

Liant Software Corporation

RM/COBOL® to
RM/COBOL-85®

Conversion Guide

Copyright  1989 – 2003. Liant Software Corporation.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form
or by any means, electronic, mechanical, photocopied, recorded, or otherwise, without prior written
permission of Liant Software Corporation.

The information in this document is subject to change without prior notice. Liant Software
Corporation shall not be responsible for any damage (including consequential) caused by any errors
that may appear in this document.

Release Revision History: Part # 300001

First Release September 1989
Revision 1 July 1992
Addendum May 1994
Revision 2 November 2003

Liant Software Corporation
8911 N. Capital of Texas Highway

Austin, TX 78759
U.S.A.

Phone (512) 343-1010
 (800) 762-6265
Fax (512) 343-9487
Web site http://www.liant.com

Liant and the Liant logotype, RM, RM/COBOL, RM/COBOL-74, RM/COBOL-8X, and RM/COBOL-85 are
registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, and Windows are trademarks or registered trademarks of Microsoft Corporation in
the USA and other countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Ltd.

http://www.liant.com

 Contents • i

Contents

Why Convert to RM/COBOL-85? ..1

Compilation Differences ...5
Compilation Option Defaults ...5
Reserved Words ...6
Computational Data Items ...9

COMP Data Items..9
COMP-1 Data Items ..10
COMP-3 Data Items ..11
COMP-6 Data Items ..13

INDEX Data Items...13
SYNCHRONIZED Clause...14
Implicit EXIT PROGRAM ..15
Incorrect Use of Index-Names ...15
Null Literals ...16
Generated END PROGRAM ...16
SELECT OPTIONAL Phrase ..17
Compilation Error Checking ..17
Alphabetic Data Items*..18

Operational Differences ..19
BLOCK CONTAINS Clause ...19
RECORD CONTAINS Clause ..19
File Formats ...20
File Access Names ...20
Record Lock Detection ..21
OPEN OUTPUT Statement..21
ACCEPT Statement ...21

ACCEPT and DISPLAY with Default Positioning ...23
An ACCEPT that Extends Beyond the Screen Line Length......................................23
ACCEPT of a Numeric Without the CONVERT Phrase...24

Interactive Debugger and Error Messages ...24
C Language Calling Sequence ...24
CALL . . . ON OVERFLOW Condition ..25
Line-Sequential File Blank Stripping...25
Line-Sequential File Blank Padding ..26
Undefined Arithmetic Operations ..26

ii • Conversion Guide

CLOSE . . . WITH NO REWIND Statement ...27
Variable-Length Groups as Destinations ...27
CALL . . . USING Statement ...28
Runtime Error Checking ..28
ALPHABETIC Class Condition* ..29
PERFORM . . . VARYING Augmentation/Set Order*..29
INSPECT, STRING and UNSTRING Subscripting Evaluation* ..30
Input Redirection with the STOP Literal Statement...31
I-O Status Values* ...31

Conversion Utilities ...33
Indexed File Conversion Utilities (rmifca and rmifcb) ..34

Indexed File Naming Conventions ..34
Using the Utility...34

Relative File Conversion Utility: Version 1.5 to RM/COBOL (rmcrl1).................................36
Using the Utility...36

Relative File Conversion Utility: Version 2 to RM/COBOL (rmcrl2)....................................37
Using the Utility...37

Sequential File Conversion Utility (rmcseq)..38
Using the Utility...38

List of Tables

Table 1: Conversion Effort..2
Table 2: Newly Reserved Words...7

 Why Convert to RM/COBOL-85? • 1

Why Convert to RM/COBOL-85?

It has been almost twenty years since the American National Standard
COBOL committee published the ANSI COBOL 1985 standard. It
becomes increasingly more important that COBOL applications
developers who want to remain competitive make the move from
programs conforming to the 1974 standard (known as RM/COBOL-74,
but referred to as RM/COBOL in this document) to programs conforming
to the 1985 standard (known as RM/COBOL, but referred to as
RM/COBOL-85 in this document).
Why then have so many developers not made the move?
For one thing, conversion can be painful; such efforts often become
nothing more than an experience of encountering one unpleasant surprise
after another. For another, there are still some people who do not know
the advantages of the new standard. And still others are not convinced
that the new standards provide substantial benefits.
What we have done in this conversion guide is set down everything you
need to know to move your RM/COBOL programs over to RM/COBOL-
85. And not just RM/COBOL programs, but any program compiled on
an RM/COBOL “look-alike”, or with an RM/COBOL compatibility
switch.
Many of the incompatibilities created by the change in standard are
resolved by RM/COBOL-85 through the system design or through a set
of compiler options. You will notice in Table 1: Conversion Effort, that
in many cases, differences in the standard create no compatibility
problems at all. In fact, less than one-third of these differences require
source modification.
RM/COBOL-85 provides the full power of the ANSI COBOL 1985
language to the developer. By using RM/COBOL-85, you can reduce
development time in half because RM/COBOL-85 code compiles nearly
twice as fast as previous versions of RM/COBOL and produces
extremely compact object code. Also, since no linking is required, you
can complete the application much sooner and spend your time creating
new application functionality.
When used in conjunction with the power and flexibility of the
extensive RM/COBOL product line, RM/COBOL-85 offers the most
comprehensive COBOL development and deployment environment in
the world today.

2 • Conversion Guide

Table 1: Conversion Effort

Topic

No Source
Conversion
Required

Source
Conversion
Suggested

Source
Conversion May
Be Required

Compilation Option Defaults !

Reserved Words !

COMP Data Items !

COMP-1 Data Items !

COMP-3 Data Items !

COMP-6 Data Items !

INDEX Data Items !

SYNCHRONIZED Clause !

Implicit EXIT PROGRAM !

Incorrect Use of Index-Names !

Null Literals !

Generated END PROGRAM !

SELECT OPTIONAL Phrase !

Compilation Error Checking !

Alphabetic Data Items* !

BLOCK CONTAINS Clause !

RECORD CONTAINS Clause !

File Formats !

File Access Names !

Record Lock Detection !

OPEN OUTPUT Statement !

ACCEPT Statement !

ACCEPT and DISPLAY with
Default Positioning !

An ACCEPT that Extends Beyond
the Screen Line Length !

 Why Convert to RM/COBOL-85? • 3

Table 1: Conversion Effort (Cont.)

Topic

No Source
Conversion
Required

Source
Conversion
Suggested

Source
Conversion May
Be Required

ACCEPT of a Numeric Without the
CONVERT Phrase !

Interactive Debugger and Error
Messages !

C Language Calling Sequence !

CALL . . . ON OVERFLOW
Condition !

Line-Sequential File Blank
Stripping !

Line-Sequential File Blank Padding !

Undefined Arithmetic Operations !

CLOSE . . . WITH NO REWIND
Statement !

Variable-Length Groups as
Destinations !

CALL . . . USING Statement !

Runtime Error Checking !

ALPHABETIC Class Condition* !

PERFORM . . . VARYING
Augmentation/Set Order* !

INSPECT, STRING and UNSTRING
Subscripting Evaluation* !

I-O Status Values* !

Items marked with an asterisk (*) are changes to both RM/COBOL and RM/COBOL-8X 1.n.

4 • Conversion Guide

 Compilation Differences • 5

Compilation Differences

There are some areas where RM/COBOL-85 programs and RM/COBOL
programs compile differently. Note that in this section, RM/COBOL
refers to the system conforming to the 1974 standard and that
RM/COBOL-85 refers to the system conforming to the 1985 standard.
Items marked with an asterisk (*) are changes to both RM/COBOL and
RM/COBOL-8X 1.n. In most of these cases, the -7 Compile Command
Option will make these items compatible with RM/COBOL-85.
Note UNIX users specify options as a dash followed by a lowercase
letter. DOS users specify options as either an uppercase or lowercase
letter with no preceding dash. In order to simplify the presentation, this
guide uses only the UNIX style of specifying options.

