
Silk Performer 20.0

Help

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-04-16

ii

Contents

Silk Performer Workbench 20.0 ...6
What's New in Silk Performer 20.0 ..6

New Editor ..6
Dynatrace Integrations ... 6
CloudBurst Enhancements ...7
Web on protocol-level Enhancements ..7
Other Enhancements ... 7
Technology Updates ...8

Getting Started ..8
Introduction to Silk Performer .. 8
Benefits of Using Silk Performer ...8
Tour of the UI ..9
Managing Your Load Testing: Start to Finish Overview ..11
Upgrading to Silk Performer 20.0 .. 22
Performance and Scalability Matrix ..23
Memory Footprints by Application Type ... 24
Sample Web 2.0 Application .. 32

Configuring Silk Performer ... 32
System Settings ... 33
Remote Agents ...52
Client Certificates ... 56
Custom Screen Layouts ... 58
Managing Multiple Versions of Silk Performer ..59

Managing Load Tests ... 59
Outlining Projects ... 60
Modeling Scripts ...113
Trying Out Scripts ...174
Customizing Scripts ..178
Defining User Types ... 197
Finding Baselines ... 198
Viewing Baselines .. 202
Adjusting Workload .. 205
Assigning Agents ..212
Trying Out Agents ...226
Configuring Monitoring ... 227
Running Load Tests ..229
Exploring Test Results ..236

Load Testing Specific Application Types ... 245
Flex/AMF3 Support .. 246
Web Applications Support .. 262
Testing Apps for Mobile Devices .. 335
Responsive Web Design Testing ..338
BMC Remedy IT Service Management Support .. 338
Citrix XenApp Support ..341
.NET Support ... 365
GUI-Level Testing Support ... 403
Jacada Support .. 415
Java Support .. 417
OnWeb Mainframe-to-Web Testing Support ...443
Oracle Forms / Oracle Applications Support .. 444
SAP Support .. 468

Contents | 3

Siebel Support ..489
Microsoft Silverlight Support .. 500
Terminal Emulation Support ... 500
TCP/IP Based Protocol Support ...503
Load Testing PeopleSoft ...519
HLS Support ...528

Load Testing in Specific Environments ... 528
Silk Performer CloudBurst .. 528
Developing Performance Tests in Visual Studio ... 535
Multibyte Support ... 537
Network Emulation ... 540
Windows Vista and Windows 7 .. 540

Silk Performer Plug-Ins ... 541
Plug-In Initialization and Configuration ...542
Message Output ... 542
AppDynamics Plug-In ...543
Dynatrace AppMon Plug-In .. 544
Dynatrace SaaS and Managed Plug-In ..545

Silk Central Integration ..545
Configuring Silk Central Integration ..546
Opening Silk Performer Projects from Silk Central ..546
Checking Out and Editing Downloaded Projects ..547
Importing Projects from Silk Central ..547
Uploading Projects to Silk Central ...548
Uploading Test Results to Silk Central .. 549
Downloading Test Results from Silk Central ..549

Silk Performance Manager Integration ..550
Creating a Silk Performance Manager Client Monitor .. 550
Creating a Silk Performance Manager Infrastructure Monitor 550

Source Control Integration .. 550
Integrating StarTeam SCC with Silk Performer ..551
Configuring Source Code Control Integration in Silk Performer 552
Placing Projects and Files Under Source Control .. 553
Checking In Files ..554
Checking Out Files ... 554
Getting the Latest Version of a File from the Source Control System 555
Project-File Only Source Control Commands .. 555
Removing Source Control from a Project ...555
Synchronizing the Source Control Status of a Project ... 556
Source Control Known Issues and Workarounds ...556

Importing, Uploading, and Emailing Projects .. 557
Exporting Projects .. 557
Importing Projects .. 557
Emailing Projects ..558

Troubleshooting ...558
Results Recovery Workflow ..558
Technical Support ...559
Controller Agent Communication Troubleshooting ... 559
Error Message Overview ..562

Known Issues in Silk Performer .. 564
General Silk Performer Issues ..564
TrueLog Explorer Issues ...567
SAPGUI Issues .. 567
Citrix Issues ..568
Oracle Forms Issues .. 569
Browser-Driven Load Testing Issues ..570

4 | Contents

Java over HTTP Issues .. 571

Contents | 5

Silk Performer Workbench 20.0
Welcome to Silk Performer Workbench 20.0.

Silk Performer is the enterprise-class solution for software-application performance, load, and stress
testing. Silk Performer is used to assess the performance of Internet servers, database servers, distributed
applications, and middleware, both before and after they are fully developed. Silk Performer helps you to
quickly and cost-effectively produce reliable, high-quality application solutions.

What's New in Silk Performer 20.0
Silk Performer 20.0 introduces significant enhancements and changes.

New Editor
The code editor in Silk Performer 20.0 has been completely refreshed. It comes with a bulk of useful state-
of-the-art IDE features, which greatly facilitates script development. The new code writing experience
includes:

• line numbers
• rich find/replace functionality including find/replace in files
• an Active Script pane that updates in real-time
• auto indentation
• highlighting of same words
• code completion
• code collapsing
• code snippets insertion
• script error list pane and highlighting of syntax errors in the script
• inline variable declaration
• inline form view
• zooming
• split view
• column mode

The new editor makes you faster, thus you can keep concentrating on testing rather than writing test
scripts.

Dynatrace Integrations

Dynatrace AppMon

Initially, the Silk Performer Dynatrace plugin was created by Dynatrace. Later on, the plugin was open-
sourced and now with Silk Performer 20.0 the plugin is maintained by Micro Focus. The new plugin allows
to disable request tagging for Try Script runs. Furthermore, the plugin enables users to configure the tag
selection for the additional HTTP header. Linking from the HTML report to the Overall API breakdown in
AppMon has been disabled due to a defect in the Dynatrace interface.

Dynatrace SaaS & Managed

The Dynatrace SaaS & Managed plugin not only offers similar functionality as the AppMon plugin but adds
the possibility to send general information about the load test or error details to Dynatrace for further

6 | Silk Performer Workbench 20.0

analysis. It automatically creates request attributes based on the selected tags and even creates request
naming rules automatically within Dynatrace.

The Dynatrace SaaS & Managed plugin offers a set of tags to be sent within an additional HTTP header for
each request.

CloudBurst Enhancements

Instance scheduling

With Silk Performer 20.0 you are now able to schedule cloud agent instances. By specifying the date and
time you want to start testing, the requested number of agents will be ready to use. Thus, no time wasted
with waiting for cloud instances to become ready.

Sorting options in Cloud Agent Manager

Cloud Agent Manager now allows to sort the agent list according to several columns. Additionally, the
agents can be grouped by region.

Immediate feedback from cloud vendor

The Cloud Agent Manager now displays the current detailed state information in the tooltip of each agent
status field.

Smart UI refreshing in Cloud Agent Manager

Collecting the current status from each cloud agent can be a lengthy, demanding process. Cloud Agent
Manager now adapts the refresh interval depending on the state of each agent. If status updates are
expected sooner the shorter is the refresh interval. During load tests when most agents are in use, status
updates will occur less frequently.

Credit card payments method removed

The credit card payment option has been removed for various reasons. The preferred way to purchase
Micro Focus credits is to contact a sales person.

Web on protocol-level Enhancements

WebSockets

WebSocket text messages can now also be used with binary data. Some technologies use text messages
for sending binary data, rather than the binary message type.

Multipart form API

Silk Performer now offers additional BDL functions to handle multipart form post requests. For further detail
see WebAddMultiPart, WebAddMultiPartFromFile, and WebPostMultiPart.

Other Enhancements
Silk Performer 20.0 provides a number of other enhancements:

• The new Micro Focus Community is fully integrated, including Idea Exchange as the replacement for
User Voice. Relevant content has been migrated to the new platform, which can easily be accessed as
usual from within the Silk Performer start page.

• Designing workloads can get quite complex and elaborate. The workload initialization dialog has been
redesigned to better support performance engineers with defining workloads with multiple user types
and consequently minimize the time required to setup complex workloads.

Silk Performer Workbench 20.0 | 7

• The load test controller has been improved in stability and logging. The controller/agent communication
is now more robust and fault tolerant under challenging network conditions. In addition, the Silk
Performer SDK is now available in 64-bit, which allows integration in 64-bit native as well as Java 64-bit
processes.

Technology Updates

OpenSSL

OpenSSL has been upgraded to version 1.1.1b. With this upgrade TLS 1.3 is the default security level used
unless the server does not support it.

Other components

Several third-party components have been upgraded to their latest versions to remediate all known
vulnerabilities and other defects.

Getting Started
Includes information about new functionality, an overview of load-test execution , and a performance and
scalability matrix for workload configuration.

Introduction to Silk Performer
Silk Performer is the enterprise-class solution for software-application performance, load, and stress
testing. Silk Performer is used to assess the performance of Internet servers, database servers, distributed
applications, and middleware, both before and after they are fully developed. Silk Performer helps you to
quickly and cost-effectively produce reliable, high-quality application solutions.

Silk Performer creates highly realistic and fully customizable load-tests . It accomplishes this task through
the use of virtual users that automatically submit transactions to systems under test in the same manner as
real users.

Using a minimum of hardware resources, you can generate tests that simulate hundreds or thousands of
concurrent users. You can also use Silk Performer's powerful reporting tools both during and after load
tests to analyze the performance of servers and to locate bottlenecks so you can maximize the potential of
your system.

Questions That Silk Performer Can Help You Answer

• How many simultaneous users can my server support?
• What response times do my users experience during peak hours?
• Which hardware and software products do I need to ensure optimum performance from my server?
• Which components are the bottlenecks in my system?
• What is the performance impact on my system of employing security technology?
• Which areas of my application perform adequately, and which areas contain bottlenecks in the forms of

business transactions, objects, and operations that can be evaluated?
• Which factors affect performance? What effects do they have? And at what point do such factors impact

service levels?

Benefits of Using Silk Performer
Silk Performer is the industry's most powerful and easiest to use enterprise-class load and stress testing
tool. Visual script generation techniques and the ability to test multiple application environments with
thousands of concurrent virtual users allow you to thoroughly test your enterprise applications' reliability,

8 | Silk Performer Workbench 20.0

performance, and scalability before they are deployed-regardless of their size and complexity. Powerful
root-cause analysis tools and management reports help you isolate problems and make quick decisions,
thereby minimizing test cycles and accelerating your time to market.

Following are some of the key advantages that Silk Performer provides:

• Ensure the scalability, performance, and reliability of your enterprise applications. Silk Performer
ensures the quality of your enterprise applications by measuring their performance from the end-user
perspective, as well as internally, in a variety of workload scenarios and dynamic load conditions.

• Test remote components early in the development cycle. Dramatically reduce the cost of defects in your
multi-tier enterprise application by testing the functionality, interoperability, and performance of remote
components early in the development cycle, even before client applications have been built. You can
rapidly generate test drivers for Web services, .NET remoting objects, EJBs and Java RMI objects by
exploring them via a point and click interface. Alternatively, you can reuse unit test drivers written by
developers for concurrency tests or you can build new testcases directly in Java and .NET languages
such as C# and VB.NET using the Silk Performer Visual Studio .NET Add-On.

• Pinpoint problems easily for quick resolution. Unrivaled TrueLogTM technology for HTML, XML, SQL,
Oracle Forms, Citrix, TCP/IP, and UDP-based protocol data provides full visual root-cause analysis from
the end-user perspective. TrueLogs visually recreate the data that users input and receive during load
tests. For HTML pages, this includes all embedded objects. This enables you to visually analyze the
behavior of your application as errors occur during tests. In addition, detailed response timer statistics
help you uncover the root causes of missed service level agreements before your application goes live.

Tour of the UI
Silk Performer's UI features four main areas:

Workflow Bar

Silk Performer Workbench 20.0 | 9

The workflow bar guides you sequentially through the steps involved in creating a typical load test. Each
button on the following workflow bar represents a task, organized chronologically from left to right, that
must be completed to successfully create, configure and run a load test, and to analyze load test results.
There are three types of the workflow bar:

The simple workflow bar:

The full workflow bar:

The monitoring workflow bar:

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Workflow bar
buttons

Outline Project Give your project a name, description, and application-type profile.

Model Script Create your test script. You can build your test script manually or have it recorded
for you.

Try Script Perform a trial run of your test script to make sure it runs as intended. If the trial
run was successful, you can insert verification functions or parameterized input-
data into your test script. Alternatively, you can edit your script so that it handles
session information during replay.

Define User Types A user type is a unique combination of a script, a user group, and a profile. Hence,
by selecting a user type, you define which script shall be executed with what user
group and what profile. User types are selected for a certain workload. You can
use several workloads in your load test project and save them for further usage.

Find Baseline (only
on the full workflow
bar)

A baseline serves as a reference level for subsequent load tests. Silk Performer
uses the results of a baseline test to calculate the number of concurrent users per
user type.

View Baseline (only
on the full workflow
bar)

If you are happy with the results of a baseline test, you can set the baseline test as
baseline. Then you can configure response time thresholds for the subsequent
load tests.

Adjust Workload Define the workload model that your test script will simulate and define the
network bandwidth-type that the virtual users in your test will simulate.

Assign Agents Configure the distribution of the virtual users in your load-testing environment.
Assign VUsers to specific agents, agent clusters, or cloud agents, using wizards
that calculate recommended capacities for you.

Try Agents Perform a trial run of your script to make sure that it runs on the agents that you
have configured for the load test.

Configure
Monitoring

Define how Performance Explorer, the Silk Performer server monitoring tool, is to
monitor local and remote servers involved in your test.

10 | Silk Performer Workbench 20.0

Workflow bar
buttons

Run Test Deploy your test to the agent computers in your test environment. You can monitor
the progress of the test in real time.

Explore Results Analyze the results of the test to assess the performance of the application and
server under test.

Upload Project
(only on the full
workflow bar)

You can reuse your project by uploading it to Silk Central or to Performance
Manager. The project can then be directly executed through Silk Central or
Performance Manager.

Project Menu Tree

Contains all of your project assets, including one or more profiles and test scripts, a workload, agent
computers, and data files.

Monitor/Script Window

The Monitor page provides real-time information about the progress of your load test. The displayed
columns depend on the application type of your project and can be customized by right-clicking either the
Summary or the User list box on the Monitor page and choosing Select Columns. The selected columns
are saved per project.

The <script name> page displays the script editor. Use the this page to view and edit your test script.

Output Window

Displays status messages, such as errors, warnings, and other information, when you perform the following
actions:

• Compile a script – The Compiler page displays compiler messages, including errors and warnings.
• Run a test – The Virtual User page displays messages related to the actions of a virtual user in a test,

such as transaction information and time measures. The Simulation Controller page displays
information about the Silk Performer controller.

Managing Your Load Testing: Start to Finish Overview
This section offers a high-level overview of the steps involved in preparing for, running, and analyzing the
results of a load test.

Each task outlined below correlates directly with a button on the Silk Performer workflow bar. The workflow
bar guides you sequentially through the steps involved in creating and managing a typical load test.

Outlining Projects
When you create a Silk Performer load test you must define the basic settings for the load test project. The
project is given a name, and optionally a brief description can be added. The type of application to be
tested is specified from a range of choices that includes all of the major traffic available today on the
Internet and on the Web, including the most important database and distributed applications.

The settings that are specified are associated with a particular load test project. It is easy to switch
between different projects, to edit projects, and to save projects so that they can later be modified and
reused.

A project contains all the resources needed to complete a load test. These include a workload, one or more
profiles and load test scripts, a specific number of agent computers and information for server-side

Silk Performer Workbench 20.0 | 11

monitoring, and all the data files that are accessed from the script. Options for all of these resources are
available directly from the project node in the Project menu tree.

Outlining a Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, choose the type of application that you want to use in your test.

Note: If you are testing a Web application, choose the Web business transaction (HTML/HTTP)
option to create simpler scripts while incorporating advanced functionality. Choose the Web low
level (HTTP) option if you want to put the highest possible load on your application. Web low level
scripts are more complex than Web business transaction scripts, which require more effort to
customize. It is recommended that you use the Web business transaction (HTML/HTTP) instead
of the Web low level (HTTP) scripts for browser based applications.

5. Click Next.

Note: If you need to add additional resources to the project, right-click the project icon in the
Project menu tree view. It is particularly important that all the user data files (.csv), random data
files (.rnd), and .idl files needed by Silk Performer are set up for your project.

The Workflow - Model Script dialog box appears.

Modeling Scripts
Before you can conduct a Silk Performer load test you need to create a test script that prescribes the
actions of the simulated users run during the test. The script is written in Silk Performer's proprietary
scripting language, the Benchmark Description Language (BDL).

Scripts can be created in different ways depending on the application type. The standard (and typically
easiest) method for creating a test script is to use the Silk Performer Recorder to capture and record traffic
that is representative of the type you need to simulate in your test. The Silk Performer Recorder
automatically generates a BDL test script based on the recorded traffic.

Another method of creating a test script is to manually create a new script in BDL. A variant on the manual
approach is to create a test script based on one of the sample BDL scripts that are provided by Silk
Performer.

Recording a Test Script

If you are an experienced user, you may want to create a script on your own and write your code manually.
You can start with a blank script or you can customize one of the preinstalled sample scripts.

However, you can also use the Silk Performer Recorder, which does the scripting and the recording work
for you. Here are the basic steps you need to perform when you use the Silk Performer Recorder:

1. Open the project in which you want to work, or start a new project.

2. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

3. From the Recording Profile list, select the profile for the client application that you plan to test. If a
profile has not yet been set up for the application you want to use, click Settings to the right of the list to
set one up.

4. Depending on the project type, enter either the application's URL in the URL field or the location of the
application in the Command line field.

12 | Silk Performer Workbench 20.0

5. Click Start recording. The Silk Performer Recorder dialog opens in minimized form, and the client
application starts.

6. To see a report of the actions that happen during recording, maximize the Recorder dialog by clicking
the Change GUI size button. The maximized Recorder opens at the Actions page.

7. Using the client application, conduct the kind of interaction with the target server that you want to
simulate in your test. The interaction is captured and recorded by the Recorder. A report of your actions
and of the data downloaded appears on the Actions page.

8. Insert transactions and timers into the test script during the recording phase. You can create as many
transactions and timers as you want. To insert a transaction, click the New Transaction button. A
transaction represents a piece of work that can be assigned to a virtual user.

9. In the ensuing dialog, enter a name for the transaction and click OK. The new transaction appears in
the Actions log.

10.To insert a timer, click the New Timer Session button. A timer is a user-defined measurement period in
a test. You should create timers for each component of a transaction for which you want to analyze
performance. In the ensuing dialog, enter a name for the timer and click OK.

11.To end recording, click the Stop Recording button.

12.Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

13.Close the client application and close the Silk Performer Recorder.

Trying Out Scripts
Part of the process of conducting a Silk Performer load test is to perform a trial run of the test script that
was created during script modeling.

Normally, this is traffic recorded by the Silk Performer Recorder during script modeling. For a trial run, or
Try Script, of a test script, options are automatically selected so that you can see a live display of the actual
data downloaded. Log files, TrueLog files, report files, output files, and error files are created so that you
can later confirm that the script works properly. Only one user is run, and the stress test option is enabled
so that there is no think time and no delay between transactions. However, at this stage, the measurements
typical of a real load test are not performed.

Try Script Settings

For Try Script runs, the following options are automatically set to these specified values (see also "Replay
Options"):

• The Stress test option is on, when think times are disabled.
• The Stop virtual users after simulation time (Queuing Workload) option is off.
• The Virtual user log files (.log) option is on.
• The Virtual user output files (.wrt) option is on.
• The Virtual user report files (.rpt) option is on.
• The Virtual user report on error files (.rpt) option is on.
• The TrueLog files (.xlg) option is on.
• The TrueLog On Error files (.xlg) option is off.
• The Compute time series data (.tsd) option is off.
• All logging detail options (Results > Logging and Results > Internet Logging page) are on.
• The Enable all measure groups (TSD measure groups) option is off.
• The Bandwidth option is set to High Speed (unlimited).
• The Downstream option is set to unlimited.
• The Upstream option is set to unlimited
• The Duplex option is off.

Silk Performer Workbench 20.0 | 13

Trying Out a Test Script

You must record or manually create a test script before you can run a Try Script.

1. Click the Try Script button on the Silk Performer Workflow bar. The Workflow – Try Script dialog
appears.

2. Choose a script from the Script list box.

3. In the Profile list box, the currently active profile is selected (this is the default profile if you have not
configured an alternate profile).

a) To configure simulation settings for the selected profile, click Settings to the right of the list box.
b) To configure project attributes, select the Project Attributes link.

4. In the Usergroup list of user groups and virtual users, select the user group from which you want to run
a virtual user.

Since this is a Try Script run, only one virtual user will be run.

5. To view the actual data that is downloaded from the Web server during the Try Script in real-time, select
the Animated Run with TrueLog Explorer check box.

If you are testing anything other than a Web application, you should disable this option.

6. Click Run. The Try Script begins.

All recorded think times are ignored during Try Script runs. The Monitor window opens, giving you detailed
information about the progress of the Try Script run. If you have selected the Animated option, TrueLog
Explorer opens. Here you can view the actual data that is downloaded during the Try Script run. If any
errors occur during the Try Script run, TrueLog Explorer can help you to find the errors quickly and to
customize session information. Once you have finished examining and customizing your script with
TrueLog Explorer, your script should run without error.

Customizing Scripts
After you have recorded and tried out your script for the first time, you may need to customize it for two
reasons:

• The script does not replay without errors.

Session-specific data that was captured during recording is usually not valid during replay. This is
because data like session IDs change every time a new communication session is started with the
application under test. Session-specific data can be represented by variables and is, consequently,
dynamically adjusted during each run. This leads to clean scripts that work flawlessly every time they
are executed.

• You want to introduce more variety in virtual user behavior.

The virtual users will behave identically during your load test, unless you introduce data or
environmental variation, such as simulating different browsers, bandwidths, or paths through the
application.

Therefore, it is recommended to customize your scripts before you start a load test. Customizing scripts
offers the following advantages:

• Your virtual users will be diverse.

For example, you can set them up to use different browsers and bandwidths from different locations to
access the application under test.

• Your virtual users will behave more realistically and more natural.

This can be achieved with randomized data. The virtual users will then, for example, input varying data
in forms, like different names, addresses, and credit card numbers. They can vary the product names
they search for, the products they order, and so on. This leads to accurate and meaningful result data.

Customizing scripts is typically done before you move on with the next step in the workflow bar.

14 | Silk Performer Workbench 20.0

Defining User Types
The next step in the process of conducting a Silk Performer load test is to define one or more user types for
the active workload. A user type is a unique combination of a script, a user group, and a profile. By
selecting a user type, you determine which script will be executed with which user group and profile.

To find out what your active workload is, expand the Workloads node in the Project tree. The active
workload is shown in bold text.

Click Define User Types on the workflow bar to access all necessary settings.

Note: The Define User Types button on the workflow bar is only visible when the simple workflow bar
is enabled. The workflow bar displays the simplified workflow by default. To switch between the
workflow bar types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full
Workflow Bar, or Show Monitoring Workflow Bar.

Defining a User Type

To define user types for the active workload:

1. Click Define User Types on the workflow bar. The Workflow - Define User Types dialog box appears.

2. Optional: Narrow down the list of Available User Types by selecting entries from the Script and Profile
lists.

3. Optional: Click Add new to create a new profile. If you select a profile from the list, you can click Edit
Profile to adjust the settings of the profile. For example, you can define a certain browser and
bandwidth for this profile. Click Set as active to make the selected profile the active one.

4. Select one or more user types in the Available User Types list and click the arrow buttons to assign the
user types to the workload. You can also double-click user types to move them between the Available
User Types list and the User Types in Workload list.

5. User types that are assigned to the workload are automatically selected for execution. If you want a
certain user type to not be executed during the baseline run, deselect it.

6. Click Next to advance to the next step in the workflow.

Note: The Define User Type button is only visible when simple workflow bar is enabled.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Finding Baselines
A baseline serves as a reference level for subsequent load tests. Silk Performer uses the results of a
baseline test to calculate the number of concurrent users per user type. Additionally, you can set response
time thresholds based on the results of a baseline.

At first, you need to run a baseline test. After a baseline test run is finished, you can view all
measurements and details of the run on the Baseline Test Summary page and in the baseline report. If
you are happy with the results, you can set the baseline test as your new baseline. You can view the results
and values of your baseline at any time by clicking View Baseline on the workflow bar. This opens the
Baseline Summary page.

Note: To work with baselines, you must enable the full workflow bar.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Silk Performer Workbench 20.0 | 15

Finding a Baseline

Customize your test script by assigning a user profile to it before running a baseline test.

1. Click Find Baseline on the workflow bar. The Workflow - Find Baseline dialog box appears.

2. Optional: Narrow down the list of Available User Types by selecting entries from the Script and Profile
lists.

3. Optional: Click Add new to create a new profile. If you select a profile from the list, you can click Edit
Profile to adjust the settings of the profile. For example, you can define a certain browser and
bandwidth for this profile. Click Set as active to make the selected profile the active one.

4. Select one or more user types in the Available User Types list and click the arrow buttons to assign the
user types to the workload. You can also double-click user types to move them between the Available
User Types list and the User Types in Workload list.

5. User types that are assigned to the workload are automatically selected for execution. If you want a
certain user type to not be executed during the baseline run, deselect it.

6. Click Run to perform the baseline test.

Silk Performer runs a baseline test to calculate average measures against which future test runs are
measured.

Note: The Find Baseline button is only visible when the full workflow bar is enabled.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Viewing Baselines
The next step in the process of conducting a Silk Performer load test is to set the baseline test (see the
previous step Finding Baselines) as your baseline. The baseline will serve as a reference level for
subsequent load tests and should reflect the desired performance of the application under test. Once you
have set a baseline test as your baseline, you can configure response time thresholds.

Note: To work with baselines, you must enable the full workflow bar.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Setting Response Time Thresholds

1. Click View Baseline on the workflow bar. The Baseline Summary page appears.

2. Click Set response time thresholds in the Next Steps area on the right side. The Automatic
Threshold Generation dialog box opens.

3. Select the timers for which you want to set thresholds.

4. Specify the appropriate Lower bound and Upper bound multipliers for your load tests.

5. If the corresponding timers from the baseline test are 0, specify minimum values.

6. If you want to raise an error or a warning message in case a threshold is exceeded, you can specify the
severity of the raised message.

7. Click OK.

Note: The buttons Find Baseline and View Baseline are only visible when the full workflow bar is
enabled.

16 | Silk Performer Workbench 20.0

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Adjusting Workload
Configuring workload is part of the process of conducting a load test. Silk Performer offers different
workload models to be used as a basis for your load test. Before configuring workload, you must select the
model that best fits your needs.

You can define more than one workload model in your load test project and save them for further usage,
but only one workload model can be active at a time. The accepted baseline results are associated with a
workload model. If you copy or rename a workload model, the accepted baseline results are copied or
renamed accordingly.

Workload Models

Silk Performer provides the following workload models:

• Increasing – At the beginning of a load test, Silk Performer does not simulate the total number of users
defined. Instead, it simulates only a specified part of them. Step by step, the workload increases until all
the users specified in the user list are running.

This workload model is especially useful when you want to find out at which load level your system
crashes or does not respond within acceptable response times or error thresholds.

• Steady State – In this model, the same number of virtual users is employed throughout the test. Every
virtual user executes the transactions defined in the load-testing script. When work is finished, the
virtual user starts again with executing the transactions. No delay occurs between transactions, and the
test completes when the specified simulation time is reached.

This workload model is especially useful when you want to find out about the behavior of your tested
system at a specific load level.

• Dynamic – You can manually change the number of virtual users in the test while it runs. After the
maximum number of virtual users is set, the number can be increased or decreased within this limit at
any time during the test. No simulation time is specified. You must finish the test manually.

This workload model is especially useful when you want to experiment with different load levels and to
have the control over the load level during a load test.

• All Day – This workload model allows you to define the distribution of your load in a flexible manner.
You can assign different numbers of virtual users to any interval of the load test, and each user type can
use a different load distribution. Therefore, you can design complex workload scenarios, such as
workday workloads and weekly workloads. You can also adjust the load level during a load test for
intervals that have not started executing.

This workload model is especially useful when you want to model complex, long lasting workload
scenarios in the most realistic way possible.

• Queuing – In this model, transactions are scheduled by following a prescribed arrival rate. This rate is a
random value based on an average interval that is calculated from the simulation time and the number
of transactions per user specified in dcluser section of your script. The load test finishes when all of
the virtual users have completed their prescribed tasks.

Note: With this model, tests may take longer than the specified simulation time because of the
randomized arrival rates. For example, if you specify a simulation time of 3,000 seconds and want
to execute 100 transactions, then you observe an average transaction arrival rate of 30 seconds.

This workload model is especially useful when you want to simulate workloads that use queuing
mechanisms to handle multiple concurrent requests. Typically, application servers like servlet engines or
transaction servers, which are receiving their requests from Web servers and not from end users, can
be accurately tested by using the queuing model.

Silk Performer Workbench 20.0 | 17

• Verification – A verification test run is especially useful when combined with the extended verification
functionality. This combination can then be used for regression tests of Web-based applications. A
verification test performs a specified number of runs for a specific user type.

This workload is especially useful when you want to automate the verification of Web applications and
when you want to start the verification test from the command line interface.

Assigning Agents
In support of large-scale load testing, Silk Performer has consolidated all agent-to-workload assignment
features within a single workflow step, available via the Assign Agents workflow bar button. Here you can
configure the distribution of virtual users in your load testing environment and assign VUsers to specific
agents, agent clusters, or cloud agents. Wizards are available to assist you in calculating recommended
capacity for specific agents.

The Assign Agents workflow bar button helps you get started with the following tasks:

• Configuring individual agents and adding them to the workbench agent pool
• Assigning individual agents to your project
• Assigning clusters of agents with pre-defined capabilities to your project
• Configuring your project to use agents that run as virtual machines in the cloud.

Assigning Agents to Workload

This task can only be performed after you have configured workload for your project.

1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Click the Agent Assignment tab.

3. Select the Assignment type:

• Static assignment to project agents : Use this method to statically assign specific agent
computers (rather than clusters of agents) to your project. No agent-availability check is performed
with this method and agent locking is disabled. Select this method if you want to use Agents
deployed in the cloud.

• Dynamic assignment to project agents : With this method, workload is delivered using dynamic
agent-assignment at execution time against the project's agents. Workload delivery is enhanced with
agent-capability specifications to create optimized workload-to-agent assignments based on the
capabilities of each agent. Agent locking at execution time is enabled with this method. Only
responding agents that are not currently used by another controller are used with this method.

• Dynamic assignment to Silk Central agent cluster : Silk Performer workload delivered by way of
Silk Central can also use dynamic workload-to-agent assignment. Within Silk Performer you choose
the name of the agent cluster (from the drop list) that should deliver your test's workload. Silk Central
then provides the list of agent computers that are assigned to the cluster. Workload is then assigned
to specific agents at the moment of execution based on the capabilities of the individual agents. After
you connect to Silk Central, you are presented with the list of available agent clusters. In the right-
most window, you can view the agents that are currently associated with the selected agent cluster.

4. Define the agents that are to deliver the workload for your test.

• If you selected Static assignment to project agents , you can check the Even user distribution
check box to distribute all existing user types evenly across all agents, depending on each agent's
general replay capabilities. To use agents that run as virtual machines in the cloud, check the Use
cloud agents check box. Click Cloud Agent Manager to manage your agents in the cloud.

• If you selected Dynamic assignment to project agents , workload is delivered automatically using
dynamic agent-assignment at execution time against the project's agents.

• If you selected Dynamic assignment to Silk Central agent cluster , you are asked to log in to Silk
Central. When you are logged in, you can select the available agent cluster.

The Agents list box displays the available agents.

18 | Silk Performer Workbench 20.0

5. Check the Agent resource utilization check box to assign a maximum percentage of total virtual users
that each agent can run based on the agent's replay capabilities.

6. Check the Balance load across agents check box to apportion workload across agents.

7. If you selected Static assignment to project agents , use the lower window of the Agent Assignment
page to define workload assignments for user groups.

Note: Available options vary depending on the selected workload model.

8. Click User Distribution Overview to view the assignment of virtual users to the agent computers that
are currently available and then click Close.

9. Click OK to save your settings.

Workload will be assigned to agents based on the agent-assignment settings you have configured. If there
are not enough agents with the required capabilities to deliver the required workload, you will be presented
with an error message and details regarding the user types that did not receive an agent assignment.

Trying Out Agents
Before you start your load test, it can be useful to verify that the test script you created works on all agents
you are planning to use for the load test.

Try Agents Settings

For Try Agents runs, the following options are automatically set to these specified values (see also "Replay
Options"):

• The Stress test option is on, when think times are disabled.
• The Stop virtual users after simulation time (Queuing Workload) option is off.
• The Virtual user log files (.log) option is on.
• The Virtual user output files (.wrt) option is on.
• The Virtual user report files (.rpt) option is on.
• The Virtual user report on error files (.rpt) option is on.
• The TrueLog files (.xlg) option is off.
• The TrueLog On Error files (.xlg) option is on.
• The Compute time series data (.tsd) option is off.
• All logging detail options (Results > Logging and Results > Internet Logging page) are on.
• The Enable all measure groups (TSD measure groups) option is off.
• The Bandwidth option is set to High Speed (unlimited).
• The Downstream option is set to unlimited.
• The Upstream option is set to unlimited
• The Duplex option is off.

Trying Out a Test Script On Agents

You must record or manually create a test script before you can try out your script on various agents.

1. Click the Try Agents button on the Silk Performer Workflow bar. The Workflow - Try Agents dialog box
appears.

2. Select one or more user types from the list User Types to execute.

Each user type will be executed on each selected agent. For example: If you select two user types and
three agents, Silk Performer will start six test runs in total.

3. Select one or more agents from the list Agents.

Note: You can select local agents and cloud agents, or more specifically: cloud regions. If you
select a cloud region, all cloud agents from the respective region will be tested. It is not possible to

Silk Performer Workbench 20.0 | 19

test individual cloud agents. You can start cloud agents in the Cloud Agent Manager. Note that it
can take some time until the cloud agents are ready to execute tests. A note beside the cloud
regions tells you how many cloud agents are reachable and ready for a test execution. For
example: 2/4 Agents ready means that 4 agents were started in the Cloud Agent Manager and 2
of these are ready for execution.

4. Optional: Click Enable think times if you want to consider the think times in your script during the run.
This option is disabled by default.

Note: Usually, a Try Agent run is used to verify that a test script works correctly on various agents.
For such a functional test, think times can be neglected, since they are a means to create a more
realistic user behaviour and therefor a more realistic load. However, load issues can be neglected
in a functional test.

5. Click Run to try out the script on the specified agents.

6. If you have selected cloud regions to be tested, the Review Estimated Micro Focus Credits
Consumption dialog box displays. It gives you an estimation of how many Micro Focus Credits the runs
will consume. Click Accept and Run.

The Monitor window opens, giving you detailed information about the progress of the Try Agents run.
Once all runs are finished, the Try Agents Summary displays.

Configuring Monitoring
Before running a test you need to define how Performance Explorer, the Silk Performer server monitoring
tool, is to monitor local and remote servers involved in your test. Server monitoring reveals, locates, and
assists in resolving server bottlenecks, allowing you to examine the performance of operating systems and
application servers.

Three monitoring options are available:

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of data
sources based on the application type under test. This is equivalent to enabling the Automatically start
monitoring and Use default monitoring template settings for the Performance Explorer workspace
(Settings > Active Profile > Replay > Monitoring > Use default monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data
sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

Defining Monitoring Options

1. Click Configure Monitoring on the workflow bar. The Workflow - Configure Monitoring dialog box
appears.

2. Select one of the following options and click Next:

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of
data sources based on the application type under test. This is equivalent to enabling the
Automatically start monitoring and Use default monitoring template settings for the
Performance Explorer workspace (Settings > Active Profile > Replay > Monitoring > Use default
monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data
sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

20 | Silk Performer Workbench 20.0

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

(for Default Monitoring and Custom Monitoring only) A confirmation dialog box will notify you if you have
logging enabled. Logging may skew your test results.

3. Click OK to accept your logging settings or click Cancel to adjust your logging options (Settings >
Active Profile > Results > Logging).

4. (for Custom Monitoring only) Performance Explorer starts and the Data Source Wizard opens.
Complete the steps outlined in the wizard.

5. The Workflow - Workload Configuration dialog box appears. Click OK to accept your monitoring
settings.

Running Tests
Real-time information regarding agent computers, virtual users, and transactions is displayed for you while
load tests run. Real-time performance monitoring of the target server is presented in graphical format.

When a test is configured as a verification run, the following options are automatically set to the specified
values:

• A Baseline report file is automatically created.
• The Stop virtual users after simulation time (Queuing Workload) option is disabled.
• The Virtual user log files (.log) option is disabled.
• The Virtual user report files (.rpt) option is enabled.
• The Virtual user report on error files (.rpt) option is enabled.
• The Compute time series data (.tsd) option is disabled.

Running a Load Test

Run a load test after you set up your testing environment and configure all test settings.

1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Configure the workload that you plan to use in your load test.

3. (Optional) Click Connect on the Workload Configuration dialog box to initialize the agent connection
without starting the test.

a) Click OK on the New Results Files Subdirectory dialog box.
b) Click Start all on the Silk Performer toolbar to manually start the test from monitor view.

4. Click Run to start the load test.

5. Click OK on the New Results Files Subdirectory dialog box.

(Optional) To specify a name for the results subdirectory, uncheck the Automatically generate unique
subdirectory check box and enter a name for the new subdirectory in the Specify subdirectory for
results files text box.

Monitor test progress and server activity by viewing the Silk Performer tabular monitor view and the
Performance Explorer graphical monitor view.

Exploring Results
Silk Performer offers several approaches to displaying, reporting, and analyzing test results. Defined
measurements take place during tests and can be displayed in a variety of graphical and tabular forms.
Options include the following:

• Performance Explorer: This is the primary tool used for viewing test results. A fully comprehensive
array of graphic features displays the results in user-defined graphs with as many elements as are
required. The results of different tests can be compared. There are extensive features for server

Silk Performer Workbench 20.0 | 21

monitoring. A comprehensive HTML based overview report that combines user type statistics with time
series test result information is also available.

• TrueLog On Error: Silk Performer provides full visual verification under load capabilities for various
application types. It allows you to combine extensive content verification checks with full error drill-down
analysis during load tests.

• Virtual User Report files: When enabled, these files contain the simulation results for each user.
Details of the measurements for each individual user are presented in tabular form.

• Virtual User Output files: When enabled, these files contain the output of write statements used in test
scripts.

• Baseline Reports: A detailed XML/XSL-based report that provides you with a summary table,
transaction response-time details, timers for all accessed HTML pages, Web forms, and errors that
occurred. This information is available for all user types involved in baseline tests.

• Silk Central Reports: Silk Performer projects can be integrated into Silk Central (Silk Central) test
plans and directly executed from Silk Central. This allows for powerful test-result analysis and reporting.
For detailed information on Silk Central reporting, refer to Silk Central Help.

Load Test Summary

When a load test run is complete, the Load Test Summary page appears. You can also open this page
from the Results tree or by clicking Explore Results on the workflow bar. The Load Test Summary page
contains:

• a Quick Summary, which gives you an overview about the test duration, users, agents, and errors.
• an Available User Types area, which you can use to drill down on the results for each user type. Select

a user type from the list.

You can perform the following actions in the Next Steps and Analyze Result Files area on the right side:

• Click Analyze load test to view all detailed metrics in Performance Explorer.
• Click Analyze errors to view the errors in Performance Explorer (if any occurred). In the Error Details

tab of Performance Explorer you can further drill into the errors. Double-click an error to open the
TrueLog Explorer. This is only possible if you enabled TrueLog On Error on the Workflow - Workload
Configuration dialog box before you started the load test.

• Click Compare with baseline to compare the results of this test with the results of the baseline. This
button is only visible if you have already set a baseline.

• Click Set as baseline to make the test you have just run your baseline (your reference level) for the
upcoming load tests.

• Click Explore detailed report to open a detailed load test report.
• Click Open results folder to view other result files like the virtual user report files or the virtual user

output files for each virtual user.

Note: If you want to prevent the summary page to appear each time a test is complete, disable the
Show Summary Page button in the toolbar of the Monitor page.

Upgrading to Silk Performer 20.0
Licensing: Silk Performer 20.0 requires a Silk Performer 20.0 license.

Project files: Project files can be upgraded from previous versions of Silk Performer by opening them in the
current version. Downgrading from the current version to older Silk Performer versions has not been tested
and is not supported.

Installation Information

Parallel installations: Silk Performer 20.0 (controller and agent) can be installed together with any older
version of Silk Performer on the same machine without influencing each other.

Refer to the Silk Performer Installation Guide for installation instructions.

22 | Silk Performer Workbench 20.0

Evaluation: During the installation process, install one of the following versions:

• Evaluation – Installs an evaluation version of Silk Performer, which grants you full product functionality
for 45 days. The usage is limited to 10 virtual users. To upgrade to a full version at a later point in time,
contact your sales representative.

• Licensed – Installs an unrestricted version of Silk Performer, which requires a Silk Performer license.

Evaluation Version

If you have installed the evaluation version of Silk Performer 20.0, you can use the full product functionality
for 30 days, limited to ten virtual users. The software stops operating when the evaluation period expires.

To ease you into the process of working with Silk Performer 20.0, it is recommended that you review Web
Load Testing Tutorial. This PDF-based tutorial can be found in Silk Performer's documentation set.

Contact your sales representative to upgrade to the full version of Silk Performer 20.0.

Performance and Scalability Matrix

Maximum VUsers per Agent Computer

The following table shows the recommended maximum number of virtual users per agent computer based
on the hardware resources of the agent computer and the type of tested web application.

Note: Testing of applications utilizing SSL reduces VUser capacity by 35%. Testing with TrueLog on
Error enabled reduces VUser capacity by 30%. Testing a web application using low-level APIs (Web
Low Level) increases VUser capacity by 20%.

System OS

Web
Business
App

Web Business
App with SSL
(-35%)

TrueLog on
Error (-30%)

TrueLog
on Error
with SSL

Web Low Level
(+20%)

Intel Xeon Quadcore
3 GHz, 16 GB RAM

Windows
Server 2008
R2

6500 4225 4550 2958 7800

Intel Core i7
Quadcore 2.8 GHz, 8
GB RAM

Windows 8.1 6500 4225 4550 2958 7800

Intel Core2 Duo 3
GHz, 4 GB RAM

Windows 7
Enterprise

4700 3055 3290 2139 5640

Note: Web Business App uses page-level APIs (HTML/HTTP). Web Low Level uses low-level APIs
(HTTP).

VUsers per Cloud Agent

Note: The maximum number of VUsers per cloud-based agent is 1,000 regardless of the type of the
tested application.

The following table shows the number of VUsers that can typically be supported per cloud-based agent,
based on the type of the tested application.

Application Under Test Supported VUsers per Cloud-Based Agent

Browser-Driven Load Testing 5

Java/.NET 250

Secure Web (SSL) 600

Silk Performer Workbench 20.0 | 23

Application Under Test Supported VUsers per Cloud-Based Agent

Web 800

Test Parameters

The numbers in the previous tables were determined by using a realistic workload with the following
characteristics:

• The page structure of all requested web pages corresponds to popular public web pages.
• The average think time between page views for virtual users was 32 seconds.
• A single virtual user was emulated with four concurrent connections.

As a result, the number of simulated virtual users corresponds to a realistic number of concurrent users
accessing a popular web site, providing the following information:

• Average hits per page: 39
• Average page size: 130 KB
• Average think time between pages: 32 sec

Agent Capacity for Web Protocol Virtual Users

Silk Performer determines the capacity of a machine by using a formula that takes the following parameters
into consideration:

• Number of CPUs
• Number of cores per CPU
• CPU speed
• Memory size

The result is the number of virtual users that can execute a web protocol script on an agent machine with
the corresponding parameters.

Agent Capacity for Other Virtual User Types

To determine the number of virtual users that can run on a particular agent machine, the number of web
protocol virtual users is weighted by a particular factor that depends on the used technology.

Note: For some technologies there is a maximum number of virtual users defined per machine,
merely due to OS limitations rather than CPU or memory constraints.

Memory Footprints by Application Type

Web Business Transaction (HTML/HTTP)

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,935 1,935 1.89

25 10,323 413 0.40

50 20,400 408 0.40

Web Low Level (HTTP)

24 | Silk Performer Workbench 20.0

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,044 2,044 2.00

25 12,136 485 0.47

50 22,732 455 0.44

Web Browser Driven (AJAX)

The memory footprint for browser-driven Web load tests depends on several factors. Because browser-
driven load tests use Internet Explorer for replay, you should be aware of the following:

• The browser (Internet Explorer) uses memory. Depending on the version of Internet Explorer that you
use, this memory footprint varies.

• Memory usage depends on how you have configured the caching settings in Internet Explorer.
• The application under test uses memory, which often increases as the VUser interacts with the

application.

To get a basic understanding of how much memory a VUser requires when conducting a browser-driven
Web load test, execute a try script run and monitor the memory usage (uncheck the Visible Client check
box for exact results). Note that memory may increase while using the application under test though. It is
recommended to script BrowserStart functions at certain points in your script to reset the browser state
(cookies, cache and history).

Silverlight

Users PerfRun (KB) Per User (KB) Per User (MB)

1 11,040 11,040 10.78

25 13,640 546 0.53

50 16,152 323 0.32

Flash Remoting

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,912 1,912 1.87

25 12,776 511 0.50

50 20,896 418 0.41

WebDav (MS Outlook Web Access)

Users PerfRun (KB) Per User (KB) Per User (MB)

1 3,588 3,588 3.50

25 17,724 709 0.69

50 33,364 667 0.65

Silk Performer Workbench 20.0 | 25

Remedy Ars Web

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,288 2,288 2.23

25 9,688 388 0.38

50 17,340 347 0.34

Email (SMTP/POP)

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,904 1,904 1.86

25 5,268 211 0.21

50 8,912 178 0.17

Directory Server (LDAP)

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,920 2,920 2.85

25 not tested N/A N/A

50 not tested N/A N/A

FTP

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,420 2,420 2.36

25 5,352 214 0.21

50 8,348 167 0.16

TCP/IP based Application

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,912 1,912 1.87

25 5,624 225 0.22

50 9,500 190 0.19

26 | Silk Performer Workbench 20.0

Mixed Protocols

Users PerfRun (KB) Per User (KB) Per User (MB)

1 N/A N/A N/A

25 N/A N/A N/A

50 N/A N/A N/A

TN3270

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,224 2,224 2.17

25 7,424 297 0.29

50 13,652 273 0.27

TN5250

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,495 1,495 1.46

25 not tested N/A N/A

50 not tested N/A N/A

VT100/VT200

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,069 2,069 2.02

25 7,168 287 0.28

50 10,664 213 0.21

SAPGUI

Users PerfRun (KB) Per User (KB) Per User (MB)

1 30,656 30,656 29.94

25 110,180 4,407 4.30

50 194,532 3,891 3.80

SAP NetWeaver (Web)

Silk Performer Workbench 20.0 | 27

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,072 2,072 2.02

25 10,084 403 0.39

50 17,936 359 0.35

Peoplesoft

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,936 1,936 1.89

25 9,812 392 0.38

50 16,408 328 0.32

Oracle 11i

Users PerfRun (KB) Per User (KB) Per User (MB)

1 22,636 22,636 22.11

25 34,748 1,390 1.36

50 51,104 1,022 1.00

Siebel 7 Web Client (incl. IE Option Pack)

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,256 2,256 2.20

25 11,532 461 0.45

50 20,576 412 0.40

Radius

Users PerfRun (KB) Per User (KB) Per User (MB)

1 16,104 16,104 15.73

25 21,284 851 0.83

50 26,268 525 0.51

XML/SOAP (recording Web Service client)

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,676 2,676 2.61

28 | Silk Performer Workbench 20.0

Users PerfRun (KB) Per User (KB) Per User (MB)

25 8,460 338 0.33

50 16,436 329 0.32

.NET Framework using Visual Studio .Net Add-On

Users PerfRun (KB) Per User (KB) Per User (MB)

1 19,964 19,964 19.50

25 N/A N/A N/A

50 N/A N/A N/A

Java Framework

Users PerfRun (KB) Per User (KB) Per User (MB)

1 13,044 13,044 12.74

25 22,356 894 0.87

50 27,920 558 0.55

IIOP – Corba / EJB (RMI over IIOP)

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,736 2,736 2.67

25 31,696 1,268 1.24

50 61,960 1,239 1.21

Jacada

Users PerfRun (KB) Per User (KB) Per User (MB)

1 15,556 15,556 15.19

25 24,020 961 0.94

50 31,552 631 0.62

Citrix Server

Users PerfRun (KB) Per User (KB) Per User (MB)

1 3,900 3,900 3.81

25 9,000 360 0.35

Silk Performer Workbench 20.0 | 29

Users PerfRun (KB) Per User (KB) Per User (MB)

50 11,500 230 0.22

Visual Basic

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,100 2,100 2.05

25 4,128 165 0.16

50 6,276 126 0.12

Oracle

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,732 1,732 1.69

25 3,696 148 0.14

50 5,792 116 0.11

ODBC

Users PerfRun (KB) Per User (KB) Per User (MB)

1 5,468 5,468 5.34

25 16,918 677 0.66

50 29,016 580 0.57

DB2 CLI

Users PerfRun (KB) Per User (KB) Per User (MB)

1 5,168 5,168 5.05

25 21,952 878 0.86

50 37,468 749 0.73

Tuxedo (all Feat.) + Clarify

Users PerfRun (KB) Per User (KB) Per User (MB)

1 2,400 2,400 2.34

25 Not tested N/A N/A

30 | Silk Performer Workbench 20.0

Users PerfRun (KB) Per User (KB) Per User (MB)

50 Not tested N/A N/A

Silk Test

Users PerfRun (KB) Per User (KB) Per User (MB)

1 13,000 13,000 12.7

25 N/A N/A N/A

50 N/A N/A N/A

Siebel 6/DB2

Users PerfRun (KB) Per User (KB) Per User (MB)

1 Not tested N/A N/A

25 Not tested N/A N/A

50 Not tested N/A N/A

Siebel 6/Oracle

Users PerfRun (KB) Per User (KB) Per User (MB)

1 9,428 9,428 9.21

25 66,540 2,662 2.60

50 125,720 2,514 2.46

Siebel 6/SQL Server

Users PerfRun (KB) Per User (KB) Per User (MB)

1 Not tested N/A N/A

25 Not tested N/A N/A

50 Not tested N/A N/A

GUI-level testing

Users PerfRun (KB) Per User (KB) Per User (MB)

1 1,788 1,788 1.75

25 5,080 203 0.2

50 Not tested Not tested Not tested

GUI-level tests require additional memory resources through the use of terminal services sessions and Silk
Test, as follows:

Silk Performer Workbench 20.0 | 31

• 6,300 KB per VUser for Windows Terminal Services
• 13,000 KB per VUser for SilkTest
• 1,092 KB per VUser for Silk Performer's Session Manager

Sample Web 2.0 Application
Silk Performer offers a modern sample Web application that you can use to learn about Web 2.0
application testing. The InsuranceWeb sample Web application is built upon ExtJS and JSF frameworks,
uses AJAX technology, and communicates via JSON and XML.

The sample application is hosted at http://demo.borland.com/InsuranceWebExtJS/.

Configuring Silk Performer
The Silk Performer configuration options provide the opportunity to set global Silk Performer settings that
are not associated with a particular project.

32 | Silk Performer Workbench 20.0

http://demo.borland.com/InsuranceWebExtJS/

Silk Performer Workbench: The basic characteristics of a Silk Performer load testing configuration are set
here—those related to the agent computers used in tests, the directories where files used in and generated
by tests are located, the layout of the text of test scripts, and how results information is generated.

Silk Performer Recorder: The basic settings used by Silk Performer's recording and script generating
program, the Silk Performer Recorder, are defined here. These include the settings for capturing and
recording the network traffic that will be modeled in your test scripts. Here, profiles are set up and
managed for the client applications that are to be used during data capture and recording. Proxies can be
added or removed, and their settings edited. Here you can set the port for the integrated Web server that is
used by the Silk Performer Recorder, and enable recording to begin as soon as the client application starts.

Remote Agents: Silk Performer allows for remote agent computers to be located both in the LAN, out on
the Internet, and even behind firewalls— connected through HTTP and SOCKS proxies. The
communication between the remote agents and the controller can be configured to include secure,
encrypted connections in a distributed secure environment.

Java Configuration: Java Framework projects and Java based APIs require a Java SDK Environment. The
Java SDK version, its location, and parameters such as class path and optional Java Virtual Machine
settings can be configured here.

System Settings
The basic characteristics of the Silk Performer testing configuration are set using the system settings. To
access the system settings, click Settings > System.

Workbench Settings
To access the Workbench settings, click Settings > System > Workbench. The following tabs are
available:

Tab Description

Directories Here you can specify where Silk Performer stores various
types of files. Default directories are set up during
installation; here you can specify alternative directories
for projects, custom user data files, and custom include
files.

Layout Here you can customize the way the editor behaves when
you manually insert text into a script file. Options can be
set for formatting, printing, and how keywords are
highlighted in the Silk Performer menu tree editor.

Control Here you can set the options for the controller. Settings
can be specified for the time interval within which a
controller computer must communicate with an agent
computer or a virtual user; if it fails, a timeout error will be
reported. The frequency with which the controller will ping
an agent computer until it receives a reply is set here, as
can the number of virtual users per process and the
number of transaction failures permitted for a virtual user
before the user is terminated.

Note: Virtual user settings are only stored on a
per-project basis. You must have a project open to
enable this setting. After a project is loaded, the
options apply only to the specific project
configured with that setting.

Silk Performer Workbench 20.0 | 33

Tab Description

Results Use the Time series data option for merging time series
data files (.tsd) on the agent computers where they were
created and to ensure that only the merged files will be
sent to the controller computer. This leads to quicker
processing (because the data is processed by several
computers) and less network traffic, which is especially
useful for big and long-lasting load tests. The drawback,
however, is that time series data files for individual virtual
users are not available on the controller computer.

Note: If you disable this option, you have to merge
the time series data manually in Performance
Explorer to get overall results for the load test.

Workspace In this area, you can specify general Workbench settings
including start-up settings, workflow settings, file
handling, and the display of dialog boxes.

Licensing In this area, you can specify settings for your license
server and for the Silk Performer online licensing model.

Silk Central In this area, you can set up a connection to Silk Central.

Source Control In this area, you can specify general SCC connection
parameters.

Configuring Directory Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Directories tab.

3. Use the File locations area to specify the directories where various Silk Performer file types are stored.
Default directories are set during installation.

4. In the Projects field, specify the directory where the project files are to be saved.

5. In the Custom user data files (.pem, .rnd, .csv, .txt, .idl) field, specify the directory where your
self-created user data files (.csv), certificate files (.pem), random data files (.rnd), text files (.txt),
and Interface Definition Language files (.idl) are located.

In contrast to the specified User data files location, this location is used for your own user data files. As
with Silk Performer pre-defined user data files, custom user data files in this directory can be shared
across multiple projects.

6. In the Custom include files (.bdh) field, specify the directory where your self-created include files
(.bdh) are located.

In contrast to the specified Include files location, this location is used for your own include files. As with
Silk Performer pre-defined include files, custom include files in this directory can be shared across
multiple projects.

Configuring Layout Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Layout tab.

Use the Editor area to customize how the editor behaves when you manually insert text into a script
file.

3. In the Tab size field, enter the number of space characters that equal one tab character.

4. Select the Auto indent option to automatically insert indents in your test script.

34 | Silk Performer Workbench 20.0

Each time you create a new line in a script file, the line is automatically indented the same number of
spaces as the previous line.

5. Select the Replace tabs with spaces option to automatically insert four spaces each time a tab is used
in a test script. This option makes it easier to view script files in a text editor.

6. Select Enable CodeCompletion to have functions, variables, and constants completed for you
automatically when you enter text into BDL files.

7. Click the Font & Colors button to select a font and style for the Silk Performer script editor.

You can select a different color to use for each type of content in a test script.

The Editor Font and Colors Settings dialog opens.

8. From the Text type list, select the type of text for which you want to adjust the font, size, style, and
color.

Choose one of the following:

• Normal Text - Identifiers and symbols.
• Keywords - Predefined statements.
• Custom Keywords - Words added to the keyword list by the user.
• Numbers - Whole numbers and floating-point values.
• Comments - Notes in explanation included in a script.
• Strings - Sequence of characters delimited by " characters.

9. From the Font name, Font size, Style, and Color list boxes, select the format options you want to use
for the currently selected text type.

10.Click OK.

11.You can add keywords to the Custom keywords list. These keywords will display in the script with the
styles you have defined in the Editor Font and Colors Settings.

Configuring Print Layout Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Layout tab.

Use the Printing area to specify options for how script files are formatted when they are printed.

3. Select the Line number option to automatically number the lines in the printed script file.

4. Select the Wrap marker option to automatically print a marker at the end of each line that wraps to the
next line.

5. Click the Font button to select a font and style for your printed test scripts. The Printer Font and
Colors Settings dialog opens.

6. From the Text type list, select the type of text for which you want to adjust the font, size, and style.

Choose one of the following:

• Normal Text - Identifiers and symbols.
• Keywords - Predefined statements.
• Custom Keywords - Words added to the keyword list by the user.
• Numbers - Whole numbers and floating-point values.
• Comments - Notes in explanation included in a script.
• Strings - Sequence of characters delimited by " characters.

7. From the Font name, Font size, and Style list boxes, select the format options you want to use for the
currently selected text type.

8. Click OK.

Silk Performer Workbench 20.0 | 35

Code Completion

Code completion makes it easier to work with BDL. It significantly reduces scripting errors and decreases
the need to type text into BDL files by automatically completing functions, variables and constants. There
are four code completion options:

• Code list: Shows a list box with all currently matching function names.
• Code completion: Completes the current function, variable, or constant name.
• Parameter info: Shows a tool tip with types and additional information for function parameters.
• Quick info: Shows information about functions in a tool tip.
• Smart indention: Positions the cursor based on the current logical context.

Code completion works with both Silk Performer-defined and user-defined BDL files.

To enable code completion, you must name and save new BDL files as either .bdf or .bdh files. Once a
BDL file has been saved, code completion recognizes changes you make to it using the BDL Editor and
includes all files you reference via BDL use statements.

Note: At all times, with all features of code completion, you are only able to receive information
regarding functions, variables and constants that are defined in your local .bdf files, or in the
included .bdh files of those files.

Code List

One of the key features of code completion is the code list mechanism, which offers a list of functions,
variables, and constants. The code list includes either:

• The entire list of available functions, variables, and constants
• Or, a list of functions, variables, and constants that match the characters of the word currently selected

in the script

The code list can be manually invoked using Ctrl+Space. The code list is invoked automatically when you
type one of the following API prefixes:

Attribute Iiop DB_ Dotnet Ora Pdce

Java Jolt Measure Odbc Web Xml

Set Str Tux Get

When the code list is invoked, a list control with the following behavior displays:

• If the cursor is not within a word or at the border of a word, the list control is scrolled to the top, and the
first item receives focus, but it is not selected.

• If the cursor is within a word or at the border of a word, the list control is scrolled to the first (selected)
item that matches the word, and the item is selected.

• By pressing the Tab, Space, or Enter key, the currently selected string is inserted into the view. If a
string is not selected, the string with the focus is selected.

• Double-clicking an item in the list inserts the name into the view.

Code Completion

If a word that should be used with the code list feature is unique, the code list will not open when you
invoke it via Ctrl+Space, however the full word will be inserted.

In this context, unique means that only one word in the list control matches the partial word in question.

Parameter Info

Parameter info is displayed when you place an opening bracket after a function name in a script. Parameter
info can also be invoked manually by pressing Ctrl+I when the cursor is placed between the opening and
closing brackets of a function call. Parameter info is displayed as a tool tip that remains visible until (1) the

36 | Silk Performer Workbench 20.0

Esc key is hit, (2) a closing bracket is inserted, (3) the arrow keys are used to move outside the brackets,
or (4) input focus is set to another control.

Parameter info includes the following for functions:

• Function name
• Function parameters with names, types and modifiers (for example, in, out, and allownull)
• The current parameter is displayed with bold letters and, if available, an additional description
• Return value type and, if available, a description

Quick Info

Quick info is similar to parameter info except it shows information not only for functions, but also for
variables and constants.

Quick info is presented in a form similar to a tool tip when you hold your cursor over a function, variable, or
constant name. Quick info tool tips disappear when you move your cursor away.

For functions, available information is the same as with parameter info, with the exception that all
parameters are shown with their descriptions rather than only the current parameter.

For variables and constants, only name, data type and optional descriptions are displayed.

Smart Indention

Smart indention is enabled when the Enter key is pressed within a BDL related view and a new line is to
be inserted. Upon invocation, it places the cursor at a position that is calculated with respect to the current
context (for example, indenting after inserting an initial keyword).

User-Defined Functions, Variables, and Constants

To receive code completion features for user-defined functions, variables, and constants, you must create a
new file with the same name, in the same directory as your .bdf or .bdh file that defines the function,
variable or constant you want to enhance, though with the extension .bdd.

A .bdd file has the following structure:

<CodeCompletionInfo>
 <Function id="FuncId">
 <Description>FuncDesc</Description>
 <ParamList>
 <Param no="1">
 <Name>ParamName</Name>
 <Description>ParamDesc</Description>
 </Param>
 </ParamList>
 <Returns>
 <Type>RetValTyp</Type>
 <Description>RetValDesc</Description>
 </Returns>
 </Function>
 <Global id="GlobalId">
 <Description>GlobalDesc</Description>
 </Global>
</CodeCompletionInfo>

This means that for each function you want to instrument with code completion information, you must insert
a function node. For all others (variables and constants) you must insert a global node.

Code completion nodes

Silk Performer Workbench 20.0 | 37

FuncID Name of the function in your .bdf or .bdh file, for
which code completion information should be provided.

FuncDesc Textual description of the function.

ParamName Parameter name

ParamDesc Textual description of the parameter.

RetValTyp Data type of the return value.

RetValDesc Textual description of the return value.

GlobalId Name of the global variable or constant.

GlobalDesc Textual description of the variable or constant.

Configuring Control Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Control tab.

3. The Virtual users area provides the following options:

• Enable Automatic calculation to let Silk Performer calculate the number of virtual users per
process.

• Disable Automatic calculation to manually enter a value into the Virtual users per process field.
• In the Stop virtual users after __ transaction failures field, enter the number of transaction

failures after which virtual users should be stopped.

Note: Virtual user settings are only stored on a per-project basis. You must have a project open to
enable this setting. After a project is loaded, the options apply only to the specific project
configured with that setting.

4. The Remote agent communication area provides the following options:

• Select LAN to optimize the controller-agent communication for a local area network.

This is especially useful if all of the agent computers you are going to use for your load tests are
located in the same local area network and all are using a fast connection.

• Select WAN to optimize the controller-agent communication for a wide area network.

This is especially useful if you are going to use many agent computers that are located somewhere
on the Internet.

• Select Custom to specify your own parameters.

Note: Use the Custom option only if you run into problems with LAN or WAN settings.

5. In the Connect field, enter the time, in which the controller computer should try to establish a
connection to each remote agent computer.

If the connection cannot be established within this time interval, Silk Performer reports an error.

Note: It is not recommended to change this setting.

6. In the Ping Interval field, enter the time, within which the controller computer should attempt to retrieve
load test status data from the agent computers. The controller computer requests this information from
the agent computers whenever the contents of the Monitor window need to be updated. If the agent
computer fails while receiving data during this time interval, Silk Performer will report a warning.

Note: It is not recommended to change this setting.

38 | Silk Performer Workbench 20.0

7. In the Command field, enter the time in which the controller computer should try to send a command to
a remote agent computer. If the command cannot be sent within this time interval, Silk Performer
reports an error.

Note: It is not recommended to change this setting.

8. Enable the compressing and caching options if necessary. For more information, read Compressing
Data Files and Caching Data Files.

• Compress data files for LAN/WAN agents
• Compress data files for cloud agents
• Cache data files on agents

Configuring Result Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Results tab.

3. Select the Merge time series data on agents option in the Time series data area for time series data
files (.tsd) to be merged in the agent computers where they were created and to ensure that only the
merged files are sent to the controller computer.

This is especially useful for quickly processing the results of long load tests as the calculations will then
be distributed to various processors and less traffic will be sent over the network. The drawback,
however, is that time series data files for individual virtual users are not available on the controller
computer.

Note: If you do not select this option, you will have to manually merge the time series data files in
Performance Explorer to get overall results for the load test.

4. Enable Limit messages per agent and enter a value. If an agent exceeds this limit, Silk Performer
reports a message with a customizable severity.

Configuring Workspace Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Workspace tab.

3. Enable Open the last opened project file on startup to have the last project you worked on opened
automatically each time you launch Silk Performer.

4. Check Always enable all workflow buttons to enable all buttons in the workflow bar.

By default, workflow buttons are enabled in sequence based on your progress through the Silk
Performer workflow.

5. Select a Workflow bar type:

• Full: Displays the full workflow bar, including all workflow steps.
• Simple: Displays the simple workflow bar. The simple workflow bypasses the baseline concept to

make the load testing process quicker and easier.
• Monitoring: Displays the monitoring workflow bar, including just the workflow steps necessary for

monitoring purposes.

6. Check Enable document file locking.

The document file locking mechanism allows multiple users (on Silk Performer Controller machines) to
work simultaneously on the same document files (.bdf script files, .bdh include files, data files)
without overwriting each other's files. Locked document files from other users can be used in read-only
mode, but they can not be edited. This option is enabled by default.

7. Click Show all dialog boxes to reset any suppressed dialog boxes to their default active state.

Certain dialog boxes include a Do not show this dialog again check box. Checking such a checkbox
suppresses the dialog box from displaying until the Show all dialog boxes button is clicked.

Silk Performer Workbench 20.0 | 39

Configuring Licensing Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Licensing tab.

3. Click Change license server configuration to specify the settings for your Silk Meter licensing server.

4. Click Install standalone license to provide the location of your license file and import it.

5. Select one of the following Licensing options. These options allow you to use Silk Performer's online
licensing model. For more information, read Online Licensing.

• Use on-premise licensing only
• Use online licensing only
• Use online licensing if required

Recorder Settings
This topic explains the settings that are used by the Silk Performer recording and script generation
program, the Silk Performer Recorder. These settings are used for capturing and recording the network
traffic that is modeled in your test scripts. These settings comprise profiles that are applied to client
applications during data capture and recording. Proxies can be added or removed, and their settings
edited. You can set the port for the integrated Web server that is used by the Silk Performer Recorder, and
enable recording to begin as soon as the client application is started. You can also configure recording
rules that define how the Recorder captures network traffic.

Recording profiles

The Silk Performer Recorder uses recording profiles to determine what applications to record and how to
record them. You can create new recording profiles and edit, remove, or copy existing ones. Within a
recording profile you can specify the application that is to be recorded, a working directory, application
arguments, additional executables to be recorded, protocol settings, and more.

Proxies

New proxies can be set up on your computer, and existing proxies can be edited or removed. A wide
number of options can be specified for each proxy, including the protocol type, the listen port, details of the
server to which the Silk Performer Recorder forwards intercepted traffic, and details concerning the client
certificate that the Silk Performer Recorder presents to the Web server. When a SOCKS proxy is being set
up, automatic protocol detection can be disabled for any port you want to specify. Whenever a client
application sends SOCKS traffic to one of these specified ports, the Silk Performer Recorder records traffic
at the TCP/IP level without trying to detect a familiar protocol first. A port range can be specified for which
the recording of data by the Silk Performer Recorder will be suppressed.

Services

Options can be set for the Web server that is integrated into Silk Performer, and also for recording with the
Silk Performer Recorder. The port that the integrated Web server listens to can be specified, and you can
use this server to retrieve the root CA certificate that signed the Silk Performer Recorder server certificate.
The root CA certificate may be downloaded from this Web site and installed into the Web browser to avoid
security warnings by the browser.

The Silk Performer Recorder can be set to begin recording function calls automatically when an application
is started from within the Silk Performer Recorder.

Recording Rules

The Silk Performer Recorder can be configured using recording rule files. Recording rule files are XML-
based files that contain the rules by which the Silk Performer Recorder functions.

40 | Silk Performer Workbench 20.0

Recording rules allow you to configure the Recorder in a number of ways. Example use cases include
session customizations, excluding JPG images from download while recording Web pages, and excluding
Web pop-ups and ads that originate from a specific URL.

• TCP/IP: By providing protocol descriptions of proprietary TCP/IP based protocols.
• HTTP: By specifying the scenarios in which the Recorder should script parsing functions for dynamically

changing values and generate replacements for those values.

Silk Performer enables you to create, edit, copy, and remove recording rules via the Recording Rules tab
(System Settings > Recorder > Recording Rules).

Note: Creating recording rules based on existing templates, and editing individual rule properties as
required, is the easiest method of configuring recording rules. Advanced users can manually script
recording rules. Manually scripting recording rules requires extensive experience with Silk Performer
and a thorough understanding of the involved protocols (TCP/IP, HTTP, and HTML). To learn about
the structure and syntax of recording rules, and to see rule-file design examples, see the Rule-based
Recording section.

You can create a new recording rule in TrueLog Explorer using values that you have specified in a parsing
function. For example, creating a recording rule from a session-customization parsing function allows you
to record an application while avoiding session customization issues entirely.

Note: All active recording rules are taken into account by the Recorder during recording. To avoid
unwanted BDL scripting, ensure that only those rules that you require are active during recording.
Recording rules are activated/deactivated via check boxes on the Recording Rules tab (System
Settings > Recorder > Recording Rules).

Storing Recording Rules

The recording rules wizard saves recording rules in XRL format to <public user documents>\Silk
Performer 20.0\RecordingRules. These rules can be shared between team members and can be
added to any Silk Performer installation by copying the XRL file to any other \RecordingRules folder.
Once in the folder, they are global in scope and are applied to all future projects.

You can control which recording rules are applied to subsequent recordings via Settings > System >
Recorder > Recording Rules. To apply a rule, ensure the corresponding checkbox is checked. To have a
rule ignored during recording uncheck the rule checkbox.

Adding Recording Profiles

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Click Add to add a new recording profile to the list.

The Recording Profile dialog opens.

4. In the Profile name field, type a unique name for the recording profile.

The profile name is required to identify the application in the Silk Performer Recorder window.

5. In the Application path field, type the name of the application's executable and the directory in which it
resides.

To locate the executable, click the browse icon.

6. In the Working directory field, type the working directory of the application.

The working directory is the folder that contains the application or related files. Some applications need
files located in other directories, so you might have to specify the folder in which these files reside.

7. In the Application arguments field, type any number of application parameters.

Passing parameters to an application is useful, for example, when recording the function calls
performed by a command-line tool without a graphical UI.

Silk Performer Workbench 20.0 | 41

8. In the Executables to be recorded field, specify the executables that are to be recorded. This allows
you to record processes that are different from the specified application's executable, which might be
required if the application is hosted by another process that powers the communication process.

9. Enable Record new and running instances (Secure Boot mode) to record all instances of an
application that are already running at the time the Recorder is launched, as well as all instances that
are started with the Recorder or later on. You can enable this option in case the conventional recording
mechanism does not work as expected for your application. This option is automatically enabled on
machines that have the UEFI feature secure boot enabled.

10.In the Protocol selection area, check the check box that identifies the function library into which you
want the Silk Performer Recorder to hook.

Available options vary according to the selected application type, as follows:

• Web – The Silk Performer Recorder hooks into a Web application, intercepts all function calls, and
displays the results.

When the Web option is selected, you can click Web Settings to open the Web Settings dialog box,
which enables you to select the method that the Recorder uses to capture Web- and TCP/IP-based
traffic.

• TCP/IP – The Silk Performer Recorder hooks into a TCP/IP application, intercepts all function calls,
and displays the results.

• IIOP – The Silk Performer Recorder hooks into the IIOP function library of the client application,
intercepts all the function calls, and displays the results.

• Citrix XenApp – The Silk Performer Recorder hooks into a Citrix XenApp application, intercepts all
function calls, and displays the results.

• ODBC – The Silk Performer Recorder hooks into the ODBC function library of the client application,
intercepts all function calls, and displays the results.

• DB2 CLI – The Silk Performer Recorder hooks into the DB2 CLI function library of the client
application, intercepts all function calls, and displays the results.

• Oracle OCI – The Silk Performer Recorder hooks into the Oracle function library of the client
application, intercept all functions calls, and displays the results.

Click OCI Settings to open a dialog box that allows you to select the OCI client library to use for
intercepting function calls. Select the appropriate library from the list box and click OK.

• Tuxedo – The Silk Performer Recorder hooks into the TUXEDO function library of the client
application, intercepts all function calls, and displays the results.

• SAPGUI – The Silk Performer Recorder hooks into functions of SAP GUI interfaces, intercepts all
the function calls, and displays the results.

11.Click OK to add the new profile to the list.

Removing a Recording Profile

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Select the recording profile you want to remove and click Remove.

4. Click Yes on the confirmation dialog.

5. Click OK to save your settings.

Editing or Copying Recording Profiles

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Select a recording profile.

4. Choose one of the following:

42 | Silk Performer Workbench 20.0

• Click Edit to adjust the settings of the selected recording profile.
• Click Copy to copy the selected recording profile.

The Recording Profile dialog appears. See "Adding Recording Profiles" for detailed information on the
available settings.

5. Click OK to save your settings.

Recording Methods for Recording Profiles

You can set one of the following recording methods for each of your recording profiles. To view your
recording profiles, click Settings > System > Recorder.

record new instances When this method is set, the Recorder records all
instances of an application that are started with the
Recorder or afterwards. Instances that are already
running at the time the Recorder is launched will not be
recorded.

To set this method, select a recording profile, click Edit,
and make sure that Record new and running instances
(Secure Boot mode) is disabled. This option is
automatically enabled on machines that have the UEFI
feature secure boot enabled.

record new and running instances When this method is set, the Recorder records all
instances of an application that are already running at the
time the Recorder is launched, as well as all instances
that are started with the Recorder or afterwards.

To set this method, select a recording profile, click Edit,
and enable Record new and running instances
(Secure Boot mode).

record through system proxy When this method is set, the Recorder records through
the Windows system proxy.

Note: In this case, the Recorder captures the
traffic of all applications that use the system proxy.
You can exclude unwanted traffic from your script
by using the filters and script generation settings
on the Capture File page.

To set this method, select a recording profile, click Edit,
click Web Settings, select Proxy, and select Automatic
browser configuration.

record through application proxy Some applications (including Firefox) allow you to use an
application-specific proxy and therefore ignore the system
proxy settings.

When this method is set, the Recorder records through
the custom proxy of the respective application.

To set this method, select a recording profile, click Edit,
click Web Settings, select Proxy, and select Manual
browser configuration. In the application you want to
record, set the proxy to localhost and the HTTP
proxy port configured in the Recorder (the default is
8080).

The Recording Profiles page lists all recording profiles you have specified manually alongside a number
of default recording profiles. When a recording profile is checked in this list, it is marked as active. All
active recording profiles can be selected from the Recording Profiles list on the Model Script dialog.

You can select which of your recording profiles the Recorder uses for recording:

Silk Performer Workbench 20.0 | 43

• Profiles started from the Model Script dialog or recorder: When this option is selected, only the
recording profile that is selected on the Model Script dialog is used, once you start the recording.
However, when you select a recording profile directly within the Recorder and click the Start
Application icon, this recording profile is used as well, since it is initiated explicitly.

• All active profiles: When this option is selected, the Recorder uses all recording profiles that are
active (checked), once you start the recording.

Note: When you have selected this option and start your recording from the Model Script dialog,
you still have to select a single Recording profile. However, the Recorder will use all active
recording profiles during recording.

Tip: The Recorder shows you which recording profiles are in use by displaying the icons of the
recorded applications on the bottom right.

Specifying the Recorder Method for Capturing Web and TCP/IP-Based Traffic

Before you can perform this task, you must add a recording profile.

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Select a recording profile.

4. Click the Edit button. The Recording Profile dialog appears.

5. In the Protocol selection area, select the Web option to have the Silk Performer Recorder hook into a
Web application, intercept all function calls, and display results.

The options available here vary based on the selected application type.

6. Click the Web Settings button to open the Web Settings dialog, which enables you to select the
method that the Recorder is to use to capture Web and TCP/IP-based traffic.

• Select the WinSock option to have the Silk Performer Recorder hook into the WinSock function
library of the client application, wrap all traffic the application produces in the SOCKS protocol, and
redirect the traffic to a Recorder SOCKS proxy.

• Select the Proxy option to have the Silk Performer Recorder redirect all traffic from the selected
browser to the Recorder proxies.

7. Click OK.

8. You can also enable any available Java APIs by checking the corresponding check boxes in the field on
the right of the dialog. The following Java APIs are available for selection:

• Oracle Forms 6i on HTTP/HTTPS
• Oracle Forms 6i on Socket
• Oracle Forms 9i
• Product Manager Sample Extensions
• Borland Enterprise Server App. Client
• Jacada
• Java EJB (JBoss)
• Java EJB (Other)
• Java EJB (WebLogic)
• Java EJB (WebSphere)
• Java JNDI (Naming & Directory Interf.)
• Java RMI (Custom Client-Server)
• Jolt
• Oracle Applications 11i
• Oracle Applications 12i on Socket
• Oracle Forms 10g
• Oracle Forms 11g

44 | Silk Performer Workbench 20.0

• Oracle Forms 12c

9. When a Java API is enabled, click the Java Settings button to open a dialog that enables you to specify
Java recording settings, such as the hooked Java Virtual Machine library or other settings.

• Select the Java Virtual machine hooking option to automatically hook into the Java VM. If this
option is enabled, select the dynamic link library from the JVM DLL list box that you want the Silk
Performer Recorder to hook into for recording traffic.

• Select the Network only option to only hook class and jar files that are downloaded via HTTP.
• Select the Manual option if you have manually prepared a startup script for recording your Java

application.

10.Close all open dialogs by clicking the OK button to save your settings.

Configuring Proxy Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Click the Proxies tab.

4. Select one of the following options:

• Click Add to set up a new proxy on the controller computer. You can set up proxies for recording a
number of types of traffic, and you can have a number of proxies active at the same time.

• Click Edit to edit a selected proxy.
• Click Remove to remove a selected proxy.

The Proxy Settings dialog appears.

5. From the Protocol list box, select a protocol type for forwarding and recording traffic.

You have to set up a proxy for each type of traffic you want to record. Forwarding and recording traffic
with the following protocols is supported:

• FTP - File Transfer Protocol
• HTTP - Hypertext Transfer Protocol
• LDAP - Lightweight Directory Access Protocol
• POP3 - Post Office Protocol
• SMTP - Simple Mail Transport Protocol
• SOCKS - When capturing SOCKS traffic, the Silk Performer Recorder automatically detects other

protocols like IIOP, FTP, POP3 and SMTP for recording.
• TCP/IP Custom protocol based on TCP/IP.

6. In the Listen port field, enter the port number to which traffic will be sent by the traffic-generating client
computer.

Although any port not in use can be chosen, avoid standard port numbers (usually smaller than 1500).

7. In the Remote host area, choose the Type of host to which you want the Silk Performer Recorder to
forward intercepted traffic.

Choose one of the following:

• Select the Any option to forward intercepted traffic to the host specified by the traffic-generating
client computer.

• Select the Proxy/Firewall option to forward intercepted traffic to a specified proxy or firewall.

In this case, the host name and IP address specified by the traffic-generating client computer are
ignored.

• Select the Specified option to forward intercepted traffic to a specified remote host.

In this case, the host name and IP address specified by the traffic-generating client computer are
ignored.

Silk Performer Workbench 20.0 | 45

8. If you selected the Specified option for a remote host, check the Secure check box to record and
forward Secure Socket Layer protocol traffic.

If this option is selected, HTTPS traffic will be recorded instead of HTTP traffic, for example.

9. In the Host name or IP address field, enter the host name or IP address of a specific server to which
you want the Silk Performer Recorder to forward intercepted traffic.

10.In the Port field, enter the port number that a specific server—the one to which the Silk Performer
Recorder forwards intercepted traffic—listens to.

11.From the Certificate list box, select a client certificate that the Silk Performer Recorder is to present to
the Web server on behalf of the real client’s certificate.

12.When setting up a SOCKS proxy, use the Record always at TCP/IP protocol level area to specify any
number of ports for which to disable automatic protocol detection.

You can enter multiple port numbers and ranges, separated by commas (,); a range specification
consists of the lower and upper boundary, separated by a hyphen (-).

Whenever a client application sends SOCKS traffic to one of the specified ports, the Silk Performer
Recorder records traffic at the TCP/IP level without attempting to detect a familiar protocol first.

13.In the Suppress recording (only forward data) area, specify a port range for which you want to
suppress the recording of data by the Silk Performer Recorder.

You can enter multiple port numbers and ranges, separated by commas (,); a range specification
consists of the lower and upper boundary, separated by a hyphen (-).

The data will still be forwarded, but no longer recorded.

14.Click OK.

15.To activate a proxy, check the check box to the left of the proxy name, in the Record column.

16.Click OK to save your settings.

Configuring Services

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Click the Services tab.

4. Use the Integrated Web server area to change the port number of the Web server that is integrated
into the Silk Performer Recorder.

The default address of the server is http://localhost:19100 (where 19100 is the default port
number). You must have the Silk Performer Recorder running to use this Web server.

5. In the Port field, enter the port that the integrated Web server listens to.

The default is 19100. Using the integrated Web server, you can retrieve the root CA certificate that
signed the Silk Performer Recorder server certificate. The root CA certificate may be downloaded from
this Web server and installed into the Web browser to avoid security warnings by the browser.

6. Select the Autostart recording option in the Recording area to start recording traffic and function calls
automatically when the Silk Performer Recorder is started.

If this option is disabled, you must use the Start Recording button on the Silk Performer Recorder
toolbar to begin recording.

7. Click OK to save your settings.

Adding a Recording Rule

By default, there are no predefined recording rules. You must script new recording rules manually or create
them via the UI, as explained below.

1. Navigate to System Settings > Recorder > Recording Rules.

2. Click Add. The Recording Rule Properties dialog opens.

46 | Silk Performer Workbench 20.0

3. From the Template list box, select a rule template. The Description text box explains what the selected
template does.

4. Edit the default Rule Name and Description as required.

5. Check the Active check box to activate the rule.

6. Edit the property values as required.

7. Click OK. The new rule appears on the Recording Rules page.

Editing a Recording Rule

1. Navigate to System Settings > Recorder > Recording Rules.

2. Select an existing rule in the Rule Name text box.

3. Click Edit.The Recording Rule Properties dialog opens.

4. Edit the Rule Name and Description as required.

5. Check/uncheck the Active check box to activate/deactivate the rule.

6. Edit the property values as required.

Select a property row to view a description of the property in the description text box at the bottom of
the dialog.

Note: Grayed-out properties are read-only.

7. Click OK to save your changes.

Agents Settings
To access the Agents settings, click Settings > System > Agents. The following tabs are available:

• Agent Pool: Here you can manage your pool of agents. You can add and remove LAN and WAN
agents, set a number of agent properties, and export the agent pool.

• Advanced: Here you can instruct Silk Performer to use a particular user account for your agents and to
create multiple sessions on an agent computer.

Agent Pool

Configuring Agent Pool Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Agents button.

3. Click Check Availability to send a remote call to the selected agent and verify that it is available and
active.

4. Select an agent computer and click Manage to set the agent's configuration options, including the
configuration of multiple IP addresses. The System Configuration Manager opens.

5. Click OK to save your settings. Repeat the previous step for each agent computer that you want to
configure.

6. Back on the System Settings dialog box, click OK to save your agent pool settings.

Adding a Computer to the Agent Pool

1. In the Silk Performer menu, click Settings > System .

2. Click the Agents button.

Tip: Alternatively, click Assign Agents on the Silk Performer workflow bar. Then click the
Configure Agent Pool link on the Setup Agents dialog box.

Silk Performer Workbench 20.0 | 47

3. On a LAN network:

a) Click the Add LAN Agent button. The Add LAN Agent dialog appears, listing all compatible agent
computers that are available on the subnet.

b) From the Running agents list of computers in your local network, select the computer(s) you want
to add to your agent pool.

c) Click the Add button.

4. On a WAN network:

a) Click the Add WAN Agent button. The Add WAN Agent dialog appears.
b) Enter connection parameters for the WAN agent.
c) In the Host name or IP address field, enter the computer’s host name or IP address.

Tip: If you want to add a computer from Windows domains outside your local network, click
[...].

The Browse for Computer dialog appears.
d) Select the computer you want to add to the agent pool and click OK.
e) Click OK again on the Add WAN Agent dialog.

Agent Connection Properties

Before a Silk Performer agent can be assigned manually to a load test, it has to be added to the agent
pool. To open the agent pool, click Settings > System in the Silk Performer menu and click the Agents
icon.

You can add agents to the agent pool and remove them. To modify the connection settings, select an agent
and click Properties.

• Enable Encryption (SSL) to force the controller to secure the connection to the remote agent.
• Enable Authenticate and specify a Password to connect to the remote agent using a password. The

password must be identical to the password you specified in the System Configuration Manager.
• When Encryption (SSL) is enabled, specify the port the controller uses to connect to the agent in the

Connect to secure port field. The port must be identical to the agent connection secure port you
specified in the System Configuration Manager.

• When Encryption (SSL) is disabled, specify the port the controller uses to connect to the agent in the
Connect to port field. The port must be identical to the agent connection secure port you specified in
the System Configuration Manager.

• Enable Use HTTP proxy server to connect to the agent using an HTTP firewall. Specify the Address
and Port to which you want to tunnel. These can be obtained from your system administrator. See
Connecting Through HTTP Firewalls.

• Enable Use SOCKS proxy server to connect to the agent using the SOCKS protocol. Specify the
Address and Port. See Connecting Through SOCKS Firewalls. If you use both the HTTP firewall and
the SOCKS protocol, the agent will first connect to the SOCKS proxy and then connect to the HTTP
proxy. See Connecting Through Multiple Firewalls.

• Click Check Connection to verify that the controller is able to connect to the agent. If you specified a
connection through a proxy server, you will be asked for user credentials if the proxy server requires
authentication.

• Click OK to save your settings.

Removing a Computer from the Agent Pool

1. In the Silk Performer menu, click Settings > System .

2. Click the Agents button.

3. On the Agent Pool tab, select the agents that you want to remove from the Agent Pool list and click the
Remove button.

4. Click OK on the ensuing dialog box to confirm that you want to remove the agent.

48 | Silk Performer Workbench 20.0

Advanced Agent Settings

By default, remote agents run under the local SYSTEM account. This is because the Silk Launcher
Service, which runs under the SYSTEM account, passes on its privileges to the Silk Performer agent and
virtual user processes. This concept works fine for protocol web and related technologies. However, for
browser-driven web and other technologies that need access to a user registry hive, there are methods to
run virtual users under a particular user account.

Using a Particular User Account for a Single Agent

With this option you can configure a specific agent to run its virtual users under a specific user account. If
you want to run all your virtual users on all agents under a particular user account, use a different option
(see Using a Particular User Account for All Agents).

1. From the Silk Performer menu bar, select Tools > System Configuration Manager. The System
Configuration Manager dialog displays.

2. Click the Applications tab.

3. Select Silk Performer in the group box on the left side of the dialog box.

4. Click Change next to the Account text box and type the account name of a user on the agent
workstation who has permission to execute remote tests.

5. Click Change next to the Password text box and type the corresponding password.

6. Click OK.

Using a Particular User Account for All Agents

You can specify particular user account credentials in a central location to be used for all agents, except for
cloud agents which always use a dedicated user. This feature allows agents to be launched under a
specific user account rather than the default SYSTEM account. For technologies such as browser-driven
web, it is useful and recommended to run the virtual users in the context of a user account instead of the
Windows built-in SYSTEM account. When you enable this setting, make sure that the specified user
account is available on all the agent machines that are used for the load test.

By default agents are assigned to the SYSTEM account, but you also have the option to specify a
dedicated user account to an agent through the System Configuration Manager (see Using a Particular
User Account for a single Agent). Using this method to assign a specific user account can be cumbersome
if you have a large amount of agents, because you have to specify user account credentials separately for
each agent.

Note: Ensure that the specified user account is a member of the Remote Desktop Users Windows
group on the remote agent.

1. In the Silk Performer menu, click Settings > System .

2. Click the Agents icon and the Advanced tab.

3. Enable Use particular user account.

4. In the fields Username and Password, specify the credentials for a user with permission to launch the
agents to test.

5. Click OK to save your settings.

Note: Any settings that are defined in the System Configuration Manager for agents will be
overridden by this setting on the Advanced tab.

