
Silk Performer 20.0

Java Explorer Help

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-04-16

ii

Contents

Tools and Samples ...6
Introduction ... 6
Provided Tools ...7

Silk Performer .NET Explorer ... 7
Silk Performer Visual Studio Extension ... 7
Silk Performer Java Explorer .. 7
Silk Performer Workbench ..8

Sample Applications for testing Java and .NET .. 8
Public Web Services .. 8
.NET Message Sample .. 9
.NET Explorer Remoting Sample ... 9
Java RMI Samples ... 9

Sample Test Projects .. 10
.NET Sample Projects .. 10
Java Sample Projects ...11

Testing Java Components ...12
Testing Java Components Overview ... 12
Working With JDK Versions .. 12
Java Framework Approach ..12
Plug-In for Eclipse ... 12
Java Explorer Overview .. 13

Tour of the UI .. 14
Overview ... 14
Design Tab .. 15

Loaded Components Pane ...15
Classes Tab ..16
Objects Tab .. 16

Code Tab ...17
Output Tab ...17

Setting Up Java Explorer ...19
Java Explorer Prerequisites .. 19
Creating a New Project ... 19
Test Case Definition .. 19
Setting Up a Test Using the Load File Wizard ...20
Test Case Characteristics ... 21

Setting Up Tests ... 23
Customizing Input Parameters .. 23
Storing Output Values in Variables ..23
Manually Adding Global Variables .. 24
Capturing an HTTP Response ..24
Defining Output Value Verifications ...25

Verification with NULL or Variable .. 26
Adding Method Calls ... 26
Updating Method Calls ..26
Complex Input/Output Data ...26

Verification of Variables .. 27
Storing Array or Object Output Data as Variable ..27
Taking Array Object Data From a Variable ... 27
Defining Each Member of a Variable Individually ... 27
Defining Array Elements ...27

Contents | 3

Using Complex Input Data ..27
Random Value Types .. 28
Configuring Random Variables ... 29
Enterprise JavaBeans and RMI over IIOP .. 29

Working with Enterprise JavaBeans ...30
Vendor-Specific JNDI Settings ... 31
Working with RMI Over IIOP .. 34
Testing the RMI Sample ... 35

Java RMI ... 35
RMI Testing with JRMP .. 35

Testing Java Archives ..36
Test Class Wizard ... 36
Secure Web Services ..36

Creating a Truststore for Your JDK ... 37
Configuring Java Explorer to Use a Truststore ... 37
Loading a Secure WSDL ..37
Working with Secure Web Service Calls .. 38
Specifying Web Service Connection Settings .. 38
Web Service Emitter Timeout for Axis 1.x ..38

Negative Testing ..39
Animated Runs ... 40

Executing an Animated Run ..40
Viewing Status of Animated Runs ...41

Analyzing Results .. 42
Viewing Result Files ..42
User Report ...42
Error Report .. 43
Animation Log ... 43
Exploring Object Properties .. 43
Exploring Method Properties ...43

System and Project Settings ...44
System Settings .. 44

Accessing System Settings .. 44
Processes ...44
Configuring Default Value Settings ...44
Configuring Verification Settings .. 45
Configuring Code Generation Settings ...45
Configuring Animated Run Settings ... 45
Deleting Loaded-File Entries in History ..46
Connection Settings ... 46
JUnit Settings ... 46
Silk Performer Settings ...46

Project Settings ... 47
Configuring Runtime Settings ...47
Configuring Web Service Plug-In Settings ... 47
Configuring Classpath Settings ..47
Configuring Scripting Settings ..48

Exporting Projects ... 49
Exporting a Java Explorer Project ...49
Silk Performer Java Projects ... 49

Silk Performer Java Framework ..49
Working with Multiple Agents ... 50

JUnit Test Cases ... 50
Exporting a JUnit TestSuite .. 50
Test Case Execution Sequence ..50

4 | Contents

Standalone Console Applications ... 51
Exporting Standalone Console Applications .. 51
Recording a Standalone Console Application .. 51

Contents | 5

Tools and Samples
Explains the tools, sample applications and test projects that Silk Performer provides for testing Java
and .NET.

Introduction
This introduction serves as a high-level overview of the different test approaches and tools, including Java
Explorer, Java Framework, .NET Explorer, and .NET Framework, that are offered by Silk Performer Service
Oriented Architecture (SOA) Edition.

Silk Performer SOA Edition Licensing

Each Silk Performer installation offers the functionality required to test .NET and Java components. Access
to Java and .NET component testing functionality is however only enabled through Silk Performer licensing
options. A Silk Performer SOA Edition license is required to enable access to component testing
functionality. Users may or may not additionally have a full Silk Performer license.

What You Can Test With Silk Performer SOA Edition

With Silk Performer SOA Edition you can thoroughly test various remote component models, including:

• Web Services
• .NET Remoting Objects
• Enterprise JavaBeans (EJB)
• Java RMI Objects
• General GUI-less Java and .NET components

Unlike standard unit testing tools, which can only evaluate the functionality of a remote component when a
single user accesses it, Silk Performer SOA Edition can test components under concurrent access by up to
five virtual users, thereby emulating realistic server conditions. With a full Silk Performer license, the
number of virtual users can be scaled even higher. In addition to testing the functionality of remote
components, Silk Performer SOA Edition also verifies the performance and interoperability of components.

Silk Performer SOA Edition assists you in automating your remote components by:

• Facilitating the development of test drivers for your remote components
• Supporting the automated execution of test drivers under various conditions, including functional test

scenarios and concurrency test scenarios
• Delivering quality and performance measures for tested components

Silk Performer offers the following approaches to creating test clients for remote components:

• Visually, without programming, through Java Explorer and .NET Explorer
• Using an IDE (Microsoft Visual Studio)
• Writing Java code
• Recording an existing client
• Importing JUnit or NUnit testing frameworks
• Importing Java classes
• Importing .NET classes

6 | Tools and Samples

Provided Tools
Offers an overview of each of the tools provided with Silk Performer for testing Java and .NET.

Silk Performer .NET Explorer
Silk Performer .NET Explorer, which was developed using .NET, enables you to test Web Services, .NET
Remoting objects, and other GUI-less .NET objects. .NET Explorer allows you to define and execute
complete test scenarios with different test cases without requiring manual programming; everything is done
visually through point and click operations. Test scripts are visual and easy to understand, even for staff
members who are not familiar with .NET programming languages.

Test scenarios created with .NET Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing, and to Microsoft Visual Studio for further customization.

Silk Performer Visual Studio Extension
The Silk Performer Visual Studio extension allows you to implement test drivers in Microsoft Visual Studio
that are compatible with Silk Performer. Such test drivers can be augmented with Silk Performer features
that facilitate test organization, verification, performance measurement, test data generation, and reporting.

Tests created with the extension can be run either within Microsoft Visual Studio, with full access to Silk
Performer's functionality, or within Silk Performer, for concurrency and load testing scenarios.

The extension offers the following features:

• Writing test code in any of the main .NET languages (C# or VB.NET).
• Testing Web services / .NET Remoting objects and redirecting HTTP traffic over the Silk Performer Web

engine to take advantage of features such as modem simulation and IP-address multiplexing. SOAP
envelopes can also be explored using TrueLog Explorer.

• Defining virtual users and their transactions through .NET custom attributes. A BDL script is generated
automatically based on the custom attributes that have been applied to classes/methods.

• Running TryScript tests from within Microsoft Visual Studio with the ability to watch virtual user output in
a tool window within Microsoft Visual Studio.

• Exploring the results of Try Scripts.

.NET Resources

• http://msdn.microsoft.com/net

Silk Performer Java Explorer
Silk Performer Java Explorer, which was developed using Java, enables you to test Web Services,
Enterprise JavaBeans (EJB), RMI objects, and other GUI-less Java objects. Java Explorer allows you to
define and execute complete test scenarios with multiple test cases without requiring manual programming.
Everything can be done visually via point and click operations. Test scripts are visual and easy to
understand, even for personnel who are not familiar with Java programming.

Test scenarios created with Java Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing.

Note: Java Explorer is only compatible with JDK versions 1.2 and later (v1.4 or later recommended).

Tools and Samples | 7

http://msdn.microsoft.com/net

Java Resources

• http://java.sun.com
• http://www.javaworld.com

Silk Performer Workbench
Remote component tests that are developed and executed using Java Explorer or .NET Explorer can be
executed within Silk Performer Workbench. Silk Performer is an integrated test environment that serves as
a central console for creating, executing, controlling and analyzing complex testing scenarios. Java
Explorer and .NET Explorer visual test scripts can be exported to Silk Performer by creating Silk Performer
Java Framework and .NET Framework projects. While Java Explorer and .NET Explorer serve as test-beds
for functional test scenarios, Silk Performer can be used to run the same test scripts in more complex
scenarios for concurrency and load testing.

In the same way that Silk Performer is integrated with Java Explorer and .NET Explorer, Silk Performer is
also integrated with Silk Performer's Visual Studio .NET Add-On. Test clients created in Microsoft Visual
Studio using Silk Performer's Visual Studio .NET Add-On functionality can easily be exported to Silk
Performer for concurrency and load testing.

Note: Because there is such a variety of Java development tools available, a Java tool plug-in is not
feasible. Instead, Silk Performer offers features that assist Java developers, such as syntax
highlighting for Java and the ability to run the Java complier from Silk Performer Workbench.

In addition to the integration of Silk Performer with .NET Explorer, Java Explorer, and Microsoft Visual
Studio, you can use Silk Performer to write custom Java and .NET based test clients using Silk Performer's
powerful Java and .NET Framework integrations.

The tight integration of Java and .NET as scripting environments for Silk Performer test clients allows you
to reuse existing unit tests developed with JUnit and NUnit by embedding them into Silk Performer's
framework architecture. To begin, launch Silk Performer and create a new Java or .NET Framework-based
project.

In addition to creating test clients visually and manually, Silk Performer also allows you to create test clients
by recording the interactions of existing clients, or by importing JUnit test frameworks or existing Java/.NET
classes. A recorded test client precisely mimics the interactions of a real client.

Note: The recording of test clients is only supported for Web Services clients.

To create a Web Service test client based on the recording of an existing Web Service client, launch Silk
Performer and create a new project of application type Web Services/XML/SOAP.

Sample Applications for testing Java and .NET
The sample applications provided with Silk Performer enable you to experiment with Silk Performer's
component-testing functionality.

Sample applications for the following component models are provided:

• Web Services
• .NET Remoting
• Java RMI

Public Web Services
Several Web Services are hosted on publicly accessible demonstration servers:

• http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

8 | Tools and Samples

http://java.sun.com
http://www.javaworld.com
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

• http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
• http://demo.borland.com/OrderWebService/OrderService.asmx
• http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

Note: OrderWebService provides the same functionality as OrderWebServiceEx, however it makes
use of SOAP headers in transporting session information, which is not recommended as a starting
point for Java Explorer.

.NET Message Sample
The .NET Message Sample provides a .NET sample application that utilizes various .NET technologies:

• Web Services
• ASP.NET applications communicating with Web Services
• WinForms applications communicating with Web Services and directly with .NET Remoting objects.

To access the .NET Message Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
20.0 > Sample Applications > .NET Framework Samples .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 20.0 >
Sample Applications > .NET Framework Samples .

.NET Explorer Remoting Sample
The .NET Remoting sample application can be used in .NET Explorer for the testing of .NET Remoting.

To access the .NET Explorer Remoting Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
20.0 > Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 20.0 >
Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

DLL reference for .NET Explorer: <public user documents>\Silk Performer 20.0\SampleApps
\DOTNET\RemotingSamples\RemotingLib\bin\debug\RemotingLib.dll.

Java RMI Samples
Two Java RMI sample applications are included:

• A simple RMI sample application that is used in conjunction with the sample Java Framework project
(<public user documents>\Silk Performer 20.0\Samples\JavaFramework\RMI).

To start the ServiceHello RMI Server, go to: Start > Programs > Silk > Silk Performer 20.0 > Sample
Applications > Java Samples > RMI Sample - SayHello.