Compilation Option Defaults
Difference

In the RM/COBOL compiler, the -a Option controls two features:
1. The format of sequential files whose source declaration

specifies neither LINE nor BINARY. Such files are treated as
binary sequential when the -a Option is selected, and as line
sequential when the -a Option is not selected.

2. The representation of signs for signed numeric display items for
which there is no explicit SIGN specification. Signed numeric
display items whose declaration does not include a SIGN clause
and is not subordinate to a SIGN clause are treated as
TRAILING combined when the -a Option is selected, and as
TRAILING separate when the -a Option is not selected.

In the RM/COBOL-85 environment, two compiler options have been
provided to control these two features independently:

1. Sequential files whose declaration does not specify either LINE
or BINARY are treated as line sequential when the -v Option is
selected, and as binary sequential (unless otherwise configured)
when the -v Option is not selected.

2. Signed numeric display items whose declaration does not
include a SIGN clause and is not subordinate to a SIGN clause
are treated as TRAILING separate when the -s Option is

6 • Conversion Guide

selected, and as TRAILING combined when the -s Option is not
selected.

Resolution

Programs compiled with the RM/COBOL -a Option should not need
special treatment, since the RM/COBOL-85 -s and -v Compile Command
Options default to the equivalent of the RM/COBOL -a Option.
Other programs may need to be compiled using the RM/COBOL-85 -s
Option, -v Option or both, or the source programs may be edited to
specify the exact sequential file format and sign representation desired.
Take care to ensure you do not inadvertently mix sign representations for
numeric data items passed as parameters between calling and called
programs.

Reserved Words
Difference

The RM/COBOL-85 compiler reserves words not reserved in
RM/COBOL. Table 2: Newly Reserved Words, identifies words
reserved in RM/COBOL-85 that were not reserved in RM/COBOL.

Resolution

Programs that use words reserved in RM/COBOL-85 that were not
reserved in RM/COBOL require some special treatment in order for them
to compile correctly in the RM/COBOL-85 environment. There are
several methods to resolve this incompatibility:

1. Edit the source program to alter the spelling of the user-defined
words in conflict with the new reserved word list

2. Specify the -2 Compile Command Option; this removes the new
reserved words and the language features associated with them.

3. Use the RM/COBOL-85 DERESERVE configuration keyword,
which allows you to remove individual words from the reserved
word list.

 Compilation Differences • 7

Table 2: Newly Reserved Words
ADDRESS DATA-POINTER
ALPHABET DATE-AND-TIME
ALPHABETIC-LOWER DATE-COMPILED
ALPHABETIC-UPPER DAY-AND-TIME
ALPHANUMERIC DAY-OF-WEEK
ALPHANUMERIC-EDITED DE
ALSO DEBUG-CONTENTS
ANY DEBUG-ITEM
ASCENDING DEBUG-LINE
AUTO DEBUG-NAME
AUTOMATIC DEBUG-SUB-1
BACKGROUND DEBUG-SUB-2
BACKGROUND-COLOR DEBUG-SUB-3
BELL DEBUGGING
BOTTOM DEFAULT
CD DELIMITED
CENTURY-DATE DELIMITER
CENTURY-DAY DESCENDING
CF DESTINATION
CH DETAIL
CLASS DISABLE
CLOCK-UNITS EGI
COBOL EM1
CODE ENABLE
COL END-ACCEPT
COLUMN END-ADD
COMMON END-CALL
COMMUNICATION END-COMPUTE
COMP-4 END-DELETE
COMP-5 END-DIVIDE
COMPUTATIONAL-4 END-EVALUATE
COMPUTATIONAL-5 END-IF
CONTENT END-MULTIPLY
CONTINUE END-OF-PAGE
CONTROL END-PERFORM
CONTROLS END-READ
CONVERTING END-RECEIVE
COUNT END-RETURN
COUNT-MAX END-REWRITE
COUNT-MIN END-SEARCH
CURSOR END-START

8 • Conversion Guide

Table 2: Newly Reserved Words (Cont.)
END-STRING MULTIPLE
END-SUBTRACT NEGATIVE
END-UNSTRING NULL
END-WRITE NULLS
ENTER NUMBER
EOP NUMERIC-EDITED
ESCAPE OPTIONAL
ES1 ORDER
EVALUATE OTHER
EVERY PACKED-DECIMAL
EXCLUSIVE PADDING
EXTERNAL PAGE-COUNTER
FALSE PF
FINAL PH
FIXED PLUS
FOOTING POINTER
FOREGROUND POSITIVE
FOREGROUND-COLOR PREVIOUS
FULL PRINTING
FUNCTION PROCEDURES
GENERATE PURGE
GLOBAL QUEUE
GOBACK RD
GROUP RECEIVE
HEADING RECORDING
HIGHLIGHT REFERENCE
ID REFERENCES
INDICATE RELEASE
INITIALIZE REMARKS
INITIATE REMOVAL
LAST REPLACE
LENGTH REPORT
LIKE REPORTING
LIMIT REPORTS
LIMITS REQUIRED
LINAGE RERUN
LINAGE-COUNTER RESET
LINE-COUNTER RETURN
LOWLIGHT RETURN-CODE
MANUAL RETURNING
MERGE REVERSED
MESSAGE REVERSE-VIDEO

 Compilation Differences • 9

Table 2: Newly Reserved Words (Cont.)
RF SUM
RH SUPPRESS
SCREEN SYMBOLIC
SD TABLE
SEARCH TAPE
SECURE TERMINAL
SEGMENT TERMINATE
SEGMENT-LIMIT TEST
SEND TEXT
SORT THEN
SORT-MERGE TOP
SOURCE TRUE
STANDARD-2 TYPE
STRING UNDERLINE
SUB-QUEUE-l UNSTRING
SUB-QUEUE-2 UPON
SUB-QUEUE-3 VARIABLE

Computational Data Items
There are differences and incompatibilities between RM/COBOL-85 and
RM/COBOL when COMP, COMP-1, COMP-3 and COMP-6 data items
are present.

COMP Data Items

Difference

The RM/COBOL-85 compiler uses the hexadecimal value 0C in the sign
data character position to indicate a nonnegative value, and the
hexadecimal value 0D to indicate a negative value.
The RM/COBOL compiler uses the hexadecimal value 0B in the sign
data character position to indicate a nonnegative value, and the
hexadecimal value 0D to indicate a negative value.
This difference causes a problem when comparing for equality or
inequality between a data item with an RM/COBOL nonnegative sign
and a literal or a data item with an RM/COBOL-85 nonnegative sign.
This difference also causes a problem when comparing two groups, one
containing data items with the RM/COBOL nonnegative sign and the
other containing data items with the RM/COBOL-85 nonnegative sign.

Resolution

Data items using the RM/COBOL sign convention only occur in existing
data files written under RM/COBOL. To fix the sign of positive COMP

10 • Conversion Guide

data values, copy the file performing an ADD 0 TO statement on every
signed COMP field of every record.
When the -2 Option is present in the RM/COBOL-85 Compile Command
or when Suppress-Numeric-Optimizations=YES is specified on the
COMPILE-OPTIONS configuration record, the comparison for equality
or inequality between two nonnegative COMP data items or a
nonnegative COMP data item and a nonnegative literal will be based on
the digit positions only. Identical values with differing representations of
a positive sign will compare equal. The RM/COBOL files should still be
converted as described above because of problems that can arise from
group comparisons and other nonnumeric use of the data.
The RM/COBOL-85 compiler provides a compiler configuration option
that allows COMPUTATIONAL data types to use RM/COBOL data files
containing these data types. For more information, refer to the
description of the COMPUTATIONAL-VERSION keyword of the
COMPILER-OPTIONS configuration record in the Configuration
chapter of the RM/COBOL-85 user’s guide.