Note: If a Remote Desktop Server is installed on the agent, it is recommended to use the default
SYSTEM account. If you used a particular user account instead and the session was unexpectedly
disconnected, the agent's session including the agent would be ended. This is true if "End a
disconnected session" is activated in the Remote Desktop Server configuration.

Silk Performer Workbench 20.0 | 49

Distributing Virtual Users Over Multiple Windows Sessions

Windows operating systems do not dedicate all available resources to a single Windows session. For load
testing with UI-based technologies such as browser-driven web or SAPGUI, Silk Performer allows you to
distribute virtual users over several Windows sessions. This allows you to make better use from resources
of powerful hardware. Virtual users that execute Java or .NetFramework code that is not designed to run in
multiple instances can be spread over several Windows sessions.

Unlike with GUI-level testing, where each virtual user creates its own Windows session, this setting allows
you to run more than one virtual user within a session. How many sessions an agent machine can handle
depends on its hardware resources, in particular on the CPU and memory. This setting is available for the
following technologies: browser-driven web, Citrix, SAPGUI, Java Framework.

1. In the Silk Performer menu, click Settings > System .

2. Click the Agents icon and the Advanced tab.

3. Enable Create multiple sessions.

4. Specify the Maximum sessions Silk Performer is allowed to create.

5. In the fields Username and Password, specify the credentials for the Windows sessions that are to be
created.

6. Click OK to save your settings.

When you start a load test, Silk Performer creates multiple Windows sessions, logs in to the sessions using
the credentials, and starts virtual users within the sessions.

Note: When you enable this setting, make sure that your agent machines are set up identically. Also,
the agent machines must be equipped with the Remote Desktop Services (RDS) with appropriately
set up licensing options. The Windows sessions are opened locally from within the Remote Desktop
Services host. Thus, per device licenses are better suited, although per user licenses work as well.

Tip: The number of virtual users you can run on an agent machine can be read from the agent's
capabilities. These default capabilities are calculated based on the CPU and memory. However, a
realistic number for your specific environment and conditions can only be determined if the user types
(the script and settings) are taken into account. The Evaluate Agent VUser Capacity dialog helps
you to determine a good maximum number of virtual users for a particular agent and user type. For
more information, read Evaluating Agent VUser Capacity.

Java Settings
You can configure your Java settings either through the system settings or the profile settings. System
settings serve as default settings for new projects and new profiles within existing projects. During a
running test, virtual users use the Java settings of the profiles they are assigned to.

Use the general Java settings to specify the JDK version, its location on your hard drive, and the class
path. When a class path contains well-known locations such as a project directory or data directory, these
path parts are automatically replaced with placeholders. Placeholders are useful when migrating projects
or running virtual users on agent machines where the directories have different names than on the
controller machine.

Note: When data files have typical Java archive file extensions, such as .jar and .zip, Silk
Performer offers to add the files to the class path of the currently active profile.

Configuring Java Version and Classpath Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Java icon. The General page opens.

3. Specify the directory of the Java home path in the Java 32-bit home or Java 64-bit home field,
depending on what Java architecture you use. You can switch between 32-bit and 64-bit on the
Advanced tab.

50 | Silk Performer Workbench 20.0

This option enables the Java Virtual Machine to be loaded from a different path than is specified in the
PATH environment so that you can switch between various Java Virtual Machines without changing the
system PATH environment.

Note: Silk Performer automatically checks the path you specify here. If the path is not correct, the
default Java home path of the operating system is used instead.

The Classpath specified for the Java Virtual Machine displays. By default the classpath is set to the
system classpath.

4. Click Check JVM to verify your Java Virtual Machine configuration settings.

To ensure that the Java environment is set up properly, the configuration should be tested.

5. Click New File to navigate to a class file and add it to the classpath of the Java Virtual Machine.

Note: Press Ctrl or Shift to select multiple class files and add them to the classpath.

6. Click New Directory to navigate to a directory and add it to the classpath of the Java Virtual Machine.

7. To move selected files up or down in the classpath hierarchy, click Move Item Up or Move Item Down.

8. To delete a selected file from the classpath, click Delete.

9. Click OK to save your settings.

Configuring Advanced Java System Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Java icon. The General page opens.

3. Click the Advanced tab.

4. In the Command line options field, enter any command line options that are to be passed to the Java
Virtual Machine.

Some Java classes require specific Virtual Machine options to run successfully. Tuning parameters may
also be specified in VM parameters.

5. Select the Disable JIT compiler check box if you want to disable the Just In Time (JIT) compiler of the
Java Virtual Machine.

The JIT compiler can be disabled when required and non-standard VM DLLs can be specified.

6. Check the Use system classpath check box to ensure that the system classpath is used.

7. Select 32-bit Java (default) or 64-bit Java.

8. If you use 64-bit Java, specify an Execution timeout for the communication between the Silk
Performer runtime and the JVM.

9. Click OK to save your settings.

The specified Java architecture determines whether your Java test code is running in-process or out of
process. This results in the following behavior:

• 32-bit Java is enabled: When you execute a test, the jvm.dll and the required .jar files are loaded
dynamically into the perfrun.exe. Note that this increases the memory usage of the perfrun.exe.
Also be aware that during the early phase of a load test, the memory usage might be volatile. This can
be misunderstood as a memory leak, but is in fact expected due to the Java garbage collector at work.
By default, up to 50 virtual users share the same JVM, which helps reduce memory usage. However,
this feature requires that your Java test code is thread-save (especially the static variables).

• 64-bit Java is enabled: When you execute a test, the Java test code is running in a separate process - it
is not loaded into the perfrun.exe.

You can also use the BDL function JavaSetOption to switch between 32-bit and 64-bit Java. Note that
the settings defined in the BDL script override the options defined in the profile settings.

Silk Performer Workbench 20.0 | 51

Remote Agent Java Settings

You can configure different Java settings for the controller (the Silk Performer Workbench) and for your
remote agents. This means that you do not need to maintain identical Java environments (Java versions,
settings, directories) for your controller and agent machines. For agents, a JRE is sufficient, but on the
controller, usually a JDK is required.

If a class or .jar file is not found on the agent machine within the specified path, the local data directory will
be searched in addition.

There is a corresponding profile settings tab at Settings > Active Profile > Java that pulls its initial values
from the remote agent settings at Settings > System > Java. It is the values on the active profile tab that
are actually applied to remote agents at test time.

Remote Agents
Silk Performer allows for remote agent computers to be located both in your LAN or somewhere out on the
Internet. The communication between the remote agents and the controller can be configured in a
distributed secure environment to include secure and encrypted connections.

Communication between remote agents and the controller may be made in a variety of ways with a choice
of proxies, including connections made through multiple firewalls and through TCP/IP, HTTP, or SOCKS
firewalls. These connections include access through choices for secure or non-secure connections, with or
without encryption.

Remote Agent Connection Scenarios
Includes diagrams that illustrate various remote-agent connection types.

Direct Connection to Remote Agent (default settings)

The following diagram illustrates a direct connection between the controller and the remote agent (no
firewalls).

In this environment, the following ports are used to connect to the remote agent:
• UDP 19200: Used for the broadcast (hard-coded, does not change)
• TCP 19200: Initial unsecured connection to launcher service. Accessible through the System

Configuration Manager on the agent, accessible through System > Settings > Agent Pool >
Properties in the Workbench.

• TCP 19202: The Silk Performer agent port. This port is the next free port after the maximum port
number of the agent connection port (default 19200) and the secure agent connection port (default
19201).

• TCP 19203: Real-time measure communication port of the Silk Performer agent. This port is only used
if real-time measures are enabled. It is the next free port after the agent connection port.

Agent Connection Establishment Without Firewalls

52 | Silk Performer Workbench 20.0

1. Controller opens initial direct connection to Silk Launcher Service.

2. Service launches the Silk Performer agent process (perfLtcAgent.exe).

3. Service returns agent's listener port (19202) to the controller.

4. Controller connects directly to the agent on port 19202.

5. Optional: For collecting real-time measure data, the controller connects directly to the agent on port 19203.

Connecting Through TCP/IP Firewalls

1. From the Silk Performer menu bar, select Tools > System Configuration Manager . The System
Configuration Manager dialog box appears.

2. Click the Service Status tab.

3. In the Port and Secure port fields, enter the numbers of the unsecured port and the secured port.

By default these settings are 19200 for the unsecured port and 19201 for the secured port,
respectively. These port connections must be changed if your firewall blocks them.

Ports that you might want to open on your firewall include:

• 19200: Default connection port to Silk Performer Silk Launcher Service.
• 19201: Secure connection to Silk Launcher Service (you only have to open this port if you want a

secure connection).
• 19202, 19203, and 19204: These ports are used for communication with Silk Performer Agent, real-

time measure service and System Configuration Manager Agent. The port assignment follows a
first-come, first-served pattern.

4. Click OK to save your settings.

Connecting Through HTTP Firewalls

Select the Use HTTP Proxy Server setting on the agent Properties dialog.

Agent Connection Establishment Through an HTTP Proxy

1. Controller opens initial connection to Silk Launcher Service through an HTTP proxy.

2. Service launches the Silk Performer agent process (perfLtcAgent.exe).

3. Service returns agent's listener port (19202) to the controller.

4. Controller connects to the agent on port 19202 through the proxy.

5. Optional: For collecting real-time measure data, the controller connects to the agent on port 19203 through the
proxy.

Silk Performer Workbench 20.0 | 53

Connecting Through SOCKS Firewalls

Select the Use SOCKS Proxy Server setting on the agent Properties dialog.

Agent Connection Establishment Through a SOCKS Proxy

1. Controller opens initial connection to Silk Launcher Service through a SOCKS proxy.

2. Service launches the Silk Performer agent process (perfLtcAgent.exe).

3. Service returns agent's listener port (19202) to the controller.

4. Controller connects to the agent on port 19202 through the proxy.

5. Optional: For collecting real-time measure data, the controller connects tot the agent on port 19203 through the
proxy.

Connecting Through Multiple Firewalls

You can configure a Silk Performer agent connection so that it uses a SOCKS proxy and an HTTP proxy in
a series. In such instances, an agent first connects to a SOCKS proxy, which in turn connects to an HTTP
proxy.

Select both the Use HTTP Proxy Server and Use SOCKS Proxy Server settings on the agent Properties
dialog.

Agent Connection Establishment Through Multiple Proxies

1. Controller opens initial connection to Silk Launcher Service through a SOCKS proxy then an HTTP proxy.

2. Service launches the Silk Performer agent process (perfLtcAgent.exe).

3. Service returns agent's listener port (19202) to the controller.

54 | Silk Performer Workbench 20.0

4. Controller connects to the agent on port 19202 through both proxies.

5. Optional: For collecting real-time measure data, the controller connects to the agent on port 19203 through both
proxies.

Connecting in the Cloud

Before you begin, contact your sales representative for your Enterprise Cloud Services user name and
password.

1. Choose Tools > Cloud Agent Manager.

2. Type your Enterprise Cloud Services User name and Password.

3. Click Connection Settings if your company requires the use of a proxy.

a) Select Enable Proxy.
b) Enter the required information in Address and Port.
c) Click OK.

4. Click Login. If your company proxy requires authentication, you may be prompted with another dialog
box to log in.

Agent Connection Establishment in the Cloud

1. Controller opens initial connection to Silk Launcher Service through an HTTP Proxy and port 443. Silk Performer
automatically uses the default port number of 443 for a secure connection. Connection goes through an additional
HTTP proxy if company policy requires it.

2. Service launches the Silk Performer agent process (perfLtcAgent.exe).

3. Service returns agent's listener port (19202) to the controller.

4. Controller connects to the agent on port 19202 through the proxy, port 443, and another proxy if required.

5. Optional: For collecting real-time measure data, the controller connects to the agent on port 19203 through the
proxy, port 443, and another proxy if required.

Specifying Port Settings for Remote Agents

1. From the Silk Performer menu bar, select Tools > System Configuration Manager . The System
Configuration Manager dialog box appears.

2. Click the Service Status tab.

3. Enter port numbers for the unsecured port and the secured port.

Port is the TCP/IP listener port for unsecured controller/agent connections (this is the default port used
by the controller to connect to agents).

Silk Performer Workbench 20.0 | 55

Secure port is the TCP/IP listener port for secure controller/agent connections (a controller can also
connect through a secure SSL connection. The controller connects to the secure port if you enable
Encryption (SSL) in the Agent Connection Properties).

By default these settings are 19200 for the unsecured port and 19201 for the secured port.

4. Click OK to save your settings.

Specifying a Password for Remote Agents

1. From the Silk Performer menu bar, select Tools > System Configuration Manager . The System
Configuration Manager dialog box appears.

2. Click the Service Status tab.

3. In the Password area, click the Change button.

4. Specify a password and then confirm the password.

5. Click OK.

Note: The controller must supply a password to be able to connect to that remote agent.

Configuring Remote Agent Java Settings

1. Navigate to System > Settings > Java.

2. Click the Remote tab.

3. Enable Use different settings for remote agents. If this option is disabled, the Java settings for the
Silk Performer controller will be applied to the agents also. The Java settings for the controller are
defined on the General tab.

4. Specify the direcotry of the Java home path in the Java 32-bit home or Java 64-bit home field,
depending on what Java architecutre you use. This option enables the Java Virtual Machine to be
loaded from a different path than is specified in the PATH environment so that you can switch between
various Java Virtual Machines without changing the system PATH environment. The classpath specified
for the Java Virtual Machine is displayed in the Classpath field. By default the classpath is set to the
system classpath.

Note: Classpath entries in the Classpath field can be edited manually.

5. In the Command line options text box, type any command-line options to pass to the Java Virtual
Machine.

6. Click OK.

Client Certificates
A secure Web server can be configured to refuse clients that do not have a proper client certificate from a
trusted certification authority. In such cases, the server asks the client to send its certificate before
performing any requests. As long as the client certificate is signed by a trusted CA, the server does not
care what the client is. If the Web server requests a client certificate, it is necessary to export the client
certificate from the Web browser and place it in the Silk Performer certificate store to be used for recording
and replay.

Handling client certificates with the Web browser

A secure Web server can be configured to refuse clients that do not have a proper client certificate from a
trusted certification authority. If a Web server requests a client certificate, it is necessary to export the client
certificate from the Web browser and place it in the Silk Performer certificate store.

56 | Silk Performer Workbench 20.0

Exporting client certificates

Since the Silk Performer Recorder works as a proxy between a client and a Web server, and the replay
engine represents the simulated client itself, successful connection to the server requires a certificate from
the client. Therefore the certificate must be exported by the Web browser and imported into Silk Performer.

Note: When obtaining a client certificate from a certification authority, be sure to allow the private
keys to be exported with the certificate. Otherwise, the certificate will be useless for the Secure
Internet Recorder.

Installing Client Certificates
Client certificates are typically stored on the system or in the web browser's certificate store. To use a client
certificate in Silk Performer, export the certificate from your web browser and import it into Silk Performer.

1. From the menu bar, select Settings > Active Profile .

2. In the shortcut list on the left side, click the Internet icon.

3. Switch to the Security tab.

4. In the Client certificate area, click Import and locate a certificate file of the format .p12 or .pfx (for
example, C:\clientcert\johndoe.pfx).

5. Enter the password you used for encryption when exporting the certificate from your Web browser.

6. Click OK.

This confirmation also creates a certificate file (.pem) in the Silk Performer user data directory (for
example, <public user documents>\Silk Performer 20.0\Data\johndoe.pem).

Note: Each proxy connection set up in the Silk Performer Recorder can be associated with a client
certificate. The Silk Performer Recorder presents the client certificate to the Web server on behalf
of the actual client.

Using a Client Certificate for Recording
Before you begin this procedure, make sure that a client certificate is installed in Silk Performer.

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. In the System Settings - Recorder dialog, click the Proxies tab.

4. Set up a new proxy connection or select an existing proxy of your choice to be associated with a client
certificate (for example, SOCKS) and click the Edit button.

5. Select an appropriate certificate from the Certificate list box in the Client Certificate area (for example,
John Doe).

6. Click OK.

7. Restart the Silk Performer Recorder before you begin recording. The Silk Performer replay engine
presents the client certificate to the Web server on behalf of the actual client.

Using a Client Certificate for Replay in the GUI
Before you begin this procedure, make sure that a client certificate is installed in Silk Performer.

1. From the menu bar, select Settings > Active Profile .

2. In the shortcut list on the left side, click the Internet icon.

3. Switch to the Security tab.

4. In the Client certificate area, select an appropriate certificate from the Certificate list box (for example,
John Doe).

5. Click OK.

Silk Performer Workbench 20.0 | 57

To make the certificate available on remote agents as well, make sure to add the certificate file to the data
files of the project. The imported certificates are stored in the Silk Performer user data directory, for
example: <public user documents>\Silk Performer <version>\Data.

Using a Client Certificate for Replay in a Script
Before you begin this procedure, make sure that a client certificate is installed in Silk Performer.

Use the bdl function SslSetClientCert() to enable a virtual user to use the specified client
certificate.
For example:

SslSetClientCert("johndoe.pem")

To make the certificate available on remote agents as well, make sure to add the certificate file to the data
files of the project. The imported certificates are stored in the Silk Performer user data directory, for
example: <public user documents>\Silk Performer <version>\Data.

Exporting a Client Certificate from Internet Explorer
1. From the Internet Explorer menu bar, select Tools > Internet Options . The General page of the

Internet Options dialog opens.

2. Click the Content tab.

3. In the Certificates area, click the Certificates button. The Certificates dialog opens.

4. From the list, select the certificate to export then click Export. Internet Explorer automatically starts the
Certificate Manager Export Wizard.

5. Using the wizard, perform all steps described to export your client certificate.

Note: You have to export the private key with the certificate for the certificate to be usable with the
Silk Performer Recorder.

6. In the Certificates dialog, click Close.

7. Click OK to close the Internet Options dialog. The certificate file (.pfx) can now be imported by the
Silk Performer Recorder.

Exporting a Client Certificate from Firefox
1. From the Firefox menu bar, select Tools > Options . The Options dialog opens.

2. Click the Advanced icon.

3. Select the Encryption tab.

4. In the Certificates area, click View Certificates. The Certificate Manager dialog opens.

5. From the list, select the certificate to export then click Export.
6. In the Save Certificate To File dialog, enter a name of the certificate file, select the file type, and click

Save.

7. In the Certificate Manager dialog, click OK to close the dialog.

8. Click OK to close the Options dialog.

Custom Screen Layouts
Different screen layouts are useful for different scenarios. If you are a laptop user developing tests, running
tests, and analyzing results, you will probably prefer your laptop's native screen resolution, which may be
fairly high. In general the higher the resolution, the more panes you can view at one time. For such
scenarios it makes sense to use High Resolution screen layout, which enables all panes.

When viewing Silk Performer on a low-resolution device or during the course of a presentation over a
projector or Web meeting, your screen resolution will likely be more limited. For such scenarios it may be
useful to use normal screen layout.

58 | Silk Performer Workbench 20.0

The customizations you make regarding the panes that you enable/disable and the positions in which you
place the panes are saved along with both your high resolution and your normal layouts. For example, if
you reposition the Project pane while working in high resolution layout and then switch to normal layout,
the Project pane will appear in the same custom position the next time you return to high resolution layout.

Enabling/Disabling High Resolution Screen Layout

1. Choose View > Screen Layout.

2. Select High Resolution to enable additional Silk Performer view panes for day-to-day testing work
on high-resolution screens.

A checkmark appears next to the High Resolution menu option when high resolution layout is
enabled.

Note: To disable high resolution layout and return to normal layout, select High Resolution.

Silk Performer screen layout will be redrawn based on your selection.

Resetting Default Screen Layouts

1. Choose View > Screen Layout.

2. Select Reset to restore screen panes and the positions of those panes to their default states.

The Reset command is only applied to your current layout, either high resolution or normal layout, not
both layouts.

Silk Performer screen layout will be redrawn based on your selection.

Managing Multiple Versions of Silk Performer
When multiple versions of Silk Performer are installed on a single machine it is possible that the wrong
version of Silk Performer will launch when you double-click a project or script file from the desktop. All Silk
Performer file types have an entry in the registry that determines what program is to be launched when a
specific file type is double-clicked.

By default, the most recently installed version of Silk Performer is the version that is used for all Silk
Performer file-type operations. If an older version of Silk Performer was installed most recently, that is the
version that will be used when you double-click a Silk Performer file.

There are two ways you can change the default version:

• Reinstall the latest version of Silk Performer - All registry entries that control version selection will be
updated to reflect the latest version. This is a faster approach and is safer than manually modifying the
registry.

• Modify the registry manually - Navigate to HKEY_CLASSES_ROOT\Silk Performer Project
Archive File\shell\Open\command and modify the default value for each file type. You can select
a specific version for each file type.

Note: Each Silk Performer file type has a registry key associated with it. You must modify each
entry. While this may be time consuming, it enables you to specify that different versions of Silk
Performer be used for different file types.

Managing Load Tests
This section explains the tasks that must be completed to prepare for, run, and analyze the results of a load
test .

Silk Performer Workbench 20.0 | 59

Outlining Projects
Explains how to define name, description, and application-type-under-test parameters for your project.

Outlining Projects
When you create a Silk Performer load test you must define the basic settings for the load test project. The
project is given a name, and optionally a brief description can be added. The type of application to be
tested is specified from a range of choices that includes all of the major traffic available today on the
Internet and on the Web, including the most important database and distributed applications.

The settings that are specified are associated with a particular load test project. It is easy to switch
between different projects, to edit projects, and to save projects so that they can later be modified and
reused.

A project contains all the resources needed to complete a load test. These include a workload, one or more
profiles and load test scripts, a specific number of agent computers and information for server-side
monitoring, and all the data files that are accessed from the script. Options for all of these resources are
available directly from the project node in the Project menu tree.

Outlining a Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, choose the type of application that you want to use in your test.

Note: If you are testing a Web application, choose the Web business transaction (HTML/HTTP)
option to create simpler scripts while incorporating advanced functionality. Choose the Web low
level (HTTP) option if you want to put the highest possible load on your application. Web low level
scripts are more complex than Web business transaction scripts, which require more effort to
customize. It is recommended that you use the Web business transaction (HTML/HTTP) instead
of the Web low level (HTTP) scripts for browser based applications.

5. Click Next.

Note: If you need to add additional resources to the project, right-click the project icon in the
Project menu tree view. It is particularly important that all the user data files (.csv), random data
files (.rnd), and .idl files needed by Silk Performer are set up for your project.

The Workflow - Model Script dialog box appears.

Available Application Types

The following application types can be tested with Silk Performer, both secure and unsecured:

Web Browser

Web Browser application types are used for load testing applications that run within a Web browser. Due
to the multitude of technologies that browser-based applications are based on, different project types are
available for selection.

60 | Silk Performer Workbench 20.0

Web business transaction (HTML/HTTP)

Select Web business transaction (HTML/HTTP) to test Web applications with simple scripts that
incorporate advanced functionality. This application type should also be used for browser-based
applications.

Web browser-driven (AJAX)

Select Web browser-driven (AJAX) to use a Web browser (Internet Explorer) to drive your test. This
application type is particularly useful when testing a Web application with built-in AJAX logic and testing on
the protocol level (HTTP) has proved to be unsuccessful.

Web (Async)

Select Web (Async) to test Web applications that use asynchronous communication patterns such as
polling, long-polling, and push. The characteristics of such applications is periodic, event-based, or server-
triggered content updates without user interaction.

Web low-level (HTTP)

Select Web low-level (HTTP) to test a Web application when you want to put the highest possible load on
the application. Web low-level scripts are more complex than Web business transaction scripts, which
require more effort to customize.

Mobile devices

Select Mobile devices to test mobile Web applications. This application type offers simulation capabilities
for a variety of mobile devices, such as iPhone, iPad, Android, Windows Phone, and Blackberry. Other
mobile browsers can be simulated using custom profiles.

Flex/AMF3 (Adobe)

Select Flex/AMF3 (Adobe) for the testing of both AMF0 and AMF3 based on the Adobe/BlazeDS
implementation. With this application type, profile settings related to Flex/AMF3, transform HTTP requests/
responses, and JVM are configured automatically.

Flex/AMF3 (GraniteDS)

Select Flex/AMF3 (GraniteDS) for the testing of Flex applications and the AMF3 protocol based on the
GraniteDS implementation. With this application type, profile settings related to Flex/AMF3, transform
HTTP requests/responses, and JVM are configured automatically.

HTTP Live Streaming (HLS)

Select HTTP Live Streaming (HLS) to test web applications that stream video or audio data through the
HTTP Live Streaming protocol.

Java Over HTTP

Select Java over HTTP to test Web applications that make use of Java Object Serialization to transfer
objects between client and sever over the HTTP protocol. This communication, based on the exchange of
serialized Java objects, basically uses data in a binary format.

WebDAV (MS Outlook Web Access)

Select WebDAV to test clients that rely on WebDAV, for example Microsoft Outlook Web Access. WebDAV
is a set of methods based on HTTP that facilitates collaboration between users in editing and managing
documents and files stored on Web servers.

Silk Performer Workbench 20.0 | 61

Silverlight

Select Silverlight to test browser-based applications that are built using Microsoft Silverlight.

Note: The workflow for testing Microsoft Silverlight browser-based applications with Silk Performer is
the same as the workflow used for testing Web-based applications.

Oracle ADF

Select Oracle ADF to test Web applications that are based on the Oracle Application Development
Framework, a Java-based framework for building enterprise applications. This project type uses pre-
defined recording settings and recording rules to facilitate script customization.

Internet

Select one of the Internet application types to test an application that relies upon Internet-based protocols
and communication.

Email (SMTP/POP)

Select Email (SMTP/POP) to test applications and email clients that use the Simple Mail Transfer Protocol
to send and receive email messages.

Directory Server (LDAP)

Select Directory Server (LDAP) to test servers that use the Lightweight Directory Access Protocol
(LDAP), for example Active Directory.

Radius

Select Radius to test applications or devices that use the RADIUS (Remote Authentication Dial In User
Service) networking protocol for authentication, authorization, and accounting to manage network access.

FTP

Select FTP to test applications that use the File Transfer Protocol (FTP), the standard network protocol
used to transfer files from one host to another host over a TCP-based network, such as the Internet.

TCP/IP based applications

Select TCP/IP based application to test applications that use proprietary protocols based on TCP/IP.

Mixed Protocols

Select Mixed Protocols to test applications that use multiple protocols, such as a combination of HTTP,
ODBC, and other protocols.

Terminal Emulation

Silk Performer support for terminal emulation applications enables the recording of terminal-emulator traffic
based on the Telnet protocol ("green screen" applications). Supported terminal types include VT100 and
VT200 (UNIX, IBM AS400) and IBM mainframes accessed via TN3270(E) & TN5250. A prerequisite for
recording terminal-emulator traffic is an installed terminal-emulator for accessing host applications.

Note: For full details regarding Silk Performer support for terminal emulation applications, see
Miscellaneous Tutorials.

62 | Silk Performer Workbench 20.0

TN3270

Select TN3270 to test an IBM mainframe application that is accessed using a TN3270(E) terminal
emulator.

TN5250

Select TN5250 to test an IBM mainframe application that is accessed using a TN5250 terminal emulator.

VT100

Select VT100 to record an application that is accessed using a VT100 terminal emulator.

VT200+

Select VT200+ to record an application that is accessed using a VT200+ terminal emulator.

ERP/CRM

Select an ERP/CRM application type to test an Enterprise Resource Planning or Customer Relationship
Management application.

Enterprise resource planning (ERP) systems integrate management information across an organization.
Customer relationship management (CRM) systems organize business processes such as sales,
marketing, customer service, and technical support.

SAP

Select one of the SAP ERP and CRM application types to test SAP applications.

SAPGUI

Select SAPGUI to test an SAP application that uses a SAPGUI client.

SAP NetWeaver (Web)

Select SAP NetWeaver (Web) to test a SAP NetWeaver-based application. For example SAP GUI for
HTML or SAP Enterprise Portal applications.

PeopleSoft

Select one of the PeopleSoft application types to test a PeopleSoft ERP/CRM application.

PeopleSoft8

Select PeopleSoft8 to test a PeopleSoft 8.x application.

Silk Performer offers page-level support for testing of PeopleSoft 8.x applications. This application type
adds PeopleSoft-specific enhancements for session handling, detection of application-level errors, easy
customization of login data, thinktimes, page timer names, and access to table rows.

PeopleSoft9

Select PeopleSoft9 to test a PeopleSoft 9.x application.

Silk Performer offers page-level support for testing of PeopleSoft 9.x applications. This application type
adds PeopleSoft-specific enhancements for session handling, detection of application-level errors, easy
customization of login data, thinktimes, page timer names, and access to table rows.

Clarify 8-10 (Tuxedo)

Select Clarify 8-10 (Tuxedo) to test an eFrontOffice application.

Silk Performer Workbench 20.0 | 63

Clarify eFrontOffice uses TUXEDO as part of its multi-tier architecture.

Oracle

Select an Oracle Application type to test an application built on Oracle business (non-database) software.

Oracle Applications comprise the applications software or business software of Oracle Corporation. The
term refers to the non-database parts of Oracle's software portfolio. Oracle sells many functional modules
that use the Oracle RDBMS as a back-end, notably Oracle Financials, Oracle HRMS, Oracle Projects,
Oracle CRM, and Oracle Procurement.

Oracle Applications 11i

Select Oracle Applications 11i to test Oracle Applications 11i.

Oracle Applications 12i

Select Oracle Applications 12i to test Oracle Applications 12i.

Siebel

Select a Siebel 6 application type or the Siebel Web Client application type to test a Siebel-based
(Oracle) CRM application.

Siebel 6/DB2

Select Siebel 6/DB2 to test a Siebel 6-based (Oracle) CRM application that is built on an IBM DB2
RDBMS.

Siebel 6/Oracle

Select Siebel 6/Oracle to test a Siebel 6-based (Oracle) CRM application that is built on an Oracle
RDBMS.

Siebel 6/SQL Server

Select Siebel 6/SQL Server to test a Siebel 6-based (Oracle) CRM application that is built on a SQL
Server RDBMS.

Siebel Web Client

Select Siebel Web Client to test a Siebel-based (Oracle) CRM application that uses a Web client.

Remedy

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.5

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.5 Patch 04

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications

64 | Silk Performer Workbench 20.0

with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.6.02

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.6.03

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.6.04

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.6.04 SP1

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.6.04 SP3

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.6.04 SP4

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.6.04 SP5

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 7.7

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Silk Performer Workbench 20.0 | 65

Remedy 8.0

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Remedy 8.1

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

RemedyAR 8.1 SP1

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

RemedyAR 8.8

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

RemedyAR 9.0

Select the correct Remedy version to test BMC Remedy IT Service Management. BMC has created an
excellent tutorial that illustrates how to load test BMC Remedy IT Service Management (ITSM) applications
with BMC Remedy Action Request System (AR System). To obtain the tutorial, contact BMC and request
the following white paper: Performance Benchmarking Kit: Using Incident Management with Silk Performer

Web Services

Select one of the Web Services application types to test an application which utilizes that Web services
software framework. Your environment and prerequisites will determine which of these options is best for
your needs. Some Web services only work with specific SOAP stacks, depending on the server-side
implementation of the Web service.

XML/SOAP

Select XML/SOAP to test Web service applications that utilize the SOAP (Simple Object Access Protocol)
specification standards.

.NET Explorer

Select .NET Explorer to test Web services, .NET Remoting objects, and other .NET components.

.NET Explorer is a tool that allows you to create test cases through a point and click interface.

Java Explorer

Select Java Explorer to test Web Services, Enterprise JavaBeans (EJB), RMI objects, and other GUI-less
Java objects.

Java Explorer is a tool that allows you to create test cases through a point and click interface, suited for
Java-based technologies.

66 | Silk Performer Workbench 20.0

Database

Select one of the Database application types to test an application that relies on common database APIs.

Oracle

Select Oracle to test database applications that rely on Oracle APIs. Silk Performer provides Oracle API
functions along with Oracle database traffic recording and replaying support for use in testing.

ODBC

Select ODBC to test applications that utilize the Open Database Connectivity (ODBC) framework. An
application can use ODBC to query data from a DBMS, regardless of the operating system or DBMS it
uses.

DB2 CLI

Select DB2 CLI to test database applications that use the IBM DB2 CLI interface.

Application Server/Component Models

Select one of the Application Server/Component Models types to test an application that relies upon
specific middleware.

CORBA (IIOP)

Select CORBA (IIOP) to test an application that relies upon CORBA middleware, for example VisiBroker.

EJB (RMI over IIOP)

Select EJB (RMI over IIOP) to test an application developed using Enterprise JavaBeans that
communicates using RMI over IIOP. This application type enables you to use Silk Performer's record and
replay workflow.

EJB (Java Explorer)

Select EJB (Java Explorer) to use Java Explorer to test an application developed using Enterprise
JavaBeans. This application type enables you to use Java Explorer's visual scripting capabilities to create
your test script.

Tuxedo (ATMI)

Select Tuxedo (ATMI) to test an application that is built on Tuxedo middleware and the ATMI API.

Tuxedo (JOLT)

Select Tuxedo (Jolt) to test an application that is built on Tuxedo middleware and relies on the Jolt
interface.

.NET Remoting

Select .NET Remoting to test widely-distributed applications that rely on .NET remoting communication.
This application type enables you to use .NET Explorer's visual scripting capabilities to create your test
script.

Jacada

Select Jacada to test an application that relies on Jacada unified desktop and process optimization
software.

Silk Performer Workbench 20.0 | 67

Oracle

Oracle Forms clients run in Web browsers as applets. By default, a Web browser will download and install
a JRE when loading an Oracle Forms application for the first time. For Oracle Forms 10g or earlier,
Oracle's JRE for Oracle Forms is named JInitiator. Using JInitiator is not mandatory. Once a JRE has been
installed, Silk Performer is set up to record Oracle Forms applications.

Oracle Forms 10g

Select Oracle Forms 10g to test an application that uses an Oracle Forms 10g client.

Oracle Forms 11g

Select Oracle Forms 11g to test an application that uses an Oracle Forms 11g client.

Oracle Forms 12c

Select Oracle Forms 12c to test an application that uses an Oracle Forms 12c client.

Oracle Forms 6i

Select Oracle Forms 6i to test an application that uses an Oracle Forms 6i client.

Oracle Forms 9i

Select Oracle Forms 9i to test an application that uses an Oracle Forms 9i client.

Terminal Services

Select one of the Terminal Services application types to test a Citrix-based application which is hosted by
Citrix XenApp.

Citrix

Select Citrix to test a Citrix application that is accessed through the Citrix Online Plug-In.

Citrix Web Interface

Select Citrix Web Interface to test a Citrix application that is launched from a Citrix Web Interface running
within Internet Explorer.

Citrix StoreFront/Netscaler Gateway

Select Citrix StoreFront/Netscaler Gateway to test a Citrix application that is launched from a Citrix
StoreFront server.

.NET

Select one of the .NET application types to test Web Services, .NET Remoting objects, NUnit, or
another .NET technology.

.NET Explorer

Select .NET Explorer to test Web services, .NET Remoting objects, and other .NET components.

.NET Explorer is a tool that allows you to create test cases through a point and click interface.

.NET Framework Using Visual Studio .NET Add-On

Select .NET Framework using Visual Studio .NET Add-On to test Web Services or .NET components
using the Silk Performer Add-On for Visual Studio .NET.

68 | Silk Performer Workbench 20.0

Java

Select one of the Java application types to test Web Services, RMI, JUnit, or other Java-based
technologies.

Java RMI/EJB (recording)

Select Java RMI/EJB (recording) to test an application developed using Enterprise JavaBeans. This
application type enables you to use Silk Performer's record and replay workflow.

Java Explorer

Select Java Explorer to test Web Services, Enterprise JavaBeans (EJB), RMI objects, and other GUI-less
Java objects.

Java Explorer is a tool that allows you to create test cases through a point and click interface, suited for
Java-based technologies.

Java Framework

Select Java Framework to test a Java application using the Silk Performer Java Framework.

The Java Framework enables you to implement user behavior in Java. When testing an existing Java
application you do not need to spend much time creating test scripts. The only effort required is embedding
existing Java source code into the framework.

Java Message Service (JMS)

Select Java Message Service (JMS) to test Java Message oriented middleware applications by replaying
the created script.

Frameworks

Select one of the included frameworks to test an application using either the Java Framework, Visual Basic
Framework, or .NET Framework Using Visual Studio .NET.

.NET Framework Using Visual Studio .NET Add-On

Select .NET Framework using Visual Studio .NET Add-On to test Web Services or .NET components
using the Silk Performer Add-On for Visual Studio .NET.

Java

Select Java to test a Java application using the Silk Performer Java Framework.

The Java Framework enables you to implement user behavior in Java. When testing an existing Java
application you do not need to spend much time creating test scripts. The only effort required is embedding
existing Java source code into the framework.

Monitoring

Select a Monitoring application type to generate server-side results that can be archived for future viewing
and comparison. Monitoring also reveals, locates, and resolves server bottlenecks, allowing you to examine
the performance of operating systems and application servers.

Silk Performance Manager - Infrastructure Monitor

Select Silk Performance Manager - Infrastructure Monitor to create an infrastructure monitoring project
that can be uploaded to Performance Manager for automated execution.

Silk Performer Workbench 20.0 | 69

BDL Monitor for Performance Explorer

Select BDL Monitor for Performance Explorer to create a BDL monitoring project that can be used for
real-time monitoring in Performance Explorer.

Unit Testing

Select a Unit Testing application type to perform JUnit, Java, NUnit, or .NET unit testing.

JUnit

Select JUnit to perform JUnit unit testing.

The Silk Performer Unit Test Import tool allows you to select specific test methods and automatically
generate BDL stub code.

Java Testing

Select Java Testing to import a Java class and test its methods using the Java Framework.

NUnit

Select NUnit to perform NUnit unit testing.

The Silk Performer Unit Test Import tool allows you to select specific test methods and automatically
generate BDL stub code.

.NET Testing

Select .NET Testing to import a .NET assembly and test its methods using the .NET Framework.

GUI-Level Testing

GUI-Level application types are used for the load testing of client applications that cannot be tested on the
protocol or API levels. Silk Performer controls the actual client's user interface (fat client) through Silk Test
(Silk Test Classic, Silk4J, or Silk4NET). During a load test, each virtual user operates in its own Windows
session, using Terminal Services.

Silk Test

Select Silk Test to perform GUI-level testing against client applications that cannot be tested on the
protocol or API levels. Silk Performer controls the actual client's user interface (fat client) through Silk Test
(Silk Test Classic, Silk4J, and Silk4NET). During a load test, each virtual user operates in its own Windows
session, using Terminal Services.

Legacy

The legacy group contains project types offered in earlier versions of Silk Performer. These project types
have been declared obsolete or replaced by other project types, which offer new or better capabilities. To
ensure backward compatibility, some of these legacy project types are still available.

Legacy Web business transaction (HTML/HTTP)

Select Legacy Web business transaction (HTML/HTTP) to test web applications without capturing the
traffic during recording. A script is generated instantaneously, which means that it is not possible to
regenerate the script with different settings later on.

Samples

Select one of these preconfigured test script Samples to save time in the manual creation of your test
script.

70 | Silk Performer Workbench 20.0

Sample script reuse is a timesaving option for generating Silk Performer test scripts manually (and
bypassing the standard method, which uses the Silk Performer Recorder).

Sample project files include scripts, include files, data files, profile files, workload definitions, and more.

Internet

Select an Internet sample if you plan to manually write a script to test cookies, POP3/SMTP, HTML forms,
and more.

Recording Rule with Custom Conversion DLL

Select Recording Rule with Custom Conversion DLL to generate a Web project that shows you how to
use custom conversion DLLs in recording rules. This is useful when parsed output data requires
transformation in order to serve as input for a subsequent operation.

Cookies

Select Cookies to set up a sample project that demonstrates cookie support.

Before you can replay the sample WebCookie01.bdf, please fulfill the following prerequisites:

1. Access to a Web server with Active Server Pages.
2. Copy the file cookie_counter.asp to the Web root of your Web server.

Email

Select Email to set up a testing project that simulates POP3 and SMTP email clients.

Form-based File Upload

Select Form-based File Upload to create a testing project for HTML-based file upload functionality.

FTP

Select FTP to set up a generic preconfigured FTP testing project.

LDAP

Select LDAP to set up a generic preconfigured LDAP testing project.

MAPI

Select MAPI to setup a testing project that simulates a basic MAPI session.

Java Framework

Select a sample Java Framework application type to set up a JDBC, RMI, or RMI/IIOP test project that
uses the Silk Performer Java Framework.

JDBC

Select JDBC to set up a sample project that implements a simple JDBC client using the Silk Performer
Java Framework.

The sample uses the JDBC THIN driver to execute a query that is specified in the associated BDL script.
Before you run the sample, configure the Java runtime and compiler profile settings and add the jarfile of
the JDBC THIN driver to the classpath.

Silk Performer Workbench 20.0 | 71

RMI/IIOP

Select RMI/IIOP to set up a sample project that invokes methods of a virtual user class using the Silk
Performer Java Framework.

The sample invokes methods of a virtual user class implemented in
ProductManagerServicesUser.java.

RMI

Select RMI to set up a sample project that invokes methods of a virtual user class implemented in
ServiceHelloUser.java. The RMI service is defined in ServiceHello.java and is implemented in
ServiceHelloImpl.java.

.NET

Select a .NET application type to set up a simple .NET Remoting or Web services testing project that uses
the Silk Performer .NET Framework.

.NET Remoting

Select .NET Remoting to setup a sample project that shows how to test .NET Remoting with the Silk
Performer .NET Framework.

The sample tests remote objects that are hosted by a sample remote server (RemotingServApp.exe).

Web Services

Select Web Services to set up a sample project that shows how to test SOAP Web Services with the Silk
Performer .NET Framework.

The sample tests an ASP.NET Web Service on a demo server.

JMS

Select JMS to set up a project that shows you how to make use of Silk Performer JMS API functions for
configuring, sending, and receiving messages.

ShopIt v6.0

Select ShopIt v6.0 to set up a project that demonstrates usage of the Silk Performer sample Web e-
commerce site.

ShopIt V 6.0 simulates a simple Web e-commerce site with a catalog of camping merchandise that is
available for simulated online purchase. Use this application to experiment with Silk Performer Web-
application capabilities. ShopIt V 6.0 is designed to generate errors, including missing Web links (due to
merchandise being out of stock) and session errors.

XML

Select XML to set up a project that shows you how to make use of Silk Performer XML API functions for
reading, writing, and modifying XML documents.

Project Profile Settings
When a project is set up, profiles can be added, copied, renamed, or deleted. A project can contain as
many different profiles as necessary, each with its own project-specific settings.

In each profile, options can be set to manage how the Silk Performer Recorder generates scripts from
recorded traffic. Options can also be set for the protocols that are used during recording, and simulation
settings can be defined for script replay. Options for the results files that are generated can also be defined.

72 | Silk Performer Workbench 20.0

Options are available for the following types of network traffic:

• Citrix
• CORBA/IIOP
• Database
• Internet
• Java
• Jolt
• .NET
• Oracle Forms
• TUXEDO
• Web

Specified settings are associated with specific load test projects. It is easy to switch between different
projects, edit projects, and save projects so that they can be modified and reused later.

Profile Administration

Manage your project-setting profiles and apply them to your projects.

Adding a Profile

1. Select Project > New Profile . The New Profile dialog opens.

2. Enter a Name for the new profile and click OK. The Profiles folder expands in the Project menu tree
and the new profile is available.

Activating a Profile

In the Project menu tree, right-click the profile that you want to set as the active profile and choose Set as
Active Profile.

The active profile is displayed in bold text.

Editing a Profile

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. Edit the settings as required.

For help on editing settings, see help topics related to the application type under test.

4. Click OK to exit the dialog and save your changes.

Renaming a Profile

1. In the Project menu tree, right-click the profile that you want to rename.

2. Choose Rename Profile. The Rename Profile dialog opens

3. Type a new name for the profile.

4. Click OK.

Silk Performer Workbench 20.0 | 73

Deleting a Profile

1. In the Project menu tree, right-click the profile you want to delete.

2. Select Delete Profile.

3. Click Yes on the confirmation dialog to delete the profile.

Copying a Profile

1. In the Project menu tree, right-click the profile you want to copy.

2. Select Copy Profile from the context menu. A new profile appears in the Project menu tree, with the
name Copy of <profile name>.

Recorder Settings

Configure general script-recording settings and protocol-specific settings for your project.

Setting General Recording Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list on the left, click the Script icon.

5. Click the General tab and check the Comments check box. The Silk Performer Recorder automatically
inserts comments into the generated script. Comments are left-delimited statements that use //
symbols.

6. Check the Commented functions check box to mark the function calls that are performed to retrieve
return parameters as comments in the recorded script.

7. Check the Include think time check box to generate ThinkTime function calls in the recorded script.

The ThinkTime function calls produce delays that simulate typing time and thinking time in the
recorded script to create a more realistic simulation.

8. In the Min. think time recorded text box, type a time in milliseconds to define a lower limit for delays.

This limit is included as ThinkTime function calls in the recorded script. Delays less than the time
specified in the Min. think time recorded text box are not expanded to ThinkTime function calls.

9. In the Max. line length text box, specify the maximum number of characters in a script line.

Use this setting to split large amounts of recorded data into several script lines.

10.Optional: In the Script namespace text box, type a prefix for the names that are declared in the
generated script.

The user groups, transactions, and variables defined in the script begin with the specified string.

11.Check the Record passwords encrypted check box to make the recorder automatically encrypt
recorded passwords before inserting them into generated scripts.

12.Click OK to save your settings.

Setting Protocol-Specific Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

74 | Silk Performer Workbench 20.0

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. Click the Script icon.

5. Click the Protocols tab.

6. In the Web comments area of the page, specify details about automatically-inserted comments (for
Web functions) in the generated script. The settings for these options are only taken into account when
the Comments option (General tab) for script generation is enabled.

Option Description

Redirection /
Authentication

Have comments inserted into the generated script when a redirection
(HTTP 302, HTTP 407) from one URL to another is recorded.

HTTP errors Have comments inserted into the generated script when HTTP errors
(HTTP 4xx, HTTP 5xx) are recorded.

Link, form, custom URL
search details

Have comments inserted into the generated script when links, forms, or
customs URLs are recorded.

Detailed info for form
fields

Have comments inserted into the generated script when hidden,
changed, or filled out form fields are recorded.

Note: If this option is not selected, comments for form fields are
still recorded, but the additional detailed information (for example, if
value is changed or unchanged) is not.

Custom URL parsing
details

Have comments inserted into the generated script when parsing details of
custom URLs are recorded.

7. In the IIOP area of the page, check the Generate IIOP Get functions check box to include functions in
your test script that will retrieve the return parameters of CORBA operation calls. You can mark the
corresponding function calls as comments.

Use the Database area of the page to specify how SQL statements are displayed and whether to
include fetched data in the generated test script.

8. Check the SQL comment check box to include SQL statements marked as comments in the generated
test script immediately before the parse operation.

9. Check the Trim SQL check box to display SQL statements in the generated test script in a more
readable format, with line breaks and indentation for SQL keywords.

10.Check the Fetched data check box to include the fetched data, marked as comments, in the generated
test script immediately after the fetch operation.

11.In the Max. number of rows text box, enter the maximum number of data rows that are to be inserted
as comments immediately after fetch operations.

12.In the Max. column width text box, enter the maximum width of columns inserted as commentary.

13.Click OK to save your settings.

Replay Settings

Configure script-replay settings for your project such as workload simulation and error handling.

Configuring Simulation Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Silk Performer Workbench 20.0 | 75

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the Simulation tab, check the Stress test check box to disable the use of wait periods that are
specified in low-level web functions or invoked by calling think-time functions.

4. Check the Random thinking time check box to replace recorded actual thinking periods that are
specified in low-level web functions or invoked by calling think-time functions, with random values that
follow an exponential distribution.

• Exponential distribution - Click this option to replace recorded think-time periods that are specified
in Web functions, or invoked by calling the ThinkTime function, with random values that follow an
exponential distribution. Due to the nature of exponential distribution, extreme random think-time
periods can result. Refer to the SetRandomThinkTime BDL function for more details.

• Uniform distribution of +/- [] % - Click this option to replace recorded think-time periods that are
specified in Web functions, or invoked by calling the ThinkTime function, with random values that
follow a uniform distribution within a specified range. Use uniform distribution when extreme think
times are undesirable. Refer to the SetRandomThinkTime BDL function for more details.

5. Check the Think time limited to check box to define a limit for think times. When this option is
selected, think times are limited to the specified maximum value. Enter an upper limit (in seconds).

6. Check the Smooth transaction arrival rate (Queuing Workload) check box to have each virtual user
perform its transactions within the specified simulation interval. With this option selected, the simulation
time period and the total number of transactions to be called determine the mean arrival interval of the
transactions. When this option is disabled, Silk Performer calculates the delay of each transaction arrival
randomly.

Note: This setting does not affect projects that are used for application monitoring.

7. Check the Choose transactions randomly check box to force the simulation engine to execute all
transactions defined in load-test scripts in random order, based on the queuing workload model. When
this option is disabled, simulated virtual users perform their transactions exactly in the order in which
they are defined in load-test scripts.

8. Check the Stop virtual users after simulation time (Queuing Workload) check box to cancel users
when simulation time expires.

Note: This setting does not affect projects that are used for application monitoring.

9. Check the Call end transactions for stopped virtual users check box to have stopped virtual users
execute end transactions before stopping. When this option is disabled, virtual users complete their
executions without calling end transactions.

10.Check the Complete current transactions of stopped virtual users check box to allow stopped
virtual users to complete active transactions before stopping. When this option is selected, virtual users
check to see if they should stop at the beginning of each new transaction. Thus active transactions are
completed before users stop. When this option is disabled, virtual users check during think and wait
times, while in the queue, and at the beginning of each transaction to see if they should stop.

11.Check the Stop virtual users when errors occur in begin transactions check box to immediately
stop virtual users when errors occur during test initialization (which usually occurs in begin
transactions). This setting overrides the Call end transactions for stopped virtual users and
Complete current transactions of stopped virtual users options. This setting is useful for tests that
involve connect operations that must be successful before tests can proceed.

12.Click OK to save your settings.

Configuring Error-Handling Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

76 | Silk Performer Workbench 20.0

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. Click the Errors tab.

4. Use the Severity definition area to modify the severity of the simulation errors that Silk Performer
reports in its Monitor window.

5. Click Add to add a custom severity definition to the list.

The Edit Replay Errors and Warnings dialog box opens.

6. From the Module list box, select the module that might cause the simulation error for which you want to
define a custom level of severity.

7. From the Severity list box, select one of the following default severities of the error for which you want
to define a custom level of severity.

Severity Description

Success Error is ignored

Informational Error is ignored but reported

Warning Error is ignored but generates a warning

Error Error is treated as an error

All errors of the selected severity are displayed in the list box below.

8. In the Error code text box, type the code of the error for which you want to define a custom level of
severity.

Alternatively, you can select the respective error from the list located above the text box.

9. In the Description text box, type a description for native errors.

Descriptions of other simulation errors are predefined and cannot be modified by the user.

10.From the Custom severity list box, select one of the following custom severities for the specified error.

Severity Description

Success Error is ignored.

Informational Error is ignored, but reported.

Warning Error is ignored, but causes a warning.

Error Error is reported, but does not affect the simulation.

Transaction exit Current transaction is aborted.

Process exit User simulation is terminated.

11.Click OK.

12.To edit the custom severity of an error, select it from the Severity definition list box and click Edit. The
Edit Replay Errors and Warnings dialog box opens.

13.Edit the custom severity of the error as explained earlier in this task.

14.To remove a custom severity definition from the list, select it from the Severity definition list box and
click Remove.

15.Click OK to save your changes and close the dialog box.

Result-File Settings

Configure result-file settings for your project, including TrueLog, time-series data, client-side monitoring
options, and logging.

Silk Performer Workbench 20.0 | 77

Setting General Result Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Results icon.

4. Click the General tab.

Use the Results files area to specify the types of result files you want to generate. While a test runs, a
separate file is created for each virtual user in the current agent. Since generating results files alters the
time measures of tests, these files should only be created for debugging purposes.

• Check the Virtual user log files (.log) check box to generate log files (.log), one for each virtual
user in the current agent. These files contain all the function calls that are invoked by the
transactions of a specific user.

• Check the Virtual user report files (.rpt) check box to generate report files (.rpt), one for each
virtual user in the current agent. These files contain simulation results for each user.

• Check the Virtual user output files (.wrt) check box to generate output files (.wrt), one for each
virtual user in the current agent. These files contain the output of write statements used in the test
script. An output file is generated for a particular user only if that user executes write statements.

• Check the Virtual user report on error files (.rpt) check box to generate report on error files (.rpt)
and error files (.err) for each virtual user only when an error (a specific severity level) occurs. These
files contain the simulation results for each virtual user.

• Check the Time series data (.tsd) check box to enable generation of throughput information
(viewable via Performance Explorer). You can specify the interval at which data is computed. This
setting does not affect projects that are used for application monitoring.

• Check the Client-side measures in real-time check box to enable Silk Performer to retrieve real-
time client-side measurements for use in Performance Explorer .

Note: This option applies only to the current profile.

5. In the Passwords area, select the Hide passwords in logs check box to ensure that characters are
hidden when entered into password fields of HTML forms, and are replaced with asterisks (*) in
recording and replay log files (*.xlg and *.log).

Note: This feature is only supported for the Web business transaction (HTML/HTTP) project
application type when the browser emulation level Page-level Web API (HTML/HTTP) is enabled,
which is the default for this application type.

6. Check the Add transaction name and an identifier to measure names check box to add the
transaction name and an identifier as a prefix to measure names. This setting applies to all measure
types beside transaction timers. Enabling this setting facilitates the navigation between reports and
scripts as reports contain measures in the order that they appear in the script.

7. Click OK to save your settings.

Setting Time-Series Data Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

78 | Silk Performer Workbench 20.0

3. In the shortcut list, click the Results icon.

4. Click the Time Series tab.

5. From the Computation interval list box, select the interval at which you want data to be calculated.

This setting is used for all generated time-series data. Keep in mind that the shorter the interval and the
longer the test, the more data that will be generated.

6. Check the Enable all measure groups check box to generate high-level throughput information for all
the measure groups shown in the list below.

To choose a particular combination of measure groups for which you want to generate high-level
throughput information, uncheck the Enable all measure groups check box, and select your options in
the measure group list.

7. Specify a Detailed page timers generation setting. Choices include:

• For the whole page
• For documents only
• Disabled

8. To define an overview report template for generating overview reports with Silk Performance Explorer
for this testing project, click [...] on the Overview report template portion of the Time Series page.

a) From the Select Template File dialog box, select the overview report template (.ovt) file that you
want to have applied to your project.

b) Click Open.

The file that you specify here will be used as an overview report template for the generation of all
overview reports for this testing project. The template file name will also be preselected on the
Overview Report Template workflow dialog box when new overview reports are created manually.

9. Click OK to save your settings.

Setting Monitoring Options

Silk Performer enables you to define monitoring templates for your projects and to configure projects to
automatically launch Performance Explorer when load tests begin.

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Results icon.

4. Click the Monitoring tab.

5. In the Monitoring options area, check the Automatically start monitoring check box to automatically
launch Silk Performer's monitoring facility when the test starts.

6. To automatically use the monitoring template that best suits the project, click the Use default
monitoring template option button.
For example, if you are creating a Web project, the template specifies the measurements that are useful
for Web load tests.

7. To use a custom monitor template, click the Use custom monitoring template option button and
perform one of the following steps:

• Type the name of the custom template file (.pew) that you want to use to monitor your server. Silk
Performer creates a copy of the standard monitor template.

• Click the folder icon in the name field to select an existing monitoring template.

8. Optional: Click Edit Custom Monitor Template to add or remove any monitoring performance data.

When you click this button, Silk Performance Explorer opens. Perform the following steps:

Silk Performer Workbench 20.0 | 79

a) Add or remove any monitoring performance data.
b) Save the Silk Performance Explorer workspace to apply your changes to the template.

9. In the Performance Monitor integration area, check the Compute online performance data check
box to compute data for additional performance measurements to be displayed in the Windows
Performance Monitor.

You can use this data to view concurrent users, transaction throughput, sent and received data, and
executed SQL statements.

10.Click OK to save your settings.

When you perform a test, Silk Performer displays the server performance data that is relevant to the type of
server under test.

Setting TrueLog Traffic-Capturing Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Results icon.

4. Click the TrueLog tab.

5. To enable generation of TrueLog files (.xlg) during recording, check the TrueLog files (.record.xlg)
check box.

TrueLog files contain all traffic that is sent to and received from the server, and the transactions and
function calls that are to be generated in the test script.

Note: TrueLog files should only be created for debugging purposes.

6. Check the TrueLog files (.xlg) check box to generate a TrueLog file (.xlg) for each virtual user.

These files contain all the function calls that are invoked by the transactions of a specific virtual user.

7. To enable generation of TrueLog On Error files (.xlg), check the TrueLog On Error files (.xlg) check
box.

Note: Truelog On Error files can be turned on for even large tests where you expect a moderate
number of errors without major impact on replay performance.

8. Specify how much information is to be stored in the TrueLog using the Store TrueLog options.

The options in the TrueLog On Error area of the dialog box are only available when TrueLog On Error
file generation has been enabled above.

• Click the For one transaction option button to log the entire transaction in which each error occurs.
This option requires a significant amount of memory.

• Click the Based on content history option button to log a minimum of relevant data (based on data
kept in the history) to the TrueLog. If low-level web calls are used, this setting will have no impact on
the size of stored data. This selection requires minimal memory.

9. From the Generate TrueLog On Error for list box, select the severity level at which TrueLogs are to be
generated (Errors, Severe errors, or Warnings).

The default severity level is Errors.

10.Click the Log all embedded objects option button to log all embedded objects (images, java files, etc)
in the TrueLog. Logged objects appear in the cached documents section of the TrueLog.

11.Click the Exclude cached embedded objects option button to only log embedded objects (images,
java files, etc) that have been downloaded within the scope of the current log in the TrueLog. Objects

80 | Silk Performer Workbench 20.0

may not be logged if they appear in the current log as a cache hit. Such objects may have been
downloaded outside the scope of the current log. They may also no longer be present in the cache.

12.Click the Exclude all embedded objects option button to exclude all embedded objects (images, java
files, etc) from being logged in the TrueLog.

Note: Optimal scalability is achieved by selecting this option.

13.Click OK to save your settings.

Setting General Logging Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Results icon.

4. Click the Logging tab.

5. Check the Log all check box to include all available types of information in the generated log files.

These files contain information about timers, transactions performed by the virtual user, and function
calls invoked by the transactions. Keep in mind that creating log files can alter time measures.

6. Use the General area to specify which types of data should be included in log files.

• Check the Transactions check box to include an overview of the transactions the virtual user
performs during the simulation.

• Check the Timers check box to include custom timer information.
• Check the API calls check box to include an overview of the Silk Performer API calls that the user

performs during the simulation.
• Check the Informational check box to include additional information, for example, connection

information.
• Check the Data check box to include the data that is exchanged with the server.
• Check the Nonprintable characters check box to include nonprintable characters, represented as

dots.

7. Click OK to save your settings.

Setting Internet-Specific Logging Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Results icon.

4. Click the Internet logging tab.

5. Use the Data sent to server area to specify the level of detail at which data that Silk Performer and the
Recorder send to the server are written to the log file.

• Check the HTTP request header from client check box to write all client request headers that are
sent to the server. This option is only available when recording HTTP traffic (not for replay).

• Check the Header check box to write all the headers that are included in requests sent to the server.

Silk Performer Workbench 20.0 | 81

• Check the Printable data check box to write all printable data that is included in requests sent to the
server.

• Check the Binary data check box to write all the binary data that is included in requests sent to the
server.

• In the Max. number of lines text box, specify the maximum number of lines that can be written to
the log file when lines containing request data are sent to the server.

6. Use the Data received from server area to specify the level of detail at which the data that Silk
Performer and the Recorder receive from the server is written to the log file.

• Check the HTTP response header to client check box to write the client HTTP response headers
(received from the server) to the log file. This option is only available when recording HTTP traffic
(not for replay).

• Check the Header check box to write all the headers that are included in responses received from
the server.

• Check the Printable data check box to write all the printable data included in responses that are
received from the server.

• Check the Binary data check box to write all binary data that is included in responses received from
the server.

• In the Max. number of lines text box, specify the maximum number of lines that can be written to
the log file when lines containing response data are received from the server.

7. Check the Images, applets, and Java classes check box to write all the images, applets, and Java
classes that are received from the server. When this option is selected, these items are represented as
binary data.

8. Check the TCP/IP connection information check box to write additional information to the log file; for
example, when connections to the server are established or closed.

9. Click OK to save your settings.

Setting Hook Logging Options for the Recorder

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the Results icon.

5. Click the Hook logging tab.

6. Use the Hooking area on the Silk Performer Recorder’s Log page to display all the function calls that
the client application performs and the parameters that the client application passes to function calls.

• Check the Function calls check box to display all the function calls that the client application
performs.

• Check the Function parameters check box to display all the parameters that the client application
passes to function calls. To enable this option, you must first check the Function calls check box.

7. Click OK to save your changes.

Enabling Real-Time Client-Side Monitoring

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

82 | Silk Performer Workbench 20.0

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. Click the Results group icon.

4. Click the General tab.

5. Ensure that the Client-side measures in real-time check box is selected.

6. Click the Client-side measures tab.

You may have to use the buttons in the upper right-hand corner of the dialog box to scroll through the
available tabs.

7. Set the Computation interval to 5 sec.

8. Check the Enable all measure groups check box to enable monitoring of all measure groups.

Alternatively, you can check specific measure types from the list.

9. Click OK to save your settings.

Internet Settings

Configure Internet-related settings for your project, including network simulation, host-server, security, and
recording options.

Configuring Network Optimization Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Internet icon.

4. Click the Optimization tab.

5. From the Optimize network settings for list box, select the type of simulation for Silk Performer and
WinSock buffers.

This setting determines the size of the buffers that are used to transfer data both to and from the server.
Large buffers provide good performance; however, Silk Performer needs more memory to achieve this
performance. Small buffers may be useful on driver machines with less memory. Note that, when using
modem simulation, small buffers create more realistic simulation.

6. Check the Client IP address multiplexing check box to enable IP address multiplexing.

Note: To assign individual IP addresses to virtual users, you first have to set up multiple IP
addresses for the network device. You do this using the Silk Performer System Configuration
Manager. Following that, you can assign each of the IP addresses to a different virtual user.

7. Check the Passive FTP semantics check box to enable passive FTP semantics, which may be useful
when connecting through firewalls or proxies.

This option only affects FTP data transfers.

8. In the Connect attempts text box, enter how often a simulated user is to attempt to connect to the
server before an error is reported.

9. In the Connect timeout text box, specify for how long a simulated user is to attempt to connect to the
server before a timeout is reported.

10.In the Send timeout text box, specify for how long the simulated user is to attempt to send data to the
server before a timeout is reported.

Silk Performer Workbench 20.0 | 83

11.In the Receive timeout text box, specify for how long the simulated user is to attempt to receive data
from the server before a timeout is reported.

12.Click OK to save your settings.

Configuring Network Emulation Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Internet icon. The Emulation pane displays.

4. Select a Connection Type: Mobile, Wired, or Wireless, and a specific technology (like LTE).
Depending on your selection, Silk Performer will provide specific default values for the bandwidth,
latency, and packet drop.

5. Enable Use Network Emulation Driver only if the network emulation driver is installed on your agents.
You can then adjust the Latency and Packet Drop settings to your needs. If the driver is not installed
on your agents, do not enable this option. In such a case, the Latency and Packet Drop settings will
not be used.

6. Select a Distance To Server. Depending on your selection, the Latency changes.

7. You can manually adjust the values for the settings Bandwidth Down, Bandwidth Up, Latency, and
Packet Drop.

8. You can click Reset to restore the default values for your selected connection type.

9. You can click Default to completely restore all values on the Emulation pane.

10.Click OK to save your settings.

Configuring Host Server Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Internet icon.

4. Click the Hosts tab.

5. In the Standardhost area, specify the server you want to use as the standard host.

You can use either a domain name or an IP address. The name you specify is used whenever the
standardhost variable is included in test scripts. Optionally, you can use the Port text box to specify a
port number to use with the standard host.

6. In the SOCKS4 proxy area, use the Proxy name or IP address and Port text boxes to specify the host
name or IP address as well as the port number of the SOCKS4 proxy through which all Internet traffic
must be directed.

Use this option when the traffic in a test must negotiate a firewall, for example.

7. Click OK to save your settings.

Configuring Security Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

84 | Silk Performer Workbench 20.0

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Internet icon.

4. Click the Security tab.

Use the Protocol area to specify protocol-specific settings used for secure connections to remote
servers.

5. From the SSL version list box, select the Secure Socket Layer protocol version used when establishing
a secure connection to the server.

6. From the Encryption strength list box, select the encryption strength for data transferred to and from
the server over a secure connection.

7. From the Certificate list box in the Client certificate area, select the client certificate that Silk
Performer is to present to the Web server on behalf of the actual client.

To use a client certificate, you must first export it from the Web browser and place it in Silk Performer's
certificate store.

8. To view detailed information about the client certificate currently in use, click View.

9. To import a new client certificate from a certificate file (.p12 or .pfx), click Import.

a) Use the Open Certificate dialog box to navigate to and select the new client certificate.
b) Click OK.

10.To remove the currently selected client certificate from the list box, click Remove.

11.Check the Force secure connection check box to use the Secure Socket Layer protocol for script
replay.

This is equivalent, for example, to replacing all the HTTP schemes with HTTPS in the URLs of low-level
web functions. It can be used to simplify how tests are used to compare performance with and without
the use of secure connections.

12.Click OK to save your settings.

Configuring Recording Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Internet icon.

4. Click the Recording tab.

5. In the SMTP area, check the Enable SMTP data recording check box to record mail body data
exchanged between the client application and the mail server.

To record SMTP traffic, set up an appropriate proxy connection using the Proxy page (Web settings).

6. Use the Recorder server certificate area to specify which server certificate you want the Silk
Performer Recorder to present to the client on behalf of the actual server.

7. Check the Use custom server certificate check box to have the Recorder present a custom server
certificate to the client instead of the default Recorder server certificate.

a) Click [...] to the right of the field to locate the server certificate you want to use.

8. In the Pass phrase text box, enter the pass phrase that is to be used, if the server certificate you want
the Recorder to use is protected with a pass phrase.

Silk Performer Workbench 20.0 | 85

9. Check the Send root CA during SSL handshake check box to have the Recorder send the root CA
certificate during the SSL handshake.

The root CA certificate may be requested by a client to authenticate the certificate authority that signed
the Recorder server certificate.

a) Click [...] to the right of the field to locate the root CA certificate that you want to use.

10.Click OK to save your settings.

Web (Protocol Level) Settings

Configure Web-related settings for your project, including browser, proxy, recording, and verification
options.

Configuring Browser Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Web icon.

4. Click the Browser tab.

Use the Browser type area to specify browser-specific settings.

5. From the Browser list box, select the Web browser you want to use for your simulation.

The selection you make determines the format of the header information included in your HTTP
requests and the threading model used for simulation.

Note: For mobile Web application testing (iPhone, iPad, Android, Windows Phone or Blackberry)
you can change the user agent string used for recording.

6. Click the Limit connections per server option button to limit the connections on a per-server basis as
real browsers do (for example, two connections to one server, four connections to two servers).

Note: It is not recommended that you use this option for low-level Web API, as only the Max total
connections value is considered.

• In the Max concurrent connections to a HTTP 1.0 server text box, specify the connection limit to
every server that uses HTTP 1.0.

• In the Max concurrent connections to a HTTP 1.1 server text box, specify the connection limit to
every server that uses HTTP 1.1.

• In the Max total connections text box, specify the absolute maximum number of connections that
the emulated browser can open. To perform an accurate connection simulation this value should be
above the per-server setting.

7. Click the Limit connections per virtual user option button to limit the connections on a per-user basis
(for example, four connections to one user, four connections to two users).

a) In the Max. concurrent connections text box, specify the maximum number of simultaneous
connections that the client may establish to the server in the case of custom browsers.

Since the server has to allocate more system resources for each connection, the server's
performance decreases as the number of connections increases. As with Web browsers, Silk
Performer uses one thread per connection to send and receive data concurrently. For single-
threaded (synchronous) operations, set this value to 1. For multi-threaded simulations, choose a
value between 2 and 32.

Note: Values are pre-defined for each selected browser. You can only edit Max. concurrent
connections if you select Custom from the Browser list box.

86 | Silk Performer Workbench 20.0

b) Select the Single-threaded option to replay scripts using a single thread.

This setting forces all low-level web functions to execute synchronously.

8. From the HTTP version list box, select the HTTP version of the browser that is to be simulated. This is
typically HTTP/1.0.

9. Check the Keep-Alive semantics check box to set "keep-alive" for HTTP/HTTPS. Keep-alive is a
feature that, when supported by both browser and server, allows connections to remain intact after
requests and responses are complete.

10.Check the Content-Encoding check box to enable Silk Performer to decode compressed data received
from the server.

When this option is enabled, Silk Performer sends an Accept-Encoding header to inform the server
that encoded data can be submitted (via gzip and compression-deflation methods).

11.In the User agent text box, specify user agent information that should be sent to the server when
custom browsers are used.

This is typically the browser name, including platform information. This string is used for the HTTP
request header User-Agent: that is sent using Silk Performer's low-level web functions.

12.In the Accept text box, specify the document types that the server may send to the client custom
browsers are used.

This string is used in the HTTP request header Accept: that is sent using Silk Performer's low-level
web functions.

13.In the Additional HTTP headers text box, specify one or more additional headers, using the exact
syntax in the case of custom browsers. Use a new line for each header.

These headers will be appended to each request that is sent using Silk Performer's low-level web
functions.

14.Click OK to save your settings.

Proxy Settings

Proxy settings allow you to specify how Silk Performer connect to the Internet. You can define one of the
following methods:

• Direct connection to the Internet – Connect to the Internet without using a proxy.
• Connect simulated browsers through a proxy server – Connect to the Internet through a specific proxy

server. You can specify separate proxies for HTTP, HTTPS, FTP, and SOCKS traffic.
• Automatic proxy configuration URL – Connect to the Internet through dynamic proxy configuration.

Dynamic proxy configuration is a technique used in Web browsers to determine a proxy for each
request sent out from the Web browser to the Internet. Depending on the URL or the connection host, a
proxy is dynamically determined.

A proxy auto-config (PAC) file determines the proxy server for each request. A PAC file tells the browser
to load its proxy configuration information from a remote JavaScript file rather than from static
information you enter directly.

For more information about the PAC file specification, refer to http://www.microsoft.com/technet/
prodtechnol/ie/reskit/6/part6/c26ie6rk.mspx.

Configuring Proxy Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

Silk Performer Workbench 20.0 | 87

http://www.microsoft.com/technet/prodtechnol/ie/reskit/6/part6/c26ie6rk.mspx
http://www.microsoft.com/technet/prodtechnol/ie/reskit/6/part6/c26ie6rk.mspx

3. In the shortcut list, click the Web icon.

4. Click the Proxy tab.

5. Select one of the following:

• Direct connection to the Internet: Connect to the Internet without using a proxy.
• Automatic proxy configuration URL: Connect to the Internet through dynamic proxy configuration.

Specify the location of the PAC file to be loaded using the steps outlined below.
• Connect simulated browsers through a proxy server: Connect to the Internet through a specific

proxy server (follow the steps outlined below):

a) Click the Advanced button to open the Proxy Settings dialog box.
b) In the Internet access area, configure the Host name or IP address and Port of the proxy server

for each protocol.

Check the Use the same proxy server for all protocols check box to use the same proxy for all
Web traffic. Checking this setting enables Address and Port text boxes on the Profile - [<profile
name>] - Web dialog box.

To change the SOCKS proxy settings, click the Hosts tab on the Profile Settings - Internet dialog
box.

c) In the Exceptions area, list any host names, IP addresses, or subdomains for which you do not want
to use the proxies specified in the Internet access area. This list can contain wildcards (*), which
cause the application to bypass the proxy server for addresses that fit the specified pattern. To list
multiple addresses and host names, separate them with semicolons.

d) Click OK to save your settings.

6. On the Profile - [<profile name>] - Web dialog box, click OK to save your proxy settings.

Configuring Browser-Simulation Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Web icon.

4. Click the Simulation tab.

Use the Simulation area to set options for realistic simulation of users visiting Web sites.

5. Check the Simulate user behavior for each transaction check box to have each virtual users reset
their browser emulation after each transaction.

Depending on the additional option you select, Silk Performer either simulates users who visit a Web
site for the first time or users who revisit the site. While users who visit a site for the first time have no
persistent cookies stored and no documents cached, users who revisit a page typically have closed
their browsers between the Web site visits, have documents cached, and persistent cookies set.
Disabling this option lets the virtual user emulate a Web browser that is not closed until the end of the
test, thereby reusing cached information throughout multiple transactions.

6. Click the First time user option button to generate a realistic simulation of users who visit a Web site for
the first time.

Persistent connections will be closed, the Web browser emulation will be reset, and the document
cache, the document history, the cookie database, the authentication databases, and the SSL context
cache will be cleared after each transaction. In such instances, Silk Performer downloads the complete
sites from the server, including all files.

7. Click the Revisiting user option button to generate a realistic simulation of users who revisit a Web site.

Persistent connections will be closed, and the document history, the non-persistent cookie database,
the authentication database, and the SSL context cache will be cleared after each transaction. In such

88 | Silk Performer Workbench 20.0

cases, users do not clear the document cache. For more details, review the WebSetUserBehavior
function in the BDL Function Reference.

Use the User tolerance area to adjust the advanced options of the user tolerance simulation.

8. Use the slider to adjust the tolerance level of the simulated user.

9. Click the Customize button to open the Advanced User Tolerance dialog box where you can alter the
individual behavior of the selected user tolerance level.

Use the Loading times tolerance area to specify the user tolerance regarding the loading times.

a) Check the If no data arrives after check box to make the virtual user react if the server does not
respond at all in a given time frame.

Also specify the maximum time in seconds a user is willing to wait if the server does not respond.
b) Check the If document is not complete after check box to make the virtual user react if the first

document (root) is received, but the HTML content (frames) is not completely loaded within a given
time frame.

Also specify the maximum time in seconds a user is willing to wait if the first document (root) is
received, but the HTML content (frames) is not complete.

c) Check the If page is not complete after check box to make the virtual user react if the HTML
content (documents) is received, but the embedded objects are not completely loaded within a given
time frame.

Also specify the maximum time in seconds a user is willing to wait if the HTML content (documents)
is received, but the embedded objects are not completely loaded.

d) Check the If the pure image load time exceeds check box to make the virtual user react if the
loading time of the embedded objects exceeds a given time frame (The timer starts, when the last
HTML document is received).

Also specify the maximum time in seconds a user is willing to wait for the loading of all embedded
objects. This time starts, when the last HTML document is loaded.

e) Click the Continue waiting option button if the user is to continue to wait if the timeout occurs and
the page has already been retried the specified number of times; unlimited or until another timeout
occurs.

f) Click the Abandon option button if the user should press the stop button (abandon) when a timeout
occurs and the page has already been retried the specified number of times.

g) Click the Wait additional option button if the user is to wait an additional period of time if the timeout
occurs and the page has already been retried the specified number of times. If this time expires too,
the user will press the Stop button (ending the load test).

Also specify the number of seconds that the virtual user is to wait before pressing the stop button.

Use the Error tolerance area to specify user tolerance regarding errors on a page.
h) Check the Retry check box to make the virtual user react to errors in the page.
i) Specify how often the user is to press the Refresh button in the case of errors.
j) Click the Page option button to have the user press the Refresh button for any error in the page (for

example, a missing image).
k) Click the Documents option button to have the user press the Refresh button only when errors in

the document portion of the page (for example, a missing frame) occur.

10.Click OK to save your settings on the Advanced User Tolerance dialog box.

11.Click OK to save your settings on the Profile - [<profile name>] dialog box.

Setting Browser-Authentication Options

Note: Use browser authentication settings if you want all virtual users to login using the same
credentials. If you want each VUser to connect with different login credentials, specify the credentials
using project attributes. See Project Attributes Overview in the BDL Function Reference for detailed
information or use script customization with data files.

1. In Silk Performer, expand the Profiles node in the Project tree.

Silk Performer Workbench 20.0 | 89

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Web icon.

4. Click the Authentication tab.

5. In the Username text box, enter a user name for authentication when connecting to a protected, remote
server.

6. In the Password text box, enter a password for authentication when connecting to a protected, remote
server.

Use the Proxy authentication area of the dialog to enter a user name and a password for proxy
authentication login (required when connecting to the Internet through a proxy server).

7. In the Login name text box, enter a user name for proxy authentication.

8. In the Password text box, enter a password for proxy authentication.

9. Click OK to save your settings.

Setting Browser-Emulation Authentication Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Web icon.

4. Click the Emulation tab.

Use the Emulation area to set options for realistic Web-browser emulation.

5. Check the Accept cookies check box to store cookies in Silk Performer's cookie database for each
virtual user.

Note: The cookie database is non-persistent and exists only as long as a load test runs.

6. Check the Allow automatic redirections check box to automatically parse redirection responses and
redirect requests to the specified server.

When this option is selected, the user name and password entered on the Authentication page are
used for automatic authentication to the server whenever necessary.

a) In the text box to the right of the check box, enter the maximum number of automatic redirections.
Silk Performer automatically parses redirection responses and redirects requests to the specified
server.

7. Check the Automatically load images check box to download images from the server.

It may be helpful to deselect this option if you are testing dynamic parts of a Web application. Usually
images are static objects that stress the network more than the server. Note that ignoring images limits
the realism of simulated browser traffic.

8. Check the Document cache check box to have Silk Performer emulate a document cache.

Silk Performer can emulate a document cache by keeping local copies of frequently accessed
documents, thus reducing server hits and the time connected to the network. For more details, see the
WebSetDocumentCache function in the BDL Function Reference.

9. Click the Once per session option button to, once per session, check whether or not a page has
changed on the Web server since the virtual user last viewed the page.

90 | Silk Performer Workbench 20.0

The term session includes the entire sequence of starting a Web browser, surfing the Web, and closing
the Web browser. The correlation of a session to Silk Performer transactions can be adjusted using the
Simulate user behavior for each transaction option on the Simulation page.

Once per session works as follows: Each time you start your Web browser, it first looks in its cache
before sending a request. The request will either be a conditional request (if the document resides in the
cache and is requested for the first time in the session), a normal request (if the document can not be
looked up in the cache), or a cache hit (if the document has already been requested in the session).
Click the Every time option button to always check if a page has changed on the Web server since the
virtual user last viewed it.

Documents with a future expiration date are not requested until their dates expire. The Every time
strategy is slightly different from Once per session caching in that it checks for newer documents each
time you reload a page. Click the Never option button to never check whether a page has changed
since the virtual user last viewed it. Selecting this option speeds up the display of pages the user has
already viewed.

10.In the Document history size text box, enter the maximum number of pages that are to be stored in
the history.

When the maximum number is exceeded, the oldest page is dropped from the history.

Note: As long as a page is stored in the history, all HTML document related information (links,
forms, embedded objects, frames) is kept in memory. As soon as a page is dropped from the
history the information is no longer available. Therefore related WebPageLink and
WebPageSubmit calls will not succeed and subsequent page-level calls to the same URL will no
longer find the document in the cache.

11.Check the Emulate DNS lookup check box to have Silk Performer emulate a DNS lookup mechanism
for each virtual user , which can be helpful for DNS-based load balancing.

When this option is combined with a user behavior option, it allows each virtual user to send its
individual DNS query to the DNS server. For more details, review the WebSetOption and
WebSetUserBehavior functions.

12.Click OK to save your settings.

Setting Browser-Recording Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the Web (Protocol Level) icon.

Note: For mobile Web application testing, you can select an alternative user agent string (for
example, iPhone, iPad, Android, Windows Phone, or Blackberry) on the Browser tab.

5. Click the Recording tab.

6. Use the Browser emulation level area to specify the level at which you want Web traffic to be recorded
for use in your test scripts.

• Click the Page-level Web API (HTML / HTTP) option button to record Web traffic at the browser
level. When you choose this option the Silk Performer Recorder generates scripts that call functions
provided by the page-level web API.

• Click the Low-level Web API (HTTP) option button to record Web traffic at the browser level. When
you choose this option the Recorder generates scripts that call functions provided by the low-level
web API.

Silk Performer Workbench 20.0 | 91

• Click the TCP/IP-level API (TCP/IP / HTTP) option button to record Web traffic on the TCP/IP level.
Select this option to capture proprietary protocols carried by HTTP.

7. Select an Advanced context management level from the list box.

You can disable advanced context management, customize the individual settings, or choose one of the
presets Level 1, Level 2 (default) or Level 3.

These options are only available when the Browser emulation level is set to Page-level Web API
(HTML / HTTP).

• Click the View Settings button to view or customize the level of advanced context management.

8. Check the Automatic page detection check box to enable the recorder's page-notation technology.

When you use the page-level Web functions, this feature attaches embedded documents that are
loaded by JavaScript code into a Web page. When you use the low-level functions, all the requests that
load a web page are wrapped by WebUrlBeginPage and WebUrlEndPage function calls and so
automatically creates page timers and synchronizes the downloading of Web pages for improved
accuracy.

9. Check the Convert URL query strings to forms check box to convert recorded URL query strings to
Web forms and then include the forms in the dclform section of the generated test script.

Disable this option only if the URLs are irregular.

10.Check the Enable persistent-cookie recording for returning-user simulation check box to have the
recorder generate a WebCookieSet function call at the beginning of the current transaction for each
persistent cookie that you receive from the Web server.

When your script is run, each WebCookieSet function then emulates a cookie that is persistently
stored in the virtual user’s cookie database.

Note: WebCookieSet function calls are marked as comments, so you must remove the comment
marks to activate the function calls.

11.Check the Encapsulate concurrent pages using timers check box to encapsulate concurrent pages
with timers.

Page timers, normally included in the page-level web functions or in calls of the function
WebUrlBeginPage, are not scripted. Instead, functions MeasureStart and MeasureStop are
inserted automatically (based on timings). A series of browser activities is considered "concurrent" if
there is no browser-idle period longer than the value of the minimum recorded thinktime.

12.Use the Record additional HTTP headers area to specify additional HTTP headers you want to
record, such as those generated by a custom HTTP client.

13.Click the Add button to add the name of an additional HTTP header you want to record, such as one
generated by a custom HTTP client. You must know the exact name of the header you want to record to
use this feature. The HTTP Headers dialog box opens.

a) Enter the name of the header you want to add to the list, or select one from the list box.
b) Click OK.

14.Click the Edit button if you want to edit the name of a selected HTTP header. The HTTP Headers
dialog appears.

a) Edit the header name as required.
b) Click OK.

15.Click the Remove button if you want to remove a selected additional HTTP header from the list.

a) Click Yes to confirm the deletion.

16.Click OK to save your settings.

Setting Verification Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

92 | Silk Performer Workbench 20.0

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the Web icon.

5. Click the Verification tab.

Use the Recording area to specify options for generating verification functions when recording a script
based on captured Web traffic.

6. Check the Record title verification check box to have the Recorder automatically generate a title
verification function (WebVerifyHtmlTitle) for each Web page.

7. Check the Record digest verification check box to have the Recorder automatically generate a
response verification digest function (WebVerifyDataDigest).

Verification functions are of the following types:

• Click the All characters option button to include in the digest all of the characters that are received
in HTTP response messages from the Web server.

• Click the Printable characters option button to include in the digest only the printable characters
that are received in HTTP response messages from the Web server.

• Click the Alphanumeric characters option button to include in the digest only the alphanumeric
characters that are received in HTTP response messages from the Web server.

• Use the Verify data of content type area to list all HTTP response content types for which a
response verification digest should be generated.

8. Click the Add button to add a new HTTP response content type to be used for response verification.
The Response Content Types dialog box opens.

a) Enter the name of the new content type you want to add to the list, or select one from the list box.
b) Click OK.

9. Click the Edit button to edit the currently selected HTTP response content type. The Response
Content Types dialog box opens.

a) Edit the currently selected HTTP response content type.
b) Click OK.

10.Click the Remove button to remove the currently selected HTTP response content type from the list.

a) Click Yes to confirm the deletion.

11.In the shortcut list on the left, click the Replay button. The Replay category is displayed.

12.Use the HTML / XML area to enable HTML and XML document verification when replaying scripts
based on Web traffic captured by the Silk Performer Recorder. Check the Title verification check box
to enable Silk Performer to verify the title of HTML documents.

An operation (depending on the specified severity: error, warning, informational, or custom) will
be performed if the verification fails. The setting used here is valid for both the page-level Web API and
the low-level Web API (WebSetVerificationEx).

When this option is selected it triggers the execution of the WebVerifyHtmlTitle function in the BDL
script.

13.Check the Table verification check box to enable Silk Performer to verify that a table within an HTML
document contains specified text.

An operation (depending on the specified severity: error, warning, informational, or custom) will
be performed if the verification fails. The setting used here is valid for both the page-level Web API and
the low-level Web API (WebSetVerificationEx).

This option triggers the execution of the WebVerifyTable function in the BDL script.

14.Check the Digest verification tolerance level check box to verify the HTML content of a server
response.

Silk Performer Workbench 20.0 | 93

Use TrueLog Explorer to generate WebVerifyHtmlDigest function calls.

Enter the maximum difference in character frequency, quantified in bytes, that may occur between the
server response that has been used by TrueLog Explorer to generate the HTML digest and the
response that is received during replay. An operation (depending on the specified severity: error,
warning, informational, or custom) will be performed if the number of differing bytes exceeds this
limit.

15.Check the HTML verification check box to enable Silk Performer to verify that an HTML document
contains specified text.

An operation (depending on the specified severity: error, warning, informational, or custom) will
be performed if the verification fails. The setting used here is valid for both the page-level Web API and
the low-level Web API.

When this option is checked, it triggers the execution of the WebVerifyHTML and
WebVerifyHTMLBound functions in the BDL script.

16.Check the Link checking check box to check the validity of links in HTML documents received during
the test.

The HTML document is parsed on receipt, and additional requests are sent to check that links are valid.
An error message is generated if a target pointed to by a link is invalid. This feature is available only in
the page-level Web API.

17.Check the XML verification check box to enable Silk Performer to verify that an XML document
contains specified values or attributes.

An operation (depending on the specified severity: error, warning, informational, or custom) will
be performed if the verification fails. The setting used here is valid for both the page-level Web API and
the low-level Web API.

When this option is checked it triggers the execution of the WebXmlVerifyNodeValue and
WebXmlVerifyNodeAttribute functions in the BDL script.

18.Use the Data area to specify options for HTTP response verification when replaying a script based on
Web traffic captured by the Recorder. Check the Data verification check box to enable Silk Performer
to verify that raw data received from the server contains specified data (for example, HTML source code
containing specific code).

An operation (depending on the specified severity: error, warning, informational, or custom) will
be performed if the verification fails. The setting used here is valid for both the page-level Web API and
the low-level Web API.

When this option is checked it triggers execution of the WebVerifyData and WebVerifyDataBound
functions in the BDL script.

19.Check the Digest verification tolerance level check box to have Silk Performer verify server response
data during tests.

Note: The Recorder generates the digests needed for verification.

In the field to the right, enter the maximum difference in character frequency, quantified in bytes, that
may occur between the response message received from the server during recording and the response
message received during replay. If the number of bytes that differ exceeds this limit, Silk Performer will
report an error. The Recorder creates digests only for the content types that are included in the Verify
data of content type list.

20.Click OK to save your settings.

Setting HTTP-Body Transformation Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

94 | Silk Performer Workbench 20.0

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Web icon.

4. Click the Transformation tab.

Note: You may have to click one of the arrow buttons in the top-right corner of the dialog box to
scroll through the available tabs to find the Transformation tab.

5. Select a transformation type from the Type list box.

6. Optionally, enter additional parameters for the transformation type.

7. Use the check boxes to specify if the transformation should be applied to HTTP request bodies
(Transform HTTP requests), HTTP response bodies (Transform HTTP responses), or both.

8. Check the respective Log encoded check boxes to additionally log the encoded HTTP response
bodies.

9. Click OK to save your settings.

Transformation of Custom Content Types and Encodings

Overview

By default, transformation is enabled for HTTP requests and responses that have the HTTP header
Content-Type or Content-Encoding set to the following values:

• Flex/AMF3 (Adobe, BlazeDS, GraniteDS): Content-Type set to "application/x-amf"
• Java over HTTP: Content-Type set to "application/octet-stream" or "application/x-

java-serialized-object"

• Microsoft Silverlight: Content-Type set to "application/soap+msbin1" or "application/
msbin1"

• GZIP POST Data: Content-Encoding set to gzip

If you need to transform data with a different HTTP Content-Type or Content-Encoding header, this can be
customized in the profile settings under Settings > Active Profile > Web (Protocol Level) >
Transformation in the Additional Parameters field.

