
Silk Performer 19.5

.NET Framework Help

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 1992-2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2018-10-23

ii

Contents

Tools and Samples ...5
Introduction ... 5
Provided Tools ...6

Silk Performer .NET Explorer ... 6
Silk Performer Visual Studio Extension ... 6
Silk Performer Java Explorer .. 6
Silk Performer Workbench ..7

Sample Applications for testing Java and .NET .. 7
Public Web Services .. 7
.NET Message Sample .. 8
.NET Explorer Remoting Sample ... 8
Java RMI Samples ... 8

Sample Test Projects .. 9
.NET Sample Projects .. 9
Java Sample Projects ...10

Silk Performer .NET Framework ..11
Testing .NET Components .. 11

The .NET Framework Approach ...11
The .NET Explorer Approach ... 11

Understanding the .NET Framework Platform .. 11
Working with Silk Performer .NET Framework ... 11
Silk Performer .NET Framework Overview ...12
Intermediate Code ..13
Silk Performer Helper Classes ... 13
Silk Performer Visual Studio Extension ... 13

Load Testing .NET Components ... 15
Setting Up Silk Performer .NET Projects ...15
Creating a Web Service Client Proxy ..16
Instantiating Client Proxy Objects ... 17
Try Script Runs From Microsoft Visual Studio ...17

Executing a Try Script Run ... 17
Web Service Calls ...18

Routing Web Service Calls ...19
Dependencies ... 19

Adding Dependencies .. 19
Configuring .NET Add-In Option Settings ... 20
Continuing Your Work in Silk Performer .. 20
Custom Attributes ..20

Attributes for Unit Test Standards ...22
Negative Testing ...22
Custom Attributes Code Sample .. 23
Generated BDF Script Example ... 23

Testing .NET Services ..25
Development Workflow ... 25
Writing a .NET Test Driver ...25

Creating a .NET Project ... 25
Defining a Virtual User in .NET .. 26
Defining a Transaction in .NET ...26
Defining Additional Test Methods ... 27
Passing Data Between BDL and .NET ... 28

Contents | 3

Calling BDL Functions from .NET .. 30
Random Variables .. 32
Exception Handling .. 32
Debugging .. 33
Configuration Files ... 33

BDL Code Generation Engine ...34
Virtual User .. 34
Transactions - Virtual User Classes ... 35
Test Methods .. 35
Test Attributes ...36
Methods with Parameters ...36
BDL Parameters ... 38
Intelligent Parameter Passing ...38
Options ... 39

Testing Your .NET Test Driver ... 41
Preparations ... 41
Try Script Runs ...43
Exploring Results ... 43
Running Tests in Silk Performer ... 44

Testing Web Services With Microsoft Visual Studio ..44
Creating a Web Service Client Proxy ... 44
Instantiating a Client Proxy Object ... 44
Calling a Web Service Method ... 45
Routing Web-Service Traffic ...45
Exploring Results in Visual Studio ..46

Testing with .NET Explorer ..46
Available BDL Functions for .NET Interoperability .. 46

DotNetLoadObject Function ... 46
DotNetFreeObject Function ..47
DotNetCallMethod Function ... 48
DotNetSetString Function ...49
DotNetSetFloat Function .. 50
DotNetSetBool Function ...51
DotNetSetInt Function .. 52
DotNetSetObject Function ..53
DotNetGetString Function .. 54
DotNetGetFloat Function ..55
DotNetGetBool Function .. 55
DotNetGetInt Function ..56
DotNetGetObject Function ... 57

4 | Contents

Tools and Samples
Explains the tools, sample applications and test projects that Silk Performer provides for testing Java
and .NET.

Introduction
This introduction serves as a high-level overview of the different test approaches and tools, including Java
Explorer, Java Framework, .NET Explorer, and .NET Framework, that are offered by Silk Performer Service
Oriented Architecture (SOA) Edition.

Silk Performer SOA Edition Licensing

Each Silk Performer installation offers the functionality required to test .NET and Java components. Access
to Java and .NET component testing functionality is however only enabled through Silk Performer licensing
options. A Silk Performer SOA Edition license is required to enable access to component testing
functionality. Users may or may not additionally have a full Silk Performer license.

What You Can Test With Silk Performer SOA Edition

With Silk Performer SOA Edition you can thoroughly test various remote component models, including:

• Web Services
• .NET Remoting Objects
• Enterprise JavaBeans (EJB)
• Java RMI Objects
• General GUI-less Java and .NET components

Unlike standard unit testing tools, which can only evaluate the functionality of a remote component when a
single user accesses it, Silk Performer SOA Edition can test components under concurrent access by up to
five virtual users, thereby emulating realistic server conditions. With a full Silk Performer license, the
number of virtual users can be scaled even higher. In addition to testing the functionality of remote
components, Silk Performer SOA Edition also verifies the performance and interoperability of components.

Silk Performer SOA Edition assists you in automating your remote components by:

• Facilitating the development of test drivers for your remote components
• Supporting the automated execution of test drivers under various conditions, including functional test

scenarios and concurrency test scenarios
• Delivering quality and performance measures for tested components

Silk Performer offers the following approaches to creating test clients for remote components:

• Visually, without programming, through Java Explorer and .NET Explorer
• Using an IDE (Microsoft Visual Studio)
• Writing Java code
• Recording an existing client
• Importing JUnit or NUnit testing frameworks
• Importing Java classes
• Importing .NET classes

Tools and Samples | 5

Provided Tools
Offers an overview of each of the tools provided with Silk Performer for testing Java and .NET.

Silk Performer .NET Explorer
Silk Performer .NET Explorer, which was developed using .NET, enables you to test Web Services, .NET
Remoting objects, and other GUI-less .NET objects. .NET Explorer allows you to define and execute
complete test scenarios with different test cases without requiring manual programming; everything is done
visually through point and click operations. Test scripts are visual and easy to understand, even for staff
members who are not familiar with .NET programming languages.

Test scenarios created with .NET Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing, and to Microsoft Visual Studio for further customization.

Silk Performer Visual Studio Extension
The Silk Performer Visual Studio extension allows you to implement test drivers in Microsoft Visual Studio
that are compatible with Silk Performer. Such test drivers can be augmented with Silk Performer features
that facilitate test organization, verification, performance measurement, test data generation, and reporting.

Tests created with the extension can be run either within Microsoft Visual Studio, with full access to Silk
Performer's functionality, or within Silk Performer, for concurrency and load testing scenarios.

The extension offers the following features:

• Writing test code in any of the main .NET languages (C# or VB.NET).
• Testing Web services / .NET Remoting objects and redirecting HTTP traffic over the Silk Performer Web

engine to take advantage of features such as modem simulation and IP-address multiplexing. SOAP
envelopes can also be explored using TrueLog Explorer.

• Defining virtual users and their transactions through .NET custom attributes. A BDL script is generated
automatically based on the custom attributes that have been applied to classes/methods.

• Running TryScript tests from within Microsoft Visual Studio with the ability to watch virtual user output in
a tool window within Microsoft Visual Studio.

• Exploring the results of Try Scripts.

.NET Resources

• http://msdn.microsoft.com/net

Silk Performer Java Explorer
Silk Performer Java Explorer, which was developed using Java, enables you to test Web Services,
Enterprise JavaBeans (EJB), RMI objects, and other GUI-less Java objects. Java Explorer allows you to
define and execute complete test scenarios with multiple test cases without requiring manual programming.
Everything can be done visually via point and click operations. Test scripts are visual and easy to
understand, even for personnel who are not familiar with Java programming.

Test scenarios created with Java Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing.

Note: Java Explorer is only compatible with JDK versions 1.2 and later (v1.4 or later recommended).

6 | Tools and Samples

http://msdn.microsoft.com/net

Java Resources

• http://java.sun.com
• http://www.javaworld.com

Silk Performer Workbench
Remote component tests that are developed and executed using Java Explorer or .NET Explorer can be
executed within Silk Performer Workbench. Silk Performer is an integrated test environment that serves as
a central console for creating, executing, controlling and analyzing complex testing scenarios. Java
Explorer and .NET Explorer visual test scripts can be exported to Silk Performer by creating Silk Performer
Java Framework and .NET Framework projects. While Java Explorer and .NET Explorer serve as test-beds
for functional test scenarios, Silk Performer can be used to run the same test scripts in more complex
scenarios for concurrency and load testing.

In the same way that Silk Performer is integrated with Java Explorer and .NET Explorer, Silk Performer is
also integrated with Silk Performer's Visual Studio .NET Add-On. Test clients created in Microsoft Visual
Studio using Silk Performer's Visual Studio .NET Add-On functionality can easily be exported to Silk
Performer for concurrency and load testing.

Note: Because there is such a variety of Java development tools available, a Java tool plug-in is not
feasible. Instead, Silk Performer offers features that assist Java developers, such as syntax
highlighting for Java and the ability to run the Java complier from Silk Performer Workbench.

In addition to the integration of Silk Performer with .NET Explorer, Java Explorer, and Microsoft Visual
Studio, you can use Silk Performer to write custom Java and .NET based test clients using Silk Performer's
powerful Java and .NET Framework integrations.

The tight integration of Java and .NET as scripting environments for Silk Performer test clients allows you
to reuse existing unit tests developed with JUnit and NUnit by embedding them into Silk Performer's
framework architecture. To begin, launch Silk Performer and create a new Java or .NET Framework-based
project.

In addition to creating test clients visually and manually, Silk Performer also allows you to create test clients
by recording the interactions of existing clients, or by importing JUnit test frameworks or existing Java/.NET
classes. A recorded test client precisely mimics the interactions of a real client.

Note: The recording of test clients is only supported for Web Services clients.

To create a Web Service test client based on the recording of an existing Web Service client, launch Silk
Performer and create a new project of application type Web Services/XML/SOAP.

Sample Applications for testing Java and .NET
The sample applications provided with Silk Performer enable you to experiment with Silk Performer's
component-testing functionality.

Sample applications for the following component models are provided:

• Web Services
• .NET Remoting
• Java RMI

Public Web Services
Several Web Services are hosted on publicly accessible demonstration servers:

• http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

Tools and Samples | 7

http://java.sun.com
http://www.javaworld.com
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

• http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
• http://demo.borland.com/OrderWebService/OrderService.asmx
• http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

Note: OrderWebService provides the same functionality as OrderWebServiceEx, however it makes
use of SOAP headers in transporting session information, which is not recommended as a starting
point for Java Explorer.

.NET Message Sample
The .NET Message Sample provides a .NET sample application that utilizes various .NET technologies:

• Web Services
• ASP.NET applications communicating with Web Services
• WinForms applications communicating with Web Services and directly with .NET Remoting objects.

To access the .NET Message Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
19.5 > Sample Applications > .NET Framework Samples .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 19.5 >
Sample Applications > .NET Framework Samples .

.NET Explorer Remoting Sample
The .NET Remoting sample application can be used in .NET Explorer for the testing of .NET Remoting.

To access the .NET Explorer Remoting Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
19.5 > Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 19.5 >
Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

DLL reference for .NET Explorer: <public user documents>\Silk Performer 19.5\SampleApps
\DOTNET\RemotingSamples\RemotingLib\bin\debug\RemotingLib.dll.

Java RMI Samples
Two Java RMI sample applications are included:

• A simple RMI sample application that is used in conjunction with the sample Java Framework project
(<public user documents>\Silk Performer 19.5\Samples\JavaFramework\RMI).

To start the ServiceHello RMI Server, go to: Start > Programs > Silk > Silk Performer 19.5 > Sample
Applications > Java Samples > RMI Sample - SayHello.

• A more complex RMI sample that uses RMI over IIOP is also available. For details on setting up this
sample, go to: Start > Programs > Silk > Silk Performer 19.5 > Sample Applications > Java
Samples > Product Manager. This sample can be used with the sample test project that is available at
<public user documents>\Silk Performer 19.5\SampleApps\RMILdap.

Java RMI can be achieved using two different protocols, both of which are supported by Java Explorer:

• Java Remote Method Protocol (JRMP)
• RMI over IIOP

8 | Tools and Samples

http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
http://demo.borland.com/OrderWebService/OrderService.asmx
http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

Java Remote Method Protocol (JRMP)

A simple example server can be found at <public user documents>\Silk Performer
19.5\SampleApps\Java.

Launch the batch file LaunchRemoteServer.cmd to start the sample server. Then use the Java Explorer
Start Here Wizard to begin testing RMI objects. Select RMI and click Next.