COMP-1 Data Items

Difference

In RM/COBOL-85, the treatment of COMP-1 data items is the same as
that of BINARY or COMP-4 data items. The PICTURE character-string
is used to determine the number of decimal digits that may be
represented in the value of the data item as required for ANSI COBOL
1985. This affects three separate items:

1. The detection of the size error condition is based on whether a
nonzero high order decimal digit must be truncated from the
result.

2. In a MOVE statement with a COMP-1 data item as a receiving
operand, high order decimal digits are truncated from the
sending operand, if necessary, as defined by the PICTURE
character-string of the COMP-1 data item.
Note RM/COBOL-8X failed to do this when the sending
operand is also binary and has a different PICTURE character-
string. This has been corrected in RM/COBOL-85.

3. A literal in a VALUE clause associated with a COMP-1 data
item will cause an error diagnostic if its value requires
truncation of nonzero decimal digits in order to match it to the
PICTURE character-string.

In RM/COBOL, the PICTURE character-string for a COMP-1 data item
is ignored except in the case of a MOVE statement where the COMP-1
data item is a sending operand and the receiving operand is
alphanumeric. The detection of the size error condition and a VALUE
literal error is based on the maximum (32767) and minimum (-32768)
signed binary values representable in a two’s complement 16-bit word.

 Compilation Differences • 11

In a MOVE statement, when the value of the sending operand is 32767 or
greater, the COMP-1 data item receives the value 32767; when the value
of the sending operand is -32768 or less, the COMP-1 data item receives
the value -32768.

Resolution

The -2 Compile Command Option will cause the RM/COBOL-85
compiler and runtime system to ignore the PICTURE character-string for
all COMP-1 data items except in the case of VALUE literals. When the -
2 Option is specified, a VALUE literal is not truncated as defined by the
PICTURE character-string but the compiler will produce a warning
diagnostic if the decimal value is larger than allowed by the PICTURE
character-string (an error diagnostic will result if it is less than -32768 or
greater than +32767). The warning may be ignored since the results are
the same as those for RM/COBOL, but may be avoided by correcting
either the PICTURE character-string or the VALUE literal. The -2
Option prevents the truncation of higher-order decimal digits in a MOVE
statement with a COMP-1 receiving operand, but does, not cause
identical results when values greater than +32767 or less than -32768 are
moved to a COMP-1 data item; in those cases, high-order bits are
truncated rather than the maximum or minimum value being supplied.
When the -2 Option is specified, BINARY usage is treated as equivalent
to COMP-1 usage since RM/COBOL does not have BINARY usage.
Note We recommend that you replace COMP-1 usage with BINARY
usage for better conformance to the COBOL language.

COMP-3 Data Items

Difference

The RM/COBOL-85 compiler always treats COMP-3 data items without
an S in the PICTURE character-string as positive. This is indicated on
the allocation map by marking the type as NPP, annotated with PACKED
UNSIGNED. The -2 Option directs the RM/COBOL-85 compiler to
treat COMP-3 data items without an S in the PICTURE character-string
as signed (that is, as if an S had appeared in the PICTURE character-
string).
The RM/COBOL compiler treats COMP-3 data items without an S in
the PICTURE character-string as signed. This is indicated on the
allocation map by marking the type as NPS, annotated with PACKED
SIGNED.

Resolution

To avoid this difference in treatment of COMP-3 data items whose
PICTURE character-string does not contain an S, either edit the source
program to include an S in the PICTURE character-strings of all COMP-
3 data items, or compile with the -2 Option.

12 • Conversion Guide

Difference

The RM/COBOL-85 compiler uses the hexadecimal value C in the
rightmost half-character position (that is, the sign position) to indicate a
nonnegative value and the hexadecimal value D in the sign position to
indicate a negative value for COMP-3 data items with an S coded or
assumed in the PICTURE character-string. The hexadecimal value F is
placed in the sign position for COMP-3 data items without an S coded or
assumed in the PICTURE character-string.
The RM/COBOL compiler uses the hexadecimal value F in the sign
position to indicate a nonnegative value and the hexadecimal value D in
the sign position to indicate a negative value.
This difference causes a problem when comparing for equality or
inequality between a data item with an RM/COBOL nonnegative sign
and a literal or a data item with an RM/COBOL-85 nonnegative sign.
This difference also causes a problem when comparing two groups, one
containing data items with the RM/COBOL nonnegative sign and the
other containing data items with the RM/COBOL-85 nonnegative sign.

Resolution

Data items using the RM/COBOL sign convention only occur in existing
data files written under RM/COBOL. To fix the sign of positive signed
COMP-3 data values, copy the file performing an ADD 0 TO statement
on every signed COMP-3 field of every record.
When the -2 Option is present in the RM/COBOL-85 Compile Command
or when Suppress-Numeric-Optimizations=YES is specified on the
COMPILE-OPTIONS configuration record, the comparison for equality
or inequality between two nonnegative COMP-3 data items or a
nonnegative COMP-3 data item and a nonnegative literal will be based
on the digit positions only. Identical values with differing
representations of a positive sign will compare equal. The RM/COBOL
files should still be converted as described above because of problems
that can arise from group comparisons and other nonnumeric use of the
data.
RM/COBOL-85 provides a compiler configuration option that allows
COMPUTATIONAL-3 data types to use RM/COBOL data files
containing these data types. For more information, refer to the
description of the COMPUTATIONAL-VERSION keyword of the
COMPILER-OPTIONS configuration record in the Configuration
chapter of the RM/COBOL-85 user’s guide.

 Compilation Differences • 13

COMP-6 Data Items

Difference

The RM/COBOL-85 compiler treats COMP-6 data items with an S in
the PICTURE character-string as an error, since the COMP-6 data item
cannot support signed data.
The RM/COBOL compiler treats COMP-6 data items with an S in the
PICTURE character-string as if the S were not present at all.
In RM/COBOL-85, COMP-6 data items with an S cause a PICTURE
USAGE CLASH error. But RM/COBOL-85 treats the data item in the
same way RM/COBOL 2.0 does: as if the S were omitted from the
PICTURE character-string.

Resolution

This difference in treatment of COMP-6 data items whose PICTURE
character-string contains an S does not result in any difference in runtime
behavior, even though the compiler has produced an error diagnostic. To
avoid this message, edit the source program to remove the S from the
PICTURE character-strings of all COMP-6 data items.

INDEX Data Items
Difference

The RM/COBOL-85 compiler allocates INDEX data items (not to be
confused with index-names) as four bytes.
The RM/COBOL compiler allocates INDEX data items as two bytes.
If the -2 Option is selected, RM/COBOL-85 allocates INDEX data items
as two bytes.

Resolution

This difference can lead to compatibility problems only when the index
data items are embedded in the records of an existing data file, or when
they are part of a group data item whose size is fixed by other constraints
such as a REDEFINES clause. Under these circumstances, the -2 Option
can be used to cause the RM/COBOL-85 compiler to allocate the same
amount of space to index data items as the RM/COBOL compiler does.

14 • Conversion Guide

SYNCHRONIZED Clause
There are three incompatibilities with respect to the SYNCHRONIZED
clause between RM/COBOL and RM/COBOL-85.