Enabling Custom Transformation During Replay

1. Select Settings > Active Profile > Web (Protocol Level) > Transformation.
2. In the Additional Parameters field, type AdditionalContentTypes=application/

<myApp1>;application/<myApp2>. myApp1 and myApp1 are the custom content types of the
application under test.

Enabling Custom Transformation During Recording

Note: These steps are not required for Content-Encoding customization.

1. Select Settings > Active Profile > Web (Protocol Level) > Transformation.
2. In the Additional Parameters field, type AdditionalContentTypes=application/

<myApp1>;application/<myApp2>. myApp1 and myApp1 are the custom Content-Types of your
application under test.

3. Open the Documents folder in your current project directory with a file explorer (<my documents>
\Silk Performer 20.0\Projects\<current project>\Documents).

4. If this folder contains recording rule files (xrl), open them with a text editor.

Silk Performer Workbench 20.0 | 95

5. Search the recording rule files for Content-Type and duplicate any existing entries with your custom
Content-Type. Example:

<CompareData>
 <ApplyTo>Http.Final.Response.Header.Content-Type</ApplyTo>
 <Data>application/x-amf</Data>
</CompareData>

<Or>
 <CompareData>
 <ApplyTo>Http.Final.Response.Header.Content-Type</ApplyTo>
 <Data>application/x-amf</Data>
 </CompareData>
 <CompareData>
 <ApplyTo>Http.Final.Response.Header.Content-Type</ApplyTo>
 <Data>application/myApp1</Data>
 </CompareData>
 <CompareData>
 <ApplyTo>Http.Final.Response.Header.Content-Type</ApplyTo>
 <Data>application/myApp2</Data>
 </CompareData>
</Or>

Note: If the <CompareData> elements are not encapsulated with an <Or> element you need to
add this.

Setting Terminal Client Options

Note: Silk Performer offers tutorials that walk you through the process of load testing terminal client
applications (IBM Mainframe Applications and VT 100+ Applications). The tutorial is available at Start
> All Programs > Silk > Silk Performer 20.0 > Documentation > Tutorials > Miscellaneous
Tutorials .

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the Terminal Client icon.

5. Click the Telnet tab.

6. In the Telnet settings area, specify one of the following Telnet detection modes:

• Click the Always assume Telnet-mode option button to instruct the recorder to assume that each
connection is a Telnet connection. Use this option for troubleshooting purposes only.

• Click the Auto-detect Telnet-mode option button to instruct the recorder to automatically detect
Telnet on each new connection (default).

• Click the Never assume Telnet-mode option button to instruct the recorder to assume that no
connections are Telnet connections. Use this option for troubleshooting purposes only.

7. In the Command prompt string text box, specify a command-prompt string that the recorder uses to
script WebTcpipRecvPacketsUntilData functions wherever possible.

This string increases the effectiveness of recorded scripts for dynamic content.

8. In the Terminal properties section, select one of the following items from the Log level list box:

• None

• Error

96 | Silk Performer Workbench 20.0

• Normal

• Debug

9. Ensure that the specific terminal type you are testing is displayed in the Terminal type list box. This
setting was configured automatically when you selected the application type for the project.

When correctly specified, the recorder scripts the appropriate terminal-type initialization functions and
renders the screens to the TrueLog.

10.In the Configuration string text box, initialize the terminal emulator with a custom configuration string.

For available options, refer to your terminal emulator documentation.

11.Specify the following Screen values to indicate the appearance of the terminal screen to the recorder:

• Type a value in the rows text box to indicate the height of the terminal screen. An empty value lets
Silk Performer detect the height during session initialization.

• Type a value in the columns text box to indicate the width of the terminal screen. An empty value
lets Silk Performer detect the width during session initialization.

• Check the Colors check box to specify the default color to use on the terminal screen.

The supplied values overrule the default values that Silk Performer may detect. If your terminal
application uses a custom screen size, make sure to set these values before you record a script in order
to replay the script without errors.

12.In the Host code page text box, specify the code page that the server uses.

The code page is used for various data conversions, and all available code pages have been installed
with the system. If the required code page is not listed, you can install it. Ensure that the selected code
page is also available on each agent computer. To review all installed code pages, or to enable a
specific code page, go to Start > Control Panel > Regional and Language Options > Advanced .
Only the host code pages that are listed and enabled with a checkmark are available.

13.Click the Advanced tab and check the Record basic functions check box to prevent the recorder from
scripting synchronized receive-functions, such as WebTcpipScreenRecvPacketsUntilCursor and
WebTelnetScreenRecvRecordsUntilStatus.

If this option is enabled, scripted receive functions do not rely on rendered screen content. This option is
enabled by default when a terminal type is not specified.

14.Click OK to save your settings.

Setting GUI-Level Testing Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the GUI-Level Testing icon.

On the Session page, the Session settings area is used to configure the connection between your
console session and remote desktop sessions.

4. Check the Run Try Script on console check box to have Silk Performer run a Try Script on the console
application.

When this option is enabled, you can view what Silk Performer does during tests, but you are limited in
what you can do on your computer because Silk Test uses your console. If disabled, Try Scripts will
connect to and run Silk Test on remote desktop sessions.

5. Check the Allow usage of console session on agents check box if you do not have a terminal-server
license for all agents, or if your agents run on Windows Home or Windows Professional editions.

Silk Performer only uses this option if the connection to a terminal services session fails, or if no user
credentials are provided.

Silk Performer Workbench 20.0 | 97

Note: When this option is selected, you can start only one virtual user on each agent (for agents
that have no Terminal Server license and Windows Home/Professional systems).

6. Define a Connection timeout (in seconds) to specify how long Silk Performer should wait before a
connection is established to remote desktops.

Set this setting to 0 to have no timeout.

7. Select a Color Depth setting.

The Color Depth setting enables you to specify the color depth of terminal server sessions that are
used by virtual users to drive applications via Silk Test. You can select from 8 bit (256 colors) up to 32
bit (true color).

Note: Color depth settings defined using the BDL function StInitSession override profile
settings configured here. When the optional uColorDepth parameter is omitted, profile settings
are used.

The server may limit maximum color depth. The client can not force a color depth setting that is
higher than is supported by the server. Please see Terminal Services Configuration documentation
for details about your server version's color-depth limitations.

8. Complete the Username/Password settings to enable automatic login if you only require a single set of
login credentials.

These credentials will be automatically loaded into the StInitSession function. These credentials
can be overruled by scripted settings, for example, by providing parameters to the StInitSession
function using project attributes.

9. On the Execution page, the Execution Settings area enables you to configure settings for the script
and the runtime. Check the Log Silk Test errors check box to have errors and warnings that are sent
back by Silk Test logged as informational warnings (this option is enabled by default).

10.Select a TrueLog setting for the remote desktop session from the Generate TrueLog file for list box:

• Select None (the default) to not have TrueLog written.
• Select On Error to have TrueLog written only when errors are encountered.
• Select Custom when you wish to have TrueLog written based on your custom settings.

If you select Custom TrueLog settings, your TrueLog settings will be read from the Silk Test option file,
or they can be set via the StSetOption function.

Note: Even if you select OnError or Custom from the TrueLog on SilkTest list box, Silk Test will
only write TrueLog files if you also specify in Silk Performer’s settings that TrueLog should be
written. To do this, click the Generate TrueLog Files button or the Generate TrueLog On Error
Files button on Silk Performer’s toolbar.

11.Select a Screenshot mode:

• None: Captures no screens.
• Active Window: Captures the active window of the test application.
• Active Application: Captures the test application and any other window within the test application.
• Desktop: Captures the entire desktop.

Note: This list box is just enabled for Silk4J and Silk4NET projects. It sets the screenshot mode
used for the TrueLog file. This setting applies only to successful playback steps. If playback steps
fail, the entire desktop is captured.

12.Specify an Execution timeout (in seconds) to specify how long the runtime should wait before test
cases execute. Set this setting to 0 to have no timeout.

13.Results history size (set to 9 by default) specifies how many test-case results Silk Test can save in
a .res file.

Note: By starting a new test, the results in the .res file are reset.

98 | Silk Performer Workbench 20.0

14.In the Silk Test Classicoption file field, browse to and select a Silk Test Classic option file.

Refer to Silk Test Help for full details about option files.

Note: This field is just enabled for Silk Test Classic projects.

15.Click OK to save your settings.

Note: When a GUI-level monitor is deployed on a Silk Test Agent with Terminal Services installed, Silk
Performer automatically looks up the RDP port used for Terminal Server session creation.

Setting Oracle Forms Options

Oracle Forms-specific settings allow you to modify how Silk Performer interacts with Oracle Forms clients
during replay.

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Oracle Forms icon.

4. On the General page, select a Connection mode setting that reflects which type of connection the
Oracle Forms server accepts.

Oracle Forms clients can communicate with servers via Sockets, HTTP, or HTTPS.

Note: This setting can be overridden by the OraFormsSetConnectMode(connectMode) BDL
function call.

• Click the Socket mode option button when the Oracle Forms server is set up for socket mode.
• Click the HTTP mode option button for Oracle Forms servers that are configured for HTTP

connections.
• Click the HTTPS mode option button for Oracle Forms servers that are configured for secure HTTP

connections.

5. In the Connection timeout text box, specify a timeout period (in seconds) to specify how long emulated
clients should attempt to establish communication with the server before they report an exception.

6. To configure additional runtime settings, you can optionally have the virtual user send a heartbeat
message to the server at a specified interval. This is useful when the Oracle Forms client is not
communicating with the server for a long period of time, for example during a long think time period.
Check the Enable heartbeat with frequency of check box and enter an interval (in seconds) in the sec
field.

7. Check the Automatically wait for application timers check box to direct the replay engine to wait for
application timers to expire after each function call.

8. The Application timer and window timeout text box specifies the maximum wait time for expiration of
application timers and appearance of windows. Enter a timeout setting (in seconds).

The replay engine waits for timers to expire after each function call. The function
OraFormsWaitForTimer can be used to make an application wait for timers to expire. Maximum wait
time is specified by this setting. The function OraFormsWaitForWindow may be used to have an
application wait for windows to appear. This setting specifies the maximum wait time for window
appearance.

9. Oracle Forms servers can allow certain client releases. Use the Oracle Forms setting to specify the
Oracle Forms client version.

Oracle Forms clients send the required version when connecting to the Oracle Forms server. Create
profiles and change this setting when testing applications deployed on different server versions.

Silk Performer Workbench 20.0 | 99

Note: This setting can be overridden by the BDL function call
OraFormsSetInt("INITAL_VERSION", theVersion).

10.Click the Logging tab.

Here you can specify that additional properties have their values logged during replay.

11.From the Log level list box, select the log level for virtual user logging:

• None - TrueLogs will be generated, though no Oracle Messages will be logged and no detailed
information about controls in the log file will be written.

• Error - In addition to the None log level, errors that occur during replay are logged.
• Normal - In addition to the Error log level, Oracle messages are logged to the TrueLog and the log

file.
• Debug - In addition to the Normal log level, detailed information about control messages is logged,

for example in the In Body and Out Body tab in TrueLog Explorer. This information is helpful for
customizing and debugging your script when comparing it with Try Script runs. This option should
also be used when you encounter a problem during replay and you must send your log files to Micro
Focus SupportLine for analysis.

Additional properties to be logged in the TrueLog for each control in your application can also be
defined. Such properties are Oracle Forms internal properties that must be defined using their internal
names. In most cases you will not need to use this feature, as default properties (name, value) are
logged for each control. The OraForms.bdh file contains a complete list of all internal properties, most
of which are not used by controls and so will generally be ignored if you define them.

12.In the Additional properties text box, you can specify other properties for which virtual users are to log
values.

• Click Add to open the Additional Properties dialog box and add a property that is to have its value
logged during replay.

• Click Edit to open the Additional Properties dialog box and edit the selected property.
• Click Remove to remove a selected property. Click Yes on the deletion confirmation dialog. No

further values will be logged for this property.

13.Click the Measuring tab.

Here you can specify a custom measurement level. By default, all available performance metrics are
collected during test runs.

14.Check the Enable all timers and counters for all controls check box to enable all timers and counters
for all actions on controls during replay.

Alternatively, uncheck the Enable all timers and counters for all controls check box and select a
specific control from the Control list box and select the specific timer/counter types that you want to
have applied to that control:

• Enable timers - Measure how long it takes to complete an action on the selected control.
• Count round trips - Count the round trips for each action on the selected control.
• Count bytes - Count the bytes sent and received for each action on the selected control.
• Count messages - Count the messages sent and received for each action on the selected control.

Note: Alternatively, you can click the Apply to All Controls button to apply your timer/counter
settings to all controls.

15.Click OK to save your settings.

Setting SAPGUI Options

Silk Performer offers a tutorial that walks you through the process of testing SAPGUI applications. The
tutorial is available at Start > All Programs > Silk > Silk Performer 20.0 > Documentation > Tutorials >
SAP .

1. In Silk Performer, expand the Profiles node in the Project tree.

100 | Silk Performer Workbench 20.0

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the SAPGUI icon. On the General page you can define options for how the
SAP Recorder records and replays scripts.

5. Login to SAP systems involves several user interactions. With the Script logon as a single function
option enabled, the recorder only scripts one function that performs all the required login actions.

6. Check the Script low level functions check box to use a basic set of scripting functions instead of
object-specific functions.

7. Check the Script timers check box to script timers automatically.

These timers are used to measure SAP API calls.

8. Check the Attach to existing SAP session check box to have the recorder attach to an existing
session rather than create a new session.

9. Check the Record window title verification check box to record SapGuiSetActiveWindow functions
in such a way that title verifications are automatically performed on activated windows during test runs.

10.In the shortcut list on the left, click the Replay button. The Replay category is displayed.

11.In the Replay timeout text box, specify a timeout period (in seconds) for automatic shutdown of
SAPFewgsrv (when not otherwise closed at the end of test runs).

12.Check the Show SAPGUI during single runs check box to display the R/3 client during test runs.

GUI display is only an option for Try Script executions. This setting is ignored for baseline tests and load
tests.

13.Check the Enable client-side scripting check box to enable SAP client-side scripting via the registry.

This option disables warnings that raise pop-up windows when new users start.

14.Check the Use new SAP Visual Design check box to enable SAP Visual Design for the SAP client.

15.Click the Logging tab to specify additional log levels.

Note: These settings affect performance and resource utilization.

16.From the Log level list box, select a log level for virtual user logging:

• Disable - Virtual user logging is disabled.
• Normal - Default logging.
• Debug - Detailed information is logged, such as additional session information and errors.

17.Check the Capture screenshots check box to generate screenshots for each activated window.

Note: Screenshot capture is only enabled for Try Script executions. This setting is ignored for
baseline tests and load tests.

18.Check the Capture screenshots for every action check box to have each action performed by the
script documented with a screenshot.

Note: Screenshot capture is only enabled for Try Script executions. This setting is ignored for
baseline tests and load tests.

19.Check the Log control information in TrueLog check box to have additional control information written
to the TrueLog.

20.Check the Log control information for single run in TrueLog check box to have additional control
information written to the TrueLog only for try script and verification tests.

21.Check the Log control information on error check box to enable writing of control information to
TrueLogs in the case of errors.

Silk Performer Workbench 20.0 | 101

Note:

For large load-tests, it is also recommended that you uncheck Log control information in
TrueLog and only select Log control information on error. These settings greatly improve
overall performance, as not all information on each screen is logged. In the case of errors, control
state is logged on the nodes that cause the errors; this allows you to troubleshoot problems, as
you can see the full state of the active window.

22.Check the Highlight controls check box to have controls highlighted as they are accessed by the
script.

23.Click the Measuring tab to specify a custom measurement level.

By default, all available performance metrics are collected during test runs.

24.Check the Enable all timers and counters for all controls check box to enable all timers and counters
for all actions on controls during replay.Or, select a specific control from the Control list box and select
the specific counter types that you want to have applied to that control:

• Count round-trips - The number of round-trips for the action on the control.
• Count response time - The time it takes a function to return requested data.
• Count Interpretation time - The time it takes to interpret a request.
• Count flushes - The number of flushes per action.

Note: Alternatively, you can click the Apply to All Controls button to apply your counter settings
to all controls.

25.Click OK to save your settings.

Configuring Citrix XenApp Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, scroll down to and click the Citrix icon. The General tab opens.

4. In the Synchronization timeout text box, type a default synchronization timeout in milliseconds that is
to be used by all CitrixWaitForXXX functions that do not specify a timeout value.

The default value is 60000 ms.

5. Check Force window position to make the calls to CitrixWaitForWindowCreation and
CitrixWaitForWindowRestore move windows to the coordinates captured during recording
(enabled by default).

When this check box is not checked, both the CitrixWaitForWindowCreation and
CitrixWaitForWindowRestore functions provide the parameter bForcePos to enable this option
for each individual call.

6. Check Disconnect on transaction end to disconnect the Citrix client following the end of each
transaction, including the TInit transaction (disabled by default).

7. Check Gracefully disconnect session to perform a log-off when disconnecting from a Citrix XenApp
session (enabled by default).

8. Check Log screen before each user action to capture and write a screenshot at the beginning of each
user action (enabled by default).

When TrueLog generation is enabled, a screenshot is taken at the end of each synchronization function
and written to the TrueLog.

102 | Silk Performer Workbench 20.0

The CitrixWaitForScreen function captures a screen region and checks it against a specified
condition instead of against a hash value that is captured at recording. This file can later be examined
or compared to what was captured during recording for error analysis.

If the function call CitrixWaitForScreen fails and Dump window region on unsuccessful screen
synchronization is checked , the captured screen region is written to a file in the result directory. The
function call CitrixWaitForScreen may fail, for example, if the condition does not match when the
timeout period expires.

9. Check Use RAM disk to use a different drive for the intermediate storage of images.

Note: If you check Use RAM disk, you must select the appropriate drive letter of the RAM disk
from the list box. TrueLog generation performance improves if the specified drive is a RAM disk.

10.Select the Simulation tab.

11.In the Length of time mouse button remains pressed field, type the length of time that the virtual
user is to hold the mouse button in the pressed state.

The default value is 200 ms. The functions CitrixMouseClick and CitrixMouseDblClick use
this value.

12.In the Length of time between the clicks of a double-click field, type the maximum length of time that
can pass between the two clicks of a double-click.

The default value is 100 ms. The function CitrixMouseDblClick uses this value.

13.In the Mouse speed field, type the speed (in pixels per second) at which the mouse is to move across
the screen.

The default value is 1000 pixels.

14.In the Length of time each key remains pressed field, type the length of time that the virtual user
must hold a keyboard key in the down state.

The default value is 50 ms. The functions CitrixKey and CitrixKeyString use this value.

15.In the Length of time between keystrokes when entering strings field, type the length of time that
must pass between the individual keystrokes.

The default value is 100 ms. The function CitrixKeyString uses this value.

16.In the Key repeat time field, type the time required for a complete key stroke when simulating repeat
functionality.

The default value is 50 ms. A value of 50 ms represents 20 keys per second.

17.In the Delay after successful synchronization field in the Think times area of the tab, type the length
of time that virtual users are to remain inactive after passing a successful synchronization point.

The default value is 1000 ms. The function CitrixWaitForXXX uses this value.

18.In the Delay after each user action field, type the length of time that virtual users remain inactive
between actions.

The default value is 100 ms.

19.Click the Citrix client tab to specify Citrix client options.

20.From the Network protocol drop box, select the low-level network protocol to use for locating and
connecting to the Citrix server.

For more information, refer to Citrix client documentation.

21.Check the Use data compression check box to compress all transferred data (enabled by default).

This feature reduces file size but requires additional processor resources.

22.Check the Use disk cache for bitmaps check box to store commonly used graphical objects, such as
bitmaps, in a local disk cache (disabled by default).

23.Check the Queue mouse movements and keystrokes check box to queue mouse and keyboard
updates (disabled by default).

This feature reduces the number of network packets sent from the Citrix client to the Citrix XenApp
server.

Silk Performer Workbench 20.0 | 103

24.From the SpeedScreen latency reduction drop box, select one of the following to enhance user
experience on slower network connections:

• For WANs and other slower connections, select On.
• For LANs and other faster connections, select Off.
• To turn latency reduction on and off based on the latency of the connections, select Auto.

25.From the Encryption level drop box, select a level of encryption for the ICA connection.

The Citrix XenApp server must be configured to allow the selected encryption level or higher.

Note: Using an encryption level other than the server default or Basic disables automatic logon to
the Citrix XenApp server.

26.Click OK to save your settings.

Setting .NET Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the .NET icon.

4. Check the Route HTTP .NET through Silk Performer web engine check box to route all HTTP/HTTPS
traffic that is generated by your .NET test driver through the Silk Performer Web engine.

This allows you to take advantage of the features that Silk Performer offers for accurate testing, such as
its high performance Web engine, modem simulation, detailed timing/throughput information for each
transmission, HTTP/XML TrueLog, and IP spoofing.

The Routed web service proxy classes text box displays the .NET Web Service client classes that are
used in your .NET test driver. HTTP/SOAP traffic of selected classes is routed through Silk Performer’s
Web engine, regardless of the setting above. This setting can only be changed via the Silk
Performer .NET AddIn.

5. Click the One application domain for each virtual user container process option button to share
one .NET application domain among all virtual users running in a virtual user process.

This minimizes the administrative overhead for the .NET Common Language Runtime, but may cause
runtime problems because all objects will be loaded into the same application domain.

6. Click the One application domain for each virtual user option button to give each virtual user its
own .NET application domain.

This increases the administrative overhead of the .NET Common Language Runtime, but ensures that
objects from different virtual users will not interfere with one another.

7. Click OK to save your settings.

CORBA/IIOP Settings

Setting CORBA/IIOP Replay Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

104 | Silk Performer Workbench 20.0

3. In the shortcut list, click the CORBA/IIOP icon.

4. Click the Replay tab.

5. Use the IIOP 1.2 area to specify the default settings for IIOP 1.2 replay.

6. In the Max. chunk size for value type text box, type the maximum byte size for a single part of a
chunked-encoded value type.

A chunked-encoded value type is a value type that has been broken into smaller parts

7. Check the Use fragmentation check box to fragment IIOP request and response messages when they
exceed the length set in the Fragmentation size text box.

8. In the Fragmentation size text box, set the fragmentation byte size for a chunked-encoded value type.

When a request or response message exceeds this size, fragmentation is used to send the message.

9. Click OK to save your settings.

Setting CORBA/IIOP WChar/WString Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the CORBA/IIOP icon.

4. Click the WChar / WString tab.

5. Use the Code set area to specify the settings for the wide-character code set.

In general, a code set determines the encoding rules for characters and wide characters. Code sets can
be byte-oriented or non-byte-oriented (for example, ASCII is a byte-oriented code set for single byte
characters). Multibyte characters defined by non-byte-oriented code sets have a byte-orientation (big-
endian, little-endian); byte-oriented code sets do not.

6. Check the Unicode check box to use the Unicode code set.

Unicode is a non-byte-oriented code set for two-byte characters. The byte orientation of Unicode
characters is determined by the IIOP message byte order.

7. From the WChar size list box, select the size of a CORBA wide character (wchar).

8. Click the Byte-oriented option button to have a byte-oriented code set used for CORBA wchars and
wstrings.

Alternatively, click the Non-byte-oriented option button to use a non-byte-oriented code set for CORBA
wchars and wstrings. If you select this option, use the Script byte order list box to select the byte
orientation of non-byte-oriented CORBA wchar/wstring representation in the BDL script. The byte
orientation can be little-endian (least significant bit first) or big-endian (most significant bit first).

Note: Use the IIOP 1.2 area to specify settings for IIOP 1.2. The wchar and wstring encoding in
IIOP 1.2 differs from the encoding in previous IIOP versions. However, not all ORBs use the
correct encoding for IIOP 1.2.

9. Check the CORBA compliant check box if the ORB uses CORBA compliant wchar/wstring encoding in
IIOP 1.2.

10.In the WChar area, check the No length encoding check box to use pre IIOP 1.2 encoding.

CORBA compliant IIOP 1.2 encoded wchars use a length indication for the size of the wchar.

11.In the WString area, check the Null-terminated check box if the ORB uses null-terminated wstrings.

CORBA compliant IIOP 1.2 encoded wstrings are not null-terminated.

12.Click the Chars option button if the ORB uses the number of chars as wstring length.

CORBA compliant IIOP 1.2 encoded wstrings specify the string length in bytes (chars).

Alternatively, click the WChars option button if the ORB uses the number of wchars as wstring length.

Silk Performer Workbench 20.0 | 105

13.Click OK to save your settings.

Setting CORBA/IIOP Recording Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the CORBA/IIOP icon.

5. Click the Recording tab.

6. Use the Proprietary ORB features support area to specify whether to consider ORB-specific features
when generating test scripts based on recorded IIOP traffic.

When appropriate options are selected, generated scripts become more readable.

7. Select IIOP traffic-recording options:

• Orbix for Orbix-specific features
• OrbixWeb for OrbixWeb-specific features
• VisiBroker C++ for VisiBroker for C++ features
• VisiBroker Java for VisiBroker for Java features
• M3 C++ for BEA Millennium for C++ features
• M3 Java for BEA Millennium for Java features

8. From the CORBA version of IDL file list box, select the CORBA version of the application under test.

When an application uses a CORBA version between 2.0 and 2.2, select 2.0 from the list box. When
an application uses CORBA 2.3 or CORBA 3.0, select 3.0 from the list box.

9. In the Preprocessor arguments text box, enter any number of arguments that are to be passed to the
preprocessor of the IDF file parser.

For example, the arguments may be used to specify the include directory and to execute predefined
macros.

10.Use the IDL files loaded list to view all of the IDL files that are currently used by the Silk Performer
Recorder to generate high-level test scripts.

Whenever the corresponding interface is defined in an IDL file, the Recorder generates type-dependent
functions for specifying the parameters of CORBA operation calls in the test script.

11.Click OK to save your settings.

Java Settings

Configure Java settings, including classpath, version, JVM, JIT compiler, and logging options.

Configuring Java Version and Classpath Settings

1. In the Silk Performer menu, click Settings > System .

2. Click the Java icon. The General page opens.

3. Specify the directory of the Java home path in the Java 32-bit home or Java 64-bit home field,
depending on what Java architecture you use. You can switch between 32-bit and 64-bit on the
Advanced tab.

This option enables the Java Virtual Machine to be loaded from a different path than is specified in the
PATH environment so that you can switch between various Java Virtual Machines without changing the
system PATH environment.

106 | Silk Performer Workbench 20.0

Note: Silk Performer automatically checks the path you specify here. If the path is not correct, the
default Java home path of the operating system is used instead.

The Classpath specified for the Java Virtual Machine displays. By default the classpath is set to the
system classpath.

4. Click Check JVM to verify your Java Virtual Machine configuration settings.

To ensure that the Java environment is set up properly, the configuration should be tested.

5. Click New File to navigate to a class file and add it to the classpath of the Java Virtual Machine.

Note: Press Ctrl or Shift to select multiple class files and add them to the classpath.

6. Click New Directory to navigate to a directory and add it to the classpath of the Java Virtual Machine.

7. To move selected files up or down in the classpath hierarchy, click Move Item Up or Move Item Down.

8. To delete a selected file from the classpath, click Delete.

9. Click OK to save your settings.

Setting Advanced Java Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Java icon.

4. Click the Advanced tab.

Use the Advanced area to set advanced options for the Java Virtual Machine.

5. In the Command line options text box, type any command-line options to pass to the Java Virtual
Machine.

6. Check the Disable JIT compiler check box to disable the Just In Time (JIT) compiler of the Java Virtual
Machine.

7. In the JVM dll text box, type the name of any Dynamic Link Library (DLL) that implements the Java
Virtual Machine that is to be used.

If necessary, click (...) to navigate to and select the Dynamic Link Library to use.

8. Click Check JVM to verify your Java Virtual Machine configuration settings.

9. Click OK.

Setting Java Logging Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the Java icon.

5. Click the Logging tab.

Use the Record settings area to specify that additional properties have their values logged during
recording.

Silk Performer Workbench 20.0 | 107

6. Set the log level for virtual user logging from the Log level list box.

Note: To disable logging, set the log level to None.

The following log levels are available:

• None – No additional logs will be written.
• Error – Only errors that occur during replay will be logged.
• Normal – Java messages will be logged.
• Debug – Additional information will be logged (for example, events).

7. Click OK to save your settings.

Database Settings

Configure database settings, including SQL, ODBC, and recording options.

Setting SQLSTATE-specific Error Handling

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Database icon.

4. Click the SQLSTATE tab.

5. Use the Simulation exceptions list to define exceptions for specific ODBC error codes to prevent
termination of the simulation.

When a database error occurs, Silk Performer automatically terminates the entire simulation. This list
includes all the exceptions that Silk Performer uses for handling database-specific errors. The Error
field lists the native error code. The Class field ranks the severity of the error. Class 0 errors can be
handled within a Silk Performer transaction. Class 1 errors end the transaction but do not cause the
simulation to terminate.

6. To add an error to the list of database-specific error exceptions, click the Add button. The Edit Error
dialog box opens.

a) In the Error field, add the error code for an error to be added to the exceptions list.
b) In the Class field, add the error class.
c) In the Description field, add a description for the error.
d) Click OK.

7. To edit an error, select it from the list, and click Edit. The Edit Error dialog box opens.

a) Edit the error code, class, and description as required.
b) Click OK.

8. To remove an error from the exceptions list, select it and click the Remove button.

a) Click Yes on the deletion confirmation dialog.

9. On the Profile - [<profile name>] dialog box, click OK to save your changes.

Setting ODBC-specific Error Handling

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

108 | Silk Performer Workbench 20.0

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Database icon.

4. Click the ODBC Database Errors tab.

5. Use the Error definition list to define exceptions for specific database error codes in order to prevent
the termination of simulations.

6. To add an error to the list of database-specific error exceptions, click the Add button. The Edit Error
dialog box opens.

a) In the Error field, add the error code for an error that is to be added to the exceptions list.
b) In the Class field, add the error class.
c) In the Description field, add a description for the error.
d) Click OK.

7. To edit an error, select it from the list, and click Edit. The Edit Error dialog box opens.

a) Edit the error code, class, and description as required.
b) Click OK.

8. To remove an error from the exceptions list, select it and click the Remove button.

a) Click Yes on the deletion confirmation dialog.

9. On the Profile - [<profile name>] dialog box, click OK to save your changes.

Setting High-Level ODBC Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Database icon.

4. Click the ODBC High-Level tab.

5. Use the Database area to specify details about the ODBC data source you will use and how Silk
Performer should interact with the ODBC driver.

6. From the Data Source Name list box of available ODBC data sources, select the data source that you
want to connect to for testing.

Note: To set up an additional ODBC data source, use Windows 32-bit ODBC
Administrator (via the Windows Control Panel).

The data source you select here is used only if you use high-level ODBC functions that perform an
implicit connection to the database. When you use medium-level ODBC functions, this data source
is not used. Instead, the connection is performed with an explicit DB_Connect("connection
string") function in the script.

7. In the UserID text box, enter the user name that is to be used to connect to the data source.

You must specify a valid user for the DBMS to which you want to connect. If you use a trusted
connection to connect to your DBMS, leave this field blank. Note that the user ID you enter here will
only be used if you use high-level ODBC functions.

8. In the Password text box, enter the password that is to be used when connecting to the data source.

You must specify a valid password for the database user you are connecting. If you use a trusted
connection, or if the user has no password, leave this field blank. Note that the password you enter

Silk Performer Workbench 20.0 | 109

here, as well as all remaining options you choose in this area, are used only if you use high-level ODBC
functions.

9. From the Isolation list box, select the level of isolation for the entire test.

For a detailed description of isolation levels, consult your DBMS documentation and see the ODBC
functions reference. You can change the isolation level and any other DBMS specific settings using the
ODBC functions SQLSetConnectOption and SQLSetStmtOption in your script.

10.From the SQL concurrency list box, select a type of cursor concurrency to use for the scrollable
cursors in your test script.

For a detailed description of concurrency settings, consult your DBMS documentation.

11.From the SQL cursor type list box, select a cursor type for the scrollable cursors in your test script.

For a detailed description of cursor type settings, consult your DBMS documentation.

12.Check the Autocommit check box to commit the database automatically after each SQL command.

Otherwise the database will be committed only after an explicit commit statement. This setting is
effective for all connected cursors.

13.Check the Reprepare SQL commands check box to prepare and execute a SQL statement each time
it is called.

Otherwise Silk Performer prepares SQL statements only when necessary. This setting is effective for all
cursors used in your test.

14.Click OK to save your settings.

Setting Database Recording Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the Database icon.

5. Click the Recording tab.

6. In the Oracle OCI area, click the Generate random input for long placeholders option button to
replace large amounts of data exchanged between the client application and the database server with
random data.

Because original data is rarely required for replay, this option helps to prevent large data files from being
carried along with test scripts.

7. Click the Generate files for long placeholders option button to store large amounts of data exchanged
between the client application and the database server in a file.

During replay, the file is used to send exactly the same data to the database server that is sent to the
client application.

8. Click OK to save your changes.

Test Scripts
Test scripts prescribe the actions of the virtual users that are run during tests. Scripts are written in Silk
Performer's proprietary scripting language, the Benchmark Description Language (BDL). The usual way to
create scripts is to have the Silk Performer Recorder generate them from real network traffic that has been
captured and recorded. Scripts can also be generated manually, or sample scripts provided by Silk
Performer can be modified for reuse.

110 | Silk Performer Workbench 20.0

As many test scripts as necessary can be added to a project, and existing scripts can be removed. Scripts
need to be compiled before they can be used. Individual scripts in a project can be compiled, or all the
scripts associated with a particular project can be recompiled at once.

Adding Test Scripts

1. In the Project menu tree, right-click the Project node and choose Add Existing Script.

Tip: Alternatively, choose Project > Add Existing Script from the menu bar.

The Select Script(s) dialog box opens.

2. Navigate to and click the script to add to the project.

3. Click OK to save your settings.

Compiling Test Scripts

1. In the Project menu tree, expand the Scripts node.

2. Right-click the script you want to compile.

3. Select Compile Script from the context menu.

Alternatively, select Script > Compile from the menu bar.

You can monitor the results of the compilation below in the Compiler page.

Removing Test Scripts

1. In the Project menu tree, expand the folder of the current project.

2. Expand the Scripts folder.

3. Right-click the script you want to remove.

4. Select Remove Script from the context menu. You can optionally select Remove all Scripts to remove
all scripts from your project.

5. Click Yes on the deletion confirmation dialog.

Data Files
Data files that are required by Silk Performer scripts [user-data files (CSV), IDL, certificate files (PEM),
random data files (RND), and type library files (TLB, DLL, EXE, OCX, OLB, PKG)] are added to projects by
specifying the directory where they are located. The compiler first searches for random data files in the
directory where the BDF file is located, then in the specified directory. If a random data file from a different
location needs to be used, the full path to the file can be specified in the script file.

Note: It is important that all the user data files needed by your script are added to your project.
Otherwise they will not be available to remote agent computers during tests.

Adding Data Files

1. In the Project menu tree, right-click the Project node and choose Add Data File.

Alternatively, you can choose Project > Add Data File from the menu bar.

The Select Data File(s) dialog box opens.

2. Use the Select Data File(s) dialog box to navigate to and select the data file to add to the project.

3. Optional: Select data files for addition by inserting wildcard characters into the File name text box.

Note: If you insert wildcard characters into the File name text box, you must also click Add with
wildcards to select the files that match the specified characters and add them to your project's
data files.

Silk Performer Workbench 20.0 | 111

4. Optional: Check the Include subfolders check box to add files from subfolders that match the specified
wildcard characters.

5. Click OK to save your settings.

Removing Data Files

1. In the Project menu tree, expand the current project.

2. Expand the Data Files folder.

3. Right-click the data file you want to remove.

4. Select Remove Data File from the context menu.

5. Click Yes on the deletion confirmation dialog.

Compressing Data Files

In some scenarios you can speed up initializing your load test by compressing the data files prior to
transferring them to the agent computers. To compress data files, click Settings > System in the Silk
Performer menu, click the Control tab, and enable the check boxes Compress data files for LAN/WAN
agents and Compress data files for cloud agents.

Compression of data files for cloud agents is enabled by default.

Compressing data files can be especially useful ...

• when you are using network connections with a small bandwidth. When your agents reside in a local
area network (LAN), compressing data files is not as useful, because local area networks are usually
fast. If, however, your agents reside in a wide area network (WAN), deploying compressed data files can
save a lot of time.

• when you are using many agents for your load test. Compressing data files is done only once (on the
controller), decompressing data files is done once on each agent. The decompression process is done
in parallel, so it does not necessarily slow down initializing your load test. Nevertheless: the more
agents you use, the more likely it is that you save time with compressed data files.

• when you are using data files that are well compressible. Text files or .csv files are examples for well
compressible files. These can be shrinked considerably and compressing such files is done rapidly.

Whether compressing data files is useful, depends on your very specific environment and load test. As a
general rule: If compressing, transferring the smaller data files, and decompressing files takes less time
than just transferring the uncompressed files, then data file compression is useful.

Caching Data Files

Before a load test is executed, it first needs to be initialized. Part of the initialization is the deployment of
data files from the controller to the agents. Deploying data files can take some time, depending on their
number and size. To speed up initialization, you can instruct Silk Performer to cache data files on the
agents. In this case, data files must be deployed only for the first load test. Subsequent load tests will then
be initialized quicker.

To cache data files, click Settings > System in the Silk Performer menu, click the Control tab, and enable
the check box Cache data files on agents.

When caching is disabled, data files are transferred to the remote agent and stored in the remote project
folder. When caching is enabled, the data files are stored in <public documents>\Silk Performer

112 | Silk Performer Workbench 20.0

<version>\DataCache. The GetDataFilePath function provides the correct data file path in either
case. Do not use the function GetDirectory with DIRECTORY_PROJECT to locate data files, as it does
not work when data file caching is enabled.

Agent Computers
Agent computers host the virtual users that are run during tests. As many agent computers as necessary
can be added to a project to support the required number of virtual users.

Agent computers are assigned to particular projects from the pool of agent computers that are available to
the controller computer. The maximum number of virtual users who will run on each agent is computed
automatically by Silk Performer; Alternatively, this number can be set manually. New agents can be added
to the agent pool from the local area network or from other Windows domains; they are then available to be
added to projects. Agents can be checked for availability, and agents can be removed from the pool.

Configuring Project Agents

1. On the Project menu tree, right-click the Project node and choose Configure Project Agents. The
Configure Project Agents dialog box opens.

Note: Place your cursor over an agent name to view that agent's system and agent-version
details.

Tip: Alternatively, click Assign Agents on the Silk Performer workflow bar. Then click the
Configure Project Agents link on the Setup Agents dialog box.

2. Double-click an agent computer in the Available Agents pane to add the agent to the project.

Note: It is not possible to remove all agents from the Project Agents pane. Localhost is added
by default when you leave the list empty.

3. To add a foreign agent (indicated by a question mark icon) from the Project Agents pane to the agent
pool, right click the agent and choose Add to Agent Pool.

Foreign agents are agents that have been configured for a project that have not been added to the
agent pool.

a) To make a newly added agent available for assignment, click Configure Agent Pool and configure
the agent on the System Settings - Agents page.

4. To add an agent that does not appear in the Available Agents list to the agent pool, click Configure
Agent Pool to go to the System Settings - Agents page.

5. Click OK.

Removing Agent Computers

1. In the Project menu tree, expand the current project.

2. Expand the Agents folder.

3. Right-click the agent computer you want to remove.

4. Select Remove Agent from the context menu.

Note that you must leave at least one active agent in your project.

5. Click Yes on the deletion confirmation dialog.

Modeling Scripts
Before you can conduct a Silk Performer load test you need to create a test script that prescribes the
actions of the simulated users run during the test. The script is written in Silk Performer's proprietary
scripting language, the Benchmark Description Language (BDL).

Scripts can be created in different ways depending on the application type. The standard (and typically
easiest) method for creating a test script is to use the Silk Performer Recorder to capture and record traffic

Silk Performer Workbench 20.0 | 113

that is representative of the type you need to simulate in your test. The Silk Performer Recorder
automatically generates a BDL test script based on the recorded traffic.

Another method of creating a test script is to manually create a new script in BDL. A variant on the manual
approach is to create a test script based on one of the sample BDL scripts that are provided by Silk
Performer.

Recorded Test Scripts
The standard, and easiest, method of creating a test script is to use the Silk Performer Recorder, Silk
Performer's engine for capturing and recording traffic and generating test scripts.

First, the Silk Performer Recorder captures and records a representative amount of real traffic between a
client application and the server to be tested. When recording is complete, the Silk Performer Recorder
generates either a test script or a capture file. You can create scripts out of the capture file later on. The
script is written in Silk Performer's proprietary scripting language, the Benchmark Description Language
(BDL).

During the recording phase, you define transactions. A transaction is a discrete piece of work that will later
be assigned to a virtual user in a load test and for which separate time measurements will be made. You
should create a new transaction only for a piece of work that has no dependencies on another piece of
work. Individual time measurements can be made for any action or series of actions that happen during
recording.

Using the Silk Performer Recorder has a number of advantages:

• Recorded traffic and function calls include a lot of static information. Replay of static information
ordinarily does not lead to reliable benchmark results. Because recorded scripts can easily be
customized, you can add random functions to generate dynamic and realistic workloads .

• Transactions defined during recording modularize the script into clearly laid out sections. It is easy to
modify workloads based on different statistics or requirements using the randomization functions
embedded in Silk Performer.

• Timers set during recording provide user-defined granularity for measuring any part of a transaction.
• Development time and costs can be reduced considerably. There is no need to change the front-end

application to simulate new behaviors. It is sufficient to modify the script and repeat the simulation until
the requirements are met. The front-end application has to be implemented only once; the script then
becomes its prototype and reproduces its behavior.

Recording a Test Script

If you are an experienced user, you may want to create a script on your own and write your code manually.
You can start with a blank script or you can customize one of the preinstalled sample scripts.

However, you can also use the Silk Performer Recorder, which does the scripting and the recording work
for you. Here are the basic steps you need to perform when you use the Silk Performer Recorder:

1. Open the project in which you want to work, or start a new project.

2. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

3. From the Recording Profile list, select the profile for the client application that you plan to test. If a
profile has not yet been set up for the application you want to use, click Settings to the right of the list to
set one up.

4. Depending on the project type, enter either the application's URL in the URL field or the location of the
application in the Command line field.

5. Click Start recording. The Silk Performer Recorder dialog opens in minimized form, and the client
application starts.

6. To see a report of the actions that happen during recording, maximize the Recorder dialog by clicking
the Change GUI size button. The maximized Recorder opens at the Actions page.

114 | Silk Performer Workbench 20.0

7. Using the client application, conduct the kind of interaction with the target server that you want to
simulate in your test. The interaction is captured and recorded by the Recorder. A report of your actions
and of the data downloaded appears on the Actions page.

8. Insert transactions and timers into the test script during the recording phase. You can create as many
transactions and timers as you want. To insert a transaction, click the New Transaction button. A
transaction represents a piece of work that can be assigned to a virtual user.

9. In the ensuing dialog, enter a name for the transaction and click OK. The new transaction appears in
the Actions log.

10.To insert a timer, click the New Timer Session button. A timer is a user-defined measurement period in
a test. You should create timers for each component of a transaction for which you want to analyze
performance. In the ensuing dialog, enter a name for the timer and click OK.

11.To end recording, click the Stop Recording button.

12.Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

13.Close the client application and close the Silk Performer Recorder.

Secure Connections and Certificates

If your application under test is accessed over a secure connection, Silk Performer needs to be configured
so that the communication between the client and the server is trusted. This is done with certificates,
where you can chose between the following two approaches:

Micro Focus Certificate Authority (CA) Certificate

The Micro Focus CA certificate, located at C:\Program Files\Silk\Silk Performer
20.0\IRCAcert.crt, needs to be installed on the client to establish a secure connection between the
client and the server. The according server certificate, issued by the Micro Focus Certificate Authority, is
located at C:\Program Files\Silk\Silk Performer 20.0\IRServerCert.pem.

Connection route:

1. The client opens a secure connection to the Recorder, which acts as a server.
2. The Recorder sends back the Micro Focus server certificate.
3. The client receives the certificate and checks whether it was issued by one of the Trusted Root

Authorities (Micro Focus CA certificate). If the check is successful, the secure connection is established.
4. The Recorder tries to open a second secure connection to the system under test.
5. The system under test sends back its own server certificate.
6. The Recorder accepts this certificate and establishes a secure connection to the system under test.

Server Certificates

If you have the server certificate of your system under test, you can specify it in the Profile Settings to
enable secure recording and replay.

Connection route:

1. The client opens a secure connection to the Recorder and receives the server certificate that you
specified in the Profile Settings, so the client thinks it is already connected to the system under test.

2. The Recorder opens a second secure connection to the system under test.
3. The system under test sends back its own server certificate.
4. The Recorder accepts this certificate and establishes a connection to the system under test.

Native Mobile Apps

Native apps on mobile devices that communicate over a secure connection often match received server
certificates (either the server certificate from the system under test or the Micro Focus server certificate)

Silk Performer Workbench 20.0 | 115

against a specific string, for example a company or domain name. This security approach prevents the
Micro Focus certificate approach from working.

Generating Scripts from Capture Files

What is a capture file?

While recording a user transaction, the Silk Performer recorder creates a so-called Silk Performer capture
file, which contains the entire traffic of the recorded session. When you stop the recording, Silk Performer
saves the capture file, analyzes the traffic in the background, and displays the Capture File page. On the
Capture File page you can adjust a variety of settings, like resolving potential problems, applying filters, or
setting recording rules. When you are done, click Generate Script to generate a .bdf file out of the .spcap
file.

Tip: You can click the check box Always show Capture File page after recording, which displays
on the bottom right of the Capture File page. If you disable this check box, Silk Performer will not
show the Capture File page and will automatically create a script out of the capture file.

Tip: It is possible to generate several scripts (with different options) from the same capture file.

Which project types use capture files?

Capture files will be created for the following project types:

• Web business transaction (HTML/HTTP)

• Web (Async)

• Web low level (HTTP)

• Mobile Devices

• Flex/AMF3 (Adobe)

• Flex/AMF3 (GraniteDS)

• Silverlight

• HTTP Live Streaming (HLS)

• Java over HTTP

• WebDAV (MS Outlook Web Access)

• Oracle ADF

• Email (SMTP/POP)

• Directory server (LDAP)

• Radius

• FTP

• TCP/IP based application

• Mixed Protocols

Specifics for Recording Flex/AMF3 and Java over HTTP

When you work with the project types Flex/AMF3 (Adobe), Flex/AMF3 (GraniteDS), or Java over
HTTP, the following specifics apply:

When the Capture File page displays issues (which can occur during creation of the capture file, due to
missing .jar files for example), use the buttons in the Resolve Problems area to fix these. Once all
problems are resolved, click Generate Script.

Traffic Filters

When you record a web application, the resulting script can include a lot of unwanted, application-
independent traffic. This unwanted traffic can overload a script considerably and it can make a script look
messy when it actually contains just a few lines of application-relevant code.

116 | Silk Performer Workbench 20.0

To tidy up a script and include only the traffic that was intended to be recorded, you can use the filters on
the Capture File page. Silk Performer provides the following filters:

• A general filter: This filter allows you to exclude proprietary TCP/IP traffic, UDP traffic, and traffic from
browser-specific domains.

• A domain filter: This filter allows you to exclude traffic from specific domains. You can use it to filter
traffic from third-party components that are embedded into a website, like social media or statistic
plugins.

• A path and query filter: This filter allows you to exclude web requests (API calls) from a script.

Filtering General Traffic from Capture Files

You can exclude proprietary TCP/IP traffic, UDP traffic, and browser-specific domains from your script by
using the following filter on the Capture File page.

1. In the Project tree, expand the Capture Files node and double-click a capture file.

2. Enable Exclude proprietary TCP/IP traffic.

Silk Performer automatically recognizes traffic of standard TCP/IP-based web protocols such as HTTP.
Traffic from non-standard web protocols is often generated by the browser and can be described as
proprietary TCP/IP traffic. It can be useful to exclude this traffic as it can clutter up a script and usually it
is not the traffic that was intended to be recorded.

3. Enable Exclude UDP traffic.

Browsers and web applications often use the UDP for device and service detection. UDP traffic is also
usually not intended to be recorded.

4. Enable Exclude browser-specific domains

When you record a web application, your script will usually also contain additional , browser-specific
web calls. These web calls are independent of the recorded application and are only scripted when you
use a certain browser to do the recording. Therefore, it is typically desirable to exclude these web calls,
which helps to create a cleaner script. The tooltip shows which browser-specific domains Silk Performer
found in your capture file.

5. Click Generate Script.

Filtering Domains from Capture Files

While recording a user transaction, the Silk Performer Recorder might also capture third-party components
that are embedded into a website, like social media or statistic plugins. To remove this unwanted traffic,
open a capture file, apply the domain filter, and generate a new script. The script will just contain the
desired code from the user transaction.

1. In the Project tree, expand the Capture Files node and double-click a capture file.

2. To include the traffic from one specific domain, click Include traffic from and select a domain from the
list box.

3. To include or exclude multiple domains, select one of the following options:

• Click Include only traffic from domains selected below to preserve only the traffic from the below
selected domains in the script.

• Click Exclude traffic from domains selected below to leave out the traffic from the below selected
domains in the script.

4. Expand the list of domains and select all domains that shall be included or excluded.

Tip: To quickly drill into the list, right-click the nodes and click Expand all or Collapse all.

5. Click Generate Script.

The generated script will be modified as follows:

Silk Performer Workbench 20.0 | 117

• Calls to filtered domains will be removed from the script.
• The BDL function WebSetDomainSuppress will be added to the script. Embedded objects are loaded

automatically by page-level functions, even if they are not explicitly listed in the script.
WebSetDomainSuppress avoids that.

Filtering Paths and Queries from Capture Files

You can exclude web requests (API calls) from a script by using the following filter on the Capture File
page.

1. In the Project tree, expand the Capture Files node and double-click a capture file.

2. In the Path and Query Filter Settings enter one or more patterns. The matches in the script display
immediately.

3. Click Generate Script.

The defined patterns are removed from the generated script.

Rule-Based Recording

This section explains how to configure Silk Performer's Recorder (HTTP, TCP/IP) using recording rule files.
It describes the structure and syntax of recording rules and shows examples. Recording rules are an
advanced Silk Performer concept. You need to have a thorough understanding of the involved protocols
(TCP/IP, HTTP and HTML) and of Silk Performer.

Note: You can not only manually script recording rules, you can also use templates from the
Recording Rules tab.

Recording rules allow you to configure the Recorder in a number of ways:

• TCP/IP: By providing protocol descriptions of proprietary TCP/IP based protocols.
• HTTP: By specifying the scenarios in which the Recorder should script parsing functions for dynamically

changing values and generate replacements for those values.

Recording Rule Files

Recording rule files are written in XML and have the file extension .xrl. They contain the rules for the Silk
Performer Recorder.

Project specific recording rules are stored in the documents directory of the respective project, for example:
<my documents>\Silk Performer <version>\Projects\TestProj\Documents\

Global recording rule files are stored in the public or the user's RecordingRules directory, for example:
<public user documents>\Silk Performer <version>\RecordingRules\

The root node for all recording rule file node trees is RecordingRuleSet. Here are the three types of
recording rules with their respective XML node:

• HTTP parsing rules: HttpParsingRule
• TCP rules for WebTcpipRecvProto(Ex): TcpRuleRecvProto
• TCP rules for WebTcpipRecvUntil: TcpRuleRecvUntil

Writing XML Files

Consider the following encoding requirements when you write XML files:

Encoding Special Characters

Some characters and symbols must be encoded for a proper XML syntax:

118 | Silk Performer Workbench 20.0

Description Character XML representation

Less Than < <

Greater Than > >

Quote " "

Ampersand & &

Encoding Binary Data

Binary data must be encoded in hexadecimal notation:

Description XML representation

CR (carriage return) 

LF (line feed)

NULL-byte �

Recording Rule File Example

Naming conventions used in this example

XML nodes are referred to by their full path names: RecordingRuleSet\HttpParsingRule\Search
\LB\RegExpr

When base paths are clear, the relative paths of XML nodes are used: Search\LB\RegExpr

Example
<?xml version="1.0" encoding="UTF-8"?>
<RecordingRuleSet>
 <HttpParsingRule>
 <Name>Siebel Session Cookie</Name>
 ...
 </HttpParsingRule>
 <TcpRuleRecvProto>
 <Name>Siebel TCP Protocol</Name>
 ...
 </TcpRuleRecvProto>
 <TcpRuleRecvUntil>
 <Name>Telnet screen</Name>
 ...
 </TcpRuleRecvUntil>
</RecordingRuleSet>

Recording Rule Data Types

Recording rule attributes come in a variety of data types. The following table lists all valid data types and
associated attribute descriptions:

Data Type Description

Strings All string values, including binary data (except NULL-
Bytes), are valid.

Binary Data All binary data, including NULL-Bytes, are valid.

Silk Performer Workbench 20.0 | 119

Data Type Description

Numbers Unsigned numbers in the range of 0 thru 4294967295 are
valid. The value 4294967295 is the Max unsigned
number.

Signed Numbers Signed numbers in the range of -2147483648 thru
2147483647 are valid. The value 2147483647 is the Max
signed number.

Numeric Ranges Numeric ranges are notated using the following syntax:
[MinValue] ["-"] [MaxValue]

MinValue and MaxValue are unsigned numbers.

If MinValue is omitted, a default value of 0 is used.

If MaxValue is omitted, a default value of Max unsigned
is used.

Boolean Values Boolean values are valid data types. These include true
and false.

Extended Boolean Values Extended Boolean values are valid data types. These
include true, unknown and false.

Distinct Values Many distinct values are valid. Valid values depend on
specific attributes.

Distinct Value Lists Comma-Separated Value (CSV) lists are valid. Valid
values depend on specific attributes.

Structured Data Compound data types consisting of nested XML nodes
are valid.

General Attributes of Recording Rules

All recording rule types allow users to specify both Name and Active attributes.

Attribute Description

Name attribute Data type strings

Default value: Unnamed Rule

This attribute specifies a name for a given recording rule.
Names do not require a special meaning or syntax. They
may appear in recorded script comments.

Active attribute Data type Boolean Values

Default value: true

This attribute specifies whether or not a given recording
rule is active. Inactive recording rules are ignored. This
attribute allows for the temporary disabling of recording
rules without them being deleted from recording rule files.

HTTP Parsing Rules

HTTP parsing rules are specified by XML nodes with the name HttpParsingRule.

120 | Silk Performer Workbench 20.0

Purpose

HTTP parsing rules specify when the Recorder should generate the parsing function
WebParseDataBoundEx() for dynamically changing values, and then substitute parsing results where
appropriate. This enables the Recorder to directly generate working scripts-and thereby eliminates the
need for visual script customization using TrueLog Explorer.

When recording HTTP traffic, the Recorder applies HTTP parsing rules with the following settings:

• Page-level Web API
• Low-level Web API with/without automatic page detection

The Recorder does not apply HTTP parsing rules when recording HTTP traffic with the TCP/IP-level API
setting.

How HTTP Parsing Rule Application Works

HTTP parsing rule application involves two main steps:

• Finding possible replacements (called "Rule Hits" or simply "Hits").
• Scripting parsing functions and replacements.

Details regarding both steps can be specified in HTTP parsing rules.

Finding possible replacements

During recording, each server response is parsed for rule hits. HTTP parsing rules specify how parsing is
to be done and which parsing results (hits) are to be retained for future use. Parsing functions are not
generated in this step; hits are simply retained for future use.

Scripting Parsing Functions

When the Recorder scripts a string value (either a parameter of a function, or a form field value or name), it
examines all identified hits and determines a set of hits that are non-overlapping substrings of the string
that is to be scripted. The Recorder then scripts the necessary parsing functions and replacements, rather
than scripting the original string.

Structuring HTTP Parsing Rules

To keep the two values separate, HTTP parsing rules consist of two sections named Search and
ScriptGen.

<?xml version="1.0" encoding="UTF-8" ?>
<RecordingRuleSet>

 <HttpParsingRule>
 <Name>Example Rule</Name>
 <Active>true</Active>
 <Search>
 ...
 </Search>
 <ScriptGen>
 ...
 </ScriptGen>
 </HttpParsingRule>
</RecordingRuleSet>

Conversion Functions

You can write your own custom conversion function and specify this conversion function in a recording rule.
The conversion function is contained in a native DLL file (programmed in C/C++). Within the conversion

Silk Performer Workbench 20.0 | 121

function, the value in the parsing rule is converted using the specified function, while the parsing function
only parses the original value.

For example, when values are returned by the server in a double format they are sent by the client in an
integer format. Therefore, a simple parsing rule will not find any matches in the script. However by applying
a custom conversion function that converts the integer to a double format, the parsing rule is able to find
the expected matches again.

Note: A conversion function can only be specified for HTTP Parsing Rules.

Sample Recording Rule

Below is an example of a recording rule with the conversion function specified.

<RecordingRuleSet>
 <HttpParsingRule>
 <Name>Parse by Boundaries, Convert and Replace (with custom conversion
DLL)</Name>
 <Search>
 <SearchIn type="Select{Body|Header|All}">Body</SearchIn>
 <LB>
 <Str>></Str>
 </LB>
 <RB>
 <Str></Str>
 </RB>
 <Conversion>
 <Dll>SampleConversion.dll</Dll>
 <Function>ConvertToUpperCase</Function>
 </Conversion>
 </Search>
 <ScriptGen>
 <ReplaceIn type="MultiSelect{FormFieldValue|Url|PostedData}">FormFieldV
alue, Url, PostedData</ReplaceIn>
 <VarName>ParsedByBoundary</VarName>
 <GenDebugPrint>true</GenDebugPrint>
 <Conversion>
 <BdlFunction>MyConvertToUpperCase</BdlFunction>
 </Conversion>
 </ScriptGen>
 </HttpParsingRule>
</RecordingRuleSet>

Guided HTTP Parsing Rule Example

This section steps through the process of designing a HTTP parsing rule for the sample application, ShopIt
V 6.0, which ships with Silk Performer.

Recording ShopIt V 6.0 Without Parsing Rules

The Silk Performer sample Web application, ShopIt V 6.0, was deliberately built in such a way that the
Recorder has to script the context-less function WebPageUrl() with a form definition that contains a
session ID. This was achieved by having JavaScript assemble an URL.

Recording ShopIt V 6.0 without recording rules results in a script with a hard coded session ID, as shown in
the following example.

WebPageUrl(sParsedUrl, "Unnamed page", SHOPITV60_
KINDOFPAYMENT_ASP002);

// …

122 | Silk Performer Workbench 20.0

dclform
 SHOPITV60_KINDOFPAYMENT_ASP002:
 "choice" := "CreditCard",
 "price" := "69.9",
 "sid" := "793663905";

Customizing ShopIt V 6.0 With TrueLog Explorer

In executing a Try Script run, the hard-coded session ID causes a replay error. The session handling
customization feature of TrueLog Explorer solves this problem, modifying the script as shown in the
following example.

dclparam
 sSessionInfo1 : string;

dcluser
 user
 VUser
 transactions
 TInit : begin;
 TMain : 1;

var
 sFormSid1 : string;

// ...

 WebParseDataBoundEx(sSessionInfo1, STRING_COMPLETE,
 "name=\"", 3, "\"", WEB_FLAG_IGNORE_WHITE_SPACE
 | WEB_FLAG_CASE_SENSITIVE, 1);
 WebPageLink("Check out", "ShopIt - Check Out");// Link 3
 Print("sSessionInfo1: " + sSessionInfo1);

 sFormSid1 := sSessionInfo1;
 WebPageUrl("http://u2/ShopItV60/kindofpayment.asp",
 "Unnamed page", SHOPITV60_KINDOFPAYMENT_ASP003);

// ...

dclform
 SHOPITV60_KINDOFPAYMENT_ASP003:
 "choice" := "CreditCard",
 "price" := "15.9",

// "sid" := "348363999";
 "sid" := sFormSid1;

A second Try Script run reveals that the customization was successful and that the
script now runs correctly.

Transferring Customization Details to the Recorder

The script runs correctly now that it has been customized. However a problem exists in that every script
that will be recorded in the future must be also customized.

HTTP parsing rules enable the Recorder to continue this type of customization automatically in the future-
so that recorded scripts can be automatically generated without needing manual customization.

Silk Performer Workbench 20.0 | 123

To do this, research must be done into how the session ID can be parsed. The customization offered by
TrueLog Explorer offers a good place to begin. It reveals the API call where the session ID first occurs, and
boundaries that can be used to parse the session ID.

Using TrueLog Explorer, the first occurrence of the session ID can be located in the HTML code, as shown
in the following example.

<script LANGUAGE="JavaScript">
 function doProcess(mylink)
 {
 scheme="http://";
 server="u2";
 serverport="";
 path="/ShopItV60/";
 file="kindofpayment.asp?";
 name="348364005";
 price="15.9";
 choice="CreditCard";
 mylink.href=scheme + server + serverport + path
 + file + "choice=" + choice + "&price="
 + price + "&sid=" + name;
 }
</script>

The left boundary ("name=\"") and the right boundary ("\"") identified by TrueLog Explorer seem to be
reasonable choices for parsing the session ID. Now an initial version of a HTTP parsing rule can be written
for the Recorder.

<?xml version="1.0" encoding="UTF-8" ?>
<RecordingRuleSet>
 <HttpParsingRule>
 <Name>ShopIt V6.0 Session Id</Name>
 <Search>
 <SearchIn>Body</SearchIn>
 <LB>
 <Str>name="</Str>
 </LB>
 <RB>
 <Str>"</Str>
 </RB>
 </Search>
 <ScriptGen>
 <VarName>ShopItSessionId</VarName>
 </ScriptGen>
 </HttpParsingRule>
</RecordingRuleSet>

This rule file may be saved to the public RecordingRules directory of Silk Performer-so that the rule will be
globally available to all projects. The file name doesn't matter, but the file extension ".xrl" must be used.
Alternately, if the recording rule is to be used with only one project, the file may be saved to the Documents
directory of a Silk Performer project.

ShopIt V 6.0 Session ID's don't appear in HTTP response headers, so it is specified that only response
bodies are to be searched (using attribute Search\SearchIn).

The session ID can be found by searching a left boundary. This boundary is specified in the attribute
Search\LB\Str. Note that the quote symbol must be encoded in XML using the character sequence
""".

A single quote marks the end of session ID's. This is specified in the attribute Search\RB\Str. Here
again, the quote character must be encoded.

124 | Silk Performer Workbench 20.0

Finally, specifics regarding how the variable for the parsing result should be named need to be defined.
Names are specified using the attribute ScriptGen\VarName.

Try the Recording Rule

When the rule is used in a recording session, the result is a recorded script with lots of variables.

var
 gsShopItSessionId : string; // Confirm-Button
 gsShopItSessionId_001 : string; // 348364008
 gsShopItSessionId_002 : string; // myForm
 gsShopItSessionId_003 : string; // address
 gsShopItSessionId_004 : string; // city
 gsShopItSessionId_005 : string; // state
 gsShopItSessionId_006 : string; // zip
 gsShopItSessionId_007 : string; // ZipCode
 gsShopItSessionId_008 : string; // cardtype
 gsShopItSessionId_009 : string; // cardnumber
 gsShopItSessionId_010 : string; // expiration
 gsShopItSessionId_011 : string; // sid

MYFORM004:
 gsShopItSessionId_003 := "a",
 gsShopItSessionId_004 := "b",
 gsShopItSessionId_005 := "c",
 gsShopItSessionId_006 := "" <SUPPRESS> ,
 gsShopItSessionId_007 := "d",
 gsShopItSessionId_008 := "Visa",
 gsShopItSessionId_009 := "111-111-111",
 gsShopItSessionId_010 := "07.04",
 gsShopItSessionId_011 := "" <USE_HTML_VAL> ;

This is because the rule is too general. The boundaries specified don't simply apply to the parsing of the
session ID, they apply to almost all of the form fields. Although this doesn't prevent the script from replaying
successfully, it's overkill.

Create a More Specific Rule

A more specific rule that creates a parsing function only for the session ID is needed. There are several
ways of achieving this.

The Recorder uses the boundary strings in the Search attribute of parsing rules to extract substrings from
each HTTP response. These substrings are called "rule hits" or simple "hits." The Recorder remembers
each hit. When scripting a string, the Recorder checks to see if any of the identified rule hits are included in
the scripted string. If they are, the Recorder generates a parsing function for the rule hit and substitutes the
resulting variable into the scripted strings.

Limit the number of rule hits

A more specific rule can be created based on the unique characteristics of ShopIt V 6.0 Session IDs.

Session ID properties to consider:

• They consist of digits only.
• Their length is always 9 digits.

Taking this into account, the rule can be extended.

Limit the number of rule hits by conditions

<?xml version="1.0" encoding="UTF-8" ?>
<RecordingRuleSet>

Silk Performer Workbench 20.0 | 125

 <HttpParsingRule>
 <Name>ShopIt V6.0 Session Id</Name>
 <Search>
 <SearchIn>Body</SearchIn>
 <LB>
 <Str>name="</Str>
 </LB>
 <RB>
 <Str>"</Str>
 </RB>
 <CondRegExpr>[0-9]+</CondRegExpr>
 <CondResultLen>9-9</CondResultLen>
 </Search>
 <ScriptGen>
 <VarName>ShopItSessionId</VarName>
 </ScriptGen>
 </HttpParsingRule>
</RecordingRuleSet>

The attribute Search\CondRegExpr specifies a regular expression that is applied to each rule hit. Rule
hits that do not match this regular expression are dropped. The regular expression in the example above
specifies that only rule hits consisting of digits are relevant.

The attribute Search\CondResultLen specifies a range of acceptable length for rule hits. Example
above specifies that only hits with exactly nine characters are relevant. A subsequent recording session
using this modified rule is successful: The recorded script contains a parsing function for the session ID
only.

Script recorded using a modified rule

var
 gsShopItSessionId : string; // 348364011

dclform
 SHOPITV60_KINDOFPAYMENT_ASP003:
 "choice" := "CreditCard",
 "price" := "15.9",
 "sid" := gsShopItSessionId; // value: "348364011"

MYFORM004:
 "address" := "a", // changed
 "city" := "b", // changed
 "state" := "c", // changed
 "zip" := "" <SUPPRESS> , // value: ""
 "ZipCode" := "d", // added
 "cardtype" := "Visa", // added
 "cardnumber" := "111-111-111", // changed
 "expiration" := "07.04", // changed
 "sid" := "" <USE_HTML_VAL> ;//value:"348364011"

Specify allowed usage of rule hits

Rather than limiting the number of rule hits, one can be more specific in specifying where in scripts rule hits
are to be used. Consider the following for this example: The session ID occurs only in form field values
where the form field name is "sid". By extending the ScriptGen section of the parsing rule (as shown in
the example below), rule hits are used only under these specific criteria.

Be more specific in script generation
<?xml version="1.0" encoding="UTF-8"?>
<RecordingRuleSet>

126 | Silk Performer Workbench 20.0

 <HttpParsingRule>
 <Name>ShopIt V6.0 Session Id</Name>
 <Search>
 <SearchIn>Body</SearchIn>
 <LB>
 <Str>name="</Str>
 </LB>
 <RB>
 <Str>"</Str>
 </RB>
 </Search>
 <ScriptGen>
 <VarName>ShopItSessionId</VarName>
 <ReplaceIn>FormFieldValue</ReplaceIn>
 <Conditions>
 <CompareData>
 <Data>sid</Data>
 <ApplyTo>FormFieldName</ApplyTo>
 </CompareData>
 </Conditions>
 </ScriptGen>
 </HttpParsingRule>

</RecordingRuleSet>

The attribute ScriptGen\ReplaceIn specifies that rule hits may only be used when the Recorder scripts
a form field value. The condition additionally specifies that a replacement is allowed only if the associated
form field name is sid. Recording with this modified rule generates a script that is identical to the script
generated using the original rule.

Creating a Conversion DLL

The conversion DLL has to be a native Win32 DLL (no .NET assembly). To create it in Microsoft Visual
Studio, you have to create a Win32 project and select the application type DLL.

On 64-bit operating systems, Silk Performer uses a 64-bit process to analyze capture files and generate
scripts. Thus, you have to build two versions of the conversion DLL: a 32-bit DLL, which is used for
replaying scripts, and a 64-bit DLL, which is used for generating scripts. The 64-bit DLL has to be named
<name of the 32-bit DLL>_x64.dll and located in the same directory as the 32-bit DLL.

If you cannot create a 64-bit DLL for any reason, you can force Silk Performer to use a 32-bit process for
script generation by setting the following registry key to 1: HKEY_LOCAL_MACHINE\SOFTWARE\Silk
\SilkPerformer\<version>\Force32BitCaptureAnalyzer.

Attention: Using the 32-bit script generator can cause issues with large capture files.

Silk Performer has provided sample Microsoft Visual Studio projects with header and .cpp files that give
you guidance on how to create your own custom conversion DLL. The samples are located at <public
user documents>\Silk Performer <version>\SampleApps\SampleConversion.

After you have created the project, there are some additional project settings to change:

• The Character Set option has to be set to Use Multi-Byte Character Set (MBCS). This is a requirement,
because the strings to be converted are passed as MBCS strings.

• It is recommended that you use the static version of the C-runtime to remove dependencies to C-
runtime DLLs. These dependencies could cause problems if the C-runtime DLLs (of used version) are
not installed on the agent or controller machine. To use the static C-runtime libraries, change the
Runtime Library setting in C++ / Code Generation to the following:

• Multi-threaded (/MT) in the Release configuration
• Multi-threaded Debug (/MTd) in the Debug configuration

Silk Performer Workbench 20.0 | 127

Recommendation

If you reference the conversion DLL in a recording rule, you have to copy the DLL either into the Silk
Performer recording rules directory or into the project directory. When developing the conversion DLL in
Microsoft Visual Studio, you could copy the DLL to one of these directories (recording rules or project) in a
post-build step or change the output directory path in the Release configuration to the recording rules
directory.

Exporting the conversion function

You must export the conversion function with the following signature:

extern "C"
{
 __declspec(dllexport)
 long MyConversionFunction(
 LPCSTR sOriginalValue,
 LPSTR sConvertedValue,
 unsigned long* psConvertedValueLen,
 void* pReserved);
}

The purpose of using C linkage (extern "C") is to turn off C++ name mangling of the exported function. If
using C++ linkage, other information like the types of arguments would be put into the exported name of
the function. Use the "pure" function name as the exported function name (this is
MyConversionFunction in the example above).

Function arguments:

sOriginalValue The MBCS string value that has to be converted.

sConvertedValue The string buffer that receives the converted value as
MBCS string.

psConvertedValueLen Points to a variable which contains the length of the string
buffer sConvertedValue. This variable’s value has to be
set to the number of bytes written to sConvertedValue if
the conversion succeeded. This variable value has to be
set to the number of bytes required for the converted
value if the size of the string buffer sConvertedValue is
too small.

pReserved Reserved for future usage.

Return value • ERROR_SUCCESS (0): Returned if the conversion
was successful. *psConvertedValueLen now contains
the number of bytes written to sConvertedValue.

• ERROR_INSUFFICIENT_BUFFER (122): Returned if
the conversion failed because the size of of
sConvertedValue (*psConvertedValueLen) is too
small for the converted value. *psConvertedValueLen
now contains the number of bytes required to store
the converted value. The function will be called again
with size of sConvertedValue increased to
*psConvertedValueLen.

• Return any other value to indicate that the conversion
failed.

128 | Silk Performer Workbench 20.0

Section Search - Finding Rule Hits

Details about finding rule hits are specified in the Search section. All XML paths of properties described in
the section are relative to HttpParsingRule\Search.

Introduction

Rule hits can be extracted from HTTP responses in two ways:

• by defining boundaries
• by applying a regular expression

Defining boundaries

When a rule defines boundaries, any occurrence of a left boundary within an HTTP response marks the
beginning of a rule hit. From this point onward within the HTTP response, the first occurrence of a right
boundary marks the end of the rule hit.

Left boundaries can be defined in three ways:

• Strings: Any occurrence of a given string in an HTTP response marks the beginning of a rule hit.
• Regular Expressions: Any substring of a HTTP response that matches a specified regular expression

marks the beginning of a rule hit.
• Offset Calculations: HTTP responses are run through the Offset Calculation to determine the beginning

of a rule hit. Offset Calculation is explained in section “Offset, Length”.

Right boundaries can be defined in four ways:

• Strings: The next occurrence of a given string after the left boundary position marks the end of the rule
hit.

• Regular Expressions: The next sub string of the HTTP response matching the given regular expression
after the left boundary position marks the end of the rule hit.

• Length: The end of a rule hit is determined by running part of an HTTP response (from the beginning of
the rule hit through to the end of the response) through a Length Calculation. Length Calculation is
explained in Section “Offset, Length”.

• Character type: The next character that matches a given set of character types marks the end of the
rule hit.

Applying regular expressions

If a rule defines a regular expression, any substring of an HTTP response that matches that regular
expression yields a rule hit. By default, the entire match is the rule hit. Alternately, the rule can define a tag
number so that the tagged subexpression is the rule hit.

LB\Str Attribute

Value Description

Type Binary Data

Default (empty)

Description This attribute specifies a string for searching rule hits.
Each occurrence of this string marks the beginning of a
rule hit. When searching, the attributes
CaseSensitive and IgnoreWhiteSpaces are
used.

Examples

<LB>

Silk Performer Workbench 20.0 | 129

 <Str>name="</Str>
</LB>

<LB>
 <Str>BV_EngineID=</Str>
</LB>

LB\RegExpr Attribute

Value Description

Type Strings

Default (empty)

Description This attribute specifies a regular expression for searching
rule hits. Each substring of an HTTP response that
matches the regular expression marks the beginning of a
rule hit. When searching matching substrings, the
attributes CaseSensitive and
IgnoreWhiteSpaces are not used.

Examples

<LB>
 <RegExpr>name *= *["']</RegExpr>
</LB>

LB\Offset Attribute

Value Description

Type Signed Numbers

Default (empty)

Description This attribute specifies an offset value for an Offset/
Length calculation, as described in Section “Offset,
Length”, Offset, Length. This calculation is applied to the
entire HTTP response with the given offset and the length
of 0. The beginning of the calculation's result marks the
beginning of the rule hit.

Example

<LB>
 <Offset>17</Offset>
</LB>

RB\Str Attribute

Value Description

Type Binary Data

Default (empty)

Description This attribute specifies a string that searches for the end
of rule hits. It is used with the beginning of each rule hit

130 | Silk Performer Workbench 20.0

Value Description

identified using LB\Str, LB\RegExpr or LB
\Offset. The attributes CaseSensitive and
IgnoreWhiteSpaces are used during searches.

Example

<RB>
 <Str>"</Str>
</RB>

RB\CharType Attribute

Value Description

Type Distinct Value Lists

Default (empty)

Description This attribute specifies a list of character types and is
used to search for the end of each rule hit found using LB
\Str, LB\RegExpr or LB\Offset. The ends of rule
hits are defined by the first character that matches one of
the character types specified below.

Allowed values are:

• UpperCase: Uppercase characters
• LowerCase: Lowercase characters
• NewLine: Newline characters
• Digit: Digits 0-9
• HexDigit: Hexadecimal digits 0-9, a-z, A-Z
• Letter: letters a-z, A-Z
• White: Whitespaces
• WhiteNoSpace: Whitespaces, excluding blank spaces
• Printable: Printable characters
• NonPrintable: Non-printable characters
• EndOfString: End of Strings (single and double quote)
• NonBase64: Characters not used in Base 64 encoding

Example

<RB>
 <CharType>EndOfString, White</CharType>
</RB>

RB\RegExpr Attribute

Value Description

Type Strings

Default (empty)

Silk Performer Workbench 20.0 | 131

Value Description

Description This attribute specifies a regular expression that searches
for the end of rule hits. It is used with the beginning of
rule hits found using LB\Str, LB\RegExpr or LB
\Offset. The attributes CaseSensitive and
IgnoreWhiteSpaces are not used during searches.

Example

<RB>
 <RegExpr>["' *value]</RegExpr>
</RB>

RB\Length Attribute

Value Description

Type Signed Numbers

Default (empty)

Description This attribute specifies a length value for an Offset/Length
calculation, as described in section “Offset, Length”. The
calculation is applied from the portion of an HTTP
response where a rule hit begins through to the end of
the response; it uses the offset of 0, and the given length.
The end of the calculation's result marks the end of the
rule hit.

Example

<RB>
 <Length>4</Length>
</RB>

RegExpr and RegExprTag Attribute

Value Description

Type Strings, Numbers

Default (empty), 0

Description These two attributes specify a regular expression that is
used for searching rule hits. If the attribute RegExprTag
is not omitted, it must specify the number of a tagged
sub-expression within the given regular expression.

Rule hits are searched for by applying the given regular
expression to HTTP responses. Each substring of an
HTTP response that matches the regular expression is a
rule hit. If the attribute RegExprTag is specified, the
rule hit is not the entire match, but the given tagged sub-
expression.

132 | Silk Performer Workbench 20.0

Example

<RegExpr>name="\([0-9]+\)"</RegExpr>
<RegExprTag>1</RegExprTag>

SearchIn Attribute

Value Description

Type Distinct Value Lists

Default All

Allowed values are:

• All: This is an abbreviation for the complete list of other values.
• Header: Search HTTP response headers
• Body: Search HTTP response bodies
• HeaderName: Refers to the first parameter of the function WebHeaderAdd.
• HeaderValue: Refers to the second parameter of the function WebHeaderAdd.

This attribute specifies where to search for rule hits, either in response headers, response bodies, or both.

Example

<SearchIn>Body</SearchIn>
<SearchIn>Header</SearchIn>

CaseSensitive Attribute

Value Description

Type Boolean Values

Default false

Description This attribute specifies whether searches should be case-
sensitive or caseinsensitive when searching the strings
LB\Str and RB\Str.

It also specifies if the option flag
WEB_FLAG_CASE_SENSITIVE should be scripted
when scripting the function WebParseDataBoundEx.

IgnoreWhiteSpaces Attribute

Shows the type and the default value of the attribute and provides a description.

Value Description

Type Boolean Values

Default true

Description This attribute specifies whether searches should ignore
white spaces when searching the strings LB\Str and
RB\Str.

Silk Performer Workbench 20.0 | 133

Value Description

It also specifies whether to script the option flag
WEB_FLAG_IGNORE_WHITE_SPACE when scripting
the function WebParseDataBoundEx.

CondContentType Attribute

Value Description

Type Strings

Default (empty)

Description This attribute specifies a string that restricts rule hit
searches to server responses that match the specified
content type. The comparison is done using a
prefixmatch.

Example

<CondContentType>text/</CondContentType>

This restricts the searching for rule hits to server responses with a content type such as "text/html" or "text/
plain."

CondRegExpr Attribute

Value Description

Type Strings

Default (empty)

Description This attribute specifies a regular expression that is used
to determine if a rule hit should be retained for future use.
Each rule hit is checked to see if it matches the regular
expression. Matching rule hits are retained, non-matching
rule hits are dropped.

Example

<CondRegExpr>eCS@Store@[0-9]+-.*</CondRegExpr>

CondResultLen Attribute

Value Description

Type Numeric Ranges

Default 2-

Description This attribute specifies a range that is used to determine
if a rule hit should be retained for future use. If the
number of bytes in the hit doesn't match the given range,
the hit is dropped.

134 | Silk Performer Workbench 20.0

Conditions Attribute

Value Description

Type Structured Data

Description This attribute specifies conditions that are applied to
determine if a rule hit should be retained for future
replacement.

The conditions for each rule hit are evaluated within an
environment that allows access to the HTTP request/
response that included the hit, in addition to other
relevant data.

If the conditions aren't determined to be true, the hit is
dropped. See “Conditions” for more information regarding
conditions. See the Section “ConditionEvaluation
Environment” for more information regarding what may be
subject to conditions.

Conversion\Dll Attribute

Value Description

Type Strings

Default (empty)

Description This attribute is the name of the conversion DLL used for
modifying a parsed value. Make sure that the conversion
DLL specified is added as a data file. The runtime
searches for the DLL in the project directory and in the
recording rules directory.

Conversion\Function Attribute

Value Description

Type Strings

Default (empty)

Description This attribute is the name of the conversion function
exported by the conversion DLL.

Scripting Parsing Functions and Replacements

While the Search section specifies how to find rule hits in HTTP responses, the ScriptGen section
specifies details regarding script generation. All XML paths of attributes described here are relative to:
HttpParsingRule\ScriptGen.

The ScriptGen section allows users to specify conditions that restrict the usage of rule hits to script
locations where replacement is appropriate, and to exclude locations where rule hits appear purely by
coincidence. Additionally, some attributes can be used to instruct the Recorder as to which variable names
to use and what comments are to be added to scripts to increase their readability.

Silk Performer Workbench 20.0 | 135

VarName Attribute

Value Description

Type Strings

Default (empty)

Description This attribute specifies a variable name to script for the
result of parsing functions. If omitted, the name of the rule
is used as the variable name.

OnlyIfCompleteResult Attribute

Value Description

Type Boolean Value

Default false

Description This attribute specifies that a replacement should be
scripted only if a complete string to be scripted can be
replaced with a single variable. If false, replacements are
scripted when a rule hit is a substring of the string to be
scripted.

MaxLbLen Attribute

Value Description

Type Numbers

Default Max unsigned

Description When scripting a parsing function, the Recorder chooses
a left boundary. This attribute can be used to specify a
maximum length for the left boundary, in cases where
there is danger that the left boundary may contain
session information.

ReplaceIn Attribute

Value Description

Type Distinct Value Lists

Default All

Description This attribute specifies script locations that may contain
hits to be replaced. Valid values are:

• All: This is an abbreviation for the complete list of
other values.

• Url: Replace in URL parameters (various functions, for
example WebPageUrl)

• LinkName: Replace in link names (function
WebPageLink). Link names that result from
WebPageParseUrl are not replaced.

• FormName: Replace in form names (function
WebPageSubmit)

136 | Silk Performer Workbench 20.0

Value Description

• PostedData: Replace in binary posted data (various
functions, for example WebPagePost)

• FormFieldName: Form field name in the dclform
section of the script

• FormFieldValue: Form field value in the dclform
section of the script

• SetCookie: Parameter of the function
WebCookieSet

• HeaderName: Refers to the first parameter of the
function WebHeaderAdd.

• HeaderValue: Refers to the second parameter of the
function WebHeaderAdd.

AlwaysNewFunc Attribute

Value Description

Type Boolean Values

Default false

Description This attribute specifies whether or not a rule hit, once
parsed, can be reused or if the Recorder should script a
new parsing function to parse the most recent occurrence
of the string to be replaced.

CommentToVar Attribute

Value Description

Type Boolean Values

Default true

Description This attribute specifies whether or not a comment should
be generated for the variable that contains the parsing
result. If true, a comment that includes the value during
recording is generated.

CommentToFunc Attribute

Value Description

Type Boolean Values

Default false

Description This attribute specifies whether or not a comment should
be generated for the parsing function
WebParseDataBoundEx. If true, a comment is
generated during recording that includes the rule name
that triggered the parsing function and the parsing result
during recording.

Silk Performer Workbench 20.0 | 137

GenBytesReadVar Attribute

Value Description

Type Boolean Values

Default false

Description This attribute specifies whether or not to generate a
variable for the number of bytes parsed by a parsing
function (see WebParseDataBoundEx, parameter
nBytesParsed).

GenDebugPrint Attribute

Value Description

Type Boolean Values

Default false

Description This attribute specifies whether or not to generate a
diagnostic Print function after the script function where a
generated parsing function is in effect. If true, a Print
function that prints the parsing result to the Silk Performer
controller output window is scripted.

Conditions Attribute

Value Description

Type Structured Data

Description This attribute specifies conditions that are applied to
determine if a rule hit should be retained for future
replacement.

The conditions for each rule hit are evaluated within an
environment that allows access to the HTTP request/
response that included the hit, in addition to other
relevant data.

If the conditions aren't determined to be true, the hit is
dropped. See “Conditions” for more information regarding
conditions. See the Section “ConditionEvaluation
Environment” for more information regarding what may be
subject to conditions.

Tokenizing of Rule Hits

The Search section used both in HttpParsingRules and StringScriptingRules contains a feature
that allows to extract rule hits by tokenizing the search result. The idea is that each substring extracted (for
example, using the various left/right boundary options) is not the rule hit itself, but can be "tokenized" to
yield several rule hits. This tokenizing can be done in several ways and is specified by the xml tag
Tokenize.

Valid values for the tag Tokenize are:

• SiebelTokenHtmlSingleQuote

• SiebelTokenHtml

138 | Silk Performer Workbench 20.0

• siebelTokenApplet

The tokenizing methods SiebelTokenHtmlSingleQuote and SiebelTokenHtml tokenize the search
result into individual strings enclosed either in single or in double quotes. The tokenizing method
SiebelTokenApplet tokenizes the search result assuming a series of length prefixed strings as used in
applet responses in the Siebel 7 web application.

Example for SiebelTokenHtml

The search result ["TestName","TestSite","USD","02/21/2003","N","1-2T"] will be
tokenized and results in the following rule hits:

• TestName
• TestSite
• USB
• 02/21(2003
• N
• 1-2T

Example for SiebelTokenApplet

The search result 19*02/21/2003 08:20:176*SADMIN4*Note5*1-1P5 will be tokenized and results
in the following rule hits:

• 02/21/2003 08:20:17
• SADMIN
• Note
• 1-1P5

The recorder will use these rule hits in the script by generating one of the tokenizing functions to extract the
tokens at runtime. For a recording rule with tokenizing in the Search section:

<HttpParsingRule>
 <Name>Siebel Submit Data Array in HTML (from Javascript function call)</
Name>
 <Active>true</Active>
 <Search>
 <SearchIn>Body</SearchIn>
 <LB>
 <Str>SWESubmitForm</Str>
 </LB>
 <RB>
 <Str>'</Str>
 </RB>
 <Tokenize>SiebelTokenHtml</Tokenize>
 <CondResultLen>1-</CondResultLen>
 </Search>
 <ScriptGen>
 ...
 </ScriptGen>
</HttpParsingRule>

Script fragments from Siebel where tokenizing is used:

var
gsRowValArray_003 : string; // 0*19*02/21/2003 08:20:176*SADMIN4*Note5*1-1P5
// ...
WebParseDataBoundEx(gsRowValArray_003, sizeof(gsRowValArray_003),
"ValueArray`", WEB_OCCURENCE_LAST, "`",
WEB_FLAG_IGNORE_WHITE_SPACE, 1);
WebPageForm("http://lab72/sales_enu/start.swe", SALES_ENU_START_SWE026,

Silk Performer Workbench 20.0 | 139

"Account Note Applet: InvokeMethod: NewRecord");
Print("Parsed \"RowValArray_003\", result: \"" + gsRowValArray_003 + "\"");
// Was "0*19*02/21/2003 08:20:176*SADMIN4*Note5*1-1P5" when recording
// ...
dclform
// ...
SALES_ENU_START_SWE027:
"SWEMethod" := "GetQuickPickInfo",
"SWEVI" := "",
"SWEView" := "Account Note View",
"SWEApplet" := "Account Note Applet",
"SWEField" := "s_2_2_24_0",
"SWER" := "0",
"SWEReqRowId" := "1",
"s_2_2_26_0" := "2/21/2003 08:20:17 AM",
"s_2_2_27_0" := SiebelTokenApplet(gsRowValArray_003, 2), // value: "SADMIN"
"s_2_2_24_0" := SiebelTokenApplet(gsRowValArray_003, 3), // value: "Note"
"s_2_2_25_0" := "",
"SWERPC" := "1",
"SWEC" := "11",
"SWEActiveApplet" := "Account Note Applet",
"SWEActiveView" := "Account Note View",
"SWECmd" := "InvokeMethod",
"SWERowId" := SiebelTokenApplet(gsRowValArray_003, 4),
// value: "1-1P5"
"SWERowIds" := "SWERowId0=" + SiebelTokenHtml(gsRowValArray_002, 18),
// value: "SWERowId0=1-2T"
"SWEP" := "",
"SWEJI" := "false",
"SWETS" := GetTimeStamp(); // value: "1045844419057"

Section ScriptGen

This section describes the ScriptGen section and the respective attributes.

MinRbLen LinLbLen

Value Description

Type Numbers

Default 1

Description This option allows to specify a minimum length for the
right / left boundary string which will be determined by the
recorder and scripted as a parameter of the function call
WebParseDataBoundEx.

Examples

<LB>
 <Str>name="</Str>
</LB>

<LB>
 <Str>BV_EngineID=</Str>
</LB>

140 | Silk Performer Workbench 20.0

LastOccurence

Value Description

Type Boolean Values

Default false

Description If this option is set to true, the recorder will script the
constant WEB_OCCURENCE_LAST instead of the
actual occurence of the left boundary, if the found
occurence indeed was the last one during recording.