• A more complex RMI sample that uses RMI over IIOP is also available. For details on setting up this
sample, go to: Start > Programs > Silk > Silk Performer 20.0 > Sample Applications > Java
Samples > Product Manager. This sample can be used with the sample test project that is available at
<public user documents>\Silk Performer 20.0\SampleApps\RMILdap.

Java RMI can be achieved using two different protocols, both of which are supported by Java Explorer:

• Java Remote Method Protocol (JRMP)
• RMI over IIOP

Tools and Samples | 9

http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
http://demo.borland.com/OrderWebService/OrderService.asmx
http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

Java Remote Method Protocol (JRMP)

A simple example server can be found at <public user documents>\Silk Performer
20.0\SampleApps\Java.

Launch the batch file LaunchRemoteServer.cmd to start the sample server. Then use the Java Explorer
Start Here Wizard to begin testing RMI objects. Select RMI and click Next.

The next dialog asks for the RMI registry settings and a classpath where the RMI interfaces for the client
can be found. Here are the settings to be used for this example:

Host: localhost

Port: 1099

Client Stub Class: <public user documents>\Silk Performer 20.0\SampleApps\Java\Lib
\sampleRmi.jar.

RMI over IIOP

A simple example server can be found at: <public user documents>\Silk Performer
20.0\SampleApps\Java.

Launch the batch file LaunchRemoteServerRmiOverIiop.cmd to start the sample server.

Use the Java Explorer Start Here Wizard to begin testing RMI objects. Select Enterprise
JavaBeans/RMI over IIOP and click Next.

The next step asks for the JNDI settings and a classpath where the RMI interfaces for the client can be
found. Here are the settings to be provided for this example:

Server: Sun J2EE Server

Factory: com.sun.jndi.cosnaming.CNCtxFactory

Provider URL: iiop://localhost:1050

Stub Class: Click Browse and add the following jar file: <public user documents>\Silk
Performer 20.0\SampleApps\Java\Lib\sampleRmiOverIiop.jar.

Sample Test Projects
The following sample projects are included with Silk Performer. To open a sample test project, open Silk
Performer and create a new project. The Workflow - Outline Project dialog opens. Select the application
type Samples.

.NET Sample Projects

.NET Remoting

This sample project implements a simple .NET Remoting client using the Silk Performer .NET Framework.
The .NET Remoting test client, written in C#, comes with a complete sample .NET Remoting server.

Web Services
This sample shows you how to test SOAP Web Services with the Silk Performer .NET Framework. The
sample project implements a simple Web Services client. The Web Services test client, written in C#,
accesses the publicly available demo Web Service at: http://demo.borland.com/BorlandSampleService/
BorlandSampleService.asmx

10 | Tools and Samples

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

Java Sample Projects

JDBC

This sample project implements a simple JDBC client using the Silk Performer Java Framework. The JDBC
test client connects to the Oracle demo user scott using Oracle's "thin" JDBC driver. You must configure
connection settings in the databaseUser.bdf BDL script to run the script in your environment. The
sample accesses the EMP Oracle demo table.

RMI/IIOP

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
uses IIOP as the transport protocol and connects to a RMI server provided as a sample application. For
detailed instructions on setting up this sample project, see <public user documents>\Silk
Performer 20.0\SampleApps\RMILdap\Readme.html.

The Java RMI server can be found at: <public user documents>\Silk Performer
20.0\SampleApps\RMILdap.

RMI

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
connects to a RMI server provided as a sample application. For detailed instructions on setting up this
sample project, see <public user documents>\Silk Performer 20.0\SampleApps\RMILdap
\Readme.html.

To access the Java RMI server:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
20.0 > Sample Applications > Java Samples > RMI Sample - SayHello .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 20.0 >
Sample Applications > Java Samples > RMI Sample - SayHello.

Tools and Samples | 11

Testing Java Components
The Java Framework encourages efficiency and tighter integration between QA and development by
enabling developers and QA personnel to coordinate their development and testing efforts while working
entirely within their specialized environments.

Testing Java Components Overview
With the Java Framework developers work exclusively in their Java programming environments while QA
staff work exclusively in Silk Performer. There is no need for staff to learn new tools.

Java developers typically build applications and then hand them off to QA for testing. QA personnel are
then tasked with testing Java applications end-to-end and component-by-component. Typically QA
personnel are not given clients (test drivers) to test applications and they typically are not able to code such
test clients themselves. This is where Java Explorer and the Java Framework are effective. Java Explorer
offers a means of visually scripting test clients. In effect Java Explorer acts like a test client and can be
used to interact with the application under test.

All Java components can be tested with Java Explorer, but the focus lies on the following three Java
components: Enterprise JavaBeans (EJBs), Web Services, and Remote Method Invocation (RMI).

The Java Framework enables users to run stand-alone Java test code, to use other tools to invoke Java
test code, or to execute test code from an exported standalone console.

Working With JDK Versions
Because multiple Java Developer Kit (JDK) versions are available, you need to test components against all
versions. Both Silk Performer's Java Explorer and Java Framework support testing components of various
vendors and of different JDK versions.

Java Framework Approach
The Java Framework approach to component testing is ideal for developers and advanced QA personnel
who are not familiar with BDL (Benchmark Description Language), but are comfortable working with a Java
development tool. With this approach, Java code is used by the QA department to invoke newly created
methods from Silk Performer.

You can generate Java Framework BDL code using the Silk Performer JUnit import tool. The import tool
produces BDL code that can invoke customer test code or customer JUnit testcode. It can also be used to
directly invoke a client API.

Plug-In for Eclipse
Silk Performer offers a plug-in for Eclipse developers that automatically generates all required BDL code
from within the Eclipse SDK. Developers simply write their code in Eclipse and implement certain methods
for integrating with the Silk Performer Java Framework. The plug-in then creates all required BDL scripting
that the QA department needs to invoke newly created methods from Silk Performer. The plug-in for
Eclipse enables developers and QA personnel to better coordinate their efforts, consolidating test assets

12 | Testing Java Components

and enabling both testers and developers to work within the environments with which they are most
comfortable.

Java Explorer Overview
Java Explorer is a GUI-driven tool that is well suited for QA personnel who are proficient with Silk Performer
in facilitating analysis of Java components and thereby creating Silk Performer projects, test case
specifications, and scripts from which tests can be run.

Developers who are proficient with Java may also find Java Explorer helpful for quickly generating basic
test scripts that can subsequently be brought into a development tool for advanced modification.

Java Explorer emulates Java clients. When working with Web services, Java Explorer achieves this through
the use of proxies, which are conversion encoding/decoding modules between the network and client.
Proxies communicate with servers by converting function calls into SOAP (XML) traffic, which is transferred
through HTTP. Requests are decoded on the remote computer where the component resides. The XML
request is then decoded into a real function call, and the function call is executed on the remote server.
The results are encoded into XML and sent back to Java Explorer through SOAP, where they are decoded
and presented to the user. What you see as the return result of the method call is exactly what the server
has sent over the wire through XML.

Testing Java Components | 13

Tour of the UI
Explains the view tabs that are offered by Java Explorer.

Overview
The main sections of the Java Explorer interface are highlighted below.

Workflow Bar

The Java Explorer workflow bar assists you in configuring and running your tests. The buttons on the
workflow bar enable you to perform the following commands:

• Start Here: Opens the Load File Wizard, which guides you through selecting the type of testing that
you want to perform and loading the required components.

• Test Class: Allows you to create a new test case for a class, or to add methods to an existing test case.
This button is enabled when you select a class in the Loaded Components menu tree.

• Invoke: Invokes the selected method in the Loaded Components menu tree and adds it to the
selected test case in the Test Scenario menu tree.

• Customize: Lets you store data as variables. This button is enabled when you select an input
parameter in the Input Data menu tree, or an output parameter in the Output Data menu tree.

14 | Tour of the UI

• Verification: Allows you to define verifications for variables. This button is enabled when you select an
output parameter in the Output Data menu tree that has been stored as a variable.

• Run Test: Performs an animated run of your test cases.
• Results: Lets you explore the results of your last test run through user report, TrueLog, error report, or

log file analysis.

WSDL/JAR Address Field

The WSDL/JAR address field allows for the loading of either WSDLs or Java classes and packages.

Loaded Components Pane

The Loaded Components pane includes three tabs:

• Classes: A list of loaded Web services, remotable classes or interfaces, and other Java classes. Allows
you to instantiate objects, connect to remote objects, or call static methods.

• Objects: A list of instantiated objects, global variables, and random variables. Allows you to call
methods on those kind of objects.

Method Call Pane

• The Input Data menu tree shows input parameters (both headers and bodies) for the selected method
call.

• The Input Data Properties field shows the properties of the input parameters (value, type, pass, null,
etc).

• The Output Data menu tree shows the output parameters (header and body) of the last/selected
method call.

• The Output Data Properties field shows the properties of the output parameters (value, type, pass,
null, etc).

Test Scenario Pane

The Test Scenario pane lists the current test cases along with all added method calls.

Design Tab
The Design tab is the primary mode used to access the majority of Java Explorer functionality. The Design
tab offers the display of loaded components, invocation of methods, customization of input/output data, and
the design of test scenarios.

Loaded Components Pane
The Loaded Components pane, on the Design tab, distinguishes between classes and objects and
displays these components within different tree menus.

On the Classes tab you see all loaded classes with their members (methods, fields, and properties) that
can be accessed without the need of an object context. Normally these are static members and
constructors.

When you instantiate a class, the created object is shown on the Objects tab with all instance members
(methods, fields, and properties).

The two exceptions are Web services and Remote Objects. As an object instance is not required for Web
Services (which are objects that expose static methods), all methods offered by Web services are shown
on the Classes tab. Remote Objects, for example EJB home objects, which are used to create an EJB
object, are also listed in the Classes tab, although they are in fact objects.

Tour of the UI | 15

Classes Tab
All loaded classes and Web services are listed in the Java Explorer Loaded Components pane on the
Classes tab.

Only constructors, static methods, and members are displayed, as there is no object context required to
call them.

Web services and remotable interfaces are treated as if they only have static methods.

The following folders are available in Classes view:

Remote Objects

Home interfaces of EJBs on remote servers. The home interfaces are looked up on a naming service
through JNDI. Invoking a create method on EJB home objects instantiates EJB objects on servers.

Web Services

Stub classes, which are helper classes that encapsulate network communications. Axis classes are
derived from org.apache.axis.client.Stub or org.apache.axis2.client.Stub, depending on
the selected Web service plugin in Tools > Project Settings > Web Service Plugin. When you use the
Metro client stub, classes are derived from javax.xml.ws.Service. Asynchronous method calls are not
allowed and therefore are not shown.

Other Classes

Other Java classes, that do not fit in the above listed categories, and the application under test (AUT) are
included in this folder.

Objects Tab
When an object is instantiated through a constructor or returned by a method and stored in a variable, the
object is listed in the Loaded Components pane on the Objects tab. Instance members and methods that
can then be invoked by the user are displayed.

The Objects tab shows objects stored in variables that have global scope and those that have a local
scope of the currently selected test case.

Objects

Objects contain logic and data. For example, the data of an object might consist of a string. In this case,
the logic of the object would consist of functions that can be used to manipulate the string.

Note: You can create new objects by invoking a method more than once using different input
parameters.

Instance methods and members are displayed to allow for easy invokation.

Members have get/set accessors to enable the getting and setting of values.

Local test case objects are included in the Local Test Case Objects folder. A local object is only
displayed while the test case that is associated with it is selected. Global test case objects are included in
the Global Test Case Objects folder.

Note: To create a new test case, right-click a test case and choose New Test Case.

Variables

By default variables that store simple data types such as strings and integers are listed in the Global
Random Variables folder, not as objects but as simple variables. Depending on the variable type - either

16 | Tour of the UI

simple value type or complex object - variables are either displayed as simple types, with no actions
allowed, or as objects for which you can invoke all methods on the variable object, for example methods on
java.lang.String.

String values are represented as complex objects that allow you to call all methods of the
java.lang.String class.

Code Tab
Displays generated code files for the current test scenario. The following code types are available:

Test Driver Test Code

This tab displays the Java code generated for the test driver. This code can be compiled to a standalone
console application. The main method for the application contains the calls to the test cases that are
defined in your current test scenario. The test case methods contain all the calls that you have defined in
your scenario for the respective test case.

