
Silk Central 20.6

The Reporting Data Mart

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2004-2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Central are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-05-26

ii

Contents

Overview ... 4
Architecture .. 5
How to Create Reports with the Data Mart ...6

Writing Data Mart Queries .. 6
Reliability of Tests in an Execution Plan ..6
All Failed Tests in an Execution Folder ..7
Testing Cycle Status ..8
Execution Tree Status ... 10
Configuration Suite Status .. 11

Troubleshooting ... 13
Wrong or Missing Data ..13
The Data Mart Slows Down the System ... 13

Reference: Data Mart Tables and Views ...14
DM_TestStatus ..14
RV_TestStatusExtended ... 15
RV_LatestTestStatus ...16
RV_LatestFinishedTestStatus ... 18
RV_MaxTestRunID ..19
RV_MaxFinishedTestRunID .. 19
RV_TestingCycleStatus ...20
RV_ExecutionPlanStatusPerBuild ...21
RV_EPFinishedStatusPerBuild ... 22
RV_ExecutionPlanStatusRollup .. 22
RV_EPFinishedStatusRollup ...23
RV_ConfigurationSuiteStatus ..24
RV_ConfigSuiteFinishedStatus ... 25

Contents | 3

Overview
The Silk Central reporting data mart makes it easy to access data for reporting purposes. It moves data
from the production tables into dedicated views which should be used for creating advanced reports. The
advantages include:

• Clear naming of tables and views, allowing you to quickly locate the data you are looking for.
• Pre-processed data, giving you the possibility to access aggregated data without having to calculate it

yourself.
• Performance improvement, as reports can use much simpler and faster SQL queries.
• Less dependency on production database load, which also improves performance and removes load

spikes.

The current version of the data mart covers the results area. Further areas for reporting will be added to
the data mart in future releases. The following tables and views are currently available:

• The DM_TestStatus table is the basis for status-related views.
• The RV_TestStatusExtended view provides detailed information for a certain test execution.
• The RV_LatestTestStatus view provides status and extended information on the latest test run of a

test within the context of a specific execution plan and build.
• The RV_LatestFinishedTestStatus view provides status and extended information on the latest

test run of a test within the context of a specific execution plan and build. This view provides similar
information as the RV_LatestTestStatus view, but only for test runs within finished execution plan
runs.

• The RV_MaxTestRunID view is a helper to retrieve the latest test run ID for every test, execution plan,
and build combination.

• The RV_MaxFinishedTestRunID view is a helper to retrieve the latest test run ID for every test,
execution plan, and build combination. This view provides similar information as the
RV_MaxTestRunID view, but only for test runs from finished execution plan runs.

• The RV_TestingCycleStatus view provides status information for testing cycles.
• The RV_ExecutionPlanStatusPerBuild view retrieves the latest test status sums for every

execution plan in context of builds.
• The RV_EPFinishedStatusPerBuild view retrieves the latest test status sums for every execution

plan in context of builds. This view provides similar information as the
RV_ExecutionPlanStatusPerBuild view, but only for test runs from finished execution plan runs.

• The RV_ExecutionPlanStatusRollup view retrieves the sums for passed, failed, and not-executed
tests per execution plan or folder in context of a build.

• The RV_EPFinishedStatusRollup view retrieves the sums for passed, failed, and not-executed
tests per execution plan or folder in context of a build. This view provides similar information as the
RV_ExecutionPlanStatusRollup view, but only for test runs from finished execution plan runs.

• The RV_ConfigurationSuiteStatus view lists the status counts for all configuration suites and
configurations per build.

• The RV_ConfigSuiteFinishedStatus view lists the status counts for all configuration suites and
configurations per build. This view provides similar information as the
RV_ConfigurationSuiteStatus view, but only for test runs from finished execution plan runs.

You can download a .zip file with detailed information about the database schema of Silk Central. In the
menu, click Help > Documentation and then click Silk Central Database Schema to download the .zip
file.

4 | Overview

Architecture
Data is periodically extracted in the background from the production database tables and loaded into the
data mart tables and views for easy and fast querying. If the load on the database is not too high, this data
is usually available within less than a minute after any changes have been committed. If you are logged in
as a system administrator, you can check the current state of the data loading process by navigating to
http://<server>:<port>/sctm/check/db and checking the DM_TestStatus Table.

Note: If you are updating from a Silk Central version that did not include the data mart (before version
13.0), the data mart tables and views are initially filled with data from the production system.
Depending on your database size, this process can take some time. Once this process has
completed, you can access the data.