ExpectBinaryData

If this option is set to true, the recorder will generate a "bin-cast" for every use of the variable which is
generated by this rule. This is necessary with the introduction of dynamic strings, if it is expected that the
parsing result will contain binary data.

Instead of "SomeText" + gsParsedValue + "some other text", the recorder will generate
"SomeText" + bin(gsParsedValue) + "some other text".

Default: false

Conversion\Bdl Attribute

This attribute is optional. It is the name of the BDL function wrapping the call of the conversion DLL
function. If missing or left empty, the BDL wrapper function will have the same name as the Conversion
\Dll Attribute function.

TCP/IP Protocol Rules

The Recorder uses TCP/IP protocol rules to detect proprietary TCP/IP protocols. If detected, the Recorder
generates functions (depending on the protocol detected) that are better suited to handling dynamic server
responses than is the WebTcpipRecvExact function, which is automatically scripted for unknown
protocols.

Types of TCP/IP Protocol Rules

There are two types of TCP/IP protocol rules.

TcpRuleRecvProto

Use TcpRuleRecvProto rules to describe length-based protocols. Length-based protocols are protocols
in which the number of bytes to be received from the server can be extracted from a fixed location in a
protocol header. This rule type is specified by XML nodes with the name TcpRuleRecvProto.

TcpRuleRecvUntil

Use TcpRuleRecvUntil rules to describe protocols in which the end of a server response can be
detected by a terminating sequence of bytes. This rule type is specified by XML nodes with the name
TcpRuleRecvUntil.

Structure of TCP/IP Protocol Rules

Both types of TCP/IP protocol rules share the same basic structure. The Identify section contains attributes
specific to the rule type. The Conditions section contains additional conditions that can be specified to
avoid "detecting" protocols where they should not be detected (in cases where server responses
coincidentally resemble protocols).

<TcpRuleRecvProto>

Silk Performer Workbench 20.0 | 141

 <Name>Sample TCP RecvProto Rule</Name>
 <Active>true</Active>
 <Identify>
 …
 </Identify>
 <Conditions>
 …
 </Conditions>
</TcpRuleRecvProto>

<TcpRuleRecvUntil>
 <Name>Sample TCP RecvUntil Rule</Name>
 <Active>true</Active>
 <Identify>
 …
 </Identify>
 <Conditions>
 …
 </Conditions>
</TcpRuleRecvUntil>

TcpRuleRecvProto

The TcpRuleRecvProto rule type describes protocols with the following basic structure:

The number of bytes to be received can be extracted from the protocol header at offset LengthOffset
using LengthLen number of bytes. This can be interpreted either in big endian or little endian
representation. Additionally, the obtained value may be multiplied by a value (attribute LengthFactor),
and/or a constant value may be added (attribute LengthAdd).

Identify\LengthOffset Attribute

Value Description

Type Numbers

Default 0

This attribute specifies the offset of the length specification within the protocol header. This corresponds to
the parameter nProtoStart of the functions WebTcpipRecvProto(Ex).

Identify\LengthLen Attribute

Value Description

Type Numbers

Default 4

This attribute specifies the number of bytes for the length specification within the protocol header. This
corresponds to the parameter nProtoLength of the functions WebTcpipRecvProto(Ex).

142 | Silk Performer Workbench 20.0

Identify\OptionFlags Attribute

Value Description

Type Distinct Value Lists

Default (empty)

This attribute specifies how to interpret the length specification. Valid values correspond to the options
available for the parameter nOption of the functions WebTcpipRecvProto(Ex). The empty default
value means: big endian.

Valid values are:

• LittleEndian: Option TCP_FLAG_LITTLE_ENDIAN
• ProtoIncluded: Option TCP_FLAG_INCLUDE_PROTO

Identify\LengthFactor Attribute

Value Description

Type Numbers

Default 1

This attribute specifies a factor. The protocol length is multiplied by this factor. This corresponds to the
parameter nMultiply of the function WebTcpipRecvProtoEx.

Identify\LengthAdd Attribute

Value Description

Type Signed Numbers

Default 0

This property specifies a constant value. This value is added to the protocol length. This corresponds to the
parameter nSum of the function WebTcpipRecvProtoEx.

Conditions

Additional conditions can be specified to exclude the "detection" of protocols in situations where server
responses coincidentally resemble protocol specifications.

See “Conditions” for more information regarding conditions. See section “Condition Evaluation
Environment” for more information regarding what may be subject to conditions.

GenVerify Attribute Of Conditions

Value Description

Type Boolean Values

Default false

In the course of specifying basic conditions, the attribute GenVerify can be used to specify scripting for
the parameters sVerify, nVerifyStart and nVerifyLength of the function
WebTcpipRecvProtoEx.

When the conditions are evaluated, the first basic condition that results in an evaluation of true and
specifies the attribute GenVerify, determines that the data to which this condition has been applied
should be used to script the verification part of the function WebTcpipRecvProtoEx.

Silk Performer Workbench 20.0 | 143

Guided TcpRuleRecvProto Example

This example illustrates how to write a recording rule for the Siebel 6 Thin Client.

This client is an ActiveX control that runs in a Web browser. A recorded script consists of one
WebPageUrl() call followed by TCP/IP traffic from the ActiveX control. Without recording rules, the server
responses are scripted by WebTcpipRecvExact() calls.

Portion of a Recorded Siebel 6 TCP/IP Script

WebTcpipSendBin(hWeb0,
 "\h00000030000000000000000000000001" // ···0············ 00000000
 "\h0000000C0000001C0000019100000000" // ················ 00000010
 "\h00000020000002580000000C00000000" // ··· ···X········ 00000020
 "\h00000000", 52); // ···· 00000030
WebTcpipRecvExact(hWeb0, NULL, 40);

Server responses can be analyzed with the help of TrueLog Explorer.

Each response contains a protocol header consisting of 4 bytes that specify the number of bytes following
the protocol header. This length specification is in big endian notation (most significant byte first).

With these findings a recording rule can be written, as shown below.

Recording Rule for Siebel 6 Thin Client TCP/IP Traffic

<?xml version="1.0" encoding="UTF-8" ?>
<RecordingRuleSet>
 <TcpRuleRecvProto>
 <Name>Siebel TCP Protocol</Name>
 <Identify>
 <LengthOffset>0</LengthOffset>
 <LengthLen>4</LengthLen>
 </Identify>
 </TcpRuleRecvProto>
</RecordingRuleSet>

This rule specifies that the protocol header contains the length of the data block at offset 0 using 4 bytes.
Using this rule, the Recorder generates scripts that use the function WebTcpipRecvProto() for the
server responses, as shown below.

Portion of a Recorded Script using Recording Rules

WebTcpipSendBin(hWeb0,
 "\h00000030000000000000000000000001" // ···0············ 00000000
 "\h0000000C0000001C0000019100000000" // ················ 00000010
 "\h0000001F000002580000000C00000000" // ·······X········ 00000020
 "\h00000000", 52); // ···· 00000030
WebTcpipRecvProto(hWeb0, 0, 4);

Scripts recorded with this rule replay correctly even when the number of bytes to be received differs from
the number of bytes received during recording.

TcpRuleRecvUntil

The TcpRuleRecvUntil rule type specifies protocols whereby the end of a server response can be
detected by searching for a terminating byte sequence.

144 | Silk Performer Workbench 20.0

Identify\TermData Attribute

Value Description

Type Binary Data

Default (empty)

This attribute specifies the terminating byte sequence of the protocol.

Identify\IgnoreWhiteSpaces Attribute

Value Description

Type Boolean Values

Default false

This attribute specifies whether or not the Recorder should ignore white spaces while searching for
terminating data. Scripted terminating data (parameter sPattern of the function WebTcpipRecvUntil)
exactly reflects what was seen during recording and therefore, with respect to white spaces, may differ
from what is specified in the property Identify\TermData.

Conditions

Additional conditions can be specified to exclude the "detection" of protocols in situations where server
responses coincidentally resemble protocol specifications.

See “Conditions” for more information regarding conditions. See section “Condition Evaluation
Environment” for more information regarding what may be subject to conditions.

Guided TcpRuleRecvUntil Example

This example shows how to improve recorded scripts for telnet sessions.

Recording a telnet session without recording rules results in scripts that have lots of
WebTcpipRecvExact() function calls, as shown below.

Portion of a recorded Telnet script without recording rules

WebTcpipSend(hWeb0, "l");
WebTcpipRecvExact(hWeb0, NULL, 1);
WebTcpipSend(hWeb0, "s\r\n");
WebTcpipRecvExact(hWeb0, NULL, 1);
WebTcpipRecvExact(hWeb0, NULL, 2);
WebTcpipRecvExact(hWeb0, NULL, 1220);

TrueLog Explorer is used to analyze server responses. Each server response ends with a command
prompt. The command prompt ends with the three-character sequence blank, hash, blank, which seems a
reasonable choice for the terminating data of a server response.

A recording rule can be written for this kind of server response. The rule instructs the Recorder to watch for
server responses that end with the special terminating sequence, and to script the function
WebTcpipRecvUntil() instead of WebTcpipRecvExact() for those server responses.

TCP/IP recording rule for Telnet

<?xml version="1.0" encoding="UTF-8" ?>
<RecordingRuleSet>
 <TcpRuleRecvUntil>
 <Name>Telnet Command Prompt</Name>
 <Active>true</Active>

Silk Performer Workbench 20.0 | 145

 <Identify>
 <TermData> # </TermData>
 <IgnoreWhiteSpaces>false</IgnoreWhiteSpaces>
 </Identify>
 <Conditions>
 <NoBlockSplit>true</NoBlockSplit>
 </Conditions>
 </TcpRuleRecvUntil>
</RecordingRuleSet>

The terminating data is specified in the attribute Identify\TermData. Since the terminating data
contains significant white spaces, not to ignore white spaces must be specified in the attribute Identify
\IgnoreWhiteSpaces.

The rule should not be applied if a server response coincidentally contains the same terminating sequence
elsewhere in the response. Therefore the condition NoBlockSplit should be specified. This means that
the end of the terminating data must be aligned with the end of a TCP/IP packet received from the telnet
server; otherwise the rule won't be applied.

Portion of a recorded Telnet script using a recording rule

WebTcpipSend(hWeb0, "l");
WebTcpipRecvExact(hWeb0, NULL, 1);
WebTcpipSend(hWeb0, "s");
WebTcpipRecvExact(hWeb0, NULL, 1);
WebTcpipSend(hWeb0, "\r\n");
WebTcpipRecvUntil(hWeb0, NULL, 0, NULL, " # ");

This example shows that the rule works. This script is better equipped to handle varying server responses
during replay.

Note that the terminating sequence may be different for other Telnet servers and may depend on operating
system and user settings. Therefore the rule shown here is not a general rule that works for all Telnet
servers. It can however easily be adapted by changing the terminating character sequence. With the help
of TrueLog Explorer, it's easy to determine suitable terminating byte sequences for other Telnet servers.

StringScriptingRule

The purpose of the StringScriptingRule is to hook into the process of scripting strings.

Whenever the Web recorder generates a string into the script (no matter where, this can be any parameter
of an API function or a form field name or value), rules of this type are evaluated and may result in special
actions, so that the string is not generated "as is", but processed in some way.

Structure

The basic structure of a StringScriptingRule is very similar to the structure of a HttpParsingRule.
It also consists of two sections named Search and ScriptGen (see example below).

<StringScriptingRule>
 <Name>Replace TimeStamp</Name>
 <Active>true</Active>
 <Search>
 <SearchIn>FormFieldValue</SearchIn>
 <LB>
 <Offset>0</Offset>
 </LB>
 <RB>
 <Length>0</Length>
 </RB>
 </Search>
 <ScriptGen>

146 | Silk Performer Workbench 20.0

 <Action>CheckTimeStamp</Action>
 </ScriptGen>
</StringScriptingRule>

Section Search

While the details of the Search section of a HttpParsingRule are applied to any HTTP response (with
the goal to extract rule hits which are candidates for future replacements), the Search section of a
StringScriptingRule is applied to the string being scripted, with the goal to extract substrings that
should be treated in a special way. All techniques how substrings can be extracted (see “Section Search -
Finding Rule Hits”) can also be used in the Search section of a StringScriptingRule.

The only difference is the meaning of the attribute SearchIn:

For a HttpParsingRule, the attribute SearchIn specifies where to look for rule hits. Allowed values are:
Header, Body, All.

For a StringScriptingRule, the attribute SearchIn specifies a list of script locations where this rule
should be applied. This can be a list of script locations for the condition type Scripting, as described in
“Scripting Condition”.

Additionally, there are two new script locations HeaderName and HeaderValue, which identify the two
parameters of the function WebHeaderAdd. See “Additional ApplyTo values” for detailed information.

There is one additional possibility how to search for substrings (which is also applicable in the Search
section of a HttpParsingRule):

The attribute Special allows to specify a special search algorithm. The only value currently supported is
SiebelParam. This will search the string for any substring that looks like a length-prefixed value as it is
used in the Siebel 7 Web application.

<StringScriptingRule>
 <Name>SiebelParam Function Call</Name>
 <Active>true</Active>
 <Search>
 <SearchIn>FormFieldValue</SearchIn>
 <Special>SiebelParam</Special>
 <Conditions>
 </Conditions>
 </Search>
 <ScriptGen>
 <Action>CheckSiebelParam</Action>
 </ScriptGen>
</StringScriptingRule>

Section ScriptGen

This section describes the ScriptGen section and the respective attributes.

Attribute Action

This attribute specifies which action should be taken for the substring identified by the Search section.

The following values are allowed:

Value Description

CreateVariable This will create a variable initialized to the value of the
string, and the variable will be substituted in the script
instead of the original value.

Silk Performer Workbench 20.0 | 147

Value Description

CheckTimeStamp This will create the function call GetTimeStamp()
instead of the original string, if the original string indeed
looks like a plausible timestamp value.

CheckSiebelParam Checks if the original string is structured like a length
prefixed value like used in the Siebel 7 Web application. If
so, it will replace the original value with the function call
Siebel7Param(...). Example: "5*Value"
will become: Siebel7Param("Value")

DecodeSiebelJavaScriptString Checks if the original string contains special characters
that are usually escaped with a backslash within
JavaScript code, modifies the string in a way it would be if
it was embedded in JavaScript code, and creates the
function SiebelDecodeJsString(...) with the
encoded string as parameter. The function
SiebelDecodeJsString will reverse this encoding
during script replay, so that the same network traffic is
generated. The purpose of this is that the modified
parameter may now be parseable by
HttpParsingRules, which might not be possible
without this substitution.

CheckSiebelDateTime Checks if the original string looks like a date/time
combination in the format which is sent by the Siebel Web
client, and transforms it to an equivalent date/ time
combination in the format which appears in server
responses to the Siebel Web client. If this is the case, the
wrapper function SiebelDateTime is recorded which
undoes this transformation during script replay. The
purpose of this is that date/time combinations can then
be parsed by the other parsing rules, because they
appear in the script in the same format as they appear in
server responses.

CheckSiebelDate The same as CheckSiebelDateTime, but for dates
only. Records the wrapper function SiebelDate.

CheckSiebelTime The same as CheckSiebelDateTime, but for times
only. Records the wrapper function SiebelTime.

CheckSiebelPhone The same as CheckSiebelDateTime, but for phone
numbers. Records the wrapper function SiebelPhone.

For examples, see the recording rules of the Siebel 7 Web SilkEssential.

Example (create variable for the quantity in an online shop): This example assumes that the quantity is
sent in a form field named qty.

<?xml version="1.0" encoding="UTF-8" ?>
<RecordingRuleSet>
 <StringScriptingRule>
 <Name>Parameterize item quantity</Name>
 <Active>true</Active>
 <Search>
 <SearchIn>FormFieldValue </SearchIn>
 <LB>
 <Offset>0</Offset>

148 | Silk Performer Workbench 20.0

 </LB>
 <RB>
 <Length>0</Length>
 </RB>
 <Conditions>
 <CompareData>
 <ApplyTo>FormFieldName</ApplyTo>
 <Length>0</Length>
 <Data>qty</Data>
 </CompareData>
 </Conditions>
 </Search>
 <ScriptGen>
 <Action>CreateVariable</Action>
 <VarName>Quantity</VarName>
 </ScriptGen>
 </StringScriptingRule>
</RecordingRuleSet>

Attributes VarName VarNamePrefix IsExternalVar

These attributes are only applicable if the Action attribute is CreateVariable. This allows to specifiy
either a variable name (attribute VarName) or a prefix for the variable name (attribute VarNamePrefix). In
the latter case, the actual variable name will be built from the given prefix and the actual string value during
recording.

The attribute IsExternalVar (boolean, Default: false) can be used to suppress the scripting of a
declaration for the variable. This is useful if it is known that this variable is already declared in some bdh-file
within a SilkEssential.

HttpScriptingRule

The rule type HttpScriptingRule allows to hook into script generation decisions the recorder has to
make. It allows to override the default heuristics the recorder employed prior to this rule type and still
employs in the absence of such rules.

Structure

The basic structure of a HttpScriptingRule is quite simple. The only tag allowed, additional to the
common tags Name and Active, is the tag Action. The Action tag specifies which decision is to be
hooked.

The actual decision is implemented with conditions. The result of evaluating the conditions is the return
value of such a rule. Conditions have access to the HTTP request / response which is being scripted.

<HttpScriptingRule>
 <Name>Suppress some cookie</Name>
 <Active>true</Active>
 <Action>SuppressCookie</Action>
 <Conditions>
 ...
 </Conditions>
</HttpScriptingRule>

HttpScriptingRule Actions

Silk Performer Workbench 20.0 | 149

ForceTcp

This recording rule ensures that a script is generated using TCP/IP low-level functions. No protocol
detection is performed. The recording rule only applies to scripts that are generated out of capture files.

<RecordingRuleSet>
 <HttpScriptingRule>
 <Name>Force TCP/IP Scripting</Name>
 <Active>true</Active>
 <Action>ForceTcp</Action>
 </HttpScriptingRule>
</RecordingRuleSet>

NoHtml ForceHtml

The recorder will evaluate HttpScriptingRules with Action NoHtml or ForceHtml whenever it needs
a decision if a HTTP response body is HTML or not. In the absence of such rules or if no such rules return
true, the recorder inspects the content-type header of the HTTP response.

This rule type is useful to suppress or force the scripting of a page-level function in cases where the default
recording result is not satisfactory.

Often a "404 Not Found" response comes back with an HTML error description, which will cause the
scripting of a WebPageUrl or WebPageLink, even when a WebPageAddUrl would be more appropriate.

<HttpScriptingRule>
 <Name>No HTML for zip files</Name>
 <Active>true</Active>
 <Action>NoHtml</Action>
 <Conditions>
 <CompareData>
 <ApplyTo>Http.Initial.Request.Url.Ext</ApplyTo>
 <Data>zip</Data>
 </CompareData>
 </Conditions>
</HttpScriptingRule>

NoFuzzyFormDetection ForceFuzzyFormDetection

These actions of a HttpScriptingRule can be used to override the setting Fuzzy form detection from
the profile settings for individual HTTP requests.

This rule allows fuzzy form detection (provided this is enabled in the profile settings) only for forms which
contain a form field named sid.

<HttpScriptingRule>
 <Name>No fuzzy form detection except for forms with field
sid</Name>
 <Active>true</Active>
 <Action>NoFuzzyFormDetection</Action>
 <Conditions>
 <Not>
 <Exists>
 <ApplyTo>Form.Field(Name:sid)</ApplyTo>
 </Exists>
 </Not>
 </Conditions>
</HttpScriptingRule>

150 | Silk Performer Workbench 20.0

NoDynLinkParsing ForceDynLinkParsing

These Actions of a HttpScriptingRule can be used to override the setting "Dynamic link parsing" from
the profile settings for individual HTTP requests.

This example forces dynamic link parsing (even if it turned off in the profile settings) for HTTP requests
where the query string contains the string sid=.

<HttpScriptingRule>
 <Name>Force dynamic link parsing for some query strings</Name>
 <Active>true</Active>
 <Action>ForceDynLinkParsing</Action>
 <Conditions>
 <FindData>
 <ApplyTo>Http.Initial.Request.Url.QueryData</ ApplyTo>
 <Data>sid=</Data>
 </FindData>
 </Conditions>
</HttpScriptingRule>

DefinePageName

This action allows defining an alternate page name for a HTML page. The recorder generates various
strings (page timer name, name of stored context variable, ...) based on the name of a HTML page. By
default the recorder uses the title of an HTML page for the page name, or "Unnamed page" if no title exists.

Such a rule must have conditions which:

• return true
• save a non-empty string to the variable PageName (by means of the tag SaveAs of a condition)

The conditions have access to the default page name the recorder would use through the variable
DefaultPageName.

The following example checks if the default page name does not exist (the recorder would use "Unnamed
page" then), and defines the page name to be the URL of the HTTP document instead, if it is at least 3
characters long.

<HttpScriptingRule>
 <Name>Define Page Name</Name>
 <Active>true</Active>
 <Action>DefinePageName</Action>
 <Conditions>
 <Not>
 <Exists>
 <ApplyTo>DefaultPageName</ApplyTo>
 </Exists>
 </Not>
 <CheckRange>
 <ApplyTo>Http.Initial.Request.Url</ApplyTo>
 <Range>3-</Range>
 <SaveAs>PageName</SaveAs>
 <SaveMode>Replace</SaveMode>
 </CheckRange>
 </Conditions>
</HttpScriptingRule>

Silk Performer Workbench 20.0 | 151

SuppressCookie CommentCookie

In some cases the function WebCookieSet may be recorded where this is not useful or even incorrect.

This may happen when there is a tight succession of client side "Cookie" and server side "Set-Cookie"
headers in embedded objects of a page, with tight timing. In such a case it is possible that a browser does
not send a cookie or sends a cookie with an older value, although the browser already received a "Set-
Cookie" header which should cause it to send a different cookie value.

In such cases, these actions can be used to script WebCookieSet function calls commented or suppress
the recording completely.

This rule suppresses scripting of any WebCookieSet function call if the cookie name is
PS_TOKENEXPIRE (from the Peoplesoft SilkEssential).

<HttpScriptingRule>
 <Name>Suppress Cookie PS_TOKENEXPIRE</Name>
 <Active>true</Active>
 <Action>SuppressCookie</Action>
 <Conditions>
 <CompareData>
 <ApplyTo>Cookie</ApplyTo>
 <Data>PS_TOKENEXPIRE</Data>
 </CompareData>
 </Conditions>
</HttpScriptingRule>

ScriptCookieDomainAsRequestHost

Usually, when recording a client-side cookie, Silk Performer uses a generic form for the domain attribute.
The domain is cropped by the first dot, for example: http://demo.borland.com/testsite will be
cropped to .borland.com. Usually, this is the desired behaviour, because such a cookie is valid for a
variety of domains, including demo.borland.com and example.borland.com regarding the above
example.

The recording rule ScriptCookieDomainAsRequestHost defines the domain for a cookie more
precisely. The domain attribute matches exactly the request host.

The recording rule can be applied to certain cookies, by adding the name of the cookie to the <data> tag.

<HttpScriptingRule>
 <Name>MyCookieRecordingRule</Name>
 <Active>true</Active>
 <Action>ScriptCookieDomainAsRequestHost</Action>
 <Conditions>
 <CompareData>
 <ApplyTo>Cookie</ApplyTo>
 <Data>MyClientsideTestCookie</Data>
 </CompareData>
 </Conditions>
</HttpScriptingRule>

SuppressFrameName SuppressLinkName SuppressFormName SuppressCustomUrlName

Functions like WebPageLink, WebPageSubmit and WebPageSetActionUrl use a name (of a link, form
or parsed URL resp.), a frame name, and an ordinal number to reference a link, form, or parsed URL.

152 | Silk Performer Workbench 20.0

In cases where for example a link or form name changes dynamically, it is common practice to do the so-
called "name to number customization", which means one does not specify the name (of the link or form),
but instead specifies the overall ordinal number within the page or within the frame.

These actions can be used to let this customization be done already by the recorder.

Assume a shop application which uses form names which are built by adding the numeric session ID to the
string cart_.

This rule will not record the form name within the WebPageSubmit calls, but will record NULL instead, with
an ordinal number which references the form in the entire page.

<HttpScriptingRule>
 <Name>Suppress XML to form conversion</Name>
 <Active>true</Active>
 <Action>SuppressFormName</Action>
 <Conditions>
 <RegExpr>
 <ApplyTo>FormName</ApplyTo>
 <Data>cart_[0-9]*</Data>
 <ExpectMatch>Complete</ExpectMatch>
 </RegExpr>
 </Conditions>
</HttpScriptingRule>

MapFunctionName

This action can be used to define a function name mapping, so that the recorder scripts a wrapper function
(which needs to be present, for example in a BDH file, for the script to be compileable) instead of the
original function. Such a wrapper function must have the same parameter list as the original function,
because this rule does not modify the function parameters in any way.

The recorder scripts the wrapper function instead of the original function, if the condition returns true and in
the course of the evaluation of the condition something was saved to the variable FunctionName.

If the conditions also save a non-empty string to the variable BdhFileName, the recorder will also
generate a use statement to include the given BDH file into the script.

This rule replaces each WebPageLink function call with a MyWebPageLink function call.

<HttpScriptingRule>
 <Name>Replace WebPageLink with my wrapper function</Name>
 <Active>true</Active>
 <Action>MapFunctionName</Action>
 <Conditions>
 <CompareData>
 <ApplyTo>DefaultFunctionName</ApplyTo>
 <Data>WebPageLink</Data>
 </CompareData>
 <Exists>
 <ApplyTo>Literal:MyWebPageLink</ApplyTo>
 <SaveAs>FunctionName</SaveAs>
 </Exists>
 <Exists>
 <ApplyTo>Literal:MyFunctions.bdh</ApplyTo>
 <SaveAs>BdhFileName</SaveAs>
 </Exists>
 </Conditions>
</HttpScriptingRule>

Silk Performer Workbench 20.0 | 153

AddInitFunction

This action can be used to add function calls to the TInit or TMain transaction. This is the only action, which
allows additional tags, besides the Conditions tag. While conditions are allowed, they are not useful
because they can not reference any data.

There can be any number of functions specified, each one with its own Function tag. Within the
Function tag, there must be the tag FunctionName and optionally the tag BdhFileName.

There can be any number of Param tags to specify parameters. Each parameter must have a Value tag
and a Type tag. The Type tag can be either String or Const. String will put the parameter in quotes,
Const won't.

<HttpScriptingRule>
 <Name>Automatically insert my useful function</Name>
 <Active>true</Active>
 <Action>AddInitFunction</Action>
 <Function>
 <FunctionName>InitMyLogLibrary</FunctionName>
 <BdhFileName>Log.bdh</BdhFileName>
 <Param>
 <Value>C:\Logs\xx.log</Value>
 <Type>String</Type>
 </Param>
 <Param>
 <Value>true</Value>
 <Type>Const</Type>
 </Param>
 </Function>
</HttpScriptingRule>

This will generate the following script fragments:

use "Log.bdh"

transaction TInit
begin
 // ...
 InitMyLogLibrary("C:\\Logs\\xx.log", true);
end TInit;

Silk Performer allows the tag Location with the following values:

• TInit

• TMainBegin

• TMainEnd

NoAddUrl

This action can be used to suppress the generation of a WebPageAddUrl function for particular HTTP
requests. The recorder will then choose the next best way to record this request, usually a WebUrl function
will be scripted instead, but it might also be another function (for example WebPageLink,
WebPageUrl, ...) depending on circumstances.

This can be useful, because parsing rules never parse data from embedded objects of a web page. If a
HTTP request is scripted by a WebUrl function call instead, it is possible to apply HTTP parsing rules to
this request.

154 | Silk Performer Workbench 20.0

SuppressRecording

This action can be used to suppress the recording of individual HTTP requests. It is used by the Silk
Performer Oracle Forms support to suppress the recording of HTTP requests which come from an Oracle
Forms applet which is recorded at a different API level.

ForceContextless

This action can be used to suppress the recording of HTTP requests with a context-full function like
WebPageLink or WebPageSubmit. Instead, the recorder will record an appropriate context-less function
instead.

DontUseHtmlVal

This action can be used to suppress the recording of the <USE_HTML_VAL> tag for individual form fields,
even if the recorder would do so otherwise.

This can be useful if the form field value is required in the script, for example because another recording
rule should be applied to the value.

In the PeopleSoft project type, the user name in the login form is forced to be in the script with this rule
(even if the user name input field is pre-populated), and then another rule of type StringScriptingRule
with the action CreateVariable creates a variable for it. In this way the script is better prepared for
randomization of the login data.

NoQueryToForm ForceQueryToForm

These actions can be used to override the profile setting Convert URL query strings to forms on a per
HTTP request basis.

ProxyEngineRule

The rule type ProxyEngineRule allows to control some aspects of the ProxyEngine's operation.

Structure

The basic structure of a ProxyEngineRule is quite simple. The only tag allowed, additional to the
common tags Name and Active, is the tag Action. The Action tag specifies what to do. The actual
decision is implemented with conditions. The result of evaluating the conditions is the return value of such
a rule.

<ProxyEngineRule>
 <Name>Switch on GUI recording for Jacada</Name>
 <Active>true</Active>
 <Action>AddAppletParam</Action>
 <Conditions>
 <FindData>
 <ApplyTo>Attribute.ARCHIVE</ApplyTo>
 <Data>clbase.jar</Data>
 </FindData>
 <Exists>
 <ApplyTo>Literal:GUIMode</ApplyTo>
 <SaveAs>Param.Name</SaveAs>
 <SaveMode>Replace</SaveMode>
 </Exists>
 <Exists>
 <ApplyTo>Literal:GUIRecorder</ApplyTo>
 <SaveAs>Param.Value</SaveAs>
 <SaveMode>Replace</SaveMode>
 </Exists>

Silk Performer Workbench 20.0 | 155

 </Conditions>
</ProxyEngineRule>

ProxyEngineRule Actions

AddAppletParam

This Action allows modifying applets contained in HTML before the HTML is forwarded to the client. The
modification will not be visible in the log files. If the conditions evaluate to true, and the conditions save
values to Param.Name and Param.Value, this parameter will be added to the applet tag.

Any ProxyEngineRule with Action AddAppletParam will be evaluated once per applet. The conditions
have access to the attributes of the applet using the following syntax: Attribute.attr. attr may be
any attribute of the applet tag.

RemoveAppletParam ChangeAppletParam

This action allows modifying applets contained in HTML before the HTML is forwarded to the client. The
modification will not be visible in the log files. If the conditions evaluate to true, the parameter will be
removed from the applet (RemoveAppletParam), or its value will be changed to whatever was saved by
the conditions to Param.Value (ChangeAppletParam).

Any ProxyEngineRule with one of these actions will be evaluated once per applet parameter. The
conditions can access the name and value of the applet parameter by Param.Name and Param.Value.

<ProxyEngineRule>
 <Name>Remove Cabbase applet param</Name>
 <Active>true</Active>
 <Action>RemoveAppletParam</Action>
 <Conditions>
 <Or>
 <CompareData>
 <ApplyTo>Param.Name</ApplyTo>
 <Data>Cabbase</Data>
 <Length>0</Length>
 </CompareData>
 <CompareData>
 <ApplyTo>Param.Value</ApplyTo>
 <Data>.cab</Data>
 <Offset>-4</Offset>
 </CompareData>
 </Or>
 </Conditions>
</ProxyEngineRule>

DetectProtoFtp DetectProtoSmtp

In the course of protocol detection, it is sometimes hard do distinguish between FTP and SMTP, since
these protocols start with very similar traffic. The actions DetectProtoFtp and DetectProtoSmtp can
be used to force detecting FTP or SMTP in cases where the recorder would misdetect the protocol
otherwise.

The conditions can assess the following pieces of information in the ApplyTo tag:

• WelcomeMsg: The welcome message of the server
• NoopResponse: The server response to a NOOP command which is sent by the ProxyEngine

156 | Silk Performer Workbench 20.0

• TargetPort: The target port

DontModifyRequestHeader DontModifyResponseHeader

The recorder routinely modifies some request/response headers of HTTP traffic to ensure best recording
results with common browsers. However, some uncommon user agents may misbehave when recorded.

An Action enables you to suppress the modification of request/response HTTP headers for individual
requests, and thus allow for such recording problems.

Conditions can reference the header name and value, which can be modified in the ApplyTo tag using the
values HeaderName and HeaderValue.

This example is from the Flex/AMF3 project type. This rule suppresses the modification
of the Pragma and Cache-Control response header, if there is no Accept-
Language request header.

<ProxyEngineRule>
 <Name>Suppress modification of some server response headers
for HTTP requests coming from Shockwave/Flash</Name>
 <Active>true</Active>
 <Action>DontModifyResponseHeader</Action>
 <Conditions>
 <Not>
 <Exists>
 <ApplyTo>Http.Initial.Request.Header.Accept-Language</
ApplyTo>
 </Exists>
 </Not>
 <Or>
 <CompareData>
 <ApplyTo>HeaderName</ApplyTo>
 <Data>Pragma</Data>
 <Length>0</Length>
 </CompareData>
 <CompareData>
 <ApplyTo>HeaderName</ApplyTo>
 <Data>Cache-Control</Data>
 <Length>0</Length>
 </CompareData>
 </Or>
 </Conditions>
</ProxyEngineRule>

DontDetectProtoHttp

Sometimes it is necessary to record a TCP connection on TCP/IP level, although the automatic protocol
detection would detect HTTP. The Actions DontDetectProtoHttp can be used to suppress detecting
HTTP in such cases.

The conditions can assess the following pieces of information in the ApplyTo tag:

• PeekData: The first chunk of data sent by the client.

BypassBlockingHttp

Sometimes the recorder must be stopped from analyzing network traffic so as to avoid blocking network
communication. Use the action BypassBlockingHttp to suppress recording in such cases. When this
action is used, data on the connection is still forwarded, but it is not recorded until the connection is closed.

Conditions assess the following pieces of information in the ApplyTo tag:

Silk Performer Workbench 20.0 | 157

• PeekData: The relative request URL contains a specific value.

Conditions

Conditions are an important aspect of HttpParsingRule, TcpRuleRecvProto and
TcpRuleRecvUntil rule types.

They are a powerful means of specifying exactly when rules should be applied.

Introduction

Compound Conditions

Complex conditions can be created using Boolean operators And, Or and Not.

<And>
 <Or>
 <SomeBasicCondition> … </SomeBasicCondition>
 <SomeBasicCondition> … </SomeBasicCondition>
 <Not>
 <SomeBasicCondition> … </SomeBasicCondition>
 </Not>
 </Or>
 <Not>
 <And>
 <SomeBasicCondition> … </SomeBasicCondition>
 <SomeBasicCondition> … </SomeBasicCondition>
 </And>
 </Not>
</And>

Extended Boolean Values

The result of a condition, once evaluated, is an extended Boolean value. Extended Boolean values have
the values true, unknown or false. Think of the value unknown as: "Cannot be evaluated now, but may be
evaluated when more data becomes available".

This is important for TcpRuleRecvProto and TcpRuleRecvUntil type rules. If conditions in a TCP rule
result in a value of unknown, the Recorder defers scripting and reevaluates conditions when more data
arrives from the server.

Basic Conditions

There are a number of basic condition types that execute checks and can be combined (using the Boolean
conditions And, Or and Not) to build complex compound conditions.

Basic condition types include:

• CheckRange: Checks to see if a numeric value lies within a given range.
• ResultLen: A special form of the condition CheckRange.
• CompareData: Compares data.
• FindData: Searches data.
• Verify: A special form of the condition CompareData.
• RegExpr: Applies a regular expression.
• NoBlockSplit: Checks block boundaries.
• Scripting: Checks for the type of string being scripted.

158 | Silk Performer Workbench 20.0

Condition evaluation environment

A condition is evaluated within an environment. Through the environment, the condition has access to a
number of strings to which the condition can be applied. Environment configuration differs with each rule
type. See section “Condition Evaluation Environment” for details.

Conditions operate on data

Most conditions (except the Scripting condition) apply specific checks on specific blocks of data. There
are flexible means of specifying what data is to be checked. See section “Specifying Data for Conditions”
for more information.

Specifying Data for Conditions

Most conditions (except the Scripting condition) operate on specific blocks of data.

Conditions have sets of attributes that specify what data is to be used and what should be done if required
data is not available.

These attributes are:

• ApplyTo

• Offset

• Length

• IfNull

• UseDataAvail

The basic idea is:

1. ApplyTo specifies a block of data (for example a request URL, a response body, the string to be
scripted, and so on).

2. Offset and Length are optionally used to target data subsets.

ApplyTo

Value Description

Type Strings

Default Self

Description ApplyTo specifies the data that the condition operates
on. ApplyTo is resolved within the current environment.
The valid values for ApplyTo are therefore dependent
on the environment configuration, which is different for
each rule type.

Literal

With the Literal value in the ApplyTo tag it is possible to specify a literal as data for conditions. This is
useful in conjunction with the Exists condition and the SaveAs attribute.

<Conditions>
 <Exists>
 <ApplyTo>Literal: - </ApplyTo>
 <SaveAs>PageName</SaveAs>
 <SaveMode>AppendSeparator</SaveMode>
 </Exists>
 <Exists>
 <ApplyTo>Form.Submit.Field(Name:SWECmd).Value</ApplyTo>
 <SaveAs>PageName</SaveAs>

Silk Performer Workbench 20.0 | 159

 <SaveMode>Append</SaveMode>
 </Exists>
</Conditions>

Additional ApplyTo values

Additional ApplyTo values in the ScriptGen section of a HttpParsingRule.

In addition to the possible values LinkName, FormName, FormFieldName, FormFieldValue and
TargetFrame in the ScriptGen section of a HttpParsingRule, there are four new possibilities:

CustomUrlName The current name of a custom URL, if used in a function
WebPageLink, WebPageSetActionUrl or
WebPageQueryParsedUrl.

PostedData The value of (possibly binary) posted data that appears
as a parameter to WebPagePostBin and similar
functions. The name of a HTTP header, when the
function WebHeaderAdd is recorded (1st parameter of
this function).

HeaderName The name of a HTTP header, when the function
WebHeaderAdd is recorded (1st parameter of this
function).

HeaderValue The value of a HTTP header, when the function
WebHeaderAdd is recorded (2nd parameter of this
function).

Access to forms

Both rules of type HttpParsingRule (ScriptGen section), HttpScriptingRule and
StringScriptingRule (Search section) also have convenient access functions for form data according
to the following syntax: "Form" [".Query" | ".Body" | ".Submit"]

This allows specifying the form in the query string ("Query") or in the request body ("Body") of the current
HTTP request.

The value Submit, which is the default, is automatically equivalent to Query if the HTTP request uses the
method GET, and to Body if the HTTP request uses the method POST.

Once a form is specified according to the syntax above, it is possible to extract details about this form:

• ActionUrl: Specifies the action URL of a form. It is possible to get more details of the action URL.
• Encoding: Specifies the encoding to be scripted (for example ENCODE_BLANKS)

<ApplyTo>Form.ActionUrl</ApplyTo>
<ApplyTo>Form.ActionUrl.Host</ApplyTo>
<ApplyTo>Form.ActionUrl.Coords</ApplyTo>
<ApplyTo>Form.Query.Encoding</ApplyTo>
<ApplyTo>Form.Body.Encoding</ApplyTo>
<ApplyTo>Form.Submit.Encoding</ApplyTo>

Moreover, it is possible to specify the individual form fields according to the following syntax: ".Field("
("Name" | "Value" | "Index") ":" Selector ")" "." ("Name" | "Value" |
"Encoding" | "Usage")

So it is possible to reference a form field by name, value, or index (zero-based), and extract the name,
value, encoding, or usage of such a form field. Encoding means one of the following: "ENCODE_FORM".
Usage means one of the following: "SUPPRESS", "USE_HTML_VAL", "USE_SCRIPT_VAL".

<ApplyTo>Form.Submit.Field(Name:SWECmd).Value</ApplyTo>

160 | Silk Performer Workbench 20.0

<ApplyTo>Form.Field(Name:sid).Usage</ApplyTo>
<ApplyTo>Form.Field(Name:sid).Encoding</ApplyTo>
<ApplyTo>Form.Field(Index:0).Name</ApplyTo>
<ApplyTo>Form.Field(Index:2).Value</ApplyTo>
<ApplyTo>Form.Field(Value:Submit with GET).Name</ApplyTo>

Offset Length

Value Description

Type Signed Numbers

Default value 0

Description Offset and Length can be used to target subsets of
data referenced with ApplyTo.

First, Offset is applied

If Offset >= 0, Offset specifies the number of bytes that are to be removed from the beginning of the data.

If Offset < 0, -Offset specifies the number of bytes that are to be kept, counting backward from the last
byte.

Second, Length is applied

If Length > 0, Length specifies the number of bytes that are to be used, counting forward from the first
byte.

If Length <= 0, -Length specifies the number of bytes that are to be removed, counting backward from the
last byte.

Offset and Length calculations may not be possible, or may be only partially possible.

Example 1

ApplyTo returns 30 Bytes of data, Offset specifies "40" => Offset calculation is not possible.

In this case the resulting data has the value Null.

Example 2

ApplyTo returns 30 Bytes of data, Length specifies "35" => Length calculation is possible, however the
length must be adjusted to the maximum available value of "30."

In this case the resulting data may have the special value Null or it may equal the maximum data available,
depending on the condition attribute UseDataAvail.

UseDataAvail

Value Description

Type Boolean Values

Default value true

Description This attribute specifies what data is to be used when an
Offset/Length calculation is only partially possible. If true,
the maximum data available is used. If false, the result of
the Offset/Length calculation is Null.

Silk Performer Workbench 20.0 | 161

IfNull

Value Description

Type Extended Boolean Values

Default value unknown

Description This attribute specifies the return value of the condition if
there is no data to operate on (that is, fi calculations with
ApplyTo, Offset, Length and UseDataAvail
return Null).

Saving Temporary Variables

Conditions which apply to a block of data can specify this data as described in Specifying Data for
Conditions.

This block of data can now be saved to a "temporary variable" so that it can be referenced by the ApplyTo
attribute of a subsequent condition.

The new attributes of such conditions are:

• SaveAs

• SaveIfTrue

• SaveIfUnknown

• SaveIfFalse

• SaveMode

• SaveTag

SaveAs

Value Description

Type Strings

Description This attribute causes the data to be saved and specifies
the name of the temporary variable to which the data is
saved to.

SaveIfTrue SaveIfUnknown SaveIfFalse

Value Description

Type Strings

Default values • SaveIfTrue: true

• SaveIfUnknown: false

• SaveIfFalse: false

Description This attribute specify if the data should be saved in case
the result of the condition is true, unknown, or false.

SaveMode

Value Description

Type Distinct Values

162 | Silk Performer Workbench 20.0

Value Description

Default value IfNew

Description This attribute specifies how to save the data to the
temporary variable.

Allowed values:

• IfNew: Saves the data only if there is no value associated with the given variable name yet.
• Replace: Always saves the data, replaces an existing value.
• AppendSeparator: Appends the data to the existing value if the existing value is not empty, no action

otherwise.
• Append: Appends the data to the existing value.
• PrpendSeparator: Prepends the data to the existing value if the existing value is not empty, no action

otherwise.
• Prepend: Prepends the data to the existing value.

SaveTag

Value Description

Type Numbers

Default value 0

Description This tag is only applicable to the RegExpr condition and
allows to specify a tag number referencing a tagged sub-
expression of the regular expression is saved

SaveWhat

Value Description

Type Distinct Values

Default value Self

Description A condition extracts a fragment of the entire block of data
which is identified by the ApplyTo tag. The SaveWhat
tag allows to specify if the extracted fragment should be
saved, or the fragment left or right of the extracted
fragment.

Allowed values:

• Self: Saves the fragment identified by the condition.
• Left: Saves fragment left of Self.
• Right: Saves the fragment right of Self.

Example

<Conditions>
 <RegExpr>
 <ApplyTo>Http.Final.Response.Body</ApplyTo>
 <Data>Instructions:\([^<]+\)<</Data>
 <SaveAs>Instructions</SaveAs>
 <SaveTag>1</SaveTag>
 </RegExpr>

Silk Performer Workbench 20.0 | 163

 <FindData>
 <ApplyTo>Instructions</ApplyTo>
 <Data>Download</Data>
 </FindData>
</Conditions>

Condition Evaluation Environment

The condition attribute ApplyTo is resolved within an environment that is configured based on the rule
type in which the condition is used.

This chapter explains which attribute ApplyTo values are allowed for conditions, depending on where
conditions are used.

Access to Special Strings

HttpParsingRule, TcpRuleRecvProto and TcpRuleRecvUntil rule types can reference the strings
All, Self, Left, Right and Rest.

Conditions in the ScriptGen sections of HTTP parsing rules have additional options for referencing
specific data using the ApplyTo property:

• LinkName: The current link name (only available when scripting a WebPageLink function)
• FormName: The current form name (only available when scripting a WebPageSubmit function)
• FormFieldName: The current form field name (only available when scripting a form field name or form

field value)
• FormFieldValue: The current form field value (only available when scripting a form field name or form

field value)
• TargetFrame: The current target frame name (only available when scripting a WebPageLink or

WebPageSubmit(Bin) function)

Examples

<ApplyTo>All</ApplyTo>
<ApplyTo>Self</ApplyTo>
<ApplyTo>FormFieldName</ApplyTo>

Access to HTTP request/response pairs

Conditions used within HttpParsingRule rules can access details of HTTP requests / responses with
the ApplyTo property.

"Http" [".Initial" | ".Final"] (".Request" | ".Response") ["."
Component]

The optional component Initial or Final is only significant in cases where HTTP requests are part of a
redirection chain. In such cases, Initial returns the first HTTP request in the chain; Final returns the last
request in the chain.

Final is the default for conditions in the HttpParsingRule\Search section.

Initial is the default for conditions in the HttpParsingRule\ScriptGen section.

Valid Component values for HTTP requests, plus return values:

(empty) Equal to Header

Body Request body

RequestLine Request line (i.e., Method + URL + HTTP version)

164 | Silk Performer Workbench 20.0

Method HTTP method

Version HTTP version

Header Complete request header, including request line

Header.* Use this to reference any HTTP request header

Url Complete request URL

Url.Complete Complete request URL

Url.BaseUrl URL without query string

Url.DirectUrl Relative request URL (without scheme and host)

Url.BaseDirOnlyUrl URL without query string and file name

Url.Scheme URL scheme (HTTP, HTTPS or FTP)

Url.Host Host name in URL

Url.Port Port in URL

Url.Path Path (directory plus file name)

Url.Dir Directory

Url.File File name

Url.Ext File extension

Url.Username User name

Url.Password Password

Url.Query Query string, including "?"

Url.QueryData Query string, excluding "?"

Url.Coords Image coordinates

Valid Component values for HTTP responses:

(empty) Equal to Header

Body Response body

StatusLine Response status line (i.e., HTTP version plus status code
and status phrase)

Version HTTP version

StatusCode HTTP response status code

StatusPhrase HTTP response status phrase

Header Complete response header, including status line

Header.* Use this to reference any HTTP response header

Examples

<ApplyTo>Http.Response.Header.Content-Type</ApplyTo>
<ApplyTo>Http.Response.Header</ApplyTo>
<ApplyTo>Http.Request.Url.QueryData</ApplyTo>
<ApplyTo>Http.Request.Body</ApplyTo>
<ApplyTo>Http.Response.StatusCode</ApplyTo>

Silk Performer Workbench 20.0 | 165

CompareData Condition

The CompareData condition checks to see if certain data has a specific value. It uses the attributes
ApplyTo, Offset, Length, UseDataAvail and IfNull to determine what data is subject to the test
and what the return value should be if the data isn't available.

Also see section “Specifying Data for Conditions”.

In contrast to other condition types, if the Length property is omitted, the number of bytes specified in the
Data property is used as the Length property. By omitting the Length property, this allows for a prefix
match rather than an exact match.

The Verify condition is an alias for .

Data Attribute

Type Binary Data

Default (empty)

Description The Data attribute specifies what data is to be compared
to the data referenced by ApplyTo, Offset and
Length.

CaseSensitive Attribute

Type Boolean Values

Default false

Description Specifies whether to search for the data in case-sensitive
or case-insensitive format.

GenVerify Attribute

This attribute is only applicable if the condition is used within a TcpRuleRecvProto rule. See section
"GenVerify Attribute Of Conditions" for details.

Example

<CompareData>
 <ApplyTo>Http.Response.Header.Content-Type</ApplyTo>
 <Data>text/css</Data>
 <IfNull>true</IfNull>
 <CaseSensitive>false</CaseSensitive>
</CompareData>

FindData Condition

The FindData condition checks to see if certain data contains a specific value. It uses the attributes
ApplyTo, Offset, Length, UseDataAvail and IfNull to determine what data is to be subject to the
test and what the return value should be if the data is not available.

Also see section “Specifying Data for Conditions”.

Data Attribute

Type Binary Data

Default (empty)

166 | Silk Performer Workbench 20.0

Description The Data attribute specifies what data is to be found in
the data referenced by ApplyTo, Offset and
Length.

CaseSensitive Attribute

Type Boolean Values

Default false

Description Specifies whether to search for the data in case-sensitive
or case-insensitive format.

IgnoreWhiteSpaces Attribute

Type Boolean Values

Default false

Description Specifies whether or not to ignore white spaces while
searching.

GenVerify Attribute

This attribute is only applicable if the condition is used within a TcpRuleRecvProto rule. See section
"GenVerify Attribute Of Conditions" for details.

Example

<FindData>
 <ApplyTo>Http.Request.Url</ApplyTo>
 <Data>/images/</Data>
 <CaseSensitive>true</CaseSensitive>
</FindData>

RegExpr Condition

The RegExpr condition applies a regular expression to certain data. It uses the properties ApplyTo,
Offset, Length, UseDataAvail and IfNull to determine what data will be subject to the regular
expression test and what the return value will be if the data isn't available. Also see section “Specifying
Data for Conditions”.

Data Attribute

Type Binary Data

Default (empty)

Description The Data attribute specifies the regular expression to be
applied to the data referenced by ApplyTo, Offset
and Length.

ExpectMatch Attribute

Type Distinct Values

Default Any

Silk Performer Workbench 20.0 | 167

Description Specifies the regular expression must match the
complete data or if any substring matching the regular
expression is sufficient.

Allowed values are:

• Any: Matching any substring is sufficient.

• Complete: Complete data must match the regular
expression.

GenVerify Attribute

This attribute is only applicable if the condition is used within a TcpRuleRecvProto rule. See section
"GenVerify Attribute Of Conditions" for details.

Example

<RegExpr>
 <ApplyTo>Http.Response.Body</ApplyTo>
 <Data><html>.*</html></Data>
</RegExpr>

CheckRange Condition

The CheckRange condition checks to see if a numeric value lies within a given range. It uses the
properties ApplyTo, Offset, Length, UseDataAvail and IfNull to determine what data is to be
converted to a numeric value and what the return value should be if the data isn't available or the
conversion fails. Also see section “Specifying Data for Conditions”.

Range Attribute

Type Numeric Ranges

Default -

Description Specifies the allowed range for the numeric value.

Convert Attribute

Type Distinct Values

Default Length

Description Specifies how to convert the data (obtained through the
properties Apply, Offset, Length, and
UseDataAvail) into a number.

Allowed values are:

Length (default) The data is converted to a number by measuring the
length (number of bytes) of the data.

Parse The data is converted to a number by assuming a textual
numeric value and parsing it. If parsing fails, no range
check is performed and the attribute IfNull determines the
result of the condition.

168 | Silk Performer Workbench 20.0

LittleEndian The data is treated as a binary representation of a
number in little endian format. If the data is empty or is
longer than 4 bytes, this fails and the attribute IfNull
determines the result of the condition.

BigEndian The data is treated as a binary representation of a
number in big endian format. If the data is empty or is
longer than 4 bytes, this leads to a failure and the
attribute IfNull determines the result of the condition.

Example

<CheckRange>
 <ApplyTo>Http.Response.StatusCode</ApplyTo>
 <Range>200-299</Range>
 <Convert>Parse</Convert>
</CheckRange>

ResultLen Condition

The ResultLen condition is a special form of the CheckRange condition, with two differences:

1. The default value for the ApplyTo attribute is not Self, but All.
2. The accepted range is not specified in the Range attribute, but directly within the ResultLen - tag.

Example

<ResultLen>5-15</ResultLen>

NoBlockSplit Condition

The NoBlockSplit condition is only applicable within TcpRuleRecvProto and TcpRuleRecvUntil
rules.

It uses the attributes ApplyTo, Offset, Length, UseDataAvail and IfNull to determine what data is
to be subject to the test and what the return value should be if the data isn't available.

Also see section “Specifying Data for Conditions”.

In contrast to other conditions, the default value for the ApplyTo attribute is All, rather than Self.

Semantics

When recording TCP/IP traffic, servers may send responses in multiple TCP/IP packets (blocks). The
NoBlockSplit condition tests to see if the end of the data obtained by ApplyTo, Offset and Length is
identical to the end of one of the packets.

The result is false if the end of the tested data is not on a block boundary; otherwise the result is true.

Example

<NoBlockSplit></NoBlockSplit>

<NoBlockSplit>
 <ApplyTo>Left<ApplyTo>
</NoBlockSplit>

Silk Performer Workbench 20.0 | 169

Scripting Condition

The Scripting condition does not operate on specific data, therefore the attributes ApplyTo, Offset,
Length, UseDataAvail and IfNull are not available.

Attribute

Type Distinct Values Lists

Default All

Description The attribute value is specified directly within the
Scripting tag, not within a sub node of the condition.

Allowed values are:

All An abbreviation for the complete list of other values

Url Scripting any URL parameter

LinkName Scripting a link name of WebPageLink

FormName Scripting a form name of WebPageSubmit

PostedData Scripting binary posted data (for example
WebPagePost)

FormFieldName Scripting a form field name in the dclform section

FormFieldValue Scripting a form field value in the dclform section

SetCookie Scripting the first parameter of the function
WebCookieSet

True is returned if the condition is evaluated while scripting a string parameter in one of the specified
script locations, otherwise it's false.

Examples

<Scripting>Url, FormFieldValue</Scripting>
<Scripting>All</Scripting>
<Scripting>LinkName, FormName, PostedData</Scripting>

Exists Condition

The condition type Exists checks if the data specified in the ApplyTo tag is not null. It is especially
useful in conjunction with the SaveAs condition tag.

Example

<Conditions>
 <Or>
 <Exists>
 <ApplyTo>Form.Submit.Field(Name:SWECmd).Value</ApplyTo>
 <SaveAs>Command</SaveAs>
 </Exists
 <Exists>
 <ApplyTo>Form.Submit.Field(Name:SWEMethod).Value</ApplyTo>
 <SaveAs>Command</SaveAs>
 </Exists>
 </Or>
 <Exists>

170 | Silk Performer Workbench 20.0

 <ApplyTo>Command</ApplyTo>
 <SaveAs>PageName</SaveAs>
 <SaveMode>Append</SaveMode>
 </Exists>
</Conditions>

Loop Condition

The new compound condition Loop is similar to the condition And in that it evaluates its sub-conditions as
long as they evaluate to true. However, unlike the And condition, it doesn't stop once all conditions have
been evaluated. Instead, the Loop condition starts over again and repeatedly evaluates its sub-conditions
and stops only when a condition evaluates to false. Of course this only makes sense if at least one sub-
condition has side-effects by using the SaveAs tag, otherwise it would loop forever once all sub-conditions
have returned true on the first pass.

Example

This example is taken from the Flex/AMF3 project type and shows how the page timer
name is assembled from the response body.

<Conditions>
 <Exists>
 <ApplyTo>Http.Initial.Request.Body</ApplyTo>
 <SaveAs>RestOfBody</SaveAs>
 <SaveMode>Replace</SaveMode>
 </Exists>
 <Loop>
 <RegExpr>
 <ApplyTo>RestOfBody</ApplyTo>
 <Data>operation=&quot;\([^&quot;]*\)</Data>
 <SaveAs>operation</SaveAs>
 <SaveMode>Replace</SaveMode>
 <SaveTag>1</SaveTag>
 </RegExpr>
 <RegExpr>
 <ApplyTo>RestOfBody</ApplyTo>
 <Data>operation=&quot;\([^&quot;]*\)</Data>
 <SaveAs>RestOfBody</SaveAs>
 <SaveMode>Replace</SaveMode>
 <SaveWhat>Right</SaveWhat>
 </RegExpr>
 <Exists>
 <ApplyTo>Literal:, </ApplyTo>
 <SaveAs>OperationList</SaveAs>
 <SaveMode>AppendSeparator</SaveMode>
 </Exists>
 <Loop>
 <FindData>
 <ApplyTo>operation</ApplyTo>
 <Data>.</Data>
 <SaveAs>operation</SaveAs>
 <SaveMode>Replace</SaveMode>
 <SaveWhat>Right</SaveWhat>
 </FindData>
 </Loop>
 <Exists>
 <ApplyTo>operation</ApplyTo>
 <SaveAs>OperationList</SaveAs>
 <SaveMode>Append</SaveMode>
 </Exists>
 </Loop>
 <Exists>

Silk Performer Workbench 20.0 | 171

 <ApplyTo>OperationList</ApplyTo>
 <SaveAs>PageName</SaveAs>
 <SaveMode>Replace</SaveMode>
 </Exists>
</Conditions>

Troubleshooting

This section offers some recommendations for troubleshooting recording rules that do not operate as
expected. The Recorder outputs diagnostic information to the Log tab window, as shown in the screenshot
below.

This output contains:

• The recording rule files that have been read by the Recorder.
• The recording rules contained in the recording rule files.
• "+" signs preceding rules that are correct and active.
• "-" signs preceding rules that are incorrect or inactive.
• Reasons why rules aren't used ("not active" or an error description).

If a rule file does not appear in this diagnostic output, check the following:

• Is the rule file in the Documents directory of the current project or the public or user’s RecordingRules
directory?

• Does the file have the extension .xrl?

Ensure that the setting Hide file extensions for known file types is not checked in the Windows Explorer
Folder Options dialog box, as shown in the screenshot below. Otherwise Windows may show a file name
such as Rule.xrl when the file name is actually Rule.xrl.txt.

172 | Silk Performer Workbench 20.0

Manually Written Test Scripts
If you do not want to use the Silk Performer Recorder to generate test scripts, you have the option of
creating them manually.

Silk Performer test scripts are written in the program's proprietary scripting language, the Benchmark
Description Language (BDL), which is a high-level language that resembles Pascal. To edit scripts
manually, you must be familiar with BDL and be able to create prototypes of user requests. You must also
be able to define the typical components of a test script, including modules, functions, workload definitions,
transactions, and Web forms.

Writing Test Scripts Manually

1. Click File > New > Plain Script (.bdf) . The Save As dialog box appears.

2. Give the script a name and click Save.

Use Benchmark Description Language (BDL), Silk Performer's proprietary scripting language to write your
script.

Editor Keyboard Shortcuts

The script editor provides a number of keyboard shortcuts and keyboard mouse combinations that facilitate
the scripting work.

press and hold Shift+Alt and drag with mouse Vertical selection. This lets you edit several rows at once.
You can also use the arrow keys instead of the mouse to
expand the selection.

press and hold Alt and press the arrow up/arrow down
key

Move the current line/selected lines up and down.

press and hold Ctrl and click an identifier Takes you to the definition of the identifier (go to jump).

Silk Performer Workbench 20.0 | 173

Ctrl+Minus Takes you back to your previous position. Particularly
useful after a go to jump.

Ctrl+Space Opens the code completion box.

Ctrl+i Shows the parameter information box.

double-click the vertical line of a group Collapses the group.

Ctrl+Shift+L Deletes the current line.

Ctrl+Enter Creates a new line above the current line.

Ctrl+U Converts the selected text to lower case.

Ctrl+Shift+U Converts the selected text to upper case.

Tab Increments the indentation.

Shift+Tab Decrements the indentation.

Ctrl+Q Comments the selected lines.

Ctrl+W Uncomments the selected lines.

Ctrl+G Go to line. Lets you jump to a specific line in the script.

Sample Scripts
Sample script reuse is a timesaving possibility for those who want to generate Silk Performer test scripts
manually (and bypass the standard method, which uses the Silk Performer Recorder).

Sample project files, including scripts, include files, data files, profile files, workload definitions, and more,
are available from the Type list on the Outline Project dialog when you are initially prompted to outline a
new project. These files can be used as templates that you can edit manually to meet your needs.

Silk Performer test scripts are written in the program's proprietary scripting language, the Benchmark
Description Language (BDL), which is a high-level language that resembles Pascal. To edit scripts
manually, you must be familiar with BDL and be able to create prototypes of user requests. You must also
be able to define the typical components of a test script, including modules, functions, workload definitions,
transactions, and Web forms.

Working From Sample Scripts

1. Open the project in which you want to work, or start a new project.
2. Click File > Open > Script File (.bdf). The Open dialog box appears.
3. Browse to the Samples folder (<public user documents>\Silk Performer 20.0\Samples

\<...>). Select a sample script and click Open.

4. Confirm that you want to add the script to your project.

Trying Out Scripts
Silk Performer offers several means of evaluating test scripts, starting with the execution of a Try Script run.

Try Script Overview
Part of the process of conducting a Silk Performer load test is to perform a trial run of the test script that
was created during script modeling.

Normally, this is traffic recorded by the Silk Performer Recorder during script modeling. For a trial run, or
Try Script, of a test script, options are automatically selected so that you can see a live display of the actual
data downloaded. Log files, TrueLog files, report files, output files, and error files are created so that you
can later confirm that the script works properly. Only one user is run, and the stress test option is enabled
so that there is no think time and no delay between transactions. However, at this stage, the measurements
typical of a real load test are not performed.

174 | Silk Performer Workbench 20.0

Try Script Settings

For Try Script runs, the following options are automatically set to these specified values (see also "Replay
Options"):

• The Stress test option is on, when think times are disabled.
• The Stop virtual users after simulation time (Queuing Workload) option is off.
• The Virtual user log files (.log) option is on.
• The Virtual user output files (.wrt) option is on.
• The Virtual user report files (.rpt) option is on.
• The Virtual user report on error files (.rpt) option is on.
• The TrueLog files (.xlg) option is on.
• The TrueLog On Error files (.xlg) option is off.
• The Compute time series data (.tsd) option is off.
• All logging detail options (Results > Logging and Results > Internet Logging page) are on.
• The Enable all measure groups (TSD measure groups) option is off.
• The Bandwidth option is set to High Speed (unlimited).
• The Downstream option is set to unlimited.
• The Upstream option is set to unlimited
• The Duplex option is off.

Trying Out a Test Script
You must record or manually create a test script before you can run a Try Script.

1. Click the Try Script button on the Silk Performer Workflow bar. The Workflow – Try Script dialog
appears.

2. Choose a script from the Script list box.

3. In the Profile list box, the currently active profile is selected (this is the default profile if you have not
configured an alternate profile).

a) To configure simulation settings for the selected profile, click Settings to the right of the list box.
b) To configure project attributes, select the Project Attributes link.

4. In the Usergroup list of user groups and virtual users, select the user group from which you want to run
a virtual user.

Since this is a Try Script run, only one virtual user will be run.

5. To view the actual data that is downloaded from the Web server during the Try Script in real-time, select
the Animated Run with TrueLog Explorer check box.

If you are testing anything other than a Web application, you should disable this option.

6. Click Run. The Try Script begins.

All recorded think times are ignored during Try Script runs. The Monitor window opens, giving you detailed
information about the progress of the Try Script run. If you have selected the Animated option, TrueLog
Explorer opens. Here you can view the actual data that is downloaded during the Try Script run. If any
errors occur during the Try Script run, TrueLog Explorer can help you to find the errors quickly and to
customize session information. Once you have finished examining and customizing your script with
TrueLog Explorer, your script should run without error.

Try Script Summary
When a Try Script run is complete, the Try Script Summary page appears. You can also open this page
from the Results tree. You can perform the following actions in the Next Steps area on the right side:

• Click Customize user data to open the TrueLog Explorer and customize your script.
• Click Define User Types to continue with the next step in the workflow bar. This button is only visible if

you use the Simple Workflow Bar.

Silk Performer Workbench 20.0 | 175

• Click Find Baseline to continue with the next step in the workflow bar. This button is only visible if you
use the Full Workflow Bar.

In the Analyze Result Files area, you can open various reports and log files.

Note: If you want to prevent the summary page to appear each time a test is complete, disable the
Show Summary Page button in the toolbar of the Monitor page.

Visual Analysis with TrueLog Explorer
TrueLog Explorer guides you through the process of visually analyzing Try Script runs with its Workflow
bar.

TrueLog Explorer provides an accurate view of the actual data that is downloaded during tests. This
enables you to verify that the data specified to be received from the server under test was, in fact, received.
In the case of Web application testing for example, TrueLog Explorer shows the actual Web pages that are
received during tests. Through the use of TrueLog Explorer’s animated mode, live monitoring of
downloaded data is available—data is displayed as it is received during tests.

TrueLog Explorer provides different views of received data, enabling you to:

• Inspect the rendered HTML code, as a real user would see it.
• Inspect the native HTML code.
• Inspect a difference table that shows the differences between replay and recorded TrueLogs.

Validating Scripts with TrueLog Explorer

Run a script before performing this task.

1. From the Silk Performer menu bar, select Results > Explore TrueLog .

Note: Selecting the Animated Run with TrueLog Explorer check box before running a Try Script
operation opens TrueLog Explorer automatically.

2. Examine the Virtual User Summary report.

A Virtual User Report is shown automatically when the first node of the menu tree at the left side of the
window is checked.

The report shows detailed information about the Try Script run in tabular form.

3. Use the menu tree on the left of the window to expand and collapse folders as necessary to locate and
view data downloaded during the test.

4. To view a downloaded Web page, select its URL or link description in the menu tree.

5. To locate replay errors, click the Analyze Test button on the workflow bar and select Find Errors. A
new window appears that helps you navigate from one error to the next. HTML errors often occur one or
two steps before they are apparent to end users. With TrueLog Explorer you can easily examine the
Web pages that were displayed preceding errors.

6. Compare a replay TrueLog with the TrueLog that was produced during recording of the application.

Log Files
If log-file generation has been enabled, then any errors that are encountered in load tests are reported in
log files. Log files contain a record of all the function calls that are invoked by the transactions of each
virtual user in load tests. These files contain session and error information, including details for each type
of event executed during a simulation, the API calls in a transaction, and the data exchanged with the
server.

The process of generating log files alters the time measurements of tests. Therefore, use log files for
debugging purposes only. Do not generate them for full load tests.

176 | Silk Performer Workbench 20.0

Viewing Log Files

Choose one of the following:

• From the Silk Performer menu bar, select File > Open > Virtual User Log File and then locate the
appropriate file (.log).

• Right-click the line for a virtual user in the Silk Performer Monitor window and select Show Virtual
User Log File from the context menu.

The log file opens.

Viewing Report Files
Report files contain the same information as baseline reports for one specific virtual user. This report is
based on XML/XSL and includes the most important test results in tabular format.

Note: When TrueLog Explorer opens, the Virtual User Report file is displayed automatically.

Choose one of the following:

• From the Silk Performer menu bar, select File > Open > Virtual User Report File and then locate
the appropriate file (.rpt).

• Right-click the line for a virtual user in the Silk Performer Monitor window and select Show Virtual
User Report File from the context menu.

The report file opens.

Report Contents

A report file contains the following sections:

• General Information
• Virtual User
• Summary Tables
• Transaction Response Times
• HTML Page and Action Timers
• Web Form Measurements

General information

The general information section includes administrative information in a tabular form.

Administrative information includes the Silk Performer version info, the project name, a description of the
project, the date and time of the test run, the workload definition, the workload model and the number of
errors that occurred.

User types

For the virtual user, a section is available with details of the measured response times. The summary line
shows the duration of the test, the session time, the session busy time, the average page time, the average
action time, the number of transactions executed successfully, canceled, failed and the number of errors, if
any, that occurred.

Summary tables

This section contains summary measurements in a tabular form, that is, aggregate measurements. The
first table provides general information, such as the number of transactions that were executed and the

Silk Performer Workbench 20.0 | 177

number of errors, if any, that occurred. All the following tables provide summary information relevant to the
type of application that was tested.

Transactions

This section contains summary measurements in a tabular form, that is, aggregate measurements for all
transactions of the specific user. For every transaction, the transaction response time and the transaction
busy time are displayed.

The transaction response time is measured from the beginning to the end of the transaction, including all
think times.

The transaction busy time is the transaction response time without any think time included.

Page and action timers

This section contains summary measurements in a tabular form for every accessed Web page. For every
page, the download time of the whole page, the HTML-document download time, the server busy time, the
amount of data downloaded with this page, and the amount of data downloaded for embedded objects are
displayed.

Web forms

This section contains summary measurements in tabular form for every used Web form. For every form,
the round trip time, the server busy time, the number of HTTP hits, the amount of request data sent and the
response data received are displayed.

Output Files
Output files contain the output of write statements that are used in test scripts. An output file is generated
for a particular user only if write statements are executed by that user.

Note: Generating output files alters the time measurements of load tests. Therefore, these files
should be used for debugging purposes only, and should not be generated for full load tests.

Viewing Output Files

Note: Generating output files alters the time measurements of load tests. Therefore, these files
should be used for debugging purposes only, and should not be generated for full load tests.

Choose one of the following:

• From the Silk Performer menu bar, select File > Open > Virtual User Output File and then locate
the appropriate file (.wrt).

• Right-click the line for a virtual user in the Silk Performer Monitor window and select Show Virtual
User Output File.

The output file opens.

Customizing Scripts
After you have recorded and tried out your script for the first time, you may need to customize it for two
reasons:

• The script does not replay without errors.

Session-specific data that was captured during recording is usually not valid during replay. This is
because data like session IDs change every time a new communication session is started with the

178 | Silk Performer Workbench 20.0

application under test. Session-specific data can be represented by variables and is, consequently,
dynamically adjusted during each run. This leads to clean scripts that work flawlessly every time they
are executed.

• You want to introduce more variety in virtual user behavior.

The virtual users will behave identically during your load test, unless you introduce data or
environmental variation, such as simulating different browsers, bandwidths, or paths through the
application.

Therefore, it is recommended to customize your scripts before you start a load test. Customizing scripts
offers the following advantages:

• Your virtual users will be diverse.

For example, you can set them up to use different browsers and bandwidths from different locations to
access the application under test.

• Your virtual users will behave more realistically and more natural.

This can be achieved with randomized data. The virtual users will then, for example, input varying data
in forms, like different names, addresses, and credit card numbers. They can vary the product names
they search for, the products they order, and so on. This leads to accurate and meaningful result data.

Customizing scripts is typically done before you move on with the next step in the workflow bar.

Function and Transaction Declarations
Silk Performer offers GUI tools that assist you in inserting function and transaction declarations into test
scripts.

A function is used to encapsulate some tasks that a script requires. Functions can access and change data
declared outside themselves, either through variables or parameters. Optionally, a function can return a
value of a specific type.

A transaction is a discrete piece of work that is assigned to a virtual user in a test and for which separate
time measurements are made.

Inserting Function Declarations

1. With the test script into which you want to insert a new function open, select Script > New Function
from the Silk Performer menu bar. You can also access this dialog by right-clicking within the body of the
script and selecting New Function from the context menu. The New Function dialog appears.

2. In the Name field, enter a name for the function you want to insert into your test script. The name must
begin with a character and may consist of any number of letters of the alphabet, digits, and
underscores.

3. From the Return type list box, select the data type of the function's return value. Choose one of the
following:

• none - for the function to return nothing
• boolean - for the function to return either true or false
• float - for the function to return any positive or negative floating-point value or zero
• number - for the function to return any positive or negative whole number or zero
• string - for the function to return a sequence of characters

4. In the Parameters list, insert the parameters that you want to pass to the function. For each parameter,
enter a name in the Name column and select the data type from the Type list box:

• boolean - for the parameter to contain either true or false
• float - for the parameter to contain any positive or negative floating-point value or zero
• number - for the parameter to contain any positive or negative whole number or zero

Silk Performer Workbench 20.0 | 179

• string - for the parameter to contain a sequence of characters

5. Use the Preview area to see how the function declaration looks when it is inserted into your script. The
declaration contains the parameters you insert into the list as well as the return type. Keep in mind that
it is up to you to add the function code after the function declaration has been inserted into the script.

6. Click OK.

The new function is placed in your script, and appears in the script editor window.

Inserting Transaction Declarations

1. With the test script into which you want to insert a new transaction open, select Script > New
Transaction from the Silk Performer menu bar. You can also access this dialog by right-clicking within
the body of the script and selecting New Transaction from the context menu. The New Transaction
dialog appears.

2. In the Name field, enter a name for the transaction you want to insert into your test script. The name
must begin with a character and may consist of any number of letters of the alphabet, digits, and
underscores.

3. Click OK.

The new transaction is placed in your script, and appears in the script editor window.

User Groups
User groups are groups of virtual users who share similar, though not identical, behavior. The members of
user groups perform slightly different transactions with the goal of simulating real-world client behavior.

User groups are used in conjunction with parameterized user input data and profiles, for example browser
types and connection speeds, to simulate typical end-user activity.

User groups are defined by the transactions that they call and the frequency at which they call those
transactions. For example, you might have a user group called Searcher that performs a TLogon
transaction once, a TSearch transaction five times, and a TLogoff transaction once. You might also have
a user group called Updater that performs the TLogon transaction once, the TSearch transaction three
times, the TUpdate transaction twice, and the TLogoff transaction once. A third user group called
Inserter might perform the TLogon transaction once, the TSearch transaction once, the TInsert
transaction three times, and the TLogoff transaction once. Collectively, these user groups can be used to
simulate real-world client activity while maintaining load balance, meaning that transactions are distributed
in such a way that all users don’t perform the same transaction at the same moment.

When multiple users have the same profile, they can be combined into a user group. The user group list
contains the name of the user group, the transactions that are to be invoked by the user group, and the
frequency at which the transactions are to be invoked (TransCount). User group descriptions are included
in the dcluser sections of Silk Performer test scripts.

Customizing User Groups

1. Open and activate the BDF script you want to customize

2. Select Script > Customize User Groups from the Silk Performer menu bar. The Customize User
Groups dialog appears.

3. Right-click a user group or transaction node to open a context menu that lists the available operations:

• Add a new user group
• Copy a user group
• Rename a user group
• Delete a user group
• Insert a transaction

180 | Silk Performer Workbench 20.0

• Copy a transaction
• Rename a transaction
• Remove a transaction

Transactions can be added and removed for each user group. The transaction renaming process
renames transactions in all user groups to which they have been assigned.

4. Select the desired action from the context menu and follow the prompts

5. Begin and End transactions can be defined for each user group by selecting/deselecting the check
boxes in the Begin/End column.

6. Entries in the Count column, which represent the number of times that transactions are to be called,
can be edited directly by clicking them.

7. When the Choose transactions randomly check box is selected and a user group contains at least
two transactions that are neither "begin" transactions nor "end" transactions, the Random Order
column shows how the transaction distribution will be weighted, by percentage. For example, if two non-
begin and non-end transactions are present, each transaction will have a random order distribution of
50%. If three non-begin and non-end transactions are present, the transactions will have random order
distributions of 33%, 33%, and 34%.

8. Click OK when you’ve completed user group and transaction customization.

The modified data is written to the dcluser section (and dcltrans section if necessary) of your test
script.

Creating Parameters with the Parameter Wizard
The Parameter Wizard enables realistic functionality to be created for virtual users during tests by replacing
recorded or scripted values with constant values, random values, or values pulled from multi-column data
files. Each of these value types can be generated using the wizard. This means that you can furnish virtual
users with varied personal data for all the information commonly required by Web forms (for example,
names, addresses, zip codes, or credit card numbers).

The Parameter Wizard guides you through the process of creating variables and then places the variables
in test scripts. A wide range of variable types are provided. Each variable type can generate different value
types (strings containing text and/or numbers, serial numbers, whole numbers, and floating-point numbers).

Values can be randomized using different distribution patterns. Comprehensive sets of pre-defined data (for
example, names, addresses, or passwords) are also provided.

Inserting a Constant Value Into a Script

1. In the menu bar, click Script > Create New Parameter . The Parameter Wizard - Create New
Parameter dialog box appears.

2. Click the Create New Parameter icon to open the Parameter Wizard.

3. Select Constant value.

4. Click Next.

5. Select the data type of the variable that you want to insert into your test script from the Data type list
box.

6. In the Name field, enter a name for the new constant value or accept the default name.

7. In the Value field, enter the value of the new constant value.

8. Click Finish. The new constant is added to the parameter section of your script. If you opened the
wizard via the context menu in your script, the value you selected will be automatically replaced with the
newly created variable.

Launch the wizard as often as is required to create more constant values. If you launched the wizard via
another method, replace the constant values in your script with the BDL variables you created.

Silk Performer Workbench 20.0 | 181

Inserting Random Values Into a Script

1. In the menu bar, click Script > Create New Parameter . The Parameter Wizard - Create New
Parameter dialog box appears.

2. Select Parameter from Random Value.

3. Click Next.

4. In the wizard’s Choose the type of random variable window, choose a random variable type from the
Random type list box.

Use the type description and variable declaration preview provided for each random variable type to
choose the required variable and specify its attributes.

5. Click Next. The Name the variable and specify its attributes window appears.

6. In the Name field, enter a name for the new constant value or accept the default name.

7. Specify the attributes of the variable. These vary depending on the type of variable selected. Use the
Back button to review the type description of the variable if necessary.

8. Click Next. The Choose the kind of usage window appears.

9. Specify how the variable is to be utilized.

• Per usage: Each use of the random variable generates a new random value.
• Per transaction: A new value is generated for each transaction call.
• Per test: The value is the same for the entire test.

10.Click Finish. The new random variable is then added to the random variables section of your script.

If you opened the wizard via the context menu in your script, the value you selected will be automatically
replaced with the newly created variable.

Launch the wizard as often as is required to create more randomized variables. If you launched the wizard
via another method, replace the constant values in your script with the BDL variables you created.

Inserting Parameters with Values from Multi-Column Data Files

1. In the menu bar, click Script > Create New Parameter . The Parameter Wizard - Create New
Parameter dialog box appears.

2. Select Parameter from multi-column data file.

3. Click Next.

4. In the wizard’s Parameter from multi-column data file window, choose a multi-column data file from
the File Name list box.

a) Select an appropriate separator from the Separator list box, or type a custom separator.

5. In the Handle name field, type a name for the file handle of the multi-column data file variable or accept
the default name.

6. In the Parameter name field, type a name for the new parameter or accept the default name.

7. Click Next. The Parameter Wizard - Parameter from Multi-column Data File window appears.

8. Select a Row selection order and specify the Attribute options.

9. Specify the attributes of the variable. These vary depending on the type of variable selected. If
necessary, use the Back button to review the type description of the variable.

10.Click Finish.

The new parameter from a multi-column data file is then added to the parameter section of your script.

The multi-column data file you selected is also added to your project's data files.

If you opened the wizard via the context menu in your script, the value you selected is automatically
replaced with the newly created variable.

182 | Silk Performer Workbench 20.0

Launch the wizard as often as is required to create more randomized variables. If you launched the wizard
via another method, replace the constant values in your script with the BDL variables you created.

Editing Multi-Column Data Files

1. Open the Data Files sub-tree of the Project menu tree.

2. Double-click the multi-column data file you want to edit. The Edit CSV File window appears.

3. Choose an appropriate separator for the multi-column data file from the Separator list box or enter a
custom separator.

4. Modify, add, or delete values from the multi-column data files as required.

5. Click OK to save the changes of the multi-column data file and close the window, or click Save As to
save the multi-column data file with a different name.

Inserting a Parameter into Your Test Script

1. Right-click a customizable value (for example, a string) in your BDL script.

2. Select Customize Value from the context menu.

The Parameter Wizard appears.

The Customize Value menu item is disabled if the value in your script is not customizable.

3. In the wizard’s Customize Value window, select Use existing parameter.

4. Click Next. The wizard’s Use Existing Parameter window appears.

5. Select a variable from the list and click Finish.

You can choose the data type of the shown parameters from the Show all Parameters of type list box.

Silk Performer automatically shows the window with a selected data type that is compatible with the
data type of the customized value.

The value you selected is automatically replaced with the existing parameter.

Serialization and Synchronization
There are several Silk Performer functions that allow you to either serialize or synchronize transactions in
your test scripts to better control the timing of loads in your simulation. Both serialization and
synchronization are implemented using high-level functions that call pre-existing Windows functions.

Serialization

Serialization enables you to test the effects of transactions executed one at a time. This is useful, for
instance in connecting to a server that is not able to handle a large number of concurrent logins.

Serializing users and transactions requires the use of a token or mutex object. Named mutex objects are
created by calling the CreateMutex function. The users to be synchronized have to wait until they receive
the mutex object. This guarantees that only one user executes a transaction at a time.

After a user has completed the transaction, the user must release the token by calling the ReleaseMutex
function. This makes the mutex object available for other users.

Serialization Functions

The following functions are used in serializing transactions and users:

• CreateMutex

• CreateMutexEx

• ReleaseMutex

Silk Performer Workbench 20.0 | 183

• WaitForSingleObject

• CloseHandle

Serialization Sample Script

The following example is excerpted from a sample script called Mutexlogin.bdf,
located in the Samples\Database folder in the Silk Performer installation directory.
The script consists of three transactions. TMain waits until the user possesses the
token, and then connects to the DBMS; Selling executes the database transaction;
and CleanUp closes the connection to the database and releases all the resources.

Initially, a mutex object called MyConnectMutex is created to serialize access to critical
sections inside transactions for multiple concurrent users. Calling the
WaitForSingleObject function effects a delay until the mutex object is in the
signaled state. This means that from that point forward, only the current transaction is
executed, and this condition remains until the token is released. During execution time a
connection to a database system is established. After successfully connecting, the
ownership of the mutex object is released. After these steps have been completed
successfully, the transaction is committed. In this example, only connecting to the
database system is serialized.

benchmark MutexLogin
use "dbapi.bdh"
var
 gHdbc1 : number; // handle for database connection
 gHMutex : number; // mutex handle
dcluser
 user
 Seller
 transactions
 TMain : begin;
 Selling : 50;
 CleanUp : end;

dcltrans
 transaction TMain
 var
 str: string;
 begin
 // SYNC: serialize connect transaction with mutex object
 // (enter critical section)
 gHMutex := CreateMutex("MyConnectMutex");
 WaitForSingleObject(gHMutex, INFINITE);
 gHdbc1 := DB_Connect("dsn=sqs_purple;uid=u1;pwd=u1");
 Print("Connected!", 1, 1);
 // SYNC: leave critical section and pass control to other
user
 ReleaseMutex(gHMutex);
 end TMain;

 // process database transaction
 transaction Selling
 begin
 ...
 end Selling;

 transaction CleanUp
 begin
 DB_Disconnect(gHdbc1);
 end CleanUp;

184 | Silk Performer Workbench 20.0

Synchronization

Synchronization is useful in testing the effects of a large number of simultaneously called transactions. It
allows you to create stress on your system to test specific concurrency issues. Synchronization works by
employing an additional user called an Event Starter, which functions like the starting gun at the beginning
of a race. Using the CreateEvent function, you can use the Event Starter user to send an Event object
after a specified period of time. You can set up the users in the simulation to wait for this event and thus
perform a specified transaction simultaneously when the event is released. Silk Performer provides the
PulseEvent function for this purpose.

The other users call the WaitForSingleObject function to wait until the specified event is in the
signaled state. Using the WaitFor function, users are able to synchronize themselves without the use of
event objects.

Synchronization Functions

The following functions are used in serializing synchronizing and users:

• CreateEvent

• PulseEvent

• WaitFor

• WaitForSingleObject

• CloseHandle

Synchronization Sample Script

In the following example, the users create an event object called StarterEvent and
establish a connection to an FTP server. The Starter user sets the state of the event
object StarterEvent to signaled every ten seconds and resets it after the appropriate
number of waiting users process the transaction. In this way, all the Uploader users are
forced to execute the TUpload transaction at the same time. The Uploader's wait until
the event object is in the signaled state, and then execute their Upload transaction.

dcluser
 user
 Starter
 transactions
 TInit : begin;
 TStartEvent : 20;
 user
 Uploader
 transactions
 TInit : begin;
 TUpload : 20;
var
 hEventGo : number; // handle for starting event
 hFTP : number;

dcltrans
 transaction TInit
 begin
 hEventGo := CreateEvent("StarterEvent");
 WebFtpConnect(hFTP, "standardhost", WEB_PORT_FTP,
"username", "password");
 end TInit;

 transaction TStartEvent
 begin
 wait 10.0;

Silk Performer Workbench 20.0 | 185

 // every 10 seconds the starter event forces all
 // seller users to execute the selling transaction
 // at the same time
 PulseEvent(hEventGo);
 end TStartEvent;

 transaction TUpload
 begin
 WaitForSingleObject(hEventGo, INFINITE);
 WebFtpPut(hFTP, 4096, "test.dat", true);
 end TUpload;

Rendezvous Functionality

This function is used to create a delay until the specified virtual users reach a certain state, and then to
proceed with all the users simultaneously. This tests the ability of the system to handle a number of
concurrent transactions by making it possible to generate very specific stress on the system. For example,
in a transaction that stores a number of files on an FTP server, you may want your script to wait until all the
users are logged on, and then to store all the files at the same time.

Rendezvous Functions

Silk Performer includes the following rendezvous function:

• WaitFor

Rendezvous Sample Script

In this example, the script waits until five virtual users (Buyer) are at the line in the script
containing the WaitFor function, and it then proceeds with the transaction.

const
 USERS := 5;
dcluser
 user
 Buyer
 transactions
 TBuy : 10;

dcltrans
 transaction TBuy
 const
 TIMEOUT := 60;
 begin
 // wait for users rendezvousing at this point
 if not WaitFor("Rendezvous", USERS, TIMEOUT) then
 write("timeout"); halt;
 end;
 // proceed with transaction
 print("rendezvous", 1, TEXT_RED);
 end TBuy;

Multiple Agents

The serialization and synchronization functionality is available only on a single agent computer. Silk
Performer provides an additional number of functions that extend the use of serialization and
synchronization across multiple agents.

Serialization across multiple agents is made possible by the GlobalResourceEnter and
GlobalResourceRelease functions. GlobalResourceEnter defines a resource that can be occupied
by only a limited number of users. The caller has to wait until the number of users who occupy the resource

186 | Silk Performer Workbench 20.0

is less than the maximum number of users who are allowed to occupy the resource. The
GlobalResourceRelease function releases a resource that was occupied with the
GlobalResourceEnter function. If there are users still waiting for the resource, the next user in the
queue resumes the simulation.

Synchronization across multiple agents is made possible by the GlobalWaitFor function. This function
defines a checkpoint (rendezvous point) and blocks the calling user. The caller waits until a specified
number of users (including the caller) have reached or passed the checkpoint, or until a specified timeout
occurs. The checkpoint is identified by name and is visible to all the users, including those running on
various remote agents. A waiting user continues when the specified timeout is reached or the given
number of users have called the function for a checkpoint. A user who has timed out is also regarded as
having passed the checkpoint.

The functions GlobalVarGet, GlobalVarInc, and GlobalVarSet are used, respectively, to get,
increment, and set the values of global integer variables that are accessible for all the users on all the
agents.

For detailed information on these functions, refer to the BDL Function Reference.

Check list for building robust scripts
A script that was recorded with the Silk Performer Recorder provides a good starting point for a load test.
However, such a raw script usually has two main downsides: It will not produce realistic results and it will
not be particularly robust. It is likely to cause errors during replay.

To make your scripts as robust as possible, it is recommended to customize them before you start a load
test. When customizing your script, consider the following:

• Appropriate test data: Most applications require appropriate test data. Make sure to customize your
script in a way that makes virtual users employ appropriate user names with correct access rights. If
your virtual users execute transactions concurrently, you will probably need to define different user IDs.

• Dynamic content: Often, the content of an application is dynamic, like link names that change, items
being no longer available, products in a web shop being out of stock, and so on. Also, real users usually
pursue different paths through an application. A recorded script, however, only contains one specific
path. The path may also vary based on time, user, or other conditions.

• Not available applications: When you start your load test, the application under test might not be
available, not yet ready, or a database connection is not yet established. Make sure that your script
handles these circumstances appropriately.

• Timing issues: Some BDL functions use default timeout settings that might not be appropriate for your
testing scenario. Adjust these timeout settings to fit your specific needs and to avoid errors.

• Concurrency issues: Controlling concurrence issues also helps to avoid errors. Your database might
be able to respond to only a few virtual users concurrently. Controlling concurrency also helps to make
behavior of virtual users more realistic: Real users usually perform one specific task not all at the same
time but in a staggered manner. The serialization, synchronization, and rendezvous functionalities of
Silk Performer allow you to precisely control the desired behavior of your virtual users.