When you export a standalone console application through the Export menu and then run the application,
you see output information regarding successful/failed methods in the console window.

Silk Performer Java Framework Test Code

When you export a Silk Performer Java Framework project, the following files are generated:

• Silk Performer project file (.lpt)
• Silk Performer script file (.bdf)
• Java test script (.java)

This tab displays the Java test script code for Silk Performer Java Framework. Java framework code run by
Silk Performer enables you to execute Java scripts through BDL. For each test case in your current test
scenario, Java Explorer generates a separate BDL transaction in the test script.

BDL Script

This tab displays the BDL script code for Silk Performer Java Framework. The generated BDL executes the
Java test script with the settings stored in the Silk Performer project file.

JUnit Code

This tab displays the JUnit test script code. this code can be executed with any JUnit TestRunner. For more
information about JUnit testing, refer to the Silk Performer Help.

Client Proxy

This tab displays generated Web Service Client proxy code. When you load a WSDL file to access a Web
service, a Client proxy class is created. Proxy classes are created on method and type information in
WSDL files. When Web-service methods return complex types, additional classes are declared. These
additional classes are used to represent complex types in the method calls that take complex parameters.

Output Tab
The Output tab displays log output during test runs. The tab shows details about each call of the most
recent animated run. Statistics regarding execution time and executed methods are also shown.

Note: The Output tab can also be accessed by clicking Results on the Workflow Bar.

Tour of the UI | 17

The following items are available:

Animation Log

Displays detailed information about test duration, method calls, and errors. It also lists each method,
including input parameters and output values.

Java Explorer automatically saves this file to <my documents>\Silk Performer 20.0\Projects
\<projectname>\RecentTestRun\<projectname>.log.

Error Log

The Error Log delivers detailed information about errors that occurred during the last test run.

Java Explorer automatically saves this file to <my documents>\Silk Performer 20.0\Projects
\<projectname>\RecentTestRun\<projectname>.err.

User Report

An overview report in HTML format that displays the consolidated information from the animation log and
the error log, in a report format that you can use for distribution or printing.

Java Explorer automatically saves this file to <my documents>\Silk Performer 20.0\Projects
\<projectname>\RecentTestRun\<projectname>.html.

Example Animated Log Output

Test started: 08.10.2004 08:01:50
Test stopped: 08.10.2004 08:01:53
Method calls: 1
Success calls: 1
Error calls: 0
TestWebProxies.Service1.echoStringArray
Parameters : System.String[](string)
Return Value: System.String[](string)

18 | Tour of the UI

Setting Up Java Explorer
This section describes how you can set up a project in Java Explorer and how you can define tests for the
project. A sample Web Service host is used for demonstration purposes. For additional information on how
to use Java Explorer to test Enterprise JavaBeans and RMI over IIOP, see Enterprise JavaBeansand RMI
over IIOP.

Java Explorer Prerequisites
To work with Java Explorer you need to have a Java Development Kit 7, 8, downloadable from the Java SE
Downloads page, or a IBM Java Development Kit installed on your system.

If you are using Microsoft Windows Vista or Microsoft Windows 7 as your operating system, you must have
administrator priviledges to launch Java Explorer from the Start menu. If you do not have administrator
priviledges, Java Explorer is not able to create files or folders or to run Silk Performer.

Some Web Services only work with specific SOAP stacks, depending on the server-side implementation of
the Web Service. In this case, use trial and error to find the appropriate SOAP stacks, because the
reported error messages are not clear.

Creating a New Project
To create a new Java Explorer project:

1. Start Java Explorer. The Create or open a project dialog box opens.

2. Click the Create a New Project option button.

3. Type a name for the project into the text box.

Note: The project name cannot be longer than 19 characters and cannot contain certain special
characters, for example *, ., or !.

4. Click OK. The new project is created and the Java Explorer Web GUI opens. A new folder, which
contains all the files required by the project for operation, is created in the project directory. The default
project directory is <my documents>\Silk Performer 20.0\Projects.

5. Navigate to Tools > Project Settings > Web Service Plugin .

6. Select the Web service plug-in (SOAP stack) that is required for your tests.

Because of incompatibilities between different SOAP stacks, you cannot change the SOAP stack once it
is used by Java Explorer. Web Service plug-ins that are used, are grayed out in the list box.

Test Case Definition
Use one of the following two approaches to define a test with Java Explorer:

• Use the Load File Wizard to define where the information for an object you want to test is located. The
wizard displays the available classes, automatically instantiates the available objects, and calls methods
on those objects. This approach requires more involvement, but provides more control.

• Enter the location of the Web services' WSDL file into the WSDR/JAR text box in Java Explorer and
click Load. Information about the methods and objects is then displayed. This approach provides a
quick and simple way to analyze remote service functionality.

Setting Up Java Explorer | 19

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Note: Objects are not instantiated and methods are not called.

For demonstration purposes this Help uses the Load File Wizard to instantiate the objects available on the
sample Web service, which is available at http://demo.borland.com/BorlandSampleService/
BorlandSampleService.asmx?WSDL.

Setting Up a Test Using the Load File Wizard
To set up a Java Explorer test using the Load File Wizard:

1. Click Start Here on the workflow bar. The Load File Wizard dialog box opens.

2. Click the option button that corresponds to the class type that you want to test.

• Web Services
• Enterprise JavaBeans
• RMI
• Java Archive
• Java Class

3. To test a Web service, you must provide a Web Services Description Language (WSDL) document.
Click the Web Services option button and specify a path or URL to the WSDL document using the
browse (...) button.

Note: To test Enterprise JavaBeans, click the corresponding option button and then specify the
EJB-specific connection settings. To test other class types, click the appropriate option button and
then specify the path to a Java archive or class file.

4. Click Next. The WSDL file now loads and finds out what is available on the Web service. A WSDL file is
an XML description of the functionality that is offered by the Web Service.

Note: The sample Web service offers a minimum of functionality-it simply echoes back some
values.

5. Select the Web service class you wish to test from the Class list box. Normally there will be only one
class, but it is possible that the loaded WSDL will define multiple Web services.

6. Use the URL (Endpoint) text box to change the endpoint of the service.

The default endpoint is the one defined in the WSDL document.

7. Optional: To change the Web service proxy and authentication settings for the Web server, click browse
(...) to open the Connection Settings dialog box.

a) Type the endpoint of the Web service in the URL text box.
b) If user credentials are required for authentication, type the information in the Username and

Password text boxes.
c) Click OK.

8. Click Next. The Method Invocation dialog box opens.

9. Check the check boxes beside the methods that you want to test.

For example echoFloat and echoString. Methods are called using the default parameters.

Note: The checked Inherited check box indicates that the member functions of the base classes
are visible. You cannot change the state of the check box manually.

10.To adjust the sequence in which the methods are called, use the up and down arrow buttons. This way,
you can move methods up and down the invocation list. The button between the up and down arrow
buttons enables you to invert the selection of methods, meaning that all unmarked methods become
marked, and vice versa.

Note: Login and logout methods must be in first and last positions, respectively.

20 | Setting Up Java Explorer

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL

11.Click Next. The Select a test case dialog box opens.

12.Select the test case to which the testing methods should be added. You can select from the following:

• Init Test Case: This is the first test case that is called in test runs. Select this test case if your
method calls are related to initialization, logging in, or start-up.

• Existing Test Case: You can add to an existing test case. Choose the test case from the list box to
the right of this selection.

• New Test Case: A new test case is created and the methods are added to the new test case. Using
the text box to the right of this selection, give the new test case a unique name.

• End Test Case: This is the last test case that is called in test runs. Select this test case if your
method calls are related to clean-up, for example logging off.

13.Click Finish.

Note: A message displays if you have selected a method that takes parameters, letting you know
that default parameters will be used for the method, which may result in an exception being
thrown. Methods that throw exceptions will be excluded from your test scenario. If you don’t want
to proceed, click No, then go back, deselect the method in question, and add it later manually with
a more meaningful parameter value.

The Web service has been loaded in the class tree list and the selected methods have been called and
added to the selected test case.

Test Case Characteristics
Following is an overview of the characteristics of test cases as they relate to Java Explorer:

• Each test scenario includes an Init test case and an End test case. Multiple Main test cases may also
be defined. An Init test case is the first test case that is called during a test run. Init test cases often
include method calls that are related to initialization, logging in, or start-up. An End test case is the last
test case that is called during a test run. End test cases often include method calls that are related to
clean-up, for example logging off.

• Main test cases are executed between Init and End test cases and may include any sort of method
call.

• A local variable is only valid within a single test case and cannot be passed to another test case. Only
global variables can be used to pass values between test cases.

• Each test case must have a unique name.
• Names of test cases are restricted. The names are mapped to Java methods and Silk Performer

transactions, so they are subject to the restrictions of Java method and Silk Performer transaction
names. Code exported to Silk Performer cannot use keywords that are defined by BDL or Java. You
cannot use the names of the following variables because they are scripted by Java Explorer scripts
when exporting to Silk Performer Java Framework Projects:

all allownull and array aux

begin benchm
ark

bin boole
an

by

char chr clock$ commi
t

con const create com
1

... com
9

curso
r

datab
ase

dclevent dclform dclfun
c

dclpara
m

dclra
nd

dclsql dcltr
ans

dclus
er

delet
e

dll do doubl
e

dro
p

dstri
ng

else elseif end eos exit explic
it

false fetch float for form from functio
n

Setting Up Java Explorer | 21

grou
p

halt handler

if in init inout insert into

last lenspec long loop lpt1 ... lpt9

mod

next not nul numb
er

of optional or ord order out

prn proc ptr

rc reset result return rndbin rndef
xp

rndexp
n

rndfil
e

rndin
d

rndp
ern

rndsn
o

rnd
str

rndstr
eam

rnd
unif

rndu
nii

rndu
nin

rollback row rows

selec
t

set short sizeof sizespe
c

sql stored strin
g

then throw to transa
ction

transac
tions

true

union unique unsigned updat
e

use user

value
s

var void

wait where while write writeln

• Test case properties can be edited by selecting a test case in the Test Scenario menu tree and defining
field values in the Output Data Properties field:

• StopAtError is the attribute that defines the number of errors that can occur during an animated
run. If this number is reached, the animated run aborts. Setting this attribute to 0 specifies that errors
will be ignored.

• CallCount is the attribute that defines the number of times that a test case will be called during an
animated run.

• The Name attribute of the test case must be unique among all test cases.
• You can create, copy, and remove test cases by right-clicking a teste case in the Test Scenario menu

tree and selecting the respective menu item.

22 | Setting Up Java Explorer

Setting Up Tests
This section explains how to set up and customize your tests with Java Explorer. Topics include an
introduction to GUI elements, customization of input parameters, definition of output value verifications, and
generation of random variables. The section concludes with an explanation of how to use Java Explorer to
test EJBs and RMI over IIOP.

Customizing Input Parameters
You should customize the input parameters before you execute a method. If you want to customize a
method call after it is executed, for example if the method call was generated using the Load File Wizard,
you need to execute an Animated Run after you have customized the method call to make the changes
effective.

When a method has input headers or parameters, its values are displayed in the Default Input Parameter
Values pane with their default values. Select the method you want to invoke in the Loaded Components
pane. Parameters are displayed with their default values in the Default Input Parameter Values pane. To
configure default values in the System Settings, click Tools > System Settings > Default Values.

To change a value, select a parameter in the Default Input Parameter Values pane. If a parameter is a
simple data type, like string, float, or integer, you can enter the value directly into the text boxes in the pane.
If the parameter is a complex type, like an object or array, or you want to use a random value or a value
from a stored variable, click (...) to open the Input Value Wizard.

To use the Input Value Wizard to customize an input parameter:

1. Select the InputValue row in the Input Data Properties pane.

2. Click (...). The Input Value Wizard opens.

3. Define the input value for the parameter of the method.

You can pass a null value, a value from a variable, or a constant value.

• ClickIs Null to pass a null value. This value is only valid for strings, objects, and arrays.
• If you have already stored a variable that holds values of the parameter’s type, click Use Variable

and select the variable from the list box.

