF (value 32) – When stripping control characters, preserve
any LF characters for import.

• WHITESPACE-PRESERVE-CR (value 64) – When stripping control characters,
preserve any CR characters for import. (Note that XML parsers normally translate any
CR/LF sequences and any CR not followed by LF to a single LF; thus, CR characters are
not normally present and cannot be preserved by this flag setting.)

• WHITESPACE-NORMALIZE (value 65536) – On import, collapse any whitespace
character sequences (space, LF, TAB or CR) to a single space character. The
WHITESPACE-STRIP-CONTROL flag, if set, takes precedence over this flag and this
flag, if set, will be ignored in that case.

An example of a meaningful combination of these flags would be 49 as defined by:
78 WHITESPACE-PRESERVE-TAB-LF value
 WHITESPACE-STRIP-CONTROL +
 WHITESPACE-PRESERVE-TAB +
 WHITESPACE-PRESERVE-LF.

Please note that these flags do not apply when using revision 1.0 model template files from
version 11 XML Extensions; for those model template files, only the default flag setting is
applicable.

Example

XML SET WHITESPACE-FLAGS
 WHITESPACE-NORMALIZE.
IF NOT XML-OK GO TO Z.

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 67

XML SET XSL-PARAMETERS
This statement has the following parameter:

Parameter Description

Parameter list Literals or identifiers of data items, which comprise a list of name
and value in pairs and containing at least one name/value pair to be
used whenever transform operations are performed. Names in the
list must be nonnumeric and must correspond to parameter names
specified in the XSLT stylesheet to have any effect. Values in the
list can be numeric or nonnumeric.

Description

The XML SET XSL-PARAMETERS statement passes a list of name/value pairs to XML
Extensions, where they are stored until one of the following occurs:

• They are replaced by a subsequent execution of an XML SET XSL-PARAMETERS
statement.

• They are cleared by executing an XML CLEAR XSL-PARAMETERS statement.

• They are cleared by flushing the cache (the statements XML INITIALIZE, XML
ENABLE CACHE, XML DISABLE CACHE, XML FLUSH CACHE, and XML
TERMINATE all clear the cache).

• The COBOL run-unit terminates.

The saved parameters are used whenever any of the following transform operations occur:

• The XML TRANSFORM FILE statement is executed.

• The XML EXPORT FILE, XML EXPORT TEXT, XML IMPORT FILE, or XML
IMPORT TEXT statements reference an optional stylesheet.

A maximum of 20 name/value pairs may be specified. If more than 20 pairs are specified or
the parameters are not specified as pairs, an error will be reported.

Example

XML SET XSL-PARAMETERS
 "MY-COUNT", 7.
IF NOT XML-OK GO TO Z.

XML TERMINATE
This statement has no parameters.

Description

The XML TERMINATE statement flushes the document cache and closes a session with
XML Extensions. The interface to the underlying XML parser is also closed. Any memory
blocks that were allocated by XML Extensions are freed.

State Management Statements
Chapter 3: XML Extensions Statements Reference

68 XML Extensions User's Guide

A status value is returned in the data item XML-data-group, which is defined in the copy
file, lixmldef.cpy. Errors can occur under the following circumstances:

The calls to free memory fail.

The underlying XML parser termination fails.

It is not considered an error to execute an XML TERMINATE statement when XML
Extensions has not been initialized or has already been terminated.

Example

XML TERMINATE.
IF NOT XML-OK GO TO Z.

XML TRACE
This statement has the following parameters:

Parameter Description

Flags A numeric integer literal or an identifier of a numeric integer data
item, with one of the following values:

0 = Turn tracing off and keep any existing trace file.
1 = Turn tracing on and keep any existing trace file.
2 = Turn tracing off and delete any existing trace file.
3 = Turn tracing on and delete any existing trace file.

The XML Extensions definitions copy file lixmldef.cpy defines
the constant-names XMLTraceOffV (0), XML-TraceOnAppendV
(1) and XMLTraceOnReplaceV (3) as a convenience for setting the
trace flags.

[FileName] Optional. A nonnumeric literal or an identifier of an alphanumeric
data item, the value of which specifies the name of the trace file. If
omitted, a value of "XMLTrace.log" is assumed.

Description

The XML TRACE statement generates trace information to a designated file. The statement
name and parameter values (as well as the calling program name and the time executed) are
recorded on entry to the function that implements an XML statement. Updated parameter
values are displayed upon exit from the function that implements an XML statement.

Examples

Without Trace File Parameter:

XML TRACE
 MY-FLAGS.
IF NOT XML-OK GO TO Z.

State Management Statements
Chapter 3: XML Extensions Statements Reference

 XML Extensions User's Guide 69

Showing Optional Trace File Parameter:

XML TRACE
 MY-FLAGS
 MY-TRACE-FILE.
IF NOT XML-OK GO TO Z.

Showing Trace Output File Content:

XMLTrace – entry
 TraceFlags[3 = 0x3]
 TraceFileName[Test01.log]
 -->Date-Time: Fri Feb 9 11:53:15 2018
 Called XML TRACE from line 1657 in TEST01(C:\Test01.COB), compiled 2018/01/04
13:43:50.
XMLTrace – exit
 Status[0000]
 TraceFlags[3 = 0x3]
 FullTraceFileName[C:\Test01Dir\Test01.log]
XMLSetVersion - entry
 COBOLVersion[12]
XMLSetVersion - exit
 XMLIFVersion[12]
XMLInitialize - entry
 Initialized[FALSE]
 -->Date-Time: Fri Feb 9 11:53:15 2018
 Called XML INITIALIZE from line 1662 in
TEST01(C:\Liant\w1\tests\xmltest\code\TEST01.COB), compiled 2018/01/04
13:43:50.
XMLInitialize - exit
 Status[0000]
 CodePage[1 = OEM]
XMLExportFile - entry
 DocumentName[Test01.xml]
 ModelFileDataName[input\Test01.xtl]
 StylesheetName[]
 -->Date-Time: Fri Feb 9 11:53:15 2018
 Called XML EXPORT FILE from line 1664 in
TEST01(C:\Liant\w1\tests\xmltest\code\TEST01.COB), compiled 2018/01/04
13:43:50.
XMLExportFile - exit
 Status[7400]
 FullDocumentName[C:\Liant\w1\tests\xmltest\Test01.xml]
 FullModelFileName[C:\Liant\w1\tests\xmltest\input\Test01.xtl]
 ModelDataName[bis-request-data]
 FullStylesheetName[]
XMLTerminate - entry
 Initialized[TRUE]
 -->Date-Time: Fri Feb 9 11:53:16 2018
 Called XML TERMINATE from line 1688 in
TEST01(C:\Liant\w1\tests\xmltest\code\TEST01.COB), compiled 2018/01/04
13:43:50.
XMLTerminate - exit
 Status[0000]
XMLTrace - entry
 TraceFlags[0 = 0x0]

State Management Statements
Chapter 3: XML Extensions Statements Reference

70 XML Extensions User's Guide

 TraceFileName[]
 -->Date-Time: Fri Feb 9 11:53:16 2018
 Called XML TRACE from line 1690 in
TEST01(C:\Liant\w1\tests\xmltest\code\TEST01.COB), compiled 2018/01/04
13:43:50.
XMLTrace - exit
 Status[0000]
 TraceFlags[0 = 0x0]
 FullTraceFileName[C:\Test01Dir\Test01.log]

File Management
Chapter 4: COBOL Considerations

 XML Extensions User's Guide 71

Chapter 4: COBOL
Considerations

This chapter provides information specific to using RM/COBOL when developing an
XML-enabled application. The primary topics discussed in this chapter include the following:

• File management (see the following topic)

• Data conventions (on page 72)

• Copy files (on page 78)

• Limitations (on page 81)

• Optimizations (on page 83)

File Management
The management of data files when using XML Extensions is similar, but not identical, to
other RM/COBOL data file management issues. These issues include the following:

• Automatic search for files (as discussed below)

• File naming conventions (on page 72)

Automatic Search for Files
During development with XML Extensions, remember the following points when searching
for a file not found in the current working directory:

• The RM/COBOL runtime support for resolving leading or subsequent names in a path
name is not provided by XML Extensions when locating files. That is, XML Extensions
does not honor the RESOLVE-LEADING-NAME or RESOLVE-SUBSEQUENT-
NAMES keywords of the RUN-FILES-ATTR configuration record.

• If the RUNPATH environment variable contains UNC references (directory names
beginning with “//” or “\\”), XML Extensions will skip those names. UNC references
typically refer to foreign file systems that are accessed through RM/InfoExpress. These
names are skipped in order to avoid server performance degradation.

Data Conventions
Chapter 4: COBOL Considerations

72 XML Extensions User's Guide

• The RUNPATH environment variable is also searched to locate input XML data
document files and all external XSLT stylesheet files.

File Naming Conventions
File extensions are either used “as is” or forced to be a predetermined value. The conventions
governing particular filename extensions when using XML Extensions are described in the
topics that follow.

Note A filename extension is never added if the filename is a URL; that is, the filename
begins with “http://“,“https://“, or “file://”.

External XSLT Stylesheet File Naming Conventions

External XSLT stylesheets may be referenced by XML Extensions. If the filename parameter
supplied by the COBOL program does not contain an extension, the value .xsl is added to the
filename.

XML Extensions uses the RUNPATH environment variable to locate an external XSLT
stylesheet file (with the .xsl extension added) except when:

• the external XSLT stylesheet filename parameter supplied by the COBOL program
contains a directory separator character (such as “\” on Windows);

• the file exists; or

• the filename is a URL (the name begins with “http://”, “https://”, or “file://”).

Other Input File Naming Conventions

All other input files referenced by XML Extensions will have a value of .xml added if the
filename parameter supplied by the COBOL program does not contain an extension. No
RUNPATH environment variable search is applied.

Other Output File Naming Conventions

All other output files referenced by XML Extensions will have a value of .xml added if the
filename parameter supplied by the COBOL program does not contain an extension. No
RUNPATH environment variable search is applied.

If the filename supplied by the COBOL program is a URL, then an error is returned because it
is not possible to write directly to a URL.

Data Conventions
In XML Extensions, several suppositions have been made about data transformations between
COBOL and XML, including those relating to the following issues:

• Data representation (as discussed below)

• FILLER data items (on page 75)

Data Conventions
Chapter 4: COBOL Considerations

 XML Extensions User's Guide 73

• Missing intermediate parent names (on page 75)

• Sparse COBOL records (on page 77)

Data Representation
COBOL numeric data items are represented in XML as numeric strings. A leading minus
sign is added for negative values. Leading zeros (those appearing to the left of the decimal
point) are removed. Trailing zeros (those appearing to the right of the decimal point) are
likewise removed. If the value is an integer, no decimal point is present.

COBOL nonnumeric data items are represented as text strings and have trailing spaces
removed (or leading spaces, if the item is described with the JUSTIFIED phrase). Note,
however, that in edited data items (on page 82), leading and trailing spaces are preserved. In
addition, any embedded XML special characters are represented by escape sequences; the
ampersand (&), less than (<), greater than (>), quote (”), and apostrophe (‘) characters are
examples of such XML special characters.

Note For more information, see Handling Spaces and Whitespace in XML (on page 86).

On Windows platforms, nonnumeric displayable data are normally encoded using Microsoft’s
OEM or ANSI data format. On output, these data are converted to the standard Unicode 8-bit
transformation format, UTF-8. On input, data is converted to the OEM or ANSI data format.
If the XML SET ENCODING statement (on page 63) is used to specify “UTF-8”, then the
internal data format is UTF-8. For more information, see the discussion of Windows
Character Encoding (on page 74).

On UNIX platforms, nonnumeric displayable data are normally encoded using a “local”
character encoding that the UNIX system uses. Typically, this may be Latin-1 or Latin-9.
On output, these data are converted to the standard Unicode 8-bit transformation format,
UTF-8. On input, data is converted to the systems internal format. If the XML SET
ENCODING statement is used to specify “UTF-8”, then the internal data format is UTF-8.
For more information on selecting an appropriate “local” character encoding, refer to the
discussion of UNIX Character Encoding (on page 74).

COBOL and Character Encoding

XML Extensions uses UTF-8 character encoding for exporting XML documents. (UTF-8 is a
byte-oriented encoding form of Unicode that has been designed for ease-of-use with existing
ASCII-based systems.) Imported documents are interpreted according to the character
encoding specified in the XML header, resulting in an internal Unicode representation of the
characters. Because XML is Unicode-based and RM/COBOL is not, a transcoding is
generally required when moving character data between COBOL and XML. XML
Extensions supports various means of specifying the transcoding that should occur in these
cases. The following sections have related information regarding character encoding
considerations.

RM_ENCODING Environment Variable

The RM_ENCODING environment variable is used to specify the “local” character encoding
on UNIX. This environment variable is ignored if the XML SET ENCODING statement (on
page 63) sets the encoding to UTF-8.

Data Conventions
Chapter 4: COBOL Considerations

74 XML Extensions User's Guide

Windows Character Encoding

Under Windows, the RM/COBOL runtime uses OEM or ANSI character encoding.
Therefore, the Windows implementation of XML Extensions also supports OEM or ANSI
character encoding for local character encoding. The RM_ENCODING environment variable
is ignored by the Windows implementation of XML Extensions.

Note Microsoft originally introduced OEM character encoding for MS-DOS. While there are
multiple OEM code pages in use, the Windows operating system provides interfaces that
allow conversion between the OEM code page in use and Unicode. XML Extensions does
not need to differentiate between code pages. In version 9 and later of the runtime system, the
ANSI code page can be selected as the native character set, in which case, XML Extensions
uses the ANSI code page in use for the conversion to/from Unicode when using the local
character encoding.

UNIX Character Encoding

On UNIX systems, the RM/COBOL runtime is normally not concerned with the data
encoding used by the underlying operating system. Micro Focus, however, has decided that
Latin-1 (ISO-8859-1) is important for the U.S. and that Latin-9 (ISO-8859-15) is significant
for Western Europe because it contains the Euro currency symbol. The local encoding is
required when converting to or from UTF-8 in the XML document.

The RM_ENCODING environment variable (on page 73) may specify the built-in and
predefined values of RM_LATIN_1 or RM_LATIN_9. These values are used to designate
that either Latin-1 or Latin-9 is being used as the local character encoding. Internal
translation functions convert between either Latin-1 or Latin-9 (in COBOL memory) and
UTF-8 (in the XML document). The value of the environment variable is case insensitive,
with hyphen and underscore characters being optional. For example, “RM_LATIN_9”,
“Rm-Latin-9”, and “rmlatin9” are equivalent. Further,

• Latin-1 local encoding can be specified with the values MF_LATIN_1 (mflatin1),
XML_EXT_LATIN_1 (xmlextlatin1) or BUILT_IN_LATIN_1 (builtinlatin1) as
alternatives to the value RM_LATIN_1.

• Latin-9 local encoding can be specified with the values MF_LATIN_9 (mflatin9),
XML_EXT_LATIN_9 (xmlextlatin9) or BUILT_IN_LATIN_9 (builtinlatin9) as
alternatives to the value RM_LATIN_9.

If the value of the RM_ENCODING environment variable is not specified, then Latin_9 is
used as the default local encoding on UNIX.

If the value of the RM_ENCODING environment variable is specified with a value that is not
one of the known values described in the preceding paragraph, then the value that is passed
must be a name recognized by the iconv library. The iconv library can perform other
conversions. In this case, the spelling may need to be exact (for example, the value may be
case sensitive, and hyphens and underscores would be required). The exact spelling of the
value of the RM_ENCODING environment variable is specific to the iconv library on the
platform in use.

Note Micro Focus does not provide an iconv library. The developer must acquire an
appropriate package.

The value of the RM_ICONV_NAME environment variable, if one is defined, is used to
locate the iconv library (which must be a shared object) on the local system. For example:

RM_ICONV_NAME=/usr/local/bin/libiconv.so

Data Conventions
Chapter 4: COBOL Considerations

 XML Extensions User's Guide 75

If the RM_ICONV_NAME environment variable is not set, then the PATH environment
variable is searched for either of the specific names, iconv.so or libiconv.so (in that order).

FILLER Data Items
Unnamed data description entries, referred to as FILLER data items in this section, may be
used to generate XML text without starting a new XML element name. Specifying named
and unnamed elementary data items subordinate to a named group generates XML mixed
content for an element named by the group name.

Numeric FILLER data items will not reliably produce well-formed XML sequences. For this
reason, FILLER data items should always be nonnumeric PIC X or PIC A.

For example, the following COBOL sequence:

01 A.
 02 FILLER Value "ABC".
 02 B Pic X(5) Value "DEF".
 02 FILLER Value "GHI".

generates the following well-formed XML sequence:

<a>ABCDEFGHI

FILLER data items, however, are treated differently than named data. All leading and/or
trailing spaces are preserved, so that the length of the data is the same as the COBOL data
length. For more information, see Handling Spaces and Whitespace in XML (on page 86).

Embedded XML special characters are escaped with character references, just as in named
data items.

Missing Intermediate Parent Names
A capability for handling missing intermediate parent names has been included to make
programs that deal with “flattened” data items, such as Web services, less complicated.

Sometimes it is possible for XML Extensions to reconstruct missing intermediate parent
names in a COBOL data structure. These missing names may be generated in either of
two ways:

• Unique element names (on page 75). Use this technique to determine whether the
element name is unique.

• Unique identifier (on page 76). Use this method to determine whether the unique
identifier (uid) attributes of the element name are provided. If this is true, then the
intermediate parent names may also be generated.

Unique Element Names

Consider the following COBOL data structure:

Data Conventions
Chapter 4: COBOL Considerations

76 XML Extensions User's Guide

01 Full-Address.
 02 Name Pic X(64).
 02 Address-1 Pic X(64).
 02 Address-2 Pic X(64).
 02 Address-3.
 03 City Pic X(32).
 03 State Pic X(2).
 03 Zip Pic 9(5).

A well-formed and valid XML document that could be imported into this structure is shown
below:

<?xml version="1.0" encoding="UTF-8" ?>
<full-address>
 <name>Micro Focus</name>
 <address-1>8310 North Capital of Texas Highway</address-1>
 <address-2>Building 1, Suite 155</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78731</zip>
 </address-3>
</full-address>

A well-formed (but not valid for the schema produced by XML Extensions for the above
COBOL data structure) “flattened” version of an XML document that could also be imported
into this structure is displayed here:

<?xml version="1.0" encoding="UTF-8" ?>
<full-address>
 <name>Wild Hair Corporation</name>
 <address-1>8911 Hair Court</address-1>
 <address-2>Sweet 4300</address-2>
 <city>Lostin</city>
 <state>TX</state>
 <zip>70707</zip>
</full-address>

Unique Identifier

The unique identifier (uid) attribute is generated by an XML EXPORT FILE (on page 29) or
XML EXPORT TEXT (on page 31) statement if XML attributes are enabled. Attributes may
be enabled by using the XML ENABLE ATTRIBUTES statement (on page 59) before the
XML EXPORT statements.

Using the same COBOL data structure illustrated for unique element names (described in the
previous section), a well-formed XML document (generated by XML EXPORT), which
contains attributes—including uids—that could be imported into this structure is shown
below:

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP"
 compiledTimeStamp="2017-05-14T10:57:22" slicesxyRevision="1.0">
 <full-address type="nonnumeric" kind="GRP" length="239" offset="4"
 uid="Q1">
 <name type="nonnumeric" kind="ANS" length="64" offset="4"

Data Conventions
Chapter 4: COBOL Considerations

 XML Extensions User's Guide 77

 uid="Q2">Micro Focus</name>
 <address-1 type="nonnumeric" kind="ANS" length="64" offset="68"
 uid="Q3">8310 North Capital of Texas Highway</address-1>
 <address-2 type="nonnumeric" kind="ANS" length="64" offset="132"
 uid="Q4">Building 1, Suite 4300</address-2>
 <address-3 type="nonnumeric" kind="GRP" length="39" offset="196"
 uid="Q5">
 <city type="nonnumeric" kind="ANS" length="32" offset="196"
 uid="Q6">Austin</city>
 <state type="nonnumeric" kind="ANS" length="2" offset="228"
 uid="Q7">TX</state>
 <zip type="numeric" kind="NSU" length="5" offset="230" scale="0"
 precision="5" uid="Q8">78731</zip>
 </address-3>
 </full-address>
</root>

A well-formed “flattened” version of an XML document that could also be imported into this
structure is displayed below. The uid attributes were captured from an XML document (such
as the one shown previously) that was generated by an XML EXPORT statement. These
attributes may be captured by an XSLT stylesheet or other process, and then added again
before the XML IMPORT FILE (on page 34) or XML IMPORT TEXT (on page 36)
statement. This is accomplished by combining the element name and the uid attribute value
to form a new element name. For example, <name uid=“Q2”>, could be used to generate a
new element name “name.Q2”.

<?xml version="1.0" encoding="UTF-8" ?>
<full-address>
 <name uid="Q2">>Wild Hair Corporation</name>
 <address-1 uid="Q3">>8911 Hair Court</address-1>
 <address-2 uid="Q4">>Sweet 4300</address-2>
 <city uid="Q6">Lostin</city>
 <state uid="Q7">TX</state>
 <zip uid="Q8">70707</zip>
</full-address>

Sparse COBOL Records
An input XML document need not contain all data items defined in the original structure.
This applies to both scalar and array elements. In order to place array elements correctly, a
subscript must be supplied when array elements are not in canonical order.

For example, the following XML document uses the subscript attribute to position the array to
the second element and then to the fourth element.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1 subscript="2">
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1 subscript="4">
 <x>D</x>
 <n>4</n>
 </table-1>
]

Copy Files
Chapter 4: COBOL Considerations

78 XML Extensions User's Guide

 </data-table>
</root>

When a subscript attribute is not present, array elements are imported into consecutive
occurrences in the COBOL table in the order they appear in the XML document. The
subscript attribute is provided in XML documents produced by the XML Extensions
statements XML EXPORT FILE and XML EXPORT TEXT when attributes are enabled by
the XML ENABLE ATTRIBUTES statement. XML documents produced by means other
than XML Extensions may need to supply a subscript attribute, which could require a
transform stylesheet be applied during or before the import by XML Extensions.

Copy Files
Under most circumstances, you should make use of the copy files that are provided in XML
Extensions. Various points to consider, however, when using copy files with XML
Extensions include the following:

• Statement definitions (as discussed in the following topic)

• REPLACE statement considerations (on page 78)

• Displaying status information (on page 79)

• Application termination (on page 80)

Statement Definitions
The copy file, lixmlall.cpy, is required to define the XML statements and to define some
data-items that are referenced. This copy file should be copied at the beginning of the
Working-Storage Section of the source program. This copy file copies the remaining copy
files used by XML Extensions. In general, do not modify or edit the contents of this copy file
or the copy files that it copies (lixmdef.cpy and lixmlrpl.cpy).

REPLACE Statement Considerations
The copy file, lixmlall.cpy, contains a REPLACE statement to define the XML statements. A
COBOL REPLACE statement overrides any lexically preceding REPLACE statement. Thus,
in cases where the user’s program contains a REPLACE statement, it may not be possible to
use the lixmlall.cpy file. For this reason, the lixmlrpl.cpy copy file, which is copied by the
lixmlall.cpy file, is provided as part of XML Extensions. The lixmlrpl.cpy file contains the
operands of the REPLACE statement needed to define the XML statements, but not the
REPLACE statement itself. Accordingly, the user’s REPLACE statement may be augmented
by copying lixmlrpl.cpy into the REPLACE statement as follows:

Copy Files
Chapter 4: COBOL Considerations

 XML Extensions User's Guide 79

REPLACE
 *> Include user’s replacements here; since applied first
 *> these may override XML Extensions replacements,
 *> if desired

 COPY "lixmlrpl.cpy”. *> define XML Extensions statements

 *> Additional user’s replacements can be placed here
 *> that do not override XML Extensions replacements.

 . *> End of combined REPLACE statement.

COPY "lixmldef.cpy". *> XML data definitions

When this is done, the lixmlall.cpy file must not be copied in the source program.

