LIANT

CodeBridge

Calling Non-COBOL Subprograms

Version 8.0 for UNIX® and Windows

www.liant.com

Thismanual is areference guide for Liant Software Corporation’s CodeBridge, a
cross-language call system designed to simplify communication between RM/COBOL
programs and non-COBOL subprogram libraries writtenin C (or C++). It is assumed that the
reader is familiar with programming concepts and with the COBOL and C (or C++)
languages in general.

The information contained herein applies to systems running under Microsoft 32-bit
Windows and UNIX-based operating systems.

Theinformation in this document is subject to change without prior notice. Liant Software
Corporation assumes no responsihility for any errors that may appear in this document. Liant
reserves the right to make improvements and/or changes in the products and programs
described in this guide at any time without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopied, recorded, or otherwise,
without prior written permission of Liant Software Corporation.

The software described in this document is furnished to the user under alicense for a specific
number of uses and may be copied (with inclusion of the copyright notice) only in accordance
with the terms of such license.

Copyright © 1999-2003 by Liant Software Corporation. All rightsreserved. Printed in the
United States of America.

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels,
VanGui Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, InstantSQL, Liant, and the
Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Windows 95, Windows 98, Windows Me, Windows NT, Windows 2000,
and Windows XP are trademarks or registered trademarks of Microsoft Corporation in the USA and
other countries.

UNCI:X isa reglis&ered trademark in the United States and other countries, licensed exclusively through X/Open

ompany Ltd.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks

of their respective trademark holders, and are used only for explanation purposes.

Document Number 401215-0303

www.liant.com

Table of Contents

PrEfACe ... e Xi
Welcome to CodeBridge VErsion 8.0cceceeeeieeiesise et seese st st sne st nneas Xi
WWEE'S INEW ..ttt ettt et b e bbbt b e et b e st ettt e Xi
Who Should UsSe COEBIIUGE.......uiiirereeeerierise e steseeeeseesee e se e sae st snesre e eneeeeneenseses Xii
Organization Of INFOrMaLTON.........ccceeeeeeere e eens Xii
REEA PUDITCALIONS.citieeiisie sttt sttt st sttt e Xiv
SymbolS AN CONVENLIONS.cc.eeeeieeieiesieseeeeee st e et e s e tesresresseeseeeeseessesresreeneeneeneeen Xiv
L S0 [= o S XVi
BIC=: a0 U o oo o S XVi

ST oo A C1H [T L= 11 =SSR XVii
LIS O TSRO Xvii
ENNANCEMENTS ...ttt st b et bbb e Xviii
VEISION 7.5 oottt ettt ettt s b et b e st b e e be b e st eseebe s seesesene e xviii
V=5 T o 00 PSPPSR Xix
VA== Lo o 1 O PSPPSR Xix

Chapter 1: INtrodUCTIONccvvviiiiiiiiiiiiiieeeeeeeeeeee e 1-1

What iS COUEBITAGE? ...t et st e e st se e s b 1-1
CodeBridge COMPONENLScceruerieierierie ettt ettt st sae e e e ee e e besbesbesbesneene e e eneees 1-2
Benefits of USING COUEBIIAGEc.ceveieiierieieeeeeee ettt et s s s s 1-2
REGUITEIMENTS. ...ttt b et st e e b bt e st e e e e e b e seeebe s bt eaeeae e e aneeseeneesaesneas 1-3
USING thiSIMANUAL ...ttt et b et et e e e be e sne s 1-4
Developers Who are New t0 C Programming.........coeeeeeeereeereesieseeseseessesesesesseesseseessesees 1-4
Developers Who are Evaluating CodeBridgecoererirneneneneeieereee e 1-4
Developers Who Wish to Use Existing C Libraries or Write New
NON-COBOL SUDPIOGIaIMS.....c.coivirieieieierieeieiee et e e s e s sbe e e e e seesbe e 1-5
Developers Who Have Written Non-COBOL Subprograms for
Previous Versions of RM/COBOLcoeiiiiiiiiee et 1-5
Developers Who Need Assistance in Testing and Debugging.........coceeveererenenenesesieeieenns 1-5
Typical Development ProCESS OVEIVIBWcooieriirereeieeeeee et e e e b e sre s 1-6
Typical Development Process EXaMPIE........ccoiiiiiiiirenieieeiee e e 1-9
Example 1: Calling a Standard C Library FUNCLIONcccoieiiiiiiiene e 1-9

Chapter 2: CONCEPLS ouveiiiiei e eeeeeaees 2-1

Using Template File COMPONENES.......ccccoireierireseeeeseesese e se s sseeeeeesees e snesresse s e eneeneenes 2-1
ATTTDULES. ...ttt sttt st s e et se st ese et et eseeneenenbe e 2-2
ATTTDULE LISES...ctietiiieect sttt st sttt et b e st s be st seene st e 2-2

Parameter AtrTDULE LISES......ccoiiiiiireecre sttt ene 2-2

CodeBridge iii

iv

Sample Template File Using Parameter Attribute ListS.......cooeieiiiiiiniiineneeeeene 2-4

Global ATIFIDULE LISES....ceiiiieieieeeee et e e e b 2-5
Sample Template File Using Global Attribute ListS........ccoeviiiiiniieiierce e 2-5
Passing INformation t0 @ C FUNCHION.........couiiiiiiieiese et s 2-6
PassiNg COBOL AFQUIMIENLScuciuertereeruereeseereeseaseeseessesaesseseessssssssessesasssessessessssessessessesses 2-6
Passing COBOL NUMENiC AFQUIMIENLScoueririeeeiereesiesieseesieseeeeseesseseeseessesaessesesnsenes 2-7
Numeric Arguments with C Integer Parameterscocceoeerererenenenesesieeee e seesie e 2-7
Numeric Arguments with C Floating-Point Parameters..........ccocoveniiinenenencnicnienene 2-8
Numeric Arguments with C Numeric String Parameters..........ccooeoeveneneneninicecieneens 2-9
Passing COBOL NON-NUMENC ATQUMENTSueviuiieierieieesieiee s 2-10
Non-Numeric Arguments with C String Parameters.........coooveverneneeneneneneenes 2-10
Groups With C String Parameters........coooeieieneneeee e 2-12
Passing COBOL Pointer ArQUMENTS.........coeiuerierierereeierieeeeseeseesie et se e sessee e seeseesees 2-12
Method 1: Passing Pointer Address and Pointer Length..........ccocooeiiiiniiinencienne. 2-12
Method 2: Passing and Modifying Pointer COmponents............ccccoeverenereneenenneenes 2-13
Passing Null-Valued Pointer AFQUMENESccooeiirere e ee e 2-13
Passing COBOL Argument PropertieS.........coceuerereneriesere e ieeie et sse e seesee e 2-15
Passing COBOL DeSCriptor Daa.........cccueuereririinerieiinisieieesisiese s seseese s 2-15
Passing String Length INfOrmMation ..o s 2-16
Passing Miscellaneous INfOrMatiON............c.ooiiiirene e 2-17
Managing OMiItted ATQUIMENTS.couiiirereeieieie et et sb e sbesae e eeseesbesee e 2-17
RELUrNING C EFTOr VAIUBS......cueiiiieie ettt sttt st s b et ne b e 2-18
ConSiStent REIUM VAIUBS..........oiiiiiieiriieee e e 2-19
Specifying Both errno and get_18St EITOFcc.eieiiiieeereee e 2-19
Function Return Value (Status) Versus Error ValUES..........ccooveieierieieeie e 2-20
Associating C Parameters with COBOL AFQUMENTSooveriirierienereneeseesee e sie e see e eenes 2-21
EXPIICIT ASSOCTALION ...ttt ettt bbb et e e e b seesbesaesneas 2-22
AULOMELIC ASSOCIBLION ...ttt ettt b e b e b et b e sreneeresreneene s 2-22
Automatic Association of the C Function Return Value with a COBOL Argument 2-22
Automatic Association of C Parameters with COBOL Arguments.........c.cceceeeeeeeeneereenn. 2-23
Automatic Association with an Implied Argument............ccoeveienenninereree e, 2-23
Automatic Association with the Next Argument ... verenenenenienieeseesee e 2-23
Automatic Association with the Current Argument...........cccoeeeverenerieeieereesese e 2-23
Examples of Associating Parameters with Arguments...........cooeeeereereiene s 2-24
Example 1: Automatic Versus EXplicit ASSOCIBHIONccceeereeieeiieienene e 2-24
Example 1a: AUtOmMatiCc ASSOCIBLIONecueruerieierienie et 2-24
Example 1b: Optional EXpliCit ASSOCISLIONcc.eiveriereriireeeee e 2-25
Example 1c: Required EXpliCit ASSOCIBLION.coerereeirieiee e 2-25
Example 2: Multiple Attribute Listsfor a C Parameter............ccoeeeienienenenenicnenieenens 2-25
Example 2a: Associating a Parameter with Multiple Arguments...........coccoceeenenene. 2-25
Example 2b: In Direction Attribute for Multiple Attribute ListSccccoeeiiiinnnnene 2-26
Example 2c: Compatibility between Multiple Attribute Lists........ccooeieieieniniceenne 2-27
Example 3: No Attribute List for aC Parameterccooeverererieeieienee e 2-27

Table of Contents

Repeating C NUMENC ParametersSco.ooieiiiiie et 2-28
Repeating C StiNG Palr@mMeterS..........cooiiiiirieie et se e e b e b e saeeeens 2-28
010101 g o= 1] oo TR PSP 2-28

(o1 1S = I L] 0o PSSP 2-29

LS (oo TR USRS 2-29
MOodifying COBOL Dat@ ATEaScererueueririeiererieieesietesesesiesesas e e sessesesesse e sessesesessesessssssesens 2-29
Using the out DireCtion AITDULE..........cooiiiiriieee e e 2-30
Passing the Address 0f COBOL D@al@.......c.coceeeerierienieriesiere s seesie s sve e sse e sesseeseens 2-31
Passing BUFfer AQAIESSES.c.ciieierieese ettt st s 2-32
USING P-SCAIIMNG. ...ttt b et e e e et et et e s aeeae e e e e enbeseesbesaeens 2-32
WOTKING Wt ATTAYS. ...eeieeeieeeeee ettt ettt e b e ebe st e e et et e saeereenas 2-33
N[00 o = YA T USSR 2-33

S Lo N = Y TSP 2-34
COBOL Array REFEIENCEScc.eieeeeieieie et sre b eae s 2-36
(0010 (= 2 1o 0T =T U] [L= SRRSO 2-37
Using the CodeBridge BUITAEYooo i 2-37
Appendix A: CodeBridge Errors ..o A-1
CodeBridge Builder Error MESSAgES.c.ueveeereererieseestesesseseeseessessessessessessessessessssssessessessenes A-1
CodeBridge Builder EXit COUES.ccuiirirriinireeeerieseese s ste e eeenaesees e sre e sneeseeneenseses A-3
CodeBridge Library Error MESSAgES......ccvieiererieeeeriesiestestesiesessessssseessessessesssssesssessessessessenns A-3
Appendix B: CodeBridge EXamplescccooeeeeviiviiiiiiiiiiie e B-1
Example 1: Calling a Standard C Library FUNCHIONccoooiiiiiiiiic e B-1
Example 2: Calling aWindows APl FUNCHIONoooiiiiiiiineeee e B-2
Example 3: Accommodating a Variable Number of Parameters.........c.coovveeririenene s B-5
Example 4: Accessing COBOL PoiNter ArgUMENEScoeeererierieneeriesie e sie e seeseeseeseeseeeas B-9
Example 5: Packing and UnNpacking SrUCLUFESccoiiieiieiieie e e B-14
Example 6: Converting BUffered C Dafa.........ccoererirerinieneeee et B-18
Example 7: Calling C++ Libraries from CodeBridge...........cocereririnenienieeienene e B-20
EXAMPIE 8. USING BITNO0....cueitieieieie sttt sttt st e sttt e e e et e et e sbe st se e e anseseeseesee e B-24
Example 9: USING gL 1aSE BTON ..ottt e e B-27
Appendix C: Useful C Informationccoooeeiiiiiiiiiiiiine e C-1
Understanding C Language CONCEPES.ccuerreeeerereerrereseesteseeseeeesessseseessessessessesssessssesssessessens C-1
(0= S = 1S 1Y P C-2

[0 = IV == C-2
Dala DECIArAIONSc.eiveeerereiesrere st C-3
Type DEfiNitioNS @A MBCIOS.........ccvieeeeeeiee st e et se et seeneens C-3
L0 | 1 gTo [@0 g177=" 11 To g3 C-4

[0T gTox ol = 00§ o= C-4

CodeBridge v

Compiling and Linking C FUNCLIONS.cocciiiiiiriieie et C-5

CompPiling ON WINOOWSccueiuiiierieiee ettt ettt e sb e sae e eabe e sbe e ene C-6
ComPIliNG ON UNEX ...ttt e b e e e b e et e b b e e e e enes C-6
LiNKiNG ON WINOOWS.......oouiitiiieiieeeeie ettt sttt se et e bt se et e b e e nes C-7
LINKING ON UNEX ...ttt e sb ettt b bt ae e e e e e b e nnas C-8
MUItiple TEMPIALE FIES ... e e b C-8
Appendix D: Global Attributes ..o, D-1
OVEIVIBW ..ottt sttt ettt e e et e ebeeebe et e e besabesaeesbeesheesbeeabeentesaseabeeabeenbeenbesnbesasesraesreas D-1
DANNET ATLHIOULE ...ttt et be e sbe s resaeesaeesbeebeenbenns D-2
CONVENTION ATEIDULE. ..ot et re et e e b e st e et e et e enbesatesraesreas D-2
(o TI=0 010> o AN 11 1 o1 (=T D-3
080 MESSAGE ALIITDULE......cceeeece e e nenre e D-3
rEPlace tyPE AHITDULE.........oce e e e e e e e D-4
Appendix E: Parameter Attributescccooevveeiiiiiiiiiiie e E-1
OVEIVIBW ...ttt ettt ettt e et e et e e bt e st e e e ebeesabeeebeesabeseaseesabeseaseesabeeaaseesabeeeaseesabeessseesareeneeenns E-1
Argument NUMDEr AITDULES.oouiieieeeee e e E-2
DIrECHION ALIIULES.veiceee ettt e sbe e eaee e sareeeaee e sabeenaneeenns E-2
Base and Base MOdifier AtIHDULESccueeiiiiceeece ettt e E-3
Base Modifiers Common t0 Base AttHDULES.........ceecceeiieecee et E-4
NUMENIC BASE ATIIDULESccvieceee ettt ettt et ere e sabe e e neesareas E-5
Base Modifiers that Apply to Numeric Base AttribULes..........cocoeierinienieieree e E-7
SING BaSE ATIHDULE. ... e e E-11
Base Modifiers that Apply to the String Base Attribute...........ccooviiininieienieieciee, E-11
general_string Base AITDULE.coeiiiieeee e b E-13
String Length Base AITDULES.coouiiiie e e E-14
Base Modifiers that Apply to String Length Base Attributes............ccoeeeveieneneienienes E-15
POINtEr BASE ALIITDULES......cveeitie ettt et aee e s are e eaee e ebreenaee e E-15
Base Modifiers that Apply to Pointer Base AttrbDULES.........coooiiiini i, E-16
DeSCriptor Base AHITDULESccoiiie et s E-17
Base Modifier that Appliesto Descriptor Base AttribUtes..........cccoererieeieeienenene e E-20
Error Base AMTIDULES........ccuo ittt st eare e e E-20
Base Modifiersthat Apply to Error Base AttribUtes...........cooeiiiii s E-22
Parameter AttriDULES SUMMIYooi it b E-24
Parameter Attribute COmMbDINGLIONS.........cciiiiiieeiee ettt e saeeeebee e saeeenree s E-31
Appendix F: CodeBridge Library FUNCLIONScuvviiiiiiiiiiiiiiiiiie. F-1
OVEIVIBIW ..ottt ettt et e et e st e e b e et e sabe s aeesbeesbeeabeeaseebeeebeebeenbeeabesatesaeesaeesbeenseensesreanseenss F-1
Specifying the FlagS Parametercccvcv e sr s F-3
NS 4 o 1S F-6
F NS 4o 16 = F-8

Vi

Table of Contents

ASSETDIGITSRIGNT ...ttt e b et ae e e e e e b e e b eaas F-10

ASSETLENGEN ... et e e be b F-12
F XSS 1S T 1< o [T F-14
ASSETUNSIONEA ...ttt e b et e et e e b b sbe e bt e ae e e e e e e e nbeseeenas F-15
BUFFEILENGIN ... bbbt sae e F-16
(00 oT0] VAN o | @011 o | SRR RTRSPPRR F-18
CODOIDESCIPLOTATUIESS.. ...ttt ettt b et e b e besbe b e s aeeae e e e eeneesaeas F-19
CODOIDESCITPLOIDIGILS ...ttt sttt st bbb e e e b e s besbesbe s e ess e e e neeseesee s F-20
COobOIDESCIPLOILENGLN ...ttt st b se b e nneas F-21
CODOIDESCIIPION SCAIE. ...ttt ettt e b bbb e e e e e e neeseesae s F-22
(00 ola 1B Tc ol g oo g Y] o/ =TSR RRTRUPURRN F-23
CODONNITIAISEALE. ... vttt bt re bbb bt e ae e e e e e b e seesbeseesaeas F-24
(60 oTo] o] o= PSPPSR F-25
CODOI TOGENEIBISIITNG ...ttt sttt e et re bt sae b e eae e e e s e beseesbesaenaeas F-27
(00 oTo o] g1 = o = SE SRRSO F-29
CODOI TONUMEITCSEIING ...ttt sttt et eae st e e e b bt ebesae e e enseseesbesaesaeas F-31
CODOI TOPOINTETAGAIESS.ceeieeeeeeeee ettt ettt et b b sae e sseseeneeseesae s F-33
CODOI TOPOINIEIBESE ... iveeieeeeie ettt sttt sttt bt he st se bbb sbesaeeae e e e e e beseesbesaeeneas F-34
COobOI TOPOINTEIL ENGLN.........eieeeieeie ettt e e b saeas F-35
CObOI TOPOINTENOFTSELcvieeeeieeeee ettt bbbt sa e e e sbeseenae s F-36
CODOITOPOINIEISIZE ...ttt ettt e et bbbt e st e e e e e beseesbesaeeneas F-37
(00 oT0] 01 1 oo FO USRS F-38
CobOIWINAOWSHENAI Q..o et e st e e e be e naeas F-40
CONVEISIONCIEAINUPeeute ettt ee et see st ae et et et sbe st e et eae s e e e e besaeebesaeebeeaseeenbeseesbesaeeneas F-41
(001 01V7= (=TS = 4 (1] o JO USSP F-42
DiagNOSHICIMOE.......eeee ettt et s e et be et e bt et et esee b b eae F-43
EffECHIVEL ENGLN ...t b e F-44
[T i [0 @] o | USSP F-46
GeNeral SHNGTOCODON ..ottt et s be e e e e e sbesaesaeas F-48
(€1 (0= 1 1= 4 1o {0 TSR SORORPRURR F-50
Fg1e= e = ol @] o RO F-52
NUMENTCSEINGTOCOD0ceeiiiieeiie et e e et b b ean F-54
PoiNterBaseTOCOBONc.ciiiie e bbb e F-56
PoiNterOff SEtTOCODON ..o e F-57
POINtErSIZETOCODONceeieieeeie ettt bbbt e et see b F-58
SEINGTOCOD0! ...t et be st e e e b e bt b e e e e e e beseesbesbenneas F-59
Appendix G: Non-COBOL Subprogram Internals for Windows........ G-1
(O3S 1o 0l £0 o | - 1 11 G-1
Methods of Using Non-COBOL SUBPrograms...........ccceverereseseseereeseeseseesiesessesseesesesseenes G-2
Calling C Subprograms from COBOLccveeeieeerierinse e eeeseeie e see e ese e see s G-2
COBOL CALL SEBIEMENT ..o snens G-3

C Subprogram Name Table SETUCLUIEcc.eieeeeeeee et G4

CodeBridge vii

Parameters Passed t0 the C SUDPrOgram.........cooieiireriienereeee e e e G-5

COBOL Argument Entry SErUCEUIE FOr Cc..eeueiiiiirieriesere e e G-7
Preparing C SUDPIOGIaMSccue ettt sttt st se e st s be e e e e beseesbe b sbesse e e anseseaneas G-8
Special Entry Points for SUPPOrt MOAUIES. ..ot G-12

Y Yo (0 (@ g1 = =T 1= S G-13

RM_AddONCancel NONCOBOLPIOGraM.......c..cotreereeriereesiesiesuesieeseeseeseesiesaessessessesesseeneas G-13

LT AN (o @ 0T 1 o SRS G-14

RM_AddONLOBAM ESSAGE.eeeeueereesieriesieeieeeeieseeste e sae it e eeeseesbesbesaesbe s e s eeseeseseesaesaas G-14

R Y Yo (0 (@ 1 = 1 27 (T G-15

RM_AddONVerSIONCNECKoiieiiieiecciecee ettt se e s sae e s reenre s G-15

RM_EntryPoints and RM_ENUMENLIYPOINES........ccooiiiiiiieeeie e G-16
Debugging C SUDPIOGIAIMS.coueiuieierieeieiereesie st ste e eseseeseeseeseesbesaesbesseesessessesbeseesbesseesesneans G-17
Calling a CodeBridge SUbprogram LibDrarycocceeieie e G-18

Appendix H: Non-COBOL Subprogram Internals for UNIX............... H-1
(O3S 1o 0l £0 o - o 11 H-1
Calling C Subprograms from COBOLcccveeeieeeririese s eeeseesee e e ese e seesse s H-2

COBOL CALL SEAOMENEc.civirieieierieintisieesie ettt see s s ssesseneseas H-2

C Subprogram Name Table SETUCLUIEcc.eceeeeeeeeseses et H-3

Parameters Passed to the C SUDPrOgram........ccocvivierereceeieerese st H-4

COBOL Argument Entry SErUCLUFE FOr Cocvveeeiee e H-6
ACCESSING C SUDPIOGIAMS ...ccuveviieieeeteseeeeeeeseestessesressesseeseessessessessessessessessssssesseseessessessesssenses H-8
Preparing C SUDPIOGIaMSccvvveeeeeeeeestesesie st sreee e e sees e stesresse s e eseeseesessessessessessesnsensessnns H-10

Creating a Support Module from @ C SOUICE.........cccevererieie e rees e H-10

Creating a Support Module from a C Object (NO SOUICE)........coevererererecereeeeee e H-12
Special Entry Points for SUPPOrt MOAUIES..........cccccevireni e H-12

L Ao (o (@ g1 7= = S H-13

RM_AddONCancel NONCOBOLPIrOGraM........cccveeerierierersiessesseseeseessessessessessessesseessessenses H-13

RM _AGAONINITveeiiietirieeiesiee bbbttt bbb H-14

RM_AddONLOBAMESSAGE.c.eereereerersiesieseeereeeesieseestestessesseseessessessessessessesseessessessessessenses H-14

RM_AddONTEMMINGLEeceeceieeeesese et ee e s s e et sre st se e e eneeneesrenns H-15

RM_AddONY erSiONCRECKcceeierisiisese ettt sre e ne e e seesne e H-15

RM_EntryPoints and RM_ENUMENLIYPOINES........cccoviviiieceeecie e H-16
Calling a CodeBridge SUbprogram Libraryc.ccceeeeeveeieieniese e seese s H-17
C Subprograms Performing Terminal [/O..........cocveeviriesie et H-17
Debugging C SUDPIOGIaMS. ...uecueieeeeeeeeiertesiestesresseseeeessestessessesseseeseessessessessessessessesssessessens H-18
C SUDPrOgram EXMPIEcceiereieceeeeeeeseee e st s e se e ae e s te e sresresseeneenaenseseseensesnennens H-18
Runtime Functions for SUPPOrt MOAUIES...........cueceerierererere s see et H-18

viii

Table of Contents

Appendix I: Calling the CodeBridge Library Directlyccccccvvunnnn... -1

1Yo 0o [g To ez o 4 o [o = o [-2
Declaring the C Function Return Value and Parameters..........coovevevvnievesesesieseeseese e -2
Specifying the COBOL Argument NUMDBETcccoovieiiiececeeere e s eneas 1-4
Declaring C Data ltems Used in the Conversion PrOCESScocvcvereenenevnse e -4
NUMESTC CONVEISIONS.cviuiitirieieeteseeieste st st sttt st seese st seebesbeseebesbeseebesbe e ebeseeneebesaeneebeseenensens -4
SEING CONVEISIONS......cueeiieitisieseieeeeeeseesteseestesaeereseeseeseessessesaessesseeseesessessessessesseeseensensessessenses I-5
AJUrESS CONVEISIONS.cvieeieiierieieste ettt st sttt st se bt st st bt sbe e besbe e esesbe e sbesbe e ns -6
Pointer Numeric Component CONVEISIONS.........cccceereererrerereerereeseeseessessessessesessesseessesseseens -6
(@107 @001V (= To 0 ST RSS -6
THIVIE CONVEISIONS.....cuiiiiiitirieiieiesieeei ettt sttt ae ettt e e b st -7
Initializing and Terminating the CONVErsion PrOCESSccccvvrereriereeeereenese e siesesseeeeneeee s -8
Ea TR T2 (o IS USSR -8
LIS L0011 0= 1o USRS -9
Converting COBOL Argumentsto C Data [temMS.........ccccvvevereeeeeeeee s s seesae e 1-9
Specifying the ArgCount, ArgNumber, and Arguments Parameters..........cooveveeererernnnnns I-10
Specifying the Parameter Parameteroocveveeevinie s I-10
SpeCifying the SIZe ParameEter.........covviiire et [-10
Specifying Other ParameELterS.........ccvcceieririeieseseeeesieses e see st sse e eesees e seessessesnesseeeesseseens I-11
Converting C Data [temsto COBOL ATrQUMENES.........coereirrieieeeereeseeseeseesieseesressesseeseesesnseses 1-12
Specifying the ArgCount, ArgNumber, and Arguments Parameters.........ccoovvveverenesnnnnns I-12
Specifying the Parameter Parameteroocveveeevenie s 1-12
SpeCifying the SIZe ParamELer.........covviiicece e e e e [-13
SpeCifying Other ParamELerS.........ccvccveierireieseseeeeseesees e e stese e e se e tesre e e snesseeeenseseens [-13
Validating Properties of COBOL AFQUMENLSccceverereresrerieeeeseeseesteseessessessesseesesssesseseesees I-14
T 1 10 SR [-14
50 = U X-1

CodeBridge ix

List of Tables

Table A-1
Table A-2
Table A-3

Table E-1
Table E-2
Table E-3

TableF-1
Table F-2

Table G-1

TableH-1

CodeBridge Builder Error MESSAgES.......cocveierierierieniereeee et sie s e seeae e A-1
CodeBridge Builder EXit COUESccouririrrinieienenieneeie et A-3
CodeBridge Library EFTOrS.... ..ottt A-5
TYPe ALIHDULE COUES.......eiveieieieeeee et e e E-19
Parameter AttribDULES SUMMArYccoiiiiiie e E-24
Parameter Attribute COmMDINGLIONS............ccvireirereeese e E-31
CodeBridge Library FUNCHONScoiiiieieeee e F-2
CodeBridge Library Flag Definitions..........cccooevineienereeeeereese e F-5
RM/COBOL Data Types aS NUMDEY'Sccouieiirereeieiee et G-8
RM/COBOL Data Types aS NUMDEY'Sccoiiiiirireeieieereesie e H-7

X Table of Contents

Preface

Welcome to CodeBridge Version 8.0

This document describes CodeBridge, Liant Software Corporation’s cross-language call
system that is designed to simplify communication between RM/COBOL programs and
non-COBOL subprogram libraries that are written in C.

CodeBridge for Windows and UNIX alows RM/COBOL programs to call
non-COBOL subprograms built from external Application Programming Interfaces
(APIs) or custom-developed C libraries without introducing “foreign” language data
dependencies into either the COBOL program or the called C functions. This means
that developers can write COBOL -callable C functions using C data types as usual,
without worrying about the complexities of COBOL calling conventions or data types.

CodeBridge runs on Microsoft Windows 32-bit and UNIX-based operating systems.

What's New

CodeBridge version 8.0 includes several defect corrections, and the product complies with
the RM/COBOL 8.0 release level.

Note For information on the significant enhancements in previous rel eases of
CodeBridge, see the information beginning on page xviii.

CodeBridge Xi
Welcome to CodeBridge Version 8.0

Who Should Use CodeBridge

CodeBridge isintended for the following audiences:

1. Developerswho may or may not be proficient in the C programming language
and who wish to call existing C function libraries or system APIs without writing
any additional C code.

2. Developerswho are proficient in C programming and who wish to write new
C function libraries that may be called from RM/COBOL version 7 (or later).

3. Developers who have previously written non-COBOL subprogram libraries
in the form of Windows DLLs that are callable from RM/COBOL and who
wish to take advantage of data conversion and validation features that are available
in CodeBridge.

Organization of Information

Xii

The following lists the topics that you will find in the CodeBridge manual and provides a
brief description of each.

Chapter 1—Introduction. This chapter provides a general overview of the CodeBridge
cross-language call system, including components, benefits, requirements, information
on how use this manual, and a typical development process with abasic, illustrative
example. More examples are provided in Appendix B, CodeBridge Examples.

Chapter 2—Concepts. This chapter describes the concepts that are central to an
understanding of CodeBridge, including using the template file components, passing
information to a C function, returning C error values, associating C parameters with
COBOL arguments, working with a variable number of C parameters, modifying
COBOL data aresas, using P-scaling, working with arrays, and using the CodeBridge
Builder.

Appendix A—CodeBridge Errors. Thisappendix lists and describes the messages that
can be generated during the use of either the CodeBridge Builder or the CodeBridge
Library. These messages also include the CodeBridge Builder exit codes.

Appendix B—CodeBridge Examples. Thisappendix contains additional examples that
use the typical CodeBridge devel opment process outlined in Chapter 1, Introduction.
The examples build from simple to complex, as a means of introducing CodeBridge
concepts.

Preface
Who Should Use CodeBridge

Appendix C—Useful C Information. The explanations in this appendix are intended to
introduce basic C concepts to developers who are inexperienced in C. Thisinformation
isintended to serve as a starting point for those devel opers who may not be proficient
with C programming and who wish to call existing C function libraries without writing
any additional C code.

Appendix D—Global Attributes. This appendix provides detailed descriptions of the
global attributes used in atemplate file. See Chapter 2, Concepts, for more information
about the basic components of atemplate file.

Appendix E—Parameter Attributes. This appendix provides detailed descriptions
of the parameter attributes used in atemplate file. See Chapter 2, Concepts, for more
information about the basic components of atemplate file.

Appendix F—CodeBridge Library Functions. This appendix describes each
function in the CodeBridge Library. These descriptions will help you understand the
C code generated by the CodeBridge Builder and will assist you in debugging
applications developed using CodeBridge. Information on specifying the Flags
parameter is aso covered.

Appendix G—Non-COBOL Subprogram Internalsfor Windows. This appendix
describes the internal details of how anon-COBOL subprogram is called from an
RM/COBOL program running under Microsoft 32-bit Windows. It also provides
information on preparing a non-COBOL subprogram for use by an RM/COBOL program
on 32-bit Windows.

Appendix H—Non-COBOL Subprogram Internalsfor UNIX. This appendix
describes the internal details of how anon-COBOL subprogram is called from an
RM/COBOL program running under UNIX. It also provides information on preparing a
non-COBOL subprogram for use by an RM/COBOL program on UNIX.

Appendix |—Calling CodeBridge Library Directly. Thisappendix includes
guidelines for calling the CodeBridge Library directly rather than having the CodeBridge
Builder generate the interface code from atemplate file. In order to call the CodeBridge
Library directly, you must use an alternate method for preparing non-COBOL
subprograms, as described in Appendices G and H.

The CodeBridge manual also includes an index.

CodeBridge Xiii
Organization of Information

Related Publications

For additional information, refer to the following publications:

RM/COBOL User’s Guide
RM/COBOL Language Reference Manual
RM/COBOL Syntax Summary

Symbols and Conventions

Xiv

The following typographic conventions are used throughout this manual to help you
understand the text material and to define syntax:

1.

Wordsin all capital lettersindicate COBOL reserved words, such as statements,
phrases, and clauses; acronyms; configuration keywords; environment variables, and
RM/COBOL Compiler and Runtime Command line options.

Text that is displayed in a monospaced font indicates user input or system output
(according to context as it appears on the screen). Thistype styleisalso used for
sample command lines, program code and file listing examples, and sample sessions.

Bold, lowercase letters represent filenames, directory names, programs, C language
keywords, and CodeBridge attributes.

Words you are instructed to type appear in bold. Bold type styleis also used for
emphasis, generally in some types of lists.

Italic type identifies the titles of other books and names of chaptersin this guide, and
it isaso used occasionaly for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for information you
supply, as described below.

The symbols found in the COBOL syntax charts are used as follows:
a. italicized wordsindicate items for which you substitute a specific value.

b. UPPERCASE WORDS indicate itemsthat you enter exactly as shown (although
not necessarily in uppercase).

c. ... indicatesindefinite repetition of the last item.

d. | separates aternatives (an either/or choice).

Preface
Related Publications

@ 10.

e. [] enclose optional items or parameters.
f. {} encloseaset of alternatives, one of which isrequired.

0- {|[} surround aset of unique aternatives, one or more of which isrequired, but
each aternative may be specified only once; when multiple alternatives are
specified, they may be specified in any order.

All punctuation must appear exactly as shown.

Key combinations are connected by a plus sign (+), for example, Ctrl+X. This
notation indicates that you press and hold down the first key while you press the
second key. For example, “press Ctrl+X” means to press and hold down the Ctrl key
while pressing the X key. Then release both keys.

The term “Windows’ in this document refers to 32-bit Microsoft Windows operating
systems, including Windows 95, Windows 98, Windows Me, Windows NT 4.0,
Windows 2000, or Windows X P, unless specifically stated otherwise. Asyou read
through this guide, note that Liant may use two shorthand notations when referring
to these operating systems. The term “Windows 9x class’ refers to the Windows 95,
Windows 98, or Windows Me operating system. The term “Windows NT class’
refersto the Windows NT 4.0, Windows 2000, or Windows XP operating system.

RM/COBOL Compile and Runtime Command line options may be preceded by a
hyphen. If any option is preceded by a hyphen, then aleading hyphen must precede
all options. When assigning a value to an option, the equal sign is optional if leading
hyphens are used.

In the electronic PDF file, this symbol represents a“note” that allows you to view
last-minute comments about a specific topic on the page in which it occurs. This
same information is also contained in the README text file under the section,
Documentation Changes. 1n Adobe Reader, you can open comments and review
their contents, although you cannot edit the comments. Notes do not print directly
from the comment that they annotate. Y ou may, however, copy and paste the
comment text into another application, such as Microsoft Word, if you wish.

To review notes, do one of the following:

e To view anote, position the mouse over the note icon until the note description
pops up.
e To open anote, double-click the note icon.

e Tocloseanote, click the Close box in the upper-left corner of the note window.

CodeBridge XV
Symbols and Conventions

Registration

Please take a moment to fill out and mail (or fax) the registration card you received with
RM/COBOL. You can also complete this process by registering your Liant product
onlineat: http://www.liant.com.

Registering your product entitles you to the following benefits:

e Customer support. Free 30-day telephone support, including direct access to
support personnel and 24-hour message service.

e Special upgrades. Free media updates and upgrades within 60 days of purchase.

e Product information. Notification of upgrades, revisions, and enhancements as
soon asthey are released, as well as news about other product developments.

Y ou can also receive up-to-date information about Liant and al its products via our
web site. Check back often for updated content.

Technical Support

XVi

Liant Software Corporation is dedicated to helping you achieve the highest possible
performance from the RM/COBOL family of products. Thetechnical support staff is
committed to providing you prompt and professional service when you have problems or
guestions about your Liant products.

These technical support services are subject to Liant’s prices, terms, and conditionsin
place at the time the service is requested.

Whileit is not possible to maintain and support specific releases of all software
indefinitely, we offer priority support for the most current release of each product. For
customers who elect not to upgrade to the most current rel ease of the products, support is
provided on alimited basis, as time and resources allow.

Preface
Registration

www.liant.com

Support Guidelines

When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1.
2.

N o o &~ W

Company name and contact information.

Liant product seria number (found on the medialabel, registration card, or
product banner message).

Product version number.

Operating system and version number.
Hardware, related equipment, and terminal type.
Exact message appearing on screen.

Concise explanation of the problem and process involved when the
problem occurred.

Test Cases

Y ou may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting atest case:

The smaller the test case is, the faster we will be able to isolate the cause of
the problem.

Do not send full applications.
Reduce the test case to one or two programs and as few data files as possible.

If you have very large datafiles, write a small program to read in your current data
files and to create new data files with as few records as necessary to reproduce the
problem.

Test the test case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. Y ou may need to include
an RM/COBOL configuration file.

When submitting your test case, please include the following items:

1.

README text filethat explainsthe problems. Thisfile must include information
regarding the hardware, operating system, and versions of all relevant software
(including the operating system and all Liant products). It must also include step-by-
step instructions to reproduce the behavior.

CodeBridge Xvii
Technical Support

2. Program sourcefiles. We require source for any program that is called during the
course of the test case. Be sureto include any copy files necessary for
recompilation.

3. Datafilesrequired by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

Enhancements

XViii

The following sections summarize the major enhancements available in earlier versions
of CodeBridge.

Version 7.5

Version 7.5 of CodeBridge, Liant Software’ s cross-language call system, has been
enhanced to handle 64-bit integers on most UNIX platforms, providing the C compiler
on the platform supports 64-bit integers.

A new runtime callback, GetCallerInfo, has been added to the CodeBridge Library. This
function allows CodeBridge non-COBOL subprograms to obtain information about the
calling COBOL program. Such information is particularly useful in error messages
because it helps identify the offending CALL statement. See Appendix F, CodeBridge
Library Functions, for more information.

Two new parameter attributes, called error base attributes, have been added to
CodeBridge for retrieving error information set by C library and Windows API functions.
The [[errno]] attribute supports obtaining the value of the external variable errno that
was set by acall toaC library function. The[[get_last_error]] attribute supports
obtaining the value returned by the Windows API function GetLastError called
immediately after another Windows API function has been called. Prior to version 7.5,
such error information was not available to the COBOL program because the runtime
system uses C library and Windows API functions during the process of returning from
the CodeBridge called C function to the COBOL program. Editing of generated codeis
undesirable and requires advanced knowledge of the C language. The new error base
attributesin version 7.5 alow return of the error information by editing the CodeBridge
template instead of the generated code. For additional information on error attributes,
see “Returning C Error Values’ in Chapter 2, Concepts, and “Error Base Attributes’ in
Appendix E, Parameter Attributes, of this manual.

Preface
Enhancements

Version 7.1

New to CodeBridge version 7.1 is support for UNIX. CodeBridge, Liant Software’s
cross-language call system, isin the RM/COBOL version 7.1 system. The CodeBridge
Builder uses atemplate file to produce a C source file. The C source file provides the
COBOL/C interface that may be used in an optional support module callable from
COBOL programs.

The CodeBridge Builder generates C source modules that are platform-independent.
Thus, you can use the CodeBridge Builder on a Windows platform to generate C source
files that may be used on either a Windows or UNIX system.

Version 7.0 of the CodeBridge Builder produced C source code if the template file
contained errors. Version 7.1 will not unless the -f (force) option is specified.

Version 7.0

Theinitial release of CodeBridge, version 7.0 for Windows, allows RM/COBOL
programs to call non-COBOL subprograms built from external Application Programming
Interfaces (APIs) or custom-developed C libraries without introducing “foreign”
language data dependencies into either the COBOL program or the called C functions.
This means that developers can write COBOL -callable C functions using C data types as
usual, without worrying about the complexities of COBOL calling conventions or data

types.

CodeBridge XiX
Enhancements

XX Preface
Enhancements

Chapter 1: Introduction

Thisintroductory chapter provides an overview of CodeBridge and describes the
following topics:

e CodeBridge technology and its components

e Benefits of using CodeBridge

e Requirements for devel oping applications using CodeBridge
e Information on how to use this manual

e Anoverview of atypical development process and example

What is CodeBridge?

CodeBridge allows RM/COBOL applications to call C functions without being
concerned about the conversion between COBOL arguments and C parameters.

CodeBridge version 7.5 or later allows RM/COBOL programs to call non-COBOL
subprograms built from external Application Programming Interfaces (APIS) or custom-
developed C libraries without introducing “foreign” language data dependencies into
either the COBOL program or the called C functions. This means that devel opers can
write COBOL -callable C functions using C data types as usual, without worrying about
the complexities of COBOL calling conventions or data types.

The developer augments C function prototypes with global and parameter attributes
described in this manual to produce atemplate file. The developer uses the CodeBridge
Builder utility to generate a C source file from the template file. This generated C source
file contains the interface logic that, with the help from the CodeBridge Library, connects
the calling COBOL program to the C function. The developer compiles this C source
file, along with the C functions to be called, and links the generated object files together
to form the completed non-COBOL subprogram library. In many cases, existing C
library functions may be used to generate a non-COBOL subprogram library without
writing any C code.

Note For Windows platforms, the generated non-COBOL subprogram library isa
32-bit dynamic link library (DLL). For UNIX platforms, the generated non-COBOL
subprogram library isa“shared object” (normally referred to as an optional support
module).

CodeBridge 1-1
What is CodeBridge?

CodeBridge Components

CodeBridge consists of two main components;

e CodeBridge Builder. CodeBridge Builder is a standalone program that
functions like a pre-compiler by reading atemplate file to generate a C source
codefile. The template file consists of C function prototypes that have been
augmented with descriptive information. The output of the CodeBridge Builder
is compiled and linked with the C functions to produce a non-COBOL subprogram
library. The CodeBridge Builder isincluded in the RM/COBOL version 7 (or later)
development system.

e CodeBridgeLibrary. CodeBridge Library isa set of functions that performs
conversion operations from COBOL arguments to C parameters and back again.
The CodeBridge Library also contains functions to validate data and enforce
interface constraints. The CodeBridge Library is part of the RM/COBOL
version 7 (or later) runtime system.

Benefits of Using CodeBridge

1-2

CodeBridge provides the following benefits:

e Converts between COBOL and C data formats, eliminating the need for
either the COBOL program or the C function having to deal with “foreign”
language-dependent data types.

e Allowsexisting C libraries and standard APIs (such as the WIN32 API) to be
used, in many cases, without writing any additional C code.

e Supports basic COBOL datatypes, including numeric, non-numeric, and pointer
dataitems.

e Supports basic C datatypes, including integer and floating-point data items,
numeric ASCIlI-encoded strings, and standard null-terminated C strings.

e Provides access to elements of COBOL data descriptors, which describe the
properties of COBOL arguments.

e Provides C functions with the COBOL argument count, the COBOL initia state
flag, and the Windows handle of the calling program.

e Provides datarange and integrity checks for COBOL arguments and C parameters.

Introduction
Benefits of Using CodeBridge

e Provides support for omitted arguments and null-valued pointer arguments.

e Provideslimited support for calling C functions that allow a variable number
of parameters.

Requirements

In order to develop applications using CodeBridge, you must have the following:

1. AnRM/COBOL version 7 (or later) development system to develop applications
using CodeBridge.

2. RM/COBOL version 7 (or later) runtime systems for deployment of applications
based on CodeBridge technology.

3. A contemporary C development system:

e For Windows, it must be capable of generating 32-bit dynamic link libraries
(DLLs). Liant Software selected Microsoft’s Visual C++ compiler for the
development of the Windows version of CodeBridge. The Windows examples
used in this manual are based on Microsoft command line syntax.

e For UNIX, the C development system must be capable of generating shared
objects. The command line syntax for the UNIX examples used in this manual
istypical of many C compilerson UNIX. A makefileis provided with the
RM/COBOL development and runtime systems that can be used or modified to
build a shared object to be used as a support module with the RM/COBOL
runtime system. For additional information, see “Preparing C Subprograms’ on
page H-10.

4. Some knowledge of C programming. The skill level varies depending on what the
developer wishes to accomplish. For those developers who are not proficient in
C programming and who wish to call existing C function libraries, only a cursory
knowledge of Cisrequired. Appendix C, Useful C Information, contains brief
explanations of some C language concepts and terminology, and may be useful for
those developers who are not proficient in C.

CodeBridge 1-3
Requirements

Using this Manual

1-4

Depending on your experience level and how you to plan to use CodeBridge, this section
contains information to help you learn to use CodeBridge effectively and quickly.

Developers Who are New to C Programming

A limited understanding of the C programming language is required to use CodeBridge
effectively. If you are unfamiliar with the C programming language, you will want to
refer first to Appendix C, Useful C Information. The explanations in this appendix are
intended to introduce basic C concepts to developers who are inexperienced in C. More
in-depth information can be found in the many resources published about programming
in C. Appendix C also contains information on compiling and linking C functions.

Developers Who are Evaluating CodeBridge

It is recommended that all CodeBridge developers read and study Chapter 1,
Introduction. This chapter presents the main features of CodeBridge, and acquaints
you with an overview and general appearance of atypical CodeBridge program.

Another good way to become familiar with CodeBridge isto look at the examplesin
Appendix B, CodeBridge Examples. This appendix contains examples that introduce and
illustrate several CodeBridge concepts and features. These examples may be helpful in
generating CodeBridge template files that are based on existing C function prototypes.

In addition to these examples, several CodeBridge sample programs are included with the
development system in the CodeBridge samples subdirectory. Within the cbridge
subdirectory on Windows, the file sample.txt discusses the sample programs, including
the .bat files to compile and run them, the .tpl and .cbl files, and the output they produce.
These sample programs include a template file that contains definitions for arich subset
of the SQL function calls defined by Microsoft’s ODBC API reference. The
README.txt file in the chsample subdirectory on UNIX discusses the CodeBridge
sample programs that are included and how to run them.

Introduction
Using this Manual

Developers Who Wish to Use Existing C Libraries or Write New
Non-COBOL Subprograms

For background information, you may wish to refer to the chapters and appendixes
recommended for developers who are inexperienced in C programming and those who
are evaluating CodeBridge for background information.

Then, study Chapter 2, Concepts, which focuses on the fundamentals and structure of
CodeBridge.

Appendix D, Global Attributes, and Appendix E, Parameter Attributes, serve as
reference guides to the attributes and attribute lists that are used in template files while
developing CodeBridge applications.

Developers Who Have Written Non-COBOL Subprograms for
Previous Versions of RM/COBOL

For background information, please refer to the previously recommended topics for
developers who wish to use existing C libraries or who want to write new non-COBOL
subprograms.

Next, read Appendix F, CodeBridge Library Functions, and Appendix I, Calling the
CodeBridge Library Directly. Please note that the information in these two appendixesis
not intended for ageneral audience. Rather, it istargeted to those devel opers who have
previously written non-COBOL subprogram libraries in the form of Windows DLLs that
are callable from RM/COBOL, and who wish to take advantage of the data conversion
and validation features available in CodeBridge.

Finally, review either Appendix G, Non-COBOL Subprogram Internals for Windows, or
Appendix H, Non-COBOL Subprogram Internals for UNIX. These appendices document
the interface between the RM/COBOL runtime system and a C subprogram.

Developers Who Need Assistance in Testing and Debugging

Developersin this category may refer to Appendix A, CodeBridge Errors, which lists the
error messages produced by the CodeBridge Builder and CodeBridge Library.

Theinformation in Appendix F, CodeBridge Library Functions, would also prove useful
to devel opers who are debugging applications developed using CodeBridge.

CodeBridge 1-5
Using this Manual

Typical Development Process Overview

Note In order to avoid confusion, the term “argument” is used when referring to
COBOL dataitems; the term “ parameter” is used when referring to C dataitems.

A typical CodeBridge development process would include the following steps:

1. Selectingthe C functions. Thefirst step isto select the C functions that are to be
called from COBOL.

These C functions may be ones that you have written or that you have acquired from
a software vendor, or received as part of the standard C library that came with your
C compiler, or obtained as part of a standard API for your operating system or one
of its add-on components. Regardless of the source of these C functions, there will
be one or more header files that contain descriptions of the functions (using C
function prototypes), and, possibly, definitions of new data types and constants
(using macros defined with #define C preprocessor directives and data types defined
with C typedef statements). The information from these header files will be
augmented with additional information as described in step 2.

2. Creatingthetemplatefile. The next step isto create atemplate file that describes
the relationship between the COBOL arguments and the C parameters.

The template file (described in Chapter 2, Concepts) contains modified C function
prototypes, where the modifications provide additional information describing each
C parameter and the function return value. Each block of descriptive information is
called an attribute list. Each attribute list contains one or more attributes. There are
two kinds of attribute lists: parameter and global. Attributes and attribute lists are
described in Appendix D, Global Attributes, and Appendix E, Parameter Attributes.

Template files are generally free format in the sense that a line break may be placed
wherever ablank may be placed. A template file line should not exceed 255
charactersin length.

Note C-style comments (/* comment */) may be included in the template source
file. If comments are included, they are accepted by the CodeBridge Builder, but are
not placed in the C source created from the template file.

In addition to the annotated C function prototypes, it is necessary to add #include
C preprocessor directives to the template file so that the C code generated by
CodeBridge Builder can correctly resolve C datatypes. For example, if you are
using the standard Windows API function, M essageBox, you must include the
header file, windows.h. (“Example2: Calling a Windows APl Function” on

page B-2 in Appendix B, CodeBridge Examples, demonstrates this requirement.) If
you did not write the C functions, documentation that came with the software, your

1-6 Introduction
Typical Development Process Overview

C compiler, or an SDK (Software Development Kit), should provide this
information.

Invoking the CodeBridge Builder. The CodeBridge Builder program uses the
template file to generate C source code that contains the interface calls to connect the
calling COBOL program to the C functions, and to convert COBOL argumentsto
and from C parameters.

CodeBridge Builder is normally executed from a command line or script
environment. It has two command line options. arequired input parameter (the
name of the template file) followed by an optional output parameter (the name of the
generated C sourcefile).

Template filestypically have a.tpl extension. If the optional output filename is not
specified, the output is written to afile with the same name as the input file with the
extension changed to .c.

Any errors that occur are written to afile with the same name as the output file, but
with the extension changed to .err. Errors encountered by the CodeBridge Builder
should be fixed before continuing. Although the CodeBridge source code is
generated when there are errors, it should not be considered valid.

For more information, see “CodeBridge Builder” in Chapter 2, Concepts, and
“CodeBridge Builder Error Messages” in Appendix A, CodeBridge Errors.

