LIANT

Cobol-WOW "

Windows Object Workshop

User's Guide

Version 4.0 for Windows®

www.liant.com

Thismanual isauser’s guide for Cobol-WOW, Liant Software Corporation’s graphical
user interface development tool for RM/COBOL. It is assumed that the reader is familiar
with programming concepts and with the COBOL language in general.

The information contained herein applies to systems running under Microsoft 32-bit
operating systems.

Theinformation in this document is subject to change without prior notice. Liant
Software Corporation assumes no responsibility for any errors that may appear in this
document. Liant reserves the right to make improvements and/or changes in the products
and programs described in this manual at any time without notice. Companies, names,
and data used in examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in aretrieval system or transmitted,
in any form or by any means, electronic, mechanical, photocopied, recorded, or otherwise,
without prior written permission of Liant Software Corporation.

The software described in this document is furnished to the user under alicense for a
specific number of uses and may be copied (with inclusion of the copyright notice) only in
accordance with the terms of such license.

Copyright © 2001-2003 by Liant Software Corporation. All rights reserved. Printed in
the United States of America.

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels, VanGui
Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, InstantSQL, Liant, and the Liant logo are
trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Visual Basic, ActiveX, Windows 95, Windows 98, Windows Me, Windows NT,
Windows 2000, and Windows XP are trademarks or registered trademarks of Microsoft Corporation in the
USA and other countries.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks
of their respective trademark holders, and are used only for explanation purposes. Other companies
mentioned herein own various trademarks.

Document Number 401218--0303

www.liant.com

Table of Contents

PrEfACE .ot XXI
What'S NEW IN VErSION 4.0.....c.ciiieiiiieiiisie ettt sse e XXi
CobOl-WOW DOCUMENTALION.eiviieiiriirieiriisieesesie sttt tenessesseneens XXii

How ThisManual iSOrganiZedcccceveeeeieieciesese et e e snens xxiii
SymbolS aNd CONVENLIONS.cciiieieieriese e se e e e s e esreste s sre e e e eaeseestestesrestesseeneeneens XXV
L [= 1 o I XXV
= a0 IS0 oo To o S XXV

SUPPOIT GUIAEIINES.......ocueeieie et ettt st s st st reere e e aesrestesresnean XXVi

QLIS O S P XXVi
ENNANCEMENES ...t sttt st bese et et e seebesae e ebenbeneenens XXVii

RV 2= = Lo 1 50 O TSP XXVii

RV == o 1 0 OSSR XXViii

Chapter 1: Installing Cobol-WOWccoooiiiiiiiiiieee e 1

SYSLEM REGUITEMENTS.eeitiiteitecteeieeeeiestes e ste st s e s eae st e tesaestesseeseeseessesteseesbesaeeseeseesenseseentessensens 1
LR (U= I = 1 V7 S 1
REQUITEA SOFIWEIE.....c.eeiiicieiecieeeee ettt e e e seesbesresaesre e e eneeseeseesrearens 1

VS (= 1 1S =1 = 1 o o TSP 2

Locating REQUITEA TOOIS........coiiiiiieiecere ettt e e sttt reere e e e e testestesneeresne e 2

Configuring CODOI-WOW.........ociiieieese et se e st sa et e s besaesbe e e e e enteseesresnenneas 3

Customizing the Initialization File (COIWOW.INI) ... 3
[WOWRT] SECHION....c.vetieiieieesieiesesisieesae e sestesesaete e sessssesssaesesessesessssesessssesasessesensssesesessnsensass 4

ODSOIELE FEBIUIMNES.......cviiieeiiriiieerieie ettt ettt bbbt e s nbe st 5

Chapter 2: TULOTIAl.......uuiiii e e e e eeaaens 7
Using the File MaintenanCe Program..........cccccieieienie st st 7
L0 LS o = £ S 8

Creat@ ANEW PrOJECL......c.eo ittt st e e e st s reeaeesae e e teseenteens 8
(1S o TN To o 0 0 9
Create the FIRSTAPP FOIMMN.....cciiiiecce e sttt 10
Setting FOrM PrOPEITIES.......ccui it st eeaesrestesre e 10

S Y= 0] 0= YRS 12
QI L= e (0] o 1= 1 S 13
Border, Caption, MinButton, and SystemMenu Properties.........cccoeevvveveiesesieceeieenns 13
MoVving and SIZING @FOMM........ccciiiiie et s re st s reere e e naennens 13
Add Controlsto the FIRSTAPP FOMMcoiiiririiieisieeese sttt es 14
(@1 1o I 11, 1= U TSP 14
Creating @ LISt BOX ...ccvciieiieie ettt e st e ettt st s be st e neene e e enaessentesresnean 17
Creating the Command BULONSccccciiiiieiciese e e e s 18

Cobol-WOW User's Guide iii

iv

IS [o 11 o TSP 19
LRSS r4] oo TSR 20
1YoV oo PSSR 20

TN T allgToR=ToTo S o= ox 1 o FO USRS 20
SPECITYING TAD OFUEN ...t et se e b e eaeas 22
SPECITYING Z-OFUEY ...ttt sttt s b e bt et e e e e e beseesbesbesneas 23
SAVE the FIRSTAPP FOIMM ...ttt 24
NAIME PIOPEITY ...ttt st s b e e e e eae e sbe e be e beenrennnens 24
Create the CUSTINFO FOMN ..ottt 25
SEtting FOrM PrOPEITIES.......coui ittt et e e e b b e 26
Add Controlsto the CUSTINFO FOIMccciiiieiriineeriieeesieeeiesee e 26
SaVe the CUSTINFO FOMM ..ottt 28
WWEIING COOE......eoeeie ettt ettt et b et b e ae et et e e e besbesbesbeeaesbe e e eneeseesbesaeeneas 29
Step 1 — EXItiNg MENOUS.....c..coiiiiie et e e eneas 30
Writing Code fOr Menu CONEIOIS........cooiiiiineieeeeee ettt s 30
Compiling and RUNNING Programccooeiiieierieieeie e 31
Controlling the COBOL Main WINCOWcoeeiririeeiereeniene e see e s sneas 31
Step 2 — L0ading the LISt BOX......ciieiirireeiee st s 32
Using the WOWADDITEM FUNCLIONcouiiiiiiiiie e 32
Creating LogiC to Load the LiSt BOX......ccccieiiiiieririeeie e e 33
Project COOE SECHIONSccueiieieieiiese sttt et et b e sbe b ae e e e e b e see e 34
Procedure DiVISION LOGICcccueierierieienieeeeeerie ettt se e s sbe s 34
WOrking-Storage SECtiON LOGIC.c..ceeeieirierienierienieeie et 36
Saving, Generating, Compiling, and RUNNINGccooiiiinininreee e 36
Step 3 — Adding the SECONd WINCOWcooiiiiiiiiiieieee e 36
Adding Logic to the Add Command BULLONccceroeriiriinineieneseeee e 37
Declaring ADD-MODEccouieiiieeiieeeseeee bbb ns 37
Declaring POPUP-RTNccoiiiiiiirieiiesieesiese ettt s r e re e sne e 38
Removing the CUSTINFO WiNGOWcoiiiiiiirieeeeriese et sre e een 38
Saving, Compiling, 8Nd RUNNINGcooiiiiiiieeeeeee e 39
Step 4 — AdAiNG CUSIOMETS.....cueiueeuieiiierie sttt see bt ae e ebeseesbesbesaesae s e eneaneans 39
Using the WOWGETPROP FUNCLION.......cccciiiiiieeniereee e s 39
Adding Logic to the OK Command BULLONccceiiririiiieienee e 40
Saving, Building, and RUNNINGccoiiiiiee e s s 41
Step 5 — Changing CUSLOMENS.......ccuiiiierierieriese et reeee et sbe e b sieeae e e e e seeseesbesbesbe s e eneeneens 41
Working wWith List BOX SEl@CHIONS........ooiiiiiieieeeeie et 41
Adding Logic to the Change Command BULLON..............coooiiiiriniinieree e 42
Adding Code to the Procedure DiVISIONccocoiiiiiinirieeerie e s 43
Modifying the POPUP-RTN ProCeUIE.........cocuiiiiieriise e 44
Modifying the OK Command Button ProCedUre............cccooeiirireiieneere e 44
Adding the Delete List Box ENtry ProCeAUIE...........ccooiririeriieie e 45
Saving, Building, and RUNNINGccooiiiiee e e 45

Table of Contents

Step 6 — DElEtiNg CUSIOMELS.couiiiiieiieieeiereeie ettt e st se bbb s aeeaeeee e eeeseaas 45

WOWMESSAGEBOX FUNCHIONcuiuiitiireeieiesisieesesie e ses e se s sssssse s ssnas 46
Adding Logic to the Delete Command BUTON............ccceviieriirieie e 47
Saving, Building, and RUNNINGccoiiiiiee e 47
Chapter 3: Introducing Cobol-WOW ... 49
CODOI-WOW COMPONENESc.verueeueeieteseestesieeseeeeseasessaestessessesssessesssseessesaeasesnsesssssessessessessesseans 49
CODOI-WOW DESIGNENceiieitieieiieeieeeeie ettt st e e e e e s eesbesee b e saesae s e eeessessesbesaesbesneenseneans 49
Cob0l-WOW RUNLIME SYSEEIM.......oiuiitiiiiteeieieie et s b e sbe e eeseseesbesaesaeas 50
CODOI-WOW Thin ClIIEME.....ccuiiiiieieiesieieesieees ettt st et b e s 50
Cobol-WOW Development ProCeSS OVEIVIBWccerirereeierieieiee et see e s 51
Windows Graphical Operating ENVirONMENtcooeeireriieierine e e 52
FOIMS 8N CONEIOIS.......uiiieeeiiteeet et r e 52
FrOIMIS. . e e 52
L600] 011 £0] = J TSSOSO 54

L 001 TSRS 56
Setting a Property Value al RUNLIME.oooiiiiiiiieeee et e 57
Getting aProperty Value al RUNLIMEcooiiiiiiiiieieie e s 58
Benefits of Using WOWSETPROP and WOWGETPROP.........cccoeinririirinee e 58
Sample Program — Setting Properti€s.o e 59
HBNAIES. ... b et b et b et n e 59

I DS etttk heh e A bR A SRR A AR bR R bRt eE b e Rt E b et e b e Rt e b et e bt e 60
FUNCLIONS @NA MESSA0ES........eeuieieiie ittt s b e bbbt e e e sb et e ebesaeene 61
What @r€ FUNCLIONS?.......c.oiiiieeieiie ettt et r e e ene s 61
WL @r€ MESSAgES?....... ettt bttt ae et e e e se et e et eb e et e e et e se e beseesbesaeene 62
USING FUNCLIONS @N0 MESSA0ESveveiuirterieeiieieie ettt ee e et s sbe e e b e sbe e eneas 62
Sample Program — Using FUNCLions and MESSAgES..........coererererieeiie e 63
Chapter 4: Developing with Cobol-WOW ..., 65
CODOI-WOW PrOJECEScoiveteieeieeee ettt sttt sttt bt e e e b e be et eb s ae et e e e ns e beseesbesneene 65
EVeNt-Driven APPIICALIONS........coiiiiieireeieee ettt sb et ne et bbb s sae e 66
EXAMPIE L.ttt bbbt e e et b e b b e aeene et e e e b e 67
EXAMPIE 2.ttt bbbttt bbb e aeene et et e e e 68
Addressing Issuesin Data ENtry Programs.........ccoeoeeeieeeeeerieniesie st 68
[Pz To LT aTo [- - WSRO 69
Example 1: Loading a Form with COBOL Dal@.........ccceeuereriirierienieneneeeeseesie e 69
Example 2: Retrieving Information from a Form and Storing It in COBOL Data Items...70
Handling Different TYPeS Of Data..........cccuererrierierieriesiere e e 73
Example 1: Basic Numeric Datafor an Edit Box Controlcocooeiereniinene e 73
Example 2: Formatted Numeric Datafor an Edit Box Controlccoceveneienenicnieniens 74
Example 3: Handling Numeric Data with Scroll Bar Controls..........ccocceeereeieieienenennens 75
Example 4: Handling Numeric Data with Check Box Controls..........c.ccocevevenieninicniennens 75

Cobol-WOW User's Guide v

Managing USEr INTEIACION.oouiiiii et b et e e et e b 76

Example 1: Handling an INvalid ValUe.............ooiiiiiririeieee e 77
Example 2: Dictating Entry Order for CONtrols.........ocooererieniie i 78
Example 3: Preventing Data Entry 0n @ Controlcocooeieiineieneneneeeeeee e 78
Example 4: Switching to Another Windows Application............ccceoeieiiienenencnceneeene 79
Example 5: Disabling and Enabling aValidated Controlcccccoveiininenieniencnieninens 82
Using Function Keys for Special OptioNS..........cocieeererieeieresie et 83
Implementing Function Keysin Cobol-WOW ... 83
SAMPIE PIOGIAIM ...t ettt bbb et et e s besbesbe e e ene e e e e e seesaeas 85
WOrKING WIth MEBNUS. ..ottt e b et e e et e b saenaeas 85
USING MEBNUS ...ttt sttt s b e b b et e e et e se e beseeeb e e st eae e e e ne e beseeebesaeens 85
Checking and Unchecking MenuU ItEmMScociiriiiiie e 86
Enabling and Disabling MenU [TEMS...........oiiiiriiieeee e 87
POPPING UP MENUS......cniiiiieie ettt st bbb e e e e e seenbesaesnean 88
Chapter 5: DeDUQGQING ..uuvuiiii e 89
Debugging with COBOL DISPLAY SEELEMENES.......ccceirerieriirieieserieieesisiese et sessenas 89
Executing the SHOWME Program ... e 0
How the SHOWME Program WOrKS..........cooieiiiiii e e 90
Debugging with the RM/COBOL Interactive DEDUGGEYccoererererenereee s 91
Executing the BREAK PrOQIramc.cooeiiiiieeie et see e sae b e e e 91
How the BREAK Program WOTKScccieaiiieiee et see st eneen 93
Debugging With COOBWELCHooiiee e et s 93
Appendix A: Setting Properties and Events for Intrinsic Controls
ANA FOIMS Lo e e e e e e eeeeees 95
Manipulating PropertieS al RUNLIME...........ooiierieieeie e e 95
INEFNSIC COMEIOIS. ...ttt et b e bbbt b et b e st b n e e b nnens 95
ANIMELTION CONEIOL......uieiiiiteeceee et nn s 97
ANIMati ONFITE PrOPEITY ..ottt et s b e 98
AULOPIAY PIOPEITY ...ttt e s bt se e b e b sae e 98
[2T0 (= g (o]0 < 1 YU 99
(O g[S g (0] 07 £ Y AU U PRSP 99
[B (0] YU SUPRPRR 99
TranSPAreNt PrOPEITYoeeieieeieest ettt ettt ettt b e b aeesae e saeesbeesbeeneeaeas 100
SEAIT EVENT ...t e e 100
SEOP EVENL ...ttt et b e et e eae e eae e b e e b e e beenre e 100
BiItmMap CONEIOL ..ottt et h et s e bbb e st e e et e e e be e sbennas 100
BiItMaD PrOPEITYocveiieieieiieieie ettt ettt e bt ae e se et e b sae e 101
BitmapM O0E PrOPEITYc.ciieieriiriesie ettt e se e e b 102
2 T0 (= g (0] o< 1 1Y PSSP 102
XOFFSEE PrOPEITY ..ottt ettt sk bt e b et e e et seesbesnenneas 103
Y OFf SEL PrOPEITY ...ttt sttt e e et et nneas 103

Vi Table of Contents

(11w Q= T0) Q000 011 (o TR 103

ALIGNMENE PrOPEITY ... vttt st bbbt e e e e b e b e 104
AULOCNECK PrOPEITY ... vttt sttt et s b e s 105
TRrEESEALE PrOPEITY ... e e eeieiieeeie sttt sttt st s b e b b se e b et e eneas 105
A= U1 o o o= o Y USSR 106
COmMBDO BOX CONEIOL ..ottt 106
AULOHSCIOH PrOPEITYcueeeieieieesie ettt sttt st e st e b sae e e 107
COUNE PIOPEITY ..ttt ettt st st e bt e et s e e eaeeeneesbeebeebeenbennnens 108
CUPSE] PrOPEITY ... vttt sttt ettt e b bbbt et e e e e et e seesbe b e 108
DisablENOSCIOl PIrOPEITYceoieiieieisieie et 108
OEM CONVENT PrOPEITY ...c.eeeieeeieeesieeset ettt ettt sae e sae e see e e saeesanesneasbeabeennenn 108
SEITEXE PrOPEITYceeieeeeeeeee ettt e b e bbbt e e et e b nae e 109
SO PrOPEITY ..ttt ettt ettt ettt e e e s ae e saeesbe e et saeeeaeeebeesbeebeenbesnresnnens 109
S L= (0] 0= YRS 109
DropDOWN BEVENL ..ottt ettt sae e b e s n e e ene 110
EdItCRaNgE EVENL.c..oieiieieeee ettt et e s b et se e e b nae e 110
NOSPACE EVENL ...ttt ettt b et et e e s e e sae e sae e e s 110
Command BULtON CONEIOLceiueieiiieietirieseee sttt 110
ACCE ErALON PrOPEITY ...ceeeeiieiieeteeeeeeee ettt sttt bbb e e e e e b et e sbeeae e e enes 111
BiItMaD PrOPEITYoveiueieieiieieie ettt ettt e bt ae e e e e be e sbesaeene 112
DEFAUIT PrOPEITY ..ottt ettt e b e e ae e e et e b b e 112
Date Time PICKer CONTIOLocueiiiieirieesie et e 112
FOrMEL PrOPEITY ...ttt ettt b et e e s e e saeesaeeneenneens 114
LongDateFormat PrOPErtYcooeo ittt ettt e e e sne e 115
MCFONEBOIA PrOPEITYcveeeeteeieeiee ettt sttt st ae e sb e ene e e 115
MCFONLITAIC PrOPEITYeeeeeeeeeiee ettt et s 115
MCFONINAME PrOPEITY .. .ottt sre e e eareens 116
M CFONESIZE PrOPEITY ...c.eectieeeierierie sttt sttt s e b e s ae e e e e e sbesae e 116
MCFONtSEITKETNIU PrOPEITYc.eoieiieieiiiesie ettt et e 116
MCFONtUNAEITING PrOPEITY......coeeeeeeeieste ettt s 116
RIGNEATIGN PrOPEITY ...t ettt e b e 117
ShortDateCenturyFOrmat PrOPEITY.........ooeieririeeieee ettt neens 117
SNOWNONE PrOPEITY ...ttt st sb et st b e b sbe e s aneeens 117
TIMEFOrMAL PrOPEITYeiieieiitieieee ettt ettt bbb e et e b 118
UPDOWN PIOPEITY ...ttt ettt sttt ettt s ae e s ae e saeesneesne e s e enneens 118
ChangE EVENL ...ttt et b et b et eee et e b e ene 118
Edit BOX COMEIOLeieiiieiictiiteeet ettt 118
ALIGNMENE PrOPEITY ... vttt ettt et sbe e e e e sb e e b e 119
AULOHSCIOH PrOPEITYcueeeieieiesie ettt sttt e bt se b sae e e 120
AULOV SCIOH PrOPEITY ...ttt sttt st bt ne et sae b e 120
2 T0 (= g (0] o< 1 YU 120
L0z Sl (0] 07 1TSS U PPV PRRPRUPRORN 121
MEXCEAIS PrOPEIY ...cveiveeeieeeieriesie ettt sb et see b sae e e e et seesbe b e 121

Cobol-WOW User's Guide vii

viii

MUHTTINGE PrOPEITY ..ottt ettt e ae et e b sae e 121

NOHIAESE PrOPEITY ..ottt e bt se e e e e 121
OEM CONVENT PrOPEITY ...c.eeeieeeieeesieeet ettt sae e sae e sae s sae e saeesneasbeenbeennens 122

L SN oo [(0] 01 Y7 RUPR 122
PasSVOrACNEr PrOPEITYcoiiereeeeieeiese sttt et sae e e nes 122
REAAONIY PrOPEITYcee ettt e s b et ae e se e e b sae e 123
SCIOHBarS PrOPEITYc.oiuiitiiiiieieee ettt ettt sttt se et sbe b saeeneens 123
TEXE PrOPEITY ...ttt ettt sttt b e e et ae e b e et e et e e s beeaeesbeesbeesbeebeennesnnas 123
WaANTREIUIMN PrOPEITY ...ttt sttt b e sr e e e 123
ChangE EVENLoceieeieeee ettt et b et b et e e et e e b 124
HSCIOH EVENT ...ttt ettt 124
MBXTEXE EVENL......ooiiiiiicie e e e 124
NOSPACE EVENL ...ttt ettt b e b et et e e s ae e sae e sae e e enns 124
VSCIOH BVENL ...ttt 124
ElTPSE SN ..ot ettt bbbt bt e e se et e b nnas 125
(€0 I8 o1 =To) Q@] o1 (o] FE RSP 125
[P AAUrESS CONIOL ...ttt st st b e et b e e ne e nre e 126
FIeldINAEX PrOPEITYcouicieieeeeieie ettt ettt sb e b e 127
FIelAM@X PrOPEITYoovieiiieeeeieieiee ettt bbbttt bbb e enes 127
FIElAMIN PrOPEITY ..ottt bbb bbb ene e e nes 128
A= U1 o o o= o Y USSR 128
ChangE EVENL ...ttt et b et bttt e e se et e b nae e 128
[T TSR =T oSO 128
LiSt BOX CONLIOL.....cuieiiiiiieeiest ettt 128
2 T0 (= g (0] o< 1 YRS PR 130
ColumMNWIidth PrOpertYccooeiereeeeses et 130
COUNE PIOPEITY ..ttt ettt st s ae e sae e bt et saneeaseene e st e e nbeebeennennnens 130
CUPSE] PrOPEITY ... ettt sttt e bbbt bt et e e e e et e e sbe b e 130
DisablENOSCIOl PIrOPEITYcceiieiieieieieiie et s s b e e 131
EXIENAEASEl PrOPEITY ..ottt e bbb 131
MUITPIESE] PIOPEITYcviteieeeeeeeeeie sttt et e b e see b 131
NolntegralHEIGht PropertYccooeie i e e 132
N[0 s o [z Tl o] o= o YU 132
SEITEXE PrOPEITYceeieeeeeeeeie sttt sttt e b e bt b et e e se et see b nae e 132
SO PIOPEITY ..ttt sttt ettt ettt esae e s et e sae e sbeeeesaeeeanesbeesbeabeebesnresanens 133
SEANAAIT PIOPEITY ... ettt ettt sttt sbe st e et e besae b e s e eneens 133
USETADSLOPS PrOPEITY ...ttt sttt sttt s e et bbbt e et 133
WantKeyboard PrOPEITY.........cooie ittt st e e s 134
Using Functions and Messages With List BOXES........ccouviierererieeie e 134
USING B LISE BOX- .. titiiiitieieeeeie ettt et se et bbbt e e et e e e b e 134
LOAdiNg the LISt BOX.....c.ceiiieiierieie ettt sttt e st sbe e enne e 134
Operating the LISt BOXcc.eioieieieriesie ettt e 135
Determining the SEIECHION.........ooi e e 135

Table of Contents

FINING AN TTEM ... bbb be b nne e 135

SEIECHING AN TEEM ...t et e b e e 135
Retrieving the SEIECHIONoii e 136
Removing One or All 1tems from the List BOXccccvirereriinienee e 136
Month Calendar CONIOL............ooeiriieiriere e e e 136
FirstDayOfWEEK PrOPEITYcc.coirierierieeiereeee et s see b 138
MaXSEI COUNE PIOPEITYeiueeeirieiereeie sttt se et e b b e e e e e s 138
MONtNDEITA PrOPEITYv ettt et s b e s e s 138
MUIEESEIECE PrOPEITYoeicteieeeieete ettt sttt e st see b sne e 138

N [o] oo F= YA o o = 4 Y PR SR 139
NOTOAAYCITClE PrOPEITYcoueeeeieeiesie sttt st s sb e 139
WEEKNUMDEIS PrOPEITY ...ttt st b 139
ChangE EVENL ...ttt e et b et b et e e e e et e b nae e 139
Option BULLON CONLIOL ..ottt e e e e b 140
ALIGNMENE PIrOPEITYeiveeeeieee ettt e sb e e e e b e sreenas 141
AULOPTESS PrOPEITY ... ettt ettt sttt et s ae e b e et eseesaeesbeesbeenbeennesnnas 141
A= U1 o o o= o Y U STUOR 141
Grouping OPtioN BULTONS..........ccereeiiieienie sttt et e e e e 142
Progress Bar CONLIOLottt st sb et se et bbb se e e e ae e e e 143
INCIEMENT PrOPEITY ... ettt ettt st b e bt sae e sae e b e sre e e 144
MEXTMUM PEOPEITY ..ottt sttt sttt e b et e e b e e enes 144
MINIMUM PrOPEITY ..ottt se e s bt ae e se et e b sae e 144
A= U1 o oo = 4 YU SUUPR 144
RECLANGIE SNEPE....c. e et bbb sae s 144
Rounded ReCtaNgIe ShaE.........ciiiieiiiirieeeie ettt s sb e enes 145
ROUNANESSX PrOPEITYeicteieeieeiereeie sttt et se et e b b sae e se e e sbesae e 145
ROUNANESSY PrOPEITYeictiieeeeieiiereeie sttt st se et et s ae e se e e seesbesae e 146
SCrOl Bar CONMIOIS.......eivieeiiieiieieriee ettt nren e 146
LiNEChaNGE PrOPEITYooueieieiiiieie ettt sttt et e bt ne e e 147
MEXTMUM PIOPEITY ..ottt sttt b et e b et sae b e enes 147
MINIMUM PrOPEITY ..ottt st se e bt ae e e e e b e sbesae e 147
PageChange PrOPErtYcoecerieieieee et be b b e e e 147
A= U1 o oo = 4 USSR 148
ENASCIO EVENL ...ttt et bbbt se e b e 148
LineLeft EVent (HOMZONEEL)ccoouirieiee e e 148
LineRight Event (HOMZONEAD)..........ooiiiiiieieeeee e 148
LineDN EVENt (WEITICaL) ..ot e 148
LineUp EVENt (WEITICal)ooeieieeeee ettt e b 148
Pagel eft Event (HOMZONEAI)coeieriiieee et e e 149
PageRight Event (HOFMZONEaI)ooiiiiiieiereee e 149
PageDN EVENt (WEITICAL)ooueiieeieie et e 149
PagelUp EVENt (WEITICEL)ooeeieeiee et e 149
THUMBDPOS EVENL ..ottt e e et e e b b nne s 149

Cobol-WOW User's Guide ix

X

THUMBDTIK BVENT ...ttt ettt e e et a e e s s e e e s s eabe e e s s bt e e s enrneessnnns 149

USING SCIOH BarSoiueiuieiiiieie ettt st b et e et et see b sae e 149
SEALIC TEXE CONEIOL ...ttt e 150
ALIGNMENE PrOPEITYecveeeeeeeeseese sttt e e sbe st e e ne e b e e naas 151
L R ol (0] 0= Y USSR 151
NOPTEFIX PIOPEITY ...ttt e ettt et et sbe e ne s 152
WOIAWIaD PrOPEITY ...ttt sttt st s sb et e e e e b e b enas 153
Special Considerations for Static Text CONtrolS.........coveiererieiererere e 153
SEAUS BAI CONEIOL ...ttt nn 153
CUrSECEION PIOPEITY ..ottt ettt e b e e e e et e b nae e 154
SeCtiONNOBOIIEIS PIrOPEITY.......coueiueeiieeeierie ettt sttt st et see e 154
SECti ONPOPOUL PrOPEITY ...ttt st sttt se b see bbb sae e e e e neens 155
SECHONS PrOPEITY ...ttt et sttt et et b e bt sbe st e e e e e se e beseesbesne e 155
SECH ONSLALUS PIOPEITY ...ttt sttt et s be et et e b nae e 155
SECHONWITIN PrOPEITYoveeeeeeeee et st 155
SIMPlENOBOIIErS PrOPEITYcoueeieeiieieiesie sttt se e e b 156
SIMPIEPOPOUL PrOPEITY......eeeeieeeieeieie ettt ettt st b e s sae e naennens 156
SIMPIESLALUS PrOPEITYcoeiieieieierie ettt st s be et ee et e b sae e 156
TaAD CONEIOL ...ttt ettt b et b e se et s r e et ne e b nn s 157
BULLONS PrOPEITY ...ttt e r e n e e sae e sae e nne s 158
CUITAD PrOPEITY .. ceceeeee ettt ettt bbbt e et e st e besaesbenaesaneneens 158
FiX@AWITEN PrOPEITYceeieeieeceee ettt st 158
FOrcel abel LEft PrOPEITYc.cooeirieie ettt s b 158
GELFOCUS PTOPEITY ...ttt ettt sttt b e e e e sae e be e b e enbesasesnnesreens 159
MUIEHTINGE PrOPEITY ..ottt et e b et e e b e b sae e 159
RIGEIUSLITY PrOPEITY....ceietiieeeeeee ettt st se b e 159
I oS 0] 0= 1 PSSR URRPRR 159
TADTEXE PrOPEITY ...ttt sttt sttt s e et bbb ae et e e e beseesbesaenne s 159
KEYDOWN EVENL ...ttt st ae e sn e e e s ae e saeenne e 160
SEICNANGE EVENL ...ttt et b e bt e e et e b nae e 160
SEIChANGING EVENL ..ottt bbbt se b see b b e 160
THIMEE CONIOL ...ttt b et b e bt b e bt b e r et b e et b nnens 160
INEEIVEI PrOPEITY .. .ottt et et b e s bt e e e b e sne e 161
THMEE EVENT. ...ttt n e b e 161
TOOIDAI CONEIOL ...ttt ettt se et r e et ne e s nnens 161
ALIGNTOP PrOPEITY ...ttt sttt sttt bt e e et e b e eae e nes 162
BitmapHE Gt PrOPErtYcc.oooiee et et 162
BitmapWidth PrOPEItYcoeoiiiee ettt s s 162
BINBItMAD PrOPEITYo ittt et e b e et e et e b sae e 163
BtNENBDI €A PrOPEITYcc.eoueeieiesierie sttt et sb e e 163
BENHIAAEN PrOPEITY ..ottt e e 163
BENSLALE PrOPEITY ... oottt sa e sn e e e s e e e b 164
BINSEYI@ PIOPEITYeeieieiiteiieeecete ettt et e b e st e e e e e b sae e 164

Table of Contents

BENTEXE PrOPEITY ...ttt ettt sae e sae e b e e eae e nne e 165

BNWIaD PrOPEITYottt sttt e e s e s s saeeneenreea 165
BULLONHEIGNE PrOPEITY ..ottt et e 165
BULLONS PrOPEITY ...ttt s s r e e e e e e nne s 165
BULLONWWIAEN PrOPEITYcceeeeeiesieste et et 165
CUIBULEON PrOPEITY ..ottt st st sae e e s sbe et e e b earesanesree 165
Larger PrOPEITY .. .ottt ettt ettt sae e sae e sne e b ean e eaneene e 166
ROWS PrOPEITY ...ttt ettt ae e sa e e sae e b eae e eaneene e 166
WIaPahl @ PrOPEITY ...c..oouiiieeeieiee sttt e bt e e b saesre s 166
BULEON-0 BEVENT ... e e 166
TraCkbDar CONLIOLooueiiiieeeee ettt 166
AULOTICKS PrOPEITY ...ttt sttt st bbbt e b sae b naas 167
BOtNTICKS PrOPEITY ..ottt et 168
ENabl€SelREANGE PrOPEITYcooiiieie ittt et 168
LEftTICKS PrOPEITY ..ottt sttt e st 169
LiNEChaNGE PrOPEITYooueiiriiiieie ettt et st s st 169
MEXTMUM PIOPEITY ..ottt sttt ae et e b et e bt se e enes 169
MINIMUM PrOPEITY ..ottt sttt se e s bt ae e et e b seesbesae e 169
NOTNUMD PrOPEITY ...ttt ettt et sae e e 170
NOTICKS PrOPEITY ..ttt ettt s a et ae b ne et et e 170
PageChange PrOPErtY ..ot st b e e e e 170
SEIEN PIOPEITY ..ottt bbbttt b e b b ae e 170
S S e g (0] 01 YU 170
B0 = o (0] 1< 1 YU 171
TOPTICKS PrOPEITYcveeeeeeeeeeee ettt ettt et e bbb e e se e e e b nae s 171
A= U1 o oo = 4 Y USSR 171
A= = I o] o= YU 171
BOLOM EVENL ... e 171
ENATTACK BVENL......oiiieec et 171
LiNEDOWN EVENT ...ttt e 172
LiNEUD EVENT ...ttt ettt 172
PageDOWN BEVENL ... e b e e e ae e ne e 172
PagEUD EVENL......ooiieiiieee e e e 172
THUMBDPOS EVENL ..ottt sttt st e e e sbe b nne s 172
THUMBDTIK EVENE ...ttt 172
TOP BVENL ...ttt ettt b e et et a e e e sae e b nre e e 172
(8]0l [o111] 0 [@Xo o 11 () SO 172
PN e e = (o (S (0] 01 1 AU 174
ACCE INCIEMENT PrOPEITYc.eiiee ettt s sb e es 174
ACCE SECONAS PIOPENTYcoeeieiiiiieiteetieee ettt s sbe e e et sbe s 174
ALGNLEFT PrOPEITY ..ottt st sb et e e e bbb enas 174
ALGNRIGNE PrOPEITY ..ttt e st se et sae b 175
ATTOWKEYS PrOPEITY ...ttt ettt sttt se e et sae e be et e e b e e b e s ne e e 175

Cobol-WOW User's Guide Xi

Xii

BASE PrOPEITY ...ttt ettt st e e s h e s h e ne e e eae e ne s 175

2100 0|V oo = 1 PSSP 176
BUAAY I NEEOEN PrOPEITYoveieecteieeiie ettt sttt bbb e nes 176
CUPACCE] PIOPEITY ... ettt sttt et s b et e e e et e b nne e 176
HOFZONEAl PrOPEITY ...c.ei ettt e b e et e e e b sae e 177
MEXTMUM PIOPEITY ..ottt sttt et b ettt e b et sae b se e e enes 177
MINIMUM PrOPEITY ..ottt e bt ae e se et e sbesae e 177
NOTHOUSANAS PrOPEITYeoiviieiieieieeeieie sttt b e e e e s 177
VA= U1 o o o= 4 YUV 178
WIaPahl @ PrOPEITY ...c..oouiiieeeiesie ettt ettt st sb et e e b sae b e 178
ENASCIOI EVENL ...ttt et b st neese e b e 178
TRUMDPOS EVENL ..ottt et e e se e b b nae s 178
Common INtrinSic CONtrol PropertieS.......c.cceieeieeiieriie et e 179
3D PrOPEITY ..ueeveeteseeeeet ettt sttt sttt ettt b e bt b e e bt eb e se bt e b e bt b e bR e n e r e e eneere e 179
BaCkBruShHEICH PrOPEITYccoiiiiiirieie sttt s 180
BaCKBIrUSNSLYI@ PrOPEITYcooeiiieieieisiesie ettt et b 180
ST 0 (Ol0] Lo gl o] o< 1 Y PSSP 180
1072 o Lo gl & (0] 0= 4 YRS 181
ENADIEA PrOPEITY ...ttt e b e s 181
L Ce] 1= YRS 181
FONtBOIA PrOPEITYoeeieeeieie ettt et ae st e et se e b e 181
FONEITAlTIC PrOPEITY ...coeeieieieiie ettt e b e st see b nae e 182
FONENGME PrOPEITY ...ttt sn e e e enreeae 182
FONESIZE PrOPEITY ...ttt bbb et se e e b nae e 182
FONtSEKENIU PrOPErtYcoue e e 182
FONtUNGENTING PrOPEITYcieeceeeeeie ettt st st 183
FOrECOIOr PrOPEITY....c.eiieeieieeeteee ettt sttt b bbb saesne e e nes 183
GIOUPD PIOPEITY ...ttt ettt ettt sttt et b e s e e s e e sae e saeesbe e b e enneeanasnaenreans 183
HEIGNE PrOPEITY ...t et b sttt se e b e 183
IS R 0] 01 1 AU 184
o T0 (S0 [l (0] 0/ £ YRS 184
M CCOIOF PrOPEITY ...ttt ettt se et e bt sae e e e e e beseesbesae e 184
MCCOIONTNAEX PIrOPEITYceeeteieeeiieeeiesie ettt sttt e b e sne e e nes 185
NAME PIOPEITY ..ttt ettt b et ae e sae e sbeenesnennneens 185
PENSIZE PrOPEITYoeeieeieeciee ettt se et e b ae e et et e b e e 186
PENSLYIE PrOPEITY ...ttt sttt e b et e et e b sae e 186
SCIOHBAr PrOPEITYceeieiitiieeeeeeee ettt sa et e e e b e saeeneen 186
TADINAEX PrOPEITYeiueeeeeiieiee ettt sttt st bbb b e e b seesbe e nneas 186
TADSLOP PrOPEITY ...ttt ettt et sb et eae et e e bbb aeeneennenean 187
QL0 ol & (0] o1< V2T PO ORI 187
TranSPArENt PrOPEITYveeeieeieeeiesteeie et ettt ettt b e r e s ae e saeesbeesbeeneeaeas 187
VISIDIE PrOPEITY ..ttt ettt st sb et e e et sae b s 188

Table of Contents

WAL PrOPEITY ...t et st bt e e s b e sae b 188

A @0 L= g (o] o= 1 | PR SUTPRR 188
Common INtrinsic CONrol EVENLS.........ccoiieiiieeree e 189
ClICK EVENE......eeeeteceeet ettt b bbbt b e et b e et eresr et nne e e 189
DBICHCK BEVENL.....oiitiieciisteseee ettt 189
GOLFOCUS EVENL ... s 189
KEYDOWN EVENL ...ttt e sr e sn e e e s ae e sae e b 189
KEYPIESS EVENL ...ttt ettt sae e sb e na e s e eae e saeanbe s 189
KEYUD EVENL ...ttt et et s 189
LOSIFOCUS EVENL........ocieiiicriiecieceee e 190
OIS . e e e 190
3D PrOPEITY ..ueveiteseeeeet ettt sttt sttt sttt r e bt sb e e bt b e bt b e b b e bt b e n e r e e eneere e 191
Al OWEVENTFIITEr PrOPEITYcveceieeeiesie ettt ettt s s 191
SF 0 (Olo] Lo gl o] o= 1 Y PSSP 192
BiItMaD PrOPEITYoveiueieieieeeeie ettt se et e bt ae e e e et e b nae e 192
BitmapM O0e PrOPEITYc.cooieieiiiierie sttt et se e e b 193
2 T0 (= g 1] 0 < 1 YT SSPURP 193
1072 o Lo gl = (0] 0= 1 YRS 194
ClipCONLIOIS PrOPEITY ...c.veeteeieeiieieeiee sttt ettt sttt se b et s besaesne s e e aneeens 194
CUISOE PIOPEITY ...ttt ettt st s e bt et e e eaeesbeesbe e b e e nbesnnesnnea 195
IDIF= oTe |1V ol i o] g o o = £ VNSRS 196
ENADIEA PrOPEITY ...ttt et e b e e 196
HEIGNE PrOPEITY ... ettt st et ne b b e 196
oo gl & 0! o< £V TP PR UR USRI 196
[CONINAEX PIOPEITY ...ttt et b s b et e b seesae e 197
IS 0] 01 1 AT SSSP R 197
MaXBULLON PrOPEITYcoeeiiiiee ittt ettt e e e sae e sae e e e e 197
MINBULLON PrOPEITY ..ottt st bbb e enes 197
MO PrOPEITY....ceeeiie ettt et et bt s aeeae et et e neesbe b e 198
Parent PrOPEITY ..ottt b b e e e e ne s 198
SCIOHBArS PrOPEITYc..ciuiitiiieiieieee ettt bt e et s e et e b e saeennan 198
SNOWSEBEE PrOPEITY ...ttt sttt e b et bt e se et e b sae e 199
S L= (0] 0= YRS 199
SYSKEYMOUE PIOPEITYceiiiieietenieeieeie ettt st sb e e bbb sae e 200
SYSLEMMENU PrOPEITY ...ttt st s a e b e r e san e s asasbeesbeeeean 200
L L] (0] 1< 1 1SS URRTPRR 200
TOP PIOPEITY ...ttt ettt b ettt h e e b e b e et e et e e ane e sae e sneenneenas 201
VISIDIE PrOPEITY ..veeeieieeeeeee ettt ettt st sb et a e e bbb 201
WAL PrOPEITY ...ttt st sb e e e e b sae b 201
ACHVALE BEVENL ...t 201
ClOSE EVENL ...ttt ettt b e et s e b e st r e e eneere e 201
Creat@ EVENT ... e 201
ENBDIE EVENT ... e e 201

Cobol-WOW User's Guide Xiii

GELFOCUS EVENL ...ttt e e s e s s b e b e e e s e e s s bbb b e e e e e s s sabaraeeeas 202

KEYDOWN EVENL ...ttt e sae e sn e e e sae e saeenne e 202
KEYPIESS EVENL ...ttt st sb e na e e sae e saeenne e 202
KEYUD EVENML ..ottt bbb ettt st e bbb 202
LBULONDOWN EVENL ...t e e 202
LBULEONUD EVENTottt ettt st s e e s sae e sae e neenneen 202
LOSEFOCUS EVENT ...t e e 202
MBUONDOWN EVENL ..ottt e 202
MBULEONUP EVENL ...ttt e s b e s san e s sree 203
PaINE EVENT ...t bttt e et se e b bt ae e e et e e e e 203
RBULONDOWN EVENT ...t e 203
RBULLONUD EVENLottt s s s b e e e e e saeanne s 203
SNOW EVENL ...t b e b e en e sr e 203
Appendix B: Working with ActiveX Controlsccceeeeieeiieiieiiiiiennnnn. 205
ActiveX Controls and CobOl-WOWccoireiiireenesee st 205
HIStOry Of ACHVEX CONIIOIS ... ettt ettt sae e 205
Adding and Removing ActiveX Controlsto the Cobol-WOW DeSignerccoceeererieecennene 206
TrOUDIESNOOING TIPS ...ueeueieeiirie sttt ettt sttt b et b b e st sae e e e e e b e sbesbesaeebeeneens 207
Using ActiveX ControlS 0N @FOMM.......co.eiiiiiiie e s 207
ACtiVEX CONLIOI PIOPEITIES.ceiieieeiieeeete ettt se e e b 208
ActiveX INdeXed PrOpErtiES........coi ittt e s s 208
ACHVEX CONLIOI EVENES ...ttt 209
ACEiVEX CONLIOl MELNOAS..... ...t 210
LIMITAEIONS ...ttt b bt se bt b e bt sb e e eb e srese bt s n e erenrenenne 211
DiSIIDULION ISSUES.......ecueiteieetisteseet sttt sttt ettt b e et b e et eb e et b sreseereseenenne 211
Appendix C: Understanding the Application Architecture 213
Initial Creation of a Cobol-WOW PrOgramc.ccoeeiririeiieriesese e 213
PrOJECE FilE (W]) ettt bt e b e b ae e e et e b b e 214
FOrM FITE ((WOW) ettt e bttt et st eb e ne s 214
Working Storage Copy File ((WWS)......coeeiiiieie et s e 214
Procedure DiviSion COpY File ((WPF) ..ot 214
COBOL Skeleton Program File (.ChI) ... 215
COBOL Executable Program File (.COD)cooiiiiiiineneeee e 215
Ongoing Maintenance of @ Cobol-WOW Program...........cccccoeeerenerieeseenee e seesesesseeeas 216
How a Cobol-WOW Program WOTKS ..ot see s 217
WINDOWS.CPY ..ottt ettt et stttk sttt 217
FORMMNAMEMIWS ..ottt st sttt 218
FORMMNAME.CBL ...ttt sttt e bbb st 219
FORMMNAMEWVPR ...ttt et bbbttt 221

Xiv

Table of Contents

How a Cobol-WOW Program Works With WindOWS............cceeeeriiienenese e 222

Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs...........cccceceeerennen. 223
Calling To and From Cobol-WOW Programscccceierenenenerneeie e see s e seesee s 223
Visual Considerations of Cobol-WOW and Non-Cobol-WOW Programs............c.cceceeeeenens 224

Appendix D: Using Cobol-WOW with RM/Panelscccccoevviiinnnnnnn. 225

Enhancing EXisting Panel LibDrariES.coooiiii et 225
Character-Based GUI Portability and Cross Developmentccoceeieienenenenescnceeeenes 226
Communicating With RM/PanelS ..o e e 226
Modifying an EXisting Panel Library ... 227

OPEN ThE TTBIAIY....ce e e bbbt 227
Change CONEIOIS. ...t et b bt e e et st sbe st e 229
AU CONLIOIS.....eeeiitieeet bbb n et n et nene 229
DEIEIE CONLIOIS ...ttt ettt st r e 229
s V== Y o= 1< DTSSR 230
TESE @PANEL ...ttt e e bbbt e et et saeebesaeene s 230
Run an application with an enhanced panel ... 230
Setting Properties for RM/Panels Data Fields..........ccooiiiiiineninieee e 231
Check BOX FIEIA/CONLIOcoiiiieieieieees e e 232
Combo BOX FIElA/CONLIOcoerieiiieieeee et 232
INPULFTEIA PrOPEITY ..ottt et 233
Command Button Field/CONEIOlccoeiiirieine ettt e 234
PUSHEOATT PrOPEITY ...ttt st bt nn e 234
SIZETYPE PrOPEITY ...ttt ettt et b e bbbt et e e e se et seesbenae e 235
SIZEV BIUE PIOPEITY ...ttt ettt st st b b saeeneens 235
Date Edit BOX FI&ld/CONIOIcoiviieeiriiicertieeseee e 235
StorageFormat Property (Date Edit BOX)cceooeeiiiieiineiiiereeeeeeeee e 236
Edit BOX FIEId/CONLIOLccviiieeiirieeteri ettt 237
O = S SY . o] o= 1 TSSO 238
JUSLITY PrOPEITY ..ottt bttt e b et ne e e b saenneas 238
PrompPt PrOPEITY ...ttt s sae e sne e e sae e nne e 238
Group BOX FIElA/CONLIOLcoueieiiiiieie ettt e s s 239
ENADIEA PrOPEITY ...ttt st b et 239
GIOUD PIOPEITY ...ttt ettt ettt ea e b b e b e b e s ae e st sae e saeesbe e b e enneennesnaenreens 240
[0 T0 (S0 Il (0] 0/ £ YRR 240
TADSLOP PrOPEITY ..eeceeeeeieieees ettt ettt bbbt ae et e e b e b sbe et eae s e enean 240
List BOX FIeld/CONTIOLcciiiieeiirieeeteriee ettt 241
Multi-Line Edit BOX FI&lA/CONLIOL..........ccoiiiiiieeesiee e 241
COlSTODISPIAY PrOPEITYveeeeeeeeeeeie sttt ettt e e et s be b b e e neens 242
COlSTOSIONE PrOPEITYceeveee ittt ree ettt et b et be st et e e e et e sbesne e 242
LineSTODISPIAY PrOPEITY ...cc.coeiieie ettt st b e s 243
LiNESTOSIOIE PIOPEITYccueiieierierteste sttt e st se b e b 243
REQUITEA PIOPEITYoeeeieteeeee ettt ettt sbe e e 243

Cobol-WOW User's Guide XV

Xvi

SEEAM PrOPEITY ...ttt e s rb e e e sae e s be e b e e b e eabesanesreeas 244

WA PIOPEITY ...ttt sttt ettt s b e b e e e e b e sanesaeesaeesneennas 244
Numeric Edit BOX Field/CONIOlccoiiiieeirieieesieee e 245
ASSUMEDECIME] PrOPEITY ..ottt st s b e enes 245
CalCUIELOrENLIY PrOPEITYcocceeeieeiese ettt e neea 246
0150 Il (0] 1 £ Y ST PR 246
Option Button FIeld/CONEIOlooeiieiiieiie e e s 247
DatalteMNEaIME PrOPEITYc.eeieeiee ettt ettt st e e sae e saeaseeenesnneens 248
DataSigNed PrOPEITY .. .ooveieeeeieieee ettt s e et e b b e e ne e e ee 248
D e N o o= 1 PSSP 248
D oAV TSN (0] o 1< 1 U U RS 249
NUMEITCDALA PrOPEITYccueeeeieitesieste sttt e s b et e e e e b sae e 249
SCroll Bar FIEld/CONLIOooeeiiiieeeiie e 249
MaximUMV @ UE PrOPEITYcoueiieieriinie ettt ettt st s ne e e 250
MINIMUMY EIUE PrOPEITYceeeeieeeie sttt st 250
LS] o (0] 0= YU 251
S Sl (0] 01 1 YRS 251
SEEPSIZE PrOPEITY ...ttt ettt st ettt ettt be e b e bbb et e e e se et e e b e nae e 251
THUMBDAE PrOPEITY ...ttt st e bbb nean 251
Static TEXt FIEld/CONIOL ..o 252
ALIGNMENE PIrOPEITY ... vttt sttt st sb et e e se e b e b enas 252
R ol (0] 0= YOS 253
N[= D o] o= YRR 253
WOIAWIaD PrOPEITYoveeeeeeeeee ettt st e sb et ne et e b enas 254
Time Edit BOX Field/CONLIOL.........ccooiiieiiireeiete et 254
24HOUIFOrMAEL PrOPEITYcoeieieeeieeee ettt sttt b e e saeesaeesaeas 255
StorageFormat Property (Time Edit BOX)coereririeienirese s 255
Common Data Field Properties........ccoieiirieiee e e 256
D (o]0 = 1 USROS U TSR PTPTUPPTSURPTN 256
ACCEErALON PrOPEITY ...cueieiieiieeteeieeee ettt sttt st b e ae bt e e e e bt saesbe e e e e nes 257
AlWaySDiSabI €0 PrOPEITYcooiieiiiiieieeee ettt s 257
F T (0] (] (0] o/ YU 258
ST o (Olo] Lo gl o] o 1 Y TSRS 258
BEED PrOPEITY ...ttt ettt ettt h e b b e e e nae e nne e 258
BlIanNKWhENZEro PrOPEITYcooceieriiieie et 259
2 T0 o (= g 1] o< 1 1Y UPR 259
BOrderAttr PrOPEITYoeeceeeeeieieesies ettt ettt e bbbt et e e b b e 259
1072 o Lo gl & (0] 0= 4 YRS 260
L0z Sl (0] 07 1SR TR PR PRRPRURRORN 260
ChOICEHEIP PrOPEITY ..ottt s s b e sae e 260
ChoicesSTODISPIAY PrOPEITYooeiuieeereeeeie ettt e s se e e b 261
ChOiCESTOSIONE PIOPEITYcveieeeieeeeie ettt ettt sttt s ee b e b saeeneens 261
ChOICEV AIUE PrOPEITY ...ttt ettt et s b e e b ae e 261

Table of Contents

ChOiCEWI AL PrOPEItYccviieeieieee ettt 262

100 1V 00 0T oo = 1 USSP 262
CUICRNOICE PrOPEITY ...c.eeeitesie sttt sttt ettt et s b e e e e e e et seesbenaeene 262
DeCiMalDigitS PrOPEITYccoueiiierie sttt et e e e e 263
Default TOPIeSSed PrOPErtYcocoeiirieie et sb e s 263
DefaultTOSYSIEM PrOPEITYcooiiie ettt sb e s 263
DEfaUItV @lUE PrOPEITYccue ittt sttt e b sae e 264
DiSabI AT PIrOPEITYcoueeeeeieiee ettt s b e s e s 264
DisplayFOrmMat PrOPEITYcccouirierierieiieeteeeeee et e st s ee e b e b sae e 264
DOUDIECTTCK PrOPEITYciteeeeeieeeeie sttt sttt e b enes 265
DrOPDOWN PIrOPEITYeoeieie ettt sttt ettt st s sae e sae e sbeennesneenneens 265
ENabI AN PrOPEITY ...o.eeeeeeeie ettt et se e e b e 266
EnabledForDisplay Propertyot 266
EnabledFOrINPUL PrOPEITYcoeeeeeeieie ettt st e 266
ENtryFOrMat PrOPEITYooeeieeieieie ettt s e sae e e saeenne e 267
0117 (o (= g 1] 1= 1 YRS 267
ErrorMESSage PrOPEITYceoieeiieeeie ettt ettt ettt e e sae e saeasne e s enneens 267
Font Bold, Fontltalic, FontName, FontSize, FontStrikethru, and

FONtUNAErTING PrOPEITIESc.eee ettt et s 268
FOrECOIOr PrOPEITY....c.eeieeiteieeeteeeee ettt sttt b et b et et sae bt e e nes 268
HEIGNE PrOPEITY ...ttt st b et et ne e b b e 268
HEIPMESSAgE PrOPEITY ..ottt st bbb ne e e 268
INtEGErDIGITS PIOPEITYcoeiie ettt st st s sn e 268
= R 0] 01 1 AU 268
LeNGEN PrOPEITY ... coeie ettt et se e e b 269
TSN (o]0 = 1 | PSSR 269
MNEMONICATE PrOPEITYeieeieiieeie sttt et ettt see b e 269
NAIME PIOPEITY ...ttt ettt et ae e sae e sbeesne s e e enneene 269
OCCCOIOFTSEL PrOPEITYveveieeieeeieeee ettt st se e e bbb saeeneens 270
OCCLINEOFTSEL PrOPEITY ...ovieeieieeeeee sttt ettt st e b sae e 270
OCCUIMTENCES PIOPEITY ...ttt ettt ettt st st sae e s ae e be e b e et e e nnesasesaeasaeesreas 270
OCCXOFFSEL PrOPEITY ..ottt sttt e e se e st s besaesbe e e enneeens 271
OCCY OFfSEL PrOPEITY ..ottt sttt b e st e bbb b saesbe s e enneeens 271
PromptTeXt PrOPEITYceoieeieiie ettt ettt e e e e e saeenreenreens 271
PrOtECtEA PrOPEITYoveieeeeeeeeee sttt e bt ae et e b sae e 272
SCIOHBAr PrOPEITYceeieieteite ettt ettt sae e st e b saeeneen 272
SElECLEAAT PrOPEITY ...ttt e bbbt et e b sae e 272
StArtOfGrOUP PrOPEITYooviieieeeieie ettt sb e et e b saeeneen 272
Stati CCNOICES PrOPEITY ...ttt e st se et see b nne e 273
TIMEOUL PrOPEITY ... vttt ettt sttt se et e b b e b e ae e e e neese e besbesaens 273
TiMEOULV @lUE PrOPEITYceeiviieiieeeiee ettt sttt s b e s eae e enean 274
L L= (0] 1< 1 AU 274
QL0 o] & 0] o1< 1 V2O U ORI 274

Cobol-WOW User's Guide XVii

UPABLE PrOPEITY ...eeeeieieietese ettt sttt b e bbbt b e e e s e e e nee b e 275

A= Lo = Lo gl = (0] o/ 1 YU S 275
WAL PrOPEITY ...ttt st b e b sae b 276
Setting Properties for RM/PanelS Panels............coooiiiiiiiineineece e 276
3D PrOPEITY ..ueeveitereeeeet ettt sttt ettt bbb e b e b e b b e bR e bR een e r e e enenre e 277
ST 0 (@lo] Lo gl o] o< 1 Y PSSP 277
BacKgroUNAATT PrOPEITYcceieeieeeiesie sttt sttt s b e s 278
BiItMaP PrOPEITYoveieeieieiieieie ettt bbbt bt e e e et e b e nae e 278
BitmapM Ode PrOPEITYc.cooiiieriiiesie sttt et se e e b 278
BOrderAttr PrOPEITY ...eevecieeieeeieeeies ettt et se et s s ae e e et e e b e 279
BOrder TYPE PrOPEITYcve ettt st st s be b b eae e e e e s 279
DESCIIPLION PrOPEITY ...ttt sttt e bt sae e se e b e b sae e 279
DropShadow PrOPErtYcoooeieiieeeieie st st b 280
ENdUSErEAiting ProPErtY ...c..coeerieie ettt s s e 280
ENTOrALIT PrOPEITY ...eeeeeieeeeeeee ettt ettt ettt sae e sae e e e s n e sanesasesreenreens 281
ErrorMESSage PrOPEITYcceiieeiieieeie ettt ettt ettt e e e e sae e saeeneenneeas 281
GeographiCM OtiON PrOPEITYcooeeiiieere sttt sae e e 281
HEIGNE PrOPEITY ...ttt et b ettt se e 282

L (S o N g (0] 0 YRS 282
HEIPMESSAgE PrOPEITYceeieeeeieieie ettt st sb et 282
[CON PIOPEITY ...ttt sttt e e et e bt e b e et e et e eaeesaeesaeesaeesneeanas 282
= 0] 01 1 AU 282
PrEfiX PIOPEITY ...ttt bbbt e e et sne b 283
StOreBYNEME PIOPEITY ...ttt e sb e b re s 283
THH @ PrOPEITY ettt ettt st st b e bt b et se e e e b e besaeebesneeneas 283
TOP PIOPEITY ...ttt ettt et ettt h e et e e b e et e et e e anesaeesaeesaeenneenas 284
WAL PrOPEITY ...t et st sb et se b sae b 284
WiINAOWEH PrOPEITYoeeeeieieieee ettt sttt st b et ne e bbb e e 284
Configuring FUNCHION KEYS.......coiiiiiie ettt et s 284
How to Configure Function Keys with RM/Panels...........ccocooriiniii i 284
How to Configure Function Keys with Cobol-WOW. ... 285
Sample Cobol-WOW Configuration File ENtrYcooevererinieienene e 286
Sample RM/COBOL Configuration Fil@ ENry..........ccoooeiirerierieie e 287
Using Global Default Property SEHiNGS.......ccoooeeererererieeerie e s 287
RESIIICHIONS. ...ttt et b bbb b e 288
Migrating Panel Librariesto Cobol-WOW FOIMS.........coceiiriiiiie e 288
Migrate 8 Panel Library........coo oottt 289

XViii

Table of Contents

Appendix E: Using Cobol-WOW Thin Clientcccoooviiiiiiiiiiiiiiinnn. 291

Understanding Cobol-WOW Thin Clent ..ot 2901
Benefits of Cobol-WOW Thin CHENEcooieiieieene e 292
Installing and Configuring Cobol-WOW Thin Client............ccooiiieienieieieesese e 292
Files Installed on the Windows Client WOrkstation.............coccvreinineineneseseseeseseeee 293
Files Installed 0N @ WiNOWS SEIVETcociiirieiriieesi et 295
Sample Contents of rpcplus.ini for a Windows SEIVEYccoeveieierierieeiereesie e 296
Remote Windows Printing Capability.........coeeeeerieriiiesese e 297
FilesInstalled 0N @UNIX SEIVENcoooiiiiieieereee e 297
Sample Contents of rpeplus.ini for @ UNIX SEIVErcoooiieieeienecie e 300
Running the Application with Cobol-WOW Thin CHentcccoviiiienineneeseeeeeeeen 301
0 T0 1= ORI 303

Cobol-WOW User's Guide Xix

XX Table of Contents

Preface

Cobol-WOW is Liant Software Corporation’s powerful, yet easy-to-use, graphical user
interface development tool for 32-bit Windows (9x/Me/NT/TS/2000). Cobol-WOW
enables the COBOL developer to create true Windows applications with Windows event-
handling and COBOL business logic, while leveraging the wealth of existing Windows
and user-interface component technologies.

Cobol-WOW also enables COBOL developers of RM/Panels-based applications to
create sophisticated Windows graphical user interfaces featuring many Windows
controls. See Appendix D, Using Cobol-WOW with RM/Panels, for more information on
using Cobol-WOW with RM/Panels.

What's New in Version 4.0

Version 4.0 of Cobol-WOW contains both enhancements and problem corrections to the
previous release. Enhancements to Cobol-WOW v4.0 include the following:

e A new capability, Cobol-WOW Thin Client remote printing, has been added that
allows Cobol-WOW programs executing in a client/server architecture over a LAN
or the Internet, to select and print to a printer on the client machine. All of the
RM/COBOL runtime Windows’ P$ subprograms and Windows’ printing capabilities
are available in this environment.

e It is now possible to use enhanced panels with the Thin Client component of Cobol-
WOW. This capability is transparent to the user.

e A new capability, Cobol-WOW Thin Client Accept/Display, has been added that
allows Cobol-WOW programs running in the client/server architecture over a LAN
or the Internet, to use COBOL ACCEPT and DISPLAY statements. The input and/or
output of these statements appear in the default RM/COBOL for Windows graphical

user interface window (supported by the rmguife.dll) on the Window’s client machine.