Architecture | 5

How to Create Reports with the Data Mart
The following examples demonstrate how to create useful reports with the data mart views.

Writing Data Mart Queries
1. In the menu, click Reports > Details View.

2. In the Reports tree, select the folder in which you want the new report to display.

This determines where the report is stored in the directory tree.

3. Click on the toolbar. The Create New Report dialog box opens.

4. Type the name of the new report.

This is the name that is displayed in the Reports tree.

5. Check the Share this report with other users check box if you want to make this report available to
other users.

6. Type a description of the report in the Description field.

7. Click Advanced Query to open the Report data query field. Insert previously written code or write new
code directly in the field.

The Insert placeholder list assists you in editing the SQL queries with predefined function
placeholders. For details, see SQL Functions for Custom Reports.

Note: If you manually edit SQL code for the query, click Check SQL to confirm your work.

8. Click Finish to save your settings.

Reliability of Tests in an Execution Plan

Problem

In a continuous integration environment tests are ideally executed at least once per day for testing the daily
build and ensuring the quality of your application under test. To understand how reliable your test set is for
measuring the quality of your AUT it is inevitable to sometimes have a look at how the results change over
time. For example you might have tests in your test set that frequently change status, therefore being no
real measure for quality.

Solution

Use the data mart view RV_TestStatusExtended to create a report that lists the results for a specific
test in the context of a specific execution plan. This allows you to see how this test’s results have changed
over time. For convenience, we will narrow the list of results down to those related to tagged builds, thus
looking at specific milestone builds of the application under test only. This report collects test result data for
tests in the context of execution plans and builds. In the following query we:

• Select the columns we want to display from this view.
• Narrow the result down by the ID of the test we want to investigate and the ID of the execution plan in

which the test belongs.
• Add a constraint to consider tagged builds only.

SELECT TestName, ExecutionPlanName, VersionName, BuildName, TestRunID,
 PassedCount, FailedCount, NotExecutedCount

6 | How to Create Reports with the Data Mart

FROM RV_TestStatusExtended
WHERE TestID = ${TESTID|1|Test ID} AND ExecutionPlanID = ${EXECUTIONPLANID|1|
Execution Plan ID} AND BuildIsTagged = 1
ORDER BY BuildOrderNumber

The result of the SQL query are all test runs for the selected test within the selected execution plan. In the
following example you can see that the test was re-run against build 579_Drop2:

TestName Execution
PlanName

Version
Name

BuildName TestRunID Passed
Count

FailedCount NotExecute
dCount

UI Tests EN|
SQL2012|
IE9|IIS

3.0 579_Drop02 7741797 59 5 0

UI Tests EN|
SQL2012|
IE9|IIS

3.0 579_Drop02 7745078 63 1 0

UI Tests EN|
SQL2012|
IE9|IIS

3.0 593_Drop03 7787437 63 1 0

UI Tests EN|
SQL2012|
IE9|IIS

3.0 605_Drop04 7848720 63 1 0

All Failed Tests in an Execution Folder

Problem

Typically all execution plans are structured in a folder hierarchy which identifies the different areas or
purposes to which the execution plans and their tests are related. The execution plans are triggered on a
regular basis in a continuous integration environment, or occasionally over the release time frame, resulting
in nice execution statistics – unfortunately for each single execution plan only.

However, sometimes you need an overall information to know how all your tests perform for a specific area
or purpose to identify where the weaknesses are.

Solution

Use the data mart view RV_LatestTestStatus to create a report that returns a list of all failed tests for a
specific execution planning hierarchy level.

The following query selects failed tests within an execution planning folder with context information like
execution plan name and build name:

SELECT TestID, TestName, ExecutionPlanID, ExecutionPlanName, BuildName
FROM RV_LatestTestStatus lts
INNER JOIN TM_ExecTreePaths ON lts.ExecutionPlanID =
TM_ExecTreePaths.NodeID_pk_fk
WHERE TM_ExecTreePaths.ParentNodeID_pk_fk = ${executionFolderID|2179|
Execution Folder ID}
 AND StatusID = 2
ORDER BY TestName

The query does the following:

• Uses the view RV_LatestTestStatus for retrieving the latest test run result.
• Includes the execution tree hierarchy (TM_ExecTreePaths) to be able to query all tests from all the

execution plans within the hierarchy.