Differences

1. The RM/COBOL-85 compiler always forces a group length to
be even when a SYNCHRONIZED data item is subject to an
OCCURS clause; thus, every occurrence of the
SYNCHRONIZED data item will be synchronized.
The RM/COBOL compiler does not force a group length to be
even; thus, only the odd occurrences of the SYNCHRONIZED
data item will be synchronized when the group length is odd.

2. The RM/COBOL-85 compiler will not synchronize a group
RIGHT or LEFT when the last elementary data item of the
group is SYNCHRONIZED.
The RM/COBOL compiler attempts to synchronize a group
when the last elementary data item is SYNCHRONIZED.

3. The RM/COBOL-85 compiler allocates a filler byte, if
required, before a group containing an initial elementary data
item that is SYNCHRONIZED.
If the first elementary data item of a group is synchronized, the
RM/COBOL compiler does not guarantee that the containing
groups start at the same address as the first elementary data item
(in other words, a filler byte exists before the first elementary
data item).

Resolution

These differences should not cause conversion problems, except where
the SYNCHRONIZED clause is specified within a record description
entry of a data file that was created by RN/COBOL and that must now be
read by RM/COBOL-85. If this situation arises, edit the source program
so that the RM/COBOL-85 compiler allocates the internal fields of the
record in the same way as the RM/COBOL compiler.

 Compilation Differences • 15

Implicit EXIT PROGRAM
Difference

The RM/COBOL-85 compiler produces an implicit EXIT PROGRAM
followed by STOP RUN when the Procedure Division terminates without
an explicit transfer of control.
The RM/COBOL compiler does not produce the implicit EXIT
PROGRAM.
The -2 Option suppresses the generation of an implicit EXIT
PROGRAM.

Resolution

There is no difference in runtime behavior between the two versions
when the program runs as a main program. However, when the program
runs as a called program, the version compiled under RM/COBOL-85
returns control to the calling program when control reaches the end of the
Procedure Division; under the same circumstance, the version compiled
with RM/COBOL terminates the run unit. To make the two behave in
the same way, you can either compile the program with the -2 Option or
insert a STOP RUN statement at the end of the Procedure Division.

Incorrect Use of Index-Names
Difference

During compilation, RM/COBOL-85 detects the incorrect use of index-
names to index into tables with a different span than the table associated
with the index-name. Also, RM/COBOL-85 produces compilation errors
for the SET . . . UP/ DOWN BY index-name and SET . . . UP BY/DOWN
BY/TO ZERO statements.
Since the RM/COBOL compiler does not detect this incorrect usage,
some RM/COBOL source programs that use index-names as general
subscript variables will not compile correctly with RM/COBOL-85. This
only includes the subscripting of tables whose lengths do not match that
of the table associated with the index-name, and the use of an index-
name in the BY phrase of a SET . . . UP/DOWN statement.

Resolution

The source program must be edited to correct the incorrect usage,
possibly by substituting an existing general data-name variable in place
of the index-name, or by defining a new data item to be used in place of
the index-name.

16 • Conversion Guide

For example, if you had a data structure like this:
01 TABLES.
 02 TAB-A.
 03 ELEM-A PIC XX OCCURS 4 INDEXED BY I.
 02 TAB-B.
 03 ELEM-B PIC XXX OCCURS 4.

RM/COBOL would allow the following reference:
MOVE ELEM-A (I) TO ELEM-B (I).

RM/COBOL-85 disallows the reference to ELEM-B, since its span of 3
is not the same as the span of the table associated with I (2). The -2
Option does not resolve this incompatibility.
You could reconcile the conflict by defining J with:

03 ELEM-B PIC XXX OCCURS 4 INDEXED BY J.

and replacing the MOVE statement with:
SET J TO I.
MOVE ELEM-A (I) TO ELEM-B (J).

Null Literals
Difference

The RM/COBOL-85 compiler produces an error message when it
encounters a nonnumeric literal with a length of zero.
The RM/COBOL compiler produces a warning message when this
occurs.

Resolution

To avoid the warning, the source program must be edited to replace the
null literal with a valid operand (possibly a space).

Generated END PROGRAM
Difference

The RM/COBOL-85 compiler does not provide an END PROGRAM
statement.
The RM/COBOL compiler provides an END PROGRAM statement
when the end of the source file is encountered.

Resolution

No conversion action is required.

 Compilation Differences • 17

SELECT OPTIONAL Phrase
Difference

The RM/COBOL-85 compiler requires that, unless the OPTIONAL
phrase of the SELECT clause for a file has been specified, a file must
exist to allow an OPEN EXTEND for that file to complete without error.
The RM/COBOL compiler will create a file when an OPEN EXTEND
is executed for a non-existing file. The OPTIONAL phrase of the
SELECT clause is not supported on RM/COBOL 2.0.
Programs compiled with the -2 Compile Command Option function the
same as RM/COBOL; that is, a file will be created when an OPEN
EXTEND is executed for a nonexisting file.

Resolution

The -2 Option can be specified to cause the RM/COBOL-85 system to
behave like the RM/COBOL system in this respect.

Compilation Error Checking
Difference

The RM/COBOL-85 compiler has more thorough compile-time error
checking than the RM/COBOL compiler and, therefore, previously
undiagnosed errors may occur when compiling with RM/COBOL-85.
For example, SELECT statements that begin in area A (columns 8
through 11) compile without warning with RM/COBOL, but
RM/COBOL-85 flags these lines with a warning.

Resolution

No conversion action is required, except as noted in the specific
differences and incompatibilities addressed elsewhere in this section, as
any differences not addressed will result in a nonfatal error or warning.
To avoid those nonfatal errors or warnings the source program must be
edited to comply with the RM/COBOL-85 requirements.

18 • Conversion Guide

Alphabetic Data Items*
Difference

With the RM/COBOL-85 compiler, data items described with only the
PICTURE symbols A and B are considered alphanumeric edited data
items.
With the RM/COBOL and RM/COBOL-8X compilers, these data items
are considered alphabetic data items with editing specified.

Resolution

The RM/COBOL-85 treatment of such data items results in a relaxation
of the rules affecting those data items, and should cause no trouble in
existing programs. If a problem should occur, either the -2 or -7 Compile
Command Option can be entered to direct RM/COBOL-85 to treat these
data items as alphabetic with editing specified.
For example, assume the following data definitions:

77 S PIC 9999.
77 T PIC AABAA.

RM/COBOL disallows this statement:
MOVE S TO T

since moving a numeric operand to an alphabetic operand is not allowed.
RM/COBOL-85 allows such a move, since it treats the receiving operand
as alphanumeric edited.
If a problem should occur, either the -2 or -7 Compile Command Option
can be entered to direct RM/COBOL-85 to treat these data items as
alphabetic with editing specified.

 Operational Differences • 19

Operational Differences

There are several operational differences which are described in the
RM/COBOL-85 user’s guide, and which are highlighted here. Note that
in this section, RM/COBOL refers to the system conforming to the 1974
standard and that RM/COBOL-85 refers to the system conforming to the
1985 standard.

BLOCK CONTAINS Clause
Difference

The RM/COBOL-85 runtime system allows you to specify the size of
physical data transfers to and from a file, with the BLOCK CONTAINS
clause within the file description entry. This block size is a fixed
attribute of RM/COBOL-85 indexed files, and the BLOCK CONTAINS
clause must be the same in all programs which access that indexed file.
The RM/COBOL runtime system treats the BLOCK CONTAINS clause
as commentary. Programs with different values in their BLOCK
CONTAINS clause can therefore access the same file.

Resolution

When converting files created by RM/COBOL, the actual value for the
BLOCK CONTAINS clause in the source program using the file must be
provided to the RM/COBOL-85 conversion utility. Also, all source
programs that use a file must have the same value in the BLOCK
CONTAINS clause for that file. See the Conversion Utilities section
beginning on page 33.