Cobol-WOW v4.0 requires RM/COBOL 8.0 or higher.

Note For information on the significant enhancements in previous releases of
RM/COBOL, see page xxvii.

Cobol-WOW User's Guide XXi

Cobol-WOW Documentation

XXii

Liant now distributes the documentation for this product on the software distribution
media (CD-ROM). This electronic documentation is formatted in Adobe Portable
Document Format (PDF). Thereis one PDF file per manual, each with the extension
.pdf. To view and print the PDF documentation requires using Adobe Acrobat Reader
(version 4.0 or later). If needed, this software is available on the product CD and is also
freely available for most operating systems at www.adobe.com.

The PDF file for this product is the Cobol-WOW User’s Guide. On a Windows system,
this PDF fileislocated in the directory x - \docs, where X : isyour CD-ROM drive.
(Access to this documentation will aso be provided by a shortcut icon entry to the
Programs folder during installation of the Cobol-WOW application.) In addition,
Cobol-WOW also comes with extensive online Help files, which are designed to help
you learn and use the product. Y ou can access Help through the Help menu, or by
pressing F1 or clicking the “What's This?’ toolbar button to get context-sensitive help
for particular parts of the Cobol-WOW Designer programming interface. Tooltips also
are available on controls, toolbar buttons, menu commands, and other screen elements
during design time. The Help files include the following:

e Designer, afundamental guide to the elements of the Cobol-WOW Designer
interface.

e Functions and Messages, a comprehensive reference documenting the ActiveX,
Cobol-WOW, and Windows API functions and messages used in Cobol-WOW.

The Cobol-WOW User’ s Guide and online Help files are designed to address the majority
of users’ questions. If, however, these sources do not answer your question or problem,
please check the following:

o README filesincluded with the Cobol-WOW media
e Liant web site at http://www.liant.com/

Note The Cobol-WOW documentation set assumes you know how to use a mouse, open
amenu, and choose menu and dialog box options. To review these techniques, consult
the documentation for Windows.

Preface

www.liant.com

How This Manual is Organized

This manual, the Cobol-WOW User’ s Guide, gives detailed information about all aspects
of Cobol-WOW and is arranged as follows:;

Chapter 1—Installing Cobol-WOW. This chapter provides the system requirements and
installation instructions for Cobol-WOW.

Chapter 2—Tutorial. This chapter guides you through the building of a sample program
that represents a fundamental building block typical of commercial applications.

Chapter 3—Introducing Cobol-WOW. This chapter describes the Cobol-WOW
components, provides an overview of the development process, and discusses the
Windows graphical operating environment as it relates to Cobol-WOW.

Chapter 4—Developing with Cobol-WOW. This chapter is designed to provide
essential background information to help you understand what you are doing and why.
Projects, event-driven applications, issues in data entry programs, and working with
menus are all discussed.

Chapter 5—Debugging. This chapter discusses three different approaches to debugging
aWindows-bhased application created with Cobol-WOW: using COBOL DISPLAY
statements, using the RM/COBOL Interactive Debugger, and using CodeWatch, Liant’s
standal one source-level debugger.

Appendix A—Setting Properties and Events for Intrinsic Controls and Forms. This
appendix describes the properties and events of each of the intrinsic controls (or default
controls) used in the Cobol-WOW programming system as well as the properties and
events for forms.

Appendix B—Working with ActiveX Controls. This appendix describes special
considerations for using ActiveX controls with Cobol-WOW.

Appendix C—Understanding the Application Architecture. This appendix coversthe
overall design and structure of the Cobol-WOW programming system.

Appendix D—Using Cobol-WOW with RM/Panels. This appendix describes how to
use Cobol-WOW with RM/Panels to enhance existing pand libraries and also discusses
how to migrate panel libraries to Cobol-WOW forms.

Appendix E—Using Cobol-WOW Thin Client. This appendix describes how

to install and use Cobol-WOW Thin Client, which allows the user interface to exist on
the Windows client machine and the COBOL program (data processing) to occur on
the server.

Cobol-WOW User's Guide xXiii

Symbols and Conventions

XXiV

The following typographic conventions are used throughout this manual to help you
understand the text material and to define syntax:

1. Wordsin all capital letters indicate COBOL reserved words, such as statements,
phrases, and clauses; acronyms; configuration keywords; and environment variables.

2. Names of properties, events, and specia objects appear with initial letter capitalized.
Key names, such as Enter, also have theinitia letter capitalized.

3. A plussign (+) between key names indicates a combination of keys. For example,
Ctrl+X meansto press and hold down the Ctrl key while pressing the X key. Then
release both keys.

4. Text displayed in amonospace font indicates user input or system output (according
to context). Thistype style sets off sample command lines, program code and file
listing examples, and sample sessions.

5. Bold, lowercase |etters represent filenames, directory names, and programs. Note
that Cobol-WOW accepts uppercase and lowercase filenames. Words you are
instructed to type appear in bold. Bold type style is also used for emphasis,
generally in some types of lists.

6. Italictext identifiesthetitles of other books, and it is also used occasionally for
emphasis. In syntax, italic text denotes a placeholder or variable for information you
supply, as described below.

7. The symbolsfound in the syntax charts are used as follows:
italicized words indicate items for which you substitute a specific value.

UPPERCASE WORDS indicate items that you enter exactly as shown (although not
necessarily in uppercase).

.. indicates indefinite repetition of the last item.

| separates alternatives (an either/or choice).

[] enclose optional items or parameters.

{ } enclose aset of aternatives, one of which isrequired.

{|} surround a set of unique alternatives, one or more of which is required, but each
alternative may be specified only once; when multiple alternatives are specified, they
may be specified in any order.

Preface

8. All punctuation must appear exactly as shown.

9. Theterm“window” refersto a delineated area of the screen, normally smaller
than the full screen. The term “Windows” refers to the Microsoft Windows
operating system.

Registration

Please take a moment to fill out and mail (or fax) the registration card you received with
Cobol-WOW. Y ou can also complete this process by registering your Liant product
onlineat: http://www.liant.com/.

Registering your product entitles you to the following benefits:

e Customer support. Free 30-day telephone support, including direct access to
support personnel and 24-hour message service.

e Special upgrades. Free media updates and upgrades within 60 days of purchase.

e Product information. Notification of upgrades or revisions to Cobol-WOW as
soon asthey are released.

Y ou can also receive up-to-date information about Liant and all its products via our web
site. Check back often for updated content.

Technical Support

Liant Software Corporation is dedicated to helping you achieve the highest possible
performance from the Liant family of products. The technical support staff is committed
to providing you prompt and professional service when you have problems or questions
about your Liant products.

Technical support services are subject to Liant’s prices, terms, and conditionsin place
at the time the service is requested.

Whileit is not possible to maintain and support specific releases of al software
indefinitely, we offer priority support for the most current release of each product. For
customers who elect not to upgrade to the most current rel ease of the products, support is
provided on alimited basis, as time and resources allow.

Cobol-WOW User's Guide XXV

www.liant.com

XXVi

Support Guidelines

When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1. Company name and contact information.

2. Liant product serial number (found on the media label, registration card, or
product banner message).

Liant product version number.

Operating system and version number.
Hardware, related equipment, and terminal type.
Exact message appearing on screen.

N o o &~ W

Concise explanation of the problem and process involved when the
problem occurred.

Test Cases

Y ou may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

e Thesmadler thetest caseis, the faster we will be able to isolate the cause of the
problem.

e Do not send full applications.

e Reduce the test case to the smallest possible combination of components required to
reproduce the problem.

e |If you have very large datafiles, write a small program to read in your current data
files and to create new data files with as few records as necessary to reproduce the
problem.

o Test thetest case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. Y ou may need to include
an RM/COBOL configuration file.

When submitting your test case, please include the following items:

1. README text filethat explainsthe problems. Thisfile must include information
regarding the hardware, operating system, and versions of all relevant software
(including the operating system and all Liant products). It must also include step-by-
step instructions to reproduce the behavior.

Preface

2. Program sourcefiles. We require source for any program that is called during the
course of the test case. Be sureto include any copy files necessary for
recompilation.

3. Datafilesrequired by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

Enhancements

The following section summarizes the major enhancements available in earlier versions

of Cobol-WOW.

Version 3.10

Version 3.10 of Cobol-WOW contains both enhancements and problem correctionsto
the previous release. Enhancements to Cobol-WOW v3.10 include the following:

A new component, Cobol-WOW Thin Client, has been added that allows
Cobol-WOW programs to be executed in a client/server architecture over aLAN or
the Internet.

Print support has been added to the Cobol-WOW Designer. It is now possible to
print aform or print a packaging list of the application components, such as COBOL
program, bitmaps, icons, animation files, ActiveX controls, and so on) that are
required for distribution.

Form and control properties can now be organized either alphabetically or by
functional category.

The static text box control can now have a transparent background.

Version 3.10 allows you to enter atext string that you want to locate in your
application code. Results are displayed in an area below the project tree and the
desktop area of the Designer window.

Cobol-WOW now supports the euro currency symbol (€). A new initialization
section, [INTERNALIZATION], has been added to the cblwow.ini file. This
section supports three keywords:

— EuroSupport=True|False. Turns off/on the ability to map the euro currency
symbol. The default is TRUE.

— EuroCodePointAnsi=<value> where <value> isin the range 0 through 255
(which can be specified in decimal or hex; that is, 128 or 0x80).

Cobol-WOW User's Guide — xxvii

XXViii

— EuroCodePointOem=<value> where <value> is in the range 0 through 255
(which can be specified in decimal or hex; that is, 213 or 0xD5).

Cobol-WOW v3.10 requires RM/COBOL 7.00.03 or higher.

Version 3.0

Version 3.0 of Cobol-WOW has been significantly enhanced to provide new
functionality and improved reliability. With this version, Liant Software Corporation
assumes all responsibilities for the product, including future enhancement and support.
Prior versions were developed and maintained by England Technical Services, Inc.

Cobol-WOW 3.0, which requires RM/COBOL 7.00.03 or higher, includes improved
ActiveX support, a new “look-and-feel” for the Cobol-WOW Designer, up-to-date
documentation, and many defect corrections.

Note Cobol-WOW 3.0 is project-based. If you have aform-based application created
with an earlier version of Cobol-WOW, you must create a project and add the form files
in the existing application to it. For more information, see “ Cobol-WOW Projects’ on
page 65.

Preface

Chapter 1: Installing Cobol-WOW

This chapter provides the system requirements and installation instructions
for Cobol-WOW.

System Requirements

Y our computer configuration is the assembled set of hardware and software that makes
up your system. The minimum hardware and software requirements your computer
system needs to run Cobol-WOW successfully are shown in the following sections.

Required Hardware

Cobol-WOW requires the following minimum configuration:

e AnIBM PC or compatible machine with a Pentium-class processor or higher is
required.

e Eight megabytes of available memory (RAM); 16 or more megabytes recommended.
e Ten megabytes of disk space.

e An Enhanced Super VGA monitor (800 pixels by 600 lines by 256 color).
1024 x 768 x 256 or better is recommended. Although Cobol-WOW will runin
640 x 480 x 256, thisis not recommended.

e One CD-ROM drive and one double-sided, high-density 3.5-inch floppy disk drive
for program installation.

e A mouse or other pointing device.

Required Software

e Microsoft Windows 95 OSR2, 98 or 98 Second Edition (SE), Millennium Edition
(Me), NT 4.0 (Service Pack 6 or higher recommended), NT 4.0 Terminal Server
(TS), 2000, or XP.

Note Users having older operating systems or older versions of Internet Explorer
may see the message, “ This version of Windows does not support cryptography.”,
when pointing to the license file during the Cobol-WOW installation procedure.

Cobol-WOW User's Guide 1
System Requirements

Liant recommends upgrading the operating system and/or Internet Explorer in order
to correct this problem.

e RM/COBOL version 8.0 or higher for 32-bit Windows.

System Installation

This section describes the basic installation of the Cobol-WOW devel opment system.
The Setup program provided by Cobol-WOW performs all tasks for installing the
Cobol-WOW components.

Toinstall Cobol-WOW:

1. Start Windows.

Note It isrecommended that you close all other applications before proceeding with
the installation.

2. Insert the Cobol-WOW CD in the CD-ROM drive.

If the installation program does not start automatically, click Start, and then click
Run. Inthe Run dialog box, in Open, type d: autorun, where d isthe drive letter
of the CD-ROM drive.

3. Foallow theinstructions presented by the installation program.

Locating Required Tools

2

The options on the Tools page of the Preferences dialog box determine where
Cobol-WOW locates the RM/COBOL runtime system, the CodeWatch debugger, and the
Cobol-WOW panel runtime (wowpanrt.dll).

To establish the location of the RM/COBOL runtime system, the CodeWatch debugger,
and the Cobol-WOW panel runtime:

1. Onthe Options menu in the Cobol-WOW Designer window, click Edit
Preferences.

2. Inthe Preferences dialog box, click the Tools tab to open the corresponding page
of preferences.

3. Set the preferences to your specifications.

Installing Cobol-WOW
System Installation

Configuring Cobol-WOW

An initiaization file with the name cblwow.ini is atext file that is used to contain
configuration information for the Cobol-WOW Designer and runtime. The cblwow.ini
file must be located in the Windows directory. It is processed whenever the Cobol-
WOW Designer or runtime are executed.

The cblwow.ini file isintended to be manipulated by using the Preferences dialog box,
although it may be edited manually. For more information about customizing the
cblwow.ini file, see the following topic, “ Customizing the Initiaization File
(cblwow.ini).”

Beginning with version 3.1, Cobol-WOW supports the euro currency symbol (€). The
[INTERNALIZATION] section in the cblwow.ini file contains three keywords:

e EuroSupport=True|False. Turns off/on the ability to map the euro currency symbol.
The default is TRUE.

e EuroCodePointAnsi=<value> where <value> isin the range 0 through 255 (which
can be specified in decimal or hex; that is, 128 or 0x80).

e EuroCodePointOem=<value> where <value> is in the range 0 through 255 (which
can be specified in decimal or hex; that is, 213 or 0xD5).

Customizing the Initialization File (cblwow.ini)

Although it may be edited manually, the cblwow.ini fileis intended to be manipulated by
using the Preferences dialog box. If you do edit the file manually, editing should be
restricted to those features described specifically in this Cobol-WOW Designer Help file
as changesto the cblwow.ini file:

e You can define default settings for various runtime activities by manually adding a
[WOWRT] section to the initialization file.

e You can add an [RMPanel sFunctionK eys] section to the cblwow.ini file so that the
function key information can be loaded by the Cobol-WOW runtime to run a Cobol-
WOW-enhanced RM/Panels application.

If you add ActiveX controls to your Toolbox, the controls will be recorded in the
cblwow.ini file.

Other entries in the cblwow.ini file are reserved for use by Cobol-WOW.

Cobol-WOW User's Guide 3
Configuring Cobol-WOW

4

[WOWRT] Section

It is possible to customize the initialization file (cblwow.ini) in order to define default
settings for various runtime activities. This can be done by using either of the following
methods:

¢ Changing various options on the Runtime page of the Preferences dialog box in the
Cobol-WOW Designer (on the Options menu, click Edit Preferences, and then click
the Runtime tab).

e Or, manualy adding a[WOWRT] section to the cblwow.ini file:

[WOWRT]

DevelopmentMode=True
RightJustifyMenus=True
FilterEvents=False
UseOEMConversion=True
EnableEditBoxInsertKey=FALSE

Val idNumericChars=0123456789%, . +-
EditChar=x

DecChar=y

Setting Devel opmentMaode to True enables messages that aid in debugging a
Cobol-WOW application at runtime.

Setting RightJustifyMenus to True causes the MFT_RIGHTJUSTIFY styleto be
added at runtime to amenu when it is created.

Setting FilterEvents to False causes event filtering not to be performed for aform
and its controls at runtime, overriding the default AllowEventFilter property setting
(True).

Setting UseOEM Conversion to True causes COBOL data to be converted from
OEM to ANSI (and vice versa) when the WOWGETPROP and WOWSETPROP
functions are used at runtime. Thisoption is useful if you need to support extended
characters in your Cobol-WOW application. Extended characters are those having
an ASCII value greater than 128, such as'U', and '¢".

Setting EnableEditBoxInsertKey to TRUE, causes the insert key to toggle
insert/overwrite mode in edit boxes (and the edit box of a combo box). Sincethisis
non-standard Windows' behavior, the default value is FALSE.

ValidNumericChars causes the WOWGETNUM function to return avalue of 1 at
runtimeif an invalid numeric character is contained in the field. By default, valid
characters are considered to be the digits 0 through 9, the dollar sign ($), the plus (+)
and minus (-) characters, and the edit (comma) and decimal (period) characters. You

Installing Cobol-WOW
Customizing the Initialization File (cblwow.ini)

can change this default to a character set of your choosing. All characters listed will
be considered valid numeric characters. A limit of 80 charactersis supported.

EditChar and DecChar alow you to override at runtime the default decimal (.) and
edit (,) characters for currency editing.

Obsolete Features

Caution Thefollowing entries are provided for backward compatibility only. Their use
can introduce non-standard Windows behavior.

The entry, EnableOldOptions=TRUE, also can be added to the [WOWRT] section of the
cblwow.ini file. The EnableOldOptions=TRUE entry is required for the any of the
subsequent entries to take effect.

EnableOldOptions=TRUE
EditFocusForeground=RRR, GGG, BBB
EditFocusBackground=RRR, GGG, BBB
ButtonFocusForeground=RRR,GGG,BBB
ButtonFocusBackground=RRR,GGG,BBB
ListBoxFocusForeground=RRR,GGG,BBB
ListBoxFocusBackground=RRR, GGG, BBB
Defaul tFontName=fontname
DefaultFontSize=fontsize

The RRR,GGG,BBB (Red, Green, Blue) values apply to the foreground and background
colors used for edit boxes, command buttons, radio buttons, and list boxes. The
DefaultFontName and DefaultFontSize entries apply to al intrinsic contrals.

Cobol-WOW User's Guide 5
Customizing the Initialization File (cblwow.ini)

6

Installing Cobol-WOW
Customizing the Initialization File (cblwow.ini)

Chapter 2: Tutorial

In this chapter, you will build a sample program that represents a fundamental building
block typical of commercial applications. The first exercises demonstrate how you use
the Cobol-WOW Designer to begin a project and create two forms that work together to
build a full-fledged file maintenance application program. The last section of this
chapter presents techniques on how to attach code to events associated with these forms
and controls. These instructions contain most of the tasks you will need to perform when
writing your own applications.

Using the File Maintenance Program

If you do not want to perform the exercises in this file maintenance program, but would
like to run and examine the program in the Cobol-WOW Designer, a completed
application exists.

To open and run this sample program:

1. Inthe Cobol-WOW Designer window, do one of the following:
o Click the Open Project toolbar button.
e Onthe Project menu, click Open.

2. Inthe Open Project dialog box, select the name of the project you want from the File
Name list (in this case, select project.wpj in the Samplesfolder). Click Open. The
forms for the selected project will appear in the Cobol-WOW Designer window.

3. Click the Execute Project toolbar button or click Run on the Project menu to run
the program. Shortcut key: F7

To examine specific code that demonstrates ways to manipulate the controlsin this
sample program:

1. With the form open in the Cobol-WOW Designer window, select a control.

2. Open the Event-Handling Code dialog box by double-clicking the left mouse button.
Alternatively, click Edit Code on the Control menu or click the Edit Control
Code toolbar button.

Any code associated with the control will be displayed in the Event-Handling Code
dialog box.

Cobol-WOW User's Guide 7
Using the File Maintenance Program

Using Projects

By using a project, the Cobol-WOW Designer alows you to do your complete
development in an integrated, visual framework. The default extension for Cobol-WOW
project filenamesis.wpj. The .wpj fileisatext file that contains project configuration
information and alist of the formsincluded in the project. The formfilesthat are
contained in a project are a'so known as members. The default extension for aform
fileis.wow. (For more information on forms and projects, see pages 52 and 65,
respectively.)

Create a New Project

To begin designing the customer file maintenance application, create a new project:

A 1. Inthe Cobol-WOW Designer window, click the New Project toolbar button or click
New on the Project menu. The Save Project dialog box opens.

Note Only one project can be opened at onetime. If aproject isopen when you
choose this command, you are prompted to close the active project and save any
changes before anew project is created.

L -]
e [T

| Paipngie

J Searmplens
Fie aavey T | FTE |
Sibed inillE {0 Pingoma | el = vl |

Save Project Dialog Box

2. Inthe Savein box, select the directory (folder) into which you wish to save the
project.

3. IntheFile Name box, enter firstapp.wpj as the project name.
4. After entering the project name, click Save to create the project.

The Project Properties dialog box opens. The Project Properties dialog box is used
to add or remove forms from the project. Since you have not created any forms for
your project yet, there are no files (or members) to add.

8 Tutorial
Using Projects

* ezt how poll Lo phwsery o prosect 1l

Project Properties Dialog Box

5. Click Closeto close the dialog box. Now you are ready to design your forms for
the project.

Designing Forms

Designing formsis as simple as arranging objectsin awindow. In Cobol-WOW, the
objects you manipulate are called controls, and the window is the form. Forms are the
foundation for all your Cobol-WOW applications.

An application program usually contains multiple forms. Y ou develop an application by
customizing aform and then adding and customizing additional forms for other parts of
theinterface. To customize aform, you add controls, set their properties, and create
menus to provide user control over the application at runtime.

In this project, you will design the first form, FIRSTAPP, as the application’smain
window. It will contain amenu, alist box displaying customer names, and Add, Change,
and Delete command buttons. Y ou will design the second form, CUSTINFO, to pop up
when the user chooses the Add or Change command buttons on the FIRSTAPP form to
allow editing of the customer information.

Cobol-WOW User's Guide 9
Designing Forms

10

The FIRSTAPP form isillustrated in the following figure.

[T |

Film

Addd Change Delnin |'

FIRSTAPP Form

Create the FIRSTAPP Form

To create a new, blank form in the Cobol-WOW Designer window:

e Click the New Form toolbar button, or click New on either the Form menu or the
File menu.

Each new formis created with the same default, initial properties. Before you add any
controls to this form, you need to change some of these initial properties.

Setting Form Properties

Cobol-WOW makes it easy for you to set properties, the attributes that define how forms
and controls are displayed and how they function in the running application. To change
some of the form’sinitial properties during design time, open the Properties dialog box
for the associated form by doing one of the following:

e OntheView menu, click Properties.

e Click the View Propertiestoolbar button.
e Right-click anywhere within the form.

Tutorial
Designing Forms

Piopeibos - Facl mew

b=z
|I-i;w\- =TTl o :J
Prieis.
diphsess | Caimgrazed |
ifl 0. mmd A1 =
AbpL vl T
ackiCriey 192.192.142
P iwan
15 dwaphd (ks 0 - Daganel S
e 1 Team
- apiion 1T
otz Fal=
L L1+ 2
il by LET
i niahisrl T
Heaghi 13
N
prriradss (1]
Ll ;|
Papd i affn Flis
e b Tast
Fleim Fialrm
sl
S olff] i 0 Homa
shert d ala 1] - Heamwasl
Sips 2+ Devalappead j
ek mld =de 0 -l S e
T A Tass
Tilm lp Fual Apypser e
= oy =

Properties Dialog Box

Although most of the default settings will be appropriate for the FIRSTAPP form, you do
need to modify the Border, Caption, MinButton, Style, SystemMenu, and Title
properties. Let’slook at each of these properties, beginning with Style.

Note The Properties area of this dialog box is divided into two columns. The left
column displays al of the properties associated with the selected form. The right column
displays the current value (or setting) for each property. You can view the properties
either alphabetically or by functional category. Simply click the appropriate tab.

Cobol-WOW User's Guide 11
Designing Forms

12

Style Property

Cobol-WOW provides three different types of forms from which you can choose:
Overlapped, Child, and Popup. The differences among these types are not dramatic. In
Windows application design, an overlapped window is atop-level window with a border,
aclient area, and atitle bar. Top-level windows are windows that are not children of
other windows and are generally appropriate for the main window of an application. A
pop-up window does not have a parent by default (although a parent can be set for it);

a pop-up window can be drawn anywhere on the screen. The main differences between
a pop-up window and an overlapped window are that a pop-up window can be displayed
outside the border of its parent window (if it hasone). A child window means that the
form has aparent. The parent-child relationship determines where a window can be
drawn on the screen. A child window can be drawn only within its parent’s client area,
and is destroyed along with its parent.

The Overlapped option is a convenient combination of a number of other property
settings. Choosing Overlapped as the Style is equivalent to setting the Caption,
MaxButton, MinButton, and SystemMenu properties all to True, and setting Border to
Thick. These settings would create a form as an overlapped window with atitle,
System-menu box, Minimize button, and Maximize button in the title bar. The form
would also have a sizable frame.

While you want an overlapped window style for your application’s main window, you do
not necessarily want exactly the type configured with the Overlapped option of the Style
property. Since your window will contain afixed layout of controls, sizing should not be
allowed. (Sizingisdetermined by the MaxButton and Border properties.)

To enable the specific properties that you require for the FIRSTAPP form:
1. InthePropertieslist on the Properties dialog box, click Style.

2. Select the Overlapped option.

Setting Style to Overlapped removes the thick frame and Maximize button settings.
By removing the thick frame and Maximize button, you ensure that the window is
always the size you specify at design time.

Note Because the Cobol-WOW Designer is a standard Windows multiple document
interface (MDI) application, your form does not change in the Cobol-WOW Designer
window to reflect these property changes. Windows is very particular about the nature of
MDI windows. The multiple document interface feature is a means for applications to
simultaneously open and display two or more files in the same application. MDI window
styles defined in the Cobol-WOW Designer cannot change to reflect the current property
settings at design time. For example, if aform did not have a sizable border, there would

Tutorial
Designing Forms

be no way of sizing it in the Cobol-WOW Designer. These settings will be reflected at
runtime when the window is created.

Title Property

The Title property is a descriptive label and can contain any alphanumeric character
of your keyboard, including spaces. This property setting can be used only for
top-level windows.

To change the title of your form, type My First Application in the value column of the
Title property. Remember, until you compile and run the project, the Title bar will
continue to display the default form filename in the Cobol-WOW Designer, not the text
you entered for the Title property.

Border, Caption, MinButton, and SystemMenu Properties

Set the remaining properties, as follows:

Property Setting
Border 1-Thin
Caption True
MinButton True
SystemMenu True

Moving and Sizing a Form

The property settings for your FIRSTAPP form are now complete. Close the Properties
dialog box.

Before you start adding controls to your form, try sizing and moving it.

To move the form, place the pointer on the form’ stitle and press the left mouse button.
Then drag the mouse to reposition the form.

To size the form, place the pointer on the form’s border. The pointer changes shape to
indicate the directions in which the form can beresized. Press the left mouse button and
drag the border to resize the form. Asyou add controls to the form, you may need to
resizeit again.

Note The size and position the form has in the Cobol-WOW Designer window are the
default size and position for the form at runtime.

Cobol-WOW User's Guide 13
Designing Forms

14

Add Controls to the FIRSTAPP Form

This exercise explains how to add a pulldown (also known as drop-down) menu control
with the Menu Editor dialog box, alist box control displaying customer names, and Add,
Change, and Delete command button controls to the FIRSTAPP form.

Creating a Menu

This section discusses the basics of creating a menu at design time in the FIRSTAPP
form, your application’s main window. The Cobol-WOW Designer provides an easy
method to add a menu control to aform at design time by using the Menu Editor dialog
box. First, however, it isimportant to understand the implementation of menusin
Windows programming and the relationship between a menu and aform.

The menu object is an independent object from the form. When a pulldown menu is
added to aform, the menu maintains its own distinct identity. Because the menuis
created as a unique object (behind the scenes) and then attached to the form, it can aso
be detached from the form, and then a different menu can be attached. Windows
provides awealth of APl functionsto create, modify, and destroy menus. These
functions give you complete control and flexibility with menus at runtime. (For more
information, see the Functions and Messages online Help file)

It may also be helpful to learn some terminology associated with menus. A pulldown
menu is represented by a menu title (for example, File, Edit, Help) that appearsin the
menu bar of an application window (form). The menu bar isthe horizontal list of titles
immediately below the title bar on the form. When you choose a pulldown menu title, a
menu containing alist of menu items drops down. Menu items can include commands,
separator bars, and submenu titles. Each menu title and menu item the user sees
corresponds to amenu control you define in the Menu Editor dialog box.

At menu design time, this terminology is not pertinent. When you start to modify menus
at runtime, however, you need to understand the distinctions. Each pulldown menu and
menu item has a distinct handle. In order to change the menus at runtime, you must use
the proper handle.

Main applications windows are the main windows that remain displayed throughout an
application. Most application windows have a menu bar and pulldown menus, which
provide a set of logically grouped commands to users.

The menu for the FIRSTAPP form will contain only one top-level option displayed in the
menu bar: aFile menu. The File menu will have one menu item, Quit.

Tutorial
Designing Forms

To create a menu control:

1.

From the View menu, click Menu Editor or click the View M enu Editor toolbar
button.

(Menu Edii Fustappoow 6
Up | bgen| ok | BHigh | e | peete]

Propasts
Jde |

Harse |

LoD e Blge |:..L_.,¢..: j

M Dwclad ¥ Eralded - [Gepsito

Last Erme:

In the Menu Editor dialog box, the first position in the Menu Control list box is
blank and highlighted. Select the position where you want to create the top-level
menu. (For thisexercise, if thefirst linein thislist is not highlighted, click the first
line.)

In the Properties area, click the Title box.
In the Title box, type File.

Thisvalueisthe text for the first menu title that you want to appear on the form's
menu bar. The menu title, File, is displayed in the top line of the Menu Control list
box. Itisasoimmediately visible on the form as changes made in this dialog box
are automatically applied to aform.

Asyou give the menu item a Title property value of File, notice that Cobol-WOW
automatically assigns the Name property of the menu control a default value. Under
Cobol-WOW'’ s default configuration, the naming convention used for menu controls
includes the prefix M- followed by the text entered in the Title box. In this case, the
value M-FILE is displayed in the Name box. Cobol-WOW adds this menu name to
the form’ s declaration, and the menu name appears in the Events/Code Sections list

Cobol-WOW User's Guide 15
Designing Forms

of the menu Event-Handling Code dialog box. It isthe name Cobol-WOW uses to
reference the menu control in the generated code.

Note Y ou can configure the way in which the menu names are generated by
changing the options in the Code page of the Preferences dialog box. To open the
Preferences dialog box, click Edit Preferences on the Options menu, and then click
the Code tab.

5. Click the second linein the Menu Control list box to add a menu item (option) to
the menu created in the previous step. (Y ou can also press Enter from the first line
in the Menu Control areato advance to the second line.)

6. Click the Title box.
7. Inthe Title box, type Quit.

Thisvaueisthe text for the first menu item that you want to appear in the File
menu. The menu item, Quit, is displayed in the second line of the Menu Control list
box. The name value M-QUIT isautomatically displayed in the Name box.

8. Toindent the menu item, click the Right command button at the top of the dialog
box.

Indenting Quit to the right under File makes it amenu item in amenu list of the File
menu. The name value M-QUIT is automatically changed in the Name box to
display M-F-QUIT. If you did not indent this control, the menu bar would have two
top-level options, File and Quit.

9. Inthe upper-right corner of thetitle bar, click X to close the Menu Editor dialog
box.

The Menu Editor dialog box also allows you to apply several formats to the different
menu items. For instance, you can add an accelerator (or shortcut key) to the menu item
(for example, Ctrl+N) by clicking on the Accelerator list box to display alist of key
combinations that may be used to assign accelerator keys to access menu commands. In
order for the accelerator to appear next to the menu item, you must type the accelerator
key sequence selected from the list box following the text you entered in the Title box. It
isalso possible to place atab character in the menu item to align the text that describes
the accelerator key sequence. A tab character is added by placing the sequence \t in the
menu item. For example, if you select Ctrl+N in the Accelerator list box, you will type
New\tCtrl+N in the Title box. Note that this should be done only for pulldown menu
items, not for top-level titles. Only one tab character should be added to a menu item.

Additionally, you can display a check mark on the menu item at design time by clicking
on the Checked check box. Check marks are commonly used to indicate an on/off
condition. Choosing the menu command alternately adds and removes the check mark.

16 Tutorial
Designing Forms

If amenu command is active, a check mark will appear next to the menu item. For more
information about displaying a check mark on a menu item at runtime, see page 86.

Y ou may also enable the menu item at design time by clicking on the Enabled check
box. When the Enabled property is checked (the default), the menu responds to user
actions. If amenu control is disabled, it appears grayed or dimmed. For information
about enabling a menu control at runtime, see page 87.

Whenever a menu contains a set of related menu items, you can insert a horizontal line,
known as a separator bar, between the menu items by clicking on the Separ ator check
box. Thisprovidesavisual break in the list of items.

Creating a List Box

The primary control of your FIRSTAPP form is alist box that will be used to display
customers. Within aform, alist box presents alist of available choicesfor the user. Itis
agood design choice whenever you have alarge number of fixed choices; for example, a
list of all thefilesin adirectory or alist of customer accounts.

To create alist box:

1. OntheView menu, click Toolbox or click the View Toolbox toolbar button.

2. Inthe Toolbox, click the List Box control.

3. Movethe cross-hair pointer to the upper-left corner of the form and click the left
mouse button.

4. Drag the pointer down towards the lower-right corner of the form to draw the box.
5. Release the mouse button. An empty list box is displayed.

A list box hasits own set of unique properties and events. With two exceptions, the
default set of properties will work satisfactorily for this application. Open the Properties
dialog box for the list box and set the following properties:

Property Setting
Name CUST-LB
UseTabStops True

The Name property setting is referenced by your application code and must
conform to COBOL data name restrictions. Cobol-WOW automatically forces the
entry to uppercase.

Cobol-WOW User's Guide 17
Designing Forms

18

The UseTabStops setting will help you align the information in the list box. (For
information on how to add items to alist box at a specific position, see page 32.)

By default, the list box, like al controls, is created with the same background color asthe
form. You may wish to set a different background color for the list box control. If so,
modify the BackColor property in the Properties dialog box or click Background Color
on the Control menu to select a different background color for the list box.

Creating the Command Buttons

The easiest way to allow the user to interact with an application is to provide a command
button to click. Like menus, command buttons issue commands. Y ou generally design
pulldown menus to contain commands that fall into logical groups. If you have only a
few commands and enough space on the form, you can create command buttons instead
of menus.

In the following exercises, you will add three command buttons to the FIRSTAPP form
The first command button, Add, will initiate and carry out the add operation in order to
add customers to the list box you just created.

To create the Add button:

1. OntheView menu, click Toolbox or click the View Toolbox toolbar button.

2. Inthe Toolbox, click the Command Button control.

3. Movethe cross-hair pointer to the lower-left corner of the form and click the left
mouse button.

4. Dragthe pointer down to the right to outline an area for the button.
5. Release the mouse button. A command button appears with default text.

The command button, like the list box, is created with a default set of properties. For this
application, you need to modify only afew of these properties. Open the Properties
dialog box for the Add command button control and set the following properties:

Property Setting
Caption Add
Name ADD-CMD

The Add valueis the caption that identifies the command button on the form. The text
Add replaces the default text of “Command Button.”

ADD-CMD isthe name you will use to refer to the command button control in code.

Tutorial
Designing Forms

Note The Tablndex property is used to specify the order in which the controls are
sequenced. This sequencing is used when a user presses Tab (to move forward) or
Shift+Tab (to move backward). A Tablndex value of 2 causes the Add command button
to be second in the entry order of the controls on thisform. (The list box, because it was
the first control created, has a Tablndex value of 1.)

Y ou also need to create Change and Delete command buttons similar to the Add button
you have already created. Create these two buttons on the same line and to the right of
the Add button on the form.

Set the following properties for the Change button:

Property Setting
Caption Change
Name CHANGE-CMD

Set the following properties for the Delete button:

Property Setting
Caption Delete
Name DELETE-CMD

Arrange Controls on the FIRSTAPP Form

Once you have added all the controls, you can refine the appearance of your form by
resizing the form, if necessary. You can aso arrange or align the controls for amore
balanced layout, and define the tab order and/or z-order for the controls.

Note Y ou must select a control before you can manipulate it on aform.

Selecting

To select asingle control, single-click the control on the form with the left mouse button.

Y ou can also select more than one control, which provides a convenient method for
moving or aligning a group of controls at the sametime. To select multiple controls, first
hold down the Shift key, and then click the controls, one at atime. Y ou can also select
more than one control by positioning the pointer beside (not on) one of the controls you
want to select. Then, drag diagonally through all the controls you want to select. While
you drag, Cobol-WOW draws a dotted rectangle around the controls. When you release
the mouse button, all the controls in the rectangle are selected.

To select al the controlsin aform, you can choose Select All from the Edit menu.

Cobol-WOW User's Guide 19
Designing Forms

20

Note When more than one control is selected in the form, a single Properties dialog box
displays al the properties that are shared among the selected controls. (The Objects list
areain the Properties dialog will indicate “Form — Multiple Objects Selected”.) Thisis
true even when the value for the shared property differs among the selected controls. In
this case, the property value column is empty (or blank). However, when you click on
the value area, the value of the first control selected is displayed. When you change any
of the shared properties in the Properties dialog, the property value changes to the new
valuein all the selected controls. Thereis one notable exception to this: when you select
multiple controlsin aform, their Name property no longer appears in the Properties list
area even though they all have a Name property. Thisis because you cannot assign the
same value for the Name property to more than one control in aform.

Resizing

When a control is selected on aform, small squares called sizing handles appear on the
perimeter of the control. To resize acontrol, select the control on the form, then drag one
of the sizing handles to the desired size:

e Drag the handles on the top and bottom to size the control vertically.
e Drag the handles on the left and right sides to size the control horizontally.
e Drag the handles in the corners to size the control both vertically and horizontally.

When you release the mouse button, the control is redrawn in the new size.

Y ou can aso size the controls on aform by using the Size command from the
Control menu or by using toolbar buttons on the Sizing toolbar.

Moving

To move a control, select it, then click the body of the control (being careful not to select
the sizing handles), and then drag the control to the desired location. If you wish to
move the controls in a position not alowed by the grid, turn off the Show Grid and
Snap to Grid commands on the Form menu.

Aligning and Spacing

You can align, center, and distribute controls by using the Align, Center, and Space
commands from the Contr ol menu or by using toolbar buttons on the Aligning,
Centering, and Spacing toolbars. |f you wish to place your controlsin a position not
allowed by the grid, turn off the Show Grid and Snap to Grid commands in the Form
menu. (You can also change the position of controls with certain propertiesin the
Properties dialog box.)

Tutorial

Designing Forms

When aligning a group of contrals, the first control you select is used as a guide to which
the other controls are aligned. To align the three command buttons along the bottom of

the form:

1. Click the Add button and move it to the position you want in the lower-left corner
of the form.

2. Select the other two command buttons by pressing the Shift key as you click each
control.
On the Control menu, click Align and point to the submenu.

4. Onthe submenu, click Bottoms.

The three command buttons align horizontally relative to the bottom edge of the first
control selected, in this case the Add command button.

At this point, you probably need to modify the spacing among the three command
buttons in even intervals along the bottom of the form.

To space the controls evenly across the form:

1
2.
3.

On the Options menu, click Edit Preferences. The Preferences dialog box opens.
Click the Alignment tab.

In the Spacing area, click Space Controls and then click OK. The dialog box
closes.

With this option, selected controls are distributed equally between the left and right
edges of the controls and the leftmost and rightmost boundaries of the form. (The
Space Centers options distribute the spacing between the center points of each
control and the leftmost and rightmost boundaries of the form.)

Select the three command buttons.
On the Control menu, click Space, and then point to Horizontal on the submenu.

The spacing among the three command buttonsis evenly distributed between the
edges of the controls and the boundaries of the form.

Y ou can continue to choose or modify alignment options as long as the controls
remain selected.

Cobol-WOW User's Guide 21
Designing Forms

22

Specifying Tab Order

Tab order isthe order in which the Tab key moves the input focus from one control to
the next. (Pressing Shift+Tab moves the focus in the reverse order.) When a control has
focus, it can receive input from the user through the mouse or keyboard. The tab order is
initially set by Cobol-WOW and corresponds to the order in which controls are added to
the form.

Note To enable the Tab key to shift focus to a control on aformin arunning
application, the TabStop property (see page 187) must be set to True.

Y ou can determine the tab order for your program by choosing the Tab Order command
on the Control menu in the Designer window, or by using the shortcut key, Ctrl+T. A
number in blue in the upper-left corner of each control shows its place in the current tab
order. (Note that the Toolbox closes temporarily when the Designer isin tab order
mode.) To change the tab order, double-click the control you want to be first in the tab
order, and then single-click on the rest of the controls in the order in which you want
them to be selected in the form when a user presses the Tab key. To exit tab order mode,
click the mouse anywhere in the form or click the Tab Order command again. (See

page 78 for more information handling tab order at runtime.)

Alternatively, you can change the tab order for selected controls by changing the
Tablndex property (see page 186) for the control in the Properties dialog box. Note,
however, that there is alimitation when using this method since you can only change the
value of the Tablndex property to a value that has not already been set. Although some
controls (animation, bitmap, progress bar, static text box, status bar, tab, timer, toolbar,
and all shapes) cannot accept mouse or keyboard focus, they still will have avalid tab
order. When the user presses Tab, the focus skips over such a control and goes to the
next control in the tab order.

By default, the first control added to the form in this exercise has a Tablndex property

of 1, the second has a Tablndex of 2, and so on. In this example, the list box, which has
a Tablndex value of 1, would have the focus at runtime. Pressing Tab would move the
focus to the Add command button, then to the Change button, and finally to the Delete
button. For this FIRSTAPP form, you do not need to change the tab order of the controls
as long as you added them in the order specified. Examine the Properties dialog box for
the list box and each of the command buttons to verify that they are in the correct tab
order segquence.

Tutorial
Designing Forms

Specifying Z-Order

The z-order indicates the control stacking order, that is, the order in which controls are
created. The controls with the smaller numbers are stacked “behind” the controls with
the larger numbers. The controls with the larger numbers are “on top” of al the other
controls. Cobol-WOW initially sets the z-order for each control to correspond to the
order in which they are added to the form.

Y ou can determine the z-order for your program by choosing the Z-Order command on
the Control menu in the Designer window, or by using the shortcut key, Ctrl+R. A
number in red in the upper-left corner of each control shows its place in the current
z-order. To change the z-order, select the Z-Order command (a check will appear to the
left of the command), then click the control you want to be first in the stacking order. Its
number will change. Then, continue to click controls until they are in the desired order.
To exit z-order mode, click the mouse anywhere in the form or click the Z-Order
command again. (Note that the Toolbox temporarily closes when the Designer isin
z-order mode.)

Y ou also can change the z-order for selected controls by changing the value of the
Z-Order property (see page 188)in the Properties dialog box. (Thefirst control in the z-
order should have the Z-Order value of 1.)

For this FIRSTAPP form, you do not need to change the z-order of the controls as
long as you added them in the order specified. Examine the Properties dialog box for
the list box and each of the command buttons to verify that they are in the correct
z-order sequence.

Cobol-WOW User's Guide 23
Designing Forms

24

Save the FIRSTAPP Form

Once you have completed your form design layout and property settings, you are ready
to save your work.

To save the FIRSTAPP form:

1. On either the File or Form menu, click Save or click the Save Form and Gener ate
Code toolbar button.

2. InFile Save Asdiaog box, type afilename in the File Name box. In this case, type
firstapp.wow. Be sureto save the form in the appropriate working directory.

It is generally a good ideato use the form title for the filename (or a shortened
version of it), although you can use any name you want.

Note All filenames must conform to MS-DOS naming conventions.
3. Click Save. A message box asks, “Do you want to add Firstapp to the project?’

4. Click Yes. Your formisnow saved in the current project file, firstapp.wpj.

Note If you were designing several new forms at once in a project, you can choose the
Save All command from either the File or the Form menu to save al the open forms.
The save process varies depending upon whether the form has previously been saved. If
you have not previously saved the form(s), Cobol-WOW displays the File Save As
dialog box. Thisdiaog box prompts you to supply a name for each open form that has
been created. If you have previously saved the form, all open formsthat residein the
directory created to store them, are saved to disk if they have been modified.

Name Property

The name you entered to save the form is very significant. First, this name isthe name
shown in your code — it is used to identify the form to the underlying program. (For
more details, see page 185.) Any time you need to reference the form from application
code, you will usethis name. Form files are, by default, given an extension of .wow
when they are saved. This filename extension represents a Cobol-WOW resource file.

Y ou may change the extension to whatever you desire, but it will be easier to locate your
formsif you use this extension.

At the same time, the name you entered when you save aform is used to identify and
generate two copy files. Thefirst copy file, with the filename extension .wpr, contains
the COBOL logic necessary for the form. The name of your file also identifies and
generates the COBOL Working Storage copy file needed for the form. This copy file has
afilename extension of .wws.

Tutorial
Designing Forms

Create the CUSTINFO Form

Y ou are ready to build the second form of your file maintenance application, the
CUSTINFO form. By following the previous techniques, you now have enough
experience with the Cobol-WOW Designer to design aform without step-by-step
instructions. This exercise presents only the specifications for the second form of your
application. Be sure to adhere strictly to these specifications, however, or you will have
difficulty writing and attaching code to the events associated with these forms and
controls.

The form you will create is a small form named CUSTINFO, which will pop up on top
of the FIRSTAPP form (although not hiding it completely) when a user chooses the
Add or Change command button. If you leave the FIRSTAPP form open in the
Cobol-WOW Designer while you design the CUSTINFO form, you can see how they
will be displayed together.

When completed, the form will appear asillustrated in the following figure.

. |
B Cosilislo mimm M=

Cuntomer 10
0K |
I
Canca|
Wams

CUSTINFO Form

The CUSTINFO form will have two data entry controls, one for the customer
identification number and one for customer name. These controls will both have
captions (or labels) to identify them. The form will also contain OK and Cancel
command buttons to confirm or cancel the action being executed.

Cobol-WOW User's Guide 25
Designing Forms

26

Sett

ing Form Properties

To create the CUSTOINFO form:

1
2.

On either the File or Form menu, click New or click the New Form toolbar button.

Set the following properties for the form (use the default settings for all other
properties):

Property Setting

Border 1-Thin

Caption True

Style 1 - Popup

Modal True

Title Customer Information

Note Changing the Modal value to True causes the form to disable all other forms
belonging to that application. When aform runs modally, the user must explicitly
close it before working in another running form. (In contrast, when arunning form
ismodeless, it remains onscreen while the user works in another form, for example,
the application main form.) When a user needs to enter information into aform or
otherwise complete its use prior to accessing other forms, create amodal form. This
change becomes visible at runtime, not design time.

Add Controls to the CUSTINFO Form

Next, add the following controls to the form by using the following tools in the Toolbox:

Tool Control
Use the Edit Box tool to create two edit box controls. customer
identification and customer name.
Use the Static Text tool to create label controls for the two edit
Ant box controls. customer identification and customer name.
Use the Command Button tool to create two command button
- controls. OK and Cancel.
Tutorial

Designi

ng Forms

After you add the controls to the form, set the following properties for these controls (use
the default settings for the remaining properties):

Control Property Setting
Edit Box Border True
MaxChars 6
Name CUST-ID
Tablndex 1
Text Delete default text and leave

the text box blank.

Edit Box Border True
(Customer Name) MaxChars 20
Name CUST-NAME
Tablndex 2
Text Delete default text and leave

the text box blank.

Static Text Caption Customer ID
Static Text Caption Name
Command Button Caption OK
Name OK-CMD
Tablndex 3
Command Button Caption Cancel
Name CANCEL-CMD
Tablndex 4

Cobol-WOW User's Guide 27
Designing Forms

28

Save the CUSTINFO Form

Save the form with the filename, custinfo.wow, and add it to the project when prompted
to do so.. (Use the method described on page 24 for saving the FIRSTAPP form.) You

also
1.
2.

4,

Tutorial
Designi

can further edit this member of the project.
From the Project menu, click Edit. The Project Properties dialog box opens.
In the Membersin Project area, select custinfo.wow.

Notice that an asterisk is appended to the filename. The asterisk indicates that the
form will be shown at project startup.

Click the Show State button to remove the asterisk and ensure that the CUSTINFO
form does not appear at project startup.

Note The default behavior of Cobol-WOW isto display all formsin a project when
the project is opened. If, after clicking the Show State button to remove the asterisk
from the CUSTINFO form, you close and reopen firstapp.wpj, Cobol-WOW will
revert to its default behavior. To change the default, click Options from the Project
menu. Inthe At Project Open area of the Project Options dialog box, click Open
showstate forms at project open to ensure that the CUSTINFO form does not
appear at project startup.

Click Close to exit the Project Properties dialog box.

ng Forms

Writing Code

So far, this chapter has discussed design guidelines: how to create formswithin a
project, add controls to aform, set form and control properties, and save forms. This
section takes you through six steps to build on this design of a customer file maintenance
program. Before you can use the forms that you have designed, you must attach
procedure code (logic) and functions to the events associated with these forms and
controls (the window objects).

Y ou must also provide access to the COBOL data files required by the application. Copy
files provide this file access.

1. Inthe Cobol-WOW Designer, open the FIRSTAPP form.

2. Fromthe Project menu, click Edit Code. Alternatively, click the Edit Project
Code toolbar button. The project Event-Handling Code dialog box opens.

3. Inthe Events/Code Sectionsligt, click Declar atives.

4. PressTab oncein order to start typing in column 8.

5. Add thefollowing COPY statement: COPY “firstapp.dcl”.

6. Continue adding COPY statements to code sections as follows:
Code Section COPY Statement

File Section COPY "firstapp.fd".
File-Control COPY "firstapp.sl™.
Procedure Division COPY "firstapp.prc'.
Working-Storage Section COPY "firstapp.ws™.

Each of the following exercises provides you with aworking program. These techniques
will provide an excellent foundation on how to build Windows-based applications with
Cobol-WOW. The methods learned here will transfer easily to the other types of
programs you develop.

In each of these exercises, you will gain additional familiarity with the Windows API
functions, their use, and the characteristics of window objects and different types of
controls. Windows presents a number of controls you can use to develop Windows-
based applications, including buttons, text boxes, list boxes, and many others. Each of
these objectsis created with a specific “personality” and capabilities. For example,
buttons and text boxes provide the most fundamental methods of receiving input and
displaying output in your programs. To effectively develop Windows-based software,
you must learn the nature of these objects and how to work with them.

Cobol-WOW User's Guide 29
Writing Code

Step 1 — Exiting Methods

In the following exercise, you will provide the user with ways to exit the application.

Writing Code for Menu Controls

The customer file maintenance program’s main form is the firstapp.wow file. It contains
a System menu with a Close command, and a File menu that includes a Quit command.
Whenever the user chooses either of these menu itemsin arunning application, either by
clicking the menu command or by using its accelerator or shortcut keys, the formis
destroyed and the program is exited.

By default, Cobol-WOW automatically attaches code to destroy the window (form) and
exit the program when a user chooses the Close command on the System menu. In this
exercise, you will attach this same logic to the Quit menu item on the FIRSTAPP form,
and then compile and run the program.

To attach this code to the Quit event on the File menu and save the form:

1. Onthe Form menu, click Edit Code and then click the submenu option, Menus.
Alternatively, click the View Form Menu Code toolbar button.

2. Inthe Event-Handling Code dialog box, click M-F-QUIT in the Events/Code
Sections list.

Thereisonly one event that can occur when a user chooses a menu item: the Click
event. Therefore, when you select the M-F-QUIT object, the Click event is selected
automatically in the Events/Code Sections list.

3. Movethe cursor to the Code Entry area and press Tab twicein order to start typing
in column 12, since this is the body of a procedure. The Line, Col identifier in the
lower-right corner of the Event-Handling Code dialog box should read 1,12.

4. Typethefollowing line of code:
SET WOW-QUIT TO TRUE.

5. Click Closeto close the Event-Handling Code dialog box.

] 6. Click the Save Form and Generate Code toolbar button to save the changes made
to the form.

30 Tutorial
Writing Code

Compiling and Running Program

To compile the COBOL source code for the project’s main program file (firstapp.chl),
which was created when the project was first saved):

1. Onthe Project menu, click Build or click the Build Project toolbar button.
Shortcut key: F7.

2. When the compiler has finished, you are ready to run the project.

To run the COBOL object code for the project’ s main program file (fir stapp.cob), which
was created when the project was first compiled):

1. OntheProject menu, click Run or click the Execute Project toolbar button.
Shortcut key: Fb5.

2. While the program is running, you can test the event-handling code that you added
to the Close and Quit menu controls. Click Close from the System menu or double-
click the System menu. The program exits to the Cobol-WOW Designer.

3. Runthe program again, and thistime click Quit from the File menu. Once again,
the program returns to the Cobol-WOW Designer.

Controlling the COBOL Main Window

When you run the program, you may or may not see the standard COBOL main window
displayed in addition to your Cobol-WOW form. By setting the Main Window Type
property in the Windows Registry to avalue of SHOW or HIDDEN, you can specify
whether or not the COBOL main window is displayed. For more information, refer to
the “ Setting Properties’ section of the chapter entitled “Installation and System
Considerations for Microsoft Windows” in the RM/COBOL User’s Guide.

The RM/COBOL Configuration utility (rmconfig.exe) also may be used to specify
property values for the Main Window Type property to determine whether the COBOL
main window is shown or hidden. You can also call a COBOL subprogram, C$SHOW,
to dynamically hide and show the standard COBOL main window at runtime.

Cobol-WOW User's Guide 31
Writing Code

32

Step 2 — Loading the List Box

List boxes present alist of choices to the user. By default, the choices are displayed
vertically in asingle column. In thisexercise, you will load your customer list into the
list box control created previously on the FIRSTAPP form.

There are anumber of places where you could load thisinformation. At first, it may
appear most likely to add the data to the skeleton program after the statement that creates
the form. However, a better place to initialize the list box control isin response to the
Windows message when the list box control is created. When awindow object is
created, Windows sends a message to the window object saying, “Y ou are being
created.” Responding to this message is the appropriate place to initialize any and all
controlson

aform, including the list box. It isimportant that Windows-based applications be as
event-driven as possible in order to make the program more maintainable. Internal
program architecture is more likely to change than the Windows messaging system.

Thistutorial so far has discussed how to set properties for forms and controls. Setting
properties, however, is only one component of code development in Cobol-WOW. For
some events or activities (loading alist box, for example), special functions and
messages are used.

Using the WOWADDITEM Function

Loading the list box involves reading the customer file from start to finish and
individually adding each customer to the list box. The easiest way to add an item to alist
box is with the WOWADDITEM function.

The syntax of the function is asfollows:

CALL WOWADDITEM USING WIN-RETURN WND-H NEWITEM

The WIN-RETURN parameter specifies the index of where the entry is added to the list
box. Thisindex isnot used in this example. WNDORACTIVEX-H specifiesthe handle
of the list box to which the entry should be added. Newltem specifies an a phanumeric
field containing the text to add to the list box.

Although at first glance this function appears straightforward, it deserves closer
examination. By default, alist box redisplaysits contents every time an entry is added,
which would, in this case, cause adistracting flicker on the screen. Y ou can, however,
tell the list box not to redisplay its contents during the loading operation by sending the
message WM-SETREDRAW. WM-SETREDRAW works with al window objects
(forms and controls), not just list boxes.

Tutorial
Writing Code

The syntax of the message appears as follows:

CALL SENDMESSAGE USING WIN-RETURN CUST-LB-H WM-SETREDRAW
WIN-FALSE.

The WIN-RETURN parameter is not relevant in this context. CUST-LB-H specifiesthe
handle of the list box for which to suppress redrawing. WM-SETREDRAW specifiesthe
message identifier (ID). WIN-FALSE specifies that redraw should be turned off.

This same message can then be used with WIN-TRUE as the last parameter in order to
turn redrawing back on after you have finished loading the list box.

Creating Logic to Load the List Box

Now you know where to write your code and what messages you will be using. To add
thelogic to load the list box to the FIRSTAPP form:

1. Inthe Cobol-WOW Designer, open the FIRSTAPP form.

2. Do one of the following to open the Event-Handling Code dialog box:
e Select the form and double-click the left mouse button.
e Click the Edit Form Code toolbar button.

3. Inthe Events/Code Sections list, click the Create event.

4. Movethe cursor to the Code Entry areaand press Tab twicein order to start typing
in column 12, since thisis the body of a procedure.

5. Typethefollowing code:

PERFORM OPEN-CUST.

CALL SENDMESSAGE USING WIN-RETURN CUST-LB-H WM-SETREDRAW
WIN-FALSE.

PERFORM READ-NEXT-CUST.

PERFORM UNTIL NOT VALID-CUST-10
PERFORM ADD-ENTRY-TO-LI1STBOX
PERFORM READ-NEXT-CUST

END-PERFORM.

CALL SENDMESSAGE USING WIN-RETURN CUST-LB-H WM-SETREDRAW
WIN-TRUE.

This code uses two procedures, READ-NEXT-CUST and ADD-ENTRY-TO-LISTBOX.
The READ-NEXT-CUST procedure, like all your file I/O logic, is supplied in the
firstapp.cbl program. The ADD-ENTRY-TO-LISTBOX procedure, however, is not
supplied in this manner.

The ADD-ENTRY-TO-LISTBOX procedureis not only used by the Create event logic,
but also by other event-handling routines in the project. Sinceit is used by other

Cobol-WOW User's Guide 33
Writing Code

34

routines, you should create it in the Procedure Division of the PROJECT CODE
SECTIONS object, rather than within this event procedure. While you could create it
here and still perform it from other event procedures, it would be difficult to remember
where it was defined. Placing shared procedures in the Procedure Division of the project
Event-Handling Code dialog box eases maintenance. The next section describes how to
do this.

Project Code Sections

When you create a project, Cobol-WOW allows you to specify the forms that are used
in the project. Not only will Cobol-WOW keep track of the formsthat are part of the
project, it will create a skeleton COBOL program that creates, operates, and removes
all of the forms. Better yet, you can edit any part of this COBOL program frominside
the Cobol-WOW Designer. Because you are working with a project, you will select
Edit Code from the Project menu. (Alternatively, you can click the Edit Project
Code toolbar button.) Every code section of the COBOL programislisted in the
Events/Code Sections|list. You can copy in your file descriptions, declaratives, create
additional Working Storage data items — in short, everything — from within the
Cobol-WOW Designer.

Procedure Division Logic

The ADD-ENTRY-TO-LISTBOX procedure, which will add your customers to the list
box, involves formatting the entry and sending the message to add it. Y ou have already
analyzed the message used to add the entry. Thereis, however, an interesting aspect to
formatting the entry that should be discussed.

When you set the list box properties, you set UseTabStops to True because Windows
supports fonts that are both fixed width and variable width. Variable-width fonts are
more common under Windows, but they present some challenges to devel opers,
especially when trying to align information.

With fixed-width fonts, the following entry would align properly by placing space
characters between the number and the name:

0013422 John Smith
0015311 Harry Jones

With variable-width fonts, some characters are wider than others. Having the same
number of charactersin two lines does not necessarily cause the two entriesto lineup. In
order to align the entries shown in this example, you must place a Tab character between
the number and the name. In the case of alist box control, you must also tell the list box
that you are using Tab characters by setting the UseTabStops property to True. Using

Tutorial
Writing Code

this setting, the list box will interpret the Tab character as a positioning character and not
as part of the text.

Note Be careful not to confuse this task with creating a multi-column list box control. In
this case, you are separating two parts of asingle entry with a Tab character so that it
appears to be in two columns; it is still one entry. A multi-column list box would display
asfollows:

0013422 John Smith 014322 Frank Jones
0043255 Peter Parker 015322 Herb Black

To add the ADD-ENTRY-TO-LISTBOX procedure to the Procedure Division area:

1. From the Project menu, click Edit Code or click the Edit Project Code toolbar
button.

2. The project Event-Handling Code dialog box is displayed.
In the Events/Code Sectionsllist, click Procedure Division.

4. Movethe cursor to the Code Entry areaand press Tab once in order to start typing
in column 8, since thisis a complete procedure. The Line, Col identifier in the
lower-right corner of the window should read 1,8.

5. Typethefollowing code:

ADD-ENTRY-TO-LISTBOX.
MOVE CUST-ID TO NEW-ENTRY (1:6).
MOVE X"09'" TO NEW-ENTRY (7:1).
MOVE CUST-NAME TO NEW-ENTRY (8:40).
CALL WOWADDITEM USING WIN-RETURN CUST-LB-H NEW-ENTRY.