Note If there are multiple REPLACE statements in your source program, each REPLACE
statement that precedes any XML Extensions statements must copy the lixmlrpl.cpy file into
the REPLACE statement to preserve the XML Extensions statements for replacement.

The InstantSQL product has a copy file, lisqlall.cpy, which contains a REPLACE statement
to define the SQL statements. In cases where InstantSQL is used with XML Extensions,
neither the lixmlall.cpy nor the lisqlall.cpy copy file should be used. Instead, create a copy
file (for example, named isqlxml.cpy) with the following contents:

REPLACE
 *> Optionally include user’s replacements here.

 COPY "lisqlrpl.cpy". *> define SQL statements
 COPY "lixmlrpl.cpy”. *> define XML statements

 *> Optionally include user’s replacements here
 *> that do not override InstantSQL or XML Extensions
 *> statement replacements.

 . *> End of combined REPLACE statement.

COPY "lisqldef.cpy". *> SQL data definitions
COPY "lixmldef.cpy". *> XML data definitions

Use this copy file in place of lixmlall.cpy and lisqlall.cpy.

Displaying Status Information
The copy file, lixmldsp.cpy, is provided as an aid in retrieving and presenting status
information. This copy file defines the Display-Status paragraph and contains the
following text:

Display-Status.
 If Not XML-IsSuccess
 Perform With Test After Until XML-NoMore
 XML GET STATUS-TEXT
 Display XML-StatusText
 End-Perform
 End-If.

Copy Files
Chapter 4: COBOL Considerations

80 XML Extensions User's Guide

The DISPLAY statement, Display XML-StatusText, displays status information
on the terminal display. You may edit this statement, as necessary, for your application.
For example, the definition of the XML-StatusText field in the lixmldef.cpy copy file
may be altered from the default of 80 to change the size of the buffer used to contain XML
status information, which is often longer than 80 characters. The XML GET STATUS-TEXT
statement will break up lines longer than buffer size into buffer size – 1 characters and append
a “\” on the partial lines, returning these as separate lines.

An alternative to editing the lixmldef.cpy copy file is to use COBOL’s COPY statement
REPLACING feature when copying the lixmlall.cpy file, if used, or the lixmldef.cpy file
when lixmall.cpy is not used, into your source program. For example,

 Copy "lixmlall.cpy" Replacing
 ==XML-StatusText PIC X(80)== BY
 ==XML-StatusText PIC X(320)==.

While the logic in lixmldsp.cpy is normally used in the application termination logic, it may
be used at any time in the program flow. For example:

 XML TRANSFORM FILE "A" "B" "C".
 Perform Display-Status.

Displaying the status information to the end user of an application might be inappropriate
where the end user would not be capable of diagnosing the problem. The information should
probably be written to an error log file that could be reviewed by the application customer
support when necessary.

Application Termination
The copy file, lixmltrm.cpy, provides an orderly way to shut down an application. This copy
file contains the following text:

 Display "Status: " XML-Status.
 Perform Display-Status.
 XML TERMINATE.
 Perform Display-Status.

The first line may be modified or removed, as you choose. The first PERFORM statement
displays any pending status messages (from a previous XML statement). The XML
TERMINATE statement shuts down XML Extensions. The second PERFORM statement
displays any status from the XML TERMINATE statement.

The following logic is sufficient to successfully terminate XML Extensions:

Z.
Copy "lixmltrm.cpy".
 Stop Run.
Copy "lixmldsp.cpy".

The Z. paragraph-name is where the exit logic begins. The flow of execution may reach
here by falling through from the previous paragraph or as the result of a program branch.
The STOP RUN statement is used to prevent the application from falling through to the

Anonymous COBOL Data Structures
Chapter 4: COBOL Considerations

 XML Extensions User's Guide 81

Display-Status paragraph. An EXIT PROGRAM or GOBACK statement also may be used,
if appropriate.

Anonymous COBOL Data Structures
XML Extensions now supports the use of an anonymous COBOL data structure when
exporting and importing documents. An anonymous data structure is any data area that is the
same size or larger than the data structure indicated by the ModelFileName#DataFileName
parameter of various XML Extensions statements. Anonymous COBOL data structures allow
exporting or importing to be done to Linkage Section data items that are based on either an
argument passed to a called program or a pointer using the SET statement (for example, into
allocated memory). Importing and exporting can also occur with data items having the
external attribute. (An external attribute is the attribute of a data item obtained by
specification of the EXTERNAL clause in the data description entry of the data item or of a
data item to which the subject data item is subordinate.)

Limitations
This section describes the limitations of XML Extensions and the way in which those
limitations affect the development of an XML-enabled application. The topics discussed in
this context include:

• Data items (data structures), as discussed in the following topic

• Edited data items (on page 82)

• Wide and narrow characters (on page 82)

• Data item size (on page 82)

• Data naming (on page 82)

• OCCURS restrictions (on page 83)

• Reading, writing, and the Internet (on page 83)

Data Items (Data Structures)
The XML IMPORT FILE, XML IMPORT TEXT, XML EXPORT FILE, and XML EXPORT
TEXT statements operate on a single COBOL data item. This data item is the second
command line parameter when using the optional slicexsy utility. As you would expect, this
data item may be (and usually will be) a group item. The COBOL program must move all
necessary data to the selected data item before using the XML EXPORT FILE (on page 29) or
XML EXPORT TEXT (on page 31) statements and retrieve data from the data item after
using the XML IMPORT FILE (on page 34) or XML IMPORT TEXT (on page 36)
statement.

The referenced data item—and any items contained within it, if it is a group item—has the
following limitations:

1. REDEFINES and RENAMES clauses are not allowed.

2. FILLER data items must be nonnumeric.

Limitations
Chapter 4: COBOL Considerations

82 XML Extensions User's Guide

3. The data item must be the same size or larger than the data item specified when building
the model files with the slicexsy utility, but it is not required to be the same data item.
For additional information, see Anonymous COBOL Data Structures (on page 81).

Edited Data Items
Numeric edited, alphabetic edited, and alphanumeric edited data items are allowed. The data
items are represented in an XML document in the same format as the data items would exist
in COBOL internal storage. That is, no editing or de-editing operations are performed for
edited data items during import from XML or export to XML. Leading and trailing spaces are
preserved. For more information, see Handling Spaces and Whitespace in XML (on page 86).

Wide and Narrow Characters
XML was developed to use wide (16-bit) Unicode characters as its natural mode.
RM/COBOL uses narrow (8-bit) ASCII characters. All XML data that is generated by XML
Extensions is represented in UTF-8 format, which is essentially ASCII with extensions for
representing 16-bit and larger characters and is compatible with Unicode. (UTF-8 is a form
of Unicode.)

Data Item Size
By its nature, XML has no limits on data item size. COBOL does have size limitations for its
data items. Many XML documents have been standardized and such standards include
limitations on data items, but the COBOL program must still be written to deal with data item
size constraints. When a nonnumeric data item is truncated on import, a warning status value
is produced by XML Extensions.

Data Naming
While the COBOL language allows a data-name to begin with a digit, XML does not allow an
element name to begin with a digit. For example, the following line defines a valid COBOL
data-name, but when using XML Extensions, the data-name will result in an invalid XML
element name:

03 1099-something-field

The RM/COBOL compiler will not detect the issue with the data-name with respect to XML
Extensions. However, XML Extensions will detect the problem at runtime and report the
error. A workaround that avoids the need to modify any COBOL Procedure Division code
when data-names begin with a digit is to add a non-digit initial character to the data-name and
then redefine that data item with the original data-name, as in the following:

03 x1099-something-field PIC X(10).
03 1099-something-field REDEFINES x1099-something-field
 SAME AS x1099-something-field.

The data-name 1099-something-field will result in the Procedure Division
compiling successfully and the x1099-something-field will result in a valid element
name for XML Extensions.

Optimizations
Chapter 4: COBOL Considerations

 XML Extensions User's Guide 83

OCCURS Restrictions
Although, XML has no limits on the number of occurrences of a data item, COBOL does
have such occurrence limits. As with data item size, the COBOL program must deal with this
difference.

Reading, Writing, and the Internet
It is possible to read any XML document (including XML model files, stylesheets and
schemas) from the Internet via a URL. However, it is not possible to write or export an XML
document directly to the Internet via a URL. The related publication Xcentrisity Business
Information Server (BIS) User’s Guide describes how an XML exported document can be
posted to the internet.

Optimizations
Some optimizations have been added to XML Extensions to improve performance and reduce
the size of the generated documents. Refer also to Chapter 3: XML Extensions Statements
Reference (on page 27) for more information.

Occurs Depending
As expected, on output, the XML EXPORT FILE and XML EXPORT TEXT statements will
limit the number of occurrences of a group to the value of the DEPENDING variable.
Additional occurrences may be omitted if they contain no data. For more information, see
Empty Occurrences (on page 83).

On input, the XML IMPORT FILE and XML IMPORT TEXT statements will store the value
of the DEPENDING variable. The XML IMPORT FILE and XML IMPORT TEXT
statements will also store all occurrences in the document (up to the maximum occurrence
limit), regardless of the value of the DEPENDING variable. However, if a schema file is
generated by the optional slicexsy utility, as described in Appendix D: slicexsy Utility
Reference (on page 181), the schema file will report an error if not all of the elements
specified by the DEPENDING variable are present.

Empty Occurrences
On output, the XML EXPORT FILE (on page 29) or XML EXPORT TEXT (on page 31)
statements recognize occurrences within a group that contain only spaces and zeros.
Specifically, an empty data item is an alphanumeric item that contains either all spaces or zero
characters, or a numeric item that contains a zero value.

If all of the elementary data items in an occurrence of a group are empty and if the occurrence
is not the first occurrence, then no data is generated for that occurrence. This prevents the
repetition of occurrences that contain only spaces and zeros. When attributes are enabled for
export of an entirely empty array, then even the first occurrence is suppressed; in this case, a
schema for the generated XML document would need to show the element as optional.

Optimizations
Chapter 4: COBOL Considerations

84 XML Extensions User's Guide

If a set of one or more trailing occurrences are empty, they will be suppressed on export. An
import needs to initialize the target data structure such that these trailing occurrences will be
properly initialized, since they will not be in the imported XML document.

Embedded empty occurrences, that is, an empty occurrence that is followed by one or more
non-empty occurrences, are not suppressed on export unless attribute export is enabled with
the XML ENABLE ATTRIBUTES statement (on page 59). When attributes are enabled in
the export, each occurrence has a subscript attribute that specifies its occurrence number.
Import uses these subscript attributes to properly place an occurrence into the target data
structure. Again, the target data structure must be initialized prior to the import so that the
non-imported occurrences are properly initialized.

You may enable all occurrences using the XML ENABLE ALL-OCCURRENCES (on
page 58) statement, when generating the document (with XML export operations). When the
all-occurrences option is enabled, empty occurrences are output regardless of their position in
the table (array) and whether or not attributes are enabled. An import from the produced
XML document will fill in all occurrences within the target data structure, so their initial
values before the import do not matter. It is still good practice to initialize the target data
structure prior to the import.

The environment varaiable RM_XML_EXPORT_EMPTY_ARRAY can modify the above
described export of empty tables as follows:

• When set to ‘Y’, ‘y’ or ‘1’, an empty table is considered non-optional in the context
of the exported document and the empty first element is exported, regardless of
whether attributes are enabled or not enabled.

• When set to any other single character value, for example, ‘N’, ‘n’ or ‘0’, an empty
table is considered optional in the context of the exported document and the empty
table is not exported at all, regardless of whether attributes are enabled or not
enabled.

• When not set or set to a multiple character value, the XML Extensions v11 behavior
is implemented; that is, when attributes are not enabled, the array is considered non-
optional in the XML document and the first occurrence is exported even if empty;
otherwise, when attributes are enabled, the array is considered optional in the XML
document and an empty first occurrence is not exported.

Empty occurrences also have a role even when only some rather than all occurrences of the
table (array) are empty and all-occurrences is not enabled.

Cached XML Documents
Since XSLT stylesheet, template, and schema documents are largely invariant, performance
can usually be improved by caching previously loaded versions of these documents in
memory.

For some applications, it may be useful to disable caching. If XSLT stylesheet, template, or
schema files are generated or replaced in real time, then the cached documents would need to
be replaced as well.

If system resource availability becomes critical because a large number of documents are
occupying virtual memory, then caching may cause system degradation.

Several XML statements may be used to enable or disable document caching. These
statements include: XML ENABLE CACHE (on page 60), XML DISABLE CACHE (on
page 58), and XML FLUSH CACHE (on page 61). By default, caching is enabled.

XML and Character Encoding
Chapter 5: XML Considerations

 XML Extensions User's Guide 85

Chapter 5: XML Considerations

This chapter provides information specific to using XML when using XML Extensions with
RM/COBOL to develop an XML-enabled application. The primary topics discussed in this
chapter include:

• XML and character encoding (as discussed in the following topic)

• XSLT stylesheet files (on page 85)

• Handling spaces and whitespace in XML (on page 86)

• Schema files (on page 88)

XML and Character Encoding
For internal representation, XML documents use the Unicode character encoding
standard. Unicode represents characters as 16-bit items. For external representation, most
XML documents are encoded using the standard Unicode transformation formats, UTF-8 or
UTF-16. XML documents created by XML Extensions are always encoded for external
presentation using the UTF-8 representation. UTF-8 is a method of encoding Unicode
where most displayable characters are represented in 8-bits. Characters in the range of
0x20 to 0x7e (the normal displayable character set) are indistinguishable from standard
ASCII.

The XML SET ENCODING statement allows the developer to specify the character encoding
of data within a COBOL data structure. The developer may use this statement to switch
between the local character encoding and UTF-8. Note that even though the XML SET
ENCODING statement does not affect the character encoding of the XML document, it does
affect the character encoding of the data in the COBOL program. For more information, see
Data Representation (on page 73).

XSLT Stylesheet Files
XSLT (Extensible Stylesheet Language Transformations) stylesheet files are used to
transform an XML document into another XML document or another type of document—not
necessarily in XML format; for example, HTML, PDF, RTF, and so forth. An XSLT
stylesheet is an XML document. XML Extensions has a specific statement, XML
TRANSFORM FILE (on page 39), which is used for performing XSLT stylesheet
transformations. In addition, the import and export statements, XML IMPORT FILE (on

Form (or “Flat”) Document Import
Chapter 5: XML Considerations

86 XML Extensions User's Guide

page 34), XML IMPORT TEXT (on page 36), XML EXPORT FILE (on page 29), and
XML EXPORT TEXT (on page 31), allow an external XSLT stylesheet to be specified
as a parameter, making it possible to transform a document while importing or exporting
XML documents.

The format of XML documents generated by XML Extensions matches the form of the
specified COBOL data structure. Often the COBOL developer must process XML documents
that are defined by an external source. It is likely that the format of the COBOL-generated
XML document will not conform to the document format that meets the external
requirements.

The recommended course of action is to use an external XSLT stylesheet file to transform
between the COBOL-generated XML document format and the expected document format.
XSLT stylesheets are extremely powerful.

Keep in mind that XSLT stylesheets are unidirectional. Therefore, it is possible that you will
have to design two external XSLT stylesheets for each COBOL data structure: one for input,
which converts the required document format to COBOL format, and one for output, which
converts COBOL format to the required external format.

Form (or “Flat”) Document Import
A form or “flat” document in its simplest representation is one that is just a list of field-names
represented as element-names in the XML document subordinate to a single document
element, with no other nesting of element-names. Thus, no additional qualification is
provided during an import to a COBOL data structure that may have additional groupings of
data. A simple two-field example of a form document, with ‘root’ as the document element
name is as follows:

<root>
 <field-name-01>Field 01 content text</field-name-01>
 <field-name-02>Field 02 content text</field-name-02>
</root>

XML Extensions provides support for importing a form document. During an import, the
document element name ‘root’ is treated as matching the import target COBOL top-level
group. That is, ‘root’ is treated as a wild card group name, but only at the document level. In
v12 and later, the use of ‘root’ is no longer necessary as the top level element can be treated
as a wild card group name no matter what its name. For purposes of exporting documents
that are compatible with pre-v12 XML Extensions and any stylesheets used with those
documents, the root element can be generated during export by using compatibility mode; see
<root> (on page 57) in the description of the XML COMPATIBILITY MODE statement.

Form input can be generated using the form_post_to_cobol.xsl stylesheet provided in the
samples/common directory with Xcentrisity Business Information Server (BIS). The v12
stylesheet defaults to ‘root’ for the document element name, but has a parameter
Document_Element that can be set to another user selected name with the XML SET XSL-
PARAMETERS statement when used from XML Extensions. In this case, the document
element name would usually be the same as the model data name declared in the COBOL
program for use as the target for the import.

During import, values for element-names (corresponding to field-names) are stored in the first
found COBOL data item with a matching data-name that is subordinate to the model data-
name specified for the import statement. See the description of warning -06 (on page 171) for
the handling of duplicate names.

Handling Spaces and Whitespace in XML
Chapter 5: XML Considerations

 XML Extensions User's Guide 87

Handling Spaces and Whitespace in XML
XML Extensions normally strips trailing spaces from COBOL data items when exporting data
and restores trailing spaces to COBOL data items when importing data. Leading spaces are
also removed and added for justified data items. This default behavior can be modified using
the XML SET FLAGS statement, but the default behavior is generally best. The normal
treatment of leading and trailing spaces does not apply to FILLER data items (on page 75) or
edited data items (on page 82).

Once the data is in XML, further consideration must be given to XML treatment of
whitespace, which includes spaces, carriage returns, and line feeds. XML provides a built-in
attribute named xml:space, which takes a value of “preserve” or “default.” The value
“preserve” specifies that whitespace in an element should be preserved. The value “default”
specifies that leading and trailing whitespace may be removed and embedded whitespace may
be normalized to a single space wherever it occurs. The value “default” is the default
treatment of whitespace in XML and is generally not changed unless one is trying to produce
poetry or other special output.

XML Extensions has various rules for handling of the individual whitespace characters during
import or export as follows:

• Space characters are preserved by XML Extensions during import and export, except for
leading and trailing spaces as described in the first paragraph of this topic.

• During import all characters received from the parser for XML text nodes for import are
preserved. (Note: From about 2009 to 2014, characters less than space, which include
line feed, carriage return and tab characters, were unconditionally removed on import
when using revision 2.0 model template files; model templates obtained from the object
file are considered revision 2.0. Revision 1.0 model template files from version 11 of
XML Extensions resulted in the import of all characters received from the parser.)
Preserving all characters is the default behavior unless the XML SET WHITESPACE-
FLAGS statement is used to change the whitespace flags from their default value of 0.
See the XML SET WHITESPACE-FLAGS statement (on page 65) for additional
information on whitespace handling during import.

• During export, line feed, carriage return and tab characters present in the exported
COBOL data item are preserved in the exported text node. Export to a file may cause LF
characters to be translated to a CR/LF sequence on some operating systems (for example,
Windows).

The value, “preserve” or “collapse” of the XML reserved attribute XML-space is ignored by
XML Extensions unless the parser acts on this attribute.

When using XSLT stylesheets, the xsl:strip-space and xsl:preserve-space
elements indicate how whitespace should be handled while transforming a document.
Preserving whitespace is the default, but tools that generate XSLT stylesheets might insert
xsl:strip-space elements.

Be aware that when documents are transformed to HTML for display by a browser, many
browsers strip whitespace as they are allowed to do. Displaying data in tables is generally
necessary to align data in columns rather than using whitespace as is generally done in
COBOL report output without XML support.

Schema Files
Chapter 5: XML Considerations

88 XML Extensions User's Guide

Schema Files
Schema files are used to assure that the data within an XML document conforms to expected
values. For example, an element that contains a zip code may be restricted to a numeric
integer. Schema files can also limit the length or number of occurrences of an element as well
as guarantee that elements occur in the expected order.

A schema file may be applied to an XML document using any of the following methods:

• The entire schema file may reside within the document. (This situation is infrequent.)

• A link to the schema file may be placed in the document. (This technique is more
common.)

• A process that loads a given XML document may also load a schema file that controls
the document.

The third approach applies when the optional slicexsy utility is run with any of the command
line schema options other than the default, -sn (schema none). The schema file generated by
the slicexsy utility is used to validate XML documents that are loaded by the XML
VALIDATE FILE or XML VALIDATE TEXT statements.

Notes

• When the slicexsy utility generates a schema file, it also generates a stylesheet. Both
should be deployed with the application.

• In the Windows implementation, the Microsoft MSXML parser 6.0 ignores the document
type definition (DTD) when validating an XML document against a schema file. Any
entities declared in the DTD will not be defined and cannot be referenced. If any entities
other than the predefined XML entities are referenced, the document is not well-formed
and will fail to load, much less validate. Thus, when a DTD is generated to define
entities in an exported document, the exported document should be transformed prior to
being imported so as not to contain entity references.

Temporary Files
XML Extensions uses the temporary folder (Windows) or directory (UNIX) in some cases for
storing temporary data files. The user executing an XML Extensions application must have
file creation, write and delete permissions for this folder or directory. For further information
on Temporary Files on Windows, see the topic Temporary Files on Windows (on page 10) in
the section on installing XML Extensions for Windows. For further information on
Temporary Files on UNIX, see the topic Temporary Files on UNIX (on page 11) in the
section on installing XML Extensions for UNIX.

Temporary Files
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 89

Appendix A: XML Extensions
Examples

This appendix contains a collection of programs or program fragments that illustrate how the
XML Extensions statements are used. These examples are tutorial in nature and offer useful
techniques to help you become familiar with the basics of using XML Extensions. More
examples can be found in the XML Extensions examples directory, Examples.

Note You will find it instructive to examine these examples first before referring to
Appendix B: XML Extensions Sample Application Programs (on page 167), which describes
how to use and access the more complete application programs that are included with the
XML Extensions development system.

The following example programs are provided in this appendix:

• Example 1: Export File and Import File (see page 90)

• Example 2: Export File and Import File with XSLT Stylesheets (see page 95)

• Example 3: Export File and Import File with OCCURS DEPENDING (see page 102)

• Example 4: Export File and Import File with Sparse Arrays (see page 108)

• Example 5: Export Text and Import Text (see page 118)

• Example 6: Export File and Import File with Directory Polling (see page 124)

• Example 7: Export File, Test Well-Formed File, and Validate File (see page 131)

• Example 8: Export Text, Test Well-Formed Text, and Validate Text (see page 137)

• Example 9: Export File, Transform File, and Import File (see page 143)

• Example A: Diagnostic Messages (see page 150)

• Example B: Import File with Missing Intermediate Parent Names (see page 156)

Additionally, three batch files are provided to facilitate use of the example programs. See
Example Batch Files (on page 164).

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

90 XML Extensions User's Guide

Example 1: Export File and Import File
This program first writes (or exports) an XML document file from the content of a COBOL
data item. Then the program reads (or imports) the same XML document and places the
content in the same COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the content of a COBOL data item.

• XML IMPORT FILE (on page 34), which reads an XML document (from a file) into a
COBOL data item.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Development for Example 1
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 1
The following DOS commands may be entered into a batch file. These commands build and
execute example1.cob.

Line Statement

1 rmcobol example1

2 start /w runcobol example1 k

Line 1 compiles the example1.cbl source file with an embedded XML-format symbol table.

Line 2 executes example1.cob. The K Option suppresses the runtime banner message. On
line 2, the start /w sequence is included only as good programming practice.

Program Description for Example 1
This COBOL program illustrates how an XML document is generated from a COBOL data
item, and then how the content of an XML document may be converted into COBOL data
format and stored in a COBOL data item.

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 91

Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document with the filename of focus1.xml using the XML EXPORT
FILE statement.