How to Create Reports with the Data Mart | 7

• Uses the top level folder ID from where the analysis should be started as ParentNodeID_pk_fk.
• Includes only failed tests (StatusID = 2).

The StatusID can be looked up in the table TM_TestDefStatusNames.

The result of the SQL query are all tests in the selected execution folder for which the last run failed.

TestID TestName ExecutionPlanID ExecutionPlanName BuildName

14073 JUnitTestPackage 2184 CI Testing 352

14107 Volatile Tests 2191 Volatile Test 352

Testing Cycle Status

Problem

Testing cycles can be complex objects as they contain information about manual testers, tests, different
builds and versions of products, and maybe even configurations. To not lose track it is important to find
answers to questions like:

• How many tests have been finished?
• How many of them passed or failed per build?
• Are my manual testers still busy or can they do additional work?

Solution

Use the data mart view RV_TestingCycleStatus to create a report that shows the status of a testing
cycle per tester and build that will give you an overview of how many tests are passed, failed, not executed
grouped by manual tester, configuration and build.

SELECT BuildName, TesterLogin, TesterExecutionName,
 PassedCount, FailedCount, NotExecutedCount
FROM RV_TestingCycleStatus
WHERE TestingCycleID = ${testingCycleID|3|Testing Cycle ID}
ORDER BY BuildOrderNumber, TesterLogin

The query does the following:

• Uses the view RV_TestingCycleStatus as data source, as it contains BuildName, TesterLogin
and TesterExecutionName, which is the generated name reflecting tester, configuration and test.

• Limits the data to the testing cycle ID that you are interested in.

The result of the SQL query shows the status per build and tester.

BuildName TesterLogin TesterExecution
Name

PassedCount FailedCount NotExecuted
Count

352 No specific tester
(Test Assets)

0 0 1

351 admin admin (English|
SQL2008|FF|
Tomcat - Test
Assets)

0 1 0

352 admin admin (English|
SQL2008|FF|
Tomcat - Test
Assets)

0 0 1

8 | How to Create Reports with the Data Mart

BuildName TesterLogin TesterExecution
Name

PassedCount FailedCount NotExecuted
Count

352 gmazzuchelli gmazzuchelli
(English|
Oracle10g|IE8|
Tomcat - Test
Assets)

0 1 1

352 jallen jallen (German|
Oracle11g|FF|
Tomcat - Test
Assets)

1 1 0

352 smiller smiller (German|
SQL2008|IE8|IIS -
Test Assets)

1 1 0

For unassigned tests a "no specific tester" group is created with empty values for TesterLogin,
TesterFirstName, and TesterLastName.

In case you just want to see how your test cycle is doing based on the performance of your manual testers,
a slight variation of the query will help:

SELECT TesterLogin, TesterExecutionName, SUM(PassedCount) PassedCount,
 SUM(FailedCount) FailedCount, SUM(NotExecutedCount) NotExecutedCount
FROM RV_TestingCycleStatus
WHERE TestingCycleID = ${testingCycleID|3|Testing Cycle ID}
GROUP BY TesterLogin, TesterExecutionName
ORDER BY TesterLogin

The query is extended by:

• GROUP BY TesterLogin, TesterExecutionName for denoting the remaining columns.
• SUM() to the counters for aggregating the figures.

TesterLogin TesterExecution
Name

PassedCount FailedCount NotExecutedCount

No specific tester
(Test Assets)

0 0 1

admin admin (English|
SQL2008|FF|Tomcat -
Test Assets)

0 1 1

gmazzuchelli gmazzuchelli
(English|Oracle10g|
IE8|Tomcat - Test
Assets)

0 1 1

jallen jallen (German|
Oracle11g|FF|Tomcat
- Test Assets)

1 1 0

smiller smiller (German|
SQL2008|IE8|IIS -
Test Assets)

1 1 0

How to Create Reports with the Data Mart | 9

Execution Tree Status

Problem

It is a common practice to have execution plans in a hierarchical structure that represents different testing
areas or purposes. In some cases, for example for knowing the test status and therefore the quality of an
area or purpose, you will want to know the overall passed, failed, and not executed count.

Solution

Use the data mart view RV_ExecutionPlanStatusRollup to create a report that returns the passed,
failed, and not executed counts grouped by build for a specific execution planning folder.

SELECT BuildName, PassedCount, FailedCount, NotExecutedCount
FROM RV_ExecutionPlanStatusRollup
WHERE ExecutionFolderID = ${executionPlanID|43|Execution Plan ID}

The query does the following:

• Selects BuildName and the status counts from the RV_ExecutionPlanStatusRollup view.
• Specifies the top-level folder you want the status from (ExecutionFolderID).