Building the non-COBOL subprogram library. CodeBridge Builder generates a
C source program that must be compiled. Once the generated source has been
compiled, it must be linked with the object code for the functions you wish to call
from COBOL and with any libraries required by those functions or by the operating
system. Thislinking process will produce a non-COBOL subprogram library

that your COBOL program will use. Various compilers can be used to build the
non-COBOL subprogram library, including Microsoft’s Visual C++.

Note 1 When calling existing object libraries other than the standard C library, you
must specify the libraries needed in the link command.

Note 2 When calling an existing Windows DLL, you must supply either adefinition
file (.def) or an import library file in the link command.

Modifying or creatinga COBOL program. The next step isto modify an existing
COBOL program or create a new one that calls the C functions you have selected.

The USING phrase of the RM/COBOL CALL statement allows you to specify
arguments you wish to passto the C function. The GIVING (RETURNING) phrase
of the RM/COBOL CALL statement allows you to specify an argument that would
normally receive the return value of the C function.

CodeBridge 1-7
Typical Development Process Overview

1-8

CodeBridge is designed to give maximum flexibility in choosing COBOL data
types to be converted to and from the C data types required by the C function. See
Chapter 2, Concepts, for more information.

CodeBridge also allows wide latitude in mapping C function parameters to COBOL
arguments. For more information, see “ Associating C Parameters with COBOL
Arguments’ on page 2-21.

Compiling the COBOL program. Usethe RM/COBOL compiler to compile your
COBOL program.

Running the application. Execute the COBOL program, specifying the name

of the non-COBOL subprogram library using the L Option of the RM/COBOL
Runtime Command (runcaobal). Alternatively, you may use the Command Line
Options Registry property on Windows or the command line options in the UNIX
resource file to specify the name of the non-COBOL subprogram library. (For more
details, see " Setting Miscellaneous Properties’ in Chapter 3, Installation and System
Considerations for Microsoft Windows, and the “UNIX Resource File” sectionin
Chapter 2, Installation and System Considerations for UNIX, in the RM/COBOL
User’s Guide). Y ou may specify the name of the non-COBOL subprogram with the
appropriate file extension. See page 1-11 for an example.

Note On UNIX, thereis an option to automatically load your subprogram library
without the need to specify the L Option on the Runtime Command. Once your
subprogram library istested to your satisfaction, you may copy the .so (support
module) to the rmcobolso subdirectory of the runtime execution directory
(normally, /usr/bin). For additional information, see “Preparing C Subprograms’ on
page H-10. For ageneral discussion of support modules and how RM/COBOL uses
them, see Appendix D, Support Modules (Non-COBOL Add-Ons), in the
RM/COBOL User’s Guide.

Introduction
Typical Development Process Overview

Typical Development Process Example

The following example uses the typical development process outlined in the previous
section. More examples can be found in Appendix B, CodeBridge Examples, and in the
CodeBridge samples subdirectory (cbridge on Windows and chsample on UNIX).

Example 1: Calling a Standard C Library Function

This example demonstrates calling a standard C library function without writing any
C code. Parameter attribute lists are also presented.

1. Start with the function prototype for the standard C library cosine function, cos:
double cos(double x);

2. Create atemplatefile called trig.tpl in the src directory that consists of the
following lines:

#include <math.h>

[[float out rounded]] double cos(
[[float in]] double x);

The #include C preprocessor directive is added to the template file so that the
generated C source code can correctly resolve C datatypes. Because the cosine
function is defined in the header file math.h, you should include thisfilein the
template.

Parameter attribute lists (for example, [[float out rounded]]) are constructed
by placing the attributes between sets of double brackets. The parameter attribute
lists are placed just before C data type references (in this example, double).

A parameter attribute list must contain a base attribute (in this case, float, for
floating-point). A parameter attribute list may contain a direction attribute (either in
or out, or both), although a direction attribute is not always required. Optionally, a
parameter attribute list may contain base modifier attributes (in this case, rounded,
to indicate that COBOL rounding rules are to be applied).

Note Unlike COBOL, C is a case-sensitive programming language. Thus, the case
is significant for words in this example template file.

CodeBridge 1-9
Typical Development Process Example

3. Invoke the CodeBridge Builder by using the following command line:
cbridge src\trig.tpl

This command reads the input file from src\trig.tpl and writes its output file to
srctrig.c. Any errorswould be written to thefile src\trig.err.

4. Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

For Windows
cl —c -MD —-Zp1l src\trig.c

link —nologo —machine:1X86 —section:_edata,RD —dll
-subsystem:windows —out:trig.dll
trig.obj kernel32_lib user32_lib

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
modul e with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms” on page H-10.

To compile:
cc -c src/trig.c

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, asfollows:

cc -b elf -c src/trig.c
Tolink:
cc -G -0 trig.so trig.-o

Note Some linkers may require that you explicitly specify the math (or
other) libraries, asfollows:

cc -G -0 trig.so trig.o -Im

1-10 Introduction
Typical Development Process Example

5. CreateaCOBOL programin afile called trig.cbl that contains the following
source fragments:

77 X-DEGREES PIC S999V99.

77 X-RADIANS PIC S99V9(16).

77 RESULT PIC S99v9(06).

78 PI value 3.14159265359.

COMPUTE X-RADIANS = X-DEGREES / 180 * PI.
CALL "cos'"™ USING X-RADIANS GIVING RESULT.

Note Either numeric edited or any COBOL numeric usage may be specified
in the data descriptions for X-DEGREES, X-RADIANS, and RESULT.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol trig

7. Runthe application, specifying the name of the COBOL program and the name of
the non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DLL
or aUNIX shared object (generally known as support modules). Since the COBOL
program and the non-COBOL subprogram have the same root name (trig), it is
necessary to specify the correct file extension.

For Windows

runcobol trig -1 trig.dll

For UNIX

runcobol trig -1 trig-so

If the preceding examples had used different root names for the COBOL program
and the non-COBOL subprogram, it would not be necessary to specify thefile
extension. For example, if the COBOL program were named “myprog”, then the
following command could be used for either Windows or UNIX:

runcobol myprog -1 trig

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge 1-11
Typical Development Process Example

1-12 Introduction
Typical Development Process Example

Chapter 2: Concepts

This chapter describes concepts that are central to an understanding of CodeBridge,
including the following:

Using

Using template file components (attributes and attribute lists)

Passing information to a C function (categories of information that can be
passed include COBOL arguments, COBOL argument properties, and
miscellaneous information), including passing null-valued pointer arguments
and managing omitted arguments (see page 2-6)

Returning C error values (see page 2-18)

Associating C parameters with COBOL arguments (see page 2-21)
Working with a variable number of C parameters (see page 2-28)
Modifying COBOL data areas (see page 2-29)

Using P-scaling (see page 2-32)

Working with arrays (see page 2-33)

Using the CodeBridge Builder (see page 2-37)

Template File Components

In order to use the CodeBridge Builder (see page 2-37), you must provide atemplate file
that describes each C function to be called from COBOL. Attribute lists are used in the
template file to supplement information from the C function prototypes. An attribute list
isacollection of attributes. Detailed information about attributesis provided in
Appendix D, Global Attributes, and Appendix E, Parameter Attributes.

Note 1 Asyou read through this manual, keep in mind that the term “ parameter
attribute” is a shorthand notation for an attribute that occurs in a parameter attribute list.
Likewise, “global attribute” indicates that the attribute can be found in aglobal attribute

list.

Note2 C-style comments (/* comment */) may be included in the template source file.
If comments are included, they are accepted by the CodeBridge Builder, but are not
placed in the C source created from the template file.

CodeBridge
Using Template File Components

2-1

2-2

Attributes

An attribute is a keyword, such asinteger, or a keyword with an associated valuein
parentheses, such as occur s(3). Attribute keywords are case-sensitive and must be
entered as shown.

The associated value is aconstant. The CodeBridge Builder does not detect errorsin the
construction of the associated value.

A collection of attributes is known as an attribute list.

Attribute Lists
Two kinds of attribute lists, parameter and global, are used in atemplate file.

A parameter attribute list (described in the next section) is formed by enclosing one or
more attributes in double brackets. For example:

[[integer in occurs(3)]]

A global attribute list (see page 2-5) is formed by enclosing one or more attributes
between the characters [# and #]. For example:

[# replace_type (VOID_PTR; void *) #]

Sample template files using parameter and global attribute lists can be found on
pages 2-4 and 2-5.

Parameter Attribute Lists

A parameter attribute list is associated with a C parameter or function return value. Each
parameter attribute list describes the following:

e How COBOL arguments are to be validated and converted into C parameters before
the C function is called.

e How C parameters are to be validated and converted back to COBOL arguments
when the C function returns.

Zero or more parameter attribute lists may immediately precede the type information for
each C parameter or function return value.

Attribute lists for a parameter or function return value may be omitted if the parameter or
function return valueis to be ignored.

Concepts
Using Template File Components

Within a parameter attribute list, the parameter attributes need not be presented in any
particular order. For example, [[integer in]]isthesameas[[in integer]].
When a parameter is used for both input and output, specify both the in and out direction
attributesin either order.

The attributes in a parameter attribute list belong to one of the following categories:

e Base. Base attributes indicate the general classification of a parameter (numeric,
string, string length, pointer, descriptor, or error). Each parameter attribute list must
contain exactly one base attribute, except that the alias(name) base modifier attribute
may be used by itself if thereturn valueisto beignored. Therefore, within this
document, a parameter attribute list is sometimes identified by its base attribute. For
example, the phrase “an integer attribute list” refers to an attribute list that contains
theinteger base attribute. (Base attributes are covered in more detail beginning on

page E-3.)

o BaseModifier. Base modifier attributes perform several tasks, such as. parameter
conversion, parameter validation, error handling, array processing, handling of a
variable number of C parameters, overriding the default size of a parameter, or
supplying default values for omitted arguments. (More information about the base
modifier attributes begins on page E-3.)

e Direction. A direction attribute, in and/or out, is sometimes required so that
CodeBridge knows whether to generate code to convert a COBOL argument to a
C parameter before calling the C function and/or to convert a C parameter to a
COBOL argument when returning to the COBOL program.

The base attributes, float, general_string, integer, numeric_string, pointer_base,
pointer_offset, pointer_size, and string, apply to both input parameters and output
parameters, and, therefore, require that a direction attribute be specified.

All other base attributes apply only to input parameters, and, therefore, assume the
presence of the in direction attribute. These base attributes do not allow thein
direction attribute to be specified. (For more details about direction attributes, see

page E-2.)

e Argument Number. CodeBridge provides a default automatic method of
associating the C parameters and function return value from the C function prototype
with COBOL arguments from the USING phrase and GIVING (RETURNING)
phrase of the CALL statement. This default automatic association method is able to
handle most cases. Note that for the more than 60 functions described in the file
sgl.tpl in the cbridge subdirectory (Windows only), none required using argument
number attributes.

CodeBridge 2-3
Using Template File Components

2-4

There are, however, situations that the default automatic association method will not
handle (see “Example 4: Accessing COBOL Pointer Arguments” in Appendix B,
CodeBridge Examples, and “ Associating C Parameters with COBOL Arguments’ on
page 2-21). For these cases, use the explicit association method by specifying
argument number attributes, arg_num or ret_val, to override the automatic
association method. (For more information on the argument number attributes, see

page E-2.)
For an alphabetized summary of the parameter attributes, see Table E-2 on page E-24.

Sample Template File Using Parameter Attribute Lists
The following C function prototype:

int MyFunction(char *Name, short NameSize);

may be modified by adding parameter attribute lists to produce the following template
file:

[[integer out]] int MyFunction(
[[string in]] char *Name,
[[buffer_length]] short NameSize);

For each usage of adataitem in the C function prototype (either for the function return
value or for a parameter), a parameter attribute list has been added.

Since the C function returns an int, the integer base attribute and the out direction
attribute are used.

For the Name parameter, the string base attribute and the in direction attribute are used
to specify that the C function expects a string (array of char) asinput.

The buffer_length base attribute is used to specify the size (in bytes) of the buffer used
to contain the converted COBOL argument. By default, the buffer_length base attribute
refersto the same COBOL argument that was used in the attribute list that preceded the
buffer_length attribute list. Because the buffer_length base attribute may be used only
with input parameters, it is neither necessary nor allowed to add the in direction attribute
to the attribute list.

The COBOL program would call the C function with the following statement:

CALL "MyFunction™ USING Name-1, GIVING Result-1.

Concepts
Using Template File Components

Global Attribute Lists

A global attribute list provides information about one or more C function prototypes that
is not specific to any given parameter. Thisinformation also could be used to modify the
default behavior of CodeBridge Builder.

Global attribute settings take effect at the point the global attribute list occurs and are
valid until another global attribute list alters these settings. A global attribute list is not
associated with any particular function, argument, or parameter.

Sample Template File Using Global Attribute Lists
The following C function prototype:

SQLRETURN SQL_API SQLParamData(SQLHSTMT StatementHandle,
SQLPOINTER *ValuePtrPtr);

may be modified by adding global and parameter attribute lists to produce the following
template file:

#include "sqgltypes.h"

[# replace_type(SQLPOINTER; void *) #]
[# convention(SQL_API) #]

[[integer out]] SQLRETURN SQL_API SQLParamData(
[[integer inl] SQLHSTMT StatementHandle,
[[address]] SQLPOINTER *ValuePtrPtr);

Thereplace type global attribute is used to expand the definition of SQLPOINTER to
void *. The convention global attribute is used to identify function calling conventions.

Note 1 Thisexampleisbased onthe ODBC API, which is provided by Microsoft on
Windows platforms. Other companies provide ODBC API implementations for some
UNIX platforms.

Note 2 The header file, sqltypes.h, isincluded so that the C source code generated by
CodeBridge will be able to resolve the data types, SQLRETURN and SQLHSTMT.

CodeBridge 2-5
Using Template File Components

Passing Information to a C Function

2-6

CodeBridge is designed to simplify the process of calling C functions from COBOL
programs. It ispossibleto call existing C library and standard API functions without
writing additional C code. Even though no additional C code is required when using
only existing C library or standard API functions, some knowledge of C programming is
required in order to create the CodeBridge template file and to compile and link the
CodeBridge non-COBOL subprogram library. Further knowledge of C programming is
required if the developer desires to write new C programs or if intermediate functions
must be written to pack scalars into structure or union parameters.

CodeBridge handles the conversion between COBOL and C data formats, which
eliminates the need for either the COBOL program or the C function having to deal with
“foreign” language-dependent data types. During the conversion process, CodeBridge
can also perform data range and validity checksto verify that specified interface
constraints are maintained.

CodeBridge allows three categories of information to be passed to the C function:
e COBOL arguments (see the following topic)
e COBOL argument properties (see page 2-15)

e Miscellaneous information (see page 2-17)

Furthermore, a COBOL program may omit an argument in the information passed to a
C function, as discussed in “Managing Omitted Arguments’ on page 2-17.

Passing COBOL Arguments

COBOL arguments may be numeric, non-numeric, or pointer dataitems. COBOL
numeric arguments may be passed to C integer, floating-point, and numeric string
parameters. COBOL non-numeric arguments must be passed to C string parameters. As
aspecia case for C functions designed to interpret a null-valued pointer as an omitted
parameter, a COBOL null-valued pointer argument may be passed in place of a numeric
or non-numeric argument and the C function parameter will be set to a null-valued
pointer. COBOL pointer data items contain three components: base address, offset, and
size. The address component must be passed to C pointer parameters; the offset and size
components must be passed to C numeric parameters.

Concepts
Passing Information to a C Function

Passing COBOL Numeric Arguments

CodeBridge supports all RM/COBOL numeric data types, including display, numeric
edited, packed, unpacked, and binary. A COBOL numeric argument may be passed to
one of three C parameter types: integer, floating-point, and string. When passed to a
string, the numeric value is converted to and from a string representation. Therefore, in
this document, thisform is referred to as a numeric string.

Note While the COBOL language defines the numeric edited category as belonging to
the alphanumeric class, CodeBridge treats numeric edited dataitems as numeric. Itis
currently an error to pass a numeric edited argument to a parameter described with the
string base attribute. Instead, a numeric edited argument should be passed to a
parameter described with either the numeric_string or general_string base attributes.

Numeric Arguments with C Integer Parameters

A C integer parameter is described in the template file using the integer base attribute.
Theinteger base attribute may be used with any of the C integer data types, including
char, short, int, and long, with or without the C signed type specifier keywords signed
and unsigned. These datatypes can be used directly (such as“int Name"), indirectly
(“int *pName”), and with array declarations (“int ArrayName[]").

When used directly (“int Name”), the parameter is passed to the C function “by value”.
Assuch, it is unable to modify the value of the actual parameter. Passing a parameter
“by value” usually meansthat it is an input parameter, which indicates that thein
direction attribute should be specified in the attribute list for the parameter.

When used indirectly (“int * pName”), the parameter is passed to the C function “ by
reference”. This meansthat the C function is given a pointer to the parameter and,
therefore, is able to modify the value of the actual parameter. Passing a parameter “by
reference” usualy meansthat it is an output (or input/output) parameter, which indicates
that the out direction attribute (or both the in and out direction attributes) should be
specified in the attribute list for the parameter.

Asaspecia case for C integer parameters that are passed indirectly, CodeBridge will
pass the C null pointer to the C function when the COBOL argument is a null-valued
COBOL pointer. For more information, see “Passing Null-Vaued Pointer Arguments”
on page 2-13.

When used as an array (“int ArrayName[]”), the address of the array is passed to the C
function. For more information, see “Working with Arrays’ on page 2-33.

CodeBridge 2-7
Passing Information to a C Function

2-8

The conversion process for C integer parameters may be modified by using the following
base modifier attributes: no_size error, occur s(value), repeat(value), rounded,
scaled(value), silent, unsigned, and value_if_omitted(value). For moreinformation,
see “Base Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Interface constraints for C integer parameters may be specified by using the following
base modifier attributes: assert_digits(min;max), assert_digits_left(min;max),
assert_digits right(min;max), assert_length(min;max), assert_signed,
assert_unsigned, integer_only, no_null_pointer, and optional. For moreinformation,
see “Base Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Numeric Arguments with C Floating-Point Parameters

A C floating-point parameter is described in the template file using the float base
attribute. The float base attribute may be used with either of the C floating-point data
types, float or double. These datatypes can be used directly (such as “float Name”),
indirectly (“float * pName”), and with array declarations (“float ArrayName[]”).

When used directly (“float Name”), the parameter is passed to the C function “by value”.
Assuch, it is unable to modify the value of the actual parameter. Passing a parameter
“by value” usually meansthat it is an input parameter, which indicates that thein
direction attribute should be specified in the attribute list for the parameter.

When used indirectly (“float *pName”), the parameter is passed to the C function “by
reference”. This meansthat the C function is given a pointer to the parameter and,
therefore, is able to modify the value of the actual parameter. Passing a parameter “by
reference”’ usually meansthat it is an output (or input/output) parameter, which indicates
that the out direction attribute (or both the in and out direction attributes) should be
specified in the attribute list for the parameter.

Asaspecial case for C floating-point parameters that are passed indirectly, CodeBridge
will pass the C null pointer to the C function when the COBOL argument is a null-valued
COBOL pointer. For more information, see “Passing Null-Valued Pointer Arguments”
on page 2-13.

When used as an array (“float ArrayName[]"), the address of the array is passed to the
C function. For moreinformation, see “Working with Arrays’ on page 2-33.

The conversion process for C floating-point parameters may be modified by using the
following base modifier attributes: no_size error, occurs(value), repeat(value),
rounded, silent, and value if_omitted(value). For more information, see “Base
Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Concepts
Passing Information to a C Function

Interface constraints for C floating-point parameters may be specified by using the
following base modifier attributes: assert_digits(min;max),

assert_digits left(min;max), assert_digits right(min;max), assert_length(min; max),
assert_signed, assert_unsigned, no_null_pointer, and optional. For more information,
see “Base Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Numeric Arguments with C Numeric String Parameters

A C numeric string parameter is described in the template file using either the
numeric_string or the general_string base attributes. The numeric_string or
general_string base attributes may be used with any of the C string datatypes: char *,
signed char *, and unsigned char *.

Note 1 The C parameter declarations “char *Sring” and “char Sring[]” are equivalent.

Note 2 C strings are one-dimensional arrays of characters. C always passes array
parameters “by reference”, which means that the address of the first character of the
string is passed to the C function.

Although string parameters are always passed “by reference”, this does not mean that a
C string parameter is always an output parameter. Depending on itsusein the C
function, it may be an input parameter, an output parameter, or an input/output
parameter. Its use indicates whether the in direction attribute (input), the out direction
attribute (output), or both the in and out direction attributes (input/output) should be
specified in the attribute list for the parameter.

Asaspecia case for C numeric string parameters, CodeBridge will pass the C null
pointer to the C function when the COBOL argument is a null-valued COBOL pointer.
For more information, see “Passing Null-Valued Pointer Arguments’ on page 2-13.

During the conversion process, CodeBridge dynamically allocates a buffer to hold the
converted COBOL argument (for input conversions) or hold the C string generated by
the C function (for output conversions). While processing string parameters, the C
function may need to know the size of the string or the size of the string conversion
buffer. CodeBridge provides three attributes for obtaining this string length information.
The length base attribute provides the length of the COBOL argument. The
buffer_length base attribute provides the size of the allocated string buffer. The
effective_length base attribute provides the actual number of characters stored in the
string buffer, not including the null character terminating the string.

When passing an array of C strings (“char * SringArray[]"), the address of the first string
pointer is passed to the C function. For more information, see “Working with Arrays’ on
page 2-33.

CodeBridge 2-9
Passing Information to a C Function

2-10

The conversion process for C numeric string parameters may be modified by using the
following base modifier attributes: leading_minus, leading_sign, no_size error,
occur s(value), repeat(value), rounded, silent, size(value), trailing_credit,
trailing_debit, trailing_minus, trailing_sign, and value_if_omitted(value). For more
information, see “Base Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Interface constraints for C numeric string parameters may be specified by using the
following base modifier attributes: assert_digits(min;max),

assert_digits left(min;max), assert_digits right(min;max), assert_length(min; max),
assert_signed, assert_unsigned, no_null_pointer, and optional. For more information,
see “Base Maodifiers that Apply to Numeric Base Attributes’ on page E-7.

String base modifier attributes that are allowed when the general_string base attribute is
specified are ignored for numeric arguments.

Passing COBOL Non-Numeric Arguments

CodeBridge supports all RM/COBOL non-numeric data types, including alphabetic and
alphanumeric elementary items. CodeBridge also supports passing group items. A
COBOL non-numeric argument must be passed to a C string parameter.

Note While the COBOL language defines the numeric edited category as belonging to
the alphanumeric class, CodeBridge treats numeric edited dataitems as numeric. Itis
currently an error to pass a numeric edited argument to a parameter described with the
string base attribute. Instead, a numeric edited argument should be passed to a
parameter described with either the numeric_string or general_string base attributes.

Non-Numeric Arguments with C String Parameters

A C string parameter is described in the template file using either the string or the
general_string base attributes. The string or general_string base attributes may be
used with any of the C string datatypes. char *, signed char *, and unsigned char *.

Note 1 The C parameter declarations “char * Sring” and “char Sring[]” are equivalent.

Note 2 C strings are one-dimensional arrays of characters. C always passes array
parameters “by reference”, which means that the address of the first character of the
string is passed to the C function.

Concepts
Passing Information to a C Function

Although string parameters are always passed “by reference”, this does not mean that aC
string parameter is always an output parameter. Depending on its use in the C function,
it may be an input parameter, an output parameter, or an input/output parameter. Itsuse
indicates whether the in direction attribute (input), the out direction attribute (output), or
both the in and out direction attributes (input/output) should be specified in the attribute
list for the parameter.

Asaspecial casefor C string parameters, CodeBridge will pass the C null pointer to the
C function when the COBOL argument is a null-valued COBOL pointer. For more
information, see “Passing Null-Valued Pointer Arguments’ on page 2-13.

During the conversion process, CodeBridge dynamically allocates a buffer to hold the
converted COBOL argument (for input conversions) or hold the C string generated by
the C function (for output conversions). While processing string parameters, the C
function may need to know the size of the string or the size of the conversion buffer.
CodeBridge provides three attributes for obtaining this string length information. The
length base attribute provides the length of the COBOL argument. The buffer_length
base attribute provides the size of the allocated string buffer. The effective length base
attribute provides the actual number of characters stored in the string buffer, not
including the null character terminating the string.

Note If aCOBOL non-numeric argument contains a C null character (0x00),
conversion of the argument to a C string parameter may produce unexpected results.
The input conversion process ends when all characters have been copied or a C null
character is encountered.

When passing an array of C strings (“char * SringArray[]”), the address of the first string
pointer is passed to the C function. For more information, see “Working with Arrays’ on
page 2-33.

The conversion process for C non-numeric string parameters may be modified by using
the following base modifier attributes: leading(value), leading_spaces, occur s(value),
repeat(value), silent, size(value), trailing(value), trailing_spaces, and

value if_omitted(value). For more information, see “Base Modifiers that Apply to the
String Base Attribute” on page E-11.

Interface constraints for C non-numeric string parameters may be specified by using the
following base modifier attributes: assert_length(min;max), no_null_pointer, and
optional. For moreinformation, see “Base Modifiers that Apply to the String Base
Attribute” on page E-11.

Numeric string base modifier attributes that are allowed when the general_string base
attribute is specified are ignored for non-numeric arguments.

CodeBridge 2-11
Passing Information to a C Function

2-12

Groups with C String Parameters

COBOL group items are hierarchical data structures that contain subordinate groups and
elementary dataitems. CodeBridge does not provide support for accessing dataitems
subordinate to a group.

A COBOL group is non-numeric but may contain numeric and pointer data. Because
it is non-numeric, a group can be passed to a C string parameter. Since it may contain
numeric and pointer data, the likelihood of unexpected results from encountering aC
null character (0x00) is greater than when passing elementary non-numeric arguments.

An RM/COBOL variable-length group argument is always passed as a fixed-length
group of the maximum size so that the called program has the opportunity to increase the
variable sizeif desired. Thus, passing variable-length groups does not support passing
variable-length strings to C.

Passing COBOL Pointer Arguments

The pointer data type is a new feature introduced in version 7.0 of RM/COBOL. A
COBOL pointer describes a block of memory and consists of three components: base
address, offset, and size.

CodeBridge provides two methods for passing COBOL pointers. The first method is
useful when the C function only wishes to access memory referenced by the pointer. The
second method is useful if the C function wishes to access the components of the
COBOL pointer dataitem directly. For more information, see “Pointer Base Attributes’
on page E-15.

Method 1: Passing Pointer Address and Pointer Length

With this method, you can pass the address or the length of the block of memory to an
input parameter in the C function. Given the address and length of the memory to which
the pointer refers, the C function may read or modify the contents of that memory block.
It isthe C programmer’ s responsibility to confine any such references to lie wholly
within the memory block described by the given pointer values. However, the C function
cannot change the base address, offset, or size of the COBOL pointer.

Use the pointer_addr ess base attribute in the template file to describe a C pointer
parameter and instruct CodeBridge to pass the effective address of the memory block
(base address plus offset) to the C function as the parameter value.

Use the pointer _length base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the effective length of the memory block (size
minus offset) to the C function as the parameter value.

Concepts
Passing Information to a C Function

Method 2: Passing and Modifying Pointer Components

With this method, you can pass the base address, offset, or size of the block of memory
to an input, output, or input/output parameter in the C function. Given the base address,
offset, and size of the memory to which the pointer refers, the C function may read or
modify the contents of that memory block. It isthe C programmer’s responsihility to
confine any such referencesto lie wholly within the memory block described by the
given pointer values. In addition, for output and input/output parameters, the C function
can also modify the base address, offset, or size component values of the COBOL
pointer.

Use the pointer_base base attribute in the template file to describe a C pointer
parameter, instruct CodeBridge to pass the base address of the memory block to the C
function for input conversions, and set the base address component of the COBOL
pointer for output conversions. The output conversion process may be modified by using
the following base modifier attributes. pointer_max_size and pointer_reset_offset.

For more information, see “Base Modifiers that Apply to Pointer Base Attributes’ on
page E-16.

Use the pointer_offset base attribute in the template file to describe a C numeric
parameter, instruct CodeBridge to pass the offset component of the COBOL pointer to
the C function for input conversions, and set the offset component of the COBOL pointer
for output conversions. The output conversion process may be modified by using the
pointer _max_size base modifier attribute.

Use the pointer_size base attribute in the template file to describe a C numeric
parameter, instruct CodeBridge to pass the size component of the COBOL pointer to the
C function for input conversions, and set the size component of the COBOL pointer for
output conversions. The output conversion process may be modified by using the
pointer_reset_offset base modifier attribute.

Passing Null-Valued Pointer Arguments

Null-valued pointer arguments arise in one of three ways. the argument is the figurative
constant NULL (NULLS), the argument isa COBOL pointer that has been set to NULL
(NULLS), or the argument is a pointer that has been set from another null-valued pointer.
Based on the properties of the C parameter associated with a pointer argument,
CodeBridge handles pointer arguments as follows:

e Numericor non-numeric parameter (direct or indirect)

For related information, see “Passing COBOL Numeric Arguments’ on page 2-7 and
“Passing COBOL Non-Numeric Arguments’ on page 2-10.

CodeBridge 2-13
Passing Information to a C Function

A COBOL program may pass a COBOL null-valued pointer data item as an
argument that is associated with any of these base attributes: float, general_string,
integer, numeric_string, or string. Associating a null-valued pointer with a
parameter having one of these base attributes has meaning only when the C
parameter is a pointer (indirect) parameter.

Some C functions are designed to interpret the occurrence of a null-valued pointer
parameter to indicate that the parameter is omitted and that the function should not
read or write indirectly through the parameter pointer value. If a COBOL program
passes a COBOL null-valued pointer, the C function will receive a C null-valued
pointer in order to support this design.

If the C parameter is not a pointer, it is meaningless to pass a COBOL null-valued
pointer argument. For adirect numeric or non-numeric parameter, an uninitialized
variable will be passed as the parameter value when a null-valued pointer argument
isprovided. Theno_null_pointer base modifier attribute may be specified to
cause CodeBridge to return an error if a COBOL null-valued pointer is passed to
the parameter.

If anull-valued pointer argument is used for an output parameter that is numeric or
non-numeric, the parameter result value isignored as if the out direction attribute
had not been specified.

A null-valued pointer argument may not be used for a numeric or non-numeric
parameter that specifiesthe no_null_pointer base modifier attribute.

A pointer argument with a value other than null always causes an error for a numeric
or non-numeric parameter. Since COBOL pointer dataitems are not typed (that is,
they are essentially equivalent to (void *) in C), CodeBridge does not have enough
information to dereference the COBOL pointer (that is, to convert the data that the
pointer references).

e Pointer parameter, wherethe C function needsa COBOL pointer value
For related information, see “Passing COBOL Pointer Arguments’ on page 2-12.

When a COBOL program passes a pointer argument associated with a parameter
described with the pointer _address or pointer _base base attributes, the pointer
valueis passed to the C function as the parameter value, regardless of whether the
pointer value is null or non-null.

The out direction attribute may be specified with the pointer _base base attribute to
modify the base address of the pointer argument upon return from the C function. It
isan error to specify either of thein or out direction attributes with the

pointer _addr ess base attribute.

2-14 Concepts
Passing Information to a C Function

The pointer_offset, pointer_size, and pointer _base base attributes yield a zero

for anull-valued pointer argument on input to the C function but allow the
corresponding component of the pointer argument to be changed on output if the
out direction attribute is specified and the base address of the pointer is aso changed
to anon-zero value.

Passing COBOL Argument Properties

CodeBridge supports two categories of COBOL argument properties, each of which may
be passed to the C function:

e COBOL descriptor data (see the following topic)
e String length information (see page 2-16)

Passing COBOL Descriptor Data

Prior to CodeBridge, if a devel oper wanted information about the properties of the
COBOL arguments, it was necessary for the C program to obtain the information for
each argument from a structure known as the COBOL data descriptor. The COBOL data
descriptor contains properties of the COBOL argument, including its address, length and
type, digit count and scale factor (for numeric arguments), and encoded picture (for
numeric edited and alphanumeric edited arguments). CodeBridge supports the passing of
all these properties except for the encoded picture. (See either Appendix G, Non-
COBOL Subprogram Internals for Windows, or Appendix H, Non-COBOL Subprogram
Internals for UNIX, for more information about the earlier method of calling non-
COBOL subprograms.)

In CodeBridge, the following descriptor base attributes (which are described in detail on
page E-17) may be used to pass a component of the COBOL argument to the C function.

Use the addr ess base attribute in the template file to describe a C pointer parameter and
instruct CodeBridge to pass the address of the COBOL argument to the C function as the
parameter value.

Note Passing the address of the COBOL argument dataitem to a C function as a
parameter value should be a rare occurrence when using CodeBridge. Use of the data
item address requires the C function to know the details of COBOL dataformats and is
not subject to the data validation and interface constraints that CodeBridge provides.

Use the digits base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the digit count, that is, the number of 9'sin the PICTURE
character-string, of the COBOL numeric argument to the C function as the parameter
value. For non-numeric arguments, the value is not defined.

CodeBridge 2-15
Passing Information to a C Function

2-16

Use the length base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the length of the COBOL argument to the C function as the
parameter value.

Use the scale base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the scale factor of the COBOL numeric argument to the C
function as the parameter value. For non-numeric arguments, the value is not defined.
The value of the scale passed is the arithmetic complement of the value in the COBOL
argument descriptor.

Use the type base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the type of the COBOL argument to the C function as the
parameter value.

See also the discussion of passing miscellaneous information to a C function on
page 2-17.

Passing String Length Information

In addition to COBOL data descriptor components, CodeBridge can supply string length
information for input conversions. The C function can be supplied the length of the
COBOL argument (from the COBOL data descriptor), the length of the conversion
buffer, or the effective length of the C string (after conversion).

Use the length base attribute (for more information, see “Descriptor Base Attributes’ on
page E-17) in the template file to describe a C numeric parameter and instruct
CodeBridge to pass the length of the COBOL argument to the C function as the
parameter value.

Use the buffer_length base attribute (for more information, see “ String Length Base
Attributes’ on page E-14) in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the length of the conversion buffer to the C function as the
value of the parameter. The length of the buffer is determined by the base attribute that
is used to describe the string parameter associated with the same argument, as follows:

e For the string base attribute, the buffer length defaults to one more than the length
of the passed COBOL argument, which allows space for the characters of the
argument value and a null-termination character.

e For the numeric_string base attribute, the buffer length defaults to four more than
the digit length of the passed COBOL argument, which allows space for the digits of
the argument value and the sign, decimal-point, and null-termination characters.

o Forthegeneral_string base attribute, the buffer length defaults to the greater of one
more than the length of the passed COBOL argument and four more than the digit

Concepts
Passing Information to a C Function

length of the passed COBOL argument, which allows space for either a non-numeric
Or numeric argument conversion.

The default values for buffer _length may be overridden by using the size(value) base
modifier attribute (see page E-13) in the attribute list that contains the string,
numeric_string, or general_string base attribute that is associated with the same
argument as buffer_length.

Use the effective_length base attribute (see also page E-14) in the template file to
describe a C numeric parameter and instruct CodeBridge to pass the actual number of
characters stored in the conversion buffer, not including the null character that terminates
the string (after the input conversion processis complete), to the C function asthe
parameter value.

Passing Miscellaneous Information

CodeBridge aso can supply the number of COBOL arguments specified in the USING
phrase of the CALL statement, the COBOL initial state flag, and the Windows handle
for the COBOL program. For more information, see “ Descriptor Base Attributes’ on
page E-17.

Usethearg_count base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the number of COBOL arguments to the C function as
the parameter value.

Usetheinitial_state base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the COBOL initia state flag to the C function as the
parameter value.

Use the windows_handle base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the Windows handle for the COBOL program
to the C function as the parameter value.

Managing Omitted Arguments

A COBOL program may omit an argument by specifying fewer argumentsin the USING
phrase of the CALL statement than expected by the C function or by explicitly specifying
the OMITTED keyword for an argument in the USING phrase of the CALL statement.
The GIVING argument may be omitted by not specifying the GIVING (RETURNING)
phrasein the CALL statement.

An omitted argument will cause an error if it is passed to a numeric or non-numeric
parameter that does not also specify either the optional or value if _omitted base
modifier attributes. The descriptor base attributes are implicitly optional and return

CodeBridge 2-17
Passing Information to a C Function

default values for an omitted argument; the optional base modifier attribute is not
allowed with the descriptor base attributes.

For an omitted argument passed to a parameter described with the optional in attributes,
an appropriate default is passed to the C function as the parameter value. The default
value associated with an integer or float base attribute is anumeric zero. The default
value associated with ageneral_string, numeric_string, or string base attribute is an
empty string (the first character of the string isanull character). If the

value if_omitted(value) base modifier attribute has been specified, valueis passed
instead of the default value.

An omitted argument is assumed to satisfy any of the assertion base modifier attributes.
If adefault value is provided with the value_if_omitted(value) base modifier attribute, it
isthe user’ s responsibility to provide a default value that satisfies all interface
constraints.

For the descriptor base attributes, an omitted argument has the following results,
regardless of whether the argument is missing from the USING phrase or explicitly
specified as OMITTED:

e Theaddress base attribute for an omitted argument supplies the value NULL.
e Thedigits base attribute for an omitted argument supplies zero.

e Thelength base attribute for an omitted argument supplies zero.

e The scale base attribute for an omitted argument supplies zero.

e Thetype base attribute for an omitted argument supplies the value RM_OMITTED,
which has the value 32 as shown in Table E-1 on page E-19.

If an argument is omitted for a parameter described with the optional out attributes, the
parameter result value isignored. However, CodeBridge Builder does not currently
allow this combination of attributes. That is, output arguments are required in the current
implementation of CodeBridge.

Returning C Error Values

Two base attributes, called error base attributes, support returning C error values to the
COBOL program. The errno error base attribute returns the value of the external
variable errno, which is set by many C library functions. The get_last_error error base
attribute returns the value returned by the Windows API function GetL astError. The
error base attributes are necessary because the RM/COBOL runtime system uses C
library functions, and, on Windows, Windows API functions, during the return to the
COBOL program that modify the error values. Thus, any error values set by the

2-18 Concepts
Returning C Error Values

CodeBridge called C function are modified before the COBOL program has a chance to
obtain them. The error base attributes solve this problem by causing the CodeBridge
Builder to generate code to preserve the error value set by the C function specified in the
CodeBridge template. The preserved value isreturned in an associated COBOL
argument for access by the calling COBOL program. Complete details regarding the
error base attributes are found in the section “Error Base Attributes’ on page E-20. In
addition, some general concepts and examples of error base attributes are provided in
the sections that follow.

Consistent Return Values

For those C library functions that set the external variable errno, it is considered correct
behavior not to modify the value of errno if no error occurs. In other words, if no error is
detected, the external variable errno will have the same value that it had before the C
function was called. The code sequence that is generated by CodeBridge Builder
guarantees the value of errno is zero just prior to the C function call. The generated code
sequenceis as follows:

errno = 0O;
_ _RETURN__open = open(filename, oflag);
__save_errno = errno;

Similarly, for those Windows API functions that set a value to be returned by the
function GetL astError, it is also considered correct behavior not to modify the last error
valueif no error occurs. In other words, if no error is detected by the C function, the call
to GetL astError will return the same value it would have if it were called just prior to the
C function. The code sequence that is generated by CodeBridge Builder guarantees that
the value returned by GetLastError will be zero if no error is detected by the C function
call. The generated code sequenceis asfollows:

SetLastError(0);
_ RETURN__ CreateDirectory = CreateDirectory(DirName,SecAttr);
__save_lastError = GetLastError();

Specifying Both errno and get_last_error

It is possible to use the error base attributes errno and get_last_error in the same
function description. Functions that return an error code in the external variable errno
have afunction return value of -1. Functions that return an error through GetL astError
have afunction return value of FALSE (zero). On the surface, this seems meaningless
(and in most cases, it probably is); however, thereis no reason to disallow this behavior.
It is possible for a Windows API function to call aC library function that could set a

CodeBridge 2-19
Returning C Error Values

2-20

value in the external variable errno. It may be of value to the COBOL program to
interrogate both error conditions.

The generated code sequence when both attributes are specified is as follows:

SetLastError(0);

errno = 0O;

__RETURN__ CreateDirectory = CreateDirectory(DirName, SecAttr);
__save_errno = errno;

__save_lastError = GetLastError();

Function Return Value (Status) Versus Error Values

In many cases, the return value from a C library function or aWindows API functionis
merely a simple binary indication of success or failure.

C library functions that set the external variable errno generally return —1 as the function
return value. If thereturn value is not —1, the value may or may not indicate anything of
significance. For example, the C library function, mkdir, always returns O (for success)
or —1 (for failure). On the other hand, the C library function, open, returns afile handle
if the operation succeeded or —1 if the operation failed. Windows API functions
normally return non-zero to indicate success and zero to indicate an error.

For those C library and Windows API functions where the return value isasimple
indication of success or failure, it may be inefficient to have the COBOL program
examine both the return value and the value of the argument associated with the errno or
get_last_error attribute.

If you are certain that the C function return value is not needed—except to show success
or failure—you need not access this parameter from COBOL. The following template
illustrates how to obtain the _mkdir function return value and the value of the external
variable errno:

[[integer out]] int _mkdir(
[[string in trailing_spaces]] const char *DirName
[Lerrnoll);

This function could be called from COBOL with this statement:

CALL " mkdir™ USING File-Name Err-No
GIVING Return-Status.

Concepts
Returning C Error Values

Thereisno real need to examine Return-Status in the COBOL program, since
examining Err-No is sufficient (it is guaranteed that Err-No will be zero if no error
occurred). You may alter the template so that Err-No becomes the return value with a
template similar to the following:

int _mkdir(
[[string in trailing_spaces arg_num(1)]]

const char *DirName
[[errno ret_val]]);

The COBOL calling sequence could then be simplified as follows:

CALL " _mkdir"™ USING File-Name
GIVING Err-No.

Besides making the COBOL calling sequence simpler, this technique also simplifies the
C source code that is generated by CodeBridge Builder.

Associating C Parameters with COBOL
Arguments

Using CodeBridge, asingle C parameter or return value may be associated with multiple
COBOL arguments by the use of more than one attribute list, but each attribute list
associates a parameter with, at most, one argument from the COBOL CALL statement.
Also, multiple C parameters may be associated with asingle COBOL argument. That is,
the CodeBridge association of C parameters with COBOL arguments allows a many-to-
many relationship.

CodeBridge has two methods of associating C parameters with COBOL arguments:
explicit association and automatic association. Y ou can explicitly specify the association
of a C parameter with a COBOL argument, or you can have CodeBridge automatically
associate C parameters with COBOL arguments for you. If you do not use the explicit
association method, CodeBridge will use the automatic association method by default.

If the attribute list for any parameter of a function specifies explicit association of the

C parameter to a COBOL argument, the attribute lists for all parameters for that
function—except those attribute lists containing a base attribute that does not refer to

an argument in the COBOL CALL statement—must specify explicit association.
Different functions within a single template file may use different association methods.

CodeBridge 2-21
Associating C Parameters with COBOL Arguments

2-22

Explicit Association

CodeBridge is designed to handle most C-parameter-to-COBOL -argument association
situations without requiring you to explicitly specify the associations in the attribute lists
of your template file. For those situations where the CodeBridge automatic association
method does not produce the desired result, you must use the explicit association method.
Even when the automatic association method produces the correct result, you may use
the explicit association method. For instance, you might elect to use the explicit
association method to clearly document the association of parameters with arguments.

To explicitly specify the association of the C function return value or a C parameter to a
particular COBOL argument, you include either theret_val or the arg_num(value)
argument number attribute in the attribute list for the return value or parameter (for more
information, see “ Argument Number Attributes’” on page E-2). If you explicitly specify
an argument number attribute in any attribute list for an individual C function, you must
do so for every attribute list for that function—except for those attribute lists containing a
base attribute that does not refer to an argument.

Automatic Association

The following material explains automatic association of C parameters with COBOL
arguments. Each attribute list refers either to the C function return value or to asingle
C parameter.

Automatic Association of the C Function Return Value with a COBOL
Argument

When thereis no attribute list associated with the C function return value, the function
return value isignored.

If thereis an attribute list for the C function return value, the return value is associated
with the argument specified by the GIVING (RETURNING) phrase of the RM/COBOL
CALL statement. In the automatic association method, if there are multiple attribute lists
associated with the C function return value, they al associate the return value with the
GIVING argument. If the return valueisto be stored other than in the GIVING
argument, the explicit association method must be used.

Note Only base attributes that allow the out direction attribute may be used in the
attribute list associated with the function return value. These base attributesinclude
float, general_string, integer, numeric_string, pointer_base, pointer_offset,
pointer_size, and string.

Concepts
Associating C Parameters with COBOL Arguments

Automatic Association of C Parameters with COBOL Arguments

When there is no attribute list associated with a C parameter, there is no associated
COBOL argument. For such a parameter there are no input conversions, so the
parameter is passed an uninitialized variable, and there are no output conversions, so the
final value of the parameter isignored.

If there are one or more attribute lists associated with a C parameter, CodeBridge uses
the required base attribute of each attribute list to determine the association with a
COBOL argument. For each attribute list, CodeBridge associates the parameter with a
COBOL argument in one of three ways. The parameter may associate with one of the
following:

e Animplied argument
e The next argument

e The current argument

Automatic Association with an Implied Argument

Thearg_count, initial_state, and windows_handle base attributes do not refer to a
COBOL argument specified in the CALL statement. The CodeBridge Library supplies
the value for the C parameter from an implied argument provided by the runtime
environment at the time the CALL statement is executed.

Automatic Association with the Next Argument

The address, float, general_string, integer, numeric_string, pointer _address,
pointer _base, and string base attributes refer to the next COBOL argument not yet
associated with a C parameter. The first parameter attribute list (ignoring any attribute
lists specified for the function return value) that contains one of these base attributes will
associate the described C parameter with the first argument in the USING phrase of the
COBOL CALL statement. The second such parameter attribute list will associate the
described C parameter with the second argument in the USING phrase, and so forth.

A single C parameter may be associated with multiple COBOL arguments by the use of
multiple attribute lists for that parameter.
Automatic Association with the Current Argument

The buffer_length, digits, effective_length, length, pointer _length, pointer _offset,
pointer_size, scale, and type base attributes associate the described C parameter with the
current COBOL argument. This behavior makes it possible to have a single COBOL

CodeBridge 2-23
Associating C Parameters with COBOL Arguments

argument supply values for several contiguous C parameters. The current COBOL
argument is the one last used by the automatic association method for the next argument
as described in the previous topic, “ Automatic Association with the Next Argument.” 1f
an attribute list containing a base attribute that associates with the next argument has not
yet been specified, the current COBOL argument is the argument in the GIVING
(RETURNING) phrase.

Examples of Associating Parameters with Arguments

Example 1: Automatic Versus Explicit Association

The following set of examplesillustrates methods of associating parameters with
arguments.

Example 1a: Automatic Association

In the following example, the C function moves the value of the parameter named Floatin
to the parameter named FloatOut after checking that the value will fit (using the values

of the parameters named Digits and Scale). The function return value indicates success
or failure.

The template file for the C function contains the following lines:

[[integer out]] int fn(

[[float out]] float *FloatOut,
[[digits]] int Digits,
[[scale]] int Scale,
[[float in]] float Floatln);

The C function is called using the following COBOL statement:

CALL "fn" USING Float-Out, Float-In GIVING Fn-Status.

CodeBridge uses the automatic association method to associate the function return value
with the GIVING argument named Fn-Status. The first three C parameters associate
with the first USING argument named Float-Out, as follows:

e Thefirst float base attribute causes the C parameter named FloatOut to be associated
with the next (that is, in this case, the first) unassociated COBOL argument named
Float-Out.

e Thedigits base attribute associates the C parameter named Digits with the current
COBOL argument, which is the first argument named Float-Out.

2-24 Concepts
Associating C Parameters with COBOL Arguments

e Similarly, the scale base attribute associates the parameter named Scale with the
current argument, which is the first argument named Float-Out.

Finally, the second float base attribute associates the C parameter named Floatln with the
next (that is, in this case, the second) COBOL argument named Float-In.
Example 1b: Optional Explicit Association

The following template file accomplishes the same associations as in Example 1a, but by
using the explicit association method:

[[integer out ret_val]] int fn(

[[float out arg_num(1)]] float *FloatOut,
[[digits arg_num(1)]1] int Digits,
[[scale arg_num(1)]1] int Scale,
[[float in arg_num(2)]1] float Floatln);

Example 1c: Required Explicit Association

The automatic association method is possible only when the C parameters occur in the
same order as the COBOL arguments. When they do not and you cannot change the C
function, then the explicit association method is required. If the function in Example 1a
were changed by moving the output floating-point parameter from first to last, then there
would be no automatic association method that could achieve the desired result. In this
case, the following explicit association method template file would be required:

[[integer out ret_val]] int fn(

[[digits arg_num(D11 int Digits,
[[scale arg_num(D11 int Scale,
[[float in arg_num(2)11 float Floatlin,
[[float out arg_num(1)]] float *FloatOut);

Example 2: Multiple Attribute Lists for a C Parameter

The following group of examplesillustrates how to associate multiple attribute lists with
asingle C parameter.

Example 2a: Associating a Parameter with Multiple Arguments

In the following example, the C function has a single input/output parameter, but the
COBOL program wishes to pass the C function one input argument and two output
arguments. Thiswould allow one copy of the result to be stored in binary form while the
other is stored in numeric edited form.

CodeBridge 2-25
Associating C Parameters with COBOL Arguments

2-26

The template file for the C function contains the following lines:

void fn([[float in]]
[[Float out]]
[[Float out]] float *FloatlnOut);

The C function is called using the following COBOL statement:

CALL "fn'" USING Float-In, Binary-Out, Numeric-Edited-Out.

CodeBridge uses the automatic association method to associate each float base attribute
with the next unassociated COBOL argument. Thisresultsin the C parameter named
FloatlnOut being associated with the first USING argument, named Float-1n, during the
input conversion process, and with the second and third arguments, named Binary-Out
and Numeric-Edited-Out, respectively, during the output conversion process. The final
value of the parameter named FloatInOut is converted by CodeBridge, during the output
conversion process after the C function returns, to a COBOL binary humber (assuming
argument Binary-Out was described as a binary dataitem) and to a COBOL numeric
edited number (assuming argument Numeric-Edited-Out was described as a numeric
edited data item).