Next, the content of the XML document is imported from the file, focus1.xml, and placed in
the same data item using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example 1
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

 *
 * Title: FOCUS.CPY: Focus-Address data structure.
 * XML Extension Version 12.14.
 *
 * Copyright (c) 2017 Micro Focus.
 *
 * You have a royalty-free right to use, modify, reproduce, and
 * distribute this COBOL source file (and/or any modified version)
 * in any way you find useful, provided that you retain this
 * notice and agree that Micro Focus has no warranty, obligations,
 * or liability for any such use of the source file.
 *
 * Version Identification:
 * $Revision: 21753 $
 * $Date: 2017-02-15 19:11:06 -0600 (Wed, 15 Feb 2017) $
 *
 01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the item is a time stamp containing the time that the program was executed.
This item is included to assure the person observing the execution of the example that the
results are current. The time element in the generated XML document should change each
time the example is run and should contain the current time.

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

92 XML Extensions User's Guide

Other Definitions for Example 1
The copy file, lixmlall.cpy, is included in the Working-Storage Section of the example program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML GET
STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag fields.

Program Structure for Example 1
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example1.cbl.

Initialization (Example 1)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting an XML Document (Example 1)

COBOL Statement Description

Accept Time-Stamp From
Time.

Populate the Time-Stamp field.

XML EXPORT FILE
 Focus-Address
 "focus1"
 "Focus-Address".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 93

Importing an XML Document (Example 1)

COBOL Statement Description

Move Spaces to Focus-Address. Ensure that the Focus-Address item contains no data.

XML IMPORT FILE
 Focus-Address
 "focus1"
 "Focus-Address".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example 1)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 1)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 1)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

94 XML Extensions User's Guide

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example 1
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 1)

Running the program (runcobol example1) produces the following display:

Example-1 - Illustrate EXPORT FILE and IMPORT FILE
focus1.xml exported by XML EXPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16423072
focus1.xml imported by XML IMPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16423072

You may inspect 'focus1.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Document (Example 1)

Microsoft Internet Explorer may be used to view the generated XML document, focus1.xml.
The content of this document should appear as follows. (Note that Internet Explorer will
differentiate among the various syntactical elements of XML by displaying them in different
colors.)

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 95

Example 2: Export File and Import File with XSLT
Stylesheets

This program first writes (or exports) an XML document file from the content of a COBOL
data item. Then the program reads (or imports) the same XML document and places the
content in the same COBOL data item.

This example is almost identical to Example 1: Export File and Import File (on page 90).
However, an external XSLT stylesheet is used to transform the exported document into a
different format. Similarly, when the document is imported, an external XSLT stylesheet is
used to reformat the document into the form that is expected by COBOL. For more
information on stylesheets, see XSLT Stylesheet Files (on page 85).

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the content of a COBOL data item.

• XML IMPORT FILE (on page 34), which reads an XML document (from a file) into a
COBOL data item.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Note In this example, the XML EXPORT FILE and XML IMPORT FILE statements each
contain an additional parameter: the name of the external XSLT stylesheet being used for
the transformation.

Development for Example 2
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

96 XML Extensions User's Guide

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 2
The following DOS commands may be entered into a batch file. These commands build and
execute example2.cob.

Line Statement

1 rmcobol example2

2 start /w runcobol example2 k

Line 1 compiles the example2.cbl source file with an embedded XML-format symbol table.

Line 2 executes example2.cob. The K Option suppresses the runtime banner message. On
line 2, the start /w sequence is included only as good programming practice.

Program Description for Example 2
This COBOL program illustrates how an XML document is generated from a COBOL data
item, and then how the content of an XML document may be converted into COBOL data
format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document with the filename of focus2.xml using the XML EXPORT
FILE statement.

Next, the content of the XML document is imported from the file, focus2.xml, and placed in
the same data item using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 97

Data Item for Example 2
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the structure is a time stamp containing the time that the program was
executed. This item is included to assure the person observing the execution of the example
that the results are current. The time element in the generated XML document should change
each time the example is run and should contain the current time.

Other Definitions for Example 2
The copy file, lixmlall.cpy, is included in the Working-Storage Section of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion.
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion.

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

98 XML Extensions User's Guide

Program Structure for Example 2
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example2.cbl.

Initialization (Example 2)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting an XML Document (Example 2)

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE
 Focus-Address
 "focus2"
 "Focus-Address"
 toext.

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 the ModelFileName#DataFileName parameter value,
 and the external XSLT stylesheet name.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document (Example 2)

COBOL Statement Description

Move Spaces to Focus-Address. Ensure that the Focus-Address structure contains no data.

XML IMPORT FILE
 Focus-Address
 "focus2"
 "Focus-Address"
 toint.

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 the ModelFileName#DataFileName parameter value,
 and the external XSLT stylesheet name.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example 2)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 99

Termination Test Logic (Example 2)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display any
error encountered by the XML TERMINATE statement.

Status Display Logic (Example 2)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

XSLT Stylesheets for Example 2
The two external XSLT stylesheets used in this example are for reference only (a tutorial on
XSLT stylesheet development is outside the scope of this manual). The first is contained in
the file, toext.xsl. It is used by the XML EXPORT FILE statement to transform the generated
XML document to an external format. The second is contained in the file, toint.xsl, and is
used by the XML IMPORT FILE statement to transform the input XML document to match
the COBOL format.

These external XSLT stylesheets are user-defined and manually generated using a text
editor program.

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

100 XML Extensions User's Guide

toext.xsl (Example 2)

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 101

toint.xsl (Example 2)

Execution Results for Example 2
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 2)

Running the program (runcobol example2) produces the following display:

Example-2 - Illustrate EXPORT FILE and IMPORT FILE with XSLT stylesheets
focus2.xml exported by XML EXPORT FILE
Micro Focus

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

102 XML Extensions User's Guide

8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16441288
focus2.xml imported by XML IMPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16441288

You may inspect 'focus2.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Document (Example 2)

Microsoft Internet Explorer may be used to view the generated XML document, focus2.xml.
The content of this document should appear as follows. (Note that Internet Explorer will
differentiate among the various syntactical elements of XML by displaying them in different
colors.)

This XML document differs from the document generated in Example 1: Export File and
Import File (on page 90) even though the COBOL data structure is the same as in Example 1.
Items that were shown as individual data elements in Example 1 are now shown as attributes
of higher-level elements because of the applied stylesheet in toext.xsl. Notice that this
document contains no text. All of the information is contained in the markup as attribute
values. The order of attributes is under the control of the XML libraries and cannot be
specified, but the order does not matter in an XML document. The document is imported
correctly back into the COBOL data structure by applying the stylesheet in toint.xsl.

Example 3: Export File and Import File with OCCURS
DEPENDING

This program first writes (or exports) an XML document file from the content of a COBOL
data item. Then the program reads (or imports) the same XML document and places the
content in the same COBOL data item.

This program is very similar to Example 1: Export File and Import File (on page 90).
However, the data item has been modified so that an OCCURS DEPENDING clause is
present.

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 103

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the content of a COBOL data item.

• XML IMPORT FILE (on page 34), which reads an XML document (from a file) into a
COBOL data item.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Development for Example 3
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 3
The following DOS commands may be entered into a batch file. These commands build and
execute example3.cob.

Line Statement

1 rmcobol example3

2 start /w runcobol example3 k

Line 1 compiles the example3.cbl source file with an embedded XML-format symbol table.

Line 2 executes example3.cob. The K Option suppresses the runtime banner message. On
line 2, the start /w sequence is included only as good programming practice.

Program Description for Example 3
This COBOL program illustrates how an XML document is generated from a COBOL data
item, and then how the content of an XML document may be converted into COBOL data
format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document with the filename of focus3.xml using the XML EXPORT
FILE statement.

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

104 XML Extensions User's Guide

Next, the content of the XML document is imported from the file, focus3.xml, and placed in
the same data structure using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example 3
The content of the COBOL data item defined in the copy file, focus3.cpy, is as follows:

* Title: FOCUS3.CPY: Focus-Address data structure.
* XML Extensions Version 12.14.
*
* Copyright (c) 2017 Micro Focus
*
* You have a royalty-free right to use, modify, reproduce, and
* distribute this COBOL source file (and/or any modified version)
* in any way you find useful, provided that you retain this notice
* and agree that Micro Focus has no warranty, obligations, or
& liability for any such use of the source file.
*
* Version Identification:
* $Revision: 21757 $
* $Date: 2017-02-16 14:45:53 -0600 (Thu, 16 Feb 2017) $
*
 01 Focus-Address.
 02 Time-Stamp Pic 9(8).
 02 Name Pic X(64)
 Value "Micro Focus".
 02 City Pic X(32) Value "Austin".
 02 State Pic X(2) Value "TX".
 02 Zip Pic 9(5) Value 78731.
 02 Address-Lines Pic 9.
 02 Address-Line Pic X(64)
 Occurs 1 to 5 times
 Depending on Address-Lines.

This data item stores company address information (in this case, Micro Focus’ Austin office).
This structure differs from Example 1: Export File and Import File in that an OCCURS
DEPENDING phrase has been added to the structure. Instead of having separate data-names
for Address-1 and Address-2, a variable-length array named Address-Line has
been defined. Since Address-Line is variable length, it must be the last data item in the
structure. A new data item named Address-Lines has been added just prior to the
Address-Line array. Address-Lines is the depending variable for the array Address-Line.

The first field of the structure is a time stamp containing the time that the program was
executed. This item is included to assure the person observing the execution of the example
that the results are current. The time element in the generated XML document should change
each time the example is run and should contain the current time.

Other Definitions for Example 3
The copy file, lixmlall.cpy, is included in the Working-Storage Section of the COBOL
program.

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 105

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example 3
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example3.cbl.

Initialization (Example 3)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting an XML Document (Example 3)

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

Move 2 to Address Lines.
Move "5914 West Courtyard
 Drive" to Address-Line(1).
Move "Building 1, Suite 155"
to Address-
 Line (2).

Ensure that Address Lines contain proper information.

XML EXPORT FILE
 Focus-Address
 "focus3"
 "Focus-Address".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

106 XML Extensions User's Guide

COBOL Statement Description

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document (Example 3)

COBOL Statement Description

Move Spaces to Focus-Address. Ensure that the Focus-Address structure contains no data.

XML IMPORT FILE
 Focus-Address
 "focus3"
 "Focus-Address".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example 3)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 3)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 3)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 107

TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example 3
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 3)

Running the program (runcobol example3) produces the following display:

Example-3 - Illustrate EXPORT FILE and IMPORT FILE with OCCURS DEPENDING
focus3.xml exported by XML EXPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16452108
focus3.xml imported by XML IMPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16452108

You may inspect 'focus3.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Document (Example 3)

Microsoft Internet Explorer may be used to view the generated XML document, focus3.xml.
The content of this document should appear as follows. (Note that Internet Explorer will
differentiate among the various syntactical elements of XML by displaying them in different
colors.)

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

108 XML Extensions User's Guide

Example 4: Export File and Import File with Sparse
Arrays

This example illustrates how XML Extensions may work with sparse arrays. XML
Extensions distinguishes between an empty occurrence and a non-empty occurrence. An
occurrence is an empty occurrence when all of its numeric elementary data items have a zero
value and all of its nonnumeric elementary data items contain spaces; otherwise, the
occurrence is a non-empty occurrence. A sparse array is an array that contains a combination
of empty and non-empty occurrences. Empty occurrences need not be exported unless they
are needed to locate (determine the subscript) of a subsequent non-empty occurrence.
Normally, this means that trailing empty occurrences, that is, a contiguous series of empty
occurrences at the end of the array, are not exported. Sparse arrays may also be imported.

This program first writes (or exports) several XML document files from the content of a
COBOL data item (using various combinations of the XML ENABLE ATTRIBUTES, XML
DISABLE ATTRIBUTES, XML ENABLE ALL-OCCURRENCES, and XML DISABLE
ALL-OCCURRENCES statements). Then the program reads (or imports) the same XML
documents (plus a couple of pre-existing documents) and places the content in the same
COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the content of a COBOL data item.

• XML IMPORT FILE (on page 34), which reads an XML document (from a file) into a
COBOL data item.

• XML ENABLE ATTRIBUTES (on page 59), which causes exported XML document to
contain descriptive (COBOL-oriented) attributes.

Note Although the default is not to add descriptive attributes to an XML document (see
XML DISABLE ATTRIBUTES in the next item), among the attributes that may be
added is the “subscript” attribute. This attribute contains the one-relative index of the
occurrence within the array. When an XML document is imported, this subscript

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 109

attribute is used (if present) to place the occurrence correctly within the array. If the
subscript attribute is not present, then occurrences are assumed to occur sequentially.

• XML DISABLE ATTRIBUTES (on page 58), which causes exported XML documents
not to contain descriptive attributes.

Note The default is not to add descriptive attributes to an XML document.

• XML ENABLE ALL-OCCURRENCES (on page 58), which causes all occurrences of a
data item to be exported to an XML document.

• XML DISABLE ALL-OCCURRENCES (on page 57), which causes only certain
occurrences to be exported to the XML document.

Note The default is to export only certain occurrences to the XML document.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Development for Example 4
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 4
The following DOS commands may be entered into a batch file. These commands build and
execute example4.cob.

Line Statement

1 rmcobol example4

2 start /w runcobol example4 k

Line 1 compiles the example4.cbl source file with an embedded XML-format symbol table.

Line 2 executes example4.cob. The K Option suppresses the runtime banner message. On
line 2, the start /w sequence is included only as good programming practice.

Program Description for Example 4
This COBOL program illustrates how several similar XML documents are generated from a
single COBOL data item. It also illustrates how the content of several similar XML
documents may be converted into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

110 XML Extensions User's Guide

Data is exported from the data item Data-Table (as defined in the copy file, focus.cpy)
to several XML documents with the filenames of table1.xml, table2.xml, table3.xml, and
table4.xml using the XML EXPORT FILE statement. Various combinations of the XML
ENABLE ATTRIBUTES, XML DISABLE ATTRIBUTES, XML ENABLE ALL-
OCCURRENCES, and XML DISABLE ALL-OCCURRENCES statements are used to alter
the content of the generated XML documents.

Next, the content of these four XML documents (plus two additional “pre-created” XML
documents, table5.xml and table6.xml) is imported and placed in the same data item using
the XML IMPORT FILE statement. This example does not use a schema file to validate the
input because the array is fixed size and not all of the XML documents that will be input
contain all of the occurrences of the array. These XML documents and their content are
described in Execution Results for Example 4 (on page 113).

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example 4
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Data-Table.
 02 Value "[".
 02 Table-1 Occurs 6.
 03 X Pic X.
 03 N Pic 9.
 02 Value "]".

This data item contains an array with six occurrences. Each occurrence consists of a one-
character, nonnumeric data item followed by a one-digit numeric data item. Note that the
structure also contains two FILLER data items: the left brace ([) character at the beginning
and the right brace(]) character at the end. The values of the FILLER data items are output as
text in the XML document without associated tags.

Other Definitions for Example 4
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 111

 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example 4
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example4.cbl.

Initialization (Example 4)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting an XML Document (Example 4)

COBOL Statement Description

XML ENABLE ATTRIBUTES
If Not XML-OK Go To Z.
XML ENABLE All-OCCURRENCES
If Not XML-OK Go To Z.

Selectively ENABLE or DISABLE ATTRIBUTES and
ALL-OCCURRENCES.

Initialize Data-Table.
Move "B" to X (2).
Move 2 to N (2).
Move "D" to X (4).
Move 4 to N (4).

Initialize the Data-Table structure to the preferred values.

XML EXPORT FILE
 Data-Table
 "table1"
 "Data-Table".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename (table1 – table4),
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document (Example 4)

COBOL Statement Description

Initialize Data-Table. Ensure that the data item contains no data.

XML IMPORT FILE
 Data-Table
 "table1"
 "Data-Table".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename (table1 – table6),
 and the ModelFileName#DataFileName parameter value.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

112 XML Extensions User's Guide

COBOL Statement Description

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example 4)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 4)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 4)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 113

COBOL Statement Description

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example 4
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 4)

Running the program (runcobol example4) produces the following display:

Example-4 - Illustrate EXPORT FILE and IMPORT FILE with sparse arrays
table1.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
table2.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
table3.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
table4.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
table1.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
table2.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
table3.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
table4.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
table5.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
table6.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]

You may inspect 'table1.xml' - 'table6.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Documents (Example 4)

Microsoft Internet Explorer may be used to view the XML documents that are associated with
this example. (Note that Internet Explorer will differentiate among the various syntactical
elements of XML by displaying them in different colors.)

The files table1.xml, table2.xml, table3.xml, and table4.xml are generated with XML
EXPORT FILE statements. All of these documents were generated from the same COBOL
content. The files, table5.xml and table6.xml, which are supplied with the example, describe
the same COBOL content.

The only non-empty occurrences are for the second and fourth elements of the array. The
content of the six files should appear as follows.

table1.xml (Example 4)

The XML DISABLE ATTRIBUTES and XML DISABLE ALL-OCCURRENCES statements
are used to determine the content of this file. Trailing empty occurrences are deleted.
However, some empty occurrences were generated so that the two non-empty occurrences are
positioned correctly.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

114 XML Extensions User's Guide

This example also uses FILLER data items. The left brace ([) and right brace (]) characters
were defined within the data item as FILLER. The text associated with the FILLER is placed
in the XML document without any tags.

table2.xml (Example 4)

The XML ENABLE ATTRIBUTES and XML DISABLE ALL-OCCURRENCES statements
are used to determine the content of this file. Since each non-empty occurrence now contains
a subscript attribute, none of the empty occurrences are generated.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 115

table3.xml (Example 4)

The XML DISABLE ATTRIBUTES and XML ENABLE ALL-OCCURRENCES statements
are used to determine the content of this file. These statements cause all occurrences, whether
empty or non-empty, to be generated.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

116 XML Extensions User's Guide

table4.xml (Example 4)

The XML ENABLE ATTRIBUTES and XML ENABLE ALL-OCCURRENCES statements
are used to determine the content of this file. These statements produce the most verbose
listing of occurrences possible. Every occurrence is listed with its attributes.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 117

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

118 XML Extensions User's Guide

table5.xml (Example 4)

This file was manually generated using a text editor program in order to contain the minimum
amount of information possible. Of all the attributes, only the subscript attribute is included.
This allows all empty occurrences to be suppressed. In practice, an XSLT stylesheet or other
software could generate this kind of document.

table6.xml (Example 4)

The only difference between this file and table5.xml is that the subscript reference has been
moved from the occurrence level down to an element within the occurrence.

Example 5: Export Text and Import Text
This program first writes (or exports) an XML document as a text string from the content of a
COBOL data item. Then the program reads (or imports) the same XML document and places
the content in the same COBOL data item. Finally, the text string representation of the XML
document is copied to a disk file and the memory block that it occupied is released.

This example uses the following XML statements:

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 119

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT TEXT (on page 31), which constructs an XML document (as a text
string) from the content of a COBOL data item.

• XML IMPORT TEXT (on page 36), which reads an XML document (from a text string)
into a COBOL data item.

• XML PUT TEXT (on page 46), which copies an XML document from a text string to a
data file.

• XML FREE TEXT (on page 45), which releases the memory that was allocated by XML
EXPORT TEXT to hold the XML document as a text string.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Development for Example 5
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 5
The following DOS commands may be entered into a batch file. These commands build and
execute example5.cob.

Line Statement

1 rmcobol example5

2 start /w runcobol example5 k

Line 1 compiles the example5.cbl source file with an embedded XML-format symbol table.

Line 2 executes example5.cob. The K Option suppresses the runtime banner message. On
line 2, the start /w sequence is included only as good programming practice.

Program Description for Example 5
This COBOL program illustrates how an XML document is generated from a COBOL data
item, and then how the content of an XML document may be converted into COBOL data
format and stored in a COBOL data item. This program is similar to Example 1: Export File
and Import File (on page 90), except that the XML document is stored as a text string instead
of a disk file.

Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

120 XML Extensions User's Guide

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document as defined by the variable, Document-Pointer, using
the XML EXPORT TEXT statement.

Next, the content of the XML document is imported from the file, focus5.xml, and placed in
the same data item using the XML IMPORT TEXT statement.

Then, the contents of the text string are written to a disk file using the XML PUT TEXT
statement. The memory block is deallocated using the XML FREE TEXT statement. The
primary aim of using the XML PUT TEXT statement is to make the content of the XML
document available as an external file for viewing.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example 5
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the structure is a time stamp containing the time that the program was
executed. The reason for this item is to assure the person observing the execution of the
example that the results are current. The time element in the generated XML document
should change each time the example is run and should contain the current time.

Other Definitions for Example 5
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 121

 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT TEXT statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example 5
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example5.cbl.

Initialization (Example 5)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting an XML Document (Example 5)

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT TEXT
 Focus-Address
 Document-Pointer
 "Focus-Address".

Execute the XML EXPORT TEXT statement specifying:
 the data item address,
 the XML document text pointer,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document (Example 5)

COBOL Statement Description

Move Spaces to Focus-Address. Ensure that the Focus-Address structure contains no data.

XML IMPORT TEXT
 Focus-Address
 Document-Pointer
 "Focus-Address".

Execute the XML IMPORT TEXT statement specifying:
 the data item address,
 the XML document text pointer,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

122 XML Extensions User's Guide

Copying an XML Document to a File (Example 5)

COBOL Statement Description

XML PUT TEXT
 Document-Pointer
 "focus5".

Execute the XML PUT TEXT statement specifying:
 the XML document text pointer
 and the XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Releasing the XML Document Memory (Example 5)

COBOL Statement Description

XML FREE TEXT
 Document-Pointer.

Execute the XML FREE TEXT statement specifying
the XML document text pointer.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example 5)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 5)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 5)

This code is found in the copy file, lixmldsp.cpy.

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 123

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example 5
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 5)

Running the program (runcobol example5) produces the following display:

Example-5 - Illustrate EXPORT TEXT and IMPORT TEXT
Document exported by XML EXPORT TEXT
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16475280
Document imported by XML IMPORT TEXT
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16475280
Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may inspect 'focus5.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Document (Example 5)

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

124 XML Extensions User's Guide

Microsoft Internet Explorer may be used to view the generated XML document, focus5.xml.
The content of this document should appear as follows. (Note that Internet Explorer will
differentiate among the various syntactical elements of XML by displaying them in different
colors.)

Example 6: Export File and Import File with Directory
Polling

This COBOL program illustrates how a series of XML documents may be placed in a specific
directory and how directory polling may be used to process XML documents as they arrive in
that specified directory. For more information on directory-polling schemes, see Directory
Management Statements (on page 51).

The program first writes (or exports) five XML document files from the content of a COBOL
data item. Each document has a unique name and is written to the same directory. Then the
program polls the directory looking for an XML document. When one is found, the program
reads (or imports) each XML document and places the content in the COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the content of a COBOL data item.

• XML IMPORT FILE (on page 34), which reads an XML document (from a file) into a
COBOL data item.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

• XML GET UNIQUEID (on page 53), which is used to generate a unique identifier that
can be used to form a filename.

• XML FIND FILE (on page 52), which finds a XML document file in the specified
directory (if one is available).

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 125

• XML REMOVE FILE (on page 47), which deletes a file.

Development for Example 6
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 6
The following DOS commands may be entered into a batch file. These commands build and
execute example6.cob.

Line Statement

1 rmcobol example6

2 start /w runcobol example6 a='\' k

Line 1 compiles the example6.cbl source file with an embedded XML-format symbol table.

Line 2 executes example6.cob. The a (argument) option, followed by the directory separator
character (' \ ' on Windows) or (' / ' on UNIX), passes a parameter to the RM/COBOL runtime.
The K option suppresses the runtime banner message. On line 2, the start /w sequence
is included only as good programming practice.

Program Description for Example 6
Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

The current time, which will become the content of an XML document, is recorded in a
COBOL data item. Note that for this example, an elementary data item is used instead of a
data item.

Because the name of each file within a directory must be unique, a unique filename is
generated using the XML GET UNIQUEID statement. The returned value is combined with
other text strings to form a path name using the STRING statement. The current time is
placed in the Time-Stamp data item using the ACCEPT FROM TIME statement. The
XML EXPORT FILE statement is used to output the data item as an XML document. This
sequence is repeated until five XML documents have been placed in the specified directory.

Next, the program goes into a loop polling the specified directory. The XML FIND FILE
statement is used. If the return status is XML-IsSuccess, then a file has been found and
the program proceeds to process the file. If the return status is XML-
IsDirectoryEmpty, then the directory is empty and the program issues a slight delay and
then re-issues the XML FIND FILE statement. Any other status indicates an error.