The next dialog asks for the RMI registry settings and a classpath where the RMI interfaces for the client
can be found. Here are the settings to be used for this example:

Host: localhost

Port: 1099

Client Stub Class: <public user documents>\Silk Performer 19.5\SampleApps\Java\Lib
\sampleRmi.jar.

RMI over IIOP

A simple example server can be found at: <public user documents>\Silk Performer
19.5\SampleApps\Java.

Launch the batch file LaunchRemoteServerRmiOverIiop.cmd to start the sample server.

Use the Java Explorer Start Here Wizard to begin testing RMI objects. Select Enterprise
JavaBeans/RMI over IIOP and click Next.

The next step asks for the JNDI settings and a classpath where the RMI interfaces for the client can be
found. Here are the settings to be provided for this example:

Server: Sun J2EE Server

Factory: com.sun.jndi.cosnaming.CNCtxFactory

Provider URL: iiop://localhost:1050

Stub Class: Click Browse and add the following jar file: <public user documents>\Silk
Performer 19.5\SampleApps\Java\Lib\sampleRmiOverIiop.jar.

Sample Test Projects
The following sample projects are included with Silk Performer. To open a sample test project, open Silk
Performer and create a new project. The Workflow - Outline Project dialog opens. Select the application
type Samples.

.NET Sample Projects

.NET Remoting

This sample project implements a simple .NET Remoting client using the Silk Performer .NET Framework.
The .NET Remoting test client, written in C#, comes with a complete sample .NET Remoting server.

Web Services
This sample shows you how to test SOAP Web Services with the Silk Performer .NET Framework. The
sample project implements a simple Web Services client. The Web Services test client, written in C#,
accesses the publicly available demo Web Service at: http://demo.borland.com/BorlandSampleService/
BorlandSampleService.asmx

Tools and Samples | 9

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

Java Sample Projects

JDBC

This sample project implements a simple JDBC client using the Silk Performer Java Framework. The JDBC
test client connects to the Oracle demo user scott using Oracle's "thin" JDBC driver. You must configure
connection settings in the databaseUser.bdf BDL script to run the script in your environment. The
sample accesses the EMP Oracle demo table.

RMI/IIOP

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
uses IIOP as the transport protocol and connects to a RMI server provided as a sample application. For
detailed instructions on setting up this sample project, see <public user documents>\Silk
Performer 19.5\SampleApps\RMILdap\Readme.html.

The Java RMI server can be found at: <public user documents>\Silk Performer
19.5\SampleApps\RMILdap.

RMI

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
connects to a RMI server provided as a sample application. For detailed instructions on setting up this
sample project, see <public user documents>\Silk Performer 19.5\SampleApps\RMILdap
\Readme.html.

To access the Java RMI server:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
19.5 > Sample Applications > Java Samples > RMI Sample - SayHello .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 19.5 >
Sample Applications > Java Samples > RMI Sample - SayHello.

10 | Tools and Samples

Silk Performer .NET Framework
Silk Performer’s .NET Framework enables developers and QA personnel to coordinate their development
and testing efforts while allowing them to work entirely within their specialized environments: Developers
work exclusively in Visual Studio while QA staff work exclusively in Silk Performer—there is no need for
staff to learn new tools. Silk Performer’s .NET Framework thereby encourages efficiency and tighter
integration between QA and development. The Silk Performer .NET Framework (.NET Framework)
and .NET Add-On enable you to easily access Web services from within .NET. Microsoft Visual Studio
offers wizards that allow you to specify the URLs of Web services. Microsoft Visual Studio can also create
Web-service client proxies to invoke Web-service methods.

Testing .NET Components
Silk Performer’s Visual Studio .NET Add-On provides functionality to developers working in .NET-enabled
languages for generating Silk Performer projects and test scripts entirely from within Visual Studio.0

The .NET Framework Approach
The .NET Framework approach to testing is ideal for developers and advanced QA personnel who are not
familiar with coding BDL (Silk Performer’s Benchmark Description Language) scripting language, but are
comfortable using Visual Studio to code .NET-enabled languages such as C#, COBOL.NET, C++ .NET, and
Visual Basic.NET. With Silk Performer’s Visual Studio .NET Add-On, developers can generate Silk
Performer projects and test scripts entirely from within Visual Studio by simply adding marking attributes to
the methods they write in Visual Studio. The Add-On subsequently creates all BDL scripting that is required
to enable the QA department to invoke newly created methods from Silk Performer.

The .NET Explorer Approach
.NET Explorer is a GUI-driven tool that is well suited to QA personnel who are proficient with Silk Performer
in facilitating analysis of .NET components and thereby creating Silk Performer projects, test case
specifications, and scripts from which load tests can be run.

Developers who are proficient with Microsoft Visual Studio may also find .NET Explorer helpful for quickly
generating basic test scripts that can subsequently be brought into Visual Studio for advanced
modification.

Understanding the .NET Framework Platform
.NET Framework is a powerful programming platform that enables developers to create Windows-based
applications. The .NET Framework is comprised of CLR (Common Language Runtime, a language-neutral
development environment) and FCL (Framework Class Libraries, an object-oriented functionality library).

Visit the .NET Framework Developer Center for full details regarding the .NET Framework.

Working with Silk Performer .NET Framework
The Silk Performer .NET Framework allows you to test Web services and .NET components. The
framework includes a set of the Benchmark Description Language (BDL) API functions of Silk Performer
and an add-on for Microsoft Visual Studio.

Silk Performer .NET Framework | 11

http://msdn.microsoft.com/netframework/

Note: For additional details regarding the available BDL API functions, refer to the Benchmark
Description Language (BDL) Reference.

The framework allows you to either code your BDL calls to .NET objects manually in Silk Performer or use
generated BDL code from the Visual Studio .NET Add-On. One benefit of the latter approach is that the
developer of the .NET test driver doesn't require BDL skills, because BDL script generation is handled
"behind the scenes" by the Visual Studio .NET Add-On. BDL Scripts can be launched for testing purposes
from within Microsoft Visual Studio through the Add-On. All user output and generated output files, like
TrueLogs, logs, output, and others, can be viewed from within Microsoft Visual Studio.

The .NET Framework allows you to route all HTTP/HTTPS traffic that is generated by a .NET component
over the Silk Performer Web engine. This feature logs TrueLog nodes for each SOAP or .NET Remoting
Web request, that is made by a .NET component.

This architecture provides good separation between test driver code and the test environment. There are
also mechanisms for defining interaction between BDL and .NET, so you can design a fully
customizable .NET test driver from a generated Silk Performer BDL script.

Silk Performer .NET Framework Overview

The Silk Performer .NET Framework integration allows you to instantiate .NET objects and then call
methods on them.

The Microsoft .NET Common Language Runtime (CLR) is hosted by the Silk Performer virtual user
process when BDF scripts contain DotNet BDL functions.

HTTP/HTTPS traffic that is generated by instantiated .NET objects can be routed over the Silk Performer
Web engine. Each WebRequest/WebResponse is logged in a TrueLog, allowing you to see what is sent
over the wire when executing Web service and .NET Remoting calls.

Depending on the active profile setting, which is a .NET application domain setting, either each virtual user
has its own .NET application domain where .NET objects are loaded, or alternately all virtual users in the
process can share an application domain.

A .NET application domain isolates its running objects from other application domains. An application
domain is like a virtual process where the objects running in the process are safe from interruption by other
processes. The advantage of having one application domain for each virtual user is that the objects that
are loaded for each user don't interrupt objects from other users, since they are isolated in their own
domains.

The disadvantage is that additional application domains require additional administrative overhead of the
CLR. This overhead results in longer object-loading and method-invocation times.

12 | Silk Performer .NET Framework

Intermediate Code
.NET code is not compiled into binary “machine” code. .NET code is intermediate code. Intermediate code
is descriptive language that delivers instructions, for example “call this method” or “add these numbers”, to
functions that are available in libraries or within remote components.

.NET code runs within a machine-independent runtime, or “execution engine,” which can be run on any
platform—Windows, Unix, Linux, or Macintosh. So, regardless of the platform you’re running, you can run
the same intermediate code. The drawback of this cross-platform compatibility is that, because
intermediate code must be integrated with a runtime, it’s slower than compiled machine code.

.NET code calls basic Microsoft functionality that is available in .NET class libraries. These are the “base”
classes. “Specific” classes, for creating Web applications, Windows applications, and Web Services are
also available. In the runtime itself you also have some classes that are offered by Microsoft for building
applications—all of this comprises the .NET Framework upon which intermediate code can be written using
one of a number of available .NET-enabled programming languages.

It doesn’t matter which language is used to create the intermediate code that delivers instructions to the
available classes through the .NET runtime—the resulting functionality is the same.

Silk Performer Helper Classes
.NET helper classes serve as an interface between Silk Performer’s BDL language and the .NET language.
Although Silk Performer is able to call the .NET Framework through the basic functions that it offers, helper
classes are required to enable .NET to call back to Silk Performer. With helper classes, which are
generated automatically with .NET Explorer and the Visual Studio .NET Add-On, .NET developers can take
full advantage of developing test code in .NET and don’t need to learn BDL. The test code that developers
deliver to QA, by making use of helper classes, can be called from Silk Performer or scheduled in load
tests using Silk Central.

Silk Performer Visual Studio Extension
The Silk Performer Visual Studio extension allows you to implement test drivers in Microsoft Visual Studio
that are compatible with Silk Performer. Such test drivers can be augmented with Silk Performer features
that facilitate test organization, verification, performance measurement, test data generation, and reporting.

Tests created with the extension can be run either within Microsoft Visual Studio, with full access to Silk
Performer's functionality, or within Silk Performer, for concurrency and load testing scenarios.

The extension offers the following features:

• Writing test code in any of the main .NET languages (C# or VB.NET).
• Testing Web services / .NET Remoting objects and redirecting HTTP traffic over the Silk Performer Web

engine to take advantage of features such as modem simulation and IP-address multiplexing. SOAP
envelopes can also be explored using TrueLog Explorer.

• Defining virtual users and their transactions through .NET custom attributes. A BDL script is generated
automatically based on the custom attributes that have been applied to classes/methods.

• Running TryScript tests from within Microsoft Visual Studio with the ability to watch virtual user output in
a tool window within Microsoft Visual Studio.

• Exploring the results of Try Scripts.

.NET Resources

• http://msdn.microsoft.com/net

Silk Performer .NET Framework | 13

http://msdn.microsoft.com/net

Installing the Visual Studio Extension
By default, the Silk Performer Visual Studio Extension is not installed with the main Silk Performer installer.
To create and run Silk Performer .NET Framework projects in Visual Studio, you need to install the
extension:

1. In the Silk Performer installation directory, open Templates\DotNet.

2. Execute the file SpVsExtension.vsix.

Starting the Visual Studio Extension
Perform one of the following steps to start the Visual Studio extension:

• Click Start > All Programs > Microsoft Visual Studio > Microsoft Visual Studio and create a new
Silk Performer Visual Studio project.

• Click Start > All Programs > Silk > Silk Performer 19.5 > Silk Performer Workbench and create a
new project with the application type .NET > .NET Framework using Visual Studio .NET Add-On.

14 | Silk Performer .NET Framework

Load Testing .NET Components
This section explains how to use the Silk Performer Visual Studio .NET Add-On for the testing of .NET
components and Web services.

Setting Up Silk Performer .NET Projects
1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select .NET > .NET Framework using Visual Studio .NET Add-On and
click Next. The Workflow - Model Script dialog box opens.

5. Select the .NET Language (C# or VB.NET) icon for the language you prefer and click OK. The Microsoft
Visual Studio Silk Performer Project Wizard opens.

6. Enter the name of the .NET Testclass in the Name of testclass text box. In the Silk Performer Project
text box, enter the name of the project that you created earlier in Silk Performer.

7. Click Finish.

The following in the files and code are generated in Microsoft Visual Studio:

• Each generated Testclass becomes a VirtualUser in the BDL script.
• The first transaction becomes the Init transaction in the BDL script.
• Files that are generated by the Wizard (code files and Silk Performer project/BDL scripts) are listed on

the Solution Explorer page.
• Handler/clean-up code can be inserted in the stopException method.
• Custom code for exception handling can be inserted in the testException method.
• ETransactionType.TRANSTYPE_MAIN becomes the Main transaction in the BDL script.
• ETransactionType.TRANSTYPE_END becomes the End transaction in the BDL script.