If the parameter is an array, type the index into the Index Array text box.
• If the parameter is not an object or array, you can specify a constant value such as a string, integer,

or double value. Select the Constant value option button.
• If you do not want to use a constant value and would rather use a random value for types such as

string, integer, or float, you can create a new random value by clicking New random variable. If a
random value of the parameter type has already been created, click Random variable and select
the variable from the list box.

4. Click OK.

Once input parameters have been defined, you can invoke a method to have that method automatically
added it to the selected test case in the Test Scenario pane. From there, corresponding output values can
either be stored as variables or verifications can be set up for them.

Storing Output Values in Variables
Using the Output Data and Output Data Properties panes, you can store output values as variables for
later use or you can define verifications for the values.

Setting Up Tests | 23

1. Click Invoke on the Workflow bar or by right-click a method in the Input Data pane and choose
Invoke/Add to Test Case to invoke the method. The Output Value Wizard opens.

Note: You can also open the Output Value Wizard by clicking Customize in the Workflow bar, or
by right-clicking an output parameter in the Output Data pane.

2. In the Output Value Wizard, type a name for the output value variable in the Variable name text box.

3. Click the option button that corresponds to the scope of the variable.

The default is Local, which means that the variable can only be used within the test case within which it
has been created. Global scope means that the variable can be used within any test case. Global
scope enables you to pass information between test cases.

4. Click OK.

Manually Adding Global Variables
Global variables can be shared between test cases. They vary from local variables, which are only
available to specific test cases.

Note: You can also create global variables by clicking the Global scope option button in the Output
Value Wizard.

Global variables can be used as input parameters for function calls. Global variables are configured with an
initial value, which makes them useful when you need to have the same value used for multiple function
calls. Each time a test run begins, global variables are initialized with the defined initial value.

To create a global variable:

1. Click the Objects tab.

2. Right-click an object in the Objects tree menu and choose New Global Variable. The Define a Global
Variable dialog box displays.

3. Enter a name for the variable in the Variable Name text box.

4. Select a Variable type.

The following variable types are available:

• boolean
• byte
• short
• int
• long
• char
• float
• double
• java.lang.String

5. Each variable has an initial value and a current value. When tests are run, all global variables are
initialized to their initial values. Specify an intial value for the variable in the Initialize Value text box.

6. Click OK.

Capturing an HTTP Response
By default, Java Explorer does not allow you to view the HTTP response when running a test against a
Web service. As an alternative, you can use Silk Performer to record and capture the server response.

1. Launch Silk Performer.

24 | Setting Up Tests

2. In the Silk Performer menu, click Settings > System .

3. Click the Recorder icon. The Recording Profiles page opens.

4. Click Add to add a new recording profile for Java.

The Recording Profile dialog box opens.

5. In the Profile name text box, type a unique name for the Java recording profile.

The profile name is required to identify the application in the Silk Performer Recorder window.

6. In the Application path text box, type the name of the Java application's executable and the directory in
which it resides.

To locate the executable, click Browse.

Note: There may be multiple Java executables. Therefore, it is important that the Recording Profile
should match the Java executable used in the Java Explorer runtime settings.

7. In the Working directory text box, type the working directory of the Java application.

The working directory is the folder that contains the application or related files. Some applications need
files located in other directories, so you might have to specify the folder in which these files reside.

8. In the Application type list box, make sure that Custom Application is selected.

9. In the Protocol selection area, select the Web check box, which identifies that the Silk Performer
Recorder hooks into a Web application, intercepts all function calls, and displays the results.

10.Click OK to add the new Java profile to the list.

11.Ensure that you record the script in Silk Performer with the newly created recording profile before
invoking and running the test in Java Explorer.

12.After you save the recording, you can view the HTTP response in TrueLog Explorer by selecting the In
Body tab of the recorded TrueLog file (.xlg).

Defining Output Value Verifications
1. Select Verification in the Output Data Properties pane to display the (...) button.

2. Click (...) to open the Verification Wizard.

a) Select Range if you are verifying integers or doubles. Then specify a range for the value using the
From and To text boxes.

3. Select one of the following:

• Click No Verification if you do not want the value to be verified.
• Click Verification with NULL or variable to verify one of the following:

• Check the Should be null check box, to verify that the value is NULL.
• The value is not NULL. This option verifies whether or not a value is present.
• Verify that the value exactly matches the value of an existing variable, a public member of a

variable, or an element of an array.If the variable is an array you can also define the Array index
for the element that should be used for the verification.

• Click Constant Value to verify that the value exactly matches a constant string.
• Click Regular expression to verify against a string value.
• Click Range if you are verifying that a numeric value is within a specified range. Then specify a

range for the value using the From and To text boxes.

4. Select the Severity of error that should be thrown if the verification fails. The following severity options
are available:

• Success, no error

No error is thrown
• Informational

Setting Up Tests | 25

An informational message is logged
• Warning

A warning is thrown
• Error, simulation continues

An error is thrown, but the simulation continues
• Error, the active test case is aborted

An error is thrown, the simulation continues, however the active test case is aborted. This is a
transaction exit severity in Silk Performer

• Error, the simulation is aborted

An error is thrown and the simulation is aborted
• Custom

A section is inserted into the .NET code where special error handling code can be inserted

5. Click OK.

Verification with NULL or Variable
The Verification with NULL or variable selection inludes a list box that contains the entries < is Null >
and < is not Null > and a list of variables that match the return value of the method call.

The list box additionally contains arrays for which the element type matches the return value of the method
call. For example, the array myStringArray has a return value of type java.lang.String. You can
select variables that represent a string array from the list box. In such cases, an array index list box is
enabled.

The list box also contains public fields of complex objects of matching type. For example, the test class
PublicMember has a public field called mStr of type string, which can be selected. The notation of public
fields is <variable name>.<member name>, which for the example is PublicMember.mStr.

Adding Method Calls
1. Within the Loaded Components or Method Call pane, select the method to be added.

2. Invoke the method by clicking Invoke. The invoked method is added automatically to the currently
selected test case. If the method call returns a value, the Output Value Wizard opens automatically,
and prompts you to store the value.

Updating Method Calls
1. From the Test Scenario pane, select the method that is to be changed.

2. Make modifications to the input/output parameters of the method in the Input Data or Output Data
panes. Updates are automatically accepted when you exit the Input Data or Output Data panes.

3. Perform an Animated Run to apply the changes.

Complex Input/Output Data
Java Explorer supports complex data types such as arrays and objects as both input data and output data.
The Output Value Wizard assists you in using such data as variables.

26 | Setting Up Tests

Verification of Variables
Java Explorer fully supports the verification of complex data types. When the return value of a method,
including array elements and public fields of complex type, is complex, you can select an existing variable,
an array element of an existing variable, or a public field of an existing varible to verify against. Java
Explorer also supports the verification of variables with primitive data types.

Storing Array or Object Output Data as Variable
When a method returns an array or an object as output data, you can store the value in a variable of either
local or global scope.

1. Select the complex output parameter in the Output Data pane.

2. Click (...). The Output Value Wizard opens.

3. Specify the name and scope of the variable.

Taking Array Object Data From a Variable
1. Select a complex input parameter in the Input Data pane.

2. Click (...). The Input Value Wizard opens.

3. Define the input value.

Defining Each Member of a Variable Individually
1. Select individual members of an object in the Input Data pane.

2. Define input values in the InputValue text box.

For example, you can specify a random value from a value list as one input value and specify a constant
value as another input value.

Defining Array Elements
1. The default length for arrays is 1. To change the number of elements in an array, select the array node

in the Input Data pane.

2. In the Length text box, enter the number of elements in the array. Java Explorer automatically adds or
removes the required elements.

3. To specify the value of an element, select the element in the array and specify the value in the Value
text box.

4. Array members or an entire array can be assigned input parameters from a variable. To specify input
parameters from a variable, click (...). The Input Value Wizard opens.

5. Click Use variable on the Input Value Wizard and select a preconfigured variable from the list box.

All variables of the current parameter type are listed.

6. Click OK.

Using Complex Input Data
The following example task describes how you can use complex input data:

1. Call the method echoStringArray of the sample Web service.

Setting Up Tests | 27

The sample Web service is available from http://demo.borland.com/BorlandSampleService/
BorlandSampleService.asmx?WSDL. This service requires an object of the generated class
ArrayOfString as a parameter.

2. Right click init() and choose Invoke in the Design pane to instantiate the ArrayOfString object. The
Output Value Wizard opens.

3. Check the Store as variable check box.

4. Type myArrayOfString into the Variable name text box.

5. Click OK. The Output Value Wizard closes.

6. Right click setString(String[]) and choose Invoke in the Design pane to call the setString method
and define the array elements.

7. Use the Input Value Wizard to pass myArrayOfString to the echoStringArray method.

Random Value Types
When you define a random variable for an input value you can only choose one of the random types that
are applicable for that input value type.

Random variables return one of the following value types:

• String

• Number

• Float

String Random Values

You can define random variables that return strings with the Random Variable Wizard.

Individual Strings

An individual string declares a random variable of type RndInd. With each access, such a variable
contains a random value with type string. You must declare all possible values for the random variable,
along with their probabilities. For each string value you must define a weighted number that indicates the
probability that the string value will be selected. Weighted numbers are integer numbers.

Strings from a Pattern

A string from a pattern declares a random variable of type RndStr. Such a variable contains a random
string value with each access. The characters of the string and the length of the string are randomly
generated following a uniform distribution.

The pattern string defines the characters that you must use to construct random strings. The length of
calculated strings is selected randomly with a uniform distribution based on defined minimum and
maximum lengths, including boundaries.

Number Random Values

You can define random variables that return integers with the Random Variable Wizard. The values can
either be calculated based on a weighted number list or by specifying a number range.

Integer Numbers

Declares a random variable of type RndUniN. With each access, such a variable contains a value that is
generated following a uniform distribution. The parameters of the RndUniN function specify the minimum
value and the maximum value of the uniform distribution. Within these boundaries all integer values have
the same probability, including the boundaries.

28 | Setting Up Tests

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL

Weighted Integer Numbers

Declares a random variable of type RndInd. With each access, such a variable contains a random value
whose type is either string or integer, depending on the syntax of the declaration. You must declare all
possible values for the random variable, along with their probabilities. You cannot mix integer and string
values. For each integer value you must define a weighted number that indicates the probability that the
integer value will be selected.

Float Random Values

You can define random variables that return floats with the Random Variable Wizard. There is only one
possible definition for generating float values currently.

Floating Point Numbers

Declares a random variable of type RndUniF. With each access, such a variable contains a value that is
generated following a uniform distribution. The parameters of the RndUniF function specify the minimum
value and the maximum value of the uniform distribution.

Configuring Random Variables
With the Random Variable Wizard, you can configure random variables for entire input parameters or
individual members of complex input parameters. You can also reuse existing random variables by using
the Input Value Wizard.

To configure a random variable:

1. On the Input Value Wizard, click the New random variable option button.

Alternative: If you have already configured a random variable that you would like to apply, click the Use
random variable option button.

2. Alternative: If you have already configured a random variable that you would like to apply, perform the
following:

a) Click the Use random variable option button.
b) Select the variable that you wish to apply from the list box.
c) Click OK.

3. Click OK. The Random Variable Wizard opens.

4. From the Random type list box, select the type of random variable that you wish to insert to your script.

A short type description and a variable declaration preview for each type is displayed.

Note: Random variables always have global scope, and so are available to all test cases in your
project.

5. Click Next.
6. In the Parameter pane, edit the existing valyues or insert new values.

Weight numbers define the fraquency at which values are displayed. The weight numbers are more
flexible than using percentages to define frequency.

7. Click Finish.

Enterprise JavaBeans and RMI over IIOP
Enterprise JavaBeans (EJB) is a specification for developing scalable, server-side, multi-user enterprise
applications. When you test components like EJBs or other remote components, you cannot use HTTP
traffic when the application expects RMI or RMI over IIOP traffic. To communicate with the application, Silk
Performer must invoke a Java client that generates the appropriate protocols that can be used to approach
the interface of the application.