Finally, the XML interface is terminated with the XML TERMINATE statement.

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

126 XML Extensions User's Guide

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example 6
The content of the COBOL data item defined in the example, which in this case, is a single
data item, is as follows:

01 Time-Stamp Pic 9(8).

This data item stores a time stamp acquired by using the ACCEPT FROM TIME statement.

Other Definitions for Example 6
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example 6
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example6.cbl.

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 127

Initialization (Example 6)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting XML Documents with Unique Names (Example 6)

COBOL Statement Description

XML GET UNIQUEID
 Unique-Name
If Not XML-OK Go To Z.

Generate a unique identifier.

If the statement terminates unsuccessfully, go to the
termination logic.

Move Spaces to Unique-File-Name
String "Stamp\A" delimited by size
 Unique-Name delimited by SPACE
 ".xml" delimited by size
 into Unique-File-Name.

Convert the unique identifier into a path name.

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE
 Focus-Address
 "focus6"
 "Focus-Address".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter
 value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing XML Documents by Directory Polling (Example 6)

COBOL Statement Description

Perform Until 0 > 1 Outer perform loop. Iterate until Exit Perform.

 Perform Compute-Curr-Time

 Compute Stop-Time
 = Curr-Time + 100

The paragraph Compute-Curr-Time ACCEPTs the current time
and converts it to an integer value.
Compute Stop-Time to be 1 second after current time.

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

128 XML Extensions User's Guide

COBOL Statement Description

 Perform Until 0 > 1
 XML FIND FILE
 "Stamp"
 Unique-File-Name
 If XML-IsSuccess
 Exit Perform
 End-If
 If XML-IsDirectoryEmpty
 Perform Compute-Curr-Time
 If Curr-Time > Stop-Time
 Exit Perform
 End-If
 Call "C$DELAY" Using 0.1
 End-If
 If Not XML-OK
 Go To Z
 End-If
 End-Perform

Inner perform loop. Iterate until Exit Perform.
Execute XML FIND FILE parameters:
 directory name
 and filename.
If the statement returned success,
exit the paragraph.
If the statement returns directory empty,
compute new current time, and
if the current time is greater than the stop time,
exit the perform.

Otherwise, do a short time delay.

If the statement terminates unsuccessfully,
go to the termination logic.
The end of the inner perform loop.

 If Curr-Time > Stop-Time
 Exit Perform
 End-If

Check to see if the outer perform loop should terminate.

 XML IMPORT FILE
 Time-Stamp
 Unique-File-Name
 "Focus-Address"
 If Not XML-OK Go To Z
 End-If

Import the file that was found using:
 the data item,
 the filename,
 and the ModelFileName#DataFileName parameter value.
If the statement terminates unsuccessfully, go to the termination
logic.

 XML REMOVE FILE
 Unique-File-Name
 If Not XML-OK Go To Z
 End-If

Remove the file that has just been processed;
otherwise, find it again.
If the statement terminates unsuccessfully, go to the termination
logic.

End-Perform The end of the outer perform loop.

Program Exit Logic (Example 6)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 6)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 129

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 6)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example 6
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 6)

Running the program (runcobol example6) produces two displays. The first display occurs
after exporting five documents to the Stamp directory. The second display takes place after
polling the Stamp directory and importing the five documents.

First Display

Example-6 - Illustrate EXPORT FILE and IMPORT FILE with directory polling
stamp\a{a258c50d-a15e-493b-a29d-cc0e782b5f54}.xml exported by XMLExport
Contents: 10233043
stamp\a{9318803d-1b46-486c-a59b-f7dcc92c4d2f}.xml exported by XMLExport

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

130 XML Extensions User's Guide

Contents: 10233054
stamp\a{3a2b7d60-6065-4785-bdf3-ab388992079d}.xml exported by XMLExport
Contents: 10233062
stamp\a{4a4e8482-d3a4-492e-a79d-ec6d967cd4e6}.xml exported by XMLExport
Contents: 10233068
stamp\a{30cd08ac-0edf-4885-a106-4acdcb8caada}.xml exported by XMLExport
Contents: 10233075

You may display the 'stamp' directory

Press a key to continue:

Note Pressing a key will cause the program to continue.

Second Display

stamp\a{30cd08ac-0edf-4885-a106-4acdcb8caada}.xml imported by XMLImport
Contents: 10233075
 stamp\a{3a2b7d60-6065-4785-bdf3-ab388992079d}.xml imported by XMLImport
Contents: 10233062
 stamp\a{4a4e8482-d3a4-492e-a79d-ec6d967cd4e6}.xml imported by XMLImport
Contents: 10233068
 stamp\a{9318803d-1b46-486c-a59b-f7dcc92c4d2f}.xml imported by XMLImport
Contents: 10233054
 stamp\a{a258c50d-a15e-493b-a29d-cc0e782b5f54}.xml imported by XMLImport
Contents: 10233043

You may now verify that the 'stamp' directory has been emptied

Status: +0001
Informative: 1[0] - indicated directory contains no documents
Called from line 612 in EXAMPLE6(C:\Focus\XMLExt\Examples\EXAMPLE6.COB),
compil\
ed 2008/08/19 10:23:30.
Press a key to terminate.

Note Pressing a key will terminate the program.

XML Document (Example 6)

Windows Explorer may be used to view the stamp directory that contains the five generated
XML documents. You can click on any document to see its content.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 131

Each of the files in the stamp directory has a different time-stamp, but generally looks like
this:

After continuing the program, the stamp directory should empty out as shown here.

Example 7: Export File, Test Well-Formed File, and
Validate File

This COBOL program illustrates how an XML document is generated from a COBOL data
item and then how the syntax and content of an XML document may be verified.

The program first writes (or exports) an XML document file from the content of a COBOL
data item. Then the program verifies that the generated document is well-formed. Finally,
the program verifies that the content of the document conforms to the schema file that was
generated by the slicexsy utility.

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the content of a COBOL data item.

• XML TEST WELLFORMED-FILE (on page 38), which verifies that an XML document
conforms to XML syntax rules.

• XML VALIDATE FILE (on page 41), which verifies that the content of an XML
document conforms to rules specified by an XML schema file.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

132 XML Extensions User's Guide

Development for Example 7
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 7
The following DOS commands may be entered into a batch file. These commands build and
execute example7.cob.

Line Statement

1 rmcobol example7

2 slicexsy example7 Focus-Address -ss -bn

3 start /w runcobol example7 k

Line 1 compiles the example7.cbl source file with an embedded XML-format symbol table.

Line 2 builds the XML model files from the symbol table information in the RM/COBOL
object program. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 7 object filename is example7.cob and the
model filenames are example7.xml and example7.xsd). The option -ss produces a schema
file, and the option -bn suppresses the banner message.

Line 3 executes example7.cob. The K Option suppresses the runtime banner message. On
line 3, the start /w sequence is included only as good programming practice.

Note The example7.xtl file produced by slicexsy is not needed and could be deleted. The
slicexsy utility is run for this example only to produce a schema and internal stylesheet to
support the XML VALIDATE FILE statement in the example.

Program Description for Example 7
Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document with the filename of focus7.xml using the XML EXPORT
FILE statement.

Next, the syntax of focus7.xml is verified using the XML TEST WELLFORMED-FILE
statement.

Following this, the content of focus7.xml is verified using the XML VALIDATE FILE
statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 133

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

For the purposes of this example, both the XML TEST WELLFORMED-FILE and XML
VALIDATE FILE statements were used. However, the XML VALIDATE FILE statement
also tests an XML document for well-formed syntax.

Data Item for Example 7
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the example that
the results are current. The time element in the generated XML document should change each
time the example is run and should contain the current time.

Other Definitions for Example 7
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

134 XML Extensions User's Guide

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example 7
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example7.cbl.

Initialization (Example 7)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting an XML Document (Example 7)

COBOL Statement Description

Accept Time-Stamp From
Time.

Populate the Time-Stamp field.

XML EXPORT FILE
 Focus-Address
 "focus7"
 "Focus-Address".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Syntax (Example 7)

COBOL Statement Description

XML TEST WELLFORMED-FILE
 "focus7".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Content (Example 7)

COBOL Statement Description

XML VALIDATE FILE
 "focus7"
 "example7".

Execute the XML VALIDATE FILE statement specifying:
 the XML document filename
 and the ModelFileName#DataFileName parameter
 value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 135

Program Exit Logic (Example 7)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 7)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 7)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

136 XML Extensions User's Guide

Execution Results for Example 7
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 7)

Running the program (runcobol example7) produces the following display:

Example-7 - Illustrate TEST WELLFORMED-FILE & VALIDATE FILE
focus7.xml exported by XML EXPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16551294
focus7.xml checked by XML TEST WELLFORMED-FILE
focus7.xml validated by XML VALIDATE FILE

You may inspect 'focus7.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Document (Example 7)

Microsoft Internet Explorer may be used to view the generated XML document focus7.xml.
The content of this document should appear as follows. (Note that Internet Explorer will
differentiate among the various syntactical elements of XML by displaying them in different
colors.)

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 137

Example 8: Export Text, Test Well-Formed Text, and
Validate Text

This COBOL program illustrates how an XML document is generated from a COBOL data
item and then how the syntax and content of an XML document may be verified. Next, the
program verifies that the generated document is well-formed. Finally, the program verifies
that the content of the document conforms to the schema file that was generated by the
slicexsy utility.

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT TEXT (on page 31), which constructs an XML document (as a text
string) from the content of a COBOL data item.

• XML TEST WELLFORMED-TEXT (on page 39), which verifies that an XML
document conforms to XML syntax rules.

• XML VALIDATE TEXT (on page 43), which verifies that the content of an XML
document conforms to rules specified by an XML schema file.

• XML PUT TEXT (on page 46), which copies an XML document from a text string to a
data file.

• XML FREE TEXT (on page 45), which releases the memory that was allocated by XML
EXPORT TEXT to hold the XML document as a text string.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Development for Example 8
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 8
The following DOS commands may be entered into a batch file. These commands build and
execute example8.cob.

Line Statement

1 rmcobol example8

2 slicexsy example8 Focus-Address -ss -bn

3 start /w runcobol example8 k

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

138 XML Extensions User's Guide

Line 1 compiles the example8.cbl source file with an embedded XML-format symbol table.

Line 2 builds the XML model files from the symbol table information in the RM/COBOL
object program. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 8 object filename is example8.cob and the
model filenames are example8.xml and example8.xsd). The option -ss produces a schema
file, and the option -bn suppresses the banner message.

Line 3 executes example8.cob. The K Option suppresses the runtime banner message. On
line 3, the start /w sequence is included only as good programming practice.

Note The example8.xtl file produced by slicexsy is not needed and could be deleted. The
slicexsy utility is run for this example only to produce a schema and internal stylesheet to
support the XML VALIDATE TEXT statement in the example.

Program Description for Example 8
Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document as defined by the variable, Document-Pointer, using
the XML EXPORT TEXT statement.

Next, the syntax of the generated XML document is verified using the XML TEST
WELLFORMED-TEXT statement.

Following this, the content of the generated XML document is verified using the XML
VALIDATE TEXT statement.

Next, the contents of the text string are written to a disk file using the XML PUT TEXT
statement. The memory block is deallocated using the XML FREE TEXT statement. The
primary aim of using the XML PUT TEXT statement is to make the content of the XML
document available as an external file for viewing.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

For the purposes of this example, both the XML TEST WELLFORMED-TEXT and XML
VALIDATE TEXT statements were used. However, the XML VALIDATE TEXT statement
also tests an XML document for well-formed syntax.

Data Item for Example 8
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 139

 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the example that
the results are current. The time element in the generated XML document should change each
time the example is run and should contain the current time.

Other Definitions for Example 8
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT TEXT statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example 8
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example8.cbl.

Initialization (Example 8)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

140 XML Extensions User's Guide

Exporting an XML Document (Example 8)

COBOL Statement Description

Accept Time-Stamp From
Time.

Populate the Time-Stamp field.

XML EXPORT TEXT
 Focus-Address
 Document-Pointer
 "Focus-Address".

Execute the XML EXPORT TEXT statement specifying:
 the data item address,
 the XML document text pointer,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Syntax (Example 8)

COBOL Statement Description

XML TEST WELLFORMED-TEXT
 Document-Pointer.

Execute the XML TEST WELLFORMED-TEXT
statement specifying the XML document text pointer.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Content (Example 8)

COBOL Statement Description

XML VALIDATE TEXT
 Document-Pointer
 "example8".

Execute the XML VALIDATE TEXT statement specifying:
 the XML document text pointer
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Copying an XML Document to a File (Example 8)

COBOL Statement Description

XML PUT TEXT
 Document-Pointer
 "focus8".

Execute the XML PUT TEXT statement specifying:
 the XML document text pointer
 and the document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Releasing the XML Document Memory (Example 8)

COBOL Statement Description

XML FREE TEXT
 Document-Pointer.

Execute the XML FREE TEXT statement specifying
the XML document text pointer.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 141

Program Exit Logic (Example 8)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 8)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 8)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

142 XML Extensions User's Guide

Execution Results for Example 8
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 8)

Running the program (runcobol example8) produces the following display:

Example-8 - Illustrate TEST-WELLFORMED TEXT and VALIDATE TEXT
Document exported by XML EXPORT TEXT
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16555656
Document checked by XML TEST WELLFORMED-TEXT
Document validated by XML VALIDATE TEXT
Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may inspect 'focus8.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Document (Example 8)

Microsoft Internet Explorer may be used to view the generated XML document, focus8.xml.
The content of this document should appear as follows. (Note that Internet Explorer will
differentiate among the various syntactical elements of XML by displaying them in different
colors.)

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 143

Example 9: Export File, Transform File, and Import
File

This COBOL program illustrates how an XML document is generated from a COBOL data
item, and then how the content of an XML document may be converted into COBOL data
format and stored in a COBOL data item.

The program first writes (or exports) an XML document file from the content of a COBOL
data item. Next, the document is transformed into another format (the same format as
described in Example 2: Export File and Import File with XSLT Stylesheets (on page 95) and
then transformed back into the original output format. Then the program reads (or imports)
the same XML document and places the content in the same COBOL data item. One
additional transform is applied to add in the COBOL attributes to the input document.

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the contents of a COBOL data item.

• XML IMPORT FILE (on page 34), which reads an XML document (from a file) into a
COBOL data item.

• XML TRANSFORM FILE (on page 39), which uses an XSLT stylesheet to modify
(transform) an XML document into another format.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Development for Example 9
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example 9
The following DOS commands may be entered into a batch file. These commands build and
execute example9.cob.

Line Statement

1 rmcobol example9

2 slicexsy example9 Focus-Address -ss -bn

3 start /w runcobol example9 k

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

144 XML Extensions User's Guide

Line 1 compiles the example9.cbl source file with an embedded XML-format symbol table.

Line 2 builds the XML model files from the symbol table information in the RM/COBOL
object program. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 9 object filename is example9.cob and the
model filenames are example9.xml and example9.xsd). The option -ss produces a schema
file, and the option -bn suppresses the banner message.

Line 3 executes example9.cob. The K Option suppresses the runtime banner message. On
line 3, the start /w sequence is included only as good programming practice.

Note The example9.xtl file produced by slicexsy is not needed and could be deleted. The
slicexsy utility is run for this example only to produce an internal stylesheet to support one of
the XML TRANSFORM FILE statements in the example.

Program Description for Example 9
Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document with the filename of focus9a.xml using the XML EXPORT
FILE statement.

Next, the content of the XML document is transformed from the format that was used in
Example 2 with an XML TRANSFORM FILE statement producing the file, lant9b.xml, and
then transformed back into the original output format.

Next, the content of the XML document is imported from the file, focus9c.xml, and placed in
the same data item using the XML IMPORT FILE statement.

Subsequently, the content of the XML document, focus9c.xml, is transformed using the
internal XSLT stylesheet from the set of model files creating the file, focus9d.xml. This adds
all of the COBOL attributes to focus9d.xml.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example 9
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 145

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the example that
the results are current. The time element in the generated XML document should change each
time the example is run and should contain the current time.

Other Definitions for Example 9
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example 9
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, example9.cbl.

Initialization (Example 9)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

146 XML Extensions User's Guide

Exporting an XML Document (Example 9)

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE
 Focus-Address
 "focus9a"
 "Focus-Address".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Transforming to External XML Format (Example 9)

COBOL Statement Description

XML TRANSFORM FILE
 "focus9a"
 "toext"
 "focus9b".

Execute the XML TRANSFORM FILE statement specifying:
 the input XML document filename,
 the XSLT stylesheet filename,
 and the output XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Transforming to Internal XML Format (Example 9)

COBOL Statement Description

Move Spaces to Focus-
Address.

Ensure that the Focus-Address item contains no data.

XML TRANSFORM FILE
 "focus9b"
 "toint"
 "focus9c".

Execute the XML TRANSFORM FILE statement specifying:
 the input XML document filename,
 the XSLT stylesheet filename,
 and the output XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document (Example 9)

COBOL Statement Description

XML IMPORT FILE
 Focus-Address
 "focus9c"
 "Focus-Address".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 147

Transforming to Include COBOL Attributes (Example 9)

COBOL Statement Description

XML TRANSFORM FILE
 "focus9c"
 "example9"
 "focus9d".

Execute the XML TRANSFORM FILE statement specifying:
 the input XML document filename,
 the XSLT stylesheet filename,
 and the output XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example 9)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example 9)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph names Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example 9)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

148 XML Extensions User's Guide

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the
XML interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example 9
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example 9)

Running the program (runcobol example9) produces the following display:

Example-9 - Illustrate TRANSFORM FILE
focus9a.xml exported by XML EXPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16572692
focus9a.xml transformed into focus9b.xml by XML TRANSFORM FILE
focus9b.xml transformed into focus9c.xml by XML TRANSFORM FILE
focus9c.xml imported by XML IMPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
16572692
focus9c.xml transformed into focus9d.xml by XML TRANSFORM FILE

You may inspect 'focus9a.xml' - 'focus9d.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

XML Documents (Example 9)

Microsoft Internet Explorer may be used to view the generated XML documents,
focus9a.xml, focus9b.xml, focus9c.xml, and focus9d.xml. Their content of these documents
should appear as follows. (Note that Internet Explorer will differentiate among the various
syntactical elements of XML by displaying them in different colors.)

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 149

focus9a.xml – Internal Format (similar to focus1.xml)

focus9b.xml – External Format (similar to focus2.xml)

focus9c.xml – Internal Format Restored

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

150 XML Extensions User's Guide

focus9d.xml – Internal Format plus COBOL Attributes

Example A: Diagnostic Messages
This program illustrates the diagnostic messages that may be displayed for XML documents
that are not well-formed or valid. The program uses the XML TEST WELLFORMED-FILE
and XML VALIDATE FILE statements to test and validate a series of XML documents.
(These predefined XML documents are detailed in the Program Description section.)

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML TEST WELLFORMED-FILE (on page 38), which verifies that an XML document
conforms to XML syntax rules.

• XML VALIDATE FILE (on page 41), which verifies that the content of an XML
document conforms to rules specified by an XML schema file.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 151

Development for Example A
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example A
The following DOS commands may be entered into a batch file. These commands build and
execute examplea.cob.

Line Statement

1 rmcobol examplea

2 slicexsy examplea Focus-Address -ss -bn

3 start /w runcobol examplea k

Line 1 compiles the examplea.cbl source file with an embedded XML-format symbol table.

Line 2 builds the XML model files from the symbol table information in the RM/COBOL
object program. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the examplea object filename is examplea.cob and the
model filenames are examplea.xml and examplea.xsd). The option -ss produces a schema
file, and the option -bn suppresses the banner message.

Line 3 executes examplea.cob. The K Option suppresses the runtime banner message. On
line 3, the start /w sequence is included only as good programming practice.

Note The examplea.xtl file produced by slicexsy is not needed and could be deleted. The
slicexsy utility is run for this example only to produce a schema and internal stylesheet to
support the XML VALIDATE FILE statement in the example.

Program Description for Example A
Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

In this example, three different predefined XML documents are processed:

• The xfocusa1.xml file is not well-formed and will cause the XML TEST
WELLFORMED-FILE statement to return with an error status. Since this function fails,
the XML VALIDATE FILE statement is not used to process this file.

• The xfocusa2.xml file is well-formed but not valid. The XML TEST WELLFORMED-
FILE statement will return success. The XML VALIDATE FILE statement will return
with an error status.

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

152 XML Extensions User's Guide

• The xfocusa3.xml file is both well-formed and valid. Both the XML TEST-
WELLFORMED-FILE statement and the XML VALIDATE FILE statement will return a
successful status.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example A
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the example that
the results are current. The time element in the generated XML document should change each
time the example is run and should contain the current time.

Other Definitions for Example A
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 153

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example A
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, examplea.cbl.

Initialization (Example A)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Testing for a Well-Formed Document (Example A)

COBOL Statement Description

XML TEST WELLFORMED-FILE
 "xfocusa1".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Perform
Display-Status.

If the statement terminates unsuccessfully, perform the
Display-Status paragraph to display any error messages.

XML TEST WELLFORMED-FILE
 "xfocusa2".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Testing for a Valid Document (Example A)

COBOL Statement Description

XML VALIDATE FILE
 "xfocusa2"
 "examplea".

Execute the XML VALIDATE FILE statement specifying:
 the XML document filename
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Perform
Display-Status.

If the statement terminates unsuccessfully, perform the
Display-Status paragraph to display any error messages.

Testing for a Well-Formed Document (Example A)

COBOL Statement Description

XML TEST WELLFORMED-FILE
 "xfocusa3".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

154 XML Extensions User's Guide

Testing for a Valid Document (Example A)

COBOL Statement Description

XML VALIDATE FILE
 "xfocusa3"
 "examplea".

Execute the XML VALIDATE FILE statement specifying:
 the XML document filename
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example A)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example A)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example A)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML
TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 155

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example A
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example A)

Running the program (runcobol examplea) produces three displays: the first is shown after
the first diagnostic message, the second is shown after the second diagnostic message, and the
third is displayed after some successful tests.

First Display (Example A)

For Windows, the first display would be illustrated as:

Example-A - Illustrate diagnostics for invalid documents
 and documents that are not well-formed
XML TEST WELLFORMED-FILE - not well-formed
Error: 28[34] - in function: LoadDocument
[28] Called from line 624 in EXAMPLEA(C:\RM-XMLEXT\examples\EXAMPLEA.COB), comp\
iled 2017/06/26 21:19:58.
[28] MSXML 6.0 parse error code: 0xc00cee3b
[28] The name in the end tag of the element must match the element type in the \
start tag.
[28] line 2, position 256
[28] <root><focus-address><name>Micro Focus</name><address-1>8310 North Capital\
 of Texas Highway</address-1><address-2>Suite 155</address-2><address-3><city>A\
ustin</city><state>TX</state><zip>78731</zip></address-3><time-stamp>14525751</\
time-stamp></rm-address></root>
[28] --\
---\
---\
-----------------------|
[28] LoadDocument, HRESULT: 0x80004005
[28] Input document name: C:\RM-XMLEXT\examples\xfocusa1.xml
Press a key to continue:

For UNIX, the first display would be shown as follows:

Example-A - Illustrate diagnostics for invalid documents
 and documents that are not well-formed
XML TEST WELLFORMED-FILE - not well-formed
Error: 28[2] - in function: LoadDocument
[28] Called from line 624 in EXAMPLEA(/home/build/c85dev/rmc85/lixml/test/examp\
lea.cob), compiled 2017/06/26 16:02:37.
[28] 2: parser error : Opening and ending tag mismatch: focus-address line 2 an\
d rm-address

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

156 XML Extensions User's Guide

[28] state><zip>78731</zip></address-3><time-stamp>14525751</time-stamp></rm-ad\
dress>
[28] \
 ^
[28] Input document name: /home/build/c85dev/rmc85/lixml/test/xfocusa1.xml
Press a key to continue:

Note Pressing a key will cause the program to continue.