The result of the SQL query shows the status of your test runs in all execution plans of the selected folder,
aggregated per build.

BuildName PassedCount FailedCount NotExecutedCount

351 0 0 2

352 15 7 1

If you are interested in more details, for example the status counts for each execution plan within the
selected hierarchy, you can use the data mart view RV_ExecutionPlanStatusPerBuild:

SELECT eps.BuildName, eps.ExecutionPlanID, SUM(eps.PassedCount) PassedCount,
 SUM(eps.FailedCount) FailedCount, SUM(eps.NotExecutedCount) NotExecutedCount
FROM RV_ExecutionPlanStatusPerBuild eps
INNER JOIN TM_ExecTreePaths etp ON eps.ExecutionPlanID = etp.NodeID_pk_fk
WHERE etp.ParentNodeID_pk_fk = ${execFolderID|44|Execution Folder ID}
GROUP BY eps.ExecutionPlanID, eps.BuildOrderNumber, eps.BuildName
ORDER BY eps.BuildOrderNumber, eps.ExecutionPlanID

The query does the following:

• Uses the RV_ExecutionPlanStatusPerBuild view to access execution-plan specific data
(ExecutionPlanID and ExecutionPlanName). The previously used
RV_ExecutionPlanStatusRollup view contains pre-aggregated data (summed up data), which is
not suitable for the purpose here as you would get results not only for execution plans but for the folder
nodes as well.

• Selects all nodes within a specific folder with a JOIN of the TM_ExecTreePath table to bring in
hierarchy information.

• Specifies the top-level folder with ExecutionFolderID. As the table TM_ExecutionTreePaths also
contains a self-reference for every execution plan, you could run this query with an execution plan ID for
ParentNodeID_pk_fk too, which would return the rows for the specific execution plan.

• Adds ORDER BY BuildOrderNumber and ExecutionPlanID to get a nicely ordered result, showing
the oldest builds and their execution plans first.

The result of the SQL query shows the status of your test runs in all execution plans of the selected folder.

10 | How to Create Reports with the Data Mart

BuildName ExecutionPlanID PassedCount FailedCount NotExecutedCount

351 2307 0 0 2

352 2184 11 2 0

352 2185 0 3 0

352 2186 2 1 0

352 2187 1 0 0

352 2191 0 1 0

352 2307 1 0 1

Configuration Suite Status

Problem

Configuration suites allow you to execute the same set of tests against multiple configurations, for example
multiple browsers or operating systems. To be able to make reasonable statements related to quality and
reliability of your application under test you will want to keep track of the results for each individual
configuration.

Solution

Use the data mart view RV_ConfigurationSuiteStatus to create a report that returns the passed,
failed, and not executed counts for each configuration per build.

SELECT BuildName, ConfigurationName, PassedCount, FailedCount,
NotExecutedCount
FROM RV_ConfigurationSuiteStatus
WHERE ConfigurationSuiteID = ${configSuiteID|97|Configuration Suite ID}
ORDER BY BuildOrderNumber, ConfigurationName

The query does the following:

• Retrieves the status counts per build of test runs from the RV_ConfigurationSuiteStatus view.
• Narrows the results down to the configuration suite (ConfigurationSuiteID).

The result of the SQL query shows the status of your test runs for each configuration.

BuildName ConfigurationName PassedCount FailedCount NotExecutedCount

350 Chrome 0 1 0

350 Firefox 0 1 0

350 Internet Explorer 0 1 0

351 Chrome 1 0 0

351 Firefox 1 0 0

351 Internet Explorer 0 1 0

352 Chrome 1 0 0

352 Firefox 1 0 0

352 Internet Explorer 1 0 0

How to Create Reports with the Data Mart | 11

In this example, we use the ID of the configuration suite to get all configurations. It is also possible to
restrict the result to specific builds, in which case you would have to include BuildID, BuildName, or
BuildOrderNumber in the where clause.

Note: The view RV_ConfigurationSuiteStatus only contains aggregated status counts without
any test-specific data. To retrieve additional test-specific data, you can use, for example, the view
RV_LatestTestStatus.

12 | How to Create Reports with the Data Mart

Troubleshooting

Wrong or Missing Data

Problem

When querying data from a data mart table or view, the listed results are not up to date or missing.