Setting Up Tests | 29

Java Remote Method Invocation (RMI) technology is developed jointly by Sun Microsystems and IBM. RMI
delivers CORBA-distributed computing functionality to the Java 2 platform, when the technology is run over
Internet Inter-Orb Protocol (RMI-IIOP).

Working with Enterprise JavaBeans
Testing an EJB with Java Explorer involves the following three main steps:

• Connecting to the Java Name Service (JNDI)
• Selecting an EJB Home object that is registered at the Naming Service and can be used as the factory

object
• Creating an EJB on the application server

To test an EJB:

1. In the Workflow bar, click Start Here. The Load File Wizard opens.

2. Alternative: In the Classes pane, right-click Remote Objects and choose New EJB to start the EJB
Wizard directly.

In this approach, skip the next two steps.

3. Click the Enterprise JavaBeans / RMI over IIOP option button.

4. Click Next. The Connect to Naming Server dialog box opens.

5. If available, select the application server vendor from the Server list box.

Note: The entries in the list work as a template that pre-configures other settings, like initial
context factory, protocol, and port, with default values. For additional information regarding the
configuration of specific application server types, see Vendor-Specific JNDI Settings.

6. In the Factory text box, specify the context factory of the naming service.

7. In the Host/Port text boxes, type the URL where the naming service provider is to be hosted.

The naming server provider URL is comprised by protocol, host, and port. You can also type the URL
directly into the Provider URL text box.

8. If required by the provider, type the credentials in the User and Password text boxes.

9. Click Edit Classpath The Classpath Configuration dialog box opens.

10.Choose Static and click Add entries to classpath to specify the archives that are necessary to
connect to the naming service of the application server.

11.Choose Dynamic and click Add entries to classpath to specify the archives that contain the client
stubs of the application.

For vendor-specific details, refer to the application server documentation. For additional information on
classpaths, see Classpath Settings.

12.Click OK.

13.Back on the EJB Wizard, click Next to connect to the naming service. The Look up and narrow a
Home Interface or Remote Object dialog box opens.

14.In the naming service sub-folders, select the EJB Home interface, represented by a "hand holding a
coffee bean" icon, or the remote object, represented by a satellite dish icon, for which Java Explorer
should obtain a reference.

The corresponding client stubs must have been added to the classpath of the project.

15.Click Finish.

You can now use the Load File Wizard to browse for the methods of the remote object and to specify
which test case the methods are to be called from.

Note: EJBs which implement the EJBLocalObject interface instead of the EJBHome interface
are not displayed correctly in the JNDI tree.

16.Alternative: If you invoke the EJB Wizard directly by right-clicking Remote Objects in the Classes
pane, you must perform the following two steps:

30 | Setting Up Tests

a) Select the create() method of the EJB Home object to instantiate an EJB object. Store the EJB
object to a variable.

b) Invoke one or more methods on the EJB object.

Vendor-Specific JNDI Settings
The application server vendor-specific default values are inserted automatically when you select the
aproperiate server name in the Connect to Naming Service dialog box. The following vendor-specific
default values exist:

• initial context factory
• protocol
• port

Note: The naming service provider URL is comprised by protocol, host, and port.

Connecting to BEA WebLogic
To connect to a BEA WebLogic server:

1. In the Connect to Naming Service dialog box, choose WebLogic Application Server from the
Server list box.

2. From the Factory list box, choose weblogic.jndi.WLInitialContextFactory

3. In the Provider Url text box, type t3://red:7001.

The port may vary depending on the configuration of the server.

4. Click Edit Classpath ... and specify the following server and client classpaths:

a) In the Server Classpath text box, type the path to weblogic.jar.

This file is provided by BEA and contains the WebLogic J2EE implementation and the
implementation used for connecting to the naming mechanism of BEA WebLogic. The file has a size
of about 40 MB and you can normally find it in a lib subdirectory of the BEA WebLogic home
directory.

b) In the Client Classpath text box, type all JAR files and classpaths that are required to connect to the
EJB.

You usually put the client-side stubs and additional classpath entries into the client classpath.
WebLogic servers automatically generate the stubs when EJBs are deployed.

5. Verify your settings and click Next. The names of all registered EJBs and RMI objects that are hooked
into your WebLogic server are browsed.

6. Choose the home interface that allows for the creation of instances of EJBs.

It is typical for EJBs to have home interfaces that are used to create EJB instances. For example,
choose ejb20-statelessSession-Traderhome to use the TraderHome interface.

7. Click Finish.

8. In the Load File Wizard, click Next. The home interface you have selected is browsed for the published
methods it includes. A method named create is likely to be among these methods. Call this method to
get a valid reference to an EJB object.

9. Click Next and select the test case where Java Explorer should write code for the steps that are
performed by the wizard.

For example, you can put the steps that are referred to as bootstrapping into the init test case or an
existing test case.

10.Click Next.

11.Check the Store as variable check box and type a name for the EJB reference obtained by the Java
Explorer Wizard into the Variable name text box.

Setting Up Tests | 31

12.Click OK. You can now call any of the EJBs business methods.

Connecting to IBM WebSphere
To connect to an IBM WebSphere server:

1. In the Connect to Naming Service dialog box, choose WebSphere Application Server from the
Server list box.

2. From the Factory list box, choose com.ibm.websphere.naming.WsnInitialContextFactory.

3. In the Provider Url text box, type iiop://lab44:900.

The port may vary depending on the configuration of the server.

4. Click Edit Classpath ... and specify the following server and client classpaths:

a) In the Server Classpath text box, type the path to csicpi.jar, which is the IBM implementation of
J2EE.

This file is provided by IBM and contains the IBM J2EE implementation.
b) Additionally type the paths to the following required packages into the Server Classpath text box:

WebSphere 4.x • ejbcontainer.jar

• iwsorb.jar

• j2ee.jar

• jts.jar

• ns.jar

• ras.jar

• ujc.jar

• utils.jar

• websphere.jar

WebSphere 5.x • ffdc.jar

• idl.jar

• iwsorb.jar

• j2ee.jar

• naming.jar

• namingclient.jar

• ras.jar

• wsexception.jar

• ecutils.jar

• tx.jar

• utils.jar

• ejbportable.jar

• The properties directory, which is usually located in the WebSphere home
directory.

These files are shipped with each WebSphere installation and are normally found in the lib directory
of WebSphere installations.

c) In the Client Classpath text box, type all JAR files and classpaths that are required to connect to the
EJB.

You usually put the client-side stubs and additional classpath entries into the client classpath.
WebSphere servers automatically generate the stubs when EJBs are deployed. You can normally
find these stubs in the installedApps directory, which is located within the WebSphere home
directory.

5. Verify your settings and click Next. The names of all registered EJBs and RMI objects that are hooked
into your WebSphere server are browsed.

32 | Setting Up Tests

6. Choose the home interface that allows for the creation of instances of EJBs.

It is typical for EJBs to have home interfaces that are used to create EJB instances. For example,
choose cart to use the CartHome interface from the petstore sample.

7. Click Finish.

8. In the Load File Wizard, click Next. The home interface you have selected is browsed for the published
methods it includes. A method named create is likely to be among these methods. Call this method to
get a valid reference to an EJB object.

9. Click Next and select the test case where Java Explorer should write code for the steps that are
performed by the wizard.

For example, you can put the steps that are referred to as bootstrapping into the init test case or an
existing test case.

10.Click Next.

11.Check the Store as variable check box and type a name for the EJB reference obtained by the Java
Explorer Wizard into the Variable name text box.

12.Click OK. You can now call any of the EJBs business methods.

Connecting to Sun
To connect to a Sun server:

1. In the Connect to Naming Service dialog box, choose SUN J2EE Server from the Server list box.

2. From the Factory list box, choose com.sun.jndi.cosnaming.CNCtxFactory

3. In the Provider Url text box, type iiop://red:1050.

The port may vary depending on the configuration of the server.

4. Click Edit Classpath ... and specify the following server and client classpaths:

a) In the Server Classpath text box, type the path to j2ee.jar.

This file is provided by Sun and contains the J2EE implementation and the implementation used for
connecting to the naming mechanism of Sun. You can normally find the file in a lib subdirectory of
the J2EE home directory.

b) In the Client Classpath text box, type all JAR files and classpaths that are required to connect to the
EJB.

You usually put the client-side stubs and additional classpath entries into the client classpath. Sun
J2EE servers automatically generate the stubs when EJBs are deployed.

5. Verify your settings and click Next. The names of all registered EJBs and RMI objects that are hooked
into your Sun server are browsed.

6. Choose the home interface that allows for the creation of instances of EJBs.

It is typical for EJBs to have home interfaces that are used to create EJB instances.

7. Click Finish.

8. In the Load File Wizard, click Next. The home interface you have selected is browsed for the published
methods it includes. A method named create is likely to be among these methods. Call this method to
get a valid reference to an EJB object.

9. Click Next and select the test case where Java Explorer should write code for the steps that are
performed by the wizard.

For example, you can put the steps that are referred to as bootstrapping into the init test case or an
existing test case.

10.Click Next.

11.Check the Store as variable check box and type a name for the EJB reference obtained by the Java
Explorer Wizard into the Variable name text box.

12.Click OK. You can now call any of the EJBs business methods.

Setting Up Tests | 33

Connecting to JBoss
To connect to a JBoss server:

1. In the Connect to Naming Service dialog box, choose JBoss Application Server from the
Server list box.

2. From the Factory list box, choose org.jnp.interfaces.NamingContextFactory

3. In the Provider Url text box, type jnp://red:1099.

The port may vary depending on the configuration of the server.

4. Click Edit Classpath ... and specify the server and client classpaths.

For additional information regarding the testing of JBoss application servers, contact Customer Care.

5. Verify your settings and click Next. The names of all registered EJBs and RMI objects that are hooked
into your JBoss server are browsed.

Working with RMI Over IIOP
To test RMI over IIOP:

1. In the Workflow bar, click Start Here. The Load File Wizard opens.

2. Click the Enterprise JavaBeans / RMI over IIOP option button.

3. Click Next. The Connect to Naming Service dialog box opens.

4. If available, select the application server vendor from the Server list box.

Note: The entries in the list work as a template that pre-configures other settings, like initial
context factory, protocol, and port, with default values. For additional information regarding the
configuration of specific application server types, see Vendor-Specific JNDI Settings.

5. In the Factory text box, specify the context factory of the naming service.

6. In the Host/Port text boxes, type the URL where the naming service provider is to be hosted.

The naming server provider URL is comprised by protocol, host, and port. You can also type the URL
directly into the Provider URL text box.

7. If required by the provider, type the credentials in the User and Password text boxes.

8. Click Edit Classpath The Classpath Configuration dialog box opens.

9. Choose Static and click Add entries to classpath to specify the archives that are necessary to
connect to the naming service of the application server.

10.Choose Dynamic and click Add entries to classpath to specify the archives that contain the client
stubs of the application.

For vendor-specific details, refer to the application server documentation. For additional information on
classpaths, see Classpath Settings.

11.Click OK.

12.Back on the EJB Wizard, click Next to connect to the naming service. The Look up and narrow a
Home Interface or Remote Object dialog box opens.

13.In the naming service sub-folders, select the EJB Home interface, represented by a "hand holding a
coffee bean" icon, or the remote object, represented by a satellite dish icon, for which Java Explorer
should obtain a reference.

The corresponding client stubs must have been added to the classpath of the project.

14.Click Finish.

You can now use the Load File Wizard to browse for the methods of the remote object and to specify
which test case the methods are to be called from.

34 | Setting Up Tests

http://support.microfocus.com

Note: EJBs which implement the EJBLocalObject interface instead of the EJBHome interface
are not displayed correctly in the JNDI tree.

Testing the RMI Sample
To test the Silk Performer RMI sample:

1. Launch the Product Manager RMI sample.

2. Navigate to the <public user documents>\Silk Performer 20.0\SampleApps\RMILdap
directory.

3. Invoke the four batch files step1 through step4.

4. In the Classes pane, right-click Remote Objects and choose New EJB. The EJB Wizard opens. The
RMI objects are registered at a JNDI naming service.