Second Display (Example A)

For Windows, the second display would be illustrated as:

XML TEST WELLFORMED-FILE - well-formed - invalid
XML VALIDATE FILE - well-formed - invalid
Error: 71[4] - in function: ValidateDOMDocument
[71] Called from line 637 in EXAMPLEA(C:\RM-XMLEXT\examples\EXAMPLEA.COB), comp\
iled 2017/06/26 22:10:00.
[00] MSXML 6.0 parse error code: 0xc00ce201
[00] Error parsing 'ABCDE' as decimal datatype. The element 'zip' with value '\
ABCDE' failed to parse.
[71] Input document name: C:\RM-XMLEXT\examples\xfocusa2.xml
[71] Stylesheet name: C:\RM-XMLEXT\examples\examplea.xsl
[71] Schema name: C:\RM-XMLEXT\examples\examplea.xsd
Press a key to continue:

For UNIX, the second display would be shown as follows:

XML TEST WELLFORMED-FILE - well-formed - invalid
XML VALIDATE FILE - well-formed - invalid
Error: 71[0] - in function: ValidateDOMDocument
[71] Called from line 637 in EXAMPLEA(/home/build/c85dev/rmc85/lixml/test/examp\
lea.cob), compiled 2017/06/26 16:02:37.
[71] element zip: Schemas validity error : Element 'zip': 'ABCDE' is not a vali\
d value of the atomic type 'type_Q8_example-a'.
[71] Input document name: /home/build/c85dev/rmc85/lixml/test/xfocusa2.xml
[71] Stylesheet name: /home/build/c85dev/rmc85/lixml/test/examplea.xsl
[71] Schema name: /home/build/c85dev/rmc85/lixml/test/examplea.xsd
Press a key to continue:

Note Pressing a key will cause the program to continue.

Third Display (Example A)

XML TEST WELLFORMED-FILE - well-formed – valid
XML VALIDATE FILE - well-formed – valid
Status: +0000
Press a key to terminate:

For UNIX, the third display would be the same.

Note Pressing a key will terminate the program.

XML Documents (Example A)

Microsoft Internet Explorer may be used to view the input XML documents, xfocusa1.xml,
xfocusa2.xml and xfocusa3.xml. The content of these documents should appear as follows.

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 157

(Note that Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

xfocusa1.xml

Since this file demonstrates incorrect XML syntax by having an end tag “rm-address” that
does not match the start tag “focus-address”, Internet Explorer simply shows the values from
the text nodes:

If the end tag “rm-address” in the file is corrected to “focus-address”, XML Internet Explorer
can display the file just as for xfocusa3.xml.

xfocusa2.xml

In this syntactically correct file, the element “zip” does not have a numeric text node as
required by the schema. The file can be displayed by Internet Explorer, but is not valid with
respect to the schema.

xfocusa3.xml

This file is both syntactically correct and valid with respect to the schema.

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

158 XML Extensions User's Guide

Example B: Import File with Missing Intermediate
Parent Names

This COBOL program illustrates how an XML document with some missing intermediate
parent names may be converted into COBOL data format and stored in a COBOL data item.
(This capability of handling missing intermediate parent names has been included to make
programs that deal with “flattened” data items, such as Web services, less complicated.) A
COBOL program and an XML document file may contain the same elementary items, but
may not have the identical structure. XML Extensions offers a way to handle such cases
where there is not a one-to-one match between the COBOL data item and the XML document
structure. Consider the following situation, in which the COBOL program imports a
predefined XML document that has some missing intermediate parent names.

A missing intermediate parent name is an XML element name that corresponds to an
intermediate-level COBOL group name. For example, in the following COBOL data item,
the XML element name, address-3, is an intermediate parent name.

01 MY-ADDRESS.
 02 ADDRESS-1 PIC X(64) VALUE "101 Main St.".
 02 ADDRESS-2 PIC X(64) VALUE "Apt 2B".
 02 ADDRESS-3.
 03 CITY PIC X(32) VALUE "Smallville".
 03 STATE PIC X(2) VALUE "KS".

The structure of the corresponding XML document would be:

 <my-address>
 <address-1>101 Main St.</address-1>
 <address-2>Apt 2B</address-2>
 <address-3>
 <city>Smallville</city>
 <state>KS</state>
 </address-3>
 <my-address>

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 159

In cases where the intermediate parent name is not needed to resolve ambiguity, XML
Extensions will attempt to reconstruct the document structure on input. For example, if the
input XML document contained the following information, then the intermediate parent
names of address-3 and my-address would be added to produce an XML document
compatible with the above document.

<root>
 <address-1>101 Main St.</address-1>
 <address-2>Apt 2B</address-2>
 <city>Smallville</city>
 <state>KS</state>
<root>

Example B illustrates this situation more fully.

This example uses the following XML statements:

• XML INITIALIZE (on page 63), which initializes or opens a session with XML
Extensions.

• XML EXPORT FILE (on page 29), which constructs an XML document (as a file) from
the content of a COBOL data item.

• XML IMPORT FILE (on page 34), which reads an XML document (from a file) into a
COBOL data item.

• XML TERMINATE (on page 67), which terminates or closes the session with XML
Extensions.

Development for Example B
The COBOL program must be compiled with an XML Extensions-enabled RM/COBOL
compiler that generates and embeds an XML-format symbol table in the COBOL object file.

After the successful compilation, you may then execute the COBOL program. The xmlif
library may be specified either by entering it on the command line (for example, runcobol
myprog l=“some\path\xmlif”) or by placing the xmlif library in the rmautold directory (this
is normally a subdirectory of the RM/COBOL installation directory).

Batch File for Example B
The following DOS commands may be entered into a batch file. These commands build and
execute exampleb.cob.

Line Statement

1 rmcobol exampleb

2 start /w runcobol exampleb k

Line 1 compiles the exampleb.cbl source file with an embedded XML-format symbol table.

Line 2 executes exampleb.cob. The K Option suppresses the runtime banner message. On
line 2, the start /w sequence is included only as good programming practice.

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

160 XML Extensions User's Guide

Program Description for Example B
This COBOL program illustrates how an XML document with some missing intermediate
parent names may be converted into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement must be
successfully executed. Since it is possible for XML INITIALIZE to fail, the return status
must be checked before continuing.

Data is exported from the data item Focus-Address (as defined in the copy file,
focus.cpy) to an XML document with the filename of focusb.xml using the XML EXPORT
FILE statement.

Next, the content of the XML document is imported from the file, focusb.xml, and placed in
the same data item using the XML IMPORT FILE statement.

Additionally, the content of the predefined XML document named xfocusb.xml, which has
some missing intermediate parent names, is also imported using the XML IMPORT FILE
statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT statement
is called.

Data Item for Example B
The content of the COBOL data item defined in the copy file, focus.cpy, is as follows:

01 Focus-Address.
 02 Name Pic X(64)
 Value "Micro Focus".
 02 Address-1 Pic X(64)
 Value "8310 North Capital of Texas Highway".
 02 Address-2 Pic X(64)
 Value "Building 1, Suite 155".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78731.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Micro Focus’ Austin office).
The last field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the example that
the results are current. The time element in the generated XML document should change each
time the example is run and should contain the current time.

Other Definitions for Example B
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of the
program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item named
XML-data-group. The content of this COBOL data item is as follows:

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 161

01 XML-data-group.
 03 XML-Status PIC S9(4) Sign Leading Separate.
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).
 03 XML-COBOL-Version PIC 9(4) VALUE 12. *>Used by XMLSetVersion
 03 XML-XMLIF-Version PIC 9(4) VALUE 0. *>Set by XMLSetVersion

Various XML statements may access one of more fields of this data item. For example, the
XML EXPORT FILE statement returns a value in the XML-Status field. The XML
GET STATUS-TEXT statement accesses the XML-StatusText and XML-MoreFlag
fields.

Program Structure for Example B
The following tables show COBOL statements that relate to performing XML Extensions
statements. Some COBOL statements (mostly the DISPLAY statements) have been omitted.
The source of this example is in the file, exampleb.cbl.

Initialization (Example B)

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Exporting an XML Document (Example B)

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE
 Focus-Address
 "focusb"
 "Focus-Address".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing the Generated XML Document (Example B)

COBOL Statement Description

XML IMPORT FILE
 Focus-Address
 "focusb"
 "Focus-Address".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

162 XML Extensions User's Guide

COBOL Statement Description

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing the Predefined XML Document (Example B)

COBOL Statement Description

Initialize Focus-Address Ensure that the Focus-Address item is initialized.

XML IMPORT FILE
 Focus-Address
 "xfocusb"
 "Focus-Address".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the ModelFileName#DataFileName parameter value.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic (Example B)

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.

 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display
Logic” table).

Termination Test Logic (Example B)

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is obtained here via
a GO TO Z statement. If there are no errors, execution “falls through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display
any error encountered by the XML TERMINATE
statement.

Status Display Logic (Example B)

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any error
condition that exists, and the second time to report an error (if one occurs) from the XML

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 163

TERMINATE statement. If there are no errors (the condition XML-IsSuccess is true),
this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.

 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.

 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.

 End-If. End of the IF statement and the paragraph.

Execution Results for Example B
The following sections display the output of the COBOL program that is run and the XML
document that is generated.

COBOL Display (Example B)

Running the program (runcobol exampleb) produces the following display:

Example-B - Illustrate IMPORT with missing intermediate names
focusb.xml exported by XML EXPORT FILE
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
17010955
focusb.xml imported by XML IMPORT FILE:
Micro Focus
8310 North Capital of Texas Highway
Building 1, Suite 155
Austin TX78731
17010955
xfocusb.xml imported by XML IMPORT FILE:
Wild Hair Corporation
8911 Hair Court
Sweet 4300
Lostin TX70707
00000000
You may inspect 'focusb.xml' & 'xfocusb.xml'

Status: +0000
Press a key to terminate:

Note Pressing a key will terminate the program.

Example Batch Files
Appendix A: XML Extensions Examples

164 XML Extensions User's Guide

XML Document (Example B)

Microsoft Internet Explorer may be used to view the generated XML document, focusb.xml
and the predefined XML document xfocusb.xml. (Note that Internet Explorer will
differentiate among the various syntactical elements of XML by displaying them in different
colors.)

focusb.xml

xfocusb.xml

Example Batch Files
Three batch files are provided to facilitate use of the example programs: cleanup.bat,
example.bat, and examples.bat.

Example Batch Files
Appendix A: XML Extensions Examples

 XML Extensions User's Guide 165

cleanup.bat
This batch file will remove various files that were created by executing the example
programs. This file contains a series of delete file commands similar to the following:

@echo off
echo cleanup started ...
if exist focus*.xml del focus*.xml
if exist table1.xml del table1.xml
if exist table2.xml del table2.xml
if exist table3.xml del table3.xml
if exist table4.xml del table4.xml
if exist example*.cob del example*.cob
if exist tmp.cob del tmp.cob
if exist *.lst del *.lst
if exist example*.x* del example*.x*
if exist stamp*.xml del stamp*.xml
if exist stamp rmdir Stamp
echo finished cleanup.

This batch file has no parameters. Run it by entering the following on the command line:

cleanup

Note On UNIX systems, the script named cleanup is provided for the same purpose as
cleanup.bat on Windows.

example.bat
This batch file will compile a COBOL source program, run the slicexsy utility against the
compiled object code if model files are required, and finally execute the COBOL program.
The content of this file is as follows:

@echo off
REM %1 == example program file name (without extension)
REM %2 == example data-item (when slicexsy needed)
REM %3 == slicexsy options (when slicexsy needed)
REM Compile the example program given by %1
rmcobol %1 k
REM Run slicexsy when schema/stylesheet model files required
if "%3" == "-ss"slicexsy %1 %2 %3 –bn
REM Run example program
start /w runcobol %1 a=’\’ k

This batch file uses parameters that are specified by the caller of the batch file. The first
parameter is the filename of the COBOL program (without the .cbl extension). The second
parameter is the name of a data-item within the COBOL program, from which the slicexsy
utility will construct model files. The third parameter is used for passing options to the
slicexsy utility.

To build and run Example 1: Export File and Import File (on page 90) using this batch file,
enter the following on the command line:

Example Batch Files
Appendix A: XML Extensions Examples

166 XML Extensions User's Guide

example example1 Focus-Address -sn

Note On UNIX systems, the script named example is provided for the same purpose as
example.bat on Windows.

examples.bat
This batch file will clean up files that were created from a previous run and then compile and
run each example. The content of this file is similar to the following:

@echo off
call cleanup
echo Example1 - Export / Import File.
call example example1 Focus-Address -sn
echo Example2 - Export / Import with XSLT stylesheets.
call example example2 Focus-Address -sn
echo Example3 - Export / Import with Occurs Depending.
call example example3 Focus-Address -sn
echo Example4 - Export / Import with sparse arrays.
call example example4 Data-Table –sn
echo Example5 - Export / Import Text.
call example example5 Focus-Address -sn
echo Example6 - Export / Import with directory polling.
mkdir Stamp
call example example6 Time-Stamp -sn
echo Example7 - Export / Well-Formed File / Validate File.
call example example7 Focus-Address -ss
echo Example8 - Export / Well-Formed Text / Validate Text.
call example example8 Focus-Address -ss
echo Example9 - Export / Transform / Import.
call example example9 Focus-Address -ss
echo ExampleA - Well-Formed / Validate diagnostics.
call example examplea Focus-Address -ss
echo ExampleA - Import with missing intermediate names.
call example exampleb Focus-Address -sn

This batch file has no parameters. Run it by entering the following on the command line:

examples

Note On UNIX systems, the script named examples is provided for the same purpose as
examples.bat on Windows.

Accessing the Example Application Programs
Appendix B: XML Extensions Example Application Programs

 XML Extensions User's Guide 167

Appendix B: XML Extensions
Example Application Programs

XML Extensions provides several complete and useful example application programs. The
purpose of these self-contained programs is to demonstrate and explain how to perform
typical application-building tasks in XML Extensions within a realistic context so that you
can better see how to integrate them into your own applications.

Accessing the Example Application Programs
The example application programs are included in the XML Extensions examples directory,
xcentrisity/examples. Documentation for the examples is contained in this directory in the
form of a PDF file named Collection_of_Xcentrisity_Examples.pdf.

Each example application program is intended to reside in a separate subdirectory. For
example, the bar chart example application resides in the directory named
xcentrisity\examples\SimpleGraph.

Here is a summary of the example applications and the directory that contains each:

• Bar Chart (SimpleGraph).

• Stacked Bar Chart (StackedGraph).

• Pie Chart (PieChart).

• Gauge Example and SVG Widget Applets (GaugeExample); the applets require BIS.

• USPS Barcodes (USPSBarCodes).

• XML Spreadsheet (XMLSpreadsheet); requires BIS.

• Casino Floor Simulation (Floorplan); requires BIS.

Note Some of these examples require Xcentrisity Business Information Server (BIS) to
actually run the example, but even these examples are informative without BIS.

In addition to the above examples, there is an XML Extensions sample application xform.cbl
in Public\Documents\Micro Focus\RM\XMLEXT\Samples\xform\. This sample is a
simple demonstration of using a stylesheet to transform an XML document in a complete
application environment. This sample is documented in the HTML document xform.htm.

If you have Xcentrisity Business Information Server (BIS), the tutorials provided with it also
demonstrate XML Extensions and the use of transforms. Tutorial1, Tutorial2 and Tutorial3

Accessing the Example Application Programs
Appendix B: XML Extensions Example Application Programs

168 XML Extensions User's Guide

are specific to BIS, but the transforms are informative to use of XML Extensions. In
particular, the samples/common directory has stylesheets cobol_to_soap.xsl, and
soap_to_cobol.xsl that demonstrate how a dictionary of name translations,
Tutorial2Dictionary.xml, can be used to resolve issues between COBOL name rules and
XML name rules. The stylesheet cobol_to_wsdl.xsl demonstrates how to create a WSDL
(web service description language) for a COBOL program that implements a web service with
BIS and also demonstrates name translations using a dictionary, but only in one direction.

Error Message Format
Appendix C: XML Extensions Error Messages

 XML Extensions User's Guide 169

Appendix C: XML Extensions
Error Messages

This appendix lists and describes the messages that can be generated during the use of
XML Extensions.

Error Message Format
XML Extensions error messages may be several lines long, up to 20 for any one XML
Extensions statement. Each line can be as long as 2048 characters. The general format of an
error message includes the text of the message, and, if available, the COBOL traceback
information, the name of the file or data item, and the parser error information.

Note See Table 3 on page 171 for a summary of error messages.

Message Text
The first line of the error message has the following format:

<severity> - <message number> <message text>

severity indicates the gravity and type of message: Informative, Warning, or Error.

Message number is the documented message number followed by an internal message number
in bracket characters. The internal number provides error detail information for Micro Focus
customer care to use in diagnosing problems reported to them.

Message text is a brief explanation for the cause of the error.

An example of the first line of an error message is shown below:

Error: 28[12] – in function: LoadDocument

Many of the errors specify the XML library function that failed. In the above case, it was the
load document function in the XML library. More information is provided in the additional
lines of status text accompanying the error.

Error Message Format
Appendix C: XML Extensions Error Messages

170 XML Extensions User's Guide

COBOL Traceback Information
The second line of the error message, present if the information is available, contains COBOL
traceback information such as the following:

[28] Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB),
compiled 2017/05/14 09:42:06.

The “[28]” prefix on the message indicates the error number of the associated original
message. For the traceback second line message, this will always be the error message
number from the first line.

The error-reporting facility XML GET STATUS-TEXT will break up lines that are too long
for the line buffer provided in the COBOL program. This prevents long lines from being
truncated. A backward slash character (\) is placed in the last position of the line buffer and
the line is continued on the subsequent line. For example, the traceback line shown above
may be broken up as follows:

Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB), co\
mpiled 2017/06/05 09:42:06.

Note: The line buffer can be longer than the default 80 characters as explained in Displaying
Status Information (on page 79).

Filename or Data Item in Error
The third line of the error message, present if the information is available, normally contains
the name of the file or data item in error being referenced. The message is prefixed with the
bracketed error number of the first line.

Parser Information
Additional lines may be present that contain parser or schema diagnostics from the underlying
XML parser, such as:

[00] MSXML 6.0 parse error code: 0xc00ce201
[00] Error parsing 'ABCDE' as decimal datatype. The element 'zip' with value '\
ABCDE' failed to parse.

Additional Information
Additional lines may be present that contain information about the files or documents that
were being processed at the time of the error. For example,
[71] Input document name: C:\RM-XMLEXT\examples\xfocusa2.xml
[71] Stylesheet name: C:\RM-XMLEXT\examples\examplea.xsl
[71] Schema name: C:\RM-XMLEXT\examples\examplea.xsd

This information generally comes from the parameters specified to the subject XML
Extensions statement.

Some statements can have both errors and warnings, which is part of the reason the [nn]
prefix was added to the message line. For example,

Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions User's Guide 171

[72] Called from line ^834 in PrgA(C:\xmltest\code\RPI1095851A.COB), compiled 2\
2014/10/27 17:55:19.
[-06] Ambiguous import name: c02-alert-option Content: N
[72] Import element name: c02-alert-option Content: N
[72] Import document name: ^C:\Liant\w1\tests\xmltest\input\rpi1095851a_input1.xml
[72] Schema name: ^C:\Liant\w1\tests\xmltest\RPI1095851A_RPI1095851A.xsd

In this case, warning -06 happened in the statement that terminated with an error 72. The
ambiguous name resulted in XML Extensions choosing the wrong COBOL data item as the
import target, which ultimately caused the error 72.

Summary of Error Messages
Table 3 describes the messages that may be generated when an error occurs in XML
Extensions.

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

-06 Warning -- ambiguous
import name.

An element name in an imported XML document
is defined more than once in the symbol table
determined by the
ModelFileName#DataFileName parameter of the
XML IMPORT statement. Further, the element
name is defined more than once subordinate to
the model data name. XML Extensions assumes
the first of the duplicates found, which is the
lexically last defined duplicate, should be used
and continues. If that name already has an
imported value for the current import and is not a
table (array) element, the next duplicate is
assumed, that is, a lexically previous duplicate
definition. For arrays, the array is consecutively
filled before moving on to look for another
duplicate. If there is no duplicate name without a
previously imported value, a -02 extraneous
element warning is produced and the imported
text value is discarded. This warning is not
produced if the XML document does not have
any text content, after ignoring whitespace, for
the element. This warning is also not produced if
the XML document contains sufficient
qualification, that is, parent element names, to
make the reference unique. When a duplicate
name is not subordinate to the model data name,
this warning is not produced unless all duplicate
names are not subordinate to the model data
name.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

172 XML Extensions User's Guide

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

-05 Warning -- ambiguous
import target name (model
dataname).

The model data name determined by the
ModelFileName#DataFileName parameter of the
XML IMPORT statement is defined more than
once in the symbol table determined by that
parameter (either in the object program or from a
model template file). Additional qualification is
necessary to uniquely define the model data
name, which is the description of the target data
structure for the import. (Note that in the case of
nested programs, the program name can be used
as a qualifier and might be necessary to
differentiate duplicate data-names defined in
different programs.)

-04 Warning – subscript out of
range

A subscript is out of range on import. The
offending item is not imported.

-03 Warning – data truncation A nonnumeric import item has been truncated to
fit the associated COBOL data item.

-02 Warning – extraneous
element

The import data contains one or more elements
that do not belong anywhere in the COBOL data
structure; the element(s) have been ignored.

 0 Success A normal completion occurred. No informative,
warning, or error message was detected.

 1 Informative – directory
contains no documents

An XML FIND FILE statement did not find any
XML documents (files with an .xml extension) in
the specified directory.

 2 Informative – document file
– no data

An XML EXPORT FILE or an XML EXPORT
TEXT statement generated a document that
contained no element values.

 3 Warning – internal logic –
memory not deallocated

During process cleanup, memory blocks that
should have already been deallocated were still
allocated.

 4 Warning – invalid option –
ignored

The slicexsy utility detected an invalid command
line option. The option is ignored and processing
continues.

 5 Error – COBOL object file –
invalid format

The slicexsy utility detected that the specified
COBOL object file is not valid. This usually
means that the header checksum is invalid.

 6 Error – COBOL object file –
open failure

The slicexsy utility detected an error while
attempting to open the specified COBOL object
file.

 7 Error – COBOL object file –
read failure

The slicexsy utility detected an error while
attempting to read data from the specified
COBOL object file.

 8 Error – COBOL object file –
seek failure

The slicexsy utility detected an error while
attempting to seek to a location within the
specified COBOL object file.

 9 Error – in function:
CreateDocument

The underlying XML parser detected an error
while trying to create an XML document. This
error may occur in the slicexsy utility or the
xmlif library.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions User's Guide 173

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

10 Error – cannot create URL The xmlif library detected that a URL (a string
beginning with the sequence “http://”, ”https://”,
or ”file://”) was used as an output document
name. A URL can only be specified for an input
document.

11 Error – data item – duplicate
found

The data-name specified for an export (xmlif
library) or for the data-name parameter (slicexsy
utility) was found more than once in the COBOL
object file or library. Additional qualification
needs to be provided to unambiguously identify
the data-name in the symbol table that is to be
exported or sliced. Qualification may include the
program-name if necessary for uniqueness.

12 Error – data item – not found The model data-name specified for an import or
export (xmlif library) or for the data-name
parameter (slicexsy utility) was not found in any
symbol table available to the search. When
searching a model template file symbol table, the
model data-name was not defined in the symbol
table contained by the template file. When
searching object files, the object files either did
not contain an XML Extensions symbol table or
the model data-name was not defined in any of
the symbol tables found in the object files
searched. Note that object files might not contain
an XML Extensions symbol table because they
were either suppressed when the object files were
created or the compiler used to create the object
files was not licensed for XML Extensions
development. The compiler produces the
“Options in effect” listing line “XML compiler
(licensed for use with XML Extensions)” when
the compiler is licensed for XML Extensions
development; if this line is missing from the
“Options in effect”, the object files produced by
the compiler do not contain XML Extensions
symbol tables. When searching object files for a
symbol table, the xmlif library counts the number
of unlicensed objects that are examined and if
this count is greater than zero and the model
data-name was not found, an additional status
text line similar to the following:

[12] 1 of 1 object files not licensed for XML
Extensions

is produced to aid in diagnosing this issue; the
“[12]” associates this status text line with the
previously reported error 12; the “n of m”
indicates the number (n) of object files examined
and the number (m) of object files not licensed
for XML Extensions development. See the XML
GET STATUS-TEXT statement description (on
page 62) for how to get additional status text.