The following template file shows the equivalent explicit association method for this
example:

void fn([[float in arg_num(1)]1]
[[float out arg_num(2)]]
[[float out arg_num(3)]] float *FloatinOut);

Example 2b: In Direction Attribute for Multiple Attribute Lists

Normally, when using multiple attribute lists with asingle C parameter, only one of the
attribute lists should contain the in direction attribute for agiven C parameter. Consider
the following modified template file:

void fn([[float in arg_num(1)]1]1
[[float in arg_num(2)]1]
[[float out arg_num(3)]] float *FloatinOut);

Now there are two input arguments and only one output argument. The C functionis
called by the following COBOL statement:

CALL "fn" USING Float-In-1, Float-In-2, Binary-Out.

During the input conversion process, CodeBridge first converts the argument named
Float-In-1 and stores the result in the parameter named FloatInOut, and second converts

Concepts
Associating C Parameters with COBOL Arguments

the argument named Float-In-2 and stores it in the parameter named FloatinOut. The
value of argument Float-In-1 previously stored in parameter FloatinOut islost. This may
be useful in afew circumstances where the side effects of the first conversion are desired
(for example, checking the data type), but is probably almost never what was intended.

Example 2c: Compatibility between Multiple Attribute Lists

When using multiple attribute lists with a single C parameter, you must make sure that
the attribute lists are compatible. Consider the following template file:

void fn([[float in arg_num(1)]1]
[[float out arg_num(2)]1]
[[string out arg_num(3)]] float *FloatinOut);

Thefirst two attribute lists describe a parameter that must be described with the C type
specifiersfloat or double. The third attribute list describes a parameter that must be a
C string parameter, that is, an array of type char. A single C parameter cannot be both
types of data at the same time. Because the base attribute al so determines the allowed
types of COBOL arguments (in this case, a numeric argument is required), an error
would occur when trying to convert the floating-point parameter, named FloatlnOut, to
the non-numeric argument, named String-Out, of the following COBOL statement:

CALL "fn" USING Float-In, Binary-Out, String-Out.

Example 3: No Attribute List for a C Parameter

In addition to allowing one or more attribute lists for a single C parameter, CodeBridge
also allows C parameters without an attribute list. For such a parameter there are no
input conversions, so the parameter is passed an uninitialized variable, and there are no
output conversions, so the final value of the parameter isignored.

In the following example, the C function takes a floating-point value as input and returns
two output parameters, the integer part and the fractional part of the input parameter.
The function return value indicates whether the fractional part is zero. If your COBOL
program needs only the integer part, use the following template file:

int fn([[float in]] float Floatln,
[[integer out]] long *IntegerPartOut,
long *FractionPartOut);

Call the C function using the following COBOL statement:

CALL "fn" USING Float-In, Integer-Part-Out.

CodeBridge 2-27
Associating C Parameters with COBOL Arguments

Working with a Variable Number of C
Parameters

2-28

When using a variable number of parametersin a C function prototype, the last
parameter in the parameter list (the parameter that precedes the ellipsis) isused as a
model for the additional parameters that may occur. In effect, the last listed parameter is
treated as the first element of an array that contains a variable number of elements.

All attributes in the template file that apply to the last listed parameter also apply to the
additional parameters. Use the repeat(value) base modifier attribute (see pages E-9
and E-12) in the attribute list for the last listed parameter to specify that there are
additional C parameters. (For anillustration, see “Example 3: Accommodating a
Variable Number of Parameters’ in Appendix B, CodeBridge Examples.)

The following limitations apply when using a variable number of C parameters:

o Neither thelast listed parameter nor any of the additional parameters may be arrays.

e All additional parameters must be of the same C data type as the last listed
parameter.

e The ANSI C convention for variable number of parametersis supported. The older
UNIX convention is not supported.

CodeBridge has limited support for C functions with a variable number of parameters.
The following sections describe that support for numeric and string C parameters.

Repeating C Numeric Parameters

For numeric parameters that use the float and integer base attributes, all additional
parameters must be the same type and size as the last listed parameter.

Repeating C String Parameters

numeric_string

For C string parameters that use the numeric_string base attribute, the last listed
parameter and all additional parameters must be numeric strings. The size of the last
listed parameter is used as the size of all additional parameters. For parameters with the
numeric_string base attribute, the default size is four more than the digit length of the
passed COBOL argument. However, the size(value) base modifier attribute (see

page E-10) may be used to modify the default size as necessary.

Concepts
Working with a Variable Number of C Parameters

general_string

For C string parameters that use the general_string base attribute, the last listed
parameter and all additional parameters must be strings. The general_string base
attribute allows some of the additional string parameters to be passed as numeric
arguments while others are passed as non-numeric arguments. The size of the last listed
parameter is used as the size of all additional parameters. For parameters with the
general_string base attribute, the default size is the greater of one more than the length
and four more than the digit length of the passed COBOL argument. The size(value)
base modifier attribute (see page E-13) may be used to modify the default size as
necessary.

string

For C string parameters that use the string base attribute, the last listed parameter and all
additional parameters must be non-numeric strings. The size of the last listed parameter
isused asthe size of all additional parameters. For parameters with the string base
attribute, the default size is one more than the length of the passed COBOL argument.
The size(value) base modifier attribute (see page E-13) may be used to modify the
default size as necessary.

Modifying COBOL Data Areas

CodeBridge allows two ways of modifying COBOL data areas. Y ou can use the out
direction attribute to tell CodeBridge to convert a C output (or input/output) parameter
and store the results in the COBOL argument. Alternatively, you can pass the address of
the COBOL data areato a C pointer.

The preferred method is using the out direction attribute to have CodeBridge store the
result in the COBOL argument dataitem. The alternative method of passing the address
requires the C function to know the details of COBOL data formats, thus negating one of
the major benefits of using CodeBridge. Passing the address of the COBOL argument
dataitem to your C function allows the C function to directly modify the value of the
COBOL argument, even for input parameters.

CodeBridge 2-29
Modifying COBOL Data Areas

2-30

Using the out Direction Attribute

Using the out direction attribute, possibly in conjunction with the in direction attribute, is
the preferred method of modifying COBOL data areas. It provides all the flexibility of
CodeBridge data conversion as well as the safety afforded by CodeBridge error checking
and datavalidation. There are, however, several ways where you may not get the results
you were expecting.

By way of review, the CodeBridge-generated code performs the following steps when a
COBOL program callsa C function;

1. If requested, the code performs input argument validation.

2. For parameters with thein direction attribute specified or assumed, CodeBridge
converts input arguments from COBOL to C data formats (performing error checks
in the process) and stores the result in atemporary C dataitem.

3. CodeBridge callsthe C function, passing to each parameter either the value or
address of its temporary C dataitem.

4. If requested, the code performs output parameter validation.

For parameters with the out direction attribute specified, CodeBridge converts the
final value for the temporary C dataitem from C to COBOL data format (performing
error checks in the process) and stores the result in the COBOL argument.

There are several ways that the C function will fail to change the value of the COBOL
argument:

o Thefirstisthat if step 3 passesthe temporary C dataitem “by value” to the C
function, the function cannot change the value of the temporary C dataitem, which
will, therefore, be unchanged even if it is stored in step 5.

e Thesecondisthat if the parameter does not have the out direction attribute
specified, step 5 is skipped and any change to the temporary C dataitemis
discarded.

e Thethirdisthat if the COBOL program passed the COBOL argument using the BY
CONTENT phrase (analogousto a C call “by value”), then step 5 will modify the
contents of the temporary COBOL data area for the argument, which will then be
discarded, leaving the original COBOL argument value unchanged.

o Thefourthisthat if the CALL statement omits the argument (either by specifying
the OMITTED reserved word or specifying fewer arguments than expected) or if the
COBOL argument is a null-valued pointer passed to a numeric or string parameter,
step 5 has no place to store the modified value. (However, CodeBridge Builder does

Concepts
Modifying COBOL Data Areas

not currently allow the optional base modifier attribute with the out direction
attribute.)

In summary, you must do al of the following to modify a COBOL argument with the C
function:

1

In the COBOL CALL statement, pass the COBOL argument BY REFERENCE
rather than BY CONTENT. Since the BY REFERENCE phrase is the default for
RM/COBOL, it does not have to be explicitly specified unless a preceding BY
CONTENT phrase has overridden the default. RM/COBOL always passes the
argument in the GIVING (RETURNING) phrase BY REFERENCE. Also, do not
pass a null-valued pointer (see page 2-13) or omit the argument (see page 2-17).

In the CodeBridge template file, specify the out direction attribute for the C
parameter. For the function return value, out is assumed.

In the C function, specify the parameter as call “by reference” so that the address of
the temporary C dataitem ispassed in step 3. In the following example, the first
parameter is passed “by value” (asthe value of an integer), while the second is
passed “by reference” (as a pointer to an integer):

fn(int byVvalue, int *byReference);

Passing the Address of COBOL Data

There are times when you may choose to pass the address of the argument or the address
of memory that is accessible by the COBOL run unit through a pointer dataitem.
CodeBridge provides three base attributes that may be used for this purpose.

Using the addr ess base attribute passes the address of a COBOL argument to the C
function as the parameter value and allows the C function to modify the COBOL
data areadirectly. Inthe case of apointer argument, the addr ess base attribute
returns the address of the pointer data item, which is not the address referred to by
the pointer dataitem. The length base attribute may be used to determine the size of
the COBOL argument.

Using the pointer_addr ess base attribute passes the effective address (base address
plus offset) of a COBOL pointer argument to the C function as the parameter value
and allows it to manipulate the contents of the block of memory directly. However,
using the pointer _addr ess base attribute prevents the C function from changing the
value of the COBOL pointer. The pointer_length base attribute may be used to
determine the effective length (size minus offset) of the memory block.

Using the pointer _base base attribute passes the base address component value of a
COBOL pointer argument to the C function as the parameter value and allowsthe C
function to change the value of the pointer base address component as well asthe

CodeBridge 2-31
Modifying COBOL Data Areas

contents of the block of memory. The pointer_offset and pointer _size base
attributes may be used to manipulate the offset and size components of the COBOL
pointer argument.

Note The C function may save in static storage the address obtained by using any of
the three base attributes described above. The saved address may then be used in
subsequent calls. It isthe developer’s responsibility to avoid use of a saved address that
points to adataitem in a COBOL program that has been canceled or to adynamically
allocated memory block that the COBOL program has subsequently deallocated.

Passing Buffer Addresses

In some existing APIs, it is necessary to pass a buffer addressto a C function. Later, that
buffer addressis used by another C function in the API to store aresult value as a C data
item. In such cases, the preferred method of using the out direction attribute cannot be
used and the address of the buffer must be passed instead. CodeBridge may still be used
in such cases to convert the C dataitem to a COBOL data format after the result has been
stored in the buffer. See“Example 6: Converting Buffered C Data’ in Appendix B,
CodeBridge Examples, for details on the CodeBridge solution to this problem for a

C string result in the buffer.

Using P-Scaling

In COBOL, P-scaling is used when working with large integers that have several trailing
zero digits before the decimal point or with small fractions that have several leading zero
digits after the decimal point. Itiscommonly used to store values representing
thousands, millions, or hillions. For example, the PICTURE clause “PIC 9(4)P(3)” is
used to represent all integers from 0 to 9,999,000 in units of 1000. The value 1,234,000
would be stored as 1,234, but would continue to mean 1,234,000.

For input conversions of P-scaled numbers, CodeBridge supplies the missing zero digits.
For output conversions, the extra digits are eliminated by truncation or rounding.
Continuing with the example in the preceding paragraph and using the attribute list
[[float in out rounded]] for theinput conversion, CodeBridge would convert the
stored value (1,234) and pass the floating-point representation of 1,234,000 to the C
function. If the C function added 999 to its parameter, then the output conversion would
round 1,234,999 to 1,235,000 and store 1,235 in the COBOL argument. Adding any
number up to 499 would leave the COBOL argument unchanged. When the rounded
base modifier attribute is not present, CodeBridge truncates the result on output,
converting 1,234,999 to 1,234,000 and storing 1,234 in the COBOL argument.

2-32 Concepts
Using P-Scaling

P-scaling also affects the scale base attribute. Because of P-scaling, the scale of the
COBOL argument in our example is minus three (-3). As another example, the
PICTURE character-string “VP(3)9(3)" has ascale of six (6), even though the digit count
isonly three (3).

Any P-scaling specified in the PICTURE character-string is counted in the digit length
used by CodeBridge when allocating a conversion string buffer for a parameter described
with the general_string or numeric_string base attribute. That is, the digit length used
by CodeBridge is the sum of the number of 9 and P symbols specified in the PICTURE
character-string used to describe the argument data item.

Working with Arrays

Dataitems having numeric or string base attributes may be one-dimensional arrays.
Data items with string base attributes may be arrays of char *, which are similar to
two-dimensional arrays.

Numeric Arrays

For simple numeric types, such as integer or floating-point, the implementation is
straightforward. Examples of valid C numeric array parameters are as follows:

fn(char P1[10],
char *P2,
int P3[40],
float *P4,
float P5[]);

Thefirst two parameters, which use the char datatype, are normally used to represent
character strings. However, you can have a numeric array of characters. The difference
is how the called function interprets the data.

To specify the template file for the preceding C function prototype, you might start with
the following, for example:

fn([[integer inl] char P1[10],
[[integer in]l] char *P2,
[[integer in]l] int P3[40],
[[float in]] float *P4,
[[float in]] float P5[]);

CodeBridge 2-33
Working with Arrays

Although the attribute lists for the variables P2, P4, and P5 are valid C code, CodeBridge
needs to know the size of the array. Y ou could modify the template file by changing the
following:

char *pP2 to char P2[20]
float *P4 to float P4[20]
float P5[] to float P5[10]

However, the template file would no longer match the C function prototype.

An alternate method is to specify an occurs count in the attribute list by modifying the
template file as follows:

fn([[integer in occurs(10)]] char P1[10],
[[integer in occurs(20)]] char *P2,
[[integer in occurs(20)]] int P3[40],
[[float in occurs(20)]] float *P4,
[[float in occurs(10)]] float P5[]D):;

The attribute lists for variables P2, P3, and P4 now have an array size of 20 elements.

For variables P1 and P3, the occur s(value) base modifier attribute overrides the value
specified in the function prototype. For variables P2, P4, and P5, the occur s(value) base
modifier attribute provides a value that was missing in the function prototype. Note that
the attribute list for variable P1 did not change the size of the array, while the attribute
list for variable P3 reduced the size of the array. Reducing the size of the array is
required if the COBOL program passes a smaller array since CodeBridge will convert the
number of array elements indicated by the template.

String Arrays

The implementation of these types of arraysis more complex because strings are aready
arrays of characters. One-dimensional arrays of C parameters with a string base attribute
are alowed (this means that, as a special case, two-dimensional arrays of characters are
allowed). Examples of valid C string array parameters are as follows:

fn(char *P1[10],
char *P2[],
char **P3);

2-34 Concepts
Working with Arrays

To specify the template file for the preceding C function prototype, you might start with
the following, for example:

fn([[string in]] char *P1[10],
[[numeric_string in]] char *P2[],
[[general_string in]] char **P3);

Note that a difference between string and numeric_string attribute listsis how the
dataisinterpreted by the called function. However, both provide null-terminated arrays
of characters. A general_string base attribute may be used to alow numeric and
non-numeric arguments to be converted to null-terminated arrays of characters. A
general_string base attribute applies the rules for the numeric_string base attribute
when the argument is numeric and the rules for the string base attribute when the
argument is non-numeric.

Y ou must modify the attribute list for the variables P2 and P3 because CodeBridge must
know how many string pointersto alocate. Add an occur s(value) base modifier attribute
for variables P2 and P3 and then modify the C function prototype to make it work
correctly (note that you only need to make these changesin the template file, not in the
actual C header file). For example, modify the template file as follows:

fn([[string in 1] char *P1[10],
[[numeric_string in occurs(10)]] char *P2[],
[[general_string in occurs(10)]] char *P3[]);

For variables P2 and P3, the occur s(value) base modifier attribute provides information
needed to allocate the string pointer arrays. The definition of parameter P3 was changed
from “char **P3" to the equivalent form “char *P3[]".

CodeBridge allocates memory for strings (or arrays of strings) with a single memory
allocation call. The generated code contains declarations in the form:

char *P1[10];
char *P2[10];
char *P3[10];

Each element of the array isinitialized to point to the correct offset within the
allocated block.

The number of elementsin the array and the size of each element determine the size of
the allocated block. For anumeric_string, the size of each element is equal to four more
than the digit length of the COBOL argument. For astring, the size of each element is
equal to one more than the length of the COBOL argument. For ageneral_string, the
size of each element is equal to the greater of four more than the digit length and one
more than the length of the COBOL argument.

CodeBridge 2-35
Working with Arrays

2-36

Y ou may override these default element sizes by using the size(value) base modifier
attribute as follows:

fn([[string in size(30)]] char *P1[10],
[[numeric_string in occurs(10) size(35)]] char *P2[],
[[general_string in occurs(10) size(20)]] char *P3[1D):

COBOL Array References

When passing an array reference from COBOL to C, you must pass the first item of the
COBOL array. For example:

CALL "fn™ USING Data-ltem (1).

The OCCURS information for a COBOL dataitem is not passed to a non-COBOL
subprogram. This means that CodeBridge cannot determine the number of elements
inaCOBOL array from the COBOL descriptor for that item. Thisistrue for both the
maximum occurs value and the depending value. If desired, the COBOL program
could pass either of these values as separate parameters. The COBOL special registers
COUNT, COUNT-MAX, and COUNT-MIN may be used to obtain the current

number of occurrences, the maximum number of occurrences specified in the COBOL
OCCURS clause, and the minimum number of occurrences specified in the COBOL
OCCURS clause.

CodeBridge converts the number of COBOL occurrences specified in the template file
regardless of the number of actual occurrencesin the COBOL program or any occurrence
count parameter. Therefore, the COBOL program that calls the function described by the
template must always pass an array that has at least as many occurrences as specified by
the template. If the COBOL program defines fewer occurrences than specified in the
template, CodeBridge will convert data following the array argument in the COBOL data
area. In such cases, output conversion will overwrite data following the array argument,
possibly destroying the integrity of the COBOL program.

CodeBridge only handles COBOL table references that are not SYNCHRONIZED. That
is, Data-Item in the preceding example must be described with the OCCURS clause and
must not be described with the SYNCHRONIZED (SYNC) clause. CodeBridge supports
only singly dimensioned tables of COBOL arguments. A multidimensional table may be
passed, but only the last subscript will be varied by CodeBridge. Further, the table must
contain contiguous elementary items. That is, the last subscript must be for an OCCURS
clause in the argument item description rather than a group item that contains the
argument item.

Concepts
Working with Arrays

CodeBridge Builder

This section describes the CodeBridge Builder, which reads atemplate file asinput and
generates C source as output. This generated source provides the interface between the
COBOL program and the C function by calling functions in the CodeBridge Library to
convert between COBOL arguments and C parameters, as needed, before and after
calling the target C function.

For each C function prototype in the template file, a corresponding function is generated
inthe DLL interface code. Each function contains al of the logic needed to do the
following:

e Produce an exportable DLL function

e Optionally perform input argument validation
e Convert input arguments from COBOL to C

e Cadl the Cfunction

e Optionally perform output parameter validation
e Convert output parameters from C to COBOL

Using the CodeBridge Builder

The CodeBridge Builder isacommand line program (for Windows, a console
application). The application program file is named cbridge.exe.

To start the CodeBridge Builder from the command line, enter:
cbridge <input file> [<output file>] [-Ff (-F)]
where:

<input file> isthe pathname of the template file. This parameter isrequired. If you
do not supply an extension, the CodeBridge Builder will add the extension .tpl.

<output file> is the pathname for the generated source file. This parameter is
optional. If itis not specified, the value of <input file> will be used with the
extension changed to .c.

-f (or -F) isacommand line option that may be used to force CodeBridge Builder to
generate C source code, even if errors are encountered. This parameter is optional.
If it isspecified, any error messages will be concatenated to the end of the generated

CodeBridge 2-37
CodeBridge Builder

source in addition to appearing in the error file. The error fileis always generated,
regardless of whether the -f option is specified.

Note The generated C source contains a#include C preprocessor directive that
refersto the additional header files: rmc85cal.h, rmport.h, rtarg.h, rtcallbk.h, and
standdef.h. All of these files are installed with CodeBridge.

If errors are encountered, an error fileis generated (see “ CodeBridge Builder Error
Messages’ in Appendix A, CodeBridge Errors). The error file uses the same pathname
as <output file> with the extension changed to .err.

For example, the command:

cbridge src\myfile._tpl

reads src\myfile.tpl, writes the generated source to src\myfile.c, and writes any error
messages to src\myfile.err.

The command:

cbridge tpl\myfile src\myfile._src

reads tpl\myfile.tpl, writes the generated source to src\myfile.src, and writes any error
messages to src\myfile.err.

The CodeBridge Builder checks for errorsin the template file and if any errors are
present, it produces afile that contains diagnostic information. If there are errorsin the
template file, however, no output file will be generated. When there are errorsin the
template, the resultant source file should be considered unusable even though aC
compiler might compile it without errors.

Note The CodeBridge Builder exit codes are also described in Appendix A, CodeBridge
Errors.

2-38 Concepts
CodeBridge Builder

Appendix A: CodeBridge Errors

This appendix lists and describes the messages that can be generated during the use of

either the CodeBridge Builder or the CodeBridge Library. These messages also include
the CodeBridge Builder exit codes.

CodeBridge Builder Error Messages

CodeBridge Builder error messages have the following form:

<file>(<line>) <severity> - <message number>: <message text>

where severity can be either “inform” or “error”.

Table A-1 lists the error messages produced by the CodeBridge Builder.

Table A-1: CodeBridge Builder Error Messages

Message Number Message Text

100010 The template element is not correctly formed.

100020 The #include directive is not correctly formed.

100030 The user function is not correctly formed.

100040 The attribute is not correctly formed.

100045 The attributes are not correctly formed.

100050 The attribute expression’s element is not correctly formed.
100060 The attribute value clause is not correctly formed.
100070 The attribute clause is not correctly formed.

100080 The C function’s header is not correctly formed.

100090 The name declaration is not correctly formed.

100100 The array declaration is not correctly formed.

100110 The argument list is not correctly formed.

100120 The argument is not correctly formed.

100130 There is no such attribute [[attribute_name]].
100140 The attribute [[attribute_name]] can’'t have avalue.

CodeBridge
CodeBridge Builder Error Messages

A-1

Table A-1: CodeBridge Builder Error Messages (Cont.)

Message Number Message Text

100150 The attributes [[attribute_name]] and [[attribute_name]] are
incompatible.

100160 One of the minimal attribute combinations must be present:
[[attribute combinations]].

100180 Either the [[arg_num]] or [[ret_val]] attribute must not be used,
sinceit wasn’t used on a previous parameter.

100190 Either the [[arg_num]] or [[ret_val]] attribute must be used,
since it was used on a previous parameter.

100210 The global attributes are not correctly formed.

100220 The global attribute is not correctly formed.

100230 Thereis no such global attribute [[attribute_name]].

100240 The attribute [[attribute_name]] must have number value(s).

100250 The global attribute’s convention value clause is not correctly formed.

100260 The global attribute’ s replace value clause is not correctly formed.

100270 The global attribute’s normal value clause is not correctly formed.

100280 The global name declaration is not correctly formed.

100285 Duplicate global attribute: [# attribute_name #]

100290 Thereis no such diagnostic value: (value).

100300 The number of the argument with [[repeat]] attributeis not
the highest.

The CodeBridge Builder uses the following datafiles: dllgen.in, dligen.out, dligen.p01,
and dllgen.sym. Occasionally, if these files are write-protected, the CodeBridge Builder
may not be able to open them, and an error message similar to the following will be

displayed:

C:\TOOLS\SCANNER.EXE: FAILURE
- Unable to open File "C:\TOOLS\DLLGEN.xxx".

If this occurs, modify the attributes of these four files so that they are not write-protected.

CodeBridge Errors
CodeBridge Builder Error Messages

CodeBridge Builder Exit Codes

The CodeBridge Builder will return a completion status (or exit code). This status can be
interrogated by the batch stream or shell script. Table A-2 lists the CodeBridge Builder
exit codes.

Table A-2: CodeBridge Builder Exit Codes

Code Description
0 Normal program termination with no diagnostic messages produced.
1 Normal program termination with some diagnostic messages produced.
253 Abnormal program termination—error creating temporary file.
254 Abnormal program termination—error executing program.
255 Abnormal program termination—an internal error occurred.

CodeBridge Library Error Messages

An execution error in the CodeBridge Library causes the called C subprogram to exit and
the COBOL run unit to terminate.

When a CodeBridge Library function detects an error during conversion or validation, it
displays an error message before returning to the calling program.

Note The errors displayed by the CodeBridge Library are in addition to errors that may
subsequently be displayed by the RM/COBOL runtime system. See Appendix A,
Runtime Messages, in the RM/COBOL User’s Guide.

A CodeBridge Library error message contains the following information:

Function: <calling function name>

Argument Number: <number> (or Argument: Return Value)
Operation: <library function name>

Error: <error number> - <message text>

<calling function name> is the Name parameter from the last call to ConversionStartup
(see page F-42).

<number> is the one-based argument number of the argument in the USING phrase.
When the alternative, Return Value, is shown, it indicates the argument in the GIVING
(RETURNING) phrase.

CodeBridge A-3
CodeBridge Builder Exit Codes

A-4

<library function name> is the conversion or validation operation specified as one of
the names listed in the “Function Name” column of Table F-1 on page F-2. For
example, Cobol Tolnteger, which is described beginning on page F-29, would be
specified if the error occurred during conversion of a COBOL numeric argument to a
C integer parameter.

<Error number> isthe “Error Code” and <message text> isthe “Error Text” listed in
Table A-3 on page A-5.

For Windows platforms, a message box with the error message is displayed. The
following shows an example of a CodeBridge Library error message on Windows:

Cade Hridgs Ldbrary Ermar

Function: G005

Arpament: Retam¥ alae
Ciperation GobolT oFboat

Emor: 517 - hemens dsis sopacisd

For UNIX platforms, the message is written to stderr. The following shows an example
of aCodeBridge Library error message on UNIX:

CodeBridge Library Error

Function: CINT2INTEGER

Argument Number: 2

Operation: CobolToString

Error: 515 - Non-numeric data expected

CodeBridge Errors
CodeBridge Library Error Messages

Table A-3:

CodeBridge Library Errors

Error
Code

Error Text

Description

501

Digits count too large

One of the base modifier attributes (assert_digits,
assert_digits left, or assert_digits right) was
specified and the corresponding number of digits
in the passed COBOL argument was greater than
the indicated maximum.

502

Digits count too small

One of the base modifier attributes (assert_digits,
assert_digits left, or assert_digits right) was
specified and the corresponding number of digits
in the passed COBOL argument was less than the
indicated minimum.

503

Initialization needed

A call was made to a CodeBridge Library function
prior to calling the ConversionStartup function.
This error should never occur when using the
CodeBridge Builder.

504

Integer data expected

Theinteger_only base modifier attribute was
specified and the COBOL argument contains digits
to the right of the decimal point.

505

Internal logic — Argument
setup

This indicates an incompatibility between the
RM/COBOL compiler and runtime. The
descriptor of the COBOL argument contained
unexpected values.

506

Internal logic — Datatype

Thisindicates an incompatibility between the
RM/COBOL compiler and runtime. The type of
the COBOL argument contained an unexpected
value.

507

Internal logic — Parameter
setup

Thisindicates alogic error in the CodeBridge
Library. While setting up a description of the C
parameter, an unexpected condition was
encountered.

508

Invalid argument number

The argument number supplied was not valid.
This could indicate an internal error with the
CodeBridge Builder or that the developer used a
bad value when calling a CodeBridge Library
function directly.

509

Invalid C numeric string

[[numeric_string out]] was specified and the
C string is not numeric.

CodeBridge
CodeBridge Library Error Messages

A-5

A-6

Table A-3: CodeBridge Library Errors (Cont.)

Error

Code Error Text Description

510 Invalid datatype The COBOL argument contains an unsupported
datatype.

511 Invalid sign specification The COBOL argument contains an invalid sign.

512 Length too large The assert_length base modifier attribute was
specified and the corresponding length of the
passed COBOL argument was greater than the
indicated maximum.

513 Length too small The assert_length base modifier attribute was
specified and the corresponding length of the
passed COBOL argument was less than the
indicated minimum.

514 Memory allocation error The CodeBridge Library attempted to allocate
memory and encountered an error.

515 Non-numeric data expected A numeric COBOL argument was used with the
string base attribute.

516 Null pointer not allowed The COBOL program passed a null pointer when
the no_null_pointer base modifier attribute was
used.

517 Numeric data expected A non-numeric COBOL argument was used with
one of the following numeric base attributes:
float, integer, or numeric_string.

518 Omitted argument not The COBOL argument was omitted for an

alowed argument that was not optional.

519 Pointer data expected The COBOL argument was not a POINTER when
apointer base attribute was used.

520 Signed argument expected An unsigned numeric COBOL argument was used
when the signed base modifier attribute was set.

521 Size error A size error occurred during numeric data
conversion and theno_size error base modifier
attribute was not set.

522 Size not supported The size of the C parameter does not conform to
one of the supported C numeric data types (such as
int or float).

523 Unsigned argument expected | A signed numeric COBOL argument was used
when the unsigned base modifier attribute was set.

CodeBridge Errors
CodeBridge Library Error Messages

Table A-3:

CodeBridge Library Errors (Cont.)

large

Error

Code Error Text Description

524 Version level mismatch This version of the CodeBridge Library does not
support the minimum level of conversion and
validation features indicated by the Version
parameter of the ConversionStartup call.

525 Effective_length occurs too The occurs count for an effective_length base

attribute is larger than the occurs count for the C
parameter associated with the same argument
number. The occurs count for the effective_length
base attribute must be less than or equal to the
occurs count for the associated C parameter.

CodeBridge A-7
CodeBridge Library Error Messages

A-8 CodeBridge Errors
CodeBridge Library Error Messages

Appendix B: CodeBridge
Examples

This appendix contains examples that use the typical CodeBridge development process
outlined in Chapter 1, Introduction. The examples build from simple to complex, asa
means of introducing CodeBridge concepts, which are discussed in Chapter 2, Concepts.

In addition to these examples, there are several CodeBridge sample programs that are
included with the development system in the CodeBridge samples subdirectory (cbridge
on Windows and cbhsample on UNIX). Seethe appropriate README file (and the
samples.txt file on Windows) for additional information about the CodeBridge sample
programs that are included.

Note 1 In the following example template files, bold type is used to indicate the

first instance of a CodeBridge attribute that is being introduced. Detailed information
about attributes and attribute listsis provided in Appendix D, Global Attributes, and
Appendix E, Parameter Attributes.

Note 2 Unlike COBOL, C is acase-sensitive programming language. Thus, the caseis
significant for words in these example template files.

Example 1: Calling a Standard C Library
Function

This example demonstrates calling a standard C library function without writing any C
code. Parameter attribute lists are also presented. See the details of this example on
page 1-9 in the “Typical Development Process Example” section.

CodeBridge B-1
Example 1: Calling a Standard C Library Function

Example 2: Calling a Windows API Function

This example demonstrates calling a Windows API function to display a message box.
Both global attribute lists and parameter attribute lists are used.

Note Since this example deals with aWindows APl function, it isfully elaborated only
for Windows, where the ODBC AP is readily available from Microsoft. However, the
CodeBridge techniquesillustrated are general in nature and may be instructive to
developers creating templates for C subprograms on UNIX systems.

1. Start with the function prototype for the Windows API function, MessageBox:

WINUSERAPI int WINAPI MessageBox(HWND hwnd,
LPCSTR IpText, LPCSTR IpCaption, UINT uType);

2. Create atemplate file named mbox.tpl in the src directory that consists of the
following lines:

#include <windows.h>
#include <winuser.h>

[# replace_type(LPCSTR; char *)
convention(WINUSERAPI)
convention(WINAPI) #]

[[integer out]] WINUSERAPI

int WINAPI MessageBox(
[[windows_handle]] HWND hWnd,
[[string in trailing_spaces]] LPCSTR IpText,
[[string in trailing_spaces]] LPCSTR IpCaption,
[[integer in unsigned]] UINT uType);

The template file needs #include C preprocessor directives for files that contain any
required defined data types (using macros defined with the #define C preprocessor
directives and C data types defined with typedef statements). In this example, the
windows.h and winuser .h header files are included.

Global attribute lists (for example, [# replace_type(LPCSTR; char *) #])
are constructed by placing the attributes between the characters [# and #]. The two
global attributes used in this example are replace_type and convention.

Thereplace type global attribute causes CodeBridge to replace a defined C type
with the specified value. In this example, the type LPCSTR is replaced with the
value char *, which is required whenever the definition of a pointer is hidden within

B-2 CodeBridge Examples
Example 2: Calling a Windows API Function

adefined type. The number of levels of indirection (indicated by asterisks) inaC
data type tells CodeBridge Builder how to correctly build calls to the C function.

The convention global attribute informs the CodeBridge Builder that a particular
text string represents a calling convention to a C function. CodeBridge must
preserve the calling convention in the constructed external reference to the C
function while removing it from the definition of the generated variable used to hold
the function return value.

Several new parameter attributes are introduced. Theinteger base attribute is used
when the type of the C parameter is an integer (such as char, short, int, unsigned,
or long). The string base attribute is used when the type of the C parameter isa
string (an array of characters) and the type of the COBOL argument is non-numeric.

Some parameter base attributes do not obtain information directly from a COBOL
argument. One of these isthe windows_handle base attribute, which obtainsits
value from the Windows handle associated with the calling program (in this case, the
Windows handle of the RM/COBOL runtime system).

There are two input strings in this example. The attributelist [[string in
trailing_spaces]] isused for both of them. When an input string is
encountered, a conversion buffer is allocated to contain the string. The datais
copied from the COBOL argument and atrailing null is appended. The
trailing_spaces base modifier attribute causes trailing spaces to be removed before
the null character is added for input conversions (for output conversions, the null
character is removed and trailing spaces are appended).

One of the C parametersis of type UINT, which has avalue of unsigned integer.
The unsigned base modifier attribute ensures that the CodeBridge Library treats the
data as unsigned.

Invoke the CodeBridge Builder by using the following command line:
cbridge src\mbox.tpl

This command reads the input file from src\mbox.tpl and writes its output file to
src\mbox.c. Any errors would be written to file src\mbox.err

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

cl -c -MD -Zpl src\mbox.c

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:mbox.dll
mbox.obj kernel32_l1ib user32._1ib

CodeBridge B-3
Example 2: Calling a Windows API Function

B-4

5. CreateaCOBOL program in afile named mbox.cbl that contains the following
source fragments:

77 NUMBER-1 PIC 99.
77 NUMBER-2 PIC 99.
77 NUMBER-3 PIC 99.
77 NUMBER-4 PIC 99.
77 NUMBER-5 PIC 99.
77 NUMBER-6 PIC 99.
77 TEXT-1 PIC X(256).
77 RESULT PIC 99.

78 CR-LF Value X"ODOA™.

78 MB-OK-BUTTON Value O.

78 MB-INFO-ICON Value 64.

78 MB-STYLE Value MB-OK-BUTTON + MB-INFO-1CON.
78 MB-CAPTION Value "LOTTERY'.

STRING "Today"s winning lottery numbers"™ CR_LF
NUMBER-1 " — " NUMBER-2 ** — " NUMBER-3 ' — ™
NUMBER-4 ™ — " NUMBER-5 " — " NUMBER-6
DELIMITED BY SIZE INTO TEXT-1.

CALL "MessageBox' USING TEXT-1 MB-CAPTION MB-STYLE

GIVING RESULT.

The COBOL code creates a message box containing the text, “Today’ s winning
lottery numbers Xx — Xx — XX — XX — XX — XX", where xx represents one of the six
lottery numbers. (The code for setting NUMBER-1 through NUMBER-6 is not
shown.)

Note The value of the Windows handle parameter, named hwnd, is supplied by the
RM/COBOL runtime system. It does not have an associated COBOL argument.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol mbox
7. Runthe application with the following command line:

runcobol mbox -1 mbox.dll

CodeBridge Examples
Example 2: Calling a Windows API Function

Example 3: Accommodating a Variable
Number of Parameters

This example uses an alternate method to create the same message box that was
presented in Example 2. It also demonstrates calling a C function that accepts a variable
number of parameters.

Note Since this example deals with a Windows APl function, it is fully elaborated only
for Windows. However, the CodeBridge techniques illustrated are general in nature and
may be instructive to devel opers creating templates for C subprograms on UNIX

systems.

1. CreateaC function, message box (which calls the Windows API function,
MessageBox), in afile named mbox2fn.c in the src directory that consists of the
following lines:

#include <windows.h>
#include <winuser.h>

int message_box(HWND hWnd, int ArgCount,

{

}

int Options, char *Title, char *Text, ...)

int i;
char MessageText[512];
va_list Marker;

strcpy(MessageText, Text);

va_start(Marker, Text);

for (i = 4; i <= ArgCount; i++)
strcat(MessageText, va_arg(Marker, char*));

va_end(Marker);

return(MessageBox(hWnd, MessageText, Title, Options));

Note 1 The function has a variable number of string parameters (represented on
the function prototype by the ellipsis“..."), which are concatenated to form a
singletext string. This allows the calling COBOL program to pass these strings
separately instead of using a STRING statement to concatenate them as was done in
Example 2.

CodeBridge B-5
Example 3: Accommodating a Variable Number of Parameters

B-6

Note 2 Although it would seem logical to name the file that contains the
message_box function mbox2.c and the file that contains the template mbox2.tpl,
the CodeBridge Builder names its output file mbox2.c and thus would overwrite the
file containing message_box were it also named mbox2.c.

Create atemplate file named mbox2.tpl in the src directory that consists of the
following lines:

[[integer out]] int message_box(

[[windows_handle]] HWND hwWwnd,
[[arg_count]] int ArgCount,
[[integer in unsigned]] int Options,

[[string in trailing_spaces]] char *Title,
[[general_string in

trailing_spaces

leading_minus repeat(20)]] char *Text, ...);

Thearg_count base attribute (like the windows_handle base attribute introduced in
Example 2) is not associated with a COBOL argument. It is used to pass the actual
number of COBOL argumentsto the C function. This allows the message box
function to determine, for each call, how many strings have been passed.

CodeBridge offers several waysto pass a string to a C function:
e Thestring base attribute is used when the COBOL argument is non-numeric.

e Thenumeric_string base attribute is used when the COBOL argument is
numeric.

e Thegeneral_string base attribute is used in those cases when it is desirable to
allow a C string parameter to accept either anumeric COBOL argument or a
non-numeric COBOL argument. When a numeric argument is passed to a
parameter described with the general_string base attribute, the argument is
converted asif the parameter were described with the numeric_string base
attribute; otherwise, the argument is converted asif the parameter were
described with the string base attribute. An attribute list containing the
general_string base attribute allows any additional attributes that may be used
with either a string base attribute or anumeric_string base attribute. For each
call and for each argument passed to a parameter within a set of avariable
number of parameters, attributes that do not apply to the COBOL argument
actually passed are ignored for the conversion of that argument. That is, for a
numeric argument, base modifier attributes not applicable to the
numeric_string base attribute are ignored and for a non-numeric argument,
base modifier attributes not applicable to the string base attribute are ignored.

CodeBridge Examples
Example 3: Accommodating a Variable Number of Parameters

In this example, when a non-numeric argument is passed to the parameter named
Text, the trailing_spaces base modifier attribute will be acted upon and the
leading_minus base modifier attribute will be ignored. When a numeric argument
is passed, the opposite will occur.

The leading_minus base modifier attribute isused in numeric_string and
general_string parameter attribute lists to specify that a minus sign character should
be placed before the digits of the parameter value when the COBOL argument is a
negative number. For more information, see the discussion of the leading_minus
base modifier attribute in the “Base Modifiers that Apply to Numeric Base
Attributes’ section on page E-7.

Therepeat(value) base modifier attribute provides partial support for C functions
with avariable number of parameters. The message box function uses the ellipsis
(...) toindicate that it can accept any number of parameters following the parameter
named Text. While CodeBridge Builder does not allow an unspecified number of
trailing parameters, it does support a fixed number of extra parameters (in this
example, repeat(20) specifies up to 20 extra string parameters, which may be
associated with numeric or non-numeric arguments because of the general_string
base attribute).

Invoke the CodeBridge Builder by using the following command line:
cbridge src\mbox2.tpl

This command reads the input file from src\mbox2.tpl and writes its output file to
src\mbox2.c. Any errors would be written to file src\mbox2.err.

Compile and link the non-COBOL subprogram library with the C compiler of your
choice. There are now two C filesto compile:

e Themessage box function (created in step 1) in the file named mbox2fn.c.

e Thefile named mbox2.c (created in step 3 by CodeBridge Builder when it
processed the file named mbox2.tpl, created in step 2).

Use commands similar to the following:

cl -c -MD -Zpl src\mbox2fn.c
cl -c -MD -Zpl src\mbox2.c

link -nologo -machine:1X86 -section:.edata,RD —dll
-subsystem:windows -out:mbox.dll
mbox2.obj mbox2fn.obj kernel32.lib user32.lib

CodeBridge B-7
Example 3: Accommodating a Variable Number of Parameters

5. Create aCOBOL program in afile named mbox2.cbl that contains the following
source fragments:

77 NUMBER-1 PIC 99.
77 NUMBER-2 PIC 99.
77 NUMBER-3 PIC 99.
77 NUMBER-4 PIC 99.
77 NUMBER-5 PIC 99.
77 NUMBER-6 PIC 99.
77 TEXT-1 PIC X(256).
77 RESULT PIC 99.

78 CR-LF Value X"ODOA™.

78 MB-OK-BUTTON Value O.

78 MB-INFO-ICON Value 64.

78 MB-STYLE Value MB-OK-BUTTON + MB-INFO-1CON.
78 MB-CAPTION Value "LOTTERY'.

CALL "message_box" USING MB-STYLE MB-CAPTION
"Today"s winning lottery numbers' CR-LF
NUMBER-1 " — " NUMBER-2 ** — " NUMBER-3 ' — ™
NUMBER-4 ™ — " NUMBER-5 " — " NUMBER-6
GIVING RESULT.

The COBOL code creates a message box containing the text, “Today’ s winning
lottery numbers Xx — Xx — XX — XX — Xx — XX", where xx represents one of the six
lottery numbers. (The code for setting NUMBER-1 through NUMBER-6 is not
shown.)

Note The parameters to message box have been reordered so that the variable
parameters occur at the end. For this reason, the arguments of the COBOL CALL
have been similarly reordered. Vaues for the Windows handle and argument count
parameters, named hWnd and ArgCount, respectively, are supplied by the
RM/COBOL runtime system.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol mbox2
7. Runthe application with the following command line:

runcobol mbox2 -1 mbox2.dll

B-8 CodeBridge Examples
Example 3: Accommodating a Variable Number of Parameters

Example 4: Accessing COBOL Pointer
Arguments

This example shows how to access data described by pointer data items and demonstrates
how dynamic memory management can be implemented. It also illustrates that a
COBOL pointer argument can be used with both the C function return valueand aC
parameter. Finaly, it shows the use of more than one attribute list for asingle C
parameter.

Note While the C functionsillustrated in this example could be used for providing
dynamic memory allocation, RM/COBOL supplies the subprograms C$MemoryAllocate
and C$MemoryDeallocate in its subprogram library as described in Appendix F,
Subprogram Library, of the RM/COBOL User's Guide. Those subprograms, in most
circumstances, should be used to provide dynamic memory allocation in RM/COBOL.

A COBOL pointer data item describes a block of memory. It contains three components:
base address, offset, and size. When a pointer dataitem isinitialized, the base address
contains the starting address of the block, the offset is set to 0, and the size contains the
total length of the block.

CodeBridge pointer base attributes are used when COBOL pointer arguments are being
passed to the C function. CodeBridge provides two approaches for accessing data
described by a pointer dataitem. The first approach is used when the C function only
needs to access the data referenced by the pointer. The second approach is used when
the C function also needs to access the components of the pointer argument itself. The
following example demonstrates the second approach.

1. Start with the function prototypes for the standard C library memory allocation
functions, free, malloc, and realloc:

void free(void *memblock);
void *malloc(size_t size);
void *realloc(void *memblock, size_t size);

CodeBridge B-9
Example 4: Accessing COBOL Pointer Arguments

2. Create atemplate file named mem.tpl in the src directory that consists of the
following lines:

#include <stdlib.h>
#include <malloc.h>

void free(
[[pointer_base in]] void *memblock);

[[pointer_base out
pointer_reset _offset
ret_val]] void *malloc(
[[integer in arg_num(1)]11
[[pointer_size out ret_val]] size_t size);

[[pointer_base out ret_val]] void *realloc(

[[pointer_base in arg_num(1)]1] void *memblock,
[[integer in arg_num(2)]11
[[pointer_size out ret_val]] size_t size);

Thearg _num and ret_val argument number attributes are used to refer to COBOL
arguments when they are passed by the calling program in an order that differs from
the parameter order of the C function. For more information on associating C
parameters with COBOL arguments, see “ Associating C Parameters with COBOL
Arguments’ on page 2-21.

Note Whenthearg num or ret_val argument number attributes are used for any
attribute list, they must be used for every attribute list of that function.

The pointer_base and pointer_size base attributes refer to the base address
component and size component, respectively, of a COBOL pointer argument. The
pointer_reset_offset base modifier attribute is used with pointer _base base
attribute to set the offset component to zero.

The free function, which deall ocates memory, uses the pointer _base base attribute
to describe an input parameter that provides the base address of the memory block
that will be freed.

The malloc function, which allocates memory, uses the pointer _base base attribute
to describe an output parameter that receives the base address of the allocated
memory using the function return value. The pointer_reset_offset base modifier
attribute sets the offset component to zero. The malloc function also uses the
pointer_size base attribute to describe an output parameter that sets the pointer size
component from the input parameter named size.

B-10 CodeBridge Examples
Example 4: Accessing COBOL Pointer Arguments

Therealloc function, which changes the size and possibly the address of the block
of memory, differs from the malloc function in three ways. It does not reset the
pointer offset component to zero (the old value isretained). It also expects the
address of the current memory block as an input parameter (in this case, the
pointer_base base attribute is used with argument 1 to satisfy this expectation).

Finally, the parameter named size has two attribute lists. The first attribute list
supplies the new block size from the second COBOL argument in the USING phrase
to the size parameter. The second attribute list sets the size component of the
argument in the GIVING (RETURNING) phrase from the size parameter.

Invoke the CodeBridge Builder by using the following command line:

cbridge src\mem.tpl

This command reads the input file from src\mem.tpl and writesits output file to
src\mem.c. Any errors would be written to file src\mem.err.

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

For Windows
cl -c -MD -Zpl src\mem.c

link -nologo -machine:1X86 -section:.edata,RD —dll
-subsystem:windows -out:mem.dll
mem.obj kernel32.lib user32.lib

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
modul e with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms’ on page H-10.

To compile:
cc -c src/mem.c

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, asfollows:

cc -b elf -c src/mem.c
Tolink:

cc -G -0 mem.so mem.o

CodeBridge B-11
Example 4: Accessing COBOL Pointer Arguments

5. CreateaCOBOL program in afile named mem.cbl that contains the following
source fragments:

01 Pointer-1 USAGE POINTER.
01 Pointer-2 USAGE POINTER.

CALL "malloc™ USING 4096 GIVING Pointer-1.
CALL "realloc™ USING Pointer-1 8192 GIVING Pointer-2.
IF Pointer-2 NOT = NULL
SET Pointer-1 TO Pointer-2
END-IF.
CALL "free" USING Pointer-1.

The COBOL code allocates a block of memory that is 4096 byteslong. After the
malloc call, the base address component of Pointer-1 contains the address of the
allocated memory block (or NULL if malloc was unable to allocate the memory).
The offset component of Pointer-1 is zero and its size component is 4096. Next, the
realloc call increases the size of the memory block to 8192 bytes (or possibly
allocates a new block, copies the data, and frees the original block; also, aNULL
may be returned if the request cannot be satisfied). Finally, the free call deallocates
the 8192-byte block of memory (or the original 4096-byte block if the call to
realloc fails).

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol mem

7. Runthe application, specifying the name of the COBOL program and the name of
the non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DLL
or aUNIX shared object (generally referred to as optional support modules). Since
the COBOL program and the non-COBOL subprogram have the same root name
(mem), it is necessary to specify the correct file extension.

For Windows
runcobol mem -1 mem.dll
For UNIX

runcobol mem -1 mem.so

B-12 CodeBridge Examples
Example 4: Accessing COBOL Pointer Arguments

If the preceding examples had used different root names for the COBOL program
and the non-COBOL subprogram, it would not be necessary to specify thefile
extension. For example, if the COBOL program were named “myprog”, then the
following command could be used for either Windows or UNIX:

runcobol myprog -1 mem

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge
Example 4: Accessing COBOL Pointer Arguments

B-13

Example 5: Packing and Unpacking
Structures

When a C function uses structures or unions as parameters, you must use an intermediate
function that packs scalars into structure and union parameters. This exampleillustrates
that process. No new attributes or attribute lists are presented.

1. Start with the function prototypes for the two standard C library functions, time and
localtime:

time_t time(time_t *timer);
struct tm *localtime(const time_t *timer);

The return value for localtime is a C structure named tm, which is defined as:

struct tm {int tm_sec; //seconds [0,59]
int tm_min; //minutes [0,59]
int tm_hour; //hours [0,23]
int tm_mday; //day of month [1,31]
int tm_mon; //month [0,11]
int tm_year; //years since 1900!
int tm_wday; //day of week [0,6]
int tm_yday; //day of year [0,365]

int tm_isdst; //daylight savings flag};

Create a C function, time_function, in afile named timefn.c in the src directory that
consists of the following lines:

#include <time.h>

time_function(short *sec, short *min, short *hour)

{
time_t time_of _day;
struct tm *tmbuf;
time_of _day = time(NULL);
tmbuf = localtime(&time_of _day);
*sec = tmbuf->tm_sec;
*min = tmbuf->tm_min;
*hour = tmbuf->tm_hour;
}

This function calls time and localtime and extracts the structure members
named tm_sec, tm_min, and tm_hour, into scalar output parameters named sec,
min, and hour.

B-14 CodeBridge Examples
Example 5: Packing and Unpacking Structures

Create atemplate file named mytime.tpl in the src directory that consists of the
following lines:

time_function(

[[integer out]] short *sec,
[[integer out]] short *min,
[[integer out]] short *hour);

Invoke the CodeBridge Builder by using the following command line;
cbridge src\mytime.tpl

This command reads the input file from src\mytime.tpl and writes its output file to
src\mytime.c. Any errorswould be written to file src\mytime.err.