5. Type com.sun.jndi.cosnaming.CNCtxFactory into the Factory text box.

6. Type iiop://localhost:1900 into the Provider Url text box.

7. Click Edit Classpath ... and select <public user documents>\Silk Performer
20.0\SampleApps\RMILdap\RMILdap\ProductManager-server\ProductManager-
server.jar.

8. Back on the EJB Wizard, click Next to connect to the naming service. The Look up and narrow a
Home Interface or Remote Object dialog box opens.

9. Select the ProductManagerServicesLdap remote object. The RmiExtension helper class performs all
necessary bootstrapping.

10.Click the RmiExtension helper class in the Classes pane of the Loaded Components page.

11.Click the createObject method of the class in the Input Data pane.

The method includes a class to provide the parameters for the RMI connection settings.

12.View the result of the createObject method in the Objects pane. The result is a stub class instance,
which is used to communicate with the remote object on the server.

13.Open the getProductsByName method in the Loaded Components page.

The method requires a string as parameter. You can use * as a wildcard to get all products.

Java RMI
Java Explorer supports the following protocols for Java RMI:

• RMI over IIOP
• Java Remote Method Protocol (JRMP)

RMI Testing with JRMP
The main difference between testing RMI with JRMP and testing RMI over IIOP is that with JRMP you
need to connect to an RMI registry.

To test RMI with JRMP:

1. In the Workflow bar, click Start Here. The Load File Wizard opens.

2. Alternative: In the Classes pane, right-click Remote Objects and choose New RMI to start the RMI
Wizard directly.

In this approach, skip the next two steps.

3. Click the RMI option button.

4. Click Next. The Rmi Wizard dialog box opens.

Setting Up Tests | 35

5. In the Host/Port text boxes, type the name and port of the host.

For example, type localhost and 1099.

6. Click Add archive(s) to classpath and specify the location of the RMI interfaces for the client.

For example, <public user documents>\Silk Performer 20.0\SampleApps\Java\Lib
\sampleRmi.jar.

7. Back on the EJB Wizard, click Next to view all registered remote objects in the RMI registry. The Look
up and narrow a Remote Object dialog box displays all registered remote objects in the RMI registry.

8. Choose RemoteServer and click Next. The methods of the remote object are browsed.

9. Select the first two methods by checking the appropriate check boxes.

• echoFloat(float)

• echoString(string)

The selected methods are implemented by the sample RMI server. The other methods are inherited
from base classes and don't need to be tested.

10.Click Next and select the test case from which the methods should be called.

Testing Java Archives
Java archives normally contain many classes that need to be tested.

To test a Java archive:

1. In the Workflow bar, click Start Here. The Load File Wizard opens.

2. Click the Java Archive option button.

3. Click Browse ... to browse for the JAR file that contains the classes to be tested.

For example, load sampleBasis.jar. This archive is selected by default.

4. Click Next. The Testing Java Classes dialog box opens.

5. In the Class text box, type the name of the class to be tested.

6. Choose the constructor of the class from the Constructor list box.

7. Click Next. The instance of the class is created and the created object is browsed for the methods it
includes.

8. In the Method Invocation dialog box, select the toString method.

9. Click Next.

10.Choose a test case where Java Explorer should add the created scenario. The method toString
returns a string. Therefore, Java Explorer asks you whether it should store the returned value or discard
it.

Test Class Wizard
You can create a test for a class or an instantiated object with the Test Class Wizard. To use the wizard,
select a class in the Classes pane or an object in the Object pane and call the wizard, either through the
context menu or the Workflow bar. You can also select methods that are to be called with the wizard.

Secure Web Services
You can configure Java Explorer for the testing of secure Web services.

To test secure Web services, the following steps are required:

36 | Setting Up Tests

• Create a truststore for your JDK.
• Load a secure WSDL into Java Explorer.
• Invoke Web service calls over a secure connection.

Java Explorer supports authentication of Web services. Use the Connection Settings dialog box to
specify your credentials.

Creating a Truststore for Your JDK
When you work with secure Web services, the Web service clients must trust the Web applications they
interact with to be secure. The Web service client is typically a Web browser, but in this case the client is
Java Explorer. To enable testing of a Web application, Java Explorer must accept the server certificate of
the application or trust the certifying authority who issues the server certificate.

Your JDK installation includes a command-line tool called keytool. You can manage server certificates and
certifying authorities with this tool. The easiest way of downloading server certificates is to export them
from your Web server.

To create a truststore for your JDK:

1. Export a CER certificate file from your Web browser to your local system.

For information on exporting a certificate, refer to the Help of your browser.

2. To add the saved certificate to your truststore, which is called mykeystore, enter the following into the
command-line tool of your system:

keytool
-import
-alias <alias name>
-file c:\<pathname>\<certificate file name>
-keystore mykeystore

The command-line tool creates a file called mykeystore in your current working directory.

Configuring Java Explorer to Use a Truststore
Set the system property -Djavax.net.ss.trustStore=trustedcerts to configure a Java process to
use a truststore. When you work with Java Explorer, you can specify the system properties in property files
that reside at <Java Explorer Home>/Startup directory.

To configure Java Explorer to use a truststore:

1. Open ./startup/gui.properties in a text editor.

2. Add the following line:

system.property.javax.net.ssl.trustStore=C:\\Temp\\mykeystore

3. Open ./startup/runtime.properties in a text editor.

4. Add the following line:

system.property.javax.net.ssl.trustStore=C:\\Temp\\mykeystore

5. Restart Java Explorer.

Loading a Secure WSDL
To load a secure WSDL document into Java Explorer:

1. Copy the URL of the WSDL file into the address bar of Java Explorer.

2. Press Enter.

Setting Up Tests | 37

Note: Ensure that you have configured Java Explorer to use a truststore that accepts the server
certificate of the URL.

3. If loading the WSDL document fails, try the following:

a) Open the WSDL document in a Web browser.
b) Save the WSDL document to your local machine.
c) Open the document with Java Explorer.

Working with Secure Web Service Calls
To execute Web service calls over a secure connection, ensure that you have created a truststore for your
JDK and that you have configured the Java Explorer Runtime process to use a truststore.

Note: Use Apache Axis 1.4 or later to test secure Web services.

To configure Java Explorer to use Apache Axis:

1. Click Tools > Project Settings.

2. Click the Web Service Plugin tab.

3. Select Axis 1.4 or Axis2 1.5 from the Assigned Web Service Plugin list box.

Note: The read-only Classpath pane displays the classpath configuration that belongs to the
selected Axis version.

The selected Axis version is stored persistently in the project file of Java Explorer.

4. Click OK.

5. Click Yes to confirm that you want to change the Web service library settings.

Specifying Web Service Connection Settings
To specify Web service connection settings:

1. In the Loaded Components pane, click the Classes tab.

2. Choose the loaded Web service class node to display the Input Data Properties.

3. In the Input Data Properties pane, click ... to the right of the Connection text box.

4. Configure the Web service endpoint and your user credentials.

5. Click OK. Java Explorer saves your connection settings.

Web Service Emitter Timeout for Axis 1.x
Note: You do not need to specify timeouts with Axis2, as Axis2 handles timeouts itself.

When you generate Web service stub code for large WSDL files, the process of generating the Java source
code may take longer than the default timeout specified by the Axis library. In such a case, the following
exception is generated:

com.segue.jexplorer.datatyp.exception.JExpWsdlException:
Failed to generate Web Service proxy library(webAxisProxy1.jar).:
Failed to create java source from WSDL.:
java.io.IOException:WSDL2Java emitter timed out (this often means the WSDL
at the specific URL is inaccessible)!
at com.seque.jeplorer.runtime.plugin.impl.webservice.axis.JExpAxisProxyGen
.generateProxyLibrary(JExpAxisProxyGen.java:272) at
com.segue.jexplorer.runtime.plugin.impl.webservice.axis.JExpAxisProxyGen
.generateProxy(JExpAxisProxyGen.java:138) at
com.segue.jexplorer.runtime.communication.JExpRuntimeOperation
.generateWebServiceProxy(JExpRuntimeOperation.java:772)

38 | Setting Up Tests

You can specify a WSDL2Java emitter timeout in a configuration file called webservice.properties.
The property in the file must be called emitter.timeout. The value must be specified in milliseconds.

The file is located under <install dir>\Java Explorer\Startup\webservice.properties and
has the following content:

For generating Web Service stub code with axis libraries
a timeout in milliseconds may be specified for the emitter to
generate the source files
emitter.timeout=5000

Negative Testing
Although extended support for negative testing is not available, you can ignore the expected exceptions.

Setting Up Tests | 39

Animated Runs
Animated runs or test runs execute all test methods that are assigned to your test cases, with
corresponding input and output data displayed in the Input Data and Output Data windows as they are
submitted/received. Status symbols indicate the success/failure status of method calls after they have run.

Output of animated runs includes several logs and reports that help you to identify problems with tested
components.

To configure settings for animated runs go to Tools > System Settings > Options. The following settings
are available:

• Always run Init Test Case
• Always run End Test Case
• Run all Test Cases during Animated Run
• Invoke Delay, which is the time delay between method calls, in ms

Note: By default, there is a 2-second (2000 ms) delay between the invocation of method calls. This is
because Java Explorer is designed to test the functionality of components, but not to overtax them
with excessive load. Invocation delay settings can be configured on the Options page.

Executing an Animated Run
To execute an animated run:

1. Click Run Test on the Workflow bar. The Animated Run dialog box displays.

2. Alternative: Click Run > Animated Run.

3. Check the check boxes that correspond to the test cases that are to be executed during the test run:

• InitTestCase
• TestCase
• EndTestCase

The default selections vary based on your option settings.

Note: When test cases depend on each other for accessing global objects, ensure that you do not
exclude test cases that define objects that are used by other test cases.

4. Check the Do verifications check box to specify that verifications that are defined for output
parameters should be performed.

5. Click OK to begin the animated run.

If you have specified a different calling count for your test cases than 1, the test cases are executed the
number of times defined in this property.

If the number of method calls reporting an error exceeds the number of allowed errors defined in the
test case properties, the test case is aborted.

Note: Animated runs can be aborted manually by either hitting Esc on your keyboard or by
selecting Stop Run from the Run menu. Animated runs are aborted automatically when a
verification with severity Error, the simulation is aborted fails.

All global variables are initialized to their initial values. All random variables are reset.

40 | Animated Runs

Viewing Status of Animated Runs
Depending on the number of times a test case is called, which is defined by the CallCount property, you
can see which iteration is currently executing in the Test Scenario window. Each test case and test
method has one of the following status icons:

Status Icon Description

Green checkmark OK

Blue V icon Verified

Yellow triangle with exclamation mark Warning

Red X Error

Methods that fail due to thrown exceptions or failed verifications display failed or warning method call icons
next to them. If a method call fails you can view a description of the failure by holding your cursor over the
method.

Animated Runs | 41

Analyzing Results
Once you have completed a test run, you can view the following three result files to assist you in analyzing
test results:

Result File Description

User report View the user report generated during the last animated run. The report contains
statistical information about each test case and each test method call.

Error report View the error report generated during the last animated run. The report contains a
description for every error that occurred.

Animation log This file contains information about every method that has been called with their
parameters and errors that occurred.

Viewing Result Files
Before proceeding with this task you must execute a test.

1. Click Results on the Workflow bar to display the Explore Results dialog box.

2. Select the result type you want to generate.

3. Alternative: You can also select result files from the Java Explorer Results menu or by clicking the
Output tab above the Loaded Components pane.

User Report
The user report is based on the Silk Performer virtual user report. This report offers information regarding
time elapsed for each test case and test-method call.

User reports are comprised of four sections:

• Test case summary
• Test case details
• Test method summary
• Errors

The Test case summary section offers information about the number of executed test cases and the
number of errors that occurred during the test run.

The Test case details table gives you information about each test case:

• Number of executions per test case
• Execution time of each test case

The Test method summary table offers information about each test method that has been called. You
receive information about execution times, number of errors that occurred, and when testing Web Services
or .NET Remoting, the number of bytes that were transmitted.

The Errors table gives you information about each error that occurred during the test run. You receive
information regarding when each error occurred, which test methods caused the errors, and short
descriptions of the errors.

42 | Analyzing Results

Error Report
The error report delivers an overview of all errors that occur during test runs. They include details regarding
error time, in which test case and which test method each error occurred, severity types, and error
messages.