To make your script even more robust, also consider the following error scenarios. Reflect about how your
virtual users are supposed to act when an error occurs. The virtual users can …

• skip the remaining part of a transaction: This action might be appropriate when a virtual user
attempts to buy an item in a web shop that is not in stock at that time. The virtual user could skip that
particular transaction and continue with executing the next transaction. Such a behavior can be
achieved with a return statement.

• stop the load test: This action might be appropriate when a database connection cannot be
established and the application under test cannot be used without this connection. In such a case,
continuing the load test would not be possible. Such a behavior can be achieved with a halt statement.

• handle an error and continue executing the transaction: This might be useful when a virtual user
enters a wrong password on a login page. If the script could handle such a login error, the virtual user

Silk Performer Workbench 20.0 | 187

could attempt to login with a different password and might be able to continue executing the rest of the
transaction. Such a behavior can be achieved with error-handling functions.

Custom DLLs
In Silk Performer scripts, it’s possible to call functions that are provided in Dynamic Link Libraries (DLLs).
This feature allows you to implement functions in any programming language that can generate DLLs and
then utilize such external functions in Silk Performer test scripts.

External Function Declaration

Two files are typically required to create a DLL:

• A source file that contains the implementation of one or more functions
• A definition file that specifies which functions are to be exported

When developing a DLL using a common C/C++ compiler, the source file (.c, .cpp) and the definition file
(.def) must be included in the Visual Studio project.

In BDL, all external functions called from a script must be declared before they can be used. This must be
done in the external functions section of Silk Performer scripts.

Note: If a DLL file is not located in the Silk Performer installation directory or a directory included in
the path specification, you need to add the DLL file to the project’s data files.

Note: The vb.net dll file is not supported.

The following files contain sample scripts. The files can be found in the following folder and its subfolders:
C:\Users\Public\Public Documents\Silk Performer <version>\SampleApps\CustomAPI.

• DemoFunctions.bdf

• DemoFunctions.dsp

• demofunctions.cpp

• DemoFunctions.dll

Script Example

In the following example, the external functions DemoSum and DemoDiff are declared
and then called in the TMain transaction.

dll "DemoFunctions.dll"

 // function without parameters and return value
 "DemoOutput"
 function Output;

 // function declared using C data types
 "DemoSum"
 function Sum(in long, in long): long;

 // function declared using BDL data types
 "DemoDiff"
 function Diff(in number, in number): number;

// DLL is not located in the Silk Performer directory
dll "C:\\Debug\\Functions.dll"

dcltrans

 transaction TMain
 var
 x, y, nSum, nDiff: number;

188 | Silk Performer Workbench 20.0

 begin
 x := 4; y := 5;
 nSum := Sum(x, y); // external function calls
 nDiff := Diff(x, y);
 Output();
 end TransMain;

Function Prototypes

In the external functions section of a test script, after the name of a DLL has been declared, any number of
prototypes of DLL functions can be defined. Each function that is to be used in a Silk Performer script must
be declared; these declarations are case-sensitive. Additionally, identifiers that specify the names of all
functions that are to be used in BDL scripts must be defined.

When parameters are passed to external functions, it is necessary to indicate whether they are passed into
functions by reference or by value (default). Parameters can be declared with BDL data types or basic C
data types (long, short, char, float, double, or pointer).

The following table shows the data-type mapping between formal parameters of native functions exported
by DLLs, formal parameters of external functions declared in the DLL sections of BDH files, and actual
parameters (BDL data types).

Table 1: Data-type mapping

C Data Type DLL Section (BDH) BDL Data Type

char char Number

unsigned char unsigned char Number

short short Number

unsigned short unsigned short Number

long long, number, boolean Number, Boolean

unsigned long long, number Number

char* string String

*(Pointer) long, number Number

float float Float

double double Float

Ptr (C data type representing a
pointer to any data type)

string String

Parameters in External Functions

Any type of parameter can be passed to external functions. While using simple data types is easy, handling
arrays and structured data types requires knowledge about the alignment and size of the specific data
types in use.

Simple data types allowed as input and output parameters are:

Table 2: Simple data types

C Data Type BDL Data Type

Char, unsigned char Number

Short, unsigned short Number

Silk Performer Workbench 20.0 | 189

C Data Type BDL Data Type

Long Number

Double Float

Float Float

Char* String

Note: The unsigned long data type is converted to long when used in Silk Performer scripts.

When a parameter is passed to a function by value, it is declared simply by specifying its type. If a
parameter is passed by reference (for example, if it is used as an output parameter), a pointer to the data
type must be defined.

The example below illustrates how function parameters are declared in C and how corresponding external
functions must be declared in BDL. In addition, an example of an external function call is provided.

C Source Code

In this example, the external function T_PARAM receives the following input parameters:
inChar, inShort, inLong, inDouble, inFloat, inUShort, and inUChar. A
corresponding output parameter belongs to each: outChar, outShort, outLong,
outDouble, outFloat, outUShort, and outUChar. These parameters must be
declared as pointers because during function calls references to the variables are
passed to the functions. Additionally, a string called inoutString is declared as an
input and output parameter.

char* T_PARAM(char inChar, // in
 short inShort,
 long inLong,
 double inDouble,
 float inFloat,
 unsigned short inUShort,
 unsigned char inUChar,
 char* inoutString, // in/out
 char* outChar, // out
 short* outShort,
 long* outLong,
 double* outDouble,
 float* outFloat,
 unsigned short* outUShort,
 unsigned char* outUChar)
{
 char sBuffer[1000];
 // copy the values of the input parameters to the
 // output parameters and the return value
 return sBuffer;
}

BDL External Function Declarations

To use the above-defined T_PARAM function in BDL, the function must be declared in
the external functions section of a Silk Performer script. This is illustrated in the example
below. In this case, the parameters are defined as formal data types. The comments
attached to each parameter indicate the corresponding BDL data type.

"T_PARAM" function t_param(
 in char, // in number
 in short, // in number

190 | Silk Performer Workbench 20.0

 in long, // in number
 in double, // in float
 in float, // in float
 in unsigned short, // in number
 in unsigned char, // in number
 inout string, // inout string
 out char, // out number
 out short, // out number
 out long, // out number
 out double, // out float
 out float, // out float
 out unsigned short, // out number
 out unsigned char): string(100); // out number

BDL External Function Calls

The following example illustrates how to call the T_PARAM function. In this example,
random values are assigned to the variables and passed to the function as input
parameters.

dcltrans
 transaction TMain
 var
 n1, n2, n3, n4, n5, n6, n7, n8, n9, n10 : number;
 f1, f2, f3, f4 : float;
 s1, sRet : string;
 begin
 n1 := 127; n2 := 32000; n3 := 2000000;
 n4 := 64000; n5 := 255;
 f1 := 12345.12345; f2 := 12.99;
 s1 := "Teststring";
 sRet := t_param(n1, n2, n3, f1, f2, n4, n5, s1,
 n6, n7, n8, f3, f4, n9, n10);
 end TMain;

Structured Data Types in External Functions

When using structured data types, it is important to pay attention to the alignment and size of structure
elements. The table below shows the size of all conventional data types that can be used within function
declarations in Silk Performer scripts.

Simple data types allowed as input and output parameters are:

Table 3: Conventional data type sizes

Data Type Size

Char, unsigned char 1

Short, unsigned short 2

Long 4

Double 8

Float 4

Char[x] x

Silk Performer Workbench 20.0 | 191

C Source Code

The example below clarifies structure composition by showing a data structure that
contains all the simple data types.

// declare a demo data structure
#pragma pack(1) // alignment to 1-byte boundaries
typedef struct {
 char myChar; // size: 1 byte pos: 1
 short myShort; // size: 2 bytes pos: 2
 long myLong; // size: 4 bytes pos: 4
 double myDouble; // size: 8 bytes pos: 8
 float myFloat; // size: 4 bytes pos: 16
 unsigned short myUShort; // size: 2 bytes pos: 20
 char myString[10]; // size: 10 bytes pos: 22
 unsigned char myUChar; // size: 1 byte pos: 32
} TESTSTRUCT;
#pragma pack()

 char* T_STRUCT(TESTSTRUCT * s)
{
 char sBuf[10000];
 // manipulate values of data structure and generate a
 // return value for demonstration purpose
 ...
 return sBuf;
}

BDL External Function Declarations

To handle structured data types, BDL uses strings of appropriate length and number of
type-dependent Get and Set functions. For each structured data type passed to a
function, an inout string parameter must be defined. These strings must be exactly as
long as the data structures defined in the DLLs.

The first position in a BDL string that can hold a structured data type is one (1). When
variables are aligned to one-byte boundaries, the starting position of the next element is
derived by adding the current position to the size of the current element. For the data
structure declared in the example above, a 32-byte string is required.

"T_STRUCT"
 function t_struct(inout string(32)): string(1000);

BDL External Function Calls

In the following example, arbitrary values are assigned to all the elements of the data
structure using the corresponding Set functions. Next, the external function t_struct
is called to manipulate the data structure.

dcltrans
 transaction TMain
 var
 n1, n2, n3, n4, n5 : number;
 n6, n7, n8, n9, n10 : number;
 f1, f2, f3, f4 : float;
 sStruct : string(100);
 sRet : string(1000);
 begin
 /* one-byte alignment */
 SetChar (sStruct, 1, 127);

192 | Silk Performer Workbench 20.0

 SetShort (sStruct, 2, 32000);
 SetLong (sStruct, 4, 2000000);
 SetDouble(sStruct, 8, 12345.12345);
 SetFloat (sStruct, 16, 12.99);
 SetUShort(sStruct, 20, 64000);
 SetString(sStruct, 22, "123456789", 10);
 SetUChar (sStruct, 32, 255);
 sRet := t_struct(sStruct);
 end TMain;

Client IP Address Simulation
This chapter explores the client IP address simulation feature of Silk Performer. The method of configuring
network interface cards for multiple IP addresses is explained, as are the script functions used to set up
local IP addresses. A brief introduction describes how to activate newly installed/assigned IP addresses.

Multiple IP Addresses per NIC

If a computer is configured with more than one IP address, it is referred to as a multi-homed system. Multi-
homed systems are supported in one of three ways:

• Multiple IP addresses per NIC (logical multi-homed): Using the Control Panel, five addresses per card
may be configured. However, more addresses may be added to the registry.

• Requirements: NT4, SP4
• The total number of IP addresses allowed per NIC depends on the installed NIC. Based on the test

results, a 3COM905BTX can handle about 2000 IP addresses.
• Multiple NICs per physical network (physical multi-homed):

• No restrictions other than hardware.
• Multiple networks and media types:

• No restrictions other than hardware and media support.

Adding IP Addresses in the System Configuration Wizard

1. Disable DHCP and add gateway and DNS addresses.

2. Select Tools > System Configuration Manager.

3. Connect to the machine to which you want to add new IP addresses: Click Connect to, select a
machine and click Connect.

Note: By default, you will be connected to the localhost. If you cannot connect to a particular host,
make sure that the Silk Launcher Service is running on that host.

4. Click the IP Address Manager tab and select the network adapter to which you want to add new IP
addresses and click Add.

5. Specify the IP addresses you want to add.

• Number: The number of sequential IP addresses to be added subsequent to the one specified in the
From IP address field.

• To IP address: Any number of IP addresses will be added until this IP is matched. Addresses must
be sequential and can either increase or decrease.

Note: If you use the From IP address and the To IP address fields, make sure that the To IP
address value is higher than the From IP address value. For example: From: 192.12.23.1, To:
192.12.23.108

6. Reboot the machine.

7. To verify that the IP addresses you added are valid, either:

Silk Performer Workbench 20.0 | 193

• Call ipconfig.exe (within the shell) to verify that all IP addresses are configured properly.
• Launch the System Configuration Manager to test that the IP addresses were added correctly.

Note: By clicking the Check button with the Host name or IP address field blank, the System
configuration Manger checks that all added IP addresses are working correctly. If you enter a
particular IP address into the Host name or IP address field, only that address will be checked.

During replay you can use a third-party tool to examine the bindings to the local virtual IP address.
TCPView can be downloaded from http://www.sysinternals.com.

Setting Dynamic User IP Addresses Using Automatic Round-Robin

1. Select Settings > Active Profile.

2. On the left side of the Profile dialog box, click Internet.

3. Check the Client IP address multiplexing check box.

4. Run your test and use a utility such as TCPView to verify your IP address multiplexing.

Setting Dynamic User IP Addresses Using Script Functions

To set up dynamic user IP addresses with functions, use the WebSetLocalAddress and the
WebTcpipConnect functions.

For sample applications, review the file WebMultipleClientIpAddresses01.bdf.

Routing Problems Due to Client IP Address Simulation

• Sending packets from multi-homed clients to servers: With multi-homed clients, the destination IP
address is always the IP address of the selected server. There are no differences between network
operations, and problems usually do not arise when delivering packets from multi-homed clients.

• Sending packets from servers to multi-homed clients: Problems arise when a server attempts to
send back a reply to a multi-homed client using the destination IP address of the sending client
application. If the IP address is a local subnet-address, the packet will find its way back to the client
because there is already a correct entry in the server's routing table. If the selected IP address does not
belong to the local subnet and the server does not find another matching entry in its routing table (this is
the normal behavior when entries have not been added) it sends the packet to the default gateway
(using the default entry). If it does not find a default entry, it generates a network unreachable error.

Solutions for Routing Problems Due to Client IP Address Simulation

There are several options for configuring servers to send responses to multi-homed clients. Here are two
options for different network configurations:

Server and agent on the same subnet

If there is no router between the agent and the server, you must add entries to the routing table of the
server. If the generated IP addresses of the client begin with the same two numbers (for example
192.200.), you only need to add one entry to the routing table (route add 192.200.0.0 mask
255.255.0.0<your normal IP address>). The server will consider the client as the appropriate
router for all addresses beginning with 192.200.

194 | Silk Performer Workbench 20.0

http://www.sysinternals.com

In the example below, server 1 receives a packet from agent 1 and attempts to send its answer from
192.168.20.50 to 192.200.2.1. If you do not modify the server configuration (which means the server does
not know that agent 1 is multi-homed), server 1 will send the packet to the default gateway, because there
is only one matching entry in the routing table.

Network destination Netmask Gateway Interface Metric

0.0.0.0 0.0.0.0 192.168.20.18 192.168.20.126 1

If you call (at server 1) route add 192.200.0.0 mask 255.255.0.0 192.168.20.21, a new entry
will be added. The entry resembles the following:

Network destination Netmask Gateway Interface Metric

192.0.0.0 255.255.0.0 192.168.20.21 192.168.20.50 1

As this entry has a higher priority than the entry of the default gateway, server 1 will send all packets with a
destination address type of 192.200.x.x to agent 1 (believing this to be the correct gateway).

Router or load-balancer between the server and the agent

A router or load-balancer is positioned between the server and the agent. In such a case, you must alter
the routing table of the router. If agent 1 sends a packet to server 1 (from 192.200.2.1 to 192.168.10.50)
and agent 1 is configured correctly, that means it has a routing table entry that resembles the following:

Network destination Netmask Gateway Interface Metric

192.168.1.0 255.255.0. 192.168.20.70 192.168.20.21 1

Silk Performer Workbench 20.0 | 195

Agent 1 will send the packet to the router, which will in turn forward the packet to server 1. Now server 1
wants to send a response to the request of agent 1 (from 192.168.10.50 to 192.200.2.1). Because of its
default entry in the routing table, server 1 sends the packet to the router. However, now problems arise
because the router knows nothing of the new IP addresses of agent 1 and will use its default route (shown
below) and send the packet to the gateway.

Network destination Netmask Gateway Interface Metric

0.0.0.0 0.0.0.0 192.168.20.18 192.168.20.70 1

If you call (at the router) route add 192.200.0.0 mask 255.255.0.0 192.168.20.21, a new
entry will be added, the resembles the following:

Network destination Netmask Gateway Interface Metric

192.200.0.0 255.255.0.0 192.168.20.21 192.168.20.70 1

Because this entry has a higher priority than the entry of the default gateway, the router will send all
packets with a destination address type of 192.200.x.x to agent 1 (believing it to be the correct gateway).

Note: You can configure the default gateway of your subnet to forward all packets from the server to
the multi-homed agent. However, this might cause problems when a router is forced to send out a
packet through the same interface by which the packet is received, the router thinks that the server
that originally sent the packet made an incorrect routing decision. The router then generates an ICMP
redirect error. This also increases load on the network and server.

Testing Routing Adaptations

Use the System Configuration Manager to test if newly added IP addresses and routing adaptations
work correctly:

1. Select Tools > System Configuration Manager. The System Configuration Manager window
appears.

196 | Silk Performer Workbench 20.0

2. Connect to the machine to which you added new IP addresses.

Note: By default, you will be connected to the localhost. If you cannot connect to a particular host,
make sure that the Silk Launcher Service is running on the host.

3. Click the IP Address Manager tab.

4. Select the network adapter to which you added new IP addresses.

5. In the Network section, enter the host name or IP address of the server you want to load test.

6. Click Check. If no error window appears, all listed IP addresses will have a route is up mark in the Test
result section of the list window.

Defining User Types
The next step in the process of conducting a Silk Performer load test is to define one or more user types for
the active workload. A user type is a unique combination of a script, a user group, and a profile. By
selecting a user type, you determine which script will be executed with which user group and profile.

To find out what your active workload is, expand the Workloads node in the Project tree. The active
workload is shown in bold text.

Click Define User Types on the workflow bar to access all necessary settings.

Note: The Define User Types button on the workflow bar is only visible when the simple workflow bar
is enabled. The workflow bar displays the simplified workflow by default. To switch between the
workflow bar types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full
Workflow Bar, or Show Monitoring Workflow Bar.

Defining a User Type
To define user types for the active workload:

1. Click Define User Types on the workflow bar. The Workflow - Define User Types dialog box appears.

2. Optional: Narrow down the list of Available User Types by selecting entries from the Script and Profile
lists.

3. Optional: Click Add new to create a new profile. If you select a profile from the list, you can click Edit
Profile to adjust the settings of the profile. For example, you can define a certain browser and
bandwidth for this profile. Click Set as active to make the selected profile the active one.

4. Select one or more user types in the Available User Types list and click the arrow buttons to assign the
user types to the workload. You can also double-click user types to move them between the Available
User Types list and the User Types in Workload list.

5. User types that are assigned to the workload are automatically selected for execution. If you want a
certain user type to not be executed during the baseline run, deselect it.

6. Click Next to advance to the next step in the workflow.

Note: The Define User Type button is only visible when simple workflow bar is enabled.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

User Types
A User type is a unique combination of a script, a user group, and a profile.

Silk Performer automatically generates all possible combinations of user types out of the available scripts,
user groups and profiles. To have all user types that you need available, you must add the desired profiles
to your test project beforehand. For example, to emulate three different bandwidths during your load test,
you must first add a profile for each bandwidth.

Silk Performer Workbench 20.0 | 197

The Find Baseline or the Define User Types dialog box allow you to assign user types to the active
workload.

You can run a baseline test to establish the baseline performance of your load test for the selected user
types. The different user types can be run at the same time.

Only one virtual user per user type is executed for the baseline test. The think times contained in the script
are not randomized for comparison reasons.

Finding Baselines
A baseline serves as a reference level for subsequent load tests. Silk Performer uses the results of a
baseline test to calculate the number of concurrent users per user type. Additionally, you can set response
time thresholds based on the results of a baseline.

At first, you need to run a baseline test. After a baseline test run is finished, you can view all
measurements and details of the run on the Baseline Test Summary page and in the baseline report. If
you are happy with the results, you can set the baseline test as your new baseline. You can view the results
and values of your baseline at any time by clicking View Baseline on the workflow bar. This opens the
Baseline Summary page.

Note: To work with baselines, you must enable the full workflow bar.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Finding a Baseline
Customize your test script by assigning a user profile to it before running a baseline test.

1. Click Find Baseline on the workflow bar. The Workflow - Find Baseline dialog box appears.
2. Optional: Narrow down the list of Available User Types by selecting entries from the Script and Profile

lists.
3. Optional: Click Add new to create a new profile. If you select a profile from the list, you can click Edit

Profile to adjust the settings of the profile. For example, you can define a certain browser and
bandwidth for this profile. Click Set as active to make the selected profile the active one.

4. Select one or more user types in the Available User Types list and click the arrow buttons to assign the
user types to the workload. You can also double-click user types to move them between the Available
User Types list and the User Types in Workload list.

5. User types that are assigned to the workload are automatically selected for execution. If you want a
certain user type to not be executed during the baseline run, deselect it.

6. Click Run to perform the baseline test.

Silk Performer runs a baseline test to calculate average measures against which future test runs are
measured.

Note: The Find Baseline button is only visible when the full workflow bar is enabled.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Baseline Tests
A baseline test enables you to determine your application's ideal performance baseline.

With a baseline test, a customized test is run with just one user per user type. And the results from this
unstressed performance of the application form the basis for calculating the number of concurrent users

198 | Silk Performer Workbench 20.0

per user type and for setting the appropriate boundaries for the HTML page response times and
transaction response times. Additionally, the required bandwidth for running the load test is calculated from
the baseline results. The measurements typical of a real load test are used, and report and output files are
generated.

Additionally, a baseline test can serve as a trial run of your test script. A trial run can help you verify the
following:

• Customizations have not introduced new errors into the script.
• The script can accurately and fully reproduce the interaction between the client application and the

server.

Note: Baseline tests ignore the Random thinking time option. This makes it easier for you to
compare the results of different baseline tests because the think times remain constant between tests.

For baseline test runs, the following settings are configured automatically:

• A Baseline report file is automatically created.
• The Stop virtual users after simulation time (Queuing Workload) option is enabled.
• The Random thinking time option is disabled.
• The Loadtest description text box is set to Baseline Test.
• The Display All Errors Of All Users option in the Monitor window is enabled.
• The Virtual user output files (.wrt) option is enabled.
• The Virtual user report files (.rpt) option is enabled.

Baseline Test Summary
When a baseline test run is complete, the Baseline Test Summary page appears. You can also open this
page from the Results tree. You can perform the following actions in the Next Steps area on the right side:

• Click View baseline test report to view all the metrics of the baseline test run in detail.
• Click Set as baseline to make the test you have just run your baseline (your reference level) for the

upcoming load tests.
• Click Compare with baseline to compare the results of the test you have just executed with the current

baseline. This button is only visible if there is already a baseline set.
• Click Adjust Workload to perform the next step in the workflow. This button is only visible if you have

not yet defined a workload.

You can always return to the Baseline Test Summary page by opening it from the Results tree.

Note: When you click Set as baseline, the Baseline Summary page appears. Do not confuse the
Baseline Test Summary page with the Baseline Summary page. The Baseline Test Summary
page appears when a baseline test is complete. The Baseline Summary page appears when you
have set the baseline test as your baseline or when you click View Baseline on the workflow bar.

You can run one or more user types in a baseline test. If you set the results as baseline, the user types and
their results will be added to the baseline. If a baseline with results for a particular user type already exists,
these results will be overwritten.

Note: If you want to prevent the summary page to appear each time a test is complete, disable the
Show Summary Page button in the toolbar of the Monitor page.

User Types
A User type is a unique combination of a script, a user group, and a profile.

Silk Performer automatically generates all possible combinations of user types out of the available scripts,
user groups and profiles. To have all user types that you need available, you must add the desired profiles
to your test project beforehand. For example, to emulate three different bandwidths during your load test,
you must first add a profile for each bandwidth.

Silk Performer Workbench 20.0 | 199

The Find Baseline or the Define User Types dialog box allow you to assign user types to the active
workload.

You can run a baseline test to establish the baseline performance of your load test for the selected user
types. The different user types can be run at the same time.

Only one virtual user per user type is executed for the baseline test. The think times contained in the script
are not randomized for comparison reasons.

Baseline Test Report
After you have run a baseline test, the Baseline Test Summary page appears. Click View baseline test
report to view a detailed report with all results and metrics of the baseline test. The detailed test report can
be displayed for any test except a Try Script run.

The detailed test report is an XML/XSL-based report that provides you with a summary table, transaction
response-time details, timers for all accessed HTML pages, Web forms, and errors that occurred. This
information includes the most important test results in a tabular form and is available for all user types
involved in the test.

Detailed Test Report Content
A detailed test report consists of the following sections:

• General information
• User types

• Summary tables
• Transaction response times
• HTML page and action timers
• Web form measurements
• Accept Results button

General Information

The General Information section includes administrative information in tabular form.

Administrative information includes the Silk Performer Version information, the project name, a description
of the project, the date and time of the baseline test, the workload definition, the workload model, and the
number of errors that occurred.

User Types

For each user type involved in the test run, a separate section is available with details on the measured
response times. The following information appears in the summary line:

• Number of virtual users (one for a baseline test)
• Test duration
• Session time
• Session busy time
• Average page time
• Average action time
• The following numbers:

• Transactions that were executed successfully
• Canceled transactions
• Failed transactions
• Errors

200 | Silk Performer Workbench 20.0

The session time consists of the execution time of all transactions defined in the dcluser section of a test
script, without the initial and end transactions. The session busy time is calculated as the session time
minus think times, as the following example shows.

dcluser
 user
 Vuser1
 transactions
 TInit : begin;
 T1 : 1;
 T2 : 3;
 Tend : end;

The session time is the average response time of T1 + 3 * average response time of T2. The session busy
time is the same without any think time.

If you are satisfied with the results, you can set them as baseline results and save them for further
processing, such as the calculation of the number of concurrent virtual users and the network bandwidth
needed for the load test.

For each user type, detailed results are available in the following sections:

• Summary tables – Contains aggregate measurements of all virtual users in tabular form. The first table
provides general information, such as the number of transactions that were executed and the number of
errors that occurred. The remaining tables provide summary information that is relevant to the tested
application type.

• Transactions – Displays the following aggregate measurements in tabular form for all transactions of a
specific user type:

• Transaction response time – Measured from the beginning to the end of the transaction, including all
think times.

• Transaction busy time – The transaction response time without any think time.
• Page and action timers – Displays the following summary measurements in tabular form for every

accessed Web page:

• Download time of the entire page
• HTML-document download time
• Server busy time
• Amount of data downloaded with the page
• Amount of data downloaded for embedded objects

• Web forms – Displays the following measurements in tabular form for every used Web form:

• Roundtrip time
• Server busy time
• Number of HTTP hits
• Amount of request data that was sent
• Amount of response data that was received

If the results of an inspected load test are acceptable for use as a baseline, you can store them for further
calculations and processing by clicking Accept Results. The results of tests with all user types involved
are stored in the file <projectdir>\BaselineResults\baselineReport_<workloadname>.brp.
You must define a separate baseline for every workload that is defined in your load test project. If you
create a copy of a workload, the baseline results are also copied.

Setting a Baseline Test as Baseline
Before you can set a baseline, you must run a baseline test:

1. Click Find Baseline on the workflow bar. The Workflow - Find Baseline dialog box appears.

2. Click Run to start the baseline test.

Silk Performer Workbench 20.0 | 201

For more information on this dialog box, see Finding a Baseline.

3. When the baseline test run is finished, the Baseline Test Summary page appears.

4. Click Set as baseline in the Next Steps area on the right side.

5. Click Yes on the confirmation dialog box.

The baseline test is set as baseline and the Baseline Summary page appears.

Note: The buttons Find Baseline and View Baseline are only visible if the full workflow bar is
enabled.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Viewing Baselines
The next step in the process of conducting a Silk Performer load test is to set the baseline test (see the
previous step Finding Baselines) as your baseline. The baseline will serve as a reference level for
subsequent load tests and should reflect the desired performance of the application under test. Once you
have set a baseline test as your baseline, you can configure response time thresholds.

Note: To work with baselines, you must enable the full workflow bar.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Baseline Summary
When you have clicked Set as baseline on the Baseline Test Summary page, the Baseline Summary
page appears. You can perform the following actions in the Next Steps area on the right side:

• Click View baseline report to view all the metrics of the baseline in detail.
• Click Set response time thresholds to configure in what timeframe the subsequent load tests should

respond.

You can always return to the Baseline Summary page by clicking View Baseline in the workflow bar.

Note: Do not confuse the Baseline Test Summary page with the Baseline Summary page. The
Baseline Test Summary page appears after you have run a baseline test. The Baseline Summary
page appears when you set the baseline test as your baseline or when you click View Baseline on
the workflow bar.

Response Time Thresholds
With the accepted results from the previous baseline tests, thresholds for response times can be set for
subsequent load tests. These thresholds are used in the general overview report of a load test to separate
good, acceptable, and unacceptable Web response times.

Set boundaries to identify the following types of response times:

• Good response times fall below boundary 1.
• Unacceptable response times fall above boundary 2.
• Acceptable response times fall between these boundary values.

Set thresholds for the following objects:

• Transaction response times
• Custom timers

202 | Silk Performer Workbench 20.0

• HTML page timers

Specify a multiplier for the calculation of the boundaries from the baseline results. The average response
times of the timers are multiplied by these factors, and the boundaries are set accordingly. For example, a
multiplier of 3 means that you set a boundary three times higher than the average response time of the
timer in the baseline test.

If the measured value in the baseline test is 0, you can specify a minimum value for the boundaries. The
load testing scripts connected with the user types is updated to set the thresholds accordingly.

Setting Response Time Thresholds

1. Click View Baseline on the workflow bar. The Baseline Summary page appears.

2. Click Set response time thresholds in the Next Steps area on the right side. The Automatic
Threshold Generation dialog box opens.

3. Select the timers for which you want to set thresholds.

4. Specify the appropriate Lower bound and Upper bound multipliers for your load tests.

5. If the corresponding timers from the baseline test are 0, specify minimum values.

6. If you want to raise an error or a warning message in case a threshold is exceeded, you can specify the
severity of the raised message.

7. Click OK.

Note: The buttons Find Baseline and View Baseline are only visible when the full workflow bar is
enabled.

Note: By default, Silk Performer displays the simple workflow bar. To switch between the workflow bar
types, right-click on the workflow bar and click Show Simple Workflow Bar, Show Full Workflow
Bar, or Show Monitoring Workflow Bar.

Performance Levels
When a load test is completed, a performance engineer usually has to assess whether the test has been
successful or not. This assessment is typically based on a thorough analysis of the load test results.

Performance engineers can use the broad range of analysis tools that the Workbench and Performance
Explorer provide. They can use the various reports to analyze a number of metrics, such as the amount of
errors or the response time thresholds. They could also compare response times to performance criteria or
service levels, which are usually determined prior to the load test execution.

This process can be described as manual load test assessment. However, in many cases an automatic
assessment of the load test is useful. For example: In continuous integration environments, users typically
want to be notified only in case performance criteria have been violated. In Silk Performer, you can use the
so-called performance levels for such scenarios. Performance levels can be defined in two ways:
proactively and reactively.

• Proactive approach: A performance engineer runs a baseline test, then defines performance levels
(based on the baseline test results), and assigns the performance levels to the key measures of a test.
Now the engineer executes the load test. When the execution is completed, the engineer opens an
overview report and checks which performance levels have been missed.

• Reactive approach: The performance engineer executes the load test first and, only then, defines the
performance levels. The load test results are used as a guideline for defining the performance levels.

Of course, these approaches can also be combined. This might be necessary, if performance levels have
been defined prior to a load test execution and need to be adapted when the execution is completed,
because the reports do not reflect the desired status.

To cover both approaches, you can access the performance level dialogs through the Workbench and
Performance Explorer. In the Workbench, click Project > Define Performance Levels or Project >

Silk Performer Workbench 20.0 | 203

Assign Performance Levels. In Performance Explorer, click the Reports tab and click Define Levels or
Assign Levels.

Defining and Assigning Performance Levels (Proactive Approach)

To assign performance levels to measures, Silk Performer needs to know the measures that will be
available after a load test. Therefore, make sure to run a baseline test and set a baseline before you follow
the steps described below. If no baseline is set, there are no measures available to assign performance
levels to.

1. In the Workbench, click Project > Define Performance Levels.

2. The Define Performance Levels dialog displays, containing a table. The table rows represent the
performance levels. You can add as many performance levels as you require.

3. The columns represent the performance indicators. Per column, select one of the following performance
indicators:

• Avg: average value
• P50: median
• P90: 90th percentile
• P95: 95th percentile
• P99: 99th percentile

4. Name your performance levels and enter values for each level.

5. When your performance levels are defined, click Assign Levels.

6. The Assign Performance Levels dialog shows all measures that were collected during the baseline
test. You can assign the defined performance levels manually to each measure. Or you can click
Automatically set levels based on baseline. You can also filter the list to quickly find a specific
measure, and you can click Reset all levels to none. When you are done, click OK.

Complete modeling your load test and execute it. When the execution is completed, open an overview
report and look out for the performance levels. They are color-coded: Performance levels that are met
display in green, performance levels that are missed display in red. This allows you to instantly see whether
a load test is to be considered as passed or failed. To tweak your settings after the load test execution,
follow the reactive approach.

Note: A performance level definition is valid for a particular workload. If you have multiple workloads,
you can define performance levels for each workload.

Defining and Assigning Performance Levels (Reactive Approach)

1. Model and execute a load test.

2. When the execution is completed, the Load Test Summary page displays. Click Analyze load test.
Performance Explorer opens and the HTML Overview Report displays.

3. Click the Reports tab and Define Levels.

4. The Define Performance Levels dialog displays, containing a table. The table rows represent the
performance levels. You can add as many performance levels as you require.

5. The columns represent the performance indicators. Per column, select one of the following performance
indicators:

• Avg: average value
• P50: median
• P90: 90th percentile
• P95: 95th percentile
• P99: 99th percentile

6. Name your performance levels and enter values for each level.

204 | Silk Performer Workbench 20.0

7. When your performance levels are defined, click Assign Levels.
8. The Assign Performance Levels dialog shows all measures that were collected during the load test.

You can assign the defined performance levels manually to each measure. Or you can click
Automatically set levels based on baseline. You can also filter the list to quickly find a specific
measure, and you can click Reset all levels to none. When you are done, click OK.

Look out for the performance levels in the overview report. They are color-coded: Performance levels that
are met display in green, performance levels that are missed display in red. This allows you to instantly see
whether a load test is to be considered as passed or failed. To set your performance levels before
executing the load test, follow the proactive approach.

Note: A performance level definition is valid for a particular workload. If you have multiple workloads,
you can define performance levels for each workload.

Adjusting Workload
Configuring workload is part of the process of conducting a load test. Silk Performer offers different
workload models to be used as a basis for your load test. Before configuring workload, you must select the
model that best fits your needs.

You can define more than one workload model in your load test project and save them for further usage,
but only one workload model can be active at a time. The accepted baseline results are associated with a
workload model. If you copy or rename a workload model, the accepted baseline results are copied or
renamed accordingly.

Workload Models
Silk Performer provides the following workload models:

• Increasing – At the beginning of a load test, Silk Performer does not simulate the total number of users
defined. Instead, it simulates only a specified part of them. Step by step, the workload increases until all
the users specified in the user list are running.

This workload model is especially useful when you want to find out at which load level your system
crashes or does not respond within acceptable response times or error thresholds.

• Steady State – In this model, the same number of virtual users is employed throughout the test. Every
virtual user executes the transactions defined in the load-testing script. When work is finished, the
virtual user starts again with executing the transactions. No delay occurs between transactions, and the
test completes when the specified simulation time is reached.

This workload model is especially useful when you want to find out about the behavior of your tested
system at a specific load level.

• Dynamic – You can manually change the number of virtual users in the test while it runs. After the
maximum number of virtual users is set, the number can be increased or decreased within this limit at
any time during the test. No simulation time is specified. You must finish the test manually.

This workload model is especially useful when you want to experiment with different load levels and to
have the control over the load level during a load test.

• All Day – This workload model allows you to define the distribution of your load in a flexible manner.
You can assign different numbers of virtual users to any interval of the load test, and each user type can
use a different load distribution. Therefore, you can design complex workload scenarios, such as
workday workloads and weekly workloads. You can also adjust the load level during a load test for
intervals that have not started executing.

This workload model is especially useful when you want to model complex, long lasting workload
scenarios in the most realistic way possible.

• Queuing – In this model, transactions are scheduled by following a prescribed arrival rate. This rate is a
random value based on an average interval that is calculated from the simulation time and the number
of transactions per user specified in dcluser section of your script. The load test finishes when all of
the virtual users have completed their prescribed tasks.

Silk Performer Workbench 20.0 | 205

Note: With this model, tests may take longer than the specified simulation time because of the
randomized arrival rates. For example, if you specify a simulation time of 3,000 seconds and want
to execute 100 transactions, then you observe an average transaction arrival rate of 30 seconds.

This workload model is especially useful when you want to simulate workloads that use queuing
mechanisms to handle multiple concurrent requests. Typically, application servers like servlet engines or
transaction servers, which are receiving their requests from Web servers and not from end users, can
be accurately tested by using the queuing model.

• Verification – A verification test run is especially useful when combined with the extended verification
functionality. This combination can then be used for regression tests of Web-based applications. A
verification test performs a specified number of runs for a specific user type.

This workload is especially useful when you want to automate the verification of Web applications and
when you want to start the verification test from the command line interface.

Configuring Increasing Workload

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Select the workload model Increasing.

3. Select a user type and set the following values:

a) Ramp-up time: Specify the initial number of virtual users (Start VUsers), the maximum number of
virtual users (max. VUsers), and the number of virtual users to be added in a specific time interval
(Add x per x). Based on these values, Silk Performer calculates the ramp-up time.

b) Steady time: Specify the steady time.
c) Ramp-down time: Specify the number of virtual users to be stopped in a specific time interval (Per

x stop x).
d) Warm-up time: During the warm-up time, Silk Performer does not measure the performance. The

measuring starts after the warm-up time. Enter zero to start the measuring immediately. You can use
the warm-up time to prepare the application under test for the actual load test. If you do not want to
take measures during this preparation phase, you can use the warm-up time.

e) Measurement time: Specify a measurement time. If the measurement time is set to 0, all measures
taken between the warm-up time and the end of the simulation time are considered in the reports.

f) Close-down time: When the close-down time starts, Silk Performer will stop measuring the
performance. To stop the load test right after the measurement time, make sure that your warm-up
and measurement times sum up to the simulation time. You can use the close-down time to shut
down the application under test or to close services if you do not want to take measures during this
tidying-up phase.

Note: The sum of the Ramp-up time and the Steady time must not be shorter than the sum of
the Warm-up time and the Measurement time.

Tip: You can enter the time in the format hh:mm:ss or you can enter for example 1h12m30s. Silk
Performer will automatically convert 1h12m30s into 01:12:30. If you just enter 7m, it will be
converted into 00:07:00.

4. Click Next. The Workflow - Assign Agents dialog box appears.

Configuring Steady State Workload

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Select the workload model Steady State.

3. Select a user type and set the following values:

a) max. VUsers: The number of virtual users that will be run during the load test.
b) Steady time: Defines how long the load test will last.

206 | Silk Performer Workbench 20.0

c) Ramp-down time: Specify the number of virtual users to be stopped in a specific time interval (Per
x stop x).

d) Warm-up time: During the warm-up time, Silk Performer does not measure the performance. The
measuring starts after the warm-up time. Enter zero to start the measuring immediately. You can use
the warm-up time to prepare the application under test for the actual load test. If you do not want to
take measures during this preparation phase, you can use the warm-up time.

e) Measurement time: Specify a measurement time. If the measurement time is set to 0, all measures
taken between the warm-up time and the end of the simulation time are considered in the reports.

f) Close-down time: When the close-down time starts, Silk Performer will stop measuring the
performance. To stop the load test right after the measurement time, make sure that your warm-up
and measurement times sum up to the simulation time. You can use the close-down time to shut
down the application under test or to close services if you do not want to take measures during this
tidying-up phase.

Tip: You can enter the time in the format hh:mm:ss or you can enter for example 1h12m30s. Silk
Performer will automatically convert 1h12m30s into 01:12:30. If you just enter 7m, it will be
converted into 00:07:00.

4. Click Next. The Workflow - Assign Agents dialog box appears.

Configuring Dynamic Workload

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Select the workload model Dynamic.

3. Select a user type and set the max. VUsers value. This is the maximum number of virtual users that
can be run during the load test. It is the upper boundary for upcoming virtual user settings.

4. Click Next. The Workflow - Assign Agents dialog box appears.

Configuring All Day Workload

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Select the workload model All Day.

3. Select a user type and set the following values:

a) max. VUsers: The maximum number of virtual users that can be run during the load test. This is the
upper boundary for upcoming virtual user settings.

b) Simulation time: Defines how long the load test will last.

Tip: You can enter the time in the format hh:mm:ss or you can enter for example 1h12m30s. Silk
Performer will automatically convert 1h12m30s into 01:12:30. If you just enter 7m, it will be
converted into 00:07:00.

4. Click Next. The All Day Workload Configuration dialog box appears.

5. Select a user type from the list on the left side and configure intervals by entering values into the grid on
the right side. Define a start and an end number of virtual users, as well as the duration for each
interval. The chart on the top visualizes your settings.

Note: When a load test was started, you can still change the number of virtual users for intervals
that have not yet started, but you cannot exceed the maximum number of virtual users specified for
the load test.

6. Click OK. The Workflow - Assign Agents dialog box appears.

Configuring Queuing Workload

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

Silk Performer Workbench 20.0 | 207

2. Select the workload model Queuing.

3. Select a user type and set the following values:

a) max. VUsers: The number of virtual users that will be run during the load test.
b) Steady time: Specify the steady time.
c) Ramp-down time: Specify the number of virtual users to be stopped in a specific time interval (Per

x stop x).
d) Warm-up time: During the warm-up time, Silk Performer does not measure the performance. The

measuring starts after the warm-up time. Enter zero to start the measuring immediately. You can use
the warm-up time to prepare the application under test for the actual load test. If you do not want to
take measures during this preparation phase, you can use the warm-up time.

e) Measurement time: Specify a measurement time. If the measurement time is set to 0, all measures
taken between the warm-up time and the end of the simulation time are considered in the reports.

f) Close-down time: When the close-down time starts, Silk Performer will stop measuring the
performance. To stop the load test right after the measurement time, make sure that your warm-up
and measurement times sum up to the simulation time. You can use the close-down time to shut
down the application under test or to close services if you do not want to take measures during this
tidying-up phase.

Tip: You can enter the time in the format hh:mm:ss or you can enter for example 1h12m30s. Silk
Performer will automatically convert 1h12m30s into 01:12:30. If you just enter 7m, it will be
converted into 00:07:00.

4. Click Next. The Workflow - Assign Agents dialog box appears.

Configuring Verification Workload

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Select the workload model Verification.

3. Select a user type and click Next. The Verification Workload Configuration dialog box appears.

4. Select a Profile and a Script from the lists.

5. Select a Usergroup.

6. Select an Agent from the list.

7. In the TrueLog section, click one of the following options:

• Click Generate TrueLog to generate a Truelog file for the virtual user group that you are testing.
• Click Generate TrueLog On Error to generate a TrueLog file only when an error occurs.

8. Optional: Check the Animated check box to launch the TrueLog Explorer automatically when you start
a test.

Note: You must click Generate TrueLog to enable the Animated setting.

9. Check the Stress test check box to disable the use of wait periods that are specified in Web functions
or are invoked by calling the think-time function.

Neither the wait statement nor the transaction scheduling is affected. This feature is equivalent to
running a load test with no delays for human interaction.

10.Click one of the following buttons:

• Click Connect to initialize the connection to the agents without actually starting the load test. On the
Monitor page, you can then click Start All in the toolbar.

• Click Run to start the load test.
• Click OK to close the dialog box and save your changes.
• Click Cancel to close the dialog box and abort your changes.

208 | Silk Performer Workbench 20.0

Workload Tab
The Workload Configuration > Workload tab enables you to configure workload-profile settings related to
workload model, start time, and monitoring options.

Item Description

Increasing Use this option button to switch to the Increasing
workload model.

Steady State Use this option button to switch to the Steady State
workload model.

Dynamic Use this option button to switch to the Dynamic
workload model.

All Day Use this option button to switch to the All Day
workload model. This selection enables the Configure
All Day Workload button below.

Queuing Use this option button to switch to the Queuing
workload model.

vUsers-over-time graph The graph at the top of the dialog box graphically
represents the selected workload model and uses the
data associated with the user group selected in the
UserType table.

UserType table This portion of the dialog enables you to edit the settings
of the user types that are associated with your project.
Options vary based on the selected workload mode. (see
specific workload-model configuration topics for details on
configuring user types.)

Start time Set the start time for your test in hours, minutes, and
seconds.

Relative Click this option button to start your test after the
specified time period has elapsed.

Absolute Click this option button to start the test at the specified
time.

Automatically start monitoring Check this check box if you have established a monitoring
template and want Performance Explorer to start and
stop automatically with the test.

TrueLog On Error Check this check box to generate TrueLog Explorer files
for all transactions that generate errors.

Enable real-time measures When checked, real-time measure data is generated
globally for all virtual users across the entire test. This
setting overrides preset profile settings.

When unchecked, real-time measure data is disabled for
all virtual users globally across the test. This setting
overrides preset profile settings.

When checked and grayed out, real-time measure data is
generated only for those user types who have this setting
activated in their corresponding profiles. In this state a
tooltip displays information about the user types for which
real-time measures have been enabled.

Note: This check box automatically changes its state
when the real-time measure data profile setting option of
any virtual user changes.

Silk Performer Workbench 20.0 | 209

Item Description

Loadtest description (Optional) Here you can enter a description of the test for
project-management purposes.

Configure All Day Workload (enabled only when the All Day workload model is
selected) Opens the All Day Workload Configuration
dialog.

Time Names in Workload Context
The following time values can be configured in the Select and adjust Workload and Workload
Configuration dialogs:

Measurement Description

Warm-up time A load test starts with an optional warm-up time.
Measures taken during the warm-up time are not used in
the reports. The warm-up time can be used to exclude
the start-up tasks of a test (such as allocating and
initializing memory or building up caches) from the
measured part of the test.

Measurement time The measurement time is the time between the optional
warm-up time and the optional close-down time. During
the measurement time, measures are taken and then
used in the reports once the test is completed. Typically,
the measurement time extends to the end of the
simulation time.

If the measurement time is set to 0, all measures taken
between the warm-up time and the end of the simulation
time are considered in the reports.

Close-down time A load test ends with an optional close-down time, which
is the time between the end of the measurement time and
the end of the load test. Measures taken during the close-
down time are not used in the reports. The close-down

210 | Silk Performer Workbench 20.0

Measurement Description

time can be used to exclude the closing tasks of a test
(such as shutting down the virtual users) from the
measured part of the test.

If the specified simulation time is longer than the sum of
the warm-up time and the measurement time, the close-
down time starts during the simulation time.

Measurement Description

Simulation time The simulation time is the time of the load test excluding
the ramp-down time. It can also be described as the sum
of the ramp-up time (for increasing workloads) and the
steady time.

Ramp-up time During the ramp-up time, Silk Performer gradually
increases the number of virtual users.

The ramp-up parameters can be set in the Select and
adjust Workload dialog or in the Workload
Configuration dialog.

For example, you can specify to start a load test with 10
virtual users (Start) and add 2 virtual users (Add) every
30 seconds (Interval) until reaching a maximum of 20
virtual users (max. VUsers).

The ramp-up time can only be specified for workloads
using the Increasing workload model.

Steady time During the steady time, no more virtual users are added.
The number of virtual users remains steady during this
time and equals the specified maximum number of virtual
users (max. VUsers).

Ramp-down-time During the ramp-down time, Silk Performer gradually
decreases the number of virtual users to zero. Since the
ramp-down happens during the close-down time, it does
not influence the reports.

If an end transaction is defined for a virtual user and the
profile setting Call end transaction for stopped virtual
users is enabled, the end transaction will be executed
during the ramp-down time. Specifying a ramp-down time
also allows you to gradually stop running virtual users to
avoid that all virtual users perform the end transaction at
the same time.

The ramp-down parameters can be set in the Select and
adjust Workload dialog or in the Workload
Configuration dialog. For example, you can specify to
stop 10 virtual users (Stop) every 30 seconds (Interval).
This translates into a certain ramp-down time depending
on the number of virtual users defined in the workload.

If the ramp-down time is set to 0 and the profile setting

Call end transaction for stopped virtual users is
enabled, all related virtual users execute the end

Silk Performer Workbench 20.0 | 211

Measurement Description

transaction simultaneously. If no end transaction exists,
the virtual users stop immediately.

Initializing Workload Settings
Silk Performer allows you to specify the same workload settings for multiple user types at a time.

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Click Initialize. The Initialize Workload Settings dialog appears.

3. Select a Workload model from the list.

4. If you want to define one specific value for all user types, use the check boxes: Enable the respective
check box and enter the value. To define varying values, enter these directly in the table.

5. Click OK to save your changes.

Note: The Initialize Workload Settings dialog also allows you to define a duration for the Ramp-up
Time and Ramp-down Time. In contrast, the Select and adjust workload dialog allows you to
define an increase or decrease value per time. Example for defining the duration: Gradually stop all
virtual users within 2 minutes. Example for defining a decrease value: Stop 2 virtual users every 10
seconds.

Tip: The Initialize Workload Settings dialog also allows you to copy and paste values from and to
spreadsheet programs like Microsoft Excel. To do so, use the keyboard shortcuts Ctrl+C and Ctrl+V.

Assigning Agents
Explains how to configure and assign individual agents and clusters of agents to your project.

Assigning Agents
In support of large-scale load testing, Silk Performer has consolidated all agent-to-workload assignment
features within a single workflow step, available via the Assign Agents workflow bar button. Here you can
configure the distribution of virtual users in your load testing environment and assign VUsers to specific
agents, agent clusters, or cloud agents. Wizards are available to assist you in calculating recommended
capacity for specific agents.

The Assign Agents workflow bar button helps you get started with the following tasks:

• Configuring individual agents and adding them to the workbench agent pool
• Assigning individual agents to your project
• Assigning clusters of agents with pre-defined capabilities to your project
• Configuring your project to use agents that run as virtual machines in the cloud.

Assigning Agents to Workload
This task can only be performed after you have configured workload for your project.

1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Click the Agent Assignment tab.

3. Select the Assignment type:

• Static assignment to project agents : Use this method to statically assign specific agent
computers (rather than clusters of agents) to your project. No agent-availability check is performed
with this method and agent locking is disabled. Select this method if you want to use Agents
deployed in the cloud.

212 | Silk Performer Workbench 20.0

• Dynamic assignment to project agents : With this method, workload is delivered using dynamic
agent-assignment at execution time against the project's agents. Workload delivery is enhanced with
agent-capability specifications to create optimized workload-to-agent assignments based on the
capabilities of each agent. Agent locking at execution time is enabled with this method. Only
responding agents that are not currently used by another controller are used with this method.

• Dynamic assignment to Silk Central agent cluster : Silk Performer workload delivered by way of
Silk Central can also use dynamic workload-to-agent assignment. Within Silk Performer you choose
the name of the agent cluster (from the drop list) that should deliver your test's workload. Silk Central
then provides the list of agent computers that are assigned to the cluster. Workload is then assigned
to specific agents at the moment of execution based on the capabilities of the individual agents. After
you connect to Silk Central, you are presented with the list of available agent clusters. In the right-
most window, you can view the agents that are currently associated with the selected agent cluster.

4. Define the agents that are to deliver the workload for your test.

• If you selected Static assignment to project agents , you can check the Even user distribution
check box to distribute all existing user types evenly across all agents, depending on each agent's
general replay capabilities. To use agents that run as virtual machines in the cloud, check the Use
cloud agents check box. Click Cloud Agent Manager to manage your agents in the cloud.

• If you selected Dynamic assignment to project agents , workload is delivered automatically using
dynamic agent-assignment at execution time against the project's agents.

• If you selected Dynamic assignment to Silk Central agent cluster , you are asked to log in to Silk
Central. When you are logged in, you can select the available agent cluster.

The Agents list box displays the available agents.

5. Check the Agent resource utilization check box to assign a maximum percentage of total virtual users
that each agent can run based on the agent's replay capabilities.

6. Check the Balance load across agents check box to apportion workload across agents.

7. If you selected Static assignment to project agents , use the lower window of the Agent Assignment
page to define workload assignments for user groups.

Note: Available options vary depending on the selected workload model.

8. Click User Distribution Overview to view the assignment of virtual users to the agent computers that
are currently available and then click Close.

9. Click OK to save your settings.

Workload will be assigned to agents based on the agent-assignment settings you have configured. If there
are not enough agents with the required capabilities to deliver the required workload, you will be presented
with an error message and details regarding the user types that did not receive an agent assignment.

Agent Assignment Tab

The Workload Configuration > Agent Assignment tab enables you to configure how agents are
assigned to a workload profile to deliver required load, including static or dynamic assignment to specific
project agents and dynamic assignment to Silk Central agent clusters.

Item Description

Agents Lists the agents that are currently available for workload
assignment along with the maximum virtual-user capacity
that each agent can drive for each capability type (Java,
ODBC, SAPGUI, etc.)

Maximum virtual-user capacity depends on the Agent
Resource Utilization setting.

This list can assist you with error handling in cases of
failed dynamic workload-assignment by displaying agents

Silk Performer Workbench 20.0 | 213

Item Description

that can not be connected via the Silk Performer launcher
service or are currently locked by other load tests.

When logged in to the cloud, this list displays the
available cloud agents side-by-side to other available
agents.

Assignment type: Static assignment to project agents Use this method to statically assign specific agent
computers (rather than clusters of agents) to your project.
No agent-availability check is performed with this method
and agent locking is disabled. Select this method if you
want to use Agents deployed in the cloud.

Assignment type: Dynamic assignment to project
agents

With this method, workload is delivered using dynamic
agent-assignment at execution time against the project's
agents. Workload delivery is enhanced with agent-
capability specifications to create optimized workload-to-
agent assignments based on the capabilities of each
agent. Agent locking at execution time is enabled with this
method. Only responding agents that are not currently
used by another controller are used with this method.

Assignment type: Dynamic assignment to Silk
Central agent cluster

Silk Performer workload delivered by way of Silk Central
can also use dynamic workload-to-agent assignment.
Within Silk Performer you choose the name of the agent
cluster (from the drop list) that should deliver your test's
workload. Silk Central then provides the list of agent
computers that are assigned to the cluster. Workload is
then assigned to specific agents at the moment of
execution based on the capabilities of the individual
agents. After you connect to Silk Central, you are
presented with the list of available agent clusters. In the
right-most window, you can view the agents that are
currently associated with the selected agent cluster. With
this approach, the agents of a cluster can be changed
without requiring modification of your Silk Performer
project. Download of the agent clusters list from Silk
Central requires Silk Central logon credentials. If your Silk
Performer project is already associated with a Silk Central
test definition, login is not required. Agent locking at
execution time is enabled with this method. Only
responding agents that are not currently in use by
another controller are used with this method. If your
project is not associated with a test definition in Silk
Central, the Silk Central connection parameters from Silk
Performer's system settings are used. When neither
approach is successful, the Download agent clusters
from Silk Central dialog appears. This dialog features the
same values as those found at Settings > System
Settings , Silk Central. Specify appropriate connection
parameters and click Finish.

Even user distribution This option is enabled when Static assignment to
project agents is selected. Use this option to distribute
all existing user types evenly across all agents,
depending on each agent's general replay capabilities.
For example, if you have 50 VUsers and 5 agents, each
agent runs ten VUsers. If this option is not enabled, the
first agent would run all 50 VUsers if replay capabilities
permit. The other agents would rest idle, taking over the
workload only if one agent reaches its maximum replay
capability.

214 | Silk Performer Workbench 20.0

Item Description

Use cloud agents This option is enabled when Static assignment to
project agents is selected. Use this option if you want to
deploy agents that run as virtual machines in the cloud.
When checking this checkbox, the cloud Login dialog box
opens, asking for your user credentials (check Save
Credentials to not be asked for your credentials again).
Contact your sales representative to retrieve valid
credentials.

Cloud Agent Manager Click here to launch the Cloud Agent Manager, which
allows you to manage your agents in the cloud.

Agent resource utilization Check the Agent resource utilization check box to
assign a maximum percentage of total virtual users that
each agent can run based on the agent's replay
capabilities. For example, if an agent can run 50 users of
SAPGUI capability, then an Agent resource utilization
value of 50% results in 25 available SAPGUI virtual users
for the test. This value is reflected in the Agents table.

Balance load across agents This option is especially desirable for increasing or
dynamic workloads. Note that this setting does not come
into effect until the moment of execution.

• Without this setting enabled, your user load may be
distributed to agents sequentially, as follows:

• Agent1: VU1, VU2, …, VU17
• Agent2: VU18, VU19, …, VU34
• Agent3: VU35, VU36, …, VU50

• With this setting enabled, virtual user distribution is
more uniformly distributed across agents, as follows:

• Agent1: VU1, VU4, VU7, …
• Agent2: VU2, VU5, VU8, …
• Agent3: VU3, VU6, VU9, …

UserType/Agents This portion of the tab enables you to edit the users-to-
agents assignments that are associated with your project.
A roll-over tooltip on each usertype shows the capabilities
that are required for the usertype. This is useful for error
handling in cases when workload assignment fails.

User Distribution Overview Click the User Distribution Overview button to view a
summary of the users-to-agent assignments in your
project.

Manually Assigning Agent Computers to User Types

1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Click the Agent Assignment tab.

3. Define the agents that are to deliver the workload for your test.

Click the Static assignment to project agents option button to statically assign specific agent
computers (rather than clusters of agents) to your project. Agent locking is disabled with this method.

4. In the Auto-assign column, uncheck the Auto-assign check box.

5. Click [...] to the left of the Agents column. The Manual Agent Assignment for Script/Usertype dialog
box opens.

6. Click the agent that you want to assign and click OK.

All of the users from the user type must be assigned to agents.

Silk Performer Workbench 20.0 | 215

The selected agent appears in the Agent column on the Workflow Configuration dialog box.

Dynamic Workload-Assignment
Silk Performer's dynamic workload-assignment functionality matches your specific load-test requirements
to the replay capabilities of available agent computers at execution time. For example, if your load test
requires a workload that can be delivered only by an agent computer with an installed SAPGUI client,
dynamic workload-assignment functionality can ensure that your test's workload is assigned only to
available agents with installed SAPGUI clients. Further, you can configure the percentage of required
workload, in the number of virtual users, that must be allocated to each agent, thereby ensuring that
agents are not pushed beyond their load capacities.

Dynamic-workload assignment allows you to account for variations in resource requirements. For example,
approximately the same amount of resources is required to drive 2,000 virtual Web users over a Web
replay interface as is required to drive 20 virtual SAP users over a SAPGUI replay interface. Based on
maximum virtual-user-per-replay-capability settings that you configure, the dynamic-workload assignment
algorithm allocates appropriate workload levels to agents. This approach does not necessarily result in
each agent continuously driving its maximum supported load. You can define the percentage of maximum-
potential workload that must be allocated to each individual agent within the cluster. For example, if an
agent can drive 2,000 Web users and you set the agent-resource-utilization setting to 50%, only 1,000 Web
users are allocated to that agent. The remaining workload is allocated to other agents that possess the
same Web-user capability.

An advantage of dynamic assignment of workload to agent clusters is the manner in which the successful
execution of tests is not contingent on your maintaining a static test-execution environment. For example, if
an agent's name changes or becomes unavailable, Silk Performer can dynamically assign the unavailable
agent's workload to an available agent in the same cluster with the required capabilities. This approach
eliminates many of the challenges involved in maintaining a static test environment and is of particular
value when Silk Performer load tests are managed and executed based on predefined schedules in Silk
Central. Silk Central can run tests against agent clusters rather than individual agents. Issues that do not
require consideration from the Silk Central perspective include the health of individual agents and the
manner in which workload is balanced across agents.

Agent computers remain available to all workloads until the moment of test execution because they are not
reserved or assigned to any one specific workload. When a Silk Performer controller identifies an available
agent on which it intends to run a test execution, the controller momentarily locks the agent to prevent
conflict conditions with other controllers. After the test completes, the agents are unlocked and made
available to other tests.

Defining the Capabilities of Agents

1. Choose Settings > System . The System Settings dialog box displays.

2. Click Agents. The Agent Pool tab displays.

3. Click the agent for which you want to define capabilities.

4. Click Properties.

5. Click the Capabilities tab.

The Capabilities page is pre-populated with suggested replay-capability values that are based on the
specifications of installed hardware.

6. Adjust the Max. Vuser values per capability type as required by the agent.

You are responsible for setting appropriate maximum virtual-user values for your agents. Values from 0
to 9999 are valid.

7. Click OK to save your settings.

Alternatively, you can click Set Default to restore default capability values.

216 | Silk Performer Workbench 20.0

Properties for Agent - Capabilities Tab

The Properties for Agent > Capabilities dialog enables you to configure the maximum number of virtual
users per replay interface that the agent is capable of driving to optimize dynamic-workload assignment.

The Capabilities page is pre-populated with suggested replay-capability values that are based on the
specifications of installed hardware. You are responsible for setting appropriate maximum virtual-user
values for your agents. Values from 0 to 9999 are valid.

Capability Max. Vusers

General Maximum number of virtual users that the agent is
capable of driving against replay interfaces that do not
require any specific client installations on the agent. The
general capability includes replay interfaces such as
Web protocols and IIOP.

Browser-driven Maximum number of virtual users that the agent is
capable of driving against the browser-driven testing
replay interface.

Java Maximum number of virtual users that the agent is
capable of driving against replay interfaces that require a
Java Runtime installation. The Java capability includes
replay interfaces such as Java Framework, OracleForms,
Oracle Applications, Jolt, and Jacada.

ODBC Maximum number of virtual users that the agent is
capable of driving against the ODBC replay interface.

Oracle OCI Maximum number of virtual users that the agent is
capable of driving against the Oracle OCI7 or
Oracle OCI8 replay interface.

SAPGUI Maximum number of virtual users that the agent is
capable of driving against the SAPGUI replay interface.

Citrix Maximum number of virtual users that the agent is
capable of driving against the Citrix replay interface.

Tuxedo Maximum number of virtual users that the agent is
capable of driving against the Tuxedo replay interface.

.Net Maximum number of virtual users that the agent is
capable of driving against the .Net Framework replay
interface.

GuiL Test Maximum number of virtual users that the agent is
capable of driving against the Gui-level testing
replay interface.

Default button Click to reset all values to the suggested replay-capability
values.

Replay Capabilities

You can tag each agent with the following replay capabilities:

• General – Any replay feature that does not require an installation (except browser-driven), including
Web and IIOP.

• Browser-driven - Does not require an installation, but has a higher resource consumption capability
than General.

• Java – A Java run-time environment is available for Java Framework, Oracle Forms, Oracle
Applications, Jacada, and Jolt.

• ODBC – An ODBC client is installed.

Silk Performer Workbench 20.0 | 217

• Oracle OCI – An Oracle client is installed.
• SAPGUI – A SAPGUI client is installed.
• Citrix – A Citrix client is installed.
• Tuxedo – A Tuxedo client is installed.
• .Net – The .NET Framework is installed.
• GuiL Test – Terminal Services is installed and running on this agent. Silk Test and the system under

test must be installed.

For each capability, you can specify the maximum number of virtual users that the agent is capable of
driving. Click the Capabilities tab (Settings > System > Agents > Agent Pool > Properties >
Capabilities to complete this task.

Note: Depending on the hardware resources of the hosting machine, a load-test agent can replay a
varying number of virtual users based on the resource demands of each particular replay interface.
Therefore, agents are characterized by their hardware specifications, such as their CPU and memory,
plus the number of virtual users that can be executed based on a particular replay interface.

Capability Complexity Configuration

Capability Complexities

Silk Performer uses abstract values, or complexities, to relate sets of capability resource requirements to
one another. A capability is a technology that an agent is able to replay.

With dynamic workload-assignment, this is used for the following operations:

1. To sort agents by the sum of their capability complexities. This is used to assign user types to agents
that have the lowest capability complexity first.

2. To sort user types by the sum of their associated scripts' capability complexity. This is used to assign
user types that have the highest complexity first. Combined with operation 1 (above), this results in user
types with the highest complexity being assigned to the agents that best fit the required capabilities.

3. To compute the default number of virtual users of an agent for each of its capabilities. For an agent, the
number of virtual users for the General capability is computed based on the CPU speed, the number
of CPUs, and available RAM. Using this value and the list of capability complexities, the number of
available virtual users for all other capabilities is computed.

Example XML File

To override capability complexity values, you must create an XML file named
CapabilityComplexities.xml and save it to <public user documents>\Silk Performer
20.0.

Such an XML file might look like this:

<Complexities>
 <Capability name="SAPGUI" complexity="150"/>
 <Capability name="ODBC" complexity="65"/>
</Complexities>

This example XML file overrides the complexity values for the SAPGUI and ODBC capabilities. All other
values remain unchanged. The file can contain '0-n' Capability tags. The list of capability names is included
in the table above.

Please note that specific complexity values are not that important. The important thing is what the values
are in relation to each other. This has the consequence that if you were to multiply all complexities by the
same factor, the relation of any two capabilities to each other would not change.

Setting a Default Number of Virtual Users

In some situations it is helpful to define a default number of virtual users for a capability (for example, to
accommodate a technical constraint of the technology under test). This can be achieved by extending the

218 | Silk Performer Workbench 20.0

capabilities defined in CapabilityComplexities.xml with maxVU attributes. For example,
<Complexities> <Capability name="GuiLTest" complexity="200" maxVU="30" /> </
Complexities>. The value specified in the maxVU attribute overrides the value that would otherwise be
computed through the capability complexities. A maxVU value of 0 (which is the default when no maxVU
attribute is specified) indicates that the default number of virtual users should be computed through the
capability complexities.

Currently, the following fixed maximum VUser values are in effect by default:

• SAPGUI - 75 VUsers
• Citrix - 30 VUsers
• GuiLTest - 30 VUsers
• Browser-driven - 100 VUsers

Note: The maximum number of browser-driven virtual users is calculated as follows: 5% of capability,
up to a maximum of 100.

Centralized Management of Load-Test Agent Clusters in Silk Central
Although you have the option of assigning workload to individual agents, assigning workload to clusters of
agents is often preferable. Clusters are groups of agents that can share the same capabilities, such as a
Java Development Kit (JDK) installation, an ODBC client, or a Citrix client, or can consist of agents that
possess entirely heterogeneous capabilities, such as the capability to divide a lab's machines into separate
agent groups that can support different teams. With this approach, you select a cluster of agents capable of
executing the required workload when you configure your test's workload. Silk Performer then handles the
dynamic assignment of workload to specific agents. Only those agents that are required to deliver the
workload are actually used.

Agent clusters are managed centrally in Silk Central and are retrieved by Silk Performer when you start a
load test—you do not need to configure the availability of agents yourself and conflicts with concurrently
scheduled load tests are resolved automatically.

Creating a Silk Central Agent-Clusters File

Before you can complete this task you must export the Silk Performer agent pool as an XML file (which
includes the connection properties, capabilities, and system information of an agent) for each agent in your
agent pool.

You only need to create one Silk Central agent-clusters file. The file may contain one or more agent
clusters, each of which specifies its associated agents including their capabilities, connection properties
and system information. The contents of the file you create will be available to all Silk Performer users on
the Workload Configuration dialog when they select the Dynamic assignment to Silk Central agent
cluster option.

You must create a Silk Central agent-clusters file if you intend to run your test against a Silk Central agent
cluster (this is configured by clicking the Dynamic assignment to Silk Central agent cluster
button on the Workload Configuration > Agent Assignment tab). Workloads that use a Silk Central
agent cluster can be executed from within the Silk Performer Workbench and they can be scheduled as
Silk Central tests.

1. Create an empty XML file on your local system.

This file must be accessible by Silk Central. It can be placed under source control within your Silk
Central directory structure.

2. Use the contents of an exported agent pool file to build the agent-clusters file as structured in the
example below.

The contents of an exported agent-pool file and the agent-clusters file are nearly identical, so this
typically only involves enclosing the <AgentPool/> elements of the exported agent-pool file within a
<SctmAgentClusters/> element.

Silk Performer Workbench 20.0 | 219

Example of a manually created Silk Central agent-clusters file

This manually created agent-clusters file includes a SctmAgentClusters root
element. Within the root element are AgentPool elements, one for each agent pool in
the cluster. Within each AgentPool element are Agent elements that convey the
connection properties, capabilities, and system information of the individual agents.

<?xml version='1.0' encoding='UTF-8'?>

<SctmAgentClusters>
 <AgentPool name="cluster_1">
 <Agent id="LAB100">
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="IpAddress">192.168.1.100</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <Capability maxVU="390" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></
Capability>
 <Capability maxVU="39" name="Citrix"></Capability>
 <Capability maxVU="3900" name="General"></Capability>
 <Capability maxVU="39" name="GuiLTest"></Capability>
 <Capability maxVU="390" name="Java"></Capability>
 <Capability maxVU="390" name="ODBC"></Capability>
 <Capability maxVU="390" name="Oracle OCI"></Capability>
 <Capability maxVU="39" name="SAPGUI"></Capability>
 <Capability maxVU="390" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3332</SysInfo>
 <SysInfo name="Memory">2039 MB</SysInfo>
 <SysInfo name="ProcType"></SysInfo>
 <SysInfo name="ProcessorCount">1</SysInfo>
 <SysInfo name="ProcessorSpeed">3200 MHz</SysInfo>
 <SysInfo name="ServicePack"></SysInfo>
 <SysInfo name="SysVersion">5.0</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 <Agent id="lab101">
 <ConnProperty name="AuthPassword"></ConnProperty>
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="EncryptionSSL">false</ConnProperty>
 <ConnProperty name="HTTPTunnel">:8080</ConnProperty>
 <ConnProperty name="IpAddress">192.168.1.101</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="SOCKSTunnel">:1080</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <ConnProperty name="UseHttpTunnel">false</ConnProperty>
 <ConnProperty name="UseSocksTunnel">false</ConnProperty>
 <Capability maxVU="380" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></
Capability>
 <Capability maxVU="38" name="Citrix"></Capability>
 <Capability maxVU="3800" name="General"></Capability>
 <Capability maxVU="38" name="GuiLTest"></Capability>
 <Capability maxVU="380" name="Java"></Capability>
 <Capability maxVU="380" name="ODBC"></Capability>
 <Capability maxVU="380" name="Oracle OCI"></Capability>
 <Capability maxVU="38" name="SAPGUI"></Capability>
 <Capability maxVU="380" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3343</SysInfo>

220 | Silk Performer Workbench 20.0

 <SysInfo name="Memory">1983 MB</SysInfo>
 <SysInfo name="ProcType">Intel Pentium IV</SysInfo>
 <SysInfo name="ProcessorCount">2</SysInfo>
 <SysInfo name="ProcessorSpeed">3200 MHz</SysInfo>
 <SysInfo name="ServicePack">Service Pack 2</SysInfo>
 <SysInfo name="SysVersion">5.2</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 </AgentPool>
 <AgentPool name="cluster_2">
 <Agent id="LAB200">
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="IpAddress">192.168.2.200</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <Capability maxVU="390" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></
Capability>
 <Capability maxVU="39" name="Citrix"></Capability>
 <Capability maxVU="3900" name="General"></Capability>
 <Capability maxVU="39" name="GuiLTest"></Capability>
 <Capability maxVU="390" name="Java"></Capability>
 <Capability maxVU="390" name="ODBC"></Capability>
 <Capability maxVU="390" name="Oracle OCI"></Capability>
 <Capability maxVU="39" name="SAPGUI"></Capability>
 <Capability maxVU="390" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3332</SysInfo>
 <SysInfo name="Memory">2039 MB</SysInfo>
 <SysInfo name="ProcType"></SysInfo>
 <SysInfo name="ProcessorCount">1</SysInfo>
 <SysInfo name="ProcessorSpeed">3200 MHz</SysInfo>
 <SysInfo name="ServicePack"></SysInfo>
 <SysInfo name="SysVersion">5.0</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 <Agent id="lab201">
 <ConnProperty name="AuthPassword"></ConnProperty>
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="EncryptionSSL">false</ConnProperty>
 <ConnProperty name="HTTPTunnel">:8080</ConnProperty>
 <ConnProperty name="IpAddress">192.168.2.201</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="SOCKSTunnel">:1080</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <ConnProperty name="UseHttpTunnel">false</ConnProperty>
 <ConnProperty name="UseSocksTunnel">false</ConnProperty>
 <Capability maxVU="380" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></
Capability>
 <Capability maxVU="38" name="Citrix"></Capability>
 <Capability maxVU="3800" name="General"></Capability>
 <Capability maxVU="38" name="GuiLTest"></Capability>
 <Capability maxVU="380" name="Java"></Capability>
 <Capability maxVU="380" name="ODBC"></Capability>
 <Capability maxVU="380" name="Oracle OCI"></Capability>
 <Capability maxVU="38" name="SAPGUI"></Capability>
 <Capability maxVU="380" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3343</SysInfo>
 <SysInfo name="Memory">1983 MB</SysInfo>
 <SysInfo name="ProcType">Intel Pentium IV</SysInfo>

Silk Performer Workbench 20.0 | 221

 <SysInfo name="ProcessorCount">2</SysInfo>
 <SysInfo name="ProcessorSpeed">3200 MHz</SysInfo>
 <SysInfo name="ServicePack">Service Pack 2</SysInfo>
 <SysInfo name="SysVersion">5.2</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 <Agent id="lab203">
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="IpAddress">192.168.2.203</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <Capability maxVU="650" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></
Capability>
 <Capability maxVU="65" name="Citrix"></Capability>
 <Capability maxVU="6500" name="General"></Capability>
 <Capability maxVU="65" name="GuiLTest"></Capability>
 <Capability maxVU="650" name="Java"></Capability>
 <Capability maxVU="650" name="ODBC"></Capability>
 <Capability maxVU="650" name="Oracle OCI"></Capability>
 <Capability maxVU="65" name="SAPGUI"></Capability>
 <Capability maxVU="650" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3371</SysInfo>
 <SysInfo name="Memory">3318 MB</SysInfo>
 <SysInfo name="ProcType"></SysInfo>
 <SysInfo name="ProcessorCount">2</SysInfo>
 <SysInfo name="ProcessorSpeed">3000 MHz</SysInfo>
 <SysInfo name="ServicePack"></SysInfo>
 <SysInfo name="SysVersion">5.2</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 </AgentPool>
</SctmAgentClusters>

Once you have created an agent clusters file, you must configure Silk Central to reference the file. Silk
Central will copy the file to the execution servers so that whenever a Silk Performer project with dynamic
workload-assignment is executed, the project will read the file to determine how workload should be
allocated to the agents within the cluster.

Exporting Agent Pool

Before you can create a Silk Central test-agent cluster file, you need to output the connection properties,
capabilities, and system information of the available agents in your agent pool.

1. Navigate to System > Settings > Agents > Agent Pool .
2. Click the Export Agent Pool button.

3. Specify an appropriate path and filename to save the contents of your agent pool as an XML file.

Example agent pool file

This XML file includes an AgentPool root element. Within the root element are Agent
elements, one for each agent in the agent pool. Within each Agent element are
elements that convey the connection properties, capabilities, and system information of
that agent.

<?xml version='1.0' encoding='UTF-8'?>
<AgentPool name="LocalPool">
 <Agent id="LAB108">
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>

222 | Silk Performer Workbench 20.0

 <ConnProperty name="IpAddress">192.168.1.108</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <Capability maxVU="390" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></Capability>
 <Capability maxVU="39" name="Citrix"></Capability>
 <Capability maxVU="3900" name="General"></Capability>
 <Capability maxVU="39" name="GuiLTest"></Capability>
 <Capability maxVU="390" name="Java"></Capability>
 <Capability maxVU="390" name="ODBC"></Capability>
 <Capability maxVU="390" name="Oracle OCI"></Capability>
 <Capability maxVU="39" name="SAPGUI"></Capability>
 <Capability maxVU="390" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3332</SysInfo>
 <SysInfo name="Memory">2039 MB</SysInfo>
 <SysInfo name="ProcType"></SysInfo>
 <SysInfo name="ProcessorCount">1</SysInfo>
 <SysInfo name="ProcessorSpeed">3200 MHz</SysInfo>
 <SysInfo name="ServicePack"></SysInfo>
 <SysInfo name="SysVersion">5.0</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 <Agent id="lab116">
 <ConnProperty name="AuthPassword"></ConnProperty>
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="EncryptionSSL">false</ConnProperty>
 <ConnProperty name="HTTPTunnel">:8080</ConnProperty>
 <ConnProperty name="IpAddress">192.168.1.116</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="SOCKSTunnel">:1080</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <ConnProperty name="UseHttpTunnel">false</ConnProperty>
 <ConnProperty name="UseSocksTunnel">false</ConnProperty>
 <Capability maxVU="380" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></Capability>
 <Capability maxVU="38" name="Citrix"></Capability>
 <Capability maxVU="3800" name="General"></Capability>
 <Capability maxVU="38" name="GuiLTest"></Capability>
 <Capability maxVU="380" name="Java"></Capability>
 <Capability maxVU="380" name="ODBC"></Capability>
 <Capability maxVU="380" name="Oracle OCI"></Capability>
 <Capability maxVU="38" name="SAPGUI"></Capability>
 <Capability maxVU="380" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3343</SysInfo>
 <SysInfo name="Memory">1983 MB</SysInfo>
 <SysInfo name="ProcType">Intel Pentium IV</SysInfo>
 <SysInfo name="ProcessorCount">2</SysInfo>
 <SysInfo name="ProcessorSpeed">3200 MHz</SysInfo>
 <SysInfo name="ServicePack">Service Pack 2</SysInfo>
 <SysInfo name="SysVersion">5.2</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 <Agent id="lab125">
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="IpAddress">192.168.1.125</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <Capability maxVU="650" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></
Capability>

Silk Performer Workbench 20.0 | 223

 <Capability maxVU="65" name="Citrix"></Capability>
 <Capability maxVU="6500" name="General"></Capability>
 <Capability maxVU="65" name="GuiLTest"></Capability>
 <Capability maxVU="650" name="Java"></Capability>
 <Capability maxVU="650" name="ODBC"></Capability>
 <Capability maxVU="650" name="Oracle OCI"></Capability>
 <Capability maxVU="65" name="SAPGUI"></Capability>
 <Capability maxVU="650" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3371</SysInfo>
 <SysInfo name="Memory">3318 MB</SysInfo>
 <SysInfo name="ProcType"></SysInfo>
 <SysInfo name="ProcessorCount">2</SysInfo>
 <SysInfo name="ProcessorSpeed">3000 MHz</SysInfo>
 <SysInfo name="ServicePack"></SysInfo>
 <SysInfo name="SysVersion">5.2</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
 <Agent id="lab47">
 <ConnProperty name="ConnectPort">19200</ConnProperty>
 <ConnProperty name="ConnectSecurePort">19201</ConnProperty>
 <ConnProperty name="IpAddress">192.168.1.47</ConnProperty>
 <ConnProperty name="LastConnectStatus">5</ConnProperty>
 <ConnProperty name="UseAuthentication">false</ConnProperty>
 <Capability maxVU="180" name=".Net"></Capability>
 <Capability maxVU="100" name="Browser-driven"></
Capability>
 <Capability maxVU="18" name="Citrix"></Capability>
 <Capability maxVU="1800" name="General"></Capability>
 <Capability maxVU="18" name="GuiLTest"></Capability>
 <Capability maxVU="180" name="Java"></Capability>
 <Capability maxVU="180" name="ODBC"></Capability>
 <Capability maxVU="180" name="Oracle OCI"></Capability>
 <Capability maxVU="18" name="SAPGUI"></Capability>
 <Capability maxVU="180" name="Tuxedo"></Capability>
 <SysInfo name="AgentRAC">7803300</SysInfo>
 <SysInfo name="AgentVersion">7.8.0.3414</SysInfo>
 <SysInfo name="Memory">1007 MB</SysInfo>
 <SysInfo name="ProcType"></SysInfo>
 <SysInfo name="ProcessorCount">2</SysInfo>
 <SysInfo name="ProcessorSpeed">2593 MHz</SysInfo>
 <SysInfo name="ServicePack"></SysInfo>
 <SysInfo name="SysVersion">5.1</SysInfo>
 <SysInfo name="System">WinNT</SysInfo>
 </Agent>
</AgentPool>

You can now use the XML data in the exported agent-pool file to create a Silk Central test-agent clusters
file.

Assigning Workload to Cloud Agents
This task can only be performed after you have configured workload for your project.

1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Click the Agent Assignment tab.

3. Select the Assignment type:

• Static assignment to project agents : Use this method to statically assign specific agent
computers (rather than clusters of agents) to your project. No agent-availability check is performed
with this method and agent locking is disabled. Select this method if you want to use Agents
deployed in the cloud.

224 | Silk Performer Workbench 20.0

4. Define the agents that are to deliver the workload for your test.

• If you selected Static assignment to project agents , you can check the Even user distribution
check box to distribute all existing user types evenly across all agents, depending on each agent's
general replay capabilities. To use agents that run as virtual machines in the cloud, check the Use
cloud agents check box. Click Cloud Agent Manager to manage your agents in the cloud.

Note: To access Micro Focus CloudBurst services, register on http://cloud.borland.com or contact
your sales representative.

5. Check the Agent resource utilization check box to assign a maximum percentage of total virtual users
that each agent can run based on the agent's replay capabilities.

6. Check the Balance load across agents check box to apportion workload across agents.

7. If you selected Static assignment to project agents , use the lower window of the Agent Assignment
page to define workload assignments for user groups.

Note: Available options vary depending on the selected workload model.

8. Click User Distribution Overview to view the assignment of virtual users to the agent computers that
are currently available and then click Close.

9. Click OK to save your settings.

Note: Cloud agents are considered 'unreachable' when the Cloud Agent Manager cannot connect to
them. There are a few possible reasons why this may occur:

• Your network contains a firewall that blocks certain hosts or ports. Agent communication occurs
over a secure HTTP tunnel using port 443.

• Your network uses a proxy server that blocks certain Web sites or ports.
• The machine that the Cloud Agent Manager runs on has a firewall that blocks certain hosts or

ports.

Defining Number of VUsers per Cloud Agent

1. Click Assign Agents on the workflow bar. The Workflow - Assign Agents dialog box appears.

2. Click Use Cloud Agents. The Workflow - Prepare Cloud Agents dialog box appears.

3. Slide the slider to the right to select the number of VUsers that you want to have run on each cloud
agent.

Markers along the slider indicate the number of VUsers that can typically be supported by cloud-based
agents when testing various application types. However, the maximum number of VUsers per cloud
agent, regardless of application type, is 1,000. The number of VUsers that can actually be supported for
your testing scenario may vary of course, depending on the complexity and resource consumption of
your specific test.

The Workload text field shows the maximum number of VUsers that have been defined for each user
type (as defined on the Workflow - Workload Configuration dialog box). The Assignment per region
table shows the resulting allocation of agents across all geographic regions based on your selection.
For example, with a Workload setting of 100 VUsers and a setting of 20 max VUsers per agent across
five geographic regions, each region will run 20 VUsers. The higher the maximum VUsers per agent
setting, the fewer agent instances required within each geographic region to support the prescribed
workload.

4. Click Next. The Start Agent(s) dialog box appears showing you the number of agent instances within
each geographic region that will be started to deliver the prescribed workload.

5. Within the Up Time area of the dialog box, specify how long you want the agent instances to remain
active. Select Forever or a specific number of days and/or hours.

The Company Limit shows the remaining number of agent instances that you can start based on your
license type.

6. Click Start to open Cloud Agent Manager and start the specified number of cloud agent instances.

Silk Performer Workbench 20.0 | 225

http://cloud.borland.com

Evaluating Agent VUser Capacity
If you are not sure how many virtual users your agent can handle, you can perform an evaluation run. Once
the evaluation run is finished, Silk Performer gives you an estimation of how many virtual users you can run
on the specified agent.

On the Evaluate Agent VUser Capacity dialog, click Start. Silk Performer will gradually increase the
number of virtual users. The run is automatically stopped if at least one of the following is true:

• The responsiveness falls below 95%.
• The CPU usage exceeds 95%.
• The maximum number of virtual users is reached.

Note: If you want to evaluate the capacity of a cloud agent, you need to have Micro Focus Credits on
your cloud account.

Trying Out Agents
Before you start your load test, it can be useful to verify that the test script you created works on all agents
you are planning to use for the load test.

Try Agents Settings

For Try Agents runs, the following options are automatically set to these specified values (see also "Replay
Options"):

• The Stress test option is on, when think times are disabled.
• The Stop virtual users after simulation time (Queuing Workload) option is off.
• The Virtual user log files (.log) option is on.
• The Virtual user output files (.wrt) option is on.
• The Virtual user report files (.rpt) option is on.
• The Virtual user report on error files (.rpt) option is on.
• The TrueLog files (.xlg) option is off.
• The TrueLog On Error files (.xlg) option is on.
• The Compute time series data (.tsd) option is off.
• All logging detail options (Results > Logging and Results > Internet Logging page) are on.
• The Enable all measure groups (TSD measure groups) option is off.
• The Bandwidth option is set to High Speed (unlimited).
• The Downstream option is set to unlimited.
• The Upstream option is set to unlimited
• The Duplex option is off.

Trying Out a Test Script On Agents
You must record or manually create a test script before you can try out your script on various agents.

1. Click the Try Agents button on the Silk Performer Workflow bar. The Workflow - Try Agents dialog box
appears.

2. Select one or more user types from the list User Types to execute.

Each user type will be executed on each selected agent. For example: If you select two user types and
three agents, Silk Performer will start six test runs in total.

3. Select one or more agents from the list Agents.

Note: You can select local agents and cloud agents, or more specifically: cloud regions. If you
select a cloud region, all cloud agents from the respective region will be tested. It is not possible to

226 | Silk Performer Workbench 20.0

test individual cloud agents. You can start cloud agents in the Cloud Agent Manager. Note that it
can take some time until the cloud agents are ready to execute tests. A note beside the cloud
regions tells you how many cloud agents are reachable and ready for a test execution. For
example: 2/4 Agents ready means that 4 agents were started in the Cloud Agent Manager and 2
of these are ready for execution.

4. Optional: Click Enable think times if you want to consider the think times in your script during the run.
This option is disabled by default.

Note: Usually, a Try Agent run is used to verify that a test script works correctly on various agents.
For such a functional test, think times can be neglected, since they are a means to create a more
realistic user behaviour and therefor a more realistic load. However, load issues can be neglected
in a functional test.

5. Click Run to try out the script on the specified agents.

6. If you have selected cloud regions to be tested, the Review Estimated Micro Focus Credits
Consumption dialog box displays. It gives you an estimation of how many Micro Focus Credits the runs
will consume. Click Accept and Run.

The Monitor window opens, giving you detailed information about the progress of the Try Agents run.
Once all runs are finished, the Try Agents Summary displays.

Try Agents Summary
When a Try Agents run is complete, the Try Agents Summary page appears. You can also open this page
from the Results tree. You can perform the following actions in the Next Steps area on the right side:

• Click Analyze Errors to view the errors in TrueLog Explorer (if any occurred).
• Click Configure Monitoring to continue with the next step in the workflow bar.
• Click View debit information to show the amount of Micro Focus Credits that was debited from your

account.
• Click Local Agents or one of the cloud regions in the Analyze Result Files area to get detailed result

information about the runs that were executed on the various agents.

Note: If you want to prevent the summary page to appear each time a test is complete, disable the
Show Summary Page button in the toolbar of the Monitor page.

Configuring Monitoring
Before running a test you need to define how Performance Explorer, the Silk Performer server monitoring
tool, is to monitor local and remote servers involved in your test. Server monitoring reveals, locates, and
assists in resolving server bottlenecks, allowing you to examine the performance of operating systems and
application servers.

Three monitoring options are available:

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of data
sources based on the application type under test. This is equivalent to enabling the Automatically start
monitoring and Use default monitoring template settings for the Performance Explorer workspace
(Settings > Active Profile > Replay > Monitoring > Use default monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data
sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

Silk Performer Workbench 20.0 | 227

Server Monitoring
During a load test, Silk Performer provides for server monitoring by allowing you to view a live, graphical
display of the server performance while a test runs.

The monitoring of servers enables the generation of server-side results that can be viewed and correlated
with other test measurements at the results exploration stage. Monitoring also helps you learn whether
bottlenecks exist on the server and, if so, their exact location. As a result, monitoring lets you examine the
performance of both the OS and the server application.

You can set up a template for server monitoring to monitor performance data, or you can use a default
template that is already generally configured for the type of application you are testing.

Defining Monitoring Options

1. Click Configure Monitoring on the workflow bar. The Workflow - Configure Monitoring dialog box
appears.

2. Select one of the following options and click Next:

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of
data sources based on the application type under test. This is equivalent to enabling the
Automatically start monitoring and Use default monitoring template settings for the
Performance Explorer workspace (Settings > Active Profile > Replay > Monitoring > Use default
monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data
sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

(for Default Monitoring and Custom Monitoring only) A confirmation dialog box will notify you if you have
logging enabled. Logging may skew your test results.