13 Error – document file –
create failure

An attempt to create an XML document file
failed. This error may occur in the xmlif library
or the slicexsy utility.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

174 XML Extensions User's Guide

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

14 Error – document file – file
open failure

The xmlif library detected an error while
attempting to open an XML document file.

15 Error – extraneous element The xmlif library detected an extra occurrence of
a scalar data element.
Note This message is valid only for versions of
XML Extensions prior to version 12.

16 Error – example file – create
failure

The slicexsy utility detected an error while
attempting to create an example file.

17 Error – in function:
GetFirstChild

The xmlif library detected an error in the
function GetFirstChild while parsing an XML
document.

18 Error – in function:
GetNextSibling

The xmlif library detected an error in the
function GetNextSibling while parsing an XML
document.

19 Error – in function:
GetNodeData

The xmlif library detected an error in the
function GetNodeData while parsing an XML
document.

20 Error – in function:
GetRootNode

The xmlif library detected an error in the
function GetRootNode while parsing an XML
document.

21 Error – internal logic –
memory allocation

An attempt to allocate a block of memory failed.
This error may occur in either the slicexsy utility
or the xmlif library.

22 Error – internal logic –
memory corruption

An attempt to deallocate (free) a block of
memory failed either because the block header or
trailer was corrupted or because the free memory
call returned an error. This error may occur in
either the slicexsy utility or the xmlif library.

23 Error – internal logic – node
not found

The xmlif library detected an inconsistency in its
internal tables. Specifically, an expected entry in
the Document Object Model is missing.

24 Error – in function:
Initialization

Either an XML statement (other than XML
INITIALIZE) was executed without first
executing the XML INITIALIZE statement or
the XML INITIALIZE statement failed. This
error may occur in the xmlif library. In addition,
improper installation of the underlying XML
parser could cause the slicexsy utility to fail with
this error while attempting to generate an XSLT
stylesheet or schema.

25 Error – invalid data address The xmlif library detected that the data structure
address specified in an XML IMPORT or an
XML EXPORT statement does not match the data
address specified in the template file. This
normally means that the COBOL program has
been re-compiled but that the slicexsy utility was
not re-executed to regenerate the model files.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions User's Guide 175

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

26 Error – invalid object time
stamp

While attempting to execute an XML IMPORT
or an EXPORT statement, the xmlif library
detected that the time stamp of the COBOL
object used in generating the model files does not
match the time stamp of the COBOL object
being executed. This normally means that the
COBOL program has been re-compiled but that
the cobtoxml utility was not re-executed to
regenerate the model files.
Note This message is valid only for versions of
XML Extensions prior to version 11.

27 Error – license management The license verification logic in the slicexsy
utility detected an error.
Note This message is valid only for versions of
XML Extensions prior to version 12.

28 Error – in function:
LoadDocument

An error was detected while trying to load an
XML document. This normally means that there
was a problem locating the document (either the
document does not exist or there is a problem
with permissions). This error may occur in either
the xmlif library or the slicexsy utility.
Occasionally, XML Extensions generates
documents that are then loaded as input
documents. In the unlikely event that the
generated document contains errors, a load
document error will be encountered.

29 Error – in function:
LoadSchema

An error was detected while trying to load an
XML schema file. This normally means that
there was a problem locating the document
(either the document does not exist or there is a
problem with permissions) or that the schema
itself is in error. This error may occur in either
the xmlif library or the slicexsy utility.

30 Error - in function:
LoadStyleSheet

An error was detected while trying to load an
internal or external XSLT stylesheet. This
normally means that there was a problem
locating the document (either the document does
not exist or there is a problem with permissions).
Another possible cause is that the XML parser
software is not properly installed. This error may
occur in either the xmlif library or the slicexsy
utility.

32 Error - in function:
LoadTemplate

An error was detected while trying to load an
XML template file. This normally means that
there was a problem locating the document
(either the document does not exist or there is a
problem with permissions). Another possible
cause is that the XML parser software is not
properly installed. This error may occur in the
xmlif library.

33 Error - parameter - COBOL
object file name missing

The slicexsy utility detected that the COBOL
object file name command-line parameter is
missing.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

176 XML Extensions User's Guide

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

34 Error - parameter - data item
name missing

The slicexsy utility detected that the name of the
data item command-line parameter is missing.

35 Error - subscript out of range While executing an XML IMPORT FILE or an
XML IMPORT TEXT statement, the xmlif
library detected that a subscript reference is out
of range (the subscript value is greater than the
maximum for the array). This may occur either
when the subscript is explicitly supplied in an
attribute or when the subscript is generated
implicitly (when an extra occurrence is present).
This error occurs only when the COBOL
program was compiled with pre-version 12 copy
files, that is, when a pre-version 12 application is
using the version 12 XML Extensions.
Applications compiled with the version 12 XML
Extensions copy files return warning -4 instead.

36 Error - temporary file access
error

The xmlif library encountered an error while
attempting to access a temporary intermediate
file. This error can occur during the XML
IMPORT TEXT, XML EXPORT TEXT, XML
VALIDATE TEXT, or XML TEST
WELLFORMED-TEXT statements.

37 Error - in function:
TransformDOM

An unexpected error occurred while performing
an XSLT transform of an XML document. This
might be an internal error, but can be caused by
an error in an external stylesheet. This error may
occur in either the xmlif library or the slicexsy
utility.

38 Error - in function:
TransformText

An error occurred while performing an XSLT
transform of an XML document using an external
(user-supplied) XSLT stylesheet. This error may
occur in the xmlif library.

39 Error - symbol table - not
present in COBOL object

Version 11 and earlier meaning: The cobtoxml
utility could not find the symbol table
information in the COBOL object. This
normally indicates that the COBOL program
needs to be recompiled using the Y option.
Version 12 meaning: The RM/COBOL compiler
did not produce an XML-format symbol table
(either because it was not licensed to do so, or
because the feature was disabled, for example, by
the compiler configuration keyword SUPPRESS-
XML-SYMBOL-TABLE being specified for the
compilation). This error can be detected by
either slicexsy or the xmlif library.

41 Error - old runtime version The RM/COBOL runtime system is too old for
this version of the xmlif library. Normally, this
error cannot occur because the xmlif library will
fail to load successfully when the runtime version
is too low.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions User's Guide 177

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

42 Error - in function:
WriteDocument

An error occurred while attempting to write an
XML document from the internal Document
Object Model representation. This error may
occur in either the xmlif library or the slicexsy
utility.

43 Error - wrong COBOL object
symbol table version

The slicexsy utility determined that the COBOL
object symbol table version in the specified
object file is newer than was available when this
version of XML Extensions was released and,
therefore, may contain features that are not
supported by XML Extensions. Check with
Micro Focus for updates to XML Extensions.
Note This message is not used in XML
Extensions version 12 and later.

44 Error - wrong cobtoxml
revision

The xmlif library determined that the format of
the model files may be incompatible with the
xmlif library. The template file is not version 1.0
or version 2.0, as required.

45 Error - invalid encoding
selection

The value of the Encoding parameter of the XML
SET ENCODING statement was neither “local”
nor “utf-8”.

46 Error - invalid UTF-8 data An XML export operation failed because the data
supplied was not valid for UTF-8.

47 Error - invalid
RM_ENCODING value

The value of the RM_ENCODING environment
variable on UNIX is not any of “rmlatin1”,
“rmlatin9”, or a name recognized by the
available iconv library.

48 Error - unable to locate iconv
library

The value of the RM_ENCODING environment
variable on UNIX is neither “rmlatin1” nor
“rmlatin9”, but an iconv library for character
conversions could not be found.

49 Error - directory open failure The XML FIND FILE statement was not able to
locate and open the specified directory.

50 Error - missing XML parser
(MSXML6)

The XML parser could not be found. This error
occurs only on Windows and indicates the
MSXML 6.0 parser is not installed in the
Windows system. The MSXML 6.0 parser is
normally installed when RM/COBOL is installed
on Windows, but could not be found. MSXML
6.0 can be obtained by downloading it from
Microsoft’s web site or re-installing
RM/COBOL.

51 Error - data item - illegal
name format

A data-name being exported does not begin
with an initial name character (letter, colon or
underscore). This error should occur only for
version 1.0 template files when a COBOL
data-name begins with a digit. For version 2.0
template files, COBOL data-names that begin
with a digit are prefixed with an underscore.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

178 XML Extensions User's Guide

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

52 Error - CodeBridge
conversion failure

The attempted conversion of data to or from a
COBOL data type and a displayable string
acceptable to XML failed.

53 Error - Name specified is not
a data-item

When specifying a data structure name, a name
was provided that is not a data item. For
example, it might be a file-name, an index-name,
a constant-name, and so forth. A data item name
is required.

56 Error - can't inflate xml
symbol table extracted from
the object file

An error occurred while trying to inflate
(decompress) the extracted XML symbol table
from the COBOL object file. There may be
insufficient memory for the inflation, or the
object file may have been corrupted.

57 Error - failed to create XML
symbol table file for writing

An attempt to create an intermediate XML
symbol table file for writing failed. This is
frequently an issue with permissions on the
directory containing the temporary file.

60 Error - XML symbol table
file – read failure

An error occurred while trying to process the
XML-format symbol table.

62 Error - requested template
file cannot be found

Requested template file specified by the model
file data name parameter cannot be found.

63 Error - resolved file name is
too long

The resolved filename from one of the following
statements is too large to fit in the buffer
provided:

XML EXPORT FILE
XML EXPORT TEXT
XML IMPORT FILE
XML IMPORT TEXT
XML RESOLVE DOCUMENT-FILE
XML RESOLVE SCHEMA-FILE
XML RESOLVE STYLESHEET-FILE
XML RESOLVE MODEL-FILE

64 Error - resolved file name
does not exist

The file name passed to one of the following
statements cannot be resolved. It may not exist
and is not accessible. Check the value of the
RUNPATH environment variable to verify that
all search paths have been specified.

XML EXPORT FILE
XML EXPORT TEXT
XML IMPORT FILE
XML IMPORT TEXT
XML RESOLVE DOCUMENT-FILE
XML RESOLVE SCHEMA-FILE
XML RESOLVE STYLESHEET-FILE

65 Error - name / value pair
required

The XML SET XSL-PARAMETERS statement
requires an even number of parameters (name /
value pairs).

66 Error - excessive number of
XSL parameters

The XML SET XSL-PARAMETERS statement
is limited to a maximum of 40 parameters (20
name / value pairs).

Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions User's Guide 179

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

67 Error - unique identifier too
long for buffer

The buffer supplied in the XML GET
UNIQUEID statement is too small. Unique
identifiers require 38 character positions.

68 Error in function:
AddAttribute.

An attribute node could not be added during
export of a document. Attributes are added by
XML Extensions when the XML ENABLE
ATTRIBUTES statement has been executed;
also, one attribute is always added to the top
level element exported. This error will not
normally happen. One cause could be that the
XML engine did not have enough memory to add
the attribute node to the document.

69 69 Error in function:
AddElement.

An element node could not be added during
export of a document. This error will not
normally happen. One cause could be that the
XML engine did not have enough memory to add
the element node to the document.

70 70 Error in function:
AddText.

A text node could not be added during export of
a document. This error will not normally
happen. One cause could be that the XML
engine did not have enough memory to add the
text node to the document. The error can also
happen if incorrect parameters are passed to the
XML EXPORT FILE or XML EXPORT TEXT
statement.

71 71 Error in function:
ValidateDOMDocument.

An attempt to validate a document failed. This
normally means that the document is not valid,
but could also mean the supplied schema is not a
valid schema or there was not enough memory to
validate the document. Additional error lines are
produced to indicate why the validation failed.

72 72 Error -- import offset
outside target data structure.

An attempt to store outside the target data
structure determined by the DataItem parameter
of the XML IMPORT statement has been
detected. This can happen because of a model
template file that is out-of-date with the
executing COBOL program; in this case, the
model template file needs to be regenerated from
the revised COBOL program. Another cause can
be duplicate data names in the symbol table and
insufficient qualification (parent elements) in the
imported XML document to choose the correct
data item target for the import.

The attempted import is suppressed along with
any further import operations for the affected
XML IMPORT statement.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

180 XML Extensions User's Guide

Table 3: XML Extensions Error Messages

Message
Number

Severity and Message Text

Description

73 Error – trace file open failed The trace file name specified in an XML TRACE
statement could not be opened. The most
common cause of this error is that a directory
name that does not exist is specified as part of the
file name. Other errors that could cause this are
access denied (because the file is read-only or the
user does not have permissions to the file) or the
program does not have permission to write to the
directory specified. The program can continue,
but tracing will be disabled. This error is only
returned when the XML TRACE statement opens
the trace file for the first time. Subsequent trace
file open failures while the program is running
other XML Extensions statements cause tracing
to be suppressed.

What is the slicexsy Utility?
Appendix D: slicexsy Utility Reference

 XML Extensions User's Guide 181

Appendix D: slicexsy Utility
Reference

This appendix describes the optional slicexsy utility.

What is the slicexsy Utility?
The slicexsy utility is an optional application program that has been provided for backward
compatibility with previous versions of XML Extensions. It also allows for schema
validation.

The slicexsy utility provides an alternative to deploying object programs that include the
entire XML-format symbol table produced by the RM/COBOL compiler licensed for XML
Extensions. This symbol table may be too large to be loaded by XML Extensions on some
platforms. In such cases, the slicexsy utility may be used to produce a “slice,” or subset, of
the XML-format symbol table that is smaller and easier to load on the deployment machine.

The slicexsy utility produces a set of three XML Extensions-deployable files that are known
as model files (see page 187). Model files describe a single data structure within the COBOL
program.

• If schema validation is to be performed, all three model files (.xtl, .xsl, and .xsd) must be
deployed.

• If schema validation is not performed, it is necessary to deploy only the template file (the
model file having the .xtl extension).

By default, the slicexsy utility does not produce schema information.

Things to Consider Before Using slicexsy
XML Extensions does not require the use of the slicexsy utility. Developers may wish to
consider the advantages and disadvantages of doing so prior to employing the utility as a
deployment tool.

The disadvantages of using slicexsy include the following:

Using the slicexsy Utility
Appendix D: slicexsy Utility Reference

182 XML Extensions User's Guide

• It is possible to have out-of-date model files that do not match the currently running
program, which can result in odd failures that are difficult to debug.

• Because slicexsy is a separate program that must be run after compilation, it adds an extra
step to the development cycle.

• Furthermore, not using slicexsy also simplifies the deployment process in that there are
fewer files to deploy.

Those considerations aside, however, the slicexsy utility provides a number of advantages:

• It allows the developer to validate data using a schema.

• It allows the developer to reduce the size of the object programs that are deployed.

• It enables faster XML loading.

• It is less resource-intensive on deployment machines.

• It provides additional security. By eliminating the symbol table, access to a map of the
developer’s data structures other than those for the slice is also eliminated.

Using the slicexsy Utility
To use the slicexsy utility, you specify (at a minimum) the name of a COBOL object file and
the name of a COBOL data item within that file. If the application wishes to use several
COBOL data structures as separate XML documents within the same COBOL application, it
is necessary to run the slicexsy utility once for each data structure, using an optional
parameter to provide a name for the model files.

The slicexsy utility requires that the COBOL object program be compiled in such a manner
that an XML-format symbol table is embedded in the COBOL object file. The generation of
an XML-format symbol table is controlled by whether or not the RM/COBOL compiler is
licensed for XML Extensions and also by the following configuration file option:

COMPILER-OPTIONS SUPPRESS-XML-SYMBOL-TABLE=<value>

where, <value> may be YES or NO. The default is NO, resulting in the production of the
XML-format symbol table by default.

Note An RM/COBOL compiler that is not licensed for XML Extensions will not produce an
XML-format symbol table regardless of the setting of this configuration keyword.

Once the slicexsy utility creates a template file based on the XML-format symbol table, the
symbol table may then be removed from the deployed object programs. To remove the
symbol table, the source program must be recompiled using the SUPPRESS-XML-
SYMBOL-TABLE keyword with the value set to YES.

File Naming Conventions
File extensions are either used “as is” or forced to be a predetermined value. The conventions
governing particular filename extensions when using XML Extensions are described in the
topics that follow.

Note A filename extension is never added if the filename is a URL; that is, the filename
begins with ”http://”, ”https://”, or ”file://”.

Backward Compatibility
Appendix D: slicexsy Utility Reference

 XML Extensions User's Guide 183

Model File Naming Conventions

Model files, the XML documents generated by the slicexsy utility, have predetermined
extensions. If configured to do so, the slicexsy utility generates a set of three files from a
single filename with different extensions. A set of model files consist of the following:

• One template file (.xtl)

• One internal XSLT stylesheet file (.xsl)

• One schema file (.xsd)

For a more detailed discussion, see Model Files (on page 187).

Backward Compatibility
The slicexsy utility was introduced in version 12 of XML Extensions as a replacement for the
cobtoxml utility. To accommodate batch streams created with earlier versions that use
cobtoxml, XML Extensions allows slicexsy to be referenced as cobtoxml. This can be done
by copying or renaming slicexsy (or slicexsy.exe) to cobtoxml (or cobtoxml.exe) or by using
the UNIX ln command to link a new name (cobtoxml) to the existing name (slicexsy).

It should be noted that regardless of whether it is named slicexsy or referenced as cobtoxml,
this utility works only with the XML-format symbol table introduced in version 12 of XML
Extensions. Prior to version 12, the cobtoxml utility required that the COBOL object
program be compiled with the RM/COBOL Compile Command Y Option enabled in order
to place the debug symbol table information in the object file; this is not a requirement in
version 12.

The name used to invoke the utility determines the default for the schema option when no
schema option is specified: slicexsy assumes –sn (no schema) and cobtoxml assumes –ss
(schema XSD). When a schema file is produced, a stylesheet is also produced in addition to
the schema and the template.

It should be noted that the command line name (–n[afhlmpu]) and alternative schema options
(–sb and –sd), which were available with the original cobtoxml utility, are not supported by
the slicexsy utility no matter what name is used to invoke the utility. The name options were
deemed better handled by use of a transform stylesheet supplied by the user; Tutorial2 for
Xcentrisity Business Information Server (BIS) has an example of such a stylesheet that
employs a user-defined dictionary for appropriate name mappings between COBOL names
and XML names. The alternative schemas, alternatives to XML Schema, were deemed to
have too low an adoption rate within the XML community to warrant continued support.

When the utility is referenced without any arguments, the usage screen appears as follows as a
help screen:

RM/COBOL Symbol Table Slice Utility
 Version 12.14 for 32-Bit Windows.
 Copyright (c) 2017 by Micro Focus. All rights reserved.

Usage: slicexsy cob-file-name data-item-name model-file-name options
 or: slicexsy cob-file-name#data-item-name model-file-name options

 cob-file-name: case-sensitive name of the RM/COBOL object file
 data-item-name: case-insensitive name of the COBOL data item
 model-file-name: optional case-sensitive name for the XML file(s)

 If model-file-name omitted, it defaults to cob-file-name unless

Command Line Interface
Appendix D: slicexsy Utility Reference

184 XML Extensions User's Guide

 "#" syntax used, in which case it defaults to data-item-name.

 Options:
 -bc -- banner: copyright only (default)
 -bn -- banner: none
 -bv -- banner: verbose

 -sn -- schema none (default)
 -ss -- schema xsd

Error: 33[0] - parameter - COBOL object file name missing
[33]

The last line, “[33]” would normally provide the missing name for a name that caused the
error, but this error is that the name was not supplied and is therefore blank on that last line.

Command Line Interface
The slicexsy utility (slicexsy.exe on Windows and slicexsy on UNIX) is executed with either
of the following command syntax formats:

Syntax Format 1

slicexsy cob-file-name data-item-name [model-file-name] [options]

Syntax Format 2

slicexsy cob-file-name#data-item-name [model-file-name] [options]

Notes

• Syntax Format 1 can be used to mimic the behavior of the utility prior to version 12 when
it was named cobtoxml. If the optional model-file-name parameter is omitted, Syntax
Format 1 causes the value of cob-file-name to be used as a base for model files, which is
compatible with cobtoxml behavior. For example, the following command

slicexsy myfile mydata

would generate model files based on myfile (myfile.xtl, and so forth).

• Syntax Format 2 is the behavior introduced in version 12 with the slicexsy utility. If the
optional model-file-name parameter is omitted, Syntax Format 2 causes the value of data-
item-name to be used as a base for model files. For example, the following command:

slicexsy myfile#mydata

would generate model files based on mydata (mydata.xtl, and so forth).

cob-file-name, the first positional input parameter, is the case-sensitive name of the
RM/COBOL object file that includes an XML-format symbol table. The generation of this

Command Line Interface
Appendix D: slicexsy Utility Reference

 XML Extensions User's Guide 185

XML-format symbol table is controlled by the configuration file option, COMPILER-
OPTIONS SUPPRESS-XML-SYMBOL-TABLE. If this parameter contains an extension, it
will be used as entered. If the extension is omitted, .cob will be added. If the file specified by
cob-file-name does not exist in the current directory, the RUNPATH environment variable
will be used to search for the file .

data-item-name, the second positional input parameter, is the case-insensitive name of the
selected data item within a COBOL program. Qualification for uniqueness of reference may
be required. The most common use is the name of a record-name (level-number 01), but a
group at any level or an elementary data item may be referenced. A data-item-name must be
unique in all programs within the object file (all separately compiled programs, in the case of
program libraries). In order to achieve uniqueness, the name may be qualified using the "//"
sequence, which is similar to the XPATH specification format. That is, the slicexsy utility
specifies qualifiers in the form "A//B//C" or A//C, which corresponds to the COBOL
qualification C OF B OF A and C OF A, respectively. In the case of program libraries, all
separately compiled programs are searched. The leading qualifiers in the data-item-name
parameter may be program-names in order to achieve uniqueness when the same data-name
occurs in multiple programs in the program library. When the data-item-name is used as the
basis for the model-file-name(s), the last component of a qualified name is used. For
example:

slicexsy myfile#item-1//item-2

would cause the model file

item-2.xtl

to be generated.

model-file-name, the optional third positional output parameter, is the name of the set of XML
documents, called model files, having a single base filename with different, predetermined
extensions (.xtl, .xsl and .xsd) that are produced by the slicexsy utility and that describe the
COBOL data item. The value of this name is treated as case sensitive. If this parameter
already contains an extension, it will be ignored. For more information, see Model Files (on
page 187). On Windows, either a forward slash "/" or a backward slash "\" character may be
used as a directory-separator character when specifying a filename. This may make the
representation of a Syntax Format 2 cob-file-name#data-item-name to be familiar to the
developer. For example:

slicexsy code/myfile#structure//name

instead of

slicexsy code\myfile#structure//name

options represents command line options, which are described in Command Line Options (on
page 186). Although this parameter is shown as the last parameter, it may occur anywhere
after slicexsy on the command line. Additionally, options may be specified multiple times. If
contradictory options are selected (such as, –ss –sn), the last option selected is used. Invalid
options display a diagnostic message. Option letters are case insensitive; that is, the following
combinations are equivalent: “-bc”, “-bC”, “-Bc” and “-BC”. The options parameter is
divided into two categories: banner and schema.

Note When no command line parameters are entered, the following slicexsy.exe usage
message is displayed as a help screen:

RM/COBOL Symbol Table Slice Utility
 Version nn.nn for operating-system-name.

Command Line Interface
Appendix D: slicexsy Utility Reference

186 XML Extensions User's Guide

 Copyright (c) 2017 by Micro Focus All rights reserved.