Sample Skeleton Code Generated by the Project Wizard (C#)

using System;
using Silk Performer;

namespace SPProject1
{
 [VirtualUser("VUser")]
 public class VUser
 {
 public VUser()
 {
 }

 [Transaction(ETransactionType.TRANSTYPE_INIT)]
 public void TInit()
 {
 /* You can add multiple TestAttribute attributes to each
function defining parameters that can be accessed through

Load Testing .NET Components | 15

Bdl.AttributeGet

 Example of testcode: (Access bdl function through the
static functions of the Bdl class Bdl.MeasureStart(...);
 ...
 Bdl.MeasureStop(...);
 */
 }

 [Transaction(ETransactionType.TRANSTYPE_MAIN)]
 public void TMain()
 {
 }

 [Transaction(ETransactionType.TRANSTYPE_END)]
 public void TEnd()
 {
 }
 }
}

As you can see from the skeleton example above, there is a custom attribute called
VirtualUser that can be applied to classes. This causes the Add-On's BDL
Generation Engine to generate a virtual user definition. You can implement multiple
classes that have the VirtualUser attribute applied. The VirtualUser attribute
takes the name virtual user as a parameter.

The BDL Generation Engine then parses the methods of the Virtual User class for
methods that have a Transaction attribute applied to them. The Transaction
attribute takes as a first parameter the transaction type (Init, Main or End). You can
only have one Init and one End transaction, but multiple Main transactions.

The Main transaction type takes a second parameter that indicates the number of times
that the transaction is to be called during load tests (default: 1).

Creating a Web Service Client Proxy
Microsoft Visual Studio includes a wizard that generates a Web Service client proxy that you can use to call
Web Service methods. The wizard is launched via Project > Add Web Reference.

1. Type the URL of your Web Service into the top text box, for example, http://demo.borland.com/
BorlandSampleService/BorlandSampleService.asmx?WSDL, and click Enter. The Add Web
Reference button is enabled when the wizard loads the WSDL document from the specified URL.

2. Click Add Web Reference. The wizard generates a proxy class in a namespace that is the reverse of
the name of the Web server that hosts the service (for example, demo.host.com becomes
com.host.demo).

3. Explore objects to see which classes have been generated. Each Web Service, and all complex data
types used by the Web Service methods, are represented as classes.

In the generated proxy code, the proxy class takes its name from the Web Service. The namespace of
the class is the reverse of the name of the Web server that hosts the service. All files that are generated
by the Add Web Reference wizard are displayed on the Solution Explorer tab.

Note: The Show All Files option must be activated to display all generated files.

16 | Load Testing .NET Components

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL

Instantiating Client Proxy Objects
To instantiate a client proxy object you can declare a variable of the client proxy class as a public member
variable of the .NET test driver. The variable should be instantiated either in the constructor or in the Init
transaction. The first part of the namespace where the proxy class is generated is the name of your project,
as this is the default namespace.

1. Once you have instantiated a proxy class object, make calls to the service by inserting Web Service
invocation code into a main transaction. Call the Web Service methods using simple parameters.

2. Use MeasureStart and MeasureStop to measure the time required for the methods to execute.

3. Print the result of the echoString method.

You can also call a Web Service method that takes an object as a parameter. To do this, instantiate the
object, set the member values, and pass the object to the Web Service.

Note: You can catch exceptions and log them in the TrueLog.

Try Script Runs From Microsoft Visual Studio
Once you have implemented your .NET test code, you can execute a Try Script run from Microsoft Visual
Studio by calling Run > Try Script from the Silk Performer menu. Try Script runs are trial test runs that you
can use to evaluate if your tests have been set up correctly.

The steps that are then performed by the Add-In are as follows:

• The .NET code is compiled into a .NET assembly.
• A BDF script is generated based on the meta information of the custom attributes and the settings in the

Options dialog box.
• The most recent BDF script is overwritten if there have been changes to the meta data of your assembly

(for example, changed custom attributes, method order, or generation options).
• If the meta data has changed, but you have altered the latest BDF file manually, you will be prompted to

confirm that you want to have the file overwritten. This detection is achieved by comparing the last
modified date of the BDF file with the timestamp scripted in the BDF file.

• If you have multiple virtual user classes (classes that have the VirtualUser attribute applied) you will
be prompted to specify which of the users is to be started.

Executing a Try Script Run
1. Select Run > Try Script from the Silk Performer menu.

Note: If you are accessing a Web Service on the Internet, ensure that you have configured proxy
settings for the active profile.

2. If you have multiple virtual user classes, select the virtual user that you want to execute from the Select
Virtual User dialog box.

Note: If there are multiple test classes, you must select the test class that you want to execute.

3. Click Run to begin the test.

Note: If the Automatic Start when running a Try Script option has been selected in Silk
Performer options, TrueLog Explorer will launch showing the TrueLog that was generated by the
test.

Load Testing .NET Components | 17

Virtual user return-value output can be viewed in the Virtual User output tool window within Microsoft
Visual Studio via the Bdl.Print method. The output window can be docked to other windows. Test
controller output is displayed in a separate pane of the output tool window.

Note: WebDotNetRequest entries are Web Service calls that are routed over the Silk Performer
Web engine.

TrueLog Explorer launches automatically during Try Script runs. Each Web Service call has a node in
the displayed TrueLog. The nodes in the main transaction represent the SOAP HTTP traffic that was
responsible for the Web Service calls. By default, all HTTP traffic is redirected over the Silk Performer
Web engine, enabling TrueLog output. You can turn off redirection or enable it for specific Web Service
client proxy classes via the Silk Performer Web Settings dialog box.

4. Using the TrueLog Explorer XML control, explore the SOAP envelope that was returned by each Web
Service call.

Once the test is complete you can explore other result files (log, output, report, and error) by selecting
them from the Silk Performer Results menu.

Web Service Calls
The Silk Performer .NET Framework can route Web traffic generated by .NET components over the Silk
Performer Web engine. This means that the Silk Performer Web engine executes the actual Web requests,
allowing you to see exactly what is sent over the wire. This enables you to make use of Silk Performer Web
engine features such as modem simulation, IP multiplexing, network statistics, and TrueLog.

By default, all network traffic is routed over the Web engine. You can however enable routing only for
specific Web Service client proxy classes. To enable this feature only for specific Web Service proxy
classes, change the base class of a proxy class from SoapHttpClientProtocol to
SilkPerformer.SPSoapHttpClientProtocol.

This base class exchange allows the Silk Performer .NET Framework to generate more detailed statistical
information for each Web Service call. It is recommended that you enable this feature for all of your Web
Service proxy classes. This can be done using Visual Studio’s Web Service dialog box, which is
accessible via the Silk Performer menu.

When this feature is disabled, the .NET HTTP classes process all requests.

For each Web Service call, a node is created in the TrueLog with the SOAP envelope that was passed to
the Web Service and returned to the client.

When all or some classes are instrumented by Silk Performer, the HTTP traffic responsible for Web Service
calls is routed over the Silk Performer Web engine. Network traffic and statistics are then written to the
TrueLog. Modem simulation and IP multiplexing are also available.

18 | Load Testing .NET Components

Routing Web Service Calls
1. Open the Web Services dialog box (select Web settings from the Silk Performer menu).

2. Select the Web Service proxy classes that should be instrumented by Silk Performer.

These are the classes that will be routed over the Silk Performer Web engine.

Select Instrument all HTTP/HTTPS traffic to have all calls routed or select specific proxy classes for
routing.

Dependencies
You can specify the files upon which your .NET code depends using the Add Dependencies dialog box
(select Add Dependencies from the Silk Performer menu).

The files you specify will be added to your Silk Performer project’s data files section. This ensures that
those files will be available on agents when you run tests that use multiple agents. To get the path to a file
you have added to the data files section, use the GetDataFilePath function of the BDL object. This
function returns the absolute path to the file. If you run a Try Script on localhost, the path will be to your
original file. If you run a test it will return the path in the agent’s data directory.

Adding Dependencies
1. Select Add Dependencies from the Silk Performer menu to open the Add Dependencies dialog box.

2. Click Add file to browse to and select a file that you want to add.

To remove a selected file, click Remove.

3. Click OK to accept the dependent file list.

Note: All files in the Silk Performer project’s data files section will be copied to the agent that
executes the test. To get the full path to a file, use the Bdl.GetDataFilePath function with the
filename as a parameter. This function ensures that you receive the correct path to your file,
regardless of whether or not the file was executed locally or remotely.

Load Testing .NET Components | 19

Configuring .NET Add-In Option Settings
1. From the Silk Performer menu, select Options to open the Options dialog box.
2. Check the Automatic Start when running a Try Script check box to have TrueLog Explorer launch

automatically and display the TrueLog of the current Try Script.
3. In the Virtual User Output group box, define which types of information you want to have displayed in

the Virtual User Output window.

• Errors
• Transactions
• Functions
• Information
• User Data
• All Errors of all Users

4. In the BDL Script Generation group box, specify BDF script-generation settings.

Option Description

DotNetCallMethod When checked, MeasureStart and MeasureStop statements are
scripted around each DotNetCallMethod call.

Generate BDH for .NET
Method Calls

When checked, a BDH file that contains BDL functions for each .NET
call is generated. This makes the main BDF file slim as it only includes
the BDL function calls in the transactions.

Generate BDL functions
for .NET Methods

When checked, a BDL function is scripted for each .NET call. The
transactions then call the functions.

5. Click OK to confirm the settings.

Continuing Your Work in Silk Performer
Once you have finished implementing your .NET test driver you can continue running tests with Silk
Performer. You can open your .NET project in Silk Performer by selecting the Open in Silk Performer
command from the Silk Performer menu.

In Silk Performer, you can run tests with multiple users distributed over multiple agents. Take advantage of
the Silk Performer Web engine features (modem simulation and IP-address multiplexing) by testing how
Web Service calls perform when they are called over a slow modem and how the Web server performs
when numerous users make simultaneous service calls.

Custom Attributes
A custom attribute called VirtualUser can be applied to classes. This attribute instructs the Add-In’s
BDL generation engine to generate a virtual user definition. You can implement multiple classes that have
the VirtualUser attribute applied to them. The VirtualUser attribute takes the name virtual user
as a parameter.

Note: When a BDF file is modified manually, you are prompted to specify whether or not you want to
have the file overwritten.

The BDL generation engine parses the methods of the VirtualUser class for methods that have a
Transaction attribute applied to them. The Transaction attribute takes the transaction type, Init,
Main or End, as a first parameter. You can only have one Init and one End transaction, but multiple
Main transactions are allowed.

20 | Load Testing .NET Components

The Main transaction type takes a second parameter that indicates the number of times that the
transaction is to be called during a test (the default is 1).

Following are the available custom attributes and what the BDL generation engine scripts for them.

Attribute Class Applicable to Parameters Description

VirtualUser Class Name of the Virtual User
Group

(optional) IsUnitTest

Defines a Virtual User Group.

If you specify true, DotNetUnitTest methods will
be scripted instead of the standard DotNet
methods (e.g., DotNetUnitTestLoadObject).

Transaction Method Type (Init, Main, End)

If type is Main the number
of transaction iterations

(optional) Name

Defines a Transaction for the Virtual User Group.

The transaction implementation will call the
method of the .NET Object.

The first script call in the Init transaction is a
DotNetLoadObject loading the Object The last
script call in the end transaction is a
DotNetFreeObject.

Optionally you can define a name that should be
used in the generated BDL script for this
transaction. By default, the transaction name in
BDL is created by combining the VUser name
and the method name.

TestMethod Method This will script a call to the method in the current
transaction.

The current transaction is the previous method
with a Transaction attribute. So a method with
this attribute that has no prior method with a
Transaction attribute makes no sense.

TestAttribute Method Attribute Name

Attribute Value

(optional) Description

This can be applied multiple times to a method
that has either a Transaction or TestMethod
attribute.

An AttributeSetString function will be scripted
prior to the DotNetCallMethod that calls this
method. AttributeSetString will set an attribute
with the passed name and value. This is a way
how parameters can be passed from the script to
the .NET function. The .NET function can read
the attributes with Bdl.AttributeGet. Its meant
that people (QA) who will receive the finished
script only have to change the value passed to
the AttributeSetString to customize the script. So
there is no need for them to change the .NET
Code.

Allows you to define a description for the project
attribute. The description can be seen in Silk
Performer's project attribute wizard.