The list box entry is formatted by moving the desired fields to an alphanumeric data
item called NEW-ENTRY. The declaration variable NEW-ENTRY is described in the
next section.

Cobol-WOW User's Guide 35
Writing Code

36

Working-Storage Section Logic

Because you are working with a project, you should declare variables in the Working-
Storage Section of the project Event-Handling Code dialog box. Thisisthe areawhere
the variable NEW-ENTRY should be declared.

To declare NEW-ENTRY in the Working-Storage Section area:
1. Inthe Events/Code Sectionsligt, click Working-Storage Section.

2. Movethe cursor to the Code Entry areaand press Tab oncein order to start typing
in column 8, since thisis a variable declaration. The Line, Col identifier in the
lower-right corner of the window should read 1,8.

3. Typethefollowing code:
01 NEW-ENTRY PIC X(50).

4. Click Closeto close the project Event-Handling Code dialog box.

Saving, Generating, Compiling, and Running

To save the changes made to the list box, click the Save Form and Generate Code
toolbar button.

The FIRSTAPP program can now be compiled. Then run the program to see the
customers displayed in the list box.

Step 3 — Adding the Second Window

Right now, your application displays only the FIRSTAPP form. When a user chooses
the Add or Change options, you want the CUSTINFO form to appear for editing. To
accomplish this, you will set an internal flag that indicates Add or Change mode,
allowing the logic that pops up for the CUSTINFO form between the Add and Change
operations to be shared. (The instructions for adding the logic to the Change command
button are discussed on page 42.)

Y ou will pop up the CUSTINFO form by creating it and then remove it by destroying it,
although showing and hiding the form would work equally well. When you pop up the
CUSTINFO form, it will disable the FIRSTAPP form because the CUSTINFO formis
modal. When aform runs as amodal window, the user must explicitly closeit before
accessing and working in another running form.

In this step, you will alow the user to remove the form only with the Cancel command
button. To remove the CUSTINFO form, you will destroy it.

Tutorial
Writing Code

Adding Logic to the Add Command Button

To add the required logic to the Add command button;

1.
2.

6.

In the Cobol-WOW Designer, open the FIRSTAPP form.

Do one of the following to open the Event-Handling Code dialog box for the
control:

e Select the Add command button control and double-click the left mouse button.
e Onthe Control menu, click Edit Code.

¢ Click the Edit Control Code toolbar button.

In the Events/Code Sections list, click the Click event.

Move the cursor to the Code Entry area and press Tab twicein order to start typing
in column 12, since thisis the body of a procedure.

Type the following code:

SET ADD-MODE TO TRUE.
PERFORM POPUP-RTN.

Click Closeto close the control Event-Handling Code dialog box.

Declaring ADD-MODE

To declare the variable ADD-MODE in the Working-Storage Section:

1.

From the Project menu, click Edit Code or click the Edit Project Code toolbar
button. The project Event-Handling Code dialog box is displayed.

In the Events/Code Sections list, click Working-Storage Section. Existing code
appears in the Code Entry area.

Move the cursor to the Code Entry area below the existing code. Press Tab oncein
order to start typing in column 8, since thisis a variable declaration.

Type the following code:

01 PROGRAM-MODE PIC X.
88 ADD-MODE VALUE "A™.
88 CHANGE-MODE VALUE *'C".

Cobol-WOW User's Guide 37
Writing Code

38

Declaring POPUP-RTN

Since the POPUP-RTN procedure will be used within both the Add and Change
operations, create it in the Procedure Division of the PROJECT CODE SECTIONS
object.

To add the POPUP-RTN procedure to the PROJECT CODE SECTIONS object:

1. Inthe Eventg/Code Sectionsligt, click Procedure Division. Existing code appears
in the Code Entry area.

2. Movethe cursor to the Code Entry area below the existing code. Press Tab oncein
order to start typing in column 8, since thisis a complete procedure.

3. Typethefollowing code:

POPUP-RTN.
PERFORM WP-CREATE-CUSTINFO.

4. Click Closeto close the project Event-Handling Code dialog box.

Removing the CUSTINFO Window

To remove the CUSTINFO form and re-enable the FIRSTAPP form, you need to add
logic to the Cancel command button on the CUSTINFO form:

1. Inthe Cobol-WOW Designer, open the CUSTINFO form.

2. Fromthe Form menu, click Edit Code and then click Form, or click the Edit
Form Code toolbar button. The form Event-Handling Code dialog box opens.

In the Events/Code Sectionslist, click the Click event.

4. Move the cursor to the Code Entry areaand press Tab twicein order to start typing
in column 12, since thisisthe body of a procedure.

5. Typethefollowing code:
PERFORM WP-DESTROY-CUSTINFO.

The sequence of these two proceduresis significant. Since FIRSTAPP is enabled before
CUSTINFO is destroyed, FIRSTAPP becomes the active window when CUSTINFO is
removed. If CUSTINFO were removed while FIRSTAPP was still disabled, some other
enabled form would become the active window. Then, when FIRSTAPP was enabled, it
would not automatically become active, and it would require an additional function call
to make it the active window.

Tutorial
Writing Code

Saving, Compiling, and Running

Save, build, and run the project.

Step 4 — Adding Customers

When you pop up a CUSTINFO form, you need to be able to add customers. To do this,
you add logic to the OK command button to save what you created in the CUSTINFO
form.

When the OK command button is pressed, you want the user to retrieve the contents of
the CUSTINFO edit fields, load the data record with them, and then write the new
record. You also want to use this datato add a new entry to the list box. Then, you want
to remove the pop-up window, just as you did with the Cancel command button. Notice
that even though the FIRSTAPP form is disabled for user input, you can modify it (for
example, add an entry to the list box).

Using the WOWGETPROP Function

Retrieving the contents of the CUSTINFO edit controls involves something new:
retrieving the value of a property with the WOWGETPRORP function. Thisfunctionis
very similar to the function used to set properties, WOWSETPROP.

The syntax of the WOWGETPROP function is as follows:
CALL WOWGETPROP USING WIN-RETURN CUST-ID-H "TEXT" CUST-ID.

The WIN-RETURN parameter is a status value for the function. CUST-ID-H specifies
the handle of the form or control from which you want to retrieve a property value.
“TEXT” isthe name of the property to beretrieved. CUST-ID isthe COBOL dataitem
in which the property value should be stored.

This function can be used to retrieve any property for aform or control.

Cobol-WOW User's Guide 39
Writing Code

40

Adding Logic to the OK Command Button

To add the required logic to the OK command button:
1. Inthe Cobol-WOW Designer, open the CUSTINFO form.

2. Do one of the following to open the Event-Handling Code dialog box for the
control:

e Select the OK command button control and double-click the [eft mouse button.
e Onthe Control menu, click Edit Code.

¢ Click the Edit Control Code toolbar button.

In the Events/Code Sections list, click the Click event.

4. Move the cursor to the Code Entry areaand press Tab twiceto start typing in
column 12, since thisis the body of a procedure.

5. Typethefollowing code:

PERFORM MOVE-DATA-TO-RECORD.
PERFORM WRITE-CUST.

PERFORM ADD-ENTRY-TO-LI1STBOX.
PERFORM WP-DESTROY-CUSTINFO.

MOVE-DATA-TO-RECORD is anew procedure that you will create in a moment.
WRITE-CUST isafilel/O procedure in the firstapp.cbl program. ADD-ENTRY-TO-
LISTBOX, which formats an entry and adds it to the list box, is the procedure you
created in Step 2 (see page 32). WP-DESTROY -CUSTINFO is the same procedure you
used with the Cancel command button to remove the CUSTINFO form and enable the
FIRSTAPP form.

MOVE-DATA-TO-RECORD is used only by the OK command button event procedure.
It is, however, such adiscreet piece of functionality that good COBOL programming
practice requires that you create it as a separate procedure. A procedure that is used by
only one event-handling procedure should be created alongside that procedure. Create
the MOVE-DATA-TO-RECORD procedure in the same Event-Handling Code dialog
box (Click event for the OK-CMD object), but place it after the main body of the event-
handling procedure. Since you are creating a procedure name, press Tab once to start
typing in column 8. Type the following code:

MOVE-DATA-TO-RECORD.
CALL WOWGETPROP USING WIN-RETURN CUST-ID-H "TEXT" CUST-ID.
CALL WOWGETPROP USING WIN-RETURN CUST-NAME-H "TEXT' CUST-NAME.

Tutorial
Writing Code

Saving, Building, and Running
Save, build, and run the project.

When you run the project, press the Add command button to display the CUSTINFO
form, enter the data, and press the OK command button. Y our new entry should be
displayed in the list box.

Step 5 — Changing Customers

Next, you need the ability to change customers, which requires adding logic to the
Change command button, and modifying the POPUP-RTN and OK command button
procedures.

When the Change button is pressed you want to make sure that a customer has been
selected. If not, you do not want the CUSTINFO form to pop up. After determining that
acustomer is selected, you will read the customer, set CHANGE-MODE to TRUE, and
then perform the POPUP-RTN. The POPUP-RTN procedure must be changed to load
the current customer information into the CUSTINFO form &fter it is created. The OK
command button logic must be changed to del ete the customer from both the list box and
the file before the new values are saved.

Working with List Box Selections

The presence or absence of aselection in alist box is determined with the CurSel
property. This property isthe O relative index of the currently selected item. If noitem
is selected, the property value is LB-ERR. The value of the selected list box item can be
determined with the Sel Text property. If no itemis selected the value is space.

An item can be deleted by using the WOWREMOVEITEM function as follows:
CALL WOWREMOVEITEM USING WIN-RETURN CUST-LB-H CUST-SEL-NUM.

The WIN-RETURN parameter is not relevant in this context. CUST-LB-H specifiesthe
handle of the list box to be modified. CUST-SEL-NUM specifies the O relative index of
the entry to be removed.

Cobol-WOW User's Guide 41
Writing Code

Adding Logic to the Change Command Button

To add the required logic to the Change command button:
1. Inthe Cobol-WOW Designer, open the FIRSTAPP form.

2. Do one of the following to open the Event-Handling Code dialog box for the
control:

e Select the Change command button control and double-click the left
mouse button.

e Onthe Control menu, click Edit Code.
e Click the Edit Control Code toolbar button.
In the Events/Code Sectionslist, click the Click event.

4. Movethe cursor to the Code Entry areaand press Tab twicein order to start typing
in column 12, since thisis the body of a procedure.

5. Typethefollowing code:

PERFORM CHECK-FOR-CUST-SELECTION.
IF NOT NO-CUST-SELECTED
PERFORM READ-THIS-CUST
SET CHANGE-MODE TO TRUE
PERFORM POPUP-RTN
END-1F.

6. Click Closeto close the control Event-Handling Code dialog box.

42 Tutorial
Writing Code

Adding Code to the Procedure Division

Because CHECK-FOR-CUST-SELECTION and READ-THIS-CUST are procedures
that will also be used by the Delete operation, create these in the Procedure Division of
the PROJECT CODE SECTIONS object. CHECK-FOR-CUST-SELECTION indicates
whether or not a customer has been selected with the condition, NO-CUST-SELECTED.

To add the CHECK-FOR-CUST-SELECTION and READ-THIS-CUST procedures to
the PROJECT CODE SECTIONS object:

1. From the Project menu, click Edit Code or click the Edit Project Code toolbar
button. The project Event-Handling Code dialog box is displayed.

2. Inthe Events/Code Sectionslist, click Procedure Division. Existing code appears
in the Code Entry area.

3. Movethe cursor to the Code Entry area on the next line following the existing
code. Press Tab oncein order to start typing in column 8, since these are
complete procedures.

4. Typethefollowing code:

CHECK-FOR-CUST-SELECTION.
CALL WOWGETPROP USING WIN-RETURN CUST-LB-H "CURSEL"
CUST-SEL-NUM.

READ-THIS-CUST.
CALL WOWGETPROP USING WIN-RETURN CUST-LB-H "SELTEXT"
CUST-ID.
PERFORM READ-CUST.

Both of these procedures use the CUST-SEL-NUM field. To declare thisfield in the
Working-Storage Section:

1. Inthe Events/Code Sectionsligt, click Working-Storage Section. Existing code
appears in the Code Entry area.

2. Movethe cursor to the Code Entry area on the next line following the existing code.
Press Tab once in order to start typing in column 8, since thisisavariable
declaration.

3. Typethefollowing code:

01 CUST-SEL-NUM PIC S9(4).
88 NO-CUST-SELECTED VALUE -1.

Cobol-WOW User's Guide 43
Writing Code

44

Modifying the POPUP-RTN Procedure

To modify the POPUP-RTN procedure;

1.
2.

In the Events/Code Sectionslist, click Procedure Division.

Add three lines to the end of the POPUP-RTN procedure so that it appears as
follows (the new lines of code appear as bold text):

POPUP-RTN.
PERFORM WP-CREATE-CUSTINFO.
IF CHANGE-MODE
PERFORM MOVE-DATA-TO-WINDOW
END-1F.

While still in the Procedure Division code section, create the MOVE-DATA-TO-
WINDOW procedure following the existing code.

MOVE-DATA-TO-WINDOW.
CALL WOWSETPROP USING WIN-RETURN CUST-ID-H "TEXT"
CUST-ID.
CALL WOWSETPROP USING WIN-RETURN CUST-NAME-H "TEXT'
CUST-NAME.

Modifying the OK Command Button Procedure

To modify the OK command button procedure;

1
2.

In the Cobol-WOW Designer, open the CUSTINFO form.

Do one of the following to open the Event-Handling Code dialog box for the
control:

e Select the OK command button control and double-click the left mouse button.
e Onthe Control menu, click Edit Code.

e Click the Edit Control Code toolbar button.

In the Events/Code Sectionsligt, click the Click event.

Add four lines to the beginning of the procedure so that it appears as follows (the
new lines of code appear as bold text):

IF CHANGE-MODE
PERFORM DELETE-LISTBOX-ENTRY
PERFORM DELETE-CUST
END-1F.
PERFORM MOVE-DATA-TO-RECORD.
PERFORM WRITE-CUST.
PERFORM ADD-ENTRY-TO-LI1STBOX.
PERFORM WP-DESTROY-CUSTINFO.

Tutorial
Writing Code

Adding the Delete List Box Entry Procedure

The DELETE-LISTBOX-ENTRY procedure, used by both the Delete and Change
operations, should be created in the Procedure Division of the PROJECT CODE
SECTIONS object.

To create the DELETE-LISTBOX-ENTRY procedure:

1. From the Project menu, click Edit Code or click the Edit Project Code toolbar
button. The project Event-Handling Code dialog box is displayed.

2. Inthe Events/Code Sectionslist, click Procedure Division. Existing code appears
in the Code Entry area.

3. Movethe cursor to the Code Entry areaand press Tab oncein order to start typing
in column 8, since these are complete procedures.

4. Typethefollowing code after the existing code:

DELETE-LISTBOX-ENTRY.
CALL WOWREMOVEITEM USING WIN-RETURN CUST-LB-H
CUST-SEL-NUM.

Saving, Building, and Running
Save, build, and run the project.

When you run the project, select a customer in the list box of the FIRSTAPP form and
press the Change command button to display the CUSTINFO form. Then modify the
data, and press the OK command button. The previous entry is deleted and the new one
is displayed.

Step 6 — Deleting Customers

Finally, you need to add the ahility to delete customers by creating logic to the Delete
command button.

Like the Change command button, when the Delete command button is pressed, you
want to be sure a customer is selected. When the customer is selected, a message box
displays, asking the user to respond to the inquiry. When the user confirms the action,
the customer is removed from the list box and thefile.

Fortunately, all the required list box manipulation has already been created for the
Change function. Thereis, however, one new technique that can be performed using the
WOWMESSAGEBOX function.

Cobol-WOW User's Guide 45
Writing Code

46

WOWMESSAGEBOX Function

The WOWMESSAGEBOX function displays the confirmation message. The following
syntax shows the logic required to use this function:

INITIALIZE MESSAGE-BOX-FLAGS.
SET MB-OKCANCEL MB-I1CONQUESTION MB-TASKMODAL TO TRUE.
CALL WOWMESSAGEBOX USING WIN-RETURN O
"Are you sure you want to delete this customer”
"Confirm deletion"
MESSAGE-BOX-FLAGS.

The WOWMESSAGEBOX function has alarge number of conditions associated with it.
These conditions specify what buttons and icons should be placed in the message box
and how the message box is displayed. These conditions are declared in MESSAGE-
BOX-FLAGS.

MESSAGE-BOX-FLAGS must beinitialized to clear all default conditions. Then the
desired conditions are established again by setting their valuesto TRUE. In this
example, the OK and Cancel command buttons are placed in the message box by setting
MB-OKCANCEL to TRUE, aquestion mark icon is placed in the message box by
setting MB-ICONQUESTION to TRUE, and the message box is displayed in task modal
form by setting MB-TASKMODAL to TRUE. (Task modal meansthat the only item the
user can access in thistask isthe WOWMESSAGEBOX. They could, however, switch
to other tasks.)

The parameters for the WOWMESSAGEBOX function are described as follows:

e The WIN-RETURN parameter indicates what button was pressed to remove the
dialog box.

e TheO parameter is aparent for the message box; in this case, none.

e “Areyousure...” isthetext of the message to display.

e “Confirm deletion” isthetitle of the message box window.

MESSA GE-BOX-FLAGS includes the conditions affecting the message box.

Tutorial
Writing Code

Adding Logic to the Delete Command Button

To add the required logic to the Delete command button:

1. Inthe Cobol-WOW Designer, open the FIRSTAPP form.

2. Do one of the following to open the Event-Handling Code dialog box for the
control:

e Select the Delete command button control and double-click the left mouse button.
e Onthe Control menu, click Edit Code.

¢ Click the Edit Control Code toolbar button.

In the Events/Code Sections list, click the Click event.

4. Movethe cursor to the Code Entry areaand press Tab twicein order to start typing
in column 12, since thisis the body of a procedure.

5. Typethefollowing code:

PERFORM CHECK-FOR-CUST-SELECTION.
IF NOT NO-CUST-SELECTED
PERFORM CONFIRM-DELETE
END-IF.
IF WIN-RETURN = 1DOK
PERFORM READ-THIS-CUST
PERFORM DELETE-LISTBOX-ENTRY
PERFORM DELETE-CUST
END-IF.

6. Typethe following code beginning at column 8, since thisis a complete procedure:

CONFIRM-DELETE.
INITIALIZE MESSAGE-BOX-FLAGS.
SET MB-OKCANCEL MB-1CONQUESTION MB-TASKMODAL TO TRUE.
CALL WOWMESSAGEBOX USING WIN-RETURN O
"Are you sure you want to delete this customer?"
"Confirm Deletion™
MESSAGE-BOX-FLAGS.

Saving, Building, and Running
Save, build, and run the project.

When you run the project, press the Delete command button to display the message box,
and then select OK to delete the currently selected customer.

Cobol-WOW User's Guide 47
Writing Code

48 Tutorial
Writing Code

Chapter 3: Introducing Cobol-WOW

Cobol-WOW (Windows Object Workshop) is a programming tool that allows you
to design and to develop full-featured, event-driven Windows applications completely
in COBOL.

This chapter includes the following topics:
e Cobol-WOW Components
e Cobol-WOW Development Process Overview

e Windows Graphical Operating Environment

Cobol-WOW Components

The Cobol-WOW development environment consists of three major components. a
design facility, a runtime system, and the Cobol-WOW Thin Client program.

Cobol-WOW Designer

The Cobol-WOW Designer, cblwow.exe, is a standard Windows, multiple document
interface (MDI) application that provides COBOL devel opers with the capability to
define the visual interface elements of the application. The multiple document interface
feature allows an application to manage multiple files within the single, parent (or
application) window. In Cobol-WOW, this means you can open and edit multiple forms
at one time in the Cobol-WOW Designer window. Y ou can also copy information back
and forth between forms, move and resize the forms, and so forth.

You first design the forms, populate those forms with controls, and adjust the properties
of those forms and controls. Cobol-WOW collectively refers to these forms and controls
as objects.

Then you use Cobol-WOW to write and manage the source code to support these
objects. Every object has certain events to which it can respond. In the Designer, you
write and attach COBOL event-handling logic to the specific Windows events and the
code necessary to respond to user input events. Because Windows programming is
event-driven, you write code to respond to user events rather than control the sequence
of events.

Cobol-WOW User's Guide 49
Cobol-WOW Components

50

Cobol-WOW Runtime System

The Cobol-WOW DLL, wowrt.dll, isaWindows dynamic link library (DLL) that
manages Windows messages, provides runtime support for the forms and controls, and
provides a COBOL interface to the Windows Application Programming Interface (API).
When the Cobol-WOW runtime system is invoked by the Cobol-WOW Thin Client
program (wowclient.exe), it causes all Windows-based Cobol-WOW functions to be
executed on the client workstation.

The Cobol-WOW DLL (wowrt.dll) must be distributed with your Cobol-WOW applications.

Windows provides hundreds of functions for application programming, collectively
referred to asthe Windows API. The interface to these functionsis a C-language
interface that does not accept COBOL datatypes. Sometimes the architecture of these
functions prevents direct access from COBOL. The Cobol-WOW DLL provides a
COBOL interface to these Windows functions, providing direct access to the power and
flexibility of Windows. For more information, see the Functions and Messages online
Helpfile.

Execution of a Windows program also generates a number of messages. Again, the
generation and dispatching of these messages are designed for a C-language interface.
The Cobol-WOW DLL conveniently captures, organizes, stores, and reports these
messages to the COBOL application. For more information, see the Functions and
Messages online Help file.

It is possible to customize the initialization file (cblwow.ini) in order to define default
settings for various runtime activities. Thisis accomplished by using the Runtime page
of the Preferences dialog box in the Cobol-WOW Designer or by manually adding a
[WOWRT] section to the cblwow.ini file. For more information, see page 3.

Cobol-WOW Thin Client

The Cobol-WOW Thin Client executable program, wowclient.exe, which isinstalled on the
Windows client workstation, begins the Thin Client session by connecting to the server.

It loads the required DL L s (see page 292) and reads the configuration file, rpcplus.ini.
The server, upon receiving this connection request, begins execution of the application

on the server. The application runs as a normal RM/COBOL program on the server until

a Cobol-WOW function isinvoked. All Cobol-WOW functions are intercepted by

specid logic in the Cobol-WOW runtime, which routes the requests back to the client,
where they are executed. This causes the user interface to be presented on the client.
When the Cobol-WOW function completes execution, control is returned back to the
server. The Thin Client portion of Cobol-WOW is discussed in more detail in Appendix E,
Using Cobol-WOW Thin Client, beginning on page 291.

Introducing Cobol-WOW
Cobol-WOW Components

Cobol-WOW Development Process Overview

Note The development processis discussed in more detail in Chapter 4, Developing with
Cobol-WOW, beginning on page 65.

Y ou begin the Cobol-WOW development process by creating aproject. A projectisa
development environment provided by Cobol-WOW to facilitate the creation of the
multiple forms that make up your application’s user interface. A project manages not
only the form creation, but also provides the ability to add file access and other code to
the rest of your program.

Next, you design forms. The form files that are contained in a project are al'so known as
members. The default extension for aform fileis.wow. A full range of form types,
styles, system colors and fontsis available to create highly stylized forms.

Y ou continue using the Cobol-WOW Designer to populate the form with controls
selected from the Toolbox. The Toolbox provides the ability to add Windows intrinsic
controls (default) and ActiveX controlsto the form. Using the Properties dialog box,
Cobol-WOW enables the appearance and functionality of each control to be fully tailored
to your needs.

Next, you attach event-handling code to the graphical user interface objects: the form,
Windows intrinsic controls, and ActiveX controls. The Cobol-WOW Designer provides
acomplete list of possible events for each object and includes an Event-Handling Code
dialog box that can be used to easily add event-handling code using familiar COBOL
statements. In addition, over 150 of the Windows API functions are available, al with
parameters that use standard COBOL data types.

Once the event-handling code is complete, you can generate copy filesto alow for
easy integration of the form into alegacy COBOL application or into a new COBOL
program — ready to compile and execute. The compile and execute processes are
available from the Project menu in the Cobol-WOW Designer.

Cobol-WOW also makesit easy to test your program and debug your source code.

Cobol-WOW User's Guide 51
Cobol-WOW Development Process Overview

Windows Graphical Operating Environment

52

The elements of the Microsoft Windows graphical operating environment alow you to
develop Windows applications with Cobol-WOW. These GUI elements are as follows:

e Forms e Handles
e Controls e IDs
o Properties ¢ Functions and Messages

In this section, you will examine the two types of objects used to build your user
interface: forms and controls, and two unique identifiers for these objects, handles

and IDs. The use of properties to customize the way in which the controls that you
place on aform (or the form itself) appear and behave is also discussed, as are functions
and messages.

Forms and Controls

In the past, COBOL programmers built user interfaces with two verbs, ACCEPT and
DISPLAY. Under Windows, however, programmers build user interfaces with two types
of objects. Thisillustrates the paradigm shift that has occurred in software development.
User interface development has shifted from a process described by syntax to an entity
built from different objects.

Cobol-WOW and Windows provide you with awealth of user interface technology,
vastly expanding your capabilities beyond anything you could attempt with COBOL
ACCEPT and DISPLAY statements. This new approach is more powerful, more
flexible, and more easily maintainable than traditional COBOL user-interface
development — atrue “win-win” situation.

In this section, you will examine the two types of objects used to build your user
interface: forms and controls, and two unique identifiers for these objects:. handles and
IDs. The use of properties to customize the way in which the controls that you place on a
form (or the form itself) appear and behave are also discussed.

Forms

Windows with a capital “W” refersto the Microsoft Windows operating system. The
term windows with alowercase letter refer to a displayable, rectangular object that a
program asks the operating system to create. The window is the basic building block of

Introducing Cobol-WOW

Windows Graphical Operating Environment

the user interface. Everything you see on the screen is contained in awindow. Dialog
boxes, command buttons, list boxes, and text boxes are all specialized types of windows.

The Windows operating system provides extensive capabilities to manipul ate windows.
Most of these capabilities apply equally to a command button or a main window with a
title, scroll bars, and a System menu. One of the merits of Windows isthat you can

manipulate many different types of objects in the same way, since they are al windows.

These different kinds of windows are extremely flexible. They can be visible or
invisible. They can be aslarge as the screen or be 0 pixelswide by O pixels high. They
can be enabled or disabled. They can be moved and stretched dynamically by the user or
the application program. They can even have other windows created inside them.

Y ou can see that window is avery broad and general term. To avoid confusion,
Cobol-WOW uses the term “form” to describe the windows you create in the
Cobol-WOW Designer. These forms, however, are true Windows windows. Forms are
the containers within which you group controls. In traditional programming, you placed
fields on the screen or in a pop-up window. With Cobol-WOW, you place fields (that is,
controls) in aform.

When a program creates aform, all the controls contained on the form are created. The
formisthe parent of the controls. If the form is moved, the controls move with it. If the
form is hidden, the controls are hidden. If the form is destroyed, the controls are
destroyed.

Although forms are quite versatile, most of your programming will be involved with
manipulating controls, not forms.

The form iswhere you create the interface of your application during design time — the
time during which you are designing, rather than running, your form. Thisform looks
like atypical window and contains a System-menu box (also known as the Control-menu
box), atitle bar, aborder, a client (or workspace) area, and Minimize and Maximize
buttons. The form has only default properties associated with it.

Note The evenly spaced marks that appear on the form at design time arethe grid. The
grid makes it easier to align, reposition, and resize controls visually. The Show Grid
option and the Snap to Grid option, which are enabled by default at design time, cause
the edges of each control to align with the nearest grid points. Y ou can, however, disable
these commands from the Form menu. To specify the units of measure for the grid
points (that is, the X and Y coordinates), choose Edit Preferences on the Options menu to
display the Preferences dialog box. Click the Alignment tab.

For more information about forms, see Appendix A, Setting Properties and Events for
Intrinsic Controls and Forms.

Cobol-WOW User's Guide 53
Windows Graphical Operating Environment

54

Controls

Controls are the primary mechanism for getting user input and displaying output.
Controls replace the fields you used with the COBOL ACCEPT and DISPLAY
statements. A large portion of the interface design consists of using controlsto
customize the forms that make up your application. Tool tips are available on controls at
designtime.

Y ou have probably seen and used controls in other Windows-based software
applications. Although they vary from one another in appearance and function, they are
all windows, and, as such, can be manipulated in identical ways. They are all hidden,
displayed, enabled, disabled, created, destroyed, moved, and resized in the same manner.

Cobol-WOW supports two broad categories of controls:

e ActiveX controls, which exist as separate files with an .ocx filename extension.
These include controls that are available with 32-bit versions of the Windows
operating system, such as the animation, toolbar, or progress bar controls, as well
those available from third-party vendors. See Appendix B, Working with ActiveX
Controls, for more information about ActiveX controls.

Note Although ActiveX controls may have additional features, we recommend that
you use intrinsic controls whenever possible for greater portability.

e Intrinsic controls, (or default controls), such as the command button or a check
box. Theintrinsic controls are the easiest controls to implement, because they are
part of the Windows operating system. Y ou do not need to install or distribute any
specia filesto support them. They will work under any version of Windows.
Intrinsic controls are aways included in the Cobol-WOW Toolbox, unlike ActiveX
controls, which can be removed from or added to the Toolbox. See Appendix A,
Setting Properties and Events for Intrinsic Controls and Forms, for more
information about intrinsic controls.

Note If you are using Cobol-WOW to modify an existing RM/Panels panel library,
Cobol-WOW refers to the objects called “datafields’ in RM/Panels as “controls.”
See Appendix D, Using Cobol-WOW with RM/Panels, for more information.

Table 1 illustrates the intrinsic controls that appear on the Toolbox in the Cobol-WOW
Designer window. These are the basic controls that are common to most dialog boxes in
Windows and the ones that you are likely to use most frequently when designing the user
interface for your application.

Introducing Cobol-WOW
Windows Graphical Operating Environment

Table 1 — Intrinsic Controls

Note The pointer tool (the first tool in the Toolbox) provides away to select the form
or controls on the form, and move and resize forms and controls. It isnot a control.

Icon Control Name Description

H Animation Displaysan AVI clip. AnAVI clip isaseries of bitmap frames
that run like amovie. Only AVI files without sound can be
played using the animation control.

Bitmap Displays bitmap files. The bitmap control acts like acommand

: button when clicked.
Check Box DisplaysaYes/No, True/False, or On/Off option. Y ou can check

[x .
any number of check boxes on aform at onetime.

= Combo Box Combines atext box with alist box. Allowsauser totypeina

= selection or select an item from a drop-down list.
O Command Carries out acommand or action when a user choosesiit.
Button
@ Date Time Allows the user to select adate and time, and to display that date-
Picker time in the specified format.

Edit Box Provides an areato enter or display text.

o Ellipse Shape Draws the geometric shape of an ellipse on the form.

m Group Box Provides avisual and functional container for other controls. Itis
generally used to enclose related controls (usually check boxes or
option buttons).

IP Address Allows the user to enter a numeric address in Internet protocol

[===] (IP) format. This control also alows the application to obtain the
address in numeric form rather than in text form.

~ Line Shape Draws aline on the form.

List Box Displaysalist of choicesfrom which the user can select one or

= more items.

B Month Calendar | Displays amonthly calendar. The calendar can display one or
more months at atime.

& Option Button Presents mutually exclusive options in an option control. Option

buttons are usually used with the group box control to form
groups where only one of the listed buttons can be selected at one
time.

Cobol-WOW User's Guide 55
Windows Graphical Operating Environment

Table 1 — Intrinsic Controls (Cont.)

Icon Control Name Description

] Progress Bar Displays a pattern of blocks that show the status of along

operation.

O Rectangle Shape | Draws the geometric shape of arectangle on the form.

Ol Rounded Draws the geometric shape of a rectangle with rounded corners on
Rectangle Shape | the form.

m Scroll Bar Allows a user to add scroll bars (horizontal and/or vertical) to
(Horizontal and | controlsthat do not automatically provide them. (These are not
Vertical) the same as the built-in scroll bars that are found with many

B controls.)

An Static Text Displays text, such astitles or captions, in regular outlines or

filled rectangles, which the user cannot interact with or modify.
Status Bar Displays status information in a horizontal window at the bottom

— of an application window.

= Tab Acts as a container for other controls and places a series of tabs at

the top of the container.

6 Timer Provides a measured time interval that can be tied to events

i Toolbar Displays a series of buttons that can be placed at the top and/or

bottom of aform

— Trackbar Displays awindow containing a slider and optional tick marks

used to select avalue or a set of consecutive values in arange.

jfl Updown Consists of apair of arrows the user can click to increment or
- decrement a value, such asascroll position or anumber displayed
in acompanion control.
Properties

Forms and controls have a number of configurable characteristics. These characteristics
are called properties. Properties are the primary means by which forms and controls are
manipulated. Setting properties defines how forms and controls are displayed and how
they function in the running application.

The properties of aform and control are initially defined in the Cobol-WOW Designer.
During design time, you use the Properties dialog box, which lists each property and its
value, to set the default (initial) properties of a selected form or control. That isonly half
the story, however. Most of those properties can also be altered and retrieved at runtime

56 Introducing Cobol-WOW
Windows Graphical Operating Environment

by the code you enter in the Event-Handling Code dialog box. Think about that for a
second. You have aimost the same level of flexibility in customizing your user-interface
at runtime that you do at design time.

While setting properties in the Cobol-WOW Designer is achieved through the Properties
dialog box, retrieving and setting property values at runtime is accomplished primarily
with the CALL statement and two Cobol-WOW functions, WOWSETPROP and
WOWGETPROP, which provide a consistent method of getting and setting property
values for forms and all types of controls. For more information, see the Functions and
Messages online Help file.

The following sections introduce you to the WOWSETPROP and WOWGETPROP
functions. A sample program demonstrates some of what you can do with properties
at runtime.

Setting a Property Value at Runtime

A property valueis set at runtime by calling a special Cobol-WOW function,
WOWSETPROP. For example:

CALL WOWSETPROP USING WIN-RETURN OBJECT-H "PropertyName"
PROPERTY-VALUE.

WIN-RETURN isanumeric field into which avalue of 1 isreturned if the operationis
successful, or avalue of Qif it fails. Any numeric field may be used. WIN-RETURN is
anumeric field declared in a Cobol-WOW copy file, windows.cpy.

OBJECT-H indicates the handle of the object whose property isto be set. Thisfield
could be the handle of aform or a control.

“PropertyName” contains the name of the property to be set. All properties have an
alphanumeric name, which is not case-sensitive. Thisfield can be an alphanumeric
literal or an aphanumeric dataitem containing the property name.

PROPERTY -VALUE contains the value to which the property should be set. Thisfield
can be an alphanumeric or numeric literal, or adataitem.

Cobol-WOW User's Guide 57
Windows Graphical Operating Environment

58

Getting a Property Value at Runtime

A property valueisretrieved at runtime by calling a special Cobol-WOW function,
WOWGETPROP. For example:

CALL WOWGETPROP USING WIN-RETURN OBJECT-H "PropertyName"
PROPERTY-VALUE.

WIN-RETURN isanumeric field into which avalue of 1 isreturned if the operation
issuccessful, or avalue of Q if it fails. Any numeric field may be substituted.
WIN-RETURN isanumeric field declared in a Cobol-WOW copy file, windows.cpy.

OBJECT-H indicates the handle of the object whose property isto beretrieved. This
field could be the handle of aform or a control.

“PropertyName” contains the name of the property to be retrieved. All properties have
an alphanumeric name, which is not case-sensitive. Thisfield can be an alphanumeric
literal, as shown, or an aphanumeric data item containing the property name.

PROPERTY -VALUE iswhere the value of the property will be stored. It must be a data
item, not aliteral.

Benefits of Using WOWSETPROP and WOWGETPROP

Y ou will use these two CALL statements frequently as you build your user interface.
These calls are to Windows programming what the MOV E statement isto COBOL .
Since these two CALL statements are used so extensively, they have three important and
helpful characteristics.

1. You canretrieve and set multiple property valuesin asingle CALL statement.

For example, to retrieve the size and location of any object with one CALL
Statement:

CALL WOWGETPROP USING WIN-RETURN OBJECT-H "TOP' TOP-VALUE
"LEFT" LEFT-VALUE

"WIDTH"™ WIDTH-VALUE

"HEIGHT" HEIGHT-VALUE.

To set the size and location of any object with one CALL statement:

CALL WOWSETPROP USING WIN-RETURN OBJECT-H "TOP' TOP-VALUE
"LEFT" LEFT-VALUE

"WIDTH"™ WIDTH-VALUE

"HEIGHT" HEIGHT-VALUE.

Introducing Cobol-WOW
Windows Graphical Operating Environment

2. You can retrieve the numeric value of a Text property. The following example sets
the text of an edit field to an al phanumeric value that represents a negative decimal
number. Then it retrievesthat value directly into a signed numeric field with
decimal digits. By doing so, this operation prevents you from having to translate the
alphanumeric value into a numeric value within your code.

01 DEC-FIELD PIC S9(5)V99.

CALL WOWSETPROP USING WIN-RETURN OBJECT-H "'Text"™ 123.45-".
CALL WOWGETPROP USING WIN-RETURN OBJECT-H "TEXT"™ DEC-FIELD.

3. You can set the value of a Text property directly from anumeric field. For example:
01 DEC-FIELD PIC S9(5)V99 COMP-3.

MOVE 512.1 TO DEC-FIELD.
CALL WOWSETPROP USING WIN-RETURN OBJECT-H "Text'" DEC-FIELD.

The edit field will display “512.10".

Sample Program — Setting Properties

The sample project, PROPRTES, demonstrates how some common properties can be set
and retrieved at runtime with these two functions. Using the Cobol-WOW Designer,
look at the event-handling code attached to the Click event for each of the buttons to see
how WOWSETPROP and WOWGETPROP are used. The variables used for retrieving
property values are declared in the Common Working Storage area of the form.

Handles

In aWindows graphical interface, a handle is a number that can be used to uniquely
identify and access awindow’s object. While most handles are associated with windows,
other types of objects, such as fonts and bitmaps, can also have handles. For example,
when awindow is created, Windows assigns it a numeric identifier that is specific to that
particular window. This number isthe window’s handle. The handle isthen used to
identify the window when Windows wants to inform you of activity for the window, or
when you tell Windows to take some action on the window.

The handle is a subscript into an internal table of information maintained by Windows.
Using this handle, or subscript, to identify the window gives Windows the ability to
relocate its internal information without affecting your application program.

A handleisvalid from the time the object is created until the time the object is destroyed.
Once the object is destroyed, the handle may be reused and assigned to another object.
Handles are never saved from one session to another. They must aways be stored when

Cobol-WOW User's Guide 59
Windows Graphical Operating Environment

60

the object is created. Cobol-WOW automatically stores all the required handles when it
creates objects, so you do not have to worry about this process.

IDs

An ID isanumeric identifier assigned by the developer to a control when it is created.
While handles and I1Ds are both numerical identifiers of awindow, there are several
important distinctions between the two values. An ID is assigned by the developer; a
handle is assigned by the Windows operating system. An D may or may not be unique;
ahandleisawaysunique. AnID isknown at design time; a handle is not known until
runtime and must, therefore, be stored for use.

Why does Windows support both types of identifiers? The window handle is essential to
the functioning of the operating system. It provides a system-wide, unique identifier so
that individual windows can be manipulated. Since several applications are running at
once under Windows, the identifiers they use for windows must be unique for the entire
system.

Thewindow ID isfor the developer’s use in order to simplify the programming of user
interaction in windows with controls. If you assign unique ID numbers to contrals,
application logic can be simplified. For example, an application program might create a
window containing four controls: aname text box, an address text box, an OK command
button, and a Cancel command button. The application program could assign ID
numbers of 1, 2, 3, and 4, respectively, to these controls. Therest of the application code
could use the ID numbers to identify the controls, rather than use their window handles.

Windows always uses the window handle to identify the window when it reports events
that have taken place for the window. Sometimes it also provides the window ID. Some
of the actions you can take on windows allow you to specify either the window handle or
theID.

Cobol-WOW makes it easy to use both handles and IDs. Data items containing both
values are generated in a copy file so you can use the data name to specify the ID or
handle in your code.

Introducing Cobol-WOW
Windows Graphical Operating Environment

Functions and Messages

While properties are the primary method for manipulating controls in your programs,
there are two other methods of handling controls: functions and messages.

When Windows was devel oped, functions and messages were the primary way of
manipulating controls. In fact, the intrinsic controls do not actually have properties.
Cobol-WOW imposes a property interface on top of the controls to give you a consistent
method for using intrinsic and ActiveX controls.

Since Windows did not implement properties for the intrinsic controls, it provided
hundreds of functions and messages to use with them. Thislarge number of functions
and messages, each with its own unique set of parameters, may seem confusing at first.
They do, however, provide a great deal of flexibility that you can use to supplement
setting properties, which is the new approach to using these controls. When using
properties, you need only remember the property name. The syntax for setting and
getting all propertiesisthe same.

Note In most cases, you will use only properties when manipulating ActiveX controls,
since these were developed with an emphasis on properties. However, you may use a
few functions with ActiveX controls when working with list boxes or combo boxes.

What are Functions?

A function is a callable subroutine, contained either in the Windows or Cobol-WOW
runtime, that can be passed COBOL parameters and that will perform some special
processing. A function is always executed with a CALL statement. The term “function”
is commonly associated with C-language programming. In Cobol-WOW, functions are
non-COBOL routines (or subprograms) that allow you to use the capabilities of the
Windows operating system. To COBOL applications, functions are non-COBOL
callable subprograms. Because most documentation on Windows will refer to these
subprograms as functions, that termis used here.

Functions alow you to adjust theinitia state of the forms and controls that you create in
the Cobol-WOW Designer. A function executes code that can be used to carry out a
specific task. Most of the functions that you will use are in the Windows application
programming interface (API). Other functions are specifically designed for ActiveX
controls; the remainder are provided to address issues exclusive to COBOL.

Cobol-WOW supports Windows API functions, ActiveX control functions, and
Cobol-WOW functions. Cobol-WOW has tailored the Windows API to COBOL in
order to simplify itsuse. It has also maintained a close parallel to the C-language syntax.
These approaches should allow you to use general reference information on the Windows
API from other sources to expand your knowledge of the API. Where substantial

Cobol-WOW User's Guide 61
Windows Graphical Operating Environment

62

differences exist from the standard API functions, the Cobol-WOW documentation
notes those differences. For more information, see the Functions and Messages online
Helpfile.

What are Messages?

Messages are the means of communicating between your application program and the
Windows operating environment. The Windows operating system sends messages to
your program to give you an opportunity to respond to events. Y ou send messages to
Windows to tell it what you want it to do. (This second useisvery similar to executing a
Windows function. In fact, many Windows functions simply send messages.)

Windows reports hundreds of messages to your application. We recommend that you
allow Cobol-WOW to interpret these messages. Although you can write your own
message interpretation code, thisis an advanced task that should not be attempted until
you have significant experience in developing with Windows.

Since all the messages are Windows messages, they are intended by Windows for use
with forms and the intrinsic controls. Messages cannot be sent directly to ActiveX
controls.

For more information, see the Functions and Messages online Help file.

Using Functions and Messages

Cobol-WOW has a feature that makes it very easy to use the enormous collection of
functions and messages. The Code Templates tree lists code templates of the most
common functions and messages that can be used with forms and controls. To see the
Code Templates tree, choose Code Templates from the View menu.

When you select anamein this list, Cobol-WOW inserts into the Code Entry areaafull
description of the function or message, the COBOL syntax for its use, and a description
of each parameter in your event-handling code. Y ou simply replace the parameter names
and values with your own, and the function or message is ready to use. (The manner in
which code is displayed in the Event-Handling Code dialog box is configured by default.
The Preferences dialog box provides several pages of configuration options that you can
modify. To change this option on the Code page of the Preferences dialog box, click
Edit Preferences on the Options menu and then click the Code tab.)

While the large number of functions and messages provide an overwhelming amount of
functionality, there is a significant amount of overlap between them. For example, the
SETWINDOWTEXT function and the WM-SETTEXT message both set the text of a
window. When you use the SETWINDOWTEXT function, it merely sends a
WM-SETTEXT message to the window.

Introducing Cobol-WOW
Windows Graphical Operating Environment

Sample Program — Using Functions and Messages

The sample project, FUNCMESG, demonstrates the use of functions and messages with
alist box control. Thelist box and combo box have the most dependence on functions
and messages of any of the Windows intrinsic controls. Look at the event-handling code
attached to each button to see how the function was executed or the message was sent.

Cobol-WOW User's Guide 63
Windows Graphical Operating Environment

64 Introducing Cobol-WOW
Windows Graphical Operating Environment

Chapter 4. Developing with
Cobol-WOW

This chapter is designed to provide essential background information to help you
understand what you are doing and why. Then, it looks at how you approach common
types of programs under Windows and how you take advantage of Windows' features.
These concepts are illustrated by simple, but functional, sample programs.

The topics covered in this chapter include the following:
e Cobol-WOW Projects

e Event-Driven Applications

e Addressing Issuesin Data Entry Programs

e Working with Menus

Cobol-WOW Projects

Most of the time, your user interface will consist of multiple forms. After you have
created your forms, you will want to add file access and other code to the rest of the
program. To provide these capabilities in a seamless environment, Cobol-WOW
provides afacility called a project.

By using a project, the Cobol-WOW Designer alows you to do your complete
development in an integrated, visual framework. The default extension for Cobol-WOW
project filenamesis .wpj (see page 214). The .wpj fileisatext file that contains project
configuration information and alist of the formsincluded in the project.

When you create a project, Cobol-WOW lets you specify the forms that are used in the
project. Not only will Cobol-WOW keep track of all the formsthat are part of the
project, it will create a skeleton COBOL program that creates, operates, and removes al
of theforms. Better yet, you can edit any part of this COBOL program from inside the
Cobol-WOW Designer. The Event-Handling Code dialog box lists every code section of
the COBOL program in the Events/Code Sections list box. Y ou can copy in your file
descriptions, declaratives, create additional Working Storage data items — in short,
everything — from within the Designer.

Cobol-WOW User's Guide 65
Cobol-WOW Projects

Cobol-WOW assumes that you will be working in a project. In the Cobol-WOW
Designer window, all the formsin a project are displayed in the project tree. The Project
menu provides all the commands necessary for working with the project.

Note Cobol-WOW v3.0 is project-based. If you have aform-based application created
with an earlier version of Cobol-WOW, you must create a project and add the form files
in the existing application to it.

Event-Driven Applications

Even before Windows came along, COBOL programmers were not the only ones
struggling with how to code user-input logic. Everybody else wastoo. The developers
of Windows took a new approach to user input, which is reflected in Cobol-WOW. This
new concept is called “event-driven” programming, as opposed to the more traditional
method, sequential programming.

In sequential programming, the programmer dictates the exact sequence of eventsin the
program. The user isdirected to enter field 1, then field 2, and so forth. With this
method, the programmer always knows what is going to happen. In actual use, however,
users generally want to be in charge and enter things in whatever manner they wish.

Event-driven programming allows users to have that flexibility. The user isin control
and makes the program respond to the user’s actions. Every time an action occurson a
field, an event istriggered. The program then responds to those events.

How does thiswork? First, you tell Windows that you want thisfield, thisfield, and that
field on the screen. Windows creates these elements. Then Windows allows usersto do
whatever they want with those fields. Whenever a user does something, Windowstells
the developer what is going on by communicating events to use (such as field changed,
mouse clicked, and so forth). Y ou attach your program logic (code) to these events.

The following examples compare traditional COBOL programming and event-driven
programming implemented under Windows.

66 Developing with Cobol-WOW
Event-Driven Applications

Example 1

ENTER-CUST-ID
ACCEPT CUST-ID LINE 4 POSITION 10.
IF F3-KEY
PERFORM LOOK-UP-CUST.
PERFORM VAL IDATE-CUSTOMER.
IF NOT VALID-CUST
PERFORM BAD-CUST
GO TO ENTER-CUST-ID.

In traditional COBOL programming, the example shown above performs three
operations;

1. Acceptsthe customer ID.
2. Performs alookup when the F3 key is pressed.
3. Validates the customer number before the user can proceed.

Under Windows, you simply take the same logic and distribute it to the appropriate
events. Examine these same three operations when implemented under Windows:

1. The COBOL ACCEPT statement would be eliminated because Windows handlesit.

2. Thelookup would probably be associated with a button or menu command, rather
than the F3 key. Y ou would attach PERFORM LOOK-UP-CUST to one or all of
these events.

3. TheVALIDATE-CUSTOMER validation would be attached to two events:
LostFocus and Click. Thefirst event, LostFocus, occurs when the user finishes
entry into afield and moves to another field. The second event, Click, occurs when
the user clicks the OK button to signal completion of all information on the window.
This validation is important because the user may never even access the CUST-ID
control (unless you position him there). If the validation failed, you tell Windowsto
put the user back into the CUST-ID control.

In one way, this does make it less convenient, because the logic isin several places rather
than one.

Cobol-WOW User's Guide 67
Event-Driven Applications

Example 2

ENTER-CUST-STREET-1.
ACCEPT CUST-STREET-1 LINE 7 POSITION 10 TAB UPDATE NO BEEP.
IF UP-ARROW
GO TO GET-CUST-NAME.
IF DOWN-ARROW
GO TO GET-CUST-STREET-2.

No specia processing is associated with thisfield; the only requirements are the data
entry fields and logic to provide keyboard control over what field is entered next. With
Windows and Cobol-WOW, however, this processing is all automatic. Y ou do not need
to replace the code; you simply discard it.

Take aminute to think about your data entry screens and logic. Instead of writing all
the logic to implement those screens, Cobol-WOW enables you to write only the logic
to implement special features, thereby substantially reducing the size of an average
COBOL program.

Addressing Issues in Data Entry Programs

COBOL is often used to create data entry programs. Data entry programs have unique
requirements and issues that are not ordinarily discussed in programming literature.
Over the years, COBOL developers have adopted fairly common techniques for
addressing these issues in a character-based environment. This section discusses these
issues and suggests how they could be addressed under Windows with Cobol-WOW.

While Windows was designed around an exceptional user interface, it was not designed
for dataentry. However, there are practical ways to address the different sets of issues
important to data entry programs, including:

e Handling Data

e Handling Different Types of Data

e Managing User Interaction

e Using Function Keys for Specia Options

68 Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

Handling Data

One set of issues important to data entry programs are those related to the manipulation
of data. When dataisread out of afile, how does it become displayed? How are
numeric and date fields handled? How are the fields formatted? How is data moved
from the user interface back to the file? This section, along with the following topics,
discusses these issues.

When Windows creates a control, such as an edit box, it allocates its own storage space
for the contents of that edit box control. When the user modifies the contents of the edit
box control on the screen, Windows stores the new value in its own storage space and
sends your program a message that the value changed. If you want the new value, you
have to ask Windows for it. Windows will not automatically store the new valuein your
COBOL dataitem. Thereverseisalso true. Windows does not know when the value of
your COBOL dataitem changes and will not automatically update an edit box control to
display the new value. You haveto send it the new value.

The following two examples show how datais transferred between COBOL dataitemsin
Working Storage on record areas and aform created under Windows.

Example 1: Loading a Form with COBOL Data

This exampleillustrates how to load a form with COBOL data.

In the following code section, the lines of code that contain the COBOL data are
highlighted; the lines of code that move the data to the form are not highlighted.

01 CUST-FIELDS

03 CUST-NAME PIC X(40).
03 CUST-CITY PIC X(20).
03 CUST-ST PIC X(2)-

CALL WOWSETPROP USING WIN-RETURN CUST-NAME-H "TEXT' CUST-NAME.
CALL WOWSETPROP USING WIN-RETURN CUST-CITY-H "TEXT' CUST-CITY.
CALL WOWSETPROP USING WIN-RETURN CUST-ST-H "TEXT"™ CUST-ST.

Cobol-WOW User's Guide 69
Addressing Issues in Data Entry Programs

The following figure illustrates the three fields on the form (the edit box controls labeled
Name, City, and State) that will receive the transferred COBOL data.

KMame

City

dtale :I

Example 2: Retrieving Information from a Form and Storing It in
COBOL Data Items

This exampleillustrates how to retrieve information from aform and store it in COBOL
dataitems.

In the following code section, the lines of code that contain the COBOL data are
highlighted; the lines of code that retrieve the data from the form are not highlighted.

01 CUST-FIELDS

03 CUST-NAME PIC X(40).
03 CUST-CITY PIC X(20).
03 CUST-ST PIC X(2)-

CALL WOWGETPROP USING WIN-RETURN CUST-NAME-H "TEXT' CUST-NAME.
CALL WOWGETPROP USING WIN-RETURN CUST-CITY-H "TEXT' CUST-CITY.
CALL WOWGETPROP USING WIN-RETURN CUST-ST-H "TEXT" CUST-ST.

Most likely, you will want to create two procedures in your program for each data entry
form. Create one procedure to set the value of the controls on the form from your
COBOL data. Produce the second procedure to retrieve the value of the controls on the
forminto your COBOL data.

70 Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

Let's say you created aform called CUSTFORM, and want to use it to update the
contents of your customer file, CUSTFILE. The file and record would both contain
fields such as CUST-NAME, CUST-CITY, and CUST-ST. You would create the
following two procedures:

LOAD-CUST-FORM.
CALL WOWSETPROP USING WIN-RETURN CUST-NAME-H
"Text" CUST-NAME.
CALL WOWSETPROP USING WIN-RETURN CUST-CITY-H
"Text"™ CUST-CITY.
CALL WOWSETPROP USING WIN-RETURN CUST-ST-H
"Text" CUST-ST.

UNLOAD-CUST-FORM.
CALL WOWGETPROP USING WIN-RETURN CUST-NAME-H
"Text" CUST-NAME.
CALL WOWGETPROP USING WIN-RETURN CUST-CITY-H
"Text" CUST-CITY.
CALL WOWGETPROP USING WIN-RETURN CUST-ST-H
"Text" CUST-ST.

LOAD-CUST-FORM setsthe Text property of each control based on the datain thefile.

UNLOAD-CUST-FORM sets the value of each field in the record based on the Text
property of each control.

When you want to update the data on the screen from the record, you execute
PERFORM LOAD-CUST-FORM. When you want to update the data in the record from
the screen, you execute PERFORM UNLOAD-CUST-FORM.

The handle fields, such as CUST-NAME-H, CUST-CITY-H, and CUST-ST-H, contain
the handle of the control. The datafields, such as CUST-NAME, CUST-CITY, and
CUST-ST arethe COBOL dataitems. “Text” indicates the control property that stores
the value or contents of the control. The property hame to use will depend on the
control.

In atypical dataentry situation, the program works as follows:

1. Read arecord from thefile.

2. Execute PERFORM LOAD-CUST-FORM to display the valuesin the form.
3. Let the user modify the values (Windows handles this).

4. When the OK button is pressed:

a. Execute PERFORM UNLOAD-CUST-FORM to put updated valuesin
the record.

b. Write/Rewrite the record to thefile.

Cobol-WOW User's Guide 71
Addressing Issues in Data Entry Programs

72

The drawback to this approach is that you have to create two procedures that list each
control handle and datafield. This means you have to maintain two procedures as you
add or remove controls and fields. Y ou can, however, alter the approach and consolidate
thisinformation in one procedure.

First, declare anew data item:

01 LOAD-FUNC PIC X(5).

Then rewrite your procedures as follows:

LOAD-CUST-FORM.
MOVE WOWSETPROP TO LOAD-FUNC.
PERFORM CUST-LOAD-UNLOAD.

UNLOAD-CUST-FORM.
MOVE WOWGETPROP TO LOAD-FUNC.
PERFORM CUST-LOAD-UNLOAD.

CUST-LOAD-UNLOAD.
CALL LOAD-FUNC USING WIN-RETURN CUST-NAME-H
"Text" CUST-NAME.
CALL LOAD-FUNC USING WIN-RETURN CUST-CITY-H
"Text" CUST-CITY.
CALL LOAD-FUNC USING WIN-RETURN CUST-ST-H "'Text"
CUST-ST.

Although this may look unusual, it is actually fairly straightforward. The
WOWGETPROP and WOWSETPROP routines (functions) are aphanumeric fieldsin
windows.cpy. These routines contain the names of subprograms in the Cobol-WOW
dynamic-link library (DLL), wowrt.dll. These routines are called by using a data name,
not aliteral name. Since they are alphanumeric data, you can MOV E them to
LOAD-FUNC and CALL LOAD-FUNC instead of calling WOWGETPROP or
WOWSETPROP. Because the syntax for WOWGETPROP and WOWSETPROP is
identical, you can use the same statement for both. Y ou now have the list of controls
and fieldsin one place.

Developing with Cobol-WOW

Addressing Issues in Data Entry Programs

Handling Different Types of Data

Now that you have alogic structure for loading and unloading the controls in your forms,
how do you deal with different types of data?

Alphanumeric data. Not surprisingly, managing alphanumeric dataisthe easiest. The
edit box control and many ActiveX control equivalents have a“Text” (or similarly
named) property that contains the alphanumeric data of the control. Generally, you will
use some type of edit box control for alphanumeric data entry and then set the Text
property of the control.

Numeric data. If you do not require special formatting, managing and supporting
numeric data can be just as easy as alphanumeric data. See Example 1 below.

Special formatting of numeric data. Although the approach illustrated in Example 1
provides asimple way to handle basic numeric data, in some circumstances you will

want to carefully control the format in which the numeric datais displayed. Inthese
situations, you will need to perform the formatting in your COBOL program, then use the
formatted value to set the control text. Example 2, on page 74, illustrates formatted
numeric data.

Some controls, for example scroll bars, are designed to manipulate a numeric value. See
Example 3 on page 75.

Other controls, such as buttons and check boxes, often represent a True or False value.
Consequently, these types of controls need a different approach for handling numeric
data, asillustrated by Example 4 on page 75.

Example 1: Basic Numeric Data for an Edit Box Control

The edit box control does not have any special support for numeric data. Cobol-WOW,
however, does provide this functionality. When you pass a numeric literal or dataitem
while setting the Text property, Cobol-WOW converts it to a string and passes the string
to Windows. When you use a numeric data item while getting the Text property,
Cobol-WOW retrieves the text from Windows, convertsit to a numeric value, and
returns the numeric value. Let’s see how this works.

This function call will set the text of the control to 127 because Cobol-WOW takes the
numeric value and converts it to atext string.

01 COMP-FIELD PIC 9(5) COMP VALUE 127.
CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT' COMP-FIELD.

Cobol-WOW User's Guide 73
Addressing Issues in Data Entry Programs

Cobol-WOW does not provide any flexibility in numeric formatting with
WOWSETPRORP. It will aways zero suppress leading zeros and display all trailing
decimal zeros. For example, thisfunction call will set the text of the control to 127.00.

01 CUST-BAL PICS 9(7)V99 VALUE 127.
CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT" CUST-BAL.

The numeric capabilities of WOWGETPROP are lessinteresting to illustrate. For
example, the following function call will store the numeric value of the text of the edit
box control in CUST-BAL. If the text value contains more than five integers or two
decimal digits, the remaining digits are truncated.

CALL WOWGETPROP USING WIN-RETURN EDIT-H "TEXT"™ CUST-BAL.

Example 2: Formatted Numeric Data for an Edit Box Control

When special formatting of numeric datais required, you will need to perform the
formatting in your COBOL program, then use the formatted value to set the control text.
For example:

01 YMD-DATE PIC 99/99/99.
MOVE CUST-LAST-PURCHASE TO YMD-DATE.
CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT"™ YMD-DATE.

Y ou can still retrieve the numeric value with the CALL to WOWGETPROP.
CALL WOWGETPROP USING WIN-RETURN EDIT-H "TEXT' YMD-DATE.

Notice that the calls to WOWGETPROP and WOWSETPROP are now different, which
affects the coding strategy outlined for handling basic numeric data. Y ou now need to
modify your approach as follows:

LOAD-CUST-FORM.
MOVE WOWSETPROP TO LOAD-FUNC.
PERFORM CUST-LOAD-UNLOAD.
MOVE CUST-LAST-PURCHASE TO YMD-DATE.
CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT"™ YMD-DATE.

UNLOAD-CUST-FORM.
MOVE WOWGETPROP TO LOAD-FUNC.
PERFORM CUST-LOAD-UNLOAD.
CALL WOWGETPROP USING WIN-RETURN EDIT-H "TEXT"™ YMD-DATE.