RECORD CONTAINS Clause
Difference

The RM/COBOL-85 runtime system verifies the length of records read
against the minimum and maximum lengths specified in the RECORD
CONTAINS clause. Furthermore, the minimum and maximum record
lengths are considered fixed attributes of RM/COBOL-85 indexed files,
and are validated when the file is opened INPUT or I-O. Therefore, the
RECORD CONTAINS clause must accurately describe the minimum

20 • Conversion Guide

and maximum record lengths of a file, and these lengths must be identical
in all programs which access an indexed file.
The RM/COBOL runtime system does not validate the length of records
read, nor does it validate the minimum record length of indexed files.
Programs with different RECORD CONTAINS clauses and with record
descriptions of different lengths can therefore access the same file.

Resolution

When converting files created by RM/COBOL, the actual value for the
RECORD CONTAINS clause in the source program that will access the
file must be used to process the file through the RM/COBOL-85
conversion utility (see page 33). Also, all source programs that access a
file must have the same values in the RECORD CONTAINS clause for
that file.

File Formats
Difference

The external format for relative, indexed and variable-length binary-
sequential files has changed. Existing data files of these types must be
converted before use in the RM/COBOL-85 environment.

Resolution

Use the conversion utilities provided, as described beginning on page 33.

File Access Names
Difference

The RM/COBOL runtime system appends the file extension .INX
to indexed file access names. The RM/COBOL-85 runtime system
does not.

Resolution

When converting indexed files using the conversion utilities provided
(see page 33), be sure to specify the same file access names that will be
used by your application.

 Operational Differences • 21

Record Lock Detection
Difference

Under RM/COBOL-85, a READ statement for a file in the OPEN
INPUT mode will successfully read a record locked by another user.
Under RM/COBOL, a READ statement for a file in the OPEN INPUT
mode will not successfully read a record locked by another user.

Resolution

No RM/COBOL-85 application should depend on the locked record error
for a file in the OPEN INPUT mode since the successful execution of
such a READ statement will not lock the record. Any application with
this dependency should be changed to use the OPEN I-O mode.

OPEN OUTPUT Statement
Difference

Under RM/COBOL-85, an OPEN OUTPUT statement does not default
to WITH LOCK.
Under RM/COBOL, an OPEN OUTPUT statement defaults to WITH
LOCK.

Resolution

For applications that require exclusive use of a file that is opened
OUTPUT, edit the source program to add the WITH LOCK phrase to the
appropriate OPEN OUTPUT statement.

ACCEPT Statement
Difference

The operation of the RM/COBOL-85 ACCEPT statement is compatible
with RM/COBOL 2.1, but not with RM/COBOL 2.0, in the case of
output conversion on numeric data items when the UPDATE phrase is
specified. In general, RM/COBOL 2.0 does not support output
conversion. The effects of output conversion are described in the
Procedure Division Verbs chapter of the RM/COBOL-85 Language
Reference Manual.

Resolution

No conversion action is required.

22 • Conversion Guide

Difference

In the RM/COBOL runtime system, the Tab key causes an “erase right”
function if the UPDATE phrase is specified and the field termination
code is changed to that of the Enter key. In RM/COBOL-85, this
function is provided differently (see the chapter on RM/COBOL Features
of the RM/COBOL-85 user’s guide).

Resolution

When existing programs are moved from the RM/COBOL environment
to the RM/COBOL-85 environment, source programs and documentation
that provide prompts or “help” functions concerning the use of the Tab
key function with ACCEPT with UPDATE may have to be edited to
reflect this difference. Alternatively, the RM/COBOL-85 runtime system
may be reconfigured to match the RM/COBOL operation (see the chapter
on Configuration in the RM/COBOL-85 user’s guide).

Difference

The RM/COBOL-85 runtime system has more stringent input
conversion rules than the RM/COBOL runtime system (see the chapter
on Procedure Division Verbs of the RM/COBOL-85 Language Reference
Manual).

Resolution

No conversion action is needed to accommodate this difference between
RM/COBOL-85 and RM/COBOL.

Difference

The RM/COBOL-85 field termination key codes for those keys not in
the generic keyboard set may not agree with some of the more common
reconfigurations of RM/COBOL.

Resolution

Program terminating fields using keys not in the generic keyboard set
may have to have the source program edited to recognize the termination
codes provided by RM/COBOL-85 and described in the chapter on
RM/COBOL Features of the RM/COBOL-85 user’s guide. For example,
if an RM/COBOL product were reconfigured to include the arrow keys
as field terminators, this would represent an incompatibility within
RM/COBOL-85, since RM/COBOL-85 uses the arrow keys as intrafield
editing keys and they would not necessarily cause field termination or
return the same termination codes. Alternatively, the RM/COBOL-85
runtime system may be reconfigured to match the RM/COBOL operation
(see the chapter on Configuration in the RM/COBOL-85 user’s guide).

 Operational Differences • 23

Difference

The RM/COBOL-85 runtime system has a more extensive set of
intrafield editing functions than the RM/COBOL runtime system. In
particular, the left and right arrow functions (that is, cursor left and
cursor right) use different keys.

Resolution

Documentation and any source programs that provide screen prompts or
“help” functions may have to be edited to reflect both the new and
different intrafield editing capabilities of RM/COBOL-85 as described in
the chapter on RM/COBOL Features of the RM/COBOL-85 user’s guide.
Alternatively, the RM/COBOL-85 runtime system may be reconfigured
to match the RM/COBOL operation (see the chapter on Configuration in
the RM/COBOL-85 user’s guide).

ACCEPT and DISPLAY with Default Positioning

Difference

When executing an ACCEPT statement followed by an ACCEPT or
DISPLAY using the POSITION phrase with a zero value and no LINE
phrase (default positioning), the RM/COBOL-85 runtime system uses
the full length of the screen field in determining the next available
position, while the RM/COBOL runtime system uses the screen position
after the last character entered as the next available position.

Resolution

No conversion action is required, although if you are unsatisfied with the
appearance of the input screens, the source program must be edited with
this functional difference in mind. RM/COBOL-85 will return the cursor
position within the screen field (the CURSOR phrase) which, when
added to the starting position of the screen field, may be used to provide
the starting position for the subsequent ACCEPT or DISPLAY.

An ACCEPT that Extends Beyond the Screen Line
Length

Difference

The RM/COBOL-85 runtime system does not limit an ACCEPT
statement screen field to the screen line length, whereas the
RM/COBOL runtime system truncates an ACCEPT screen field that
extends beyond that length.

Resolution

No conversion action is required, unless this characteristic of
RM/COBOL was used to truncate an ACCEPT too long for the CRT line

24 • Conversion Guide

length, in which case the source programs must be edited to include the
SIZE phrase, with an appropriate value, in the ACCEPT statement.

ACCEPT of a Numeric Without the CONVERT
Phrase

Difference

Executing an ACCEPT statement of a numeric data item without the
CONVERT phrase with the RM/COBOL-85 runtime system causes
numeric input conversion to occur, unless the -m Compile Command
Option is selected.
Executing an ACCEPT statement of a numeric data item without the
CONVERT phrase with the RM/COBOL runtime system causes only
right justification and zero filling to occur; decimal alignment, rejection
of nonnumeric characters, and conversion error reporting does not occur.

Resolution

No conversion action is required.

Interactive Debugger and Error Messages
Difference

The RM/COBOL-85 runtime system uses line and intraline numbers in
Debug commands and messages as well as runtime diagnostic error
messages; these numbers are represented in decimal notation. The
RM/COBOL runtime system uses addresses in hexadecimal notation.

Resolution

No conversion action is required.