3. Click OK to accept your logging settings or click Cancel to adjust your logging options (Settings >
Active Profile > Results > Logging).

4. (for Custom Monitoring only) Performance Explorer starts and the Data Source Wizard opens.
Complete the steps outlined in the wizard.

5. The Workflow - Workload Configuration dialog box appears. Click OK to accept your monitoring
settings.

Setting Up a Template for Server Monitoring

1. Go to Settings > Active Profile The Profile Settings dialog box opens.

2. Click the Results icon in the group box.

3. Click the Monitoring page.

4. In the Monitoring options area, check the Automatically start monitoring check box to automatically
launch Silk Performer's monitoring facility when the test starts.

5. To automatically use the monitoring template that best suits the project, click the Use default
monitoring template option button.
For example, if you are creating a Web project, the template specifies the measurements that are useful
for Web load tests.

6. To use a custom monitor template, click the Use custom monitoring template option button and
perform one of the following steps:

228 | Silk Performer Workbench 20.0

• Type the name of the custom template file (.pew) that you want to use to monitor your server. Silk
Performer creates a copy of the standard monitor template.

• Click the folder icon in the name field to select an existing monitoring template.

7. Optional: Click Edit Custom Monitor Template to add or remove any monitoring performance data.

When you click this button, Silk Performance Explorer opens. Perform the following steps:

a) Add or remove any monitoring performance data.
b) Save the Silk Performance Explorer workspace to apply your changes to the template.

8. In the Performance Monitor integration area, check the Compute online performance data check
box to compute data for additional performance measurements to be displayed in the Windows
Performance Monitor.

You can use this data to view concurrent users, transaction throughput, sent and received data, and
executed SQL statements.

9. Click OK. After you start a load test, server monitoring for the load test starts and stops automatically.

10.To save monitoring results for future exploration, write the server-monitoring results to a monitoring
writer file: In Performance Explorer, on the Real-Time Monitoring tab, in the New group, click Monitor
Writer.

Running Load Tests
Part of the process of conducting a Silk Performer load test is to run a full load test.

Running Tests
In a load test, multiple virtual users are run by means of a test script against a target server to determine
the load impact on server performance. A large load test requires an appropriate testing environment on
your LAN, including a full complement of agent computers to host the virtual users.

It is essential that you complete the following tasks:

• Set options for the appropriate type of test that is to be run
• Accurately define the required workloads
• Enable the generation of test results to assess server performance

Do not enable complete result-logging during load testing because it might interfere with load-test results.
However, the TrueLog On Error logging option writes necessary log files to a disk when errors occur,
allowing you to inspect replay errors visually.

Real-time information regarding agent computers, virtual users, and transactions is displayed for you while
load tests run. Real-time performance monitoring of the target server is presented in graphical format.

When a test is configured as a verification run, the following options are automatically set to the specified
values:

• A Baseline report file is automatically created.
• The Stop virtual users after simulation time (Queuing Workload) option is disabled.
• The Virtual user log files (.log) option is disabled.
• The Virtual user report files (.rpt) option is enabled.
• The Virtual user report on error files (.rpt) option is enabled.
• The Compute time series data (.tsd) option is disabled.

Running a Load Test
Run a load test after you set up your testing environment and configure all test settings.

1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Configure the workload that you plan to use in your load test.

Silk Performer Workbench 20.0 | 229

3. (Optional) Click Connect on the Workload Configuration dialog box to initialize the agent connection
without starting the test.

a) Click OK on the New Results Files Subdirectory dialog box.
b) Click Start all on the Silk Performer toolbar to manually start the test from monitor view.

4. Click Run to start the load test.

5. Click OK on the New Results Files Subdirectory dialog box.

(Optional) To specify a name for the results subdirectory, uncheck the Automatically generate unique
subdirectory check box and enter a name for the new subdirectory in the Specify subdirectory for
results files text box.

Monitor test progress and server activity by viewing the Silk Performer tabular monitor view and the
Performance Explorer graphical monitor view.

Calculating Virtual Users
On the Workload Configuration dialog, on the Pacing tab, you can perform the following actions:

• You can let Silk Performer calculate the Max. VUsers
• You can let Silk Performer calculate the Sessions Per Peak Hour
• You can let Silk Performer calculate the Goal Trans Per Second
• You can set your own specific Goal Session Time by enabling pacing

Tip: You can copy and paste the values in the Workload Configuration grids by using the keyboard
shortcuts Ctrl+C and Ctrl+V or by right-clicking on a value and using the buttons in the context-menu.

Session Pacing

A session is the group of transactions defined for a user in the dcluser section. In the following sample,
the session consists of 4 transactions. Note that begin and end transactions are not part of the session.
The session time is the time it takes to execute the regular transactions including think times.

// Workload Section
dcluser
 user
 VirtUser
 transactions
 TInit : begin;
 TLogin : 1;
 TAddToCart : 2;
 TCheckout : 1;
 TEnd : end;

The baseline session time shows how long it took to execute the session in the baseline test.

Session pacing causes Silk Performer to add additional wait time, the so-called pacing wait time, at the end
of a session before a new one is started. Session pacing allows you to reach a specified fixed session
length, the so-called Goal Session Time.

Typically, you have already defined the number of virtual users in the Adjust Workload workflow step. In
this table, you can now see how many sessions the virtual users will manage to execute in one hour. This
is reflected by the Sessions Per Peak Hour value. If you adjust this value, Silk Performer will calculate
how many virtual users you need to reach the number of sessions. On the other hand, if you adjust the
number of virtual users, Silk Performer will recalculate the number of sessions the virtual users will manage
to execute.

How the Sessions Per Peak Hour value is calculated

• Make sure you have set a baseline. See Finding Baselines.

230 | Silk Performer Workbench 20.0

• Select to Calculate virtual users required to reach a certain number of sessions per hour.
• The Baseline Session Time [s] column now contains the session time of each user type in the

baseline.
• The Sessions Per Peak Hour is calculated for each user type.

Here is an example of how Silk Performer calculates the values: If the baseline test was executed in 100
seconds and you configured 10 virtual users, these 10 virtual users will be able to execute about 360
sessions within one hour (10 x 3600 seconds / 100 seconds).

Session Per Peak Hour = (Virtual Users x 3600 seconds) / Baseline Session Time

How to set your own specific Goal Session Time

As outlined above, Silk Performer uses the baseline session time to calculate the Sessions Per Peak Hour
and the Max. VUsers. If you do not want to use the given baseline session time but want the sessions of a
user type to take a different time, you can set your own Goal Session Time by configuring a pacing wait
time.

How to configure Session pacing

• Select sessions per hour to calculate the virtual users required to reach a certain number of
sessions per hour.

• If you have set a baseline previously, the Baseline Session Time [s] column now contains the session
time value of each user type in the baseline. Your inputs in the subsequent steps will be validated
against the baseline.

• In the Pacing column, click ... to open the Configure pacing dialog.
• Click Wait time insertion.
• Select the relative Pacing wait time or the absolute Goal Session Time and specify the value in the

fields beneath the chart.
• Click OK. Your Goal Session Time displays in the table and the Max. VUsers value is adjusted. The

Bandwidth value updates if a baseline has been set.

How to configure Think Time adaption

• Select sessions per hour to calculate the virtual users required to reach a certain number of
sessions per hour.

• If you have set a baseline previously, the Baseline Session Time [s] column now contains the session
time value of each user type in the baseline. Your inputs in the subsequent steps will be validated
against the baseline.

• In the Pacing column, click ... to open the Configure pacing dialog.
• Click Think time adaptation.
• Select Static or Dynamic:

• Static: To reach the goal session time, the think times in the script are multiplied with a constant,
static factor.

• Dynamic: To reach the goal session time, the think times in the script are multiplied with a dynamic
factor that is recalculated after each executed session.

• Define your Goal Session Time and click OK. Your Goal Session Time displays in the table and the
Max. VUsers value is adjusted. The Bandwidth updates if a baseline has been set.

Transaction Pacing

While Session Pacing is adding pacing wait time at the end of the session, Transaction Pacing is adding
pacing wait time at the end of each individual transaction.

Silk Performer Workbench 20.0 | 231

How to get the Goal Transactions Per Second calculation

• Select transactions per second to calculate the virtual users required to reach a certain number
of transactions per second.

• If you have set a baseline previously, the Avg Transaction Time [s] column now contains the average
transaction time value of each user type in the baseline.

• The Goal Trans Per Second column is calculated for each user type row.

How to set your own specific Goal Transactions Per Second

• Select transactions per second to calculate the virtual users required to reach a certain number
of transactions per second.

• If you have set a baseline previously, the Avg Transaction Time [s] column now contains the
transaction time value of each user type in the baseline.

• In the Pacing column, click ... to open the Configure pacing dialog.
• Click Wait time insertion.
• Select the relative Pacing wait time or the absolute Avg Goal Trans Time and specify the value in the

fields beneath the chart.
• Click OK. Your Goal Session Time displays in the table and the Max. VUsers value is adjusted. The

Bandwidth updates if a baseline has been set.

Pacing
A commonly used load testing model is to keep transaction rates constant regardless of how loaded the
server system is already. In Silk Performer you can define workloads based on transaction or session rates,
which Silk Performer tries to meet even when server response times increase due to the increasing load.
Consequently, when server response time slows, Silk Performer automatically reduces think times or
pacing wait times to keep session times constant.

Silk Performer offers two methods to keep transaction or session rates at a defined level.

• Think time adaptation modifies the think times in your script so that a certain session time is reached.
• Pacing wait time is the period of time that a virtual user idles after a transaction or session has been

completed, so that a certain transaction or session rate is reached.

To modify pacing options, click Run Test on the workflow bar and click the Pacing tab.

To open the Configure Pacing dialog, click ... in the Pacing column.

Several options are available to configure pacing:

• Think time adaptation: Click this option to determine a Goal Session Time. The think times will be
automatically adjusted to match the specified goal session time. You can select between Static and
Dynamic.

• Wait time insertion: Specify either the Pacing wait time or the Goal Session Time. If you specify the
pacing wait time, it will be added to the execution time of a transaction. If you add up these two times,
you will get the goal session time. If you specify the goal session time, the pacing wait time will be
automatically determined. You can also specify to randomize the entered values.

To configure pacing wait time directly in a BDL script, use the BDL functions SetPacingTime() and
GetPacingTime().

Silk Performer offers pacing for the following workload models:

• Increasing
• Steady State
• All Day
• Dynamic

232 | Silk Performer Workbench 20.0

Monitoring Load Tests
Detailed real-time information is available to testers while Silk Performer load tests run. Graphic displays
and full textual reporting of activity on both the client side and the server side offer intuitive monitoring of
the progress of tests as they occur.

Directly from the workbench on which the test is conducted, a tester can view comprehensive overview
information about the agent computers and virtual users in the test. A tester can control the level of detail
of the displayed information, from a global view of the progress of all the agent computers in the test to an
exhaustive detail of the transactions conducted by each virtual user. Progress information for each agent
and each user is available in multiple categories. Run-time details for each user include customizable,
color-coded readouts on transactions, timers, functions, and errors as they occur.

In addition, real-time monitoring of the performance of the target server is available in graphical form.
Charts display the most relevant performance-related information from a comprehensive collection of the
Web servers, application servers, and database servers running on all of the OSes most widely used today.
Multiple charts can be open at the same time, and these charts can be juxtaposed to provide the most
relevant comparisons and contrasts for the tester. A menu tree editor allows for the combination of
elements from any data source in the charts. Response times and other performance information from the
client application can be placed in the same chart as performance data from the server. This feature
enables a direct visual comparison so that one can deterimine the influence of server shortcomings on
client behavior.

Automatic Monitoring

If Automatically start monitoring is enabled in the Silk Performer profile when a load test begins, Silk
Performer launches Performance Explorer with the monitoring template you assigned to the profile.

All monitor writers begin writing and saving generated TSD files to the load-test directory. The writing of
these monitor files is automatically stopped after load tests are complete.

The names of generated TSD files are formatted as r@NAMEOFMONITOR@STARTTIME.tsd, where
NAMEOFMONITOR is the monitor writers caption. After running the load test, TSD files for each monitor
writer are defined in your workspace.

Monitoring All Agent Computers During Load Testing

Use the Monitor window to view progress while a load test runs. The top part of the window displays
information about the progress of agent computers and user groups.

Among the comprehensive number of information options, you can view the following information:

• Status of a particular agent
• Percentage of the test that is complete on an agent
• Number of executed transactions

Monitoring a Specific Agent Computer During Load Testing

In the top part of the Monitor window, select the specific agent to monitor.

The following information about the virtual users running on the selected agent appears in the bottom of
the Monitor window:

• Status
• Name of the current transaction
• Percentage of work completed
• Number of executed transactions

Silk Performer Workbench 20.0 | 233

Monitoring a Specific Virtual User During Load Testing

In the bottom part of the Monitor window, right-click the virtual user that you want to monitor and choose
Show Output of Vuser.

In the Virtual User window, Silk Performer displays detailed run-time information about the selected user,
such as the transactions and functions the user executes and the data the user sends to and receives from
the server.

Tip: Right-click the virtual user area and choose Select Columns to select the columns you want to
view.

Using a Graph to Monitor Server Performance

1. Click Confirm Baseline on the workflow bar. The Workflow - Confirm Baseline dialog box opens.

2. Click Define monitoring options to specify the settings for receiving online performance data. The
Profile Results dialog box opens.

3. In the Profile Results dialog box, check the Automatically start monitoring check box to
automatically start monitoring while running a load test and then choose one of the following options:

• Click the Use default monitoring template option button.
• Click the Use custom monitoring template option button to create a customized monitoring

template.

4. Click Create/Edit Custom Monitor Template. Performance Explorer appears.

5. Close all monitor windows that you are not currently using.

6. Click Monitor Server on the Performance Explorer workflow bar.

Alternatively, you can choose Results > Monitor Server from the menu bar.

The Data Source Wizard / Select Data Sources dialog box opens.

7. Perform one of the following steps:

• If you are certain of the data sources that the server provides, click the Select from predefined
Data Sources option button to then select them from the list of predefined data sources.

• If you are uncertain of the data sources that the server provides, click the Have Data Sources
detected option button to let Performance Explorer scan the server for available data sources.

8. Click Next.

In the menu tree, expand the folder that corresponds to the OS on which the server and application are
running.

9. Select the server application you want to monitor from the list that appears.
For example, to monitor the OS, select System.

10.Click Next. The Connection Parameters dialog box opens.

11.In the Connection parameters area, specify connection parameters such as the host name or IP
address of the appropriate server system, the port number, and other data required to connect to the
data source.

The specified data depends on the OS running on the computer that you are monitoring.

12.Click Next. The Select Displayed Measures dialog box opens.

13.Expand the menu tree and select the factors you want to monitor.

14.Click Finish. A Monitor graph shows the specified elements in a real-time, color-coded display of the
server performance. Beneath the graph is a list of included elements, a color-coding key, and
performance information about each element.

Monitoring Performance for Multiple Servers

For each server that you want to monitor, follow the procedure for monitoring server performance by using
a graph. Separate graphs appear for each server.

234 | Silk Performer Workbench 20.0

1. Reposition and resize the graphs to facilitate viewing and comparison.

2. To monitor factors from multiple servers in a single graph, use the menu tree to locate the appropriate
factors and drag them onto the selected graph.

Using a Report to Monitor Server Performance

Complete the steps for using a graph to monitor server performance.

1. Choose Monitor > Clone Monitor Report from the Performance Explorer menu bar. A Monitor report
displays the performance factors that were selected in the graph. Monitoring information now appears in
tabular form in the report.

2. To save the monitoring report for results exploration along with the load test results, choose Monitor >
Write Monitor Data from the Performance Explorer menu bar.

Storing Server-Monitoring Data

Create a Monitor writer and populate it with the relevant performance factors.

Note: You can store server-monitoring data from a Monitor writer but not from a Monitor chart.

1. In Performance Explorer, on the Real-Time Monitoring tab, in the New group, click Monitor Writer.
The file name appears in the File section of the Monitor information area in the report dialog box. The
monitor data is stored in a time series data (.tsd) file.

2. To view the data in a chart, click Monitor Chart in the New group on the Real-Time Monitoring tab. A
new Monitor chart appears.

3. Drag the appropriate performance factors from the writer onto the chart. The data appears in graphical
form.

Starting Silk Performer from the Command Line

Command Syntax

You can start Silk Performer load tests directly from a command-line interface. This is especially useful
when you create a batch file, which executes a number of load tests consecutively.

To start Silk Performer from a command line, use the following syntax:

performer [project file [/Automation [refresh rate] [/WL:workloadname] [/
StartMonitor]] [/Resultsdir:directory]]

Here is a sample command with sample parameters:

performer "<my documents>\Silk Performer <version>\Projects\AllDayWorkload
\AllDayWorkload.ltp" /Automation 5 /WL:AllDayWorkload10

Note: When files or folders in the project path contain spaces, include quotation marks (") around the
project path.

Note: Silk Performer will close immediately if an error (such as a misspelled project path, script error,
workload not in the specified project file) occurs during the execution of the command line instruction.
Errors can be found in the Event Viewer of the operating system.

Command Line Parameters

Parameter Description

project file Name of the project file that defines the load test to be
executed.

Silk Performer Workbench 20.0 | 235

Parameter Description

/Automation Automatically starts the load test that the specified project
file defines. If you omit this parameter, Silk Performer
opens the specified project.

refresh rate Refresh rate, in seconds, at which the Monitor window
refreshes. If you omit this parameter, then no refresh
occurs.

/WL:workloadname Name of the workload in the specified project file. If you
specify a workload, it is set as the active workload in the
project file.

/StartMonitor Starts Performance Explorer’s monitoring facility when
running the test.

/SOA Launches the Silk Performer SOA Workbench.

/Vision Specifies to start as Silk Performer Monitor Workbench.

/eCatt Specifies to start as Silk Performer SAPGUI eCatt
Workbench.

/Abort Aborts running tests.

/? or -? Displays help about the Silk Performer command-line
interface.

/Resultsdir:directory Specifies the directory where the load test results are
stored. The directory path can be absolute or relative to
the project file.

/ImportStAsset:asset file?project name Imports Silk Test assets to Silk Performer. Asset file
is the absolute path to the asset. Project name is the
name for the new project. This value is optional. When
omitted, the default project name is used.

Exploring Test Results
Usually the final step in conducting a Silk Performer load test is to display and analyze the results of the
test to assess the performance of the application and the server under test.

Results Overview
The Results tab in the bottom left area of the GUI offers full control over your test results. Selecting the
Results tab displays a menu tree containing all test results of the currently active project, including Try
Script runs, load test results, and Silk Central results (if your Silk Performer project is linked to a Silk
Central test definition).

Hovering your mouse over a test in the Results menu tree displays a summary of the test run, including
date and time, the selected workload model, agent, VUser and error information.

Depending on the logging options that you have set for test runs, the following items are displayed in the
Results menu tree:

• Baseline Report
• Time Series
• TrueLog Files (contains TrueLog files for each virtual user)
• User Results (contains user profiles, which list all result files per virtual user)
• Silk Central (displays results from Silk Central, if the project is linked to a Silk Central test definition)

236 | Silk Performer Workbench 20.0

Opening Results Files

Choose one of the following methods to open a results file:

• Double-click a file in the Results menu tree.
• Right-click a result file and select Open or Explore.

Opening a results file invokes the respective viewing facility.

Note: If the icon of a parent node in the Results menu tree is marked with a red X symbol, an
error has occurred during the test execution. If an icon (parent node or result file) is marked with a
blue exclamation mark (!), an error log file contains an informational message, a warning, or an
error.

Deleting Locally Stored Results Files

Right-click a top-level results node and select Delete Results.

Note: This does not affect results that are stored in Silk Central.

Refreshing Displayed Results

Right-click a top-level results node and select Update Results.

The results that are displayed in the menu tree do not update if they are changed outside of Silk
Performer.

Note: If the icon of a parent node in the Results menu tree is marked with a red X symbol, an
error has occurred during the test execution. If an icon (parent node or result file) is marked with a
blue exclamation mark (!), an error log file contains an informational message, a warning, or an
error.

Silk Central Integration
Silk Performer is tightly integrated with Silk Central. If your Silk Performer project is linked to Silk Central,
you can store your test results centrally in Silk Central where they can be accessed from both Silk Central
and Silk Performer.

To view Silk Central results, your project must be linked to a Silk Central test definition . Once your project
is linked to Silk Central, you can view the centrally stored results by clicking Click here to add Silk Central
results node in the Results menu tree.

Additionally, you can upload results to Silk Central by right-clicking a top-level results node and selecting
Upload Results to Silk Central.

Exploring Results
Silk Performer offers several approaches to displaying, reporting, and analyzing test results. Defined
measurements take place during tests and can be displayed in a variety of graphical and tabular forms.
Options include the following:

• Performance Explorer: This is the primary tool used for viewing test results. A fully comprehensive
array of graphic features displays the results in user-defined graphs with as many elements as are
required. The results of different tests can be compared. There are extensive features for server
monitoring. A comprehensive HTML based overview report that combines user type statistics with time
series test result information is also available.

• TrueLog On Error: Silk Performer provides full visual verification under load capabilities for various
application types. It allows you to combine extensive content verification checks with full error drill-down
analysis during load tests.

• Virtual User Report files: When enabled, these files contain the simulation results for each user.
Details of the measurements for each individual user are presented in tabular form.

Silk Performer Workbench 20.0 | 237

• Virtual User Output files: When enabled, these files contain the output of write statements used in test
scripts.

• Baseline Reports: A detailed XML/XSL-based report that provides you with a summary table,
transaction response-time details, timers for all accessed HTML pages, Web forms, and errors that
occurred. This information is available for all user types involved in baseline tests.

• Silk Central Reports: Silk Performer projects can be integrated into Silk Central (Silk Central) test
plans and directly executed from Silk Central. This allows for powerful test-result analysis and reporting.
For detailed information on Silk Central reporting, refer to Silk Central Help.

Load Test Summary

When a load test run is complete, the Load Test Summary page appears. You can also open this page
from the Results tree or by clicking Explore Results on the workflow bar. The Load Test Summary page
contains:

• a Quick Summary, which gives you an overview about the test duration, users, agents, and errors.
• an Available User Types area, which you can use to drill down on the results for each user type. Select

a user type from the list.

You can perform the following actions in the Next Steps and Analyze Result Files area on the right side:

• Click Analyze load test to view all detailed metrics in Performance Explorer.
• Click Analyze errors to view the errors in Performance Explorer (if any occurred). In the Error Details

tab of Performance Explorer you can further drill into the errors. Double-click an error to open the
TrueLog Explorer. This is only possible if you enabled TrueLog On Error on the Workflow - Workload
Configuration dialog box before you started the load test.

• Click Compare with baseline to compare the results of this test with the results of the baseline. This
button is only visible if you have already set a baseline.

• Click Set as baseline to make the test you have just run your baseline (your reference level) for the
upcoming load tests.

• Click Explore detailed report to open a detailed load test report.
• Click Open results folder to view other result files like the virtual user report files or the virtual user

output files for each virtual user.

Note: If you want to prevent the summary page to appear each time a test is complete, disable the
Show Summary Page button in the toolbar of the Monitor page.

Verification Under Load
Silk Performer provides full visual verification under load capabilities for Web applications. It allows you to
combine extensive content verification checks with full error drill down analysis during a load test. Silk
Performer verification checks can be done from all virtual users without major performance loss.

Silk Performer's innovative TrueLog technology makes it possible to collect details regarding the errors of
all virtual users that take part in a load test. Traditional probing clients, separated from the load testing tool,
are only able to detect content verification errors that occur for users that actually perform verifications.
Since a functional testing tool is only able to drive a limited number of concurrent users, the functional test
covers only a very small subset of all users that visit your Web application. Such a probing client cannot
detect verification errors that occur to users that are not contained within this small subset. Silk Performer
has redefined the type of testing that can be done with load testing tools.

With Silk Performer TrueLog technology, you can find errors that usually occur to only a subset of users
when your application is under a heavy load. For most applications, this is the type of load that will most
likely be experienced once the application is deployed in the real world. Typical errors include incorrect text
on a Web page, incorrectly computed and displayed values, or application-related messages, such as
Servlet Error or Server Too Busy errors. These are not system-level errors and are displayed on
Web pages with HTTP 200 status codes.

238 | Silk Performer Workbench 20.0

TrueLog Explorer provides a view into Silk Performer verification-under-load capabilities with the following
features:

• Visual content verification allows you to visually define the content that is to be verified.
• TrueLog On Error generation and TrueLog On Error analysis allow you to visually analyze errors to

identify their root causes.

Viewing Errors in TrueLog Explorer

Before you begin, set up the option to generate TrueLog on Error files and run a test that generates errors.

As a foundation for full visual root cause analysis, Silk Performer can save the complete history of errors
within a TrueLog. TrueLog On Error can even be generated in large-scale load tests. TrueLog On Error
helps you uncover the true source of your application's error output under all possible load conditions.

1. When an error occurs during a load test, you can view the visual content of the TrueLog by clicking the
Explore Results button on the workflow bar. The Workflow - Explore Results dialog opens.

2. Click the Silk TrueLog Explorer link. TrueLog Explorer opens with the Step Through TrueLog dialog
box active. Select Errors.

3. Navigate from one occurrence of an error to the next.

Tip: To display the history of an error, click through the preceding API nodes in the menu tree.

Performance Explorer
Performance Explorer allows you to view measures obtained through real-time monitoring and to analyze
results of completed load tests. A variety of tools and features enables exhaustive analysis, reporting, and
processing of all captured data.

Cloud-Based Region Summary Reports

Region summary reports gather cloud-based load test measures across geographic regions. When load
tests use cloud-based agents, Silk Performer captures region-specific data for each cloud region (and for
project agents, if used). Region summary reports are similar to baseline reports. Region summary report
files carry the file extension .rsr and are stored in the results directory.

To view region summary result nodes, expand the Region Summary Reports node on the Results tab
following a load test.

An overview report (similar to a baseline report) can be created for any individual region by selecting a
region node on the Performance Explorer Explore tab and clicking Overview Report.

Assigning Overview Report Templates to Projects

You can specify an overview report template for each Silk Performer project. All automatically generated
HTML overview reports will use this template and the template will be preselected when you create HTML
overview reports manually.

1. In Silk Performer, expand the Profiles node in the menu tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Alternative: Choose Settings > Active Profile.

The Profile - [<profile name>] dialog box opens.

3. In the shortcut list on the left, click the Results icon.

4. Click the Time Series tab.

5. Browse for a template in the Overview report template section and click Open.

6. Click OK.

Silk Performer Workbench 20.0 | 239

Note: Performance Explorer’s command line interface also offers the /OVT:<template> command
for assigning overview report templates to Silk Performer projects.

Reports

Virtual User Report Files

Report files contain the simulation results for each virtual user. Details of the measurements for each
individual user are presented in tabular form. The many sections in these files include reports on
transactions, timers, Web page timers, and counters, and also sections on IIOP, Web form, TUXEDO, and
SQL results.

Virtual User Output Files

Output files contain the output of write statements used in the test script. An output file is generated for a
particular user only if write statements are executed by that user.

However, generating output files alters the time measurements of a load test. Therefore, these files should
be used for debugging purposes only, and should never be generated for a full load test.

Performance Explorer Reports

Overview Report

The overview report comprises the following sections:

• General information
• Summary tables
• User types
• Custom charts
• Custom tables
• Detailed charts

General information

The general information section includes administrative information in tabular form as well as important
load test results in a graphical form.

Administrative information includes the project name, a description of the project, the load test number, a
description of the load test, the date of the load test, the duration of the load test, the number of used agent
computers, and the number of virtual users that were running.

The charts display the number of active virtual users, response time measurements for transactions, and
the number of errors that occur over time. Transaction response times are provided for successfully
executed transactions, for failed transactions, and for cancelled transactions.

Additional charts display summary measurements related to the type of load testing project. For example,
in the case of Web application testing, response time measurements for Web pages are presented in a
graph.

Summary tables

This section contains summary measurements in tabular form, that is, aggregate measurements for all
virtual users. The first table provides general information, such as the number of transactions that were
executed and the number of errors that occurred. All the following tables provide summary information
relevant to the type of application that was tested.

User types

For each user group, this section provides detailed measurements in tabular form. The measurements
include transaction response times, individual timers, counters, and response time and throughput

240 | Silk Performer Workbench 20.0

measurements related to the type of application that was tested (Web, database, CORBA, or TUXEDO). In
addition, errors and warnings for all user groups are listed.

Custom charts

This section contains graphs that you have added manually. You can add charts to and remove charts from
this section at any time. You can save your changes as a template to be displayed for every summary
report.

Custom tables

This section contains tables that you have added manually. You can add tables to and remove tables from
this section at any time. You can save your changes as a template to be displayed for every summary
report.

Detailed charts

This section provides enlarged versions of the charts included in the report. Click a reduced version of a
chart to jump to the enlarged version, and vice versa.

Silk Performer Workbench 20.0 | 241

Built-In Measures

A measure is the smallest grouping entity for the values that are collected during a load test or during a
monitoring session for a particular measuring point. A measure has a name and type. A set of measured
values that are related to the measure is stored as a series in a time series data (.tsd) file.

Measures can be either timers or counters. Timers collect data related to response times, counters collect
data on throughput and load test events.

Performance Explorer provides a big amount of measures, which are divided into groups.

Performance Trend Reports in Silk Central

Using Silk Central for load test regression-testing allows you to track performance trends across your
product builds. Monitor the evolution of transaction response times, page times, and custom measures
across builds to determine how the performance of your application under test is coming along. As new
features are being developed in your product, you can react in a timely manner if the application's
performance behaves unexpectedly.

The following performance trend reports are available in Silk Central:

Average Page-Time Trend
Report

Shows the page times per page for all tests executed for the specified test
definition within the specified time range.

Average Transaction
Busy-Time Trend Report

Shows the transaction busy time per transaction for all tests executed for
the specified test definition within the specified time range.

Custom Measure Trend
Report

Shows the average, minimum, and maximum values of the defined measure
or measures for all tests executed for the specified test definition within the
specified time range.

Overall Page-Time Trend
Report

Shows overall page times, aggregated over all user types, for all tests
executed for the specified test definition within the specified time range.

Overall Transaction Busy-
Time Trend Report

Shows overall transaction busy-time, aggregated over all user types, for all
tests executed for the specified test definition within the specified time
range.

Refer to Silk Central Help for detailed information.

Raw Measure Data Capturing

When to use raw measure data capturing

After you have run a load test you can analyze the results in detailed reports in Performance Explorer. If
you need data that is even more detailed or if you want to process collected data in another program, you
can use Silk Performer to capture raw measure data and store it in CSV files. You can then, for example,
import the raw measure data into a spreadsheet program and generate custom graphs.

How does Silk Performer capture raw measure data?

Silk Performer captures raw measure data in three steps:

1. Raw measure data is collected in u@... files (on the agents).
2. Raw measure data is merged from the u@... files into i@... files (on the agents).
3. Raw measure data is merged from the i@... files into m@... files (on the controller).

When you start a Silk Performer test, the Silk Performer controller deploys the test to the agents you have
specified. Each agent starts several perfRun.exe processes, and within each process, several virtual
users execute the test. During execution, Silk Performer creates one u@... file per process.

242 | Silk Performer Workbench 20.0

The raw measure data is then merged into i@... files and the u@... files are removed. Each i@... file
holds the raw measure data of one measure name/measure type combination. The files are stored in the
RawData folder: Silk Performer <version number>/Projects/MyProject/RawData.

Once the i@... files have been transferred to the controller, the raw measure data is merged into m@...
files (also in the RawData folder). The i@... files remain in the RawData folder. Each m@... file holds the
raw measure data of one name/type combination of all agents.

Step one and two of the raw measure data capturing process are executed on the agents, step three is
executed on the controller.

What do the file names mean?

These are the full names of the raw measure data files:

• u@rawdata_processid.csv

• i@name_type@agent.csv

• m@name_type@controller.csv

The data is stored in CSV files (comma-separated value files), which allows you to easily process the raw
measure data with a spreadsheet program. u stands for user file, i for intermediate file, and m for merged
file. Here is an example of some i@... and m@... files:

i@ShopIt+-+Greetings_131@testingserver.csv
i@ShopIt+-+Greetings_132@testingserver.csv
i@SilkPerformer+Test+Site_131@testingserver.csv
i@SilkPerformer+Test+Site_132@testingserver.csv

m@ShopIt+-+Greetings_131@pc-johndoe.csv
m@ShopIt+-+Greetings_132@pc-johndoe.csv
m@SilkPerformer+Test+Site_131@pc-johndoe.csv
m@SilkPerformer+Test+Site_132@pc-johndoe.csv

Note the following from this example:

• There are no u@... files in this example, since they are removed when their content is merged into the
i@... files. They are just temporary files.

• The measure names are URL-encoded (ShopIt+-+Greetings).
• The measure type is represented by its number code. 131 is the number code for Page time[s], 132

is the number code for Document download time[s].
• testingserver is the machine name of the agent.
• pc-johndoe is the machine name of the Controller.

What does a raw measure data file look like?

Here is an example of what the raw measure data in an m@... file looks like:

;MeasureName:;ShopIt - Greetings
;MeasureType:;Page time[s]
C;Timestamp;Value;VUName
;1381231408198;46;VUser
;1381231431291;31;VUser
;1381231433032;31;VUser
;1381231434120;16;VUser
;1381231436307;15;VUser
...

The data within the CSV files is sorted by the timestamp (which is a Unix timestamp). The timestamp
represents the elapsed seconds since 01.01.1970. Time measure values are logged in milliseconds, file
size values are logged in kilobytes.

Silk Performer Workbench 20.0 | 243

Enabling Raw Measure Data Capturing

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Results icon.

4. Click the Measures tab.

5. Check the Collect raw measure data check box.

To configure raw measure data capturing for particular measure types or single measures, use the BDL
function MeasureCollectRawData.

Raw Measure Data File Size Statistics

The following tables provide some examples of how big raw measure data files can become when you
execute load tests with the shown settings.

244 | Silk Performer Workbench 20.0

Note: The size values are approximate values.

Measurements Duration of load test Virtual users Size of raw measure data
file

1 measurement per second 1 hour 100 10 MB

3 measurements per
second

5 hours 100 150 MB

1 measurement every 10
seconds

3 hours 100 3 MB

Load Test Duration of
load test

Virtual users Size of all raw
measure data
files

Agents Result packaging
and download
time*

10 pages (with 5
measurements
per page), 1
page per
second

1 hour 100 175 MB 2 30s

20 pages (with 5
measurements
per page), 1
page every 3
seconds

5 hours 100 290 MB 2 45s

20 pages (with 5
measurements
per page), 1
page every 3
seconds

10 hours 400 2,25 GB 4 3m 50s

20 pages (with 5
measurements
per page), 1
page every 3
seconds

10 hours 4000 23 GB 40 7m 30s

* To gather these download times, Silk Performer CloudBurst agents and a 100 Mbps internet connection
to the Silk Performer controller were used. The times include data processing and compression on the
agents and the transfer to the controller.

Note: If you use cloud agents for your load tests, transferring large raw measure data files from the
cloud agents to the controller can take a considerable amount of time.

Note: For most load test scenarios it is sufficient to generate raw measure data for only a selected set
of measures. To do so, use the BDL function MeasureCollectRawData.

Load Testing Specific Application Types
Silk Performer supports testing within a variety of computing environments. This section explains Silk
Performer’s support of AJAX, SAP eCATT, terminal emulation, GUI-level testing, and much more.

Silk Performer Workbench 20.0 | 245

Flex/AMF3 Support
This section explains Silk Performer support for the testing of Flex/AMF3 applications, including a
technology overview, project setup, and Java configuration issues.

Flex/AMF3 Overview
AMF3 (Action Message Format, version 3) is a binary protocol developed by Adobe Systems. It is primarily
used for remote procedure calls by Flex applications.

A primary goal in the design of AMF3 is that transmitted data be as small as possible. This requirement
presents a challenge for protocol customization with Silk Performer. To make the AMF3 protocol
customizable and human-readable, Silk Performer transforms AMF3 traffic into XML during script
recording, and transforms the XML back into AMF3 format during replay. This means that you do not have
to read binary AMF3 data in hex string format. Rather, in recorded scripts and TrueLogs, you see only
XML-formatted data.

AMF0 and AMF3 support are tightly integrated (in fact AMF3 uses AMF0’s message structure). Each
AMF3 message begins as an AMF0 message (even when they contain the version "3" in the first two bytes
of the data stream). A special AMF0 data type marker indicates where AMF0 encoding ends and AMF3
encoding begins.

Understanding Flex

According to Adobe Systems,

"Flex is a free, open source framework for building highly interactive,
expressive web applications that deploy consistently on all major
browsers, desktops and operating systems. It provides a modern,
standards-based language and programming model that supports
common design patterns. MXML, a declarative XML-based language,
is used to describe UI layout and behaviors, and ActionScript 3, a
powerful OO programming language is used to create client logic. Flex
also includes a rich component library with over 100 proven, extensible
UI components for creating RIAs, as well as an interactive Flex
application debugger.

Rich Internet applications created with Flex can run in the browser
using the ubiquitous Adobe Flash® Player software or on the desktop
on Adobe AIR™. This enables Flex applications to run consistently
across all major browsers and across operating systems on the
desktop. And using Adobe AIR, the cross-operating system runtime,
Flex applications can now access local data and system resources on
the desktop.

You can accelerate application development with Adobe Flex Builder 3,
a highly productive, Eclipse™ based development environment, and
Adobe Live Cycle Data Services ES, a set of advanced data services
that can be used in Flex development. Both of these products are
available for purchase."

Understanding Advanced Flex Data Services

According to Adobe ,

"Adobe LiveCycle™ Data Services ES provides a comprehensive set of
data-enabling features for using data in RIAs. It enables RIAs to talk to

246 | Silk Performer Workbench 20.0

http://www.adobe.com/

back-end data and business logic in a faster, more efficient operating
model. LiveCycle Data Services ES also enables seamless integration
with LiveCycle ES business processes and document services.

BlazeDS is a free, open source project providing Flex Remoting and
Messaging to all developers. Flex Remoting provides a binary,
serialized data transport format called the ActionScript Message
Format (AMF) to provide a fast, efficient means of transporting data to
your RIA which accelerates application performance. Flex Remoting
also makes it fast and easy for developers to connect to back-end
business logic and data. Flex Messaging adds realtime data push and
publish/subscribe, both powerful capabilities now made easy. Using
BlazeDS, you can start using these powerful Java server integration
features for free, then subscribe to the LiveCycle Data Services
Community Edition for certified builds and support, or upgrade to the
full LiveCycle Data Services ES Enterprise edition for a complete
server solution."

Flex/AMF3 Project Setup and Testing

Prerequisites

For testing Flex/AMF3 applications based on the Adobe or BlazeDS implementation, Java Development Kit
1.5 or later is required.

For testing Flex/AMF3 applications based on the GraniteDS implementation, Java Development Kit 1.6 or
later is required.

Transformation is enabled for HTTP requests and responses that have the HTTP header Content-Type
set to "application/x-amf". If you need to transform data with a different HTTP Content-Type header,
see Transformation of Custom Content-Types.

Setting Up an Adobe Flex/AMF3 Project

For testing Flex/AMF3 applications based on the Adobe or BlazeDS implementation, select the Flex/
AMF3 (Adobe) application type on the Outline Project dialog.

The Flex/AMF3 (Adobe) application type supports both AMF0 and AMF3. By selecting the Flex/AMF3
(Adobe) application type, several profile settings are automatically configured for you on the tab Profile >
Web (Protocol Level) > Transformation:

• The Flex/AMF3 (Adobe) transformation DLL is selected in the Type drop list.
• Transform HTTP Requests is enabled
• Transform HTTP Responses is enabled
• Enable Java Virtual Machine usage is enabled. This setting is required because Flex/AMF3

requires a running JVM for accurate transformation of externalizable traits. This setting also causes
transformed AMF3 traffic to appear in a readable XML representation that includes fewer AMF3
syntactical tags.

Setting Up a GraniteDS Flex/AMF3 Project

For testing Flex/AMF3 applications based on the GraniteDS implementation, select the Flex/AMF3
(GraniteDS) application type on the Outline Project dialog.

The Flex/AMF3 (GraniteDS) application type supports both AMF0 and AMF3. By selecting the Flex/
AMF3 (GraniteDS) application type, several profile settings are automatically configured for you on the
tab Profile > Web (Protocol Level) > Transformation:

Silk Performer Workbench 20.0 | 247

• The Flex/AMF3 (GraniteDS) transformation DLL is selected in the Type drop list.
• Transform HTTP Requests is enabled
• Transform HTTP Responses is enabled
• Enable Java Virtual Machine usage is enabled. This setting is required because Flex/AMF3

requires a running JVM for accurate transformation of externalizable traits. This setting also causes
transformed AMF3 traffic to appear in a readable XML representation that includes fewer AMF3
syntactical tags.

Configuring a Customized GraniteDS Configuration

If your application under test uses a customized GraniteDS configuration, you may find that an exception is
reported in TrueLog Explorer, in the Recorder log or the virtual user log files. These exceptions resemble
the following:

WebPagePost(WebEngine: 82 - Content transformation error, RESPONSE: AMF3:
Java based XML generation failed,
using fallback, reason:
org.granite.messaging.amf.io.AMF3SerializationException
…
Caused by: java.lang.RuntimeException: The ActionScript3 class bound to
org.granite.example.addressbook.entity.Person
(ie: [RemoteClass(alias="org.granite.example.addressbook.entity.Person")])
implements flash.utils.IExternalizable but
this Java class neither implements java.io.Externalizable nor is in the scope
of a configured externalizer
(please fix your granite-config.xml)
…

To make Silk Performer aware of this custom configuration and to get rid of the exceptions, proceed as
follows:

1. Locate the customized configurations of your application under test. These can usually be found in
granite-config.xml or granite-custom-config.xml, which is located in the application's
classpath.

2. In the Project menu tree, locate the granite-custom-config.xml file in the Data Files folder.
3. Double-click granite-custom-config.xml to open it in the editor.
4. Copy and paste the customized configurations that you located in step 1 into the granite-custom-

config.xml data file and save your changes.

Modeling a Script

Using the JVM requires the configuration of Flex/AMF3 application-specific custom JAR files that contain
the classes that are necessary for serialization into correct XML representation. For this reason, when
modeling a Flex/AMF3 script, the Model Script dialog includes an Add Custom JAR File(s) button. Click
this button to browse to and Add any custom JAR files that are specific to the application under test. Added
JAR files are displayed within the Project tree Data Files node.

These required JAR files (or individual .class files) are located on the server to be tested. These files
must be prepared manually and copied from the server to the Silk Performer controller machine. It may be
that the only required task is to place individual .class files into an archive.

Note: JAR files must be placed in the Project folder.

Clicking Settings on the Model Script dialog links you directly to the current user profile, Java Settings
tab. Use this to change Java settings for the currently selected user profile.

The Apache Flex 2, 3, 4 and BlazeDS 3.2.0 base JAR files are installed in the directory C:\Program
Files(x86)\Silk\Silk Performer <version>\ClassFiles\Adobe-Flex. These JAR files are

248 | Silk Performer Workbench 20.0

automatically added to the classpath. These files may be manually updated by copying new versions of
flex-messaging-common.jar and flex-messaging-core.jar into the directory.

Make sure that you have the GraniteDS base JAR files on your machine and then add these JAR files to
the classpath.

Note: Do not enable Use system classpath on the Java Settings tab. JAR files set in the system
classpath may overrule manually configured JAR files.

Generating a Script from a Capture File

While recording a user transaction, the Silk Performer recorder creates a so-called Silk Performer capture
file, which contains the entire traffic of the recorded session. After saving, the capture file is opened in the
Workbench for further analysis and processing. Before generating a script from the captured traffic, you
can configure recording rules and other settings, which are applied during the script generation process.

If any errors occur, click the buttons in the Resolve Problems area to resolve them. Then, click Generate
Script to generate a script from the capture file.

On 64-bit operating systems, both a 32-bit and 64-bit Java installation are required. The 32-bit installation
is used for replaying scripts, the 64-bit installation is used for generating scripts. If a 64-bit installation is not
available, you can force Silk Performer to use a 32-bit process for script generation by setting the following
registry key to 1: HKEY_LOCAL_MACHINE\SOFTWARE\Silk\SilkPerformer\<version>
\Force32BitCaptureAnalyzer.

Attention: Using the 32-bit script generator can cause issues with large capture files.

Replaying a Script

If your Java configurations are incorrect (for example, if JAR files are missing), XML responses (only visible
in TrueLog Explorer) will not be generated in an easily readable format. Also warnings or errors will be
written to the Virtual User Output pane. Typically, errors and warnings indicate whether or not they were
caused by requests (client to server) or responses (server to client).

Customizing AMF3 Scripts

Do not change the overall structure of XML objects within AMF3 scripts. It is okay to parse values or insert
verification functions, but deleting or rearranging AMF3 XML elements will destroy a call. Also do not
change the order of elements within arrays.

Code Examples

Command message example:

<AmfXml
version="3">
 <Msg length="203" operation="null" responseURI="/
1">
 <StrictArray
nrElems="1">

<Amf3>

<JavaObject>

<flex.messaging.messages.CommandMessage>
 <destination></
destination>
 <messageId>3EE7E87A-96E6-3272-30F7-FFEF6B9EFE9E</
messageId>
 <timestamp>0</
timestamp>

Silk Performer Workbench 20.0 | 249

 <timeToLive>0</
timeToLive>

<headers>

<entry>
 <string>DSId</
string>
 <string>nil</
string>
 </
entry>
 </
headers>
 <body class="flex.messaging.io.amf.ASObject"
serialization="custom">
 <unserializable-parents></unserializable-
parents>

<map>

<default>
 <loadFactor>0.75</
loadFactor>
 <threshold>12</
threshold>
 </
default>
 <int>16</
int>
 <int>0</
int>
 </
map>

<flex.messaging.io.amf.ASObject>

<default>
 <inHashCode>false</
inHashCode>
 <inToString>false</
inToString>
 </
default>
 </
flex.messaging.io.amf.ASObject>
 </
body>
 <correlationId></
correlationId>
 <operation>5</
operation>
 </
flex.messaging.messages.CommandMessage>
 </
JavaObject>
 </
Amf3>
 </
StrictArray>
 </
Msg>
</AmfXml>

250 | Silk Performer Workbench 20.0

Remoting message example:

<?xml version='1.0' encoding='UTF-8'?
>
<AmfXml
version="3">
 <Msg length="394" operation="null" responseURI="/
4">
 <StrictArray
nrElems="1">

<Amf3>

<JavaObject>

<flex.messaging.messages.RemotingMessage>
 <clientId class="string">208F18FC-6F0D-9964-3746-76438D73A6A3</
clientId>
 <destination>myextservice</
destination>
 <messageId>A98651D4-690D-E530-B744-FFEF866937C7</
messageId>
 <timestamp>0</
timestamp>
 <timeToLive>0</
timeToLive>

<headers>

<entry>
 <string>DSId</
string>
 <string>208F0A62-A409-8994-08AF-223CD381602C</
string>
 </
entry>

<entry>
 <string>DSEndpoint</
string>
 <string>my-amf</
string>
 </
entry>
 </
headers>
 <operation>setMyExtClass</operation>

<parameters>

<com.borland.silkperformer.flex.samples.MyExt>
 <string>string1</
string>
 <string>string2</
string>
 <string>string3</
string>
 <boolean>true</
boolean>
 <date>2009-03-13 14:05:01.545 CET</
date>
 </
com.borland.silkperformer.flex.samples.MyExt>
 </

Silk Performer Workbench 20.0 | 251

parameters>
 </
flex.messaging.messages.RemotingMessage>
 </
JavaObject>
 </
Amf3>
 </
StrictArray>
 </
Msg>

</AmfXml>

Acknowledge message example:

<?xml version='1.0' encoding='UTF-8'?
>
<AmfXml
version="3">
 <Msg operation="/5/onResult"
responseURI="">

<Amf3>

<JavaObject>

<flex.messaging.messages.AcknowledgeMessage>
 <clientId class="string">208F18FC-6F0D-9964-3746-76438D73A6A3</
clientId>
 <messageId>20903C27-020C-F5E6-68E7-C8175449798D</
messageId>
 <timestamp>1236954453026</
timestamp>
 <timeToLive>0</
timeToLive>
 <body
class="com.borland.silkperformer.flex.samples.MyExt">
 <string>some string</
string>

<com.borland.silkperformer.flex.samples.MyExt>
 <string>string1</
string>
 <string>string2</
string>
 <string>string3</
string>
 <boolean>true</
boolean>
 <date>2009-03-13 14:04:58.14 CET</
date>
 </
com.borland.silkperformer.flex.samples.MyExt>
 <string>GET</
string>
 <string>string</
string>
 <boolean>true</
boolean>
 <date>2009-03-13 14:05:01.545 CET</
date>
 </
body>

252 | Silk Performer Workbench 20.0

 <correlationId>C4BD7297-67CB-84AB-0C1A-FFEF8DEB3A97</
correlationId>
 </
flex.messaging.messages.AcknowledgeMessage>
 </
JavaObject>
 </
Amf3>
 </
Msg>
</AmfXml>

Understanding Flex/AMF3 Scripts
This section explains aspects of the Flex/AMF3 protocol including script elements and XML Representation
of Binary AMF.

Flex/AMF Packet-Oriented Protocol

Flex/AMF uses a binary packet-oriented protocol that is passed with HTTP POST requests. This packet
format is called Action Message Format (AMF). The Flex/AMF application sends AMF packets to the server
in the bodies of HTTP POST requests. The server responds with AMF packets in the bodies of HTTP
responses. Both the HTTP requests and the responses contain the Content-Type HTTP header with the
value application/x-amf.

HTTP requests that carry AMF packets are recorded with the function WebPagePost. The URL to be used
is recorded as the first parameter of the function, the AMF packet to be sent is recorded as the second
parameter.

In scripts, logs, and TrueLogs, Silk Performer does not display binary AMF packets in their original binary
format. Instead, an XML based textual representation is used. The conversion from this textual
representation to binary AMF and vice versa is done transparently by the recorder and replay. Binary AMF
can only be seen in the textual log if the appropriate logging options are enabled.

The advantage of this is that AMF packets are easy to read, understand and customize. AMF packets are
also rendered using the XML tree view in TrueLog Explorer, and can be customized there in the same way
that all XML data can be customized.

XML Representation of Binary AMF

The root node of Silk Performer XML representation of binary AMF is called AmfXml. Its only attribute is
the version attribute, which corresponds to the version field in binary AMF and denotes the AMF
protocol specification version. Its value is always zero (0).

AMF packets consist of a list of context headers and a list of messages. Any of these lists may contain zero
elements.

The basic structure of an AMF packet in XML is shown below:

<?xml version='1.0' encoding='UTF-8'?>
<AmfXml version=\"0\">
<CtxHeader length="112" mustUnderstand="true" name="some_name">
 (contents of context header)
 </CtxHeader>
 (more context headers)
 <Msg length="5" operation="some.operation" responseURI="/1">
 (contents of message)
 </Msg>
 (more messages)
</AmfXml>

Context Headers

Context headers have the attributes length, mustUnderstand, and name.

Silk Performer Workbench 20.0 | 253

The value of the length attribute specifies the number of bytes used for this context header in the binary
AMF packet. It is for informational purposes only, and need not be adjusted if the XML representation is
customized because the transformation from XML to binary AMF automatically calculates the correct value.

The content of a context header is exactly one typed value.

Messages

Messages have the attributes length, operation, and responseURI. The value of the length
attribute specifies the number of bytes used for this message in the binary AMF packet. It is for
informational purposes only, and need not be adjusted if the XML representation is customized because
the transformation from XML to binary AMF automatically calculates the correct value.

The content of a message is exactly one typed value.

Typed Values

Typed values are serialized actionscript objects. Each context header and each message contains exactly
one typed value.

Typed values can be arbitrary complex, hierarchical data structures.

Each typed value consists of a type, a value, and optionally a name.

The type is specified by the XML node name. The optional name is specified by the name attribute of the
XML node.

For simple types, the value is specified in the content of the XML node. For container types, the value is
specified by subnodes of the XML node.

Some types may have additional attributes.

Typed values have a name attribute only when they are direct subnodes of an Object, TypedObject, or
ECMAArray. Top-level typed objects and subnodes of a StrictArray do not have name attributes.

The following table offers an overview of available types and optional attributes.

XML Nodename Value location Additional attributes(except name,
see above)

Number Content of node ---

Boolean Content of node ---

String Content of node ---

Object Subnodes refId (optional)

Null no value ---

Undefined no value ---

Reference Content of node ---

ECMAArray Subnodes nrElems, refId (optional)

StrictArray Subnodes nrElems, refId (optional)

Date Content of node ---

LongString Content of node ---

Unsupported no value ---

XMLObject Content of node refId (optional)

TypedObject Subnodes type, refId (optional)

254 | Silk Performer Workbench 20.0

The optional refId attribute of the types Object, ECMAArray, StrictArray, XMLObject, and
TypedObject can be used to assign an arbitrary ID to such a value. Such an ID can then be used to
reference the value later with a Reference node.

This technique is commonly used to avoid multiple identical representations of the same object. With this
approach, an object is represented only once, and later it is only referenced by a Reference node. This
allows you to efficiently serialize complex data structures, which may even contain cyclic references.

Examples of Typed Values

<Object>
 <Boolean name="coldfusion">true</Boolean>
 <Boolean name="amfheaders">false</Boolean>
 <Boolean name="amf">false</Boolean>
 <Boolean name="httpheaders">false</Boolean>
 <Boolean name="recordset">true</Boolean>
 <Boolean name="error">true</Boolean>
 <Boolean name="trace">true</Boolean>
 <Boolean name="m_debug">true</Boolean>
</Object>

<ECMAArray nrElems="0">
 <Number name="Time">1080677591838</Number>
 <String name="EventType">Information</String>
 <Date name="Date">2004-03-30 20:13:11.838 TZ:-480 [426F73ACED63C000FE20]</
Date>
 <String name="Message">CF_DEBUG_DISABLED</String>
 <String name="Source">Server</String>
</ECMAArray>

Example request sent to sample application
<?xml version='1.0' encoding='UTF-8'?>
<AmfXml version="0">
 <CtxHeader length="82" mustUnderstand="false" name="playerInfo">
 <Object>
 <String name="version">WIN 7,0,19,0</String>
 <String name="manufacturer">Macromedia Windows</String>
 <String name="os">Windows 2000</String>
 </Object>
 </CtxHeader>
 <Msg length="13" operation="petmarket.api.catalogservice.getCategories"
 responseURI="/4">
 <StrictArray nrElems="1">
 <String>en_US</String>
 </StrictArray>
 </Msg>
</AmfXml>

Example request received from sample application
<?xml version='1.0' encoding='UTF-8'?>
<AmfXml version="0">
 <Msg operation="/4/onResult" responseURI="null">
 <TypedObject type="RecordSet">
 <ECMAArray name="serverinfo" nrElems="0">
 <StrictArray name="initialData" nrElems="5">
 <StrictArray nrElems="4">
 <Number>5</Number>
 <String>birds</String>
 <String>birds</String>
 <String>D7A91E</String>
 </StrictArray>
 <StrictArray nrElems="4">

Silk Performer Workbench 20.0 | 255

 <Number>4</Number>
 <String>cats</String>
 <String>cats</String>
 <String>FFA672</String>
 </StrictArray>
 <StrictArray nrElems="4">
 <Number>2</Number>
 <String>dogs</String>
 <String>dogs</String>
 <String>FF876F</String>
 </StrictArray>
 <StrictArray nrElems="4">
 <Number>1</Number>
 <String>fish</String>
 <String>fish</String>
 <String>4F9FDB</String>
 </StrictArray>
 <StrictArray nrElems="4">
 <Number>3</Number>
 <String>reptiles</String>
 <String>reptiles</String>
 <String>97D76B</String>
 </StrictArray>
 </StrictArray>
 <Number name="version">1</Number>
 <Number name="totalCount">5</Number>
 <String name="serviceName">PageableResultSet</String>
 <Number name="cursor">1</Number>
 <StrictArray name="columnNames" nrElems="4">
 <String>CATEGORYOID</String>
 <String>CATEGORYDISPLAYNAME</String>
 <String>CATEGORYNAME</String>
 <String>COLOR</String>
 </StrictArray>
 <Null name="id"></Null>
 </ECMAArray>
 </TypedObject>
 </Msg>
</AmfXml>

Date Values

Binary AMF represents date values with a 64-bit floating point value that specifies the number of
milliseconds elapsed since January 1, 1970, midnight GMT, and a 16-bit signed integer value that specifies
the timezone offset in minutes relative to GMT.

Date values are represented in XML in the following format: YYYY-MM-DD HH:MM:SS.mmm TZ:
[+-]tzoffset

YYYY denotes a 4 digit year

MM denotes a 2 digit month (range: 01-12)

DD denotes a 2 digit day (range: 01-31);

HH denotes a 2 digit hour-of-day (range: 00-23)

MM denotes a 2 digit minute value (range: 00-59)

SS denotes a 2 digit seconds value (range: 00-59)

mmm denotes the 3 digit number of milliseconds value

tzoffset denotes the timezone offset to GMT in minutes

Because of the rounding of floating point values to the nearest millisecond it is generally not possible to
reconstruct an exact binary representation from these string representations. For this reason, the original

256 | Silk Performer Workbench 20.0

binary representation is also included in hexadecimal representation in square brackets. As long as such a
date value is not customized, the hexadecimal representation can be used to exactly reconstruct the
original date value when XML is transformed back to binary AMF.

When customizing a date value, the hexadecimal representation can either be deleted or left untouched.
Regardless it is ignored when the XML representation is converted to binary AMF.

Example string representation of a date value: 2004-03-30·16:38:38.260·TZ:-300·
[426F73945F768000FED4]

Out-dated AMF3 Data Types

Simple Data Types

Note: This topic is included for backward compatibility purposes only. It describes an out-dated
method of XML serialization. If your Java settings are correctly configured and you are using Silk
Performer version 2009 or later, you may safely ignore this topic. Usage of the JVM requires the
configuration of Flex/AMF3 application-specific custom JAR files that contain classes that are
necessary for the serialization of code into correct XML representation. When these JAR files are
missing, the translation DLL uses the method of XML serialization described in this topic.

Here are four simple data types that are provided by AMF3. In the binary protocol, each of these data types
is transmitted as a 1-byte type marker. The corresponding XML tags for each data type are included in
parenthesis.

• Undefined (<Undefined></Undefined>)
• Null (<Null></Null>)
• False (<False></False>)
• True (<True></True>)

Integer

Integers in AMF3 are serialized as variable-length 29-bit unsigned integers. The variable-length format
ensures that integers take up as little space as necessary. In XML format, integers look like this:

<Integer>123456</Integer>

The integer data type is encoded as a 1-byte type marker, followed by up to 4 bytes that encode the integer
using the variable length format. Besides their use as a data type, variable-length integers are used in
other places within the protocol.

Double

A double stores an 8-byte double precision floating point value as defined in IEEE 754. This is the data
type that many programming languages refer to as a double. In XML format, doubles look like this:

<Double>3.14159</Double>

In the binary format, doubles are encoded as 1-byte type markers followed by 8 bytes that contain the
double value.

String

Strings are used to store all types of UTF-8-encoded string data. Besides their use as a data type, strings
are also used to specify string data, such as classes or member names. All string values in an AMF3 data
stream are put into a reference table which is typically generated when AMF3 or XML data is parsed.

Silk Performer Workbench 20.0 | 257

A string can either be encoded as a string value or as a string reference. A string reference refers to a
previous occurrence of its number in the string reference table. This feature is used to save space when the
same string value occurs several times in a single AMF3 data stream.

In XML format, a string looks like this:

<String>Hello, World!</String>

When string references are used, the referenced string is marked with a reference ID (in the form of an
attribute), and the string reference refers to the reference ID:

<String val-refId="#0">This string is referenced</String>
<String val-ref="#0"></String>

XML and XMLDocument

AMF3 provides two data types to encode XML data: XMLDocument, which represents a Flash legacy data
type, and XML, which is a newer XML type. Both data types encode XML as strings. The difference is that
these strings are not registered in the string reference table. They are registered in the object reference
table.

Note: With the XML format, the actual XML content must be XML-encoded. Due to a limitation with
Silk Performer's XML parser, it is currently not possible to use XML CDATA sections to notate such
data.

<Xml><Data>some data</Data></Xml>
<XmlDoc><Data>some more data</Data></XmlDoc>

As with strings, XML data can be referenced to save space:

<Xml refId="data"><Data>foobar</Data></Xml>
<Xml ref="data"></Xml>

Date

In AMF3, the date is encoded as the number of milliseconds elapsed since January 1st 1970, 00:00, in the
UTC timezone. The number of milliseconds is encoded as a double. Dates also support references, and
each date is registered in the object reference table.

<Date>2007-02-18 11:29:00.000</Date>
<Date refId="newmillenium">2000-01-01 00:00:00.000</Date>
<Date ref="newmillenium"></Date>

Array

Arrays in AMF3 cover two types of data structures: standard arrays, where each element is identified by an
index number, and associative arrays, where each element is identified by a key (in the case of AMF3, this
is always a string). In the binary representation of an array, the associative portion of the array is listed first.
This is followed by a separator (an empty string) and finally the dense portion of the array (the standard
array elements).

In XML representation, the elements of an associative array are marked by their name attributes. Generally,
arrays are not bound to a specific type, which means that you can put any data type in them, including
different data types.

 <Array>
 <Integer name="number1">23</Integer>
 <Integer name="number2">42</Integer>
 <String name="username">EMEA\johndoe</String>
 <Date>2008-02-17 13:47:13.000</Date>
 <Undefined></Undefined>
 </Array>

258 | Silk Performer Workbench 20.0

In the above example there is an array with three elements that have a name attribute (meaning they
belong to the associative portion of the array) and two elements that do not have a name attribute, which
means that they belong to the dense portion of the array.

As with other data types, arrays can be referenced; their elements can be referenced; even their elements’
names can be referenced:

 <Array>
 <String name="foo" name-refId="#0">bar</String>
 <String val-ref="#0"></String>
 </Array>

In this example, there is an array with two string elements. The first element has the name foo and the
value bar. The second element has no name, but references the string with the string reference table ID
#0 (the string foo).

Arrays themselves are registered in the object reference table.

Object

Objects are the most powerful data type within AMF3. There are several subtypes of classes that you need
to be aware of. What all object types have in common is that they bear a class name.

Object Traits

The traits of an object are its member names, plus information indicating if an object is dynamic or
externalizable.

An object with traits contains a list of member names followed by the corresponding members. In binary
format, member names are encoded as strings without type markers. The number of member names is
encoded in an additional field of flags that also contains information about the object’s sub type. Following
the members, an optional, additional list of dynamic members, each preceded by their respective member
name, is included. The list of dynamic members is only included if the dynamic flag is set to true and
terminated by an empty string.

 <Object classname="testclass">
 <Member>strFirstName</Member>
 <Member>strSurname</Member>
 <String>John</String>
 <String>Doe</String>
 </Object>

 <Object classname="testclass2" dynamic="true">
 <Integer name="answer">42</Integer>
 </Object>

Object References

Objects can be directly referenced because they are registered in the objects reference table.

<Object classname="testclass3" dynamic="true" refId="#0">
 <Integer name="answer">42</Integer>
</Object>
<Object ref="#0"></Object>

Traits References

Each object of subtype object traits or externalizable traits is not only added to the objects reference table,
but also to the traits reference table. Other objects can then refer to the traits of these objects. This means
that such an object does not need to come with the list of members and the object flags by itself, but only
with the actual members.

<Object classname="nameclass" traits-refId="name">
 <Member>userid</Member>

Silk Performer Workbench 20.0 | 259

 <Member>firstName</Member>
 <Member>lastName</Member>
 <String>jdoe</String>
 <String>John</String>
 <String>Doe</String>
 </Object>
 <Object traits-ref="name">
 <String>mmustermann</String>
 <String>Max</String>
 <String>Mustermann</String>
 </Object>

Externalizable Traits

Externalizable traits contain the binary representation of an object, an indeterminate number of bytes
serialized in an unknown format. The format depends on the class that serializes and deserializes this
data. The class also has to know how many bytes it has to consume from the byte stream.

Silk Performer provides support for the three most common classes:

• flex.messaging.io.ArrayCollection

• flex.messaging.io.ArrayList

• flex.messaging.io.ObjectProxy

According to Adobe, these three classes are the most common, and are encoded as AMF3. This means
that these three classes are parsed like normal arrays or objects, respectively.

In case a class other than these three is found, it is assumed that all bytes up to the end of the stream
belong to the externalizable traits. The content of such an unknown externalizable trait is stored as
Base64-encoded data.

<Object classname="flex.messaging.io.ArrayCollection" externalizable="true">
<Array>
<Integer>1</Integer>
<Integer>2</Integer>
<Integer>3</Integer>
<Integer>4</Integer>
</Array>
</Object>

<Object classname="flex.messaging.io.ArrayList" externalizable="true">
<Array>
<String>hugo</String>
<String>hugo2</String>
</Array>
</Object>

<Object classname="flex.messaging.io.ObjectProxy" externalizable="true">
<Object classname="" dynamic="true">
<String name="ssnum">555-55-5555</String>
<String name="name">Tyler</String>
<Integer name="age">5</Integer>
</Object>
</Object>

 <Object classname="test" externalizable="true">SGVsbG8sIHdvcmxk</Object>

ByteArray

A ByteArray holds an array of bytes. In XML representation, binary data is encoded in Base64 format.

ByteArrays are registered in the object reference table.

<ByteArray>SGVsbG8sIHdvcmxk</ByteArray>

260 | Silk Performer Workbench 20.0

References

Three different reference tables are used. The following list offers an overview of which data types are
registered in which reference table.

String Reference Table:

• String
• Class names (not an actual data type)
• Member names (not an actual data type)
• Value name of elements of the associative portion of an array (not an actual data type)

Object Reference Table:

• Object
• Date
• Array
• ByteArray
• XML
• XmlDocument

Traits Reference Table:

• Object traits
• Externalizable traits

Not registered in any reference table:

• Undefined
• Null
• False
• True
• Integer
• Double

Reference IDs are generated by the AMF3 parser. However in hand-written XML documents, you can use
custom reference IDs:

<String val-refId="username">EMEA\johndoe</String>
<String val-ref="username"></String>

Note: Custom reference IDs are lost when an XML document is transformed from XML to AMF3 and
back to XML because the AMF3 generator simply looks up the reference table position using the
reference ID string and only encodes the position in the AMF3. When parsing such a generated AMF3
data stream, the parser no longer has the information about the custom reference IDs. It generates
reference IDs that begin with # and a continuous number that directly reflects the position in the string
reference table.

Customizing Flex/AMF3 Scripts
Flex/AMF3 scripts are best customized using TrueLog Explorer.

TrueLog Explorer presents the XML representation of binary AMF3 requests and response bodies in a tree
view structure. The HTTP request body is presented in Request view. The HTTP response is presented in
Response view. The textual representation of request bodies is shown in Out Header view. The textual
representation of response bodies is shown in In Header view.

As with other XML based applications, verification and parsing functions can be inserted visually using
TrueLog Explorer.

Silk Performer Workbench 20.0 | 261

Web Applications Support
Silk Performer supports testing of all types of Web applications, both on the protocol level (HTTP) as well
as on a browser-driven basis.

Web Application Communication Overview
The topics in this section offer an overview of synchronous and asynchronous Web application processing
flow, including the three main asynchronous communication models. They also examine the implications of
AJAX on automated load testing and the use of XPATH in identifying DOM elements.

Understanding Synchronous and Asynchronous Communication

In traditional Web-based applications, a user input triggers a number of resource requests. Once the
requests have been answered by the server, no further communication takes place until the user's next
input. Such communication between client and server is known as synchronous communication.

Here is an example of traditional synchronous communication passing between a browser and a Web
server:

1. The user clicks a UI control in a browser-based web application.
2. The browser converts the user's action into one or more HTTP requests and passes them along to the

Web-application server.
3. The application server responds to the user's requests by returning the requested data to the user. At

this point the application is updated and the synchronous communication loop is complete. A new
synchronous communication loop will begin when the user next clicks a UI control in their browser.

Synchronous communication is limited due to the lapses in application updates that are presented to the
user at regular intervals. Even if a synchronous application is designed so that it automatically refreshes
information from the application server at regular intervals (for example, every 12 seconds), there will still
be consistent periods of delay between data refreshes. For many applications, such update delays don't
present an issue because the data they manage don't change often. Some application types however, for
example stock-trading applications, rely on continuously updated information to provide optimum
functionality and usability to their users.

Web 2.0 web-based applications address this issue by relying on asynchronous communication.
Asynchronous applications deliver continuously updated application data to users. This is achieved by
separating client requests from application updates. Multiple asynchronous communications between client
and server may occur simultaneously or in parallel with one another.

While asynchronous communication delivers tremendous value to users, it presents a serious challenge to
software-testing tool vendors who have difficulty emulating it with traditional test scripts.

Asynchronous Communication Models

There are three main types of asynchronous request and response sequences: push, poll, and long-poll.
When building a test script for a web-based application, it is essential that you understand which type of
asynchronous communication is in use.

Polling Communication Model

With this model of asynchronous communication, the client sends HTTP requests to the application server
at a consistent rate, for example every 8 seconds. The server returns updates to the browser, thereby
keeping the application updated with intermittent frequency.

Long-Polling Communication Model

With this model the browser sends an HTTP request to the application server. The server responds with an
HTTP response whenever there is an update. The client generates an HTTP request to a known address

262 | Silk Performer Workbench 20.0

on the server. Immediately following receipt of the server response, the browser sends out another HTTP
request. It is the immediate response by the browser that differentiates this model from the standard polling
communication model. The immediate response leads to longer wait time on the server side for a server
response.

Push Communication Model

As with the polling and long-polling models, with the push model, communication begins with the browser
sending an HTTP request to the application server. The response returned by the server however is kept
open. This results in the browser keeping the connection to the server open. The server then sends a sub-
message over the open connection whenever it has an update. With this model, communication between
browser and server remains open indefinitely.

The server can close the connection at any time or keep it open even in the absence of new updates by
sending ping messages that prevent the browser from closing the connection due to time-outs.

Testing Asynchronous Communication on the Protocol Level

The asynchronous testing functionality for protocol-level record/replay is designed for Web applications that
use asynchronous communication patterns such as polling, long-polling, and push. The characteristics of
such applications is periodic, event-based, or server-triggered content updates without user interaction.
Asynchronous web application testing on protocol-level is less resource intensive, but it is more challenging
to script as opposed to the BDLT approach, which is resource intensive but automates the scripting
process entirely during recording.

Recording Asynchronous Communication

Silk Performer offers a dedicated project type (Web (Async)) to facilitate recording of web applications
that make use of asynchronous communication patterns. While recording a user transaction, the Silk
Performer recorder creates a so-called Silk Performer capture file, which contains the entire traffic of the
recorded session. After saving, the capture file is opened in the Workbench for further analysis and
processing. Before generating a script from the captured traffic, you can configure recording rules and
other settings, which are applied during the script generation process. Note that it is possible to generate
several scripts (with different options) from the same capture file.

Asynchronous Web Functions

For each of the previously mentioned asynchronous communication patterns Silk Performer offers a web
API function to create an asynchronous communication channel to the web server:

• WebAsyncPreparePush

• WebAsyncPreparePoll

• WebAsyncPrepareLongPoll

Each WebAsyncPrepare... function call starts a dedicated asynchronous communication channel with
the subsequent web function call.

The WebAsyncPrepare... functions take an optional BDL callback function as parameter. The callback
function is called to notify the virtual user about certain events. For a detailed description of the events,
refer to the BDL reference.

Asynchronous communication channels are active in parallel to normal virtual user activity, whereas
callback functions are called by the web replay engine at many but specific occasions during script
execution.

Synchronizing Callbacks with Virtual User Activity

Sometimes virtual user activity needs to be synchronized with callback function execution. A typical
example is a situation where a virtual user needs to wait for information from the server, which is delivered
via an asynchronous communication channel.

Silk Performer Workbench 20.0 | 263

At the time where the information is required, the virtual user calls the function UserWaitFor. When the
data arrives, the related callback function is called. This function retrieves and stores the awaited
information. At this stage, the callback function signals an event to the virtual user by calling the function
UserSignal. The virtual user can then safely access the information stored by the callback function.

Testing WebSocket Connections

The WebSocket protocol is a TCP-based network protocol that allows to establish a full-duplex
(bidirectional) connection between client and server. A conventional HTTP connection follows the request-
response principle: each client request triggers a server response.

To establish a WebSocket connection, the client sends a WebSocket upgrade request embedded in an
HTTP message. Once acknowledged by the server, the open connection can be used for communication
by both the server and the client at any time.

Using the WebSocket protocol results in reduced network traffic and latency. It is an alternative to
communication models such as polling and long-polling that were used to simulate full-duplex connections.

You can either create a test script by manually scripting the respective functions, or you can use the Silk
Performer Recorder to do the scripting for you. To learn about the WebSocket BDL functions, refer to the
BDL Reference.

There are two functions you can use to establish a connection to a WebSocket server: Scripting
WebSocketConnect establishes an asynchronous communication channel. Scripting
WebSocketConnectSync establishes a synchronous communication channel.

Note: The Recorder will always follow the asynchronous scripting model by generating
WebSocketConnect functions and associated callback function stubs.

The WebSocket protocol provides for sending and receiving both text and binary messages. Accordingly,
Silk Performer offers WebSocketSendTextMessage and WebSocketSendBinaryMessage to support
these message types.

HTTP/2 Support

General

HTTP/2 is a major revision of the hypertext transfer protocol (HTTP) used in the World Wide Web. The
protocol was derived from an experimental protocol named SPDY, introduced by Google, before it was
published as RFC 7540 in 2015.

When designing HTTP/2, the inventors put their focus on efficiency. For that reason, the protocol offers a
series of improvements over HTTP/1.1:

• HTTP/2 uses only one connection between client and server. This single connection supports multiple
communication streams in parallel, which reduces the overhead for establishing multiple connections
between client and server. In contrast: An HTTP/1.1 connection only allows simple request/response
patterns.

• HTTP/2 is a binary protocol. As such it is not readable as opposed to HTTP/1.x.
• HTTP/2 uses a compression method that has been specifically designed for HTTP headers. This

compression method takes into account that often very similar headers get sent over and over again.
• HTTP/2 allows a server to push resources to the client without an explicit request from the client.

Configuring HTTP/2

The Silk Performer HTTP/2 support is disabled by default. You can enable and configure HTTP/2 in the
Profile Settings: Click Settings > Active Profile > Web (Protocol Level).

264 | Silk Performer Workbench 20.0

Limitations

Currently, Silk Performer supports HTTP/2 for replay only. Scripts recorded using HTTP/1.1 will replay
correctly with HTTP/2 unless the server returns specific content that depends on the HTTP version the
client uses.

The Silk Performer Recorder does not allow a browser to use HTTP/2, thus HTTP 1.1 is used. In most
cases, this does not affect the recorded traffic and content. If, however, the server returns different content
depending on the HTTP version used for communication, the HTTP/2 content cannot be recorded.

Server Push Support

HTTP/2 allows a server to push resources to the client rather than waiting for the client to parse the main
HTML document and then request further resources one by one. Typically, HTTP/2 servers push files like
style sheets and images to the client. Clients usually require these resources anyway to render a page.

You can enable and disable server push in the Profile Settings: Click Settings > Active Profile > Web
(Protocol Level).

• In TrueLog Explorer pushed resources are represented by nodes with (server push) appended. For
these nodes the tabs Out Header and Out Body are disabled. If the resource is required in subsequent
pages, cache hits are generated as usual.

• If you request a page several times, the server will attempt to push the same resources several times.
However, Silk Performer stores the pushed resources only once and notifies the server that additional
pushes are not required. If the server has already started pushing resources before it receives the
notification, the related traffic will not be measured by Silk Performer.

• If Silk Performer detects a resource that has been pushed by the server but is actually not required
during a WebPage* function call, a warning displays in the virtual user output and in TrueLog Explorer.
Such a warning indicates a server misconfiguration, because the server pushes resources that are not
required. This again produces unnecessary network traffic.

In some cases, the Silk Performer push support might differ from the behavior of real browsers. Browsers
have different push cache implementations, because there is no official push cache specification.

HTTP/2 in TrueLog Explorer

In TrueLog Explorer, you can check the tabs In Header and Out Header to find out whether a request uses
HTTP/2. If a request does use HTTP/2, the header tabs display so-called pseudo-headers such
as :method, :scheme, :path, :authority, or :status. Note that TrueLog Explorer displays the
decompressed version of the headers, because the compressed headers are not human-readable.

When examining the Statistics tab, you might notice some more differences:

• HTTP/2 uses only one TCP connection to download all content from one host. Because of that, only the
first request to a host should contain values for DNS, Connect and SSL Handshake. The following
requests to the same host will reuse the existing connection.

• When you investigate the waterfall diagram for an API node with many embedded resources, you might
notice that in an HTTP/2 case the embedded resources can start downloading simultaneously without
waiting for an idle TCP connection. While individual requests might take slightly longer, in total the page
should be downloaded significantly faster with HTTP/2 compared to previous versions.

• For HTTP/1.1 traffic, TrueLog Explorer displays the number of bytes transferred including SSL and
connection overhead for each web node in the TrueLog tree. For HTTP/2 however, concurrent requests
to one host share the same TCP connection, thus portions of multiple concurrent requests or responses
might be contained in a single SSL frame. To be able to compare HTTP/1.x with HTTP/2 traffic, TrueLog
Explorer displays similar statistics, even though the HTTP/1.1 metrics do not suit well to the new
protocol version. In detail this means that TrueLog Explorer distributes the SSL overhead across the
corresponding requests and responses. Traffic that does not correspond to a specific request/stream,
such as HTTP/2 settings frames, is added to the statistics of the subsequent request/response pair.
Some measures can seem small. This is caused by the HTTP/2 header compression feature. Especially

Silk Performer Workbench 20.0 | 265

when the previous request or response contained many similar headers, this can reduce the number of
sent/received bytes for a typical request consisting of mainly headers significantly.

• Due to the nature of HTTP/2, where one frame can contain portions of multiple streams, TrueLog
Explorer cannot associate the compressed frame size with particular request/response pairs. Thus, the
size of the uncompressed headers and bodies is displayed in the page drill-down view of the Statistics
tab.

Configuring HTTP/2

HTTP/2 settings can be configured in the Profile Settings.

1. In the menu, click Settings > Active Profile > Web (Protocol Level).

2. HTTP/2 is disabled by default. To enable it, set the Preferred HTTP version to HTTP/2.

Note: Make sure you select a Browser that supports HTTP/2. To find out which HTTP version a
certain browser supports, click Details and read the Supported HTTP version. Most current
browsers do support HTTP/2.

3. Allow fallback to HTTP/1.1: You can allow a virtual user to continue with HTTP/1.1 in case the server
under test does not support HTTP/2. If the fallback is allowed and actually applied during a test, an
informational message will display for each affected server. If the fallback is not allowed, an error
message will display.

4. Allow server push: You can allow an HTTP/2 server to push resources to the client without an explicit
request from the client. If server push is allowed but the server under test does not support the push
feature, a warning will display.

You can also configure these settings in the BDL script using the WebSetOption Function. Note that the
settings defined in the BDL script override the options defined in the profile settings.

Testing AJAX Applications

Note: Asynchronous testing functionality for protocol-level record/replay is made for Web applications
that use few dedicated asynchronous communication channels. Asynchronous testing on the protocol
level is less resource intensive, but it is more challenging to script. The browser-driven testing
approach is resource intensive, but it automates the scripting process entirely during recording and is
therefore often perceived as an easier way to test AJAX applications.

AJAX (Asynchronous JavaScript and XML) is a group of interrelated Web development techniques that are
used on the client-side (browser) to create interactive Web applications. With AJAX, Web applications can
retrieve data from the server asynchronously in the background without interfering with the display and
behavior of the existing page. For data encoding, typically XML or JSON formats are used, although
proprietary data encoding formats are also used.

In many cases, related pages on a Web site share a lot of common content. Using traditional methods, that
content has to be reloaded upon each page request.

266 | Silk Performer Workbench 20.0

Using AJAX, a Web application can request only the select content that is needed to update the page,
thereby dramatically reducing bandwidth usage and load time.

The use of asynchronous requests allows the client Web browser UI to be more interactive and to respond
quickly to inputs. In many instances, sections of pages can also be reloaded individually. Users often
perceive such applications as being faster and more responsive, even when application state on the
server-side has not changed.

Silk Performer Workbench 20.0 | 267

Web applications are typically based on AJAX frameworks, such as Ext JS and Ext GWT, though this is not
a requirement.

AJAX Processing Flow

With Web 2.0 applications, the entire concept of pages becomes blurred. It is difficult to determine the time
when a Web page has finished loading. The initial HTTP request is usually answered with some HTML
response including additional resources that the browser loads in subsequent requests. When executing
the JavaScript, additional requests may be transmitted via XMLHttpRequest calls. The responses to such
asynchronous calls may be reflected by a change/adaption of the initial page.

268 | Silk Performer Workbench 20.0

Some pages are updated frequently without any user interaction. Other events that may trigger
asynchronous calls are:

• Mouse-overs
• Key strokes
• Drag and drop operations
• Timers
• Network events (on readystatechange)

Implications for Automation and Load Testing

As the concept of pages is not applicable with most AJAX applications, it can be difficult to determine when
to allow sequential Web page actions. The major problem that automation and testing tools run into is
synchronization: Parts of a page may be visible but not yet functional. For example, you might click a button
or link and nothing happens, or incorrect behavior occurs. This is usually not an issue for a human user
because they can simply perform the action again. Being slower than automation tools, users are often not
even aware of such problems.

With the browser-driven approach, Silk Performer uses a sophisticated technique for determining when a
Web page is ready for a subsequent action. This AJAX mode synchronization waits for the browser to be in
an idle state. This is especially useful for AJAX applications or pages that contain AJAX components.
Using the AJAX mode eliminates the need for manual scripting of synchronization functions (for example,
such as waiting for an object to appear/disappear, waiting for a specific property value), which dramatically
eases the script development process. This automatic synchronization is also the basis for successful
record and replay that does not require manual script customization.

Troubleshooting

Because of the true asynchronous nature of AJAX, generally there is no true browser idle state. Therefore,
in some situations, it is possible that Silk Performer will not recognize the end of an invoked method call
and will throw a timeout error after the specified timeout period.

Identifying DOM Elements in Browser-Driven Testing

Within a browser, all visible and invisible elements of a Web page are represented as a hierarchical tree of
objects, the Document Objects Model (DOM). To interact with elements of a Web page, Silk Performer
uses the concept of object identifiers, so-called locators. Locators are XPath query strings that identify one

Silk Performer Workbench 20.0 | 269

or more elements of the current DOM. For additional information about XPath, see http://www.w3.org/TR/
xpath20/.

All API calls that interact with DOM elements take a locator as an input parameter. For example, the API
call BrowserLinkSelect(“//a[@href=’www.companyxyz.com’]”) uses the locator //
a[@href=’www.companyxyz.com’] which identifies the first link that has www.companyxyz.com as
the value of its href attribute (for example, My Link).

The following table lists all XPath constructs that are supported by Silk Performer:

Supported XPath Construct Sample Description

Attribute a[@href='myLink'] Identifies all DOM Links with the
given href attribute that are children of
the current context. All DOM
attributes are supported.

Index a[1] Identifies the first DOM link that is a
child of the current context. Indices
are 1-based in XPath.

Logical Operators: and, or, = a[(@href='microfocus' or
@caption != 'b') and
@id='p']

. .//div[@id='menuItem']/. The" ." refers to the current context
(similar to the well known notation in
file systems. The example is
equivalent to //
div[@id='menuItem']/

.. //
input[@type='button']/../
div

Refers to the parent of an object. For
example, the sample identifies all divs
that contain a button as a direct child.

/ /form Finds all forms that are direct children
of the current object. ./form is
equivalent to / form and form.

/ /form/input Identifies all input elements that are a
child of a form element.

// //input[type='checkbox'] Identifies all check boxes in a
hierarchy relative to the current
object.

// //div[id='someDiv'//
input[type='button']

Identifies all buttons that are a direct
or indirect child of a div that is a direct
or indirect child of the context.

/ //div Identifies all divisions that are direct
or indirect children of the current
context.

The following table lists the XPath constructs that Silk Performer does not support.

Unsupported XPath Construct Example

Comparing two attributes to one another a[@caption = @href]

Attribute names on the right side are not supported.
Attribute names must be on the left side.

a['abc' = @caption]

Combining multiple XPath expressions with and or or. a [@caption = 'abc'] or .//input

270 | Silk Performer Workbench 20.0

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

Unsupported XPath Construct Example

More than one set of attribute brackets div[@class = 'abc'] [@id = '123'] (use
div[@caption = 'abc' and @id = '123']
instead)

More than one set of index brackets a[1][2]

Wildcards in tag names or attribute names */@c?ption='abc'

Logical operators: not, != a[@href!='someValue'],
not[@href='someValue']

Any construct that does not explicitly specify a class or
the class wildcard. For example, including a wildcard as
part of a class name.

//[@caption = 'abc']

The following list shows wildcard examples that match //[@caption ='abc def']:

• //[@caption ='*c def']

• //[@caption ='??c def']

• //[@caption ='ab? ?ef']

• //[@caption ='ab*ef']

• //[@caption ='abc?def']

• //[@caption ='abc d??']

• //[@caption ='abc d*']

• //[@caption ='ab? *']

• //[@caption ='?b? d*']

• //[@caption ='*c d*']

Load Testing Web 2.0 Applications (Protocol-Level)

Web Load Testing Overview

The fastest and easiest approach to test today's modern Web applications is to test them on the protocol
level (HTML/HTTP). This approach generates simple scripts that incorporate advanced functionality. When
testing a Web application with built-in AJAX logic and testing on the protocol level has proved to be
unsuccessful we recommend using browser-driven Web load testing.

In addition to facilitating testing of today's modern Web applications on the protocol level (HTTP), Silk
Performer now enables you to use real Web browsers (Internet Explorer, Firefox, and Chrome) to generate
load. In this way, you can leverage the AJAX logic built into Web applications to precisely simulate complex
AJAX behavior during testing. This powerful testing approach provides results that reflect real-world end
user browsing experience, including rendering time and protocol-level statistics.

Sample Web 2.0 Application

Silk Performer offers a modern sample Web application that you can use to learn about Web 2.0
application testing. The InsuranceWeb sample Web application is built upon ExtJS and JSF frameworks,
uses AJAX technology, and communicates via JSON and XML.

The sample application is hosted at http://demo.borland.com/InsuranceWebExtJS/.

Silk Performer Workbench 20.0 | 271

http://demo.borland.com/InsuranceWebExtJS/

Defining a Web Load Test Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Web business transaction (HTML/HTTP).

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Creating a Test Script

The easiest approach to creating a test script is to use the Silk Performer Recorder, the Silk Performer
engine for capturing and recording Web traffic and generating test scripts based on the captured traffic.

272 | Silk Performer Workbench 20.0

Recording a Test Script

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Select one of the listed browsers from the Recording Profile list, depending on the browser you want to
use for recording.

3. In the URL field, enter the URL that is to be recorded.

Note: The InsuranceWeb sample Web 2.0 application is available at http://demo.borland.com/
InsuranceWebExtJS/. In the Select a Service or login list, the Auto Quote and Agent Lookup
services are available for testing while the other listed services do not provide any functionality.

4. Click Start recording. The Silk Performer Recorder dialog opens in minimized form, and the client
application starts.

5. To see a report of the actions that happen during recording, maximize the Recorder dialog by clicking
the Change GUI size button. The maximized Recorder opens at the Actions page.

6. Using the client application, conduct the kind of interaction with the target server that you want to
simulate in your test. The interaction is captured and recorded by the Recorder. A report of your actions
and of the data downloaded appears on the Actions page.

7. To end recording, click the Stop Recording button.

8. Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

Try Script Runs

Once you have generated a test script, determine if the script runs without error by executing a Try Script
run. A Try Script run determines if a script accurately recreates the actions that you recorded with the
Recorder. It also determines if the script contains any context-specific session information that you must
parameterize before the script can run error free.

With Try Script runs, only a single virtual user is run and the stress test option is enabled so that there
is no think time or delay between the scripted actions.

Trying Out Your Test Script

1. Click the Try Script button on the Silk Performer Workflow bar. The Workflow – Try Script dialog
appears.

2. Choose a script from the Script list box.

3. In the Profile list box, the currently active profile is selected (this is the default profile if you have not
configured an alternate profile).

a) To configure simulation settings for the selected profile, click Settings to the right of the list box.
b) To configure project attributes, select the Project Attributes link.

4. In the Usergroup list of user groups and virtual users, select the user group from which you want to run
a virtual user.