Animation Log
The animation log on the Output tab displays real-time information about the methods that were called in
the most recent test run. Additional information about passed parameters is also included. When
exceptions are encountered, the animation log offers detailed stack traces for the exceptions.

You can access the animation log at any time by clicking the Output tab.

Exploring Object Properties
To explore the properties of an object:

1. Click the Objects tab below the Loaded Components pane.

2. Right click the object and select Quick Info. The Quick Info dialog box displays the internal state of the
selected object.

3. Optional: In the Quick Info dialog box, you can additionally view the following oroperties of an object:

• Click Statics to display the static fields of the object.
• Click None Public to display the private, package, and protected fields of the object.
• Click Base Types to display the parent classes of the object.

Exploring Method Properties
To explore the properties of a method:

Right click the object in the Loaded Components pane and select Properties. The Method
Properties dialog box displays the following properties:

• Name
• Input parameter types
• Output parameter type
• Exceptions
• Modifiers

Analyzing Results | 43

System and Project Settings
Java Explorer offers a number of system and project setting options.

System Settings
System settings are saved in the file JExplorer.conf located at C:\ProgramData\Silk\Silk
Performer 20.0.

Accessing System Settings
1. Click Tools > System Settings. The System Settings dialog box opens.

2. Click the tab that corresponds to the options you wish to configure.

The dialog box provides the following tabs:

• Runtime
• Default Values
• Options
• History
• Connection
• JUnit
• Silk Performer

Processes
When you start Java Explorer, at least two processes are run. The first process displays the Java Explorer
GUI and runs under SDK 1.4. The second process is the runtime process. This process instantiates and
manages all Java objects that belong to the currently open project. The runtime process can run under any
JDK. You can configure the JDK in the Project Settings dialog box.

The runtime process is started with the JDK that is configured and is initialized with the static classpath
entries. After the runtime process is initialized, the UrlClassLoader is initialized with the dynamic classpath
entries.

Configuring Default Value Settings
You can change the input value parameters for method calls. You can set default values for the following
value types:

• Default boolean, which can either be true or false.
• Default double, which stands for all floating-point numbers.
• Default int, which stands for all integer numbers.
• Default string.

1. Click Tools > System Settings. The System Settings dialog box opens.

2. Click the Default Values tab.

3. Click on the value that you wish to change and type the new value.

4. Click OK to confirm your changes.

44 | System and Project Settings

Configuring Verification Settings
1. Click Tools > System Settings. The System Settings dialog box opens.

2. Click the Options tab.

3. In the Verifications section, check the check boxes that correspond to the settings that you want to
activate.

The following options define the behavior of verifications:

Option Description

Automatically define a
verification for stored
values

If checked, the default verifications are defined whenever you store an
output value in a variable.

Ignore Case (default
value)

If checked, the verification of string values in the Verification Wizard is
case insensitive. By checking or unchecking this check box, you also
check or uncheck the Ignore Case check box in the Verification Wizard.

Check verifications
during animated runs

If checked, the verification is activated during animated runs. By checking
or unchecking this check box, you also check or uncheck the Do
Verifications check box on the Animated Runs dialog box.

4. Click OK to confirm your changes.

Configuring Code Generation Settings
1. Click Tools > System Settings. The System Settings dialog box opens.

2. Click the Options tab.

3. In the Code Generation section, check the check boxes that correspond to the settings that you want to
activate.

The following options define how code is generated when you export to a standalone application, JUnit,
or a Silk Performer Java Framework project:

Option Description

Try-Catch block in every
method

By checking or unchecking this check box, you also check or uncheck the
init test case in the Verification Wizard.

Verifications If checked, adds verifications to the generated code.

Silk Performer Measures If checked, adds Silk Performer MeasureStart and MeasureStop
functions to the generated Silk Performer Java Framework code. For
additional information about measures, refer to Silk Performer Help.

4. Click OK to confirm your changes.

Configuring Animated Run Settings
1. Click Tools > System Settings. The System Settings dialog box opens.

2. Click the Options tab.

3. In the Animated Run section, check the check boxes that correspond to the settings that you want to
activate.

The following options define the behavior of animated runs:

System and Project Settings | 45

Option Description

Always run init test case By checking or unchecking this check box, you also check or uncheck the
init test case on the Animated Run dialog box.

Always run end test case By checking or unchecking this check box, you also check or uncheck the
end test case on the Animated Run dialog box.

Run all test cases during
animated run

By checking or unchecking this check box, you also check or uncheck all
test cases on the Animated Run dialog box.

4. To define the delay in milliseconds between the invocation of method calls in an animated run, type the
delay into the Invoke Delay text box.

5. Click OK to confirm your changes.

Deleting Loaded-File Entries in History
Java Explorer tracks all classes, archives, and WSDL URLs that are loaded. Instead of typing the full name,
you can select an entry from the history list if the class is loaded.

To delete loaded-file entries:

1. Click Tools > System Settings. The System Settings dialog box opens.

2. Click the History tab.

3. Select the file that you want to delete in the Loaded file entries list box.

4. Click Delete.

5. Click Yes to confirm the deletion of the file entry.

Connection Settings
Tools > System Settings > Connection

The Connection dialog box enables you to define the default proxy connection that is used to
communicate with a Web service. The specified connection is also used to load a WSDL file from the
Internet.

When you load a WSDL file, the Web service class inherits the settings in the Connection dialog box. If
you change the settings in the dialog box after the Web service class is loaded, the changes are not
reflected in the Web service class.

JUnit Settings
Tools > System Settings > JUnit

The JUnit dialog box enables you to select the TestRunner that is used to run JUnit tests from the Kind of
TestRunner to use list box. In the Archives necessary to run JUnit section, you can click the Add
archive(s) to classpath button to specify the classpath information that is required to run the selected
TestRunner.

Silk Performer Settings
Tools > System Settings > Silk Performer

You can configure the home directory and the project directory for Silk Performer with the Silk Performer
dialog box. The initial settings are detected by the Java Explorer setup.

46 | System and Project Settings

Project Settings
This section describes the project setting options that Java Explorer provides.

Configuring Runtime Settings
To enable a specific JDK version for a project:

1. Click Tools > System Settings. The System Settings dialog box opens.

2. Click Add next to the Target JDK list box and browse for the Java Home Directory.

For example, the Sun JDK version 1.4 might be installed under C:\j2sdk1.4.2_04. The IBM JDK
version might be installed under C:\WebSphere\AppServer\java.

3. Click OK. You can now select the added JDK version from any project.

4. Click Tools > Project Settings. The Runtime tab of the Project Settings dialog box opens.

5. Select the JDK from the Assigned Runtime list box.

6. Click OK. The Java Runtime is now assigned to the current project.

Note: When you change the active JDK, the runtime process is restarted. Perform an animated run to
update the objects in the runtime.

Configuring Web Service Plug-In Settings
Java Explorer supports Axis 1.4, Axis2 1.4 or later, and GlassFish Metro 1.5 out of the box.

Note: Use Apache Axis 1.4 or later to test secure Web services.

Note: Metro does not work with JDK 1.6 unless you install the latest JDK 1.6 updates.

To select a specific SOAP stack version for the project:

1. Click Tools > Project Settings. The Runtime dialog box opens, and you can assign the SOAP stack
version that is used for the current project.

2. Click the Web Service Plugin tab.

3. Select a SOAP stack library version from the Assigned Web Service Plugin list box and click OK. The
Properties list box displays the classpath configuration that belongs to the selected SOAP stack
version.

4. Restart the Java Explorer runtime process to change the selected SOAP stack version.

5. Click Yes to confirm the restart.

Configuring Classpath Settings
To configure the classpath settings:

1. Click Tools > Project Settings.

2. Click the Classpath tab.

3. Add static classpaths to or remove static classpaths from the Static list.

The static classpaths include entries that are defined as static or system classpaths. These entries are
set when the runtime is created. When you change a static or system class you need to restart the
runtime.

4. Add classpaths to or remove classpaths from the Jdk list.

The entries in the list reflect the classpaths for the currently configured JDK.

System and Project Settings | 47

5. Add classpaths to or remove classpaths from the Dynamic list.

The entries in the list are dynamically added to the UrlClassLoader in the runtime process. When you
add an entry to the list or change an entry, you do not need to restart the runtime.

6. Check the Restart Runtime Process check box to restart the Java Explorer runtime process.

The check box fulfills two purposes. Firstly, it signals if changes made to the classpaths require the
restart of the runtime process, and secondly it allows you to explicitly force a restart of the runtime
process.

7. Check the Show Full Classpath check box to display all the internally used classpath entries.

By default, only the static, dynamic, and JDK classpath entries are displayed and can be customized.
When you check the check box, all other classpath entries, for example the Java Explorer archives, the
Web service plug-ins, and others, are also visible. This is helpful for expert users and certain internal
purposes, for example if you want to see if an archive of a test of a customer environment conflicts with
a Web service plug-in.

Note: The classpath tree is ordered by priority. Archives at the top of the tree have priority over
archives at the end. You can move the entries up and down within a group or even between
neighboring groups, unless the groups are read-only.

Note: Check boxes indicate whether a classpath is static or dynamic, which means whether a
change to the classpath group requires a restart of the runtime process or not.

8. Optional: You can also edit runtime-specific classpath entries through the Project Settings dialog box.

Note: The runtime classpath belongs to the System Settings and changes to it effect all projects.
The classpath is stored in both the JExplorer.conf system settings file and the JEP project file.
When you load a project, if the classpath entries in the project file do not match the classpath
settings in the system settings, the system settings override the stored project settings.

Configuring Scripting Settings
The Scripting dialog box defines the file names that are used to export the Java Explorer project.

To configure the scripting settings:

1. Click Tools > Project Settings.

2. Click the Scripting tab.

3. Type the file name of the exported Java test class for the Silk Performer Java Framework into the
TestClass for Silk Performer text box.

4. Type the file name of the exported JUnit test class into the TestClass for JUnit text box.

This class extends junit.framework.TestCase.

5. Type the file name of the exported standalone test class into the TestClass for Standalone text box.

You can execute the class from the command line or integrate it into other test frameworks.

6. Type the name of the BDL script file, that is generated for the Silk Performer Java Framework, into the
TestScript for Silk Performer text box.

48 | System and Project Settings

Exporting Projects
Once you have defined your test scenario you can either continue running tests in Java Explorer or you can
export the underlying test code to the following environments:

Environment Description

Silk Performer Java
Framework Project

Export to Silk Performer to run tests based on the scenario you have
defined in Java Explorer.

JUnit Test Case Export to JUnit to directly execute the test cases with the JUnit Run Test
Suite.

Standalone Console
Application

Run the test scenario as a standalone application, independent of Java
Explorer, or use the test scenario to record Web traffic with Silk Performer.

Exporting a Java Explorer Project
To export a Java Explorer project:

1. Click Export.
2. Click on one of the following buttons to select the environment to which you want to export the test

scenario:

• Java Project Silk Performer
• JUnit Test Case
• Standalone Console Application

3. Specify a name for the exported file in the corresponding text box.
4. Specify a destination for the exported file in the Directory text box.

By default, Java Explorer saves projects to the project directory at <my documents>\Silk
Performer 20.0\Projects.

Note: If you are calling a Web service in the Internet, ensure that you have set the correct proxy in
Tools > Project Settings > Classpath.

Silk Performer Java Projects
You can create Silk Performer Java projects with the Java class and a BDF file that contains the calls to the
Java class. The Java Profile Settings are saved in the Silk Performer project file, so the same Java Runtime
and classpath settings are used in Java Explorer and Silk Performer. You can compile the Java test class in
the Silk Performer GUI. When you start a test or a try-script run, the Java compiler and the BDL compiler
are automatically invoked.

Java Explorer exports the following files to Silk Performer:

• The Silk Performer project file, which is of type LTP.
• The Silk Performer script file, which is of type BDF.
• The Java test script, which is of type JAVA.