CUST-LOAD-UNLOAD.
CALL LOAD-FUNC USING WIN-RETURN CUST-NAME-H
"Text" CUST-NAME.
CALL LOAD-FUNC USING WIN-RETURN CUST-CITY-H
"Text" CUST-CITY.
CALL LOAD-FUNC USING WIN-RETURN CUST-ST-H "Text" CUST-ST.

Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

Example 3: Handling Numeric Data with Scroll Bar Controls
Numeric values are easy to handle with scroll bar controls. Simply use any type of
numeric field with the desired property as follows:

01 NUM-VALUE PIC 9(5) COMP-6.
CALL WOWSETPROP USING WIN-RETURN SCROLLBAR-H **Value' NUM-VALUE.

or

CALL WOWGETPROP USING WIN-RETURN SCROLLBAR-H *Value'™ NUM-VALUE.

Example 4: Handling Numeric Data with Check Box Controls

Several types of controls often represent a True and False value: the value True
corresponds to a numeric value of 1, and the value False corresponds to a numeric value
of 0. These kinds of controls are often used to represent the value of a dataitem with
88-level condition names. If the dataitem is numeric and the conditions are 0 and 1, this
isvery straightforward.

The following example shows that you are using a check box control to indicate whether
acustomer is active or inactive:

01 CUST-ACTIVE PIC 9.
88 CUST-IS-ACTIVE VALUE 1.
88 CUST-IS-INACTIVE VALUE O.

The following function call will set the check box state:
CALL WOWSETPROP USING WIN-RETURN CB-H "State' CUST-ACTIVE.
The following function call will retrieve the check box state:

CALL WOWGETPROP USING WIN-RETURN CB-H "'State' CUST-ACTIVE.

If your dataitem and condition name are not numeric, or have values other than one and
zero, you will have to use logic more like that shown in the following example:

01 CUST-WHLSLE PIC X.
88 CUST-I1S-WHLSLE VALUE ""Y™.
88 CUST-I1S-NOT-WHLSLE VALUE "'N™.
To set the check box state:

IF CUST-1S-WHLSLE

CALL WOWSETPROP USING WIN-RETURN CB-H "State' WIN-TRUE
ELSE

CALL WOWSETPROP USING WIN-RETURN CB-H *'State"™ WIN-FALSE.

Cobol-WOW User's Guide 75
Addressing Issues in Data Entry Programs

76

To retrieve the check box state:

CALL WOWGETPROP USING WIN-RETURN CB-H *State' NUM-VALUE.
IF NUM-VALUE = 1

SET CUST-1S-WHSLE TO TRUE
ELSE

SET CUST-IS-WHSLE TO FALSE.

Managing User Interaction

Another type of issue that you must deal with in data entry programsinvolves user
interaction. Although there are reasonable approaches to use under Windows to address
thisissue, COBOL programmers are generally unaccustomed to implementing them.
This section covers arange of topics pertaining to this issue and provides examples
illustrating how to respond to user actionsin your Cobol-WOW applications.

Handling input validation. In dataentry programs, it is common to want to validate the
contents of afield after it is entered. In character-based applications, this process was
easy asyou did it after the COBOL ACCEPT statement. However, in Windows your
Cobol-WOW application would respond to an event, which represents user actions,
associated with the field (control) that your application can recognize. Every field
(control) has certain eventsto which it can respond. See Example 1 on page 77.

Dictating entry order for controls. Character-based data entry programs generally
dictate a specific entry order for fields (controls). Although Windows programs usually
do not dictate such a specific order, they can easily support one by using the Tab key to
move through controls in a default tab order. See Example 2 on page 78.

Preventing data entry on a control. If you do not want auser to enter datain a
particular field (control), you must disable it, as detailed in Example 3 on page 78.

Switching to another Windows application. Your program needs to be flexible enough
to accommodate moving between applicationsif the user wants to switch to another
Windows application. Seetwo cases in point in Example 4, on page 79.

Disabling and enabling a validated control. When a user completes data entry of akey
field (control), such as the customer ID, and the value is validated, you do not want the
user to return and change the value of the key control. See Example 5 on page 82.

Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

Example 1: Handling an Invalid Value

In Windows, your first response to handle field validation might be to watch for usersto
press the Enter key, indicating they had completed the field. However, Enter is not the
key usually used for moving between fields (controls) under Windows. (The Enter key is
discussed in Example 2 below.) Such aresponse also overlooks the use of the mouse:

the user might have clicked on another field with the mouse, rather than pressed any key
on the keyboard.

In a Cobol-WOW application, there are two reasonable places to perform input
validation on afield (control): inthe Change event or in the LostFocus event. It is
preferable, however, to perform input validation in the LostFocus event rather than in the
Change event. Y ou can assume that when the user leaves the control, a value has been
entered. The Change event occurs every time the user or your program changes the value
of acontrol, for example, on every keystroke or whenever aWOWSETPROP routineis
called. Unlessyou want to validate at all these times, the LostFocus event is the most
feasible strategy as it indicates that the input focus is moving away from the control.

Y ou can get the value of the control and validate it in the LostFocus event. What if the
valueisinvalid? Instead of going back to the ACCEPT statements (as you would in
character-based programs), under Windows, you can force the user back to the invalid
control with the SETFOCUS function. In this case, the LostFocus event logic is
executed as follows:

CUST-TYPE-LOSTFOCUS.
CALL WOWGETPROP USING WIN-RETURN CUST-TYPE-H "TEXT' CUST-TYPE.
PERFORM VALIDATE-CUST-TYPE.
IF CUST-TYPE-IS-INVALID
PERFORM INVALID-CUST-TYPE-MSG
CALL SETFOCUS USING WIN-RETURN CUST-TYPE-H.

The user will not be allowed to leave the CUST-TY PE field until avalid valueis entered.
The SETFOCUS function solution, however, has implications on switching to another
Windows application, as discussed in Case 1 of Example 4 (see page 79).

Cobol-WOW User's Guide 77
Addressing Issues in Data Entry Programs

78

Example 2: Dictating Entry Order for Controls

A default order for moving through controls can be assigned in the Cobol-WOW
Designer through the Tablndex property. The Tablndex is the order through which the
controls should be moved when the user presses the Tab key. Noticethat thereisalso a
TabStop property. Windows will stop at controls with TabStop set to True only when
the Tab key is pressed. The Enter key is generally used to indicate that the default button
on the form should be pressed; it is not used for moving between controls.

In some situations, such as in the preceding input validation example, you may want to
position the user on a specific control. Thisis performed with the SETFOCUS function.
Y ou can use SETFOCUS to override the default tab order (see page 22) by detecting the
Tab key in the KeyDown event and calling the SETFOCUS function. You also can
disable automatic tabbing between controls by setting the DialogM otion property of the
formto False.

Example 3: Preventing Data Entry on a Control

In character-based applications, it was easy to prevent a user from entering avalueinto a
field. You simply did not ACCEPT it. Under Windows, any enabled control on aform
can be accessed by the user. The key word hereis“enabled.” If you do not want a user
to Tab to or click acontrol, you must disableit.

For example, you have a customer maintenance form with Customer 1D as the key
control. Y ou want the user to enter the customer identification number, then you will
read the file, load the form, and | et the user modify the rest of the fields. If you simply
present the form with all the controls enabled, there is no way to prevent the user from
clicking one of the other controls before completing the Customer ID control. Disabling
all the other controls on the form, however, isinconvenient.

Let'slook at how you might handle this situation if you use an edit box control with the
user entering the customer ID. (A more appropriate solution in this situation, however,
would be to use a combo box for the Customer ID control, since it allows the user to
either enter a customer ID or select a customer from alist.)

Thefirst issueis positioning the user in the Customer 1D control. Cobol-WOW
automatically positions the user in the first control (set by the Tablndex property) of the
form when the formis created. To avoid destroying and recreating the form every time
the user wants to access a different customer, you will use the SETFOCUS function.
Add the following code to your OK and Cancel buttons, so that after every completed or
canceled maintenance operation, the user will be repositioned in the Customer ID
control. Be sure to place this code after the other OK or Cancel command button logic.

Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

For example:

OK-CLICK.
*Followed by logic to save data.

éALL SETFOCUS USING WIN-RETURN CUST-ID-H.

CANCEL-CLICK.
*Followed by logic to cancel changes.

CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

Y ou also may want to add the SETFOCUS call to the Create event for your form. Then
your code will not be sensitive to the Tablndex value of the CUST-ID control.

Now that you know the user will start with the CUST-ID control, you need to keep the
user there until avalid customer ID is entered. However, the user may switch to another
Windows application. How can you handle this? See case 2 in Example 4 on page 80.

Example 4: Switching to Another Windows Application

Case 1. What if the user, however, wants to switch to another Windows application?
Using the logic in Example 1 (see page 77), that would not be possible. Perhaps using
the SETFOCUS function is not the best solution.

Let’s say that the customer type control is one of many controls on the form. The user
begins to enter the value, then decides to switch to another application. Your LostFocus
code is executed and you determine the customer typeisinvalid. You display awarning
message, but do not call the SETFOCUS back to CUST-TYPE. The user moves on to
the other application, then switches back to your application by clicking afield other than
CUST-TYPE. The customer type control now contains an invalid value. To protect the
integrity of your data, you will need validation logic somewhere else in order to detect
thisresponse. The OK button would appear to be an ideal place, as presumably your
user will click the OK button to save the data. Then, you could set focus back to the
CUST-TYPE field if the value isinvalid, as shown in the following example:

OK-CLICK.
PERFORM VALIDATE-CUST-TYPE.
IF CUST-TYPE-IS-INVALID
PERFORM INVALID-CUST-TYPE-MSG
CALL SETFOCUS USING WIN-RETURN CUST-TYPE-H.

Cobol-WOW User's Guide 79
Addressing Issues in Data Entry Programs

Thisis, of course, amatter of personal preference. Windows applications should be as
flexible as possible. From a programming viewpoint, it would be simpler to include the
SETFOCUS in the LOSTFOCUS logic, although it would inconvenience your users.
Without the SETFOCUS, the LOSTFOCUS logic looks like the following:

CUST-TYPE-LOSTFOCUS.
CALL WOWGETPROP USING WIN-RETURN CUST-TYPE-H "TEXT' CUST-TYPE.
PERFORM VALIDATE-CUST-TYPE.
IF CUST-TYPE-IS-INVALID
PERFORM INVALID-CUST-TYPE-MSG.

Case 2. If the user clicks on another control on the form, you want to keep them on
CUST-ID, asdiscussed in Example 3. If they click another application, however, you
want to let them move on to that program. |Isthere asimple way you can tell if they are
moving to another application?

Windows provides afunction called ISCHILD, which tells you whether a control isa
child of aform. You can use this function to determine whether the user has clicked on
another control on the form. Hereisan example of the logic:

CUST-1D-LOSTFOCUS.
*Get the cust ID and validate it, as described previously.

IF CUST-I1D-INVALID
CALL GETFOCUS USING CURRENT-H
CALL ISCHILD USING WIN-RETURN DATANTRY-H CURRENT-H
IF WIN-RETURN = WIN-TRUE
CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

First, use the GETFOCUS function to determine what form or control has focus. Then,
use the ISCHILD function to determine whether that form or control (CURRENT-H) isa
child control of the form (DATANTRY-H). If itis, set focus back to the CUST-ID
control. Otherwise, you can let the focus go to wherever the user placesit.

That process, however, solves only half the problem. What happens when the user clicks
back on the same form, but to a different control? Y ou need to catch that event too and
force the user to the CUST-ID control.

Whenever aform or control gets focus, the GetFocus event occurs. When a control on
an inactive form gets focus, the GetFocus event occurs for both the form and the control.
If the user switches back to the form after switching to some other application, no matter
what control is clicked on, the GetFocus event will occur for the form. You can add a
SETFOCUS call to the form’s GetFocus event to make sure the user goes back to the
CUST-ID contral.

80 Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

There is one more detail. If the user has already completed the CUST-ID field, you do
not want to force the user back to it. 'Y ou could determine whether to force the user to
the CUST-ID control by validating CUST-ID again, but that might disrupt the file
position or some data value in the record. Instead, modify the LostFocus code to set a
flag as shown in the following example:

CUST-ID-LOSTFOCUS.
*Get the cust id and validate it, as described previously.

IF CUST-ID-INVALID
CALL GETFOCUS USING CURRENT-H
CALL ISCHILD USING WIN-RETURN DATAENTRY-H CURRENT-H
IF WIN-RETURN = WIN-TRUE
CALL SETFOCUS USING WIN-RETURN CUST-I1D-H
ELSE
SET FORCE-FOCUS TO TRUE
END-1F
ELSE
SET FORCE-FOCUS TO FALSE.

Now you can add this code to the GetFocus event for the form:

DATANTRY-GETFOCUS.
IF FORCE-FOCUS
CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

The user will have to enter avalid customer ID before anything else can be done on
the form.

Cobol-WOW User's Guide 81
Addressing Issues in Data Entry Programs

Example 5: Disabling and Enabling a Validated Control

To prevent a user from returning and changing a value after it has been validated, you
need to make one more change to the L ostFocus code:

CUST-1D-LOSTFOCUS.
*Get the cust id and validate it, as described previously.

IF CUST-I1D-INVALID
CALL GETFOCUS USING CURRENT-H
CALL ISCHILD USING WIN-RETURN DATANTRY-H CURRENT-H
IF WIN-RETURN = WIN-TRUE
CALL SETFOCUS USING WIN-RETURN CUST-ID-H
ELSE
SET FORCE-FOCUS TO TRUE
END-1F
ELSE
CALL ENABLEWINDOW USING WIN-RETURN CUST-ID-H WIN-FALSE
SET FORCE-FOCUS TO FALSE.

The ENABLEWINDOW function, when used with the argument WIN-FALSE, disables
the control. In order to enableit, return to the logic for the OK and Cancel buttons:

OK-CLICK.
*Followed by logic to save data.
CALL ENABLEWINDOW USING WIN-RETURN CUST-1D-H WIN-TRUE.
CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

CANCEL-CLICK.
*Followed by logic to cancel changes.
CALL ENABLEWINDOW USING WIN-RETURN CUST-1D-H WIN-TRUE.
CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

Y ou need to make sure you enable the control before you set focustoit. Y ou cannot set
focus to a disabled control.

82 Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

Using Function Keys for Special Options

Another technique commonly used in character-based data entry programsis that of
using function keys for special options. This also can be accomplished under Windows,
although before we describe how it is done, let’ s examine some more Windows
programming principles.

Windows, afeature-rich, flexible environment, allows you to devel op software that will
work virtually in any capacity you wish. That being said, you need to do things the
Windows way. Not becauseit is necessarily better, or because it is an industry standard,
but because it will make your coding easier. While Windows is very flexible, it was
designed with a certain orientation, which was not function-key nor data-entry-program
driven.

It isimportant to know how to do under Windows what you could do in a character-
based environment. Thisisthe skill set and basic approach to software development you
have perfected over the years. However, mirroring that approach exactly under
Windows will be more difficult than transitioning to a more Windows-like approach for
you and your users both.

Function keys are a good example of this point. The KeyDown and KeyUp events,
provided on virtually al controls, return the value of the key pressed, thereby making
function key detection possible. The Windows approach to software design, however,
mandates the use of pulldown menus or command buttons for executing the type of
functionality you have been used to assigning to function keys. We recommend that you
give serious consideration to implementing these approaches before implementing
function keys.

Implementing Function Keys in Cobol-WOW

Note The following description on how to detect function keys applies only for
Windows intrinsic controls.

When any key is pressed, the KeyDown event istriggered. When it is released, the
KeyUp event istriggered. If the key that was pressed and released was an ASCI| key,
the KeyPress event is a so triggered.

All of these events return a value identifying the key in WIN-WPARAM. Cobol-WOW
automatically moves this value to WIN-KEY, which isanumeric field that is redefined
to include a one-byte, alphanumeric field, WIN-CHAR. Y ou can, therefore, examine the
key as numeric or a phanumeric data.

Cobol-WOW User's Guide 83
Addressing Issues in Data Entry Programs

If the value isthat of an ASCII character, WIN-CHAR will contain the alphanumeric
character value. Otherwise, WIN-KEY will contain a numeric value identifying the key.
Thisvalueis called avirtual key code. Thevaluein WIN-KEY can be compared to the
virtual key values defined in windows.cpy. The names of these values more or less
correspond to the key names.

Now you are ready to detect function keys (remember, however, that thisis not the
Windows approach). If you want to use F7 key to trigger a customer lookup in the
CUST-ID field, add the following code to the KeyDown event for the CUST-ID field:

CUST-1D-KEYDOWN .
IF WIN-KEY = VK-F7
PERFORM CUSTOMER-LOOKUP.

What if you added several specia key actions to the same event? In this case, you might
want to switch to the EVALUATE statement, although this step is not recommended:

CUST-1D-KEYDOWN .
EVALUATE WIN-KEY

WHEN VK-F7 PERFORM CUSTOMER-LOOKUP
WHEN VK-F20 PERFORM ..
WHEN VK-NUMLOCK PERFORM ..
WHEN VK-ADD PERFORM ..
WHEN VK-NUMPAD3 PERFORM ..
WHEN VK-PRINT PERFORM ..

END-EVALUATE.

This key detection will be active only for the CUST-ID field. What if you want to assign
aglobal function key action that appliesto every field on the form? The KeyPress event
for the form, however, istriggered only under one of the following conditions:

e Whentheformisactive.
e No control on the form has focus.
o Akeyispressed.

When a control has focus and akey is pressed, the form KeyPress event is not triggered.
Y ou can, however, simulate it by adding the following code to the KeyPress event for
each control on the form:

PERFORM FORMNAME-KEYPRESS.

Then, the EVALUATE or IF statement used for key detection could be placed in the
form’s KeyPress event and would be executed when any key is pressed in any control,
providing global detection. This behavior isvery non-Windows-like. Windows provides
accelerators for buttons and menu commands.

84 Developing with Cobol-WOW
Addressing Issues in Data Entry Programs

Sample Program

The sample project, DATANTRY, demonstrates all of the techniques discussed in this
section except function key detection.

DATANTRY isavery simple data entry program that allows maintenance of afile with
only onerecord init. Itisacustomer record with akey value of 000001. Enter the key
value and press Tab or click another field. Thefile will be read and the data displayed.
Make any changes you want and press OK to save them or Cancel to discard them.

This sample is not intended to demonstrate how to design your user interface under
Windows. Y ou should use some type of list box or combo box for entering customer
numbers. 'Y ou might want to support Add optionsin your customer maintenance
program. This program simply illustrates how to implement the types of approaches we
used to use in the character-based world under Windows.

Working with Menus

Menus provide a simple, consistent, and intuitive way to inform users of options (menu
items) available when running a program. The Cobol-WOW Designer contains a Menu
Editor dialog box (see page 15) that makes menu creation easy. (See*“Creating a Menu”
in Chapter 2, Tutorial, for further information.)

A menu is another type of object you add to your form. A menu has two parts. the
horizontal bar at the top of the form, which is always present, and the vertical menus
that appear when atop-level itemis selected. Theline at the top of the formis called
the top-level menu. The menus that “ pop up” when atop-level item is selected are
called pop-up menus. The top-level menu is actually constructed from the titles of the
pop-up menus.

Menus are another built-in part of Windows, similar to intrinsic controls. Y ou do not
need to distribute any special files to support menus.

Using Menus

Menus are one of the simplest objects to usein your programs. They have one purpose:
to indicate to the program that the user has selected an option (menu item).

A menu item can be selected from a menu in one of three ways. First, the user can select
the menu item by clicking it. Second, by pressing the Alt key, the user can highlight the
menu, use the arrow keys to move to amenu item, and press Enter to select it. Third, the

Cobol-WOW User's Guide 85
Working with Menus

86

user can press an accelerator key that is associated with the menu item. Accelerator keys
are assigned in the Menu Editor dialog box.

When amenu item is selected, the Click event for that menu item is executed. Thisisthe
only event available for menu items. There are no data associated with menu items.
Menus are very similar to command buttons, in that they are a request for action.

Menus do not have properties like controls do, but there are some characteristics of menu
items you may want to manipulate in your programs. The most common ones to use are
the Checked/Unchecked and Enabled/Disabled characteristics. Y ou may also want to
support pop-up menus (see page 88).

Checking and Unchecking Menu Items

Menu options (items) can be checked and unchecked in much the same way as check
boxes. Menu items let the user select whether or not to activate a certain feature that
affects program execution. The checked state of the menu item is toggled every time the
item is selected (clicked). Since Windows does not do this automatically, it must be done
at runtime in your programs using the CHECKMENUITEM function (see also the
Functions and Messages online Help file).

Note For information about displaying a check mark on a menu item at design time
using the Menu Editor dialog box, see page 15.

A menu item is checked with the following code:
INITIALIZE MENU-FLAGS.
SET MF-BYCOMMAND MF-CHECKED TO TRUE.
CALL CHECKMENUITEM USING WIN-RETURN MENU-H ITEM-ID MENU-FLAGS.

MENU-FLAGS isacollection of options that affect menus. By first initializing
MENU-FLAGS, all the options are unset so that options can be selected.

MF-BY COMMAND suppliesthe ID of the menu item to be checked.
MF-CHECKED indicates that the menu item should be checked.
WIN-RETURN returns 1 if the menu item was already checked, O if it was not.

MENU-H is the handle of the menu containing the item to be checked. If theitemis
on a pop-up menu, MENU-H should be the handle of the pop-up menu, rather than the
top-level menu.

Developing with Cobol-WOW
Working with Menus

ITEM-ID isthe ID number of the item to check.

The menu item is unchecked in the same manner, but MF-UNCHECKED is used in place
of MF-CHECKED.

Enabling and Disabling Menu ltems

Menu options (items) can be enabled and disabled at runtime in the same manner as
controls, although thisis not done with an Enabled property, but rather by using the
ENABLEMENUITEM function. (For more information, see the Functions and
Messages online Help file))

Note For information about enabling or disabling a menu item at design time using the
Menu Editor dialog box, see page 15.

A menu item is disabled with the following code:

INITIALIZE MENU-FLAGS.
SET MF-BYCOMMAND MF-DISABLED MF-GRAYED TO TRUE.
CALL ENABLEMENUITEM USING WIN-RETURN MENU-H ITEM-ID MENU-FLAGS.

Most of the parameters for the ENABLEMENUITEM are the same as defined for the
CHECKMENUITEM function, described in the previous section. MF-DISABLED and
MF-GRAY ED are new options that respectively disable and gray out the option.
Disabling the option does not automatically gray it out asis the case with controls.
Graying must be explicitly requested with the MF-GRAY ED option.

To enable the menu item, use the following code:

INITIALIZE MENU-FLAGS.
SET MF-BYCOMMAND MF-ENABLED TO TRUE.
CALL ENABLEMENUITEM USING WIN-RETURN MENU-H ITEM-ID MENU-FLAGS.

Notice that it is not necessary to specify “un-gray” when the option is enabled. That
characteristic is enabled by default. The following code causes the option to be grayed
out even when it is enabled:

INITIALIZE MENU-FLAGS.

SET MF-BYCOMMAND MF-ENABLED MF-GRAYED TO TRUE.
CALL ENABLEMENUITEM USING WIN-RETURN MENU-H ITEM-1D MENU-FLAGS.

This behavior would, however, be unlike the expected Windows behavior.

Cobol-WOW User's Guide 87
Working with Menus

88

Popping Up Menus

One interesting technique that can be used with menus is to have the program pop up a
menu on the display without the user having selected it from the top-level menu. This
type of menu is usually referred to as a context-sensitive pop-up menu. Such menus
provide an efficient way to access frequently used commands without the need to
navigate a menu bar. They also can include commands that logically apply to the limited
context of the selected object. For example, when input focus moves to a customer
number field, the program could pop up a menu listing functions related to customer
number entry and place the menu next to the field. The user can select an option from
the menu. By clicking outside the pop-up menu (or a specified area), the menu can be
dismissed. If the user selects an option from the menu, the Click event associated with
that menu option istriggered.

Use the TRACKPOPUPMENU function (see also the Functions and Messages online
Help file) to accomplish thisfeature. A call to the TRACKPOPUPMENU function
appears as follows:

CALL TRACKPOPUPMENU USING WIN-RETURN MENU-H O X Y O WND-H RECT
WIN-RETURN returns 1 if the menu was displayed, O if it was not.

MENU-H is the handle of the pop-up menu to display. This cannot be the handle of the
top-level menu.

The two 0s are unused parameters for some future functionality.

X andY arethe pixel coordinates at which the top |eft corner of the menu should be
displayed. These coordinates are relative to the entire screen, not the form. Y ou may
need to use the CLIENTTOSCREEN function (described in the Functions and Messages
online Help file) to help you calculate this position.

RECT isan optional parameter. By default, Windows erases the pop-up menu if the user
clicks outside the menu. This behavior can be achieved by passing O for this parameter
instead of RECT. However, RECT can befilled with values and passed to define a
specific area of the screen the user should be allowed to click without erasing the menu.
This action overrides the default behavior.

Developing with Cobol-WOW
Working with Menus

Chapter 5: Debugging

Cobol-WOW makes Windows programming fairly straightforward, but as your
application grows in complexity, you will need to test your program and debug your
source code. This chapter discusses three different approaches to debugging a
Windows-based application created with Cobol-WOW:

e Debugging with COBOL DISPLAY Statements
e Debugging with the RM/COBOL Interactive Debugger
e Debugging with CodeWatch (Liant’s standalone source-level debugger)

Note It ispossible to enable messages that aid in debugging a Cobol-WOW application
at runtime by adding the following entry to the cblwow.ini file (see page 3):

[WOWRT]
DevelopmentMode=True

Debugging with COBOL DISPLAY Statements

The RM/COBOL runtime system creates a window to use for supporting the standard
COBOL user interface. Cobol-WOW programs create their own windows, which makes
it easy to use the COBOL main window for debugging. The first way you might use this
window is by inserting DISPLAY statementsin your programs. An example form
named SHOWME illustrates this process. The project nameis showmewpj; the
executable program name is showme.cbl. (For procedures on executing the SHOWME
program, see page 90.)

The SHOWME form contains a number of different controls. Every event associated
with every control on the form, as well asthe form itself, hasa DISPLAY statement
associated with it. When you run the example, you will see the SHOWME form and the
COBOL main window displayed. Asyou use the form and controls, you will see the
result of the DISPLAY statements scrolling by in the COBOL main window.

Since Cobol-WOW programs are event-driven, rather than sequential, you may wonder if
certain events occurred, or if certain sections of logic were executed. Y ou cannot assume
that because your program is at point C, you passed points A and B. If you insert
DISPLAY statements at key pointsin the program, you will know whether or not those
points have been reached.

Cobol-WOW User's Guide 89
Debugging with COBOL DISPLAY Statements

90

Unlike traditional COBOL code, event-driven coding associates instructions with a
particular event on a particular control. This, in turn, meansthat if thereis a syntax error
at compile time, the source of the error might not be immediately apparent. To avoid this
problem, compile your project every time you put code against an event. Inthisway, if
thereis a compile error, you know exactly where it came from. Additionally, the
compilation will save the program, which is a good safeguard against system crashes.

It is good practice to test almost as often as you compile. Text fragments as you develop,
rather than waiting to test until you’ ve finished coding the entire program. Testing
fragments allows you to isolate errorsin logic.

Executing the SHOWME Program

Compile and run the SHOWME program. Just starting the program generates a number
of events. Create events, Size events, even Change events when the default text is set.

Then see how many different events you can generate by working with the form and the
various controls. Windows reports lots of events, giving you many opportunities to
customize the behavior of your programs.

How the SHOWME Program Works

Every available event in the Cobol-WOW Designer for each control hasa DISPLAY
statement associated with it. When the event occurs, the DISPLAY statement displays
the name of the control for which the event occurred and the name of the event.

Debugging
Debugging with COBOL DISPLAY Statements

Debugging with the RM/COBOL Interactive
Debugger

If you have been using RM/COBOL very long, you probably have used the Interactive
Debugger in the runtime system. Whileit is unable to display your source code as you
debug, it can be a straightforward way of quickly checking out isolated problemsif you
have alisting file conveniently available.

The Interactive Debugger works better with Cobol-WOW programs than it does with
DOS, UNIX, or non-Cobol-WOW Windows programs. Because the Debugger has
exclusive access to the COBOL main window, it does not have to share it with the
program that is executing. This prevents the Debugger from being limited to operating in
asingle line or from scrolling the other contents of the display out of view.

The BREAK program (located in the cobolwow\samples folder) demonstrates how the
Debugger works with a Cobol-WOW program. The project name is break.wpj; the
executable program nameis break.cbl. When you run the BREAK program, you will
set a breakpoint on the event-handling code for the Size event in the form. When you
reach that breakpoint, you can use the Debugger to display the value of the Height, Left,
Top, and Width properties of the form. See the following section for procedures on how
to execute the BREAK program.

Executing the BREAK Program

Compile the BREAK program with the L and Y RM/COBOL Compile Command
options. Look at thelisting file and find the line number of the following line of code:

CALL WOWGETPROP USING WIN-RETURN BREAK-H
"Left" LEFT-VALUE
"Top' TOP-VALUE
"Width"™ WIDTH-VALUE
"Height" HEIGHT-VALUE.

Remember the line number because you will need it to set a breakpoint.

Next, run the program with the D RM/COBOL Runtime Command option to start the
program and enable the Interactive Debugger. The COBOL main window will display
and the debug prompt will be displayed in the lower-left corner of the COBOL main
window.

Cobol-WOW User's Guide 91
Debugging with the RM/COBOL Interactive Debugger

Type the following command:

B NNNNN

where NNNNN is the line number of the code identified above, and press Enter. This
action sets a breakpoint at the specified line. Now, every time the runtime system is
ready to execute this line of code, execution will stop and the debug prompt will be
displayed.

Typethe letter R and press Enter to run the program. The breakpoint is reached
immediately because the breakpoint is associated with the Size event. A Sizeevent is
generated when aform is created.

At this point, something very interesting happens. Based on your experience in
character-based environments, you would expect the Cobol-WOW Designer window to
freeze and no longer respond to user input. This, however, isnot the case. Since
Windows — not the application program — is controlling the form, the form and
controls will continue to respond to user input events. These events are placed in a queue
and will wait for the application to retrieve them from the queue.

When the debug prompt is displayed, the COBOL main window isinactive. To work
with the Debugger, you must click the mouse in the COBOL main window or press
Alt+Tab until you see the COBOL main window listed. Do this now so that the COBOL
main window becomes active.

The runtime system is ready to execute the WOWGETPROP function.

Typethe letter S and press Enter to tell the Debugger to step through the execution of
thisline. The debug prompt isimmediately redisplayed and you can examine the values.

To display the value of the fields, type the following Debug commands, pressing Enter
after each command:

LEFT-VALUE
TOP-VALUE
WIDTH-VALUE
HEIGHT-VALUE

Then type R and press Enter to resume execution of the program. If you happened to
resize the form while the runtime system was paused for debugging, you will
immediately go back to the breakpoint again. Try resizing the form several times and see
how the values change.

92 Debugging
Debugging with the RM/COBOL Interactive Debugger

How the BREAK Program Works

The BREAK program works by using the COBOL main window for the Debugger and
the Cobol-WOW Designer window for the user interface. Thisisan ideal situation, since
the two windows do not interfere with each other.

However, there are two things to remember when debugging in this manner. First, one
window is always active, either the Debugger or the form. To work with one or the
other, you must click or press Alt+Tab to the desired window. When the Debugger
reaches a breakpoint, it will automatically display the debug prompt, but it will not make
the COBOL main window active. To type Debug commands, you must make the debug
window active.

Secondly, while the runtime system is stopped at a debug breakpoint, the form will
continue to respond to user input. Y ou can move and resize aform, press buttons, and
even type datainto input fields. The COBOL program will not, however, be made aware
of any of these events until the runtime execution isresumed. The events are not lost and
will then be processed in the order they occurred.

Debugging with CodeWatch

CodeWatch, Liant’s standal one source-level debugger, also can be used to debug your
program. To use CodeWatch, follow these steps:

1. Fromthe Options menu in the Cobol-WOW Designer window, click Edit
Preferences.

2. OntheToolstab of the Preferences dialog box, enter Y=3 in the Compiler area
Command Tail text box.

The Y =3 setting places both the symbol table and the debug line table (used by
CodeWatch to display the source program) in the object file. Additionally, the Y=3
setting includes the allocation map and cross-reference information in the debug line
tableif the A and/or X Options are also specified.

Cobol-WOW User's Guide 93
Debugging with CodeWatch

Geresd | Cobm | Shgwend | Cote
Tadli | EdsreiEmg | e
Carmbs
Fah I.""J'l'.g’r-"l-:l'-l:ll.'if.'l'.
Cawnard Tl i
Rimlres
Fah b\ Program Pl FHETBOL
Cormnand Tk |
[ietagom
Parh - \Progran Pl PR LTS
Panals T sl
W Pl Rl i P

i | c-u-.-ll R

Preferences Dialog Box — Tools Page

3. SettheL Option inthe Toolstab of the Preferences dialog box in the Compiler
Command Tail text box to get an automatic listing file to help identify the areawith
the problem.

Note If you set the L Option in this manner, you must remove the entry E L from
the Compiler Command Line Arguments text box in the Project Options dialog box.
Failing to do so will cause the E L entry to take precedence over the L entry. (To
open the Project Options dialog box for the current project, click Options on the
Project menu.)

(=] 4. Click the Run Debugger toolbar button to invoke CodeWatch.

Make sure that the CodeWatch environment can find the wowrt32.dll that Cobol-WOW
needs at runtime. Y ou can do this either by changing the settings in the Windows
Registry or by adding the DLL in the CodeWatch wizard as you start it.

Once you have your application loaded in CodeWatch, you can step through it in the
normal manner. Asyou run the program, the additional code that Cobol-WOW has
generated isdisplayed asit is executed. If you do not wish to see this code, set a
breakpoint at arelevant place in an event code and disable animation until you reach
the breakpoint.

94 Debugging
Debugging with CodeWatch

Appendix A: Setting Properties
and Events for Intrinsic Controls
and Forms

This appendix describes the properties and events of each of the intrinsic controls used in
the Cobol-WOW programming system as well as the properties and events for forms.

Manipulating Properties at Runtime

Unless otherwise stated, properties for intrinsic controls and forms can be manipulated at
runtime using the WOWSETPROP and WOWGETPROP functions, as described in the
examples shown on pages 57 and 58, respectively.

Intrinsic Controls

Intrinsic controls are part of the Windows operating system. They are awaysincluded in
the Cobol-WOW Toolbox when you first install Cobol-WOW, unlike ActiveX controls
(see Appendix B), which can be removed from or added to the Toolbox. During design
time, intrinsic control properties are displayed and modified through the Properties dialog
box (see page 10).

Theintrinsic controls include the following:

e Animation Control. Displaysan AVI clip. AnAVI clip isaseriesof bitmap frames
that run like amovie. Only AV files without sound can be played using the
animation control.

e Bitmap Control. Displays bitmap files. The bitmap control acts like acommand
button when clicked.

e Check Box Control. DisplaysaY es/No, True/False, or On/Off option. You can
check any number of check boxes on aform at onetime.

Cobol-WOW User's Guide 95
Manipulating Properties at Runtime

e Combo Box Control. Combines atext box with alist box. Allowsauser totypeina
selection or select an item from a drop-down list.

e Command Button Control. Carries out acommand or action when a user chooses it.

o Date Time Picker Control. Allows the user to select a date and time, and to display
that date-time in the specified format.

e Edit Box Control. Provides an areato enter or display text.
e Ellipse Shape. Draws the geometric shape of an ellipse on the form.

e Group Box Control. Providesavisual and functional container for other controls. It
is generally used to enclose related controls (usually check boxes or option buttons).

e |PAddress Control. Allowsthe user to enter a numeric address in Internet protocol
(IP) format. This control also allows the application to obtain the address in numeric
form rather than in text form.

e Line Shape. Drawsaline on the form.

e List Box Control. Displaysalist of choices from which the user can select one or
more items.

e Month Calendar Control. Displaysamonthly calendar. The calendar can display
one or more months at atime.

e Option Button Control. Presents mutually exclusive optionsin an option control.
Option buttons are usually used with the group box control to form groups where
only one of the listed buttons can be selected at onetime.

e Progress Bar Control. Displays a pattern of blocks that show the status of along
operation.

e Rectangle Shape. Draws the geometric shape of arectangle on the form.

e Rounded Rectangle Shape. Draws the geometric shape of arectangle with rounded
corners on the form.

e Scroll Bar Controls. Allow auser to add scroll bars (horizontal and/or vertical) to
controls that do not automatically provide them. (These are not the same as the
built-in scroll bars that are found with many controls.)

e Static Text Control. Displaystext, such astitles or captions, in regular outlines or
filled rectangles, which the user cannot interact with or modify.

96 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

e Status Bar Control. Displays statusinformation in a horizontal window at the
bottom of an application window.

e Tab Control. Actsasacontainer for other controls and places a series of tabs at the
top of the container.

e Timer Control. Provides ameasured timeinterval that can be tied to events.

e Toolbar Control. Displays a series of buttons that can be placed at the top and/or
bottom of aform.

e Trackbar Control. Displaysawindow containing a slider and optional tick marks
used to select avalue or a set of consecutive valuesin arange.

e Updown Control. Consistsof a pair of arrow buttons that the user can click to
increment or decrement a value, such as a scroll position or a number displayed in a
companion control.

Note The description of properties and events for forms begins on page 190.

Animation Control

An animation control is used to display an AVI clip. An AV clip isaseries of bitmap
frames that run like amovie. Only AVI files without sound can be played using the
animation control.

To add an animation control to aform, click Animate from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’ on page 179.

Cobol-WOW User's Guide 97
Intrinsic Controls

At the current time, properties unique to the animation control (AnimationFile, AutoPlay,
Center, Play, and Transparent) can be manipulated only in the Cobol-WOW Designer.
The runtime functions, WOWGETPROP and WOWSETPROP, will not recognize these
properties. Runtime handling of the animation control can be accomplished by using the
ACM- messages listed in the Event-Handling Code dialog box.

Properties

*AnimationFile Enabled Name *Transparent
* AutoPlay Height *Play Visible
*Border Left Tablndex Width
*Center Locked Top Z-Order
Events

* Start *Stop

AnimationFile Property

The AnimationFile property specifies the name of the AVI file containing the animation
to play in the control.

AutoPlay Property

The AutoPlay property determines when the animation will begin playing.

The following table lists the possible values of the AutoPlay property:

Value Description

False Causes the control to wait until it receives an ACM-PLAY
message to begin playing (the default).

True Causes the animation to begin playing as soon as the control is

created (and an animation file is specified).

98 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Border Property

The Border property determines whether or not a border is displayed around the
animation.

The following table lists the possible values of the Border property:

Value Description
False Does not display a border around the animation.
True Displays a border around the animation (the default).

Center Property

The Center property determines whether or not the animation is centered in the control.

The following table lists the possible values of the Center property:

Value Description
False Does not center the animation (the default).
True Centers the animation.

Play Property
The Play property determines when the animation starts or stops playing.

The following table lists the possible values of the Play property:

Value Description
False Causes the animation to stop playing (the default).
True Causes the animation to start playing.

Cobol-WOW User's Guide
Intrinsic Controls

99

Transparent Property

The Transparent property determines whether the animation will be drawn with a
transparent background. Currently, this property does not work properly for all
animations.

The following table lists the possible values of the Transparent property:

Value Description

False Causes the animation to be drawn with an opaque background
(the default).

True Causes the animation to be drawn with a transparent
background.

Start Event

The Start event notifies an animation control’ s parent window that the associated AV
clip has started playing. This notification message is sent in the form of aWM-
COMMAND message.

Stop Event

The Stop event notifies an animation control’ s parent window that the associated
AV clip has stopped playing. This notification message is sent in the form of a
WM-COMMAND message.

Bitmap Control

The bitmap control is used to display bitmapped images. The image can be displayed in
several ways, including being tiled or scaled to fit the size of the control. A bitmap
defines an image or picture as a pattern of dots (or pixels) and has the file extension
.bmp. Even though Windows does not implement or package a bitmap control, it does
provide bitmap handling. Cobol-WOW adds the bitmap control to provide a convenient
way to use bitmaps on aform.

To add a bitmap control to aform, click Bitmap from the Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’ on page 1809.

100 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Properties

BackColor Enabled Name Width
*Bitmap Height Tablndex * X offset
*BitmapMode Left Top *Y offset
*Border Locked Visible Z-Order
Event

Click

Note The bitmap control reports one event, Click, if the mouseis clicked inside the
control. Since this control recognizes the Click event, you can use it anywhere you
would use a command button. Grouping several bitmap controls together horizontally
across the top of the screen, usually within a group box control, allows you to create a
toolbar in your application. Unlike command buttons, however, bitmap controls do not
appear pushed in when clicked, thereby providing no visual cue that the “button” is being
pushed.

Bitmap Property

The Bitmap property specifies the bitmap image that is displayed on the control. (The
BitmapM ode property setting, described in the following section, determines the
bitmap’s appearance. If you set the Bitmap property for aform, the bitmap you select is
displayed on the background of the form, behind any controls you have placed on the
form.)

Note The value of this property must be the complete name of abitmap file. If afull
pathname is specified or if the fileisin the working directory, the file will be opened. If
thefileis not located, Cobol-WOW will attempt to open the bitmap file using each of the
directories specified in the RUNPATH environment variable. If the bitmapisnotinthe
working directory or in adirectory specified in the RUNPATH environment variable, a
pathname is also required.

Cobol-WOW User's Guide 101
Intrinsic Controls

BitmapMode Property
The BitmapM ode property determines how the bitmap is displayed in a control.

The following table list the possible values of the BitmapMode property:

Value Description

0 Displaysthe bitmap inits original size (the default). If the
bitmap is smaller than the control, the remaining spaceis
filled with the background color. If the bitmap is larger than
the control, only the portion of the bitmap that fitsinside the
control is displayed.

1 Scales bitmap to fit exactly within the control. This may
result in some distortion of the bitmap image, especialy if the
size difference between the bitmap and the control is
substantial .

2 Tiles bitmap to fit the control. If BitmapModeis set to Tile,
the bitmap, if smaller than the control, is displayed in atiled
pattern multiple times within the control.

3 Sizes the control automatically to fit the specified bitmap
exactly.

Note Changing the value of the BitmapMode property to 1, 2, or 3 at design time or
runtime will set the values of the Xoffset and Y offset propertiesto O.

Border Property
The Border property determines whether or not a border is displayed around the bitmap.

The following table lists the possible values of the Border property:

Value Description
False Does not display a border around the bitmap.
True Displays a border around the bitmap (the default).

102 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Xoffset Property

The Xoffset property determines how far, in pixels, from the left edge of the control the
bitmap isdisplayed. Thisvalueisreset to zero whenever the BitmapM ode property
settings change.

The Xoffset value must be in the range of 0 to the width of the control.

Yoffset Property

The Y offset property determines how far, in pixels, from the top of the control the
bitmap isdisplayed. Thisvalueisreset to zero whenever the BitmapM ode property
settings change.

The Y offset value must be in the range of 0 to the height of the control.

Check Box Control

The check box control displays an option that can be turned on or off. The check box
control is similar to the command button, in that the primary method of operation is
clicking it. The check box control, however, represents data, not a request for action.

The check box solves a programming situation that has always been challenging: onein
which auser must choose between True/False, Y es/No, or On/Off options. Since check
boxes work independently of each other, auser can select any number of check boxes at
the sametime. While these seem liketrivial items, creating a character-based
implementation that includes validation, good user feedback, and convenient operation
are certainly not insignificant. The check box control makes these tasks effortless.

To add a check box control to aform, click Check Box from the Toolbox.

Note If you are working with the check box field/control in an RM/Panels panel library,
See page 232.

Cobol-WOW User's Guide 103
Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’ on page 1809.

Properties

3D Fontltalic Height Top

* Alignment FontName Left *Value
* AutoCheck FontSize Locked Visible
BackColor FontStrikethru Name Width
Caption FontUnderline Tablndex Z-Order
Enabled ForeColor TabStop

FontBold Group *ThreeState

Events

Click KeyDown KeyUp

GotFocus KeyPress LostFocus

Note The user can change the state of a check box in two ways: by clicking with the
mouse or by pressing the Spacebar while the check box has input focus. With either
method, the Click event for the check box istriggered. You may want to add event-
handling code to this event to enable or disable other controls based on the new state of
the check box.

Alignment Property

The Alignment property controls the position of the text in a check box control. By
default, the caption of acheck box displaysto the right of the box. The text may be
moved to the left of the box with the Alignment property. When using the 3D property,
however, the text must always be on the right.

The following table lists the possible values of the Alignment property:

Value Description
0 Displays text to the right of the check box (the default).
1 Displays text to the | eft of the check box.

104 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

AutoCheck Property

The AutoCheck property determines whether the state of a check box control is
automatically changed when clicked.

The following table lists the possible values of the AutoCheck property:

Value Description

False Check box will not automatically check or uncheck when
clicked.

True Check box will automatically check or uncheck when clicked
(the default).

ThreeState Property

The ThreeState property determines whether a check box control can be cycled through
two or three states.

When you create the check box, you assign it a caption that describes the option for
which the user is selecting the state (for example, Tax Exempt or Drop Ship). Initidly, a
check box control has two states, checked and unchecked. These are intuitively On/Off,
Yes/No, or True/False selections of whatever the caption describes. The user toggles the
check box to the desired state. When the user presses OK, you simply check the state of
the button to see what condition to store as data.

Y ou can determine whether you want your check box to have two states or three with the
ThreeState property. Thethird state (grayed) is considered to be no choice made or
undefined.

The following table lists the possible values of the ThreeState property:

Value Description
False Check box has two states, checked or unchecked (the default).
True Check box has three states, checked, unchecked and grayed.

Cobol-WOW User's Guide 105
Intrinsic Controls

Value Property

The Value property determines the state of a check box control.

The following table lists the possible values of the Va ue property:

Value Description

0 Check box is not checked (the default).

1 Check box is checked.

2 Check box is grayed (displays only if ThreeState property is
set to True).

Combo Box Control

Many times, you may want to combine the list selection capability of alist box with the
edit box’ s ability to typein avalue. Alternatively, to save screen space, you may wish to
show only a portion of the list box’s selections. And, there may be instances when you
would like to display the currently selected item in a static edit box area when the entire
list isnot displayed. The combo box control can satisfy all these conditions since it
combines the features of a edit box (also known as an edit field) and alist box. Usethis
control to give the user the choice of typing in the edit box area or selecting an item from
thelist portion of the control. Combo boxes can save space on aform.

In addition, if you know how to use a edit box and alist box, you know how to use a
combo box. The properties and events available for a combo box are a composite of
those present in the edit box and list box controls. The messages you use with a combo
box also parallel those that you use with edit boxes and list boxes. These messages,
however, begin with a CB- prefix instead of an LB- or EM- prefix.

]
[

To add a combo box control to aform, click Combo Box from the Toolbox.

Note If you are working with the combo box field/control in an RM/Panels panel
library, see page 232.

106 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’ on page 1809.

Properties

3D Enabled FontUnderline Name Tablndex
* AutoHScroll FontBold ForeColor *OEM Convert TabStop
BackColor Fontltalic Group ScrollBar Top
*Count FontName Height *Sel Text Visible
*CurSel FontSize Left *Sort Width
*DisableNoScroll FontStrikethru Locked *Style Z-Order
Events

Click *DropDown GotFocus KeyPress LostFocus
DblClick *EditChange KeyDown KeyUp *NoSpace

Note The DbIClick and DropDown and events are not supported if the Style property is
set to avalue of 0 (Simple, standard combo box). The DropDown event occurs when the
user double-clicks the drop-down arrow in the text portion of the drop-down combo box
and in the drop-down list box.

AutoHScroll Property

The AutoHScroll property indicates whether the edit portion of a combo box control will
automatically scroll horizontally astext is entered. If the value of this property is set to
0, the user will not be allowed to enter more text than fits within the width of the control.

The following table lists the possible values of the AutoHScroll property:

Value Description
False Disables horizontal scrolling.
True Enables horizontal scrolling of text when typed (the default).

Cobol-WOW User's Guide 107
Intrinsic Controls

Count Property

The Count property is aruntime-only property that lets you determine how many items
areincluded in thelist box portion of the combo box. To get the number of itemsin the
list box:

CALL WOWGETPROP USING WIN-RETURN MYCOMBO-H "COUNT'™ COUNT-FIELD.

CurSel Property

The CurSel property is aruntime-only property that represents the current selection in the
list box portion of the combo box. This value can be queried to determine which itemin
the list box is selected, or set to move the selection to a different item.

DisableNoScroll Property

The DisableNoScroll property determines whether a scroll bar is displayed when the list
box portion of acombo box control is not completely full.

The following table lists the possible values of the DisableNoScroll property:

Value Description
False Scroll bar disappears if combo box is not full (the default).
True Scroll bar isdisabled if combo box is not full.

OEMConvert Property

The OEM Convert property converts characters entered in the edit box portion of a
combo box control from the ANSI character set to the OEM character set and then back
to ANSI. Usethis property for combo box controls that are used to enter filenames.
When a character is converted from the ANSI character set to the OEM character set and
back to ANSI, the resulting character is not always the same as the original character;
however, subsequent conversions from ANSI to OEM to ANSI do result in the same
character.

The following table lists the possible values of the OEM Convert property:

Value Description

False The characters are not converted (the default).

True The characters are converted from ANSI to OEM and back
to ANSI.

108 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

SelText Property

The Sel Text property is aruntime-only property that lets you retrieve the text of the
currently selected list box item. If no item is selected, the value returned is space.

Sort Property

The Sort property determines whether the entries in a combo box control are
automatically sorted.

The following table lists the possible values of the Sort property:

Value Description
False Entries are not sorted.
True Entries are sorted (the default).

Style Property

The Style property determines what type of combo box is created. The three types of
combo boxes are specified with the Style property. The possible values for this property
include simple (standard) combo box, drop-down combo box, and drop-down list box.

A standard combo box always displays an edit box and list box. A drop-down combo
box always displays an edit box, but only displays the list box when the drop-down
arrow displayed beside the edit box is clicked. A drop-down list box always displays a
static edit box control containing the current selection, but, like the drop-down combo
box, only displaysthe list box when the drop-down arrow beside the static text control is
clicked.

Y ou might question why the drop-down list box is a style for combo boxes but is not a
stylefor list boxes. Thisisthe way Windows built this control; it should not cause you
any problems. Windows simply implements these three styles as one control because
they al combine two types of controlsinto one.

Y ou work with the list box portion of a combo box in exactly the same way you work
with alist box. Y ou use messages with a CB- prefix and supply the combo box handle.
Windows knows what part of the combo box to change.

For the edit box portion, work with the combo box properties, events, and messages as
you would an edit box remembering to use the CB-prefix.

Cobol-WOW User's Guide 109
Intrinsic Controls

The following table lists the possible values of the Style property:

Value Description

0 Simple (standard combo box). The edit box (edit field) and list
box portions are always displayed.

1 Drop-down combo box. The edit box portion is aways

displayed but the list box areais only displayed when the drop-
down arrow is clicked.

2 Drop-down list box. The edit box portion is always displayed,
however, it only displays the value of the selection. The edit
box portion will not accept user input. Thelist box portion is
only displayed when the drop-down arrow is clicked.

DropDown Event

The DropDown event occurs when the user double-clicks the left mouse button on the
drop-down arrow in the edit box portion of the drop-down combo box and drop-down
list box.

Note Thisevent isnot supported if the Style property value is set to avalue of 0
(Simple, standard combo box).

EditChange Event

The EditChange event occurs whenever the text displayed in the edit box portion of the
combo box is changed.

NoSpace Event

The NoSpace event occurs when Windows cannot allocate enough internal space to store
the contents of the combo box.

Command Button Control

The command button (also known as push button) control causes an action to occur when
the user either clicks the button or presses akey.

110 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

The command button control is simple to use for both the user and the developer. When
you place a command button on aform, the user can perform one action: push. Unlike
other controls, the command button does not represent any data. 1t represents a request
for action. When a command button is pushed, an action is carried out immediately.

To add a command button control to aform, click Command Button from the Toolbox.

Note If you are working with the command button field/control in an RM/Panels panel
library, see page 234.

Cobol-WOW offers a user several ways to push acommand button;
e Clicking it with the mouse.
e Pressing the Spacebar when the command button has input focus.

e Pressing an accelerator key for the command button while any control on the form
has input focus.

e Pressing the Enter key while any control on the form has input focus.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’” on page 189.

Properties

* Accelerator Fontltalic Height Top
*Bitmap FontName Left Visible
Caption FontSize Locked Width
*Default FontStrikethru Name Z-Order
Enabled FontUnderline Tablndex

FontBold Group TabStop

Events

Click KeyDown KeyUp

GotFocus KeyPress LostFocus

Accelerator Property

The Accelerator property determines what key, if any, should simulate the pressing of the
command button. This property cannot be modified or retrieved at runtime. An

Cobol-WOW User's Guide 111
Intrinsic Controls

accelerator key is defined for the command button by selecting one of the available keys
for the Accelerator property listed in the Properties dialog box. Function keys are
acceptable as accelerator keys. Y ou must include the name of the accelerator key in the
text of the command button so that the user knowsiit is available.

Bitmap Property

The Bitmap property specifies the bitmap image that is displayed on the command button
control. (If you set the Bitmap property for aform, the bitmap you select is displayed on
the background of the form, behind any controls you have placed on the form.)

Note The value of this property must be the complete name of abitmap file. If afull
pathname is specified or if the fileisin the working directory, the file will be opened. If
thefileis not located, Cobol-WOW will attempt to open the bitmap file using each of the
directories specified in the RUNPATH environment variable. If the bitmapisnotinthe
working directory or in adirectory specified in the RUNPATH environment variable, a
pathname is also required.

Default Property

The Default property indicates that a command button control should be pressed when
the Enter (or Return) key is pressed while input focus is anywhere on the form. A
command button with the Default property set to True is displayed with a heavy border.
Only one command button on a form should be set with the Default property.

Note The value of the Default property cannot be set at runtime. The value can,
however, be retrieved at runtime.

The following table lists the possible values of the Default property:

Value Description
False Button is not adefault button (the default).
True Button is a default button.

Date Time Picker Control

The date time picker control alows the user to select a date and time, and to display that
date-time in the specified format. An embedded month calendar control (see page 136)
displays a monthly calendar.

112 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

The date time picker control is based on the Gregorian calendar, which was introduced in
1753. It will not calculate dates that are consistent with the Julian calendar that wasin
use prior to 1753.

To add a date time picker control to aform, click Date Time Picker from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’ on page 179.

Properties

Enabled *Format *MCFontBold *RightAlign *UpDown

FontBold Height *MCFontltalic *ShortDateCentury Visible
Format

Fontltalic Left *MCFontName *ShowNone Width

FontName Locked *MCFontSize Tablndex Z-Order

FontSize *LongDateFormat *MCFontStrikeThru TabStop

FontStrikethru ~ MCColor *MCFontUnderline *TimeFormat

FontUnderline MCColorlndex Name Top

Event

*Change

Cobol-WOW User's Guide 113
Intrinsic Controls

Format Property

The Format property determines the date-time format in which the date is displayed. The
date-time format is based on the user’ sregional settingsin their operating system.

Date and time format elements will be replaced by the actual date and time. They are

defined by the following groups of characters:

Value

Description

i dn
“ ddn

“dda”
“dddd”
“ hn
“hhy

an
“ HHn

“

“MM”

“MMM”

“MMMM”

“

“ i

“

yy”

yyyy”

To make the information more readable, you can add body text to the format string by
enclosing it in single quotes. Spaces and punctuation marks do not need to be quoted.

Note Non-format characters that are not delimited by single quotes will result in

The one- or two-digit day.

Thetwo-digit day. Single-digit day values are preceded by a
zero.

The three-character weekday abbreviation.
The full weekday name.
The one- or two-digit hour in 12-hour format.

The two-digit hour in 12-hour format. Single-digit values are
preceded by a zero.

The one- or two-digit hour in 24-hour format.

The two-digit hour in 24-hour format. Single-digit values are
preceded by a zero.

The one- or two-digit minute.

The two-digit minute. Single-digit values are preceded by a
zero.

The three-character month abbreviation.

The full month name.

The one-letter AM/PM abbreviation (that is, AM is displayed
as“A”).

The two-letter AM/PM abbreviation (that is, AM is displayed
as"AM").

The last two digits of the year (that is, 1996 would be
displayed as“96").

Thefull year (that is, 1996 would be displayed as “1996").

unpredictable display by the date time picker control.

114 Setting Properties and Events for Intrinsic Controls and Forms

Intrinsic Controls

For example, to display the current date with the format ""Today is. 04:22:31 Tuesday
Mar 23, 1996", the format string is"'Today is: 'hh''m"'s dddd MMM dd, 'yyyy". To
include a single quote in your body text, use two consecutive single quotes. For
example, "'Don"t forget' MMM dd',' yyyy" produces output that looks like: Don't forget
Mar 23, 1996. It isnot necessary to use quotes with the comma, so "'Don"t forget' MMM
dd, yyyy" isaso valid, and produces the same output.

LongDateFormat Property

The LongDateFormat property, when set to avalue of True, causes the date to display in
day, month, date, and year format. For example: “Friday, April 19, 2002".

The following table lists the possible values of the LongDateFormat property:

Value Description

False The dateis displayed in short date format, for example,
“4/19/02" (the default).

True The dateis displayed in long date format, for example,

“Friday, April 19, 2002”.

MCFontBold Property

The MCFontBold property determines whether the associated text for the month calendar
isdisplayed in bold font format.

The following table lists the possible values of the MCFontBold property:

Value Description
False Text is not displayed bold (the default).
True Text isdisplayed bold.

MCFontltalic Property

The MCFontltalic property determines whether the associated text of the month calendar
isdisplayed initalic font format.

The following table lists the possible values of the MCFontltalic property:

Value Description
False Text is not displayed in italics (the default).
True Textisdisplayed initalics.

Cobol-WOW User's Guide 115
Intrinsic Controls

MCFontName Property

The MCFontName property determines the font used to display text in the month
calendar. The font specified must be present on the system.

MCFontSize Property

The MCFontSize property determines the size of the font to be used for text displayed in
the month calendar. The size specified must be supported by the font. If the sizeis not
supported by the font, the system will substitute the nearest supported value.
MCFontStrikeThru Property

The MCFontStrikeThru property determines whether the associated text for the month
calendar is displayed in a strikethrough font style.

The following table lists the possible values of the MCFontStrikethru property:

Value Description
False No strikeout is used (the default).
True Strikeout is used.

MCFontUnderline Property

The MCFontUnderline property determines whether the associated text for the month
calendar is displayed in an underlined font format.

The following table lists the possible values of the MCFontUnderline property:

Value Description
False Text is not underlined (the default).
True Text is underlined.

116 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

RightAlign Property

The RightAlign property determines whether the drop-down month calendar will be
right-aligned or left-aligned with the date time picker control.

The following table lists the possible values of the RightAlign property:

Value Description

False The drop-down month calendar will be left-aligned with the
control (the default).

True The drop-down month calendar will be right-aligned with the
control.

ShortDateCenturyFormat Property

The ShortDateCenturyFormat property, when set to a value of True, causes the date to
display inthe MM/DD/YYYY format. For example: “4/19/2002".

The following table lists the possible values of the ShortDateCenturyFormat property:

Value Description

False The dateis displayed in short date format, for example,
“4/19/02" (the default).

True The dateis displayed in short date century format, for

example, “4/19/2002" .

ShowNone Property
The ShowNone property determines whether the control displays a check box.

The following table lists the possible values of the ShowNone property:

Value Description
False No check box is displayed (the default).
True A check box is displayed.

Cobol-WOW User's Guide 117
Intrinsic Controls

TimeFormat Property

The TimeFormat property determines whether the time will display instead of the date.
When set to avalue of True, the TimeFormat property causes the timeto display in
HH/MM/SS AM or PM format. For example “5:31:42 PM”.

The following table lists the possible values of the TimeFormat property:

Value Description
False Thetimeis not displayed (the default).
True Thetimeisdisplayed in HH/MM/SS AM or PM format. For

example, “5:31:42 PM”.

UpDown Property

The UpDown property determines whether the control displays an arrow button. If the
user clicks the arrow button, an embedded month calendar control (see page 136) drops
down. The user can select a specific date by clicking an area of the calendar.

The following table lists the possible values of the UpDown property:

Value Description
False An arrow button is displayed (the default).
True An arrow button is not displayed.

Change Event

The Change event occurs when a change has occurred within the date time picker
control.

Edit Box Control

The edit box control provides an areato input or display text. This control replaces the
COBOL ACCEPT statement. The user can enter any type of alphanumeric datain an
edit box, including numeric data. Because no formatting is provided, numbers are
entered in the same manner astext. (The use of edit box controlsisillustrated in Chapter
2, Tutorial.)