Resolution

The data mart tables and views are updated periodically in the background, but not in real time. Due to this,
it can take a few seconds up to a few minutes for the data to be loaded into the data mart tables. If your
system is running a heavy load, this influences the performance of the background process which is
loading the data. The reason is that other processes are prioritized higher and may temporarily block the
DataMartUpdater background job. Run your query again later to retrieve updated data.

If you are logged in as a system administrator, you can check the current state of the data loading process
by navigating to http://<server>:<port>/sctm/check/db and checking the DM_TestStatus Table.

Note: Tests and depending test runs are removed from the data mart if a test is deleted. This also
applies to deleted tests due to cleaning up test packages.

The Data Mart Slows Down the System

Problem

Since running the data mart, the system's overall performance seems to be poorer or behaves
inconsistently.

Resolution

While this should not happen, you can turn off the data mart to check if this actually resolves your issues:

1. On the Instance Administration page, stop the application server of the instance that you want to
modify.

2. Open the TMAppServerHomeConf.xml file with a text editor.The default path for this file is C:
\Program Files (x86)\Silk\Silk Central 20.6\instance_<instance
number>_<instance name>\Conf\AppServer on the application server.

3. Locate the Config/DataMart/Enabled XML tag and set the value to false.
4. Save and close the XML file.
5. Restart the application server.

Troubleshooting | 13

Reference: Data Mart Tables and Views
The following data mart tables and views are available for easy and fast reporting.

DM_TestStatus
The DM_TestStatus table is the basis for status-related views.

The other data mart views usually provide easier access to detailed data, as this table does not provide
direct access to information like the name of a test. The key of this table is the combination of the columns
TestID, ExecutionPlanID, BuildID, and TestRunID.

Row Description

TestID Identifier of the test.

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

TestRunID Identifier of the test run.

ExecutionRunID Identifies in which execution run this result was
generated.

StatusID Status of this test run (see
TM_TestDefStatusNames).

EDRStatusID Status of this execution run. For additional information,
see TM_TestDefStatusNames. For example, status
7 = pending manual run, status 10 = pending automated
run.

ReasonID Reason for the status of this test run (see
TM_ResultStatusReasons). Can be null.

PassedCount Sum of all passed tests, which is 0 or 1 for common tests
and can be more for package test roots.

FailedCount Sum of all failed tests, which is 0 or 1 for common tests
and can be more for package test roots.

NotExecutedCount Sum of all not-executed tests, which is 0 or 1 for common
tests and can be more for package test roots.

ProjectID ID of the project that this row belongs to.

TestStartTime Time when the test run started (UTC).

ExecutionStartTime Time when the execution run started (UTC).

TestDurationInMilliseconds Duration of the test run in milliseconds.

IsBlocked Flags the test run as blocked/unblocked

DbChangedAt Time when this row was last updated by the reporting
data mart.

14 | Reference: Data Mart Tables and Views

RV_TestStatusExtended
The RV_TestStatusExtended view provides detailed information for a certain test execution.

This view contains all test runs, in contrast to the view RV_LatestTestStatus which contains only the
latest test run of a test within the context of an execution plan and a certain build. You can use this view for
example to create a report that lists all test runs of your tagged builds. The key of this table is the
combination of the columns TestID, ExecutionPlanID, BuildID, and TestRunID.

Note: Tests and depending test runs are removed from the data mart if a test is deleted. This also
applies to deleted tests due to cleaning up test packages.

Row Description

TestID Identifier of the test.

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

TestRunID Identifier of the test run.

ExecutionRunID Identifies in which execution run this result was
generated.

StatusID Status of this test run (see
TM_TestDefStatusNames).

ReasonID Reason for the status of this test run (see
TM_ResultStatusReasons). Can be null.

PassedCount Sum of all passed tests, which is 0 or 1 for common tests
and can be more for package test roots.

FailedCount Sum of all failed tests, which is 0 or 1 for common tests
and can be more for package test roots.

NotExecutedCount Sum of all not-executed tests, which is 0 or 1 for common
tests and can be more for package test roots.

ProjectID ID of the project that this row belongs to.

TestStartTime Time when the test run started (UTC).

ExecutionStartTime Time when the execution run started (UTC).

TestDurationInMilliseconds Duration of the test run in milliseconds.

IsBlocked Flags the test run as blocked/unblocked

DbChangedAt Time when this row was last updated by the reporting
data mart.

TestName Name of the test.

TestDescription Description of the test.

TestParentID ID of the test's parent.