C Language Calling Sequence
Difference

The calling sequence presented to C language programs has changed to
provide more information about parameters. See the specific Windows
and UNIX appendices on alternate methods of preparing non-COBOL
Subprograms in the CodeBridge manual.

Resolution

The calling sequence and structure within C language subprograms must
be altered, compiled and linked to conform to the RM/COBOL-85
requirements, as described in the CodeBridge manual.

 Operational Differences • 25

CALL . . . ON OVERFLOW Condition
Difference

The RM/COBOL-85 runtime system causes an overflow condition if,
for any reason except a recursive call error, the called program cannot be
made available.
The RM/COBOL runtime system causes an overflow condition only if
there is not enough memory for the called program.

Resolution

Documentation and source file editing may be necessary. For example, if
the ON OVERFLOW path displays a message:

Insufficient memory, choose a smaller program

the message might be changed to:
Program unavailable, choose a different program

Line-Sequential File Blank Stripping
Difference

The RM/COBOL runtime system strips trailing blanks from records
before writing those records to a line-sequential file if the file has
variable-length records, and does not strip trailing blanks if the file has
fixed-length records. The RM/COBOL-85 runtime system uses a
different criterion for blank stripping. RM/COBOL-85 preserves
trailing spaces if the device-name in the ASSIGN clause is DISC, DISK
or RANDOM, and removes trailing spaces in all other cases, regardless
of whether the records of the file are described as fixed or variable
length.

Resolution

If the file is described with variable-length records, no conversion action
is required. RM/COBOL-85 will preserve trailing spaces when the
device-name is RANDOM or equivalent, thus allowing REWRITE
statements that were prohibited under RM/COBOL.
If the file is described as having fixed-length records, some conversion
action may be required. If a later program intends to issue REWRITE
statements on the file, the program that writes the records must specify a
device-name of RANDOM or equivalent. If a device-name other than
DISC, DISK or RANDOM is specified, RM/COBOL-85 will remove
trailing spaces and subsequent REWRITE statements will fail.

26 • Conversion Guide

Line-Sequential File Blank Padding
Difference

When reading a line-sequential file declared as having variable-length
records, the RM/COBOL runtime system always pads the record area
with spaces to the maximum record length. In order to properly support
REWRITE statements, the RM/COBOL-85 runtime system returns the
actual record length and does not pad the record area with spaces when
the device-name in the SELECT clause is DISC, DISK or RANDOM.

Resolution

If the program reading the line-sequential file expects the remainder of
the record area to be space-filled when reading records from a variable-
length file, either change the device-name in the SELECT clause to
CARD-READER, CARD-PUNCH, CASSETTE, INPUT, INPUT-
OUTPUT or MAGNETIC-TAPE or insert a MOVE SPACES TO record-
area statement before the READ statement.

Undefined Arithmetic Operations
Difference

Performing arithmetic operations on nonnumeric data is undefined in
COBOL. The effect of doing such an operation is different for
RM/COBOL and RM/COBOL-85.
An example of this incompatibility is the comparison of a numeric data
item containing LOW-VALUES to ZERO. The RM/COBOL-85
runtime system may or may not equate these values in different
environments whereas the RM/COBOL runtime system always finds
these values to be not equal.

Resolution

No conversion action is required unless the effects of arithmetic
operations on nonnumeric data that are consistent in RM/COBOL are
used.
Specifying SUPPRESS-NUMERIC-OPTIMIZATIONS=YES on the
COMPILE-OPTIONS configuration record will prevent the compiler
from generating optimized code for nonbinary numeric operations.

 Operational Differences • 27

CLOSE . . . WITH NO REWIND Statement
Difference

The RM/COBOL-85 CLOSE statement does not cause an automatic
page eject on printers: only the WRITE . . .BEFORE/AFTER
ADVANCING PAGE statement does.
The RM/COBOL runtime system advances to a new page when a file
assigned to a printer is closed (unless the WITH NO REWIND phrase
suppresses this action).

Resolution

In circumstances where it is necessary to preserve the automatic new
page function supplied by the RM/COBOL system, the source program
can be edited to insert a WRITE record-name FROM SPACES AFTER
ADVANCING PAGE statement before the CLOSE statement.
The RM/COBOL-85 runtime system may be configured to provide
a page eject at close (see the chapter on Configuration in the
RM/COBOL-85 user’s guide).

Variable-Length Groups as Destinations
Difference

When a variable-length group that contains its own DEPENDING ON
item is used as a receiving operand, RM/COBOL-85 and RM/COBOL
determine the length of the group by different rules. The
RM/COBOL-85 runtime system always treats the group as if its
DEPENDING ON item had its maximum value, ignoring its actual
current value; this treatment is in accordance with the latest interpretation
of the ANSI COBOL 1985 standard. The RM/COBOL runtime system
uses the current value of the DEPENDING ON item to determine the
length of the group.

Resolution

In situations where the partial filling of the receiving group is critical to
the proper operation of the program, the source program must be
modified to make it operate the same under RM/COBOL-85. For
example, an intermediate receiving group could be defined that has the
same internal structure as the original receiving group, and a PERFORM
. . . VARYING statement could be used to move the desired portion of
the intermediate group to the original group.

28 • Conversion Guide

CALL . . . USING Statement
Difference

The RM/COBOL-85 runtime system compares the size of a data item in
the calling program to the size of the corresponding linkage data item in
the called program. If the size of the linkage data item in the called
program is greater than the size of the corresponding data item in the
calling program, the run unit is terminated with a data reference error.
The RM/COBOL runtime system does not compare the sizes of these
data items.

Resolution

Source programs that have this error must be edited so that the sizes of
corresponding data items conform to the RM/COBOL-85 requirement.

Runtime Error Checking
Difference

The RM/COBOL-85 system has more thorough runtime error checking
than the RM/COBOL system and therefore previously undiagnosed
errors may occur when executing programs with RM/COBOL-85. For
example, if a data item is defined using the OCCURS . . . DEPENDING
phrase and during execution the value of the DEPENDING identifier is
outside of the range of the OCCURS clause, RM/COBOL-85 reports this
as an error, while RM/COBOL does not detect this error.

Resolution

No conversion action is required, except as noted in the specific
differences and incompatibilities addressed elsewhere in this section, as
any other execution errors are the result of illegal operations that were
previously undiagnosed. To avoid those errors the source program must
be edited to comply with the RM/COBOL-85 requirements.

 Operational Differences • 29

ALPHABETIC Class Condition*
Difference

In the RM/COBOL-85 runtime system, the ALPHABETIC class
condition is true if the data item being tested contains only the characters
A through Z, a through z, and the space.
In the RM/COBOL and RM/COBOL-8X runtime systems, the
ALPHABETIC class condition is true if the data item being tested
contains only the characters A through Z and the space. Thus, it is false
if lowercase letters appear in the data item.

Resolution

In most cases, the RM/COBOL-85 interpretation of the ALPHABETIC
class condition is the desired one for modern computing environments.
If the RM/COBOL and RM/COBOL-8X interpretation is desired, either
the -2 (RM/COBOL compatibility) or -7 (ANSI COBOL 1974
compatibility) Compile Command Option may be specified to cause the
compiler to generate code, which results in the RM/COBOL and
RM/COBOL-8X (ANSI COBOL 1974) interpretation of the
ALPHABETIC class condition. If the program is converted to use ANSI
COBOL 1985 features, the ALPHABETIC-UPPER class condition is
available to test for only uppercase letters and the space.