To add an edit box control to aform, click Edit Box from the Toolbox.

Note If you are working with the edit box field/control in an RM/Panels panel library,
see page 237.

118 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’ on page 1809.

Properties

3D FontBold Height * Password Visible

* Alignment Fontltalic Left *PasswordChar *WantReturn
* AutoHScroll FontName Locked *ReadOnly Width

* AutoV Scroll FontSize *MaxChars *ScrollBars Z-Order
BackColor FontStrikethru *Multiline Tablndex

*Border FontUnderline Name TabStop

*Case ForeColor *NoHideSel *Text

Enabled Group *OEM Convert Top

Events

*Change *HScroll KeyPress LostFocus *NoSpace
GotFocus KeyDown KeyUp *MaxText *V Scroll

Alignment Property

The Alignment property determines how text is positioned in an edit box control.

Note The Alignment property has an affect only when the Multiline property (see

page 121) has avalue of 1 (True).

The following table lists the possible values of the Alignment property:

Value Description

0 Normal — Performs no justification (the default).
1 Left justifies all text.

2 Center justifies al text.

3 Right justifies all text.

Cobol-WOW User's Guide

Intrinsic Controls

119

AutoHScroll Property

The AutoHScroll property indicates whether an edit box control will automatically scroll
horizontally astext is entered. If the value of this property is set to False, the user will
not be allowed to enter more text than fits within the width of the control.

The following table lists the possible values of the AutoHScroll property:

Value Description
False Disables horizontal scrolling.
True Enables horizontal scrolling of text when typed (the default).

AutoVScroll Property

The AutoV Scroll property determines whether an edit box control will scroll vertically as
text isentered. If the value of AutoV Scroll property is set to False, the user will not be
allowed to enter more text than the control will display.

Note The AutoV Scroll property has an affect only when the Multiline property (see
page 121) hasavalue of True.

The following table lists the possible values of the AutoV Scroll property:

Value Description
False Disables vertical scrolling of text when typed (the default).
True Enables vertical scrolling of text when typed.

Border Property

The Border property determines whether a border is displayed around an edit box
control.

The following table lists the possible values of the Border property:

Value Description
False A border is not displayed (the default).
True A border is displayed.

120 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Case Property

The Case property determines the case conversion of alphabetic characters entered into
an edit box control.

The following table lists the possible values of the Case property:

Value Description
0 Mixed —text case is not altered; accepted as typed (the
default).

Converts al text to lowercase.
Converts al text to uppercase.

MaxChars Property

The MaxChars property determines how many characters can be entered into an edit box
control. A value of O will not set any limit.

Multiline Property

The Multiline property determines whether an edit box control should support single or
multiple lines of text.

The following table lists the possible values of the Multiline property:

Value Description
False Control has only one line of text (the default).
True Control can have multiple lines of text.

NoHideSel Property

The NoHideSel property determines whether the selected text remains highlighted when
an edit box control loses the input focus.

The following table lists the possible values of the NoHideSel property:

Value Description

False Selected text does not remain highlighted when the edit box
control loses input focus (the default).

True Selected text remains highlighted when the edit box control

loses input focus.

Cobol-WOW User's Guide 121
Intrinsic Controls

OEMConvert Property

The OEM Convert property converts characters entered in an edit box control from the
ANSI character set to the OEM character set and then back to ANSI.

This property should be used for edit box controls that are used to enter filenames. When
a character is converted from the ANSI character set to the OEM character set and back
to ANSI, the resulting character is not always the same as the original character;

however, subsequent conversions from ANS| to OEM to ANSI do result in the same
character.

The following table lists the possible values of the OEM Convert property:

Value Description

False The characters are not converted (the default).

True The characters are converted from ANSI to OEM and back to
ANSI.

Password Property

The Password property determines whether the text of an edit box control or the
password character is displayed (see “PasswordChar Property” in the following section).

The following table lists the possible values of the Password property:

Value Description
False Text of the control is displayed (the default).
True The password character is displayed instead of the text.

PasswordChar Property

The PasswordChar property determines the character that is displayed if an edit box
control has the Password property set.

Set the value of the PasswordChar property with any alphanumeric character,
including space.

122 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

ReadOnly Property

The ReadOnly property determines whether the contents of an edit box control can be
modified by the user.

The following table lists the possible values of the ReadOnly property:

Value Description
False Contents may be modified (the default).
True Contents may not be modified.

ScrollBars Property

The ScrollBars property determines whether one or more scroll bars areincluded in an
edit box control.

Note Vertical scroll bars should only be used with edit box controls when the Multiline
property (see page 121) is set to avalue of 1 (True).

The following table lists the possible values of the ScrollBars property:

Value Description

0 No scroll bars are added (the default).

1 A vertical scroll bar is added.

2 A horizontal scroll bar is added.

3 Both vertical and horizontal scroll bars are added.

Text Property

The Text property specifies the text associated with an edit box control.

Set the value of the Text property with any alphanumeric character, including space.

WantReturn Property

The WantReturn property, used in combination with the Multiline property, specifies that
a carriage return be inserted when the user presses the Enter (or Return) key while
entering text into a multi-line edit box control in a dialog box. When the user presses
Enter in amulti-line edit box control that omits this property, the dialog box’ s default
command button is pressed.

Cobol-WOW User's Guide 123
Intrinsic Controls

The following table lists the possible values of the WantReturn property:

Value Description

False A carriage return is not inserted when the user presses the
Enter key during text entry (the default).

True A carriage return isinserted when the user presses the Enter
key during text entry.

Change Event

The Change event occurs when the value of the text in an edit box control changes. Any
of the following actions will cause this event to occur:

e A character istyped in the edit box control.
e The WOWSETPRORP function (see page 58) is used to set the text.
e Theedit box control is created with atext value assigned in the Designer.

HScroll Event

The HScroll event occurs when the user clicks the horizontal scroll bar for the edit
box control.

MaxText Event

The MaxText event occurs when the user attempts to enter more characters than the edit
box control will allow. Thisevent only occursif the AutoHScroll property isnot set, or a
MaxChars property is not equal to 0.

NoSpace Event

The NoSpace event occurs when the internal Windows memory used to store the text of
the edit box control has been depleted.

VScroll Event

The V Scroll event occurs when the user clicks the vertical scroll bar for the edit
box control.

124 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Ellipse Shape

The ellipse shape is used to draw the geometric shape of an ellipse on the form. A 32-bit
Windows-based application uses filled shapesin avariety of ways. Spreadsheet
applications, for example, use filled shapes to construct charts and graphs.

Technically, an ellipse is a closed curve defined by two fixed points such that the sum of
the distances from any point on the curve to the two fixed points is constant. When
calling €ellipse, an application supplies the coordinates of the upper-left and lower-right
corners of the ellipse’ s bounding rectangle. A bounding rectangle is the smallest
rectangle completely surrounding the ellipse. When the system draws the ellipse, it
excludes theright and lower sidesif no world transformations are set. Therefore, for any
rectangle measuring x units wide by y units high, the associated €llipse measures x—1
units wide by y—1 units high.

To add an €ellipse shape control to aform, click Ellipse from the Toolbox.

Note This shape is not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

All of the properties for this shape are listed in the following table. For detailed
information on these properties, see “Common Intrinsic Control Properties’ on page 179.

Properties

BackBrushHatch Fill Left PenSize Top
BackBrushStyle ForeColor Locked PenStyle Width
BackColor Height Name Tablndex Z-Order

Note Because the €llipse shape allows no user interaction, no events are associated
with it.

Group Box Control

The group box control (sometimes called a group box control) is a specialized box that is
used to group other controls, such as check boxes and option (or radio) buttons.

The group box control cannot be modified or operated on by the user. Windows
implements this control in much the same way as check boxes and option buttons, and it
is commonly used to group these types of controls.

Cobol-WOW User's Guide 125
Intrinsic Controls

™

126

There is no need to retrieve the text of a group box, and situations in which you would
want to change its text are hard to imagine, but possible. To change the text of a group
box control at runtime with the WOWSETPROP function:

CALL WOWSETPROP USING WIN-RETURN CTL-H ""CAPTION"™ NEW-TEXT.

CTL-H isthe handle of the group box. “CAPTION" isthe name of the property.
NEW-TEXT isthe new text of the control.

To add a group box control to aform, click Group Box from the Toolbox.

Note If you are working with the group box field/control in an RM/Panels panel library,
see page 239.

All of the properties for this control are listed in the following table. Note that none of
the properties for this control are unique. For information on the properties, see
“Common Intrinsic Control Properties’ on page 179.

Properties

3D Fontltalic ForeColor Name Width
BackColor FontName Group Tablndex Z-Order
Caption FontSize Height TabStop

Enabled FontStrikethru Left Top

FontBold FontUnderline Locked Visible

Note Because the group box control allows no user interaction, no events are associated
with it.

IP Address Control

The IP address control allows the user to enter a numeric address in Internet protocol (1P)
format. Thisformat consists of four three-digit fields. Each field istreated individually.
The field numbers are zero-based and proceed from left to right. This control also allows
the application to obtain the address in numeric form rather than in text form.

The IP address control allows only numeric text to be entered in each of the fields. Once
three digits have been entered in a given field, keyboard focus is automatically moved to
the next field. If filling the entire field is not required by the application, the user can
enter fewer than three digits. For example, if the field should only contain 21, typing 21
and pressing the Right Arrow key will take the user to the next field.

Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

To add an |P address control to aform, click | P Addr ess from the Toolbox.

Note This contral is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’” on page 189.

Properties

BackColor FontBold FontUnderline Name Visible
Enabled Fontltalic ForeColor Tablndex Width
*Fieldlndex FontName Height TabStop Z-Order
*FieldMax FontSize Left Top

*FieldMin FontStrikethru Locked *Vaue

Events

*Change GotFocus LostFocus

Fieldindex Property

The Fieldindex property controls the currently selected field of the IP address. The value
isazero-based index to the four three-digit address fields, where 0 indicates the first
field, 1 indicates the second field, 2 indicates the third field, and 3 indicates the fourth
field.

FieldMax Property

The FieldMax property specifies the maximum range for addressfield. The value of the
Fieldindex property (see above) determines which field is affected. The possible range
for each field is 0 to 255, but the range can be set to any values between those limits.
The default value is 255.

Cobol-WOW User's Guide 127
Intrinsic Controls

FieldMin Property

The FieldMin property specifies the minimum range for address field. The value of the
Fieldindex property (see above) determines which field is affected. The possible range
for each field is 0 to 255, but the range can be set to any values between those limits.
The default value is 0.

Value Property

The Value property specifies the value of the IP address and should be in the range
specified by the settings of the FieldMin and FieldMax properties (described above).

Change Event

The Change event occurs when the value of the address fields in an 1P address control
changes.

Line Shape

The line shape is used to draw aline on the form.

N To add aline shape control to aform, click Line from the Toolbox.

Note This shape is not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

All of the properties for this shape are listed in the following table. For detailed
information on these properties, see “Common Intrinsic Control Properties’ on page 179.

Properties

BackBrushHatch Fill Left PenSize Top
BackBrushStyle ForeColor Locked PenStyle Width
BackColor Height Name Tablndex Z-Order

Note Because the line shape allows no user interaction, no events are associated with it.

List Box Control

The list box control allows the selection of one or several itemsfrom alist of items. Itis
asimple, yet versatile control. You load alist box with items at runtime. When enabled,
the user can select an item by clicking with the mouse or moving the selection bar with

the arrow keys. You send the list box a message to find out which itemin the list box is

128 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

selected. For more information on using functions and messages with list boxes and the
procedures on how to use list boxes, see page 134.

To add alist box control to aform, click List Box from the Toolbox.

Note If you are working with the list box field/control in an RM/Panels panel library,
see page 241.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’” on page 189.

Properties

3D *ExtendedSel Group Scrol|Bar Visible
BackColor FontBold Height *Sel Text *WantK eyboard
*Border Fontltalic Left *Sort Width
*ColumnWidth ~ FontName Locked * Standard Z-Order
*Count FontSize *MultipleSel Tablndex

*CurSel FontStrikethru Name TabStop

*DisableNoScroll FontUnderline *NolntegralHeight Top

Enabled ForeColor *NoRedraw *UseTabStops

Events

Click GotFocus KeyPress LostFocus

DblClick KeyDown KeyUp

Note The event to which you are most likely to respond with alist box isthe Click
event. Thisisthe event that occurs whenever a selection changes, either by mouse click
or keyboard press, or when the Standard property is set to True. However, list boxes
generally do not take action on a selection change. A DbIClick event occurs when alist
box item is double-clicked. Thisevent is often expected to trigger some immediate
program response.

Cobol-WOW User's Guide 129
Intrinsic Controls

Border Property
The Border property determines whether a border is displayed around a list box contral.

The following table lists the possible values of the Border property:

Value Description
False A border is not displayed.
True A border is displayed (the default).

ColumnWidth Property

The ColumnWidth property determines the width, in pixels, of the columnsin alist box
control with multiple columns. If you specify a non-zero value for the ColumnWidth
property, the list box will display multiple columns.

Set the ColumnWidth property with any positive value greater than 0 but less than the
value specified in the Width property for the list box control.

Count Property

The Count property is aruntime-only property that lets you determine how many items
are contained in the list box.

Note This property can only be retrieved, not set, at runtime.

CurSel Property

The CurSel property is aruntime-only property that represents the current selection in the
list box. Thisvalue can be queried to determine which item in the list box is selected, or
set to move the selection to a different item. If no item is selected, this property has the
value LB-ERR.

130 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

DisableNoScroll Property

The DisableNoScroll property determines whether a scroll bar is displayed when alist
box control is not completely full.

The following table lists the possible values of the DisableNoScroll property:

Value Description
False Scroll bar disappesarsif list box is not full (the default).
True Scroll bar isdisabled if list box is not full.

ExtendedSel Property

The ExtendedSel property allows selections in a multiple selection list box control by
using the mouse and the Shift key.

The following table lists the possible values of the ExtendedSel property:

Value Description
False No extended selection (the default).
True Extended selection allowed.

MultipleSel Property
The MultipleSel property allows more than oneitem in alist box control to be selected.

The following table lists the possible values of the MultipleSel property:

Value Description
False No multiple selection alowed (the default).
True Multiple selection allowed.

Cobol-WOW User's Guide 131
Intrinsic Controls

NolntegralHeight Property

The NolntegralHeight property determines whether the height of alist box control is
adjusted to contain an even number of items.

The following table lists the possible values of the NolntegralHeight property:

Value Description
False List box height is adjusted (the default).
True List box height is not adjusted.

NoRedraw Property

The NoRedraw property allows alist box control to be created without updating the
screen when entries are loaded. After entries are loaded, the property can be changed to
update the screen display.

Note The value of this property cannot be retrieved at runtime. The value can,
however, be set at runtime with WOWSETPROP (see page 58).

The following table lists the possible values of the NoRedraw property:

Value Description
False List box is redrawn (the default).
True List box is not redrawn.

SelText Property

The Sel Text property is aruntime-only property that lets you retrieve the text of the
currently selected list box item. If no item is selected, the value returned is space.

Note This property can only be retrieved, not set, at runtime.

132 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Sort Property

The Sort property determines whether the entriesin alist box control are automatically
sorted.

The following table lists the possible values of the Sort property:

Value Description
False Entries are not sorted.
True Entries are sorted (the default).

Standard Property

The Standard property, when turned on, causes alist box control to be sorted and the
Click event to occur every time the selection changes.

The following table lists the possible values of the Standard property:

Value Description
False No sorting or Click event.
True Entries sorted and Click event on selection (the default).

UseTabStops Property

The UseTabStops property determines whether tab characters are interpreted as a spacing
technique by alist box control.

The following table lists the possible values of the UseTabStops property:

Value Description
False Tabs are not expanded (the default).
True Tabs are expanded.

Cobol-WOW User's Guide 133
Intrinsic Controls

WantKeyboard Property

The WantK eyboard property determines whether keystroke events are reported to the
form containing alist box control.

The following table lists the possible values of the WantK eyboard property:

Value Description
False Keystroke events are not reported to the form (the default).
True Keystrokes are reported to the form.

Using Functions and Messages with List Boxes

There are several functions and many messages that you can use with alist box. The
functions that deal with adding and removing itemsin alist box are WOWADDITEM,
WOWREMOVEITEM, and WOWCLEAR. Respectively, these functions add an item to
alist box, remove an item from alist box, and remove all itemsfrom alist box. The
messages you can use with alist box are too numerousto list here, but each begins with
the prefix LB-. Comprehensive information about messages can be found in the
Functions and Messages online Help file. We recommend that you take a few minutes
and browse through these topics to get an idea of the kinds of capabilities that messages
can provide.

Using a List Box

The following sections outline the basic procedures involved in using alist box.

Loading the List Box

This function can be used to insert an item in alist box at a specific position or to append
it to the end of thelist. To add an item to the list box, use the WOWADDITEM function
asfollows:

CALL WOWADDITEM USING WIN-RETURN CTL-H NEW-ITEM INDEX.

WIN-RETURN returns 0 if the function call is successful. CTL-H isthe handle of the
list box. NEW-ITEM must be an alphanumeric dataitem or literal that contains the item
to be added to the list box. INDEX isan optional, zero relative index of the position at
which the item should be added.

134 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Operating the List Box

Once thelist box isloaded, Windows takes care of the operation of thelist box. If the
Standard property is set to True, the Click event is executed every time the user makes a
selection. Otherwise, no event is associated with making a selection. In general, no
action is taken when a selection is made, but the user should press a command button or
select amenu option to take an action. In some cases, you may want to display
information related to the selection in another part of the form as the selection changes.

Determining the Selection

At some point, you will want to determine what selection was made in thelist box. This
is accomplished by checking the value of the list box’s CurSel property as follows:

CALL WOWGETPROP USING WIN-RETURN CTL-H "CURSEL" SEL-VALUE.

SEL-VALUE returns the O relative index of the selected item. CTL-H isthe handle of
thelist box. If thereisno selection, SEL-VALUE will equal LB-ERR. Note that LB-
ERR isa-1value, so SEL-VALUE must be asigned field to properly return this value.

Finding an Item

To find aspecific itemin alist box, use the LB-FINDSTRING or
LB-FINDSTRINGEXACT message. The LB-FINDSTRING message finds the first
entry in the list box that begins with the specified value. The LB-FINDSTRINGEXACT
message finds the first entry in the list box that exactly matches the specified value. The
messages are sent in the same manner:

CALL SENDMESSAGE USING WIN-RETURN CTL-H LB-FINDSTRING
START-POS SEARCH-VALUE.

WIN-RETURN isthe relative position of theitem if found, or LB-ERR if an item is not
found. CTL-H isthe handle of thelist box. START-POS isthe zero-relative position at
which the search should begin. SEARCH-VALUE isthe alphanumeric literal or data
item for which to search.

Selecting an Item

Occasionally, you will want to set the selection from inside your programs. Thisis
accomplished by setting the value of thelist box’s CurSel property as follows:

CALL WOWSETPROP USING WIN-RETURN CTL-H "CURSEL' SEL-VALUE.

SEL-VALUE isthe O relative index of theitemto select. CTL-H isthe handle of thelist
box. SEL-VALUE must not be greater than the number of itemsin thelist box - 1 (since

Cobol-WOW User's Guide 135
Intrinsic Controls

thevalueis zero relative). The number of itemsin the list box can be determined by
checking the value of the list box’ s Count property.

Retrieving the Selection

Y ou will undoubtedly want to retrieve the text of the selected list box item. Thisis
accomplished by retrieving the value of the list box’s Sel Text property as follows:

CALL WOWGETPROP USING WIN-RETURN CTL-H "SELTEXT'" SEL-TEXT.

SEL-TEXT returns the value of the selected list box item. If no itemis selected, spaceis
returned. CTL-H isthe handle of thelist box.

Removing One or All Items from the List Box

Y ou may want to clear one or all items from the list box during the use of the form
containing the list box. To remove asingle item from alist box:

CALL WOWREMOVEITEM USING WIN-RETURN CTL-H INDEX

WIN-RETURN returns O if the function is successful. CTL-H isthe handle of the list
box. INDEX isanumeric dataitem or literal that specifies the zero-relative index of the
item to delete.

Toremove all items from alist box, use the WOWCLEAR function as follows:

CALL WOWCLEAR USING WIN-RETURN CTL-H.

WIN-RETURN returns O if the function is successful. CTL-H isthe handle of thelist
box.

Month Calendar Control

The month calendar control displays a monthly calendar. The calendar can display one
or more months at atime. When a user clicks on the name of a month, a pop-up menu
appearsthat listsall of the months of the year. A user can select a month by clicking its
name on the menu. A user who is using the date time picker control (see page 112) can
use the Alt+Down Arrow key combination to activate the month calendar control. A
user can scroll the displayed months backward or forward, respectively, either by
clicking the left arrow or the right arrow at the top of the control, or by pressing the
PageUp or the PageDown key on the keyboard. When a user clicks the year that is
displayed at the top of the calendar next to the month, an updown control appears. A
user can use this control to change the year. A user also can use the Ctrl+PageUp or the
Ctrl+PageDown key combination to scroll from one year to another. A user can press
keys on the keyboard to navigate; the arrow keys scroll between days, the Home key

136 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

moves to the beginning of a month, and the End key moves to the end of a month.
Unless the calendar has the NoToday property (see page 139) set to False, a user can
return to the current day by tapping the “Today” label at the bottom of the month
calendar control.

To add a month calendar picker control to aform, click Month Calendar from the
Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’ on page 179.

Properties

Enabled FontUnderline *MonthDelta Top
*FirstDayOfWeek Height *Multi Select Visible
FontBold Left Name *WeekNumbers
Fontltalic Locked *NoToday Width
FontName *MaxSel Count *NoTodayCircle Z-Order
FontSize MCcColor Tablndex

FontStrikethru MCColorIndex TabStop

Event

*Change

Cobol-WOW User's Guide 137
Intrinsic Controls

FirstDayOfWeek Property

The FirstDayOfWeek property specifies the first day of the week for a month calendar
control.

The following table lists the possible values of the FirstDayOfWeek property:

Value Description
Monday (the default)
Tuesday

Wednesday
Thursday

Friday

Saturday

Sunday

o g0~ W DN P O

MaxSelCount Property

The MaxSel Count property sets the maximum number of days that can be selected in a
month calendar control. The default valueis 7 (one week).

MonthDelta Property

The MonthDelta property determines the scroll rate for amonth calendar control. The
scroll rate is the number of months that the control moves its display when the user clicks
ascroll button. The default valueis 1.

MultiSelect Property

The MultiSelect property allows the user to select arange of dates within the control. By
default, the maximum range is one week. Y ou can change the maximum range that can
be selected by using the MaxSelCount property (described above).

The following table lists the possible values of the MultiSelect property:

Value Description
False The user cannot select arange of dates (the default).
True The user can select arange of dates.

138 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

NoToday Property

The NoToday property determines whether or not the month calendar control will not
display the “today” date at the bottom of the control.

The following table lists the possible values of the NoToday property:

Value Description

False Displays the “today” date at the bottom of the control (the
default).

True The “today” date does not display at the bottom of the control.

NoTodayCircle Property

The NoTodayCircle property specifies that the month calendar control will not circle the

“today” date when the NoToday property (see above) is set to False.

The following table lists the possible values of the NoTodayCircle property:

Value Description
False The “today” date, if displayed, is circled (the default).
True The “today” date, if displayed, is not circled.

WeekNumbers Property

The WeekNumbers property displays week numbers (1-52) to the left of each row of
days. Week 1 isdefined asthe first week that contains at least four days. The default
vaueisFalse.

The following table lists the possible values of the WeekNumbers property:

Value Description

False Week numbers are not displayed to the left of each row of days
(the default).

True Week numbers are displayed to the left of each row of days.

Change Event

The Change event occurs when a change has occurred within the month calendar control.

Cobol-WOW User's Guide
Intrinsic Controls

Option Button Control

The option button (also known as radio button) control displays an option that can be
turned on or off. Option buttons are usually used in groups where turning one button on
turns the others off. For more information on how to group option buttons, see page 142.

(@ To add an option button control to aform, click Option Button from the Toolbox.

Note If you are working with the option button field/control in an RM/Panels panel
library, see page 247.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties’ on page 179 and “Common Intrinsic
Control Events’ on page 1809.

Properties

3D Enabled FontStrikethru Left Top

* Alignment FontBold FontUnderline Locked *Vaue
* AutoPress Fontltalic ForeColor Name Visible
BackColor FontName Group Tablndex Width
Caption FontSize Height TabStop Z-Order
Events

Click KeyDown KeyUp

GotFocus KeyPress LostFocus

Note The user can change the state of an option button in two ways: by clicking with
the mouse or by pressing the Spacebar while the option button has input focus. With
either method, the Click event for the option button is triggered. Y ou may want to add
event-handling code to this event in order to enable/disable other controls based on the
new state of the option button.

140 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Alignment Property

The Alignment property controls the position of the text in an option button control.

By default, the caption of an option button displays to the right of the box. The text may
be moved to the | eft of the button with the Alignment property. When using the 3D
property, however, the caption must be on the right.

The following table lists the possible values of the Alignment property:

Value Description
False Displays text to the right of the option button (the default).
True Displays text to the left of the option button.

AutoPress Property

The AutoPress property determines whether the state of an option button control is
automatically changed when pressed. This behavior is similar to the AutoCheck property
of the check box control.

The following table lists the possible values of the AutoPress property:

Value Description

False Option button state will not automatically change when
pressed.

True Option button state will automatically change when pressed
(the default).

Value Property

The Value property determines the state of an option button control.

The following table lists the possible values of the Va ue property:

Value Description
False Option button is not pushed (the default).
True Option button is pushed.

Cobol-WOW User's Guide 141
Intrinsic Controls

Grouping Option Buttons

At first glance, the option button control seems similar to the check box control. Because
it has two states, pushed and unpushed, you might think that it would also be used for
True/False type conditions. However, thisis not the case.

The option button is almost always used in a group with other option buttons. Together,
these option buttons represent a group of mutually exclusive choices. When one option
button is selected, it deselects whatever other button in the group was previously
selected. Only one button in the group can be selected at any time.

This control also solves another tedious programming problem very easily, that of
choosing one of alimited number of exclusive options. Since only one option button can
be selected at atime, you do not have to validate any user input. Y ou only need to
determine which option button is selected. A group of option buttonsis very similar to a
list box, which is discussed on page 128.

When you create a group of option buttons, you must indicate to Windows that they are a
group. For example, let’s say you are creating two groups of option buttons, each with
three buttons in agroup. Windows needs to know which buttons go together, so that it
does not treat all six as one big group.

To group the option buttons, you use two properties together, the Tablndex and Group
properties. The Tablndex property determines the input order of controls. Option
buttons in a group must have sequential input order. If the first option button in a group
has a Tablndex setting of 3, the next option button must have a Tablndex of 4, and the
next one 5.

The Group property indicates that a control isthe first control in agroup. Thefirst
option button in a group must have the Group property set to True. The other option
buttons in that group must have the Group property set to False. Thefirst control that
follows a group of controls, that is, the control whose input order (Tablndex) is
subsequent to the last one in the group, should have its Group property set to True so that
Windows knows where the group ends.

142 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

If you have two groups of three option buttons each, the Group and Tablndex properties

should be set in the following manner:

First Group Set Group Property to Set Tablndex Property to
Button 1 True X
Button 2 False X+1
Button 3 False X+2
Second Group
Button 4 True y
Button 5 False y+1
Button 6 False y+2

Progress Bar Control

A progress bar control consists of a patterned block that can be used to show the status of

along operation.
To add a progress bar control to aform, click Progress Bar from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties for this control islisted in the following table. Propertiesthat apply
only to this control, or that require special consideration when used with it, are marked

with an asterisk (*). These particular items are documented in the following sections.

For more information on the remaining properties, see “Common Intrinsic Control
Properties’ on page 179.

Properties

Height *Maximum Tablndex Visible
*|ncrement *Minimum Top Width
Left Name *Vaue Z-Order
Locked

Note Because the progress bar control allows no user interaction, no events are
associated with it.

Cobol-WOW User's Guide
Intrinsic Controls

143

Increment Property

The Increment property value is used to increment the progress bar when it receives a
PBM-STEPIT message.

Maximum Property

The Maximum property specifies the maximum allowable value for the progress bar and
isused in determining how much of the progress bar should be filled.

Minimum Property

The Minimum property specifies the minimum allowable value for the progress bar and
is used in determining how much of the progress bar should be filled.

Value Property

The Value property specifies the value of the progress bar and should be in the range
specified by the settings of the Minimum and Maximum properties.

Rectangle Shape

The rectangle shape is used to draw the geometric shape of arectangle on the form.
Rectangles are used for the cursor clipping region, the invalid portion of the client area,
an areafor displaying formatted text, or the scroll area. Y our applications can also use
rectanglesto fill, frame, or invert a portion of the client area with agiven brush, and to
retrieve the coordinates of awindow or awindow’s client area.

O To add a rectangle shape control to aform, click Rectangle from the Toolbox.

Note This shapeis not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

All of the properties for this shape are listed in the following table. For detailed
information on these properties, see “Common Intrinsic Control Properties’ on page 179.

Properties

BackBrushHatch Fill Left PenSize Top
BackBrushStyle ForeColor Locked PenStyle Width
BackColor Height Name Tablndex Z-Order

144 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Note Because the rectangle shape allows no user interaction, no events are associated
with it.

Rounded Rectangle Shape

The rounded rectangle shape is used to draw the geometric shape of arectangle with
rounded corners on the form. Rectangles are used for the cursor clipping region, the
invalid portion of the client area, an areafor displaying formatted text, or the scroll

area. Your applications can also use rectanglesto fill, frame, or invert a portion of the
client area with a given brush, and to retrieve the coordinates of awindow or awindow’s
client area.

To add arounded rectangle shape control to aform, click Rounded Rectangle from the
Toolbox.

Note This shapeis not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

All of the properties for this shape are listed in the following table. Properties that apply
only to this shape, or that require special consideration when used with it, are marked
with an asterisk (*). These particular items are documented in the following sections.
For detailed information on the remaining properties, see “Common Intrinsic Control
Properties’ on page 179.

Properties

BackBrushHatch Height PenStyle Width
BackBrushStyle Left *RoundnessX Z-Order
BackColor Locked *RoundnessY

Fill Name Tablndex

ForeColor PenSize Top

Note Because the rounded rectangle shape allows no user interaction, no events are
associated with it.

RoundnessX Property

The RoundnessX property specifies the width of the ellipse used to draw the
rounded corners.

Cobol-WOW User's Guide 145
Intrinsic Controls

RoundnessY Property

The RoundnessY property specifies the height of the ellipse used to draw the
rounded corners.

Scroll Bar Controls

A vertical scroll bar displays avertical bar that can be used to scroll information. A
horizontal scroll bar displays a horizontal bar that can be used to scroll information. For
more information on using scroll bars, see page 149.

GH To add ascroll bar control to aform, click either Horizontal Scroll Bar or Vertical
Scroll Bar from the Toolbox.

Note If you are working with the scroll bar field/control in an RM/Panels panel library,
See page 249.

All of the properties and events for both these controls are listed in the following tables.
Properties and events that apply only to these controls, or that require special
consideration when used with them, are marked with an asterisk (*). These particular
items are documented in the following sections. For information on the remaining
properties, see “Common Intrinsic Control Properties” on page 179.

Properties

Enabled Locked Tablndex Width
Group *Maximum TabStop Z-Order
Height *Minimum Top

Left Name *Vaue

*LineChange *PageChange Visible

Events

*EndScroll *LineRight * Pagel eft *ThumbPos
(Horizontal) (Horizontal)

*LineDn *LineUp *PageRight *ThumbTrk

(Vertica) (Vertica) (Horizontal)

*LinelLeft *PageDn *PageUp

(Horizontal) (Vertica) (Vertica)

146 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Note There are a number of events associated with the scroll bar, related to the different
ways in which the thumb can be moved. No matter how the thumb is moved, the
EndScroll event is always generated when the user has finished moving the thumb.
Unless the contents of some part of the form are to be scrolled while the thumb is being
dragged, the EndScroll event is the best place to respond to changes in thumb position.

LineChange Property

The LineChange property determines the change in position of a scroll bar control when
the mouseis clicked on the arrows at the end of the scroll bar.

Set the LineChange property with any value greater than 0 but less than the difference
specified between the Minimum and Maximum property values. In addition, note that
the LineChange setting should be less than the value specified in the PageChange

property.

Maximum Property

The Maximum property determines the highest value allowed for a scroll bar position.
Set the Maximum property with any value from 0 to 65535. Note that this value should
be greater than the value specified in the Minimum property.

Minimum Property

The Minimum property determines the lowest value allowed for a scroll bar position.

Set the Minimum property with any value from O to 65535. Note that this value should
be less than the value specified in the Maximum property.

PageChange Property

The PageChange property determines the amount the position of a scroll bar control
changes when the mouse is clicked on the scroll bar.

Set the PageChange property with any value greater than O but less than the difference
specified between the Minimum and Maximum property values. In addition, note that
the PageChange setting should be greater than the value specified in the LineChange

property.

Cobol-WOW User's Guide 147
Intrinsic Controls

Value Property

The Value property, a numeric value, determines the position of the scroll bar thumb.
Thisvalue will never be lower than the value of the Minimum property, or greater than
the value of Maximum property. If the thumb is positioned at the top or left of the scroll
bar, the Value property is equal to the Minimum property. |f the thumb is positioned at
the bottom or right of the scroll bar, the Value property is equal to the Maximum
property. If the thumb is positioned somewhere between the ends of the scroll bar, the
valueis proportional to the position of the thumb, within the numeric range established
by the Minimum and Maximum properties.

Set the Value property with any value from that of the Minimum property to the value of
the Maximum property.

EndScroll Event

The EndScroll event occurs after every change in the scroll bar thumb position.

LineLeft Event (Horizontal)

The LineLeft event occurs when the mouse is clicked on the arrow at the left of the
horizontal scroll bar.

LineRight Event (Horizontal)

The LineRight event occurs when the mouse is clicked on the arrow at the right of the
horizontal scroll bar.

LineDn Event (Vertical)

The LineDn event occurs when the mouse is clicked on the arrow at the bottom of the
vertical scroll bar.

LineUp Event (Vertical)

The LineUp event occurs when the mouse is clicked on the arrow at the top of the
vertical scroll bar.

148 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Pageleft Event (Horizontal)

The Pagel eft event occurs when the mouse is clicked on the bar to the left of the thumb
on a horizontal scroll bar.

PageRight Event (Horizontal)

The PageRight event occurs when the mouse is clicked on the bar to the right of the
thumb on a horizontal scroll bar.

PageDn Event (Vertical)

A PageDn event occurs when the mouse is clicked on the bar to the right of or below the
thumb on avertical scroll bar.

PageUp Event (Vertical)

A PageUp event occurs when the mouse is clicked on the bar to the left of or above the
thumb on avertical scroll bar.

ThumbPos Event

A ThumbPos event occurs when the mouse is released after being clicked on the scroll
bar thumb.

ThumbTrk Event

A ThumbTrk event occurs when the mouse is pressed on the scroll bar thumb.

Using Scroll Bars

The scroll bar control is used to allow a numeric value to be manipulated as athumb
position on abar. By specifying the minimum and maximum, the value can be viewed
relative to arange of possible values. Thisvalue and the scroll bar are often used to
scroll the display of other information on aform.

For example, let's say aformis used for order entry and displays five lines of a possible
100 on an order. The scroll bar could be used to scroll the view to include the other lines
on the order. In this case, by specifying the minimum value as 0 and the maximum value
as 95, the scroll bar value could be used directly as the offset between the displayed order
line and the actual order line.

Cobol-WOW User's Guide 149
Intrinsic Controls

Although scroll bars can be vertical or horizontal, they function in the same manner. The
thumb on the scroll bar can be dragged to a desired position with the mouse. The thumb
also can be moved by clicking the bar on either side of the thumb, or by clicking one of
the arrows at either end of the bar.

Clicking the body of the scroll bar or on the arrows moves the thumb in different,
configurable increments. Clicking the body of the scroll bar moves the thumb by the
increment specified in the Page property. Clicking the arrows at either end of the scroll
bar moves the thumb by the increment specified in the Line property. The Page
increment, by convention, should be larger than the Line increment. Considering the
order entry situation described previously, the Line property should be one and the Page
property should be equal to five, which is the number of lines of the order displayed on
the form at one time.

Static Text Control

The static text control is used to display text, rectangular outlines, or filled rectangles.
These features could reasonably be implemented as several different types of objects, but
Windows combines them into one since they have the same properties. See page 153 for
specia considerations when using static text controls.

Y ou use the static text control most often to display text the user is not allowed to
modify, such as labels for other controls. The static text control is also used to draw
rectangles or outlinesto highlight parts of aform, group controls, or even create adesign.

Thereisrarely aneed to retrieve the contents of static text controls since the user cannot
change them. However, you may need to change the text of a static text control at
runtime. To change the text of a static text control at runtime with the WOWSETPROP
function:

CALL WOWSETPROP USING WIN-RETURN CTL-H "TEXT' NEW-TEXT.

CTL-H isthe handle of the static text control. “TEXT” isthe name of the property.
NEW-TEXT isthe new text of the control.

An To add a static text box control to aform, click Static Text from the Toolbox.

Note If you are working with the static text field/control in an RM/Panels panel library,
See page 252.

150 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

All of the properties for this control are listed in the following table. Properties that
apply only to this control, or that require special consideration when used with it, are
marked with an asterisk (*). These items are documented in the following sections. For
information on the remaining properties, see “Common Intrinsic Control Properties” on
page 179.

Properties

3D FontBold ForeColor *NoPrefix *WordWrap
* Alignment Fontltalic Group Tablndex Z-Order
BackColor FontName Height Top

Caption FontSize Left *Transparent

*Effect FontStrikethru Locked Visible

Enabled FontUnderline Name Width

Note Because the static text control allows no user interaction, no events are associated
withit.
Alignment Property

The Alignment property determines how text is positioned in a static text control. The
Alignment property alows the text of any static text control, not just multiline controls,
to be aligned to theright, left, or center of the control.

The following table lists the possible values of the Alignment property:

Value Description

0 Normal — Performs no justification (the default).
1 Left justifies text.

2 Centerstext.

3 Right justifies text.

Effect Property

The Effect property changes a static text control into an empty rectangle or a colored
group box without text. The color names actually designate one of the Windows
configuration options and may not match the color name used.

Cobol-WOW User's Guide 151
Intrinsic Controls

The Effect property is used to determine the type of static text control that is displayed:
text, outline, or rectangle. It isimportant to note that the text of a static text control is not
displayed when the outline or rectangle effect is selected. When the 3D property is set to
True, the Effect property also has different appearances.

The following table lists the possible values of the Effect property:

Value

Description

0
1

None — Text is displayed (the default).

Draws a rectangle with the window group box color, usually
black.

Draws a rectangle with the desktop background color, usualy
gray.

Draws arectangle with the parent window’ s background,
usually white.

Draws ablack group box.
Draws a gray group box.
Draws awhite group box.

NoPrefix Property

The NoPrefix property determines whether the ampersand (&) character causes the
subsequent character to be underlined in a static text control.

The following table lists the possible values of the NoPrefix property:

Value

Description

False

True

The ampersand character (&) causes next character to be
underlined (the default).

The ampersand character (&) character is displayed.

152 Setting Properties and Events for Intrinsic Controls and Forms

Intrinsic Controls

WordWrap Property

The WordWrap property determines whether text is wrapped to multiple lines on a static
text control.

The following table lists the possible values of the WordWrap property:

Value Description
False Text iswrapped (the default).
True Text is not wrapped.

Special Considerations for Static Text Controls

Windows displays all disabled static text controls with gray text. While you may never
need to disable a static text control (since they do not have any events attached to them),
if you were to do so, the text would appear as gray. If the control is displayed on aform
with the default gray background, the control will not be visible.

Status Bar Control

A status bar control display status information in a horizontal window at the bottom of an
application window. Status bars are often divided into sections, called panes, and each
pane displays different status information.

When the status bar shows only one pane, it isin “simple mode.” When the text of the
window is set, the window isinvalidated, but it is not redrawn until the next WM-PAINT
message. Waiting for the message reduces screen flicker by minimizing the number of
times the window isredrawn. A simple mode status bar is useful for displaying Help text
for menu items while the user is scrolling through the menu.

To add a status bar control to aform, click Status Bar from the Toolbox.

Note This contral is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

Cobol-WOW User's Guide 153
Intrinsic Controls

All of the properties for this control islisted in the following table. Propertiesthat apply
only to this control, or that require special consideration when used with it, are marked
with an asterisk (*). These particular items are documented in the following sections.
For more information on the remaining properties, see “Common Intrinsic Control
Properties’ on page 179.

Properties

*CurSection *SectionNoBorders *SimpleNoBorders Visible
Height * SectionPopOut * SimplePopOut Width
Left *Sections *SimpleStatus Z-Order
Locked * SectionStatus Tablndex

Name *SectionWidth Top

Note Because the status bar control allows no user interaction, no events are associated
with it.

CurSection Property

The CurSection property controls the currently selected section (or pane) in the status
bar. Thevalueis azero-based index to the status bar panes, where 0 indicates the first
pane, 1 indicates the second pane, and so on. The number of panesis controlled by the
Sections property.

SectionNoBorders Property

The SectionNoBorders property specifies whether or not the text in the specified pane of
a status bar is drawn without borders. The value of CurSection determines which paneis
affected.

The following table lists the possible values of the SectionNoBorders property:

Value Description

False The text in the status bar pane is drawn with borders (the
default).

True The text in the status bar pane is drawn without borders.

154 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

SectionPopOut Property

The SectionPopOut property determines whether the text in the specified pane of a status
bar is drawn with a border to appear higher than the plane of the status bar. The value of
CurSection determines which pane is affected.

The following table lists the possible values of the SectionPopOut property:

Value Description

False Thetext is not drawn with a border to appear higher than the
plane of the status bar (the default).

True The text is drawn with a border to appear higher than the plane
of the status bar.

Sections Property

The Sections property indicates the number of panesinto which the status bar is divided.
The number of sections cannot be greater than 256.

SectionStatus Property

The SectionStatus property specifies the text that appears in the specified pane of the
status bar. The value of CurSection determines which paneis affected.

SectionWidth Property

The SectionWidth property is a pointer to an integer array. The number of elementsis
specified in the Sections property. Each element specifies the position, in client
coordinates, of the right edge of the corresponding part. If an element is-1, the right
edge of the corresponding part extends to the border of the window.

Cobol-WOW User's Guide 155
Intrinsic Controls

SimpleNoBorders Property

The SimpleNoBorders property specifies whether or not the text in the status bar is
drawn without borders when the status bar isin simple mode, that is, when only one pane
isvisible.

The following table lists the possible values of the SimpleNoBorders property:

Value Description

False The text in the status bar pane is drawn with borders (the
default).

True The text in the status bar pane is drawn without borders.

SimplePopOut Property

The SimplePopOut property determines whether the text in the status bar is drawn with a
border to appear higher than the plane of the status bar when the status bar isin simple
mode, that is, when only one paneisvisible.

The following table lists the possible values of the SimplePopOut property:

Value Description

False Thetext is not drawn with a border to appear higher than the
plane of the status bar (the default).

True The text is drawn with aborder to appear higher than the plane
of the status bar.

SimpleStatus Property

The SimpleStatus property specifies the text that appears in the status bar when it isin
simple mode.

156 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Tab Control

A tab control is acontainer control, meaning it allows other controls to be placed inside
it. Thetab control has several tabs at the top of the control. When a control is added to
thetab, it is attached to the tab that is currently selected. When another tab is selected,
the controls for the other tabs are hidden and the controls for the selected tab are
displayed. Thisisan excellent way to organize controls by category, rather than placing
alarge number of controlsin a single window.

All the controls on the tab are created when the tab control is created and destroyed when
the tab control is destroyed. The controls are not created and destroyed as different tabs
are selected. This means that the controls can be initialized once when the tab is created,
and the control values retrieved once, before the tab is destroyed. There is no need to
initialize or read from the controls just because a new tab is being selected.

To add atab control to aform, click Tab from the Toolbox.

Note This contral is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

At the current time, certain properties unique to the tab control (Buttons, FixedWidth,
Forcel abel L eft, GetFocus, Multiline, RightJustify, and Tabs) can be manipulated only in
the Cobol-WOW Designer. The runtime functions, WOWGETPROP and
WOWSETPROP, will not recognize these properties.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’ on page 179.

Properties

*Buttons FontName *GetFocus Name Top
*CurTab FontSize Height *RightJustify Visible
*FixedWidth FontStrikethru Left Tablndex Width
FontBold FontUnderline Locked *Tabs Z-Order
Fontltalic *ForceLabelLeft *Multiline *TabText

Events

*KeyDown *SelChange *SelChanging

Cobol-WOW User's Guide 157
Intrinsic Controls

Buttons Property

The Buttons property controls the way the tabs are displayed. Setting its value to True
makes tabs appear as buttons. Thisimplies that the application should take immediate
action when one of the buttons is pressed.

The following table lists the possible values of the Buttons property:

Value Description
False Causes tabs to appear as tabs (the default).
True Causes tabs to appear as buttons.

CurTab Property

The CurTab property controls the currently selected tab in the Cobol-WOW Designer.
Change this value to select the desired tab before adding controlsto it, and before setting
the TabText property, which applies to each tab individually. The valueis a zero-based
index to the tabs, where 0 indicates the first tab, 1 indicates the second tab, and so on.

FixedWidth Property
The FixedWidth property allows all tabs to be the same width.

The following table lists the possible values of the FixedWidth property:

Value Description
False Tabs are displayed with varying widths (the default).
True Tabs are displayed in the same width.

ForcelLabellLeft Property

The Forcel abel L eft property determines whether or not tab static texts are forced to the
left. If the Forcel abel L eft property is set, the FixedWidth property must be set to True.

The following table lists the possible values of the Forcel abel L eft property:

Value Description
False Tabs are not forced to the left (the default).
True Tabs are forced to the left.

158 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

GetFocus Property

The GetFocus property determines whether or not the text of the selected tab has input
focus. Setting the GetFocus property to False on atab control prevents input focus from
going to the text of the selected tab. It does not prevent focus from going to any of the
controls on the tab. When the tab control receives focus, the text of the tab itself gets
selected with a box.

The following table lists the possible values of the GetFocus property:

Value Description

False Prevents input focus from going to the text of the selected tab
(the default).

True Text of the selected tab has input focus.

Multiline Property

The Multiline property determines whether the tabs will occupy multiple linesif the tab
control istoo narrow for all the tabs to be displayed on asingle line.

The following table lists the possible values of the Multiline property:

Value Description
False Prevents the tabs from occupying multiple lines (the default).
True Allows the tabs to occupy multiple lines.

RightJustify Property

Not implemented.

Tabs Property

The Tabs property determines how many tabs are displayed on the control.

TabText Property

The TabText property controls the text of each tab. The value of CurTab determines
which tab is affected.

Cobol-WOW User's Guide 159
Intrinsic Controls

KeyDown Event

The KeyDown event notifies atab control’s parent window that a key has been pressed.
This message is sent in the form of aWM-NOTIFY message.

SelChange Event

The SelChange event notifies atab control’ s parent window that the currently selected
tab has changed.. This messageis sent in the form of aWM-NOTIFY message.

SelChanging Event

The SelChanging event notifies atab control’ s parent window that the currently selected
tab is about to change. This messageis sent in the form of aWM-NOTIFY message.

Timer Control

The timer control provides a measured time interval that can be tied to events.

@ To add atime control to aform, click Timer from the Toolbox.

Note This contral is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’ on page 179.

Properties

Enabled Left Tablndex Width
Height Locked Top Z-Order
*Interval Name Visible

Event

*Timer

Interval Property

The Interval property specifies the length of time between timer ticksin milliseconds.

160 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

]

Timer Event

The Timer event enables or disables one event per timer tick (interval).

Toolbar Control

A toolbar control consists of a series of buttons that can be placed at the top and/or
bottom of aform. Y ou can put two toolbars on aform, one at the top and one at the
bottom. Event-handling code can be attached to each button in the toolbar. Each button
in the toolbar can contain a bitmap and/or text.

Theinteraction of button groups and the wrapping properties of the toolbar are somewhat
obscure. Liant Software Corporation has not fully isolated the interaction of all of these
properties, and documentation from Microsoft is sketchy.

To add atoolbar control to aform, click Toolbar from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

At the current time, properties unique to the toolbar control (AlignTop, BitmapHeight,
BitmapWidth, BtnBitmap, BtnHidden, BtnStyle, BtnWrap, ButtonHeight, Buttons,
ButtonWidth, Larger, Rows, and Wrapable) can be manipulated only in the
Cobol-WOW Designer.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’” on page 179.

Cobol-WOW User's Guide 161
Intrinsic Controls

Note The properties that begin with the prefix “Btn” refer to a single button on the
toolbar. The button being referred to is controlled by the setting of the CurButton
property. All other properties apply to the entire toolbar.

Properties

*AlignTop *BtnState *ButtonWidth Name *Wrapable
*BitmapHeight *BtnStyle *CurButton *Rows Z-Order
*BitmapWidth *BtnText Height Tablndex

*BtnBitmap *BtnWrap Larger Top

*BtnEnabled *ButtonHeight Left Visible

*BtnHidden *Buttons Locked Width

Event

*Button-0

AlignTop Property
The AlignTop property determines the placement of the toolbar on the form.

The following table lists the possible values of the AlignTop property:

Value Description
False Places the toolbar at the bottom of the form.
True Places the toolbar at the top of the form (the default).

BitmapHeight Property

All bitmaps placed in the toolbar must be the same size. The BitmapHeight property
specifies the height of the bitmaps to be placed on the toolbar. Thisis not only the height
at which bitmaps are displayed, but also the height of the bitmaps as they were created.

BitmapWidth Property

All bitmaps placed in the toolbar must be the same width. The BitmapWidth property
specifies the width of the bitmaps to be placed on the toolbar. Thisis not only the width
at which the bitmaps are displayed, but also the width of the bitmaps as they were
created.

162 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

BtnBitmap Property

The BtnBitmap property is an optional bitmap that will be displayed in the button. An
example of such ahitmap is the scissorsin the Cut button.

BtnEnabled Property

The BtnEnabled property controls whether or not the button can be clicked at runtime.
Cobol-WOW provides runtime support for the BtnEnabled property using
WOWGETPROP and WOWSETPROP, which alows the enabled state of the toolbar
button to be set or retrieved at runtime. Before getting or setting the BtnEnabled

property value, the CurButton property must be set to the zero-based index of the desired

button. Setting the CurButton property has no effect on the user interface.

The following table lists the possible values of the BtnEnabled property:

Value Description
False The toolbar button cannot be clicked at runtime.
True The toolbar button can be clicked at runtime (the default).

BtnHidden Property
The BtnHidden property determines whether or not the button is displayed.
The following table lists the possible values of the BtnHidden property:

Value Description
False The toolbar button is displayed (the default).
True The toolbar button is not displayed.

Cobol-WOW User's Guide
Intrinsic Controls

163

BtnState Property

The BtnState property determinesthe initial state of the button. Cobol-WOW provides
runtime support for the BtnState property using WOWGETPROP and WOWSETPROP,
which allows the state of the toolbar button to be set or retrieved at runtime. Before
getting or setting the BtnState property value, the CurButton (see page 165) property
must be set to the zero-based index of the desired button. Setting the CurButton property
has no effect on the user interface.

The following table lists the possible values of the BtnState property:

Value Description

0 Normal — The button accepts user input.
1 Checked — The button is being clicked.
2 Pressed — The button is being clicked.

3 Indeterminate — The button is grayed.

BtnStyle Property

The BtnStyle property determines the style of the button. The check style creates a
button that stays pressed. Group and checkgroup are normal and check buttons,
respectively, that begin a group of buttons that work together. The separator style creates
a button that looks like a space between buttons and that cannot be pressed.

The following table lists the possible values of the BtnStyle property:

Value Description
0 Button — Creates a standard button.
1 Check — Creates a dual-state push button that toggles between the

pressed and nonpressed states each time the user clicksit. The
button has a different background color when it isin the pressed
state.

2 Group — Creates a button that stays pressed until another button in
the group is pressed.

3 CheckGroup — Creates a button that stays pressed until another
button in the group is pressed, similar to option buttons.

4 Separator — Creates a separator, providing a small gap between
button groups. A button that has this style does not receive user
input.

164 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

BtnText Property

The BtnText property allows optional text to display on the button.

BtnWrap Property

The BtnWrap property will alow the toolbar to wrap to the next line after the current
button. Wrapping is also done at separators, but will not be done within a group.

The following table lists the possible values of the BtnWrap property:

Value Description
False The toolbar iswrapped (the default).
True The toolbar is not wrapped.

ButtonHeight Property

The ButtonHeight property determines the displayed height of the buttons. If thisvalue
is set less than the height required by the button’s bitmap or text, this value will be
ignored.

Buttons Property

The Buttons property determines the number of buttons on the toolbar.

ButtonWidth Property

The ButtonWidth property determines the displayed width of the buttons. If thisvalueis
set less than the width required by the button’s bitmap or text, this value will be ignored.

CurButton Property

The CurButton property specifies which button’s properties are displayed in are
accessible through the Btn-prefixed property values. Setting the CurButton property has
no effect on the user interface. Before getting or setting the either the BtnState (see
page 164) or the BtnEnabled (see page 163) property value, the CurButton property must
be set to the zero-based index of the desired button.

Cobol-WOW User's Guide 165
Intrinsic Controls

Larger Property
The Larger property allows the size of the toolbar to be increased.

The following table lists the possible values of the Larger property:

Value Description

False The toolbar occupies the number of rows indicated by the
Rows property.

True Allows the toolbar to occupy more rows than indicated by the
Rows property (the default).

Rows Property

The Rows property indicates how many rows can be used to display the toolbar. This
property can be ignored, based on the grouping and separation of buttons.

Wrapable Property

The Wrapable property indicates that a toolbar may be wrapped to subsequent lines if it
istoo long.

Button-0 Event

The Button-0 event indicates that the user clicked on the specified button on the toolbar.

Trackbar Control

A trackbar control displays awindow containing a slider and optional tick marks used to
select avalue or a set of consecutive valuesin arange. The trackbar control can be
oriented either horizontally or vertically. Trackbars are useful when you want the user to
select adiscrete value or a set of consecutive valuesin arange. For example, you might
use atrackbar to alow the user to set the repeat rate of the keyboard by moving the slider
to agiven tick mark.

= To add atrackbar control to aform, click Trackbar from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

166 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

At the current time, certain properties unique to the trackbar control (AutoTicks,
BothTicks, EnableSelRange, LeftTicks, NoThumb, NoTicks, TopTicks, SelEnd, Sel Start,
and Vertical) can be manipulated only in the Cobol-WOW Designer. The runtime
functions, WOWGETPROP and WOWSETPROP, will not recognize these properties.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’ on page 179.

Properties

*AutoTicks *LeftTicks *NoThumb TabStop Visible
*BothTicks *LineChange *NoTicks *TickFreq Width
Enabled Locked *PageChange Top Z-Order
*EnableSelRange *Maximum *SelEnd *TopTicks

Height *Minimum * Sel Start *Vaue

Left Name Tablndex *Vertical

Events

*Bottom *LineDown *PageDown *ThumbPos *Top
*EndTrack *LineUp *PageUp *ThumbTrk

AutoTicks Property

The AutoTicks property determines whether or not the trackbar control hastick marks
for each increment in its range of values.

The following table lists the possible values of the AutoTicks property:

Value Description

False The trackbar control does not have atick mark for each
increment in its range of values.

True The trackbar control has atick mark for each increment in its
range of values (the default).

Cobol-WOW User's Guide 167
Intrinsic Controls

BothTicks Property

The BothTicks property determines whether or not tick marks are displayed on both sides
of the trackbar control.

The following table lists the possible values of the BothTicks property:

Value Description

False The trackbar control does not display tick marks on both sides
of the control (the default).

True The trackbar control displays tick marks on both sides of the
control.

EnableSelRange Property

The EnableSelRange property determines whether or not the trackbar control displays a
selection range. A “selection range” restricts the user to a specified portion of the total
range. Thelogical units do not change, but only a subset of them are available for use.
The trackbar highlights the available range and displays triangular tick marks at the start
and end. Typically, an application handles the trackbar’ s notification messages and sets
the trackbar’ s sel ection range according to the user’ s input.

The following table lists the possible values of the EnableSelRange property:

Value Description

False The trackbar control does not display a selection range (the
default).

True The trackbar control displays a selection range only. Thetick

marks at the starting and ending positions of a selection range
are displayed as triangles (instead of vertical dashes), and the
selection range is highlighted.

168 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

LeftTicks Property

The LeftTicks property determines whether or not tick marks are displayed to the left of
the trackbar control.

The following table lists the possible values of the LeftTicks property:

Value Description

False The trackbar control does not display tick marks to the left of
the control.

True The trackbar control displays tick marksto the left of the

control (the default).

LineChange Property

The LineChange property determines the change in position of atrackbar control when
the mouse is clicked on the arrows at the end of the scroll bar.

Set the LineChange property with any value greater than 0 but less than the difference
specified between the Minimum and Maximum property values. In addition, note that
the LineChange setting should be less than the value specified in the PageChange

property.
Maximum Property

The Maximum property determines the highest value allowed for a scroll bar position.

Set the Maximum property with any value from 0 to 65535. Note that this value should
be greater than the value specified in the Minimum property.

Minimum Property

The Minimum property determines the lowest value allowed for ascroll bar position.

Set the Minimum property with any value from O to 65535. Note that this value should
be less than the value specified in the Maximum property.

Cobol-WOW User's Guide 169
Intrinsic Controls

NoThumb Property

The NoThumb property determines whether or not the trackbar control displays adlider.

The following table lists the possible values of the NoThumb property:

Value Description
False The trackbar control displays a dider (the default).
True The trackbar control does not display a slider.

NoTicks Property

The NoTicks property determines whether or not the trackbar control displays tick
marks.

The following table lists the possible values of the NoTicks property:

Value Description
False The trackbar control displays tick marks (the default).
True The trackbar control does not display any tick marks.

PageChange Property

The PageChange property determines the amount the position of atrackbar control
changes when the mouse is clicked on the trackbar.

Set the PageChange property with any value greater than 0 but less than the difference
specified between the Minimum and Maximum property values. In addition, note that
the PageChange setting should be greater than the value specified in the LineChange

property.

SelEnd Property

The SelEnd property sets the ending position of the selection range when the
EnableSelRange property is set to True.

SelStart Property

The Sel Start property sets the beginning position of the selection range when the
EnableSelRange property is set to True.

170 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

TickFreq Property

The TickFreq property determines the number of tick marks to display on the control in a
range of 1 through 100. The default is 10.

TopTicks Property

The TopTicks property determines whether or not tick marks are displayed above the
control.

The following table lists the possible values of the TopTicks property:

Value Description

False The trackbar control does not display tick marks above the
control.

True The trackbar control displays tick marks above the control (the
default).

Value Property

The Vaue property specifies the value of the trackbar and should be in the range
specified by the settings of the Minimum and Maximum properties.

Vertical Property

The following table lists the possible values of the Vertical property:

Value Description
False The trackbar control is not oriented vertically (the default).
True The trackbar control is oriented vertically.

Bottom Event

The Bottom event occurs when the user interacts with trackbar control the using the
End key.

EndTrack Event

The EndTrack event occurs when the user stops interacting with the trackbar control,
whether by the keyboard or with the mouse.

Cobol-WOW User's Guide 171
Intrinsic Controls

LineDown Event

The LineDown event occurs when the user depresses the Down Arrow or PgDn keys.

LineUp Event

The LineUp event occurs when the user depresses the Up Arrow or PgUp keys.

PageDown Event

The PageDown event occurs when the user clicks the area below or to the right of the
dlider with the mouse or moves to that area using the keyboard.

PageUp Event

The PageUp event occurs when the user clicks the area above or to the left of the slider
with the mouse or moves to that area using the keyboard..

ThumbPos Event

The ThumbPos event occurs when the user drags the slider and releases the mouse.

ThumbTrk Event

The ThumbTrk event occurs when the user drags the slider.

Top Event

The Top event occurs when the user interacts with trackbar control the using the
Home key.

Updown Control

An Updown control isapair of arrow buttons that the user can click to increment or
decrement avalue, such as a scroll position or a number displayed in a companion
control. The value associated with an updown control is called its current position.