Since this is a Try Script run, only one virtual user will be run.

5. To view the actual data that is downloaded from the Web server during the Try Script in real-time, select
the Animated Run with TrueLog Explorer check box.

If you are testing anything other than a Web application, you should disable this option.

6. Click Run. The Try Script begins.

All recorded think times are ignored during Try Script runs. The Monitor window opens, giving you detailed
information about the progress of the Try Script run. If you have selected the Animated option, TrueLog
Explorer opens. Here you can view the actual data that is downloaded during the Try Script run. If any
errors occur during the Try Script run, TrueLog Explorer can help you to find the errors quickly and to
customize session information. Once you have finished examining and customizing your script with
TrueLog Explorer, your script should run without error.

Silk Performer Workbench 20.0 | 273

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

Analyzing Test Scripts

Silk Performer offers several means of evaluating a test script following the execution of a Try Script run.

Visual Analysis with TrueLog Explorer

One of TrueLog Explorer’s most powerful features is its ability to visually render Web content that is
displayed by applications under test. In effect, it shows you what virtual users see when they interact with
an application.

The TrueLog Explorer interface is comprised of the following sections:

• The Workflow Bar acts as your primary interface as you work with TrueLog Explorer. The Workflow Bar
reflects TrueLog Explorer’s built-in testing methodology by supporting its five primary tasks.

• The API Node Tree menu on the left of the interface allows you to expand and collapse TrueLog data
downloaded during tests. Each loaded TrueLog file is displayed here along with links to all relevant API
nodes. You can click a node to display a screen shot in the Screen pane and history details in
Information view.

• The Content pane provides multiple views of all received data.
• The Information pane displays data regarding testing scripts and test runs, including general

information about the loaded TrueLog file, the selected API node, BDL script, and statistics.

Note: To launch TrueLog Explorer from Silk Performer, choose Results > Explore TrueLog.

274 | Silk Performer Workbench 20.0

Analyzing a Test Run

1. With the TrueLog from a Try Script run loaded into TrueLog Explorer, click the Analyze Test button on
the Workflow bar.

The Analyze Test dialog box displays.

2. Proceed with one of the following options:

• View a virtual user summary report
• Look for errors in the TrueLog
• Compare the replay test run to the recorded test run

Viewing a Virtual User Summary Report

Virtual user summary reports are summary reports of individual Try Script runs that offer basic descriptions
and timing averages. Each report tracks a single virtual user. Data is presented in tabular format.

Note: Because virtual user summary reports require significant processing, they are not generated by
default.

To enable the automatic display of virtual user reports at the end of animated Try Script runs, or when
clicking the root node of a TrueLog file in the menu tree, check the Display virtual user report check box
at Settings > Options > Workspace > Reports .

Virtual user summary reports include details related to:

• Virtual users
• Uncovered errors
• Response time information tracked for each transaction defined in a test script
• Page timer measurements for each downloaded Web page
• Measurements related to each Web form declared in a test script, including response time

measurements and throughput rates for form submissions using POST, GET, and HEAD methods.
• Individual timers and counters used in scripts (Measure functions)
• Information covering IIOP, Web forms, TUXEDO, SAP, and others

Finding Errors in a TrueLog

TrueLog Explorer helps you find errors quickly after Try Script runs. Erroneous requests can then be
examined and necessary customizations can be made.

Note: When viewed in the menu tree, API nodes that contain replay errors are tagged with red “X”
marks.

1. Open the TrueLog you want to analyze or modify.

2. Click Analyze Test on the workflow bar. The Workflow - Analyze Test dialog box opens.

3. Click the Find errors link. The Step through TrueLog dialog box appears with the Errors option
selected.

4. Click Find Next to step through TrueLog result files one error at a time.

You can select different increments by which to advance through the TrueLog to visually verify that the
script worked as intended (Whole pages, HTML documents, Form submissions, or API calls).

Viewing Page Statistics

After verifying the accuracy of a test run, TrueLog Explorer can analyze the performance of the application
under “no-load” conditions via the Statistics tab under the Information pane. The Overview page details
total page response times, document download times (including server busy times), and time elapsed for
receipt of embedded objects.

Detailed Web page statistics show exact response times for individual Web page components. These
detailed statistics assist you in pinpointing the root causes of errors and slow page downloads.

Silk Performer Workbench 20.0 | 275

Detailed Web page drill-down results include the following data for each page component:

Time Description

DNS The time to translate a host name into an IP address.

Connect The time to establish a connection to a server.

SSL Handshake The time to establish a secure layer on an existing
connection. The client and server exchange certificates
and agree on an encryption technology including related
keys to secure data transmission.

Send The time to hand over the request data from Silk
Performer to the operating system. This value does not
include the time required to send the request data from
the operating system to the server.

Server busy The time to send the request data from the operating
system to the server, the time to calculate the response
data on the server, and the time to send the first byte of
the response data from the server to the client (including
network latency).

Receive The time to receive the entire response data.

Cache statistics

Viewing an Overview Page

1. From the API Node Tree menu, select the API node for which you would like to view statistics.

2. Click the Statistics tab to open Statistics view.

3. Select specific components listed in the URL column for detailed analysis and page drill-down.

Comparing Record and Replay TrueLogs

By comparing a TrueLog that has been generated during the script development process alongside the
corresponding TrueLog was recorded originally, you can verify that the test script runs accurately.

1. Click the Analyze Test button on the Workflow Bar. The Workflow - Analyze Test dialog box appears.

2. Click Compare your test run.

3. The corresponding recorded TrueLog opens in Compare view and the Step through TrueLog dialog
box appears with the Browser Nodes option selected, allowing you to run a node-by-node comparison
of the TrueLogs.

4. Click the Find Next button to step through TrueLog result files one page at a time.

Note: Windows displaying content presented during replay have green triangles in their upper left
corners. Windows displaying content originally displayed during application recording have red
triangles in their upper left corners.

Synchronizing Record and Replay TrueLogs

In compare mode you can synchronize corresponding API nodes between replay and record TrueLogs to
identify differences between recorded values and replayed values.

Note: This feature is disabled when automatic synchronization of TrueLogs is enabled.

1. Enable compare mode by doing one of the following:

• Choose View > Compare Mode .
• Click the Compare Mode button on the toolbar.

276 | Silk Performer Workbench 20.0

2. Open a set of corresponding record and replay TrueLogs.

3. Right-click an API node and choose Synchronize TrueLogs. TrueLog Explorer locates the API node in
the matching TrueLog that best correlates with the selected API node.

Customizing Test Scripts

Once you have generated a test script with Silk Performer and executed a Try Script run, TrueLog Explorer
can help you customize the script in the following ways, among other options:

• Parameterize input data – With user-data customization, you can make your test scripts more realistic
by replacing static, recorded, user-input data with dynamic, parameterized user data that varies with
each transaction. Manual scripting is not required to run such data-driven tests. This feature is available
for Web, database, XML, Citrix, SAPGUI, terminal emulation, and Oracle Forms applications.

• Add verifications to test scripts – With the Add Verifications tool, you can gain insight into data that
is downloaded during tests, enabling you to verify that content sent by servers is received by clients.
Verifications remain useful after system deployment for ongoing performance management. This feature
is available for Web, database, XML, SAPGUI, Citrix, terminal emulation, and Oracle Forms
applications. TrueLog Explorer supports bitmap and window verification for applications that are hosted
by Citrix servers.

User-Input Data Customization

Without user-input data customization, all simulated transactions are identical and do not account for the
variables that are typically experienced in real world environments.

For example, you can customize the user-input data that is entered into forms during testing using the
Parameter Wizard. The Parameter Wizard lets you specify the values that are to be entered into form
fields during testing. This enables test scripts to be more realistic by replacing recorded user-input data
with randomized, parameterized user data.

Customizing HTML User Data With a New Parameter

Before proceeding, ensure that all static session information has been removed from your test script and
that the most recent Try Script run produced a TrueLog that is open in TrueLog Explorer.

With HTML-based applications, the goal of user-data customization is to customize values submitted to
form fields.

This task explains the process of creating a parameter based on a random variable.

1. Click Customize User Data on the workflow bar. The Workflow - Customize User Data dialog box
opens.

2. Click the Customize user input data in HTML forms link. TrueLog Explorer then performs the
following actions:

• Selects the first WebPageSubmit API call node in the menu tree.
• Opens the Step through TrueLog dialog box (with the Form submissions option button selected).
• Displays Request view

Request view shows the page that contains the HTML form that was submitted by the selected
WebPageSubmit call. When your cursor passes over a form control, a tool tip shows the control’s
name in addition to its initial and submitted values; an orange line indicates the corresponding BDL
form field declaration in Form Data view below.

3. Click Find Next or Find Previous on the Step through TrueLog dialog box to browse through all
WebPageSubmit calls in the TrueLog (these are the calls that are candidates for user-data
customization).

Note: Highlighted HTML controls in Request view identify form fields that can be customized.

Silk Performer Workbench 20.0 | 277

4. On the Request page, right-click the form control that you want to customize and choose Customize
Value.

You can replace the recorded values with various types of input data (including predefined values from
files and generic random values) and generate code into your test script that substitutes recorded input
data with your customizations.

The Parameter Wizard opens.

With the Parameter Wizard you can modify script values in two ways:

• Use an existing parameter that is defined in the dclparam or dclrand sections of your script.
• Create a new parameter based on a new constant value, random variable, or values in a multi-

column data file.

After you create a new parameter, that parameter is added to the existing parameters and is available
for further customizations.

5. Click the Create new parameter option button and then click Next to create a new parameter. The
Create New Parameter page opens.

6. Click the Parameter from Random Variable option button and then click Next. The Random Variable
page opens.

7. From the list box, select the type of random variable that you want to insert into your test script and then
click Next.

A brief description of the selected variable type appears in the lower window.

The Name the variable and specify its attributes page opens.

8. Enter a name for the variable in the Name text box.

9. Specify whether the values should be called in Random or Sequential order.

The Strings from file random variable type generates data strings that can either be selected randomly
or sequentially from a specified file.

10.In the File group box, select a preconfigured data source from the Name list box and then click Next.
The Choose the kind of usage page displays.

11.Specify the new random value to use by selecting one of the following choices:

• Per usage
• Per transaction
• Per test

12.Click Finish. Your test script now uses the random variable for the given form field in place of the
recorded value. The new random variable function appears on the BDL page.

Initiate a Try Script run with the random variable function in your test script to confirm that the script runs
without error.

AJAX and Script Customization

The Silk Performer Recorder can record and replay Web applications that utilize AJAX (Asynchronous
JavaScript and XML) requests. This is possible because Silk Performer recognizes asynchronous AJAX
requests and responses that arrive in the form of either XML or JSON within HTML responses. Silk
Performer scripts AJAX requests that it encounters as WebPageUrl calls.

Silk Performer and TrueLog Explorer support access to values within AJAX requests. This enables script
customizations such as input-data parameterization, verification, parsing, and session-information
customization within AJAX responses.

Tip: The InsuranceWeb demo application, available at http://demo.borland.com/InsuranceWebExtJS/,
offers the functionality to switch between JSON and XML serialization methods for testing purposes.
From the Select a Service or login list, select Agent Lookup for JSON or Agent Lookup (XML)
for XML.

278 | Silk Performer Workbench 20.0

http://demo.borland.com/InsuranceWebExtJS/

Pretty-Format JSON and XML Data

JSON and XML are data-structure formats commonly used in AJAX applications, REST techniques, and
other environments. Silk Performer supports pretty-formatted viewing of XML and JSON-formatted byte
streams in BDF scripts. Enhanced rendering of JSON formatted data enables easier customization of
string values via TrueLog Explorer’s string customization functions.

When JSON-formatted data is recorded or inserted into a BDF script, Silk Performer displays the raw
JSON byte stream. Once displayed in JSON format, XML can easily be customized using Silk Performer’s
Parameter Wizard.

Silk Performer offers the option of viewing JSON data in either pretty-formatted JSON-rendering view or as
a raw JSON byte stream.

Understanding JSON

According to JSON.org (www.json.org), “JSON (JavaScript Object Notation) is a lightweight data-
interchange format. It is easy for humans to read and write. It is easy for machines to parse and generate.
It is based on a subset of the JavaScript Programming Language...” “JSON is a text format that is
completely language independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make
JSON an ideal data-interchange language.”

Enabling Pretty-Formatted JSON and XML Viewing in TrueLog Explorer

Enable pretty-formatted JSON and XML viewing on the Response page if TrueLog Explorer is unable to
detect JSON or XML data. If TrueLog Explorer detects JSON and XML data, it is automatically pretty-
formatted on the Response page.

1. Select a node on the TrueLog menu tree that includes JSON- or XML-formatted data (for example, a
HTTP Post command node).

2. Click the Response tab.

3. Right-click JSON or XML data and choose Render As > JSON or Render As > XML to pretty-format
the data.

Enabling Pretty-Formatted JSON and XML Viewing in Silk Performer

1. Within a BDL script that includes JSON- or XML-formatted data, right-click within the screen data that
you want to view.

2. Select your preferred viewing format from the context menu.

• Select Format As > JSON to format the data in enhanced JSON format.
• Select Format As > XML to format the data as raw XML.

You can also select Format As > Auto Format from the context menu to have Silk Performer determine
the best formatting option for screen data types. By default, JSON and XML data is pretty-formatted in
BDF scripts.

3. Right-click formatted data strings to access Silk Performer’s standard string customization commands.

Note: Because formatted JSON data is integrated into the Silk Performer code editor, JSON-
formatting can be undone/redone using the Undo/Redo buttons on the toolbar.

Note: Pretty-formatted JSON and XML data viewing is also available in TrueLog Explorer.

Verifications

Often application errors do not cause erroneous HTTP responses. Instead, the application responds with
incorrect data values or with error messages incorporated in the HTML content, such as A Servlet
Exception occurred... or Server Too Busy.... A simple check of the HTTP status code will not

Silk Performer Workbench 20.0 | 279

uncover this class of errors. Therefore, application errors are often overseen if you do not build additional
checks into your test script. Verification functions help you to check for application errors that are not
simple, standard HTTP errors.

With verification built into your test scripts, your test evolves from being a simple load test to a becoming a
combined load and functionality test. You can use these scripts without major performance penalties, even
during large load test scenarios. They will, therefore, be able to detect a new class of application errors—
errors which only occur under load, but which would be overlooked by a simple load test script without
additional verification checks.

Silk Performer offers three means of enhancing your test scripts with verification functionality:

• Automatically let the Recorder generate verification functions during the recording session.
• Directly enhance the script by coding verification functions manually.
• Apply verifications visually via TrueLog Explorer without the need to write a single line of BDL code.

TrueLog Explorer will automatically generate verification functions into your script.

Tip: Refer to TrueLog Explorer Help for detailed information.

Automatically Generating Verifications During Recording

To enable the automatic generation of verifications during Silk Performer script recording:

1. Within Silk Performer, choose Settings > Active Profile . The Profile - [<profile name>] - Simulation
dialog appears.

2. Select Record > Web in the shortcut list, then click the Verification tab.

3. In the Recording section, check the Record title verification and Record digest verification check
boxes.

4. Click OK.

Title Verification

Title verification offers a simple, automatic means of checking to see if applications return correct Web
pages. When retrieving HTML documents, the Recorder can automatically generate title verification
functions for each page-level Web API call or low-level Web API call.

Note: Title verification does not work when HTML page titles (contents of the <TITLE HTML> tags)
are not set, or when they share common names.

Title Verification

transaction TMain
begin
 ...
 WebVerifyHtmlTitle("ShopIt - Greetings",
WEB_FLAG_IGNORE_WHITE_SPACE |
 WEB_FLAG_EQUAL | WEB_FLAG_CASE_SENSITIVE, 1,
 SEVERITY_ERROR, bVerifyTitleSuccess1);
 WebPageUrl("http://myHost/shopit");

Digest Verification

Digest verification is useful for verifying the content of relatively static HTML pages. Digest verification is
not useful for HTML pages that are dynamic or contain session information in hyperlinks, embedded
objects, or hidden form fields—and therefore change with each call.

The function calls WebVerifyDataDigest and WebVerifyHtmlDigest check to see if data that Silk
Performer receives during replay differs from the data the Recorder captured during corresponding record
sessions. With these function calls, Silk Performer generates digests that contain information about the

280 | Silk Performer Workbench 20.0

occurrence of all characters and compares those results with digests generated by the Recorder. This
function enables you to see if Silk Performer captures the same data during replay that it captured during
recording. The Recorder automatically generates a digest verification function for each page-level Web API
call and low-level Web API call that retrieves a document with a content type specified for digest verification
(the default content type is text/html).

Digest Verification

const
 gsVerDigest_ShopIt_Greetings := "\h014200000B..."
 "\h016000500A..."
 "\h030001000A..."
 "\h0900410020...";

transaction TMain
begin
 ...
 WebVerifyDataDigest(gsVerDigest_ShopIt_Greetings, 162);
 WebPageUrl("http://myHost/shopit", "ShopIt - Greetings");
 ...
end TMain;

Enabling Verification Checks During Replay

See verification settings options for a list of possible verification checks that you can enable or disable
during script replay.

Tip: Profile settings in scripts can be overridden using the WebSetOption BDL function.

1. Within Silk Performer, choose Settings > Active Profile . The Profile - [<profile name>] - Simulation
dialog appears.

2. Select Replay > Web in the shortcut list, then click the Verification tab.

3. In the HTML / XML and Data areas, check which verification checks you want to enable during replay.

Inserting Content-Verification Functions

1. Open the TrueLog you want to analyze or modify.

2. Select a TrueLog API node that includes content that you want to have verified (for example, text or an
image).

3. Select the content that is to be verified on the Source page.

Note: This step is not required for page-title and page-digest verification functions.

4. Click Add Verifications on the workflow bar. The Workflow - Add Verifications dialog box opens.

5. Select a pre-enabled verification:

• Verify the page title
• Verify the selected text
• Verify the selected text in an HTML table
• Verify the digest

6. Complete the following dialog box.

Specify how verification functions should be inserted into the BDL script.

Note: Left and right boundaries are automatically identified for you.

7. Repeat the process for each verification you want to add to the BDL script.

Silk Performer Workbench 20.0 | 281

8. Click Yes on the Workflow - Add Verifications dialog box. A Try Script run is initiated.

9. Confirm that verifications have passed successfully.

API nodes that include verifications are indicated with blue “V” symbols.

Parsing Functions

Similar to the verification functions, parsing functions are used to parse content returned from a Web
server and check if the values meet your testing criteria. Different from the verification functions, which
basically check the occurrence of a specified input value, the parsing functions parse the content of a
server response and return the parsed value in a BDL variable. Typically, you will use parsing functions for
the following tasks:

• Parse session IDs and replace static session IDs in the script with parsed, dynamic session IDs to
maintain state information in Web applications. This is one of the main fields of application of parsing
functions.

• Build enhanced verifications into your script with parsing functions, which cannot be done with
verification functions. For example, if you want to verify that the value of column 2 of row 3 in an HTML
table is equal to the sum of the values of column 2 of row 1 and column 2 of row 2. By using parsing
functions to parse out the three values and compare them in our script, you can build this enhanced
verification check.

282 | Silk Performer Workbench 20.0

• Conditional execution of parts of your testing script which depends on the data returned from the server.
For example, an HTTP request returns an HTML page which includes: Results: <nnn> items
found. You want to execute different actions depending on the value of <nnn>. Let's say you want to
exit the transaction if <nnn> = 0, and you want to go to link Details if <nnn> = 1, and you want to go
to link Next if <nnn> is greater than 0. To accomplish this, you need to parse the value of <nnn>
from the HTML page and script the actions, depending on the value you have parsed out.

Silk Performer offers two means to enhancing your test scripts with parsing functionality:

• Directly enhance your script by coding verification functions manually.
• Apply parsing functions visually in TrueLog Explorer without the need to write a single line of BDL code.

TrueLog Explorer will automatically generate parsing functions in your script.

Tip: Refer to TrueLog Explorer Help for detailed information.

HTML Content Parsing

HTML content parsing functions parse out portions of the rendered, visible HTML content. The HTML
content verification and parsing functions allow you to verify and/or parse the textual content that you see
in your browser. Apply HTML content parsing functions in the HTML view of TrueLog Explorer, which
includes the following functions:

• WebParseHtmlBound

• WebParseHtmlTitle

• WebParseTable

• WebParseResponseTag

• WebParseResponseTagContent

Response Data Parsing

Data parsing functions parse out portions of the response data returned from the server. In cases in which
an HTML document is returned from the server, the complete source code of the HTML document is
parsed. Apply data verification functions in the source view of TrueLog Explorer, which includes the
following functions:

• WebParseDataBound (this function replaces the deprecated WebParseResponseData function)
• WebParseResponseHeader

Session Handling

Web applications often use a unique Web session ID so that the Web server is able to handle further client
requests.

Refer to TrueLog Explorer Help for detailed information.

Customized Session Handling

Web server applications often generate information at runtime that is necessary in order to identify further
client requests. In the response to the browser, the server may include a unique string, commonly known
as the Session ID. This string is returned by the browser to the server as a part of each subsequent
request, allowing the server to identify the unique Web session of which the request is a part. Generally,
Session IDs refer to the method the Web server application uses to identify individual users and to
associate this identification with the state of the user session information that the application has previously
had with those users.

Session IDs can be sent to the client in a number of ways. Most often you will find them included in
cookies, or inside HTML as part of URL's used in hyper links or embedded objects, or in hidden HTML form
fields. Session IDs are sent back to the server in cookies, URL's, and HTTP post data.

Silk Performer Workbench 20.0 | 283

Session Information Inside Cookies

From the server:

Set-Cookie: SessionID=LGIJALLCGEBMIBIMFKOEJIMM; path=/

To the server:

Cookie: SessionID=LGIJALLCGEBMIBIMFKOEJIMM

Session Information in the URL's of HTML Links

From the server:

<html>
 ...
 <a href="/ShopIt/acknowledge.asp?
SessionID=LGIJALLCGEBMIBIMFKOEJIMM" >
 Enter Shop

 ...
</html>

To the server:

GET /ShopIt/acknowledge.asp? SessionID =
LGIJALLCGEBMIBIMFKOEJIMM HTTP/1.1

Session Information in Hidden Form Fields

From the server:

<html>
 ...
 <form action="kindofpayment.asp" method="post" >
 Currently we only accept Credit Cards
 <input type="hidden" name="SessionID"
value="LGIJALLCGEBMIBIMFKOEJIMM">
 <input type="text" name="name" value="Jack " >
 <input type="submit" name="paymentButton" value="Submit">
 </form>
 ...
</html>

To the server:

POST /ShopIt/kindofpayment.asp HTTP/1.1
...
SessionId=LGIJALLCGEBMIBIMFKOEJIMM&name=Jack&paymentButton=Submi
t

When to Use Customized Session Handling

Assuming that a WebPageUrl call in your script uses a URL that contains a session ID as part of the query
string of the URL. When replaying the script, this hard coded static session ID is sent to the server.
Because the session ID does not correctly identify your replayed session—it still identifies the recording
session—the replay won’t work correctly. By not replacing static session IDs in your script with dynamic
values that had been generated at runtime, your Web application will usually generate errors such as We
are sorry, your session has expired. Please return to the login screen and try
again.

284 | Silk Performer Workbench 20.0

The good news is that with Silk Performer, session customization is not often necessary and, even if
manual session customization is needed, Silk Performer's TrueLog Explorer will guide you through the
process.

Most often when you record a script, it will work without any modifications necessary for the customization
of session handling. Silk Performer therefore uses multiple, highly sophisticated methods that prevent the
user from manually handling hard coded session IDs:

• Cookie Management: When your server uses cookies to exchange session information, Silk Performer
will automatically handle dynamic session ID values. Because Silk Performer exactly emulates the
cookie management of a browser, it will send cookies the same way a browser sends them to your
server. No manual interaction is needed for state management.

• page-level web API: Using the Page-level API when recording (which is the default setting) will generate
scripts that mainly generate context-full Web API function calls such as WebPageLink and
WebPageSubmit. Context-full Web API calls are working on the HTML level, not the HTTP level, and
thus they do not use URL's as parameters. For all context-full API calls, manual session customization
is not needed. The page-level API is used if you choose the application type Web business
transaction (HTML/HTTP) in the Outline Project dialog. Therefore it is strongly recommended that
you use Silk Performer's page-level API instead of the low-level web API.

Due to the heavy use of client side Java Script for dynamically generating HTML, the Silk Performer
Recorder sometimes loses the HTML context and scripts context-less Web API calls. Context-less Web
API calls, such as WebPageUrl and WebPageForm, contain URL's as parameters. In these rare cases,
your script may contain hard coded session IDs. You will find them in the URL parameters of Web API calls
and in the form fields declared in the dclform section of your script.

Context-full script (there is nothing to customize)
transaction TMain
 begin
 WebPageUrl("http://lab38/ShopIt/"); // first call is always
context-less
 WebPageLink("Join the experience!");
 WebPageSubmit("Enter", SHOPIT_MAIN_ASP001);
 WebPageLink("Products");
 end TMain;

 dclform
 SHOPIT_MAIN_ASP001:
 "SessionID" := "" <USE_HTML_VAL>, // hidden value:
 "LGIJALLCGEBMIBIMFKOEJIMM"
 // recognized as a hidden form
 // field, the value is taken from
 // the actual HTML form field.
 "name" := "Jack", // changed
 "New-Name-Button" := "" <USE_HTML_VAL> ; //unchanged
 value: "Enter"

Script with context-less functions (static session data that needs to be
customized is included in the DCLFORM section)
transaction TMain
 begin
 WebPageUrl("http://lab38/ShopIt/"); // first call is always
context-less
 WebPageUrl("http://lab38/ShopIt/main.asp", NULL,
SHOPIT_MAIN_ASP001);
 WebPageForm("http://lab38/ShopIt/main.asp",
SHOPIT_MAIN_ASP002);
 WebPageUrl("http://lab38/ShopIt/products.asp");
 end TMain;

Silk Performer Workbench 20.0 | 285

 dclform
 SHOPIT_MAIN_ASP001:
 "from" := "welcome";

 SHOPIT_MAIN_ASP002:
 "SessionID" := "LGIJALLCGEBMIBIMFKOEJIMM",
 "name" := "Jack",
 "New-Name-Button" := "Enter";

Customizing Session Handling

The following steps are required to customize session handling.

Refer to TrueLog Explorer Help for detailed information.

1. Identify the session ID that needs to be customized.

2. Search for the first response (Web API call in the script) in which the session ID is sent from the server
to the client.

3. Parse out the session ID from the found response of the Web API call into a variable.

4. Replace all occurrences of the hard coded session ID in the script with this variable.

User Profiles

Browser Types

Virtual users in a test can be customized to use any of a wide choice of Web browsers, and of the
functionality they embody. The most popular browsers in use today can be emulated. Lesser-known
browsers are also available, as are browsers serving mobile device users. Custom browsers can be
defined, using different versions of threading technologies and of HTTP.

Bandwidth

Modems are the means that home users typically use to access the Internet. Since a user’s modem is
sometimes the slowest link in the network communication chain, modems can be simulated in a load test.

Virtual users can be customized to use the bandwidth associated with any of the major connection types in
wide use among consumers today. Custom settings can be defined where connections use different
bandwidth settings for downstream (from the server to the client) and upstream (from the client to the
server) traffic.

Adding a Profile

1. Select Project > New Profile . The New Profile dialog opens.

2. Enter a Name for the new profile and click OK. The Profiles folder expands in the Project menu tree
and the new profile is available.

Configuring Browser Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

286 | Silk Performer Workbench 20.0

3. In the shortcut list, click the Web icon.

4. Click the Browser tab.

Use the Browser type area to specify browser-specific settings.

5. From the Browser list box, select the Web browser you want to use for your simulation.

The selection you make determines the format of the header information included in your HTTP
requests and the threading model used for simulation.

Note: For mobile Web application testing (iPhone, iPad, Android, Windows Phone or Blackberry)
you can change the user agent string used for recording.

6. Click OK to save your settings.

Configuring Browser-Simulation Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Web icon.

4. Click the Simulation tab.

Use the Simulation area to set options for realistic simulation of users visiting Web sites.

5. Check the Simulate user behavior for each transaction check box to have each virtual users reset
their browser emulation after each transaction.

Depending on the additional option you select, Silk Performer either simulates users who visit a Web
site for the first time or users who revisit the site. While users who visit a site for the first time have no
persistent cookies stored and no documents cached, users who revisit a page typically have closed
their browsers between the Web site visits, have documents cached, and persistent cookies set.
Disabling this option lets the virtual user emulate a Web browser that is not closed until the end of the
test, thereby reusing cached information throughout multiple transactions.

6. Click the First time user option button to generate a realistic simulation of users who visit a Web site for
the first time.

Persistent connections will be closed, the Web browser emulation will be reset, and the document
cache, the document history, the cookie database, the authentication databases, and the SSL context
cache will be cleared after each transaction. In such instances, Silk Performer downloads the complete
sites from the server, including all files.

7. Click the Revisiting user option button to generate a realistic simulation of users who revisit a Web site.

Persistent connections will be closed, and the document history, the non-persistent cookie database,
the authentication database, and the SSL context cache will be cleared after each transaction. In such
cases, users do not clear the document cache. For more details, review the WebSetUserBehavior
function in the BDL Function Reference.

Use the User tolerance area to adjust the advanced options of the user tolerance simulation.

8. Click OK to save your settings on the Profile - [<profile name>] dialog box.

Configuring Monitoring

Before running a test you need to define how Performance Explorer, the Silk Performer server monitoring
tool, is to monitor local and remote servers involved in your test. Server monitoring reveals, locates, and
assists in resolving server bottlenecks, allowing you to examine the performance of operating systems and
application servers.

Three monitoring options are available:

Silk Performer Workbench 20.0 | 287

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of data
sources based on the application type under test. This is equivalent to enabling the Automatically start
monitoring and Use default monitoring template settings for the Performance Explorer workspace
(Settings > Active Profile > Replay > Monitoring > Use default monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data
sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

Defining Monitoring Options

1. Click Configure Monitoring on the workflow bar. The Workflow - Configure Monitoring dialog box
appears.

2. Select one of the following options and click Next:

• Default monitoring - This option directs Performance Explorer to monitor a recommended set of
data sources based on the application type under test. This is equivalent to enabling the
Automatically start monitoring and Use default monitoring template settings for the
Performance Explorer workspace (Settings > Active Profile > Replay > Monitoring > Use default
monitoring template).

• Custom monitoring - This option opens Performance Explorer in monitoring mode with the Data
Source Wizard - Select Data Sources dialog box open, enabling you to manually configure data
sources. Your Performance Explorer monitoring project settings will be saved along with your Silk
Performer project settings.

• No monitoring - This option enables you to run your test without monitoring of any local or remote
servers. With this option the Automatically start monitoring setting is disabled (Settings > Active
Profile > Replay > Monitoring > Use default monitoring template).

(for Default Monitoring and Custom Monitoring only) A confirmation dialog box will notify you if you have
logging enabled. Logging may skew your test results.

3. Click OK to accept your logging settings or click Cancel to adjust your logging options (Settings >
Active Profile > Results > Logging).

4. (for Custom Monitoring only) Performance Explorer starts and the Data Source Wizard opens.
Complete the steps outlined in the wizard.

5. The Workflow - Workload Configuration dialog box appears. Click OK to accept your monitoring
settings.

Adjusting Workload

Configuring workload is part of the process of conducting a load test. Silk Performer offers different
workload models to be used as a basis for your load test. Before configuring workload, you must select the
model that best fits your needs.

You can define more than one workload model in your load test project and save them for further usage,
but only one workload model can be active at a time. The accepted baseline results are associated with a
workload model. If you copy or rename a workload model, the accepted baseline results are copied or
renamed accordingly.

Workload Models

Silk Performer provides the following workload models:

• Increasing – At the beginning of a load test, Silk Performer does not simulate the total number of users
defined. Instead, it simulates only a specified part of them. Step by step, the workload increases until all
the users specified in the user list are running.

288 | Silk Performer Workbench 20.0

This workload model is especially useful when you want to find out at which load level your system
crashes or does not respond within acceptable response times or error thresholds.

• Steady State – In this model, the same number of virtual users is employed throughout the test. Every
virtual user executes the transactions defined in the load-testing script. When work is finished, the
virtual user starts again with executing the transactions. No delay occurs between transactions, and the
test completes when the specified simulation time is reached.

This workload model is especially useful when you want to find out about the behavior of your tested
system at a specific load level.

• Dynamic – You can manually change the number of virtual users in the test while it runs. After the
maximum number of virtual users is set, the number can be increased or decreased within this limit at
any time during the test. No simulation time is specified. You must finish the test manually.

This workload model is especially useful when you want to experiment with different load levels and to
have the control over the load level during a load test.

• All Day – This workload model allows you to define the distribution of your load in a flexible manner.
You can assign different numbers of virtual users to any interval of the load test, and each user type can
use a different load distribution. Therefore, you can design complex workload scenarios, such as
workday workloads and weekly workloads. You can also adjust the load level during a load test for
intervals that have not started executing.

This workload model is especially useful when you want to model complex, long lasting workload
scenarios in the most realistic way possible.

• Queuing – In this model, transactions are scheduled by following a prescribed arrival rate. This rate is a
random value based on an average interval that is calculated from the simulation time and the number
of transactions per user specified in dcluser section of your script. The load test finishes when all of
the virtual users have completed their prescribed tasks.

Note: With this model, tests may take longer than the specified simulation time because of the
randomized arrival rates. For example, if you specify a simulation time of 3,000 seconds and want
to execute 100 transactions, then you observe an average transaction arrival rate of 30 seconds.

This workload model is especially useful when you want to simulate workloads that use queuing
mechanisms to handle multiple concurrent requests. Typically, application servers like servlet engines or
transaction servers, which are receiving their requests from Web servers and not from end users, can
be accurately tested by using the queuing model.

• Verification – A verification test run is especially useful when combined with the extended verification
functionality. This combination can then be used for regression tests of Web-based applications. A
verification test performs a specified number of runs for a specific user type.

This workload is especially useful when you want to automate the verification of Web applications and
when you want to start the verification test from the command line interface.

Defining Workload

Prior to the execution of a load test, you must specify the workload model that you want to use and
configure its settings. To select a workload model, click Adjust Workload in the workflow bar.

1. Click Adjust Workload on the workflow bar. The Workflow - Select and adjust Workload dialog box
appears.

2. Select one of the following workload models by clicking the appropriate option button:

• Increasing
• Steady State
• Dynamic
• All Day
• Queuing
• Verification

Silk Performer Workbench 20.0 | 289

3. Click Next.
4. Configure specific workload types based on the steps outlined in the Help.

Running Load Tests

In a load test, multiple virtual users are run by means of a test script against a target server to determine
the load impact on server performance. A large load test requires an appropriate testing environment on
your LAN, including a full complement of agent computers to host the virtual users.

It is essential that you complete the following tasks:

• Set options for the appropriate type of test that is to be run
• Accurately define the required workloads
• Enable the generation of test results to assess server performance

Do not enable complete result-logging during load testing because it might interfere with load-test results.
However, the TrueLog On Error logging option writes necessary log files to a disk when errors occur,
allowing you to inspect replay errors visually.

Running a Load Test

1. Click Run Test on the workflow bar. The Workflow - Workload Configuration dialog box appears.

2. Click Run to start the load test.

3. Click OK on the New Results Files Subdirectory dialog box.

(Optional) To specify a name for the results subdirectory, uncheck the Automatically generate unique
subdirectory check box and enter a name for the new subdirectory in the Specify subdirectory for
results files text box.

Monitor test progress and server activity by viewing the Silk Performer tabular monitor view and the
Performance Explorer graphical monitor view.

Monitoring Load Tests

Detailed real-time information is available to testers while Silk Performer load tests run. Graphic displays
and full textual reporting of activity on both the client side and the server side offer intuitive monitoring of
the progress of tests as they occur.

Directly from the workbench on which the test is conducted, a tester can view comprehensive overview
information about the agent computers and virtual users in the test. A tester can control the level of detail
of the displayed information, from a global view of the progress of all the agent computers in the test to an
exhaustive detail of the transactions conducted by each virtual user. Progress information for each agent
and each user is available in multiple categories. Run-time details for each user include customizable,
color-coded readouts on transactions, timers, functions, and errors as they occur.

In addition, real-time monitoring of the performance of the target server is available in graphical form.
Charts display the most relevant performance-related information from a comprehensive collection of the
Web servers, application servers, and database servers running on all of the OSes most widely used today.
Multiple charts can be open at the same time, and these charts can be juxtaposed to provide the most
relevant comparisons and contrasts for the tester. A menu tree editor allows for the combination of
elements from any data source in the charts. Response times and other performance information from the
client application can be placed in the same chart as performance data from the server. This feature
enables a direct visual comparison so that one can deterimine the influence of server shortcomings on
client behavior.

Monitoring Agent Computers During load Testing

Use the Monitor window to view progress while a load test runs. The top part of the window displays
information about the progress of agent computers and user groups.

Among the comprehensive number of information options, you can view the following information:

290 | Silk Performer Workbench 20.0

• Status of a particular agent
• Percentage of the test that is complete on an agent
• Number of executed transactions

Monitoring a Specific Agent During load Testing

In the top part of the Monitor window, select the specific agent to monitor.

The following information about the virtual users running on the selected agent appears in the bottom of
the Monitor window:

• Status
• Name of the current transaction
• Percentage of work completed
• Number of executed transactions

Monitoring a Specific Virtual User During load Testing

In the bottom part of the Monitor window, right-click the virtual user that you want to monitor and choose
Show Output of Vuser.

In the Virtual User window, Silk Performer displays detailed run-time information about the selected user,
such as the transactions and functions the user executes and the data the user sends to and receives from
the server.

Tip: Right-click the virtual user area and choose Select Columns to select the columns you want to
view.

Using a Graph to Monitor Server Performance

1. Click Confirm Baseline on the workflow bar. The Workflow - Confirm Baseline dialog box opens.

2. Click Define monitoring options to specify the settings for receiving online performance data. The
Profile Results dialog box opens.

3. In the Profile Results dialog box, check the Automatically start monitoring check box to
automatically start monitoring while running a load test and then choose one of the following options:

• Click the Use default monitoring template option button.
• Click the Use custom monitoring template option button to create a customized monitoring

template.

4. Click Create/Edit Custom Monitor Template. Performance Explorer appears.

5. Close all monitor windows that you are not currently using.

6. Click Monitor Server on the Performance Explorer workflow bar.

Alternatively, you can choose Results > Monitor Server from the menu bar.

The Data Source Wizard / Select Data Sources dialog box opens.

7. Perform one of the following steps:

• If you are certain of the data sources that the server provides, click the Select from predefined
Data Sources option button to then select them from the list of predefined data sources.

• If you are uncertain of the data sources that the server provides, click the Have Data Sources
detected option button to let Performance Explorer scan the server for available data sources.

8. Click Next.

In the menu tree, expand the folder that corresponds to the OS on which the server and application are
running.

9. Select the server application you want to monitor from the list that appears.
For example, to monitor the OS, select System.

Silk Performer Workbench 20.0 | 291

10.Click Next. The Connection Parameters dialog box opens.

11.In the Connection parameters area, specify connection parameters such as the host name or IP
address of the appropriate server system, the port number, and other data required to connect to the
data source.

The specified data depends on the OS running on the computer that you are monitoring.

12.Click Next. The Select Displayed Measures dialog box opens.

13.Expand the menu tree and select the factors you want to monitor.

14.Click Finish. A Monitor graph shows the specified elements in a real-time, color-coded display of the
server performance. Beneath the graph is a list of included elements, a color-coding key, and
performance information about each element.

Exploring Test Results

Silk Performer offers several approaches to displaying, reporting, and analyzing test results. Defined
measurements take place during tests and can be displayed in a variety of graphical and tabular forms.
Options include the following:

• Performance Explorer: This is the primary tool used for viewing test results. A fully comprehensive
array of graphic features displays the results in user-defined graphs with as many elements as are
required. The results of different tests can be compared. There are extensive features for server
monitoring. A comprehensive HTML based overview report that combines user type statistics with time
series test result information is also available.

• TrueLog On Error: Silk Performer provides full visual verification under load capabilities for various
application types. It allows you to combine extensive content verification checks with full error drill-down
analysis during load tests.

• Virtual User Report files: When enabled, these files contain the simulation results for each user.
Details of the measurements for each individual user are presented in tabular form.

• Virtual User Output files: When enabled, these files contain the output of write statements used in test
scripts.

• Baseline Reports: A detailed XML/XSL-based report that provides you with a summary table,
transaction response-time details, timers for all accessed HTML pages, Web forms, and errors that
occurred. This information is available for all user types involved in baseline tests.

• Silk Central Reports: Silk Performer projects can be integrated into Silk Central (Silk Central) test
plans and directly executed from Silk Central. This allows for powerful test-result analysis and reporting.
For detailed information on Silk Central reporting, refer to Silk Central Help.

TrueLog On Error

With Silk Performer TrueLog technology, you can find errors that usually occur to only a subset of users
when your application is under a heavy load. For most applications, this is the type of load that will most
likely be experienced once the application is deployed in the real world. Typical errors include incorrect text
on a Web page, incorrectly computed and displayed values, or application-related messages, such as
Servlet Error or Server Too Busy errors. These are not system-level errors and are displayed on
Web pages with HTTP 200 status codes.

TrueLog Explorer provides a view into Silk Performer verification-under-load capabilities with the following
features:

• Visual content verification allows you to visually define the content that is to be verified.
• TrueLog On Error generation and TrueLog On Error analysis allow you to visually analyze errors to

identify their root causes.

Viewing Errors in TrueLog Explorer

1. When an error occurs during a load test, you can view the visual content of the TrueLog by clicking the
Explore Results button on the workflow bar. The Workflow - Explore Results dialog opens.

292 | Silk Performer Workbench 20.0

2. Click the Silk TrueLog Explorer link. TrueLog Explorer opens with the Step Through TrueLog dialog
box active. Select Errors.

3. Navigate from one occurrence of an error to the next.

Tip: To display the history of an error, click through the preceding API nodes in the menu tree.

Performance Explorer Overview

Performance Explorer offers two main capabilities:

• Results Analysis
• Real-Time Monitoring

Results Analysis

With the Results Analysis functionality of Performance Explorer, you can analyze the results of a
completed load test by creating charts, tables, and reports. With charts, you can visualize the data that was
collected during the load test, and reports as well as tables help you to summarize important data and
findings. The basis for all charts, tables, and reports is the data in the .tsd files. During each load test, Silk
Performer captures a big amount of data and stores it in several time-series data (.tsd) files. When a load
test is completed, you can load the data (the .tsd files) in Performance Explorer and visualize and edit them
according to your requirements. All charts are fully customizable, and they can contain as many measures
as required. You can open multiple charts using measures from one or multiple tests to show similarities
and differences. Performance Explorer provides a variety of templates for charts, tables, and reports.
Furthermore, you can place information on client and server performance in a single chart, so that you can
directly view the effect of server performance on client behavior. By saving your changes as a template,
you can reuse your individual settings.

Silk Performer Workbench 20.0 | 293

Real-Time Monitoring

With the Real-Time Monitoring functionality of Performance Explorer, you can monitor a broad range of
systems by creating and configuring charts that show the system performance in real-time. It is possible to
open multiple charts at the same time, which allows you to watch the performance of two or more systems
simultaneously, for example the web server performance and the operating system performance. Adding
measures to a chart is easy and intuitive in Performance Explorer: You can drag a single measure or a set
of measures from the tree onto the chart.

Overview Report Measurements

The overview report comprises the following sections:

• General information
• Summary tables
• User types
• Custom charts
• Custom tables
• Detailed charts

General information

The general information section includes administrative information in tabular form as well as important
load test results in a graphical form.

Administrative information includes the project name, a description of the project, the load test number, a
description of the load test, the date of the load test, the duration of the load test, the number of used agent
computers, and the number of virtual users that were running.

The charts display the number of active virtual users, response time measurements for transactions, and
the number of errors that occur over time. Transaction response times are provided for successfully
executed transactions, for failed transactions, and for cancelled transactions.

Additional charts display summary measurements related to the type of load testing project. For example,
in the case of Web application testing, response time measurements for Web pages are presented in a
graph.

Summary tables

This section contains summary measurements in tabular form, that is, aggregate measurements for all
virtual users. The first table provides general information, such as the number of transactions that were
executed and the number of errors that occurred. All the following tables provide summary information
relevant to the type of application that was tested.

User types

For each user group, this section provides detailed measurements in tabular form. The measurements
include transaction response times, individual timers, counters, and response time and throughput
measurements related to the type of application that was tested (Web, database, CORBA, or TUXEDO). In
addition, errors and warnings for all user groups are listed.

Custom charts

This section contains graphs that you have added manually. You can add charts to and remove charts from
this section at any time. You can save your changes as a template to be displayed for every summary
report.

294 | Silk Performer Workbench 20.0

Custom tables

This section contains tables that you have added manually. You can add tables to and remove tables from
this section at any time. You can save your changes as a template to be displayed for every summary
report.

Detailed charts

This section provides enlarged versions of the charts included in the report. Click a reduced version of a
chart to jump to the enlarged version, and vice versa.

Viewing Overview Reports

1. Click the Explore Results button on the workflow bar. The Workflow - Explore Results dialog
appears.

2. Click the Silk Performance Explorer button or link. If you have selected the Generate overview report
automatically option in the Settings/Options/Reporting dialog, Performance Explorer opens and
displays an overview summary report for the most recent load test. Additionally, you can choose to use
a previously stored template for the generation of an overview report in this dialog. This setting is a
global setting and will be used with Performance Explorer, regardless of the workload project you are
using.

Silk Performer Workbench 20.0 | 295

3. If the overview report does not appear automatically, click the Overview Report button on the workflow
bar.

a) Navigate to the directory of the load test you are working with and select the corresponding .tsd file
and then click Open.

b) Click Next.
c) Optionally, in the Template field, click [...] to navigate to the template file that you want to use.
d) Click Finish.
e) Depending on the load test that you selected, you may be prompted to confirm that you want to load

all relevant files into your project.

The overview report opens.

Silk Performer Web Context Management

This section explains the concepts that facilitate advanced context management (state information
management in Silk Performer). It covers the benefits of automatic context management in Web load
testing and the techniques used by Web applications to transfer context information between browsers and
Web/application servers. Also included is an exploration of the techniques used by the Silk Performer Web
API to facilitate automatic context management and an explanation of how to optimally configure the Silk
Performer Web recorder to generate scripts that automatically maintain state information.

Value of Context Management

The HTTP protocol, by its very nature, is stateless. HTTP follows a simple request/response paradigm. The
client (the browser or other application/applet that uses HTTP for communication with a server) opens a
TCP/IP connection to the server, sends a request, and receives a response from the server. Different
requests from the same client to the same server, either on the same TCP/IP connection or on another
connection, have no relationship to one another.

Web applications on the other hand need to embed single requests within larger entities such as complete
HTML pages, user sessions initiated on Web servers, shopping carts, and registered customers.

To do this there must be some means of transferring state information from the server to the client that
allows for the information to be returned back to the server within subsequent HTTP requests so that the
server can associate the request with a specific user session (for example, a virtual shopping cart used by
a registered customer.) and respond appropriately.

The techniques that Web applications use to transfer state information can be used with any Web browser.

A load-testing project that is to deliver useful results must simulate real users accessing Web servers with
real browsers. Otherwise results will be meaningless.

Issues that can arise in the absence of state information

Results may be invalid - Poor context management can result in load-testing scripts in which, amongst
other issues, each virtual user logs in to the same session, uses the same account, or uses the same
shopping cart. In such cases, the impact on the Web/application server is quite different from a comparable
load that might be experienced by a live application. Therefore the test results will be meaningless.

Errors go unnoticed - Web servers often do not use HTTP status codes properly when indicating errors.
Instead, HTTP status codes that indicate success are returned within HTML documents describing
application-level error conditions (for example, server overloaded and session timed out). If the
next instruction in the script does not refer to previous results (for example, by requiring that a link be
present), such application level errors may go unnoticed. There is no way for testers to inspect millions of
lines of code in thousands of log files to find such errors.

Therefore, context management support contributes directly to improved error detection by providing "auto-
verifying" scripts.

Scripts can not be replayed - While replay errors that arise from the auto-verifying functions of advanced
context management can be productive, replay errors that arise from improper context management can

296 | Silk Performer Workbench 20.0

cause problems, leading to tedious manual customization and debugging of scripts that waste QA
resources.

Advanced context management eliminates such annoyances, leading to improved productivity and reduced
testing costs.

Silk Performer Page-Level API

Note: To take advantage of Silk Performer advanced context management techniques, you must use
the page-level Web API (the default option when you set up a new Web business transaction
Web testing project in Silk Performer).

The basic idea behind page-level API is to describe user actions at a higher level of abstraction.

Low-level API describes network interactions in terms of single HTTP requests. For single Web pages,
browsers typically send numerous HTTP requests to servers. Low-level scripts therefore tend to be rather
long, with each single function containing a parameter that specifies a URL from which to download. This
makes low-level scripts unsuitable for automatic context management. Low-level scripts can also be difficult
to read because they do not describe actions from the user perspective.

In contrast, high-level page-level API describes user actions in terms that are familiar to Web users. For
example:

• WebPageUrl - Enter a URL in the address bar
• WebPageLink - Click a link
• WebPageSubmit - Submit a form
• WebPageBack - Click the Back button

One main feature of page-level API that differs from low-level API is that it incorporates an HTML-parser
that parses HTML documents and locates embedded objects, frames, links and forms. Embedded objects
and frames are downloaded automatically. Links and forms can be used for context-full function calls.

A single function call in a script can download a complete HTML page, even one that includes complex
framesets.

Web Page History

Scripts utilizing page-level API emulate histories by logging previously downloaded pages, just as browsers
do to enable their Back buttons. The maximum number of pages that are tracked for each virtual user can
be limited to manage system resources (the default value is 5).

Note however that this limit does not affect the accuracy of load tests because the history's purpose is to
facilitate advanced context management. It has nothing to do with network traffic.

If a page needs to be available for a longer period of time than its life-time in the history allows, it can be
locked using the WebPageStoreContext function. While the page will still be dropped from the history if
necessary, it will not be deleted from memory and it can be referred to by a handle that is returned by the
WebPageStoreContext function. When the page is no longer needed it can be unlocked (and thereby
deleted from memory) using the WebPageDeleteContext function.

Context-less Functions

Context-less functions do not refer to previous events or results during script execution. Therefore they
work without requiring information from previous events. For context-less function calls, all information that
is required to perform functions must be specified in scripts. Scripting and recording of context-less
functions requires that session and other dynamic information be included in some test scripts.

A typical feature of context-less functions is that they include parameters that specify URLs for download.

Context-less functions in Silk Performer page-level API include:

Silk Performer Workbench 20.0 | 297

• WebPageUrl

• WebPageForm

• WebPagePost, WebPagePostFile
• WebPageCustomRequest, WebPageCustomRequestBin, WebPageCustomRequestFile

If any of these functions uses a form from the dclform section of your test script, the form will use a
context-less approach because there is not a corresponding HTML form from which unchanged (for
example, hidden) values can be taken. All form values must be specified in the script.

Context-full Functions

In contrast to context-less functions, context-full functions are designed to use results from previous
function calls. How results are to be used is specified in a way that does not incorporate dynamic data.

Context-full functions in Silk Performer page-level API include:

• WebPageLink

• WebPageSubmit

• WebPageSubmitBin

The WebPageLink function downloads the target URL of a link.

Example HTML code:

Edit Account

The above link contains load balancing information (www4) and a session id (5423) in the target URL.

Assume the user clicks this link. This can be modeled in BDL using the WebPageUrl function:

WebPageUrl("http://www4.company.com/store/5423/account");

The problem with this is that the dynamic components of the URL are hard-coded into the script.

Alternatively, the WebPageLink function can be used: WebPageLink("Edit Account");

This solution is better because the Silk Performer replay engine will, using its HTML parser, use the actual
URL that is associated with the link name Edit Account during replay. While it is still possible that a link
name can change dynamically, it is far less likely than having a URL change.

The WebPageSubmit function submits a form. By doing so, it combines a form definition from a previously
downloaded HTML document with a BDL form defined in the script.

<form action="/cgi-bin/nav.jsp"
 name="frmNav"
 method="post"
 target="basketframe">
 <input type=input name="quantity"
 value="1">
 <input type=hidden name="BV_SessionID"
 value="@@@@1245417051.1003814911@@@@">
 <input type=hidden name="BV_EngineID"
 value="dadccfjhgjehbemgcfkmcfifdnf.0">
</form>

Now suppose the user changes the quantity from 1 to 3 and submits the form.

This can be modeled in BDL using the context-less WebPageForm function with a corresponding form
definition:

WebPageForm("http://www4.company.com/cgi-bin/nav.jsp", FORM_BASKET_1);
...
dclform
 FORM_BASKET_1:
 "quantity" := "3",
 "BV_SessionID" := "@@@@1245417051.1003814911@@@@",
 "BV_EngineID" := "dadccfjhgjehbemgcfkmcfifdnf.0";

298 | Silk Performer Workbench 20.0

The problem with this solution is that everything is hard-coded into the script: the URL, which in this case
contains load balancing information, and the form fields, which carry session information.

The better solution is to use the context-full WebPageSubmit function:

WebPageSubmit("frmNav", FORM_BASKET_2);
...
dclform
 FORM_BASKET_2:
 "quantity" := "3",
 "BV_SessionID" := "" <USE_HTML_VAL>,
 "BV_EngineID" := "" <USE_HTML_VAL>;

The WebPageSubmit function references an HTML form from a previous server response by name. The
Silk Performer replay engine, using its HTML parser, automatically uses the actual action URL and HTTP
method (GET or POST) to submit the form. The replay engine then uses the values of the BV_SessionID
and BV_EngineID fields from the actual HTML code, so they do not need to be specified in the script.

Form Definitions in BDL

In Silk Performer, the syntax of form definitions in BDL scripts has been enhanced so that it is possible to
specify whether individual fields should use values included in scripts, from HTML code, or be suppressed
entirely.

Such specification is achieved using syntactical elements called form attributes. Form attributes are also
used to specify encoding types for form fields.

For forms that are used context-fully using the WebPageSubmit function, the following usage attributes are
allowed:

• USE_SCRIPT_VAL (default)
• USE_HTML_VAL

• SUPPRESS

USE_SCRIPT_VAL means that the field value from the script is to be used for submission. This is the
default attribute and can be omitted.

USE_HTML_VAL means that the field value from the HTML form definition is to be used. The value in the
script is ignored and set to "". Form fields in the script are matched by name with form fields in the HTML
form definition.

SUPPRESS means that even if a field with a specified name is present in an HTML form definition, neither
the field's name or its value will be submitted. The field value in the script is therefore meaningless and is
ignored.

How the Recorder Loses Context

Saying that the recorder has "lost context" means that the recorder observes an HTTP request that can not
be interpreted as an embedded object, a frame, a link, or a form submission.

This section discusses scenarios that can lead to loss of context in the absence of the advanced context
management techniques used by Silk Performer.

META Refresh HTML Tag

HTML allows for the specification of meta information within META tags. A popular use of this technique
involves specifying redirections or page reloads within HTML code, rather than relying on HTTP headers to
do so (for example, HTTP status code 302 Document moved for redirections).

Example HTML code:

<html>
 <title>Login</title>
 <META http-equiv=refresh

Silk Performer Workbench 20.0 | 299

 content="0; URL=http://www4.company.com/user/6543/login.html">
</html>

This example also demonstrates that such non-HTTP redirections can be used (much like standard HTTP
redirections) to introduce load balancing and/or session information.

The Silk Performer replay engine does not treat this as a redirection, so the recorder must generate a
function call for the resulting HTTP request, thereby losing the context.

Note that this behavior is not a bug, but rather an intentional design feature in Silk Performer replay. To
understand why automatically treating this as a redirection would be dangerous (in terms of inaccurate
replay), consider the following example:

<html>
 <head>
 <title>Login</title>
 <META http-equiv=refresh
 content="1; URL=http://www.company.com/no_js_login.html">
 </head>
 <body onload="location='http://www.company.com/js_login.html'>
 </body>
</html>

This sample HTML implicitly checks the browser's JavaScript capabilities and redirects to one of two
different login pages, based on the JavaScript capabilities of the browser. If the Silk Performer replay
engine automatically downloaded the URL specified in the meta tag, it would be demonstrating behavior
unlike any Web browser and would therefore be inaccurate.

JavaScript and Web Context Management

JavaScript offers Web developers many options for doing things that can not be achieved through HTML
techniques, and therefore can not be simulated using the Silk Performer replay engine by simply parsing
HTML. This makes JavaScript a leading cause of context loss.

HTTP requests that result from JavaScript actions often can not be described in terms of WebPageLink or
WebPageSubmit functions, therefore the recorder has to generate context-less functions.

This topic offers some examples, but is by no means a complete listing of all scenarios that may be
encountered.

JavaScript Redirection and Reload

This example demonstrates how JavaScript can be used to redirect to another URL, thereby introducing
state information (load balancing, session IDs, and more).

<html>
 <head>
 <title>Login</title>
 </head>
 <body
 onload="location='http://www4.company.com/usr/6543/login.asp'">
 </body>
</html>

Embedded Objects Loaded by JavaScript

This example shows how JavaScript can be used to load embedded objects. The Silk Performer HTML
parser however does not view these URLs as embedded objects, so the recorder has to generate a script
function, otherwise the images will not be downloaded by the replay engine.

Note also that the URLs of these embedded objects are specified relatively. The browser resolves these
relative URLs to absolute URLs using the base URL of the HTML document that contains them. So

300 | Silk Performer Workbench 20.0

resulting URLs may well contain dynamic information (for example, http://www4.company.com/usr/
6543/right_arrow.gif.

<html>
 <head>
 <title>Login</title>
 </head>
 <body onload="PreLoadImages('right_arrow.gif', 'left_arrow.gif',
'up_arrow.gif', 'down_arrow.gif')">
 </body>
</html>

Dynamic HTML

The document.write(…) JavaScript function allows you to dynamically change HTML code on the client
side. Ad servers commonly use this technique.

Here's an example:

document.write('<script language=javascript
 src="http://ads.com/ad/offer.asp?date=' +
 escape(date) + '"></scr'+'ipt>');

Form Submissions with JavaScript

JavaScript can modify HTML forms before submitting them by:

• Modifying form field values (even hidden fields)
• Adding form fields
• Removing form fields
• Renaming form fields (equivalent to removing a form field and adding another field in the same position)
• Changing the action URL

Example HTML code (modified form field names):

<form name="tabform"
 action="/cgi-bin/tabgui.asp"
 method="POST"
 target=_self>
 <input type=hidden name="session" value="6543">
 <input type=hidden name="tabevent" value="">
 <input type=hidden name="tabeventparam" value="">
</form>
Stock Watch List

function selectTab(tabIndex)
{
 // change value of field #2
 document.tabform.elements[1].value = "select";
 // change name of field #3, originally "tabeventparam"
 document.tabform.elements[2].name = "TabIndex";
 // change value of field #3, now "TabIndex"
 document.tabform.elements[2].value = tabIndex;
 document.tabform.submit();
}

The above example demonstrates how JavaScript can submit a form. The form definition in HTML is just a
template that is manipulated by JavaScript before it is submitted. The value of the second field ("tabevent",
index 1) is changed to "select", the name of the third field ("tabeventparam", index 2) is changed to
"TabIndex", and the value is changed to "3".

The following example demonstrates how JavaScript can be used to change the action URL of a form:

function SubmitSearch(linkUrl)
{
 document.searchForm.action = linkUrl;

Silk Performer Workbench 20.0 | 301

 document.searchForm.submit();
}
..
<form name="searchForm"
 method="POST"
 target=_self>
 <input type=input name="searchString" value="">
 <input type=hidden name="BV_SessionID"
 value="@@@@1245417051.1003814911@@@@">
</form>

 Search this site

 Search mirror site

Advanced Context Management Techniques

The Silk Performer page-level API incorporates advanced techniques that allow the writing of context-full
scripts that automatically address context management issues. The Silk Performer recorder handles this
work automatically.

The purpose of this section is to explain the features that are offered by the page-level API and show how
they are used by the recorder to generate context-full scripts that do not require manual customization for
context management.

This section makes reference to Silk Performer advanced context management settings, which can be
configured in Silk Performer at Settings > Active Profile > Web > Recording tab.

WebPageAddURL
The purpose of the WebPageAddUrl function is to specify additional files that should be downloaded
during the next page-level API call.

Additional files need to be specified when embedded objects will be downloaded by JavaScript or other
techniques that are not covered by the Silk Performer HTML parser.

The URL to download can be specified relative to the base URL of the document that is downloaded by the
subsequent page-level API call.

Example:

WebPageAddUrl("http://www4.company.com/images/mastercard.gif");
WebPageAddUrl("http://www4.company.com/images/visa.gif");
WebPageLink("Choose payment");
The same script in SilkPerformer, assuming the WebPageLink call downloads the
URL http://www4.company.com/user/6543/payment.asp:
WebPageAddUrl("/images/mastercard.gif");
WebPageAddUrl("/images/visa.gif");
WebPageLink("Choose payment");

While WebPageAddUrl is a context-less function, the use of relative URL's minimizes the risk that a URL
parameter will contain state information.

Note: The Silk Performer recorder generates WebPageAddUrl calls and relative URL's for
WebPageAddUrl calls wherever possible.

Parsed URLs

Silk Performer offers an extensible HTML parser that detects parsed URLs (also known as custom URLs).
In addition to embedded objects, frames, links and forms, parsed URLs are also a category of HTML
element that is detected by the HTML parser.

302 | Silk Performer Workbench 20.0

Extending the HTML parser: WebPageParseURL

To enable the HTML parser to parse custom URLs, you need to specify a parsing rule before the page-level
custom URL parsing function. The API function for this purpose is WebPageParseUrl.
WebPageParseUrl works much like the WebParseDataBound function.

A parsed URL gets a name (this corresponds to the name of the link). The name is specified in the first
parameter of WebPageParseUrl. The second and third parameters are the left and right boundaries. The
fourth parameter is options (for example, to ignore white spaces when parsing for the boundaries).

A single custom URL parsing specification can result in multiple parsed URLs since parsing does not stop
after the first URL is found. More than one WebPageParseUrl statement can be placed before a page-
level API call, resulting in multiple parsing rules applied concurrently during page download.

Parsing relative URLs

In parsing custom URLs, the HTML parser applies the same rules that are in effect for resolving relative
URLs for links and frames. This means that you can parse, for example, only for a filename and receive a
complete absolute URL.

Example: The following HTML document was generated by submitting a login form. It has the base URL
http://www4.company.com/user/6543/navigation.asp:

Edit Account

When the user clicks this link, the browser opens the URL http://www4.company.com/user/6543/
account.asp in a new browser window.

This can be modeled in Silk Performer as:

WebPageParseUrl("Javascript window open", "open('", "'");
WebPageSubmit("login", FORM_LOGIN, "LoginPageTimer");
// now the parsed URL is available under
// the name "Javascript window open" and can be used.

Custom URLs, once parsed, can be used in a variety of ways.

Parsed URLs and WebPageLink

A parsed URL that is parsed using the WEB_FLAG_PARSE_LINK flag can be used anywhere that a link can
be used (for example, for the WebPageLink or WebPageQueryLink functions). Note that if you do not
specify the WEB_FLAG_PARSE_LINK and WEB_FLAG_PARSE_URL flags, both flags will be in effect by
default.

Silk Performer Workbench 20.0 | 303

Now the preceding example can be completed:

WebPageParseUrl("Javascript window open", "open('", "'");
WebPageSubmit("login", FORM_LOGIN, "LoginPageTimer");
WebPageLink("Javascript window open");

Note:

The Silk Performer recorder can generate a WebPageParseUrl call and use the parsed URL for a
WebPageLink call. The recorder does this automatically whenever possible to avoid context-less
function calls.

To enable this feature, select the Dynamic link parsing checkbox on the Advanced Context
Management Settings dialog box at Settings > Active Profile > Web > Recording tab.

Parsed URLs and context-less functions: WebPageQueryParsedUrl

Parsed URLs can be retrieved and saved in string variables using the WebPageQueryParsedUrl
function.

Such a string variable can then be used as a parameter for all page-level or low-level functions that require
URL parameters, in addition to other purposes (for example, diagnostics output and
StrSearchDelimited).

The following example HTML document resulted by submitting a login form. It has the base URL http://
www4.company.com/user/6543/navigation.asp

<!--
function ShowContent(url, category, vendor)
{
 top.frames["content"].location.href=
 url + "?cat=" + category + "&vendor=" + vendor;
}
// end of script -->
…

 hard discs by IBM

 hard discs by Western Digital

 Monitors by Sony

Assume that the API call that led to this page looks like this:

WebPageSubmit("login", FORM_LOGIN, "LoginPageTimer");

Now when the user clicks the second link, the browser loads the URL http://www4.company.com/
user/6543/products.asp?cat=HD&vendor=WD into a frame named content. The parsed URLs and
WebPageLink approach will not work for modelling this in BDL. That approach would require that parsing
boundaries could be found for one of the following strings:

• http://www4.company.com/user/6543/products.asp?cat=HD&vendor=WD

• /user/6543/products.asp?cat=HD&vendor=WD

• products.asp?cat=HD&vendor=WD

But none of these strings occur in the HTML code. Parsing of the URL does not seem possible. Consider
the following:

WebPageSubmit("login", FORM_LOGIN, "LoginPageTimer");
WebPageUrl(
 "http://www4.company.com/user/6543/products.asp",
 "ProductTimer", FORM_PRODUCT_SELECT);
...
dclform
 FORM_PRODUCT_SELECT:

304 | Silk Performer Workbench 20.0

 "cat" := "HD",
 "vendor" := "WD";

What you get is a context-less function, which, in this example, incorporates dynamic data in the URL. But
this can be improved upon. While http://www4.company.com/user/6543/products.asp?
cat=HD&vendor=WD can not be parsed, the shorter URL http://www4.company.com/user/6543/
products.asp is now in the script and can be used as a parameter for the WebPageUrl function. This
URL can be parsed using the boundaries "ShowContent('" and "'". This will parse the string
products.asp, which will, after relative URL resolution, yield the required URL. This parsed URL can be
copied into a string variable and the variable can be used rather than the hard coded URL parameter in the
script. Thereby the following script is generated:

var
 sParsedUrl : string;
..
WebPageParseUrl("ShowContent", "ShowContent('", "'");
WebPageSubmit("login", FORM_LOGIN, "LoginPageTimer");
WebPageQueryParsedUrl(sParsedUrl, sizeof(sParsedUrl),
 "ShowContent");
WebPageUrl(sParsedUrl, "ProductTimer", FORM_PRODUCT_SELECT);
..
dclform
 FORM_PRODUCT_SELECT:
 "cat" := "HD",
 "vendor" := "WD";

The advantage here is that a context-less function call has been made, in a sense, "semi-context-full."
While the query string is still context-less, the URL is parsed and so the dynamic data in the URL can be
handled properly.

Note that in other examples it may happen that a URL won't be dynamic, yet the query string will contain
dynamic data. In such instances the technique shown here won't deliver improved context management.

Note: The Silk Performer recorder can automatically generate WebPageParseUrl calls and query
the parsed URLs for use with context-less function calls. The recorder does this whenever this
technique can be used in conjunction with a context-less page-level API function call. To enable this
feature, select the Dynamic link parsing checkbox on the Advanced Context Management
Settings dialog box at Settings > Active Profile > Web > Recording tab.

Changed Action URLs on Form Submission

JavaScript can be used to change the action URL of a form.

function SubmitSearch(linkUrl)
{
 document.searchForm.action = linkUrl;
 document.searchForm.submit();
}
...
<form name="searchForm"
 method="POST"
 target=_self>
 <input type=input name="searchString" value="">
 <input type=hidden name="BV_SessionID"
 value="@@@@1245417051.1003814911@@@@">
</form>

 Search this site

 Search mirror site

Silk Performer Workbench 20.0 | 305

Specifying a different absolute action URL

Assume that this page was downloaded by the function call

WebPageLink("Advanced Search");

Using the Silk Performer context-full WebPageSubmit function is a better choice because it automatically
handles the hidden field BV_SessionID without having its value in the script.

To facilitate this, Silk Performer has the option of specifying a different action URL to use with the
WebPageSubmit function.

The function used to do this is WebPageSetActionUrlAbs. If this function is called before a call to
WebPageSubmit, the URL specified in the WebPageSetActionUrlAbs function is used rather than the
action URL specified in the HTML code.

Using this function, the BDL code above would be rewritten as:

WebPageLink("Advanced Search");
WebPageSetActionUrlAbs("http://my.mirror.com/search.asp");
WebPageSubmit("searchForm", FORM_SEARCH);
...
dclform
 FORM_SEARCH:
 "searchString" := "discount",
 "BV_SessionID" := "" <USE_HTML_VAL>;

Note: The use of WebPageSetActionUrlAbs allows you to use the context-full WebPageSubmit
function rather than the context-less WebPageForm function, and so allows you to use the
FORM_SEARCH form in a context-full way.

The Silk Performer recorder automatically generates the WebPageSetActionUrlAbs function when
it allows for generation of the function WebPageSubmit rather than a context-less function.

To enable this feature, select the Allow modified action URLs checkbox on the Advanced Context
Management Settings dialog box at Settings > Active Profile > Web > Recording tab.

Specifying a different parsed action URL

While specifying a different absolute action URL offers an advantage in that it allows for the use of a
context-full form, the URL is still context-less and hard coded into the script.

If the action URL also contains state information, the action URL needs to be specified context-fully.

This can be done using the WebPageSetActionUrl function. Unlike the WebPageSetActionUrlAbs
function, the WebPageSetActionUrl function receives the name of a parsed URL rather than an
absolute URL.

It is possible to parse custom URLs for use with the WebPageSetActionUrl function. To demonstrate,
the example above can be rewritten as follows:

WebPageParseUrl("Form Action", "SubmitSearch('", "'");
WebPageLink("Advanced Search");
WebPageSetActionUrl("Form Action", 2);
WebPageSubmit("searchForm", FORM_SEARCH);
...
dclform
 FORM_SEARCH:
 "searchString" := "discount",
 "BV_SessionID" := "" <USE_HTML_VAL>;

This example uses the second occurrence of the parsed URL Form Action to set the action URL to
http://my.mirror.com/search.asp. The script can handle state information that may be contained
in the action URL.

306 | Silk Performer Workbench 20.0

The Silk Performer recorder can automatically generate calls to the WebPageSetActionUrl function and
the corresponding call to WebPageParseUrl, rather than calling WebPageSetActionUrlAbs.

To enable this feature, select the Dynamic action URL parsing checkbox on the Advanced Context
Management Settings dialog box at Settings > Active Profile > Web > Recording tab.

Modified Forms

JavaScript can modify forms that are defined in HTML before they are submitted. Removing or renaming
individual form fields can be challenging.

Usage attributes for form fields allow for better context management in such situations.

Without form usage attributes, the following example would need to be modeled in a context-less way.
When taking advantage of form usage attributes however, it can be modeled context-fully as shown below.

<form name="tabform"
 action="/cgi-bin/tabgui.asp"
 method="POST"
 target=_self>
 <input type=hidden name="session" value="6543">
 <input type=hidden name="tabevent" value="">
 <input type=hidden name="tabeventparam" value="">
</form>
Stock Watch List

function selectTab(tabIndex)
{
 // change value of field #2
 document.tabform.elements[1].value = "select";
 // change name of field #3, originally "tabeventparam"
 document.tabform.elements[2].name = "TabIndex";
 // change value of field #3, now "TabIndex"
 document.tabform.elements[2].value = tabIndex;
 document.tabform.submit();
}

Assume that the page including this HTML code is a response to the following function call:

WebPageLink("My portfolio");

Also assume that the page has the base URL http://www4.company.com/cgi-bin/
portfolio.asp.

The user clicks the link Stock Watch List. Without form usage attributes, a corresponding BDL script
would look like this:

WebPageLink("My portfolio");
WebPageForm("http://www4.company.com/cgi-bin/tabgui.asp", FORM_001);
...
dclform
 FORM_001:
 "session" := "6543",
 "tabevent" := "select",
 "TabIndex" := "3";

This script uses the context-less WebPageForm function. An absolute URL appears in the script, possibly
incorporating state information. The form FORM_001 is context-less, thereby introducing additional state
information into the script.

By taking advantage of form field usage attributes, it can be specified that a field with the name
tabeventparam must not be sent, but that an additional field with the name TabIndex should be sent.
So the form tabform can be submitted in a context-full way using the WebPageSubmit function.

Silk Performer Workbench 20.0 | 307

Here is the corresponding BDL code:

WebPageLink("My portfolio");
WebPageSubmit("tabform", FORM_001);
...
dclform
 FORM_001:
 "session" := "" <USE_HTML_VAL>, // unchanged
 "tabevent" := "select", // changed
 "tabeventparam" := "" <SUPPRESS>, // suppressed
 "TabIndex" := "3"; // added

This version eliminates the state information from the script, thereby providing automatic context
management.

The Silk Performer recorder can automatically generate WebPageSubmit calls using HTML forms that do
not match submitted form data and then generate appropriate usage attributes for those form fields in
scripts. The recorder does this when it allows for a context-full WebPageSubmit call to be generated rather
than a context-less function call.

To enable this feature, check the Fuzzy form detection option on the Advanced Context Management
Settings dialog box (Settings > Active Profile > Web > Recording tab > View Settings).

Form Data Encoding

The Silk Performer Web API uses form definitions within the dclform section of BDL scripts to specify
form data that is to be submitted and query strings to be appended to URLs.

Unsafe characters must be encoded within query strings and HTTP request bodies. To accommodate the
various encoding strategies used by different browsers in different situations, Silk Performer allows for the
specification of encoding types for form fields.

This is accomplished using the enhanced syntax for form definitions within BDL, which allows for the
specification of attributes for forms and form fields.

Encoding Types

The encoding type ENCODE_FORM encodes unsafe characters according to the mime type
application/x-www-form-url-encoded. Blank spaces are encoded with + symbols, unsafe
characters are encoded by their hexadecimal values preceded by % symbols.

308 | Silk Performer Workbench 20.0

All popular browsers use this encoding type for form submissions, both for URL query strings (HTTP
method GET) and HTTP request bodies (HTTP method POST).

The encoding type ENCODE_FORM is the default when no other encoding type is specified in scripts, and
therefore does not have to be specified explicitly.

The encoding type ENCODE_ESCAPE encodes unsafe characters according to the escape JavaScript
function. This encoding type is similar to ENCODE_FORM. The main difference is that blank spaces are
encoded with %20 rather than +.

The encoding type ENCODE_BLANKS encodes blank spaces with %20. No other unsafe characters are
encoded. Most popular browsers use this encoding type for the target URLs of links.

The encoding type ENCODE_NONE does not encode any characters. This encoding type is often used when
JavaScript issues HTTP requests without using the escape function.

Examples
dclform
 AD_SERVER_PARAMS <ENCODE_NONE>:
 "~userpref" := "12|34|56",
 "~requesttime" := "01/01/2002";
 FORM_REDIR_LOGIN <ENCODE_NONE> :
 "~language" := "EN",
 "~logingroup" := "GUEST",
 "~transaction" := "TEST",
 "~exitUrl" := "http://www.myserver.com/goodbye.html";
 LOGIN_FORM_001:
 "username" := "testuser",
 "password" := "testpassword",
 "hash" := "%u2e34!\"" <ENCODE_NONE>,
 "platform" := "OS: Win2000, Browser: IE5.5" <ENCODE_BLANKS>;
 DOWNLOAD_WHITEPAPER <ENCODE_BLANKS>:
 "filename" := "Context management.pdf",
 "version" := "V99";

Note: The Silk Performer recorder automatically determines the most suitable encoding type and
generates scripts accordingly. The recorder omits the encoding type ENCODE_FORM (the default) to
make scripts more readable.

Web Context Management Settings

General Profile Settings

General Silk Performer Web context management profile settings can be configured at Settings > Active
Profile > Web > Recording tab.

Select Page-level Web API (HTML/HTTP) to instruct the recorder to generate a page-level API script.

To have query strings that are part of URL parameters converted into forms for context-less function calls,
select Convert URL query strings to forms. It is recommended that you select this option as it makes the
Dynamic URL parsing setting applicable in more cases. If this option is not selected, query strings will not
be converted into forms, but rather kept as parts of URLs.

Advanced Settings

To configure advanced Web context management settings, go to Settings > Active Profile > Web >
Recording tab > View Settings button.

Fuzzy form detection - Selecting this option instructs the recorder to generate forms that use the usage
attribute SUPPRESS when required. This may allow the recorder to generate the context-full
WebPageSubmit function rather than the context-less WebPageForm (for HTTP POST requests) and
WebPageUrl (for HTTP GET requests) functions.

Silk Performer Workbench 20.0 | 309

Note: It is recommended that you enable Fuzzy form detection. If the site under test uses JavaScript
to modify forms, this option will offer better context management. If the site does not use JavaScript,
this option will not cause any harm.

Allowing modified action URLs - Checking this option instructs the recorder to generate the
WebPageSetActionUrlAbs function when necessary. This may allow the recorder to generate the
context-full WebPageSubmit function rather than the context-less WebPageForm (for HTTP POST
requests) and WebPageUrl (for HTTP GET requests) functions.

Note: It is recommended that you enable Allowing modified action URLs. If the site under test uses
JavaScript to modify forms, this option will offer better context management. If the site does not use
JavaScript, this option will not cause any harm.

Dynamic action URL parsing - Selecting this option instructs the recorder to generate the
WebPageSetActionUrl function rather than WebPageSetActionUrlAbs when it is possible to
generate a WebPageParseUrl function for the required URL.

Note: It is recommended that you enable Dynamic action URL parsing. If the site under test uses
JavaScript to modify forms, this option will offer better context management. If the site does not use
JavaScript, this option will not cause any harm.

Dynamic link parsing - Checking this option instructs the recorder to generate the WebPageLink function
for HTTP GET requests that do not correspond to a standard HTML link, rather than a context-less function
when it is possible to generate the WebPageParseUrl function for the required URL.

Note: It is recommended that you enable Dynamic link parsing. If the site under test uses
JavaScript to modify forms, this option will offer better context management. This option also ensures
proper context management when the HTML tag <meta http-equiv=refresh …> is used.

Dynamic URL parsing - Selecting this option instructs the recorder to generate the WebPageParseUrl
and WebPageQueryParsedUrl functions when possible to pass parsed URLs as parameters to context-
less page-level API functions.

Note: The need for generating context-less API functions is greatly reduced when the preceding four
advanced context management options are selected.

Enable Dynamic URL parsing if you see context-less API functions in recorded scripts, even if all other
advanced context management options are selected and if the context-less functions use URLs that seem
to incorporate state information.

Predefined Settings

The Advanced context management settings drop-box combo box (available at Settings > Active
Profile > Web > Recording tab > Advanced context management) offers predefined configurations for
advanced context management. You can choose a predefined configuration or choose your own custom
settings.

The predefined configuration Level 2 is the default for Web business transaction (HTML/HTTP)
testing projects.

The other predefined profile settings are detailed in the chart below:

Disable Level 1 Level 2
(default)

Level 3 Custom

Fuzzy form detection - yes yes yes your choice

Allow modified action URLs - yes yes yes your choice

Dynamic action URL parsing - - yes yes your choice

Dynamic link parsing - - yes yes your choice

310 | Silk Performer Workbench 20.0

Disable Level 1 Level 2
(default)

Level 3 Custom

Dynamic URL parsing - - - yes your choice

Limitations to Web Context Management

You may encounter situations in which advanced context management techniques do not deliver complete,
automatic context management. Common reasons include the following:

• A URL can not be parsed by WebPageParseUrl. This can happen when a URL is built by JavaScript
using string concatenation expressions.

• Link names, form names, or form field names change dynamically.

In such situations, use TrueLog Explorer to customize context management. TrueLog Explorer supports
customization of context management using a point and click interface.

Manual Script Editing

Silk Performer test scripts are written in the program's proprietary scripting language, the Benchmark
Description Language (BDL), which is a high-level language that resembles Pascal. To edit scripts
manually, you must be familiar with BDL and be able to create prototypes of user requests. You must also
be able to define the typical components of a test script, including modules, functions, workload definitions,
transactions, and Web forms.

Verification and Parsing Functions

All parsing and verification functions must be specified before the Web API calls that will
offer the response data that is to be parsed/verified. You can specify multiple parse/
verification functions before a Web API call. The order of the parse/verification functions
is not relevant (Exception: WebParseDataBound and WebVerifyDataBound using
the flag WEB_FLAG_SYNCHRON).

WebVerifyHtml("Proper equipment leads to a successful trip",
1, ...);
WebPageLink("ShopIt");

Customization of GZIP or ZLIB POST Data

GZIP or ZLIB data in requests

If GZIP or ZLIB data is detected in recorded requests, the WebSetEncoding function and the respective
parameters are scripted.

GZIP or ZLIB data in responses

If the content encoding header of a response is set to gzip, responses are automatically unzipped with the
GZIP algorithm. If the content encoding header is set to deflate, responses are automatically unzipped
with either HTTP 1.1 compatible ZLIB algorithm (RFC1950) or raw deflate (RFC 1951).

Legacy GZIP transformation

To ensure backward compatibility, the GZIP transformation DLL is still supported. For more information on
how to enable GZIP transformation, see Enabling Customization of GZIP POST Data.

Enabling Customization of GZIP POST Data

Silk Performer's GZIP-transformation functionality enables transparent decompression of GZIP-
compressed POST bodies during script recording. Upon replay, POST bodies are recompressed into GZIP

Silk Performer Workbench 20.0 | 311

format. Without this functionality, GZIP compressed data sent by Web applications via http POST method
data would be scripted by the Silk Performer recorder in binary format, making customization of the data
nearly impossible. Data customization is however facilitated with Silk Performer's GZIP-transformation
functionality.

Transformation is enabled for HTTP requests and responses that have the HTTP header Content-
Encoding set to gzip. If you need to transform data with a different HTTP Content-Encoding header, see
the steps below.

Follow the steps below to activate GZIP transformation.

1. Navigate to Settings > Active Profile > Record > Web > Transformation .

2. From the Type drop list, select GZIP Transformation.

3. Confirm that the Transform HTTP requests option is enabled.

4. Confirm that the Transform HTTP responses option is disabled.

5. If you need to transform data with a different HTTP Content-Encoding header, type
AdditionalContentEncodings=<mycustomgzip> into the Additional Parameters field.
<mycustomgzip> should be the custom Content-Encoding of your application under test.

6. Navigate to Settings > Active Profile > Record > Web > Recording .

7. In the Record additional HTTP headers area, click the Add button.

8. Enter Content-Encoding into the Record additional HTTP headers dialog and click OK.

This is required for accurate compression/decompression of GZIP-encoded request bodies.

9. Back on the Profile dialog, click OK.

Setting Up Individual IP Addresses

If your application uses a load balancer, you can give the users individual IP addresses by using the
System Configuration Manager.

1. From the Silk Performer menu bar, select Tools > System Configuration Manager . The System
Configuration Manager dialog box appears.

2. Click the IP Address Manager tab. From the Adapter list box, select the network adapter for which you
want to configure IP addresses. The list contains all the network adapters to which IP is bound on the
computer in question.

3. Use the IP addresses area to find out information about the current configuration of the network
adapter, and to set up IP addresses for the adapter.

4. To add new IP addresses to the network adapter configuration, click the Add button. The Add IP
Addresses dialog opens.

5. On the Add IP Addresses dialog, specify the following:

a) In the From IP address field, enter the IP address you want to add to the network adapter
configuration.

If you specify that you want to add multiple addresses, the System Configuration Manager generates
sequential IP addresses, starting with this address.

b) In the Subnet mask field, enter the subnet mask number for the IP addresses.

Note: This number, combined with the IP addresses, identifies which network the computers
are on.

To add multiple IP addresses, either select the Number option and enter the number of addresses
you want, or select the To IP address option.

In the latter case, specify the highest IP address you want to add to the network adapter
configuration. The System Configuration Manager generates sequential IP addresses, starting with
the address you type in the From IP address field and ending with this address.

c) Select the Do not add conflicting addresses option to only add IP addresses to the network
adapter configuration that do not cause conflicts.

312 | Silk Performer Workbench 20.0

d) When enabling the Allow CIDR addresses check box, the verification of the IP address and subnet
mask pair is disabled. Classless Inter-Domain Routing (CIDR) has been adopted as a solution to the
scaling problem in the Internet. CIDR is not as restrictive as the "normal" IP-Routing.

e) Click OK.

Tip: To edit a selected IP address, click the Edit button.

6. To save the network adapter configuration to a file, click the Save button. By default, the file is stored in
the System Configuration Manager home directory.

To load a network adapter configuration from a file, click the Load button and locate the appropriate file.

7. To remove IP addresses, click the Remove button.

Caution: Be cautious about removing multiple IP addresses at once.

The Remove IP Addresses dialog appears.

8. On the Remove IP Addresses dialog, specify the following:

a) In the From IP address field, enter the IP address you want to remove from the network adapter
configuration.

If you elect to remove multiple addresses, the System Configuration Manager deletes all successive
IP addresses, starting with this address.

b) In the Subnet mask field, enter the subnet mask number for the IP addresses you want to remove.
c) To remove multiple IP addresses, select either the Number or the To IP address option. Select the

Number option to specify the number of IP addresses you want to remove from the network adapter
configuration, and enter the number of addresses in the field. The System Configuration Manager
deletes that number of successive IP addresses, starting with the address you type in the From IP
address field.

Select the To IP address option to specify the highest IP address you want to remove from the
network adapter configuration. The System Configuration Manager deletes all successive IP
addresses, from the address you type in the From IP address field to this address.

d) Click OK.

9. If you want to check whether IP routing to a specified computer works for all configured IP addresses,
enter the name or IP address of the computer in the Host name or IP address field in the Network
area, then click Check. A report from this check will be provided at the bottom of the dialog.

10.Click OK to exit the dialog and save your changes.

Web Forms

Web forms are defined in the dclform section of test scripts.

Web Form Declaration Syntax

The form declaration is specified by a form name (for example, FORM_NAME) which can be any valid
identifier string and must be followed by a colon. The left side string specifies the name of the field or
parameter. An empty string is allowed for nameless URL parameters, such as image map coordinates. The
right value specifies the data value of the field or parameter. These can be global constants, global
variables and random variables.

The example below illustrates the required syntax for Web form declarations:

dclform
 FORM_NAME:
 "field-name" := R-Value;

Web Form String Encoding

All strings used in the forms declaration will be URL encoded when sent to the server. This means that
unsafe characters will automatically be converted into a hexadecimal sequence (%xx). Parameters added

Silk Performer Workbench 20.0 | 313

directly to the URL will not be encoded (for example, WebUrl("http://host/cgi-bin/doit?
MyUnSafeMessage&-?%?-?", 0.0). This allows applications to use non-standard URL parameters.

Web Form Script Example

The following example shows a portion of a Silk Performer script for simulating a form
submission. Random variables rsEmail and rsPlatform with two different random
functions (RndFile and RndInd) are defined in the random variables section. With
each subsequent call to WebFormPost and WebFormGet, the random variables are
refreshed and contain new random values. These random values are used to generate
the URL encoded form string automatically sent within the request to the Web server.
WebFormPost adds the form content string at the end of the HTTP header while
WebFormGet adds it at the end of the URL separated by a "?".

dclrand
 rsEmail : RndFile
 ("elname.rnd", 20);
 rsPlatform : RndInd("Windows NT" = 0.3;
 "Windows 2000" = 0.6;
 "other" = 0.1);

dcltrans
 transaction TWebFormPost
 begin
 WebFormPost("http://www.comp.com/cgi/FormMail.pl",
CGI_CUST_SUPPORT, nWait);
 WebFormGet("http://www.comp.com/cgi/form",
CGI_CUST_SUPPORT, nWait);
 end TWebFormPost;

dclform
 CGI_CUST_SUPPORT:
 "email" := rsEmail,
 "sitetype" := "business",
 "sitelang1" := "english",
 "platform" := rsPlatform;

Cookies

Silk Performer supports record and replay for cookies used in Web applications.

Overview

Cookies enable Web servers to store and retrieve state information on the client computer. A server, when
submitting an HTTP object, may also send a "cookie", a state object that the client will store for a specified
amount of time. The cookie includes a description that defines a range of URLs for which it is valid. The
next time a client reconnects from within this range of URLs, the contents of the cookie will be submitted to
the server in addition to the request. Cookies may either be persistent or non-persistent. Persistent cookies
are stored in a cookie database on the client computer and are deleted only after a specified expiration
date occurs. Non-persistent cookies are maintained only during a single Web browser session and are
deleted when the client Web application is closed. To create as realistic a simulation as possible, only
persistent cookies are recorded (and thus replayed) by the Internet Recorder.