Compile and link the non-COBOL subprogram library with the C compiler of your
choice. There aretwo C filesto compile:

e Thetime function function (created in step 1) in the file named timefn.c.

e Thefile named mytime.c (created in step 3 by CodeBridge Builder when it
processed the file named mytime.tpl, created in step 2).

Use commands similar to the following:

For Windows

cl -c -MD -Zp1l src\timefn.c
cl -c -MD -Zpl src\mytime.c

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:mytime.dll
mytime.obj timefn.obj kernel32_1lib user32_lib

CodeBridge B-15
Example 5: Packing and Unpacking Structures

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
modul e with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms” on page H-10.

To compile:

cc -c src/mytime.c
cc -c src/timefn.c

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, asfollows:

cc -b elf -c src/mytime.c
cc -b elf -c src/timefn.c

Tolink:
cc -G -0 mytime.so mytime.o timefn.o

5. CreateaCOBOL program in afile named mytime.cbl that contains the following
source fragments:

01 GROUP-1.
02 TM-SEC PIC 9(2).
02 TM-MIN PIC 9(2).
02 TM-HOUR PIC 9(2).

CALL "time_function™ USING TM-SEC TM-MIN TM-HOUR.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol mytime

7. Run the application, specifying the name of the COBOL program and the name of
the non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DLL
or aUNIX shared object (generally referred to as optional support modules). Since
the COBOL program and the non-COBOL subprogram have the same root name
(mytime), it is necessary to specify the correct file extension.

B-16 CodeBridge Examples
Example 5: Packing and Unpacking Structures

For Windows

runcobol mytime -1 mytime.dll

For UNIX

runcobol mytime -1 mytime.so

If the preceding examples had used different root names for the COBOL program
and the non-COBOL subprogram, it would not be necessary to specify thefile
extension. For example, if the COBOL program were named “myprog”, then the
following command could be used for either Windows or UNIX:

runcobol myprog -1 mytime

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge B-17
Example 5: Packing and Unpacking Structures

Example 6: Converting Buffered C Data

When an existing C API uses one C function to establish a buffer address and another
C function to store data into the buffer, the preferred method of using the out direction
attribute to modify COBOL data areas cannot be used (see “Modifying COBOL Data
Areas’ on page 2-29).

Note Thisexampleisfully elaborated only for Windows, where the ODBC API is
readily available from Microsoft. However, the CodeBridge techniquesillustrated are
general in nature and may be instructive to devel opers creating templates for C
subprograms on UNIX, including use of the ODBC API provided by other companies
for some UNIX systems.

An example of this situation occursin the Microsoft ODBC API. A buffer location is
established with the function SQL BindCol, which binds a result set column to a storage
location. Later, acall to the function SQL Fetch obtains data from the result set and
returns the data for each column previously bound to a storage location with the function
SQLBindCol. The data obtained by the function SQL Fetch is stored as C format data,
not COBOL format data. For example, a string would be stored as a null-terminated C
string. If aCOBOL program is using CodeBridge to make the callsto the functions,
SQLBindCol and SQL Fetch, a method is needed to convert the C format datato COBOL
format data. Such a conversion function can be written using CodeBridge and a minimal
C function supplied by the devel oper.

This exampleillustrates a conversion routine that converts a C null-terminated string into
a space-filled COBOL aphanumeric data item.

1. Start by writing asimple C function that copies one C string to another:
#include <string.h>
void cstring2text(char *plnput, char *pOutput)

{ (void)strcpy(pOutput, plnput);
}

2. Create atemplate file named strevt.tpl in the src directory that consists of the
following lines:

void cstring2text(
[[address]] char *plnput,
[[string out trailing_spaces]] char *pOutput);

B-18 CodeBridge Examples
Example 6: Converting Buffered C Data

Invoke the CodeBridge Builder by using the following command line:
cbridge src\strcvt.tpl

This command reads the input file from src\str cvt.tpl and writes its output file to
src\strevt.c. Any errors would be written to file src\strevt.err.

CodeBridge Builder generates a C function from the template file. The generated

C function will add trailing space characters to the output string argument because of
the trailing_spaces base modifier attribute specified in the template file. All the
work of the conversion is performed in the call to StringToCobol in the generated
function (see page F-59 for a description of StringToCoboal).

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

cl -c -MD -Zpl src\strcvt.c

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:strcvt.dll
strcvt.obj kernel32_1ib user32._1lib

Create a COBOL program in afile named strcvt.cbl that contains the following
source fragments:

01 IN-STRING PIC X(257).
01 OUT-STRING PIC X(256).

CALL "cstring2text”™ USING IN-STRING OUT-STRING.

In this example, it is assumed that the address of IN-STRING was passed to a

C function, for example, the function SQLBindCol, and then subsequently a

C function was called that used this address to store a string, for example, the
function SQL Fetch. See *Passing the Address of COBOL Data’ on page 2-31 for
an explanation of how the address of a dataitem is passed using CodeBridge. These
fragments of the COBOL program are not illustrated here. In this example the data
item named IN-STRING would contain a null-terminated C string and thus should
not be used by the COBOL program other than in the call to the function that uses it
as abuffer address and to the conversion function, cstring2text.

Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol strcvt
Run the application with the following command line:

runcobol strcvt -1 strcvt.dll

CodeBridge B-19
Example 6: Converting Buffered C Data

Example 7: Calling C++ Libraries from
CodeBridge

The following example demonstrates how to resolve external references between the
ways that C external names and C++ external names are represented.

The special techniques described in this example are necessary because the external
function and variable names generated by C and C++ compilers do not match. C++
embeds type information in the external name that C cannot use. This type information
is present even in C++ code that does not use C++ features. The linker, therefore, cannot
resolve acall from C into C++ unless the C++ function or variable declaration explicitly
specifies that the function or variable be made compatible with C.

To correct this situation, the C++ function definition in the C++ library must include the
notation extern "'C" in the definition. For example, modifying

int FunctionName (.-..)
to
extern "'C" int FunctionName (...)

instructs the C++ compiler to generate a function name that is compatible with both
Cand C++.

In many instances, the CodeBridge developer will not have access to the source for
libraries that are written in C++. In such cases, it is necessary to create intermediate or
mapping functions that include the extern "C' notation.

Within this example, a naming convention isused. Entitiesthat are a part of the C++
library have names that begin with libfunc or LibFunction, while entities that are related
to the C++ intermediate functions that you write have names that begin with maplib or
MapFunction. The normal C/C++ file extension name convention is followed
throughout this example (that is, .cpp indicates a C++ file; .c indicates a C file).

This example, while very simplified, illustrates how you can use CodeBridge to call
programs that are written in C++. Since the C++ programming language is not the same
as C, some expertise in C++ on the developer’ s part will be required. In practice, the
intermediate or mapping functions that you write will be “driver” functions that perform
several steps. When dealing with C++ class libraries or methods, the intermediate
program will have to deal with these C++ language constructs.

B-20 CodeBridge Examples
Example 7: Calling C++ Libraries from CodeBridge

1.

In this example, the following C++ source files represent the C++ library. Thefiles
named libfunc.cpp and libfunc.h represent components of the C++ library. The
C++ library contains functions named LibFunctionl and LibFunction2.

Thefilelibfunc.cpp represents the source code that is used to build a C++ library
and contains the following lines:

nt LibFunctionl()

i

{
return(l);

}

int LibFunction2()

{
return(2);

}

Thefilelibfunc.h makes function definitions available externally and contains the
following lines:

int LibFunctionl();
int LibFunction2();

Create a C++ source file that will map the function from C++ names to C names.
The file maplib.cpp contains the following lines:

#include "libfunc.h"
extern "C" int MapFunctionl()

{
return(LibFunctionl1());

}
extern "C" int MapFunction2()

{
return(LibFunction2());

}
Create atemplate file named maplibcb.tpl that consists of the following lines:

[[integer out]] int MapFunctionl();
[[integer out]] int MapFunction2();

Additionally, create a COBOL program in afile named myprog.cbl that callsthe
functions “MapFunctionl” and MapFunction2”. Thisfile would include the
following lines:

CALL "MapFunctionl™ GIVING Result
CALL "*MapFunction2™ GIVING Result

CodeBridge B-21
Example 7: Calling C++ Libraries from CodeBridge

4. Invoke the CodeBridge Builder by using the following command line:
cbridge maplibcb.tpl

5. Compile and link the non-COBOL subprogram library with the C and C++
compilers, using commands similar to the following:

For Windows

cl —c -MD —Zp1 src\maplibcb.c
cl —c -MD —Zp1 src\maplib.cpp
cl —c -MD —-Zp1 src\libfunc.cpp

link —nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:MapLib.dll
maplib.obj libfunc.obj maplibcb.obj

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
modul e with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms’ on page H-10.

To compile:

cc -c src/maplibcb.c
CC -c src/maplib.cpp
CC -c src/libfunc.cpp

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, asfollows:

cc -b elf -c src/maplibcb.c
CC -b elf -c src/maplib.cpp
CC -b elf -c src/libfunc.cpp

To link:

cc -G -o maplib.so maplibcb.o maplib.o libfunc.o

Note Uppercase CC isused to represent the name of the C++ compiler. On
some systems, it may be CC (uppercase) while on othersit may be cc
(lowercase). For Gnu C++, the nameisg++. Be sureto check your system
documentation for the name used on your system.

B-22 CodeBridge Examples
Example 7: Calling C++ Libraries from CodeBridge

Compile the COBOL program mypr og.cbl that calls “MapFunction1” and
“MapFunction2” by using the following command line:

rmcobol myprog

Run the application, specifying the name of the COBOL program and the name of
the non-COBOL subprogram library, with the following command line:

runcobol myprog -1 maplib

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge B-23
Example 7: Calling C++ Libraries from CodeBridge

Example 8: Using errno

This example demonstrates how to use the error base attribute, errno. Theerrno
attribute supports obtaining the value of the external variable errno that was set by a call
toaC library function. It allows return of the error information by editing the
CodeBridge template instead of the generated code.

1. Start with the function prototype for the C standard library function, mkdir.
For Windows

int _mkdir(const char *dirname);
For UNIX

int mkdir (const char *filename, mode_t mode);

2. Create atemplate file named mkdir.tpl in the src directory that consists of the
following lines:

For Windows
[[integer out]] int _mkdir(
[[string in trailing_spaces]] const char *DirName
[[errno]]);
For UNIX
[[integer out]] int _mkdir(
[[string in trailing_spaces]] const char *DirName,
[[integer in]] mode_t Mode
[[errnoll);

The errno error base attribute associates a COBOL argument with the value
associated with the external C global variable errno. There is no corresponding
parameter in the underlying C function parameter list.

Note In this example, the errno error base attribute is placed after the last C
parameter. Thisisalegal operation. The attribute could also have been placed
anywhere any other attribute could have been placed.

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\mkdir.tpl

B-24 CodeBridge Examples
Example 8: Using errno

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

For Windows

cl —c -MD —Zp1l src\mkdir.c

link -—nologo —machine:1X86 —section:.edata,RD —dl1
-subsystem:windows —out:mkdir.dll
mkdir.obj kernel32_lib user32_lib

For UNIX

cc —c src/mkdir.c

cc —G —o mkdir.so makdir.o

Create a COBOL program in afile named mkdir.cbl that contains the following
source fragments:

For Windows
01 Err-No PIC S9(9).-
01 File-Name PIC X(64) Value "TempFile".

01 Return-Status PIC S9(9).

CALL "*_mkdir™
USING File-Name Err-No
GIVING Return-Status.

For UNIX
01 Err-No PIC S9(9).
01 File-Name PIC X(64) Value "TempFile".
01 Mode PIC S9(9) Value 1638.

01 Return-Status PIC S9(9).

CALL "mkdir"
USING File-Name Mode Err-No
GIVING Return-Status.

CodeBridge B-25
Example 8: Using errno

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol src\mkdir

7. Runthe application, specifying the name of the COBOL program and the name of
the non-COBOL subprogram library:

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DL L
or aUNIX shared object (generally referred to as optional support modules). Since
the COBOL program and the non-COBOL subprogram have the same root name
(mkdir), it is necessary to specify the correct file extension.

For Windows
runcobol src\mkdir.cob —1 mkdir.dll
For UNIX

runcobol src/mkdir.cob —1 mkdir.so

B-26 CodeBridge Examples

Example 8: Using errno

Example 9: Using get_last_error

This example demonstrates how to use the get_last_error error base attribute. The
get_last_error attribute supports obtaining the value returned by the Windows API
function GetL astError called immediately after another Windows API function has
been called.

Note The following discussion applies to using this attribute on the Windows platform
only. Some Windows APIs have been ported to UNIX. In such cases, it may be
appropriate to use the get_last_error attribute on UNIX. (CodeBridge Builder does
support the get_last_error attribute on UNIX.) However, if the SetLastError and

GetL astError functions are not available, the generated program will probably not
compile and would certainly not link without errors.

1. Start with the function prototype for the Windows API function, CreateDirectory.

WINBASEAPI BOOL WINAPI CreateDirectory(LPCTSTR DirName,
LPSECURITY_ATTRIBUTES SecAttr);

2. Create atemplate file named Dir .tpl in the src directory that consists of the
following lines:

#include <windows.h>

[# replace_type(LPCTSTR; char *)
replace_type(LPSECURITY_ATTRIBUTES; void *)
convention(WINBASEAPI)
convention(WINAPI) #]

[[integer out]] WINBASEAPI BOOL WINAPI CreateDirectory(

[[string in trailing_spaces]] LPCTSTR DirName,

[[string in trailing_spaces value_if_omitted(NULL)]]
LPSECURITY_ATTRIBUTES SecAttr

[[get_last_error]]);

Theget_last_error error descriptor attribute associates a COBOL argument with the
value associated with the GetLastError Windows function. Thereisno
corresponding parameter in the underlying C function parameter list.

Note Inthisexample, the get_last_error attribute is placed after the last C
parameter. Thisisalegal operation. The attribute could also have been placed
anywhere any other attribute could have been placed.

CodeBridge B-27
Example 9: Using get_last_error

3. Invoke the CodeBridge Builder by using the following command line:
cbridge src\Dir.tpl

4. Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

cl -c—MD —Zp1 src\Dir.c
link —nologo —machine:| X86 —section:.edata,RD —dl|

-subsystem:windows —out:Dir.dll
Dir.obj kernel32.1ib user32.lib

5. CreateaCOBOL programin afile named Dir.cbl in the src directory that contains
the following source fragments:

01 Last-Error PIC 9(9).
01 File-Name PIC X(64) Value "TempFile".
01 Return-Status PIC S9(9).

CALL "CreateDirectory"
USING File-Name Last-Error
GIVING Return-Status.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol src\Dir
7. Runthe application with the following command line:

runcobol src\Dir.cob —I Dir.dll

B-28 CodeBridge Examples
Example 9: Using get_last_error

Appendix C: Useful C Information

To develop applications using CodeBridge, it is hecessary to have a fundamental
understanding of certain C concepts as well as the ability to use a C compiler and linker.
The information provided in this appendix is intended to serve as a starting point for
those devel opers who may not be proficient with C programming and who wish to call
existing C function libraries without writing any additional C code. This material should
not be viewed as aformal or complete definition of the language. The ideas and
concepts presented here arein an informal format. The developer is encouraged to
acquire additional C reference information, as necessary.

The topics presented here include:

e Understanding C language concepts (see the following topic)

e Compiling and linking C functions (see page C-5)

Understanding C Language Concepts

In order to construct a template file, you must understand the concept of a C function
prototype. The template fileis based on a“marked-up” C function prototype.
Conceptually, a C function prototype is similar to a COBOL LINKAGE SECTION.
While the LINKAGE SECTION describes the interface to a COBOL subprogram, a
function prototype describes the interface to a C function.

When using C, it isthe preferred practice to use header filesto contain the function
prototypes (along with other information that is needed to describe the interface to a
function). Header files are similar to copy filesin COBOL. Providers of C function
libraries will normally provide one or more header files to describe the interface to their
libraries. Typicaly, a header filename will have a suffix of .h. For example, a provider
of a statistics package may provide a header file named statistics.h. Header filesare
included in the source to be compiled with the #include C preprocessor directive and are
thus sometimes referred to as include files.

Before discussing function prototypes in more detail (see page C-4), let's explain

several concepts that are integral to the construction of function prototypes. These topics
include case sensitivity, data types, data declarations, type definitions and macros, and
calling conventions.

CodeBridge C-1
Understanding C Language Concepts

C-2

Case Sensitivity

The COBOL programming language is mostly case-insensitive. With afew exceptions
(such as non-numeric literals), the uppercase and lowercase representations of a given
letter are treated as equivalent. On the other hand, the C programming language is
predominately case-sensitive. The attribute keywords used in the template file are al'so
case-sensitive. This means that the uppercase and |owercase representations of a given
letter are not equivalent.

For example, the following names are treated as separate entities by C, but treated as the
same entity by COBOL: name, Name, and NAME.

Data Types

C includes predefined data types that may be categorized as integer, floating-point,
pointer, and void.

Integer datatypesinclude char, short, int and long. These data types may be prefixed
with the keywords signed or unsigned. Normally, integer types default to signed. Asa
shorthand notation, when signed or unsigned appear without the corresponding integer
datatype, thenint isimplied (that is, unsigned is the same as unsigned int).

C aso includes the floating-point data types float and double. Floating-point isthe
computer representation of scientific notation. It allows numbers with alarge scale or
small scale to be represented with an approximate value. For the | EEE representation of
floating-point, the float type is normally limited to about 6 or 7 digits of precision with
an exponent (scale) of —38 to +38. Also, the double typeis normally limited to about 15
or 16 digits of precision with an exponent (scale) of —308 to +308.

A pointer data type contains the address of atyped dataitem and is represented by the
asterisk character (*) in the data declaration or type definition (these terms are described
in the following sections).

The void datatype, void, is used to represent untyped or sometimes omitted data.

Note that other keywords, such asfar and near also exist, although their meaning is
mostly historical. Depending on the compiler, one or two underscore characters may
precede some keywords (_far or __ far instead of far).

Useful C Information
Understanding C Language Concepts

Data Declarations

A data declaration associates data type information with the name of avariable. For
example:

int P1

declares avariable named P1 with atype of int. Additional examples are shown in the
following table:

Declaration Variable Name Type

unsigned short P2; P2 unsigned short

float P3; P3 float

int * P4; P4 pointer to an int

char P5[30]; P5 array of char (30 elementsin the array)
void * P6; P6 pointer to avoid (that is, a generic pointer)

When an array is passed to a C function, the address of (pointer to) the array isused. In
a C function prototype, a pointer reference and an array reference are equivalent. That is,
char P5[30] is treated the same as char * P5 (with the exception that the compiler can do
some compile time range checking if the number of elementsin the array is explicitly
declared).

Type Definitions and Macros

In addition to the standard data types described previously, you can define additional
types that are based on combinations of existing types. Two techniques are used: type
definitions (typedef) and macros.

A typedef defines anew datatype. Consider the following examples:

typedef int INT;
typedef unsigned char UCHAR;
typedef char * CHARPTR;

Thefirst definition defines INT to be equivalent toint. That is, the two definitions of
INT and int areidentical. The second definition defines UCHAR to be equivalent to

unsigned char. Thethird definition defines CHARPTR to be equivalent to char * (a
pointer to a char).

CodeBridge C-3
Understanding C Language Concepts

c-4

A typedef “hides’ the underlying data type so that programs may be paramaterized
against portability problems. Type definitions also provide better documentation for
aprogram.

Although amacro is similar to atypedef, there are some important, yet subtle,
differences. The first two previous examples may be defined as macros with the #define
C preprocessor directive, asfollows:

#define INT int
#define UCHAR unsigned char

Macros are implemented as part of the C compiler preprocessor. If INT isdefinedina
macro, the compiler will never see INT as a datatype; it will already have been replaced
with int.

Additionally, macros provide a powerful text replacement feature that can be used for
more than type redefinition. Macros may contain parameters and can be used to
implement inline functions. For example:

#define MAX(A,B) (A+B)/2 + abs(A-B)/2

Macros are presented here to familiarize you with concepts that might occur in a header
file. Since complex macrostend to be fragile, it is recommended that the modification of
these macros be done with care.

Calling Conventions

A calling convention defines additional type information. It directs how the compiler
generates function-calling sequences and is an optional part of a function prototype.
Examplesinclude _ cdecl (or RM_CDECL when writing code for both Windows and
UNIX), stdcall, and __pascal. Often a calling convention is hidden with atype
definition or amacro. For example, the following macro definition defines the macro,
SQL_API tobethe _stdcall calling convention:

#define SQL_APlI _ stdcall

Function Prototypes

A function prototype may contain or refer to any of the concepts that have been
previously presented (data types, data declarations, type definitions and macros, and
calling conventions).

Useful C Information
Understanding C Language Concepts

A function prototype consists of the function name and alist of parameter names. The
name of the function and the name of each parameter are prefaced with type information
to form adata declaration. For example:

double RM_CDECL pow(double X, double Y);

In this example, the type of the function is double, which indicates that the function
returns a value of type double. The parameters are also of type double. Notice that the
calling convention RM_CDECL isincluded with the function type information.

An older style of prototype may be encountered. In this case, the function prototype
omits the parameter names since they are only placeholders. The prototype for the
function presented above may appear as follows (depending on platform and compiler):

double pow(double, double);

Placeholder names must be provided in the template file that is based on one of these
older style prototypes. Any unique (to the function) names will do. For example:

[[float out rounded]] double pow(
[[float in rounded]] double X,
[[float in rounded]] double Y);

Compiling and Linking C Functions

Throughout the CodeBridge manual, examples of compiling and linking are presented.
The syntax of the Windows examples uses Microsoft’s compiler and linker conventions
to generate 32-bit Windows dynamic link libraries (DLLs).. The syntax of the UNIX
exampl es uses conventions that are common to many compilers and linkers on UNIX to
generate shared objects.

Note A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support module with
the RM/COBOL runtime system. For additional information, see “Preparing C
Subprograms” on page H-10.

This section also includes an example of how to generate multiple template files.

CodeBridge C-5
Compiling and Linking C Functions

C-6

Compiling on Windows

The following illustrates an example of invoking Microsoft’s Visual C++ compiler to
generate Windows object files:

cl -c -MD -Zpl src\trig.c
where;
cl indicates the name of the compiler.
-C suppresses the implicit call to LINK that normally occurs.

-M D selects the Multithread and DLL options. The developer may choose -MDd in
order to select the debugging option also.

-Zp1 specifies structure member alignment of 1 byte.

Note A structure isthe C equivalent of a COBOL group. The-Zp1 option is
recommended because the ARGUMENT_ENTRY structure passed from the
RM/COBOL runtime system is built using the -Zp1 option.

src\trig.c indicates the name of the C source program to be compiled.

Note This example uses the hyphen (-) character to denote compiler options.
Microsoft’s Visual C++ compiler also allows aforward slash (/) character to be used (for
example, /c instead of —).

Compiling on UNIX
The following illustrates an example of producing object files on UNIX:
cc -c src/trig.c
where:
cc indicates the name of the compiler/linker.
-C suppresses the linking stage and does not produce an executable file.

src/trig.c indicates the name of the C source program to be compiled.

Useful C Information
Compiling and Linking C Functions

Linking on Windows

The following shows an example involving the Microsoft linker to generate a
Windows DLL:

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:trig.dll trig.obj

where;
link indicates the name of the linker.
-nologo suppresses the startup banner.

-machine:1 X86 specifies the target platform. While this option is not required, it is
good practice to includeit. (It also eliminates awarning message.)

-section:.edata,RD specifies Section Attributes, which force the linker to include
the edata section in the generated DLL. The RM/COBOL runtime system uses this
information to load the DLL.

-dll buildsaDLL asthe main output file.
-subsystem:windows specifies the subsystem being supported.
-out:trig.dll names the output file.

trig.obj specifiesthe name of the object file that isto be included in the link.

Note In addition to naming the object file(s) that are to be included, the necessary
libraries also should be included. The names of the libraries are normally provided
by the provider of the library functions or by the C compiler. The default link
libraries for Win32 DLLs include:

e kernel32lib e shell32lib

o user32lib e o0le32lib

e gdi32lib e oleaut32.lib
e winspool.lib e uuid.lib

e comdig32.lib e odbc32.lib

o advapi32.lib e odbcep32.lib

Note This example uses the hyphen (-)character to denote compiler options. Microsoft’'s
linker also allows aforward slash (/) character to be used.

CodeBridge C-7
Compiling and Linking C Functions

Linking on UNIX
The following illustrates an example of linking a shared object on UNIX:
cc -G -0 trig.so trig.o -Im
where:
cc indicates the name of the compiler/linker.
-G produces a shared object.
-0 trig.so names the output file.
trig.o specifies the name of the object file that isto be included in the link.

-Im indicates that the math library isto beincluded in the link.

Multiple Template Files

The normal practice isto generate only one template file for each non-COBOL
subprogram library that is being constructed. However, some developers may choose
to generate more than one template file.

For Windows platforms, the source generated by CodeBridge Builder contains a
definition for DIIMain. If CodeBridge Builder generates multiple files, then errorsin
linking the DLL will occur because of multiple definitions. This can be resolved by
defining the symbol RM_NO _DLL_MAIN for all but one of the compilations of
generated source files.

For example:

cl -1 -MD -Zp1l src\cbfuncl.c
cl -1 -MD -Zpl -DRM_NO_DLL_MAIN src\cbfunc2.c
cl -1 -MD -Zpl -DRM_NO_DLL_MAIN src\cbfunc3.c

C-8 Useful C Information
Compiling and Linking C Functions

Appendix D: Global Attributes

This appendix provides detailed descriptions of the attributes used in aglobal attribute
listin atemplate file. See Chapter 2, Concepts, for more information about the basic
components of atemplate file. The attributes used in a parameter attribute list are
discussed in Appendix E, Parameter Attributes. More information about C language
concepts and terms may be found in Appendix C, Useful C Information.

Note Asyou read through this manual, keep in mind that the term “parameter attribute”
isashorthand notation for an attribute that occursin a parameter attribute list. Likewise,
“global attribute” indicates that the attribute can be found in aglobal attribute list.

Overview

A global attribute list provides information about one or more C function prototypes that
is not specific to any given parameter. Thisinformation also could be used to modify the
default behavior of CodeBridge Builder.

A global attribute takes effect from the point at which it occursin atemplate file and
remains in effect until another global attribute in that template file alters those settings.
There arefive global attributes. banner, convention, diagnostic, load message, and
replace type.

Attributes are case-sensitive and must be entered as shown.

Note The discussions and examples of the global attributes, replace typeand
convention, use SQL_API and SQLPOINTER, which are a macro and data type,
respectively, defined in the Microsoft Visual C++ header file, sqltypes.h. Their
definitions are;

#define SQL_API __ stdcall

typedef void * SQLPOINTER

SQL_API isacalling convention macro defined by the C preprocessor directive,
#define. SQLPOINTER is adatatype defined by a C type definition (that is, atypedef
statement).

CodeBridge D-1
Overview

banner Attribute

Use the banner global attribute to display atext string when a non-COBOL subprogram
built with CodeBridge is loaded by the RM/COBOL runtime system.

The format of the banner globa attribute is asfollows:
[# banner(value) #]
where value is a character string. For example:
[# banner(*'Copyright (c) 2000, by me.'™) #]

Such banners are displayed only on UNIX systems when the K Option of the
RM/COBOL Runtime Command (runcobol) is not specified or configured. For
example:

runcobol myprog -1 ./mylib.so
This causes a message similar to the following to be displayed:
Copyright (c) 2000, by me.

No banner message is produced by the RM/COBOL for Windows runtime.

convention Attribute

Use the convention attribute to declare C calling conventions (for example, SQL_API).
Calling conventions cannot be placed in the CodeBridge-generated declarations of
variables; however, they must be preserved in the external function prototype that is used
to call the C function.

The format of the convention global attribute is as follows:
[# convention(name) #]

where name is the name of a call convention.

SQL_API can be resolved as follows:
[# convention(SQL_API) #]

SQL_API isremoved from variable declarations, but is preserved as part of the external
function prototype.

D-2 Global Attributes
banner Attribute

diagnostic Attribute

Use the diagnostic attribute to control error reporting.

The format of the diagnostic global attributeis asfollows:
[# diagnostic(value) #]

where value may be one of the following:

e silent. Usethesilent value to instruct CodeBridge not to display diagnostic
messages.
e verbose. Usethe verbose valueto instruct CodeBridge to display diagnostic

messages even if the silent base modifier attribute (described on page E-4) is set for
an individual parameter attribute list.

e normal. Usethe normal value to instruct CodeBridge to display diagnostic
messages unless the silent base modifier attribute (described on page E-4) is
specified for an individual parameter attribute list.

load _message Attribute

Use the load_message attribute to display atext string when a non-COBOL subprogram
built with CodeBridge is loaded by the RM/COBOL runtime system.

The format of theload_message global attributeis as follows:
[# load_message(value) #]
where value is a character string. For example:
[# load_message(*'My math package - Version 1.13") #]

L oad messages are displayed only on UNIX systems when the V Option of the
RM/COBOL Runtime Command (runcobol) is specified or configured. For example:

runcobol myprog -v -1 _./mylib.so
This causes a message similar to the following to be displayed:
RM/COBOL: Dynamic library loaded - ./mylib.so - My math package - Version 1.13

No load message is produced by the RM/COBOL for Windows runtime.

CodeBridge D-3
diagnostic Attribute

replace_type Attribute

D-4

The CodeBridge Builder program does not resolve C datatypes. Frequently, necessary
data type information may be hidden in a macro or a type definition construct (as shown
in the definitions above). Specifically, CodeBridge must know whether adataitemisa
pointer datatype. It isnecessary, therefore, for the template file to resolve some type
definitions for CodeBridge.

Usethereplace typeglobal attribute to allow CodeBridge to resolve pointer data
declarations that hide the C unary pointer operator (*) within the data type name (for
example, SQLPOINTER).

Y ou may choose to use the replace_type attribute as a form of self-documentation
to expand any defined data type, even if the expansion does not reveal any levels
of indirection.

The format of the replace type global attribute is as follows:

[# replace_type(name;value) #]
where value is the character string that replaces the data type specified by name.
The SQLPOINTER datatype can be resolved as follows:

[# replace_type(SQLPOINTER; void *) #]

The user-supplied entry for name must be a single token. The user-supplied entry for
value may be any string of characters. The following are all equivalent:

[# replace_type(SQLPOINTER;void*) #]
[# replace_type(SQLPOINTER;void *) #]

[# replace_type(SQLPOINTER; void *) #]

Global Attributes
replace_type Attribute

Appendix E: Parameter Attributes

This appendix provides detailed descriptions of the attributes used in a parameter
attribute list in atemplate file. See Chapter 2, Concepts, for more information about the
basic components of atemplate file. The attributes used in aglobal attribute list are
discussed in Appendix D, Global Attributes. More information about C language
concepts and terms may be found in Appendix C, Useful C Information.

Note Asyou read through this manual, keep in mind that the term “parameter attribute”
isashorthand notation for an attribute that occursin a parameter attribute list. Likewise,
“global attribute” indicates that the attribute can be found in aglobal attribute list.

Overview

The parameter attributes are organized into the following three groups:
e Argument number
e Direction

e Base and base modifier

Each group is described in the following sections. An alphabetical summary of all
available parameter attributes is shown in Table E-2 beginning on page E-24.

Attributes are case-sensitive and must be entered as shown.

CodeBridge E-1
Overview

Argument Number Attributes

The two argument number parameter attributes, arg_num(value) and ret_val,

specify explicitly the COBOL argument number. Thisinvokes the explicit method of
associating C parameters with COBOL arguments rather than using the default automatic
association method.

Inthe arg_num(value) argument number attribute, value specifies the argument number
as 1 for the first argument in the USING phrase, 2 for the second argument in the USING
phrase, and so forth. The value must be specified as an integer constant; a macro or
constant expression may not be specified here.

Theret_val argument number attribute specifies the argument in the GIVING
(RETURNING) phrase.

For more information, see “Associating C Parameters with COBOL Arguments’ on
page 2-21.

Direction Attributes

The direction attributes are in and out. The in direction attribute specifies an input
parameter to the C function. The out direction attribute specifies an output parameter
from the C function.

Both the in and out direction attributes may be specified in a parameter attribute list.
Within a parameter attribute list, you may present the attributesin any order. For
example, [[integer in]]isthesameas[[in integer]]. When aparameter is
used for both input and output, both the in and out direction attributes are specified in
either order.

The direction attributes may be used to protect the calling COBOL program from
unintended modification of data. For example, when the out direction attribute is not
used, then the data in the C parameter is not converted to COBOL format, and the datais
not placed in the address space of the COBOL program.

For a given parameter, if none of its attribute lists contain the in direction attribute, an
uninitialized value may be passed to the function. No more than one attribute list (for
any given parameter) should be used for input; however, several output attribute lists
may be assigned to the same parameter.

E-2 Parameter Attributes
Argument Number Attributes

Some base attributes imply a direction and thus do not allow either of the direction
attributes. The error base attributes, errno and get_last_error (see page E-20), imply
the out direction attribute. The descriptor base attributes (see page E-17), two of the
pointer base attributes, pointer _address and pointer_length (see page E-15), and the
string length base attributes (see page E-14) imply the in direction attribute.

Base and Base Modifier Attributes

Base attributes may be categorized as follows:

e Numeric. Numeric base attributes (see page E-5) are used when passing COBOL
numeric arguments to the C function.

e String. Thestring base attribute (see page E-11) is used when passing COBOL
non-numeric arguments to the C function.

e String Length. String length base attributes (see page E-14) are used when passing
the length of a string or numeric string parameter as a separate C parameter.

e Pointer. Pointer base attributes (see page E-15) are used when passing COBOL
pointer data items to the C function.

o Descriptor. Descriptor base attributes (see page E-17) are used when passing a
component of a COBOL data descriptor, the argument count, the COBOL initial
state flag, or the Windows handle to the C function.

e Error. Error base attributes (see page E-20) are used to retrieve error information
from a C library or Windows API function that is returned separately from the
calling C function.

Note 1l Thenumeric_string base attribute (see page E-6) is unique because it associates
a C string parameter, rather than a C numeric parameter, with a COBOL numeric
argument. This base attribute refersto a COBOL numeric argument (whose USAGE
clause specifies DISPLAY, PACKED-DECIMAL, BINARY, and so forth) and is,
therefore, a numeric base attribute. However, the argument value is represented as an
ASCII character string in the C function.

Note2 Thegeneral_string base attribute (see page E-13) converts numeric and
non-numeric arguments to null-terminated arrays of characters. If the COBOL argument
is numeric, the conversion behaves as if numeric_string had been specified as the base
attribute. If the COBOL argument is non-numeric, the conversion behaves asif string
had been specified as the base attribute.

CodeBridge E-3
Base and Base Modifier Attributes

E-4

Base attributes can be supplemented with additional information by specifying base
modifier attributes. While some base modifier attributes are common to several
categories of base attributes, as discussed in the following section, others are specific
to a base attribute category. The latter are described in each base attribute category
section to which they apply.

Base Modifiers Common to Base Attributes

Two base modifier attributes, silent and alias(name), are common to several categories
of base attributes:

e silent. The silent base modifier is used with any base attribute to prevent
CodeBridge from displaying diagnostic messages during CodeBridge Library calls
generated for that attribute list. The global attribute, diagnostic(value), may be used
to alter default behavior for every CodeBridge Library call (see page D-3).

e alias(name). The alias(name) base modifier is used in any parameter attribute list
that refers to the function return value (that is, it should not be used with function
parameters). The alias(hame) base modifier may be used in a parameter attribute list
with other attributes, or it may be the only attribute in an attribute list.

If it isthe only attribute in a parameter attribute list, no value will be returned to the
calling COBOL program.

Normally, the CodeBridge Builder generatesiits interface function name from the C
function name. The alias(name) base modifier attribute makesit possible for the
COBOL program to call the C function using a different name. The following
exampl e shows how to implement two functions, INTEGER_PART and
FRACTION_PART, from the standard C library function, modf.

Use the following template file to construct an interface to the standard C library
function, modf. This function returns the integer part of A in IntPart and the fraction
part of A asthereturn value.

[[float out]] double modf(
[[float in]] double A,
[[float in out]] double *IntPart);

Use the following template file to return only the integer part:

double modf(
[[float in arg_num(1)]1] double A,
[[float out ret_val]] double *IntPart);

Parameter Attributes
Base and Base Modifier Attributes

A problem with this exampleis that the COBOL program must call modf instead of
integer_part. To resolve this problem, use the alias(name) base modifier attribute
asfollows:

[[alias(integer_part)]] double modf(
[[float in arg_num(1)]1] double A,
[[float out ret_val]] double *IntPart);

A similar function, called fraction_part, uses the return value of the modf function,
asfollows:

[[alias(fraction_part)
float out]] double modf(
[[Float in]] double A,
double *IntPart);

Numeric Base Attributes

Three numeric base attributes are used to convert between COBOL numeric data items
and C dataitems:

integer. Usetheinteger base attribute with C integer data types (such aschar,
short, int, and long).

On input, the COBOL numeric argument is converted to an integer C parameter.
If the argument value contains a fractional component after application of the
scaled(value) base modifier attribute, if specified, it will be truncated (or rounded,
if the rounded base modifier is used). On output, the C parameter is converted

to a COBOL numeric argument. If the argument is described using P-scaling
(see page 2-32), truncation may occur (or rounding, if the rounded base modifier
isused).

float. Usethefloat base attribute with C floating-point data types (float and
double).

On input, the COBOL numeric argument is converted to a floating-point C
parameter. If the argument contains more trailing digits than are supported by the
floating-point representation, it istruncated (or rounded if the rounded base
modifier isused). On output, the C parameter is converted to a COBOL numeric
argument. Truncation may occur (or rounding, if the rounded base modifier is
used).

CodeBridge E-5
Base and Base Modifier Attributes

E-6

e numeric_string. Usethe numeric_string base attribute to pass COBOL numeric
arguments to null-terminated C string parameters, called a numeric string in this
document.

A numeric string is created in adynamically allocated buffer. By default, the buffer
length is four more than the digit length of the COBOL argument. This ensures
enough room in the buffer to contain the numeric value, the decimal point character,
one or two sign characters, and atrailing null character. This default length may be
overridden using the size(value) base modifier attribute.

Note Numeric base attributes may be used with arrays. For more information, see
“Numeric Arrays’ on page 2-33.

Numeric String Formatting and Conversion Rules

A numeric string parameter is a parameter for which either the numeric_string or the
general_string base attribute has been specified and for which the COBOL argument is
numeric. For use with a C function, a numeric string is formatted according to the
following rules:

1. Thestring is composed of two parts. an optional sign and a numeric value.

2. Thesign may be aleading sign (occurring before the numeric value) or atrailing
sign (occurring after the numeric value). A leading sign may be a single character
(either “+" or “-"). A trailing sign may be either one character (either “+” or “-") or
two characters (the debit symbol “DB” or the credit symbol “CR”).

Note On input conversion before calling the C function, the sign representation will
be placed in the string according to the leading or trailing sign base modifiers that
are selected. On output conversion (after returning from the C function), any
supported sign representation is allowed. See “leading or trailing signs’ on page
E-10 for the supported sign representations.

3. Thenumeric value is represented as a string of numeric characters (‘0" through ‘9')
with an embedded decimal point character point, as needed.

Note On input conversion, if the dataitem contains an integer value, the resultant
numeric string does not contain a decimal point character or trailing zero characters.
Also, on input conversion, if the data item contains only a fraction value (the
absolute value of the dataitem is non-zero and less than 1), the resultant numeric
string will contain aleading zero character followed by a decimal point character.

4. Space characters may occur before and after both the numeric value and the sign.
They areignored.

Parameter Attributes
Base and Base Modifier Attributes

Note On input conversion to the C function, CodeBridge will not place any space
characters in a numeric string. On output conversion from the C function,
CodeBridge will tolerate embedded spaces.

Some examples of numeric strings are:

Base Modifiers that Apply to Numeric Base Attributes

Numeric base attributes can be supplemented with additional information by the base
modifier attributes that are listed below. Some of the base modifier attributes apply to all
numeric base attributes, while others apply only to a particular numeric base attribute.

The following base modifier attributes may be used with any numeric base attributes:

e alias(name). For adescription of this base modifier, see page E-4. Note that the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

e assert_digits(min;max). Use thisbase modifier attribute to verify that the digit
length of the passed COBOL argument is within the range specified by min and max.
For example, [[integer out assert _digits(5;5)]] indicates that the
COBOL data item must contain exactly five digits.

The use of P-scaling in the COBOL program will increase the digit length by the
number of P symbols specified in the PICTURE character-string. For example, all
of the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a dataitem
with adigit length of eight for CodeBridge.

e assert_digits left(min;max). Use this base modifier attribute to verify that the
number of digitsto the |eft of the decimal point in the passed COBOL argument is
within the range specified by min and max. For example, [[float
assert_digits_left(5;~0)]] indicates that the COBOL dataitem must contain
five or more digits to the left of the decimal point, or equivalently, no less than five
digits before the decimal point.

CodeBridge E-7
Base and Base Modifier Attributes

E-8

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. Thisusageis preferable to other
choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(which isnot allowed C for unsigned data types).

The use of P-scaling in the COBOL program will increase the number of digitsto
the left of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the left of the decimal point. For example, both of the
PICTURE character-strings 9(8) and 9(5)P(3) describe a dataitem with eight digits
to the left of the decimal point for CodeBridge.

assert_digits right(min;max). Usethisbase modifier attribute to verify that the
number of digitsto the right of the decimal point in the passed COBOL argument is
within the range specified by min and max. For example, [[float
assert_digits_right(0;2)]] indicates that the COBOL dataitem must contain
no more than two digits after the decimal point.

The use of P-scaling in the COBOL program will increase the number of digitsto
the right of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the right of the decimal point. For example, both of the
PICTURE character-strings V9(8) and VP(3)9(5) describe a data item with eight
digitsto the right of the decimal point for CodeBridge.

assert_length(min;max). Use this base modifier attribute to verify that the actual
length of the passed COBOL argument is within the range specified by min and max.
For example, [[integer out assert_length(10;~0)]] indicatesthat the
COBOL dataitem must contain at least ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. Thisusageis preferable to other
choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(which isnot allowed C for unsigned data types).

assert_signed. Use this base modifier attribute to verify that the passed COBOL
argument contains a sign.

assert_unsigned. Use this base modifier attribute to verify that the passed COBOL
argument does not contain a sign.

no_null_pointer. The calling COBOL program may pass a pointer with anull value
as an argument either by specifying the figurative constant NULL (NULLS) or by
specifying a COBOL pointer argument that has been set to NULL (NULLS). Inthis
case, CodeBridge would normally pass a null pointer as a parameter to the C
function. If the no_null_pointer base modifier attribute is used, an error condition
will be generated instead.

Parameter Attributes
Base and Base Modifier Attributes

no_size error. During conversion (either COBOL to C or Cto COBOL), it is
possible that leading digits will be lost. If this occurs, the normal behavior isto
generate an error condition. If theno_size error base modifier attribute is used, the
error condition will be ignored.

occur s(value). Arrays of COBOL numeric arguments may be passedto aC
function. Use the occur s(value) base modifier attribute to specify the array size. If
the C function prototype specifies the array size, it is not necessary to use the

occur s(value) base modifier attribute unless you need to override the value specified
in the function prototype.

optional. The calling COBOL program may omit the associated argument (see
“Managing Omitted Arguments’ beginning on page 2-17 for more information on
omitted arguments and this attribute), in which case CodeBridge would normally
generate an error condition. If the optional base modifier attribute is used, then a
default value is generated and passed to the C function. The default value associated
with an integer or float base attribute is a numeric zero. The default value
associated with ageneral_string or numeric_string base attribute is an empty
string (the first character of the string isanull character). If avalue other than the
CodeBridge supplied default value is desired, see the value_if omitted(value) base
modifier attribute description.

Note The current implementation of CodeBridge Builder only allows input optional
parameters. Output parameters are required by default.

repeat(value). Use this base modifier attribute with the C parameter before the
ellipsis when a variable number of C parametersisused. value indicates the
maximum number of additional C parameters.

rounded. Usethisbase modifier attribute to cause rounding in those cases where
truncation would normally occur (on either input or output). Rounding is performed
using COBOL rounding rules.

silent. For adescription of this base modifier, see page E-4.

value if_omitted(value). Use this base modifier attribute to specify avalueto

be used when the calling COBOL program omits the associated argument (see
“Managing Omitted Arguments’ beginning on page 2-17 for more information on
omitted arguments and this attribute). When this attribute is used, it is not necessary
to also use the optional base modifier attribute. Aninteger attribute list must
specify an integer value (for example, value_if_omitted(3)); afloat attribute
list must specify a floating-point value (for example, value_if_omitted(3.0));
and anumeric_string attribute list must specify astring value (for example,
value_if_omitted('3.0")).

CodeBridge E-9
Base and Base Modifier Attributes

In addition to the base modifier attributes that apply to all numeric base attributes, the
following modifiers are specific to the integer base attribute:

e integer_only. Usethisbase modifier attribute to verify that the passed COBOL
argument represents an integer value (that is, no digits are allowed to the right of the
decimal point). Thisattributeis equivalent to the assert_digits right(0;0) base
modifier attribute specification.

e scaled(value). Usethis base modifier attribute to scale integer values during the
conversion process. On input, the COBOL argument is multiplied by 10, On
output, the C parameter is divided by 10",

For example, if the attributelistis [[integer in out scaled(2)]] and the
COBOL program supplied a value of 1.53, the C function would receive a value of
153. If the C function changed the value to 4, the COBOL program would receive
.04 back.

e unsigned. Usethisbase modifier attribute to force CodeBridge to treat the C
parameter as unsigned. The default isto treat C parameters as signed.

In addition to the modifiers that apply to all numeric base attributes, the following
modifiers are specific to the numeric_string base attribute:

e size(value). Use thisbase modifier attribute with the numeric_string base attribute
to specify avalue that overrides the default length when the conversion string buffer
isdynamically allocated.

e leading or trailing signs. One of the following leading or trailing sign base
modifier attributes may be used with for the numeric_string base attribute. The
default base modifier attributeisleading_sign.

Attribute Sign if positive Sign if negative
leading_sign “+
leading_minus none
trailing_sign ‘4
trailing_minus none
trailing_credit none “CR"
trailing_debit none “DB”

E-10 Parameter Attributes
Base and Base Modifier Attributes

string Base Attribute

C strings are a null-terminated array of characters. Although there are many standard C
library functions that deal with C strings, there is no corresponding COBOL data type.
The string base attribute is used to convert between COBOL non-numeric arguments and
null-terminated C string parameters.

Oninput, dataiis copied to adynamically allocated buffer and atrailing null character is
added. On output, datais copied from the buffer and the trailing null character is
removed. By default, the data buffer is one byte larger that the length of the COBOL
argument so that there isroom for the trailing null character. This default may be
overridden using the size(value) base modifier attribute.

Note 1 On Windows platforms, CodeBridge allocates the intermediate buffer using the
SysAllocStringBytelen function. This places additional overhead information before the
start of the string. The SysStringBytel en function may be used to obtain the length of
the buffer. Usethe standard C library function, strlen, to retrieve the length of the string
in the buffer.

Note 2 A string base attribute may be used with arrays. For more information, see
“String Arrays’ on page 2-34.

Base Modifiers that Apply to the String Base Attribute

One leading character and one trailing character base modifier attribute may be specified
for each parameter. On input, leading and/or trailing characters are removed as specified.
On output, trailing characters (if selected) are added to left-justified data items, while
leading characters (if selected) are added to right-justified dataitems.

The string base attribute can be supplemented with additional information by the base
modifier attributes that are listed below.

The following base modifier attributes may be used with the string base attribute:

o alias(name). For adescription of this base modifier, see page E-4. Note that the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

o assert_length(min;max). Usethis base modifier attribute to verify that the actual
length of the passed COBOL argument is within the range specified by min and max.
For example, [[string out assert_length(10;~0)]] indicates that the
COBOL dataitem must contain at least ten characters.

CodeBridge E-11
Base and Base Modifier Attributes

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. Thisusageis preferable to other
choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(which isnot allowed C for unsigned data types).

e leading_spaces. Use thisbase modifier attribute to instruct CodeBridge to remove
leading space characters on input, and for right-justified arguments, add leading
space characters on outpuit.

e leading(value). Thisbase modifier attribute isthe same as the leading_spaces base
modifier, except that the character represented by value is used instead of a space
character.

e no_null_pointer. The calling COBOL program may pass a pointer with anull value
as an argument either by specifying the figurative constant NULL (NULLS) or by
specifying a COBOL pointer argument that has been set to NULL (NULLS). Inthis
case, CodeBridge would normally pass a null pointer as a parameter to the C
function. If the no_null_pointer base modifier attribute is used, an error condition
will be generated instead.

e occurs(value). Arraysof COBOL non-numeric arguments may be passedtoaC
function. Use the occur s(value) base modifier attribute to specify the array size. If
the C function prototype specifies the array size, it is not necessary to use the
occur s(value) base modifier attribute unless you need to override the value specified
in the function prototype.

e optional. Thecaling COBOL program may omit the associated argument
(see “Managing Omitted Arguments’ beginning on page 2-17 for more information
on omitted arguments and this attribute), in which case CodeBridge would normally
generate an error condition. If the optional base modifier attribute is used, then a
default value is generated and passed to the C function. The default value associated
with ageneral_string or string base attribute is an empty string (the first character
of the string isa null character). If avalue other than the CodeBridge supplied
default value isdesired, seethe value_if _omitted(value) base modifier attribute
description.

Note The current implementation of CodeBridge Builder only allows input optional
parameters. Output parameters are required by default.

e repeat(value). Usethisbase modifier attribute with the C parameter before the
ellipsis when a variable number of C parametersisused. value indicates the
maximum number of additional C parameters.

e dilent. For adescription of this base modifier, see page E-4.