PERFORM . . . VARYING Augmentation/Set Order*
Difference

In the RM/COBOL-85 runtime system, for the PERFORM . . .
VARYING statement when TEST BEFORE is specified or implied and
one or more AFTER phrases are specified, each time an inner loop
completes, the next outer VARYING or AFTER identifier is augmented
by its current BY value and then the inner AFTER identifier is set to its
current FROM value. Thus, when the FROM identifier depends on the
outer VARYING or AFTER identifier or is the same identifier, as when
processing the diagonal of a matrix, the resetting of the inner AFTER
identifier will include the effect of the augmentation.
In the RM/COBOL and RM/COBOL-8X runtime systems, for the
PERFORM . . . VARYING statement when one or more AFTER phrases
are specified, each time an inner loop completes, the inner AFTER
identifier is set to its current FROM value and then the next outer
VARYING or AFTER identifier is augmented by its current BY value
(setting and augmenting reversed from RM/COBOL-85). This sequence
of operations is specified by ANSI COBOL 1974.

30 • Conversion Guide

Resolution

In most cases, the PERFORM . . .VARYING statement with one or more
AFTER phrases has no dependency of the FROM or BY values upon the
other VARYING or AFTER identifiers of the same statement.
Therefore, this difference would have no effect. When a dependency
exists, the RM/COBOL-85 behavior of the PERFORM . . .VARYING
statement is usually desired. If there is a use for the ANSI COBOL 1974
behavior or it is desired to avoid causing a problem for an existing
program, either the -2 (RM/COBOL compatibility) or -7 (ANSI COBOL
1974 compatibility) Compile Command Option may be specified to
cause the compiler to generate code which results in the RM/COBOL and
RM/COBOL-8X (ANSI COBOL 1974) behavior of the PERFORM . . .
VARYING statement.
For example, in RM/COBOL (and in RM/COBOL-8X) the statement:

PERFORM PARA VARYING X FROM 1 BY 1 UNTIL X > 3
 AFTER Y FROM X BY 1 UNTIL Y > 3

results in this sequence of values for X and Y:
X: 1 1 1 2 2 2 3 3
Y: 1 2 3 1 2 3 2 3

The same statement in RM/COBOL-85 results in this sequence:
X: 1 1 1 2 2 3
Y: 1 2 3 2 3 3

Note This second sequence of values can be used to refer to the elements
of an array that are on or above the diagonal of the array.

INSPECT, STRING and UNSTRING Subscripting Evaluation*
Difference

In the RM/COBOL-85 runtime system, the subscripting for INSPECT,
STRING and UNSTRING statements is evaluated only once, as the first
operation of the execution of the statement. Thus, if the statement
modifies any of the values of the subscripts used in the statement there
will be no effect on the results of executing the statement.
In the RM/COBOL and RM/COBOL-8X runtime systems, the
subscripting for the INSPECT, STRING and UNSTRING statements is
evaluated each time an identifier is accessed during the execution of the
statement. The source item is only accessed once, as the first operation
of the execution of the statement, but control and destination identifiers
may be accessed more than once or after the operation of the statement
has caused the modification of the value of some identifiers. If the
modified identifiers, such as those appearing in the TALLYING,

 Operational Differences • 31

POINTER or COUNT IN phrases, are also used as subscripts in the same
statement, it may affect the results of executing the statement.

Resolution

It is likely that programs that are affected by this difference are not
properly coded. Programs that depend on the previous behavior of
subscripting within these statements must be modified to conform to the
new behavior.

Input Redirection with the STOP Literal Statement
Difference

The RM/COBOL-85 runtime system does not allow STOP literal
statement responses (Y or N) to be redirected in its default configuration
for UNIX. The responses must be entered at the terminal running the
program. The RM/COBOL runtime system does allow STOP literal
responses to be redirected in its default configuration for UNIX.

Resolution

If a program depends on the input redirection of STOP literal statement
responses, these responses must be entered manually at the terminal
running the program, or the source program may be edited to allow
ACCEPT statements to be substituted for the STOP literal statement and
logic added to cause a STOP RUN if the response is N. Another
alternative is to use the ERROR-MESSAGE-DESTINATION keyword
in the RUN-ATTR configuration record, described in the Configuration
chapter of the RM/COBOL-85 user’s guide.

I-O Status Values*
Difference

In the RM/COBOL-85 runtime system, the I-O status values returned in
the FILE STATUS data item or displayed in I/O error messages are
significantly expanded and modified from the values in RM/COBOL and
RM/COBOL-85. The new values are the ones required by the ANSI
COBOL 1985.
In the RM/COBOL and RM/COBOL-8X runtime systems, the ANSI
COBOL 1974 I-O status values were returned in the FILE STATUS data
item and displayed in I/O error messages.

Resolution

The source program can be edited to expect the new I-O status values,
which in most cases are more informative. Alternatively, either the -2
(RM/COBOL compatibility) or -7 (ANSI COBOL 1974 compatibility)

32 • Conversion Guide

Compile Command Option may be specified to cause the compiler to
generate code, which results in the RM/COBOL and RM/COBOL-8X
(ANSI COBOL 1974) I-O status values being returned in the FILE
STATUS data item and displayed in I/O error messages.

 Conversion Utilities • 33

Conversion Utilities

This section provides the documentation for the file conversion utilities
for RM/COBOL to RM/COBOL-85. You can download these
conversion utility programs from the Liant Web site at
http://www.liant.com/support/files/.
Use the following utilities to assist you in converting:

• RM/COBOL (74) versions 1 and 2 indexed files to RM/COBOL
format (rmifca and rmifcb)

• RM/COBOL (74) version 1.5 relative files to the RM/COBOL
format (rmcrl1)

• RM/COBOL (74) version 2 relative files to RM/COBOL format
(rmcrl2)

• RM/COBOL (74) version 2 variable-length binary sequential
files to RM/COBOL format (rmcseq)

Note In this section RM/COBOL (74) refers to 74 ANSI standard
programs, while RM/COBOL refers to the 85 ANSI standard. Beginning
with version 6.5, the –85 suffix was removed from the RM/COBOL
product name.

http://www.liant.com/support/files/

34 • Conversion Guide

Indexed File Conversion Utilities (rmifca and rmifcb)
The rmifca and rmifcb utilities convert an RM/COBOL (74) version 1
or version 2 indexed file to the RM/COBOL format.
rmifca and rmifcb require the following:

1. RM/COBOL compiler and runtime system.
2. Object file rmifca.cob.
3. Source file rmifcb.cbl.
4. RM/COBOL (74) version 1 or version 2 indexed file to be

converted.
5. Available disk space for the creation of the new RM/COBOL

indexed file. The new file size typically will be smaller than or
equal to the original.

Indexed File Naming Conventions
RM/COBOL (74) version 1 and RM/COBOL maintain data and index
information in a single file. No special index file naming conventions are
required.
RM/COBOL (74) version 2 supports a dual-file format. In the dual-file
format, both the data file and the index file (which contains both header
and indexes) have the same name. The data file has the default filename
extension, and the index file always has a filename extension of .inx. For
example, if the data filename is inxfl.dat, the file that contains the header
and indexes is named inxfl.inx. This requires that you make certain you
include the .inx filename extension when specifying a version 2, dual-file
indexed file format.

Using the Utility
Follow these steps to convert RM/COBOL (74) versions 1 and 2 indexed
files to RM/COBOL format:

1. Execute rmifca using the following command:

runcobol rmifca

The program will prompt for the information required to convert
the file.

2. In response to the first prompt, enter the name of the indexed
file to be converted. If you are converting a version 2 indexed
file, be sure to include the .inx filename extension as part of the
filename.
If you specify a version 2 dual-file indexed file, you will be
requested to enter the filename of the data file portion of the
indexed file.