Usage: slicexsy cob-file-name data-item-name model-file-name options
 or: slicexsy cob-file-name#data-item-name model-file-name options

 cob-file-name: case-sensitive name of the RM/COBOL object file
 data-item-name: case-insensitive name of the COBOL data item
 model-file-name: optional case-sensitive name for the XML file(s)

 If model-file-name omitted, it defaults to cob-file-name unless
 "#" syntax used, in which case it defaults to data-item-name.

 Options:

 -bc -- banner: copyright only (default)
 -bn -- banner: none
 -bv -- banner: verbose

 -sn -- schema none (default)
 -ss -- schema xsd

Error: 33[0] – parameter – COBOL object file name missing

Command Line Options
The following options are available on the slicexsy command line: banner and schema.

Note Name options, which were available with the cobtoxml utility (version 9 of XML
Extensions), are not supported by the slicexsy utility.

Banner Options

The banner options control the amount of information displayed during the execution of the
slicexsy utility. A banner option is created by entering a hyphen character (-) followed by the
letter “b” and then by one of the following letters: “c”, “n”, or “v”.

The following table lists several examples of supported banner option combinations:

Option Description

-bc Displays the Focus copyright message only. (This is the default.)

-bn Displays no banner information.

-bv Displays verbose banner.

Banner options do not affect the display of any error or status messages.

Schema Options

If desired, a schema file can be generated that will be used to validate an XML document.
The schema file has the same base name as the other XML model files and has an extension
of .xsd. Two formats of schema files are defined: Schema and None.

A schema option is generated by entering a hyphen character (-) followed by the letter “s” and
then by one of the following letters: “s” or “z”.

Supported schema options include the following:

Model Files
Appendix D: slicexsy Utility Reference

 XML Extensions User's Guide 187

Option Description

–ss The generated schema file complies with the standard schema definition.

–sn No schema file is generated. (This is the default.)

Model Files
The slicexsy utility creates a set of three XML documents known as model files for each data
structure that is specified within the COBOL program. Model files have the same root name
as the object file, although each filename has a unique, predetermined extension. The
following types of model files are created:

• Template file

• Internal XSLT stylesheet file

• Schema file

CAUTION Developers who use the slicexsy utility should be aware that programs may
recompile without always running the slicexsy utility. It is necessary to run slicexsy only
when the specified data structure(s) are changed. Therefore, it is the programmer’s
responsibility to specify the correct and current model file. Specifying an incorrect or non-
current model file may result in the wrong data being exported or imported.

Template File
The template file is the most important of the model files, as it governs both import and
export operations. XML Extensions uses the template file to generate an XML document that
is a subset of the XML-format symbol table in the COBOL object program. A template file
has the extension .xtl. Although the template file does not contain any text values, each
element in the file contains several COBOL-like attributes that describe the data. These
attributes provide the additional information XML Extensions needs to encode the COBOL
data properly as XML at runtime.

Attributes are associated with an element tag and contain information that describes the
element content. If you look at markup for the tag:

new-price-1 (<dataItem level="03" name="new-price-1" type="xsd:string"
 kind="NSE" length="14" offset="4" uid="Q4_test-99" />)

you are able to observe several attributes associated with this element. An attribute has the
form name="value". For example, the type attribute for the name element has a
value of "xsd:string". This information tells XML Extensions to obtain data from the
COBOL data structure and convert the data from COBOL data format to a text format for the
XML document.

When the template file is generated with slicexsy, the file would normally be distributed
with the application. The template file can be omitted since the template can be extracted
from the object file at execution time. However, if the COBOL program is later compiled
with the SUPPRESS-XML-SYMBOL-TABLE configuration keyword set to the value YES
(for example, to reduce the size of the application), the template file is required as part of
the application.

Model Files
Appendix D: slicexsy Utility Reference

188 XML Extensions User's Guide

Internal XSLT Stylesheet File
The internal XSLT stylesheet is used in conjunction with the schema file by the XML
VALIDATE FILE and XML VALIDATE TEXT statements to perform schema validation in
order to ensure that the XML document conforms to XML syntax rules.

Schema File
In XML terminology, a “schema” is a set of rules that defines an XML document. It is a
description of how data is structured, and it is about the data rather than the data itself.
Although, by default, the slicexsy utility does not produce schema information, there are cases
where validation by schema files may be appropriate. In such instances, the slicexsy utility
has an option to generate a schema file, as described in Schema Options (on page 186). The
schema file may be used to validate the content of an XML document, as detailed in XML
VALIDATE FILE (on page 41) and XML VALIDATE TEXT (on page 43).

In XML, the term “valid” means that a particular XML document is both well-formed (that is,
it has correct XML syntax), and that it is structured and contains content consistent with the
constraints intended by the designer of the document. Because schema rules can be strict, it is
sometimes difficult for a document to pass the validation. For example, XML requires that
elements be properly nested. The sample code below is not well-formed XML, because the
“Em” and “Strong” elements overlap:

<p>Normal emphasized strong emphasized strong</p>

Beginning with version 12 of XML Extensions, however, the schema rules have been relaxed
such that an imported document may be a subset of a valid document. The imported
document may have missing parents. The following is an example that illustrates this
situation: a) the underlying COBOL data structure, b) the schema file showing that the
document defining this structure is well-formed, and c) the schema file showing a subset of
the valid document that has missing parents.

a) COBOL data structure

01 A.
 03 B.
 05 C PIC 9 VALUE 1.

b) XML schema file describing this data structure

<a>

 <c>1</c>

c) XML schema file with missing parents (b, the parent of c, is missing)

Model Files
Appendix D: slicexsy Utility Reference

 XML Extensions User's Guide 189

<a>
 <c>1</c>

The schema file (.xsd) and the internal XSLT stylesheet file (.xsl) are both used by the XML
VALIDATE FILE and XML VALIDATE TEXT statements to perform schema validation,
thus ensuring that the XML document conforms to XML syntax rules.

Referencing XML Model Files
XML model files (see page 187) may be referenced by the COBOL application by means of a
traditional path name or by an Internet address. Examples of references to XML model files
are shown in the following table.

Filename Type of Referencing

c:\myfiles\myapp.xml Simple path name

\\mysystem\myfiles\myapp.xml UNC (Universal Naming Convention)

http://myserver/myfiles/myapp.xml URL (Universal Resource Locator)

file://mysystem/myfiles/myapp.xml
http://myserver/myfiles/myapp.xml

Version 12
Appendix E: Summary of Enhancements

 XML Extensions User's Guide 191

Appendix E: Summary of
Enhancements

This appendix provides a summary of the new features and changes in the various releases of
XML Extensions, beginning with the most recent release.

Notes

• The information in this appendix is historical. It was accurate at the time written for the
specific version being described. Various features may have changed in later releases,
and, possibly, some features may have been removed or changed.

• Beginning with the version 9 release, the name of this product changed from “XML
Toolkit for RM/COBOL” to “XML Extensions”.

Version 12
This section summarizes the major enhancements available in version 12 of XML Extensions
on Windows and UNIX. Many of these enhancements have also been distributed with various
releases of Xcentrisity Business Information Server (BIS).

• An XML Extensions-enabled RM/COBOL compiler will generate and embed an
XML-format symbol table in the COBOL object file that matches the currently-running
program. This new method provides a number of benefits, including the following:

− In previous versions of XML Extensions, it was possible to have out-of-date model
files that did not match the current program. This situation sometimes resulted in
odd failures that were difficult to debug.

− The XML-format symbol table contains more information than the debugging
symbol table used by previous versions of XML Extensions.

− Because the XML-format symbol table is compressed in the object file, it serves
to obscure information about the data layouts that were previously exposed in
model files.

− Both the development and deployment processes are simplified in that it is no
longer necessary to run an additional program after compilation and there are fewer
files to deploy.

Version 12
Appendix E: Summary of Enhancements

192 XML Extensions User's Guide

• For backward compatibility, the cobtoxml utility has been replaced by a new utility
named slicexsy. For more information, see Appendix D: slicexsy Utility Reference (on
page 181).

• A schema file is no longer created by default and validation against a schema is no longer
performed during import and export operations. If validation is required, the slicexsy
utility must be directed to produce a schema file and separate calls must be made to either
the XML VALIDATE FILE or XML VALIDATE TEXT statements. Schema validation
has been relaxed to allow an imported document to have missing parents. For further
details, see Document Processing Statements (on page 28).

• The ModelFileName parameter for the XML IMPORT FILE, XML IMPORT TEXT,
XML EXPORT FILE, and XML EXPORT TEXT statements has been extended to a new
format, ModelFileName#DataFileName, which allows the specification of either or both
the filename and the data structure name. For detailed information, see the parameter
definition in the statement descriptions in Chapter 3: XML Extensions Statements
Reference (on page 27).

• The following new statements have been added:

− The XML COBOL FILE-NAME statement allows the developer to set the
ModelFileName (the string before the #) in the ModelFileName#DataFileName
parameter of various subsequent XML Extensions statements. The default value will
be used when the ModelFileName string is not specified in the
ModelFileName#DataFileName parameter of those subsequent statements.

− The XML RESOLVE DOCUMENT-NAME statement is used to resolve the name of
an XML document file. The resolution process is the same as that for the
DocumentName parameter of an XML IMPORT statement.

− The XML RESOLVE SCHEMA-FILE statement is used to resolve the name of an
XML schema file created using the optional slicexsy utility, as described in
Appendix D: slicexsy Utility Reference (on page 181). The resolution process is
similar to that for the ModelFileName#DataFileName parameter of an XML
IMPORT or XML EXPORT statement. The value of this parameter must specify an
existing template file (.xtl extension) and not a COBOL object file (.cob extension).

− The XML RESOLVE STYLESHEET-FILE statement is used to resolve the name of
an XML stylesheet file. The resolution process is the same as that for the
StyleSheetName parameter of an XML IMPORT or XML EXPORT statement.

− The XML RESOLVE MODEL-NAME statement is used to resolve the name of a
model file/data name combination. The resolution process is the same as that for the
ModelFileName#DataFileName parameter of the XML IMPORT FILE, XML
IMPORT TEXT, XML EXPORT FILE, or XML EXPORT TEXT statements.

− The XML COMPATIBILITY MODE statement allows version 12 of XML
Extensions to be compatible with existing data and applications by inserting <root>
as the top level entry in a document during an export operation. While versions of
XML Extensions prior to version 12 required that <root> be the top level element of
a document, version 12 and later of XML Extensions will tolerate either the presence
or absence or the <root> element.

− The XML GET FLAGS statement retrieves the setting of the flags that are used for
internal data conversion. Valid flag values are specified in the copy file,
lixmldef.cpy. The initial setting of the flags has the following flag values set:
PF-Leading-Spaces, PF-Trailing-Spaces, PF-Leading-Minus, and PF-Rounded. The
setting of the flags can be changed with the XML SET FLAGS statement. The XML
GET FLAGS statement retrieves some flag values that are used for internal data
conversion. Valid flag values are specified in the copy file, lixmldef.cpy. The

Version 9
Appendix E: Summary of Enhancements

 XML Extensions User's Guide 193

default flag setting is the OR of the following values: PF-Leading-Spaces, PF-
Trailing-Spaces, PF-Leading-Minus and PF-Rounded.

− The XML TRACE statement generates trace information to a designated file. The
statement name and parameter values (as well as the calling program name and the
time executed) are recorded on entry. Updated parameter values are displayed on
exit.

− The XML SET XSL-PARAMETERS statement passes a list of name/value pairs to
XML Extensions.

− The XML CLEAR XSL-PARAMETERS statement clears sets of name/value pairs
that have been stored in XML Extensions by the XML SET XSL-PARAMETERS
statement.

• Previously, only filenames that began with “http://” and “https://” were recognized as
URLs. This URL recognition has been expanded to include “file://”.

• A revised second edition of the XML Extensions User’s Guide is available.
It serves as the base document for the XML Extensions component and covers
version 12 (the current base release). For version 12 through 12.14, a supplement
document provided errata and additions to material in the second edition document. For
version 12.15 and later, an updated document is available for each release of XML
Extensions; the “Edition” designation has been replaced with a product version number in
the document colophon (back side or verso of the title page) and in the document
properties.

Version 9
This section summarizes the major enhancements available in version 9 of XML Extensions
on Windows and UNIX. Many of these enhancements have also been distributed with various
releases of Xcentrisity Business Information Server (BIS).

• RM/COBOL Object Version 12 Support. XML Extensions now supports RM/COBOL
object version 12, which was introduced with RM/COBOL version 9.

• UNIX Diagnostics. Better diagnostic information is returned when XML IMPORT
FILE/TEXT statements, discussed in Document Processing Statements (on page 28), fail
due to an XSLT transform error.

• Windows XSLT Stylesheet Processing. XSLT stylesheets that used a literal result
element were incorrectly encoded in UTF-16 on Windows. The encoding for the literal
result was fixed to be UTF-8.

• Missing Windows MSXML Parser. A more descriptive diagnostic is returned if
Microsoft's MSXML 4.0 parser is not installed. For further details, see System
Requirements for Windows (on page 7).

• Buffer Overrun Problem. The XML import statements now verify that input data will
fit in selected data structure.

• URL Recognition. Previously, only filenames that began with "http://" were recognized
as URLs. This has been expanded to include “https://”.

• Filename Extensions. Normally, if a filename extension is not present, one is added.
However, with URLs (especially on the Internet), the filename must be used exactly as it
is specified. Consequently, the processing of filename extensions has been modified so
that a filename extension is never added to a filename that is a URL.

Version 2
Appendix E: Summary of Enhancements

194 XML Extensions User's Guide

• RUNPATH Search. The RUNPATH search sequence has been modified to ignore
directory names that use the Universal Naming Convention (UNC) notation (for example,
"//system/directory"). UNC names are normally used in an application that uses
RM/InfoExpress. XML Extensions cannot access files directly through RM/InfoExpress.
By ignoring UNC directory names, unnecessary time delays are avoided when
performing a RUNPATH search. For further information, see Automatic Search for Files
(on page 71).

• cobtoxml Banner. The cobtoxml utility has been modified to display the banner when
necessary command line parameters are omitted. For more information, see Command
Line Interface (on page 184).

• XML Export Blank Suppression. In prior versions, the XML EXPORT FILE and
EXPORT TEXT statements would strip leading spaces from all nonnumeric data items.
Leading spaces are now stripped only from data items that are defined with the
JUSTIFIED phrase. For more information, see Data Representation (on page 73) and
Handling Spaces and Whitespace in XML (on page 86).

• XSLT Stylesheets with DTD. The loading of XSLT stylesheets has been improved to
allow the stylesheet to contain a document type definition (DTD). Previously, the
presence of a DTD in a stylesheet caused a validation error on load. A DTD is required if
the stylesheet uses entity references that are not predefined by XML. Stylesheets with
HTML or XHTML entity references, such as " " and "©" are often generated
by commonly used stylesheet generator tools. Such tools may not generate the DTD, so
the DTD must be added manually after the XSLT stylesheet is generated.

• Improved Namespace Support for Schema Validation. The XML VALIDATE FILE
and XML VALIDATE TEXT statements would fail in the LoadSchema function if the
specified schema contained a targetNamespace attribute. This has been fixed so
that the schema loads successfully and is properly referenced in the schema collection by
the URL used as the value of the targetNamespace attribute of the schema.

Version 2
This section summarizes the major enhancements available in version 2 of XML Toolkit:

• Support for UNIX. XML Extensions is currently available for selected UNIX
platforms, including AIX, HP-UX, Linux, SCO OpenServer, Sun Solaris, and UnixWare.

The Windows implementation continues to use Microsoft's XML parser, MSXML 4.0 or
greater. The UNIX implementation is based on the XML parser (libxml2) and the XSLT
transformation parser (libxslt and libexslt) from the C libraries for the Gnome project.
The UNIX XML parser (libxml2) now supports schema validation of a document.

• Document Type Definition Support. Exporting of XML documents was enhanced to
include the ability to specify a document type definition, which defines the legal building
blocks of an XML document. A DTD can be used to define entity names that are referred
to by the values of FILLER data items in the COBOL data structure being exported. In
version 12.10, this feature was removed.

• Anonymous COBOL Data Structures (on page 81). The acts of exporting and importing
of documents have been improved so that an anonymous COBOL data structure can be
used. An anonymous COBOL data structure is any data area that is the same size or
larger than the data structure indicated by the template file. This means that exporting
from and importing to a Linkage Section data item, which is either based on an argument
passed to a called program or a pointer set by the SET statement (for example, into

Version 1
Appendix E: Summary of Enhancements

 XML Extensions User's Guide 195

allocated memory), is now possible. This same capability is also true for an external data
item.

• Relaxed Time Stamp Checking. It is no longer necessary for the compilation time
stamp in the object program to match the cobtoxml time stamp in the template file. That
is, the program may be recompiled without running the cobtoxml utility. It is necessary
to run cobtoxml only when the relevant data structure(s) are changed.

• UTF-8 Data Encoding. Support has been added to both the UNIX and Windows
implementations of XML Extensions to allow the in-memory representation of element
content to use UTF-8 encoding. UTF-8 is a format for representing Unicode. This may
be useful for COBOL applications that wish to pass UTF-8 encoded data to other
processes. XML documents are normally encoded using Unicode. XML Extensions
always exports XML documents with UTF-8 data encoding. For further information, see
the applicable topics under Data Representation (on page 73) and the discussion of XML
and Character Encoding (on page 85).

• New XML Statement. A new XML statement, XML SET ENCODING (on page 63),
has been added to XML Extensions that allows the developer to switch between the local
character encoding (which is system-dependent) and the UTF-8 encoding format.

Version 1
This was the initial release of the XML Toolkit. Version 1 of the XML Toolkit for
RM/COBOL ran on Microsoft Windows 32-bit operating systems, excluding Windows 95.

The XML Toolkit for RM/COBOL is Micro Focus’s facility that allows RM/COBOL
applications to access XML (Extensible Markup Language) documents. XML is the universal
format for structured documents and data on the Web.

Glossary of Terms

 XML Extensions User's Guide 197

Glossary of Terms

The glossary explains the terminology used throughout XML Extensions.

Terminology and Definitions

The following terms are defined.

Array
A COBOL table, that is, a data item described with the OCCURS clause.

Caching
Caching is a means of increasing performance by keeping loaded XSLT stylesheets,
templates, and schema documents in memory for reuse without the need to reload them. If
the application dynamically generates new copies of such documents, caching may be
permanently or selectively disabled by the application. Caching is enabled by default at the
beginning of an application.

COBOL data structure
A COBOL data structure is a COBOL data item. In general, it is a group data item, but in
some cases, it may be a single elementary data item. An XML Extensions-enabled
RM/COBOL compiler generates and embeds an XML-format symbol table in the COBOL
object file. The XML-format symbol table provides a map between the COBOL data
structure specified in an XML Extensions statement and the XML representation of the
COBOL data structure. This map can be used move data in either direction at runtime.
Extensible Stylesheet Language Transformations (XSLT) of the XML data representation can
be used to match XML element names to COBOL data-names in cases where the names
differ.

Document Type Definition (DTD)
The document type definition occurs between the XML header and the first element of an
XML document. It optionally declares the document structure and entities. Declared entities
may be referenced in the document.

Glossary of Terms

198 XML Extensions User's Guide

DOM
Acronym for Document Object Model. XML documents are parsed and stored in the DOM
for processing.

External XSLT stylesheet
An XSLT stylesheet that is provided by the user and referenced as a parameter in the XML
EXPORT FILE/TEXT, XML IMPORT FILE/TEXT, or XML TRANSFORM statements.
(The term “external” is used in this document to differentiate, where necessary, between the
model file called the “internal XSLT stylesheet” and user-supplied “external” XSLT
stylesheets.) See also XSLT stylesheet (on page 200).

HTML
An acronym for Hypertext Markup Language. A text description language related to SGML;
it mixes text format markup with plain text content to describe formatted text. HTML is
ubiquitous as the source language for Web pages on the Internet. Starting with HTML 4.0,
the Unicode Standard functions as the reference character set for HTML content. See also
SGML (on page 198), XHTML (on page 200), and XML (on page 200).

iconv
A character conversion library available on some UNIX systems for converting between
UNICODE characters and local characters. When an iconv library is available, the
RM_ENCODING environment variable may specify the name of a conversion supported by
that iconv library and the xmlif library will use that conversion. Otherwise, the only
conversions supported are “rmlatin1” and “rmlatin9”.

Internal XSLT stylesheet
An XSLT stylesheet that is one of the model files created by the slicexsy utility. The internal
XSLT stylesheet is used in conjunction with the schema file by the XML VALIDATE FILE
and XML VALIDATE TEXT statements to perform schema validation in order to ensure that
the XML document conforms to XML syntax rules.

Model files
XML document files created by the slicexsy utility. These include the template
(modelname.xtl), internal XSLT stylesheet (modelname.xls), and schema (modelname.xsd)
files.

Schema valid XML document
An XML document that conforms to a particular XML schema.

SGML
An acronym for Standardized Generalized Markup Language. A standard framework, defined
in ISO 8879, for defining particular text markup languages. The SGML framework allows for
mixing structural tags that describe format with the plain text content of documents, so that
fancy text can be fully described in a plain text stream of data. See also HTML (on page 198)
and XML (on page 200).

Glossary of Terms

 XML Extensions User's Guide 199

Structured document
The term “structured document” describes the concept that a document can contain content,
such as words, numbers, pictures, and so forth., as well as information describing the role of
content elements and substructures. Adding “structure” to documents facilitates searching,
sorting, or any one of a variety of operations to be performed on an electronic document. The
benefits of adding structure to electronic documents include portability, re-usability, inter-
system operability, ease-of-storage and retrieval, longevity, quick access, and low distribution
costs. XML is a set of rules for structuring a document using hierarchical markup. See also
XML (on page 200).

Stylesheet
See XSLT stylesheet (on page 200).

UNC
An acronym for Universal Naming Convention. UNC is a filename format that is used to
specify the location of files, folders, and resources on a local are network (LAN). For
example, a UNC address may look something like this:

\\server-name\directory\filename

UNC also can be used to identify peripheral devices shared on the network, including
scanners and printers. It provides each shared resource with a unique address, which allows
operating systems that support UNC (such as Windows) to access specific resources quickly
and efficiently.

Unicode
Unicode was developed to support the worldwide interchange, processing, and display of
diverse languages and technical disciplines of the world. Unicode is a character coding
system that assigns a unique number to each character in each of the world’s principal written
languages. There exist several alternatives for how a sequence of such characters or their
respective integer values can be represented as a sequence of bytes. The two most obvious
encodings store Unicode text as either 2- or 4-byte sequences. The official terms for these
encodings are UCS-2 and UCS-4, respectively. The current version of the Unicode Standard,
developed by the Unicode Consortium, is v4.0.0. For an alternative encoding of Unicode, see
also UTF-8, later on this page.

URL
An acronym for Universal Resource Locator, which is a unique identifier (address) of a
specific resource, or file, that is available on the World Wide Web (WWW) and other Internet
resources. The URL contains the protocol (the method of access) to be used to access the file
resource (for example, http:// for World Wide Web pages, ftp:// for file transfers, mailto:// for
e-mail, and so forth), the domain name that identifies a specific host computer on the Internet
for the file, and the path that specifies the location of the file on that computer.

A URL is a type of URI (Uniform Resource Identifier, formerly called Universal Resource
Identifier).

For XML Extensions purposes, a filename specification is considered to be a URL if it begins
with “http://”, “https://”, or “file://”.

file://server-name/directory/filename
http://www.unicode.org/unicode/standard/standard.html
http://www.unicode.org/

Glossary of Terms

200 XML Extensions User's Guide

UTF-8
UTF stands for Unicode Transformation Format. UTF-8 is an encoding scheme (that is, a
method of mapping the Unicode code points to a digital representation), which is commonly
used under UNIX-style operating systems and in XML documents. Unicode is defined in ISO
10646-1:2000 Annex D and is also described in RFC 2279, as well as section 3.8 of the
Unicode 3.0 standard. It is a variable length encoding scheme from 1 to 6 bytes per character.
See also Unicode (on page 199).

Valid XML document
See Schema valid XML document (on page 198).