E-12 Parameter Attributes
Base and Base Modifier Attributes

e size(value). Use thisbase modifier attribute with the string base attribute to specify
avalue that overrides the default length when the conversion string buffer is
dynamically allocated.

e trailing_spaces. Usethisbase modifier attribute to instruct CodeBridge to remove
trailing space characters on input and, for left-justified arguments, add trailing space
characters on output.

e trailing(value). Thisbase modifier attribute is the same asthe trailing_spaces
modifier, except that the character represented by value is used instead of a space
character.

o value if omitted(value). Use this base modifier attribute to specify avalue to be
used when the calling COBOL program omits the associated argument (see
“Managing Omitted Arguments’ beginning on page 2-17 for more information on
omitted arguments and this attribute). When this base modifier attribute isused, it is
not necessary to also use the optional base modifier attribute. A string attribute list
must specify astring value (for example, value_if_omitted(‘'Default™)).

general_string Base Attribute

The general_string base attribute is used in those cases when it is desirable to allow a
C string parameter to accept either a numeric COBOL argument or a non-numeric
COBOL argument. When a numeric argument is passed to a parameter described with
the general_string base attribute, the argument is converted asif the parameter were
described with the numeric_string base attribute; otherwise, the argument is converted
asif the parameter were described with the string base attribute. An attribute list
containing the general_string base attribute allows any additional attributes that may be
used with either astring base attribute or anumeric_string base attribute. For each call
and for each argument passed to a parameter within a set of a variable number of
parameters, attributes that do not apply to the COBOL argument actually passed are
ignored for the conversion of that argument. That is, for a numeric argument, base
modifier attributes not applicable to the numeric_string base attribute are ignored and
for a non-numeric argument, base modifier attributes not applicable to the string base
attribute are ignored. Refer to “Numeric Base Attributes’ on page E-5 and “string Base
Attribute” on page E-11 for further information.

In general_string attribute lists, base modifier attributes that apply to anumeric_string
or string base attribute may be used together. Those base modifier attributes that do not
apply for agiven passed argument are ignored (for example, trailing_sign for a
non-numeric COBOL argument).

CodeBridge E-13
Base and Base Modifier Attributes

String Length Base Attributes

The string length base attributes, buffer _length and effective length, are used to pass
length information about a string parameter as a separate parameter to a C function.
Attribute lists formed with these base attributes are used with the attribute lists formed
with the general_string, numeric_string, and string base attributes. By default, these
length attributes refer to the same COBOL argument number as the base attribute in the
preceding attribute list. If the length attribute list does not immediately follow the
associated attribute list, then the arg_num(value) argument number attribute must be
used, where value must be the same as used in an ar g_num(value) attribute of the
associated general_string, numeric_string, or string base attribute.

The string length base attributes include the following:

o buffer_length. The buffer_length base attribute describes a C numeric parameter
and instructs CodeBridge to pass the length of the conversion buffer to the C
function as the value of the parameter. The length of the buffer is determined by the
base attribute that is used to describe the string parameter associated with the same
argument, as follows:

— For the string base attribute, the buffer length defaults to one more than the
length of the passed COBOL argument, which allows space for the characters
of the argument value and a null-termination character.

— For the numeric_string base attribute, the buffer length defaults to four more
than the digit length of the passed COBOL argument, which allows space for
the digits of the argument value and the sign, decimal-point, and null-
termination characters.

— Forthegeneral_string base attribute, the buffer length defaults to the greater of
one more than the length of the passed COBOL argument and four more than
the digit length of the passed COBOL argument, which allows space for either a
non-numeric or numeric argument conversion.

The default values for buffer_length may be overridden by using the size(value)
base modifier attribute in the attribute list that contains the string, numeric_string,
or general_string base attribute that is associated with the same argument as
buffer_length.

o effective length. The effective length base attribute returns the actual number of
characters stored in the conversion string buffer after the input conversion processis
complete. (Thisissimilar to the standard C library function, strlen.) This base
attribute is used for obtaining the length of input string parameters denoted by
general_string, numeric_string, or string base attributes.

Note To obtain the length of the COBOL argument, use the length base attribute
described on page E-18.

E-14 Parameter Attributes
Base and Base Modifier Attributes

Base Modifiers that Apply to String Length Base Attributes
The following base modifier attributes may be used with the string length base attributes:

e occurs(value). Arraysof COBOL non-numeric arguments (or numeric arguments
converted by numeric_string) may be passed to a C string parameter. Usethe
occur s(value) base modifier attribute to specify the array size. If the C function
prototype specifies the array size, it is not necessary to use the occur s(value) base
modifier attribute unless you need to override the value specified in the function
prototype.

Note Thearray size for the string length base attributes must be less than or equal to
the array size of the C string parameter associated with the same argument number.

e silent. For adescription of thisbase modifier, see page E-4.

Pointer Base Attributes

Pointer base attributes are used when passing a component of a COBOL pointer
argument to the C function. These attributes are associated with the RM/COBOL
POINTER data type, a new feature introduced in RM/COBOL version 7.0. A COBOL
pointer describes a block of memory and has three components: base address, offset, and
size. When a pointer dataitemisinitialized, the base address contains the starting
address of the block of memory, the offset is set to zero, and the size contains the total
length of the block. The offset may be modified in an RM/COBOL program by using the
Format 6 SET statement (see the RM/COBOL Language Reference Manual).

CodeBridge provides two approaches for accessing data described by a COBOL pointer
dataitem. The first method is useful when the C function wishes to access or modify
memory referenced by the pointer. This approach uses the following two pointer base
attributes, both of which are defined for input to the C function but not for output:

e pointer_address. Usethe pointer _address base attribute to pass the effective
address (base address plus offset) of a passed COBOL pointer argument to the
C function.

e pointer_length. Usethe pointer_length base attribute to pass the effective length
(size minus offset) of a passed COBOL pointer argument to the C function. Thisis
the amount of data between the current value of the pointer and the end of the block
of memory described by the pointer.

The second approach is useful if the C function wishes to access the components of the
COBOL pointer dataitem directly. This method is useful when the C function wishesto
change one of the components of a COBOL pointer.

CodeBridge E-15
Base and Base Modifier Attributes

Note Although CodeBridge provides the ability to change the value of COBOL data
areas or COBOL pointers, caution should be used due to the potentia risk of corrupting
the COBOL program.

The second approach uses the following three pointer base attributes, all of which may be
used for both input and outpult:

e pointer_base. Usethepointer _base base attribute to pass the base address
component of a passed COBOL pointer argument to and from the C function.

e pointer_offset. Usethepointer offset base attribute to pass the offset component
of apassed COBOL pointer argument to and from the C function.

e pointer_size. Usethe pointer_size base attribute to pass the size component of a
passed COBOL pointer argument to and from the C function.

Note A COBOL pointer data item with a zero base address component is always a null
pointer, regardless of the offset and size values. If the base address of a pointer isset to a
zero value or remains a zero value, the pointer offset and size components cannot be set
to non-zero values. When a COBOL pointer data item with a zero base address
component is stored, the pointer offset and size components will be set to zero.

Base Modifiers that Apply to Pointer Base Attributes

In addition to the alias(name) and silent base modifier attributes (see page E-4), two
other base modifier attributes are available for the second approach described above:

e pointer_max_size. Usethisbase modifier attribute when either the pointer _base or
pointer_offset base attribute is used for output to force the pointer size component
to avalue of all ones.

e pointer_reset_offset. Use thisbase modifier attribute when either the pointer _base
or pointer_size base attribute is used for output to force the pointer _offset
component to avalue of zero. For an example of using pointer_reset_offset, see
“Example 4: Accessing COBOL Pointer Arguments”, which begins on page B-9.

E-16 Parameter Attributes
Base and Base Modifier Attributes

Descriptor Base Attributes

Sometimes it may be necessary to pass individual data descriptor components for a
COBOL argument, as well as the argument count, the COBOL initial state flag, or the
Windows handle, directly as C parameters. (See “Passing COBOL Descriptor Data’ on
page 2-15 and “Passing Miscellaneous Information” on page 2-17.)

The following lists the descriptor base attributes:

address. Use the addr ess base attribute when passing the address of a passed
COBOL argument to the C function. By using this attribute, the C function may
modify the COBOL data area directly. When the address of a COBOL dataitemis
passed in this way, the C function is responsible for any parameter conversion that is
required. The address may be saved by the C function and used by this or other
functions in the non-COBOL subprogram later in the run unit. However, if the
addressrefersto adataitem in a COBOL program that is later canceled, the saved
address may no longer be valid. It isthe programmer’ s responsibility to prevent
such situations.

arg_count. Usethearg_count base attribute to pass the actual number of COBOL
arguments to the C function. The arg_count base attribute does not refer to a
COBOL argument.

The argument count is the number of actual arguments specified in the USING
phrase of the CALL statement, including any arguments explicitly specified by the
OMITTED keyword. The count does not include the argument specified in the
GIVING (RETURNING) phrase.

Note When using the explicit argument association method, it is an error to specify
the argument number attribute, arg_num(value), with the arg_count base attribute
since this base attribute does not refer to a COBOL argument.

digits. Usethe digits base attribute when passing the digit count, that is, the number
of 9'sin the PICTURE character-string, of a passed COBOL numeric argument to
the C function. If theitemis not numeric, the results are undefined.

CodeBridge E-17
Base and Base Modifier Attributes

e initial_state. Usetheinitial_state base attribute to pass the COBOL initial state
flag to the C function. Theinitial_state base attribute does not refer to a COBOL
argument. It returns information about the state of the called program within the run
unit.

When the COBOL initial state flag is zero, the C function may choose to reinitialize
any “state” variablesit contains. When it is non-zero, the C function uses the
current values of any “state” variables. For more information, see item number 4 on
page G-6.

Note1l A “state” variable is one whose contents are normally preserved between
function calls.

Note 2 When using the explicit argument association method, it isan error to
specify the argument number attribute, arg_num(value), with the initial_state base
attribute since this base attribute does not refer to a COBOL argument.

e length. Usethelength base attribute when passing the length (in bytes) of a passed
COBOL argument to the C function. The length attribute may be used for the same
argument as the addr ess base attribute to allow a C function to modify the COBOL
data area directly. Other uses also exist; for example, the length base attribute may
be used for the same argument as the string base attribute to pass the maximum size
that a string may occupy (it does not include space for the trailing null character).

e scale. Usethe scale base attribute when passing the digit count of the number of
digitsto the right of the decimal point in a passed COBOL numeric argument to the
C function. If theitem isnot numeric, the results are undefined. The scale valueis
the arithmetic complement of the scale value in the COBOL argument descriptor.

Note If the COBOL dataitem uses P-scaling, the scaling factor may be negative.
For example, for aPIC 9(7)P(3) data item, using this attribute will pass -3 to the
C function; for a PIC P(3)9(7) dataitem, using this attribute will pass 10 to the

C function.

e type. Usethetype base attribute when passing the type code of a passed COBOL
argument to the C function. Type codes, which are defined in the header file
rmc85cal.h, areincluded in Table E-1 for easy reference. Note that some values are
classified as “reserved” in the “ Classification” column. They either refer to internal
formats that are not used by CodeBridge or to values that are reserved for future use.

E-18 Parameter Attributes
Base and Base Modifier Attributes

Table E-1: Type Attribute Codes

Name Value Classification Description
RM_NSE 0 Numeric Numeric String Edited
RM_NSU 1 Numeric Display String Unsigned
RM_NTS 2 Numeric Display Trailing Separate
RM _NTC 3 Numeric Display Trailing Combined
RM_NLS 4 Numeric Display Leading Separate
RM_NLC 5 Numeric Display Leading Combined
RM_NCS 6 Numeric Comp (unpacked) Signed
RM_NCU 7 Numeric Comp (unpacked) Unsigned
RM_NPP 8 Numeric Packed Positive
RM_NPS 9 Numeric Packed Signed
RM_NPU 10 Numeric Packed Unsigned
RM_NBS 11 Numeric Binary Signed
RM_NBU 12 Numeric Binary Unsigned or Index
13-15 Reserved
RM_ANS 16 Non-numeric Alphanumeric String
RM_ANSR 17 Non-numeric Alphanumeric (Right Justified)
RM_ABS 18 Non-numeric Alphabetic String
RM_ABSR 19 Non-numeric Alphabetic (Right Justified)
RM_ANSE 20 Non-numeric Alphanumeric String Edited
RM_ABSE 21 Non-numeric Alphabetic String Edited
RM_GRPF 22 Non-numeric Group
23-24 Reserved
RM _PTR 25 Pointer COBOL Pointer
RM_NBSN 26 Numeric Binary Signed Native
RM_NBUN 27 Numeric Binary Unsigned Native
28 - 31 Reserved
RM_OMITTED | 32 Omitted Omitted argument

CodeBridge E-19

Base and Base Modifier Attributes

e windows handle. Usethewindows_handle base attribute to pass the Windows
handle associated with the run unit to the C function. This attribute, whichis
available only for Windows systems, is useful when calling some Windows APIs.
For example, when opening a new window, it may be necessary to supply the handle
of the parent’swindow. The windows_handle base attribute does not refer to a
COBOL argument.

Note 1 Thewindows_handle base attribute is not available on UNIX platforms as it
can cause compilation errors.

Note 2 When using the explicit argument association method, it isan error to
specify the argument number attribute, arg_num(value), with the windows_handle
base attribute since this base attribute does not refer to a COBOL argument.

Base Modifier that Applies to Descriptor Base Attributes

Only one base modifier attribute, silent, is used with descriptor base attributes. For a
description of this base modifier, see page E-4.

Error Base Attributes

Occasionaly, either the C library or one of the Windows API functions will return error
information that must be retrieved separately from the C function that is called.

The C library often places error information in the external variable, errno. If the called
function returns a value of —1, then in the calling program value of the external variable
errno isthe error code. In releases prior to version 7.1, CodeBridge had no means of
accessing this variable.

Some Windows APIs return error information that must be retrieved by calling the C
function, GetL astError. If the called function returns a status of FALSE (numeric zero),
then the calling program must call the function GetL astError to obtain the error number.
In many cases, however, the value that would have been returned by Getl astError likely
will be modified by the RM/COBOL runtime between successive calls from the COBOL
program, making it impossible to call GetL astError as a separate function.

E-20 Parameter Attributes
Base and Base Modifier Attributes

Error base attributes associate with a COBOL argument for which thereis no
corresponding C function return or parameter. Two error base attributes have been
added to CodeBridge that deal with these situations:

e errno. Usetheerrno base attribute to retrieve the contents of the external variable,
errno. Specifying the base attribute errno is similar to specifying integer out,
except that it does not associate with a C function return or parameter. While this
attribute does not associate with the C function return or any parameter, the position
of the attribute list within the C function prototype in which it appears is significant
for determining the COBOL argument number when automatic argument association
isused, as described on page 2-22. The externa variable errno, which is the source
item for the attribute errno, has the C type of int, which issigned. The assumed
direction attribute is out; adirection attribute is not allowed with the attribute errno.

o et last error. Usetheget last_error base attribute to retrieve the contents
returned by the C function, GetLastError. Specifying get_last_error issimilar to
specifying integer out unsigned, except that it does not associate with a C function
return or parameter. While this attribute does not associate with the C function
return or any parameter, the position of the attribute list within the C function
prototype in which it appearsis significant for determining the COBOL argument
number when automatic argument association is used, as described on page 2-22.
The return value of GetLastError, which is the source item for the attribute
get_last_error, has the Windows type of DWORD, which isunsigned. The
assumed direction attribute is out; a direction attribute is not allowed with the
attribute get_last_error.

Error base attributes refer to an argument in the COBOL CALL statement, but do not
refer to any C function return value or parameter. These attributes cause the CodeBridge
Builder to generate separate code sequences to return the value of the external variable
errno or the return value of the Windows GetL astError function. For additional
information, see “Returning C Error Values’ on page 2-18.

Error base attributes are, in a certain sense, the opposite of descriptor base attributes
(these include arg_count, initial_state, and windows_handle). The error base attributes
describe a COBOL argument for which there is no corresponding C parameter, because
the source item for these attributes is not described in the C function prototype, and are
output (to the COBOL argument) only. The descriptor base attributes are used to
develop input values for C parameters from a source other than a COBOL argument or
from the description of a COBOL argument.

CodeBridge E-21
Base and Base Modifier Attributes

Base Modifiers that Apply to Error Base Attributes

The error base attributes may be used in an attribute list with the same base modifier
attributes as for the base attribute integer with the following exception:;

e Theunsigned attributeis not allowed. It would beincorrect for errno andis
implied for get_last_error.

The error base attributes can be supplemented with additional information by the base
modifier attributes listed below:

o alias(name). For adescription of this base modifier, see page E-4. Notethat the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

o assert_digits(min;max). Use this base modifier attribute to verify that the digit
length of the passed COBOL argument is within the range specified by min and max.
For example, [[errno assert_digits(9;18)]] indicates that the COBOL data
item must contain from 9 to 18 digits.

The use of P-scaling in the COBOL program will increase the digit length by the
number of P symbols specified in the PICTURE character-string. For example, all
of the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a dataitem
with adigit length of eight for CodeBridge.

o assert_digits left(min;max). Use this base modifier attribute to verify that the
number of digitsto the left of the decimal point in the passed COBOL argument is
within the range specified by min and max. For example, [[get_last_error
assert_digits_left(5;~0)]] indicates that the COBOL dataitem must contain
five or more digits to the left of the decimal point, or equivalently, no less than five
digits before the decimal point.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. Thisusageis preferable to other
choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(which isnot allowed C for unsigned data types).

The use of P-scaling in the COBOL program will increase the number of digitsto
the left of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the left of the decimal point. For example, both of the
PICTURE character-strings 9(8) and 9(5)P(3) describe a dataitem with eight digits
to the left of the decimal point for CodeBridge.

E-22 Parameter Attributes
Base and Base Modifier Attributes

assert_digits right(min;max). Usethisbase modifier attribute to verify that the
number of digitsto the right of the decimal point in the passed COBOL argument
iswithin the range specified by min and max. For example, [[errno
assert_digits_right(0;0)]] indicatesthat the COBOL dataitem must
contain no digits after the decimal point.

The use of P-scaling in the COBOL program will increase the number of digitsto
the right of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the right of the decimal point. For example, both of the
PICTURE character-strings V9(8) and VP(3)9(5) describe a data item with eight
digitsto the right of the decimal point for CodeBridge.

assert_length(min;max). Use this base modifier attribute to verify that the actual
length of the passed COBOL argument is within the range specified by min and max.
For example, [[get_last_error assert_length(10;~0)]] indicates that the
COBOL data item must contain at least ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. Thisusageis preferable to other
choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(which isnot allowed C for unsigned data types).

assert_signed. Use this base modifier attribute to verify that the passed COBOL
argument contains a sign.

assert_unsigned. Use this base modifier attribute to verify that the passed COBOL
argument does not contain a sign.

no_size error. During conversion (either COBOL to C or Cto COBOL), itis
possible that leading digits will be lost. If this occurs, the normal behavior isto
generate an error condition. If theno_size error base modifier attribute is used, the
error condition will be ignored.

rounded. Usethisbase modifier attribute to cause rounding in those cases where
truncation would normally occur (on either input or output). Rounding is performed
using COBOL rounding rules.

scaled(value). Usethis base modifier attribute to scale integer values during the
conversion process. On output, the C value is divided by 10",

For example, if the attributelist is [[errno scaled(2)]] and the C function
changed the value of the external variable errno to 123, the COBOL program would
receive 1.23 back.

silent. For adescription of this base modifier, see page E-4.

CodeBridge E-23
Base and Base Modifier Attributes

Parameter Attributes Summary

Table E-2 lists all available parameter attributes in alphabetical order. The “Attribute
Category” column contains the category of the parameter attribute as one of the
categories: Argument Number, Direction, Base or Base Modifier, as discussed in earlier
sections. The “Maodifier Usage” column indicates whether base modifier attributes affect
the COBOL argument, the C dataitem, or the C function name. The “Description”
column presents a brief overview of the function of the parameter attribute.

Table E-2: Parameter Attributes Summary

Parameter Attribute Modifier
Attribute Category Usage Description
address Base Passes the address of a passed COBOL
(Descriptor) argument to the C function. See
page E-17.
aias(name) Base C Function | Changes the generated function name to
Modifier Name be the name specified by name. See
page E-4.
arg_count Base Passes the actual number of COBOL
(Descriptor) arguments to the C function. See
page E-17.
arg_num(value) Argument Explicitly specifies the COBOL argument
Number number of an argument in the USING
phrase rather than accepting the default
argument association. See page E-2.
assert_digits Base COBOL Insures that the number of digitsin the
(min; max) Modifier Argument passed COBOL argument iswithin the
range specified by min and max. This
modifier is used with numeric base
attributes. See page E-7.
assert_digits_left Base COBOL Insures that the number of digits to the
(min; max) Modifier Argument left of the decimal point in the passed

COBOL argument is within the range
specified by min and max. This modifier
is used with numeric base attributes. See

page E-7.

E-24 Parameter Attributes

Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
assert_digits_right Base COBOL Insures that the number of digitsto the
(min; max) Modifier Argument right of the decimal point in the passed
COBOL argument is within the range
specified by min and max. This modifier
is used with numeric base attributes. See
page E-8.
assert_length Base COBOL Insures that the length of the passed
(min; max) Modifier Argument COBOL argument is within the range
specified by min and max. This modifier
is used with numeric or string base
attributes. See pages E-8 and E-11.
assert_signed Base COBOL Insures that the passed COBOL argument
Modifier Argument issigned. Thismodifier isused with
numeric base attributes. See page E-8.
assert_unsigned Base COBOL Insures that the passed COBOL argument
Modifier Argument isunsigned. Thismodifier is used with
numeric base attributes. See page E-8.
buffer_length Base Passes the size (in bytes) of the string
(String buffer to the C function. buffer_length is
Length) one greater than the length of anon-
numeric COBOL argument or four greater
than the digit length of a numeric COBOL
argument. See page E-14.
digits Base Passes the number of digitsin a passed
(Descriptor) COBOL numeric argument to the C
function. See page E-17.
effective_length Base Passes the effective size (in bytes) of the
(String string buffer to the C function. Thisis
Length) similar to the standard C library function,
strlen. See page E-14.
errno Base Causes the external variable errno to be
(Error) set to zero before the function call and
the value of the external variable errno
after the function call to be returned to
aCOBOL numeric argument. See
page E-20.
float Base Converts COBOL numeric arguments to
(Numeric) C floating-point parameters (such as float

or double). See page E-5.

CodeBridge E-25
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
genera_string Base Converts numeric and non-numeric
(Numeric COBOL arguments to null-terminated
or String) C strings. Numeric COBOL arguments
aretreated asif the numeric_string base
attribute were specified. Non-numeric
COBOL arguments are treated asif the
string base attribute were specified. See
page E-13.
get_last_error Base Causes the Windows error code to be set
(Error) to zero by acal to SetLastError before
the function call and the value returned
from acall to GetLastError after the
function call to be returned to a COBOL
numeric argument. See page E-20.
in Direction Specifies an input parameter to the C
function. See page E-2.
initial_state Base Passes the COBOL initial state flag to the
(Descriptor) C function. See page E-18.
integer Base Converts COBOL numeric arguments to
(Numeric) C integer parameters (such as char, short,
int, or long). See page E-5.
integer_only Base COBOL Insures that the passed COBOL argument
Modifier Argument isan integer (no digits are allowed to the
right of the decimal point). This modifier
is used with the integer base attribute.
See page E-10.
|eading(val ue) Base C Specifies the use of leading strip/fill
Modifier Parameter charactersindicated by value. This
modifier is used with the string base
attribute. See page E-12.
leading_minus Base C Forces aminus sign character (*-") to be
Modifier Parameter placed before the numeric value when the
valueis negative. Positive values do not
contain asign character. This modifier is
used with the numeric_string base
attribute. See page E-10.

E-26 Parameter Attributes
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
leading_sign Base C Forces a sign character, either aplus (“+”
Modifier Parameter or aminus (“-"), depending on the sign of
the value, to be placed before the numeric
value. This modifier is used with the
numeric_string base attribute. See
page E-10.
leading_spaces Base C Specifies the use of leading strip/fill space
Modifier Parameter characters. This modifier is used with the
string base attribute. See page E-12.
length Base Passes the size (in bytes) of a passed
(Descriptor) COBOL argument to the C function. See
page E-18.
no_null_pointer Base COBOL Returns an error if the COBOL program
Modifier Argument passes a pointer with anull value as an
argument. This modifier is used with
numeric or string base attributes. See
pages E-8 and E-12.
no_size error Base COBOL Causes numeric conversion errors to be
Modifier Argument ignored. This modifier isused with
numeric base attributes. See page E-9.
numeric_string Base Converts COBOL numeric arguments to
(Numeric) null-terminated C strings. See page E-6.
occurs(value) Base C Specifies that the parameter is an array
Modifier Parameter containing value elements. This modifier
is used with numeric or string base
attributes. It isalso used with the
buffer_length and effective_length base
attributes. See pages E-9 and E-12.
optional Base COBOL Allows the COBOL program to omit an
Modifier Argument input argument even though aC
parameter is associated with that
argument. This modifier is used with
numeric or string base attributes. See
pages E-9 and E-12.
out Direction Specifies an output parameter from the C

function and causes an output conversion
into the associated COBOL argument.
See page E-2.

CodeBridge E-27
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
pointer_address Base Passes the effective address (base address
(Pointer) component plus offset component) of a
passed COBOL pointer argument to the C
function. See page E-15.
pointer_base Base Passes the base address component of a
(Pointer) passed COBOL pointer argument to the C
function. See page E-16.
pointer_length Base Passes the effective length (size
(Pointer) component minus offset component) of a
passed COBOL pointer argument to the C
function. See page E-15.
pointer_max_size Base COBOL Sets the size component of a passed
Modifier Argument COBOL pointer argument to the
maximum value (all ones) on output.
This modifier is used with the
pointer _base or pointer_offset base
attributes. See page E-16.
pointer_offset Base Passes the offset component of a passed
(Pointer) COBOL pointer argument to the C
function. See page E-16.
pointer_reset_offset | Base COBOL Sets the offset component of a passed
Modifier Argument COBOL pointer argument to zero on
output. This modifier is used with the
pointer _base or pointer_size base
attributes. See page E-16.
pointer_size Base Passes the size component of a passed
(Pointer) COBOL poainter argument to the C
function. See page E-16.
repeat(val ue) Base C Used when the C function expects a
Modifier Parameter variable number of parameters. This
modifier is used for numeric or string base
attributes. See pages E-9 and E-12.
ret_val Argument Explicitly specifies the COBOL argument
Number inthe GIVING (RETURNING) phrase

rather than accepting the default argument
association. See page E-2.

E-28 Parameter Attributes
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
rounded Base COBOL Causes rounding (instead of truncation) to
Modifier Argument occur during parameter conversion when
trailing digits must be removed. This
modifier is used with numeric base
attributes. See page E-9.
scale Base Passes the scale of a passed COBOL
(Descriptor) numeric argument to the C function. If a
COBOL argument had a picture of
999V 99, the scale used by COBOL is—2.
Thisvalueis negated and passed as +2 to
the C function. If the picture contains “P”
characters, this value may appear unusual.
See page E-18.
scaled(value) Base C On input, multiplies the passed COBOL
Modifier Parameter argument by a 102", On output, divides
the C parameter by a10@. This
modifier is used with the integer base
attribute. See page E-10.
silent Base C Suppresses display of errors detected
Modifier Parameter during conversion or validation. See
page E-4.
size(value) Base C Used with numeric_string and string base
Modifier Parameter attributes to override the default length
(itssize or precision) of the passed
COBOL argument. See pages E-10 and
E-13.
string Base Converts COBOL non-numeric
(String) arguments to null-terminated C strings.
See page E-11.
trailing(value) Base C Specifies the use of trailing strip/fill
Modifier Parameter charactersindicated by value. This
modifier is used with the string base
attribute. See page E-13.
trailing_credit Base C Forces a credit symbol (“CR”) to be
Modifier Parameter placed after the numeric value when the

valueis negative. Positive values do not
contain asign representation. This
modifier is used with the numeric_string
base attribute. See page E-10.

CodeBridge E-29
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
trailing_debit Base C Forces a debit symbol (“DB”) to be
Modifier Parameter placed after the numeric value when the
valueis negative. Positive values do not
contain a sign representation. This
modifier is used with the numeric_string
base attribute. See page E-10.
trailing_minus Base C Forces aminus sign character (“-”) to be
Modifier Parameter placed after the numeric value when the

valueis negative. Positive values do not
contain asign character. This modifier is
used with the numeric_string base
attribute. See page E-10.

trailing_sign Base Cc Forces sign character, either aplus (“+”
Modifier Parameter or aminus (“-") sign character, depending
on the sign of the value, to be placed after
the numeric value. Thismodifier is used
with the numeric_string base attribute.
See page E-10.

trailing_spaces Base C Specifies the use of trailing strip/fill space
Modifier Parameter characters. This modifier is used with the
string base attribute. See page E-13.

type Base Passes the type-code of a passed
(Descriptor) COBOL argument to the C function.
See page E-18.
unsigned Base C Indicates that the C parameter is unsigned.

Modifier Parameter If this attribute is not used, all integer C
parameters are treated as signed. This
modifier is used with the integer base
attribute. See page E-10.

value if_omitted Base COBOL Assigns a default value when the COBOL
(value) Modifier Argument program omits the associated argument.
This modifier is used with the numeric or
string base attributes. See pages E-9

and E-13.
windows_handle Base Passes the Windows handle of the current
(Descriptor) COBOL CALL tothe C function. This

attribute is available only for Windows
systems. See page E-20.

E-30 Parameter Attributes
Parameter Attributes Summary

Parameter Attribute Combinations

CodeBridge Builder recognizes various parameter attribute combinations. Table E-3isa
quick reference that lists the allowed combinations. For instance, some base modifier
attributes make sense only for input or output. In those cases, there are separate rows for

“inonly” and “out only”.

Note When the “Direction” column contains “in (assumed)”, the direction is always

assumed to be “in”, but thein direction attribute is not allowed.

Table E-3: Parameter Attribute Combinations

Argument
Base Direction Number Modifiers
address in (assumed) arg_num silent
arg_count in (assumed) none silent
buffer_length in (assumed) arg_num occurs silent
digits in (assumed) arg_num silent
effective_length | in (assumed) arg_num occurs silent
errno out (assumed) | ret_val dias assert_unsigned
assert_digits no_size error
assert_digits_left rounded
assert_digits right scaled
assert_length silent
assert_signed
out (assumed) | arg_num assert_digits assert_unsigned
assert_digits _left no_size error
assert_digits right rounded
assert_length scaled
assert_signed silent
float inonly optional value_if_omitted
out only ret_val dias
either arg_num assert_digits no_null_pointer
assert_digits_left no_size error
assert_digits right occurs
assert_length repeat
assert_signed rounded
assert_unsigned silent

CodeBridge E-31

Parameter Attribute Combinations

Table E-3: Parameter Attribute Combinations (Cont.)

Argument
Base Direction Number Modifiers
general_string inonly leading_minus trailing_debit
leading_sign trailing_minus
optional trailing_sign
trailing_credit value_if_omitted
out only ret_val dias
either arg_num assert_digits no_size error
assert_digits left occurs
assert_digits right repeat
assert_length rounded
assert_signed silent
assert_unsigned size
leading trailing
leading_spaces trailing_spaces
no_null_pointer
get_last_error out (assumed) | ret_val dias assert_unsigned
assert_digits no_size error
assert_digits |eft rounded
assert_digits right scaled
assert_length silent
assert_signed
out (assumed) | arg_num assert_digits assert_unsigned
assert_digits_left no_size error
assert_digits right rounded
assert_length scaled
assert_signed silent
initial_state in (assumed) none silent
integer inonly integer_only value if_omitted
optional
out only ret_val dias
either arg_num assert_digits no_size error
assert_digits _left ocecurs
assert_digits right repeat
assert_length rounded
assert_signed scaled
assert_unsigned silent
no_null_pointer unsigned

E-32 Parameter Attributes

Parameter Attribute Combinations

Table E-3: Parameter Attribute Combinations (Cont.)

Argument
Base Direction Number Modifiers
length in (assumed) arg_num silent
numeric_string inonly leading_minus trailing_debit
leading_sign trailing_minus
optional trailing_sign
trailing_credit value if_omitted
out only ret_val dias
either arg_num assert_digits no_size error
assert_digits_left occurs
assert_digits right repeat
assert_length rounded
assert_signed silent
assert_unsigned size
no_null_pointer
pointer_address | in (assumed) arg_num silent
pointer_base inonly
out only ret_val dias pointer_reset_offset
pointer_max_size
either arg_num silent
pointer_length in (assumed) arg_num silent
pointer_offset inonly
out only ret_val dias pointer_max_size
either arg_num silent
pointer_size inonly
out only ret_val dias pointer_reset_offset
either arg_num silent
scale in (assumed) arg_num silent

CodeBridge E-33

Parameter Attribute Combinations

Table E-3: Parameter Attribute Combinations (Cont.)

Argument
Base Direction Number Modifiers
string inonly optional value_if_omitted
out only ret_val dias
either arg_num assert_length repeat
leading silent
leading_spaces size
no_null_pointer trailing
occurs trailing_spaces
type in (assumed) arg_num silent
windows_handle | in (assumed) none silent

(This attribute is
available only
for Windows
systems. See
page E-20.)

E-34 Parameter Attributes
Parameter Attribute Combinations

Appendix F: CodeBridge Library
Functions

The CodeBridge Library is a collection of functions that are included in the
RM/COBOL runtime system. These functions are used to convert input data from
COBOL argumentsto C parameters on entry and from C parametersto COBOL
arguments just prior to exit. The CodeBridge Library also contains functions that
perform data range and integrity checks.

This appendix describes each function in the CodeBridge Library. These descriptions
will help you understand the C code generated by the CodeBridge Builder. Information
on specifying the Flags parameter is also covered. The information in this appendix
will also prove useful if you are debugging applications devel oped using CodeBridge.

Note Theinformation presented here assumes a working knowledge of the C
programming language. The material in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

Overview

The CodeBridge Library consists of the conversion and validation functions shown in
Table F-1. (These functions are described in detail beginning on page F-6.) Input
functions are called before the C function is called. Output functions are called after the
C function is called but before returning to the calling COBOL program.

Note Each of these routines returns FALSE if an error condition occurs. Logicinthe C
source code file (generated by the CodeBridge Builder) will terminate the DLL and
return an error to the RM/COBOL runtime system, which will terminate the calling
COBOL program. See Appendix A, CodeBridge Errors, for alist of these errors.

CodeBridge F-1
Overview

Table F-1: CodeBridge Library Functions

Function Name Input or Output Used For

AssertDigits Either [[numeric assert_digits]]

AssertDigitsL eft Either [[numeric assert_digits |eft]]

AssertDigitsRight Either [[numeric assert_digits _right]]

AssertLength Either [[numeric assert_length]] or
[[string assert_length]]

AssertSigned Either [[numeric assert_signed]]

AssertUnsigned Either [[Nnumeric assert_unsigned]]

BufferLength Input [[buffer_length]]

Cobol ArgCount Input [[arg_count]]

Cobol DescriptorAddress Input [[address]]

Cobol DescriptorDigits Input [[digits]]

Cobol DescriptorLength Input [[length]]

Cobol DescriptorScale Input [[scal€]]

CobolDescriptorType Input [[typel]

Cobollnitial State Input [[initial_state]]

Cobol ToFloat Input [[float]]

Cobol ToGeneral String Input [[general_string]]

Cobol Tolnteger Input [[integer]]

Cobol ToNumericString Input [[Nnumeric_string]]

Cobol ToPointerAddress Input [[pointer_address]]

Cobol ToPointerBase Input [[pointer_base in]]

Cobol ToPointerLength Input [[pointer_length]]

Cobol ToPointerOffset Input [[pointer_offset in]]

Cobol ToPointerSize Input [[pointer_sizein]]

Cobol ToString Input [[string]]

CobolWindowsHandle Input [[windows_handl€]]

ConversionCleanup Neither Cleanup during conversion exit.

ConversionStartup Neither Initialization of conversion process.

DiagnosticM ode Global [# diagnostic(flag) #]

F-2 CodeBridge Library Functions
Overview

Table F-1: CodeBridge Library Functions (Cont.)

Function Name Input or Output Used For
EffectiveLength Input [[effective_length]]
FloatToCaobol Output [[float out]]
General StringToCobol Output [[general _string out]]
GetCallerinfo Neither Obtaining information about the calling
COBOL program.
Integer ToCobol Output [[integer out]]
NumericStringToCobol Output [[numeric_string out]]
PointerBaseToCobol Output [[pointer_base out]]
PointerOffsetToCobol Output [[pointer_offset out]]
PointerSizeToCobol Output [[pointer_size out]]
StringToCobol Output [[string out]]

The series of functions that begin with “ Assert” are designated as “Either” in the Input or
Output column. It is recommended that these functions be called prior to the execution
of the C function.

The ConversionStartup, ConversionCleanup, and GetCallerInfo functions are designated
as “Neither” in the Input or Output column. The ConversionStartup function should be
called once just after entry from COBOL. The ConversionCleanup function should be
called once just prior to returning to COBOL. The GetCallerInfo function may be called
at any time; it isusually called after an error is detected in order to add calling program
information to an error message.

The DiagnosticMode function is designated as “ Global” in the Input or Output column.
This function may be called at any time, including multiple times, after the call to
ConversionStartup and prior to the call to ConversionCleanup.

Specifying the Flags Parameter

The behavior of the CodeBridge Library conversion and validation functionsis
determined by flag settings in the Flags parameter. 1n some cases, the behavior
requested by aflag requires that additional information be passed in another parameter.
For example, when passing an array, you must set both the PF_ OCCURS flag and pass
the array size in the Occurs parameter.

CodeBridge F-3
Specifying the Flags Parameter

F-4

Vaues for the Flags parameter, which is used with most of the CodeBridge Library
functions, are defined in cbridge.h. These values correspond to the base modifier
attributes that can be specified in template files. See Table F-2 on page F-5 for alist of
flag definitions.

Normally, the PF_IN flag is used only for documentation purposes. However, when a
Numeric or String output conversion function (FloatToCobol, General StringToCabol,
IntegerToCabol, NumericStringToCobol, and StringToCoboal) is used, the corresponding
Numeric or String input conversion function (Cobol ToFloat, Cobol ToGeneral String,
Cobol Tolnteger, Cobol ToNumericString, and Cobol ToString) must also be called. This
is true even when the COBOL argument is not used as an input to the C function. For
these reasons, the setting of the PF_IN flag is critical for Numeric and String input
conversions. When the PF_IN flag is not set, initialization of the C dataitem is not
performed, but the initialization necessary for the output conversion is performed.

The PF_OCCURS, PF_OUT, and PF_RETURN_VALUE flags are not used in the
current implementation of the CodeBridge Library and, therefore, are used only for
documentation purposes. However, because of possible changes to future versions of the
CodeBridge Library, we recommend that these flags be set whenever appropriate. That
is, callsto the CodeBridge Library output functions (FloatToCobol,

General StringToCobol, IntegerToCobol, NumericStringToCobol, PointerBaseToCoboal,
PointerOffsetToCobol, PointerSizeToCaobol, and StringToCobol) should set the PF_ OUT
flag. When associated with the C function return value, calls to these same output
functions should set the PF_ RETURN_VALUE flag in addition to the PF_OUT flag.
The PF_OCCURS flag should be set whenever an array is specified.

Although the following masks are neither used nor required in any CodeBridge Library
call, they are provided for convenience and completeness:

e PF _LEADING. Thismask isacombination of the PF_LEADING_SPACESflag
and the PF_LEADING_VALUE flag.

e PF TRAILING. Thismask isacombination of the PF_ TRAILING_SPACESflag
and the PF_TRAILING_VALUE flag.

e PF NUMERIC STRING MASK. Thismask may be used to isolate the following
flags: PF_LEADING_MINUS, PF_LEADING_SIGN, PF_TRAILING_CREDIT,
PF_TRAILING_DEBIT, PF_TRAILING_MINUS, and PF_TRAILING_SIGN.

CodeBridge Library Functions
Specifying the Flags Parameter

Table F-2: CodeBridge Library Flag Definitions

Name Value Description
PF_ASSERT_SIGNED 0x00000008 COBOL argument must be signed.
PF_ASSERT_UNSIGNED 0x00000010 COBOL argument must be unsigned.
PF_IN 0x00000020 Input argument for C function.
PF_INTEGER_ONLY 0x00000040 COBOL argument must be an integer.
PF_LEADING 0x00000180 Mask for leading strip/fill.
PF_LEADING_MINUS 0x00000001 Place “-" before negative value.
PF_LEADING_SIGN 0x00000000 Place “+" or “-" before value.
PF_LEADING_SPACES 0x00000080 Strip/fill leading spaces.
PF_LEADING_VALUE 0x00000100 Strip/fill leading value.
PF_NO NULL_POINTER 0x00000200 Disallow NULL value for pointer.
PF_NO_SIZE ERROR 0x00000400 Ignore numeric size errors.
PF_ NUMERIC STRING_MASK | 0x00000007 numeric_string sign handling mask.
PF_OCCURS 0x00000800 Parameter isan array.
PF_OPTIONAL 0x00001000 Parameter is optional.
PF_OUT 0x00002000 Output parameter from C function.
PF_POINTER_MAX_SIZE 0x00004000 Maximize pointer size (all ones).
PF_POINTER_RESET_OFFSET | 0x00008000 Clear pointer offset.
PF_REPEAT 0x00010000 Parameter repeated multiple times.
PF RETURN_VALUE 0x00020000 Return value of the C function.
PF_ROUNDED 0x00040000 Round last digit if lost precision.
PF_SCALED 0x00080000 On input, multiply by 10%3:

on output, divide by 10",
PF_SILENT 0x00100000 Suppress error message display.
PF_SIZE 0x00200000 Override default size of string.
PF_TRAILING 0x00C00000 Mask for trailing strip/fill.
PF_TRAILING_CREDIT 0x00000006 Place “CR” after negative value.
PF TRAILING DEBIT 0x00000007 Place “DB” after negative value.
PF_TRAILING_MINUS 0x00000005 Place “-" after negative value.
PF_TRAILING_SIGN 0x00000004 Place “+” or “-" after value
PF_TRAILING_SPACES 0x00400000 Strip/fill trailing spaces.
PF_TRAILING_VALUE 0x00800000 Strip/fill trailing value.
PF_UNSIGNED 0x01000000 C parameter is unsigned.
PF VALUE IF OMITTED 0x02000000 Override value for omitted argument.

CodeBridge
Specifying the Flags Parameter

F-5

AssertDigits

F-6

AssertDigits returns TRUE if the number of digits for the COBOL argument isin the
range specified by MinValue and MaxValue; otherwise, the function returns FAL SE.
This function also returns FALSE if the argument is not numeric.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments”
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

The use of P-scaling in the COBOL program will increase the digit length by the number
of P symbols specified in the PICTURE character-string. For example, all of the
PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a dataitem with a
digit length of eight for CodeBridge.

Calling Sequence

int _rmdll_RtCall->pAssertDigits
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short Minvalue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values (see Table F-2 on
page F-5) for AssertDigitsare: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED.

CodeBridge Library Functions
AssertDigits

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCabol,
described on pages F-25 and F-46, respectively) for that argument.

MaxValue is the maximum allowed length, in digits.
MinValueis the minimum allowed length, in digits.
Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge
AssertDigits

F-7

AssertDigitsLeft

F-8

AssertDigitsL eft returns TRUE if the number of digits to the left of the decimal point for
the COBOL argument isin the range specified by MinValue and MaxValue; otherwise,
the function returns FALSE. Thisfunction aso returns FALSE if the argument is not
numeric.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments”
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

The use of P-scaling in the COBOL program will increase the number of digits to the left
of the decimal point by the number of P symbols specified in the PICTURE character-
string that occur to the left of the decimal point. For example, both of the PICTURE
character-strings 9(8) and 9(5)P(3) describe a data item with eight digits to the |eft of the
decimal point for CodeBridge.

Calling Sequence

int _rmdl1_RtCall->pAssertDigitsLeft
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short Minvalue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertDigitsLeft are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED.

CodeBridge Library Functions
AssertDigitsLeft

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCabol,
described on pages F-25 and F-46, respectively) for that argument.

MaxValue is the maximum allowed digits to the | eft of the decimal point.
MinValueis the minimum allowed digitsto the left of the decimal point.
Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge
AssertDigitsLeft

F-9

AssertDigitsRight

AssertDigitsRight returns TRUE if the number of digits to the right of the decimal point
for the COBOL argument isin the range specified by MinValue and MaxValue;
otherwise, the function returns FALSE. Thisfunction also returns FALSE if the
argument is not numeric.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments”
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

The use of P-scaling in the COBOL program will increase the number of digitsto the
right of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the right of the decimal point. For example, both of the
PICTURE character-strings V9(8) and V P(3)9(5) describe a data item with eight digitsto
the right of the decimal point for CodeBridge.

Calling Sequence

int _rmdl1_RtCall->pAssertDigitsRight
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short Minvalue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertDigitsRight are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED.

F-10 CodeBridge Library Functions
AssertDigitsRight

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCabol,
described on pages F-25 and F-46, respectively) for that argument.

MaxValue is the maximum allowed digits to the right of the decimal point.
MinValueis the minimum allowed digits to the right of the decimal point.
Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge
AssertDigitsRight

F-11

AssertLength

Assertlength returns TRUE if the length of the COBOL argument (in bytes) isin the
range specified by MinValue and MaxValue; otherwise, the function returns FAL SE.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments”
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

Calling Sequence

int _rmdll_RtCall->pAssertLength
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short Minvalue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values (see Table F-2 on
page F-5) for AssertLength are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCabol,
described on pages F-25 and F-46, respectively) for that argument.

F-12 CodeBridge Library Functions
AssertLength

MaxValue is the maximum allowed length, in bytes.
MinValueis the minimum allowed length, in bytes.
Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge F-13
AssertLength

AssertSigned

AssertSigned returns TRUE if the COBOL argument is signed; otherwise, the function
returns FAL SE.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments”
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

Calling Sequence

int _rmdll_RtCall->pAssertSigned
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertSigned are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCaobol,
described on pages F-25 and F-46, respectively) for that argument.

F-14 CodeBridge Library Functions
AssertSigned

AssertUnsigned

AssertUnsigned returns TRUE if the COBOL argument is unsigned; otherwise, the
function returns FALSE.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments”
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

Calling Sequence

int _rmdll_RtCall->pAssertUnsigned
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertUnsigned are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCaobol,
described on pages F-25 and F-46, respectively) for that argument.

CodeBridge F-15
AssertUnsigned

BufferLength

BufferLength obtains the length (in bytes) of the data buffer that has been allocated for
conversion to and from the COBOL argument. For COBOL non-numeric arguments,
this normally would be one more than the length of the argument. For COBOL numeric
arguments, this normally would be four more than the digit length of the argument. This
function returns TRUE if it is successful and FALSE if thereisan error.

Note The BufferLength function may be used only in combination with one of the input
string functions: Cobol ToGeneral String (see page F-27), Cobol ToNumericString (see
page F-31), or Cobol ToString (see page F-38). ArgNumber must have the same valuein
the BufferLength function call and the corresponding input string function call. The call
to BufferLength may precede or follow the call to the corresponding input string
function.

Calling Sequence

int _rmdl1_RtCall->pBufferLength

(short ArgCount,

short ArgNumber,

CONV_TABLE *ConvTable,

int Flags,

int Occurs,

void *Parameter,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by the ConversionStartup function
(see page F-42).

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for BufferLength are: PF_ OCCURS and PF_SILENT.

F-16 CodeBridge Library Functions
BufferLength

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Note For any given argument, the buffer length is a constant regardless of whether the

argument isascalar or an array. Thus, if you are writing you own C routine, there is no
reason to have a buffer length parameter that is an array, even when the related C string
parameter is an array.

Parameter isthe address of the C parameter where the buffer length will be stored.

Szeisthe size of the C parameter.

CodeBridge F-17
BufferLength

CobolArgCount

Cobol ArgCount obtains that actual number of arguments passed from the calling
COBOL program. This function returns TRUE if it is successful and FALSE if thereis
an error.

Note The Cobol ArgCount function is one of the trivial conversion functions described
on page |-7.

Calling Sequence

int _rmdll1_RtCall->pCobolArgCount
(short ArgCount,
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

Flags modify the behavior of the conversion. The only valid flag value for
CobolArgCount is PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C parameter where the argument count will be stored.

Szeisthe size of the C parameter.

F-18 CodeBridge Library Functions
CobolArgCount

CobolDescriptorAddress

Cobol DescriptorAddress obtains the address of the COBOL argument. This function
returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdl1_RtCall->pCobolDescriptorAddress
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorAddressis PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C pointer where the address of the COBOL argument
will be stored.

CodeBridge F-19
CobolDescriptorAddress

CobolDescriptorDigits

CobolDescriptorDigits obtains the digit count for the COBOL argument. This function
returns TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdll_RtCall->pCobolDescriptorDigits
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value
CobolDescriptorDigitsis PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C parameter where the digit count will be stored.

Szeisthe size of the C parameter.

F-20 CodeBridge Library Functions
CobolDescriptorDigits

CobolDescriptorLength

Cobol DescriptorLength obtains the length (in bytes) of the COBOL argument. This
function returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdll1_RtCall->pCobolDescriptorLength
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorLength isPF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C parameter where the length will be stored.

Szeisthe size of the C parameter.

CodeBridge F-21
CobolDescriptorLength

CobolDescriptorScale

Cobol DescriptorScal e obtains the scale (the number of digits to the right of the decimal
point) of the COBOL argument. Thisfunction returns TRUE if it is successful and
FALSE if thereis an error.

Calling Sequence

int _rmdl1_RtCall->pCobolDescriptorScale
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value
CobolDescriptorScaleis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the scale will be stored. The scale
value returned is the arithmetic complement of the value in the COBOL descriptor.

Szeisthe size of the C parameter.

F-22 CodeBridge Library Functions
CobolDescriptorScale

CobolDescriptorType

CobolDescriptor Type obtains the type of the COBOL argument. This function returns
TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdll_RtCall->pCobolDescriptorType
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorTypeis PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C parameter where the Type value will be stored (see the
discussion of “String Arrays’ on page 2-34).

Szeisthe size of the C parameter.

CodeBridge F-23
CobolDescriptorType

CobollnitialState

Cobollnitial State obtains the value of theinitial state flag from the current COBOL
CALL. Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

Note The Cobollnitial State function is one of the trivial conversion functions described
on page |-7.

When Sate is zero, the C function may choose to (re)initialize any “ state” variablesit
contains. When Sate is non-zero, the C function may choose to use the current values of
any “state” variables.

Note A “state” variable is one whose contents are normally preserved between
function calls.

Calling Sequence

int _rmdl1_RtCall->pCobolInitialState
(int Flags,
void *Parameter,
int Size),
short State);

Flags modify the behavior of the conversion. The only valid flag value for
CobholInitial State is PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C parameter where the initial state flag will be stored.
It may also be the address of an array of floating-point values if the PF_OCCURS flag
is set.