VirtualUserInitialize Method This method is called for classes that are loaded
via DotNetUnitTestLoadObject

VirtualUserCleanup Method This method is called for classes that are freed
via DotNetUnitTestFreeObject

TestCleanup Method This method is called after a method is called via
DotNetUnitTestCallMethod

TestInitialize Method This method is called before a method is called
via DotNetUnitTestCallMethod

Load Testing .NET Components | 21

Attribute Class Applicable to Parameters Description

TestIgnore Method Methods that have this attribute applied to them
will not be called via DotNetUnitTestCallMethod

TestException Method Type of exception

Additional log message

Normally, methods that throw exceptions are
considered failed. If you want a method to throw
an exception, you can use the TestException
attribute to tell Silk Performer that this method is
supposed to throw an exception.

Attributes for Unit Test Standards
Unit-testing frameworks such as NUnit and Microsoft Unit Test Framework introduce attributes for methods
that are to be called before and after test methods. These methods are called Setup/Initialize and
TearDown/Cleanup.

To comply with these standards, four attributes are offered:

Attribute Class Applicable to Parameters Description

VirtualUserInitialize method This method is called
before a normal test
method/transaction is
called. It can be used for
the global initialization of
variables that all test
methods use. Only one
method with this attribute is
allowed per virtual user.

VirtualUserCleanup method This method is called after
each test method is called.
It can be used for global
clean-up. Only one method
with this attribute is allowed
per virtual user.

TestInitialize method This method is called
before each test method/
transaction. It can be used
to initialize variables that
are utilized by the
subsequent test method.

TestCleanup method This method is called after
each test method/
transaction. It can be used
for clean-up after a test
method call

Negative Testing
Negative testing is testing in which test methods are designed to throw exceptions. Such methods should
only be considered successful when a specific anticipated exception type is thrown.

Silk Performer offers an attribute that can be applied to test methods to indicate that a specific exception
type is expected. If the specified exception is not thrown during execution, then the test method has failed.

22 | Load Testing .NET Components

Attribute Class Applicable to Parameters Descriptions

TestException method - Exception type

- Log text if the anticipated
exception is not thrown
(optional)

Test method/transactions
can be declared with one or
more TestException
attributes. During execution,
the runtime checks to see if
the defined exception type
was thrown. If the
anticipated exception type
was thrown, then the
method call is considered
successful. If not, the
method call is considered a
failure and exception details
are written to the log file.

Custom Attributes Code Sample
C# Test Code Sample

using System;
using SilkPerformer;

namespace SPProject1
{
 [VirtualUser("VUser")]
 public class VUser
 {
 public VUser()
{
 }
 [Transaction(ETransactionType.TRANSTYPE_INIT)]
 public void TInit()
 {
 }
 [Transaction(ETransactionType.TRANSTYPE_MAIN)]
 public void TMain()
 {
 }
 [TestMethod]
 [TestAttribute("Attr1", "DefaultValue1")]
 public void TestMethod1()
 {
 string sAttrValue = Bdl.AttributeGet("Attr1");
 Bdl.Print(sAttrValue);
 }
 [Transaction(ETransactionType.TRANSTYPE_END)]
 public void TEnd()
 {
 }
 }
}

Generated BDF Script Example

benchmark DOTNETBenchmarkName

Load Testing .NET Components | 23

use "dotnetapi.bdh"

dcluser
 user

 VUser
 transactions
 VUser_TInit : begin;
 VUser_TMain : 1;
 VUser_TEnd : end;
var
 hVUser : number;

dcltrans
 transaction VUser_TInit
 begin
 hVUser:= DotNetLoadObject("\\SPProject1\\bin\\release\
\SPProject1.dll", "SPProject1.VUser");
 MeasureStart("TInit");
 DotNetCallMethod(hVUser, "TInit");
 MeasureStop("TInit");
 end VUser_TInit;

 transaction VUser_TMain
 begin
 MeasureStart("TMain");
 DotNetCallMethod(hVUser, "TMain");
 MeasureStop("TMain");
 AttributeSetString("Attr1", "DefaultValue1");
 MeasureStart("TestMethod1");
 DotNetCallMethod(hVUser, "TestMethod1");
 MeasureStop("TestMethod1");
 end VUser_TMain;

 transaction VUser_TEnd
 begin
 MeasureStart("TEnd");
 DotNetCallMethod(hVUser, "TEnd");
 MeasureStop("TEnd");
 DotNetFreeObject(hVUser);
 end VUser_TEnd;

24 | Load Testing .NET Components

Testing .NET Services
This section offers an overview of the Silk Performer .NET Framework and the Silk Performer .NET Add-On
for Microsoft Visual Studio .NET. It also serves as an in-depth demonstration of how to execute .NET
methods with BDL, how to write complete test drivers in .NET, and how to test drivers in Visual
Studio .NET. It explains how to write test code in .NET and customize test code in BDL. Because SOAP
(Web services) has become widely accepted, this chapter also explores how Web services can easily be
tested using Silk Performer and the .NET Framework.

Development Workflow

Writing a .NET Test Driver
This section describes how you can write a .NET test driver.

Creating a .NET Project
Silk Performer ships with an add-on and a project wizard for Microsoft Visual Studio .NET. Microsoft Visual
Studio .NET must be installed on your machine prior to the installation of the add-on. The project wizard
creates a .NET project in one of the supported .NET languages, which are C# or VB.NET, and generates a
sample test driver into which you only have to add your test code into the test methods. You can insert calls
to .NET components, Web services and BDL functions, like MeasureStart, MeasureStop, and others.

This wizard can be invoked either by creating a new .NET project with Silk Performer or by creating a new
Silk Performer project in Visual Studio .NET. In either case you start with a new Silk Performer .NET project
in Microsoft Visual Studio .NET with the sample test code file open.

PerfDotNetFW.dll is a .NET assembly that ships with Silk Performer. It implements all classes, custom
attributes, and enums that can be used to define meta information for automatic Silk Performer BDL script
generation and calls BDL functions from within the .NET test driver. PerfDotNetFW.dll is discussed in
great detail later in this chapter. The assembly is automatically referenced by the generated project.

Testing .NET Services | 25

Defining a Virtual User in .NET
A virtual user in .NET is a public .NET class with the SilkPerformer.VirtualUser attribute applied.
This attribute tells the add-on to generate a virtual user definition in the BDL script.

The VirtualUser attribute has one parameter - the name of the virtual user that is to be generated in the
BDL script when running a try script.

You can have multiple VirtualUser classes in your .NET assembly but the names of the virtual users
must be unique.

Defining a Virtual User in .NET

C# Code BDL Script

[VirtualUser("Vuser1")]
public class MyTestUser1
{
 ...
}
[VirtualUser("Vuser2")]
public class MyTestUser2
{
 ...
}

dcluser
 user
 Vuser1
 ...
 user
 Vuser2

Defining a Transaction in .NET
A transaction in .NET is a public (non virtual) .NET method of your virtual user class that has the
SilkPerformer.Transaction attribute applied to it. There are three types of transactions, init, main,
and end. There can only be one init and one end transaction for each virtual user class, but there can
be multiple main transaction methods.

The transaction type is passed as the first parameter. ETransactionType is an enum that defines the
possible types.

SilkPerformer.ETransactionType:

• TRANSTYPE_INIT
• TRANSTYPE_MAIN
• TRANSTYPE_END

Transactions of type main have an optional second parameter that defines the number of transaction calls
- the default value is 1.

Example

C# Code BDL Script

[VirtualUser("Vuser1")]
public class MyTestUser1
{
 [Transaction(

Etranstype.TRANSTYPE_INI
T)]
 public void TInit()

dcluser
 user
 Vuser1
 transactions
 TInit : begin;
 TMain : 1;
 TMain2 : 5;
 TEnd : end;

26 | Testing .NET Services

C# Code BDL Script

 {
 }
 [Transaction(

Etranstype.TRANSTYPE_MAI
N)]
 public void TMain()
 {
 }
 [Transaction(

Etranstype.TRANSTYPE_MAI
N, 5)]
 public void TMain2()
 {
 }
 [Transaction(

Etranstype.TRANSTYPE_END
)]
 public void TEnd()
 {
 }
}

var hVuser1 : number;

dcltrans
 transaction TInit
 begin
 hVuser1:=

DotNetLoadObject("..","M
yTestUser1");

DotNetCallMethod(hVuser1
,"TInit");
 end;

 transaction TMain
 begin

DotNetCallMethod(hVuser1
,"TMain");
 end;
 transaction TMain2
 begin

DotNetCallMethod(hVuser1
,"TMain2");
 end;

 transaction TEnd
 begin

DotNetCallMethod(hVuser1
,"TEnd");

DotNetFreeObject(hVuser1
);
 end;

The add-on script generator scripts an init and an end transaction even if there are no
corresponding .NET methods. These are used to load the .NET object in the init transaction and free it in
the end transaction.

As you can see from the sample above, the transactions contain a DotNetCallMethod to call the .NET
test driver method.

Defining Additional Test Methods
A test method in .NET is a public (non virtual) method that has the SilkPerformer.TestMethod
attribute applied to it. Each call to a test method is scripted as a DotNetCallMethod function in the
current transaction. It's possible to have multiple test methods in a single transaction.

Defining a Test Method

C# Code BDL Script

[VirtualUser("Vuser1")]
[Transaction(Etranstype.

dcluser
 transaction TMain

Testing .NET Services | 27

C# Code BDL Script

TRANSTYPE_MAIN)]
 public void TMain()
 {
 }

 [TestMethod]
 public void Method1()
 {
 }

 [TestMethod]
 public void Method2()
 {
 }

 begin

DotNetCallMethod(hVuser1
,"TMain");

DotNetCallMethod(hVuser1
,"Method1");

DotNetCallMethod(hVuser1
,"Method2");
 end;

The two test methods, Method1 and Method2, will be called in the current transaction.
The current transaction is the transaction method that is declared previous to these test
methods in the .NET code.

Passing Data Between BDL and .NET
There are two means of exchanging values between the generated BDL script and the .NET test driver:

• Attributes
• Parameters

Declaring Attributes
A method can have multiple SilkPerformer.TestAttribute attributes applied to it. Attributes are not
scripted, but created as project attributes. This makes it easier for engineers to customize BDL scripts to
change values for different attributes, as all attributes can be found in the project attributes dialog box.
Therefore the .NET test driver can access attributes with Bdl.AttributeGet.

The TestAttribute attribute has two parameters. The first parameter is the name of the attribute and
the second is the default value of the project attribute.

A comment is scripted prior to the function call to indicate what specific attributes the function call requires.

// Requires attribute "Attrib1" with the default value: "Value1"
DotNetCallMethod(hVuser1, "TMain");

Declaring Attributes

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
[TestAttribute("Attrib1"
,"Value1")]
public void TMain()
{
 string s =
Bdl.AttributeGet("Attrib
1");
}

dcltrans
 transaction TMain
 begin
 // Requires
attribute "Attrib1"
 // with the default
value: "Value1"

DotNetCallMethod(hVuser1
,"TMain");
 end;

28 | Testing .NET Services

By customizing the attribute value in the project attributes dialog box, you can customize the runtime
behavior of the .NET test driver without changing the .NET code.

Defining Parameters
If a method has input parameters and a return value, the Code Generation Engine appropriately creates
the BDL calls for passing those parameters in and getting the return parameter. Therefore a method can
have any combination of parameters and return values that can be accessed by the DotNet API functions
(DotNetGetXX).

Defining Parameters

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
public string
TMain(string s, int n)
{
 return s +
n.ToString();
}

dcltrans
 transaction Tmain
 var
 sReturn : string;
 begin

DotNetSetString(hVuser1,
"stringvalue");

DotNetSetInt(hVuser1,
123);

DotNetCallMethod(hVuser1
,"TMain");

DotNetGetString(hVuser1,
 sReturn,
sizeof(sReturn));
 end;

As you can see in the above example, DotNetSetXX functions are scripted for each method parameter.
The values are default values that are suggested by the Add-On. The Code Generation Engine also scripts
a DotNetGetXX function for the return value of the method. The following .NET parameter types are
supported:

• String
• Byte
• SByte
• UIntPtr
• UInt16
• UInt32
• UInt64
• Int16
• Int32
• Int64
• IntPtr
• Decimal
• Double
• Single
• Boolean
• Object

Testing .NET Services | 29

Return Parameter

By default the return parameter is stored in a variable with the name xReturn, or sReturn for strings. You
can give the variable a meaningful name by applying the SilkPerformer.BdlParameter attribute to
your return type and passing the variable name as the first parameter (sConcatParam in the following
example).