PlannedTimeInMinutes Time planned for this test in minutes.

Reason Name of the reason. Can contain reasons that have been
deleted in the meantime.

Reference: Data Mart Tables and Views | 15

Row Description

ExecutionPlanName Name of the execution plan.

ExecutionPlanDescription Description of the execution plan.

ExecutionParentFolderID ID of the execution plan's parent.

Priority Priority of the execution plan: 0 = Low, 1 = Medium, 2 =
High.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

RV_LatestTestStatus
The RV_LatestTestStatus view provides status and extended information on the latest test run of a
test within the context of a specific execution plan and build.

Use the RV_TestStatusExtended view to retrieve information about all test runs. You can use this view
to create a report that lists all failed tests in an execution folder. The key of this table is the combination of
the columns TestID, ExecutionPlanID, BuildID, and TestRunID.

Row Description

TestID Identifier of the test.

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

TestRunID Identifier of the test run.

ExecutionRunID Identifies in which execution run this result was
generated.

StatusID Status of this test run (see
TM_TestDefStatusNames).

ReasonID Reason for the status of this test run (see
TM_ResultStatusReasons). Can be null.

PassedCount Sum of all passed tests, which is 0 or 1 for common tests
and can be more for package test roots.

16 | Reference: Data Mart Tables and Views

Row Description

FailedCount Sum of all failed tests, which is 0 or 1 for common tests
and can be more for package test roots.

NotExecutedCount Sum of all not-executed tests, which is 0 or 1 for common
tests and can be more for package test roots.

ProjectID ID of the project that this row belongs to.

TestStartTime Time when the test run started (UTC).

ExecutionStartTime Time when the execution run started (UTC).

TestDurationInMilliseconds Duration of the test run in milliseconds.

IsBlocked Flags the test run as blocked/unblocked

DbChangedAt Time when this row was last updated by the reporting
data mart.

TestName Name of the test.

TestDescription Description of the test.

TestParentID ID of the test's parent.

PlannedTimeInMinutes Time planned for this test in minutes.

Reason Name of the reason. Can contain reasons that have been
deleted in the meantime.

ExecutionPlanName Name of the execution plan.

ExecutionPlanDescription Description of the execution plan.

ExecutionParentFolderID ID of the execution plan's parent.

Priority Priority of the execution plan: 0 = Low, 1 = Medium, 2 =
High.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

Reference: Data Mart Tables and Views | 17

RV_LatestFinishedTestStatus
The RV_LatestFinishedTestStatus view provides status and extended information on the latest test
run of a test within the context of a specific execution plan and build. This view provides similar information
as the RV_LatestTestStatus view, but only for test runs within finished execution plan runs.

Use this view to create reports that ignore currently running execution plans.

Use the RV_TestStatusExtended view to retrieve information about all test runs. The key of this table is
the combination of the columns TestID, ExecutionPlanID, BuildID, and TestRunID.

Row Description

TestID Identifier of the test.

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

TestRunID Identifier of the test run.

ExecutionRunID Identifies in which execution run this result was generated.

StatusID Status of this test run. For additional information, see the
TM_TestDefStatusNames table in the database schema of Silk
Central.

EDRStatusID Status of this execution run. For example, status 7 = pending manual run,
status 10 = pending automated run. For additional information, see the
TM_TestDefStatusNames table in the database schema of Silk
Central.

ReasonID Reason for the status of this test run. Can be null. For additional
information, see the TM_ResultStatusReasons table in the
database schema of Silk Central.

PassedCount Sum of all passed tests, which is 0 or 1 for common tests and can be
more for package test roots.

FailedCount Sum of all failed tests, which is 0 or 1 for common tests and can be more
for package test roots.

NotExecutedCount Sum of all not-executed tests, which is 0 or 1 for common tests and can
be more for package test roots.

ProjectID ID of the project that this row belongs to.

TestStartTime Time when the test run started (UTC).

ExecutionStartTime Time when the execution run started (UTC).

TestDurationInMilliseconds Duration of the test run in milliseconds.

IsBlocked Flags the test run as blocked/unblocked

DbChangedAt Time when this row was last updated by the reporting data mart.

TestName Name of the test.

TestDescription Description of the test.

TestParentID ID of the test's parent.

PlannedTimeInMinutes Time planned for this test in minutes.

18 | Reference: Data Mart Tables and Views

Row Description

Reason Name of the reason. Can contain reasons that have been deleted in the
meantime.

ExecutionPlanName Name of the execution plan.