 Conversion Utilities • 35

3. The next prompts deal with the BLOCK and RECORD sizes. In
order to answer correctly, you may need to refer to the
RM/COBOL (74) source program in which the file is described.
a. Describe the BLOCK CONTAINS clause. Enter the

number of RECORDS or CHARACTERS in the block, and
indicate whether the number you entered applies to
RECORDS or CHARACTERS.

b. Describe the RECORD CONTAINS clause. If the file you
are converting is a version 2 indexed file, the maximum
record length will be filled in. You need only specify the
minimum record size if it is a variable-length record. If the
file you are converting is a version 1 indexed file, you must
specify both the minimum and maximum record sizes.

c. Enter the name of the RM/COBOL indexed file to be created.
Once all the information has been supplied, rmifca generates
the copy files necessary to describe the conversion process to
the actual conversion utility rmifcb.

4. Compile and execute rmifcb. The program displays what it is
going to do and prompts for confirmation to proceed. The
program attempts to estimate processing time.

rmifcb.cob can be renamed and saved for use as a standalone conversion
program for versions 1 and 2 indexed files. If you are an application
developer, this should ease the process of getting your users converted
from a version 1 or version 2 system to the current RM/COBOL
environment.
The process described above applies only to copying data records from
RM/COBOL (74) version 1 or 2 to RM/COBOL indexed files on an “as
is” basis. However, since each data record is available during the
execution of rmifcb, you may wish to customize a copy of rmifcb to
provide data conversions, such as changing separate signs to combined
signs on numeric USAGE display items. Comments in the source file
rmifcb.cbl suggest where customized code may be placed.

36 • Conversion Guide

Relative File Conversion Utility: Version 1.5 to RM/COBOL
(rmcrl1)

The rmcrl1 utility converts RM/COBOL (74) version 1.5 relative files to
the RM/COBOL format.

Using the Utility
To convert a version 1.5 relative file to the RM/COBOL format, follow
these steps:

1. Copy rmcrl1.cbl from the installation directory to a working
directory.

2. Edit the source program, replacing—where indicated—the
record size for the RM/COBOL (74) version 1.5 input and the
RM/COBOL output relative files.

3. Enter the RM/COBOL Compile Command (rmcobol) to
compile the program.

4. Under UNIX, set environment variables to assign file pathnames
for the version 1.5 relative file to INPUT, and the RM/COBOL
relative file to OUTPUT. For example:

INPUT=/dir1/rel1.5 ; export INPUT

OUTPUT=/dir2/rel85 ; export OUTPUT

Under Windows, use synonyms to assign the file pathnames.
Setting synonyms is described in the Installation and System
Considerations for Windows chapter of the RM/COBOL
user’s guide.
Note The source RM/COBOL (74) version 1 pathname and
destination RM/COBOL pathname must specify different files,
that is, the conversion cannot be made in place.

5. Enter the RM/COBOL Runtime Command (runcobol) to
execute the program.

 Conversion Utilities • 37

Relative File Conversion Utility: Version 2 to RM/COBOL
(rmcrl2)

There are two source programs for converting version 2 relative files:
rmcrl2l.cbl and rmcrl2s.cbl. These programs can be used to convert
RM/COBOL (74) version 2 relative files to RM/COBOL format.
rmcrl2s.cbl converts files with record sizes less than 512 bytes.
rmcrl2l.cbl converts files with larger record sizes.

Using the Utility
To convert a version 2 relative file to RM/COBOL format, follow these
steps:

1. Copy the appropriate source program from the installation
directory to a working directory.

2. Edit the source program, replacing—where indicated—the
record size for the RM/COBOL (74) version 2 input and the
RM/COBOL output relative files.

3. Enter the RM/COBOL Compile Command (rmcobol) to
compile the program.

4. Under UNIX, set environment variables to assign the file
pathnames for the version 2 relative file to INPUT, and the
RM/COBOL relative file to OUTPUT. For example:

INPUT=/dir1/rel2.0 ; export INPUT

OUTPUT=/dir2/rel85 ; export OUTPUT

Under Windows, use synonyms to assign the file pathnames.
Setting synonyms is described in the Installation and System
Considerations for Windows chapter of the RM/COBOL user’s
guide.
Note The source RM/COBOL (74) version 2 pathname and
destination RM/COBOL pathname must specify different files,
that is, the conversion cannot be made in place.

5. Enter the RM/COBOL Runtime Command (runcobol) to
execute the program.

38 • Conversion Guide

Sequential File Conversion Utility (rmcseq)
Variable-length binary sequential files must be converted from
RM/COBOL (74) version 2 format to RM/COBOL format. Line
sequential and fixed-length binary sequential files do not require
conversion. These files may be used directly by RM/COBOL programs.
See the appropriate installation and system considerations chapter for
your specific operating system to determine which of the sequential files
are variable-length binary sequential files.

Using the Utility
1. Execute the rmcseq.cob program using the following

command:

runcobol rmcseq

2. Respond to the first prompt by entering an I to indicate an Intel
(reversed byte) format, or an N (not reversed) to indicate all
others. Check your hardware operations manual if you are
unsure which response is appropriate.

3. Respond to the second prompt by entering the properly qualified
pathname of the RM/COBOL (74) version 2 variable-length
binary sequential file to be converted.

4. Respond to the third prompt by entering the pathname of the
RM/COBOL variable-length binary sequential file to be
produced.

5. The program should then execute, displaying a count of the
records being converted. If conversion terminates without error,
the following message appears:

Convert file complete

Other messages indicate an error in conversion, most likely
caused by an attempt to convert a file that is not a variable-
length binary sequential file.
Note The source RM/COBOL (74) version 2 pathname and
destination RM/COBOL pathname must specify different files,
that is, the conversion cannot be made in place.

	RM/COBOL to RM/COBOL-85 Conversion Guide
	Copyright
	Contents
	Why Convert to RM/COBOL-85?
	Compilation Differences
	Compilation Option Defaults
	Reserved Words
	Computational Data Items
	COMP Data Items
	COMP-1 Data Items
	COMP-3 Data Items
	COMP-6 Data Items

	INDEX Data Items
	SYNCHRONIZED Clause
	Implicit EXIT PROGRAM
	Incorrect Use of Index-Names
	Null Literals
	Generated END PROGRAM
	SELECT OPTIONAL Phrase
	Compilation Error Checking
	Alphabetic Data Items*

	Operational Differences
	BLOCK CONTAINS Clause
	RECORD CONTAINS Clause
	File Formats
	File Access Names
	Record Lock Detection
	OPEN OUTPUT Statement
	ACCEPT Statement
	ACCEPT and DISPLAY with Default Positioning
	An ACCEPT that Extends Beyond the Screen Line Length
	ACCEPT of a Numeric Without the CONVERT Phrase

	Interactive Debugger and Error Messages
	C Language Calling Sequence
	CALL . . . ON OVERFLOW Condition
	Line-Sequential File Blank Stripping
	Line-Sequential File Blank Padding
	Undefined Arithmetic Operations
	CLOSE . . . WITH NO REWIND Statement
	Variable-Length Groups as Destinations
	CALL . . . USING Statement
	Runtime Error Checking
	ALPHABETIC Class Condition*
	PERFORM . . . VARYING Augmentation/Set Order*
	INSPECT, STRING and UNSTRING Subscripting Evaluation*
	Input Redirection with the STOP Literal Statement
	I-O Status Values*

	Conversion Utilities
	Indexed File Conversion Utilities (rmifca and rmifcb)
	Indexed File Naming Conventions
	Using the Utility

	Relative File Conversion Utility: Version 1.5 to RM/COBOL (rmcrl1)
	Using the Utility

	Relative File Conversion Utility: Version 2 to RM/COBOL (rmcrl2)
	Using the Utility

	Sequential File Conversion Utility (rmcseq)
	Using the Utility