Silk Performer Java Framework
The Silk Performer Java Framework enables developers and QA personnel to coordinate their development
and testing efforts while working within their specialized environments. The developers work exclusively in

Exporting Projects | 49

their Java-programming environment while the QA personnel work exclusively in Silk Performer. The Silk
Performer Java Framework thereby encourages efficiency and a tighter integration of QA and development.

Exporting to Silk Performer is valuable for QA personnel who are proficient in facilitating analysis of Java
components with Silk Performer and wish to create Silk Performer projects, test case specifications, and
scripts from which they can run tests.

When you directly export a project to Silk Performer as a Java project, a default Silk Performer project file
of type LTP is created. You can then test a project with multiple virtual users. You can also gather and
analyze performance data for each method call in the project.

Working with Multiple Agents
Usually, load testing with Silk Performer is done through multiple agents. To enable the framework to work
smoothly:

1. Install a JDK on each agent machine.
The version of the JDK should be the same version, or later, as the one used for the Java Explorer
project.

Note: Install the JDK in the same directory on each machine.

2. Ensure that the same classpath is available on each agent machine.
For example, to load test a WebLogic EJB, you must install the package weblogic.jar in the same
directory on each agent machine. The same applies to EJB stubs.

JUnit Test Cases
JUnit is a widely used regression testing framework. You can export JUnit TestSuites with Java Explorer.
The export generates a Java test class for JUnit and two batch files for compiling and running the test
class. For additional details on JUnit, visit https://bugs.eclipse.org/bugs/.

Exporting a JUnit TestSuite
To export a JUnit TestSuite:

1. Click Export > JUnit Test Case.
2. Click Open Dialog ... next to the File Name text box. The Scripting page of the Project Settings

dialog box opens.
3. Specify a name for the exported file in the Test Class for JUnit text box.
4. Click OK. The Project Settings dialog box closes.
5. Click Browse ... next to the Directory text box to select the target directory.
6. Check the Open Test Suite in JUnit check box to start the JUnit testrunner directly from the Java

Explorer GUI.
7. Click OK. Java Explorer confirms that the settings are correct. If the settings are not correct, the JUnit

page of the System Settings dialog box opens. You can select the TestRunner that is to be used to run
JUnit tests from the Kind of TestRunner to use list box. The Add archive(s) to classpath button next
to the Archives necessary to run JUnit box enables you to specify the classpath information required
to run the selected TestRunner.

Test Case Execution Sequence
There are differences in the way that JUnit and Java Explorer run tests. In JUnit TestSuites, values and
global variables that need to be initialized in the init() test case cannot be passed from one test case to
the next.

50 | Exporting Projects

https://bugs.eclipse.org/bugs/

Example

The execution sequence of the following Java Explorer project, that contains an init()
test case, an end() test case, and two test cases, is:

1. InitTestCase
2. TestCase1
3. TestCase2
4. EndTestCase

In JUnit, the execution sequence of the same project is:

1. InitTestCase (setUp)
2. TestCase1 (testMethod1)
3. EndTestCase (tearDown)
4. InitTestCase (setUp)
5. TestCase2 (testMethod2)
6. EndTestCase (tearDown)

Standalone Console Applications
With Java Explorer, you can compile the test cases in a test scenario into a standalone console application,
which is a Java class that can run independent of Java Explorer, for example from the commandline. A
standalone console application calls all test methods in the main method.

You can use standalone console applications to either run test scenarios independent of Java Explorer, or
to generate network traffic that can be recorded by Silk Performer. Silk Performer can generate Web BDL
scripts based on such network traffic.

Exporting Standalone Console Applications
1. Click Export > Standalone Console Application. The Export Standalone Java application dialog

box opens.

2. Type a name for the exported standalone console application into the File name text box.

3. Click Browse ... next to the Directory text box and select the destination directory for the standalone
console application.

4. Click OK. A JAVA and a BAT file are saved to the current project directory by default.

5. Open a command prompt in the folder to which you have exported the standalone console application.

6. Run <project name>.bat, where <project name> is the name of your current Java Explorer project.

7. Check the status information which is listed in the command window.

Recording a Standalone Console Application
To record a standalone application with Silk Performer:

1. Launch Silk Performer.

2. Click File > New Project and create a new Web project.

3. Create a new recording profile for the standalone console application.

4. Specify a name for the profile.

5. Specify the path to the batch file.

6. Specify Custom Application as the application type.

Exporting Projects | 51

7. Select Winsock.

8. Begin recording the application. After recording you should have a Web BDL script that contains all the
HTTP/TCP calls of the console application to a Web service.

52 | Exporting Projects

Index
.NET Explorer

.NET message sample 9

.NET Remoting sample 9
overview 6, 7

.NET Framework
.NET message sample 9
.NET Remoting sample 9
ExtensionMicrosoft Visual Studio 7
overview 6

.NET Remoting
sample project 10

.NET Remoting objects
sample 9

.NET testing
provided tools 7

A

accessing
system settings 44

animated runs
configuring settings 45
executing 40
Java Explorer 40
viewing status 41

application servers
connecting to BEA WebLogic 31
connecting to IBM WebSphere 32
connecting to JBoss 34
connecting to Sun 33

Axis
Web service emitter timeout 38

B

BEA WebLogic
application servers 31

C

classpath
configuring settings 47

code generation
settings 45

complex data types
input/output data 26

configuring
animated run settings 45
code generation settings 45
default input parameters 44
Java Explorer to use truststores 37
random variables 29
runtime settings 47
verification settings 45

configuring Java Explorer
truststores 37

configuring plug-in settings

Web services 47
configuring settings

classpath 47
scripting 48

connections
settings 46

creating
JDK truststores 37

creating projects
Java Explorer 19

D

default input parameters
configuring settings 44

defining tests
Java Explorer projects 19

E

EJBs
RMI over IIOP 29
testing 30

End
End test case 21

executing
animated runs 40

exploring
method properties 43
object properties 43

exporting
projects 49
standalone console applications 51

exporting projects
JUnit 50
overview 49

F

framework
Java 49

G

GUI
Java Explorer tour 14

H

history
managing loaded-file entries 46

HTTP response 24

I

IBM WebSphere

Index | 53

application servers 32
Init

Init test case 21
input/output data

complex data types 26

J

Java
framework 49

Java archives
testing 36

Java Explorer
animated runs 40
configuring to use truststores 37
creating projects 19
overview 6, 7
prerequisites 19
processes 44
random value types 28
RMI sample 9
setting up projects 19
test case execution sequence 50
updating method calls 26

Java Explorer projects
defining tests 19

Java Framework
Eclipse plug-in 12
overview 6, 12
RMI sample 9
sample project 11
testing components with Java Explorer 12
testing JDK versions 12

Java testing
provided tools 7

JBoss
application servers 34

JDBC test client 11
JDK

creating truststores 37
JNDI settings

vendor specific 31
JRMP

RMI testing 35
JUnit

exporting projects 50
settings 46
test case execution sequence 50

L

Load File Wizard
setting up Java Explorer tests 20

loaded files
managing history entries 46

loading
secure WSDLs 37

M

managing loaded-file entries

history 46
method properties

exploring 43
Microsoft Visual Studio, Extension

overview 7
MS Visual Studio, Add-In 6, 8
multiple agents

configuring system 50

N

negative
testing 39

O

object properties
exploring 43

overview 13

P

prerequisites
Java Explorer 19

processes
Java Explorer 44

projects
exporting 49
settings 47

R

random variables
configuring 29

recording
standalone console applications 51

RMI
testing 35
testing with JRMP 35

RMI over IIOP
EJBs 29
testing 34

RMI sample
testing 35

RMI sample project 11
RMI samples, Java 9
RMI testing

JRMP 35
runtime process

configuring settings 47

S

scripting
configuring settings 48

secure Web services
testing 36, 38

secure WSDLs
loading 37

setting up Java Explorer tests
Load File Wizard 20

54 | Index

settings
configuring animated runs 45
configuring code generation 45
configuring default values 44
configuring runtime process 47
configuring verifications 45
connections 46
JUnit 46
projects 47
systems 44
systems and projects 44

SOA Edition
overview 6

specifying
Web service connection settings 38

standalone console applications
exporting 51
recording 51

Sun
application servers 33

system settings
accessing 44

systems
settings 44

systems and projects
settings 44

T
test case

characteristics 21
test case executions

differences 50
Test Class Wizard

using 36
test environments

configuring for multiple agents 50
test runs

executing 40
viewing status 41

testing
EJBs 30
Java archives 36

negative 39
RMI 35
secure Web services 36, 38

timeouts
Web service emitter 38

tour
user interface, Java Explorer 14

U

user interface
Java Explorer overview 14

using complex input data
example 27

V

variables
verifications 27

verifications
configuring settings 45
variables 27

viewing status
animated runs 41

W

Web service connection settings
specifying 38

Web services
capturing HTTP response 24
configuring plug-in settings 47
specifying connection settings 38

Web Services
.NET message sample 9
.NET Remoting sample 9
publicly accessible demonstration servers 8
sample project 10

workflow bar
Java Explorer 14

WSDL/JAR address field 14

Index | 55

	Contents
	Tools and Samples
	Introduction
	Provided Tools
	Silk Performer .NET Explorer
	Silk Performer Visual Studio Extension
	Silk Performer Java Explorer
	Silk Performer Workbench

	Sample Applications for testing Java and .NET
	Public Web Services
	.NET Message Sample
	.NET Explorer Remoting Sample
	Java RMI Samples

	Sample Test Projects
	.NET Sample Projects
	Java Sample Projects

	Testing Java Components
	Testing Java Components Overview
	Working With JDK Versions
	Java Framework Approach
	Plug-In for Eclipse
	Java Explorer Overview

	Tour of the UI
	Overview
	Design Tab
	Loaded Components Pane
	Classes Tab
	Objects Tab

	Code Tab
	Output Tab

	Setting Up Java Explorer
	Java Explorer Prerequisites
	Creating a New Project
	Test Case Definition
	Setting Up a Test Using the Load File Wizard
	Test Case Characteristics

	Setting Up Tests
	Customizing Input Parameters
	Storing Output Values in Variables
	Manually Adding Global Variables
	Capturing an HTTP Response
	Defining Output Value Verifications
	Verification with NULL or Variable

	Adding Method Calls
	Updating Method Calls
	Complex Input/Output Data
	Verification of Variables
	Storing Array or Object Output Data as Variable
	Taking Array Object Data From a Variable
	Defining Each Member of a Variable Individually
	Defining Array Elements
	Using Complex Input Data

	Random Value Types
	Configuring Random Variables
	Enterprise JavaBeans and RMI over IIOP
	Working with Enterprise JavaBeans
	Vendor-Specific JNDI Settings
	Connecting to BEA WebLogic
	Connecting to IBM WebSphere
	Connecting to Sun
	Connecting to JBoss

	Working with RMI Over IIOP
	Testing the RMI Sample

	Java RMI
	RMI Testing with JRMP

	Testing Java Archives
	Test Class Wizard
	Secure Web Services
	Creating a Truststore for Your JDK
	Configuring Java Explorer to Use a Truststore
	Loading a Secure WSDL
	Working with Secure Web Service Calls
	Specifying Web Service Connection Settings
	Web Service Emitter Timeout for Axis 1.x

	Negative Testing

	Animated Runs
	Executing an Animated Run
	Viewing Status of Animated Runs

	Analyzing Results
	Viewing Result Files
	User Report
	Error Report
	Animation Log
	Exploring Object Properties
	Exploring Method Properties

	System and Project Settings
	System Settings
	Accessing System Settings
	Processes
	Configuring Default Value Settings
	Configuring Verification Settings
	Configuring Code Generation Settings
	Configuring Animated Run Settings
	Deleting Loaded-File Entries in History
	Connection Settings
	JUnit Settings
	Silk Performer Settings

	Project Settings
	Configuring Runtime Settings
	Configuring Web Service Plug-In Settings
	Configuring Classpath Settings
	Configuring Scripting Settings

	Exporting Projects
	Exporting a Java Explorer Project
	Silk Performer Java Projects
	Silk Performer Java Framework
	Working with Multiple Agents

	JUnit Test Cases
	Exporting a JUnit TestSuite
	Test Case Execution Sequence

	Standalone Console Applications
	Exporting Standalone Console Applications
	Recording a Standalone Console Application