Well-formed XML document
A well-formed XML document is one that conforms to the syntax requirements of XML. A
well-formed XML document may or may not be a valid document with respect to a particular
XML schema.

XHTML
An acronym for Extensible HyperText Markup Language. When HTML 4.0 is expressed as
XML, it is called XHTML. See also HTML (on page 198).

XML
An acronym for Extensible Markup Language. A subset of SGML constituting a particular
text markup language for interchange of structured data. The Unicode Standard is the
reference character set for XML content. See also Unicode (on page 199).

XML schema
An XML schema is a document that specifies the structure and allowed content for another
XML document.

XSL
An acronym for Extensible Stylesheet Language. A W3C standard defining XSLT stylesheets
for (and in) XML. See also XSLT (on page 200) and W3C (on page 201).

XSLT
An acronym for Extensible Stylesheet Language for Transformations. XSLT is the
“Transformations” part of the Extensible Stylesheet Language (XSL). A W3C standard, it is
used to transform XML documents to other formats, including HTML, other forms of XML,
and plain text. This powerful stylesheet language allows for more complex processing of the
XML document’s data. See also XSL (on page 200) and W3C (on page 201).

XSLT stylesheet
An XML document that is written in the Extensible Stylesheet Language for Transformations.
Note that XSLT stylesheets should not be confused with Cascading Stylesheets (CSS), which

http://www.cl.cam.ac.uk/%7Emgk25/ucs/ISO-10646-UTF-8.html
ftp://sunsite.doc.ic.ac.uk/packages/rfc/rfc2279.txt

Glossary of Terms

 XML Extensions User's Guide 201

are a simple method for adding style, such as fonts, color, and spacing, to a document for final
output to a browser; cascading stylesheets are closely related to HTML and XHTML.

W3C
An acronym for World Wide Web Consortium. The main standards body for the World-Wide
Web (WWW). W3C works with the global community to establish international standards for
client and server protocols that enable online commence and communications on the Internet.

Index

 XML Extensions User's Guide 203

Index

A

All caps, use of as a document convention 3
Allocation of memory 28
Anonymous COBOL data structures 79, 193
Arrays

empty occurrences 53, 56, 57
glossary term 195
sparse 75, 106

ASCII characters 80, 83
Attributes

COBOL 53, 142
length 53, 56, 58
subscript 53, 56, 58, 75, 106

DISABLE ATTRIBUTES statement, XML 56
ENABLE ATTRIBUTES statement, XML 57
unique identifier (uid) 73, 74
XML 15, 185
XML DISABLE ATTRIBUTES statement 107
XML ENABLE ATTRIBUTES statement 106

B

Banner options (slicexsy utility) 184
Batch files, using with example programs 162
Bold type, use of as a document convention 3
Brackets ([]), using with

COBOL syntax 3
XML Extensions error messages 167

C

Caching
glossary term 195
XML documents 28, 53, 59, 82

Carriage returns 85
Character encoding 54, 193

and COBOL 71
and XML 83
in UNIX 72
in Windows 72

RM_ENCODING environment variable 63, 71
XML SET ENCODING statement 62, 71, 83

Characters, wide and narrow 80
COBOL

and XML 12
attributes 53, 142
character encoding 54, 71, 193
considerations

copy files 8, 19, 76
data conventions 70
file management 69
limitations 79
optimizations 81

data structures 11
anonymous 79, 193
glossary term 195

importing from and exporting to XML documents
11

symbol table information 18
cobtoxml utility

backward compatibility 190
time stamp checking 193

CodeBridge flags 54, 60, 63, 85
COMPILER-OPTIONS configuration record

SUPPRESS-XML-SYMBOL-TABLE keyword
180, 185

Conventions and symbols used in this manual 3
Copy files

display status information 77
listed 8
statement definitions 19, 76
terminate application 78

cpy files. See Copy files

D

Data conventions
data representation 71
FILLER data items 73
intermediate parent names 73
sparse COBOL records 75

Data conversion flags 63
Data items, COBOL See also Data conventions; Data

structures, COBOL
edited 80
Internet restrictions 81
limitations 79
OCCURS restrictions 81
size 80
wide and narrow characters 80

Data naming, in COBOL and XML Extensions 80
Data representation 71
Data structures, COBOL 11

anonymous 79, 193
glossary term 195

Index

204 XML Extensions User's Guide

Data transformations considerations, COBOL and
XML 70

Data-names 80
DEPENDING variable 81
Digits, use of in data-names 80
Directory polling 50

example program 122
Directory search 69–70, 183
Display status information (copy file) 77
Document Object Model

glossary term 196
Document type definition (DTD) 41, 192

glossary term 195
Documentation overview 2
DOM See Document Object Model

E

Edited COBOL data items 80
Edited data items 85
Elements 13

unique names 73
Encoding. See Character encoding
Enhancements to XML Extensions 1, 189

version 1 193
version 12 189
version 2 192
version 9 191

Entity names, defining 41, 192
Environment variables

PATH 25, 73
RM_ENCODING 63, 71
RM_ICONV_NAME 72
RM_MISSING_HASH 29, 31, 34, 36, 48
RMPATH 25
RUNPATH 26, 28, 47, 48, 49, 50, 69, 183, 192

Error messages 167
Example applications 165
Example programs 8, 87

batch files, using with 162
development process, typical 18
export file and import file 88
export file and import file with directory polling

122
export file and import file with OCCURS

DEPENDING 100
export file and import file with sparse arrays 106
export file and import file with XSLT stylesheets

93
export file, test well-formed file, and validate file

129
export file, test well-formed text, and validate text

135
export file, transform file, and import file 141
export text and import text 116

import file with missing intermediate parent names
156

well-formed and validate diagnostic messages 148
Extensible HyperText Markup Language (XHTML)

glossary term 198
Extensible Markup Language (XML) See also XML

glossary term 198
Extensible Stylesheet Language (XSL), glossary term

198
Extensible Stylesheet Language Transformations

(XSLT) 11, 12, 195
error messages 174
example of 93
glossary term 198
parser (libxslt) 8, 9, 27, 192
validation 41, 42

Extensions, filename 70, 180
COBOL source program (.cbl) 163
model files 28, 181, 183
schema files 181
template files 181
URLs 28, 49, 70, 180, 191
XSLT stylesheet files 181

External attribute, defined 79
EXTERNAL data items 79
External XSLT stylesheet files 83, See also XSLT

stylesheet files
file naming conventions 70
glossary term 196

F

File management
automatic search for files 69
file naming conventions 70, 180

Filenames
conventions used in this manual 3

Filenames. See Extensions, filename
FILLER data items 73, 79, 85, 108, 192
Flags, CodeBridge 54, 60, 63, 85
Flags, Data conversion 63
Flags, Whitespace 54
Flags, Whitespace handling 61, 64

G

Glossary terms and definitions 195
Gnome project 8, 9, 192, See also libxml2 and libxslt

H

HTML See Hypertext Markup Language (HTML)
Hypertext Markup Language (HTML)

glossary term 196
vs. XML 12

Hyphen (-), using with

Index

 XML Extensions User's Guide 205

banner options, slicexsy 184
optional, RM/COBOL compilation and runtime

options 4
RM_ENCODING environment variable 72
schema options, slicexsy 184
XML SET ENCODING statement 62

I
iconv library 72

glossary term 196
Input and output files, file naming conventions 70
Installation 9

deployment components 9, 10, 11
development components 8, 10
on UNIX 10
on Windows 10
system requirements 7

InstantSQL 77
Intermediate parent names 73

example program 156
Internal XSLT stylesheet files 83, 198

glossary term 196
Internet address 191, See also Referencing Model

Files; Universal Resource Locator (URL)
reading and writing XML documents, restrictions

81
Universal Resource Locator (URL), glossary term

197
Italic type, use of as a document convention 3

J

Justified data items 71, 85, 192

K

Key combinations, document convention for 3

L

Leading spaces 71, 73, 85, 192
Length attribute 53, 56, 58
libxml2 8, 9, 27, 192
libxslt 8, 9, 27, 192
Line feeds 85
Linkage Section 79, 193
lixmlall.cpy 8, 20, 76
lixmldef.cpy 8, 76
lixmldsp.cpy 8, 20, 77
lixmlrpl.cpy 8, 76
lixmltrm.cpy 8, 20, 78
Local character encoding. See Character encoding
Locating files 69

with envionment variables 25

M

Memory management 28
Messages 167
Model files

described 17
file naming conventions 28, 181
glossary term 196
referencing 28, 49, 187
schema 181
template 193
types of 185

internal XSLT stylesheet (.xsl) 181
template (.xtl) 181, 185

XML EXPORT FILE statement 29
XML EXPORT TEXT statement 31
XML IMPORT FILE statement 34, 48
XML IMPORT TEXT statement 36

MSXML parser 8, 9, 27, 86, 192

N

nonnumeric data items, COBOL 71
numeric data items, COBOL 71

O

Occurrences
empty 81
limiting 81

OCCURS DEPENDING clause 100
OCCURS restrictions 81
Organization of this manual 2
Output and input files, file naming conventions 70

P

Parent names. See Intermediate parent names
Parsers, XML 8, 9, 86, 192
PATH environment variable 25, 73

R

Referencing model files 28, 49, 187
Related publications 3
REPLACE statement 76
RESOLVE-LEADING-NAME keyword, RUN-

FILES-ATTR record 69
RESOLVE-SUBSEQUENT-NAMES keyword,

RUN-FILES-ATTR record 69
RM/InfoExpress 69
RM_ENCODING environment variable 63, 71
RM_ICONV_NAME environment variable 72
RM_MISSING_HASH environment variable 29, 31,

34, 36, 48
RMPATH environment variable 25

Index

206 XML Extensions User's Guide

RUN-FILES-ATTR configuration record
RESOLVE-LEADING-NAME keyword 69
RESOLVE-SUBSEQUENT-NAMES keyword 69

RUNPATH environment variable 26, 28, 47, 48, 49,
50, 183, 192

RUNPATH environment variables 69

S

Sample programs 8
Schema files 86

filename extension (.xsd) 181
validation 41, 42, 186, 190

Schema options (slicexsy utility) 184
Schema, valid XML document, glossary term 196
Schema, XML, glossary term 198
SGML (Standardized Generalized Markup

Language), glossary term 196
slicexsy utility 190

and backward compatibility, cobtoxml 190
command line interface 18, 182
command line options 184
described 9, 17
model files 185, 187

file naming conventions 28, 181
Spaces 71, 73, 85, 192
Sparse arrays 75, 106
SQL 77
Standardized Generalized Markup Language

(SGML), glossary term 196
Statement definitions (copy file) 76
Statements, 56
Statements, XML 27

CLEAR XSL-PARAMETERS 55, 191
COBOL FILE-NAME 44, 190
COMPATABILITY MODE 55
COMPATIBILITY MODE 190
DISABLE ALL-OCCURRENCES 56, 82
DISABLE CACHE 57
ENABLE ALL-OCCURRENCES 57
ENABLE ATTRIBUTES 57
ENABLE CACHE 59
EXPORT FILE 29
EXPORT TEXT 31
FIND FILE 51
FLUSH CACHE 59
FREE TEXT 44
GET FLAGS 60, 190
GET STATUS-TEXT 60
GET TEXT 45
GET UNIQUEID 52
GET WHITESPACE-FLAGS 61
IMPORT FILE 33
IMPORT TEXT 35
INITIALIZE 62
PUT TEXT 45

REMOVE FILE 46
RESOLVE DOCUMENT-NAME 46, 190
RESOLVE MODEL-NAME 48, 190
RESOLVE SCHEMA-FILE 49, 190
RESOLVE STYLESHEET-FILE 50, 190
SET ENCODING 62
SET FLAGS 63, 85
SET WHITESPACE-FLAGS 64
SET XSL-PARAMETERS 65, 191
TERMINATE 65
TEST WELLFORMED-FILE 37
TEST WELLFORMED-TEXT 38
TRACE 66, 191
TRANSFORM FILE 38
TRANSFORM TEXT 39
VALIDATE FILE 41, 186
VALIDATE FILE 190
VALIDATE TEXT 42, 186, 190

Status information display (copy file) 61, 77
Structured document 1

glossary term 197
Stylesheet files

XML EXPORT FILE statement 30
XML EXPORT TEXT statement 32
XML IMPORT FILE statement 34
XML IMPORT TEXT statement 36
XML TRANSFORM FILE statement 38
XML TRANSFORM TEXT statement 40
XML VALIDATE FILE statement 41
XML VALIDATE TEXT statement 42

Subscript attribute 53, 56, 58, 75, 106
Support services, technical 4
SUPPRESS-XML-SYMBOL-TABLE keyword,

COMPILER-OPTIONS configuration record
180, 185

Symbol table information 18
Symbol table, XML-format 189
Symbols and conventions used in this manual 3
System requirements 7

T

Tags, XML 13
Technical support services 4
Template files

caching 82
described 185
filename extension (.xlt) 185
filename extension (.xtl) 181
time stamp checking 193

Terminate application (copy file) 78
Time stamp checking 193
Trailing spaces 71, 73, 85
Truncation 85

Index

 XML Extensions User's Guide 207

U

UNC See Universal Naming Convention
Underscore (_), using with

RM_ENCODING environment variable 72
XML SET ENCODING statement 62

Unicode encoding standard 54, 71, 80, 83, 193
glossary term 197

Uniform Resource Identifier (URI) 197
Unique element names 73
Unique identifier (uid) 73, 74
Universal Naming Convention (UNC)

glossary term 197
locating files 26, 69
referencing files 187

Universal Resource Locator (URL)
filename extensions 28, 49, 70, 180, 191
glossary term 197
reading and writing XML documents, restrictions

81
recognition of 191
referencing files 187
referencing model files 28, 49
resolving XML files, statements 46–50

UNIX character encoding 72
URI (Uniform Resource Identifier) 197
URL See Universal Resource Locator
UTF-16 encoding format 83
UTF-8 encoding format 54, 62, 80, 83, 193

glossary term 198

V

Valid XML document, glossary term 198
Validating schema files 190
Validating XML documents 41, 42, 86, 186

example programs 129, 135, 148

W

W3C See World Wide Web Consortium (W3C)
Well-formed XML document 186

example programs 129, 135, 148
FILLER data items 73
flattened version 75
glossary term 198
schema files 86
XML statements 28, 37, 38, 41, 42

Whitespace 71, 73, 85
Whitespace flags 54, 64
Whitespace Flags 61
Wide and narrow characters 80
Windows character encoding 72
Working-Storage Section 1, 12, 20, 76
World Wide Web Consortium (W3C) 12

glossary term 199

X

XHTML See Extensible HyperText Markup
Language (XHTML)

XML
and COBOL 14
considerations 83

character encoding 54, 83, 193
schema files 86
XSLT stylesheet files 83

described 12
glossary term 198
parsers 8, 9, 86, 192
schema validation 28, 41, 42
stylesheet files 30, 32, 34, 36, 38, 40
symbol table, configuration 180, 185
symbol table, XML-format 189
validating 86
vs. HTML 12
well-formed XML document 186, 198
XSLT stylesheet files 15

internal 181
XML Extensions

COBOL considerations 69
data conventions 70
data file management 69
data transformation considerations, COBOL and

XML 70
directory search 69–70
enhancements 1, 189
error messages 167
example applications 165
example programs 8, 87

development process, typical 18
features, new 191–93
getting started 17
handling spaces and whitespace in XML 85
installation 9

deployment components 9, 10, 11
development components 8, 10
on UNIX 10
on Windows 10
system requirements 7

locating files 25, 69
model files 185, 187
overview 11
schema files, validating 190
statements 190
symbol table, XML-format 189
XML considerations 83

XML schema, glossary term 198
xmlif library 9, 26

described 17
model files 187
template files 185
XSLT stylesheet files 15

Index

208 XML Extensions User's Guide

internal 181
XSL See Extensible Stylesheet Language (XSL)
XSLT See Extensible Stylesheet Language

Transformations (XSLT); XSLT stylesheet files
XSLT stylesheet files 83

caching 53, 82
example program 93, 97
external 15, 70
glossary term 198
internal 181

	Preface
	Welcome to XML Extensions
	About Your Documentation
	Related Publications
	Symbols and Conventions
	Technical Support
	Support Guidelines
	Test Cases

	Chapter 1: Installation and Introduction
	Before You Start
	System Requirements
	For Windows
	For UNIX

	XML Extensions Components
	Development
	Deployment

	Installing XML Extensions
	Installing on Windows
	Install the Development System on Windows
	Install the Deployment System on Windows
	Temporary Files on Windows

	Installing on UNIX
	Install the Development System on UNIX
	Install the Deployment System on UNIX
	Temporary Files on UNIX

	Introducing XML Extensions
	What is XML?
	COBOL as XML
	XML as COBOL

	Chapter 2: Getting Started with XML Extensions
	Overview
	Typical Development Process Example
	Design the COBOL Data Structure and Program Logic
	Compile the Program
	Execute the COBOL Program
	Making a Program Skeleton
	Making a Program that Exports an XML Document
	Populating the XML Document with Data Values

	Deploy the Application

	Environment Variables
	How XML Extensions Locates Files

	Chapter 3: XML Extensions Statements Reference
	What are XML Extensions Statements?
	Memory Management with XML Extensions
	Searching for Files

	Document Processing Statements
	XML EXPORT FILE
	XML EXPORT TEXT
	XML IMPORT FILE
	XML IMPORT TEXT
	XML TEST WELLFORMED-FILE
	XML TEST WELLFORMED-TEXT
	XML TRANSFORM FILE
	XML TRANSFORM TEXT
	XML VALIDATE FILE
	XML VALIDATE TEXT

	Document Management Statements
	XML COBOL FILE-NAME
	XML FREE TEXT
	XML GET TEXT
	XML PUT TEXT
	XML REMOVE FILE
	XML RESOLVE DOCUMENT-NAME
	XML RESOLVE MODEL-NAME
	XML RESOLVE SCHEMA-FILE
	XML RESOLVE STYLESHEET-FILE

	Directory Management Statements
	XML FIND FILE
	XML GET UNIQUEID

	State Management Statements
	XML CLEAR XSL-PARAMETERS
	XML COMPATIBILITY MODE
	XML DISABLE ALL-OCCURRENCES
	XML DISABLE ATTRIBUTES
	XML DISABLE CACHE
	XML ENABLE ALL-OCCURRENCES
	XML ENABLE ATTRIBUTES
	XML ENABLE CACHE
	XML FLUSH CACHE
	XML GET FLAGS
	XML GET STATUS-TEXT
	XML GET WHITESPACE-FLAGS
	XML INITIALIZE
	XML SET ENCODING
	XML SET FLAGS
	XML SET WHITESPACE-FLAGS
	XML SET XSL-PARAMETERS
	XML TERMINATE
	XML TRACE

	Chapter 4: COBOL Considerations
	File Management
	Automatic Search for Files
	File Naming Conventions
	External XSLT Stylesheet File Naming Conventions
	Other Input File Naming Conventions
	Other Output File Naming Conventions

	Data Conventions
	Data Representation
	COBOL and Character Encoding
	RM_ENCODING Environment Variable
	Windows Character Encoding
	UNIX Character Encoding

	FILLER Data Items
	Missing Intermediate Parent Names
	Unique Element Names
	Unique Identifier

	Sparse COBOL Records

	Copy Files
	Statement Definitions
	REPLACE Statement Considerations
	Displaying Status Information
	Application Termination

	Anonymous COBOL Data Structures
	Limitations
	Data Items (Data Structures)
	Edited Data Items
	Wide and Narrow Characters
	Data Item Size
	Data Naming
	OCCURS Restrictions
	Reading, Writing, and the Internet

	Optimizations
	Occurs Depending
	Empty Occurrences
	Cached XML Documents

	Chapter 5: XML Considerations
	XML and Character Encoding
	XSLT Stylesheet Files
	Form (or “Flat”) Document Import
	Handling Spaces and Whitespace in XML
	Schema Files
	Temporary Files

	Appendix A: XML Extensions Examples
	Example 1: Export File and Import File
	Development for Example 1
	Batch File for Example 1
	Program Description for Example 1
	Data Item for Example 1
	Other Definitions for Example 1
	Program Structure for Example 1
	Execution Results for Example 1

	Example 2: Export File and Import File with XSLT Stylesheets
	Development for Example 2
	Batch File for Example 2
	Program Description for Example 2
	Data Item for Example 2
	Other Definitions for Example 2
	Program Structure for Example 2
	XSLT Stylesheets for Example 2
	Execution Results for Example 2

	Example 3: Export File and Import File with OCCURS DEPENDING
	Development for Example 3
	Batch File for Example 3
	Program Description for Example 3
	Data Item for Example 3
	Other Definitions for Example 3
	Program Structure for Example 3
	Execution Results for Example 3

	Example 4: Export File and Import File with Sparse Arrays
	Development for Example 4
	Batch File for Example 4
	Program Description for Example 4
	Data Item for Example 4
	Other Definitions for Example 4
	Program Structure for Example 4
	Execution Results for Example 4

	Example 5: Export Text and Import Text
	Development for Example 5
	Batch File for Example 5
	Program Description for Example 5
	Data Item for Example 5
	Other Definitions for Example 5
	Program Structure for Example 5
	Execution Results for Example 5

	Example 6: Export File and Import File with Directory Polling
	Development for Example 6
	Batch File for Example 6
	Program Description for Example 6
	Data Item for Example 6
	Other Definitions for Example 6
	Program Structure for Example 6
	Execution Results for Example 6

	Example 7: Export File, Test Well-Formed File, and Validate File
	Development for Example 7
	Batch File for Example 7
	Program Description for Example 7
	Data Item for Example 7
	Other Definitions for Example 7
	Program Structure for Example 7
	Execution Results for Example 7

	Example 8: Export Text, Test Well-Formed Text, and Validate Text
	Development for Example 8
	Batch File for Example 8
	Program Description for Example 8
	Data Item for Example 8
	Other Definitions for Example 8
	Program Structure for Example 8
	Execution Results for Example 8

	Example 9: Export File, Transform File, and Import File
	Development for Example 9
	Batch File for Example 9
	Program Description for Example 9
	Data Item for Example 9
	Other Definitions for Example 9
	Program Structure for Example 9
	Execution Results for Example 9

	Example A: Diagnostic Messages
	Development for Example A
	Batch File for Example A
	Program Description for Example A
	Data Item for Example A
	Other Definitions for Example A
	Program Structure for Example A
	Execution Results for Example A

	Example B: Import File with Missing Intermediate Parent Names
	Development for Example B
	Batch File for Example B
	Program Description for Example B
	Data Item for Example B
	Other Definitions for Example B
	Program Structure for Example B
	Execution Results for Example B

	Example Batch Files
	cleanup.bat
	example.bat
	examples.bat

	Appendix B: XML Extensions Example Application Programs
	Accessing the Example Application Programs

	Appendix C: XML Extensions Error Messages
	Error Message Format
	Message Text
	COBOL Traceback Information
	Filename or Data Item in Error
	Parser Information
	Additional Information

	Summary of Error Messages

	Appendix D: slicexsy Utility Reference
	What is the slicexsy Utility?
	Things to Consider Before Using slicexsy
	Using the slicexsy Utility
	File Naming Conventions
	Model File Naming Conventions

	Backward Compatibility
	Command Line Interface
	Command Line Options
	Banner Options
	Schema Options

	Model Files
	Template File
	Internal XSLT Stylesheet File
	Schema File
	Referencing XML Model Files

	Appendix E: Summary of Enhancements
	Version 12
	Version 9
	Version 2
	Version 1

	Glossary of Terms
	Terminology and Definitions
	Array
	Caching
	COBOL data structure
	Document Type Definition (DTD)
	DOM
	External XSLT stylesheet
	HTML
	iconv
	Internal XSLT stylesheet
	Model files
	Schema valid XML document
	SGML
	Structured document
	Stylesheet
	UNC
	Unicode
	URL
	UTF-8
	Valid XML document
	Well-formed XML document
	XHTML
	XML
	XML schema
	XSL
	XSLT
	XSLT stylesheet
	W3C

	Index