Example for Return Parameter

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
[return:BdlParameter("sC
oncatParam")]
public string
TMain(string s, int n)
{
 return s +
n.ToString();
}

dcltrans
 transaction Tmain
 var
 sConcatParam :
string;
 begin

DotNetSetString(hVuser1,
"stringvalue");

DotNetSetInt(hVuser1,
123);

DotNetCallMethod(hVuser1
,"TMain");

DotNetGetString(hVuser1,
 sConcatParam,

sizeof(sConcatParam));
 end;

The ability to define a different name for the return variable is necessary for the Code Generation Engine to
generate BDL code that passes values between function calls.

Calling BDL Functions from .NET
Most of the functions exposed by the kernel.bdh of Silk Performer are implemented in
PerfDotNetFW.DLL, which is a .NET assembly that comes with Silk Performer. The methods are static
methods in the SilkPerformer.Bdl class. As Silk Performer is an imported namespace you can call the
methods with Bdl.<MethodName>. PerfDotNetFW.dll is referenced by default when you create a Silk
Performer .NET project.

Primary BDL Functions
The following table lists the primary functions that are implemented by the SilkPerformer.Bdl class.
For a complete list of all functions, open the class in Microsoft Visual Studio .NET.

Function Description

• AttributeSet

• AttributeGet

Setting and getting attribute values.

• MeasureStart

• MeasureStop

• MeasurePause

Measure functions.

30 | Testing .NET Services

Function Description

• MeasureResume

• MeasureInc

• MeasureIncFloat

• MeasureGet

• MeasureSetBound

• MeasureTimeseries

• MeasureOnOff

• GetUser

• GetUserId

• GetUserIdOnAgent

• GetUserGroup

• GetProfile

• GetAgentId

• GetRuntimes

• GetAgent

• GetController

• GetProject

• GetLoadTest

• GetMemUsage

• GetBdfFileName

• GetBuildNo

Information about the current test.

Print Printing messages to the virtual user output.

RepMessage Write a message to the following files:

• .ERR

• .LOG

• .RPT

• WriteErr

• WriteLog

• WriteData

• WriteWrt

• Write

• Writeln

Write data to output files.

GetDataFilePath Gets the absolute path to a file in the data files section.

RndUniN, and others Random functions.

Constant Values
Some functions in the BDL take constant values as parameters. These constant values are defined as
public enums in the SilkPerformer.Bdl namespace. The following list lists some of the defined enums:

• PrintDisplay (OPT_DISPLAY_ERRORS, OPT_DISPLAY_TRANSACTIONS, ...)
• PrintColor (TEXT_GRAY, TEXT_BLACK, ...)

Testing .NET Services | 31

• Severity (SEVERITY_SUCCESS, SEVERITY_INFORMATIONAL, ...)
• MeasureKind (MEASURE_KIND_SUM, MEASURE_KIND_COUNT, ...)
• MeasureUsage (MEASURE_USAGE_TIMER, ...)
• MeasureClass (MEASURE_IIOP, MEASURE_TIMER, ...)
• ThinkTimeOption (OPT_THINKTIME_RANDOMWAIT, ...)

Example

[Transaction(EtransactionType.TRANSTYPE_MAIN)]
[TestAttribute("Attribute1", "TestValue")]
public void Tmain()
{
 string sValue = Bdl.AttributeGet("Attribute1");
 Bdl.MeasureStart("My Testmeasure");
 string sReturn = SomeMethod(sValue);
 Bdl.Print(sReturn);
 Bdl.MeasureStop("My Testmeasure");
}

Random Variables
You can define random variables for your test user that can be accessed within .NET test code. There is a
wizard in Visual Studio .NET that helps you define these random variables. The wizard has the same look
& feel as the random variable wizard of Silk Performer.

Depending on the type of random variable you choose, the wizard adds the appropriate random custom
attribute to the virtual user class. You can use the following random custom attributes:

• RndBin

• RndExpF

• RndFile

• RndInd

• RndPerN

• RndSno

• RndStr

• RndStream

• RndUniF

• RndUniN

The first parameter is the name of the random variable. This is followed by the parameters that must be
defined in BDL to define the random variable. For additional information, refer to the Benchmark
Description Language (BDL) Reference or check Visual Studio .NET's Code Completion.

You can access random variables with the following three new functions that are declared in the BDL class
as static methods:

• GetRandomFloat

• GetRandomNumber

• GetRandomString

Those methods take the name of the random variable as an input parameter and then return random
values.

Exception Handling
The goal in exception handling is to catch all exceptions in your test code. That is why after creating a
project, the default code has try/catch blocks in each test method.

32 | Testing .NET Services

The Silk Performer .NET Framework throws one exception, the SilkPerformer.StopException. The
framework throws this exception when a run is aborted or stopped by the user. You can utilize this
exception for clean up.

Other exceptions are handled normally. For detailed exception information in your TrueLogs, use
Bdl.LogException to log exceptions, including message and stack trace, to TrueLog. This is particularly
useful when running tests while TrueLog On Error is activate, because you can see which exceptions are
thrown and you get a complete stack trace.

Debugging
Running TryScripts in debugging mode is not directly supported from within Visual Studio .NET. We
recommend an approach to enforce debugging through a work-around.

Place a System.Diagnostics.Debug.Assert (false) statement in the constructor of your test driver
or at any other position in your code. Compile your code and initiate a TryScript run from Silk Performer.
You can also initiate a TryScript run from Visual Studio .NET, however we do not recommend this
approach, as a new instance of Microsoft Visual Studio .NET is required for debugging and the new
instance will not obtain information regarding it's impact on the instance that is running the TryScript run.

If you subsequently initiate a TryScript run from Silk Performer, a debug assertion dialog box opens,
allowing you to debug the code.

Configuration Files
Microsoft .NET Framework allows to store a configuration file in the directory of the .NET executable or
ASP.NET application that contains runtime-specific configurations. These configurations are loaded when
the application is launched. For .NET executables the configuration file needs to be named with both
the .exe file extension and the .config file extension. For example myprogramm.exe.config.

When running a test, the executable that hosts your .NET test driver code is perfrun.exe. Therefore it's
possible to have a perfrun.exe.config that contains configuration settings that are loaded at startup.
However this approach is not possible because Silk Performer generates the perfrun.exe.config file
automatically before starting a test and would therefore overwrite such a configuration file. The
perfrun.exe.config file contains settings based on the profile settings of the project profile.

With Silk Performer, you can have an app.config file in your project directory to specify your own
configuration file settings. Silk Performer checks for this configuration file and merges the content into an
automatically generated perfrun.exe.config file. To make the settings in the app.config file
available to all agent machines, you need to add this file to the Data Files folder in the Project menu tree.

A perfrun.exe.config file has the following structure:

<configuration>
 <system.net>
 ...
 </system.net>
 <runtime>
 ...
 </runtime>
</configuration>

For backward compatiblity, when Silk Performer locates an app.config file, the content is added after the
runtime tag. That means that your app.config file can contain any configuration nodes that are allowed
below the root configuration node, except the system.net and runtime nodes, because Silk Performer
generates those nodes.

With Silk Performer you can provide a fully-configured app.config file with all possible configuration
sections. Silk Performer adds the necessary entries for web-traffic routing in the generated
perfrun.exe.config file.

Testing .NET Services | 33

Configuring .NET Remoting Components

If you wish to configure .NET Remoting components, you need an app.config file
such as the following:

<system.runtime.remoting>
 <application>
 <channels>
 <channel ref="http" port="2000" />
 </channels>
 <client url="http://remoteserver:2000">
 <activated type="RemoteDll.RemoteClass1, RemoteDll" />
 <activated type="RemoteDll.RemoteClass2, RemoteDll" />
 </client>
 </application>
</system.runtime.remoting>

BDL Code Generation Engine
The Silk Performer .NET Add-On has a BDL Code Generation Engine that generates a BDL script based
on the meta data information of the compiled .NET assembly (.NET test driver). The engine is invoked
when a TryScript run is started in Microsoft Visual Studio .NET. The compiled .NET assembly is scanned
for classes that have the VirtualUser attribute applied. Those classes are then scanned for methods
that have either a Transaction or TestMethod attribute applied to them. The sequence of methods is
important because calls to test methods, which are methods with the TestMethod attribute, are scripted in
the transaction, which is a method with the Transaction attribute, that is declared prior to the test
method.

Virtual User
The Virtual User name is used as a prefix for all transactions and methods scripted in BDL. This is
necessary to prevent method-name duplication, since the same method name may exist in two
different .NET classes.

The engine checks for duplicate Virtual User names. If the assembly contains more than one Virtual User
class, the names passed as parameters to the VirtualUser attribute must be unique. If there are
duplicate names, an error is thrown and shown in the task list.

Note: You should avoid using multiple methods with the same name in one .NET class. .NET allows
using multiple methods with the same name if the methods have different parameters, but the Code
Generation Engine of Silk Performer does not support this feature.

Random Variables - Virtual User Classes
The Silk Performer code-generation engine also checks the virtual user class of all defined random-
variable custom attributes. For each random variable, the corresponding random-variable definition is
declared in the BDL script.

Currently these variables are of no real use, neither on the BDL side or the .NET side. If you use one of the
Bdl.GetRandom functions, the definition of the random variable is read from the metadata information of
the .NET code, not from the BDL file. That means that if you change the random variable definition in BDL
it will not have any effect on the .NET code as it still must have the definition from the custom attributes.
This behavior will be adjusted in future versions so that you will be able to change settings in the BDL script
and have the executing .NET code receive those random values based on the BDL settings.

34 | Testing .NET Services

Transactions - Virtual User Classes
The Code Generation Engine checks all methods that have the transaction attribute applied. There are
three types of transactions, init, main, and end. A Virtual User class can only have one init and one
end transaction. Even if there is no init or end transaction within the .NET code, transactions are still
scripted because they are required for loading and freeing the .NET objects.

The first call in the init transaction in BDL is a DotNetLoadObject method call. After this call the actual
call to the .NET method is made. Thereafter all methods with the TestMethod attribute that are defined
between this transaction method and the next are called.

The last call in the end transaction in BDL is a DotNetFreeObject method call.

The main transactions call the actual transaction method in .NET and then the appropriate test method
calls.

Test Methods
When the Code Generation Engine scans the .NET assembly and finds a method with a TestMethod
attribute, the engine scripts a call to the method in the current transaction. The current transaction is the
transaction method that was declared before the test method. As a result, declaring a test method without
a transaction method results in an error. Declaration means that the transaction method has been declared
previously in the code.

Test Method

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
public void TMain1()
{
}

[TestMethod]
public void TestMeth1()
{
}

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
public void TMain2()
{
}

[TestMethod]
public void TestMeth2()
{
}

[TestMethod]
public void TestMeth3()
{
}

dcltrans
 transaction TMain1
 begin

DotNetCallMethod(hVuser1
, "TMain1");

DotNetCallMethod(hVuser1
, "TestMeth1");
 end;
 transaction TMain2
 begin

DotNetCallMethod(hVuser1
, "TMain2");

DotNetCallMethod(hVuser1
, "TestMeth2");

DotNetCallMethod(hVuser1
, "TestMeth3");
 end;

Testing .NET Services | 35

Erroneous Test Method Declaration

The following test method declaration would cause an error with the Code Generation
Engine as there is no current transaction for the TestMeth1 method:

[TestMethod]
public void TestMeth1()
{}

[Transaction(Etranstype.TRANSTYPE_MAIN)]
public void TMain1()
{}

Test Attributes
When the Code Generation Engine processes a transaction or test method it checks whether the method
has TestAttribute attributes applied to it. A project attribute is generated for each test attribute. The
name and default values are used to generate project attributes with the same names and default values.
To make it easier for engineers who customize BDL script, comments are scripted before the
DotNetCallMethod.