An updown control is most often used with a companion control, which is called a buddy
window. To the user, an updown control and its buddy window often look like asingle
control. Y ou can specify that an updown control automatically position itself next to its
buddy window and that it automatically set the caption of the buddy window to its

172 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

current position. For example, you can use an updown control with an edit box control
to prompt the user for numeric input.

An updown control without a buddy window functions as a sort of simplified scroll bar.
For example, atab control sometimes displays an updown control to enable the user to
scroll additional tabs into view.

To add an updown control to aform, click Updown from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

At the current time, certain properties unique to the updown control (Accelerators,
Accellncrement, Accel Seconds, AlignLeft, AlignRight, ArrowKeys, Buddylnteger,
CurAccel, NoThousands, and Wrapable) can be manipulated only in the Cobol-WOW
Designer. The runtime functions, WOWGETPROP and WOWSETPROP, will not
recognize these properties.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties’ on page 179.

Properties

* Accelerators *Base *Horizontal *NoThousands Width
*Accellncrement *Buddy Left Tablndex *Wrapable
*AccelSeconds *BuddylInteger Locked TabStop Z-Order
*AlignLeft *CurAccel *Maximum Top

*AlignRight Enabled *Minimum *Vaue

*ArrowKeys Height Name Visible

Events

*EndScroll *ThumbPos

Cobol-WOW User's Guide 173
Intrinsic Controls

Accelerators Property

The Accelerators property determines the rate at which the current position changes
when the up or down arrow is clicked.

Accellncrement Property

The AccelIncrement property specifies the position change increment to use after the
time specified by the Accel Seconds property elapses. The value of CurAccel determines
which accelerator is affected.

AccelSeconds Property

The Accel Seconds property specifies the amount of elapsed time, in seconds, before the
position change increment, specified by the Accellncrement property, isused. The vaue
of CurAccel determines which accelerator is affected.

AlignLeft Property

The AlignLeft property determines whether or not the updown control is aligned with the
left edge of its buddy window. The width of the buddy window is decreased to
accommodate the width of the updown control.

The following table lists the possible values of the AlignL eft property:

Value Description

False The updown control is not aligned with the left edge of its
buddy window (the default).

True The updown control is aligned with the left edge of its buddy
window.

174 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

AlignRight Property

The AlignRight property determines whether or not the updown control is aligned with
the right edge of its buddy window. The width of the buddy window is decreased to
accommodate the width of the updown control.

The following table lists the possible values of the AlignRight property:

Value Description

False The updown control is not aligned with the right edge of its
buddy window (the default).

True The updown control is aligned with the right edge of its buddy
window.

ArrowKeys Property

The ArrowKeys property provides a keyboard interface for an updown control. If this
property is set to True, the control processes the Up Arrow and Down Arrow keys. The
control also subclasses the buddy window so that it can process these keys when the
buddy window has the focus.

The following table lists the possible values of the ArrowK eys property:

Value Description

False The updown control does not process the Up Arrow and Down
Arrow keys (the default).

True The updown control processes the Up Arrow and Down Arrow
keys.

Base Property

The Base property specifies he radix base for an updown control. The base value
determines whether the buddy window displays numbersin decimal or hexadecimal
digits. Hexadecimal numbers are aways unsigned, and decimal numbers are signed.

The following table lists the possible values of the Base property:

Value Description

0 The updown control’s buddy window displays numbersin
decimal digits.

1 The updown control’ s buddy window displays numbersin

hexadecimal digits.

Cobol-WOW User's Guide 175
Intrinsic Controls

Buddy Property
The Buddy property specifies the buddy window for an updown control.

The following table lists the possible values of the Buddy property:

Value Description

0 No buddy window

1 A trackbar is the buddy window.

2 A check box isthe buddy window.
6 A status bar is the buddy window.

BuddylInteger Property

The Buddylnteger property causes the updown control to set the text of the buddy
window (using the WM-SETTEXT message) when the position changes. The text
consists of the position formatted as a decimal or hexadecimal string.

The following table lists the possible values of the Buddylnteger property:

Value Description

False The text of the buddy window is not set when its position
changes.

True The text of the buddy window is set when its position changes
(the default).

CurAccel Property

The CurAccel property controls the currently selected accelerator for the updown
control. Change this value to select the desired accel erator before setting the

Accel Seconds and Accel Seconds properties, which apply to each accelerator
individually. The valueis azero-based index to the accelerator, where 0 indicates the
first accelerator, 1 indicates the second accelerator, and so on.

176 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Horizontal Property

The Horizontal property determines whether or not the updown control is used for
horizontal scrolling. If this property is set to True, the updown control’s arrows point
left and right instead of up and down.

The following table lists the possible values of the Horizontal property:

Value Description

False The updown control is not used for horizontal scrolling.

True The updown control isused for horizontal scrolling (the
default).

Maximum Property

The Maximum property sets the maximum position (range) for an updown control. The
maximum position can be less than the minimum position. Clicking the up arrow button
moves the current position closer to the maximum position, and clicking the down arrow
button moves towards the minimum position.

Minimum Property

The Minimum property sets the minimum position (range) for an updown control. The
maximum position can be less than the minimum position. Clicking the up arrow button
moves the current position closer to the maximum position, and clicking the down arrow
button moves towards the minimum position.

NoThousands Property

The NoThousands property determines whether or not the updown control inserts a
thousands separator between every three digits of adecimal string.

The following table lists the possible values of the NoThousands property:

Value Description

False A thousands separator is not inserted between every three
digits of adecimal string (the default).

True A thousands separator is not inserted between every three

digits of adecimal string.

Cobol-WOW User's Guide 177
Intrinsic Controls

Value Property

The Value property specifies the value of the updown control and should be in the range
specified by the settings of the Minimum and Maximum properties.

Wrapable Property

The Wrapable property causes the position of the updown control to wrap if it is
incremented or decremented beyond the ending or beginning of the range. By defaullt,
the current position does not change if the user attempts to increment it or decrement it
beyond the maximum or minimum value. Y ou can change this behavior by using the
Wrapable property, so the position wraps to the opposite extreme. For example,
incrementing past the upper limit wraps the position back to the lower limit.

The following table lists the possible values of the Wrapable property:

Value Description

False The current position of the updown control does not change if
the user attempts to increment it or decrement it beyond the
maximum or minimum value (the default).

True The current position of the updown control changes if the user
attempts to increment it or decrement it beyond the maximum
or minimum value.

EndScroll Event

The EndScroll event occurs when the user stops scrolling.

ThumbPos Event

The ThumbPos event occurs when the user drags the slider and releases the mouse.

178 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Common Intrinsic Control Properties

This section summarizes the common properties that may be implemented in anintrinsic
control. Refer to the specific control in the preceding sections to determine the unique
properties available for the control.

The following properties are used by several types of intrinsic controls.

Properties

3D Fill FontUnderline MCColor Tablndex
BackBrushHatch FontBold ForeColor MCColorIndex TabStop
BackBrushStyle Fontltalic Group Name Top
BackColor FontName Height PenSize Transparent
Caption FontSize Left PenStyle Visible
Enabled FontStrikethru Locked ScrollBar Width

Z-Order

3D Property

The 3D property controls the appearance of acontrol. If this property is set to True, the
control will have athree-dimensional effect.

The following table lists the possible values of the 3D property:

Value Description
False A three-dimensional control is not displayed (the default).
True A three-dimensional control is displayed.

Note Setting the 3D property to avalue of True for the check box (see page 103) and
option (radio) button (see page 140) controlsis compatible only if the Alignment
property for these particular controlsis set to the default. (The default setting displays
text to the right of the check box or option button, respectively.) The 3D property is not
available for the command button control because the three-dimensional effect is already
implemented by Windows. Windows always displays check box and option button
controlsin 3D, regardless of the property settings.

The form 3D property settings of 1 (All 3D) and 2 (No 3D) will override the 3D property
settings of individual controls. (For more information, see the 3D property description
on page 191.)

Cobol-WOW User's Guide 179
Intrinsic Controls

BackBrushHatch Property

The BackBrushHatch property specifies the hatch style of the brush used to paint the
interior of the geometric shape (ellipse, line, rectangle, or rounded rectangle control).

The following table lists the possible values of the BackBrushHatch property:

Value Description

Horizontal hatch

Vertical hatch

Forward diagonal (a 45-degree downward, left-to-right hatch)

Backward diagonal (a 45-degree upward, |eft-to-right hatch)
Horizontal and vertical cross-hatch (the default)
45-degree diagonal cross-hatch

g A WO N P+ O

BackBrushStyle Property

The BackBrushStyle property specifies the style of the brush used to paint the interior of
the geometric shape (ellipse, line, rectangle, or rounded rectangle control).

The following table lists the possible values of the BackBrushStyle property:

Value Description
0 Solid brush
1 Hollow brush
2 Hatched brush

BackColor Property

The BackColor property determines the background color of a control. The property isa
numeric value with nine digits specifying colors as RRR,GGG,BBB.

In the RGB color model, valid red, green, and blue values are in the range from 0
through 255, with 0 indicating the minimum intensity and 255 indicating the maximum
intensity. Set the BackColor property with any value in the range from 000 to
255255255.

When you click on the value area of the property, an ellipsis appears. Clicking on the
ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of
the control(s).

180 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Caption Property
The Caption property specifies the caption (or static text) associated with a control.

Set the value of the Caption property with any alphanumeric character, including space.

Enabled Property

The Enabled property determines whether the control can respond to user-generated
input (or events).

The following table lists the possible values of the Enabled property:

Value Description

False Control is disabled for user input.

True Control is enabled for user input (the defaullt).
Fill Property

The Fill property determines whether the geometric shape (ellipse, line, rectangle, or
rounded rectangle control) isfilled by the current brush.

The following table lists the possible values of the Fill property:

Value Description
False The shapeis not filled by the brush.
True The shapeisfilled by the brush (the default).

FontBold Property

The FontBold property determines whether the associated text for the control is displayed
in bold font format.

The following table lists the possible values of the FontBold property:

Value Description
False Text is not displayed bold (the default).
True Text isdisplayed bold.

Cobol-WOW User's Guide 181
Intrinsic Controls

Fontltalic Property

The Fontltalic property determines whether the associated text of the control is displayed
initalic font format.

The following table lists the possible values of the Fontltalic property:

Value Description
False Text is not displayed in italics (the default).
True Textisdisplayed in italics.

FontName Property

The FontName property determines the font used to display text in acontrol. The font
specified must be present on the system.

FontSize Property

The FontSize property determines the size of the font to be used for text displayed in a
control. The size specified must be supported by the font. If the size is not supported by
the font, the system will substitute the nearest supported value.

FontStrikethru Property

The FontStrikethru property determines whether the associated text for the control is
displayed in a strikethrough font style.

The following table lists the possible values of the FontStrikethru property:

Value Description
False No strikeout is used (the default).
True Strikeout is used.

182 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

FontUnderline Property

The FontUnderline property determines whether the associated text for the control is
displayed in an underlined font format.

The following table lists the possible values of the FontUnderline property:

Value Description
False Text is not underlined (the default).
True Text isunderlined.

ForeColor Property

The ForeColor property determines the color of text in acontrol. The property isa
numeric value with nine digits specifying colors as RRR,GGG,BBB.

In the RGB color model, valid red, green, and blue values are in the range from 0 to 255,
with 0 indicating the minimum intensity and 255 indicating the maximum intensity. Set

the ForeColor property with any value in the range from 000 to 255255255.

When you click on the value area of the property, an ellipsis appears. Clicking on the

ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of

the control(s).

Group Property

The Group property determines whether a control is the start of a group.

The following table lists the possible values of the Group property:

Value Description
False Control is not the start of a group (the default).
True Control isthe start of a group.

Height Property

The Height property determines, in pixels, the height of the control.

Set the Height property with any value from 0 to the value specified in the Height
property of the form less the value specified in the Top property of the control.

Cobol-WOW User's Guide
Intrinsic Controls

183

Left Property

The Left property determines, in pixels, the location of the |eft side of the control. This
valueisrelative to the client area of the form containing the control.

Set the Left property with any value from 0 to the value specified in the Width property
for the form.

Locked Property

The Locked property determines whether or not alock is placed on the control in order to
prevent the control from being moved accidentally on the form.

The following table lists the possible values of the Locked property:

Value Description
False Control is not locked (the default).
True Control islocked.

MCColor Property

The MCColor property determines the color of various background or text areas of the
month calendar control, based on the value specified in the MCColorlndex property (see
below). The property isanumeric value with nine digits specifying colors as
RRR,GGG,BBB.

In the RGB color model, valid red, green, and blue values are in the range from 0
through 255, with 0 indicating the minimum intensity and 255 indicating the maximum
intensity. Set the BackColor property with any value in the range from 000 to
255255255,

When you click on the value area of the property, an ellipsis appears. Clicking on the
ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of
the control(s).

184 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

MCColorindex Property

The MCColorIndex property determines the color of the various background or text areas
of the month calendar control. The color is specified as an index value into the color
selected in the MCColor property (see above).

The following table lists the possible values of the MCColorlndex property:

Value Description

0 Returns or sets the background color behind the calendar (the
default).

Returns or sets the color of the calendar text.

Returns or sets the background color of the calendar title.
Returns or sets the color of the calendar title text.

Returns or sets the background color of the calendar text.
Returns or sets the color of the trailing text in the calendar.

g h W DN -

Name Property

The Name property identifies the control to the underlying program, and is the name
shown in your code. Because every control in aform must have a unique name,
Cobol-WOW assigns default names and numbers them sequentially as you add them to a
form. For example, if you add three check boxes to a form, Cobol-WOW names them
CB1, CB2, and CB3.

Note When you have more than one form in a project, and the same control name exists
within more than one of those forms, you must distinguish those names in the event-
handling code in the following manner:

control-namel of form-namel, control-namel of form-name2, and so forth.

We recommend that you change the Name property so that it describes the control’s
function, rather than simply accepting the default name. Y ou cannot set or retrieve the
value of this property at runtime (that is, while the application is running).

Cobol-WOW User's Guide 185
Intrinsic Controls

186

PenSize Property

The PenSize property specifies the width of the pen used to draw the outline of the
geometric shape (ellipse, line, rectangle, or rounded rectangle control) in logical units.
The default valueis 1.

PenStyle Property

The PenStyle property specifies the style of the pen used to draw the outline of the
geometric shape (ellipse, ling, rectangle, or rounded rectangle contral).

The following table lists the possible values of the PenStyle property:

Value Description

0 The penissolid.

1 The pen is dashed.

2 The pen is dotted.

3 The pen has aternating dashes and dots.
4 The pen has dashes and double dots.

ScrollBar Property

The ScrollBar property determines whether a scroll bar isincluded on a combo box or
list box control.

The following table lists the possible values of the ScrollBar property:

Value Description
False No scroll bar isincluded.
True A scroll bar isincluded (the default).

Tablndex Property

The Tablndex property determines the tab order, that is the order in which Tab and
Shift+Tab key presses will move input focus between controls (see page 22 for more
information). Controls that have the same Tablndex property value will have undefined
tab sequencing. Set the Tablndex property to avalue of 1 or greater.

Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Note The Tablndex property cannot be changed or retrieved at runtime (with the
WOWGETPROP and WOWSETPROP functions) and can only be set in the
Cobol-WOW Designer.

TabStop Property

The TabStop property determines whether a user can use the Tab key to set the focusto a
control in aform.

The following table lists the possible values of the TabStop property:

Value Description
False Control is not atab stop.
True Control isatab stop (the default).

Top Property

The Top property determines, in pixels, the location of the top of the control. Thisvaue
isrelative to the client area of the form containing the control.

Set the Top property with any value from O to the value specified in the Height property
of the form.

Transparent Property

The Transparent property determines whether the background of the form, or the
underlying control, will show through.

The following table lists the possible values of the Transparent property:

Value Description

False Causes the background of the form or the underlying control
not to show through (the default).

True Causes the background of the form or the underlying control
to show through.

Cobol-WOW User's Guide 187
Intrinsic Controls

Visible Property

The Visible property determines whether the control is visible or hidden at runtime.

The following table lists the possible values of the Visible property:

Value Description
False Control is hidden.
True Control isvisible (the default).

Width Property

The Width property determines, in pixels, the width of the control.

Set the Width property with any value from 0 to the value specified in the Width
property of the form less the value specified in the Left property of the control.

Z-Order Property

The Z-Order property determines and changes the control stacking order, that is, the
order in which controls are created. The controls with the smaller numbers are stacked
“behind” the controls with the larger numbers. The controls with the larger numbers are
“ontop” of all the other controls. The Z-Order property can be manipulated using the
Bring To Front and Send To Back commands on the Control menu.

The valueis a one-based index to the z-order of the controls, where 1 indicates the first
control, 2 indicates the second control, and so on. Cobol-WOW initially sets the z-order
for each control to correspond to the order in which they were added to the form. You
can also change the z-order by choosing the Z-Order command on the Control menu.
(For more information, see page 23 or the Designer online Help file))

Note The Z-Order property cannot be changed or retrieved at runtime (with the
WOWGETPROP and WOWSETPROP functions) and can only be set in the
Cobol-WOW Designer.

188 Setting Properties and Events for Intrinsic Controls and Forms
Intrinsic Controls

Common Intrinsic Control Events

The following common events are implemented by one or more of the intrinsic controls.

Events

Click GotFocus KeyPress L ostFocus
DblClick KeyDown KeyUp

Click Event

The Click event occurs when the user clicks a mouse button on a control.

DbIClick Event

The DbIClick event occurs when the user double-clicks a mouse button on a control.

Note This event has an affect for a combo box control only when the Style property (see
page 109) is set to a value of 0 (Simple, standard combo box).

GotFocus Event

The GotFocus event occurs when the control receives the focus.

KeyDown Event

The KeyDown event occurs when the user presses a key while the control has input
focus. The value of the key pressed is contained in the WIN-CHAR variable declared
in windows.cpy.

KeyPress Event

The KeyPress event occurs when the user presses and releases akey (or the key is held
down for repeat) while the control has input focus. The value of the key pressed is
contained in the WIN-CHAR variable declared in windows.cpy.

KeyUp Event

The KeyUp event occurs when the user releases a key while the control has input focus.
The value of the key pressed isin the WIN-CHAR variable declared in windows.cpy.

Cobol-WOW User's Guide 189
Intrinsic Controls

LostFocus Event

The LostFocus event occurs when the control |oses input focus, either by user action,
such as tabbing to or clicking another control, or by changing the focus in code.

Forms

Forms are the containers within which you group controls. In traditional programming,
you place fields on the screen or in a pop-up window. With Cobol-WOW, you place
fields (that is, controls) in aform. Although forms are quite versatile, most of your
programming will be involved with manipulating controls, not forms. The form has only
default properties associated with it.

Note If you are working with formsin an RM/Panels panel library, see page 276.

All the properties and events for aform are listed in the following tables and are
documented in the following sections (details on the events begin on page 201).

Properties

3D Caption Icon Parent Title
AllowEventFilter ClipControls I conl ndex ScrollBars Top
BackColor Cursor Left ShowState Visible
Bitmap DialogMotion MaxButton Style Width
BitmapMode Enabled MinButton SysKeyMode

Border Height Modal SystemMenu

Events

Activate GetFocus LButtonDown MButtonUp Show
Close KeyDown LButtonUp Paint

Create KeyPress L oseFocus RButtonDown

Enable KeyUp MButtonDown RButtonUp

190 Setting Properties and Events for Intrinsic Controls and Forms
Forms

3D Property

The 3D property controls the three-dimensional appearance of intrinsic controlsin a
form.

The following table lists the possible values of the 3D property:

Value Description

0 Mixed — Allows two-dimensional and three-dimensional
settings of individual intrinsic controlsin aform (the default).

1 All 3D — Forces all intrinsic controls to a three-dimensional
appearance.

2 No 3D — Forces al intrinsic controls to a two-dimensional
appearance.

Note Theform 3D property settings of 1 (All 3D) or 2 (No 3D) will override the 3D
property settings of individual controls (see page 179).

AllowEventFilter Property

The AllowEventFilter property determines whether Cobol-WOW performs filtering on
events returned to the COBOL program.

Cobol-WOW returns the messages generated by Windows to the COBOL program to be
handled as events by the form and controls. Windows generates many messages, and in
most cases, a small minority of these messages are actually acted upon by the COBOL
program. To maximize performance, particularly in networked environments,
Cobol-WOW filters the messages (events) returned to the COBOL program. This can be
done because the Cobol-WOW Designer knows which events have code associated with
them. If the AllowEventFilter property is set to True, thisfiltering is performed for the
form and all controls oniit.

In some cases, you may add code to your COBOL program that acts on additional
messages. Since Cobol-WOW is not aware of this code, it would filter out the associated
messages and the code would never beinvoked. To prevent this, set the
AllowEventFilter property to False when adding additional message handling code
directly to your programs.

Cobol-WOW User's Guide 191
Forms

Note The AllowEventFilter property can be overridden at runtime by selecting the Do
Not Filter Events option on the Runtime page of the Preferences dialog box or by
customizing the [WOWRT] section (see page 3) of the cblwow.ini file.

The following table lists the possible values of the AllowEventFilter property:

Value Description

False Filtering is not performed for the form and all controls on it.

True Filtering is performed for the form and all controls on it (the
default).

BackColor Property

The BackColor property determines the background color of aform. The property isa
numeric value with nine digits specifying colors as RRR,GGG,BBB.

In the RGB color model, valid red, green, and blue values are in the range from O
through 255, with 0 indicating the minimum intensity and 255 indicating the maximum
intensity. Set the BackColor property with any value in the range from 000 to
255255255.

When you click on the value area of the property, an ellipsis appears. Clicking on the
ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of
the control(s).

Bitmap Property

The Bitmap property specifies that a bitmap is displayed as the background of the form.
The BitmapM ode property setting, described in the following section, determines the
bitmap’s appearance. All controls on the form will be displayed on top of the bitmap.

Note The value of this property must be the complete name of a bitmap file. If the
bitmap is not in the working directory or in adirectory specified in the RUNPATH
environment variable, a pathname is also required.

192 Setting Properties and Events for Intrinsic Controls and Forms
Forms

BitmapMode Property

The BitmapM ode property determines how a bitmap is displayed in aform. Very rarely

will the size of aform and bitmap match exactly. The bitmap can be displayed in its

origina size, which may not completely fill the form or may truncate part of the bitmap.
The bitmap can also be scaled to match the exact size of the form. Y ou can choose the

most appropriate technique. Results will vary depending on the original size of the

bitmap, the size of the form, and the nature of the bitmap. (See aso “Bitmap Property”
described in the previous section.)

The following table lists the possible values of the BitmapMode property:

Value

Description

0

Displaysthe bitmap in its origina size (the default). If the
bitmap is smaller than the form, the bitmap will be displayed in
the upper-left corner of the form, and the remainder of the form
will be filled with the background color of the form. If the
bitmap is larger than the form, only the portion of the bitmap
that will fit in the form will be displayed.

Scales the bitmap to fit the exact size of the form. This setting
may distort the bitmap image, especially if the size difference
between the bitmap and the form is dramatic.

Arranges (tiles) the bitmap in multiple images side by side on
the form.

Border Property

The Border property determines whether the form displays a border.

The following table lists the possible values of the Border property:

Value Description

0 Form does not have a border (the default).

1 Form has a thin border.

2 Form has a thick, sizable border.

3 Form has a thick, sizable, dia og-box-style border.

Cobol-WOW User's Guide
Forms

193

194

Caption Property
The Caption property determines whether aform has atitle bar.

The following table lists the possible values of the Caption property:

Value Description
False Form does not have atitle (the default).
True Form has atitle bar.

ClipControls Property

The ClipControls property determines whether child controls can extend past the
boundaries of aform.

The following table lists the possible values of the ClipControls property:

Value Description
False Child controls can extend outside the form (the default).
True Child controls cannot extend outside the form.

Setting Properties and Events for Intrinsic Controls and Forms
Forms

Cursor Property

The Cursor property sets the default state (shape) of the cursor to display as the mouse
pointer moves over the form. Each form can have one cursor shape. This value can be
set and retrieved at runtime.

The following table lists the possible values of the Cursor property:

Value Description

0 ARROW — Cursor shape is adiagonal arrow.

1 IBEAM — Cursor shapeis an I-bar, indicating editable text.

2 WAIT — Cursor shapeis an hourglass, indicating that the
program is busy and the user should wait.

3 CROSS — Cursor shape is asimple crosshair.

4 UPARROW — Cursor shapeisan up arrow.

5 SIZENWSE — Cursor shapeis arrows with a diagonal bar
separating them, indicating the northwest and southeast edges
of the form are to be resized.

6 SIZENESW — Cursor shapeis arrows with a diagonal bar
separating them, indicating the northeast and southwest edges
of the form are to be resized.

7 SIZEWE — Cursor shape is arrows pointing left and right with
ahorizontally bar separating them, indicating the form is to be
resized horizontally.

8 SIZENS — Cursor shapeis arrows pointing up and down with
avertical bar separating them, indicating the form isto be
resized vertically.

9 SIZEALL — Cursor shapeis arrows with a diagonal bar
separating them, indicating the northeast and southwest edges
of the form are to be resized.

10 NO — Cursor shape isacircle with aslash throughit.

11 APPSTARTING — Cursor shapeisan arrow with an
hourglass.

12 HELP — Cursor shapeis an arrow with question mark,

indicating help is available.

Cobol-WOW User's Guide
Forms

195

DialogMotion Property

The DialogMotion property determines whether Tab key motion between fields and
arrow key motion within groups should automatically be performed for aform.

The following table lists the possible values of the DialogMotion property:

Value Description
False Dialog motion should not automatically be performed.
True Dialog motion should automatically be performed (the default).

Enabled Property

The Enabled property determines whether aform can respond to user-generated input (or
events).

The following table lists the possible values of the Enabled property:

Value Description
False Form is not enabled for user input.
True Form is enabled for user input (the default).

Height Property

The Height property determines the height, in pixels, of aform.

Set the Height property with any value from 0 to the height of the screen display less the
value specified in the Top property.

Icon Property

The Icon property determines the icon to be used for aform when the form is minimized.
This property cannot be retrieved or modified at runtime.

Note The Icon property must be specified in the Designer, and it must be the complete
name of an icon (.ico) file. If theicon fileisnot in the working directory or in a
directory specified in the RUNPATH environment variable, a pathname is also required.

196 Setting Properties and Events for Intrinsic Controls and Forms
Forms

Iconindex Property

The Iconlndex property determines the icon to be used for aform when the formis
minimized and when more than oneicon existsin theicon (.ico) file. Thevaueisa
zero-based index to the icons, where O indicates the icon, 1 indicates the second icon,
and so on.

Left Property

The Left property determines, in pixels, the location of the left side of aform. Thisvalue
isrelative to the entire desktop area.

Set the Left property with any value from 0 to the width of the screen display.

MaxButton Property
The MaxButton property determines whether a Maximize button is included on aform.

The following table lists the possible values of the MaxButton property:

Value Description
False Form does not have a maximize button (the default).
True Form has a maximize button.

MinButton Property
The MinButton property determines whether a Minimize button isincluded on aform.

The following table lists the possible values of the MinButton property:

Value Description
False Form does not have a minimize button (the default).
True Form has a minimize button.

Cobol-WOW User's Guide 197
Forms

Modal Property

The Modal property determines whether or not the form is the only form the user can
operate for the application. If the value of the Modal property is set to True, all other
forms will be unavailable to the user until the form is removed, or the value of the Modal
property is set to False, or another modal form is displayed.

The following table lists the possible values of the Modal property:

Value Description
False The formisnot modal (the default).
True The formis modal.

Parent Property

The Parent property designates the form that serves as the parent of the current form.
This property cannot be set or retrieved at runtime.

The Parent property value should be specified in the Designer, using the name of another
formin the project. Leaving the value blank indicates that there is no parent form. If a
parent is specified, the current form will be positioned relative to the parent and
minimized with the parent.

ScrollBars Property

The ScrollBars property determines whether one or more scroll bars are attached to a
form.

The following table lists the possible values of the ScrollBars property:

Value Description

0 No scroll bars are added (the default).

1 A vertical scroll bar is added.

2 A horizontal scroll bar is added.

3 Both vertical and horizontal scroll bars are added.

198 Setting Properties and Events for Intrinsic Controls and Forms
Forms

ShowState Property

The ShowState property determines the manner in which aform is displayed.

The following table lists the possible values of the ShowState property:

Value Description

0 Form is displayed normally (the default).

1 Form is displayed as maximized, that is, it fills the entire
desktop area.

2 Form is displayed as an icon.

Style Property

The Style property is used to determine the type of aform.

The following table lists the possible values of the Style property:

Value

Description

1

Specifies the form as overlapped, which means that the form is
atop-level window that has atitle bar, border, and client area.
It is meant to serve as an application’s main window. It can
also have a menu, minimize and maximize buttons, and scroll
bars. Overlapped windows may own other top-level windows
or be owned by other top-level windows or both. (Thisisthe
default value.)

Specifies the form as a child, which means that the form has a
parent. The parent-child relationship determines where a
window can be drawn on the screen. A child window can be
drawn only within its parent’s client area, and is destroyed
along with its parent.

Specifies the form as a pop-up, which means that the formisa
pop-up window. A pop-up window does not have a parent by
default (although a parent can be set for it); apop-up window
can be drawn anywhere on the screen. The main differences
between a pop-up window and an overlapped window is that a
pop-up window can be displayed outside the border of its
parent window.

Cobol-WOW User's Guide
Forms

199

SysKeyMode Property

The SysKeyMode property specifies the way in which a Cobol-WOW application
processes WM-SY SKEY messages (controlled on aform-by-form basis). The
Windows operating system makes a distinction between system keystrokes and non-
system keystrokes. System keystrokes produce system keystroke messages, such as
WM-SY SKEY DOWN and WM-SY SKEY UP. Non-system keystrokes produce non-
system keystroke messages, such as WM-KEY DOWN and WM-KEY UP. Windows
generates aWM-KEYDOWN or aWM-SY SKEY DOWN message when the user
presses akey. When the user releases a key, the system generatesa WM-KEYUP or a
WM-SY SKEY UP message.

The following table lists the possible values of the SysKeyMode property:

Value Description

0 WantSysKey — The application receives WM-SY SKEY
system messages (the default).

1 WantKey — The application receives WM-KEY messages that
have been trandated from WM-SY SKEY messages.

2 WantK eyandSysKey — The application receives both WM-
SYSKEY and WM-KEY messages.

3 None — The application receives neither WM-SY SKEY nor

WM-KEY messages.

SystemMenu Property

The SystemMenu property determines whether aform contains a System menu.

The following table lists the possible values of the SystemMenu property:

Value Description
False Form does not contain a System menu (the default).
True Form contains a System menu.

Title Property
The Title property determines whether aform contains atitle in the title bar.
Set the Title property with any alphanumeric characters, including spaces.

Thetitle will be displayed only if the value of the Caption property is set to True. See
Caption property on page 194.

200 Setting Properties and Events for Intrinsic Controls and Forms
Forms

Top Property

The Top property determines, in pixels, the location of the top of aform. Thisvalueis
relative to the entire desktop area.

Set the Top property with any value from 0 to the height of the screen display.

Visible Property

The Visible property determines whether aform is hidden or visible at runtime.

The following table lists the possible values of the Visible property:

Value Description
False Form is hidden.
True Form isvisible (the default).

Width Property

The Width property determines, in pixels, the width of aform.

Set the Width property with any value from 0 to the width of the screen display lessthe
value specified in the Left property.

Activate Event

The Activate event occurs whenever the form becomes active or inactive.

Close Event

The Close event occurs when the form is destroyed.

Create Event

The Create event occurs when the form is created.

Enable Event

The Enable event occurs when the form is enabled or disabled.

Cobol-WOW User's Guide 201
Forms

GetFocus Event

The GetFocus event occurs when the form gets input focus.

KeyDown Event

The KeyDown event occurs when the form has input focus and akey is pressed down.
This event does not occur if a control on the form has input focus. The value of the key
pressed is contained in the WIN-CHAR variable declared in windows.cpy.

KeyPress Event

The KeyPress event occurs when the form has input focus and akey is pressed and
released. This event does not occur if a control on the form has input focus. The value
of the key pressed is contained in the WIN-CHAR variable declared in windows.cpy.

KeyUp Event

The KeyUp event occurs when the form has input focus and akey isreleased. This event
does not occur if a control on the form has input focus. The value of the key pressed is
contained in the WIN-CHAR variable declared in windows.cpy.

LButtonDown Event

The LButtonDown event occurs when the form has input focus and the left mouse button
is depressed.

LButtonUp Event

The LButtonUp event occurs when the form has input focus and the left mouse button is
released.

LoseFocus Event

The LoseFocus event occurs when the form loses input focus.

MButtonDown Event

The MButtonDown event occurs when the form has input focus and the middle mouse
button is depressed.

202 Setting Properties and Events for Intrinsic Controls and Forms
Forms

MButtonUp Event

The MButtonUp event occurs when the form has input focus and the middle mouse
button is released.

Paint Event

The Paint event occurs when the form receives a WM-PAINT message (see the
Functions and Messages online Help file). Although Cobol-WOW and the COBOL
runtime together automatically draw whatever image is required within the form, if you
want to dynamically draw something €lse, the Paint event provides notification that it is
permissible to do so.

RButtonDown Event

The RButtonDown event occurs when the form has input focus and the right mouse
button is depressed.

RButtonUp Event

The RButtonUp event occurs when the form has input focus and the right mouse button
isreleased.

Show Event

The Show event occurs when the form is hidden or displayed.

Cobol-WOW User's Guide 203
Forms

204 Setting Properties and Events for Intrinsic Controls and Forms
Forms

Appendix B: Working with
ActiveX Controls

This appendix describes special considerations for using ActiveX controls with
Cobol-WOW.

ActiveX Controls and Cobol-WOW

Wouldn't it be nice if you weren't limited to using the controls built into the Windows
operating system? Wouldn't it be great if you could license specialized controls and plug
them right into your development environment, using them asif they were a part of
Windows?

That idea has been pursued with varying degrees of success for many years. The latest
implementation of thisideais ActiveX controls, and with Cobol-WOW, you can use
ActiveX controls on 32-hit platforms. What's more, you can use them just like the
intrinsic Windows controls.

History of ActiveX Controls

ActiveX controls have an interesting history. They were preceded by VBX controls.
VBX controls were a successful implementation of component technology for 16-bit
Microsoft Visual Basic. VBX controls could be created by third-party developers, but
used within Visual Basic just like the intrinsic Windows controls. Thisidea of “plug-in”
components sparked the creation of hundreds of third-party controls, and contributed
significantly to the popularity of Visual Basic.

But VBX controls have two shortcomings. Thefirst isthat they aretied closely to a
16-hit architecture, which prevents moving VBX control technology to the 32-bit
environment. The second problem isthat VBX controls are tied very closely to Visual
Basic. Thismakesit difficult to provide support for VBX controlsin other systems.

The designers at Microsoft set out to solve both problems with a new specification for
the creation of third-party controls. They started by using two technologies: COM
(Component Object Model) and OLE (Object Linking and Embedding). Based on these
technologies, Microsoft came up with a specification for OLE Controls, which were later

Cobol-WOW User's Guide 205
ActiveX Controls and Cobol-WOW

renamed to OCX controls. With the popularity of the Internet came another modification
to the specification and afina rename: ActiveX controls.

Microsoft provides the COM and OLE technologies used by ActiveX controls as part of
Windows, but ActiveX isreally a specification of how the ActiveX control is created and
how it interfaces with the software that uses the control. Thereal “magic” isin this
specification. By knowing the specification, a program that uses an ActiveX control
(called a container) can work with the control without having prior knowledge of the
control. The application can learn what it needs to know about the control at runtime.

Adding and Removing ActiveX Controls to the
Cobol-WOW Designer

Thefirst step in using ActiveX controls with Cobol-WOW is adding them to the
Toolbox. To add ActiveX controls to the Toolbox, click the Select ActiveX Controls
command on the Cobol-WOW Designer’s Options menu to display the Select ActiveX
Controls dialog box..

The Select ActiveX Controls dialog box lists the ActiveX controls that are installed on
your system and that appear to be compatible with Cobol-WOW. Cobol-WOW
determines what controlsto list here by searching the Windows Registry entries on the
computer to find the registered ActiveX controls. When Cobol-WOW finds a control, it
looks to seeif the necessary Registry entries are there to allow it to use the control, and
also checksto seeif the control requires any features not provided by Cobol-WOW.

If an expected control does not appear the dialog box list, see the troubleshooting tips on
page 207.

To add any listed control to your Toolbox, just click on the control to select it. When
you have selected all the controls you want, click OK. The Toolbox will be reformatted
to display the controls you have selected. The controls also will be recorded in the
cblwow.ini file (see page 3). An ActiveX control is added to aform in the same manner
asanintrinsic control. Simply select the control in the Toolbox, and then click and drag
it on the form.

In some cases, severa controls will be added to the Toolbox by selecting asingle entry in
thelist box. Thisis because some controls are distributed and registered as a group.

To remove a control from the Toolbox, deselect the control in the Select ActiveX
Controls dialog box and click OK.

206 Working with ActiveX Controls
Adding and Removing ActiveX Controls to the Cobol-WOW Designer

Troubleshooting Tips

If an expected control does not appear in the list box, there are several possible reasons:

1. Thecontrol has not been registered. It is not enough simply to copy the control’s
implementation file ((OCX, .DLL) to the system. The control must be described
through Windows Registry entries. Thisiswhat allows OLE and COM to work with
the control. Check the documentation for your control to see how it should be
registered. Most controlswill be registered by their installation software. The
RegEdit program also provides facilities for registering controls.

2. Thecontrol’s Registry information isincomplete. The following entries are required
for the control under HKEY _CLASSES ROOT\CLSID:

CLSID
ProglD
Control
TypeLib

In addition, the TypeLib must also be registered under
HKEY_CLASSES ROOT\TypeLib.

3. Thecontrol has a RequiredCategories entry in its Registry entry. Thiswill prevent
Cobol-WOW from displaying the control.

Using ActiveX Controls on a Form

An ActiveX Control is added to aform in the same manner as aintrinsic control. Simply
select the control in the Toolbox and click and drag on the form to establish the outline of
the control.

Cobol-WOW User's Guide 207
Using ActiveX Controls on a Form

ActiveX Control Properties

208

ActiveX control properties are displayed and modified through the Properties dialog box
(see page 10) in the same manner asintrinsic controls. Font, color, and True/False
properties work just likeintrinsic controls. Other properties have valuesthat are
described in the documentation for the control.

ActiveX control properties can be queried and modified at runtime using the
WOWSETPROP and WOWGETPROP functions (see pages 57 and 58, respectively).
Note that True/False properties of ActiveX controls have dightly different values. With
an ActiveX control, False is zero, but Trueis-1.

ActiveX Indexed Properties

Some ActiveX control properties occur multiple times and are described as indexed.

Two special functions must be used to get and set indexed properties for ActiveX
controls. These functions are AXGETINDEXPROP and AXSETINDEXPROP. They
are used as follows.

Toretrieve an indexed property:

CALL AXGETINDEXPROP USING WIN-RETURN AXCTIVEXCTL-H PROPNAME
RET-VALUE INDEX-1 INDEX-2 ...

WIN-RETURN is anumeric dataitem that is set to O if the function succeeds or to an
error code if the function fails.

AXCTIVEXCTL-H identifies the handle generated for the ActiveX control by
Cobol-WOW.

PROPNAME is an alphanumeric literal or data item containing the property name.

RET-VALUE is an alphanumeric or numeric dataitem that will receive the
property value.

INDEX-1 INDEX-2 are numeric literals or data items that are the index(es) for the
property. If more than oneindex is specified, the most significant index should be
placed first.

Working with ActiveX Controls
ActiveX Control Properties

To set an indexed property:

CALL AXSETINDEXPROP USIGN WIN-RETURN AXCTL-H PROPNAME
PROP-VALUE INDEX-1 INDEX-2 ...

WIN-RETURN is anumeric dataitem that is set to O if the function succeeds or to an
error code if the function fails.

AXCTIVEXCTL-H identifies the handle generated for the ActiveX control by
Cobol-WOW.

PROPNAME is an alphanumeric literal or dataitem containing the property name.

PROP-VALUE is an aphanumeric or numeric literal or dataitem containing the property
valueto be set

INDEX-1 INDEX-2 are numeric literals or data items that are the index(es) for the
property. If more than oneindex is specified, the most significant index should be
placed first.

ActiveX Control Events

ActiveX control events are listed in the Events/Code Sections list of the Event-Handling
Code dialog box. Code added to the eventsin the dialog box will be automatically
executed when the control triggers the event.

Cobol-WOW User's Guide 209
ActiveX Control Events

ActiveX Control Methods

210

Some ActiveX controls provide special capabilities that are invoked as methods. These
methods can be thought of as functions or procedures built into the control. These
methods can be executed using the AXDOMETHOD function as follows:

CALL AXDOMETHOD USING WIN-RETURN ACTIVEXCTL-H METHOD-NAME
PARAM-1 PARAM-2 ... [GIVING PARAM-RESULT]

Note Information about methods and parameters can be found in the control’s
documentation. When supplying parameters to a method you do not need to worry about
the data types being used. Caobol-WOW will convert the data to the proper format based
on information contained in the control. Simply supply the parameters in the proper
order. Parametersidentified by the control’ s documentation as optional may be omitted.

WIN-RETURN isanumeric dataitem that is set to O if the method succeeds or to an
error code if the method fails.

ACTIVEXCTL-H identifies the handle generated for the ActiveX control by
Cobol-WOW.

METHOD-NAME is an aphanumeric literal or data item containing the control name.

PARAM-1 PARAM-2 are the parameters for the method. Multiple parameters may be
specified. The reserved word, OMITTED, may be used to designate an unspecified
optional parameter when parameter(s) to the right of the OMITTED parameter are to be
specified. (Do not use OMITTED for unspecified trailing parameters.)

PARAM-RESULT is an optional parameter to receive the value returned by the method.
Note that not all methods return values. Thisis not the same as the WIN-RETURN
parameter; PARAM-RESULT isonly valid if the WIN-RETURN valueisO.

Note Some methods may change the content of parameters as an undocumented side
effect. Usethe BY CONTENT reserved word to protect values in the calling program
from such an outcome.

Example

Many controls provide an AboutBox method that will display an About Box identifying
the control. This method generally requires no parameters. The AboutBox method for a
control with the name MY ACTIVEX would be invoked as follows:

CALL AXDOMETHOD USING WIN-RETURN MYACTIVEX-H "ABOUTBOX'".

Working with ActiveX Controls
ActiveX Control Methods

Limitations

ActiveX controls have the following limitations when used with Cobol-WOW:

Some control properties may not be available for querying or modification at
runtime. Thisis determined by the control. If this occurs, a message box will be
displayed.

An ActiveX control handle is NOT awindow handle. Y ou cannot pass an
ActiveX control handle to afunction that expects a window handle, such as
GETWINDOWTEXT. An attempt to do thiswill result in a message box being
displayed. Some ActiveX controls will expose awindow handle as a property to
allow you to use Windows API functions on the control.

ActiveX controls that function as containers are not supported. 'Y ou cannot place
one ActiveX control inside another.

ActiveX controls that require data binding are not supported.

Distribution Issues

If you use ActiveX controlsto develop your application, these controls will have to be
distributed with your application. Pay attention to the licensing issues associated with
any controls you use. Some controls will require alicense only for development use,
othersrequire alicense for development and deployment.

Cobol-WOW User's Guide
Limitations

211

212 Working with ActiveX Controls
Distribution Issues

Appendix C: Understanding the
Application Architecture

This appendix defines the architecture for integrating the graphical user interface of an
application for Windows with the Cobol-WOW application development framework.

Initial Creation of a Cobol-WOW Program

When you create a new Cobol-WOW program, many files are created and processed.
The following figure illustrates the files and components involved in theinitial creation
of a Cobol-WOW program having two forms. In this example, the programis called
MyApp, and the forms are named form1 and form2.

< myapp.wpj O < form1l.wow O (form2.wow <>
A

Cobol-WOW
form1.wpr . forml.wws
Designer
form2.wpr » myapp.cbl (< form2.wws

‘ COBOL Compiler ’
(myapp)

Initial Creation of a Cobol-WOW Program

Cobol-WOW User's Guide 213
Initial Creation of a Cobol-WOW Program

214

Project File (.wpj)

The Cobol-WOW Designer creates a project file to store project information, in
particular, alist of the formsincluded in the project. Thisfile, which has the extension
.wpj, isneeded only at designtime. Asyou add or rename forms from the project, this
fileisautomatically updated. For more information, see “ Cobol-WOW Projects’ on

page 65.
Form File (wow)

The Cobol-WOW Designer component manages the entire process of creating a form.
When you first save a new form, the Designer creates afile that stores the definition of
the form. Thistype of fileis known as a Cobol-WOW form file and has a default
extension of .wow. The .wow fileisread and written to by the Designer, but it is not
needed during runtime. Asyou edit aform, the modifications are stored in the .wow file.
Thisfileissimilar to aword processing file, in that just as aword processing file
contains a single document, a .wow file contains the definition of asingle form. See
page 52 for additional information.

Working Storage Copy File (wws)

The Cobol-WOW Designer generates a copy file for each form that contains a binary
definition of the form. This binary definition is declared asa COBOL dataitem. This
type of copy file is known as a Cobol-WOW Working Storage file and has a default
extension of .wws. Any program that uses the form must contain this copy file so that it
has a definition of the form. Since the form definition isin the COBOL Working-
Storage Section, it is loaded into memory when the program is loaded. This allows the
form to be created quickly at runtime by a single call with no disk access.

Procedure Division Copy File (.wpr)

The Cobol-WOW Designer also generates a Procedure Division copy file for each form
with a default extension of .wpr. This copy file contains the event-handling logic for the
form and the message interpretation logic that will make the event-handling code
execute. This copy file must be included in any program that uses the form.

Understanding the Application Architecture
Initial Creation of a Cobol-WOW Program

COBOL Skeleton Program File (.cbl)

The Cobol-WOW Designer generates a skeleton program, based on the project file, with
enough logic to display, use, and remove the forms. Thistype of fileis known as an
RM/COBOL source file and has a default extension of .cbl. This skeleton program
provides enough COBOL code to begin your program. As you enhance the program,
you will probably want to add additional functionality, such as file access, to the main
program.

COBOL Executable Program File (.cob)

The files generated by the Cobol-WOW Designer combine to make a compilable and
executable program. Thisfile typeis known as an RM/COBOL object file and has a
default extension of .cob. The Designer executes the COBOL compiler on the skeleton
program, which includes the two copy files. Thisfileis created when you compile the
source code with the Build command on the Project menu. Once the programis
compiled, it can be run like any other COBOL program.

Cobol-WOW User's Guide 215
Initial Creation of a Cobol-WOW Program

Ongoing Maintenance of a Cobol-WOW

Program

As you continue to modify and maintain a Cobol-WOW program, the processis

illustrated below.

— User Interfaee:

A 4

Cobol-WOWwW
Designer
form2.wws forml.wws form1.wpr form2.wpr
__ Application \ /
Logic

Y

e
myapp.cbl

N

A 4
< Editor >

A

myapp >

APCCOBOL Compiler>

Enhancement and Modification of a Cobol-WOW Program

216 Understanding the Application Architecture
Ongoing Maintenance of a Cobol-WOW Program

The Cobol-WOW design tool, the Cobol-WOW Designer, defines the user interface.
The user interface logic isincluded in the form and the Designer generates only the .wws
and .wpr copy files. The Designer no longer continues to regenerate the skeleton
program.

In fact, the skeleton program has now become something much more. It has become the
repository for the application logic. The program can be edited with any editor.

Whenever the form is modified, the copy files must be regenerated. The program then
can be recompiled.

In some circumstances, you may want to edit event-handling code outside the
Cobol-WOW Designer. Thiswill work satisfactorily. The Designer will detect the
changes during the editing session and preserve the modifications.

How a Cobol-WOW Program Works

Y ou can understand how a Cobol-WOW program works by looking at four files:
windows.cpy, formname.wws, formname.cbl, and formname.wpr.

WINDOWS.CPY

The windows.cpy copy file, supplied with the Cobol-WOW DLL, declares the dataitems
needed to interface to Windows. Windows was created to recognize many numerical
constants. Thisfile declares these values as COBOL data items with names that are
meaningful and consistent with Windows programming constructs. This file should
never be modified.

Let’sexamine afew of the data items declared in windows.cpy.

Many Windows API functions require atrue or false value. In Windows, TRUE =1 and
FALSE = 0. Because TRUE and FAL SE have an entirely different meaning in COBOL,
the windows.cpy file includes the following declaration:

01 WIN-BOOLEAN-VALUES.
03 WIN-TRUE PIC 9(4) COMP-4 VALUE 1
03 WIN-FALSE PIC 9(4) COMP-4 VALUE O.

Cobol-WOW User's Guide 217
How a Cobol-WOW Program Works

218

In writing Cobol-WOW programs, you can use WIN-TRUE for TRUE and WIN-FALSE
for FALSE. Inthefollowing examples, the first line of code enables a window; the
second disablesit.

CALL ENABLEWINDOW USING WIN-RETURN WND-H WIN-TRUE.
CALL ENABLEWINDOW USING WIN-RETURN WND-H WIN-FALSE.

The windows.cpy file also declares the data items needed to store Windows messages.
01 WIN-MSG-WS.

03 WIN-MSG-HANDLE PIC 9(10) COMP-4.
03 WIN-MSG-HANDLE-A REDEFINES WIN-MSG-HANDLE PIC X(8).
03 WIN-WPARAM-H PIC S9(10) COMP-4.
03 WIN-WPARAM-L PIC S9(10) COMP-4.
03 WOW-KEY-VALUE REDEFINES WIN-WPARAM-L PIC 9(10) COMP-4.
03 WIN-LPARAM PIC S9(10) COMP-4.
03 WIN-LPARAM-A REDEFINES WIN-LPARAM PIC X(8).
03 WIN-MSG-1D PIC 9(10) COMP-4.
03 WIN-MSG-ID-RED REDEFINES WIN-MSG-1D.
05 FILLER PIC X(6).
05 WIN-MSG-1D-A PIC XX.

Thisfile aso contains the declarations for all the Windows API functions and messages
that can be used with Cobol-WOW.

FORMNAME.WWS

As discussed in the section “Initial Creation of a Cobol-WOW Program” on page 213,
the formname.wws copy file contains a binary definition of aform. It also contains
specia variables for usein event-handling code.

Create a sample form with the Name property CUSTINFO and two edit controls, CUST-
NAME and CUST-ADDRESS. Thefirst dataitem you will see in the custinfo.wws
copy fileisthe dataitem used to store the handle of the form after it is created. This
handle is needed to perform operations on the form, such as hiding or disabling it. For
example:

01 CUSTINFO-H PIC 9(5) COMP-4 VALUE O.

The next data items in custinfo.wws define the ID numbers of the controls on the form.
If the form contains a pulldown menu, 1D numbers for the menu controls would also be
defined. These ID numbers are required for some Windows API functions and for the
event-handling code generated by the Cobol-WOW Designer. For example:

01 CUSTINFO-IDS.
03 CUST-NAME-I1D PIC 9(5) COMP-4 VALUE 1.
03 CUST-ADDRESS-ID PIC 9(5) COMP-4 VALUE 2.

Understanding the Application Architecture
How a Cobol-WOW Program Works

Y ou will then see the data items that contain the handles of the individual controls on the
form after the form is created. The handles are required for most Windows API
functions and for the event-handling code generated by the Cobol-WOW Designer. For
example:

01 CUSTINFO-HS.

03 CUST-NAME-H PIC 9(5) COMP-4 VALUE O.
03 CUST-ADDRESS-H PI1C 9(5) COMP-4 VALUE O.

Note All handles areinitialized with the value O, while the IDs areinitialized with the
correct values. The handle data items will receive values when the formis created.

Finally, you will see the data item that is the binary definition of the form. It may or may
not include comments describing the form contents, depending on how the form was
generated. This definition begins with the following:

01 CUSTINFO-DEF.

FORMNAME.CBL

The formname.cbl file is the COBOL skeleton program file generated by the
Cobol-WOW Designer. This program contains the logic necessary to create, use, and
destroy the form.

The Working-Storage Section of the skeleton program contains only the two copy files,
described on page 214. The Procedure Division is more complex.

The high-level control of the skeleton program is MAIN-FUNCTION.
Thefirst statement in MAIN-FUNCTION is as follows:
PERFORM PROGRAM-INITIALIZATION.

This procedure contains only an EXIT statement. It is a placeholder intended to indicate
aplace in the program where you could open files or perform other initialization
associated with the application logic.

The second statement in MAIN-FUNCTION
PERFORM CREATE-WINDOWS.

executes the following procedure:

CREATE-WINDOWS.
PERFORM WOW-CREATE-FORMNAME.

Cobol-WOW User's Guide 219
How a Cobol-WOW Program Works

220

This procedure creates any form that should be created at the start of the program. In the
currently generated skeleton program, you have only one form, even though more could
be added. (The procedure, WOW-CREATE-FORMNAME, is declared in
formname.wpr, discussed on page 221.)

The third and fourth statementsin MAIN-FUNCTION

SET WOW-QUIT TO FALSE.
PERFORM PROCESS-EVENTS UNTIL WOW-QUIT.

combine to execute PROCESS-EVENTS until the condition WOW-QUIT. The event
handling for the form is performed in aloop, which is terminated only when this
condition is set to TRUE by some part of the event-handling code, such as the Quit
option on a File menu or a Cancel button.

The fifth statement in MAIN-FUNCTION
PERFORM DESTROY-WINDOWS.

executes the following procedure:

DESTROY-WINDOWS .
PERFORM WOW-DESTROY-FORMNAME .

This procedure destroys any forms that were created at the start of the program.
Although thereis only one form, more may be added. (The procedure, WOW-
DESTROY-FORMNAME, is declared in formname.wpr, described on page 221.)

The sixth statement in MAIN-FUNCTION
PERFORM PROGRAM-SHUTDOWN.

executes a procedure that contains only an EXIT statement. It serves as a placeholder to
indicate a place in the program where you can close files or do other cleanup associated
with the application logic.

The last statement in MAIN-FUNCTION is GOBACK, which exits the program.

PROCESS-EVENTS is the other procedure in formname.chbl that you should examine.

PROCESS-EVENTS.
CALL WOWGETMESSAGE USING WIN-RETURN WIN-MSG-WS
ACTIVEXX-EVENT-WS.
EVALUATE WIN-MSG-HANDLE
WHEN FORMNAME-H PERFORM WOW-FORMNAME-EVENTS
END-EVALUATE.

Understanding the Application Architecture
How a Cobol-WOW Program Works

This procedure retrieves the Windows messages from the message queue and dispatches
them to the appropriate form. The CALL statement retrieves the message information.
The EVALUATE statement checks the message handle against the handle of each form
used by the program and performs WOW-FORMNAME-EVENTS for the appropriate
form. (Remember, thereis only one form in the skeleton program.)

The procedure, WOW-FORMNAME-EVENTS, declared in formname.wpr, is discussed
in the following section.

FORMNAME.WPR

The formname.wpr copy file contains the event-handling code defined for the form.

Let’s examine the form you created with the name CUSTINFO, two edit controls, and an
OK command button called OK-BTN, with code attached to the Click event for the
command button.

Thisfirst itemsin the custinfo.wpr copy file are the declarations of all the event-
handling code defined for the form. The following procedure is responsible for
connecting the event-handling code to the correct Windows message:

WOW-CUST INFO-EVENTS.
EVALUATE WIN-MSG-1D
WHEN WM-COMMAND
EVALUATE WIN-LPARAM-L
WHEN OK-BTN-H OF CUSTINFO-CTL-HS
EVALUATE WIN-LPARAM-H
WHEN BN-CLICKED PERFORM
OK-BTN-CLICK
END-EVALUATE
END-EVALUATE
END-EVALUATE.

This procedure evaluates a Windows message and compares the parameters to those of
the form and its controls. When the procedure finds a message that corresponds to an
event with event-handling code, it performs that event-handling code, in this case,
OK-BTN-CLICK. The size and complexity of this procedure will vary greatly
depending upon the size and complexity of the form. This codeis generated entirely by
the Cobol-WOW Designer, and sinceit is built on the EVALUATE statement, the
execution time does not degrade as additional controls and events are added.

Cobol-WOW User's Guide 221
How a Cobol-WOW Program Works

The next item in the form procedure copy file, custinfo.wpr, is the procedure that creates
the form with the controls defined in the Designer. This procedure also loads the handles
for each of the form’s controlsinto CUSTINFO-CTL-HS.

WOW-CREATE-CUSTINFO.
INITIALIZE WIN-STYLE.
CALL WOWCREATEWINDOW USING CUSTINFO-H
CUSTINFO-DEF WIN-STYLE O CUSTINFO-CTL-HS.

Finally, you will see the procedure that destroys the form:

WOW-DESTROY-CUSTINFO.
CALL DESTROYWINDOW USING WIN-RETURN CUSTINFO-H.

How a Cobol-WOW Program Works with
windows

222

The Cobol-WOW DLL adds athin layer of logic between the COBOL runtime system
and Windows, which makes Windows presume that it was designed to work with
COBOL. Thisthin layer of logic processes function calls and messages to make them
“feel” like COBOL (on the COBOL side) and fed like C (on the Windows side).

The following figure illustrates the flow of this process.

Execution of a Cobol-WOW Program

Y ou can see that the COBOL program does not directly communicate with Windows.
When you call Windows, the call goes to the Cobol-WOW DLL, then the Cobol-WOW
DLL callsWindows. Notice that the arrow goes in both directions between Windows
and the Cobol-WOW DLL.

The Windows operating system was designed to call application code directly in order to
pass messages to a program. Although Windows cannot call the interpretive COBOL
code, it can call the Cobol-WOW DLL and givesit the messages. The Cobol-WOW
DLL storesthe messagesin a message queue and gives them to the COBOL program
when the WOWGETMESSAGE function is executed.

Understanding the Application Architecture
How a Cobol-WOW Program Works with Windows

In addition to receiving messages, this approach also provides Cobol-WOW with the
ability to encapsulate the event-driven architecture of Windows within the traditional
structure of COBOL programs. Instead of making the programs respond to events at all
times, the program can choose when to go into event-driven operation and when to
sequentially process operations like traditional COBOL programs. By preserving the
type of set-up and shut-down logic typically used by COBOL programs, it is easier to
create report and posting programs, and to migrate legacy programs.

Using Cobol-WOW Programs with Non-Cobol-
WOW COBOL Programs

How do Cobol-WOW programs coexist with non-Cobol-WOW programs? Since
Cobol-WOW programs are regular COBOL programs, there are several issues
to consider.

Calling To and From Cobol-WOW Programs

Cobol-WOW programs can be called by, aswell as call, legacy COBOL programs.
Cobol-WOW programs can be passed Linkage Section parameters, and can pass
Linkage Section parameters to legacy COBOL programs. The following figure
illustrates this process.

Ordinary
COBOL Program

Cobol-WOwW
Program

Ordinary
COBOL Program

J

1

Cobol-WOW Program Calling and Called by a Non-Cobol-WOW COBOL Program

Cobol-WOW User's Guide 223
Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs

224

Because Cobol-WOW programs do not require any special Linkage Section parameters,
they can be plugged into legacy applications and called by legacy programs as easily as
any other COBOL program. Additionally, since Cobol-WOW programs can call legacy
programs, existing utility programs and subroutine programs can be called in the same
manner asthey are called by legacy programs.

Visual Considerations of Cobol-WOW and Non-Cobol-WOW
Programs

All non-Cobol-WOW programs use the standard COBOL main window to display and
enter information. Cobol-WOW programs create their own windows. These windows
will not interfere with each other; in fact, a Cobol-WOW program can aso display
information in the standard COBOL main window with a DISPLAY statement. The
standard COBOL main window can also be hidden and displayed using the C$SHOW
subprogram. For more information about the CESHOW subprogram, see the
RM/COBOL User’s Guide.

Understanding the Application Architecture
Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs

Appendix D: Using Cobol-WOW
with RM/Panels

This appendix describes how to use Cobol-WOW with RM/Panels to enhance existing
panel libraries and also discusses how to migrate panels to Cobol-WOW forms.

Enhancing Existing Panel Libraries

For those RM/Panel s users who would like to improve their Windows presentation
without modifying application code, the Cobol-WOW Designer can be used to enhance
existing panels to use the full spectrum of Windows fonts and colors. Developers are no
longer restricted to using a single, fixed-width font nor to alimited color palette.