ExecutionPlanDescription Description of the execution plan.

ExecutionParentFolderID ID of the execution plan's parent.

Priority Priority of the execution plan: 0 = Low, 1 = Medium, 2 = High.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

RV_MaxTestRunID
The RV_MaxTestRunID view is a helper to retrieve the latest test run ID for every test, execution plan, and
build combination.

The key of this table is the combination of the columns TestID, ExecutionPlanID and BuildID.

Row Description

TestID Identifier of the test.

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

MaxTestRunID Identifies the latest test run for the test in context of the
execution plan and build.

RV_MaxFinishedTestRunID
The RV_MaxFinishedTestRunID view is a helper to retrieve the latest test run ID for every test,
execution plan, and build combination. This view provides similar information as the RV_MaxTestRunID
view, but only for test runs from finished execution plan runs.

Use this view to create reports that ignore currently running execution plans.

Reference: Data Mart Tables and Views | 19

The key of this table is the combination of the columns TestID, ExecutionPlanID, and BuildID.

Row Description

TestID Identifier of the test.

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

MaxTestRunID Identifies the latest test run for the test in context of the execution plan
and build.

RV_TestingCycleStatus
The RV_TestingCycleStatus view provides status information for testing cycles.

You can use this view to create a report that shows the current status of a testing cycle.

TestingCycleID denotes the testing cycle and TesterExecutionID (as well as
TesterExecutionName, UserID, CapacityInCycle, TesterLogin, TesterFirstName,
TesterLastName) is used to identify the assigned tester in the testing cycle. For the tests which are not
assigned to a specific tester, the UserID, CapacityInCycle, TesterLogin, TesterFirstName, and
TesterLastName are null. The key of this table is the combination of the columns
TesterExecutionID and BuildID.

Row Description

TestingCycleID Identifier of the testing cycle.

TesterExecutionID Identifies the group of tests that are assigned to a specific
tester.

TesterExecutionName The generated name for the group of tests that are
assigned to a specific tester.

UserID The user ID of the tester.

CapacityInCycleInMinutes The capacity for this user in this testing cycle in minutes.

TesterLogin Login name of the tester.

TesterFirstName First name of tester.

TesterLastName Last name of tester.

PassedCount Sum of all passed tests.

FailedCount Sum of all failed tests.

NotExecutedCount Sum of all not-executed tests.

ProjectID Identifier of the project.

BuildID Identifier of the build.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

20 | Reference: Data Mart Tables and Views

Row Description

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

RV_ExecutionPlanStatusPerBuild
The RV_ExecutionPlanStatusPerBuild view retrieves the latest test status sums for every execution
plan in context of builds.

Folders and child nodes are not considered. You can use this view to create a report that shows the status
of your test runs for each execution plan in a folder. In contrast to RV_ExecutionPlanStatusRollup,
this view has a slight performance advantage as no hierarchy is considered for retrieving the data. The key
of this table is the combination of the columns ExecutionPlanID and BuildID.

Row Description

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

ExecutionPlanName Name of the execution plan.

ExecutionParentFolderID ID of the execution plan's parent.

PassedCount Sum of all passed tests.

FailedCount Sum of all failed tests.

NotExecutedCount Sum of all not-executed tests.

ProjectID ID of the project that the execution plan belongs to.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

Reference: Data Mart Tables and Views | 21

Row Description

ProductOrderNumber Order number of the product.

RV_EPFinishedStatusPerBuild
The RV_EPFinishedStatusPerBuild view retrieves the latest test status sums for every execution plan
in context of builds. This view provides similar information as the RV_ExecutionPlanStatusPerBuild
view, but only for test runs from finished execution plan runs.

Use this view to create reports that ignore currently running execution plans. Folders and child nodes are
not considered. You can use this view to create a report that shows the status of your test runs for each
execution plan in a folder. In contrast to RV_ExecutionPlanStatusRollup, this view has a slight
performance advantage as no hierarchy is considered for retrieving the data. The key of this table is the
combination of the columns ExecutionPlanID and BuildID.

Row Description

ExecutionPlanID Identifier of the execution plan.

BuildID Identifier of the build.

ExecutionPlanName Name of the execution plan.

ExecutionParentFolderID ID of the execution plan's parent.

PassedCount Sum of all passed tests.

FailedCount Sum of all failed tests.

NotExecutedCount Sum of all not-executed tests.