// Requires attribute "Attr1" with the default value: "Value1"
DotNetCallMethod(hVuser1, "TMain1");
// Requires attribute "Attr2" with the default value: "Value2"
// Requires attribute "Attr3" with the default value: "Value3"
DotNetCallMethod(hVuser1, "TestMeth1");

Test Attributes

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
[TestAttribute("Attr",
"Value1")]
public void TMain1()
{
}

[TestMethod]
[TestAttribute("Attr2",
"Value2")]
[TestAttribute("Attr3",
"Value3")]
public void TestMeth1()
{
}

dcltrans
 transaction TMain1
 begin
 // Requires
attribute "Attr1"
 // with the default
value: "Value1"

DotNetCallMethod(hVuser1
, "TMain1");
 // Requires
attribute "Attr2"
 // with the default
value: "Value2"
 // Requires
attribute "Attr3"
 // with the default
value: "Value3"

DotNetCallMethod(hVuser1
, "TestMeth1");
 end;

Methods with Parameters
If a method, whether it is a transaction or a test method, has input parameters or a return value, the engine
scripts DotNetSetXX functions to pass the input parameters and a DotNetGetXX function to retrieve the
return value.

36 | Testing .NET Services

The following DotNetGetXX and DotNetSetXX functions are available:

• DotNetSetString

• DotNetSetInt

• DotNetSetFloat

• DotNetSetBoolean

• DotNetSetObject

• DotNetGetString

• DotNetGetInt

• DotNetGetFloat

• DotNetGetBoolean

• DotNetGetObject

Therefore you can exchange strings, integers, floats, Booleans, and objects. Objects are object handles to
other .NET objects.

The Code Generation Engine scripts a DotNetSetXX function for each parameter in the same sequence
as the parameter definition. If there is a return value, it scripts the corresponding DotNetGetXX function.

The Code Generation Engine creates appropriate values for input parameters such as 123 for the int in the
example below. Silk Performer does not support arrays.

Methods with Parameters

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
public object
TMain1(string s, int n)
{
}

dcltrans
 transaction TMain1
 var
 hReturn : number;
 begin

DotNetSetString("stringv
alue");
 DotNetSetInt(123);

DotNetCallMethod(hVuser1
, "TMain1");

DotNetGetObject(hReturn)
;
 end;

The following .NET data types are supported:

• String

• Byte

• SByte

• UIntPtr

• UInt16

• UInt32

• UInt64

• Int16

• Int32

• Int64

• IntPtr

Testing .NET Services | 37

• Decimal

• Double

• Single

• Boolean

• Object

BDL Parameters
If a method, whether it is a transaction or a test method, has a return parameter, the Code Generation
Engine stores the value by default in a variable with the name xResult, where x depends on the return type.
To change this behavior, apply a BdlParameter attribute to the return type of the method and pass the
variable name as the first parameter.

BDL Parameters

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
[return:BdlParameter("sC
oncatParam")]
public string
TMain(string s, int n)
{
 return s +
n.ToString();
}

dcltrans
 transaction Tmain
 var
 sConcatParam :
string;
 begin

DotNetSetString(hVuser1,
 "stringvalue");

DotNetSetInt(hVuser1,
123);

DotNetCallMethod(hVuser1
, "TMain");

DotNetGetString(hVuser1,
 sConcatParam,

sizeof(sConcatParam));
 end;

Intelligent Parameter Passing
The Code Generation Engine checks methods for their return values and input parameters. If a method has
an input parameter that has the same name as a previously returned value, the return value will be passed
to the function. Normally return parameters do not have names assigned to them - but you can assign a
name by applying a BdlParameter attribute.

As a result, you can pass values between method calls by giving the parameters and return values the
same names. When you declare the parameters, ensure that you do not assign the same name to different
parameter types. In Silk Performer the Code Generation Engine does not check if the return value and
input parameter types are the same.

38 | Testing .NET Services

Intelligent Parameter Passing

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
[return:BdlParameter("sN
ame")]
public string TMain()
{
 return "Andi";
}
[TestMethod]
public void
Hello(string sName)
{
 Bdl.Print("Hello " +
sName);
}

dcltrans
 transaction Tmain
 var sName : string;
 begin

DotNetCallMethod(hVuser1
, "TMain");

DotNetGetString(hVuser1,
 sName, sizeof(sName));

DotNetSetString(hVuser1,
 sName);

DotNetCallMethod(hVuser1
, "Hello");
 end;

Options
This section describes the options that you can set in the Options dialog box of the Visual Studio .NET
add-on. These options change the BDL code generation.

Generating Timers for DotNetCallMethod
If this option is enabled, the engine scripts a MeasureStart and MeasureStop for each
DotNetCallMethod that uses the name of the method. This gives you the time taken for the method to
execute and the information becomes available in the overview report.

Generating Timers for DotNetCallMethod

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
public void TMain()
{
}

[TestMethod]
public void Test1()
{
}

dcltrans
 transaction Tmain
 begin

MeasureStart("TMain");

DotNetCallMethod(hVuser1
, "TMain");

MeasureStop("TMain");

MeasureStart("Test1");

DotNetCallMethod(hVuser1
, "Test1");

MeasureStop("Test1");
 end;

Testing .NET Services | 39

Generating BDL Functions for .NET Method Calls
If this option is enabled, the engine scripts a BDL function for each call to a .NET method. The transaction
calls the generated function. This makes the transactions shorter and easy to read. Input parameters to
the .NET method become input parameters for the BDL function. If the .NET method returns a value, the
value will be the return value of the function.

BDL Functions for .NET Method Calls

C# Code BDL Script

[Transaction(Etranstype.
TRANSTYPE_MAIN)]
public void TMain()
{
}

[TestMethod]
public string Test1(int
nParam)
{
}

dclfunc
 function
Vuser_Tmain(hObject:numb
er)
 begin

DotNetCallMethod(hObject
, "TMain");
 end;

 function
Vuser_Test1(hObject:numb
er;nParam:number):
string;
 var sReturn :
string;
 begin

DotNetSetInt(hObject,
nParam);

DotNetCallMethod(hObject
, "TMain");

DotNetGetString(hObject,
 sReturn,
sizeof(sReturn));
 Vuser_Test1 :=
sReturn;
 end;
 dcltrans
 transaction Tmain
 var sReturn :
string;
 begin
 Vuser_Tmain(hVuser);
 SReturn :=
Vuser_Test1(hVuser,
"stringparam");
 end;

Generating BDH for .NET Method Calls
If this option is enabled, the engine scripts a BDL function for each .NET method and stores them in a BDH
file in the main BDF file. This option implies the Generating BDL Functions for .NET Method Calls
option.

40 | Testing .NET Services

Generating Project Attributes
When this option is enabled (by default), project attributes are created for each TestAttribute custom
attribute on a method and a comment is scripted before the DotNetCallMethod call to help engineers
determine which attributes are required by which methods.

If the Generating Project Attributes option is disabled, you need to script AttributeSetString calls
before the call to define the attributes and default values.

We recommend that you enable the option because you can then manage all your attributes using the
project attributes dialog and you do not need to browse through the script.

Testing Your .NET Test Driver
You can test the .NET test driver within Visual Studio .NET without even opening Silk Performer. The add-
on can run a Try Script, making the results and output visible in Microsoft Visual Studio .NET. This feature
enables .NET developers to concentrate on developing their .NET test drivers. They do not need Silk
Performer or BDL skills because script generation is done by the add-on. QA departments can take the
final versions of .NET test drivers and customize the generated scripts to their needs.

Preparations
If you have created a .NET test driver, and you do not need any special data files or profile changes, you
are ready to execute a TryScript run to test your .NET test driver.

Data Files
If you access any files in your .NET methods you should add those files to the data files section of the Silk
Performer project. You can do this through the Add Dependencies dialog box of the Silk Performer menu.
If you are running a test on a remote agent, the files will be copied to the data directory of the agent. To
ensure you have the right file path to your files, use the Bdl.GetDataFilePath method. This method
returns the path to each data file using the filenames as parameters.

Adding the C:\myfiles\file1.txt File to the Data Files

[Transaction(Etranstype.TRANSTYPE_MAIN)]
public void TMain()
{
 string sFilename = Bdl.GetDataFilePath("file1.txt");
 System.IO.FileStream fs = System.IO.File.Open(sFilename,
 System.IO.FileMode.Open);
 ...
 fs.Close();
}

The .NET test driver DLL is automatically added to the data files of the project so that the DLL is available
to remote agents.

Profile and System Settings
You can edit your profile and system settings within Microsoft Visual Studio .NET using the familiar Silk
Performer dialog boxes. Open the dialog boxes through the Profile Settings and System Settings menu
entries of the Silk Performer menu.

The following profile settings are specific to .NET:

• Traffic redirection

Testing .NET Services | 41

Option Description

Route HTTP .NET
through Silk
Performer web engine

If this option is enabled, all HTTP/HTTPS network traffic that is generated
by .NET components is routed over the Silk Performer Web engine. This
allows you to make use of Web engine features such as modem simulation,
IP multiplexing, and others.

This also creates TrueLog nodes for each Web request, along with statistical
information about the traffic.

Routed Web Service
proxy classes

This read-only class is filled by the .NET add-on with the Web service proxy
classes you are using in your .NET test driver.

• Application domain setting

Option Description

One application
domain for each
virtual user
container process

If this option is checked, there is only one application domain for all virtual users
in the container process. This option improves performance because there is
less overhead for the .NET Common Language Runtime to administrate multiple
application domains for each process.

The disadvantage is that all objects that are loaded from all virtual sers in the
container process share a single application domain and therefore may conflict
with one another in terms of, for example, global variables/resources.

One application
domain for each
virtual user

If this option is checked, each virtual user has its own application domain. The
objects loaded by each virtual user are isolated in their application domains from
other objects in other application domains.

The disadvantage of this is that there is additional overhead for the .NET
Common Language Runtime to administer multiple application domains in one
process - therefore there is some performance loss.

• Framework version

Option Description

Version Select the Microsoft .NET Framework version for your script replay. Silk Performer
automatically populates this list with the framework version that you have installed on your
computer.

Web Settings
You can change the Web settings in the Web Settings dialog box from the Silk Performer menu.

In this dialog box you can set the option Route HTTP .NET through Silk Performer web engine.

If you are testing Web services through a generated Web-service proxy class, you can route the generated
network traffic over the Silk Performer Web engine to get information about sent and received data and use
features such as modem simulation.

In the checklist of the dialog box you find all the Web Service proxy classes of your project. You can check
or uncheck the proxy classes that should be routed over the Web engine. When you check Route
HTTP .NET through Silk Performer Web engine, all proxy classes are routed since all network traffic is
routed. Alternately, you can route individual Web-service calls by selecting them from the list.

The list of Web-service proxy classes is written to your project file and you can view the list in the .NET
options of the profile settings dialog box.

Testing Options
Select the Options dialog box from the Silk Performer menu. The dialog box includes options that affect
output during tests and behavior of the Code Generation Engine.

42 | Testing .NET Services

The options that are relevant for running tests are:

• TrueLog Explorer

Option Description

Automatically Start when running
a TryScript

If this option is checked, TrueLog Explorer will launch
automatically when a TryScript is run.

• Virtual User Output

These options define what output will be printed to the Virtual User Output window during TryScript
runs. For additional information on the options, refer to Silk Performer Help.

Try Script Runs
You can launch a Try Script run from the Silk Performer menu or by pressing F8. This is only possible if you
did not assign a different command to F8 when the add-on was installed.

Steps Performed by the Add-On before Try Script Runs
The .NET add-on performs the following steps before it begins with the execution of a Try Script run:

1. The add-on compiles the .NET Assembly. If the compilation fails the add-on does not execute the Try
Script.

2. The Code Generation Engine generates the BDF/BDH files.

The engine checks if it has to overwrite old BDF/BDH files. Old files are overwritten only if there has
been one of the following changes made to the structure of the .NET test driver:

• Changes to VirtualUser, Transaction, TestMethod, TestAttribute, or BdlParameter
attributes.

• Changes to the sequence of a method definition.
• Changes to the parameter definition of the methods.
• Changes to code generation options.

If significant changes have been made, the engine checks whether the BDF has been changed
manually since it was last generated. If it has been changed, you must specify whether the file can be
overwritten. If you select No, the Try Script is not executed.

3. The add-on prompts you to execute the VirtualUser. If there is more than one VirtualUser class
in the .NET test driver, you must choose which virtual user is to be executed.

4. A temporary project file is generated and configured to run the Try Script.

5. The Virtual User Output window is activated.

6. The test begins.

7. If the Automatically Start TrueLog Explorer option setting has been enabled, TrueLog Explorer will
launch with the TrueLog of the active Try Script.

8. All virtual user output, contingent on options, is printed to the Virtual User Output window.

Exploring Results
When Web-service-traffic routing is enabled, a TrueLog node is logged for each Web-service call that is
executed by the .NET test driver.