Szeisthe size of the C parameter.

Sateistheinitia state flag for the current COBOL CALL.

F-24 CodeBridge Library Functions
CobollnitialState

CobolToFloat

Cobol ToFloat converts the COBOL numeric argument to a C floating-point value. This
function returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the FloatToCobol (see page F-46)
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to this function may perform memory management
operations that are not needed for output-only conversions, this call may be omitted.

Calling Sequence

int _rmdll_RtCall->pCobolToFloat

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

double Omitted,

void **Parameter,

int Repeat,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

CodeBridge F-25
CobolToFloat

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToFloat are:

e PF _ASSERT_SIGNED e PF_OPTIONAL

e PF_ASSERT_UNSIGNED e PF REPEAT

e PFIN e PF_ROUNDED

e PF_NO_NULL_POINTER e PF SILENT

e PF_NO_SIZE ERROR e PF VALUE IF OMITTED
e PF_OCCURS

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Omitted is the default value for omitted argumentsif either of the PF_ OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is a pointer to the address of the C parameter where the floating-point value
will be stored.

Repeat is the repeat count if PF_ REPEAT is set.

Szeisthe size of the C parameter.

F-26 CodeBridge Library Functions
CobolToFloat

CobolToGeneralString

Cobol ToGeneral String converts the COBOL argument to a null-terminated C string.
For COBOL numeric arguments, this function has the same behavior as

Cobol ToNumericString (see page F-31). For COBOL non-numeric arguments,

this function has the same behavior as Cobol ToString (see page F-38). Thisfunction

returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the General StringToCobol (see

page F-48) function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to this function may perform memory
management operations that are not needed for output-only conversions, this call may be

omitted.

Calling Sequence

int _rmdll_RtCall->pCobolToGeneralString

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
CONV_TABLE *ConvTable,

int Flags,

int Occurs,

char *Omitted,

void **Parameter,

int Repeat,

int Size,

short Valuel,

short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by ConversionStartup (see

page F-42).

CodeBridge

CobolToGeneralString

F-27

Flags modify the behavior of the conversion. The flags available for
Cobol ToGeneral String are the union of the flags for Cobol ToNumericString and
CobolToString. Some flags, such as PF_LEADING_MINUS, areignored for non-

numeric strings. Other flags, such as PF_LEADING_SPACES areignored for numeric
strings. Valid flag values (see Table F-2 on page F-5) for Cobol ToGeneral String are:

e PF_ASSERT_SIGNED e PF_REPEAT
e PF_ASSERT_UNSIGNED e PF_ROUNDED

e PFIN e PF SILENT

e PF_LEADING_MINUS e PF SIZE

e PF_LEADING_SIGN e PF_TRAILING_CREDIT
e PF_LEADING_SPACES e PF_TRAILING DEBIT

e PF_LEADING_ VALUE e PF_TRAILING_MINUS
e PF_NO_NULL_POINTER e PF_TRAILING_SIGN

e PF_NO_SIZE_ERROR e PF_TRAILING_SPACES
e PF_OCCURS e PF_TRAILING_VALUE
e PF_OPTIONAL e PF_VALUE_IF_ OMITTED

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but

aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Omitted is the default value for omitted argumentsiif either of the PF_OPTIONAL or

PF_VALUE_IF_OMITTED flagsis set.

Parameter isthe address of the C pointer where the address of the string will be stored.
It may also be the address of an array of string values if the PF_ OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the

PF_SIZE flag is not set, the default conversion buffer length is the greater of one more

than the length of the COBOL argument and four more than the digit length of the

COBOL argument. The digit length of a COBOL argument is the sum of the number of

9 and P symbols used in its PICTURE character-string.
Valuel is the strip/fill character value if the PF_LEADING_VALUE flag is set.
Value? is the strip/fill character value if the PF_TRAILING_VALUE flag is set.

F-28 CodeBridge Library Functions
CobolToGeneralString

CobolTolnteger

CobolTolnteger converts the COBOL numeric argument to a C integer value. This
function returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the IntegerToCobol (see page
F-52) function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to this function may perform memory management
operations that are not needed for output-only conversions, this call may be omitted.

Calling Sequence

int _rmdll1_RtCall->pCobolTolnteger

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

long Omitted,

void **Parameter,

int Repeat,

int Scale,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

CodeBridge F-29
CobolTolnteger

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol Tolnteger are:

e PF_ASSERT_SIGNED e PF_OPTIONAL
e PF_ASSERT_UNSIGNED e PF_REPEAT

e PFIN e PF_ROUNDED

e PF_INTEGER ONLY e PF_SCALED

e PF_NO_NULL_POINTER e PF SILENT

e PF_NO_SIZE ERROR e PF_UNSIGNED

e PF_OCCURS e PF_VALUE_IF_ OMITTED

Occursisthe array size if the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Omitted is the default value for omitted argumentsif either of the PF_ OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is a pointer to the address of the C parameter where the integer value will
be stored. It may also be the address of an array of integer valuesif the PF_ OCCURS
flagis set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Scaleisthe scale value if the PF_SCALED flagis set. It represents the power of ten by
which to multiply the COBOL argument.

Szeisthe size of the C parameter.

F-30 CodeBridge Library Functions
CobolTolnteger

CobolToNumericString

Cobol ToNumericString converts the COBOL numeric argument to a null-terminated
C string. Thisfunction returns TRUE if it is successful and FALSE if thereisan error.

By convention, this function should be called prior to the NumericStringToCobol (see
page F-54) function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to this function may perform memory

management operations that are not needed for output-only conversions, this call may be
omitted.

Calling Sequence

int _rmdll1_RtCall->pCobolToNumericString
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
CONV_TABLE *ConvTable,
int Flags,
int Occurs,
char *Omitted,
void **Parameter,
int Repeat,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by ConversionStartup
(see page F-42).

CodeBridge F-31
CobolToNumericString

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToNumericString are:

e PF ASSERT_SIGNED e PF REPEAT
e PF_ASSERT_UNSIGNED e PF_ROUNDED

e PEIN e PF SILENT

e PF_LEADING_MINUS e PF SIZE

e PF LEADING_SIGN e PF TRAILING_CREDIT
e PF_NO_NULL_POINTER e PF TRAILING_DEBIT

e PF_NO_SIZE ERROR e PF TRAILING_MINUS
e PF_OCCURS e PF_TRAILING_SIGN

e PF_OPTIONAL e PF VALUE IF OMITTED

Occursisthe array size if the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Omitted is the default value for omitted argumentsif either of the PF_ OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is the address of the C pointer where the address of the string will be stored.
It may also be the address of an array of string values if the PF_ OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one more
than the length of the COBOL argument and four more than the digit length of the
COBOL argument. The digit length of a COBOL argument is the sum of the number of
9 and P symbols used in its PICTURE character-string.

F-32 CodeBridge Library Functions
CobolToNumericString

CobolToPointerAddress

Cobol ToPointerAddress obtains the effective address of the COBOL pointer argument
by adding its offset and base address components. This function returns TRUE if it is
successful and FALSE if thereis an error.

Calling Sequence

int _rmdll_RtCall->pCobolToPointerAddress
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
Cobol ToPointerAddressis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C pointer where the effective address of the COBOL
pointer argument will be stored.

CodeBridge F-33
CobolToPointerAddress

CobolToPointerBase

Cobol ToPointerBase obtains the base address component of the COBOL pointer
argument. Thisfunction returns TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdl1_RtCall->pCobolToPointerBase
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for CobolToPointerBase are: PF_IN and PF_SILENT.

Parameter isthe address of the C pointer where the base address component of the
COBOL pointer argument will be stored.

F-34 CodeBridge Library Functions
CobolToPointerBase

CobolToPointerLength

Cobol ToPointerL ength obtains the effective length of the COBOL pointer argument by
subtracting its offset component from its size component. This function returns TRUE if
it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdll1_RtCall->pCobolToPointerLength
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
Cobol ToPointerLength is PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C parameter where the effective length of the COBOL
pointer argument will be stored.

Szeisthe size of the C parameter.

CodeBridge F-35
CobolToPointerLength

CobolToPointerOffset

Cobol ToPointerOffset obtains the offset component of the COBOL pointer argument.
This function returns TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdl1_RtCall->pCobolToPointerOffset
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToPointerOffset are: PF_IN and PF_SILENT.

Parameter is a pointer to the address of the C parameter where the offset component of
the COBOL pointer argument will be stored.

Szeisthe size of the C parameter.

F-36 CodeBridge Library Functions
CobolToPointerOffset

CobolToPointerSize

Cobol ToPointerSize obtains the size component of the COBOL pointer argument. This
function returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdll_RtCall->pCobolToPointerSize
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToPointerSize are: PF_IN and PF_SILENT.

Parameter is a pointer to the address of the C parameter where the size component of the
COBOL pointer argument will be stored.

Szeisthe size of the C parameter.

CodeBridge F-37
CobolToPointerSize

CobolToString

Cobol ToString converts the COBOL non-numeric argument to a null-terminated
C string. Thisfunction returns TRUE if it is successful and FALSE if thereisan error.

By convention, this function should be called prior to the StringToCobol (see page F-59)
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to this function may perform memory management
operations that are not needed for output-only conversions, this call may be omitted.

Calling Sequence

int _rmdll_RtCall->pCobolToString
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
CONV_TABLE *ConvTable,
int Flags,
int Occurs,
char *Omitted,
void **Parameter,
int Repeat,
int Size,
short Valuel,
short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the

zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by ConversionStartup (see

page F-42).

F-38 CodeBridge Library Functions
CobolToString

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToString are:

e PFIN e PF REPEAT
e PF_LEADING_SPACES e PF SILENT

e PF LEADING_VALUE e PF SIZE

e PF_NO_NULL_POINTER e PF TRAILING_SPACES
e PF_OCCURS e PF TRAILING VALUE
e PF_OPTIONAL e PF VALUE_IF OMITTED.

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Omitted is the default value for omitted argumentsif either of the PF_OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is the address of the C pointer where the address of the string will be stored.
It may also be the address of an array of string values if the PF_ OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag isset. If the
PF_SIZE flag is not set, the default conversion buffer length is one more than the length
of the COBOL argument.

Valuel isthe strip/fill character value if the PF_LEADING_VALUE flagis set.
Value? isthe strip/fill character valueif the PF_TRAILING_VALUE flag is set.

CodeBridge F-39
CobolToString

CobolWindowsHandle

CobolWindowsHandl e obtains the Windows handle of the current COBOL CALL. This
function returns TRUE if it is successful and FALSE if thereis an error.

Note The CobolWindowsHandle function is one of the trivial conversion functions
described on page I-7.

Calling Sequence

int _rmdl1_RtCall->pCobolWindowsHandle
(int Flags,
void *Parameter,
int Size,
HWND WindowsHandle);

Flags modify the behavior of the conversion. The only valid flag value for
CobolWindowsHandleis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the Windows handle will be stored.
Szeisthe size of the C parameter.

WindowsHandle is the Windows handle for the current COBOL CALL. Thisattributeis
not available on UNIX platforms asit can cause compilation errors.

F-40 CodeBridge Library Functions
CobolWindowsHandle

ConversionCleanup

ConversionCleanup must be called just prior to returning to the calling COBOL program.
It releases all memory that has been allocated by other conversion functions.

Note ConversionCleanup must be called for every exit back to the calling COBOL
program when the C function has multiple return paths.

Calling Sequence

void _rmdll_RtCall->pConversionCleanup
(short ArgCount,
CONV_TABLE *ConvTable);

ArgCount is the argument count for the current COBOL CALL.

ConvTableistheinternal conversion table allocated by ConversionStartup (see
page F-42).

CodeBridge F-41
ConversionCleanup

ConversionStartup

ConversionStartup must be called once at the beginning of the C function called from
COBOL and should precede all callsto other conversion functions. It alocates a block
of memory for each COBOL argument (based on the value of ArgCount). This block
contains information that must be preserved between calls to other conversion functions.
This function returns TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdl1_RtCall->pConversionStartup
(short ArgCount,
CONV_TABLE **ConvTable,
char *Name,
short Version);

ArgCount is the argument count for the current COBOL CALL.

ConvTableisthe address of a C pointer where the address of the internal conversion
table will be stored.

Name is name of the C function that was called by the COBOL program.

Version is the minimum version of the CodeBridge Library that can provide al the
conversion and validation features required by the C function. To specify that the
CodeBridge Library for RM/COBOL version 7.0 isrequired, the value for Version
should be 0x700.

F-42 CodeBridge Library Functions
ConversionStartup

DiagnosticMode

DiagnosticM ode controls the display of error messages during execution. If Flag
containsthe value, DF_SILENT, no error messages will be displayed. If Flag contains
the value, DF_VERBOSE, error messages will always be displayed. If Flag contains the
value, DF_ NORMAL, the display of error messages is governed by the PF_SILENT flag
in each call to the CodeBridge Library.

Note DiagnosticMode has global scope. It affects all conversion and validation calls
until another DiagnosticMode call is made. Before the first call to DiagnosticM ode,
the display of error messagesis governed by the PF_SILENT flag in each call to the
CodeBridge Library asif DiagnosticM ode had been called with the DF NORMAL
flag value.

Calling Sequence

void _rmdll_RtCall->pDiagnosticMode
(short Flag);

Flag modifies the display of the error message. Valid flag values for DiagnosticMode
are the following:

Name Value Description
DF_SILENT -1 Diagnostic messages are never displayed.
DF_NORMAL 0 Diagnostic messages are displayed unless the

PF_SILENT flag is set in the CodeBridge
Library function call.

DF_VERBOSE 1 Diagnostic messages are always displayed.

CodeBridge F-43
DiagnosticMode

EffectiveLength

Effectivel ength obtains the length of the C string after conversion from the COBOL
argument. Thisincludes removal of leading and/or trailing characters. The valueisthe
same as the value that would be returned by the C library function, strlen. This function
returns TRUE if it is successful and FALSE if thereisan error.

Note The Effectivel ength function may be used only in combination with one of the
input string functions: Cobol ToGeneral String (see page F-27), Cobol ToNumericString
(see page F-31), or Cobol ToString (see page F-38). ArgNumber must have the same
value in the Effectivelength function call and the corresponding input string function
call. Thecall to Effectivel ength may precede or follow the call to the corresponding
input string function.

Calling Sequence

int _rmdl1_RtCall->pEffectivelLength

(short ArgCount,

short ArgNumber,

CONV_TABLE, *ConvTable,

int Flags,

int Occurs,

void *Parameter,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

ConvTableistheinternal conversion table allocated by ConversionStartup (see
page F-42).

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for EffectiveLength are: PF_OCCURS and PF_SILENT.

F-44 CodeBridge Library Functions
EffectiveLength

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Parameter isthe address of the C parameter where the effective length will be stored.

Szeisthe size of the C parameter.

CodeBridge F-45
EffectiveLength

FloatToCobol

FloatToCobol converts from a C floating-point value to the COBOL numeric argument.
This function returns TRUE if it is successful and FALSE if thereisan error.

By convention, the Cobol ToFloat function (see page F-25) should be called prior to this
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to the Cobol ToFloat function may perform memory

management operations that are not needed for output-only conversions, this call may be
omitted.

Calling Sequence

int _rmdll1_RtCall->pFloatToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
int Occurs,
void *Parameter,
int Repeat,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for FloatToCoboal are:

e PF_ASSERT_SIGNED e PF REPEAT

e PF_ASSERT_UNSIGNED e PF RETURN_VALUE
e PF_NO_SIZE ERROR e PF_ROUNDED

e PF_OCCURS e PF SILENT

e PF OUT

F-46 CodeBridge Library Functions
FloatToCobol

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Parameter isthe address of the C parameter. 1t may also be the address of an array of
floating-point valuesif the PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Szeisthe size of the C parameter.

CodeBridge F-47
FloatToCobol

GeneralStringToCobol

General StringToCobol converts a null-terminated C string to the COBOL argument. For
COBOL numeric arguments, this function has the same behavior as
NumericStringToCobol (see page F-54). For COBOL non-numeric arguments, this
function has the same behavior as StringToCobol (see page F-59). Thisfunction returns
TRUE if it is successful and FALSE if thereis an error.

By convention, the Cobol ToGeneral String function (see page F-27) should be called
prior to this function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to the Cobol ToGeneral String function may
perform memory management operations that are not needed for output-only
conversions, this call may be omitted.

Calling Sequence

int _rmdll_RtCall->pGeneralStringToCobol

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

void *Parameter,

int Repeat,

int Size,

short Valuel,

short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

F-48 CodeBridge Library Functions
GeneralStringToCobol

Flags modify the behavior of the conversion. The flags available for

General StringToCaobol are the union of the flags for NumericStringToCobol and
StringToCobol. Some flags, such as PF_LEADING_MINUS, areignored for non-
numeric strings. Other flags, such as PF_LEADING_SPACES areignored for numeric
strings. Valid flag values (see Table F-2 on page F-5) for General StringToCobol are:

e PF _ASSERT_SIGNED e PF REPEAT
e PF_ASSERT_UNSIGNED e PF RETURN_VALUE
e PEIN e PF_ROUNDED

e PF_LEADING_SPACES e PF SILENT

e PF LEADING_VALUE e PF SIZE

e PF_NO_SIZE ERROR e PF TRAILING_SPACES
e PF_OCCURS e PF TRAILING VALUE
e PF OUT

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Parameter isthe address of the C parameter. 1t may also be the address of an array of
string values if the PF_ OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag isset. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one more
than the length of the COBOL argument and four more than the digit length of the
COBOL argument. Thedigit length of a COBOL argument is the sum of the number of
9 and P symbols used in its PICTURE character-string. The setting of the PF_SIZE flag
and the value of the Sze parameter must be the same as specified in the call to

Cobol ToGeneral String (described on page F-27) for the same argument.

Valuel isthe strip/fill character value if the PF_LEADING_VALUE flagis set.
Value? is the strip/fill character value if the PF_TRAILING_VALUE flag is set.

CodeBridge F-49
GeneralStringToCobol

GetCallerinfo

GetCallerInfo obtains information about the calling COBOL program. Such information
is particularly useful in error messages because it helpsidentify the offending CALL
statement. This function returns a pointer to a structure that contains the information
about the calling program.

Calling Sequence

CALLER_INFO* _rmdllI_RtCall->pGetCallerinfo();

The function has no arguments.

The structure pointed to by the return value is described by a type definition in the
supplied header file rtcallbk.h, which isincluded by the supplied header file cbridge.h.
For reference, the structureis as follows:

typedef struct tagCallerinfo
{
BIT16 Version; /* structure version; 0x0001 is first version */
BIT16 Flags; /* flags; see #define CIF_... below */
char *ProgramLocation; /* line number of CALL or
segment/offset of statement after CALL */
char *ProgramName; /* calling program name */
char *ProgramFileName; /* calling program object file name
(including pathname) */
char *ProgramDateTime; /* calling program date and time compiled */
} CALLER_INFO;

The Flagsfieldsin the CALLER_INFO structure have the following meanings (as
defined in rtcallbk.h):

#define CIF_LOCATION_ADDRESS 0x8000 /* indicates ProgramLocation
is segment/offset */

#define CIF_NESTED_PROGRAM 0x4000 /* indicates calling program
is a nested program */

F-50 CodeBridge Library Functions
GetCallerinfo

The CIF_LOCATION_ADDRESS flag is set when the calling program was compiled
with the Q Compile Command Option, thus making line numbers unavailable at runtime.
In this case, the ProgramL ocation entry points to a string giving the segment/offset of
thereturn location for the CALL statement as shown in the DEBUG column of a
compilation listing. When the flag is not set, the ProgramL ocation entry pointsto a
string giving the source line number of the CALL statement.

Note Thereisno global or parameter attribute that can be placed in atemplate file to
cause the CodeBridge Builder to produce a call to GetCallerInfo. The CodeBridge
Library will automatically call GetCallerinfo when displaying any error messages caused
by conversion errors. A user-written function, whether or not it uses other CodeBridge
Library calls, may call GetCallerInfo to add thisinformation to its own error messages.

CodeBridge F-51
GetCallerinfo

IntegerToCobol

IntegerToCobol converts from a C integer value to the COBOL numeric argument. This
function returns TRUE if it is successful and FALSE if thereisan error.

By convention, the Cobol Tolnteger function (see page F-29) should be called prior to
this function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to the Cobol Tolnteger function may perform memory

management operations that are not needed for output-only conversions, this call may
be omitted.

Calling Sequence

int _rmdll_RtCall->plntegerToCobol

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

void *Parameter,

int Repeat,

int Scale,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

F-52 CodeBridge Library Functions
IntegerToCobol

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for IntegerToCobol are:

e PF _ASSERT_SIGNED e PF RETURN_VALUE
e PF_ASSERT_UNSIGNED e PF_ROUNDED

e PF NO_SIZE ERROR e PF_SCALED

e PF_OCCURS e PF SILENT

« PFOUT e PF_UNSIGNED

e PF REPEAT

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Parameter isthe address of the C parameter. 1t may also be the address of an array of
integer values if the PF_OCCURSflag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Scaleisthe scale value if the PF_SCALED flagis set. It represents the power of ten by
which to divide the C parameter.

Szeisthe size of the C parameter.

CodeBridge F-53
IntegerToCobol

NumericStringToCobol

NumericStringToCobol converts a null-terminated C string to the COBOL numeric
argument. Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

By convention, the Cobol ToNumericString function (see page F-31) should be called
prior to this function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to the Cobol ToNumericString function may
perform memory management operations that are not needed for output-only
conversions, this call may be omitted.

Calling Sequence

int _rmdl1_RtCall->pNumericStringToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
int Occurs,
void *Parameter,
int Repeat,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

F-54 CodeBridge Library Functions
NumericStringToCobol

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for NumericStringToCobol are:

PF_ASSERT_SIGNED
PF_ASSERT_UNSIGNED
PF_NO_SIZE_ERROR
PF_OCCURS
PF_OPTIONAL

PF_OUT

PF_REPEAT
PF_RETURN_VALUE
PF_ROUNDED
PF_SILENT

PF SIZE

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Parameter isthe address of the C parameter. 1t may also be the address of an array of
string values if the PF_ OCCURS flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag isset. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one more
than the length of the COBOL argument and four more than the digit length of the
COBOL argument. The digit length of a COBOL argument is the sum of the number of
9 and P symbols used in its PICTURE character-string. The setting of the PF_SIZE flag
and the value of the Sze parameter must be the same as specified in the call to
Cobol ToNumericString (described on page F-31) for the same argument.

CodeBridge
NumericStringToCobol

F-55

PointerBaseToCobol

PointerBaseToCobol modifies the COBOL pointer argument. The contents of the C
pointer are moved to the base address component. If the PF_ POINTER_MAX_SIZE flag

is set, binary ones are moved to the size component. If the PF_ POINTER_RESET_OFFSET
flag is set, avalue of 0 is moved to the offset component. This function returns TRUE if
it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdll_RtCall->pPointerBaseToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for PointerBaseToCobol are:

e PF OUT e PF _RETURN_VALUE
e PF_POINTER_MAX_SIZE e PF SILENT
e PF_POINTER_RESET_OFFSET

Parameter isthe address of the C pointer.

F-56 CodeBridge Library Functions
PointerBaseToCobol

PointerOffsetToCobol

PointerOffsetToCobol modifies the COBOL pointer argument. The contents of the C
parameter are moved to the offset component. If the PF_POINTER_MAX_SIZE flagis
set, binary ones are moved to the size component. This function returns TRUE if itis
successful and FALSE if thereis an error.

Calling Sequence

int _rmdll_RtCall->pPointerOffsetToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for PointerOffsetToCobol are:

e PF OUT e PF_RETURN_VALUE
e PF POINTER_MAX_SIZE e PF _SILENT

Parameter is the address of the C parameter.

Szeisthe size of the C parameter.

CodeBridge F-57
PointerOffsetToCobol

PointerSizeToCobol

PointerSizeToCobol modifiesthe COBOL pointer argument. The contents of the C
parameter are moved to the size component. If the PF_ POINTER_RESET_OFFSET flagis
set, avalue of zero is moved to the offset component. This function returns TRUE if it is
successful and FALSE if thereis an error.

Calling Sequence

int _rmdl1_RtCall->pPointerSizeToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for PointerSizeToCobol are:

e PF OUT e PF_RETURN_VALUE
e PF_POINTER_RESET_OFFSET e PF SILENT

Parameter is the address of the C parameter.

Szeisthe size of the C parameter.

F-58 CodeBridge Library Functions
PointerSizeToCobol

StringToCobol

StringToCobol converts a C null-terminated string to the COBOL non-numeric
argument. Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

By convention, the Cobol ToString function (see page F-38) should be called prior to this
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to the Cobol ToString function may perform memory

management operations that are not needed for output-only conversions, this call may
be omitted.

Calling Sequence

int _rmdll_RtCall->pStringtoCobol

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

void *Parameter,

int Repeat,

int Size,

short Valuel,

short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

CodeBridge F-59
StringToCobol

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for StringToCobol are:

e PF LEADING_SPACES e PF RETURN_VALUE
e PF LEADING_VALUE e PF SILENT

e PF_OCCURS e PF SIZE

e PF OUT e PF TRAILING_SPACES
e PF REPEAT e PF TRAILING VALUE

Occursisthe array sizeif the C parameter isan array. A value of zero may be specified
if the C parameter is a scalar; negative values for the Occurs parameter are allowed, but
aretreated as equivalent to zero. If thevalueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Parameter isthe address of the C parameter. It may also be the address of an array of
string values if the PF_ OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is one more than the length
of the COBOL argument. The setting of the PF_SIZE flag and the value of the Sze
parameter must be the same as specified in the call to Cobol ToString (described on
page F-38) for the same argument.

Valuel isthe strip/fill character value if the PF_ LEADING _VALUE flagis set.
Value2 is the strip/fill character value if the PF_TRAILING_VALUE flagis set.

F-60 CodeBridge Library Functions
StringToCobol

Appendix G: Non-COBOL
Subprogram Internals for
Windows

This appendix describes the internal details of how a non-COBOL subprogram is called
from an RM/COBOL program running under 32-bit Windows. Whileit is possible to
write non-COBOL subprograms that directly use this information to handle COBOL
argument conversions, it is highly recommended that CodeBridge be used for this
purpose instead. This appendix also provides information on preparing a non-COBOL
subprogram for use by an RM/COBOL program on 32-bit Windows. (For additional
information, seethe“CALL Statement” section of Chapter 6, Procedure Division
Satements, in the RM/COBOL Language Reference Manual.)

Note Theinformation presented here assumes a working knowledge of the C
programming language. The material in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

C Subprograms

To modify or write a C subprogram that can be called from the RM/COBOL runtime
system requires an understanding of the fundamental tasks involved. First, in order to
access C language subprograms from the RM/COBOL runtime system, you must build a
dynamic link library (DLL), normally referred to as an “optional support module.” (For
more information on DLLs and optional support modules, see Appendix D, Support
Modules (Non-COBOL Add-Ons), of the RM/COBOL User’s Guide.)

CodeBridge G-1
C Subprograms

Methods of Using Non-COBOL Subprograms

Two methods of using non-COBOL subprograms are supported:

1. A single subprogram can be dynamically loaded by the Runtime Command
(runcaobol) when that subprogram is called from the RM/COBOL program. The
subprogram remains resident until canceled by the RM/COBOL program or until the
end of the run unit. This method is sometimes referred to as the “ call-by-filename”

method since the program is loaded because its file name matches the called program
name.

2. One or more subprograms can be linked into a non-COBOL subprogram library
(DLL) and loaded by the Runtime Command upon run unit initialization. The
library isloaded either because it isreferenced in an L Runtime Command Option or
because it is present in the rmautold subdirectory of the execution directory. The
library remains resident until the end of the run unit.

Calling C Subprograms from COBOL

This section describes the COBOL CALL syntax and explains how a C programmer can
write a subprogram that can be called from RM/COBOL. The COBOL CALL statement
explains the use of the non-COBOL subprogram from the COBOL programmer’s
perspective while the other topics describe the structures and the function prototype that
the C programmer needs to understand.

G-2 Non-COBOL Subprogram Internals for Windows
Methods of Using Non-COBOL Subprograms

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL program is as follows:

[BY REFERENCE | {'de”t'f'er’z}---

OMITTED

identifier-2
USING < BY CONTENT < literal-2
OMITTED

identifier-2
literal-2 e

OMITTED

CALL { |dent|f|er-l}

literal-1

{GIVING

RETURNING } identifier-3

[ON EXCEPTION imperative-statement-1 |

[NOT ON EXCEPTION imperative-statement-2 |

[END-CALL |

The value of the contents of the data item specified by identifier-1 or the value of
literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the called
program. If the BY CONTENT phrase applies to an argument, atemporary copy of
theitem is passed, thus preventing the subprogram from modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the purposes
of returning aresult to the calling program.

The RM/COBOL runtime system locates the subprogram with the program-name
specified by literal-1 or the value of the dataitem referenced by identifier-1. Seethe
discussion of “Subprogram Loading” in Chapter 8, RM/COBOL Features, of the
RM/COBOL User’s Guide, for additional information on locating subprograms.

The subprogram also must be adynamic link library file (.dll) and is loaded with the
Windows LoadL ibrary function.

CodeBridge G-3
Calling C Subprograms from COBOL

G-4

C Subprogram Name Table Structure

The RM/COBOL runtime system can locate the C subprograms only if their names are
exported and either (1) their names appear in the subprogram name table, or (2) the DLL
contains an .EDATA section. The subprogram name table is an array of name table
entries. Each name table entry isa C structure that is defined as follows:

typedef struct EntryTable

{
char *EntryPointCobolName; /* name of subroutine as in call */
int (*EntryPointAddress)(); /7* entry point address */
char *EntryPointName; /* name of entry point in object */

} ENTRYTABLE;

Character-strings must be null terminated. The last array entry must consist of NULLSs.
The name of the subprogram name table must be RM _EntryPoints and this name must
be exported, but an .EDATA section is not required in the DLL when the subprogram
name table exists. When the subprogram name table exists, any .EDATA section in the
DLL, if present, isignored.

The RM/COBOL runtime system does not use the EntryPointAddress entry in this
structure. Instead, the EntryPointName entry is used to find the procedure address for
the procedure that has the given name. Thus, each value supplied in an EntryPointName
entry must match that of an exported symbol inthe DLL. When the DLL isloaded, the
runtime system looks up the procedure address for each entry using the supplied name; if
the name is not found, an error occurs and the runtime system is terminated with an
appropriate message. The exported symbol may be different than the function namein
the C source when a .def file is used during linking since .def files can contain an exports
list that specifies different names to be exported for the C functions.

RM _EntryPointsis one of the predefined symbolsin an optional support module. For
complete information about all of the predefined symbols, see “ Special Entry Points for
Support Modules’ on page G-12.

Note The ENTRY TABLE typedef isdefined in rmc85cal.h, which is provided with
RM/COBOL systems. This header file should be included (with a preprocessor #include
statement) in C source that defines COBOL -callable subprograms. Inclusion of this
header file will also cause RM _EntryPoints symbol to be exported. Other header files
(rtarg.h, standdef.h, and rmport.h) are referenced by rmc85cal.h. Thesefilesare aso
provided with RM/COBOL systems. When using CodeBridge Library functions, itis
generally sufficient to include cbridge.h, which includes these other header files.

Non-COBOL Subprogram Internals for Windows
Calling C Subprograms from COBOL

Example

ENTRYTABLE RM_EntryPoints[] =

{
{"'SUBINAME", subl, "subl"},
{""SUB2NAME"", sub2, "sub2"},
{NULL, NULL, NULL }

};

In this example, “ SUBINAME” and “ SUB2NAME” are the COBOL -callable program-names,
subl and sub?2 are the addresses of the C subprograms (functions), and “sub1” and
“sub2” are the exported names of the C subprograms (functions). In thisexample, itis
assumed that a .def file, if used, does not rename the C functions in the exportslist.

Parameters Passed to the C Subprogram

The RM/COBOL runtime system passes six parameters on the stack to the called C
subprogram. The following is a sample COBOL -callable C subprogram function
prototype:

RM_DLLEXPORT int RM_CDECL subl

(
char *name, /* paraml */
unsigned short arg_count, /* param2 */
ARGUMENT_ENTRY arg_vector[], /* param3 */
unsigned short initial_state /* paramd */
RM_HWND window_handle, /* paramb5 */
RUNTIME_CALLS_TABLE cal lbacktable /* param6 */

)

The six parameters are described as follows:

1. Pointer to the called program-name, which is a null-terminated ASCI| string
containing the name used by the run unit to identify the called subprogram. The
called program-name is always uppercase-only, regardless of the case of the namein
the calling COBOL program.

2. Argument count, which is the number of arguments, including arguments explicitly
specified with the OMITTED keyword, specified in the USING phrase of the CALL
statement. The argument in the GIVING (RETURNING) phrase, if specified, is not
included in the count.

3. Pointer to the argument array, which is an array of structures describing each of the
actual arguments passed in the GIVING (RETURNING) and USING phrases of the

CodeBridge G-5
Calling C Subprograms from COBOL

CALL statement. The structure of an argument description entry is described in
“COBOL Argument Entry Structure for C” on page G-7 and is defined in the
rmc85cal.h header file, which is provided with RM/COBOL systems.

4. Initia state flag, which contains a zero to indicate that the subprogram is being
called for the first time in the run unit or the first time since a CANCEL statement
has been executed for the subprogram name. A nonzero value indicates that the
subprogram should remain in its last used state. It isthe responsibility of the called
subprogram (rather than the runtime system) to examine theinitial state flag and
decide which variables need to be reinitialized. In any case, on each call, al C
automatic variables are reallocated on the stack without being initialized to any
particular value (that is, C automatic variables have arbitrary values).

5. Windows handle of the calling program window (runtime window), which is needed
for some callsto the Windows Application Programming Interface (AP1).

6. Pointer to the runtime call-back table, which is a structure that contains the size of
the table, the version number of the table, and alist of subprogram addressesin the
runtime. The CodeBridge Builder uses the call-back table to obtain access to some
utility subprogramsin the runtime system. The description of thistableis available
in cbridge.h, aheader file provided with CodeBridge. Thetable is named
RUNTIME_CALLS TABLE.

Note Thefifth and sixth parameters are optional. Although the runtime system will
always pass these values, the called subprogram does not have to declare them. The
prototype for the called function may omit the sixth or both the fifth and sixth
parameters. The runtime call-back table is required if the subprogram uses any of the
CodeBridge Library functions.

The called subprogram must set an integer return value before returning control to the
runtime system. A value of RM_FND (defined as 0 in rmc85cal.h) indicates that the
subprogram was found and that the runtime should continue executing the COBOL
program. A value of RM_STOP (defined as 1 in rmc85cal.h) indicates that the
subprogram terminated because of afatal error, such as incorrect parameters, and that the
runtime should terminate the run unit. An explicit return statement should be used to set
the return value since otherwise the run unit might be unintentionally terminated. The
subprogram must not terminate with the system function exit(), since the runtime could
not do an orderly shutdown of the run unit in this case.

The argument entry table (arg_vector) contains descriptions of the actual arguments
specified in the CALL statement. The arg_vector[0] entry describes the first actual
argument in the USING phrase of the CALL statement. The arg_vector[arg_count - 1]
entry describes the last actual argument in the USING phrase of the CALL statement.
The arg_vector[-1] entry describes the argument specified in the GIVING (RETURNING)
phrase of the CALL statement. If the GIVING (RETURNING) phrase is omitted from

G-6 Non-COBOL Subprogram Internals for Windows
Calling C Subprograms from COBOL

the CALL statement, or if any actual argument is specified as OMITTED in the USING
phrase of the CALL statement, the corresponding arg_vector entry contains a type value
32 (OMITTED, as shown in Table G-1 on page G-8) and the remaining fields are zero.

C subprograms that access the GIVING argument in arg_vector[-1] will function
correctly only for RM/COBOL version 7 (or later) runtimes because prior runtimes did
not make a GIVING argument entry availablein arg_vector[-1]. A subprogram that uses
the GIVING argument should verify that it is available by use of the version number in
the runtime call-back table, the address of which is provided by the sixth parameter to the
subprogram. The version number must be 0x0700 or greater for a GIVING argument to
be available.

COBOL Argument Entry Structure for C

To asubprogram written in C, an argument entry is defined by the following structure,
which isincluded in the rmc85cal.h header file:

typedef struct ArgumentEntry

{
char *a_address; /* pointer to start of argument */
unsigned long a_length; /* length of argument */
short a_type; /* type of argument (RM/COBOL data type) */
char a_digits; /* digit count (0-30) */
char a_scale; /* implied decimal location (signed) */
char *a_picture; /* pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest addressed byte of the argument.
a length specifies the number of bytes allocated to the argument.

a type specifies the RM/COBOL data type as a number from Table G-1 (see page G-8).
Names for these type numbers are defined in rmc85cal.h. (For an explanation of the
data type abbreviations and a description of the RM/COBOL data types listed in Table
G-1, see Table 9-2 in Chapter 9, Debugging, and Appendix C, Internal Data Formats, of
the RM/COBOL User’s Guide.)

a digits specifies the actual number of digitsin anumeric dataitem (where the type of
argument isin the range 0 through 12). It is set to zero for nonnumeric data items.

a_scale specifies the power of 10 by which the digitsin a numeric dataitem (where the
type of argument isin the range 0 through 12) must be multiplied to obtain the numeric
value of the dataitem. The power of 10 isrepresented as asigned, 2's complement
number. Itisset to zero for nonnumeric data items.

CodeBridge G-7
Calling C Subprograms from COBOL

a_picture specifies the lowest addressed byte of the encoded picture for edited items
(type of argument equals 0, 20 or 21). It is set to zero for all other types.

Table G-1: RM/COBOL Data Types as Numbers

Type RM/COBOL Type RM/COBOL
Number Data Type Number Data Type

0 NSE 16 ANS

1 NSU 17 ANS (justified right)
2 NTS 18 ABS

3 NTC 19 ABS (justified right)
4 NLS 20 ANSE

5 NLC 21 ABSE

6 NCS 22 GRP (fixed length)
7 NCU 23 GRPV (variable length)
8 NPP 25 PTR

9 NPS 26 NBSN

10 NPU 27 NBUN

11 NBS 32 OMITTED

12 NBU

Note The data type GRPV (23) does not occur when C$CARG is called with the formal
argument name or when C$DARG is called with an actual argument number that
corresponds to an argument that is a variable-length group. In all cases, RM/COBOL
passes variable-length group actual arguments as if they were a fixed-length group

of the maximum length. (See Appendix F, Subprogram Library, of the RM/COBOL
User's Guide.)

Preparing C Subprograms

G-8

One or more dynamic link libraries (DLLs) may be loaded and called by the
RM/COBOL runtime system. The DLL may be specified on the command line by using
the L Runtime Command Option, described in the section “Runtime Command Options”
in Chapter 7, Running, of the RM/COBOL User's Guide. DLL files may also be placed
in the rmautold subdirectory of the execution directory for automatic loading when the
runtime system is started. The runtime system reads the DLL, locates the entry points,
and makes each entry point available to be called as a subprogram.

Non-COBOL Subprogram Internals for Windows
Preparing C Subprograms

If aprogram-name used in a CALL statement cannot be resolved asa COBOL routine
and is not found in any already loaded non-COBOL library, a search is made for afile
with that name and an extension of .dIl. If such afileisfound, it isloaded and one of the
following occurs:

o If theDLL exports either of the symbols RM_EnumEntryPoints or
RM_EntryPoints, then the first specified entry point is called. For adefinition
of these symbols, see “ Specia Entry Points for Support Modules” that begins on
page G-12. Any additional entry points that these symbols may define are ignored
when the DLL isloaded by this method,;

e Otherwisg, if the DLL containsan .EDATA section that specifies an entry point
exported as nonresident ordinal one, then that entry point is called. Any other
exported entry points are ignored when the DLL isloaded by this method,;

e Otherwise, aprocedure error 204 occurs.

This method of loading aDLL is sometimes referred to as “ call-by-filename” to contrast
it with the method of calling a program-name defined in alibrary loaded because an

L Runtime Command Option refersto it or the presence of the library in the rmautold
subdirectory of the execution directory.

Note Old 16-bit DLLs are still supported for backward compatibility, on Windows
9x-class operating systems; however, some of the new features discussed in this
appendix do not apply to 16-bit DLLs. Specifically, the special entry points, described in
“Special Entry Points for Support Modules’ on page G-12, are not recognized in a 16-bit
DLL.

To make use of the special entry points, the DLL must be rewritten as a 32-bit DLL.

A 16-bit DLL may be loaded by any of the three methods discussed in this appendix,
including its being present in the RmAutoL d subdirectory of the execution directory.

The following steps may be used to prepare anon-COBOL subprogram for callsfrom a
COBOL program (compiler-specific comments are included):

1. Generate anon-COBOL source filg(s) containing one or more subprograms that will
serve as entry points for the COBOL program. Entry points that are normally
associated withaDLL, such asLibMain (or DIIMain or DIIEntryPoint), should be
defined and may contain minimal code. These entry points and the additional entry
points that you define must be exported in the manner described for your compiler.

Use C calling conventions (instead of PASCAL conventions). Stack-based
parameter passing also should be used.

2. Trangdate the source fileinto avalid object file (.obj) with your compiler.

3. Createthe dynamic link library using the linker in your C development system.
Use linker optionsto assign an ordinal value of oneto an entry point. The

CodeBridge G-9
Preparing C Subprograms

RM/COBOL runtime system will associate the DLL filename with entry point
one. The proceduresinthe DLL are now ready to be called as a subprogram
from RM/COBOL.

Note While some C compilers produce case-insensitive entry point names,
others produce case-sensitive entry point names. In addition, some C compilers
may pre-pend or append an underscore character to the entry point name.

Parameters are passed to the DLL as described in “ Parameters Passed to the C
Subprogram” on page G-5.

The following code sequencesillustrate how a COBOL-callable DLL may be written

in C. Include the standdef.h header file (provided by Liant) to access RM/COBOL
standard definitions. On Windows systems, inclusion of standdef.h will cause inclusion
of the Microsoft windows.h file, which provides access to Windows operating system
functions such as MessageBox(). Define RMLittleEndian with avalue of 1 for the Intel
80x86 architecture. Include the rmc85cal.h header fileto obtain ARGUMENT_ENTRY
structure definition, various type definitions, and LDLONG, LDSHORT, STLONG,
STSHORT macros. Include the cbridge.h header file if the CodeBridge Library isused
by the subprogram. Since cbridge.h includes standdef.h and rmc85cal.h, it is not
necessary to include these header files when cbridge.h isincluded.

Thefollowing is asample RM/COBOL-callable DLL file written in C, named msgbox.c.

G-10 Non-COBOL Subprogram Internals for Windows
Preparing C Subprograms

#include '‘standdef.h"
#define RMLittleEndian 1

#include "rmc85cal .h"

RM_DLLEXPORT int RM_CDECL
MsgBox(char *Name, unsigned short ArgCount, ARGUMENT_ENTRY *ArgEntry,

{

unsigned short State)

short sButton;
long 1Button;
char Buf[64];
short i;
char *p;
short n;

if (ArgCount != 2)
return (RM_STOP);

/* -- check arguments */
switch (ArgEntry[0].a_type)
{
/* -- various displayable types */
case RM_ANS: case RM_ANSR:
case RM_ABS: case RM_ABSR:
case RM_NSE:
case RM_GRPF:
break;
default:

return (RM_STOP);
3

switch (ArgEntry[1].a_type)
{

/* —-- only return binary types size 2 or 4 */

case RM_NBS: case RM_NBU:
if ((Argéntry[1].a_length ==

Il (ArgEntry[1].a_length =2 4))

break;

defaul t:
return (RM_STOP);

= ArgEntry[0].a_address;
= (short) ArgEntry[0].a_length;
or (I =0; 1 <n; i++)
Buf[i] = *p++;

MB_ICONQUESTION |
MB_SETFOREGROUND) ;

1Button =
sButton = MessageBox(NULL, Buf, NULL, MB_YESNO |
/* -- return value in second argument */

p = ArgEntry[1].a_address;

it (ArgEntry[1l].a_length == 4)
STLONG (IButton, p);

else if (ArgeEntry[1].a_length == 2)
STSHORT (sButton, p);

return (RM_FND);

CodeBridge
Preparing C Subprograms

G-11

Thissample DLL can be compiled using the 32-bit Microsoft Visual C++ compiler with
the following command:

cl msgbox.c -Zpl /link -out:msgbox.dll -dIl -export:MsgBox,@1
-section:.edata, IRD user32.1ib

It also can be built using the 32-bit Watcom C compiler, version 10.6 or later, with the
following command:

wclIX86 -I=nt_dll -bd msgbox.c -"export MSGBOX.1l= MsgBox"

The following source fragments from a COBOL program could be used to call the DLL:
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RETURN-BINARY PIC 9(4) Binary(2) Value Zero.
01 DISPLAY-TEXT PIC X(24) Value "Do you wish to continue?".

PROCEDURE DIVISION.
CALL ""MSGBOX'™ USING DISPLAY-TEXT RETURN-BINARY.

Special Entry Points for Support Modules

When the runtime system (or other RM/COBOL component) loads an optional support
module, it looks for certain predefined symbols (entry points and variable names), and
varies its actions based on the presence or absence of these symbols. One such variable
nameis RM_EntryPoints (discussed in “C Subprogram Name Table Structure” on
page G-4). The example subprogram, msgbox.c, which is distributed with the
RM/COBOL system, contains examples of al of these entry points and symbols, except
for RM_EnumEntryPoints. This example can be used as a starting point when
developing optional support modules for Windows.

The complete list of these special namesis as follows:
¢ RM_AddOnBanner

e RM_AddOnCancelNonCOBOL Program

e RM_AddOninit

e RM_AddOnLoadMessage

e RM_AddOnTerminate

e RM_AddOnVersionCheck

e RM_EntryPoints and RM_EnumEntryPoints

G-12 Non-COBOL Subprogram Internals for Windows
Special Entry Points for Support Modules

Note On Windows, al these entry points are optional if the DLL islinked such that an
.EDATA section is produced. If the DLL islinked without producing an .EDATA
section, the RM_EntryPoints or RM_EnumEntryPoints symbols must be defined for
there to be any COBOL callable routinesin the DLL.

The following sections describe these entry points and special variables.

RM_AddOnBanner

Thisentry point, if present, should return a pointer to a character string. This character
string will be displayed along with the runtime system banner message. The support
module banner may be used to display any required copyright notice. The support
module banner is displayed only if the K Option of the Runtime Command is not present.

Note The Windows runtime supports the “ call-by-filename” loading of DLLs as
described in “Methods of Using Non-COBOL Subprograms’ on page G-2. For DLLs
loaded in this manner, the RM_AddOnBanner entry point is not called and no banner is
produced. The entry point is called and a banner is produced if the DLL isloaded
because of the L Runtime Command Option or because the DLL is present in the
rmautold subdirectory of the execution directory.

Function declaration for RM_AddOnBanner:

char* RM_AddOnBanner (void);

RM_AddOnCancelNonCOBOLProgram

This entry point, if present, is called by the runtime system when a CANCEL verb is
executed for a program-name that is defined in the optional support module. It allows
the support module to do any cleanup actions that may be necessary. For example, this
entry point might be specified to allow the support module to close any open files when
the COBOL program cancels the associated non-COBOL subprogram. The program-
name of the non-COBOL subprogram for which a CANCEL has been performed is
passed as a parameter to the entry point.

Function declaration for RM_AddOnCancelNonCOBOL Program:

void RM_AddOnCance INonCOBOLProgram(char* ProgramName) ;

CodeBridge G-13
Special Entry Points for Support Modules

RM_AddOnInit

This entry point, if present, is called to initialize the optional support module. All
support modules will beinitialized (if initialization is requested) before the runtime
system begins executing the first COBOL program, except that DLLs loaded by the
“call-by-filename’ method (as described in “Methods of Using Non-COBOL
Subprograms’ on page G-2) will beinitialized when they are loaded at the time they are
referenced by a CALL statement.

The entry point should return zero to indicate successful initialization or a non-zero value
to indicate that the support module initialization failed. If theinitiaization fails, the
runtime system will display an appropriate message and then terminate.

Note If the support module determines that successful initialization is not possible, the
support module should produce appropriate messages to allow the user to correct the
problem.

The support module is passed the Runtime Command line arguments in the arguments
Argc (the argument count) and Argv (the argument vector). The support moduleis also
passed a pointer to the runtime call back table.

Function declaration for RM_AddOnl nit:

int RM_AddOnInit(int Argc,
char** Argv,
RUNTIME_CALLS_TABLE *pRtCall);

RM_AddOnLoadMessage

This entry point, if present, should return a pointer to a character string that is displayed
along with the load messages of other optional support modules. These load messages
allow the user to verify which support modul es the runtime system has loaded. The
message may contain text to identify the support module and, if desired, the version
number or the build date. L oad messages are displayed only if the V Runtime Command
Option is present, the V=DISPLAY keyword-value pair is specified in the RUN-
OPTION configuration record, or the RM_DYNAMIC_LIBRARY_TRACE
environment variable

is defined.

If load messages are being displayed, the runtime system generates a load message
consisting of the complete pathname for the support module regardless of whether the
RM_AddOnL oadM essage entry point is defined or not defined in the support module.
If the RM_AddOnL oadM essage entry point is defined, the returned string is appended
to the pathname in this load message.

G-14 Non-COBOL Subprogram Internals for Windows
Special Entry Points for Support Modules

Note The Windows runtime supports the “ call-by-filename” loading of DLLs as
described in “Methods of Using Non-COBOL Subprograms’ on page G-2. For DLLs
loaded in this manner, the RM_AddOnL oadMessage entry point is not called and no load
message is produced. The entry point is called and aload message is produced if the
DLL isloaded because of the L Runtime Command Option or becausethe DLL is
present in the rmautold subdirectory of the execution directory.

Function declaration for RM_AddOnL oadM essage:

char* RM_AddOnLoadMessage(void);

RM_AddOnTerminate

This entry point, if present, is called by the runtime system during termination.
Execution of all COBOL programs is complete when the runtime system calls this entry
point. It allows the optional support module to perform any cleanup actions that may be
necessary.

Note The Windows runtime supports the “ call-by-filename” loading of DLLs as
described in “Methods of Using Non-COBOL Subprograms” on page G-2. DLLsloaded
with this method will be unloaded when a CANCEL statement references them. In this
case, the RM_AddOnTerminate entry point is called just prior to unloading the DLL,
after having called RM_AddOnCancelNonCOBOL Program, and the runtime system
is not necessarily about to terminate.