These enhanced panels can be used by existing programs without source code changes,
simply by using the RM/Panels runtime (supplied with RM/COBOL for Windows,
version 7.00.02 and higher) supplemented with a Cobol-WOW panel runtime-based DLL
(wowpanrt.dll). Enhancing a panel in this manner for Windows does not limit
portability, or prevent the panel or panel library from continued use in DOS or UNIX.
Nor isit necessary to enhance every panel in the application.

Key features for enhancing existing panel libraries include the following:
e Ability to edit RM/Panels screens with the Cobol-WOW Designer.

¢ No need to change RM/Panels source code.

e Cobol-WOW editing of panels does not create additional files.

e Ability to test panels from the Cobol-WOW Designer.

For more information about opening and modifying an existing panel, see page 227.

Cobol-WOW User's Guide 225
Enhancing Existing Panel Libraries

Character-Based GUI Portability and Cross Development

The moveto afull graphical user interface (GUI) does not sacrifice the ability to
continue to deploy an application in a character-based form. However, there are some
issues that must be considered in order to continue application development with an
interface optimized for both environments.

When a panel is enhanced, the data fields/controls added to the panel (see page 229) will
be present on both the character-based and graphical representations of the panel. There
are some properties of the controls that are specific to either the graphical or character-
based environment. For example, each field/control has a Line and Column property,
and Top and Left properties. The Top and Left properties are used in Windows only.
The Line and Column properties are used in DOS and UNIX only.

The character-based RM/Panels Library Manager does not allow access to the Windows-
only properties. The Cobol-WOW Designer, however, does allow you to edit the
character-only properties. The effects of the character-only properties are not visible
from the Cobol-WOW Designer.

New fields/controls can be added to a panel using either the RM/Panels Library Manager
or the Cobol-WOW Designer. Theoretically, if you added a control in the Cobol-WOW
Designer, you could set its character properties and immediately use the panel in the
character environment. Practically speaking, though, you will want to edit the panel
using the RM/Panels Library Manager to accurately tailor the panel before deploying the
panel in the character environment.

Note After adding controlsto a panel using the RM/Panels Library Manager, you will
have to edit the panel using the Cobol-WOW Designer before running a Cobol-WOW
enhanced panel in RM/Panels. Failure to do so will result in the panel being displayed
without the Cobol-WOW enhancements.

Communicating with RM/Panels

The Cobol-WOW Designer must interface to the RM/Panels COBOL programs. Thisis
done via TCP/IP using RPC+ (Cobol-RPC), which paves the way for client/server
implementations. Two files, which are included with Cobol-WOW, are specifically
required to handle this communication. These files are rmrpc32s.dll and cobolrpc.ini.

The Cobol-RPC DLL, rmrpc32s.dll, allows the RM/Panels COBOL programsto be
invoked by the Cobol-WOW Designer. When the Designer needs to invoke a COBOL
program, it starts a new process. This process executes the RM/COBOL runtime and
includes rmrpc32s.dil on the command line with the L= option.

226 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

The Windows initialization file, cobolr pc.ini, contains configuration information for
rmrpc32s.dll. If problems occur, the following two entries can be manually changed:

[ServerConfig]
Port=5000
StartupCommand=runcobol rpcinit.cob I=rmrpc32S.DLL I=wowpan.obj

The Port value can be changed if port 5000 is already in use on the system. Any value
can be used, but values over 1024 are best.

The StartupCommand entry must be changed if the runcobol.exe file is not in the path.

Modifying an Existing Panel Library

Thefirst step in the process is modifying an existing panel to create a more typical
Windows “look-and-feel.” This process begins the same way as any Cobol-WOW
session. The supplied sample library, sample.lib (located in cobolwow\pansmple), can
be used to follow these exercises exactly.

Open the library

To open an existing panel library, take the following steps:
1. Start the Cobol-WOW Designer.

2. From the Panels menu, click Open.

Any open project is closed automatically and the Open Panel dialog box appears.

= — EEE R
Flegser || [Qs |
Fltn ol g |1l Liwass | b = Lol |

Open Panel Dialog Box

Cobol-WOW User's Guide 227
Enhancing Existing Panel Libraries

3. Inthe Open Panel dialog box, find the desired panel library and open it. Panel
libraries have the extension .lib. (For this exercise, you will use samplelib, which,
by default, islocated in C:\Cobol WOW\PANSMPLE\.) The Select Panel
dialog box opens.

Note Cobol-WOW must interface to the RM/Panels COBOL programs via TCP/IP
using Cobol-RPC.

Eaderd thar dmymenl vl

fEVIEST

||]r|
L'.h-ﬂll

Select Panel Dialog Box

4. Select the panel to be modified and click OK.

The panel will be opened in the Cobol-WOW Designer. A default graphical
representation will be displayed. The size, shape, location, color, fonts, and other
properties of the controls and overall window can then be modified.

228 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Change controls

Note RM/Panelsrefersto the objects called “controls’ in Cobol-WOW as “data fields.”
All types of RM/Panels data fields can be added to the panel using the Cobol-WOW
Toolbox.

The properties of each field/control are displayed in the Cobol-WOW Properties dialog
box. Each of the properties listed can be modified. Some properties, such as Column
and Line, affect only the character implementation of the panel. Others, such as
ForeColor, affect only the Windows implementation.

Remember that it is possible to modify severa fields/controls at once by selecting
multiple fields/controls, and using the Background Color, Foreground Color, and Font
options from the Control menu.

Add controls

Note RM/Panels refersto the objects called “controls’ in Cobol-WOW as “data fields.”
All types of RM/Panels data fields can be added to the panel using the Cobol-WOW
Toolbox.

When you open a panel in Cobol-WOW, the Cobol-WOW Toolbox automatically
displays only the RM/Panels data fiel ds (see page 231) that can be added to the panel.
All types RM/Panels fields/control s can be added to the panel using the Cobol-WOW
Toolbox. If you add afield/control to a panel, you will want to use the Character Panel
Editor to adjust the size, location, and color of the field/control before executing the
panel in a character-based environment.

Note ActiveX controls (see page 205) cannot be added to an enhanced panel. The
following intrinsic controls (see page 95) also cannot be added to an enhanced panel:
animation, date time picker, |P address, month calendar, progress bar, status bar, tab,
timer, toolbar, trackbar, and updown, as well as any shapes (ellipse, line, rectangle, and
rounded rectangle).

Delete controls

Note RM/Panels refersto the objects called “controls’ in Cobol-WOW as “ data fields.”
All types of RM/Panels data fields can be added to the panel using the Cobol-WOW
Toolbox.

Panel fields/controls may be deleted from within the Cobol-WOW Designer. The
modified .wsfile will be generated automatically when the panel is saved. Be sureto
recompile any programs that use the panel.

Cobol-WOW User's Guide 229
Enhancing Existing Panel Libraries

230

Save a panel

An enhanced panel can be saved at any time during the editing session using the Save
command on the Panels menu. When the enhanced panel is saved in this manner, the
description of the panel iswritten back into the standard panel library. No Cobol-WOW-
specific files are created. The panel library must be used to re-open the panel in the
Cobol-WOW Designer and to operate the panel at runtime.

When the enhanced panel is saved, the panel copy files are automatically (re)generated.
Thisisasdlight variation in behavior from the DOS or UNIX versions of RM/Panels v2
where the copy files could be generated optionally. Always generating these files
preserves the integrity of the relationship between the copy files and the actual panel
definition in the RM/Panels library and helps prevent undesirable problems, such as
104 errors.

The copy file generation is done based on the definition in the panel library (maintained
through the RM/Panels Library Manager’s Code Generation dialog box). Thisincludes
the path used for placing the generated files.

If you do not wish to save your edits, use the Recreate GUI command on the Panels
menu.

Test a panel

The Test command on the Panels menu enables testing of panels during editing. Thereis
asmall difference from the way in which previous versions of Cobol-WOW performed
thistask. Before testing the panel, any editing changes that have been made are
permanently saved to the panel library.

Run an application with an enhanced panel
To use the enhanced panel, take the following steps:

1. Runthe program using runpan2.cob, which is shipped with Cobol-WOW v2.26 and
higher.

2. Load the Cobol-WOW panel runtime (wowpanrt.dll) by adding the following line
to the command line:

I=wowpanrt.dll

Any panel that has been edited with Cobol-WOW will be displayed using the full
Windows appearance. Any panels that have not been edited with Cobol-WOW will
continue to be displayed in the same manner as RM/Panels v2.x.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Setting Properties for RM/Panels Data Fields

RM/Panels refers to the objects called “ controls’ in Cobol-WOW as “datafields.” All
types RM/Panels data fields can be added to the panel using the Cobol-WOW Toolbox.

Data fields/controls have a number of configurable characteristics. These characteristics
are called properties. Properties are the primary means by which fields/controls are
manipulated. Setting properties defines how fields/controls are displayed and how they
function in the running application.

When you open a panel in the Cobol-WOW Designer, you use the Properties dialog box
(see page 10), which lists each property and its value, to set the default (initial) properties
of aselected field/control.

The following list summarizes the data fields found in the Toolbox when you open an
RM/Panels panel in the Cobol-WOW Designer.

e Check Box. DisplaysaYes/No, True/False, or On/Off option. Y ou can check any
number of check boxes on aform at one time.

e Combo Box. Combines atext box with alist box. Allowsauser totypeina
selection or select an item from a drop-down list.

e Command Button. Carries out acommand or action when a user choosesit.
o Date Edit Box. Providesan areain which adate can be displayed or entered.
e Edit Box. Providesan areato enter or display text.

e Group Box. Providesavisua and functional container for other controls. Itis
generally used to enclose related controls (usually check boxes or option buttons).

o ListBox. Displaysalist of choicesfrom which the user can select one or more
items.

e Multi-Line Edit Box. Provides asmall, fixed space into which a user can enter
several lines of text, a portion of which is hidden until the user scrolls its contents
using scroll bars.

o Numeric Edit Box. Providesan areato input or display numeric data.

e Option Button. Presents mutually exclusive optionsin an option control. Option
buttons are usually used with the group box control to form groups where only one
of the listed buttons can be selected at one time.

e Scroll Bar. Allows auser to add scroll barsto controls that do not automatically
provide them. (These are not the same as the built-in scroll bars that are found with
many controls.)

Cobol-WOW User's Guide 231
Enhancing Existing Panel Libraries

232

e Static Text. Displaystext, such astitles or captions, in regular outlines or filled
rectangles, which the user cannot interact with or modify.

e TimeEdit Box. Providesan areain which the time can be displayed or entered.

Check Box Field/Control

To add a check box field/control to a panel/form, click Check Box from the Toolbox.

The check box data field/control displays an option that can be turned on or off. The
check box is similar to the command button, in that the primary method of operation is
clicking it. The check box, however, represents data, not a request for action.

All of the properties for this field/control are listed in the following table. For a
description of these properties, see “Common Data Field Properties’ on page 256.

Properties

3D EntryOrder ForeColor PromptText
Accelerator ErrorMessage Height SelectedAttr
BackColor FontBold HelpMessage StartOf Group
Beep Fontltalic Left TimeOut
Column FontName Length TimeOutVaue
DefaultToPressed FontSize Line Title
DisabledAttr FontStrikethru Mnemoni cAttr Top
EnabledAttr FontUnderline Name Width

Combo Box Field/Control

To add a combo box field/control to a panel/form, click Combo Box from the Toolbox.

The combo box field/control combines the list selection capability of alist box with the
edit box’ s ability to typein avalue. Alternatively, to save screen space, you may wish to
show only a portion of the list box’s selections. And, there may be instances when you
would like to display the currently selected item in a static text box area when the entire
list isnot displayed. The combo box control can perform both tasks.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “ Common Data Field
Properties’ on page 256.

Properties

3D CurChoice FontSize PromptText
BackColor DisabledAttr FontStrikethru ScrollBar
Beep DoubleClick FontUnderline SelectedAttr
Border DropDown ForeColor StartOf Group
BorderAttr EnabledAttr Height StaticChoices
ChoiceHelp EnabledForlnput HelpMessage TimeOut
ChoicesToDisplay EntryOrder *InputField TimeOutValue
ChoicesToStore ErrorMessage Left Top
ChoiceValue FontBold Length Width
ChoiceWidth Fontltalic Line

Column FontName Name

InputField Property

The InputField property determines whether an input field is to be attached to alist box,

making the field/control a combo box.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the

appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the InputField property:

Value Description
False Aninput field/control is not attached to the list box.
True An input field/control is attached to the list box (the default).

Cobol-WOW User's Guide 233
Enhancing Existing Panel Libraries

234

Command Button Field/Control

To add a command button field/control to a panel/form, click Command Button from
the Toolbox.

The command button (also known as push button) field/control causes an action to occur
when the user either clicks the button or presses akey.

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties’ on page 256.

Properties

3D EntryOrder Height SelectedAttr
Accelerator ErrorMessage HelpMessage *SizeType
BackColor FontBold Left *SizeValue
Beep Fontltalic Length StartOf Group
Column FontName Line TimeOut
DefaultValue FontSize MnemonicAttr TimeOutValue
DisabledAttr FontStrikethru Name Title
EnabledAttr FontUnderline PromptText Top
EnabledForlnput ForeColor * PushedAttr Width

PushedAttr Property

The PushedAttr property indicates the attribute that should be used to display the
command button whileit is depressed. Valid vaues are blank (the library default) or A
through P (as defined by the attribute code assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

=

SizeType Property

The SizeType property specifies the size of the button displayed for the command button.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the SizeType property:

Value Description

Auto The button is just wide enough to hold thetitle.

Small Refersto the default set for the panel library.

Medium Refersto the default set for the panel library.

Large Refersto the default set for the panel library.

Explicit Y ou can enter a number that specifies the size of the button in
characters.

SizeValue Property

The SizeVaue property specifies the width of the button in character positions. This
valueisvalid only if the SizeType property value is set to explicit.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Date Edit Box Field/Control

To add a date edit box field/control to a panel/form, click Date Edit Box from the
Toolbox.

The date edit box field/control provides an area on a panel/form in which a date can be

displayed or entered.

Cobol-WOW User's Guide
Enhancing Existing Panel Libraries

235

236

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “ Common Data Field
Properties’ on page 256.

Properties

3D DoubleClick FontUnderline OccY Offset
AlwaysDisabled EnabledAttr ForeColor PromptText
AutoEXxit EnabledForDisplay Height Protected
BackColor EnabledForl nput HelpMessage SelectedAttr
Beep EntryFormat Left StartOf Group
BlankWhenZero EntryOrder Length * StorageFormat
Border ErrorMessage Line TimeOut
Column FontBold Name TimeOutValue
DefaultToSystem Fontltalic OccCol Offset Top
DefaultVaue FontName OccLineOffset Update
DisabledAttr FontSize Occurrences Validation
DisplayFormat FontStrikethru OccX Offset Width

StorageFormat Property (Date Edit Box)

The StorageFormat property specifies the format to be used when storing this
field/control, based on years, months, and days, which are represented as follows:

e YYYY isafour-digit numeric representation of the year (for example, 2001)
e YY isatwo-digit numeric representation of the year (for example, 01)
e MM isatwo-digit numeric representation of the month (for example, 12)

e DD isatwo-digit numeric representation of the day (for example, 30)

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

The following table lists the possible values of the StorageFormat property for a date edit
box field/control:

Value Description

1 DateisdisplayedasYYYYMMDD.
2 Dateisdisplayed asYYMMDD.

3 Dateisdisplayed asMMDDYYYY.
4 Date isdisplayed as MMDDY'Y.

Edit Box Field/Control

To add an edit box field/control to a panel/form, click Edit Box from the Toolbox.

The edit box field/control provides an areato input or display text. This field/control
replaces the COBOL ACCEPT statement. The user can enter any type of alphanumeric
datain an edit box, including numeric data. Because no formatting is provided, numbers
are entered in the same manner as text.

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “ Common Data Field
Properties” on page 256.

Properties

3D EnabledAttr Height Prompt
AlwaysDisabled EnabledForDisplay HelpMessage PromptText
AutoEXxit EnabledForlnput *Justify Protected
BackColor EntryOrder Left SelectedAttr
Beep ErrorMessage Length StartOf Group
Border FontBold Line TimeOut
Case Fontltalic Name TimeOutValue
*Class FontName OccCol Offset Top

Column FontSize OccLineOffset Update
DefaultValue FontStrikethru Occurrences Validation
DisabledAttr FontUnderline OccX Offset Width
DoubleClick ForeColor OccY Offset

Cobol-WOW User's Guide

Enhancing Existing Panel Libraries

237

Class Property

The Class property indicates the categories that RM/Panels allows for defining character
sets. Vaid values are blank or 1-5.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Justify Property

The Justify property indicates whether left, right, or center justification is required. This
affects user input and values placed into the field/control with a MOV E statement.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Prompt Property

The Prompt property indicates whether prompt characters are to be provided for this
field/control during input.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

238 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

&

Group Box Field/Control

To add a group box field/control to a panel/form, click Group Box from the Toolbox.

The group box is a specialized box that is used to group other fields/controls, such as
check boxes and option buttons.

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties’ on page 256.

Properties

3D Fontltalic ForeColor Name
BackColor FontName *Group *TabStop
Caption FontSize Height Top
*Enabled FontStrikethru Left Width
FontBold FontUnderline *Locked

Enabled Property

The Enabled property determines whether the field/control can respond to user-generated
input (or events).

The following table lists the possible values of the Enabled property:

Value Description
False Thefield/control is disabled for user input.
True Thefield/control is enabled for user input (the default).

Cobol-WOW User's Guide 239
Enhancing Existing Panel Libraries

240

Group Property
The Group property determines whether afield/control isthe start of a group.

The following table lists the possible values of the Group property:

Value Description
False Thefield/control is not the start of a group (the default).
True Thefield/control isthe start of a group.

Locked Property

The Locked property determines whether or not alock is placed on the field/control in
order to prevent the field/control from being moved accidentally on the form.

The following table lists the possible values of the Locked property:

Value Description
False The field/control is not locked (the default).
True Thefield/control islocked.

TabStop Property

The TabStop property is described on page 187.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

List Box Field/Control
To add alist box field/control to a panel/form, click List Box from the Toolbox.
Thelist box field/control allows the selection of one or several items from alist of items.

All of the properties for this field/control are listed in the following table. For a
description of these properties, see “Common Data Field Properties’ on page 256.

Properties

3D CurChoice FontSize Scrol|Bar
BackColor DisabledAttr FontStrikethru SelectedAttr
Beep DoubleClick FontUnderline StartOf Group
Border DropDown ForeColor StaticChoices
BorderAttr EnabledAttr Height TimeOut
ChoiceHelp EnabledForlnput HelpMessage TimeOutValue
ChoicesToDisplay EntryOrder Left Top
ChoicesToStore ErrorMessage Length Width
ChoiceValue FontBold Line

ChoiceWidth Fontltalic Name

Column FontName PromptText

Multi-Line Edit Box Field/Control

To add a multi-line edit box field/control to a panel/form, click Multi-Line Edit Box
from the Toolbox.

Sometimes you need to store alot of text, but you do not want to use up alot of screen
spacein your display. You can create a multi-line edit field/control that lets users enter
several lines of text into asmall, fixed space. Because the text box is smaller than the
amount of information stored, part of the information is hidden. The user uses scroll bars
to display the hidden information. Y ou can design the text box to scroll its contents
vertically or horizontally.

Cobol-WOW User's Guide 241
Enhancing Existing Panel Libraries

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “ Common Data Field
Properties’ on page 256.

Properties

3D EnabledAttr Height SelectedAttr
BackColor EnabledForlnput HelpMessage StartOf Group
Beep EntryOrder Left *Stream
Border ErrorMessage Length TimeOut
Case FontBold Line TimeOutValue
*ColsToDisplay Fontltalic *LinesToDisplay Top
*ColsToStore FontName *LinesToStore Width
Column FontSize Name *Wrap
DefaultVaue FontStrikethru PromptText

DisabledAttr FontUnderline Protected

DoubleClick ForeColor *Required

ColsToDisplay Property

The ColsToDisplay property specifies the number of columns to display for the
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

ColsToStore Property

The ColsToStore property specifies the number of columns to store for the field/contral.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

242 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

LinesToDisplay Property

The LinesToDisplay property specifies the number of lines to display for the
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

LinesToStore Property
The LinesToStore property specifies the number of lines to store for the field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Required Property

The Required property determines whether the user must enter data into field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime,

The following table lists the possible values of the Required property:

Value Description
False Thefield/control is not required (the default).
True The field/control is required.

Cobol-WOW User's Guide 243
Enhancing Existing Panel Libraries

244

Stream Property

The Stream property indicates that insert and del ete operations should affect the entire
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the Stream property:

Value Description

False Insert and delete operations should not affect the entire
field/control (the default).

True Insert and delete operations should affect the entire

field/control.

Wrap Property

The Wrap property indicates that words automatically wrap to the succeeding line when
they are typed, inserted, or deleted.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the Wrap property:

Value Description

False Words do not automatically wrap to the succeeding line (the
default).

True Words automatically wrap to the succeeding line.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Numeric Edit Box Field/Control

To add a numeric edit box field/control to a panel/form, click Numeric Edit Box from
the Toolbox.

The numeric edit box field/control provides an areato input or display numeric data.

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require specia consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties’ on page 256.

Properties

3D DisplayFormat FontUnderline OccY Offset
AlwaysDisabled DoubleClick ForeColor PromptText

* AssumeDecimal EnabledAttr Height Protected
AutoEXxit EnabledForDisplay HelpMessage SelectedAttr
BackColor EnabledForlnput IntegerDigits *Signed
Beep EntryFormat Left StartOf Group
BlankWhenZero EntryOrder Length TimeOut
Border ErrorMessage Line TimeOutValue
*CalculatorEntry FontBold Name Top

Column Fontltalic OccCol Offset Update
DecimalDigits FontName OccLineOffset Validation
DefaultVaue FontSize Occurrences Width
DisabledAttr FontStrikethru OccX Offset

AssumeDecimal Property

The AssumeDecimal property specifies that input to this field/control should be assumed
to contain decimal digits even if no decimal is present.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 245
Enhancing Existing Panel Libraries

The following table lists the possible values of the AssumeDecimal property:

Value Description
False A decimal is not assumed.
True A decimal is assumed (the default).

CalculatorEntry Property

The CalculatorEntry property determines whether input to this field/control should be
fully formatted while being input, with digits inserting to the left of the decimal point as
with acalculator.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the CalculatorEntry property:

Value Description
Default The default set for the panel library applies to the field/control.
Yes Input to the field/control is fully formatted while being input,

overriding any default set for the panel library.

NO Input to the field/control is not fully formatted while being
input, overriding any default set for the panel library.

Signed Property

The Signed property specifies whether the field/control includes a plus (+) or
minus (-) sign.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

246 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

The following table lists the possible values of the Signed property:

Value Description
False Thefield/control is not signed.
True Thefield/control issigned (the default).

Option Button Field/Control

To add an option button field/control to a panel/form, click Option Button from
the Toolbox.

The option button (also known as radio button) field/control displays an option that can
be turned on or off. Option buttons are usually used in groups where turning one button
on turns the others off. For more information on grouping option buttons, see page 142.

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “ Common Data Field
Properties” on page 256.

Properties

3D DisabledAttr FontUnderline *NumericData
Accelerator EnabledAttr ForeColor PromptText
BackColor EnabledForlnput Height SelectedAttr
Column EntryOrder HelpMessage StartOf Group
*DataltemName ErrorMessage IntegerDigits TimeOut
*DataSigned FontBold Left TimeOutVaue
*DataSize Fontltalic Length Top
*DataVaue FontName Line Width
DecimalDigits FontSize MnemonicAttr

DefaultToPressed FontStrikethru Name

Cobol-WOW User's Guide 247
Enhancing Existing Panel Libraries

DataltemName Property

The DataltemName property specifies the data item name to be associated with the
COBOL representation of this option button group.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

DataSigned Property

The DataSigned property specifies whether thisfield, if numeric, stores signed numbers.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the DataSigned property:

Value Description
False Thefield/control does not store signed numbers.
True Thefield/control stores signed numbers (the default).

DataSize Property
The DataSize property specifies the size of the dataitem.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

248 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

DataValue Property

The DataV alue property specifies the value to be given to the data item representing this
group of option buttons when this button is pressed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

NumericData Property

The NumericData property specifies whether this field/control is arepresented by a
numeric data item.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the NumericData property:

Value Description

False Thefield/control is not represented by a numeric dataitem.

True Thefield/control is represented by a numeric dataitem (the
default).

Scroll Bar Field/Control

To add a scroll bar field/control to a panel/form, click either Horizontal Scroll or
Vertical Scroll from the Toolbox. A horizontal scroll bar displays a horizontal bar that
can be used to scroll information. A vertical scroll bar displays avertical bar that can be
used to scroll information.

The scroll bar field/control is used to alow a numeric value to be manipulated as a thumb
position on abar. By specifying the minimum and maximum, the value can be viewed
relative to arange of possible values. Thisvaue and the scroll bar are often used to
scroll the display of other information on a panel. For more information on using scroll
bars, see page 149.

Cobol-WOW User's Guide 249
Enhancing Existing Panel Libraries

All of the properties for both the horizontal and vertical scroll bar are listed in the
following table. Propertiesthat apply only to these fields/controls, or that require special
consideration when used with them, are marked with an asterisk (*). These particular
items are documented in the following sections. For information on the remaining
properties, see “Common Data Field Properties’ on page 256.

Properties

Border EnabledForl nput *MaximumValue *StepSize
Column EntryOrder *MinimumVaue *ThumbAttr
DefaultVaue Height Name Top
DisabledAttr Left *PageSize Width
EnabledAttr Line *Size

MaximumValue Property

The MaximumV alue property specifies the maximum value associated with the scroll
bar. Valid values are 0-999.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

MinimumValue Property

The MinimumV alue property specifies the minimum value associated with the scroll bar.
Valid values are 0—999.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

250 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

PageSize Property

The PageSize property specifies the change in value to be associated with clicking on the
scroll bar, above or below the thumb object, but not on the end-arrows.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Size Property
The Size property specifies the size of the scroll bar in characters.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

StepSize Property

The StepSize property specifies the change in value to be associated with clicking on the
scroll bar end-arrows.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

ThumbAttr Property

The ThumbAttr property specifies the attribute code associated with the thumb object of
the scroll bar. Valid values are blank (the library default) or A through P (as defined by
the attribute code assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 251
Enhancing Existing Panel Libraries

Static Text Field/Control

Az To add a static text field/control to a panel/form, click Static Text from the Toolbox.

The static text field/control is used to display text, rectangular outlines, or filled
rectangles. The static text control is also used to draw rectangles or outlines to highlight
parts of a panel, group controls, or even create adesign.

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties’ on page 256.

Properties

3D FontBold ForeColor Top

* Alignment Fontltalic Height Width
BackColor FontName Left *WordWrap
Caption FontSize Length

Column FontStrikethru Line

*Effect FontUnderline *NoPrefix

Alignment Property

The Alignment property determines how text is positioned in a static text field/control.
The Alignment property alows the text of any static text control, not just multiline
controls, to be aligned to theright, |eft, or center of the control.

The following table lists the possible values of the Alignment property:

Value Description

0 Normal — Performs no justification (the default).
1 Left justifies text.

2 Centerstext.

3 Right justifies text.

252 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Effect Property

The Effect property changes a static text field/control into an empty rectangle or a
colored group box without text. The color names actually designate one of the Windows
configuration options and may not match the color name used.

The Effect property is used to determine the type of static text field/control that is
displayed: text, outline, or rectangle. It isimportant to note that the text of a static
text field/control is not displayed when the outline or rectangle effect is selected.
When the 3D property (see page 256) is set to True, the Effect property also has
different appearances.

The following table lists the possible values of the Effect property:

Value Description

0 None — Text is displayed (the default).

1 Draws arectangle with the window group box color, usually
black.

2 Draws a rectangle with the desktop background color, usualy
gray.

3 Draws arectangle with the parent window’ s background,
usually white.

4 Draws ablack group box.

5 Draws agray group box.

6 Draws a white group box.

NoPrefix Property

The NoPrefix property determines whether the ampersand (&) character causes the
subsequent character to be underlined in a static text control.

The following table lists the possible values of the NoPrefix property:

Value Description

False The ampersand character (&) causes next character to be
underlined (the default).

True The ampersand character (&) character is displayed.

Cobol-WOW User's Guide
Enhancing Existing Panel Libraries

253

WordWrap Property

The WordWrap property determines whether text is wrapped to multiple lines on a static
text field/control.

The following table lists the possible values of the WordWrap property:

Value Description
False Text iswrapped (the default).
True Text is not wrapped.

Time Edit Box Field/Control

hhil To add atime edit box field/control to a panel/form, click Time Edit Box from
the Toolbox.

The time edit box field/control provides an area on a panel in which the time can be
displayed or entered.

All of the properties for this field/control are listed in the following table. Properties that
apply only to thisfield/control, or that require special consideration when used with it,
are marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties’ on page 256.

254

Properties

*24HourFormat DoubleClick ForeColor Protected

3D EnabledAttr Height SelectedAttr
AlwaysDisabled EnabledForDisplay HelpMessage StartOf Group
AutoEXxit EnabledForl nput Left * StorageFormat
BackColor EntryFormat Length TimeOut

Beep EntryOrder Line TimeOutValue
BlankWhenZero ErrorMessage Name Top

Border FontBold OccCol Offset Update
Column Fontltalic OccLineOffset Validation
DefaultToSystem FontName Occurrences Width
DefaultVaue FontSize OccX Offset

DisabledAttr FontStrikethru OccY Offset

DisplayFormat FontUnderline PromptText

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

24HourFormat Property

The 24HourFormat property specifies whether the field/control displaysinformation in
12-hour or 24-hour format.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the 24HourFormat property:

Value Description

False Timeisnot displayed in 24-hour format, but rather in 12-hour
format (the default).

True Timeisdisplayed in 24-hour format.

StorageFormat Property (Time Edit Box)

The StorageFormat property specifies the format to be used for the storage of this
field/control, based on hours, minutes, and seconds, which are represented by HH, MM,
and SS, respectively.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the StorageFormat property for atime edit
box field/control:

Value Description

1 Timeisdisplayed as HHMMSS.
2 Timeisdisplayed as HHMM.

3 Timeisdisplayed as HH.

Cobol-WOW User's Guide 255
Enhancing Existing Panel Libraries

Common Data Field Properties

This section summarizes the common properties that may be implemented in a
field/control on a panel/form. Refer to the specific field/control in the preceding sections

256

to determine the unique properties available for the field/control.

The following properties are used by several types of fields/controls.

Properties

3D CurChoice FontName OccY Offset
Accelerator DecimalDigits FontSize PromptText
AlwaysDisabled DefaultToPressed FontStrikethru Protected
AutoEXxit DefaultToSystem FontUnderline Scrol|Bar
BackColor DefaultVaue ForeColor SelectedAttr
Beep DisabledAttr Height StartOf Group
Border DisplayFormat HelpMessage StaticChoices
BorderAttr DoubleClick IntegerDigits TimeOut
BlankWhenZero DropDown Left TimeOutValue
Caption EnabledAttr Length Title

Case EnabledForDisplay Line Top
ChoiceHelp EnabledForlnput MnemonicAttr Update
ChoicesToDisplay EntryFormat Name Validation
ChoicesToStore EntryOrder OccCol Offset Width
ChoiceValue ErrorMessage OccLineOffset

ChoiceWidth FontBold Occurrences

Column Fontltalic OccX Offset

3D Property

The 3D property controls the appearance of afield/control. If this property is set to True,
the field/control will have athree-dimensional effect.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

The following table lists the possible values of the 3D property:

Value Description
False A three-dimensional control is not displayed (the defaullt).
True A three-dimensional control is displayed.

Note The panel/form 3D property settings of 1 (All 3D) and 2 (No 3D) will override the
3D property settings of individual controls. See page 277.

Accelerator Property

The Accelerator property specifies the accelerator key to be associated with this
field/control. The valueisan RM/COBOL termination code in the range 1-98. Pressing
akey that generates this value while operating the panel is equivalent to pressing the
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

AlwaysDisabled Property

The Always Disabled property indicates that the field/control will never be enabled for
input. In aGUI environment, this enables the field/control to be created as a static text
control, rather than an edit box, which allows you to control the foreground color, rather
than having Windows force a gray text color.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 257
Enhancing Existing Panel Libraries

258

AutoExit Property

The AutoExit property indicates whether the input cursor should move to the next
field/control if the current field/control has had input that is of maximum length, as
specified by its Length property (see page 269).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

BackColor Property

The BackColor property is described on page 180.

Beep Property

The Beep property determines whether a beep should be sounded when this field/control
has input focus.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the Beep property:

Value Description
Default The default set for the panel library applies to the field/control.
Yes A beep sounds when the field/control has input focus,

overriding any default set for the panel library.

No No beep sounds when the field/control has input focus,
overriding any default set for the panel library.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

BlankWhenZero Property

The BlankWhenZero property causes the field/control to display as blank when the value
of the field/control is 0.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Border Property

The Border property determines whether this field/control isto have a border
when displayed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the Border property:

Value Description
False A border is not displayed (the default).
True A border is displayed.

BorderAttr Property

The BorderAttr property determines whether a border will be displayed around alist box
or the list box portion of a combo box field/control. Valid values are blank (the library
default) or A through P (as defined by the attribute code assigned to a block of text
within apanel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 259
Enhancing Existing Panel Libraries

260

Caption Property

The Caption property is described on page 181.

Case Property

The Case property determines the case conversion of alphabetic characters entered into
an edit box or multi-line edit box field/control.

The following table lists the possible values of the Case property:

Value Description
0 Mixed —text case is not altered; accepted astyped (the
default).

Converts al text to lowercase.
Converts al text to uppercase.

ChoiceHelp Property

The ChoiceHelp property determines whether a help message is specified for achoicein
alist box or the list box portion of acombo box field/control. For example, in alist box
displaying country names, “America’ might be the list box choice and USAHEL P might
be the name of the help message.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the ChoiceHelp property:

Value Description
False A help message is not displayed (the defaullt).
True A help messageis displayed.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

ChoicesToDisplay Property

The ChoicesToDisplay property specifies the number of choicesto display in alist box
or combo box field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

ChoicesToStore Property

The ChoicesToStore property specifies the number of choices to be stored for alist box
or the list box portion of a combo box field/contral. If the value in the ChoicesToStore
property is greater than the value in the ChoicesToDisplay property (see page 261), a
scroll bar is created automatically. If at runtime execution, the list box or combo box
does not contain more choices than can be displayed at one time, the scroll bar is
disabled. The scroll bar does not change attributes.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

ChoiceValue Property

The ChoiceValue property specifiestheinitial value of alist box or the list box portion
of acombo box field/control when it is displayed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 261
Enhancing Existing Panel Libraries

262

ChoiceWidth Property

The ChoiceWidth property specifies the width of the entry in characters and also the size
of the dataitemin alist box or the list box portion of a combo box field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Column Property

The Column property determines the number of columns that each occurrence of a
field/control is offset from the previous occurrence. Valid values are 0 to the maximum
width of the panel.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

CurChoice Property

The CurChoice property specifies the subscript of the value in the ChoiceValue property
(see page 261) of alist box or the list box portion of a combo box field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

DecimalDigits Property

The Decimal Digits property indicates the number of digits that can be entered to the right
of the decimal point in anumeric field.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

DefaultToPressed Property

The DefaultToPressed property determines whether this field/control isto default to
having the appearance of being pressed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the DefaultToPressed property:

Value Description
False Thefield/control is not pressed (the default).
True Thefield/control is pressed.

DefaultToSystem Property

The DefaultToSystem property causes the default value of the field/control to be set to
the system date of the computer.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 263
Enhancing Existing Panel Libraries

264

DefaultValue Property

The DefaultVaue property specifies the default value for the field/control that is set if
the RM/Panels standard runtime function, INITIALIZE FIELD, is executed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

DisabledAttr Property

The DisabledAttr property determines whether the field/control is disabled for data entry.
Valid values are blank (the library default) or A through P (as defined by the attribute
code assigned to ablock of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

DisplayFormat Property

The DisplayFormat property specifies the COBOL picture format to be used when
displaying this field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

DoubleClick Property

The DoubleClick property indicates whether the double click of a mouse should be
reported on the field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the DoubleClick property:

Value Description
False A double click is not reported on the field/control (the default).
True A double click is reported on the field/control.

DropDown Property

The DropDown property specifies that a drop-down list box is supported in alist box or
the list box portion of acombo box field/control. A drop-down list box displays only
one item until the user takes an action to display the other choices. A drop-down list box
appearsinitialy as arectangular box showing the current choice with adown arrow.
When you choose the down arrow, alist of available choices appears.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the DropDown property:

Value Description
False A drop-down list box is not supported (the default).
True A drop-down list box is supported.

Cobol-WOW User's Guide 265
Enhancing Existing Panel Libraries

266

EnabledAttr Property

The EnabledAttr property determines whether the field/control is enabled for data entry.
Valid values are blank (the library default) or A through P (as defined by the attribute
code assigned to a block of text within a pandl).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

EnabledForDisplay Property

The EnabledForDisplay property, when marked with an X, indicates that this
field/control is enabled to display values.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

EnabledForinput Property

The EnabledForlnput property, when marked with an X, indicates that this field/control
is enabled to accept data entry.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

EntryFormat Property

The EntryFormat property specifies the COBOL picture format to be used during
data entry.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

EntryOrder Property

The EntryOrder property determines the order in which the fields/controls are operated,
with 1 being first, 2 being next, and so on. Any number between 1 and 150 isvalid. The
value cannot be greater than the number of fields/controls on the panel. Be default, the
valueis calculated and set by RM/Panels, but you may changeit. This property is
required.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

ErrorMessage Property

The ErrorMessage property specifies the error message associated with this field/control.
The RM/Panels M essage Editor appears when the cursor is on this field/control and you
press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 267
Enhancing Existing Panel Libraries

Font Bold, Fontltalic, FontName, FontSize, FontStrikethru, and
FontUnderline Properties

These properties are described beginning on page 181.

ForeColor Property

The ForeColor property is described on page 183.

Height Property

The Height property is described on page 183.

HelpMessage Property

The HelpM essage property specifies the help message associated with this field/control.
The RM/Panels Message Editor appears when the cursor is on this field/control and you
press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

IntegerDigits Property

The IntegerDigits property indicates the number of digits that can be entered to the left of
the decimal point in a numeric field.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Left Property

The Left property is described on page 184.

268 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Length Property

The Length property specifies the number of charactersin the field/control. The values
must be in the range of 1 to the maximum width of the panel, as specified by its Width
property (see page 276).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Line Property

The Line property indicates the number of lines that each occurrence of the field/control
is offset from the previous occurrence. Valid values are 1 to the maximum length of a
panel, as specified by its Length property (see above).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

MnemonicAttr Property

The MnemonicAttr property identifies the mnemonic character associated with the
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Name Property

The Name property is described on page 185.

Cobol-WOW User's Guide 269
Enhancing Existing Panel Libraries

270

OccColOffset Property

The OccCol Offset property indicates the number of columns that each occurrence of a
field/control is offset from the previous occurrence. Valid values are 0 to the maximum
width of a panel, as specified by its Width property (see page 276).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

OccLineOffset Property

The OccLineOffset property indicates the number of lines that each occurrence of a
field/control is offset from the previous occurrence. Valid values are 1 to the maximum
length of a panel, as specified by its Length property (see page 269).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Occurrences Property

The Occurrences property indicates the number of times this field/control occurs on
the panel/form.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

OccXOffset Property

The OccX Offset property specifies the number of pixels that multiple occurrences of the
field/control should be offset from each other horizontally. This property affects the
display of the panel only when using Cobol-WOW.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

OccYOffset Property

The OccY Offset property specifies the number of pixels that multiple occurrences of the
field/control should be offset from each other vertically. This property affects the display
of the panel only when using Cobol-WOW.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

PromptText Property

The PromptText property specifies the text that is displayed on the panel/form to prompt
the user to enter a correct value.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime,

Cobol-WOW User's Guide 271
Enhancing Existing Panel Libraries

272

Protected Property

The Protected property, when marked with an X, indicates that while the input cursor
moves into this field/control, the value may not be changed by the user.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

ScrollBar Property

The ScrollBar property is described on page 186.

SelectedAttr Property

The SelectedAttr property determines whether the field/control has input focus. Valid
values are blank (the library default) or A through P (as defined by the attribute code
assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

StartOfGroup Property

The StartOf Group property, when marked with an X, indicates that this field/control is
the start of a number of fields/controls (for example, a group of option buttons) that is to
be treated asagroup. A group includes al fields/controls having contiguous entry order
numbers until the next StartOfGroup property is encountered.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

StaticChoices Property

The StaticChoices property determines whether the choicesin alist box or the list box
portion of a combo box field/control are specified on the panel or are supplied by the
application program.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the StaticChoices property:

Value Description

False Choicesin alist box are supplied by the application program
(the default).

True Choicesin alist box are specified on the panel.

TimeOut Property

The TimeOut property determines whether this field/control should wait a maximum
time for input, when input is needed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the TimeOut property:

Value Description
Default The default set for the panel library applies to the field/control.
Yes Thefield/control should wait for input, overriding any default

set for the pandl library.

No Thefield/control should not wait for input, overriding any
default set for the panel library.

Cobol-WOW User's Guide 273
Enhancing Existing Panel Libraries

274

TimeOutValue Property

The TimeOutV aue property specifies the amount of time to wait for input when the
TimeOut property is set to Yesor if the default for the panel library is set to Yes.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Title Property

The Title property specifies the text that appears with the field/control. Note that for the
check box field/control (see page 232), the Title property specifies the text that appears
to the right of the check box.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Top Property

The Top property is described on page 187.

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Update Property

The Update property indicates whether the current value of this field/control should be
updated or completely replaced by new input.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the Update property:

Value Description
Default The default set for the panel library applies to the field/control.
Yes Thefield/control should wait for input, overriding any default

set for the pandl library.

No Thefield/control should not wait for input, overriding any
default set for the panel library.

Validation Property

The Validation property specifies the type of validation to be applied upon input to a
field/control. The following types of validation are possible:

e Listof values. A list of values, separated with commas, for example: 1,4,47. If a
spaceisincluded as avalid value, it cannot be the last entry on the list.

e Rangeof values. A range of values, specified by separating the lowest value and the
highest value with two periods, for example: 5..30. Ranges are inclusive by default.
Ranges can be made exclusive by inserting greater than and less than symbols before
the beginning and ending values, for example: >A..<Z.

e Conditions. The following operators can be used to specify conditions;

Equal = Greater than >

Not equal !'= Not greater than !>
Lessthan < Greater than or equal to >=
Not lessthan < Less than or equal to <=

Y ou can combine alist of values, arange of values, and a condition in asingle validation
by separating them with commas.

Cobol-WOW User's Guide 275
Enhancing Existing Panel Libraries

When validating date edit box fields/controls (see page 235), the following special names
can be used to validate the field/control against the system date:

e DATE (the system date)

e YEAR (the system year)

e MONTH (the system month)
e DAY (the system day)

DATE isthe only name that contains all components of the system date. The following
validation allows only the entry of a date greater than the system date: >DATE. The
other three names can be used to validate a numeric edit box field/control (see page 245)
against a single component of the system date. The following validation forces entry of a
year that is smaller than the system year: <YEAR.

When validating time edit box fields/controls (see page 252), a special name, TIME, can
be used to validate the field/control against the system time.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Width Property

The Width property determines, in pixels, the width of the field/control.

Set the Width property with any value from 0 to the value specified in the Width
property of the form less the value specified in the Left property (see page 269) of the
field/control.

Setting Properties for RM/Panels Panels

RM/Panels refers to the objects called “forms’ in Cobol-WOW as “panels.” Panels are
the containers within which you group fields/controls.

Like fields/controls, panels/forms have a number of configurable characteristics called
properties. When you open a panel/form in the Cobol-WOW Designer, you use the
Properties dialog box (see page 10), which lists each property and its value, to set the
default (initial) properties of a selected panel/form.

276 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

The following properties are used by panels/forms:

Properties

3D BorderType GeographicMotion Prefix
BackColor Description Height StoreByName
BackgroundAttr DropShadow HelpAttr Title

Bitmap EndUserEditing HelpMessage Top
BitmapMode ErrorAttr Icon Width
BorderAttr ErrorMessage Left Windowed

3D Property

The 3D property controls the three-dimensional appearance of fields/controlsin a
panel/form.

Note Theform 3D property settings of 1 or 2 will override the 3D property settings of

individual fields/controls.

The following table lists the possible values of the 3D property:

Value Description

0 Mixed — Allows two-dimensional and three-dimensional
settings of individual fields/controlsin aform (the default).

1 All 3D — Forces all fields/controls to a three-dimensional
appearance.

2 No 3D — Forces all fields/controls to a two-dimensional
appearance.

BackColor Property

The BackColor property is described on page 192.

Cobol-WOW User's Guide
Enhancing Existing Panel Libraries

277

BackgroundAttr Property

The BackgroundAttr property indicates the default attribute code for the background of
the panel/form. Valid values are blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Bitmap Property

The Bitmap property is described on page 192.

BitmapMode Property
The BitmapM ode property determines how the bitmap is displayed in a panel/form.

Note Single and double borders are identical when running a program with a
Cobol-WOW panel runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll).

The following table list the possible values of the BitmapM ode property:

Value Description

0 Displaysthe bitmap in its original size (the default). If the
bitmap is smaller than the panel, the remaining spaceisfilled
with the background color. If the bitmap islarger than the
panel, only the portion of the bitmap that fits inside the panel
is displayed.

1 Stretches the bitmap to fit exactly within the panel. This may
result in some distortion of the bitmap image, especialy if the
size difference between the bitmap and the panel is
substantial.

2 Tiles bitmap to fit the panel. If BitmapModeis set to Tile, the
bitmap, if smaller than the panel, is displayed in atiled pattern
multiple times within the panel.

278 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

BorderAttr Property

The BorderAttr property determines whether a border will be displayed around a
panel/form if the Windowed property (see page 284) is set to True. Valid values are
blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

BorderType Property

The BorderType property specifies the kind of border that will be displayed around the
panel/form if the Windowed property (see page 284) is set to True.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table list the possible values of the BorderType property:

Value Description

S Panel is bordered by asingle line (the default).
D Panel is bordered by adoubleline.

N Panel has no border.

Description Property

The Description property describes the panel/form and is displayed on the RM/Panels
Library Manager screen.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide 279
Enhancing Existing Panel Libraries

280

DropShadow Property

The DropShadow property determines whether a shaded edge should be displayed
around the lower and right borders of the panel/form if the Windowed property (see
page 284) is set to True.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the DropShadow property:

Value Description

False A shaded edge is not displayed around the windowed panel
(the default).

True A shaded edge is not displayed around the windowed panel.

EndUserEditing Property
The EndUserEditing property determines whether the end-user can edit the panel/form.

Note This property has no effect when running a program with a Cobol-WOW-enabled
panel runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the EndUserEditing property:

Value Description
False The end-user cannot edit the panel.
True The end-user can edit the panel (the default).

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

ErrorAttr Property

The ErrorAttr property indicates the default attribute code for error messages. Valid
values are blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

ErrorMessage Property

The ErrorMessage property specifies the error message associated with this panel/form
when the end-user entersan invalid value. The RM/Panels Message Editor appears when
the cursor is on this panel and you press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

GeographicMotion Property

The GeographicMotion property determines whether the movement of the cursor
between fields/controls on the panel/form during input is based on the field/control
seguence number of their physical location on the monitor.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime,

The following table lists the possible values of the GeographicMotion property:

Value Description

False Cursor motion is not based on the physical location of
fields/controls on the monitor (the default).

True Cursor motion is based on the physical location of

fields/controls on the monitor.

Cobol-WOW User's Guide 281
Enhancing Existing Panel Libraries

Height Property

The Height property is described on page 196.

HelpAttr Property

The HelpAttr property indicates the default attribute code for error messages. Valid
values are blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

HelpMessage Property

The HelpMessage property specifies the help message associated with this panel/form
when the end-user requests help. The RM/Panels Message Editor appears when the
cursor is on this panel/form and you press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). Itispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime,

Icon Property

The Icon property is described on page 196.

Left Property

The Left property is described on page 197.

282 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Prefix Property

The Prefix property specifies the prefix to be used when generating .ws and .prc files.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

StoreByName Property

The StoreByName property determines whether fields/controls on the panel/form are
stored by name or by sequence number in the generated .wsfile.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

The following table lists the possible values of the StoreByName property:

Value Description

False Fields/controls are stored by sequence number in the generated
wsfile.

True Fields/controls are stored by name in the generated .wsfile (the
default).

Title Property

The Title property specifies the title to be associated with the panel/form if the
Windowed property (see page 284) is set to True.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dil or wowrt.dll). It ispossible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a
Cobol-WOW-enabled panel runtime.

Cobol-WOW User's Guide
Enhancing Existing Panel Libraries

283

284

Top Property

The Top property is described on page 201.

Width Property

The Width property is described on page 201.

Windowed Property

The Windowed property determines whether the panel/form should be displayed and
removed as awindow. The following properties pertain to windowed panels only:
BorderAttr (see page 279), BorderType (see page 279), DropShadow (see page 280), and
Title (see page 283).

The following table lists the possible values of the Windowed property:

Value Description
False The panel is not displayed and removed as a window.
True The panel is displayed and removed as a window (the default).

Configuring Function Keys

The following sections compare how to configure function keys with RM/Panels and
Cobol-WOW.

How to Configure Function Keys with RM/Panels

With RM/Panels 2.x, keyboard input was done through a COBOL ACCEPT statement in
the RM/Panels runtime module (runpan2.cob). Because of this, the keys that terminated
input and the exception numbers generated by those keys were configured through the
RM/COBOL configuration file. In this configuration file, akey was specified as
terminating input and returning a specific exception number. The following is a sample
entry from an RM/COBOL configuration file that assigns an exception value of 27 to the
Escape key:

TERM-INPUT Action=Screen-Escape Code=27 ESC

Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

When a user pressed the Escape key from an RM/Panels 2.x application, the ACCEPT
statement terminated and returned the value of 27. runpan2.cob stored this exception
valuein RMP—EXCEPTION-NUMBER. Typically, condition names assigned to
RMP—EXCEPTION-NUMBER were then used to determine which function key was
pressed. Hereisan excerpt from rmpanels.ws that shows how thisis declared:

05 RMP--EXCEPTION-NUMBER PIC 9(3) VALUE O.
88 F10-KEY VALUE 10.
88 ESCAPE-KEY VALUE 27.

In application code, the developer can then do something like the following to take action
when the Escape key is pressed:

IF ESCAPE-KEY
PERFORM CANCEL-INPUT.

How to Configure Function Keys with Cobol-WOW

Cobol-WOW does not use COBOL ACCEPT statements for keyboard input. The
runpan2.cob shipped with Cobol-WOW 2.26 and higher uses the Cobol-WOW runtime
to receive and monitor the messages generated by Windows, including the keystroke
messages. This means that the COBOL runtime system does not do any function key
interpretation. This also means that the entries in the RM/COBOL configuration file will
have no effect.

Because of this, a different mechanism is required in order to associate exception
numbers with keyboard keys. The same mechanism of returning numeric valuesin
RMP—EXCEPTION-NUMBER should be preserved, however, so that application code
does not have to be altered. The Cobol-WOW runtime must be notified, for example,
that an exception number of 27 is expected when the Escape key is pressed.

Thisis accomplished through a section added to the Cobol-WOW initialization file
(cblwow.ini). The [RMPanelsFunctionKeys] section contains entries that specify
exception numbers for each key that needs to be detected. The following sample shows
how to associate an exception value of 27 with the Escape key:

[RMPanelsFunctionKeys]
ESC=27

The left half of the entry is the name of the key as labeled on the keyboard. The right
half of the entry is the exception number the key should return.

RM/Panels function keys can be configured using the Windows key names or the
RM/COBOL key names.

Cobol-WOW User's Guide 285
Enhancing Existing Panel Libraries

The following sample entriesillustrate these approaches. These approaches can be
mixed in the same configuration file. The F1 and F2 entries rely on the names used
internally by Windows for the keys. The entries WF4 and WF5 are names used by
RM/COBOL.

Sample Cobol-WOW Configuration File Entry

[RMPanelsFunctionKeys]

; Windows key names
F1=1

F2=2

F3=3

F4=4

F5=5

F6=6

F7=7

F8=8

F9=9

F10=10

ESC=27
LEFT=65
RIGHT=66
UP=52

DOWN=53
ENTER=13
Shift+F1=11
Shift+F2=12
Control+F1=21
Control+F2=22
; RM/COBOL key names
WF4=4

WF5=5
WSFT+WF4=14
WSFT+WF5=15
WCNT+WF4=24
WCNT+WF5=25

The cblwow.ini file must be present on a system to run a Cobol-WOW-enhanced
RM/Panels application so that the function key information can be loaded by the
Cobol-WOW runtime. The following examples show corresponding entries between a
typical RM/COBOL runtime configuration file and the new [RM Panel sFunctionK eys]
section in the cblwow.ini file.

286 Using Cobol-WOW with RM/Panels
Enhancing Existing Panel Libraries

Sample RM/COBOL Configuration File Entry

TERM-INPUT Action=Screen-Terminate CODE=13 CR

TERM-INPUT Action=Screen-Terminate CODE=1 NUL 59
TERM-INPUT Action=Screen-Terminate CODE=2 NUL 60
TERM-INPUT Action=Screen-Terminate CODE=3 NUL 61
TERM-INPUT Action=Screen-Terminate CODE=4 NUL 62
TERM-INPUT Action=Screen-Terminate CODE=5 NUL 63
TERM-INPUT Action=Screen-Terminate CODE=6 NUL 64
TERM-INPUT Action=Screen-Terminate CODE=7 NUL 65
TERM-INPUT Action=Screen-Terminate CODE=8 NUL 66
TERM-INPUT Action=Screen-Terminate CODE=9 NUL 67
TERM-INPUT Action=Screen-Terminate CODE=10 NUL 68

TERM-INPUT ACTION=SCREEN-PREVIOUS-FIELD CODE=52 NUL 72

TERM-INPUT ACTION=LEFT-ARROW CODE=65 NUL 75
TERM-INPUT ACTION=RIGHT-ARROW CODE=66 NUL 77
TERM-INPUT CODE=53 NUL 80

Using Global Default Property Settings

Many characteristics of the standard (intrinsic) Windows controls that are created are
controlled by the Cobol-WOW defaults, established as global defaults using the Save
Properties command options on the Control, Form, or Options menus, and stored in the
cblwow.ini file. For example, if you have saved global defaults for a static text field,
including font information, all static fields that are created will have that font. The same
applies to background and foreground colors. This appliesto al control types, not just
static text fields. Therefore, by manipulating the global default property settings using
commands on the Control, Form, or Options menus in a Cobol-WOW session before
editing the panel with Cobol-WOW, you can eliminate much of the work you would
otherwise have to do manually in the Cobol-WOW Designer to alter font and color
settings. As Cobol-WOW creates the GUI versions of the controls for the first time, it
will follow these defaullts.

Cobol-WOW User's Guide 287
Enhancing Existing Panel Libraries

Y ou may want to establish the FixedSys font as the global default for static text fields.
Thiswill create the panels in the Cobol-WOW Designer with the closest representation
of the existing character layout. However, you will aimost certainly want to change this
font to something that is more typical of Windows, such as MS Sans Seif.

Restrictions

The following restrictions apply to using panels with Cobol-WOW:

e Since panelsthat are displayed by Cobol-WOW are displayed in their own windows,
COBOL ACCEPT and DISPLAY statements cannot be used to affect these
windows. Programsthat use ACCEPT and DISPLAY statements should be
modified to replace the statements with RM/Panels functions, such as RMP—DF—
Ffieldname.

e The RM/COBOL C$ routines for reading and writing to the screen function in the
COBOL main window. Cobol-WOW-enhanced panels do not use the COBOL
window, so these C$ routines cannot be used with these panels.

o RM/Panelsversion 2.1 allowed RM/Panels applications to generate panels
dynamicaly. Dynamically-generated panels are not stored in a panel library,
however, which means they cannot be opened in the Cobol-WOW Designer.

Y ou cannot make dynamic changes to a Cobol-WOW-enhanced panel. Dynamic
modifications of panels are not compatible with the Cobol-WOW method

of displaying.

Migrating Panel Libraries to Cobol-WOW
Forms

288

For those users who want to take advantage of all the capabilities of Cobol-WOW,

it is not necessary to manually recreate your panels as Cobol-WOW forms. You can
immediately begin programming with the form using Cobol-WOW. Moreover,
RM/Panels panels and Cobol-WOW forms can coexist in the same application, which
provides a gradual migration path for those who want it.

Note Panelsthat are generated dynamically by an RM/Panels application cannot be
migrated to Cobol-WOW forms. Dynamically-generated panels are not stored in a panel
library, which means they cannot be opened in the Cobol-WOW Designer.

Using Cobol-WOW with RM/Panels
Migrating Panel Libraries to Cobol-WOW Forms

Migrate a Panel Library

To migrate a panel library to Cobol-WOW forms, take the following steps:

1
2.

Start the Cobol-WOW Designer.
On the Panels menu, click Open.
Any open project will be closed automatically. The Open Panel dialog box appears.

From the Open Pandl dialog box, find the desired panel library and open it. Panel
libraries have the extension .lib. Cobol-WOW must interface to the RM/Panels
COBOL programs via TCP/IP using Cobol-RPC.

The Select Panel dialog box opens.
Select the panel to be modified and click OK.

The panel will be opened in the Cobol-WOW Designer. A default graphical
representation will be displayed. The size, shape, location, color, fonts, and other
properties of the controls and overall window can then be modified.

Edit the panel as desired.

On the Panels menu, click Export. The panel will be saved as a Cobol-WOW form
with the extension .wow.

On the Panels menu, click Close.

On the Project menu, click either Open or New and open or create the project to
which you want to add the form.

The former panel can be edited in the same manner as any other Cobol-WOW form.

Cobol-WOW User's Guide 289
Migrating Panel Libraries to Cobol-WOW Forms

290 Using Cobol-WOW with RM/Panels
Migrating Panel Libraries to Cobol-WOW Forms

Appendix E: Using Cobol-WOW
Thin Client

This appendix describes how to install and use Cobol-WOW Thin Client, which allowsthe
user interface to exist on the Windows client machine and the COBOL program (data
processing) to occur on the server.

Understanding Cobol-WOW Thin Client

Cobol-WOW Thin Client provides the ability to execute Cobol-WOW programsin a
client/server architecture over aLAN or the Internet. All programs and data reside and
execute on the server, but the Windows user interface is presented ona Windows
workstation. This client/server implementation is carried out by integrating RPC+
(formerly Cobol-RPC) technology with Cobol-WOW.

Note Beginning with version 4.0, Cobol-WOW programs are able to use COBOL ACCEPT
and DISPLAY statements. The input and/or output of these statements appear in the default
RM/COBOL for Windows standard graphical user interface window (which is supported
by the rmguife.dll) on the Windows client machine.

From a conceptual standpoint, you can consider a Thin Client application in the following
manner. The Windows client workstation executes asmall .exe program (wowclient.exe) on
Windows that connects to the server. The server, upon receiving this connection

request, begins execution of the application on the server. The application runsas a
norma RM/COBOL program on the server until a Cobol-WOW functionisinvoked. All
Cobol-WOW functions are intercepted by special logic in the runtime, which routes the
requests back to the client, where they are executed. This causes the user-interface to be
presented on the client. When the Cobol-WOW function compl etes execution, control is
returned back to the server.

The Cobol-WOW Thin Client also allows the RM/COBOL application program running on
the server to access the RM/COBOL runtime Windows printing capabilities. For more
information, see “ Remote Windows Printing Capability” on page 297.

Only afew files areinstalled on the client workstation. These filesallow the client to
initiate the connection to the server and to carry out the Windows user interface
functionality.

The bulk of theinstallation is on the server. The server must host the facilities for
receiving the connection request, executing the application, and forwarding the Windows
user interface requests to the client. For more information on installing and configuring
Cobol-WOW Thin Client, see page 292.

Cobol-WOW User's Guide 291
Understanding Cobol-WOW Thin Client

Benefits of Cobol-WOW Thin Client

Cobol-WOW Thin Client provides benefit in avariety of ways, including:

o Simplified management. Simplified computing means lower ownership costs and
increased resource efficiency of each end-user.

e Accessto legacy systems. Extendsthelife of a COBOL application. Customers
can retain the access to existing legacy systems, databases, and applications, while
benefiting from popular, Windows-based applications.

e Reduced cost of ownership. Thin clients do not require many of the features of a
PC because network servers do most of the work running programs and storing data.