In the overview report of the Web-service method that is called, you will find statistical information.

Testing .NET Services | 43

Running Tests in Silk Performer
Once you have completed the implementation of the .NET test driver, you can run tests from within Silk
Performer. To do this, open Silk Performer from the Silk Performer menu. The project file is opened in Silk
Performer with all the generated scripts and data files.

You can customize the .NET test driver by changing the input values of the .NET functions in the BDL
script. The separation of .NET code and BDL code is a great benefit for companies with testing
departments in which not all employees are familiar with .NET. One employee with .NET skills can
implement .NET test drivers and pass a generated Silk Performer project along to other employees who
are more familiar with Silk Performer. Those employees can then customize the BDL script by changing
input parameters and configuring real tests.

Running Tests on Remote Agents

If you want to run a .NET test on remote agents you must make sure that the Microsoft .NET Framework is
installed on each of the agents. You can download the Microsoft .NET Framework from http://
msdn.microsoft.com.

Testing Web Services With Microsoft Visual Studio
The Silk Performer .NET Framework and .NET add-on allow easy access to Web services from
within .NET. Microsoft Visual Studio .NET has wizards that allow you to specify the URLs of Web services.
It can also create Web-service client proxies to invoke the methods of Web services.

Creating a Web Service Client Proxy
Visual Studio .NET has a wizard that generates a Web-service-client proxy that allows you to call Web-
service methods.

You can start the wizard in Project > Add Web Reference.

1. To start the wizard, click Project > Add Web Reference.
2. In the corresponding text box, type the URL of your Web service and press Enter.

For example, http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL.
3. If the wizard can load the WSDL document from the URL, click Add Reference. The wizard generates

a proxy class in a namespace, which is the reverse of the name of the Web server that hosts the
service.

Explore projects to see which classes are generated. Each web service, and all complex data types used
by the Web-service methods, are represented as classes. So in the example URL above, there is
Service1, which is a Web service, and User, which is a complex parameter.

Instantiating a Client Proxy Object
You can declare a variable of a client proxy class as a public member of the .NET test driver to instantiate a
client-proxy object. The variable should be instantiated either in the constructor or in the init transaction.
The first part of the namespace where the class is generated, which is the default namespace, is the name
of your project.

Example

If you have created a project with the name DotNetProject you would use the following
variable declaration:

[VirtualUser("Vuser")]
public class Vuser

44 | Testing .NET Services

http://msdn.microsoft.com
http://msdn.microsoft.com
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL

{
 public DotNetProject.com.borland.demo.Service1 mService;
 [Transaction(Etranstype.TRANSTYPE_INIT)]
 public void TInit()
 {
 mService = new DotNetProject.com.borland.demo.Service1();
 }
}

Calling a Web Service Method
All methods that are exposed by Web services are also available in proxy objects. The methods that are
shared by proxy objects use the same names as their corresponding WSDLs. Web-service method calls
should be placed in main transactions.

Example
[Transaction(Etranstype.TRANSTYPE_MAIN)]
public void TMain()
{
 string sReturn = mService.echoString("Test");
 Bdl.Print(sReturn);
}

To customize your Web-service calls from a generated BDL script, you must allow the exchange of data
between BDL and .NET with usage of attributes or method parameters.

Example
[Transaction(Etranstype.TRANSTYPE_MAIN)]
[TestAttribute("EchoInput", "Test")]
public void TMain()
{
 string sReturn =
mService.echoString(Bdl.AttributeGet("EchoInput"));
 Bdl.Print(sReturn);
}

or

[Transaction(Etranstype.TRANSTYPE_MAIN)]
public void TMain(string sEcho)
{
 string sReturn = mService.echoString(sEcho);
 Bdl.Print(sReturn);
}

Routing Web-Service Traffic
The Silk Performer .NET Framework can route Web traffic generated by .NET components through the Silk
Performer Web engine. This means that the Web engine executes the actual Web requests, enabling you
to see exactly what is sent over the wire. You can also use features of the Silk Performer Web engine, like
modem simulation, IP multiplexing, network statistics, TrueLog, and others.

By default all network traffic is routed through the Web engine. You can switch the routing off and only
enable it for specific Web-service client-proxy classes. To switch the routing on for specific Web-service
client-proxy classes, you need to change the base class of the proxy classes from
SoapHttpClientProtocol to SilkPerformer.SPSoapHttpClientProtocol. Changing the base
class allows the Silk Performer .NET Framework to generate more detailed statistical information for each

Testing .NET Services | 45

Web-service call. We recommend that you enable this feature for all your Web-service proxy classes. You
can enable this feature by using the Web Service dialog box in Microsoft Visual Studio, which is accessible
through the Silk Performer menu.

For each Web-service call a node is created in the TrueLog with the SOAP envelope that was passed to
the Web service and returned to the client.

If detailed statistical information for Web-service calls is disabled, the .NET HTTP classes process all
requests.

Exploring Results in Visual Studio
A TrueLog node is logged for each Web-service call that is executed by the .NET test driver, if routing Web-
service traffic is enabled. Click the Response tab of the node in TrueLog Explorer for the Response SOAP
Envelope, or click the Request tab for the Request SOAP Envelope.

The overview report for each Web-service method that is called contains the statistical information, like the
round-trip time, the server busy time, and others.

Testing with .NET Explorer
.NET Explorer is a tool that allows you to generate .NET test drivers through a point & click approach. .NET
Explorer supports the following technologies:

• SOAP Web Services
• .NET Remoting
• .NET Components

For additional information, refer to the .NET Explorer Help.

Available BDL Functions for .NET Interoperability
This section describes the BDL functions that The Silk Performer .NET Framework and .NET add-on allow
easy access to Web services from within .NET. provides for .NET interoperability. For detailed descriptions
of these functions and all other BDL API functions, refer to the Benchmark Description Language (BDL)
Reference. BDL reference details are also available in Silk Performer Help.

DotNetLoadObject Function

Action

Loads a .NET Assembly and creates an instance of a .NET type. A handle to this created object will be
returned. When creating the object, the default constructor will be called. If you want to call a constructor
that takes parameters you have to set these parameters with the DotNetSetXX functions prior to the call to
DotNetLoadObject.

Include file

DotNetAPI.bdh

Syntax
DotNetLoadObject(in sAssemblyFile : string,
 in sTypeName : string,
 in sTimer : string optional): number;

46 | Testing .NET Services

Return value

• object handle if successful
• 0 otherwise

Parameter Description

sAssemblyFile Path to the assembly file that contains the specified type.
The path can be either absolute or relative.

If the path is relative, it is either relative to the project or
the data directory.

sTypeName Full qualified type name (Namespace + TypeName) of the
type that should be instantiated.

sTimer (optional)

If defined – a custom timer will be generated to measure
the creation time of the object.

Example

dcltrans
 transaction TMain
 var
 hObject : number;
begin
 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 DotNetCallMethod(hObject,"TestMethod");
 DotNetFreeObject(hObject);
end TMain;

DotNetFreeObject Function

Action

Releases the object handle, so that the garbage collector will free the object.

Include file

DotNetAPI.bdh

Syntax
DotNetFreeObject(in hObject : number): boolean;

Return value

• true if successful
• false otherwise

Parameter Description

hObject Handle to a .NET Object that will be released

Example

dcltrans
 transaction TMain
 var

Testing .NET Services | 47

 hObject : number;
begin
 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 DotNetCallMethod(hObject,"TestMethod");
 DotNetFreeObject(hObject);
end TMain;

DotNetCallMethod Function

Action

Calls a public method on the .NET object or a static method of a .NET type. If parameters have been set
with the DotNetSetXX methods, these parameters will be passed in the order of the DotNetSetXX calls. If
you want to call a static method you have to use the constant DOTNET_STATIC_METHOD as object
handle for the DotNetCallMethod and the DotNetSetXX methods. Another way to pass parameters to
and from the method is to use the AttributeXX functions. The .NET Method can use the perfDotNetFW.dll
to call into the Silk Performer runtime to get/set attributes (Bdl.AttributeGet, Bdl.AttributeSet).

If the function returns a value, this value can be retrieved with the DotNetGetXX methods. Again - if calling
a static method - use DOTNET_STATIC_METHOD as object handle.

Include file

DotNetAPI.bdh

Syntax
DotNetCallMethod(in hObject : number,
 in sMethodName : string,
 in sTypeName : string optional,
 in sAssembly : string optional,
 in sTimer : string optional): boolean;

Return value

• true if successful
• false otherwise

Parameter Description

hObject Handle to a .NET Object

or

DOTNET_STATIC_METHOD if you want to call a static
method. In this case you have to at least specify the
name of the .NET type (class) you want to call the
method.

sMethodName Method that should be called

sTypeName (optional)

If you want to call a static method this parameter specifies
the .NET type (class) of the method.

sAssembly (optional)

48 | Testing .NET Services

Parameter Description

If you want to call a static method and this parameter is
omitted the type specified in sTypeName is searched in
the currently loaded assemblies.

If you haven't loaded the assembly where sTypeName is
implemented you can specify the assembly file here and it
will be loaded. Assemblies are normally loaded during
DotNetLoadObject.

The basic .NET assembly (mscorlib) is always loaded - so
you can access all static methods of the basic classes.

sTimer (optional)

If defined – a custom timer will be generated to measure
the execution time of the method call.

Example

dcltrans
 transaction TMain
 var
 hObject, nValue : number;
 begin
 // load an object and call a method on this instance
 hObject := DotNetLoadObject("C:\\MyDotNet\\Bin\\Release\
\MyDotNet.dll", "MyDotNet.TestClass");
 DotNetCallMethod(hObject,"TestMethod");
 DotNetFreeObject(hObject);
 // call a static method - no additional assembly needs to
be loaded because DateTime is defined in mscorlib
 DotNetSetInt(DOTNET_STATIC_METHOD, 2003);
 DotNetSetInt(DOTNET_STATIC_METHOD, 2);
 DotNetCallMethod(DOTNET_STATIC_METHOD, "DaysInMonth",
"System.DateTime");
 DotNetGetInt(DOTNET_STATIC_METHOD, nValue);
 end TMain;

DotNetSetString Function

Action

Sets a string parameter for the next DotNetCallMethod or DotNetLoadObject call in an internal
parameter array. The parameters will be passed in the order they have been set to the internal array. After
calling DotNetCallMethod or DotNetLoadObject the internal parameter array will be cleared.

Include file

DotNetAPI.bdh

Syntax
DotNetSetString(in hObject : number,
 in sParam : string);

Testing .NET Services | 49

Parameter Description

hObject Handle to a .NET Object to set the parameter for the next
DotNetCallMethod call or
DOTNET_CONSTRUCTOR to set the parameter for the
next DotNetLoadObject call.

sParam String value that should be passed as parameter to the
next DotNetCallMethod on the passed .NET Object

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 sReturnValue : string;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetString(hObject, sReturnValue);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

DotNetSetFloat Function

Action

Sets a float parameter for the next DotNetCallMethod or DotNetLoadObject call in an internal
parameter array. The parameters will be passed in the order they have been set to the internal array. After
calling DotNetCallMethod or DotNetLoadObject the internal parameter array will be cleared.

Include file

DotNetAPI.bdh

Syntax
DotNetSetFloat(in hObject : number,
 in fParam : float);

Parameter Description

hObject Handle to a .NET Object to set the parameter for the next
DotNetCallMethod call or
DOTNET_CONSTRUCTOR to set the parameter for the
next DotNetLoadObject call.

fParam Float value that should be passed as parameter to the
next DotNetCallMethod on the passed .NET Object

50 | Testing .NET Services

Example
dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 sReturnValue : string;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetString(hObject, sReturnValue);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

DotNetSetBool Function

Action

Sets a boolean parameter for the next DotNetCallMethod or DotNetLoadObject call in an internal
parameter array. The parameters will be passed in the order they have been set to the internal array. After
calling DotNetCallMethod or DotNetLoadObject the internal parameter array will be cleared.

Include file

DotNetAPI.bdh

Syntax
DotNetSetBool(in hObject : number,
 in bParam : boolean);

Parameter Description

hObject Handle to a .NET Object to set the parameter for the next
DotNetCallMethod call or
DOTNET_CONSTRUCTOR to set the parameter for the
next DotNetLoadObject call.

bParam Boolean value that should be passed as parameter to the
next DotNetCallMethod on the passed .NET Object

Example
dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 sReturnValue : string;
 begin
 DotNetSetString(hObject, "ConstrValue1");

Testing .NET Services | 51

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetString(hObject, sReturnValue);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

DotNetSetInt Function

Action

Sets an integer parameter for the next DotNetCallMethod or DotNetLoadObject call in an internal
parameter array. The parameters will be passed in the order they have been set to the internal array. After
calling DotNetCallMethod or DotNetLoadObject the internal parameter array will be cleared.