The RM_AddOnTerminate function is called when the module is unloaded, even if the
RM _AddOnlInit function (see page G-14) for the module did not succeed. Thus, the
code for this function must not depend on the success of the RM_AddOnl nit function.

Function declaration for RM_AddOnTer minate:

void RM_AddOnTerminate(void);

RM_AddOnVersionCheck

This entry point, if present, provides a method of verifying that the runtime system and
the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed to support
the current interface version of the runtime system that calls the support module.

If RM_AddOnVersionCheck is present, it will be passed a version string, two support
modul e interface versions, and a pointer for the support module to store a desired
interface version. The version string (for example, 8.0n.nn) is defined by the VERSION
macro in the header file version.h (provided with the RM/COBOL system). The runtime

CodeBridge G-15
Special Entry Points for Support Modules

support module interface versions indicate the minimum and maximum versions that the
runtime system can support. The RM/COBOL runtime system (version 7.50 or later)
supports support module interface versions 1 and 2. For Windows, these two interface
versions areidentical. In the future, the runtime system may support other, partially or
completely incompatible, interface versions.

It isthe responsibility of the support module to verify that it supports one of the interface
versions supported by the runtime system and to return the interface version it supports.
If the support module does not support any of the interfaces supported by the runtime
system, the support module should return FALSE (0). In this case, or if the support
module returns an invalid interface version, the runtime system will display an
appropriate message and then terminate. Returning TRUE (1) and an interface versionin
the range supported by the runtime system allows the runtime system to continue. The
support module may use the current interface version by returning the value
CURRENT_SUPPORT_MODULE_INTERFACE_VERSION (defined in the supplied
header file, rmc85cal.h).

The support module may aso use the value of the version string to verify compatibility
with the runtime system. If the support module determines that it is not compatible with
the runtime system, it should return FALSE. In this case, the support module might
display a meaningful message before the runtime system displays its message and
terminates.

Function declaration for RM_AddOnVersionCheck:

BOOLEAN RM_AddOnVersionCheck(char* Version,
int MinRuntimelnterfaceVersion,
int MaxRuntimelnterfaceVersion,
int* DesiredlnterfaceVersion);

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the exported
symbols RM_EntryPoints and RM_EnumEntryPoints to determine whether the
support module contains any COBOL -callable functions. Each optiona support module
defines only those COBOL -callable functions defined in that support module using either
the RM _EntryPoints symbol declaration or the RM_EnumEntryPoints entry point. If
neither of these symbolsis exported, then the runtime system looks for an .EDATA
sectioninthe DLL. If the EDATA section isfound, the exported names listed in the
.EDATA section are considered to be COBOL -callable functions; otherwise, the DLL is
considered not to contain any COBOL -callable functions.

The use of the subprogram name table RM_EntryPointsis described on page G-4.

G-16 Non-COBOL Subprogram Internals for Windows
Special Entry Points for Support Modules

If the entry point RM_EnumEntryPointsisfound, it is called repeatedly to obtain
the COBOL -callable names, function addresses, and function names of the COBOL-
callable functions in the support module. This function should return a pointer to a
structure that is equivalent to one entry in the RM_EntryPointstable. The end of the
entry pointsisindicated by returning a null pointer or a structure whose first pointer
isNULL. Theindex parameter starts at zero for thefirst call and isincremented for
each subsequent call.

If both symbols are present, RM_EnumEntryPoints takes precedence.
See the example on page G-5 for the symbol declaration for RM _EntryPaints.
Function declaration for RM_EnumEntryPoints:

ENTRYTABLE* RM_EnumEntryPoints(int index);

Debugging C Subprograms

Non-COBOL subprograms can be debugged using the debugger supplied with the C
compiler used to build the DLL.

In order to include debugging information in the DLL, use the following command for
the 32-bit Microsoft Visual C++ compiler:

cl msgbox.c -Zpl -Zi /link -out:msgbox.dll -dIl -export:MsgBox,@1
-section: .edata, IRD user32.1lib

Alternatively, use the following command for the 32-bit Watcom C compiler, version
10.6 or later:

wclX86 -l1=nt_dll -bd -d2 msgbox.c -"export MSGBOX.1l=_MsgBox"

After creating aversion of the DLL containing debugging information, start the debugger
on runcobol.exe. The Microsoft debugger allows you to add both runcobol.exe and the
DLL fileto aproject and then set a breakpoint in the DLL before beginning execution.

The Watcom debugger allows you to set a breakpoint that is triggered when the module
containing the DLL isloaded. Onceit has been loaded, the source for the module can be
viewed and additional breakpoints can be set. For more information, see the
documentation supplied with the debugger you are using.

CodeBridge G-17
Debugging C Subprograms

Calling a CodeBridge Subprogram Library

It is possible to use non-COBOL subprogram libraries built using CodeBridge and call
them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by RM/COBOL. These
generated functions then call the C functions that are described in the template file.

The name of the generated function is the same as the C function name with a prefix of
“RMDLL" added to it. For example, if the name of the C function is MessageBox, the
name of the generated function is RMDL L MessageBox.

It ispossible for a C function that calls the CodeBridge Library functions directly also
to call functions that were built by CodeBridge Builder. A C function could call
RMDLLMessageBox directly either by using the ARGUMENT_ENTRY structure
that was passed from RM/COBOL or by constructing one that suited the needs of the
C function.

One use of this capability would be to hide conversions of C dataitemsto COBOL
dataitems. “Example 6: Converting Buffered C Data’” on page B-18 in Appendix B,
CodeBridge Examples, describes a case in which such conversions are necessary even
though CodeBridge is being used. In that example, the function cstring2text iscalled
from COBOL to convert data stored in a buffer by a C function call. This conversion
could be hidden from the RM/COBOL program by embedding the conversioninaC
function that first calls the C function to store the data in the buffer and then also calls the
generated C function, RMDL L cstring2text.

G-18 Non-COBOL Subprogram Internals for Windows
Calling a CodeBridge Subprogram Library

Appendix H: Non-COBOL
Subprogram Internals for UNIX

This appendix describes the internal details of how a non-COBOL subprogram is called
from an RM/COBOL program running under UNIX. Whileit is possible to write
non-COBOL subprograms that directly use this information to handle COBOL argument
conversions, it is highly recommended that CodeBridge be used for this purpose instead.
This appendix also provides information on preparing a non-COBOL subprogram for use
by an RM/COBOL program on UNIX. (For additional information, see the “CALL
Statement” section of Chapter 6, Procedure Division Statements, in the RM/COBOL
Language Reference Manual.)

Note Theinformation presented here assumes a working knowledge of the C
programming language. The material in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

C Subprograms

To modify or write a C subprogram that can be called from the RM/COBOL runtime
system requires an understanding of the fundamental tasksinvolved. First, in order to
access C language subprograms from the RM/COBOL runtime system, you must build a
shared object, normally referred to as an “optional support module.” (For more
information on shared objects and optional support modules, see Appendix D, Support
Modules (Non-COBOL Add-Ons), of the RM/COBOL User’s Guide.) The shared object
must then be placed so that the RM/COBOL runtime system can locate it, either by
looking in a special subdirectory (rmcobolso) of the runtime execution directory
(normally /usr/bin) or by using the L Option on the Runtime Command. Finally, you
must provide information about what entry points you wish the runtime system to use.

CodeBridge H-1
C Subprograms

Calling C Subprograms from COBOL

This section describes the COBOL CALL syntax and explains how a C programmer can
write a subprogram that can be called from RM/COBOL. The COBOL CALL statement
explains the use of the non-COBOL subprogram from the COBOL programmer’s
perspective while the other topics describe the structures and the function prototype that
the C programmer needs to understand.

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL program is as follows:

[BY REFERENCE] {'de”“f'er'z}m

OMITTED

identifier-2
USING < BY CONTENT < literal-2
OMITTED

identifier-2
literal-2 e

OMITTED

CALL { identifier-l}

literal-1

{GIVING

RETURNING } identifier-3

[ON EXCEPTION imperative-statement-1 |

[NOT ON EXCEPTION imperative-statement-2 |

[END-CALL |

The value of the contents of the data item specified by identifier-1 or the value of
literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the called
program. If the BY CONTENT phrase applies to an argument, atemporary copy of
theitem is passed, thus preventing the subprogram from modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the purposes
of returning aresult to the calling program.

H-2 Non-COBOL Subprogram Internals for UNIX
Calling C Subprograms from COBOL

The RM/COBOL runtime system locates the subprogram with the program-name
specified by literal-1 or the value of the dataitem referenced by identifier-1. Seethe
discussion of “Subprogram Loading” in Chapter 8, RM/COBOL Features, of the
RM/COBOL User's Guide, for additional information on locating subprograms.

C Subprogram Name Table Structure

The RM/COBOL runtime system can locate the C subprograms only if their names
appear in the subprogram name table. The subprogram name table is an array of name
table entries. Each nametable entry isa C structure that is defined as follows:

typedef struct EntryTable

{
char *EntryPointCobolName; /* name of subroutine as in call */
int (*EntryPointAddress)(); /7* entry point address */
char *EntryPointName; /* name of entry point in object */

} ENTRYTABLE;

Character strings must be null terminated. The last array entry must consist of NULLSs.
The name of the subprogram name table must be RM_EntryPoints.

The RM/COBOL runtime system does not use the EntryPointAddress entry in this
structure. Instead, the EntryPointName entry is used to find the procedure address for
the procedure that has the given name. Thus, each value supplied in an EntryPointName
entry must match that of an external symbol in the shared object. When the shared object
isloaded, the runtime system looks up the procedure address for each entry using the
supplied name; if the name is not found, an error occurs and the runtime system is
terminated with an appropriate message.

RM _EntryPointsis one of the predefined symbolsin an optional support module. For
complete information about all of the predefined symbols, see “ Specia Entry Points for
Support Modules’ on page H-12.

Note The ENTRY TABLE typedef is defined in rmc85cal.h, which is provided with
RM/COBOL systems. This header file should be included (with a preprocessor #include
statement) in C source that defines COBOL -callable subprograms. Other header files
(rtarg.h, standdef.h, and rmport.h) are referenced by rmc85cal.h. Thesefilesare also
provided with RM/COBOL systems.

CodeBridge H-3
Calling C Subprograms from COBOL

H-4

Example

ENTRYTABLE RM_EntryPoints[] =

{
{"'SUBINAME", subl, "subl"},
{""SUB2NAME"", sub2, "sub2"},
{NULL, NULL, NULL }

};

In this example, “ SUBINAME” and “ SUB2NAME” are the COBOL -callable program-names,

subl and sub?2 are the addresses of the C subprograms (functions), and “sub1” and

“sub2” are the names of the C subprograms (functions).

Parameters Passed to the C Subprogram

The RM/COBOL runtime system passes six parameters on the stack to the called
C subprogram. The following is a sample COBOL-callable C subprogram function

prototype:
int subl

(
char *name,
unsigned short arg_count,
ARGUMENT_ENTRY arg_vector[],
unsigned short initial_state,
void *reserved,
RUNTIME_CALLS_TABLE cal lbacktable

)

paraml
param2
param3
param4
param5
paramé

*/
*/
*/
*/
*/
*/

Note The above function prototype does not work on Windows. See page |-2 for a

function that does work for either Windows or UNIX.

The six parameters are described as follows:

1. Pointer to the called program-name, which is a null-terminated ASCI| string

containing the name used by the run unit to identify the called subprogram. The
called program-name is always uppercase-only, regardless of the case of the namein

the calling COBOL program.

2. Argument count, which is the number of arguments, including arguments explicitly
specified with the OMITTED keyword, specified in the USING phrase of the CALL
statement. The argument in the GIVING (RETURNING) phrase, if specified, is not

included in the count.

Non-COBOL Subprogram Internals for UNIX
Calling C Subprograms from COBOL

3. Pointer to the argument array, which is an array of structures describing each of the
actual arguments passed in the GIVING (RETURNING) and USING phrases of the
CALL statement. The structure of an argument description entry is described in
“COBOL Argument Entry Structure for C” on page H-6 and is defined in the
rtarg.h header file, which is provided with RM/COBOL systems.

4. Initia state flag, which contains a zero to indicate that the subprogram is being
called for the first time in the run unit or the first time since a CANCEL statement
has been executed for the subprogram name. A nonzero value indicates that the
subprogram should remain in its last used state. It isthe responsibility of the called
subprogram (rather than the runtime system) to examine theinitial state flag and
decide which variables need to be reinitialized. In any case, on each call, al C
automatic variables are reallocated on the stack without being initialized to any
particular value (that is, C automatic variables have arbitrary values).

5. Pointer value NULL (for compatibility with Windows non-COBOL subprograms).

6. Pointer to the runtime call-back table, which is a structure that contains the size of
the table, the version number of the table, and alist of subprogram addressesin the
runtime system. The CodeBridge Builder uses the call-back table to obtain access to
some utility subprograms in the runtime system. The description of thistableis
availablein rtcallbk.h, a header file provided with RM/COBOL systems. Thetable
isnamed RUNTIME_CALLS TABLE.

Note The fifth and sixth parameters are optional. Although the runtime system will
always pass these values, the called subprogram does not have to declare them. The
prototype for the called function may omit the sixth or both the fifth and sixth
parameters. The runtime call-back table is required if the subprogram uses any of the
CodeBridge Library functions.

The called subprogram must set an integer return value before returning control to the
runtime system. A value of RM_FND (defined as 0 in rtarg.h) indicates that the
subprogram was found and that the runtime system should continue executing the
COBOL program. A value of RM_STOP (defined as 1 in rtarg.h) indicates that the
subprogram terminated because of afatal error, such as incorrect parameters, and that the
runtime system should terminate the run unit. An explicit return statement should be
used to set the return value since otherwise the run unit might be unintentionally
terminated. The subprogram must not terminate with the system function exit(), since
the runtime system could not do an orderly shutdown of the run unit in this case.

Once an optional support module is loaded, it remains loaded until the runtime system
terminates. Use of the CANCEL statement to cancel a C subprogram sets the initial flag
to zero on the next entry into the subprogram, but has no effect on the values of the
external and static variables used in the C subprogram.

CodeBridge H-5
Calling C Subprograms from COBOL

H-6

The argument entry table (arg_vector) contains descriptions of the actual arguments
specified in the CALL statement. The arg_vector[0] entry describes the first actua
argument in the USING phrase of the CALL statement. The arg_vector[arg_count - 1]
entry describes the last actual argument in the USING phrase of the CALL statement.
The arg_vector[-1] entry describes the argument specified in the GIVING (RETURNING)
phrase of the CALL statement. If the GIVING (RETURNING) phrase is omitted from
the CALL statement, or if any actual argument is specified as OMITTED in the USING
phrase of the CALL statement, the corresponding arg_vector entry contains atype value
32 (OMITTED, as shown in Table H-1 on page H-7) and the remaining fields are zero.

C subprograms that access the GIVING argument in arg_vector[-1] will function
correctly only for RM/COBOL version 7 (or later) runtimes because prior runtimes did
not make a GIVING argument entry availablein arg_vector[-1]. A subprogram that uses
the GIVING argument should verify that it is available by use of the version number in
the runtime call-back table, the address of which is provided by the sixth parameter to the
subprogram. The version number must be 0x0700 or greater for a GIVING argument to
be available.

COBOL Argument Entry Structure for C

To asubprogram written in C, an argument entry is defined by the following structure,
whichisincluded in the rtarg.h header file:

typedef struct ArgumentEntry

{
char *a_address; /* pointer to start of argument */
BIT32 a_length; /* length of argument */
BIT16 a_type; /* type of argument (RM/COBOL data type) */
char a_digits; /* digit count (0-30) */
char a_scale; /* implied decimal location (signed) */
BYTE *a_picture; /* pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest address byte of the argument.
a length specifies the number of bytes allocated to the argument.

a type specifies the RM/COBOL data type as a number from Table H-1 (see page H-7).
Names for these type numbers are defined in rtarg.h. (For an explanation of the data
type abbreviations and a description of the RM/COBOL datatypes listed in Table H-1,
see Table 9-2 in Chapter 9, Debugging, and Appendix C, Internal Data Formats, of the
RM/COBOL User's Guide.)

Non-COBOL Subprogram Internals for UNIX
Calling C Subprograms from COBOL

a_digits specifies the actual number of digits in a numeric data item (where the type of
argument is in the range 0 through 12). It is set to zero for nonnumeric data items.

a_scale specifies the power of 10 by which the digits in a numeric data item (where the
type of argument is in the range 0 through 12) must be multiplied to obtain the numeric
value of the data item. The power of 10 is represented as a signed, 2’s complement
number. It is set to zero for nonnumeric data items.

a_picture specifies the lowest addressed byte of the encoded picture for edited items
(type of argument equals 0, 20 or 21). It is set to zero for all other types.

Table H-1: RM/COBOL Data Types as Numbers

Type RM/COBOL Type RM/COBOL
Number Data Type Number Data Type

0 NSE 16 ANS

1 NSU 17 ANS (justified right)
2 NTS 18 ABS

3 NTC 19 ABS (justified right)
4 NLS 20 ANSE

5 NLC 21 ABSE

6 NCS 22 GRP (fixed length)
7 NCU 23 GRPV (variable length)
8 NPP 25 PTR

9 NPS 26 NBSN

10 NPU 27 NBUN

11 NBS 32 OMITTED

12 NBU

Note The data type GRPV (23) does not occur when C$CARG is called with the formal
argument name or when C$DARG is called with an actual argument number that
corresponds to an argument that is a variable-length group. In all cases, RM/COBOL
passes variable-length group actual arguments as if they were a fixed-length group

of the maximum length. (See Appendix F, Subprogram Library, of the RM/COBOL
User's Guide.)

For example, suppose a CALL statement specifies one argument in its USING list and
this argument refers to a three-byte numeric unsigned (NSU) data item with a PICTURE
character-string of 99V9. The following is a diagram of the structure in C.

CodeBridge H-7
Calling C Subprograms from COBOL

Accessing C Subprograms

argument address
argument length
type

digit count

implied decimal

picture address

. pointer to char

NULL

™ argument [3]

H-8

Y ou can access a C language subprogram from the RM/COBOL runtime system by
either of the following two methods:

e Giveeach C subprogram a unique name and entry point. Source module usrsub.c
(delivered with the RM/COBOL system) provides an example of this method.

e Giveeach C subprogram a unique name and share the same entry point.

In the second case, it is necessary to determine which C subprogram has been called.
The following example illustrates one way this might be accomplished.

Non-COBOL Subprogram Internals for UNIX

Accessing C Subprograms

#include "rmc85cal .h"

int library
(
char *name,
unsigned short arg_count,
ARGUMENT_ENTRY arg_vector[],
unsigned short initial_state

s
ENTRYTABLE RM_EntryPoints[] =

{'suBA", (int () OQ)library, "library" },
{'suBB”, (int (*)())library, "library" },
{NULL, Cint (*)O)NULL, NULL 3

}:
int library
(
char *name,
unsigned short arg_count,
ARGUMENT_ENTRY arg_vector[],
unsigned short initial_state
)
{
int entry_no;
const int MAX_ENTRIES =
(sizeof(RM_EntryPoints)/sizeof(RM_EntryPoints[0])) - 1;
for (entry_no = 0; entry_no < MAX_ENTRIES; entry_no++)
if (
Istrcmp
RM_EntryPoints[entry_no].EntryPointCobolName, name
)
break; /* matching name found */
3
switch (entry_no)
{
case 0: /* "SUBA"™ called */
/*
* “SUBA"™ code goes here
*/
return RM_FND;
case 1: /* "SUBB" called */
/-k
* “SUBB"™ code goes here
*/
return RM_FND;
defaul t:
return RM_STOP; /* logic error, stop run unit */
b
3

CodeBridge
Accessing C Subprograms

H-9

Preparing C Subprograms

This section explains how to create an optional support module using either anew C
subprogram or an existing object for a C subprogram that was previously being linked
into the RM/COBOL runtime system using the customiz script.

Creating a Support Module from a C Source

C subprograms must be compiled and linked to produce a shared object to be used asa
support module. In the discussion below, C source files are assumed to have an
extension of .c and C object files are assumed to have an extension of .0. Optional
support modules must have an extension of .so.

A makefileis provided with the RM/COBOL development and runtime systems that can
be used or modified to build a shared object. Y ou may modify the makefile by adding a
new target for your support module or you may modify module usrsub.c (delivered with
the RM/COBOL system). The makefile includes the C compiler options used by Liant
Software to build the optional support modules shipped with the RM/COBOL release on
your particular platform.

Note These C compiler options in the makefile may not be appropriate or correct for
your C compiler. In order to build a shared object to be used as a support module with
the RM/COBOL runtime system, you must specify optionsto tell the compiler and linker
that you want to produce an ELF (Executable and Linking Format) object file (for
example, -b elf), that you want to produce a dynamically-linked executable (for example,
-dy), and that you want the linker to produce a shared object (for example, -G).

Producing a support module for use on HP/UX version 10.20 and later requires that you
specify an additional C compiler option to generate position-independent code. Other
UNIX systems do not require position-independent code for support modules. The
makefile includes the appropriate compiler option to generate position-independent code
on HP/UX.

Linking a support module for IBM AlIX 4.2 requires both an “import” file,
runcobol.imp, to make RM/COBOL runtime system symbols available and an “export”
file to make support module symbols available. The runcobol.imp fileis supplied with
the RM/COBOL development and runtime systems for IBM AlX 4.2. The “export” file
must be provided by the user. A sample export file, libusr.exp, isaso provided with the
RM/COBOL release as an example of what the user must provide. The makefile
includes appropriate loader options to use the import and export files when building
support moduleson IBM AlX 4.2

H-10 Non-COBOL Subprogram Internals for UNIX
Preparing C Subprograms

A separate “ samples’ makefile is provided with the RM/COBOL development systemin
the cbsample subdirectory. This makefile has targets that are called by the various script
files used to demonstrate CodeBridge. Additional information about the CodeBridge
samples may be found in the READM E.txt file in the CodeBridge samples directory.
For the remainder of this section, makefile refers to the makefile that is present in the
main installation directory (normally, /usr/rmcobol) rather than the special CodeBridge
“samples’ makefile.

Assuming a C source file named usr sub.c, the following command generates the
subprogram object file and links a shared object to be used as an optional support module
with the runtime system:

make libusr MODULES=usrsub.o

The makefile compiles and links the default subprogram module usrsub.c. The resulting
optional support module libusr.so is then copied into the r mcobolso subdirectory of the
current directory. The following describes each of the files involved in the process:

e usrsub.cisyour C subprogram source file that will be compiled to produce
usrsub.o.

e usrsub.oisthe C subprogram object file that is linked to create libusr.so.

e libusr.soisthe resulting shared object (optional support module). Althoughitis
unnecessary to name your support module libusr .so, the name chosen must have an
extension of .so.

Note Filenames of optional support modules must be unique even if the modules are
located in different directories. The runtime system assumes that support modules with
the same name are the same and, therefore, ignores all subsequent support modules with
the same name as one already |oaded.

If your optional support module uses functions from the C library that are not also used
by the runtime system, you will see a message similar to the following when the runtime
system tries to load the support module:

dynamic linker: runcobol: relocation error: symbol not found: symbol

Y ou will need to add the C library name to the compile/link command (for example, cc).
Depending on your particular support module, other library names may also need to be
added.

Y ou can test the newly built shared object by using the L (Library) Option on the
RM/COBOL Runtime Command (see Chapter 7, Running, in the RM/COBOL User’s
Guide) to specify the location of the support module in the test subdirectory. After
testing is complete, you should copy the support module into the rmcobolso subdirectory
of the executable directory (normally /usr/bin) so that the runtime system will

CodeBridge H-11
Preparing C Subprograms

automatically load your support module. Once this has been done, your support module
will be available for use in production mode.

Creating a Support Module from a C Object (No Source)

If you have old C subprograms that you have been linking into the runtime system, but
no longer have the source (to be able to build a shared object), it may still be possible to
build a shared object from the old object (.0) file. Y ou will need to write a C wrapper
module. Y ou can use usrsub.c as a starting point, which is the method used in the
remainder of thistopic. Modify the entry points table to include the COBOL -callable
name(s) of the C functions you wish to access in the old object. Then modify the entry
points table to reference the proper C function(s) name(s) (the UNIX command nm may
help you determine the function names). Finally, include an extern declaration for the
C function names in the usrsub.c source as follows:

extern int oldcfunction();
Use the following command to build the shared object:
make libusr MODULES="usrsub.o oldcobject.o"

If you want to modify the makefile to change the name of the shared object, simply
duplicate the libusr section of the makefile and change the names as appropriate or
rename file libusr .so to the desired filename.

Special Entry Points for Support Modules

When the runtime system (or other RM/COBOL component) loads an optional support
module, it looks for certain predefined symbols (entry points and variable names), and
varies its actions based on the presence or absence of these symbols. One such variable
nameis RM_EntryPoints (discussed in “C Subprogram Name Table Structure” on
page H-3). The example subprogram, usrsub.c, which is distributed with the
RM/COBOL system, contains examples of al of these entry points and symbols. It can
be used as a starting point when developing optional support modules.

H-12 Non-COBOL Subprogram Internals for UNIX
Special Entry Points for Support Modules

The complete list of these special namesis as follows:
e RM_AddOnBanner
RM_AddOnCancelNonCOBOL Program

e RM_AddOninit

e RM_AddOnLoadMessage

e RM_AddOnTerminate

e RM_AddOnVersionCheck

e RM_EntryPoints and RM_EnumEntryPoints

Note On UNIX, only the RM_EntryPoints symbol declaration (or the
RM _EnumEntryPoints entry point) is required for an optional support module. All
other entry points are optional .

The following sections describe these entry points and special variables.

RM_AddOnBanner

This entry point, if present, should return a pointer to a character string that will be
displayed along with the runtime system banner message. The support module banner
may be used to display any required copyright notice. The support module banner is
displayed only if the K Option of the Runtime Command is not present.

Function declaration for RM_AddOnBanner:

char* RM_AddOnBanner ();

RM_AddOnCancelNonCOBOLProgram

This entry point, if present, is called by the runtime system when a CANCEL verb is
executed for a program-name that is defined in the optional support module. It allows
the support module to do any cleanup actions that may be necessary. For example, this
entry point might be specified to allow the support module to close any open files when
the COBOL program cancels the associated non-COBOL subprogram. The program-
name of the non-COBOL subprogram for which a CANCEL has been performed is
passed as a parameter to the entry point.

Function declaration for RM_AddOnCancelNonCOBOL Program:

void RM_AddOnCanceINonCOBOLProgram (char* ProgramName);

CodeBridge H-13
Special Entry Points for Support Modules

RM_AddOnInit

This entry point, if present, is called to initialize the optional support module. All
support modules will beinitialized (if initialization is requested) before the runtime
system begins executing the first COBOL program. The entry point should return zero to
indicate successful initialization or a non-zero value to indicate that the support module
initialization failed. If theinitialization fails, the runtime system will display an
appropriate message and then terminate.

Note If the support module determines that successful initialization is not possible, the
support module should produce appropriate messages to allow the user to correct the
problem.

The support module is passed the shell command line arguments in the arguments

Argc (the argument count) and Argv (the argument vector). The support moduleis also
passed a pointer to the runtime call back table if the support module interface version is
set to 2.

Function declaration for RM_AddOnl nit for interface version 1:
int RM_AddOnlInit (int Argc, char** Argv);
Function declaration for RM_AddOnl nit for interface version 2;

int RM_AddOnInit(int Argc,
char** Argv,
RUNTIME_CALLS_TABLE *pRtCall);

RM_AddOnLoadMessage

This entry point, if present, should return a pointer to a character string that is displayed
along with the load messages of other optional support modules. These load messages
allow the user to verify which support modul es the runtime system has loaded. The
message may contain text to identify the support module and, if desired, the version
number or the build date. L oad messages are displayed only if the V Runtime Command
Option is present, the V=DISPLAY keyword-value pair is specified in the RUN-
OPTION configuration record, or the RM_DYNAMIC_LIBRARY_TRACE
environment variable

is defined.

If load messages are being displayed, the runtime system generates a load message
consisting of the complete pathname for the support module regardless of whether the
RM _AddOnL oadM essage entry point is defined or not defined in the support module.
If the RM_AddOnL oadM essage entry point is defined, the returned string is appended
to the pathname in this load message.

H-14 Non-COBOL Subprogram Internals for UNIX
Special Entry Points for Support Modules

Function declaration for RM_AddOnL oadM essage:

char* RM_AddOnLoadMessage ();

RM_AddOnTerminate

This entry point, if present, is called by the runtime system during termination.
Execution of all COBOL programs is complete when the runtime system calls this entry
point. It allows the optional support module to perform any cleanup actions that may be
necessary.

The RM_AddOnTerminate function is called when the module is unloaded, even if the
RM _AddOnlnit function (see page H-14) for the module did not succeed. Thus, the
code for this function must not depend on the success of RM _AddOnl nit function.

Function declaration for RM_AddOnTer minate:

void RM_AddOnTerminate ();

RM_AddOnVersionCheck

This entry point, if present, provides a method of verifying that the runtime system and
the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed to support
the current interface version of the runtime system that calls the support module.

If RM_AddOnVersionCheck is present, it will be passed a version string, two support
modul e interface versions, and a pointer for the support module to store a desired
interface version. The version string (for example, 8.0n.nn) is defined by the VERSION
macro in the header file version.h (provided with the RM/COBOL system). The runtime
support module interface versions indicate the minimum and maximum versions that the
runtime system can support. The RM/COBOL runtime system (version 7.50 or later)
supports support module interface versions 1 and 2. For UNIX, these two interface
versions differ only in the arguments passed to RM _AddOnlI nit, as documented in the
description of that specia entry point (see page H-14). Interface version 1 was the
support module interface version supported by the version 7.10 runtime system.
Interface version 2 is the new current support module interface version supported by
version 7.50 or later runtime systems. In the future, the runtime system may support
other, partially or completely incompatible, interface versions.

It isthe responsibility of the support module to verify that it supports one of the interface
versions supported by the runtime system and to return the interface version it supports.
If the support module does not support any of the interfaces supported by the runtime

CodeBridge H-15
Special Entry Points for Support Modules

system, the support module should return FALSE (0). In this case, or if the support
module returns an invalid interface version, the runtime system will display an
appropriate message and then terminate. Returning TRUE (1) and an interface versionin
the range supported by the runtime system allows the runtime system to continue. The
support module may use the current interface version by returning the value
CURRENT_SUPPORT_MODULE_INTERFACE_VERSION (defined in the supplied
header file, rmc85cal.h).

The support module may also use the value of the version string to verify compatibility
with the runtime system. |If the support module determines that it is not compatible with
the runtime system, it should return FALSE. In this case, the support module might
display a meaningful message before the runtime system displays its message and
terminates.

Function declaration for RM_AddOnVersionCheck:

BOOLEAN RM_AddOnVersionCheck (char* Version,
int MinRuntimelnterfaceVersion,
int MaxRuntimelnterfaceVersion,
int* DesiredInterfaceVersion);

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the symbols
RM _EntryPointsand RM_EnumEntryPoints to determine whether the support
module contains any COBOL -callable functions. Each optional support module defines
only those COBOL -callable functions defined in that support module using either the
RM _EntryPoints symbol declaration or the RM_EnumEntryPoints entry point.

The use of the subprogram name table RM_EntryPointsis described on page H-3.

If the entry point RM_EnumEntryPointsisfound, it is called repeatedly to obtain the
COBOL -callable names, function addresses, and function names of the COBOL-callable
functions in the support module. This function should return a pointer to a structure that
isequivalent to one entry inthe RM_EntryPointstable. The end of the entry pointsis
indicated by returning a null pointer or a structure whose first pointer isNULL. The
index parameter starts at zero for the first call and isincremented for each subsequent
cal.

If both symbols are present, RM_EnumEntryPoints takes precedence.

See the example on page H-3 for the symbol declaration for RM _EntryPaints.

H-16 Non-COBOL Subprogram Internals for UNIX
Special Entry Points for Support Modules

Function declaration for RM_EnumEntryPoints:

ENTRYTABLE* RM_EnumEntryPoints (int index);

Calling a CodeBridge Subprogram Library

It is possible to use non-COBOL subprogram libraries built using CodeBridge and call
them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by RM/COBOL. These
generated functions then call the C functions that are described in the template file. The
name of the generated function is the same as the C function name with a prefix of
“RMDLL" added to it. For example, if the name of the C function is MessageBox, the
name of the generated function is RMDL L MessageBox.

It ispossible for a C function that calls the CodeBridge Library functions directly also
to call functions that were built by CodeBridge Builder. A C function could call
RMDLLMessageBox directly either by using the ARGUMENT_ENTRY structure
that was passed from RM/COBOL or by constructing one that suited the needs of the
C function.

One use of this capability would be to hide conversions of C dataitemsto COBOL
dataitems. “Example 6: Converting Buffered C Data’ on page B-18 in Appendix B,
CodeBridge Examples, describes a case in which such conversions are necessary even
though CodeBridge is being used. In that example, the function cstring2text is called
from COBOL to convert data stored in a buffer by a C function call. This conversion
could be hidden from the RM/COBOL program by embedding the conversioninaC
function that first calls the C function to store the data in the buffer and then also calls the
generated C function, RMDL L cstring2text.

C Subprograms Performing Terminal I/O

The RM/COBOL runtime system changes terminal characteristics before passing control
to a C language subprogram. If any processing requiring terminal 1/0 occurred
(including operating system commands that use the terminal), you must reset the terminal
toitsorigina state by making a call to the routine resetunit(). If resetunit() was called,
acall to setunit() must be made before control is returned to the run unit. Both functions
are part of the runtime system and are described in the section “Runtime Functions for
Support Modules” that begins on page H-18.

CodeBridge H-17
Calling a CodeBridge Subprogram Library

Debugging C Subprograms

It is recommended that subprograms initially be tested using a C main program that sets
up the RM/COBOL argument entries and calls the subprogram. Once the subprograms
are functioning properly, then build the shared object and test with the COBOL program.

C Subprogram Example

The C subprogram usr sub.c has been provided with your distribution media as an
example of the predefined symbols and entry points used in creating optional support
modules (shared objects). Asdistributed, usrsub.c does nothing of interest, but does
serve as atemplate for developing an optional support module of your own. Remember,
only the RM_EntryPoints symbol declaration (or the RM_EnumEntryPoints entry
point) isrequired. All other entry points are optional.

Note The specia entry points, SY STEM, DELETE, and RENAME, which were
included in the C source sub.c on previous releases of RM/COBOL, are not present in
usrsub.c. These COBOL-callable functions are now part of the runtime system and are
fully documented in Appendix F, Subprogram Library, of the RM/COBOL User’s Guide.

Runtime Functions for Support Modules

RM/COBOL provides user-supplied C subprograms with entry points to some COBOL
functions. The following routines use the standard C calling and parameter passing
conventions:

e RmForget (int y1,int x1, int y2, int x2). Thisfunction marks the indicated area of
screen memory as unknown. By doing so, the next COBOL display to that area will
not be optimized based on the screen contents. This allows COBOL output to be
correctly displayed over C subprogram output, which is not stored in the
in-memory screen image.

This routine requires four int parameters (two line and position pairs), which specify
the upper-left (y1,x1) and lower-right (y2,x2) coordinates of the area of the screen to
be marked as unknown. Valid values range from O to the line or position limit of the
screen. Passing zero values mark the entire screen as being unknown. See the
“C$Forget” section in Appendix F of the RM/COBOL User's Guide for more
information. The function returns an int value of O for success.

H-18 Non-COBOL Subprogram Internals for UNIX
Debugging C Subprograms

RmRepaintScreen(). Thisfunction causes the RM/COBOL runtime system to
redraw the entire current screen from an in-memory image. C routine output is
erased. Thisfunction requires no parameters and does not return avalue. Seethe
REPAINT-SCREEN keyword of the CONTROL phrase in Chapter 8, RM/COBOL
Features, of the RM/COBOL User's Guide for more information.

RmRefreshCwd(). Thisfunction causesthe RM/COBOL runtime system to refresh
itsinternal copy of the current working directory. Thisinternal copy isused to
construct compl ete filenames from any filename that is not fully qualified. This
function should be called before returning to the COBOL program if a non-COBOL
subprogram changes the current working directory with the chdir () C library
routine. The RmRefreshCwd() routine has no parameters and does not return a
value.

setunit(). Thisfunction restores the terminal to the state the RM/COBOL runtime
system requires for terminal 1/0. If the resetunit() function is called, the setunit()
function must be called before returning to the runtime system. This function
reguires no parameters and does not return avalue.

resetunit(). Thisfunction placesthe terminal in a“normal state” (that is, the

state before the RM/COBOL runtime system was executed). This function should
be used if any terminal 1/0O is going to be performed, including operating system
commands that use the terminal. This function requires no parameters and does not
return avalue.

CodeBridge H-19
Runtime Functions for Support Modules

H-20 Non-COBOL Subprogram Internals for UNIX
Runtime Functions for Support Modules

Appendix I: Calling the
CodeBridge Library Directly

This appendix provides guidelines for calling the CodeBridge Library directly rather than
having the CodeBridge Builder generate the interface code from atemplate file. 1n order
to call the CodeBridge Library directly, you must use an alternate method for preparing
non-COBOL subprograms, as described either in Appendix G, Non-COBOL Subprogram
Internals for Windows, or Appendix H, Non-COBOL Subprogram Internals for UNIX.

Note Theinformation presented here assumes a working knowledge of the C
programming language. The material in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

In describing direct calls to the CodeBridge Library, the following topics are covered:
e Including cbridge.h (see page|-2)

e Declaring the C function return value and parameters (see page 1-2)

e Specifying the COBOL argument number (see page |-4)

e Declaring C dataitems used in the conversion process (see page 1-4)

e |nitializing and terminating the conversion process (see page |-8)

e Converting COBOL argumentsto C data items (see page |-9)

e Converting C dataitems to COBOL arguments (see page 1-12)

e Validating properties of COBOL arguments (see page |-14)

Following these discussions, an example of calling the CodeBridge Library directly is
given on page |-14.

CodeBridge -1
Including cbridge.h

Including cbridge.h

Instead of including rmc85cal.h, include cbridge.h (which includes rmc85cal.h).
cbridge.h defines the following:

e Valuesfor the Flags parameter used for most CodeBridge Library functions
e CodeBridgeinternal conversion table (CONV_TABLE)

e Runtime entry point table (RUNTIME_CALLS TABLE)

e Function prototype of each CodeBridge Library function

e [Initialization and termination logic for the generated interface DLL (for Windows)

Declaring the C Function Return Value and
Parameters

The functionis called with six parameters. The function should have the form specified
on page G-5 for Windows or the form specified on page H-4 for UNIX. The following
form may be used if the function isto work under either Windows or UNIX:

RM_DLLEXPORT int RM_CDECL

FunctionName(char *pCal ledName,
unsigned short ArgCount,
ARGUMENT_ENTRY Arguments|[],
unsigned short InitialState,
RM_HWND hRtWindow,

RUNTIME_CALLS_TABLE *pRtCall)

/* function implementation goes here */
return RM_FND;

}

FunctionName is the name of the C function. The function return value must be
declared as an int. The value returned to the calling COBOL program must be either
RM_FND or RM_STOP (see pages G-6 and H-5).

pCalledName is the Name parameter used for the ConversionStartup library function
(see page F-42).

1-2 Calling the CodeBridge Library Directly
Including cbridge.h

ArgCount is the ArgCount parameter used for most CodeBridge Library functions.
Arguments is the Arguments parameter used for most CodeBridge Library functions.

Initial Sate could be used as the Flags parameter for the Cobol Initial State library
function (see page F-24), but normally would be used directly by the code.

hRtWindow is the window handle for the runtime on Windows and could be used as
the WindowsHandle parameter for the Cobol WindowsHandle CodeBridge library
function (see page F-40), but normally would be used directly by the code. On
UNIX, hRtWindow is a placeholder that should not be used since there is no window
handle on UNIX.

pRtCall points to the runtime entry point table and is used to locate CodeBridge

Library functions. For example, you could call DiagnosticMode (see page F-43)
asfollows:

pRtCall->pDiagnosticMode(DF_SILENT);

The C subprogram table structure, which defines the COBOL -callable entry points,
references the function name as follows;

RM_DLLEXPORT ENTRYTABLE RM_EntryPoints[]=

{
{""ProgramName', (int (RM_CDECL *)())FunctionName, "FunctionName"},
{NULL, (int (RM_CDECL *)()) NULL, NULL}

}:

ProgramName is the name used in the COBOL program to call the C function. For
more information on the C subprogram name table, see page G-4 (for Windows) or
page H-3 (for UNIX).

Note The macros RM_DLLEXPORT, RM_CDECL, and RM_HWND, are defined in
rmc85cal.h (which isincluded by cbridge.h) to aid in writing code that will compile on
both Windows and UNIX.

CodeBridge 1-3
Declaring the C Function Return Value and Parameters

Specifying the COBOL Argument Number

The value of the Arguments parameter used for most CodeBridge Library functionsis
zero-relative. Thefirst argument in the USING phrase of the RM/COBOL CALL
statement is argument zero. RM/COBOL allows up to 255 arguments in the USING
phrase (numbered 0 through 254). The argument in the GIVING (RETURNING) phrase
of the RM/COBOL CALL statement is argument -1 (minus one).

Declaring C Data Items Used in the
Conversion Process

This section describes requirements for declaring a C dataitem that will receive a
converted COBOL argument value or whose converted value will be returned to a
COBOL argument.

Numeric Conversions

C numeric data items can receive and supply values for Numeric conversions

(Cobol ToFloat, Cobol Tolnteger, FloatToCobol, and IntegerToCobol). For C numeric
dataitems, you must define both the dataitem and a pointer to the dataitem. The pointer
must be initialized with the address of the data item as follows:

type Name; type *pName = &Name;

where:
type is a C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric data item.

pName is the name of the pointer to the C numeric data item.

The pointer is required so that null-valued COBOL pointers can be passed to the C
function and converted properly.

-4 Calling the CodeBridge Library Directly
Specifying the COBOL Argument Number

Note Because of the way numeric dataitems are declared (to handle null-valued
pointers), you must adjust the way you pass C numeric data items by reference to other C
functions. Normally you would pass & Name, but when using CodeBridge you must pass
pName instead.

If an array of numbersisto be passed, you must define anumeric array. To pass an array
of five long integers, use the following definition:

long MyLongArray[5]; long *pMyLongArray = MyLongArray;

String Conversions

C strings can receive and supply values for String conversions (Cobol ToGeneral String,
Cobol ToNumericString, Cobol ToString, General StringToCoboal,
NumericStringToCobol, and StringToCobol). To use C stringsin the conversion
process, define an uninitialized string pointer asfollows:

type *pString;

where:
typeisaC string type (such as char, signed char, or unsigned char).
pString is the name of the string pointer.

Because the actual storage for each C string is allocated dynamically by the CodeBridge
Library, it is not necessary to define storage for the string.

If an array of stringsisto be passed, you must define an array of string pointers. To pass
an array of five strings, use the following definition:;

char *pMyStringArray[5];

CodeBridge I-5
Declaring C Data Items Used in the Conversion Process

Address Conversions

C pointers can receive and supply values for Address conversions
(Cobol DescriptorAddress, Cobol ToPointerAddress, Cobol ToPointerBase, and
PointerBaseToCobol). For Address conversions, define a C pointer as follows:

type *pCobolData;

where:
type is the C data type used for references to the COBOL data.
pCobolData is the name of the pointer to the COBOL data.

Note Be careful when using Address conversions. The address returned in pCobolData
may be used to directly manipulate COBOL data. It is better to use Numeric and String
conversions, which require less knowledge of COBOL data formats to accomplish the
same purpose.

Pointer Numeric Component Conversions

Pointer Numeric Component conversions (Cobol ToPointerOffset, Cobol ToPointerSize,
PointerOffsetToCobol, and PointerSizeToCobol) do not convert to and from COBOL
arguments. Instead, they obtain (or set) auxiliary information about the components of
RM/COBOL pointer arguments. They are handled in the same manner as Numeric
conversions (see page |-4). For Pointer Numeric Component conversions, define both
a C dataitem and a pointer to the dataitem as follows:

type Name; type *pName = &Name;

where:
type is a C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric data item.

pName is the name of the pointer to the C numeric dataitem.

Other Conversions

Other conversions (BufferL ength, Cobol DescriptorDigits, Cobol DescriptorL ength,
Cobol DescriptorScale, Cobol DescriptorType, Cobol ToPointerL ength, and

EffectiveL ength) do not convert to and from COBOL arguments. Instead, they obtain
(or set) auxiliary information about COBOL arguments or components of RM/COBOL
pointer arguments. They are handled in the same manner as Numeric conversions

1-6 Calling the CodeBridge Library Directly
Declaring C Data Items Used in the Conversion Process

without requiring the additional pointer definition. To use Other conversions, definea C
numeric dataitem as follows:

type Name;

where;
type is a C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric data item.

BufferLength and Effectivel ength conversions allow arrays to be passed.

Trivial Conversions

Y ou can call the CodeBridge Library conversion functions (Cobol ArgCount,

Cobollnitial State, or CobolWindowsHandl€) to convert ArgCount, Initial Sate, or
hRtWindow to a C dataitem. However, thisisatrivial conversion because you must pass
the value to the corresponding library function so that the function can store it in the C
dataitem you provide. For example:

short WindowsHandle2;

it (IRtCall->pCobolWindowsHandle (O,
(void *)WindowsHandle2,
sizeof (WindowsHandle2),
WindowsHandle))
{ RtCall->pConversionCleanup(ArgCount, pConvTable);
return(RM_STOP) ;

}

is equivalent to (though slower and more difficult to understand than):

short WindowsHandle2 = hRtWindow;

The only benefit to using the conversion routines in this situation is that size error
checking may be performed. In the example above, a short data type is used instead of
HWND. If the actual value of the handle does not fit into a short data item, then an error
would be returned.

CodeBridge -7
Declaring C Data Items Used in the Conversion Process

Initializing and Terminating the Conversion
Process

1-8

CodeBridge uses a dynamically allocated table to hold information about the conversion
process. The size of this table depends on the actual nhumber of arguments (ArgCount)
passed from COBOL to C. Thetableisalocated by ConversionStartup (see page F-42)
and deallocated by ConversionCleanup (see page F-41). Several other CodeBridge
Library functions use thistable. The C function must declare alocal variableto hold a
pointer to thistable as follows:

CONV_TABLE *pConvTable;

Initialization

Before calling any other CodeBridge Library functions, the C function must initialize the
conversion process by calling ConversionStartup as follows:

iT(IRtCall->pConversionStartup(ArgCount, &pConvTable,
pCalledName, Version))
return(RM_STOP) ;

Note Version isthe CodeBridge Library version (for version 7.0, use 0x700).

The ConversionStartup call illustrates two general properties of calling CodeBridge
Library functions. First, CodeBridge Library functions are called indirectly through
pointersinthe RUNTIME_CALLS TABLE, RtCall. Adding the prefix “p” to the
CodeBridge Library function name forms the name of the pointer. In the code above, the
full referenceis:

RtCall->pConversionStartup(..)

Second, most CodeBridge Library functions return TRUE to indicate success or FALSE
to indicate failure. A failure condition indicates that processing should not continue.
Hence, the previoudly listed sequence:

if(IRtCall->pConversionStartup(..))
return(RM_STOP) ;

Calling the CodeBridge Library Directly
Initializing and Terminating the Conversion Process

Termination

Just before returning to the calling COBOL program, the C function must terminate the
conversion process by calling ConversionCleanup as follows:;

RtCall->pConversionCleanup(ArgCount, pConvTable);

Note Because a program may have many exits, be sure that ConversionCleanup is called
prior to each exit.

For example, the code will typically contain sequences such as:

iT(IRtCall->pCodeBridgeLibraryFunction(..))
{ RtCall->pConversionCleanup(ArgCount, pConvTable);
return(RM_STOP) ;

}

Converting COBOL Arguments to C Data
ltems

CodeBridge Library input conversion functions are used to initialize C dataitems with
information from the calling COBOL program (see “Declaring C Data Items Used in the
Conversion Process’ on page |-4). For input conversions, the input conversion function
must be called before the C function uses the target C dataitem.

For Numeric and String conversions (see pages I-4 and -5, respectively), the input
conversion function must be called if the corresponding output conversion function will
be called. Thisallows CodeBridge to handle null-valued COBOL pointer arguments and
to supply default values for omitted COBOL arguments. Note that for String
conversions, a buffer is allocated to hold the string. If only output conversion is needed,
do not set the PF_IN flag for the input conversion call.

CodeBridge 1-9
Converting COBOL Arguments to C Data Items

I-10

Specifying the ArgCount, ArgNumber, and Arguments
Parameters

The ArgCount and Arguments parameters are presented in “Declaring the C Function
Return Vaue and Parameters’ on page I-2. The ArgNumber parameter is explained in
“Specifying the COBOL Argument Number” on page |-4.

Specifying the Parameter Parameter

For Cobol ToFloat, Cobol Tol nteger, Cobol ToPointerOffset, and Cobol ToPointerSize
conversions, the Parameter parameter must be:

(void **) &pName /* address of pointer to C data item */

where pName is defined as described in “Numeric Conversions’ on page I-4 and “ Pointer
Numeric Component Conversions’ on page |-6.

For Cobol ToGeneral String, Cobol ToNumericString, and Cobol ToString conversions, the
Parameter parameter must be:

(void **) &pString /* address of C string pointer */
where pString is defined as described in “ String Conversions” on page 1-5.

For Cobol DescriptorAddress, Cobol ToPointerAddress, and Cobol ToPointerBase
conversions, the Parameter parameter must be:

(void **) é&pCobolData /* address of C pointer to COBOL data*/
where pCobolData is defined as described in “ Address Conversions’ on page |-6.
For al other input conversions, the Parameter parameter must be:

(void *) &Name /* address of C numeric data item */

where Name is defined as described in “ Other Conversions’ on page |-6.

Specifying the Size Parameter

When the target C data item is numeric, CodeBridge supports multiple C numeric data
types with each input conversion function. For instance, Cobol Tolnteger can store a
converted COBOL numeric argument value in any C integer data type supported by the
C compiler. The CodeBridge Library conversion routines determine the size of the C
dataitem using the value of the Sze parameter, typically sizeof(Name). For example, to

Calling the CodeBridge Library Directly
Converting COBOL Arguments to C Data Items

store a COBOL numeric argument in the C dataitem, short MyShort, call
Cobol Tolnteger specifying the Sze parameter as sizeof(MyShort).