ProjectID ID of the project that the execution plan belongs to.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

RV_ExecutionPlanStatusRollup
The RV_ExecutionPlanStatusRollup view retrieves the sums for passed, failed, and not-executed
tests per execution plan or folder in context of a build.

22 | Reference: Data Mart Tables and Views

In case of folders, the counters include the numbers from all children. You can use this view to create a
report that shows the status of all test runs in a folder. The key of this table is the combination of the
columns ExecutionFolderID and BuildID.

Row Description

ExecutionFolderID Identifier of the execution plan.

BuildID Identifier of the build.

PassedCount Sum of all passed tests.

FailedCount Sum of all failed tests.

NotExecutedCount Sum of all not-executed tests.

ProjectID ID of the project that the execution plan belongs to.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

RV_EPFinishedStatusRollup
The RV_EPFinishedStatusRollup view retrieves the sums for passed, failed, and not-executed tests
per execution plan or folder in context of a build. This view provides similar information as the
RV_ExecutionPlanStatusRollup view, but only for test runs from finished execution plan runs.

Use this view to create reports that ignore currently running execution plans.

In case of folders, the counters include the numbers from all children. The key of this table is the
combination of the columns ExecutionFolderID and BuildID.

Row Description

ExecutionFolderID Identifier of the execution plan.

BuildID Identifier of the build.

PassedCount Sum of all passed tests.

FailedCount Sum of all failed tests.

NotExecutedCount Sum of all not-executed tests.

ProjectID ID of the project that the execution plan belongs to.

Reference: Data Mart Tables and Views | 23

Row Description

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

RV_ConfigurationSuiteStatus
The RV_ConfigurationSuiteStatus view lists the status counts for all configuration suites and
configurations per build.

You can use this view to create a report that shows the status of all test runs for each configuration in a
configuration suite. The key of this table is the combination of the columns ConfigurationID and
BuildID.

Row Description

ConfigurationSuiteID Identifier of the configuration suite.

ConfigurationID Identifier of the configuration.

ConfigurationName Name of the configuration.

BuildID Identifier of the build.

PassedCount Sum of all passed tests.

FailedCount Sum of all failed tests.

NotExecutedCount Sum of all not-executed tests.

ProjectID ID of the project that this row belongs to.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

24 | Reference: Data Mart Tables and Views

Row Description

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

RV_ConfigSuiteFinishedStatus
The RV_ConfigSuiteFinishedStatus view lists the status counts for all configuration suites and
configurations per build. This view provides similar information as the RV_ConfigurationSuiteStatus
view, but only for test runs from finished execution plan runs.

Use this view to create reports that ignore currently running execution plans.

The key of this table is the combination of the columns ConfigurationID and BuildID.

Row Description

ConfigurationSuiteID Identifier of the configuration suite.

ConfigurationID Identifier of the configuration.

ConfigurationName Name of the configuration.

BuildID Identifier of the build.

PassedCount Sum of all passed tests.

FailedCount Sum of all failed tests.

NotExecutedCount Sum of all not-executed tests.

ProjectID ID of the project that this row belongs to.

BuildName Name of the build used for this test run.

BuildDescription Description of the build.

BuildOrderNumber Order number of the build.

BuildIsTagged 1 if the build is tagged, 0 otherwise.

VersionID ID of the version that the build belongs to.

VersionName Name of the version.

VersionDescription Description of the version.

VersionOrderNumber Order number of the version.

ProductID ID of the product that the build belongs to.

ProductCode Name of the product.

ProductDescription Description of the product.

ProductOrderNumber Order number of the product.

Reference: Data Mart Tables and Views | 25

	Contents
	Overview
	Architecture
	How to Create Reports with the Data Mart
	Writing Data Mart Queries
	Reliability of Tests in an Execution Plan
	All Failed Tests in an Execution Folder
	Testing Cycle Status
	Execution Tree Status
	Configuration Suite Status

	Troubleshooting
	Wrong or Missing Data
	The Data Mart Slows Down the System

	Reference: Data Mart Tables and Views
	DM_TestStatus
	RV_TestStatusExtended
	RV_LatestTestStatus
	RV_LatestFinishedTestStatus
	RV_MaxTestRunID
	RV_MaxFinishedTestRunID
	RV_TestingCycleStatus
	RV_ExecutionPlanStatusPerBuild
	RV_EPFinishedStatusPerBuild
	RV_ExecutionPlanStatusRollup
	RV_EPFinishedStatusRollup
	RV_ConfigurationSuiteStatus
	RV_ConfigSuiteFinishedStatus