Include file

DotNetAPI.bdh

Syntax
DotNetSetInt(in hObject : number,
 in nParam : number);

Parameter Description

hObject Handle to a .NET Object to set the parameter for the next
DotNetCallMethod call or
DOTNET_CONSTRUCTOR to set the parameter for the
next DotNetLoadObject call.

nParam Integer value that should be passed as parameter to the
next DotNetCallMethod on the passed .NET Object

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 sReturnValue : string;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetString(hObject, sReturnValue);

52 | Testing .NET Services

 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

DotNetSetObject Function

Action

Sets an object as parameter for the next DotNetCallMethod or DotNetLoadObject call in an internal
parameter array. The parameters will be passed in the order they have been set to the internal array. After
calling DotNetCallMethod or DotNetLoadObject the internal parameter array will be cleared.

Include file

DotNetAPI.bdh

Syntax
DotNetSetObject(in hObject : number,
 in hParam : number);

Parameter Description

hObject Handle to a .NET Object to set the parameter for the next
DotNetCallMethod call or
DOTNET_CONSTRUCTOR to set the parameter for the
next DotNetLoadObject call.

hParam .NET Object handle that should be passed as parameter
to the next DotNetCallMethod on the passed .NET
Object

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 sReturnValue : string;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetString(hObject, sReturnValue);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

Testing .NET Services | 53

DotNetGetString Function

Action

Gets the string return value of the last DotNetCallMethod call in sReturn. Parameter sRetLen defines
the size of the sReturn string buffer.

Include file

DotNetAPI.bdh

Syntax
DotNetGetString(in hObject : number,
 inout sReturn : string,
 in nRetLen : number optional) :boolean;

Return value

• true if successful
• false otherwise

Parameter Description

hObject Handle to a .NET Object.

sReturn String buffer that will receive the return value of the last
DotNetCallMethod call.

nRetLen Size of the string buffer passed in sReturn (optional).

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 sReturnValue : string;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetString(hObject, sReturnValue);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

54 | Testing .NET Services

DotNetGetFloat Function

Action

Gets the float return value of the last DotNetCallMethod call in fReturn.

Include file

DotNetAPI.bdh

Syntax
DotNetGetFloat(in hObject : number,
 inout fReturn : float): boolean;

Return value

• true if successful
• false otherwise

Parameter Description

hObject Handle to a .NET Object

fReturn Float variable that will receive the return value of the last
DotNetCallMethod call

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 fReturn : float;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetFloat(hObject, fReturn);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

DotNetGetBool Function

Action

Gets the boolean return value of the last DotNetCallMethod call in bReturn.

Testing .NET Services | 55

Include file

DotNetAPI.bdh

Syntax
DotNetGetBool(in hObject : number,
 inout bReturn : boolean): boolean;

Return value

• true if successful
• false otherwise

Parameter Description

hObject Handle to a .NET Object

bReturn Boolean variable that will receive the return value of the
last DotNetCallMethod call

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 bReturn : boolean;
 begin
 DotNetSetString(hObject, "ConstrValue1");
 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetBool(hObject, bReturn);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

DotNetGetInt Function

Action

Gets the integer return value of the last DotNetCallMethod call in nReturn.

Include file

DotNetAPI.bdh

Syntax
DotNetGetInt(in hObject : number,
 inout nReturn : number): boolean;

56 | Testing .NET Services

Return value

• true if successful
• false otherwise

Parameter Description

hObject Handle to a .NET Object

nReturn Integer variable that will receive the return value of the
last DotNetCallMethod call

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 nReturn : number;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetInt(hObject, nReturn);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 end TMain;

DotNetGetObject Function

Action

Gets the handle to the object returned by the last DotNetCallMethod call. The returned object handle
has to be freed with DotNetFreeObject.

Include file

DotNetAPI.bdh

Syntax
DotNetGetObject(in hObject : number,
 in nParamIx : number optional): number;

Return value

• object handle if successful
• 0 otherwise

Testing .NET Services | 57

Parameter Description

hObject Handle to a .NET Object

nParamIx Optional: If specified, gets the parameter index, else gets
the last return value.

Example

dcltrans
 transaction TMain
 var
 hObject, hObject2 : number;
 hReturn : number;
 begin
 DotNetSetString(hObject, "ConstrValue1");

 hObject := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\MyDotNet.dll",
"MyDotNet.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetSetBool(hObject, false);
 DotNetSetObject(hObject, hObject2);
 DotNetCallMethod(hObject,"TestMethod");

 hReturn := DotNetGetObject(hObject);

 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 DotNetFreeObject(hReturn);
 end TMain;

58 | Testing .NET Services

Index
.NET

available BDL functions 46
BDL code generation engine 34
calling BDL functions 30
configuration files 33
creating projects 15, 25
debugging 33
declaring attributes 28
defining input parameters 29
defining transactions 26
defining virtual users 26
development workflow 25
exception handling 32
helper classes 13
profile settings 41, 42
random variables 32
system settings 41
test methods 35
virtual user 34
writing test drivers 25

.NET code
intermediate code 13

.NET components
testing 11, 15

.NET Explorer
.NET message sample 8
.NET Remoting sample 8
generating .NET test drivers 46
overview 5, 6

.NET framework
overview 11
testing .NET components 11
testing Web services 11

.NET Framework
.NET message sample 8
.NET Remoting sample 8

custom attributes
code sample 23
generated BDF script example 23
negative testing 22
unit test standards 22

dependencies
adding 19

ExtensionMicrosoft Visual Studio 6, 13
instantiating client proxy objects 17
option settings 20
overview 5, 11, 12
routing Web Service calls 19
running tests 20
Try Script runs 17
understanding 11
version 41
Web Service calls 18
Web service client proxies, creating 16

.NET projects
creating 25

.NET Remoting
sample project 9

.NET Remoting objects
sample 8

.NET services
testing 25

.NET test driver
data files 41
running tests 44

.NET Test Driver
preparations for testing 41
testing 41

.NET test drivers
passing data to BDL script 28
writing 25

.NET testing
provided tools 6

B

BDL functions
.NET 46
calling from .NET 30
constant values 31
overview 30

BDL scripts
passing data to .NET test drivers 28

BdlParameter
Code Generation Engine 38

C

calling
Web service methods 45

client proxies
instantiating objects 44

client proxy objects
instantiating 44

Code Generation Engine
BdlParameter 38
input parameters 36
passing parameters 38
return values 36
test attributes 36

configuration files
.NET 33

creating
.NET projects 15
Web service client proxies 44

D

debugging
.NET 33

declaring attributes
.NET 28

DotNetCallMethod 48
DotNetFreeObject 47
DotNetGetBool 55
DotNetGetFloat 55

Index | 59

DotNetGetInt 56
DotNetGetObject 57
DotNetGetString 54
DotNetLoadObject 46
DotNetSetBool 51
DotNetSetFloat 50
DotNetSetInt 52
DotNetSetObject 53
DotNetSetString 49

E

exception handling
.NET 32

exploring
results 43

exploring results
Visual Studio 46

extension
Visual Studio 14

H

helper classes
.NET 13

I

input parameters
defining 29

intermediate code
.NET code 13

J

Java Explorer
overview 5, 6
RMI sample 8

Java Framework
overview 5
RMI sample 8
sample project 10

Java testing
provided tools 6

JDBC test client 10

L

launching
Try Script runs 43

M

Microsoft Visual Studio, Extension
overview 6, 13

MS Visual Studio, Add-In 5, 7

O

options

Generating BDH for .NET Method Calls 40
generating BDL functions for .NET method calls 40
generating project attributes 41
Generating Timers for DotNetCallMethod 39
tests 42
Visual Studio .NET 39

P

parameters
intelligent passing 38

profile settings
.NET 41

R

random variables
virtual user classes 34

results
exploring 43

RMI sample project 10
RMI samples, Java 8
routing

Web service traffic 45
running tests

.NET 44

S

SOA Edition
overview 5

system settings
.NET 41, 42

T

test attributes
Code Generation Engine 36

test drivers
writing for .NET 25

test methods
.NET 35
defining 27

testing
.NET components 15
.NET services 25

testing .NET components
.NET framework 11

testing Web services
.NET framework 11
Visual Studio 44

tests
options 42

transactions
defining in .NET 26
virtual user classes 35

Try Script runs
.NET add-on prerequisites 43
launching 43

60 | Index

V
virtual user

.NET 34
virtual user classes

random variables 34
transactions 35

virtual users
defining in .NET 26

Visual Studio
exploring results 46
extension 14
testing Web services 44

Visual Studio .NET
options 39

Visual Studio Extension

installing 14

W

Web service methods
calling 45

Web services
creating client proxies 44
routing traffic 45

Web Services
.NET message sample 8
.NET Remoting sample 8
publicly accessible demonstration servers 7
sample project 9

Index | 61

	Contents
	Tools and Samples
	Introduction
	Provided Tools
	Silk Performer .NET Explorer
	Silk Performer Visual Studio Extension
	Silk Performer Java Explorer
	Silk Performer Workbench

	Sample Applications for testing Java and .NET
	Public Web Services
	.NET Message Sample
	.NET Explorer Remoting Sample
	Java RMI Samples

	Sample Test Projects
	.NET Sample Projects
	Java Sample Projects

	Silk Performer .NET Framework
	Testing .NET Components
	The .NET Framework Approach
	The .NET Explorer Approach

	Understanding the .NET Framework Platform
	Working with Silk Performer .NET Framework
	Silk Performer .NET Framework Overview
	Intermediate Code
	Silk Performer Helper Classes
	Silk Performer Visual Studio Extension
	Installing the Visual Studio Extension
	Starting the Visual Studio Extension

	Load Testing .NET Components
	Setting Up Silk Performer .NET Projects
	Creating a Web Service Client Proxy
	Instantiating Client Proxy Objects
	Try Script Runs From Microsoft Visual Studio
	Executing a Try Script Run

	Web Service Calls
	Routing Web Service Calls

	Dependencies
	Adding Dependencies

	Configuring .NET Add-In Option Settings
	Continuing Your Work in Silk Performer
	Custom Attributes
	Attributes for Unit Test Standards
	Negative Testing
	Custom Attributes Code Sample
	Generated BDF Script Example

	Testing .NET Services
	Development Workflow
	Writing a .NET Test Driver
	Creating a .NET Project
	Defining a Virtual User in .NET
	Defining a Transaction in .NET
	Defining Additional Test Methods
	Passing Data Between BDL and .NET
	Declaring Attributes
	Defining Parameters

	Calling BDL Functions from .NET
	Primary BDL Functions
	Constant Values

	Random Variables
	Exception Handling
	Debugging
	Configuration Files

	BDL Code Generation Engine
	Virtual User
	Random Variables - Virtual User Classes

	Transactions - Virtual User Classes
	Test Methods
	Test Attributes
	Methods with Parameters
	BDL Parameters
	Intelligent Parameter Passing
	Options
	Generating Timers for DotNetCallMethod
	Generating BDL Functions for .NET Method Calls
	Generating BDH for .NET Method Calls
	Generating Project Attributes

	Testing Your .NET Test Driver
	Preparations
	Data Files
	Profile and System Settings
	Web Settings
	Testing Options

	Try Script Runs
	Steps Performed by the Add-On before Try Script Runs

	Exploring Results
	Running Tests in Silk Performer

	Testing Web Services With Microsoft Visual Studio
	Creating a Web Service Client Proxy
	Instantiating a Client Proxy Object
	Calling a Web Service Method
	Routing Web-Service Traffic
	Exploring Results in Visual Studio

	Testing with .NET Explorer
	Available BDL Functions for .NET Interoperability
	DotNetLoadObject Function
	DotNetFreeObject Function
	DotNetCallMethod Function
	DotNetSetString Function
	DotNetSetFloat Function
	DotNetSetBool Function
	DotNetSetInt Function
	DotNetSetObject Function
	DotNetGetString Function
	DotNetGetFloat Function
	DotNetGetBool Function
	DotNetGetInt Function
	DotNetGetObject Function