If the target C dataitem is a string, the Sze parameter overrides the default string size
when the PF_SIZE flag is set. The default size for numeric strings is four more than the
digit length of the COBOL argument; for non-numeric strings, it is one more than the
length of the COBOL argument.

Specifying Other Parameters

Input String conversion functions, as well as BufferLength and Effectivelength, require
that pConvTable, the pointer to the CodeBridge conversion table (see page 1-8), be
passed in the ConvTable parameter.

For adiscussion of the Flags parameter, see page F-3.

For conversion functions that support passing arrays, the Occurs parameter is the
array size. The PF_OCCURS flag should be set if the value of this parameter is greater
than one.

For Numeric and String conversions, the Omitted parameter is the default value for
omitted COBOL arguments when the PF_VALUE_IF OMITTED flag is set. Otherwise,
if the PF_OPTIONAL flag is set, the default value for Numeric conversionsis zero and
the default value for String conversionsis the empty string(""). If neither the
PF_VALUE_IF_ OMITTED flag nor the PF_OPTIONAL flag is set, an error occurs for
an omitted argument.

For Numeric and String conversions, the Repeat parameter specifies the repeat count
when the PF_REPEAT flag is set.

See Cobol Tolnteger on page F-29 for a discussion of the Scale parameter.

For non-numeric String conversions, the Valuel parameter specifies the strip/fill
character when the PF_LEADING_VALUE flagisset. Likewise, the Value2 parameter
specifies the strip/fill character when the PF_ TRAILING_VALUE flag is set.

CodeBridge I-11
Converting COBOL Arguments to C Data Items

Converting C Data Items to COBOL
Arguments

1-12

CodeBridge Library output conversion functions are used to pass information from C
data items back to the calling COBOL program (see “Declaring C Data Items Used in the
Conversion Process’ on page |-4). For output conversions, the output conversion
function must be called after the C function last uses the source C dataitem and before
returning to the calling COBOL program.

Specifying the ArgCount, ArgNumber, and Arguments
Parameters

The ArgCount and Arguments parameters are presented in “Declaring the C Function

Return Value and Parameters’ on page I-2. The ArgNumber parameter is explained in

“ Specifying the COBOL Argument Number” on page |-4.

Specifying the Parameter Parameter

For FloatToCobol and IntegerToCobol conversions, the Parameter parameter must be:
(void *) pName /* value of pointer to C data item */

where pName is defined as described in “Numeric Conversions’ on page |-4.

For General StringToCobol, NumericStringToCaobol, and StringToCobol conversions, the
Parameter parameter must be:

(void *) pString /* value of C string pointer */
where pString is defined as described in “ String Conversions” on page |-5.
For PointerBaseToCabol conversions, the Parameter parameter must be:
(void *) pCobolData /* value of C pointer to COBOL data*/

where pCobolData is defined as described in “ Address Conversions’ on page |-6.

Calling the CodeBridge Library Directly
Converting C Data Items to COBOL Arguments

For PointerOffsetToCobol and PointerSizeToCobol conversions, the Parameter
parameter must be:

(void *) pName /* value of C numeric data item */

where pName is defined as described in “Pointer Numeric Component Conversions’ on
page |-6.

Specifying the Size Parameter

When the source C data item is humeric, CodeBridge supports multiple C numeric data
types with each output conversion function. For instance, IntegerToCobol can convert
any C integer data type supported by the C compiler to a COBOL numeric argument.
The CodeBridge Library conversion routines determine the size of the C data item using
the value of the Sze parameter, typically sizeof(Name). For example, to convert the C
dataitem, short MyShort, to aCOBOL numeric argument, call IntegerToCobol
specifying the Sze parameter as sizeof(MyShort).

If the source C dataitem is a string, the Sze parameter overrides the default string size
when the PF_SIZE flag is set. The default size for numeric strings is four more than the
digit length of the COBOL argument; for non-numeric strings, it is one more than the
length of the COBOL argument.

Specifying Other Parameters
For adiscussion of the Flags parameter, see page F-3.

For conversion functions that support passing arrays, the Occurs parameter is the
array size. The PF_OCCURS flag should be set if the value of this parameter is greater
than one.

For Numeric and String conversions, the Repeat parameter specifies the repeat count
when the PF_REPEAT flag is set.

See IntegerToCobol on page F-52 for a discussion of the Scale parameter.

For non-numeric String conversions, the Valuel parameter specifies the strip/fill
character when the PF_LEADING_VALUE flagisset. Likewise, the Value2 parameter
specifies the strip/fill character when the PF_ TRAILING_VALUE flag is set.

CodeBridge I-13
Converting C Data Items to COBOL Arguments

Validating Properties of COBOL Arguments

In addition to the input and output conversion functions, the CodeBridge Library also
contains functions to validate properties of COBOL arguments. These include the
following:

AssertDigits validates the number of digitsin a COBOL numeric argument.
AssertDigitsL eft validates the number of digits before the decimal point.
AssertDigitsRight validates the number of digits after the decimal point.
Assertl ength validates the number of bytesin a COBOL argument.
AssertSigned verifies that a COBOL argument is signed.

AssertUnsigned verifies that a COBOL argument is unsigned.

These functions may be used with either input or output arguments. The functions can
be called anytime after the call to ConversionStartup and before ConversionCleanup.

Follow the guidelines for conversion functions when specifying parameters for validation

functions (see “ Converting COBOL Argumentsto C Data Items” on page -9 and
“Converting C Data Items to COBOL Arguments’ on page 1-12.)

Note Instead of calling AssertSigned or AssertUnsigned, the following functions may
set the PF_ASSERT_SIGNED or PF_ ASSERT_UNSIGNED flags to verify that the
COBOL argument is signed or unsigned: Cobol ToFloat, Cobol ToGeneral String,
Cobol Tolnteger, Cobol ToNumericString, FloatToCobol, General StringToCobol,
IntegerToCaobol, and NumericStringToCobol.

Example

1-14

The following exampleillustrates calling the CodeBridge Library directly.

Calling the CodeBridge Library Directly
Validating Properties of COBOL Arguments

#include "cbridge.h"

#define CLEANUP pRtCall->pConversionCleanup(ArgCount, pConvTable)

extern void DoTestOl1(int *Outlnteger, char *InOutString);
RM_DLLEXPORT int RM_CDECL TestOl(char *pCalledName,
unsigned short ArgCount,
ARGUMENT_ENTRY Arguments[],
unsigned short InitialState
RM_HWND hRtWindow
RUNTIME_CALLS_TABLE *pRtCall)
{ int Outlnteger; int *pOutlnteger = &Outlnteger;
char *InOutString;
CONV_TABLE *pConvTable;

if (pRtCall->table_version < 700)
return RM_STOP;

if(IpRtCall->pConversionStartup(ArgCount, &pConvTable,
pCalledName, 0x700))
return RM_STOP;

if(IpRtCall->pCobolTolnteger(ArgCount, 0, Arguments, PF_IN, O,

(void **) &pOutlnteger, O,
sizeof(Outlinteger)))
{ CLEANUP; return RM_STOP; }

if(IpRtCall->pCobolToString(ArgCount, 1, Arguments, pConvTable,

0,

(PF_IN | PF_TRAILING_SPACES), 0, (™),

(void **) &InOutString, O,
0, *"\0", "\0"))
{ CLEANUP; return RM_STOP; }

DoTest01(pOutinteger, InOutString);

if(IpRtCall->plIntegerToCobol (ArgCount, 0, Arguments, PF_OUT, O,

(void *) pOutlnteger, 0, O
sizeof(Outlnteger)))
{ CLEANUP; return RM_STOP; }

if(IpRtCall->pStringToCobol (ArgCount, 1, Arguments,

(PF_OUT | PF_TRAILING_SPACES), O,
InOutString, 0, 0, "\0", "\0"))

{ CLEANUP; return RM_STOP; }

CLEANUP; return RM_FND;

CodeBridge

Example

I-15

1-16 Calling the CodeBridge Library Directly
Example

Index

Special Characters

[1 (brackets), use of
in COBOL syntax, xv
in global attribute lists, 2-2
in parameter attribute lists, 2-2
... (ellipsis), use of, in variable number of C
parameters, 2-28, E-9, E-12
/ (forward slash), use of, in C compiler options, C-6
- (hyphen), use of
in C compiler options, C-6
optional, in RM/COBOL compilation and
runtime options, xv
(pound sign), use of, in global attribute lists, 2-2

A

ACCEPT statement, Termina 1-O
CONTROL phrase
REPAINT-SCREEN keyword, H-19
address base attribute
alowed combinations (table), E-31
defined, E-17
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-15
passing the address of the COBOL data, 2-31
Address component, COBOL pointer argument, 2-6,
2-12,2-32,E-15
dias(name) base modifier
defined, E-4
for error base attributes, E-22
for numeric base attributes, E-7
for pointer base attributes, E-16
for the string base attribute, E-11
All caps, as adocument convention, Xiv

arg_count base attribute
alowed combinations (table), E-31
associating an implied argument, 2-23
defined, E-17
passing information to a C function, 2-17
arg_num(value) argument number attribute
alowed combinations (table), E-31
associating C parameters with COBOL
arguments, 2-4, 2-22
defined, E-2
Argument number attributes, 2-3, E-31
arg_num(value), E-2
associating C parameters with COBOL
arguments, 2-3, 2-22
ret_val, E-2
Arguments, COBOL
argument number attributes, 2-3, E-2, E-31
argument properties, passing to a C function
COBOL descriptor data, 2-15
string length information, 2-16, E-18
C parameters, associating with, 2-3, E-2
automatic, 2-22
examples of, 2-24
explicit, 2-22
defined, 1-6
digit length, 2-16, 2-28, 2-35
group
fixed-length, 2-12
variable-length, 2-12
miscellaneous information, passingto aC
function, 2-17
omitted arguments, managing, 2-17
passing to a C function
non-numeric arguments, 2-10
null-valued pointer arguments, 2-13
numeric arguments, 2-7
pointer arguments, 2-12, E-15

CodeBridge X-1

Arrays
converting C
floating-point parameters, 2-8
integer parameters, 2-7
numeric string parameters, 2-9
string parameters, 2-11
working with
COBOL array references, 2-36
numeric, 2-33, E-6
string, 2-34, E-11
assert_digits(min,max) base modifier
defined, E-7
assert_digits _left(min,max) base modifier
defined, E-8
assert_digits _right base modifier
defined, E-8, E-23
assert_length(min,max) base modifier, defined
for error, E-23
for numeric, E-8
for string, E-11
assert_signed base modifier
defined, E-8
assert_unsigned base modifier
defined, E-8
AssertDigits library function, F-6
AssertDigitsLeft library function, F-8
AssertDigitsRight library function, F-10
AssertLength library function, F-12
AssertSigned library function, F-14
AssertUnsigned library function, F-15
Associating C parameters with COBOL arguments,
2-21, E-2. See also Argument number
attributes
automatic, 2-22
examples of, 2-24
explicit, 2-22
Attribute lists. See also Global attributes; Parameter
attributes
associating C parameters with COBOL
arguments, 2-21
association of arguments and parameters
missing lists, 2-27
multiple lists, 2-25

X-2 Index

attributes
defined, 2-2
use of, in attribute lists, 2-2
modifying COBOL data areas, 2-29
passing information to a C function, 2-6
types
global, 2-2, 2-5, D-1
parameter, 2-2, E-1
use of, in templatefiles, 2-2. See also Template
files
using P-scaling, 2-32
working with a variable number of C parameters,
2-28
working with arrays, 2-33
Attributes. See also Attribute lists; Global
Attributes; Parameter attributes
defined, 2-2
use of, in attribute lists, 2-2

B

banner global attribute, D-2
Banner messages, D-2, G-13, H-13
Base attributes, 2-3, E-3. See also Base modifiers;
Parameter attributes
descriptor, 2-15, 2-17, E-3, E-17
error, 2-19, E-3
error base attributes, E-20
genera_string, 2-7, 2-9, 2-10, 2-14, 2-29, E-13
numeric, 2-7, 2-8, 2-28, E-3, E-5
numeric_string, 2-7, 2-9, 2-10, 2-14, 2-28
pointer, 2-12, E-3, E-15
string, 2-7, 2-10, 2-29, E-3, E-11
string length, 2-9, E-3, E-14
Base modifiers, 2-3, E-3, F-2. See also Base
attributes; Parameter attributes
common, for severa base attributes, E-4
converting C
floating-point parameters, 2-8
integer parameters, 2-8
numeric string parameters, 2-10
for descriptor base attributes, E-20
for error base attributes, E-22
for numeric base attributes, 2-8, 2-10, E-7

for pointer base attributes, 2-13, E-16
for string length base attributes, E-15
for the string base attribute, E-11
bat filename extension, 1-4
Bold type, use of
as adocument convention, Xiv
in CodeBridge examples, B-1
Brackets ([]), use of
in COBOL syntax, xv
in global attribute lists, 2-2
in parameter attribute lists, 2-2
Buffer addresses
converting buffered C data, example of, B-18
passing, 2-32
buffer_length base attribute
alowed combinations (table), E-31
converting
C numeric string parameters, 2-9
C string parameters, 2-11
defined, E-14
passing string length information, 2-16
BufferLength library function, F-16

C

C Compile Command Option, RM/COBOL, F-51
C compiler, 1-7, C-1-C-8, G-9
C data types. See Datatypes, C
C entry points for COBOL functions
resetunit(), H-19
RmForget(int y1, int x1, int y2, int x2), H-18
RmRefreshCwd(), H-19
RmRepaintScreen(), H-19
setunit(), H-19
c filename extension, 1-7, 2-37
C functions, 1-6, 2-6, C-1, C-5. See also Function
prototypes
C parameters. See Parameters, C
C3CARG subporgram, G-8
C3$CARG subprogram, H-7
C3Forget subprogram, H-18
C$MemoryAllocate subprogram, B-9
C$MemoryDeallocate subprogram, B-9

CALL statement
GetCallerInfo library function, F-50
GIVING (RETURNING) phrase, 1-8, 2-17, E-2,
G-5,H-5
linking C language subprograms into the runtime
system, H-12
non-COBOL subprograms, G-3, H-2
USING phrase, 1-8
OMITTED keyword, 2-17, G-5, H-4
Calling conventions, 1-1, C-4. See also convention
global attribute
Calling non-COBOL programs from RM/COBOL
programs, G-3, H-2
Case sensitivity, 2-2, C-2, D-1, E-1
cbl filename extension, 1-4
cbridge subdirectory, 1-9, 2-3, B-1
cbridge.h header file, F-4, G-10, 1-2
cbsample subdirectory, 1-9, B-1
COBOL array references, working with, 2-36
CobolArgCount library function, F-18
Cobol DescriptorAddress library function, F-19
Cobol DescriptorDigits library function, F-20
Cobol DescriptorLength library function, F-21
Cobol DescriptorScale library function, F-22
Cobol Descriptor Type library function, F-23
CobolInitial State library function, F-24
Cobol ToFloat library function, F-25
Cobol ToGeneral String library function, F-27
Cobol Tolnteger library function, F-29
Cobol ToNumericString library function, F-31
Cobol ToPointerAddress library function, F-33
Cobol ToPointerBase library function, F-34
Cobol ToPointerL ength library function, F-35
Cobol ToPointerOffset library function, F-36
Cobol ToPointerSize library function, F-37
Cobol ToString library function, F-38
CobolWindowsHandle library function, F-40
CodeBridge
benefits, 1-2
components
CodeBridge Builder, 1-2, 1-7, 2-37, A-3
CodeBridge Library, 1-2, A-3, F-1, I-1

CodeBridge X-3

concepts error messages, A-1, A-3

associating C parameters with COBOL examples, B-1
arguments, 2-21, E-2 features, xviii, xix
automatic, 2-22 non-COBOL subprogram internals
examples of, 2-24 UNIX, H-1
explicit, 2-22 Windows, G-1
managing omitted arguments, 2-17 overview, 1-1
modifying COBOL data areas preparing non-COBOL subprograms, alternate
passing the address, 2-31 method, G-1, H-1
using the out direction attribute, 2-30 requirements, 1-3
passing information to a C function, 2-6 support modules, 1-1, 1-11, G-1, G-4, G-9, G-12,
miscellaneous information, 2-17 H-1, H-3, H-8, H-10, H-12
null-valued pointer arguments, 2-13 using this manual, 1-4
returning C error values, 2-19 CodeBridge Builder, 1-2, 1-7, 2-37
using P-scaling, 2-32, E-5, E-18 error messages, A-1
using template file components, 2-1 exit codes, A-3
atribute lists, 2-2, D-1, E-1 using templatefiles, 2-1
attributes, 2-2 CodeBridge Library, 1-2, F-1. See also Library
using the CodeBridge Builder, 1-2, 1-7, 2-37, functions
A-3 calling directly, -1
working with a variable number of C error messages, A-3
parameters, 2-28 Flags parameter, specifying, F-3, 1-11, 1-13
numeric, 2-28 functions
string, 2-28 list of, F-2
working with arrays. See also Arrays overview, F-1
COBOL array references, 2-36 RtCall table, reference to, F-43
numeric, 2-33, E-6 Comments, 1-6, 2-1
string, 2-34, E-11 Compile Command, RM/COBOL
development process, overview options
building (compiling and linking) the non- specify object file pathname (O), F-51
COBOL subprogram library, 1-7 Configuration records
compiling the COBOL program, 1-8 RUN-OPTION, G-14, H-14
creating atemplatefile, 1-6, 2-1, 2-37. See convention global attribute, 2-5, D-2
also Template files Conventions and symbols, xiv. See also Special
example, 1-9. See also Examples Characters
invoking CodeBridge Builder program, 1-7, 2- Conversion, 2-6
37. See also CodeBridge Builder input, 2-9, 2-11, 2-13, 2-16, 2-23, 2-32
modifying or creatinga COBOL program, 1-7 output, 2-9, 2-11, 2-13, 2-16, 2-23, 2-30, 2-32, 2-
running the application, 1-8 36
selecting the C functions, 1-6 ConversionCleanup library function, F-41
dynamic link libraries (DLLs), 1-1, 1-11, 2-37, ConversionStartup library function, F-42
B-12, B-16, B-23, C-5, G-3, G-4, G-8,
G-13

X-4 Index

Converting
C floating-point parameters, 2-8
C integer parameters, 2-7
C numeric string parameters, 2-9
C string parameters, 2-10
structures and unions, B-14
COUNT special register, 2-36
COUNT-MAX special register, 2-36
COUNT-MIN special register, 2-36
customiz script, H-10

D

Data areas, COBOL, modifying, 2-29
Data declarations, C-3
Data descriptors, COBOL, 2-15
Datatypes, C, C-2
floating-point, 2-8, 2-33
integer, 2-7, 2-33
string, 2-9, 2-10, 2-34
Data types, COBOL
non-numeric, 2-10
numeric, 2-7
numeric edited, 2-7
Debugging an application, F-1
def filename extension, 1-7
Descriptor base attributes, 2-17, E-3, E-17. See also
Descriptor base modifier; Parameter attributes
address, E-17
arg_count, E-17
associating C parameters with COBOL
arguments, 2-23
initia_state, E-18
length, E-18
managing omitted arguments, 2-18
passing
COBOL descriptor data, 2-15
string length information, 2-16
the address of the COBOL data, 2-31
scale, E-18
using P-scaling, 2-33
windows_handle, E-20

Descriptor base modifier
silent, E-4
diagnostic global attribute, D-3, E-4, F-2
DiagnosticMode library function, F-43
Digit length, 2-28, 2-33, 2-35, E-6, E-7, E-14
for error base attributes, E-22
for general_string base attribute, 2-17
for numeric_string base attribute, 2-16
digits base attribute
alowed combinations (table), E-31
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-15
Direct (by value), 2-7, 2-8, 2-30
Direction attributes, 2-3, E-2. See also in direction
attribute; out direction attribute; Parameter
attributes
DISPLAY statement
CONTROL phrase
REPAINT-SCREEN keyword, H-19
dll filename extension, 1-11, B-12, B-16, B-23
DLLs. See Dynamic link libraries (DLLS)
Dynamic link libraries (DLLS), 1-1, 1-11, 2-37,
B-12, B-16, B-23, C-5, G-1, G-3, G-4,
G-8, G-13

E

effective_length base attribute
alowed combinations (table), E-31
converting
C numeric string parameters, 2-9
C string parameters, 2-11
defined, E-14
passing string length information, 2-17
EffectiveLength library function, F-44
ELF. See Executable and Linking Format (ELF)
object file
Ellipsis(...), use of, in variable number of C
parameters, 2-28, E-9, E-12
Embedded spaces, E-7
Enhancements to CodeBridge, xviii
Entry point table, 1-1--3

CodeBridge X-5

Entry points
for UNIX, H-18
specia for support modules, H-3, H-8, H-12
for Windows, G-8-G-10
specia for support modules, G-4, G-12
Environment variable,
RM_DYNAMIC_LIBRARY_TRACE, G-14,
H-14
err filename extension, 2-38
errno base attribute
alowed combinations (table), E-31
defined, E-21
returning C error values, 2-19
Error base attributes, 2-19, E-3, E-20. See also Error
base modifiers; Parameter attributes
errno, E-21
get_last_error, E-21
Error base modifiers. See also Error base attributes
dias, E-22
dias(name), E-4
assert_digits(min,max), E-22
assert_digits _left(min,max), E-22
assert_digits right, E-23
assert_length(min,max), E-23
assert_signed, E-23
assert_unsigned, E-23
no_size error, E-23
rounded, E-23
scaled(value), E-23
silent, E-4, E-23
Error message reporting
DiagnosticMode library function, F-43
GetCallerInfo library function, F-50
Error messages, A-1-A-7
control reporting of, diagnostic global attribute,
D-3
Examples
accessing COBOL pointer arguments, B-9
accommodating a variable number of parameters,
B-5
associating C parameters with COBOL
arguments, 2-24
calling astandard C library function, 1-9

X-6 Index

calling aWindows API function, B-2
calling C++ libraries from CodeBridge, B-20
converting buffered C data, B-18
packing and unpacking structures, B-14
using errno error base attribute, B-24
using get_last_error error base attribute, B-27
Executable and Linking Format (ELF) object file,
1-10, B-11, B-16, B-22, H-10
Exit codes, CodeBridge Builder, A-3
extern declaration, H-12

F

Figurative constant, NULL (NULLS), 2-13, E-8,
E-12
Filenames, conventions for, Xxiv
Flags parameter, specifying, F-4, 1-2
float base attribute
alowed combinations (table), E-31
and direction attributes, 2-3
associating the C function return value, 2-22
converting C floating-point parameters, 2-8
defined, E-5
passing null-valued pointer arguments, 2-14
working with a variable number of C parameters,
2-28
working with arrays, 2-33
Floating-point parameters, 2-8
FloatToCobol library function, F-46
Forward dlash (/), use of, in C compiler options, C-6
Function prototypes, 2-1, C-1, C-4. Seealso C
functions

G

genera_string base attribute
alowed combinations (table), E-32
and direction attributes, 2-3
and numeric edited dataitems, 2-7, 2-10
associating the C function return value, 2-22
converting
C numeric string parameters, 2-9
C string parameters, 2-10
defined, E-3, E-13

passing null-valued pointer arguments, 2-14

working with a variable number of C parameters,

2-29

working with arrays, string, 2-35
General StringToCobol library function, F-48
get_last_error base attribute

alowed combinations (table), E-32

defined, E-21

returning C error values, 2-19
GetCallerInfo library function, F-50
GIVING (RETURNING) phrase, CALL statement,

1-8, 2-17, E-2, G-5, H-5

Global attributes. See also Parameter attributes

banner, D-2

convention, 2-5, D-2

diagnostic, D-3, E-4, F-2

load_message, D-3

overview, D-1

replace _type, 2-5, D-4

use of, in global attribute lists, 2-2

H

h filename extension, C-1
Header files, 1-6
cbridge.h, F-4, G-10, I-2
defined, C-1
rme85cal.h, 2-38, E-18, G-4, G-6, G-10, H-3,
H-5,1-2
rmport.h, 2-38, G-4, H-3
rtarg.h, 2-38, G-4, H-3
rtcallbk.h, 2-38, H-5
standdef.h, 2-38, G-4, H-3
version.h, G-15, H-15
Hyphen (-), use of
in C compiler options, C-6
optional, RM/COBOL compilation and runtime
options, xv

in direction attribute, 2-3
alowed combinations (table), E-31
convertingto C
floating-point parameters, 2-8
integer parameters, 2-7
numeric string parameters, 2-9
string parameters, 2-11

defined, E-2
#include C preprocessor directives, 1-7, 2-38, A-1,
C-1

Include files. See Header files
Indirect (by reference), 2-7, 2-8, 2-11, 2-31
Initial entry flag, F-24
Initial state flag, G-6, H-5
initial_state base attribute
alowed combinations (table), E-32
associating an implied argument, 2-23
defined, E-18
passing information to a C function, 2-17
integer base attribute, E-10
alowed combinations (table), E-32
and direction attributes, 2-3
associating the C function return value, 2-22
converting C integer parameters, 2-7
defined, E-5
passing null-valued pointer arguments, 2-14
working with avariable number of C parameters,
2-28
working with arrays, 2-33
Integer parameters, 2-7
integer_only base modifier, defined, for integer
numeric only, E-10
IntegerToCobol library function, F-52
Italic, as a document convention, Xiv

K

K Runtime Command Option, RM/COBOL, D-2,
G-13, H-13
Key combinations, document convention for, xv

CodeBridge X-7

L

L Runtime Command Option, RM/COBOL, 1-8,
G-8, H-1
leading signs base modifiers
converting C, numeric string parameters, 2-10
defined, for numeric_string only, E-10
leading(value) base modifier
defined, E-12
leading_spaces base modifier
defined, E-12
Length
assert_length(min,max) base modifier, E-8, E-11,
E-23
BufferLength library function, F-16
EffectiveLength library function, F-44
length base attribute, E-18
numeric_string base attribute, E-6
passing
COBOL descriptor data, 2-15
pointer length, 2-12
string length information, 2-16
size(value) base modifier, E-10, E-13
string base attribute, E-11
string length base attributes, E-3
buffer_length, E-14
effective_length, E-14
length base attribute
alowed combinations (table), E-33
converting
C numeric string parameters, 2-9
C string parameters, 2-11
defined, E-18
managing omitted arguments, 2-18
passing string length information, 2-16
Library functions, F-1. See also CodeBridge Library
AssertDigits, F-6
AssertDigitsLeft, F-8
AssertDigitsRight, F-10
AssertLength, F-12
AssertSigned, F-14
AssertUnsigned, F-15
BufferLength, F-16
CobolArgCount, F-18

X-8 Index

Cobol DescriptorAddress, F-19
Cobol DescriptorDigits, F-20
Cobol DescriptorLength, F-21
Cobol DescriptorScale, F-22
CobolDescriptorType, F-23
Cobollnitial State, F-24
Cobol ToFloat, F-25
Cobol ToGenera String, F-27
Cobol Tolnteger, F-29
Cobol ToNumericString, F-31
Cobol ToPointerAddress, F-33
Cobol ToPointerBase, F-34
Cobol ToPointerL ength, F-35
Cobol ToPointerOffset, F-36
Cobol ToPointerSize, F-37
Cobol ToString, F-38
CobolWindowsHandle, F-40
ConversionCleanup, F-41
ConversionStartup, F-42
DiagnosticMode, F-43
EffectiveLength, F-44
FloatToCobol, F-46
General StringToCobol, F-48
GetCallerinfo, F-50
IntegerToCobol, F-52
list of, F-2
NumericStringToCobol, F-54
PointerBaseToCobol, F-56
PointerOffsetToCobol, F-57
PointerSizeToCobol, F-58
RtCall table, reference to, F-43
StringToCobol, F-59

Linking, 1-7, C-7

load_message global attribute, D-3

M

Macros, C-4
Makefile, 1-3
Messages
error, A-1, A-3
exit codes, CodeBridge Builder, A-3
Modifying COBOL data areas, 2-29

N

no_null_pointer base modifier
defined
for numeric, E-8
for string, E-12
passing null-valued pointer arguments, 2-14
no_size error base modifier
defined
for numeric, E-9
Non-COBOL subprograms
under UNIX
accessing, H-8
calling a CodeBridge non-COBOL
subprogram library, H-17
calling sequence, H-2
debugging, H-18
preparing C programs, H-10
restrictions to C subprograms performing
terminal 1/0, H-17
runtime functions for support modules, H-18
specia entry points, H-12
under Windows
calling a CodeBridge non-COBOL
subprogram library, G-18
calling sequence, G-3
debugging, G-17
methods of use, G-2
preparing, G-8
specia entry points, G-12
NULL (NULLS) figurative constant, 2-13, E-8, E-
12
Null-valued pointers, 2-7-2-11, 2-13
Numeric base attributes, E-3. See also Numeric base
modifiers; Parameter attributes
float, E-5
integer, E-5, E-10
numeric_string, E-6, E-10
working with arrays, 2-33
Numeric base modifiers, E-7. See also Numeric base
attributes; Parameter attributes
dias(name), E-4
assert_digits(min,max), E-7
assert_digits _left(min,max), E-8

assert_digits right, E-8

assert_length(min,max), E-8

assert_signed, E-8

assert_unsigned, E-8

integer_only, E-10

leading signs, E-10

no_null_pointer, E-8

no_size error, E-9

occurs(value), E-9

optional, E-9

repeat(value), E-9

rounded, E-9

scaled(value), E-10

silent, E-4

size(value), E-6, E-10

trailing signs, E-10

unsigned, E-10

value if_omitted(value), E-9
Numeric edited dataitems, 2-7, 2-10
Numeric string parameters, 2-9

passing COBOL numeric arguments, 2-7
numeric_string base attribute

alowed combinations (table), E-33

and direction attributes, 2-3

and numeric edited dataitems, 2-7, 2-10

associating the C function return value, 2-22

base modifiers, specific to, E-10

converting C numeric string parameters, 2-9

defined, E-3, E-6

passing null-valued pointer arguments, 2-14

working with a variable number of C parameters,

2-28

working with arrays, 2-35

NumericStringToCobol library function, F-54

CodeBridge X-9

O

occurs(value) base modifier
defined
for numeric, E-9
for string, E-12
for string length, E-15
working with arrays
numeric, 2-34
string, 2-35

Offset component, COBOL pointer argument, 2-6,

2-12, 2-32, E-16

Omitted arguments, 2-17, E-9, E-12, E-13, G-5, H-4

OMITTED keyword, USING phrase, CALL
statement, 2-17, G-5, H-4
Online services, xvi
optional base modifier
defined
for numeric, E-9
for string, E-12
managing omitted arguments, 2-18
Organization of this manual, xii, 1-4
out direction attribute, 2-3
alowed combinations (table), E-31
associating the C function return value, 2-22
converting from C
floating-point parameters, 2-8
integer parameters, 2-7
numeric string parameters, 2-9
string parameters, 2-11
defined, E-2
modifying COBOL data areas, 2-30

P

Packing and unpacking structures or unions,
example of, B-14
Parameter attributes. See also Global attributes
alowed combinations (table), E-31
categories
argument number, 2-3
arg_num(value), E-2
ret_val, E-2

X-10 Index

base, 2-3, E-3

descriptor, 2-15, 2-17, E-3, E-17
address, E-17
arg_count, E-17
initia_state, E-18
length, E-18
scae, E-18
windows_handle, E-20

error, 2-19, E-3
errno, E-21
get_last_error, E-21

genera_string, E-3, E-13

numeric, E-3
float, E-5
integer, E-5
numeric_string, E-3, E-6

pointer, E-3
pointer_address, E-15
pointer_base, E-16
pointer_length, E-15
pointer_offset, E-16
pointer_size, E-16

string, E-3
string, E-11

string length, E-3
buffer_length, E-14
effective_length, E-14

base modifiers, 2-3

common, for severa base attributes, E-4
dias(name), E-4
silent, E-4

for descriptor base attributes, E-20
silent, E-4

for error base attributes
dias, E-22
dias(name), E-4
assert_digits(min,max), E-22
assert_digits _left(min,max), E-22
assert_digits _right(min,max), E-23
assert_length(min,max), E-23
assert_signed, E-23
assert_unsigned, E-23
no_size error, E-23

rounded, E-23
scaled(value), E-23
silent, E-4, E-23

for numeric base attributes
dias(name), E-4
assert_digits(min,max), E-7

trailing_spaces, E-13
value if_omitted(value), E-13
direction, 2-3
in, E-2
out, E-2
list of, aphabetical (table), E-24

assert_digits_left(min,max), E-8 use of, in parameter attribute lists, 2-2
assert_digits_right(min,max), E-8 Parameters, C

assert_length(min,max), E-8

assert_signed, E-8
assert_unsigned, E-8
integer_only, E-10
leading signs, E-10
no_null_pointer, E-8
no_size error, E-9
occurs(value), E-9
optional, E-9
repeat(value), E-9
rounded, E-9
scaled(value), E-10
silent, E-4
size(value), E-10
trailing signs, E-10
unsigned, E-10

value if_omitted(value), E-9

for pointer base attributes
pointer_max_size, E-16
pointer_reset offset, E-16

for string length base attributes

occurs(value), E-15
silent, E-4

for the string base attribute
dias(name), E-4

assert_length(min,max), E-11

leading(value), E-12
leading_spaces, E-12
no_null_pointer, E-12
occurs(value), E-12
optional, E-12
repeat(value), E-12
silent, E-4
size(value), E-13
trailing(value), E-13

associating with COBOL arguments, E-2
automatic, 2-22
examples of, 2-24
explicit, 2-22
defined, 1-6
working with a variable number of, 2-28, B-5
Pointer arguments, accessing
example, B-9
Pointer base attributes, 2-12, E-3. See also
Parameter attributes; Pointer base modifiers
passing
and modifying pointer components, 2-13
null-valued pointer arguments, 2-14
pointer address and pointer length, 2-12
the address of COBOL data, 2-31
pointer_address, 2-12, 2-14, 2-31, E-15
pointer_base, 2-13, 2-14, 2-32, E-16
pointer_length, 2-12, 2-31, E-15
pointer_offset, 2-13, 2-15, 2-32, E-16
pointer_size, 2-13, 2-15, 2-32, E-16
Pointer base modifiers
dias(name), E-4

passing and modifying pointer components, 2-13

pointer_max_size, 2-13, E-16
pointer_reset_offset, 2-13, E-16
silent, E-4

Pointer data types
passing COBOL pointer arguments, 2-12
pointer base attributes, E-3, E-15

CodeBridge X-11

pointer_address base attribute
alowed combinations (table), E-33
defined, E-15
passing
null-valued pointer arguments, 2-14
pointer address and pointer length, 2-12
the address of the COBOL data, 2-31
pointer_base base attribute
alowed combinations (table), E-33
and direction attributes, 2-3
associating the C function return value, 2-22
defined, E-16
passing
and modifying pointer components, 2-13
null-valued pointer arguments, 2-14
the address of the COBOL data, 2-32
pointer_length base attribute
alowed combinations (table), E-33
defined, E-15
passing pointer address and pointer length, 2-12
passing the address of the COBOL data, 2-31
pointer_max_size base modifier
defined, E-16
passing and modifying pointer components, 2-13
pointer_offset base attribute
alowed combinations (table), E-33
and direction attributes, 2-3
associating the C function return value, 2-22
defined, E-16
passing
and modifying pointer components, 2-13
null-valued pointer arguments, 2-15
the address of the COBOL data, 2-32
pointer_reset_offset base modifier
defined, E-16
passing and modifying pointer components, 2-13
pointer_size base attribute
alowed combinations (table), E-33
and direction attributes, 2-3
associating the C function return value, 2-22
defined, E-16

X-12 Index

passing
and modifying pointer components, 2-13
null-valued pointer arguments, 2-15
the address of the COBOL data, 2-32
PointerBaseToCoboal library function, F-56
PointerOffsetToCobal library function, F-57
Pointers
COBOL, 2-12
null-valued, 2-7-2-11, 2-13
pointer base attributes, 2-12, E-3, E-15
PointerSizeToCoboal library function, F-58
Pound sign (#), use of, in global attribute lists, 2-2
P-scaling, 2-32, E-5, E-18

R

Registration, xvi
Related publications, xiv
REPAINT-SCREEN keyword, CONTROL phrase,
ACCEPT and DISPLAY statements, H-19
repeat(value) base modifier
defined
for numeric, E-9
for string, E-12
working with a variable number of C parameters,
2-28
replace_type global attribute, 2-5, D-4
ret_val argument number attribute
alowed combinations (table), E-31
associating C parameters with COBOL
arguments, 2-4, 2-22
defined, E-2
RETURNING phrase (CALL statement). See
GIVING (RETURNING) phrase, CALL
Statement
RM/COBOL
development system, 1-2, 2-37
runtime, CodeBridge Library functions, 1-2, F-1
RM_AddOnBanner entry point, G-13, H-13
RM_AddOnCancelNonCOBOL Program entry
point, G-13, H-13
RM_AddOnlInit entry point, G-14, H-14
RM_AddOnL oadM essage entry point, G-14, H-14
RM_AddOnTerminate entry point, G-15, H-15

RM_AddOnVersionCheck entry point, G-15, H-15
RM_DYNAMIC_LIBRARY_TRACE environment
variable, G-14, H-14
RM_EntryPoints entry point, G-4, G-12, G-16, H-3,
H-12, H-16
RM_EnumEntryPoints entry point, G-16, H-16
rmc85cal.h header file, 2-38, E-18, G-4, G-6, G-10,
H-5,1-2
rmport.h header file, 2-38, G-4, H-3
rounded base modifier
defined, for numeric, E-9
used with integer base attribute, E-5
using P-scaling, 2-32
Rounding, 2-32, E-5, E-9
rtarg.h header file, 2-38, G-4, H-3
RtCall table, reference to, F-43
rtcallbk.h header file, 2-38, H-5
runcobol (Runtime Command), RM/COBOL, 1-8,
D-2, D-3, G-8, G-13, G-14, H-1, H-13, H-14
RUN-OPTION configuration record
V keyword, G-14, H-14
Runtime Command, RM/COBOL
options
banner and STOP RUN message suppression
(K), D-2, G-13, H-13
list support modules loaded by the runtime
(V), D-3, G-14, H-14
object or non-COBOL program libraries (L),
1-8, G-8, H-1

S

scale base attribute
alowed combinations (table), E-33
defined, E-18
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-16
using P-scaling, 2-33
scaled(value) base modifier, defined, for integer
numeric only, 2-8, E-5, E-10, E-23
Shared objects, 1-1, 1-3, 1-11, H-1, H-10, H-12. See
also Support modules
Signs, in numeric strings. See leading signs base
modifiers; trailing signs base modifiers

silent base modifier
defined, E-4
for descriptor base attributes, E-20
for numeric base attributes, E-9, E-23
for pointer base attributes, E-16
for string length base attributes, E-15
for the string base attribute, E-12
using with diagnostic global attribute, D-3
Size component, COBOL pointer argument, 2-6,
2-12, 2-32, E-15, E-16
size(value) base modifier
defined
for numeric_string only, E-6, E-10
for string, E-11, E-13
passing string length information, 2-17
working with a variable number of C parameters,
2-29
so filename extension, 1-8, 1-11, B-12, B-16, H-10
Source modules
creating from a C object (no source), H-12
creating from a C source, H-10
Special registers
COUNT, 2-36
COUNT-MAX, 2-36
COUNT-MIN, 2-36
standdef.h header file, 2-38, G-4, H-3
string base attribute. See also Parameter attributes;
String base modifiers
alowed combinations (table), E-34
and direction attributes, 2-3
and numeric edited dataitems, 2-7, 2-10
associating the C function return value, 2-22
converting C string parameters, 2-10
defined, E-11
passing null-valued pointer arguments, 2-14
working with a variable number of C parameters,
2-29
working with arrays, 2-34
String base attribute, E-3
String base modifiers. See also string base attribute
dias(name), E-4
assert_length(min,max), E-11
leading spaces, E-12

CodeBridge X-13

leading(value), E-12
no_null_pointer, E-12
occurs(value), E-12
optional, E-12
repeat(value), E-12
silent, E-4
size(value), E-11, E-13
trailing spaces, E-13
trailing(value), E-13
value if_omitted(value), E-13
String length base attributes, 2-16, E-3. See also
Parameter attributes; String length base
modifiers
buffer_length, E-14
effective_length, E-14
passing string length information, 2-16
String length base modifiers. See also String length
base attributes
occurs(value), E-15
silent, E-4
String parameters, 2-10
and COBOL groups, 2-12
StringToCaobol library function, F-59
Structures or unions, as parameters, 2-6
example of packing and unpacking, B-14
Subprogram loading, G-3, H-3
Support modules, 1-1, 1-3, 1-11, G-1, H-1
specia entry points, G-12, H-12
Support services, technical, xvi
Symbols and conventions, xiv. See also Special
Characters

T

Technical support services, xvi
Template files
associating C parameters with COBOL
arguments, 2-21
atribute lists. See also Global attributes;
Parameter attributes
global, 2-2, 2-5, D-1
parameter, 2-2, E-1, E-24, E-31
samples of, 2-4, 2-5
attributes, defined, 2-2

X-14 Index

comments, 1-6, 2-1
creating, 1-6, 2-1, 2-37
examples of, in, 1-9
accessing COBOL pointer arguments, B-9
accommodating a variable number of
parameters, B-5
calling aWindows API function, B-2
converting buffered C data, B-18
packing and unpacking structures or unions,
B-14
resolving external differences between C and
C++ external names, B-20
using errno error base attribute, B-24
using get_last_error error base attribute, B-27
function prototypes, 2-1
generating multiple, C-8
tpl filename extension, 1-7
trailing signs base modifiers
converting C, numeric string parameters, 2-10
defined, for numeric_string only, E-10
trailing spaces base modifier, defined, for string,
E-13
trailing(value) base modifier, defined, for string,
E-13
type base attribute
alowed combinations (table), E-34
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-16
Type definitions (typedef), 1-6, B-2, C-3, D-1, G-4,
G-7,H-3
typedef statements, 1-6, B-2, C-3, D-1, G-4,
G-7,H-3

U

Unions or structures, as parameters, 2-6
example of, B-14
unsigned base modifier, defined, for integer numeric
only, E-10
USING phrase, CALL statement, 1-8, E-2
OMITTED keyword, 2-17, G-5, H-4
Using this manual, 1-4

\Y
V keyword

RUN-OPTION configuration record, G-14, H-14

V Runtime Command Option, D-3

V Runtime Command Option, RM/COBOL, G-14,

H-14
value_if_omitted(value) base modifier
defined
for numeric, E-9
for string, E-13
managing omitted arguments, 2-18
version.h header file, G-15, H-15

W

Web site, xvi

Windows
9x class, xv
NT class, xv

windows_handle base attribute
alowed combinations (table), E-34
associating an implied argument, 2-23
defined, E-20
passing information to a C function, 2-17

CodeBridge

X-15

X-16 Index

	CodeBridge (Calling Non-COBOL Subprograms) v8.0
	Copyright
	Table of Contents
	Preface
	Welcome to CodeBridge Version 8.0
	What's New
	Who Should Use CodeBridge
	Organization of Information
	Related Publications
	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Enhancements
	Version 7.5
	Version 7.1
	Version 7.0

	Chapter 1: Introduction
	What is CodeBridge?
	CodeBridge Components

	Benefits of Using CodeBridge
	Requirements
	Using this Manual
	Developers Who are New to C Programming
	Developers Who are Evaluating CodeBridge
	Developers Who Wish to Use Existing C Libraries or Write New Non-COBOL Subprograms
	Developers Who Have Written Non-COBOL Subprograms for Previous Versions of RM/COBOL
	Developers Who Need Assistance in Testing and Debugging

	Typical Development Process Overview
	Typical Development Process Example
	Example 1: Calling a Standard C Library Function

	Chapter 2: Concepts
	Using Template File Components
	Attributes
	Attribute Lists
	Parameter Attribute Lists
	Sample Template File Using Parameter Attribute Lists

	Global Attribute Lists
	Sample Template File Using Global Attribute Lists

	Passing Information to a C Function
	Passing COBOL Arguments
	Passing COBOL Numeric Arguments
	Numeric Arguments with C Integer Parameters
	Numeric Arguments with C Floating-Point Parameters
	Numeric Arguments with C Numeric String Parameters

	Passing COBOL Non-Numeric Arguments
	Non-Numeric Arguments with C String Parameters
	Groups with C String Parameters

	Passing COBOL Pointer Arguments
	Method 1: Passing Pointer Address and Pointer Length
	Method 2: Passing and Modifying Pointer Components

	Passing Null-Valued Pointer Arguments

	Passing COBOL Argument Properties
	Passing COBOL Descriptor Data
	Passing String Length Information

	Passing Miscellaneous Information
	Managing Omitted Arguments

	Returning C Error Values
	Consistent Return Values
	Specifying Both errno and get_last_error
	Function Return Value (Status) Versus Error Values

	Associating C Parameters with COBOL Arguments
	Explicit Association
	Automatic Association
	Automatic Association of the C Function Return Value with a COBOL Argument
	Automatic Association of C Parameters with COBOL Arguments
	Automatic Association with an Implied Argument
	Automatic Association with the Next Argument
	Automatic Association with the Current Argument

	Examples of Associating Parameters with Arguments
	Example 1: Automatic Versus Explicit Association
	Example 1a: Automatic Association
	Example 1b: Optional Explicit Association
	Example 1c: Required Explicit Association

	Example 2: Multiple Attribute Lists for a C Parameter
	Example 2a: Associating a Parameter with Multiple Arguments
	Example 2b: In Direction Attribute for Multiple Attribute Lists
	Example 2c: Compatibility between Multiple Attribute Lists

	Example 3: No Attribute List for a C Parameter

	Working with a Variable Number of C Parameters
	Repeating C Numeric Parameters
	Repeating C String Parameters
	numeric_string
	general_string
	string

	Modifying COBOL Data Areas
	Using the out Direction Attribute
	Passing the Address of COBOL Data
	Passing Buffer Addresses

	Using P-Scaling
	Working with Arrays
	Numeric Arrays
	String Arrays
	COBOL Array References

	CodeBridge Builder
	Using the CodeBridge Builder

	Appendix A: CodeBridge Errors
	CodeBridge Builder Error Messages
	CodeBridge Builder Exit Codes
	CodeBridge Library Error Messages

	Appendix B: CodeBridge Examples
	Example 1: Calling a Standard C Library Function
	Example 2: Calling a Windows API Function
	Example 3: Accommodating a Variable Number of Parameters
	Example 4: Accessing COBOL Pointer Arguments
	Example 5: Packing and Unpacking Structures
	Example 6: Converting Buffered C Data
	Example 7: Calling C++ Libraries from CodeBridge
	Example 8: Using errno
	Example 9: Using get_last_error

	Appendix C: Useful C Information
	Understanding C Language Concepts
	Case Sensitivity
	Data Types
	Data Declarations
	Type Definitions and Macros
	Calling Conventions
	Function Prototypes

	Compiling and Linking C Functions
	Compiling on Windows
	Compiling on UNIX
	Linking on Windows
	Linking on UNIX
	Multiple Template Files

	Appendix D: Global Attributes
	Overview
	banner Attribute
	convention Attribute
	diagnostic Attribute
	load_message Attribute
	replace_type Attribute

	Appendix E: Parameter Attributes
	Overview
	Argument Number Attributes
	Direction Attributes
	Base and Base Modifier Attributes
	Base Modifiers Common to Base Attributes
	Numeric Base Attributes
	Base Modifiers that Apply to Numeric Base Attributes

	string Base Attribute
	Base Modifiers that Apply to the String Base Attribute

	general_string Base Attribute
	String Length Base Attributes
	Base Modifiers that Apply to String Length Base Attributes

	Pointer Base Attributes
	Base Modifiers that Apply to Pointer Base Attributes

	Descriptor Base Attributes
	Base Modifier that Applies to Descriptor Base Attributes

	Error Base Attributes
	Base Modifiers that Apply to Error Base Attributes

	Parameter Attributes Summary
	Parameter Attribute Combinations

	Appendix F: CodeBridge Library Functions
	Overview
	Specifying the Flags Parameter
	AssertDigits
	AssertDigitsLeft
	AssertDigitsRight
	AssertLength
	AssertSigned
	AssertUnsigned
	BufferLength
	CobolArgCount
	CobolDescriptorAddress
	CobolDescriptorDigits
	CobolDescriptorLength
	CobolDescriptorScale
	CobolDescriptorType
	CobolInitialState
	CobolToFloat
	CobolToGeneralString
	CobolToInteger
	CobolToNumericString
	CobolToPointerAddress
	CobolToPointerBase
	CobolToPointerLength
	CobolToPointerOffset
	CobolToPointerSize
	CobolToString
	CobolWindowsHandle
	ConversionCleanup
	ConversionStartup
	DiagnosticMode
	EffectiveLength
	FloatToCobol
	GeneralStringToCobol
	GetCallerInfo
	IntegerToCobol
	NumericStringToCobol
	PointerBaseToCobol
	PointerOffsetToCobol
	PointerSizeToCobol
	StringToCobol

	Appendix G: Windows Non-COBOL Subprogram Internals
	C Subprograms
	Methods of Using Non-COBOL Subprograms
	Calling C Subprograms from COBOL
	COBOL CALL Statement
	C Subprogram Name Table Structure
	Parameters Passed to the C Subprogram
	COBOL Argument Entry Structure for C

	Preparing C Subprograms
	Special Entry Points for Support Modules
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Debugging C Subprograms
	Calling a CodeBridge Subprogram Library

	Appendix H: UNIX Non-COBOL Subprogram Internals
	C Subprograms
	Calling C Subprograms from COBOL
	COBOL CALL Statement
	C Subprogram Name Table Structure
	Parameters Passed to the C Subprogram
	COBOL Argument Entry Structure for C

	Accessing C Subprograms
	Preparing C Subprograms
	Creating a Support Module from a C Source
	Creating a Support Module from a C Object (No Source)

	Special Entry Points for Support Modules
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Calling a CodeBridge Subprogram Library
	C Subprograms Performing Terminal I/O
	Debugging C Subprograms
	C Subprogram Example
	Runtime Functions for Support Modules

	Appendix I: Calling the CodeBridge Library Directly
	Including cbridge.h
	Declaring the C Function Return Value and Parameters
	Specifying the COBOL Argument Number
	Declaring C Data Items Used in the Conversion Process
	Numeric Conversions
	String Conversions
	Address Conversions
	Pointer Numeric Component Conversions
	Other Conversions
	Trivial Conversions

	Initializing and Terminating the Conversion Process
	Initialization
	Termination

	Converting COBOL Arguments to C Data Items
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Converting C Data Items to COBOL Arguments
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Validating Properties of COBOL Arguments
	Example

	Index