Installing and Configuring Cobol-WOW Thin
Client

292

To use Cobol-WOW Thin Client, you must install both the Cobol-WOW Thin Client and
the RPC+ server software. These are supplied on different distribution disks and must be
installed individually. Both may be installed on the same computer, allowing that
computer to function as both client and server. Thisisuseful for testing and debugging
purposes and an application can be deployed in this manner as well.

Please refer to the installation instructions included on the distribution mediafor specific
instructions on installing the client and server software.

Once Cobol-WOW Thin Client isinstalled, some configuration must be done before it
can be used. Since using the Thin Client portion of Cobol-WOW involveslittle or no
additional coding, configuration of the client and server are the primary issuesin its use.
Configuration information for both the client and server are stored in the cobolr pc.ini
file. Configuration information can be changed by editing thisfile.

For more information on configuring Cobol-WOW Thin Client, see one of the following
topics:

e FilesInstalled on the Windows Client Workstation
e FilesInstalled on a Windows Server
e FilesInstalled on aUNIX Server

Using Cobol-WOW Thin Client
Benefits of Cobol-WOW Thin Client

Files Installed on the Windows Client Workstation

The following list describes each file that must be installed on the Windows client
workstation in order to use the Thin Client portion of Cobol-WOW.

Files Installed on the Windows Client Workstation

Files

Description

wowclient.exe

wowrt.dll

RmRemPrt.dll

codebrdg.dl

RpcPlusRM .dll

The Cobol-WOW Thin Client executable program. It is
the module that must be executed to begin the Thin Client
session. It will load the required DLLs and read the
configuration file, rpcplus.ini. The wowclient.exe file may
be placed in any location.

The same Cobol-WOW runtime DLL that is used with
standal one Cobol-WOW programs. Instead of being
invoked by the RM/COBOL runtime, it isinvoked by
wowclient.exe. This DLL must be placed in the same (or
working) directory as wowclient.exe or in adirectory
specified in the PATH environment variable.

The Cobol-WOW Thin Client Windows remote printing
module. ThisDLL contains the Windows printing
interfaces that would normally exist in the RM/COBOL
runtime. But since the runtime is on the remote (server)
machine, this module is needed to implement the remote
Windows printing capability. ThisDLL must be placed in
the same (or working) directory as wowclient.exe or in a
directory specified in the PATH environment variable.

For more information on remote Windows printing
capability, see “Remote Windows Printing Capability” on
page 297.

The RM/COBOL CodeBridge support module. ThisDLL
is a support module for the Windows remote printing
module (RmRemPrt.dll). ThisDLL must be placed in
the same (or working) directory as wowclient.exe or in a
directory specified in the PATH environment variable.

The RM/COBOL interface to the RPC+ DLL
(RpcPlus.dll). Since wowclient.exe is built using the same
parameter-passing mechanisms as an RM/COBOL
program, this DLL must be used to interface to the RPC+
routines. This DLL must be placed in the same (or
working) directory as wowclient.exe or in a directory
specified in the PATH environment variable.

Cobol-WOW User's Guide
Installing and Configuring Cobol-WOW Thin Client

293

Files Installed on the Windows Cliat Workstation (Cont.)

Files Description

RpcPlus.dll The RPC+ DLL. It handles communications with the
server. ThisDLL must be placed in the same (or
working) directory as wowclient.exe or in a directory
specified in the PATH environment variable.

rpeplus.ini A configuration file that tells RPC+ what server to
connect to and what port to use. The contents of the file
look like this:

[ClientConTfig]
DefaultServer=xxxX.XXX.XXX . XXX

[ServerConfig]
Port=portnumber

The DefaultServer entry specifiesthe |P address or the
name of the Cobol-WOW Thin Client Server. The Port
entry specifies the port number on the server associated
with this service. These entries can be changed as needed
for your installation.

The rpeplus.ini file must be in the same (or working)
directory as wowclient.exe or in the Windows directory.

rmguife.dll Graphical user interface module.
rmprop.dll COBOL program property sheet handler.
alegrisdil Graphical user interface support module.

294 Using Cobol-WOW Thin Client
Installing and Configuring Cobol-WOW Thin Client

Files Installed on a Windows Server

The following list describes each file that must be installed on a Windows server in order
to use the Thin Client portion of Cobol-WOW.

Files Installed on a Windows Server

Files

Description

RpcPlusServer.exe

RpcPluswow.dll

RpcPlus.dll

rpcplus.ini

helowrld.cob

This program performs the important function of
listening for a connection request, then starting the
RM/COBOL runtime and application. Thisfile can be
installed in any location.

The Cobol-WOW interface to RPC+ (RpcPlus.dll). The
application programs make calls to functions such as
WOWSETPROP and WOWGETPROP. The
RpcPluswOW.dll intercepts those calls and uses RPC+
to route them to the Windows client. ThisDLL may be
placed in any location, because it must be specifically
loaded in the runcobol command line with the L=
option. A path can be included if the RpcPluswOw.dl
islocated in adirectory other than the working
directory.

The RPC+ DLL. It handles communications with the
Windows client. This DLL must be placed in the
working directory for the application or in a directory
specified in the PATH environment variable.

A configuration file with important information for
RPC+. See the following example of the contents of
thisfile.

Sample Cobol-WOW 'Hello World' program.

Cobol-WOW User's Guide
Installing and Configuring Cobol-WOW Thin Client

295

296

Sample Contents of rpcplus.ini for a Windows Server

[ClientConfig]
DefaultServer=CLIENT

[ServerConfig]

CobolType=rmcobol

StartupCommand=runcobol myapp.cob L=r pcpl uswow. dl
Port =5010

LogActi vi t y=TRUE

LogFi | eNarre=r pcpl us. | og

Wor ki ngDi r =\ myapp

In the configuration file installed on a Windows server, the only entry required in the
[ClientConfig] section is DefaultServer. The DefaultServer entry must specify CLIENT.
In the Thin Client architecture, CALLs made by code executing on the server must be
routed back to the CLIENT. Thisentry causes that to happen.

Thefirst three entriesin the [ServerConfig] section are required. The Cobol Type entry
must specify rmcobol. This causes the RpcPlusSer ver.exe program to use the correct
command line format when starting the RM/COBOL runtime.

The StartupCommand entry can be edited to suit your installation. Y ou may need to add
a path to the runcobol command, but the runcobol command must be invoked here. You
can specify whichever application program should be started for the application,
presumably your main program. This program can call any number of subprogramsin
the normal COBOL manner. Y ou can specify a path to this program. The RUNPATH
environment variable or Windows Registry setting will be used to locate any called
subprograms, but not the initial program. Finally, you may need to add a path to the L=
option which loads RpcPlusWOW .dll, depending on where you installed that file.

The Port entry is required, and must specify the same port number that is contained in the
rpcplus.ini file on the client.

The last three entries are optional. The LogActivity=TRUE option tells RPC+ to record
all connectionsin alog file. The LogFileName entry specifies the name of the log file.
A path may be added to this file name.

It is highly recommended that you specify a LogFileName. Any communication errors
or other problems detected by RPC+ will be written to thisfile. If no file is specified,
these errors will be displayed in a message box. Thiswill require a user to dismiss the
message box before the RM/COBOL runtime can terminate.

The WorkingDir entry specifies a directory that will be established as the working
directory for the RM/COBOL runtime, and therefore your application. If thisentry is not

Using Cobol-WOW Thin Client
Installing and Configuring Cobol-WOW Thin Client

specified, the working directory will be the working directory associated with the
execution of RpcPlusSer ver.exe.

The most important item to install on your Windows server is your application, which
can be placed in any location. It isunnecessary to install your application in the same
location as any of the Cobol-WOW Thin Client files, although you certainly may do so.
If you want to load your application in a separate area, the WorkingDir entry is a handy
way to “move’ to your application’s directory.

Remote Windows Printing Capability

Remote Windows printing from the server application is available through Cobol-WOW
Thin Client. A new, predefined printer device, “REMOTEPRINTER?’, has been added
to the RM/COBOL runtime.

Note If the server isrunning on UNIX, the remote printer name is case sensitive; that is,
the remote printer name must be all upper case.

When this deviceis opened, a standard Windows Print dialog box is presented to the user
on the Windows client machine in order to allow dynamic selection of the Windows
printer. All of the P$ subprogramsin the RM/COBOL runtime are available to the server
application. In addition, a standard COBOL write operation to the selected/opened

printer are routed to the Windows' client machine/printer. The DEFINE-DEVICE record
in the RM/COBOL runtime configuration file has been modified to accept the “REMOTE-
PRINTER=YES’ keyword, which indicates that the printer is aremote printer (on the
client machine).

A sample of the contents of this runtime configuration file is shown below:

DEFINE-DEVI CE DEVICE=PRINTER1 PATH="DYNAM C' REMOTE-PRINTER=YES

Files Installed on a UNIX Server

The following list describes each file that must be installed on a UNIX server in order to

use the Thin Client portion of Cobol-WOW. Thefirst two filesin the table, /etc/ser vices
and /etc/inetd.conf, are UNIX system files that must be edited to enable the built-in

service, inetd, to handle accepting the connection reguests from wowclient.exe and launching
the COBOL application.

Cobol-WOW User's Guide 297
Installing and Configuring Cobol-WOW Thin Client

Files Installed on a UNIX Server

Files Description

letc/services Thefile that contains a list of service names and
TCP/IP configuration information. An entry must be
added to the /etc/services file as follows:
rpcplus 5000/tcp

This entry defines rpcplus asaservice using tcp
protocol on port 5000. Do not change the service
name or protocol. You can, however, select a different
port number. Just be certain that the port number you
select is not used by any other service on the server and
matches the port number used by the Cobol-WOW
Thin Client.

The file that contains alist of services for which inetd
[etc/inetd.conf should handle connection requests. An entry must be

added to the /etc/inetd.conf file as follows:

rpcplus stream tcp nowait root /bin/sh
/bin/sh/rpcplus/rpcstart

where rpcplus isthe name of the serviceinetd is

supposed to listen for. This service must be described

in /etc/services, as discussed above. Y ou should not

need to change this.

stream tcp nowait describe the type of network
communication needed. Do not change these options.

root indicates the user for which the server process
will beinitiated. Y ou may want to have your
application executed under a different user name. Be
certain that the user name used here has adequate
permissions to find and execute the application.

/bin/sh isthe name of the program that inetd should
initiate for the service. /bin/sh is specified because
ashell script is used to start the application. This entry
is repeated and should not be changed.

/rpcplus/rpcstartisashel script that starts the
RM/COBOL runtime system. The rpcstart script can
be edited to set additional environment variables
required by the application, or to set aworking
directory.

298 Using Cobol-WOW Thin Client
Installing and Configuring Cobol-WOW Thin Client

Files Installed on a UNIX Server (Cont.)

Files

Description

libtclnt.so

rpcstart

rpeplus.ini

The Cobol-WOW Thin Client shared object module.
Thisfile should be placed in the rmcobolso
subdirectory of the RM/COBOL runtime installation.
This shared object is the Cobol-WOW interface to the
RpcPlus.dll. The application programs make calls to
functions such as WOWSETPROP and
WOWGETPROP. The RpcPluswOW.dll intercepts
those calls and uses RPC+ to route them to the
Windows client.

A filethat isashell script, which starts the application.
It must contain at least the following:

TERM=ansi

export TERM

runcobol myapp.cob K

This script can be expanded to set environment
variables or to establish the current working directory.
It isadvisable to add afull path to runcobol and also to
myapp. Myapp isthe first RM/COBOL programin
your application. It can, however, have any name you
wish. The K option is required on the runcobol
command line to suppress the banner.

A configuration file with important information for
RPC+. See the following example of the contents of
thisfile.

Cobol-WOW User's Guide
Installing and Configuring Cobol-WOW Thin Client

299

300

Sample Contents of rpcplus.ini for a UNIX Server

[ClientConfig]
DefaultServer=CLIENT

[ServerConfig]
Port=5010
LogActivity=TRUE
LogFileName=rpcplus.log

In the configuration file installed on a UNIX server, the only entry required in the
[ClientConfig] section is DefaultServer. The DefaultServer entry must specify CLIENT.
In the Thin Client architecture, CALLs made by code executing on the server must be
routed back to the CLIENT. Thisentry causes that to happen.

The Port entry isrequired, but it is not used during normal operation. It can be used in
some debugging situations.

The last two entries are optional. The LogActivity=TRUE option tells RPC+ to record
all connectionsin alog file. The LogFileName entry specifies the name of the log file.
A path may be added to this file name. It is highly recommended that you specify a
LogFileName. Any communication errors or other problems detected by RPC+ will be
written to thisfile. If no fileis specified, these errors will be displayed in a message box.
Thiswill require a user to dismiss the message box before the RM/COBOL runtime can
terminate.

Obviously, the most important item to install on your UNIX server is your application,
which can be placed in any location. There is no need to install the application in the
same location as any of the Cobol-WOW Thin Client files, although you certainly can. If
you want to load your application in a separate area, adding a cd command to the rpcstart
script is a handy way to “move” to your application’s directory.

Using Cobol-WOW Thin Client
Installing and Configuring Cobol-WOW Thin Client

Running the Application with Cobol-WOW

Thin Client

The following list describes each of the actions necessary to run your application with

Cobol-WOW Thin Client on the server and Windows client workstation.

On this type of hardware

Do this

UNIX server

Windows server

Windows client workstation

After editing the configuration files for inetd, the
inetd daemon must be refreshed. This can be
accomplished on al servers by rebooting the
machine, but aso can be accomplished on most
systems with the following command:

kill —HUP pid
Where pid isthe processid of theinetd process.
This command causes inetd to reread its
configuration files.

Y ou can use the following command to determine
whether inetd is listening for a connection on the
rpcplus service port:

netstat —a | grep “rpcplus”

This command should show an rpcplus port in a

LISTEN state. Once that isshown, you are ready to

start the client with the following command:
netstat —a | grep “rpcplus”

This command should show an rpcplus port in a
LISTEN state. Once that isshown, you are ready to
start the client.

After you have installed your files, you need to
execute RPCPlusServer.exe on the server. Thiswill
cause the server to start listening for connections
from the client workstation. When a connection is
received, the server will automatically start the
application.

Once a server islistening for connections, you can
execute wowclient.exe on the client workstation. The
application’sinterface will appear on the client.

Cobol-WOW User's Guide
Running the Application with Cobol-WOW Thin Client

301

302 Using Cobol-WOW Thin Client
Running the Application with Cobol-WOW Thin Client

Index

A

ACCEPT statements, 52, 54, 66, 118, 238,
285, 289
ActiveX controls, 54, 205. See also Controls
adding, 206
distributing, 211
events, 209
indexed properties, 208
limitations, 211
methods, 210
properties, 208
troubleshooting, 207
Aligning controls, 20
All caps, as a document convention, Xxiv
Animation control
defined, 97
events, unique
Start, 100
Stop, 100
properties, common
Enabled, 181
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
Top, 187
Visible, 188
Width, 188
Z-Order, 188
properties, unique
AnimationFile, 98
AutoPlay, 98
Border, 99
Center, 99
Play, 99
Transparent, 100
ANSI character set, 4, 108, 122

AXDOMETHOD function, 210
AXGETINDEXPROP function, 208
AXSETINDEXPROP function, 208

B

Bitmap control
defined, 100
events, common
Click, 189
properties, common
BackColor, 180
Enabled, 181
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
Top, 187
Visible, 188
Width, 188
Z-Order, 188
properties, unique
Bitmap, 101
BitmapMode, 102
Border, 102
Xoffset, 103
Y offset, 103
Bold type, as a document convention, xxiv
BREAK program, debugging, 91

C

C$Show subprogram, 31, 224
cblwow.ini (initialization file), 3, 50, 89,

192, 206, 286
Character-based applications, 226
Check box control

defined, 103

events, common

Click, 189

Cobol-WOW User's Guide 303

GotFocus, 189
KeyDown, 189
KeyUp, 189

LostFocus, 190

properties, common

3D, 179
BackColor, 180
Caption, 181
Enabled, 181
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
ForeColor, 183
Group, 183
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
TabStop, 187
Top, 187
Transparent, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique

Check box field/control (RM/Panels)
properties, common, 232

304

Alignment, 104
AutoCheck, 105
ThreeState, 105
Value, 106

3D, 257
Accelerator, 258
Beep, 259
Column, 263

DefaultToPressed, 264

DisabledAttr, 265
EnabledAttr, 267
EntryOrder, 268
ErrorMessage, 268

Index

FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
Left, 269
Length, 270
Line, 270
MnemonicAttr, 270
Name, 270
PromptText, 272
SelectedAttr, 273
StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275
Title, 275
Top, 275
Width, 277
properties, unique
InputField, 233
Client/server, 293
COBOL main window
controlling, 31, 224
displaying debugging information, 89
Cobol skeleton program file (.chl), 215
Cobhol-RPC, 226, 293
Cobol-WOowW
ActiveX controls, 54, 205
application architecture, 213
components, 49
configuring, 3
customizing initialization file, 3
dataentry programs, issuesin, 68
debugging, 89
Designer, 49
development process, overview, 51
enhancements, XXi, Xxvii
event-driven applications, examples of,
66

features, xxi, Xxvii

file types, 213

forms, 52, 190

installing, 1

intrinsic controls, 54, 95

menus, working with, 85

projects, 65

properties and events, setting, 95

runtime system, 50

Thin Client program, 50, 293

tutorial, 7

using with RM/Panels, 225

windows graphical operating environment
elements, 52

windows.cpy file, 217

CodeWatch, debugging with, 93

Combo box control

defined, 106
events, common
Click, 189
DbIClick, 189
GotFocus, 189
KeyDown, 189
KeyUp, 189
LostFocus, 190
events, unique
DropDown, 110
EditChange, 110
NoSpace, 110
properties, common
3D, 179
BackColor, 180
Enabled, 181
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
ForeColor, 183
Group, 183
Height, 183
Left, 184
Locked, 184

Name, 185
ScrollBar, 186
Tablndex, 186
TabStop, 187
Top, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique
AutoHScroll, 107
Count, 108
CurSdl, 108
DisableNoScroll, 108
OEMConvert, 108
SelText, 109
Sort, 109
Style, 109

Combo box field/control (RM/Panels)

properties, common, 232
3D, 257
Beep, 259
Border, 260
BorderAttr, 260
ChoiceHelp, 261
ChoicesToDisplay, 262
ChoicesToStore, 262
ChoiceValue, 262
ChoiceWidth, 263
Column, 263
CurChoice, 263
DisabledAttr, 265
DoubleClick, 266
DropDown, 266
EnabledAttr, 267
EnabledForlnput, 267
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269

Cobol-WOW User's Guide

305

ForeColor, 269
Height, 269
HelpMessage, 269
L eft, 269
Length, 270
Line, 270
Name, 270
PromptText, 272
ScrollBar, 273
SelectedAttr, 273
StartOfGroup, 273
StaticChoices, 274
TimeOut, 274
TimeOutValue, 275
Top, 275
Width, 277
Command button control
defined, 110
events, common
Click, 189
GotFocus, 189
KeyDown, 189
KeyUp, 189
LostFocus, 190
properties, common
Caption, 181
Enabled, 181
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
Group, 183
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
TabStop, 187
Top, 187
Visible, 188
Width, 188
Z-Order, 188

306 Index

properties, unique

Accelerator, 112
Bitmap, 112
Default, 112

Command button field/control (RM/Panels)
properties, common, 234

3D, 257
Accelerator, 258
Beep, 259

Column, 263
DefaultValue, 265
DisabledAttr, 265
EnabledAttr, 267
EnabledForlnput, 267
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
L eft, 269

Length, 270

Line, 270
MnemonicAttr, 270
Name, 270
PromptText, 272
SelectedAttr, 273
StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275
Title, 275

Top, 275

Width, 277

properties, unique

PushedAttr, 234
SizeType, 235
SizeValue, 235

Configuration

cblwow.ini (initialization file), 3, 50, 89,
192, 206, 286

function keys (RM/Panels), 285

in menu controls, 15

in projects, 8

RM/COBOL Configuration utility
(rmconfig), 31

Thin Client program, 50

tools, required, 2

Controls. See also ActiveX controls;

Intrinsic controls

aligning, 20

defined, 54

menus, 14, 85

moving, 20

Name property, 15, 17, 20, 24, 185
selecting, 19

sizing, 20

spacing, 20

tab order, 22, 78

z-order, 23

Conventions and symbols used in this
manual, xxiv

Currency editing, 5

D

Data entry programs, issuesin, 68
Date edit box field/control (RM/Panels)
properties, common, 236
3D, 257
AlwaysDisabled, 258
AutoExit, 259
Beep, 259
BlankWhenZero, 260
Border, 260
Column, 263
DefaultToSystem, 264
DefaultValue, 265
DisabledAttr, 265
DisplayFormat, 265
DoubleClick, 266
EnabledAttr, 267

EnabledForDisplay, 267
EnabledForlnput, 267
EntryFormat, 268
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
Left, 269
Length, 270
Line, 270
Name, 270
OccColOffset, 271
OccLineOffset, 271
Occurrences, 271
OccXOffset, 272
OccY Offset, 272
PromptText, 272
Protected, 273
SelectedAttr, 273
StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275
Top, 275
Update, 276
Validation, 276
Width, 277
properties, unique
StorageFormat, 237
Date time picker control
defined, 113
event, unique
Change, 118
properties, common
Enabled, 181
FontBold, 181
Fontltalic, 182

Cobol-WOW User's Guide

307

FontName, 182
FontStrikethru, 182
FontUnderline, 183
Height, 183
Left, 184
Locked, 184
MCcColor, 184
MCcColorlndex, 185
Name, 185
Tablndex, 186
TabStop, 187
Top, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique
Format, 114
LongDateFormat, 115
MCFontBold, 115
MCFontltalic, 115
MCFontName, 116
McFontSize, 116
MCFontStrikeThru, 116
MCFontUnderline, 116
RightAlign, 117
ShortDateCenturyFormat, 117
ShowNone, 117
TimeFormat, 118
UpDown, 118

Debugging

with COBOL DISPLAY statements, 89

with CodeWatch, 93

with RM/COBOL Interactive Debugger,
91

DISPLAY statements, 52, 54, 224, 289
debugging with, 89

E

Edit box control
defined, 118
events, common

GotFocus, 189
KeyDown, 189

308 Index

KeyUp, 189
LostFocus, 190

events, unique

Change, 124
HScroll, 124
MaxText, 124
NoSpace, 124
VScroll, 124

properties, common

3D, 179
BackColor, 180
Enabled, 181
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
ForeColor, 183
Group, 183
Height, 183

Left, 184

Locked, 184
Name, 185
Tablndex, 186
TabStop, 187

Top, 187

Visible, 188
Width, 188
Z-Order, 188

properties, unique

Alignment, 119
AutoHScrall, 120
AutoV Scrall, 120
Border, 120

Case, 121
MaxChars, 121
Multiline, 121
NoHideSdl, 121
OEMConvert, 122
Password, 122
PasswordChar, 122
ReadOnly, 123
ScrollBars, 123

Text, 123
WantReturn, 123
Edit box field/control (RM/Panels)
properties, common, 238
3D, 257
AlwaysDisabled, 258
AutoExit, 259
Beep, 259
Border, 260
Case, 261
Column, 263
DefaultValue, 265
DisabledAttr, 265
DoubleClick, 266
EnabledAttr, 267
EnabledForDisplay, 267
EnabledForlnput, 267
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
L eft, 269
Length, 270
Line, 270
Name, 270
OccCol Offset, 271
OccLineOffset, 271
Occurrences, 271
OccX Offset, 272
OccY Offset, 272
PromptText, 272
Protected, 273
SelectedAttr, 273
StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275

Top, 275
Update, 276
Validation, 276
Width, 277
properties, unique
Class, 239
Justify, 239
Prompt, 239
Ellipse shape
defined, 125
properties, common
BackBrushHatch, 180
BackBrushStyle, 180
BackColor, 180
Fill, 181
ForeColor, 183
Height, 183
Left, 184
Locked, 184
Name, 185
PenSize, 186
PenStyle, 186
Tablndex, 186
Top, 187
Width, 188
Z-Order, 188
Enhancements to Cobol-WOW, xxi, xxvii
Euro currency symbol support, xxvii
Event-driven applications, examples of, 66
Events
event-driven applications, examples of,
66
filtering, 4, 191
Setting
ActiveX controls, 209
forms, 95, 190
intrinsic controls, 95, 189
writing (attaching) code for, 29

F

Filenames, conventions for, xxiv
Filtering events, 4, 191
Form file (.\wow), 214

Cobol-WOW User's Guide 309

Forms
creating, 9
defined, 52
events, setting

Activate, 201
Closg, 201

Create, 201

Enable, 201
GetFocus, 202
KeyDown, 202
KeyPress, 202
KeyUp, 202

L ButtonDown, 202
L ButtonUp, 202
list of, 190
LoseFocus, 202
MButtonDown, 202
MButtonUp, 203
Paint, 203
RButtonDown, 203
RButtonUp, 203
Show, 203

file definition (.wow), 214
panels (RM/Panels), 277

properties, list of, 277

properties, setting

310

3D, 191
AllowEventFilter, 191
BackColor, 192
Bitmap, 192
BitmapMode, 193
Border, 193
Caption, 194
ClipControls, 194
Cursor, 195
DialogMotion, 196
Enabled, 196
Height, 196

Icon, 196
Iconindex, 197
Left, 197

list of, 190
MaxButton, 197

Index

MinButton, 197
Modal, 198
Parent, 198
ScrollBars, 198
ShowState, 199
Style, 199
SysKeyMade, 200
SystemMenu, 200
Title, 200
Top, 201
Visible, 201
Width, 201

with ActiveX controls, 207

Function keys, configuring with RM/Panels

and Cobol-WOW, 285

Functions

defined, 61
online Help file, xxii
sample program, 63
Windows API, 29, 50
WOWADDITEM, 32, 134
WOWCLEAR, 134
WOWGETMESSAGE, 222
WOWGETNUM, 4
WOWGETPROP, 4, 39, 58, 95
data entry program examples, 638
with ActiveX control properties, 208
WOWMESSAGEBOX, 46
WOWREMOVEITEM, 41, 134
WOWSETPROP, 4, 57, 95
data entry program examples, 638
with ActiveX control properties, 208

G

Global default property settings, 288
Group box control

defined, 125

properties, common
3D, 179
BackColor, 180
Caption, 181
Enabled, 181
FontBold, 181

Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
ForeColor, 183
Group, 183
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
TabStop, 187
Top, 187
Visible, 188
Width, 188
Z-Order, 188
Group box field/control (RM/Panels)
properties, common, 240
3D, 257
BackColor, 259
Caption, 261
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
L eft, 269
Name, 270
Top, 275
Width, 277
properties, unique
Enabled, 240
Group, 241
Locked, 241
TabStop, 241

H

Handles
identifiers, 59, 219
sizing, 20

IDs
defined, 60
example, 219
Initialization file (cblwow.ini), 3, 50, 89,
192, 206, 286
Installation, 1
Interactive Debugger. See RM/COBOL
Interactive Debugger
Intrinsic controls, 54. See also Controls
aligning, 20
events, common, 189
list of, 95
moving, 20
Name property, 15, 17, 20, 24, 185
properties, common, 179
selecting, 19
setting properties and events, 95
sizing, 20
spacing, 20
tab order, 22, 78
types
animation, 97
bitmap, 100
check box, 103
combo box, 106
command button, 110
date time picker, 113
edit box, 118
ellipse shape, 125
group box, 125
IP address, 126
line shape, 128
list box, 128
month calendar, 136
option button, 140
progress bar, 143

Cobol-WOW User's Guide

311

rectangle shape, 144 K
rounded rectangle shape, 145

scroll bars, 146 Key combinations, document convention

static text, 150 for, xxiv

status bar, 153 L

tab, 157

timer, 160 Line shape

toolbar, 161 defined, 128

trackbar, 166 properties, common
updown, 172 BackBrushHatch, 180

z-order, 23 BackBrushStyle, 180

Italic type, as a document convention, xxiv

Index

IP address control BackColor, 180
defined, 126 Fill, 181
events, common Height, 183

GotFocus, 189 Left, 184
L ostFocus, 190 Locked, 184
events, unique Name, 185
Change, 128 PenSize, 186
properties, common PenStyle, 186
BackColor, 180 Tablndex, 186
Enabled, 181 Top, 187
FontBold, 181 Visible, 188
Fontltalic, 182 Z-Order, 188
FontName, 182 List box control
FontStrikethru, 182 defined, 128
FontUnderline, 183 events, common
ForeColor, 183 Click, 189
Height, 183 DblIClick, 189
Left, 184 GotFocus, 189
Locked, 184 KeyDown, 189
Name, 185 KeyUp, 189
Tablndex, 186 L ostFocus, 190
TabStop, 187 how to use, 134
Top, 187 properties, common
Visible, 188 3D, 179
Width, 188 BackColor, 180
Z-Order, 188 Enabled, 181
properties, unique FontBold, 181
Fieldindex, 127 Fontltalic, 182
FiddMax, 127 FontName, 182
FieldMin, 128 FontStrikethru, 182
Value, 128 FontUnderline, 183

ForeColor, 183

Group, 183

Height, 183

Left, 184

Locked, 184

Name, 185

ScrollBar, 186

Tablndex, 186

TabStop, 187

Top, 187

Visible, 188

Width, 188

Z-Order, 188
properties, unique

Border, 130

ColumnWidth, 130

Count, 130

CurSdl, 130

DisableNoScroll, 131

ExtendedSel, 131

MultipleSel, 131

NolntegralHeight, 132

NoRedraw, 132

SelText, 132

Sort, 133

Standard, 133

UseTabStops, 133

WantKeyboard, 134
using functions and messages with, 134
List box field/control (RM/Panels)
properties, common, 242

3D, 257

BackColor, 259

Beep, 259

Border, 260

BorderAttr, 260

ChoiceHelp, 261

ChoicesToDisplay, 262

ChoicesToStore, 262

ChoiceValue, 262

ChoiceWidth, 263

Column, 263

CurChoice, 263

DisabledAttr, 265

DoubleClick, 266
DropDown, 266
EnabledAttr, 267
EnabledForlnput, 267
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
L eft, 269

Length, 270

Line, 270

Name, 270
PromptText, 272
ScrollBar, 273
SelectedAttr, 273
StartOfGroup, 273
StaticChoices, 274
TimeOut, 274
TimeOutValue, 275
Top, 275

Width, 277

M

Main Window Type property, Microsoft

Windows, 31
Menus

checking and unchecking menu items, 86

creating, 14

enabling and disabling menu items, 87

popping up, 88

working with, 85
Messages

defined, 62

online Help file, xxii

sample program, 63

WM-SETREDRAW, 32

Cobol-WOW User's Guide

313

Microsoft Windows
Registry file, 31, 94, 206, 298
rmconfig utility, 31
Month calendar control
defined, 136
event, unique

Change, 139

properties, common

Enabled, 181
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
Height, 183

Left, 184

Locked, 184
MCcColor, 184
MCcColorlndex, 185
Name, 185
Tablndex, 186
TabStop, 187

Top, 187

Visible, 188
Width, 188
Z-Order, 188

properties, unique

FirstDayOfWeek, 138
MaxSelCount, 138
MonthDelta, 138
MultiSelect, 138
NoToday, 139
NoTodayCircle, 139
WeekNumbers, 139

Moving controls, 20

Multi-line edit box field/control
(RM/Panels)
properties, common, 242

314

3D, 257
BackColor, 259
Beep, 259
Border, 260
Casg, 261

Index

Column, 263
DefaultValue, 265
DisabledAttr, 265
DoubleClick, 266
EnabledAttr, 267
EnabledForlnput, 267
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
L eft, 269
Length, 270
Line, 270
Name, 270
PromptText, 272
Protected, 273
SelectedAttr, 273
StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275
Top, 275
Width, 277
properties, unique
ColsToDisplay, 243
ColsToStore, 243
LinesToDisplay, 244
LinesToStore, 244
Required, 244
Stream, 245
Wrap, 245

N

Name property, 15, 17, 20, 24, 185
Numeric edit box field/control (RM/Panels)

properties, common, 246
3D, 257
AlwaysDisabled, 258
AutoExit, 259
BackColor, 259
Beep, 259
BlankWhenZero, 260
Border, 260

Column, 263

Decimal Digits, 264
DefaultValue, 265
DisabledAttr, 265
DisplayFormat, 265
DoubleClick, 266
EnabledAttr, 267
EnabledForDisplay, 267
EnabledForlnput, 267
EntryFormat, 268
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
InterDigits, 269

Left, 269

Length, 270

Line, 270

Name, 270

OccCol Offset, 271
OccLineOffset, 271
Occurrences, 271
OccX Offset, 272
OccY Offset, 272
PromptText, 272

Protected, 273
SelectedAttr, 273
StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275
Top, 275
Update, 276
Validation, 276
Width, 277
properties, unique
AssumeDecimal, 246
CalculatorEntry, 247
Signed, 247

O

OEM character set
OEM Convert property, 108, 122
UseOEM Conversion keyword, 4

Option button control
defined, 140
events, common

Click, 189
GotFocus, 189
KeyDown, 189
KeyUp, 189
LostFocus, 190
how to use, 142
properties, common
3D, 179
BackColor, 180
Caption, 181
Enabled, 181
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
ForeColor, 183
Group, 183
Height, 183
Left, 184
Locked, 184
Name, 185

Cobol-WOW User's Guide

315

Tablndex, 186
TabStop, 187
Top, 187
Transparent, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique

Alignment, 141
AutoPress, 141
Value, 141

Option button field/control (RM/Panels)
properties, common, 248

316

3D, 257
Accelerator, 258
Column, 263
Decimal Digits, 264
DefaultToPressed, 264
DisabledAttr, 265
EnabledAttr, 267
EnabledForlnput, 267
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
InterDigits, 269

L eft, 269

Length, 270

Line, 270
MnemonicAttr, 270
Name, 270
PromptText, 272
SelectedAttr, 273
StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275

Index

Top, 275
Width, 277
properties, unique
DataltemName, 249
DataSigned, 249
DataSize, 249
DataValue, 250
NumericData, 250

P

Portability, 54, 225, 226
Preferences
aligning controls, 53
filtering events, 192
for CodeWatch, 93
for runtime system, 4, 50
generating menu names, 16
handling code, 62
locating required tools, 2
spacing controls, 21
Procedure Division copy file (.wpr), 214
Product registration, xxv
Progress bar control
defined, 143
properties, common
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
Top, 187
Visible, 188
Width, 188
Z-Order, 188
properties, unique
Increment, 144
Maximum, 144
Minimum, 144
Value, 144
Project file (.wpj), 214
Projects
creating, 8
overview, 65

Properties
ActiveX controls, 208
defined, 56
displaying, 11, 20
forms
list of, 190
intrinsic controls
list of common, 179
setting at runtime, 95
RM/Panels data fields
list of common, 257
sample program, 59
setting
forms, 95
intrinsic controls, 95
shared, 20
using WOWGETPROP, 39, 58
using WOWSETPROP, 57
Properties dialog box, 11, 20

R

Rectangle shape
defined, 144
properties, common
BackBrushHatch, 180
BackBrushStyle, 180
BackColor, 180
Fill, 181
ForeColor, 183
Height, 183
Left, 184
Locked, 184
Name, 185
PenSize, 186
PenStyle, 186
Tablndex, 186
Top, 187
Width, 188
Z-Order, 188
Registration, xxv
Registry file, 31, 94, 206, 298
RM/COBOL Configuration utility
(rmconfig), 31

RM/COBOL Configuration utility
(rmconfig), 31

RM/COBOL Interactive Debugger,

debugging with, 91

RM/COBOL object file (.cab), 215

RM/Panels
datafields/controls, listed, 231

enhance existing panel libraries, 225

migrating panel libraries to Cobol-WOW

forms, 289
using with Cobol-WOW, 225
rmconfig utility, 31
Rounded rectangle shape
defined, 145
properties, common
BackBrushHatch, 180
BackBrushStyle, 180
BackColor, 180
Fill, 181
ForeColor, 183
Height, 183
Left, 184
Locked, 184
Name, 185
PenSize, 186
PenStyle, 186
Tablndex, 186
Top, 187
Width, 188
Z-Order, 188
properties, unique
RoundnessX, 145
Roundnessy, 146
RPC+, 293

S

Scroll bar control
defined, 146
events, unique
EndScroll, 148
LineDn (Vertical), 148
LinelLeft (Horizontal), 148
LineRight (Horizontal), 148

Cobol-WOW User's Guide

317

LineUp (Vertical), 148
PageDn (Vertical), 149
Pagel eft (Horizontal), 149

PageRight (Horizontal), 149

PageUp (Vertical), 149
ThumbPos, 149
ThumbTrk, 149
how to use, 149
properties, common
Enabled, 181
Group, 183
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
TabStop, 187
Top, 187
Visible, 188
Width, 188
Z-Order, 188
properties, unique
LineChange, 147
Maximum, 147
Minimum, 147
PageChange, 147
Value, 148

Scroll bar field/control (RM/Panels)

properties, common, 250
Border, 260
Column, 263
DefaultValue, 265
DisabledAttr, 265
EnabledAttr, 267
EnabledForlnput, 267
EntryOrder, 268
Height, 269
Left, 269
Line, 270
Name, 270
Top, 275
Width, 277
properties, unique

318 Index

MaximumValue, 251
MinimumValue, 251
PageSize, 252

Size, 252

StepSize, 252
ThumbAttr, 252

Selecting controls, 19
Shared properties, 20
Show Grid, 20, 53
Sizing controls, 20
Snap to Grid, 20, 53
Spacing controls, 20
Static text control
defined, 150
properties, common

3D, 179
BackColor, 180
Caption, 181
Enabled, 181
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
Group, 183
Height, 183

Left, 184

Locked, 184
Name, 185
Tablndex, 186
Top, 187
Transparent, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique

Alignment, 151
Effect, 151
NoPrefix, 152
WordWrap, 153

Static text field/control (RM/Panels)

properties, common, 253
3D, 257
BackColor, 259
Caption, 261
Column, 263
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
L eft, 269
Length, 270
Line, 270
Name, 270
Top, 275
Width, 277

properties, unique
Alignment, 253
Effect, 254
NoPrefix, 254
WordWrap, 255

Status bar control

defined, 153

properties, common
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
Top, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique
CurSection, 154
SectionNoBorders, 154
SectionPopOut, 155
Sections, 155
SectionStatus, 155

SectionWidth, 155
SimpleNoBorders, 156
SimplePopOut, 156
SimpleStatus, 156

Support, xxv

Symbols and conventions used in this

manual, Xxiv
SysKeyMode property, 200

T

Tab control
defined, 157
events, unique
KeyDown, 160
SelChange, 160
SelChanging, 160
properties, common
FontBold, 181
Fontltalic, 182
FontName, 182
FontStrikethru, 182
FontUnderline, 183
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
Top, 187
Visible, 188
Width, 188
Z-Order, 188
properties, unique
Buttons, 158
CurTab, 158
FixedWidth, 158
Forcelabel L eft, 158
GetFocus, 159
Multiline, 159
Tabs, 159
TabText, 159
Tab order, 22, 78
TCP/IP, 226
Technical support, xxv

Cobol-WOW User's Guide

319

Thin Client program, 293
Time edit box field/control (RM/Panels)

properties, common, 255
3D, 257
AlwaysDisabled, 258
AutoExit, 259
BackColor, 259
Beep, 259
BlankWhenZero, 260
Border, 260
Column, 263
DefaultToSystem, 264
DefaultValue, 265
DisabledAttr, 265
DisplayFormat, 265
DoubleClick, 266
EnabledAttr, 267

EnabledForDisplay, 267

EnabledForlnput, 267
EntryFormat, 268
EntryOrder, 268
ErrorMessage, 268
FontBold, 269
Fontltalic, 269
FontName, 269
FontSize, 269
FontStrikethru, 269
FontUnderline, 269
ForeColor, 269
Height, 269
HelpMessage, 269
Left, 269

Length, 270

Line, 270

Name, 270

OccCol Offset, 271
OccLineOffset, 271
Occurrences, 271
OccX Offset, 272
OccY Offset, 272
PromptText, 272
Protected, 273
SelectedAttr, 273

320 Index

StartOfGroup, 273
TimeOut, 274
TimeOutValue, 275
Top, 275
Update, 276
Validation, 276
Width, 277

properties, unique
24HourFormat, 256
StorageFormat, 256

Timer control

defined, 160

event, unique
Timer, 161

properties, common
Enabled, 181
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
Top, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique
Interval, 161

Toolbar control

defined, 161

event, unique
Button-0, 166

properties, common
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
Top, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique
AlignTop, 162

BitmapHeight, 162
BitmapWidth, 162

BtnBitmap, 163
BtnEnabled, 163
BtnHidden, 163
BtnState, 164
BtnStyle, 164
BtnText, 165
BtnWrap, 165

ButtonHeight, 165

Buttons, 165

ButtonWidth, 165

CurButton, 165
Larger, 166
Rows, 166
Wrapable, 166

Trackbar control

defined, 166
events, unique
Bottom, 171
EndTrack, 171
LineDown, 172
LineUp, 172
PageDown, 172
PageUp, 172
ThumbPos, 172
ThumbTrk, 172
Top, 172
properties, common
Enabled, 181
Height, 183
Left, 184
Locked, 184
Name, 185
Tablndex, 186
TabStop, 187
Top, 187
Visible, 188
Width, 188
Z-Order, 188
properties, unique
AutoTicks, 167
BothTicks, 168

EnableSelRange, 168

LeftTicks, 169
LineChange, 169
Maximum, 169
Minimum, 169
NoThumb, 170
NoTicks, 170
PageChange, 170
SelEnd, 170
SelStart, 170
TickFreg, 171
TopTicks, 171
Value, 171
Vertical, 171

Troubleshooting, ActiveX controls, 207
Tutorial, 7

adding controls, 14
controls
aligning, 20
moving, 20
selecting, 19
sizing, 20

creating alist box, 17

creating a menu, 14

creating the command buttons, 18

designing forms, 9

specifying tab order, 22
specifying z-order, 23

using projects, 8

using the file maintenance program, 7

writing code, 29

U

Updown control

defined, 172

events, unique
EndScroll, 178
ThumbPos, 178

properties, common
Enabled, 181
Height, 183
Left, 184
Locked, 184

Cobol-WOW User's Guide

321

Name, 185
Tablndex, 186
TabStop, 187
Top, 187
Visible, 188
Width, 188
Z-Order, 188

properties, unique

Accelerators, 174
Accellncrement, 174
AccelSeconds, 174
AlignLeft, 174
AlignRight, 175
ArrowKeys, 175
Base, 175

Buddy, 176
Buddylnteger, 176
CurAccd, 176
Horizontal, 177
Maximum, 177
Minimum, 177
NoThousands, 177
Value, 178
Wrapable, 178

Utilities

RM/COBOL Configuration (rmconfig),

322

31

Index

w

Web site, xxv

window. See Forms

Windows operating system, 52
windows.cpy file, 217

WM-SY SKEY messages, 200
Working Storage copy file (.wws), 214

[WOWRT] section, initialization file, 4, 50,

89, 192
WOWADDITEM function, 32, 134
WOWCLEAR function, 134
WOWGETMESSAGE function, 222
WOWGETNUM function, 4
WOWGETPRORP function, 4, 39, 58, 95
data entry program examples, 68
with ActiveX control properties, 208
WOWMESSAGEBOKX function, 46
WOWREMOVEITEM function, 41, 134
WOWSETPROP function, 4, 57, 95
data entry program examples, 68
with ActiveX control properties, 208

Z
Z-order, 23, 188

	Cobol-WOW User's Guide v4.0
	Copyright
	Table of Contents
	Preface
	What's New in Version 4.0
	Cobol-WOW Documentation
	How This Manual is Organized

	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Enhancements
	Version 3.10
	Version 3.0

	Chapter 1: Installing Cobol-WOW
	System Requirements
	Required Hardware
	Required Software

	System Installation
	Locating Required Tools
	Configuring Cobol-WOW
	Customizing the Initialization File (cblwow.ini)
	[WOWRT] Section
	Obsolete Features

	Chapter 2: Tutorial
	Using the File Maintenance Program
	Using Projects
	Create a New Project

	Designing Forms
	Create the FIRSTAPP Form
	Setting Form Properties
	Style Property
	Title Property
	Border, Caption, MinButton, and SystemMenu Properties

	Moving and Sizing a Form

	Add Controls to the FIRSTAPP Form
	Creating a Menu
	Creating a List Box
	Creating the Command Buttons

	Arrange Controls on the FIRSTAPP Form
	Selecting
	Resizing
	Moving
	Aligning and Spacing
	Specifying Tab Order
	Specifying Z-Order

	Save the FIRSTAPP Form
	Name Property

	Create the CUSTINFO Form
	Setting Form Properties

	Add Controls to the CUSTINFO Form
	Save the CUSTINFO Form

	Writing Code
	Step 1 — Exiting Methods
	Writing Code for Menu Controls
	Compiling and Running Program
	Controlling the COBOL Main Window

	Step 2 — Loading the List Box
	Using the WOWADDITEM Function
	Creating Logic to Load the List Box
	Project Code Sections
	Procedure Division Logic
	Working-Storage Section Logic

	Saving, Generating, Compiling, and Running

	Step 3 — Adding the Second Window
	Adding Logic to the Add Command Button
	Declaring ADD-MODE
	Declaring POPUP-RTN
	Removing the CUSTINFO Window
	Saving, Compiling, and Running

	Step 4 — Adding Customers
	Using the WOWGETPROP Function
	Adding Logic to the OK Command Button
	Saving, Building, and Running

	Step 5 — Changing Customers
	Working with List Box Selections
	Adding Logic to the Change Command Button
	Adding Code to the Procedure Division
	Modifying the POPUP-RTN Procedure
	Modifying the OK Command Button Procedure
	Adding the Delete List Box Entry Procedure
	Saving, Building, and Running

	Step 6 — Deleting Customers
	WOWMESSAGEBOX Function
	Adding Logic to the Delete Command Button
	Saving, Building, and Running

	Chapter 3: Introducing Cobol-WOW
	Cobol-WOW Components
	Cobol-WOW Designer
	Cobol-WOW Runtime System
	Cobol-WOW Thin Client

	Cobol-WOW Development Process Overview
	Windows Graphical Operating Environment
	Forms and Controls
	Forms
	Controls

	Properties
	Setting a Property Value at Runtime
	Getting a Property Value at Runtime
	Benefits of Using WOWSETPROP and WOWGETPROP
	Sample Program — Setting Properties

	Handles
	IDs
	Functions and Messages
	What are Functions?
	What are Messages?
	Using Functions and Messages
	Sample Program — Using Functions and Messages

	Chapter 4: Developing with Cobol-WOW
	Cobol-WOW Projects
	Event-Driven Applications
	
	Example 1
	Example 2

	Addressing Issues in Data Entry Programs
	Handling Data
	Example 1: Loading a Form with COBOL Data
	Example 2: Retrieving Information from a Form and Storing It in COBOL Data Items

	Handling Different Types of Data
	Example 1: Basic Numeric Data for an Edit Box Control
	Example 2: Formatted Numeric Data for an Edit Box Control
	Example 3: Handling Numeric Data with Scroll Bar Controls
	Example 4: Handling Numeric Data with Check Box Controls

	Managing User Interaction
	Example 1: Handling an Invalid Value
	Example 2: Dictating Entry Order for Controls
	Example 3: Preventing Data Entry on a Control
	Example 4: Switching to Another Windows Application
	Example 5: Disabling and Enabling a Validated Control

	Using Function Keys for Special Options
	Implementing Function Keys in Cobol-WOW

	Sample Program

	Working with Menus
	Using Menus
	Checking and Unchecking Menu Items
	Enabling and Disabling Menu Items
	Popping Up Menus

	Chapter 5: Debugging
	Debugging with COBOL DISPLAY Statements
	Executing the SHOWME Program
	How the SHOWME Program Works

	Debugging with the RM/COBOL Interactive Debugger
	Executing the BREAK Program
	How the BREAK Program Works

	Debugging with CodeWatch

	Appendix A: Setting Properties and Events for Intrinsic Controls and Forms
	Manipulating Properties at Runtime
	Intrinsic Controls
	Animation Control
	AnimationFile Property
	AutoPlay Property
	Border Property
	Center Property
	Play Property
	Transparent Property
	Start Event
	Stop Event

	Bitmap Control
	Bitmap Property
	BitmapMode Property
	Border Property
	Xoffset Property
	Yoffset Property

	Check Box Control
	Alignment Property
	AutoCheck Property
	ThreeState Property
	Value Property

	Combo Box Control
	AutoHScroll Property
	Count Property
	CurSel Property
	DisableNoScroll Property
	OEMConvert Property
	SelText Property
	Sort Property
	Style Property
	DropDown Event
	EditChange Event
	NoSpace Event

	Command Button Control
	Accelerator Property
	Bitmap Property
	Default Property

	Date Time Picker Control
	Format Property
	LongDateFormat Property
	MCFontBold Property
	MCFontItalic Property
	MCFontName Property
	MCFontSize Property
	MCFontStrikeThru Property
	MCFontUnderline Property
	RightAlign Property
	ShortDateCenturyFormat Property
	ShowNone Property
	TimeFormat Property
	UpDown Property
	Change Event

	Edit Box Control
	Alignment Property
	AutoHScroll Property
	AutoVScroll Property
	Border Property
	Case Property
	MaxChars Property
	Multiline Property
	NoHideSel Property
	OEMConvert Property
	Password Property
	PasswordChar Property
	ReadOnly Property
	ScrollBars Property
	Text Property
	WantReturn Property
	Change Event
	HScroll Event
	MaxText Event
	NoSpace Event
	VScroll Event

	Ellipse Shape
	Group Box Control
	IP Address Control
	FieldIndex Property
	FieldMax Property
	FieldMin Property
	Value Property
	Change Event

	Line Shape
	List Box Control
	Border Property
	ColumnWidth Property
	Count Property
	CurSel Property
	DisableNoScroll Property
	ExtendedSel Property
	MultipleSel Property
	NoIntegralHeight Property
	NoRedraw Property
	SelText Property
	Sort Property
	Standard Property
	UseTabStops Property
	WantKeyboard Property
	Using Functions and Messages with List Boxes
	Using a List Box
	Loading the List Box
	Operating the List Box
	Determining the Selection
	Finding an Item
	Selecting an Item
	Retrieving the Selection
	Removing One or All Items from the List Box

	Month Calendar Control
	FirstDayOfWeek Property
	MaxSelCount Property
	MonthDelta Property
	MultiSelect Property
	NoToday Property
	NoTodayCircle Property
	WeekNumbers Property
	Change Event

	Option Button Control
	Alignment Property
	AutoPress Property
	Value Property
	Grouping Option Buttons

	Progress Bar Control
	Increment Property
	Maximum Property
	Minimum Property
	Value Property

	Rectangle Shape
	Rounded Rectangle Shape
	RoundnessX Property
	RoundnessY Property

	Scroll Bar Controls
	LineChange Property
	Maximum Property
	Minimum Property
	PageChange Property
	Value Property
	EndScroll Event
	LineLeft Event (Horizontal)
	LineRight Event (Horizontal)
	LineDn Event (Vertical)
	LineUp Event (Vertical)
	PageLeft Event (Horizontal)
	PageRight Event (Horizontal)
	PageDn Event (Vertical)
	PageUp Event (Vertical)
	ThumbPos Event
	ThumbTrk Event
	Using Scroll Bars

	Static Text Control
	Alignment Property
	Effect Property
	NoPrefix Property
	WordWrap Property
	Special Considerations for Static Text Controls

	Status Bar Control
	CurSection Property
	SectionNoBorders Property
	SectionPopOut Property
	Sections Property
	SectionStatus Property
	SectionWidth Property
	SimpleNoBorders Property
	SimplePopOut Property
	SimpleStatus Property

	Tab Control
	Buttons Property
	CurTab Property
	FixedWidth Property
	ForceLabelLeft Property
	GetFocus Property
	Multiline Property
	RightJustify Property
	Tabs Property
	TabText Property
	KeyDown Event
	SelChange Event
	SelChanging Event

	Timer Control
	Interval Property
	Timer Event

	Toolbar Control
	AlignTop Property
	BitmapHeight Property
	BitmapWidth Property
	BtnBitmap Property
	BtnEnabled Property
	BtnHidden Property
	BtnState Property
	BtnStyle Property
	BtnText Property
	BtnWrap Property
	ButtonHeight Property
	Buttons Property
	ButtonWidth Property
	CurButton Property
	Larger Property
	Rows Property
	Wrapable Property
	Button-0 Event

	Trackbar Control
	AutoTicks Property
	BothTicks Property
	EnableSelRange Property
	LeftTicks Property
	LineChange Property
	Maximum Property
	Minimum Property
	NoThumb Property
	NoTicks Property
	PageChange Property
	SelEnd Property
	SelStart Property
	TickFreq Property
	TopTicks Property
	Value Property
	Vertical Property
	Bottom Event
	EndTrack Event
	LineDown Event
	LineUp Event
	PageDown Event
	PageUp Event
	ThumbPos Event
	ThumbTrk Event
	Top Event

	Updown Control
	Accelerators Property
	AccelIncrement Property
	AccelSeconds Property
	AlignLeft Property
	AlignRight Property
	ArrowKeys Property
	Base Property
	Buddy Property
	BuddyInteger Property
	CurAccel Property
	Horizontal Property
	Maximum Property
	Minimum Property
	NoThousands Property
	Value Property
	Wrapable Property
	EndScroll Event
	ThumbPos Event

	Common Intrinsic Control Properties
	3D Property
	BackBrushHatch Property
	BackBrushStyle Property
	BackColor Property
	Caption Property
	Enabled Property
	Fill Property
	FontBold Property
	FontItalic Property
	FontName Property
	FontSize Property
	FontStrikethru Property
	FontUnderline Property
	ForeColor Property
	Group Property
	Height Property
	Left Property
	Locked Property
	MCColor Property
	MCColorIndex Property
	Name Property
	PenSize Property
	PenStyle Property
	ScrollBar Property
	TabIndex Property
	TabStop Property
	Top Property
	Transparent Property
	Visible Property
	Width Property
	Z-Order Property

	Common Intrinsic Control Events
	Click Event
	DblClick Event
	GotFocus Event
	KeyDown Event
	KeyPress Event
	KeyUp Event
	LostFocus Event

	Forms
	3D Property
	AllowEventFilter Property
	BackColor Property
	Bitmap Property
	BitmapMode Property
	Border Property
	Caption Property
	ClipControls Property
	Cursor Property
	DialogMotion Property
	Enabled Property
	Height Property
	Icon Property
	IconIndex Property
	Left Property
	MaxButton Property
	MinButton Property
	Modal Property
	Parent Property
	ScrollBars Property
	ShowState Property
	Style Property
	SysKeyMode Property
	SystemMenu Property
	Title Property
	Top Property
	Visible Property
	Width Property
	Activate Event
	Close Event
	Create Event
	Enable Event
	GetFocus Event
	KeyDown Event
	KeyPress Event
	KeyUp Event
	LButtonDown Event
	LButtonUp Event
	LoseFocus Event
	MButtonDown Event
	MButtonUp Event
	Paint Event
	RButtonDown Event
	RButtonUp Event
	Show Event

	Appendix B: Working with ActiveX Controls
	ActiveX Controls and Cobol-WOW
	History of ActiveX Controls
	Adding and Removing ActiveX Controls to the Cobol-WOW Designer
	Troubleshooting Tips

	Using ActiveX Controls on a Form
	ActiveX Control Properties
	ActiveX Indexed Properties

	ActiveX Control Events
	ActiveX Control Methods
	Limitations
	Distribution Issues

	Appendix C: Understanding the Application Architecture
	Initial Creation of a Cobol-WOW Program
	Ongoing Maintenance of a Cobol-WOW Program
	How a Cobol-WOW Program Works
	WINDOWS.CPY
	FORMNAME.WWS
	FORMNAME.CBL
	FORMNAME.WPR

	How a Cobol-WOW Program Works with Windows
	Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs
	Calling To and From Cobol-WOW Programs
	Visual Considerations of Cobol-WOW and Non-Cobol-WOW Programs

	Appendix D: Using Cobol-WOW with RM/Panels
	Enhancing Existing Panel Libraries
	Character-Based GUI Portability and Cross Development
	Communicating with RM/Panels
	Modifying an Existing Panel Library
	Open the library
	Change controls
	Add controls
	Delete controls
	Save a panel
	Test a panel
	Run an application with an enhanced panel

	Setting Properties for RM/Panels Data Fields
	Check Box Field/Control
	Combo Box Field/Control
	InputField Property

	Command Button Field/Control
	PushedAttr Property
	SizeType Property
	SizeValue Property

	Date Edit Box Field/Control
	StorageFormat Property (Date Edit Box)

	Edit Box Field/Control
	Class Property
	Justify Property
	Prompt Property

	Group Box Field/Control
	Enabled Property
	Group Property
	Locked Property
	TabStop Property

	List Box Field/Control
	Multi-Line Edit Box Field/Control
	ColsToDisplay Property
	ColsToStore Property
	LinesToDisplay Property
	LinesToStore Property
	Required Property
	Stream Property
	Wrap Property

	Numeric Edit Box Field/Control
	AssumeDecimal Property
	CalculatorEntry Property
	Signed Property

	Option Button Field/Control
	DataItemName Property
	DataSigned Property
	DataSize Property
	DataValue Property
	NumericData Property

	Scroll Bar Field/Control
	MaximumValue Property
	MinimumValue Property
	PageSize Property
	Size Property
	StepSize Property
	ThumbAttr Property

	Static Text Field/Control
	Alignment Property
	Effect Property
	NoPrefix Property
	WordWrap Property

	Time Edit Box Field/Control
	24HourFormat Property
	StorageFormat Property (Time Edit Box)

	Common Data Field Properties
	3D Property
	Accelerator Property
	AlwaysDisabled Property
	AutoExit Property
	BackColor Property
	Beep Property
	BlankWhenZero Property
	Border Property
	BorderAttr Property
	Caption Property
	Case Property
	ChoiceHelp Property
	ChoicesToDisplay Property
	ChoicesToStore Property
	ChoiceValue Property
	ChoiceWidth Property
	Column Property
	CurChoice Property
	DecimalDigits Property
	DefaultToPressed Property
	DefaultToSystem Property
	DefaultValue Property
	DisabledAttr Property
	DisplayFormat Property
	DoubleClick Property
	DropDown Property
	EnabledAttr Property
	EnabledForDisplay Property
	EnabledForInput Property
	EntryFormat Property
	EntryOrder Property
	ErrorMessage Property
	Font Bold, FontItalic, FontName, FontSize, FontStrikethru, and FontUnderline Properties
	ForeColor Property
	Height Property
	HelpMessage Property
	IntegerDigits Property
	Left Property
	Length Property
	Line Property
	MnemonicAttr Property
	Name Property
	OccColOffset Property
	OccLineOffset Property
	Occurrences Property
	OccXOffset Property
	OccYOffset Property
	PromptText Property
	Protected Property
	ScrollBar Property
	SelectedAttr Property
	StartOfGroup Property
	StaticChoices Property
	TimeOut Property
	TimeOutValue Property
	Title Property
	Top Property
	Update Property
	Validation Property
	Width Property

	Setting Properties for RM/Panels Panels
	3D Property
	BackColor Property
	BackgroundAttr Property
	Bitmap Property
	BitmapMode Property
	BorderAttr Property
	BorderType Property
	Description Property
	DropShadow Property
	EndUserEditing Property
	ErrorAttr Property
	ErrorMessage Property
	GeographicMotion Property
	Height Property
	HelpAttr Property
	HelpMessage Property
	Icon Property
	Left Property
	Prefix Property
	StoreByName Property
	Title Property
	Top Property
	Width Property
	Windowed Property

	Configuring Function Keys
	How to Configure Function Keys with RM/Panels
	How to Configure Function Keys with Cobol-WOW
	Sample Cobol-WOW Configuration File Entry
	Sample RM/COBOL Configuration File Entry

	Using Global Default Property Settings
	Restrictions

	Migrating Panel Libraries to Cobol-WOW Forms
	Migrate a Panel Library

	Appendix E: Using Cobol-WOW Thin Client
	Understanding Cobol-WOW Thin Client
	Benefits of Cobol-WOW Thin Client
	Installing and Configuring Cobol-WOW Thin Client
	Files Installed on the Windows Client Workstation
	Files Installed on a Windows Server
	Sample Contents of RpcPlus.ini for a Windows Server

	Remote Windows Printing Capability
	Files Installed on a UNIX Server
	Sample Contents of RpcPlus.ini for a UNIX Server

	Running the Application with Cobol-WOW Thin Client

	Index