Cookie Database Functions

For information about cookie database functions, see Cookie functions. Before you use these functions,
you should be familiar with cookies as outlined at http://www.w3.org/Protocols/rfc2109/rfc2109 .

314 | Silk Performer Workbench 20.0

http://www.w3.org/Protocols/rfc2109/rfc2109

Important Notes

Keep in mind the following when you work with cookies with Silk Performer:

• The Silk Performer cookie database is non-persistent and therefore only exists while a test is running.
• Each virtual user has a cookie database of its own and therefore the contents of the cookie database

varies from virtual user to virtual user.
• Although cookies are generally created at server side, you can simulate already existing cookies using

the WebCookieSet function.

Load Testing Web 2.0 Applications (Browser-Driven)
In addition to facilitating testing of today's modern Web applications on the protocol level (HTTP), Silk
Performer enables you to use real Web browsers (Internet Explorer, Chrome, and Firefox) to generate load.

Browser-driven load testing is available in two flavors:

• Re-using a functional test created with Silk Test. This approach applies best if you already have Silk
Test keyword test assets that automate functional tests with one of the supported browsers. When
importing such assets, Silk Performer wraps them into a BDL stub script to make it executable as part of
a load test. For more information, see Single Session GUI-Level Testing in GUI-Level Testing Support.

• Creating browser-driven load testing scripts from scratch within Silk Performer. With this approach, the
BDL scripting language is used to model the user actions. With this option, no Silk Test installation is
required. The user actions are recorded within a purpose-built tool named Browser Application. This
application hosts an Internet Explorer component and facilitates recording, including adding
verifications, defining Time-to-interact elements and visual debugging.

Note: Recording within Chrome or Firefox is currently not supported. But once recorded within the
Browser Application, you can replay your script in Chrome or Firefox.

Note: In terms of licensing, there are no differences. For both types of browser-driven load testing, the
license type SilkPerformerWebVU is required.

Browser-Driven Load Testing Overview

In addition to facilitating testing of today's modern Web applications on the protocol level (HTTP), Silk
Performer now enables you to use real Web browsers (Internet Explorer, Firefox, and Chrome) to generate
load. In this way, you can leverage the AJAX logic built into Web applications to precisely simulate complex
AJAX behavior during testing. This powerful testing approach provides results that reflect real-world end
user browsing experience, including rendering time and protocol-level statistics.

Unlike other load-testing solutions that only support specific AJAX frameworks (and of those, only specific
versions or a subset of controls), Silk Performer supports the full range of Web applications that are
developed for (and tested with) Internet Explorer, Firefox, and Chrome.

With the browser-driven load testing support, Silk Performer strives to offer the same functionality and
behavior across all supported browsers. This makes it possible to record your scripts in the Internet
Explorer-based Browser Application and replay them with Firefox and Chrome.

In some rare cases however, this abstraction might not work as expected due to inherent differences
among the browsers. For example: The Browser Application might generate a locator that cannot be
resolved by Chrome or Firefox. For more information, see Limitations for Replay with Different Browsers.

Most browsers follow a frequent and silent update policy. For a load testing environment, this is not ideal,
because it influences the consistency of the results. Furthermore, Silk Performer might not have been
tested with the latest browser versions, especially if these have been published after the latest Silk
Performer release. As a general rule: To avoid problems, stick to the tested browser versions listed in the
section Tested Software in the release notes and install the latest hotfixes.

Support for Pop-Up Windows

Silk Performer browser-driven testing supports sites that utilize pop-up windows (for example, login dialog
boxes). Pop-up browser windows often include input fields in which users enter values that are passed

Silk Performer Workbench 20.0 | 315

back to the main page (for example, username and password strings). Multiple browser-window support is
available by default when you create a Silk Performer project of type Web browser-driven (AJAX).

A new tab is created in the Browser Application each time a pop-up window is generated during application
recording. Each pop-up window that is encountered results in a tab being created in the Browser
Application. Each time you click a tab in the Browser Application during recording a
BrowserActivateWindow function is scripted automatically.

Note: The manual opening of windows and tabs during recording (via menu bars, context menus, or
keyboard shortcuts) is not supported.

Sample Web 2.0 Application

Silk Performer offers a modern sample Web application that you can use to learn about Web 2.0
application testing. The InsuranceWeb sample Web application is built upon ExtJS and JSF frameworks,
uses AJAX technology, and communicates via JSON and XML.

The sample application is hosted at http://demo.borland.com/InsuranceWebExtJS/.

316 | Silk Performer Workbench 20.0

http://demo.borland.com/InsuranceWebExtJS/

Pop-Up Window in the Sample Application

The sample Web 2.0 application includes pop-up window functionality that you can use to experiment with
Silk Performer support for multiple browser windows.

1. To generate the pop-up window, visit the sample Web 2.0 application at http://demo.borland.com/
InsuranceWebExtJS/.

2. From the Select a Service or Log in drop list, select Agent Lookup.

3. On the Find an Insurance Co. Agent page, click the Open in new window link at the bottom of the
page. The Find an Insurance Co. Agent page loads in a new tab within the Browser Application.

Click the Close Window link at the bottom of the page to close the tab.

Support for HTML Dialog Boxes

Silk Performer recognizes the following dialog types:

JavaScript dialogs supported in all browsers

Print dialogs not supported

File Save & File Open dialogs supported in Internet Explorer

Modal windows and modeless windows (HTML dialogs)* supported in Internet Explorer

* HTML dialogs display as windows. Note that modal and modeless windows are a specific feature of
Internet Explorer, hence they are only supported in Internet Explorer.

Native Replay

This topic applies to Internet Explorer only. For the other browsers, Silk Performer does not provide native
replay capabilities.

The concept of native replay makes replaying a script more reliable. This is achieved by using Windows
API-level events instead of JavaScript events for frequently used functions.

In the context of native replay we are using two special terms: native replay and legacy input mode. Note
that native replay is the opposite of legacy input mode. If you turn on legacy input mode, native replay is
automatically turned off, or the other way around. In this sense, we can also distinguish between native
functions and legacy functions.

• Native functions are using Windows API-level events.
• Legacy functions are using JavaScript events.

The following functions can be called legacy functions, since they all have a native equivalent. If one of
these legacy functions is detected during replay, then ...

• BrowserClick is replayed like BrowserNativeClick
• BrowserDoubleClick is replayed like BrowserNativeDoubleClick
• BrowserSetText is replayed like BrowserTypeKeys
• BrowserSetPassword is replayed like BrowserTypeKeys
• BrowserMouseMove is replayed like BrowserNativeMouseMove

If a native function cannot be performed instead of the legacy function, the legacy function is used as
fallback and a warning message is logged. This can be the case if, for example, no mouse position can be
determined to click the element.

Native replay is enabled by default. You can disable it in the Profile Settings: Click Settings > Active
Profile > Web (Browser Driven). On the General tab, enable Legacy input mode. Alternatively, you can
add the following function to your script: BrowserSetOption(BROWSER_OPT_LEGACY_INPUT_MODE,
true)

Legacy input mode is enabled by default for all project profiles created with Silk Performer 9.0 or earlier.

Silk Performer Workbench 20.0 | 317

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

Web Browser Configuration Settings

Several browser settings are critical to maintaining stable test executions. Although Silk Performer works
without changing any settings, there are several reasons why you may want to change these browser
settings in Internet Explorer.

• Increase replay speed

• Use about:blank as the home page, rather than a slowly loading Web page
• Avoid unexpected browser behavior

• Disable pop-up windows and warning dialog boxes
• Disable auto-complete features
• Disable password wizards
• If Silk Performer runs on a Windows Server operating system, disable Internet Explorer Enhanced

Security Configuration (IE ESC).
• Prevent browser malfunctions

• Disable third-party plug-ins

The following table explains where you can find these settings within the Internet Explorer GUI.

Note: Browser settings are located at Tools > Internet Options.

Tab Name Option Configuration Comments

General Home page Set to about:blank Minimizes start-up time of
new tabs.

General Tabs • Disable warning for
closing multiple tabs

• Enable switch to new
tab when tabs are
created

• Avoids unexpected
dialog boxes

• Links that open new
tabs may not otherwise
replay correctly

Privacy Pop-up blocker Disable pop-up blocker Ensures that your Website
can open new windows.

Content Auto Complete Turn off • Avoids unexpected
dialog boxes

• Avoids unexpected data
input while typing

Programs Manage add-ons Only enable required add-
ons

• Third-party add-ons
may contain defects

• Third-party add-ons
may be incompatible

Advanced Settings • Disable Automatically
check for Internet
Explorer updates

• Enable Disable script
debugging (Internet
Explorer)

• Enable Disable script
debugging (other)

• Disable Display
notification about
every script error

Avoids unexpected dialog
boxes.

Note: Depending on
your browser
version, not all
settings may be
available.

318 | Silk Performer Workbench 20.0

Tab Name Option Configuration Comments

• Disable all Warn...
settings

Running Multiple Virtual Users

When running multiple browser sessions in parallel, Silk Performer must make sure that these sessions
operate independently from each other. Cache, cookie data base, and history in particular must not be
shared across virtual users to simulate real user load. The separation of virtual users with regards to
browsers is called browser sandboxing, meaning each virtual user runs its browser in its own environment.

To run browsers in sandboxed mode, Silk Performer uses different browser-dependent techniques.

Internet Explorer

For performance and resource reasons, Silk Performer does not use a full Internet Explorer browser
instance to simulate a virtual user, but an Internet Explorer ActiveX control. The default behavior of the
Internet Explorer control is to maintain a single cookie database, cache, and history across browser
instances started by a particular Windows user. For load tests, Silk Performer reconfigures an Internet
Explorer control to maintain one cookie database, cache, and history for each virtual user.

As each virtual user has its own independent Internet Explorer sandbox, it is possible to accurately
simulate first-time and revisiting user behavior, as is used in the protocol-based approach to Web
simulation.

Chrome and Firefox

These browsers provide their own mechanism to create independent browser sessions. As a driver engin,
Silk Performer uses the corresponding WebDriver interface and some custom enhancements to enable
them to run in a load testing environment.

Creating a Test Script

The easiest approach to creating a test script is to use the Silk Performer Recorder, the Silk Performer
engine for capturing and recording Web traffic and generating test scripts based on the captured traffic.

The Silk Performer Recorder captures and records the traffic that moves between the client application and
the server under test. When recording is complete, the Silk Performer Recorder automatically generates a
test script that is based on the recorded traffic. Scripts are written in the Silk Performer scripting language,
Benchmark Description Language (BDL).

Defining a Browser-Driven Web Load Test Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Web browser-driven (AJAX).

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Silk Performer Workbench 20.0 | 319

Recording a Test Script

Recording browser-driven scripts is available for Internet Explorer only.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Select Silk Performer Browser Application from the Recording Profile list.

3. In the URL field, enter the URL that is to be recorded.

Note: The InsuranceWeb sample Web 2.0 application is available at http://demo.borland.com/
InsuranceWebExtJS/. In the Select a Service or login list, the Auto Quote and Agent Lookup
services are available for testing while the other listed services do not provide any functionality.

4. Click Start recording.

The Silk Performer recorder opens in minimized form along with the Silk Performer Browser Application
(Internet Explorer).

Note: To specify the dimensions of the browser window for recording, go to View > Resize
Browser Window and define Width and Height pixel values.

To see a report of the actions that occur during recording, maximize the recorder dialog box by clicking
 on the recorder toolbar.

5. Using the Browser Application Recorder, interact with the sample application in the same way that you
want your virtual users to act during the test (for example, click links, type data into fields, submit data,
and open the pop-up window). Your actions will be captured and recorded by the Browser Application
Recorder.

• Click (Pause/Resume Recording) to briefly stop and restart recording.
• Click (Stop Recording) to end script recording and save your script.

6. When you are finished, close the browser window and click Stop Recording. The Save As dialog box
displays.

7. Type a meaningful name for the script and click Save.

A BDL test script that is based on the user actions you performed appears in the Script window.

320 | Silk Performer Workbench 20.0

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

Browser Application and Locator Spy Usage

To enable convenient record/replay, Silk Performer provides its own Browser Application. The application
offers the following main parts:

• Browser Window (the Internet Explorer control)
• Locator Spy
• Record/Replay Window

The following image shows the most important elements of the Browser Application.

Note: Tracking of UI elements must be enabled before you can select a DOM object. When tracking is
enabled, a green rectangle appears around UI elements as your cursor passes over them. Click
Enable Tracking if tracking is not currently enabled.

Record/Replay Window

This window displays logging information during both record and replay. It allows you to start/stop and
pause/resume recording during record mode and to pause/resume replay during replay mode.

Browser Navigation Bar

The bar enables standard browser navigation.

Highlighted DOM Element

When you move your mouse over a web page, the DOM elements under the cursor are being highlighted in
green. The green rectangles help you to get a feeling for the architecture of the web page and its DOM
hierarchy.

Inspected DOM Element

Pressing Pause/Break triggers the following actions:

• The highlighted DOM element becomes the inspected DOM element.
• The position of the inspected DOM element is indicated by blue highlighting.
• The DOM hierarchy tree of the current page is determined and displayed in the Locator Spy by the

HTML tags of the DOM elements.
• The path to the inspected DOM element is expanded and the inspected DOM element is selected.
• The attributes of the inspected DOM element are displayed.
• The locator for the inspected DOM element is determined and displayed in the Locator field.

To search within the Locator Spy, press Ctrl+F on your keyboard. Alternatively, select Actions > Find in
DOM Tree. You can search for strings within Tags, Property names, or Property values.

To change the inspected DOM element, press Pause/Break on any highlighted DOM element or select
another DOM element within the DOM hierarchy tree.

When you select another DOM element in the DOM hierarchy tree, the locator for the DOM element is
determined and displayed next to its HTML tag. The locator field is updated and the DOM element is
highlighted in blue.

When a page’s DOM becomes invalid after pressing Pause/Break and the locator for the newly selected
DOM element can not be found, a red border is displayed around the locator field. Press Pause/Break to
refresh the hierarchy tree and to highlight the current DOM object. Locator strings in the DOM hierarchy
tree are also removed as they are now invalid.

Locator Field

The locator field shows the locator string of the currently inspected DOM element. Whenever the inspected
DOM element changes, the locator string is updated.

Silk Performer Workbench 20.0 | 321

The locator field can be used to copy a locator string to another location, for example to a BDL script. Or
you can use the field to manually edit locator strings. When you edit a locator, it is automatically being
validated. If the locator is invalid, it is highlighted in red. If the locator is valid, it is highlighted in green.

If you want to add a verification during a try script run, pause the replay and click Add Verification. Adding
verifications during a try script run works exactly as during recording.

In the right window of the Locator Spy, you can right-click a property and copy the property name, the
property value, or both to the clipboard. If you copy both, the string will be saved in the form
@name='value'. A real-world example is @hideFocus='false'. This way, you can conveniently
exchange properties in the locator field.

Attributes of Inspected DOM Element

This is a list of attributes (name/value pairs) belonging to the currently inspected DOM element. If the
current locator string does not fit your needs, you can manually build a specific locator string using some of
the listed attributes.

Locator Verification in Browser Application

The Browser Application offers commands that make it easier to analyze and navigate locator information
in the Replay window. Right click any API call in the Replay window to access context-sensitive commands
for copying that call's locator information, copying the content of the Info column, and displaying the locator
of the call in the Locator Spy DOM hierarchy tree.

Such commands can be useful when, for example, a locator verification or an API call fail. You can use the
locator of the API call to locate the call in Locator Spy, troubleshoot the issue, and edit the script
accordingly. You can also use the Copy command to copy and paste API details into emails and issue
reports.

Inserting Mouse Move

When you are testing websites where items only appear if you are hovering with your mouse over certain
elements (for example a button or a menu item), you will get an error during the replay of the script. Silk
Performer cannot detect the item because the hovering event is not recorded. Menus that are built with
JavaScript are a good example for such a case. However, with Silk Performer you can fix this problem
during the replay of a script.

In the Browser Application, you can click the Troubleshoot button when the error occurs, select Insert
Mouse Move from the list, move the mouse over the UI element, press <Pause/Break> on your keyboard,
click Insert, and click Rerun Script. Now the script will run without an error.

Inserting a Verification Function

1. During browser-driven script recording using the Browser Application, select a DOM object that contains
a value you want to later verify during script replay (press Pause/Break on your keyboard to select a
DOM object).

Note: Tracking of UI elements must be enabled before you can select a DOM object. When
tracking is enabled, a green rectangle appears around UI elements as your cursor passes over
them. Click Enable Tracking if tracking is not currently enabled.

The locator of the selected UI object appears in the Locator text box and the DOM hierarchy is
displayed in the tree menu.

2. Click Add Verification.

The Add Verification button is enabled when a locator value appears in the Locator field.

The Add Verification Function dialog box appears with the locator value preloaded in the Locator
field.

322 | Silk Performer Workbench 20.0

3. Select a DOM Property name (For example, href, class, onmousedown, or textContents).

To serve as a meaningful verification function, the selected property name should have a verifiable
Property value. For example, property name href should have a property value of a specific URL.

4. Click Okay to insert a BrowserVerifyProperty verification function for the selected DOM element
and its corresponding property name/value pair into the script.

The verification action is recorded in the Record Window and the verification function is inserted into the
BDL script.

Including Elements in the TTI

1. Click File > New Project to create a new browser-driven project. If you want to use an existing project,
click Model Sript on the workflow bar and skip to step 3.

2. Select Web browser-driven (AJAX) in the tree, enter a Name and Description and click Next.

3. Enter the URL of the application you want to record and click Start recording. The Browser
Application launches.

4. Navigate through the application to record your actions. To tag an element as TTI-relevant, move your
mouse over the element, press Pause/Break and click Include in TTI. You can include as many
elements as you want. Silk Performer will add a BrowserTtiIncludeElement() function to the
script.

Attention: Make sure to not click the element before you include it. In such a case, the function
BrowserTtiIncludeElement() will be tied to the click function, which might result in issues
during playback.

5. Close the Browser Application, stop the recording, and save your script.

Silk Performer Workbench 20.0 | 323

Try Script Runs

Once you have generated a test script, determine if the script runs without error by executing a Try Script
run. A Try Script run determines if a script accurately recreates the actions that you recorded with the
Browser Application-Based Recorder. It also determines if the script contains any context-specific session
information that you must parameterize before the script can run error free.

With Try Script runs, only a single virtual user is run and the stress test option is enabled so that there
is no think time or delay between transactions.

Note: The default option settings for browser-driven Try Script runs do not include live display of
content downloaded during testing (via TrueLog Explorer), though they do include the writing of log
files, report files, and replay within the Browser Application Replay window.

Trying Out Your Test Script

1. Click Try Script on the workflow bar. The Try Script dialog box appears with the script you created
selected in the Script list and the active profile selected in the Profile list. The VUser virtual user group
is selected in the Usergroup group box.

2. Configure settings as follows:

a) Select a Browser from the list: Internet Explorer, Mozilla Firefox, or Chrome.
b) Enable the Visible client option so that the browser Replay window will display the web page

content.

Screenshots of the application state are made before each API function call.

Note: Simulation settings are not applied when replaying your script with the browser.

c) Enable the Step by step execution option to run your script step by step. This option is available for
Internet Explorer only.

3. Click Run.

Note: You are not running an actual load test here, only a test run with a single virtual user to see
if your script requires debugging.

The Try Script run begins. The Monitor window opens, giving you detailed information about the run’s
progress.

Using Step-by-Step Try Script Replay

When you enable Step by step execution on the Try Script dialog box, you are given the option of
advancing your Try Script replay one step at a time. This option is available for Internet Explorer only.

1. Execute a Try Script run as explained above.

Enable the Step by step execution option on the Try Script dialog box.

2. Use the buttons in the Replay Window to control replay:

• Click (Replay Step) to execute the current API call.
• Click (Replay Run) to execute the remaining API calls without further interruption.
• Click (Stop Replay) to end the Try Script run.

Common Replay Errors

Some typical reasons why scripts do not play accurately after recording are listed below. In such instances
you will need to customize your test script.

• Stateful scripts: Recorded scripts only work when the application under test has the same state during
replay that it had during script recording. For example, a script that includes user login can only be run
correctly when the application is in a logged-out state. You can work around this issue by either setting
the application state by manually adding logic to your script, or you can ensure that your recorded

324 | Silk Performer Workbench 20.0

scripts do not change application state in the first place (for example, you could include user log out
during the recording of your script).

• Temporarily generated DOM attributes: Some AJAX frameworks generate attributes that change
each time a page is loaded (for example, x-auto values in ext). If a locator relies on such attributes,
script replay will fail. You will need to add the attributes to the ignored attributes list to prevent them from
being recorded in the future.

• Missing mouse movements: When you are testing websites where items only appear if you are
hovering with your mouse over certain elements (for example a button or a menu item), you will get an
error during the replay of the script. Silk Performer cannot detect the item because the hovering event is
not recorded. Menus that are built with JavaScript are a good example for such a case. However, with
Silk Performer you can fix this problem during the replay of a script. In the Browser Application, you
can click the Troubleshoot button when the error occurs, select Insert Mouse Move from the list, move
the mouse over the UI element, press <Pause/Break> on your keyboard, click Insert, and click Rerun
Script. Now the script will run without an error.

• Calls that run into the synchronization timeout: Built-in AJAX synchronization waits until the browser
is in an idle state before API calls are returned. This is a key factor in reliable testing of AJAX-based
applications. However, in some situations there is no idle state (for example, if a page uses polling or
keeps connections open for server-push events). In such situations the synchronization waits until it
runs into a timeout. You can work around this issue by temporarily setting the synchronization mode
back to HTML.

Analyzing Test Scripts

In contrast to the Web-protocol approach to load testing, browser-driven Web load testing uses the browser
itself for script validation.

The benefits of having Try Script runs performed in the browser are as follows:

• Live application state is presented in the browser.
• Locator Spy functionality for advanced script modification and adaption (supported for Internet Explorer

only).
• Scripts can be executed in step-by-step mode (supported for Internet Explorer only).
• Screenshots are captured before each browser API call and stored in the TrueLog for future analysis.

Once a Try Script run is shown to be successful in the Browser Application, you can analyze the results of
the Try Script run with TrueLog Explorer. Test script analysis with TrueLog Explorer involves the following
tasks:

• Viewing Virtual User Summary Reports
• Finding errors
• Comparing replay test runs with recorded test runs

Visual Analysis with TrueLog Explorer

One of TrueLog Explorer’s most powerful features is its ability to visually render Web content that is
displayed by applications under test. In effect, it shows you what virtual users see when they interact with
an application.

The TrueLog Explorer interface is comprised of the following sections:

• The Workflow Bar acts as your primary interface as you work with TrueLog Explorer. The Workflow Bar
reflects TrueLog Explorer’s built-in testing methodology by supporting its five primary tasks.

• The API Node Tree menu on the left of the interface allows you to expand and collapse TrueLog data
downloaded during tests. Each loaded TrueLog file is displayed here along with links to all relevant API
nodes. You can click a node to display a screen shot in the Screen pane and history details in
Information view.

• The Content pane provides multiple views of all received data.
• The Information pane displays data regarding testing scripts and test runs, including general

information about the loaded TrueLog file, the selected API node, BDL script, and statistics.

Silk Performer Workbench 20.0 | 325

Note: To launch TrueLog Explorer from Silk Performer, choose Results > Explore TrueLog.

Analyzing a Test Run

1. With the TrueLog from a Try Script run loaded into TrueLog Explorer, click the Analyze Test button on
the Workflow bar.

The Analyze Test dialog box displays.

2. Proceed with one of the following options:

• View a virtual user summary report
• Look for errors in the TrueLog
• Compare the replay test run to the recorded test run

Viewing a Summary Report

Virtual user summary reports are summary reports of individual Try Script runs that offer basic descriptions
and timing averages. Each report tracks a separate virtual user and presents data in tabular format.

Virtual user summary reports include details regarding the following:

• Virtual users
• Uncovered errors
• Response time information tracked for each transaction defined in a test script

326 | Silk Performer Workbench 20.0

• Page timer measurements for each downloaded Web page
• Individual timers and counters used in scripts (Measure functions)

Displaying a Virtual User Summary Report

1. With the TrueLog generated by your Try Script run loaded into TrueLog Explorer, click the Analyze Test
button.

2. Click the Show the virtual user summary report link.

Enabling Summary Reports

Because virtual user summary reports require significant processing resources, they are not generated by
default. To enable the automatic display of virtual user reports at the end of animated TryScript runs (or by
clicking the root node of a TrueLog file in the API Node Tree menu) enable the Display virtual user report
option (Settings > Workspace > Reports).

Note: Virtual user reports can also be viewed within Silk Performer by right-clicking a virtual user
name and selecting Show Virtual User Report File.

Finding Errors in a TrueLog

TrueLog Explorer helps you find errors quickly after Try Script runs. Erroneous requests can be examined
and necessary customizations can be made via TrueLog Explorer.

Note: When viewed in the API Node Tree menu, API nodes that contain replay errors are tagged with
red “X” marks.

1. With the TrueLog generated by your Try Script run loaded into TrueLog Explorer, click the Analyze Test
button.

2. Click the Find errors link. The Step through TrueLog dialog appears with the Errors option selected.

3. Click Find Next to step through TrueLog result files one error at a time.

Viewing Page Statistics

After verifying the accuracy of a test run, you can analyze the performance of your application under “no-
load” conditions via page statistics.

Overview pages detail:

• Action time: Total page response times, including processing and rendering in the browser.
• Documents time: Document download times (including server busy times), and time elapsed for receipt

of embedded objects.

Detailed action statistics show exact response times for individual Web page components, allowing you to
easily pinpoint the root causes of errors and slow page downloads.

Because Try Script runs do not include think times, the measurements they produce cannot be used to
predict real-world performance.

Detailed action statistics include the following data for each page component:

• DNS lookup time
• Connection time
• Round-trip time
• Cache statistics

Note: Compared to the protocol-based approach, browser-driven test statistics do not include certain
low-level/protocol-related metrics.

Silk Performer Workbench 20.0 | 327

Viewing an Overview Page

1. From the API Node Tree menu, select the API node for which you would like to view statistics.

2. Select Browser Nodes on the Step through TrueLog dialog box.

3. Click the Statistics tab to open Statistics view.

4. Select specific components listed in the URL column for detailed analysis and page drill-down.

Comparing Record and Replay Truelogs

With Web application testing, TrueLog Explorer shows the actual Web pages that are received during tests.
Live monitoring of downloaded data is available via TrueLog Explorer animated mode. Data is displayed as
it is received during testing.

By comparing a TrueLog that has been generated during the script development process alongside the
corresponding TrueLog was recorded originally, you can verify that the test script runs accurately.

1. Click the Analyze Test button on the Workflow Bar. The Workflow - Analyze Test dialog box appears.

2. Click Compare your test run.

3. The corresponding recorded TrueLog opens in Compare view and the Step through TrueLog dialog
box appears with the Browser Nodes option selected, allowing you to run a node-by-node comparison
of the TrueLogs.

4. Click the Find Next button to step through TrueLog result files one page at a time.

Note: Windows displaying content presented during replay have green triangles in their upper left
corners. Windows displaying content originally displayed during application recording have red
triangles in their upper left corners.

Configuring Project Profile Settings

Silk Performer offers a variety of browser-driven Web load-testing profile settings. Web (browser-driven)
profile settings are project-specific settings that relate to synchronization and object locator generation.
These settings are specified on a per-project basis.

Note: For the purposes of this tutorial, you do not need to change the default settings.

Configuring Browser-Driven Recording Settings

1. Right-click the Profiles node in the Project tree menu and select Edit Active Profile. The Profile -
[Profile1] - Simulation dialog box displays at the Simulation tab (Replay category).

2. Click Record.

3. Scroll down and select Web (Browser Driven).

4. Select the Recording tab.

5. Type any DOM attribute names that should be ignored during recording in the Ignored DOM attribute
names text field. Attribute names that match any pattern in the Ignored DOM attribute names field will
be ignored during recording.

6. Type any DOM attribute values that should be ignored during recording in the Ignored DOM attribute
values text field. Attribute values that match any pattern in the Ignored DOM attribute values field will
be ignored during recording.

7. The Preferred DOM attribute names option configures the name of the custom attributes that are
recorded.

8. Click OK.

328 | Silk Performer Workbench 20.0

Configuring Browser-Driven Replay Settings

1. In the Projects tree menu, right-click the Profiles node and select Edit Active Profile. The Profile -
[Profile1] - Simulation dialog box opens at the Simulation tab.

2. Click the Replay category button.

3. Scroll down to and select Web (Browser Driven). The Web (Browser Driven) / General tab displays.

4. Select the browser you want to use for this settings profile from the list.

5. Use the Simulation group box to set options for realistic simulation of users visiting Web sites:

• Click the First time user option button to generate a realistic simulation of users who visit a Web site
for the first time.

Persistent connections will be closed, the Web browser emulation will be reset, and the document
cache, the document history, the cookie database, the authentication databases, and the SSL
context cache will be cleared after each transaction. In such instances, Silk Performer downloads the
complete sites from the server, including all files.

• Click the Revisiting user option button to generate a realistic simulation of users who revisit a Web
site. Non-persistent sessions will be closed, but the document history, the persistent cookie
database, and the context cache will not be cleared after each transaction. In such cases, pages are
not downloaded if they exist in the document cache.

• Select the IE Compatibility Mode to define the rendering mode that Internet Explorer (IE) uses to
display automatic replaying on the user's Web browser. The Default value depends on the user's
Internet Explorer browser version.

Note: Simulation settings are not applied when replaying your script with the Browser Application.
However, all caching settings that you configure within Internet Explorer's Internet options will be
applied to your browser-driven tests.

6. Select a replay compatibility to define how locators are generated. Setting this option ensures flawless
replay of older scripts with newer versions of Silk Performer and therefor helps to avoid compatibility
issues. You can also define the replay behavior for every single script by manually scripting the
BrowserReplayCompatibility function.

7. Ensure that the Legacy input mode setting is disabled.

8. Click the Synchronization tab.

9. Configure Synchronization settings as required.

• The Synchronization mode option configures the algorithm that is used to wait for the ready state
of a browser invoke call (pre and post invocation).

• The Synchronization timeout option configures the maximum time in milliseconds that is used to
wait for an object to be ready (pre and post invocation).

• In the URLs to exclude from synchronization text box, type the entire URL or a fragment of the
URL for any service or Web page that you want to exclude. Some AJAX frameworks or browser
applications use special HTTP requests, which are permanently open in order to retrieve
asynchronous data from the server. These requests may let the synchronization hang until the
specified synchronization timeout expires. To prevent this situation, either use the HTML
synchronization mode or specify the URL of the problematic request here. Separate multiple entries
with a comma.

• The Object resolve timeout option configures the maximum time in milliseconds to wait for an
object to be resolved during replay.

• The Object resolve retry interval option configures the time in milliseconds after which another
replay attempt should be made following an object not resolving.

10.Click OK.

Advanced Concepts for Browser-driven Tests

Silk Performer Workbench 20.0 | 329

Defining Browser Window Dimensions for Recording

Launch the Browser Application for browser-driven load testing .

Note: Browser dimensions can only be defined during script recording.

1. To define specific browser-window dimensions for recording, go to View > Resize Browser Window.
The Resize Browser Window dialog box is displayed.

2. Specify a Width setting (in pixels).

3. Specify a Height setting (in pixels).

4. Click OK.

Testing Websites That Use Non-system Codepage Characters

Silk Performer is a multibyte character set (MBCS) based application. When you use browser-driven load
testing, you must set the correct system codepage. This ensures that the characters displayed on the
website are processed correctly.

To enable browser-driven load testing of websites that use non-displayable characters, Silk Performer
converts these characters. For example: The following string is converted to a set of numbers:

The numbers represent the Unicode value of each character in the hexadecimal format. When you replay a
script, Silk Performer converts the string back and uses it while driving the browser.

Note: Silk Performer applies the conversion only in Browser-Driven API calls. Do not use non-
displayable characters in other API calls.

Time to Interact

Testing AJAX websites is challenging

Measuring the user experience of AJAX websites with the timings the browser provides can be difficult. A
user can consider a web page as ready, although the processing in the background is not yet completed.
Also, the processing might be completed, but the web page is not yet ready for the user at that point in
time. Essential page elements might be loaded asynchronously, that is after the onLoad Function phase
and during the Asynchronous Application Logic phase. In such a case, the perceived loading time of a web
page can differ considerably from the measured loading time. As a result, Silk Performer introduced the so-
called Time to Interact (TTI).

The Time to Interact

In Silk Performer terminology, the Time to Interact is defined as the time from a user interaction (such as
navigating to a URL or a click on a link) until all relevant elements a user requires to interact with the page
are ready; even if the page has not yet completely loaded. Identifying the relevant elements of a page can
not simply be automated, as it heavily depends on the use case and on the perspective which elements to
consider relevant. For example: A web shop company can test their website from their own perspective and
from the perspective of their customers. From the company-perspective, the elements that contain the
special offers might be considered relevant. But from the customer-perspective, just the search field might
be considered relevant.

Therefore, the performance engineer has to tag all TTI-relevant elements during recording. The Recorder
then generates a BrowserTtiIncludeElement() function for each of these tagged elements. During
replay, Silk Performer measures how long it takes to load each TTI-relevant element and reports the
maximum as the Time to Interact.

330 | Silk Performer Workbench 20.0

Browser-driven Measures

For browser-driven tests, Silk Performer provides the following measures:

Measure Description

Dom interactive Reflects the time span from the request until the browser has completed
parsing all HTML elements and constructing the DOM.

Dom complete Reflects the time span from the request until the browser has completed
downloading and processing all resources (images, stylesheets, scripts,
and so on).

Load End Reflects the time span from the request until the browser has completed
executing the onLoad function. As a final step in every page load process
the browser sends an onLoad event, which triggers the onLoad function.
Once the onLoad functions are executed, additional application logic
might be executed.

First paint Reflects the time span from the request until the page begins to display.
This measure is available for Internet Explorer only.

Time to interact Reflects the time span from the request until all TTI-relevant elements
are available on the page. At this point in time, the user can interact with
the web page.

Action time Reflects the time span from the request until the browser has completed
downloading and processing all resources. The end of this time span

Silk Performer Workbench 20.0 | 331

Measure Description

varies, depending on the defined synchronization mode: If the
synchronization mode HTML is defined, the action time ends when the
onLoad function is completed. If the synchronization mode AJAX is
defined, the action time ends during the Asynchronous Application Logic
phase.

Note: DOM interactive, DOM complete, and Load end can be described as consecutive events.
These events all end during the Processing phase. In contrast, First paint and Time to interact are
completely website-dependent; they can end in the HTTP Response phase, in the Processing, and in
the Asynchronous Application Logic phase.

Troubleshooting Browser-Driven Load Testing Issues
Learn how to start the perfrun process using an actual user account, handle client certificates, and exclude
specific URLs from AJAX synchronization.

Note: Browser-driven load testing is supported for Internet Explorer 10, 11.

Browser-Driven Virtual Users on Remote Agents

Starting a remote agent with an actual user account rather than the system account, which is the default,
makes a big difference for browser-driven virtual users. Each virtual user employs its own Internet Explorer
instance, which loads the settings stored in the Microsoft Windows user's profile.

Under the system account, Internet Explorer loads different settings than under a user account. Typically
Internet Explorer utilizes fewer or different HTTP headers than with user accounts. In order to avoid the
issue of recorded traffic differing from generated traffic, it is recommended to run remote agents under a
user account.

Note: Ensure that the specified user account is a member of the Remote Desktop Users Windows
group on the remote agent.

The required account setting can be configured in System Configuration Manager on the Applications tab
or a user account can be set in the System Settings > Agents > Advanced tab if all remote agents
should run under the same user account.

Recommended Internet Explorer settings on agents

When executing browser-driven load tests using Internet Explorer, make sure that the Internet Explorer
installation on your agents is set-up as described below. Otherwise, you might experience issues during
replay.

• In Internet Explorer, open the Internet Options and set the home page to about:blank.
• In the Internet Options, on the Advanced tab, in the Security section ...

• disable Check for publisher's certificate revocation
• disable Check for server certificate revocation
• disable Warn about certificate address mismatch

• In the Internet Options, on the Security tab, do the following for each zone (Internet, Local intranet,
Trusted sites, Restricted sites):

• uncheck Enable Protected Mode
• set the lowest possible security level

• In Internet Explorer, in the Compatibility View Settings ...

• disable Display intranet sites in Compatibility View
• disable Use Microsoft compatibility lists

332 | Silk Performer Workbench 20.0

• remove all added websites
• On Windows Server operating systems, open the Server Manager and disable the IE Enhanced

Security Configuration (IE ESC).

Handling Client Certificates

The following applies only, when you use Internet Explorer.

You can select a client certificate during script recording. Client certificates facilitate authentication against
certain Web sites. APIs are now available for importing certificates to and deleting certificates from the
Microsoft certificate store, which is used by Internet Explorer and the Silk Performer browser-driven load
testing feature.

The certificate APIs work with Microsoft Windows 7 or later, Microsoft Windows Server 2008 R2 or later,
and Internet Explorer 8 or later.

Certificate handling for browser-based Web load testing works independently of certificate handling for
protocol-based Web testing. This means that certificates need to be imported manually via Internet
Explorer's Internet Options menu entry (or the management console snap-in certmgr.msc). If
authentication works with Internet Explorer 8 it will also work for browser-based load testing.

1. When importing your certificate, disable strong private key protection:

a) On the Certificate Import wizard Password page, uncheck the Enable strong private key
protection checkbox.

2. Disable server certificate revocation:

a) Open Internet Explorer's Tools menu and select Internet Options. The Internet Options dialog
opens.

b) Click the Advanced tab.
c) Uncheck the Check for server certificate revocation* checkbox.
d) Click OK.

3. Activate prompting of the client certificate selection dialog box:

a) Open Internet Explorer's Tools menu and select Internet Options. The Internet Options dialog
opens.

b) Click the Security tab.
c) Click Custom Level... The Security Settings page opens.
d) Scroll down to Don't prompt for client certificate selection when no certificates or only one

certificate exists and select the Disable option box.
e) Click OK.
f) Restart Internet Explorer.

Removing Certificate Errors

The following applies only, when you use Internet Explorer.

During recording a Web page may appear with the message There is a problem with this
website's security certificate. Additionally the Continue to this website (not
recommended) link does not work. Certificate errors can occur due to multiple reasons and you must
resolve any certificate errors before you can record a Web site browser-driven. For more information on
certificate errors, visit About certificate errors.

One of the more common problems is an address mismatch. To disable address-mismatch warnings:

1. Open Internet Explorer's Tools menu and select Internet Options. The Internet Options dialog opens.

2. Click the Advanced tab.

3. Uncheck the Warn about certificate address mismatch* checkbox.

4. Click OK.

Silk Performer Workbench 20.0 | 333

http://windows.microsoft.com/en-us/Windows7/About-certificate-errors

5. Restart Internet Explorer.

Excluding URLs from AJAX Synchronization
To better facilitate the testing of AJAX-based Web applications, specific URLs can be excluded from
browser synchronization.

To illustrate the value of this, imagine that an application displays server time by polling data from the
server. This service requires a constant stream of traffic between the client and the server. This presents a
challenge to AJAX synchronization because the application never goes into an idle state. By excluding this
service from synchronization, other application processes that use different services can be accurately
tested.

1. Right-click a profile in the Project menu tree and select Edit Profile. The Profile - Simulation window
opens.

2. In the Replay group box, click the down arrow to scroll down. Click Web (Browser Driven).
3. Select the Synchronization tab.

4. Enter URLs to be excluded into the URLs to exclude from synchronization text field.

5. Click OK.

Note: When URL exclusion is not feasible due to there being multiple processes running within a
single service, you need to disable AJAX synchronization and switch to HTML mode.

Limitations for Replay with Different Browsers

Silk Performer uses Internet Explorer to record browser-driven scripts. To replay these scripts, you can use
either Internet Explorer, Firefox, or Chrome.

Although these browsers basically resemble each other, they can behave quite differently in a variety of
circumstances. This can also result in different behavior, when replaying the very same script with different
browsers.

Below you can find a number of areas where you might encounter differences or issues. Note that many of
the described issues are corner cases and rarely occur. Also note that the limitations heavily depend on
your specific use case and on the application under test, including the underlying frameworks. Therefore, it
is not possible to describe every potential limitation in every detail. If you encounter a specific limitation and
need more information, contact SupportLine.

Mouse clicks

When replaying scripts, mouse clicks are processed differently in different browsers. Or in other words: The
application under test receives different click events, depending on the used browser. For example:
Replaying a double-click, raises a click and a double-click event in Internet Explorer and Firefox - this is the
default behavior. But replaying a double-click in Chrome, raises just a double-click event.

Here is another example: When replaying a script in Chrome, the right-click event fails when the center of
the clicked element is not visible. But in Internet Explorer and Firefox, the right-click event works flawlessly,
even if the center of the clicked element is obscured.

Key strokes

Using key strokes within browsers also results in different behavior. For example: When the cursor is
placed within a text field within Internet Explorer and you press the Esc key, everything you have typed so
far is being removed. Pressing the Esc key in the other browsers has no effect. Another example is that
Firefox and Chrome do not differentiate between the Return key and the Enter key on the numpad, while
Internet Explorer does.

Locators

A browser might use an element attribute that the other browsers do not use. For example: Internet
Explorer uses spellcheck as a generic attribute that exists for every element, while Chrome and Firefox

334 | Silk Performer Workbench 20.0

only use the attribute when it is explicitly specified. Since Internet Explorer is used for recording the script,
this results in an error when the script is replayed with Chrome or Firefox.

New windows

When your application under test uses a number of short-lived pop-up windows, this might result in
unstable behavior. Here is a real-world example that might cause issues: You click a link that opens a pop-
up window. This window immediately triggers another window to open, and then it closes again. When you
use Firefox or Chrome, the window might be missed during replay. A possible workaround is to use the
custom function BrowserWaitForNewWindowWithLocator, which is located in the BrowserAPI.bdh.

Invalid URLs

When you navigate to an invalid URL, Internet Explorer raises an error, while Chrome and Firefox do not.
This can be problematic when monitoring a URL. The monitor will never raise an error, although the URL
cannot be reached. For such a case, it can be useful to add a verification function to your script.

Measures

Due to the diverse replay technologies and the different architectures of the applications under test, some
measures might be missing. For example: Some traffic might not be considered, because the application
under test uses redirects or iframes.

Alert handling

When you use Firefox or Chrome to replay scripts, only JavaScript alerts and prompts can be handled.
Native dialogs, like the file save or file open dialog, are not supported.

Compatibility mode

Scripts that are created using Silk Performer 18.5 or an earlier version, use a different replay compatibility
mode. You can set the compatibility mode in the profile settings or by using the BDL function
BrowserReplayCompatibility.

In the past, locators used to be tailored to Internet Explorer, because it was the only supported browser.
Thus, the locators used in these older scripts might cause replay issues.

Testing Apps for Mobile Devices

Mobile Apps Overview
Due to smaller screen size and different input methods (touch screen) of mobile devices, many Web
applications look different when loaded on a mobile device compared to a browser on a PC. From a load
testing perspective such applications should be treated as two separate applications, even though they
might share some components on the back-end.

Silk Performer fully supports performance testing of mobile Web and native apps. It offers simulation
capabilities for a variety of mobile devices, such as iPhone, iPad, Android, Windows Phone, and
Blackberry, but other mobile browsers can also be simulated with custom profiles.

An interesting and important simulation parameter for mobile app testing is the bandwidth limitation. This
option is not significant for usual Web testing via PCs due to the fast wired (broadband) internet
connections, however for real world simulation of mobile devices it makes a real difference to set the
bandwidth to particular limits. Silk Performer offers many standard bandwidth limitation settings used in the
mobile world, such as EDGE, HSDPA, or LTE.

Recording Mobile Apps Using Mobile Devices
Things to consider when recording via a mobile device:

Silk Performer Workbench 20.0 | 335

• Disable security warnings in the browser of your mobile device
• Disable "String completion" in the browser of your mobile device, otherwise a Web call will be scripted

after each key press
• Delete your browser's cookies before attempting to record a script
• Operating system-specific instructions for your specific device are easy to find on the internet using your

favorite search engine

To test mobile device apps, the recommended option is to record apps directly via your mobile device if it
supports a configurable proxy.

1. Click Start Here on the workflow bar. The Outline Project dialog box appears.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. In the Type menu tree, select Web Browser > Mobile Devices.

5. Click Next to create a project based on your settings.

6. On the Workflow - Model Script dialog box, click Record via mobile device. The Record via mobile
device dialog box appears.

7. On your mobile device, configure the browser to use the IP address and port of the machine where Silk
Performer is installed as proxy. Enter the information as it is displayed in the table on the Record via
mobile device dialog box.

Note: Configuring your mobile device's browser proxy settings depends on the device and
operating system that you are using. Instructions for your specific device are easy to find on the
internet using your favorite search engine.

8. When you are done with configuring your mobile device's browser proxy settings: If you have already
configured a certificate or if you do not need to record over a secure connection, click Start recording
and skip the following step. If you want to record over a secure connection and you have not yet
configured the Micro Focus CA (certificate authority) certificate or the certificate of your system under
test, click Record over a secure connection on the Workflow - Model Script dialog box and proceed
with the following step.

9. On the Configure secure recording dialog box, select if you want to use the Micro Focus CA
(certificate authority) certificate or if you want to use the certificate of your system under test. If you are
unsure which approach to use, refer to Secure Connections and Certificates.

If you selected Configure Micro Focus certificate:

a) The Silk Performer Recorder dialog opens in minimized form and the Record a secure connection
with the Micro Focus CA certificate dialog box appears.

b) Scan the QR code and install the certificate on your mobile device.
c) When you are done, click OK on the Record a secure connection with the Micro Focus CA

certificate dialog box.

If you selected Configure server certificate:

a) In the Server certificate field, locate the server certificate you want to use.
b) In the Pass phrase field, enter the pass phrase that is to be used, if the server certificate you want

the Recorder to use is protected with a pass phrase.
c) Optional: Check the Send root CA during SSL handshake check box to have the Recorder send

the root CA certificate during the SSL handshake. The root CA certificate may be requested by a
client to authenticate the certificate authority that signed the Recorder server certificate.

d) Optional: In the Root CA certificate field, locate the root CA certificate that you want to use.
e) After you have completed configuring the server certificate, click Start recording.

10.Now interact with the Web browser or the native app on your mobile device to record a script.

11.When you are done, click Stop Recording in Silk Performer Recorder and save the recorded script.

336 | Silk Performer Workbench 20.0

Recording Mobile Apps With a Browser

1. Click Start Here on the workflow bar. The Outline Project dialog box appears.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. In the Type menu tree, select Web Browser > Mobile Devices.

5. Click Next to create a project based on your settings.

6. On the Workflow - Model Script dialog box, type the URL of the application under test in the URL text
box. Option: Click Analyze web page to find visual breakpoints for your web application.

7. Click Certificate... if you want to use the certificate of your system under test. If you are unsure which
approach to use, refer to Secure Connections and Certificates.

8. Click record using customized browser. The Record an application using a customized browser
dialog box appears.

9. Select a Simulation Browser.

Due to the multitude of technologies that browser-based applications are based on, different recording
types are available for selection.

Note: Click Settings to change the recording profile used for recording in Silk Performer profile
settings (Settings > System > Recorder > Recording Profiles).

10.Select a predefined mobile device or a custom resolution and click Start recording.

11.Using the client application, conduct the kind of interaction with the target server that you want to
simulate in your test. The interaction is captured and recorded by the Recorder. A report of your actions
and of the data downloaded appears on the Actions page.

12.To end recording, click the Stop Recording button.

13.Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

Recording Mobile Apps With a Mobile Emulator
Recording mobile apps with an emulator follows the standard workflow, however you need to set up and
configure an operating system-specific emulator on your computer where you record your test. Example
procedures can be found in the community wiki:

• Recording Mobile Apps on the Android Emulator with Silk Performer
• Mobile App Recording with Silk Performer and the Windows Phone Emulator

Replaying Apps for Mobile Devices
Simulate transactions as virtual mobile device users to test applications for mobile devices.

1. In the menu bar, click Settings > Active Profile . The Profile dialog box appears.

2. Click Replay and Internet. In the Bandwidth Simulation section, define the required bandwidth
configuration. For mobile traffic simulation one of the following might be appropriate:

• GPRS
• EDGE
• UMTS
• HSDPA
• HSPA+
• LTE

3. Click Web to select a mobile device. The following mobile device settings are available:

• iPhone

Silk Performer Workbench 20.0 | 337

http://community.microfocus.com/borland/test/silk_performer_-_application_performance_testing/w/wiki/613.recording-mobile-apps-on-the-android-emulator-with-silkperformer.aspx
http://community.microfocus.com/borland/test/silk_performer_-_application_performance_testing/w/wiki/285.mobile-app-recording-with-silkperformer-and-the-windows-phone-emulator.aspx

• iPad
• Android
• Windows Phone
• Blackberry

Note: If you need a different mobile browser type, you can use the Custom option to specify your
browser's parameters.

4. Follow the remaining workflow steps to define your workload and run the test.

Responsive Web Design Testing
Responsive web design (RWD) is a design paradigm for web applications that allows to dynamically adapt
the user interface to the physical conditions of the end user device.

In other words: A web application renders its user interface differently depending on the viewport of the
browser. For example, a web page with a three column layout on a desktop monitor might switch to a two
column layout on a tablet and a single column layout on a mobile phone. Or the application switches from a
one column layout in portrait orientation to a two column layout in landscape orientation.

Nicely applied RWD patterns also allow to optimize a web page in terms of resources. A low resolution
viewport makes the application display low resolution images, whereas on a high resolution screen the
same application loads a high resolution version of the embedded images.

For load testing, RWD means that testing an application from more than the one usual end user
perspective becomes necessary. Beside different user groups, different browsers, and different network
conditions, you also need to consider the end user device or viewport, which adds another dimension in
test combinations.

BMC Remedy IT Service Management Support
The workflow for testing BMC Remedy IT Service Management with Silk Performer is the same as the
workflow for testing Web-based applications, with the following exceptions:

• On the Workflow - Outline Project dialog, you must select the Remedy version under test (these
settings are grouped under the ERP/CRM node).

• On the Workflow - Model Script dialog, you enter the commandline path to the Remedy installation
under test.

• Recorded scripts include a number of WebRemedy functions, which are modified WebPagePost and
WebPageUrl calls.

• In the Forms section of test scripts, each Web form contains an XML fragment that is a visualization of
the Remedy traffic that was generated by the browser. This XML visualization of the browser traffic is
easier to read than actual Remedy traffic. It also facilitates Silk Performer script customization. The
actual, originally recorded Remedy traffic is commented at the end of each Web form XML fragment.

BMC Tutorial

BMC has created an excellent tutorial that illustrates how to load test BMC Remedy IT Service
Management (ITSM) applications with BMC Remedy Action Request System (AR System). To obtain the
tutorial, contact BMC and request the following white paper: Performance Benchmarking Kit: Using
Incident Management with Silk Performer .

Licensing

A premium virtual user license is required to test Remedy with Silk Performer.

TrueLog Support

TrueLog functionality is not supported for Remedy testing.

338 | Silk Performer Workbench 20.0

Data Representation in Silk Performer

Remedy uses a proprietary format for data that is sent from the client to the server. This format includes
length prefixes and makes customization difficult.

For example:

157/GetTableEntryList/11/smi-web-00126/
SMI:TEL35:SHR:AgentConsole12/Windows_View9/53687098211/
smi-web-00127/SMI:TEL35:SYS:IncomingEmail0/
1/01/02/0/0/2/0/2/0/2/0/

Such data is sent in HTTP requests to the URL http://<hostname>/arsys/BackChannel.

Remedy versions 6.3 patch level 2 and earlier send such data in the body of HTTP POST requests.
Versions 6.3 and later send such data in the query string of HTTP GET requests.

The main benefit of Silk Performer’s Remedy add-on is that this proprietary data format is translated into
an XML-based representation that eliminates the length prefixes and introduces names to the individual
data items. This makes scripts easier to understand and customize. During script replay, this XML-based
format is transparently translated back into the original format.

This backward transformation is performed by the functions WebRemedyBackChannelUrl and
WebRemedyBackChannelPost.

WebRemedyBackChannelUrl is a replacement for the function WebPageUrl, while
WebRemedyBackChannelPost is a replacement for the function WebPagePost.

For example, without the Remedy add-on the following API call would be recorded as:

WebPagePost("http://213.131.176.85/arsys/BackChannel",
 "157/GetTableEntryList/11/smi-web-00126/
SMI:TEL35:SHR:AgentConsole12/W"
 "indows_View9/53687098211/smi-web-00127/
SMI:TEL35:SYS:IncomingEmail0/1"
 "/01/02/0/0/2/0/2/0/2/0/",
 STRING_COMPLETE,
 "text/plain; charset=UTF-8",
 "arsys/BackChannel");

With the Remedy add-on the API call is recorded as follows:

WebRemedyBackChannelPost("http://213.131.176.85/arsys/BackChannel",
"<?xml version='1.0'?>\r\n"
"<SegueRemedyXml
operation=\"GetTableEntryList\">\r\n"
" <string name=\"table_server\">smi-web-001</string>\r\n"
" <string name=\"table_schema\">SMI:TEL35:SHR:AgentConsole</string>\r\n"
" <string name=\"table_vui_name\">Windows_View</string>\r\n"
" <long name=\"table_field_id\">536870982</long>\r\n"
 " <string name=\"server\">smi-web-001</string>\r\n"
" <string name=\"schema\">SMI:TEL35:SYS:IncomingEmail</string>\r\n"
 " <string name=\"app_name\"></string>\r\n"
 " <long name=\"start_row\">0</long>\r\n"
 " <long name=\"num_rows\">0</long>\r\n"
" <Array name=\"sort_order\"></Array>\r\n"
 " <string name=\"qualification\"></string>\r\n"
" <Array name=\"qual_field_ids\"></Array>\r\n"
 " <Array name=\"qual_field_values\"></Array>\r\n"
 " <Array name=\"qual_field_types\"></Array>\r\n"
"</SegueRemedyXml>",
 STRING_COMPLETE,
"text/plain; charset=UTF-8",
 "BackChannel - GetTableEntryList");

The key differences are:

Silk Performer Workbench 20.0 | 339

• Use of the function WebRemedyBackChannelPost instead of WebPagePost.
• Data is in XML format instead of the original format.
• XML format does not contain length prefixes, which would otherwise have to be considered during script

customization.
• XML format specifies data type and meaningful names for each data item.

Additional Remedy Add-On Benefits

In addition to the different representation of the data there are other benefits to using the Remedy add-on:

• Remedy.bdh: A bdh file that implements the functions WebRemedyBackChannelPost,
WebRemedyBackChannelUrl and WebRemedyInit.

• The recorder places a call to the function WebRemedyInit() in the TInit transaction.
• The function WebRemedyInit() installs verifications to catch application-level errors.
• The recorder detects all timestamps which would otherwise be hard coded into the script, and records

the function GetTimeStamp() instead.
• The recorder records parsing functions for IDs of newly created entities and appropriate substitutions for

all occurrences of such IDs in the script with the parsed variable.

Remedy SilkEssential

The Remedy application type is triggered through a SilkEssential package. It contains a set of recording
rules and a remedy.bdh. The remedy.bdh wraps the WebPageCalls:

// wrapper function for WebPagePost
// param nDataLength will be ignored
function WebRemedyBackChannelPost(sUrl : string;
 sData : string;
 nDataLength : number optional;
 sContent : string optional;
 sTimer : string optional;
 formUrl : form optional) : boolean
<API_FUNCTION>
 begin
 WebRemedyBackChannelPost := WebPagePost(sUrl,
RemedyBackChannelData(sData),
 STRING_COMPLETE, sContent, sTimer, formUrl);
 end WebRemedyBackChannelPost;

and

// wrapper function for WebPageUrl for use with BackChannel requests
 function WebRemedyBackChannelUrl(sUrl : string;
 sTimer : string optional;
formUrl : form optional) : boolean <API_FUNCTION>
 var
sXmlData : string(100000);
sDummy : string;
begin
WebFormExpand(formUrl, sDummy, 1, true);
WebFormValueGet(formUrl, sXmlData, sizeof(sXmlData), "param");
WebFormValueSet(ARSYS_BACKCHANNEL_INTERNAL_HELPER, "param",
RemedyBackChannelData(sXmlData));
WebRemedyBackChannelUrl := WebPageUrl(sUrl, sTimer,
ARSYS_BACKCHANNEL_INTERNAL_HELPER);
end WebRemedyBackChannelUrl;
dclform
ARSYS_BACKCHANNEL_INTERNAL_HELPER <ENCODE_URICOMPONENT> :
 "param" := "";

340 | Silk Performer Workbench 20.0

Protocol Detection and Conversion

Remedy protocol detection is not available by default. However, it is already built into the Silk Performer
recorder and is enabled by choosing the appropriate Remedy application type when creating a new project.

The Remedy data conversion into XML and back out of XML is implemented in the ProxyEngine for
recording and in the perfRemedy.dll, which is loaded into the perfRun by the Remedy.bdh.

Citrix XenApp Support
Silk Performer provides record and replay support for the testing of applications that are hosted via Citrix
XenApp session and application virtualization technologies.

Citrix facilitates real-time access to shared applications over networks and the Internet. Remote access to
Citrix-enabled applications can be over DSL, T1, ISDN, or dial-up. Citrix enables multiple users to run
shared applications simultaneously. Communication between Citrix plug-ins (clients) and servers consists
of exchange of user inputs (keyboard/mouse) and screen shots.

Silk Performer supports both Citrix server recording and Citrix hosted application recording. Citrix plug-ins
offer access to specific applications and multiple desktop windows.

The Citrix Web Interface enables users to access hosted XenApp applications and XenDesktop virtual
desktops without connecting directly to host computers. Users access these resources either via a Web
browser or the Citrix online plug-in.

Silk Performer offers two Citrix project types:

• Citrix - Used to test hosted applications that are accessed via Citrix plug-ins (clients)
• Citrix Web Interface - Used to test Citrix-enabled applications that are published via Citrix Web interface

The PDF-based Citrix XenApp Tutorial walks you through the entire process of testing Citrix-enabled
applications. The tutorial is available in Silk Performer at Start > All Programs > Silk > Silk Performer
20.0 > Documentation > Tutorials > Citrix XenApp .

Note: Silk Performer Help includes all of the content that is included in the Citrix XenApp Tutorial.

Citrix Program Neighborhood

Rather than relying on the Web Interface to distribute applications, earlier versions of Citrix use the
Windows-based Citrix Program Neighborhood. The Citrix Program Neighborhood allows users to view a
listing of all available applications that are by Citrix XenApp on-demand application delivery servers. An
enumeration of available resources takes place automatically each time you launch the Citrix Program
Neighborhood via the Citrix Browser Service.

Important: When applications are distributed via the Citrix Program Neighborhood you must
configure the Citrix published application recording service to start on your system or the Citrix
Program Neighborhood will not be able to update your applications list.

Defining Projects
The first step in conducting a Citrix load test is to define the basic settings for your Silk Performer project.
Following that you need to perform prerequisite XenApp server configurations.

Configuring the Citrix client software

Before defining a Citrix project you must install the Citrix client software (Citrix Receiver) and configure how
the Citrix server is to handle time-outs. To download the Citrix client software, navigate to http://
www.citrix.com.

Configuring the Citrix server depends on the version you are using. Following is the procedure for
configuring Citrix Server 4.0.

Silk Performer Workbench 20.0 | 341

http://www.citrix.com
http://www.citrix.com

Note: To configure Citrix Server version 4.5 or higher, go to Start > Programs > Administrative
Tools > Terminal Services Configuration and double-click the ica-tcp option.

1. Go to Start > Programs > Citrix > Administration Tools and launch the Citrix Connection
Configuration Tool.

2. Double-click ica-tcp connection.

3. On the following dialog box, click Advanced. The Advanced Connection Settings dialog box appears.

4. Set the Disconnection timeout limit. 1 minute is the recommended timeout.

5. Set the Idle timeout limit. 5 minutes is the recommended timeout.

6. Select reset from the On a broken or timed-out connection drop list.

If this option is not selected, sessions will remain open after replay stops due to broken or timed-out
connections. This will generate replay problems when users next log into sessions as scripts will
continue from the point where they left off in the previous session. In such instances sessions need to
be ended manually.

Defining Your Citrix XenApp Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Terminal Services > Citrix or Terminal Services > Citrix Web
Interface.

The Citrix application type uses the Silk Performer Citrix Recorder to test the delivery of Citrix-enabled
applications that are accessed via any Citrix online or offline plug-in.

The Citrix Web Interface application type is used to test the delivery of Citrix-enabled applications that
are accessed via the Citrix Web Interface.

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Creating a Citrix Plug-In Test Script

The easiest approach to recording user actions via Citrix XenApp plug-ins (clients) that connect directly to
Citrix XenApp servers and then creating a test script is to use the Silk Performer Recorder, the Silk
Performer engine used for capturing and recording traffic and generating test scripts.

The Silk Performer Recorder captures and records the traffic between Citrix XenApp plug-ins and the
server under test. When recording is complete, the Silk Performer Recorder automatically generates a test
script based on the recorded traffic. Scripts are written in the Silk Performer scripting language, Benchmark
Description Language (BDL).

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. In the Recording Profile list, select Silk Performer Citrix Recorder to record a Citrix XenApp-
enabled application via the Silk Performer Citrix Recorder application.

This recording profile is appropriate for testing Citrix plug-ins that connect directly to Citrix XenApp
servers.

3. Optional: If you have an ICA file that defines your server connection parameters, type the full path of the
ICA file into the Command line field.

4. Click Start recording.

342 | Silk Performer Workbench 20.0

5. The Silk Performer Recorder then opens in minimized form along with the Silk Performer Citrix
Recorder.

If correct login credentials are not available at startup, the Connect dialog will open. The Connect
dialog is also accessible via the Connect button in the upper left corner of the Silk Performer Citrix
Recorder.

Note: If you have an ICA file that defines your server connection parameters, select ICA File and
browse to the ICA file to skip past all of the Login fields.

6. On the Connect dialog in the Server field, enter the name of the Citrix XenApp server that is to be
recorded.

7. Complete the User name, Password, and Domain fields for the server under test.

8. Type the name of the hosted application in the Application field.

9. The Client name field enables you to specify a client name for your session. The default client name for
the Citrix recorder is SP_Recorder (the default client name for the Citrix Player is SP_User_x). If you
specify a different client name for recording, then a CitrixSetClientName function will be inserted
into the script. In such cases you must customize the client name value, otherwise all users will use the
same client name, which may lead to replay problems.

10.Select the desired Color depth for recording.

11.Select the desired screen Resolution for recording.

Note: Do not change the resolution after recording your script, as replaying with a different
resolution setting may cause mouse actions to fail on repositioned elements.

12.Click Connect to begin the Citrix XenApp session.

13.Interact with the shared desktop in the Citrix Recorder in the same way that you want your virtual users
to act during the test. For example, you can click links, open applications, and enter data. Your actions
will be captured and recorded by the Citrix Recorder.

The Citrix Recorder supports session sharing, allowing you to start additional published applications in
the existing session (by clicking Run Application on the Citrix Recorder toolbar). Click Select Window
to switch between applications.

The following example Citrix XenApp session includes simple Excel calculations in which the mouse
and keyboard are used to open Excel, enter new data values, insert an AutoSum formula, select a
screen region, edit the AutoSum formula, and close Excel.

14.When you are done recording your Citrix XenApp session, click Stop on the Silk Performer Citrix
Recorder. The Generating script progress window opens followed by the Save As dialog.

15.Save the script with a meaningful name.

16.A newly generated test script that is based on your recorded actions appears in the Silk Performer script
editor window.

Citrix Web Interface Sessions (NFuse)

Citrix Web Interface software (previously known as NFuse) provides Web access to Java, UNIX, and
Windows applications that are hosted via Citrix application server software. While Citrix offers server-side
control of hosted applications, Citrix Web Interface makes applications accessible through a Web browser
interface (Internet Explorer, version 5.5. or higher).

For technical support and questions regarding Citrix Web Interface, go to http://support.citrix.com

Defining a Citrix Web Interface Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

Silk Performer Workbench 20.0 | 343

http://support.citrix.com

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. In the Type menu tree, select Terminal Services > Citrix Web Interface.

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Creating a Citrix Web Interface Test Script

The easiest approach to creating a test script for a Citrix Web Interface session is to use the Silk Performer
Recorder, the Silk Performer engine for capturing and recording traffic and generating test scripts.

The Silk Performer Recorder captures and records traffic between a Citrix Web Interface client application
(Internet Explorer, version 5.5 or higher) and the server under test. When recording is complete, the Silk
Performer Recorder automatically generates a test script based on the recorded traffic. Scripts are written
in the Silk Performer scripting language, Benchmark Description Language (BDL).

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. In the Recording Profile list, select Citrix Web Interface.

The Citrix Web Interface recording profile is only appropriate for testing Citrix Web Interface/
NFuse sessions.

3. Click Start recording.

4. The Silk Performer Recorder then opens in minimized form along with Internet Explorer. Enter the name
of the Citrix server in the Internet Explorer Address field and click Enter. To see a report of the actions
that occur during recording, maximize the Silk Performer Recorder dialog by clicking Change GUI size
on the Recorder toolbar.

5. To log into the Citrix Web Interface, enter your Username, Password, and Domain into the Citrix Web
Interface login screen. Contact your system administrator if you do not have this information.

6. Click Log In.

7. The application portal appears. This portal contains the applications that have been published for
shared use. Select the hosted application you want to record.

8. The hosted application appears in the Silk Performer Citrix Recorder. Interact with the shared
application in the Citrix Recorder in the same way that you want your virtual users to behave during the
test. Your actions will be captured by the Citrix Recorder and generated into a BDL script.

9. When you close the application the Citrix session disconnects and you can save your recorded script.

BDL scripts of recorded Citrix Web Interface sessions are multi-protocol scripts that include a small number
of Silk Performer Web functions.

Citrix Script Functions

• CitrixWaitForWindowCreation, used for screen synchronization, is the most important Citrix
function.

The first parameter that synchronizations consider is window caption. If during replay a window caption
is returned that matches the caption of the window that was recorded during replay, then the verification
succeeds.

Note: Wildcards (*) can be specified at the end or beginning of window captions.

The second parameter considered is the match parameter. Normally this is an exact, case-sensitive
comparison of window caption strings.

The third parameter is the style of the window. If a window caption name is not available, then a portion
of the style name is used to identify the window. Styles reflect whether or not windows were maximized
during recording.

344 | Silk Performer Workbench 20.0

The fourth parameter considered is the position of the window. This may be a negative number, as
maximized windows have a position of -4, -4. This parameter can be controlled via the Force
window position profile setting. When this profile setting is enabled, windows are automatically moved
to the exact positions they held during recording.

The fifth parameter is window size. During replay windows must be resized to the same size they had
during recording.

• CitrixWaitForLogon waits until a Citrix client logs on successfully or a specified timeout period
expires.

• CitrixWaitForScreen captures screen regions and checks them against specified conditions
(normally a hash value captured at recording). If a condition does not match and the timeout period
expires, the function call fails. CitrixWaitForScreen functions also use screen appearance to
synchronize subsequent user actions. Based on provided parameters, this function waits until the image
in a specified screen region changes, matches the hash value captured at recording, or does not match
the hash value captured at recording.

• CitrixGetScreen takes a screenshot of a selected region and writes the screenshot to a file in the
result directory. If the file name is omitted, it will be automatically generated by the user ID and hash
value of the image.

• CitrixGetScreenHash retrieves the hash value of a selected screen.
• CitrixSetOption sets particular options, such as network protocol specification, speed screen

latency reduction, data compression, image caching, mouse/keyboard timings and event queueing,
client disconnect, synchronization time-outs, think times, TrueLog capture, and window position forcing.

• CitrixWaitForWindow waits until a specified window event (specified with the nEvent parameter)
occurs. Such events may be an activation, destruction or caption change for a specified window. If the
selected event is a caption change, a matching caption change for the specified window will satisfy the
function. Captions can be specified explicitly using the sCaption and nMatch parameters.

• CitrixKeyString is the standard function for entering printable characters.
• CitrixMouseClick moves the mouse to a specified position and presses a specified button.

Optionally, the mouse can be specified to move while the button is pressed. Key modifiers (such as
Ctrl and Alt) can be used.

Screen Synchronization and Verification
Silk Performer supports bitmap and window verification for applications that are hosted by Citrix XenApp
servers. Screen synchronization offers a means of verifying replayed Citrix content. Screen
synchronizations differ from standard script verifications in that they allow for verification of window and
screen region appearances, not input values. Also, they are inserted during script recording, not during
subsequent script customization. Screen synchronizations are particularly useful for synchronizing
subsequent user input that is displayed in browsers, or similar interfaces (for example, Citrix application
windows), because such applications do not support automatic synchronization through window events
such as user input and text display.

Note: Response data verification is not supported for Citrix testing.

Silk Performer relies on hash values to verify replayed bitmaps against recorded bitmaps. Hash values are
computer-readable values that reflect bitmap specifications such as size, position, resolution, and color
depth.

Note: To verify replay screen regions against hash values that are captured at recording it is
necessary that the same color depth that is used during recording be used during replay. Scripts fail
when these specifications are not maintained because changes as small as a single pixel can change
hash values and result in replay content appearing to be different from recorded content.

Note: Windows maximized during recording must also be maximized during replay. This is because
replay cannot change the state of windows (it can only resize and move windows). So if a window
state changes (for example, from Maximized to Restored), then it is likely that some user input in

Silk Performer Workbench 20.0 | 345

the script caused the change (for example the Restore button may have been clicked). On replay the
user will click at the same screen position (now the Maximize button) and consequently a different
operation will be executed and the subsequent CitrixWaitForWindowRestore function will fail.

Text and Screen Synchronizations

Window synchronizations such as CitrixWaitForWindow() and
CitrixWaitForWindowCreation() are well suited to synchronizing with an application. It is important
to synchronize with the application so that the script waits until the application is ready for additional user
input. If you do not use synchronizations, the script will most likely overrun the application. Also,
synchronization gives you point-in-time reference as to when tasks are completed, effectively measuring
response times.

Text Synchronization

Many tasks that can be performed on an application do not show, hide, create, or destroy windows, they
simply change a section of the screen. In such instances you should use the Silk Performer text
synchronization functionality.

After recording your script, you can visually add text synchronization points via the TrueLog Explorer
Synchronize Text option. Text synchronization works via built-in OCR (Optical Character Recognition).

Screen Synchronization

Silk Performer offers two types of screen synchronizations: wait for content change and wait for
content match. This form of synchronization requires a window reference and two sets of x/y
coordinates. However since unplanned events can lead to displaced window coordinates, you should use
text synchronization whenever possible, and only use screen synchronization when there is no text to
compare.

Wait for content change waits until the selected portion of the screen changes, while wait for content match
waits until the selected portion of the screen matches what was defined during recording.

Note: Screen synchronization points must be inserted while you record your test case, whereas text
synchronization points can be inserted afterward, via TrueLog Explorer.

Generating a Screen Region Synchronization During Recording

Screen synchronization is achieved via CitrixWaitForScreen functions, which are not scripted
automatically by the recorder. These functions are inserted via the Screen Region dialog box during
recording. CitrixWaitForScreen functions compare replay and record bitmaps to determine whether or
not they are identical. Hash values, as opposed to actual bitmaps, are used to compare the images. This
limits resource consumption during replay.

Note: Screen region synchronization is only available via the Silk Performer Citrix Recorder.

1. Record a Citrix session and create a test script.

2. During recording, click Select Region on the Silk Performer Citrix Recorder.

3. Click and drag your cursor to select the screen region for which you want to generate a bitmap
synchronization.

Note: Because differences as small as a single pixel can cause synchronization processes to fail,
it is recommended that for text verifications you select the minimum screen area required.
Otherwise unanticipated screen differences (for example, disabled toolbars) may affect verification
results.

4. The Selection dialog box opens. Specify how you want to have screen region coordinates scripted
(Script absolute coordinates, Script coordinates relative to window, or No
coordinates, use full window). When windows are maximized there is effectively no difference
between absolute and relative coordinates. When windows are not maximized, relative coordinates are

346 | Silk Performer Workbench 20.0

measured from the top-left corner of the Citrix Recorder window, while absolute coordinates use fixed
x/y coordinates.

5. Specify the Content matching type that the Citrix XenApp player should wait for during replay
(content match, content mismatch, or content change).

6. Click OK to add the synchronization to your Citrix XenApp test script.

Verification and Parsing via OCR

Silk Performer support for optical character recognition (OCR) simplifies session-dependent verifications
and parsing by recognizing text values in the screengrabs of captured application states.

Verification and parsing functions are added via TrueLog Explorer after script recording.

Window Position and State

Window position and state (maximized/minimized) is important for insuring accurate replay as TrueLog
Explorer scripts screen coordinates where selected text is to be read from relative to the desktop, not
individual windows. So if a window appears in a different position during replay than it did during recording,
OCR operations will not be able to locate the specified text. If it is not possible to specify an absolute
position, the script must be manually updated using coordinates relative to windows.

Adding OCR Verification Functions

With OCR support Silk Performer enables the storing of recognizable text values in variables, thereby
simplifying session-dependent verifications in Citrix tests.

Overview

String verification via optical character recognition (OCR) is achieved using CitrixVerifyText API
calls. These functions are inserted via TrueLog Explorer during script customization. CitrixVerifyText
functions compare text strings in replay bitmaps to determine if they are identical.

CitrixParseText functions are available for parsing text. These API calls work in the same way as other
Silk Performer parsing functions.

Optical character recognition relies on pattern databases to recognize varying fonts and text styles. Font
databases must be generated before OCR can be run.

Citrix TrueLogs show verification and parsing API calls in the tree view.

Note: OCR operations must be performed on stable content because when working with frequently
changing screen images replay timing is critical. When synchronizing on window events it is possible
that screen refresh may be slightly delayed, which will result in timing dependent outcome. Therefore
it is good practice to either script a wait or a CitrixWaitForScreen function call before each OCR
verification/ parsing function.

The following two screen examples show the output of verification and parsing functions after TryScript
runs.

Generating an OCR Verification Function

1. From Silk Performer record a Citrix session

2. Run a TryScript run with the Animation checkbox selected on the TryScript dialog box. This opens
TrueLog Explorer.

3. When the TryScript run is complete, select a CitrixSynchronization API node (or child node) that
includes a bitmap screengrab of a page on which you want to verify text.

4. Click and drag your cursor onscreen to select the page region that includes the text you want to use for
verification.

Silk Performer Workbench 20.0 | 347

5. Right-click in the selected area and select Verify Selected Text from the context menu.

6. The Insert Text Verification Function dialog box opens. The selected text is pre-loaded into the
constant value edit box and the constant value radio button is selected by default.

In addition to being able to verify against a constant value, you can also verify against an existing
parameter or a new parameter. To verify against a parameter, select the parameter radio button. If a
parameter already exists, clicking “...” enables you to browse to and select the parameter. If no
parameters exist, clicking “...” launches the Parameter Wizard, which you can use to create a new
parameter.

7. From the Verify that the text in the selected rectangle is drop list, select equal or not equal.

8. Specify whether or not the verification is to be Case sensitive and should Ignore whitespaces.

9. In the Severity portion of the dialog box, specify the severity that is to be raised if the verification
returns a negative result (Error, Warning, Informational, or Custom).

10.Click OK.

11.A confirmation dialog box appears. Click OK to add the OCR verification function to your Citrix test
script.

Generating an OCR Parsing Function

1. From Silk Performer record a Citrix session

2. Run a TryScript run with the Animation checkbox selected on the TryScript dialog box. This opens
TrueLog Explorer.

3. When the TryScript run is complete, select a CitrixSynchronization API node (or child node) that
includes a bitmap screengrab of a page from which you want to parse text.

4. Click and drag your cursor to select the page region that includes the text you want to parse.

5. Right-click in the selected region and select Parse Selected Text into a Variable.

6. The Insert Parsing Function dialog box offers parameters by which the parsing function can be
configured. Though the default settings will likely be correct, you can adjust:

Parameter name - Enter the name of the parameter that is to receive the result of the parsing function.

Informational statement insertion - Select Print statement to insert an informational Print statement
into the script after the Web page call. This writes the result of the parsing function to the Silk Performer
Virtual User Output window.

Select Writeln statement (“write line” statement) to write the parsed value to an output file to facilitate
debugging (in addition to writing the value to the Virtual User Output window as a Print statement
does). Because generating output files alters test measurements, these files should only be used for
debugging purposes and should not be generated for full tests.

7. Click OK.

8. A confirmation dialog box appears. Click OK to add the OCR parsing function to your Citrix test script.

Trying Out a Generated Script
With TryScript runs only a single virtual user is run and the stress test option is enabled so that there is no
think time or delay between transactions.

Note: Although Citrix TrueLogs do not include live display of data downloaded during testing (via
TrueLog Explorer) Citrix Web Interface TrueLogs do include live display of downloaded data. Both
TrueLog types include the writing of log files, report files, and replay within the Silk Performer Citrix
Player.

If you have configured parsing or verification functions based on Citrix OCR support, you must generate an
OCR font database before attempting a TryScript run, otherwise these functions may not operate correctly.

1. Click Try Script on the Silk Performer Workflow bar. The Try Script dialog box opens.

348 | Silk Performer Workbench 20.0

2. To view live display of page content within TrueLog Explorer during replay (Citrix Web Interface
TrueLogs only), select the Animated Run with TrueLog Explorer check box.

The Visible Citrix Client option (Citrix TrueLogs only, not available for Citrix Web Interface TrueLogs)
enables visual replay in the Silk Performer Citrix Player during TryScript runs.

3. Click Run.

Note: You are not running an actual load test here, only a test run to see if your script requires
debugging.

4. The TryScript run begins. The Silk Performer Monitor window opens, giving you detailed information
about the run’s progress.

Citrix TrueLogs

The Silk Performer Citrix Player open for Citrix TryScript runs. TrueLog Explorer opens for Citrix Web
Interface TryScript runs (when the Animation checkbox on the TryScript dialog box is checked). TrueLog
Explorer displays the data that is actually downloaded during TryScript runs.

By selecting a high-level synchronization node you see a bitmap of the window captured during replay just
as it appeared after the last synchronization function.

Window synchronization functions are visualized with colored borders. Window creations are indicated with
green borders. Window activations are indicated with blue borders. Window destructions are indicated with
yellow borders.

TrueLogs work in complement with the Silk Performer Citrix Player by visualizing screen states. For
example, if you are not sure which window is indicated by a certain window ID that is listed in the Silk
Performer Citrix Player Log window, you can find the corresponding synchronization function in the
corresponding TrueLog and thereby access a bitmap that shows the window.

User input nodes (CitrixUserInput and related functions) reflect keyboard and mouse input.
CitrixMouseClick functions offer two track vector parameters (X and Y coordinates). Red diamonds
indicate mouse-click start points. Red cross-marks indicate mouse release points. A red line between a
start and end point indicates the path of the mouse. If there is no move while the button is pressed, then
only a red cross is displayed. Onscreen tool tips offer additional information (for example, right-click,
left-click, double-click).

Value strings (keyboard input) are visualized onscreen as floating red text until target window captions are
identified (in subsequent nodes) to indicate where strings are to be input.

Silk Performer Citrix Player

The Silk Performer Citrix Player opens when TryScript runs begin, replaying all recorded actions in full
animation. Mouse movements and operations are simulated with an animated mouse icon.

Note: Silk Performer Citrix Player only opens for the Citrix application type, not the CitrixWeb
Interface application type.

Click Toggle Log Window in the upper right corner of the player to open the Log window. The Log
window includes three panes that detail different aspects of TryScript runs:

• Script - This pane lists all of the executed BDL script functions and the currently executing BDL
function.

• Windows - This pane includes a stack of all the client windows of the current session, including window
captions, styles, sizes, and positions. Top-level windows carry a window icon and are listed above sub-
windows.

• Log - This pane lists all informational messages and events, including executed BDL functions, and
window creation, activation, and destruction.

In all panes, active functions and windows are indicated with a blue arrow icon.

Silk Performer Workbench 20.0 | 349

Step by Step Replay

1. During a Citrix TryScript run, click the Toggle Log Window button in the upper right corner of the Silk
Performer Citrix Player to open the Log window.

2. Click the Step button. Replay stops at the active function. A blue arrow icon indicates the next function
in the script.

3. Click Step to execute the next function.

4. Continue clicking Step to advance through the script.

Note: You can also enable step-by-step execution by selecting the Step by step execution
checkbox on the TryScript dialog box.

5. Click Run to resume continuous script processing.

Skipping Time-Outs

The Silk Performer Citrix Player waits for all time-outs that are encountered during replay. To avoid waiting
for time-outs (default time-out is 60 seconds), click Skip to advance past them.

Note: Clicking Skip generates user-break errors in scripts.

1. During a Citrix TryScript run, click the Toggle Log Window button in the upper right corner of the Silk
Performer Citrix Player to open the Log window.

2. When replay encounters a time-out, click Skip to advance to the next function.

Customizing User Data
With user data customization you can make your test scripts more realistic by replacing static recorded
user input data with dynamic, parameterized user data that changes with each transaction. Manual
scripting is not required to create such data-driven tests.

During testing you can customize the user input that is entered into applications that are hosted by Citrix
terminal services in two ways:

• The Parameter Wizard allows you to specify values to be entered with keyboard events, enabling your
test scripts to be more realistic by replacing recorded user input data with randomized, parameterized
user data.

• Visual customization allows you to customize mouse events such as clicks, drags, and releases.

Using the Parameter Wizard

1. Select an API node that reflects user data input (for example, select a CitrixKeyString node that
specifies a keyboard datastring).

2. Right-click the input datastring (shown as floating red text) and select Customize User Input from the
context menu.

3. The Parameter Wizard opens. Select Create new parameter and click Next.

4. With the Parameter Wizard you can modify script values in one of two ways. You can either use an
existing parameter that’s defined in the dclparam or dclrand section of your script, or you can create
a new parameter (based on either a new constant value, a random variable, or values in a multi-column
data file). Once you create a new parameter, that parameter is added to the existing parameters and
becomes available for further customizations.

Note: This task explains only the process of creating a parameter based on a new random
variable.

5. The Create New Parameter dialog appears. Select the Parameter from Random Variable radio button
and click Next.

350 | Silk Performer Workbench 20.0

6. The Random Variable Wizard appears. From the drop list, select the type of random variable (for
example, Strings from file) you want to insert into your test script. A brief description of the
highlighted variable type appears in the lower window.

7. Click Next.

8. The Name the variable and specify its attributes page appears. The Strings from file random
variable type generates data strings that can either be selected randomly or sequentially from a
specified file. Enter a name for the variable in the Name field. Specify whether the values should be
called in Random or Sequential order. Then select a preconfigured datasource (for example, Elname
which defines last names) from the File/Name drop list.

9. Click Next.

10.The Choose the kind of usage page appears. Specify whether the new random value should be used
Per usage, Per transaction, or Per test.

11.Click Finish to modify the BDL form declaration of your test script so that it uses the random variable for
the given form field in place of the recorded value. The new random variable function appears below in
BDL view.

12.Initiate a TryScript run with the random variable function in your test script to confirm that the script runs
without error.

Customizing Mouse Events

1. Select a CitrixMouseClick node that includes mouse activity. Red diamonds indicate mouse-click
start points. Red cross-marks indicate mouse-release points. A red line between a start and end point
indicates the path of the mouse. Onscreen tooltips offer additional information (for example, right-
click, left-click, and double-click).

2. Click anywhere on the screen and select Customize User Input from the context menu. The
Customize Mouse Event dialog box appears.

3. Click at the screen position where you want the customized mouse move to begin.

4. Click at the screen position where you want the customized mouse move to end.

5. Click the Customize button to accept the customization and modify the BDL script accordingly.

Your mouse event customization now appears in the recorded TrueLog bitmaps in green. The mouse
customization also appears in the BDL script in green text. CitrixMouseClick functions offer two
track vector parameters (X and Y coordinates). The next time this script executes, it will use the new
screen coordinates you have specified.

Synchronizing Text

TrueLog Explorer offers a synchronization function that pauses the execution of Citrix functions until
specified text or a text pattern appears in a specified location. Such synchronization is vital for the accurate
execution of verification functions.

Project and System Settings
Citrix profile settings are project-specific settings related to Citrix synchronization, logging, virtual user
simulation, and client options. Citrix settings are specified on a per-project basis.

This section focuses on Citrix replay settings. Citrix record options are limited to network protocol,
encryption level, the Log screen before each user action setting, and the Use RAM disk
setting.

Configuring Citrix XenApp Options

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Silk Performer Workbench 20.0 | 351

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, scroll down to and click the Citrix icon. The General tab opens.

4. In the Synchronization timeout text box, type a default synchronization timeout in milliseconds that is
to be used by all CitrixWaitForXXX functions that do not specify a timeout value.

The default value is 60000 ms.

5. Check Force window position to make the calls to CitrixWaitForWindowCreation and
CitrixWaitForWindowRestore move windows to the coordinates captured during recording
(enabled by default).

When this check box is not checked, both the CitrixWaitForWindowCreation and
CitrixWaitForWindowRestore functions provide the parameter bForcePos to enable this option
for each individual call.

6. Check Disconnect on transaction end to disconnect the Citrix client following the end of each
transaction, including the TInit transaction (disabled by default).

7. Check Gracefully disconnect session to perform a log-off when disconnecting from a Citrix XenApp
session (enabled by default).

8. Check Log screen before each user action to capture and write a screenshot at the beginning of each
user action (enabled by default).

When TrueLog generation is enabled, a screenshot is taken at the end of each synchronization function
and written to the TrueLog.

The CitrixWaitForScreen function captures a screen region and checks it against a specified
condition instead of against a hash value that is captured at recording. This file can later be examined
or compared to what was captured during recording for error analysis.

If the function call CitrixWaitForScreen fails and Dump window region on unsuccessful screen
synchronization is checked , the captured screen region is written to a file in the result directory. The
function call CitrixWaitForScreen may fail, for example, if the condition does not match when the
timeout period expires.

9. Check Use RAM disk to use a different drive for the intermediate storage of images.

Note: If you check Use RAM disk, you must select the appropriate drive letter of the RAM disk
from the list box. TrueLog generation performance improves if the specified drive is a RAM disk.

10.Select the Simulation tab.

11.In the Length of time mouse button remains pressed field, type the length of time that the virtual
user is to hold the mouse button in the pressed state.

The default value is 200 ms. The functions CitrixMouseClick and CitrixMouseDblClick use
this value.

12.In the Length of time between the clicks of a double-click field, type the maximum length of time that
can pass between the two clicks of a double-click.

The default value is 100 ms. The function CitrixMouseDblClick uses this value.

13.In the Mouse speed field, type the speed (in pixels per second) at which the mouse is to move across
the screen.

The default value is 1000 pixels.

14.In the Length of time each key remains pressed field, type the length of time that the virtual user
must hold a keyboard key in the down state.

The default value is 50 ms. The functions CitrixKey and CitrixKeyString use this value.

15.In the Length of time between keystrokes when entering strings field, type the length of time that
must pass between the individual keystrokes.

The default value is 100 ms. The function CitrixKeyString uses this value.

352 | Silk Performer Workbench 20.0

16.In the Key repeat time field, type the time required for a complete key stroke when simulating repeat
functionality.

The default value is 50 ms. A value of 50 ms represents 20 keys per second.

17.In the Delay after successful synchronization field in the Think times area of the tab, type the length
of time that virtual users are to remain inactive after passing a successful synchronization point.

The default value is 1000 ms. The function CitrixWaitForXXX uses this value.

18.In the Delay after each user action field, type the length of time that virtual users remain inactive
between actions.

The default value is 100 ms.

19.Click the Citrix client tab to specify Citrix client options.

20.From the Network protocol drop box, select the low-level network protocol to use for locating and
connecting to the Citrix server.

For more information, refer to Citrix client documentation.

21.Check the Use data compression check box to compress all transferred data (enabled by default).

This feature reduces file size but requires additional processor resources.

22.Check the Use disk cache for bitmaps check box to store commonly used graphical objects, such as
bitmaps, in a local disk cache (disabled by default).

23.Check the Queue mouse movements and keystrokes check box to queue mouse and keyboard
updates (disabled by default).

This feature reduces the number of network packets sent from the Citrix client to the Citrix XenApp
server.

24.From the SpeedScreen latency reduction drop box, select one of the following to enhance user
experience on slower network connections:

• For WANs and other slower connections, select On.
• For LANs and other faster connections, select Off.
• To turn latency reduction on and off based on the latency of the connections, select Auto.

25.From the Encryption level drop box, select a level of encryption for the ICA connection.

The Citrix XenApp server must be configured to allow the selected encryption level or higher.

Note: Using an encryption level other than the server default or Basic disables automatic logon to
the Citrix XenApp server.

26.Click OK to save your settings.

Configuring General Settings

1. In the Project tab of the tree-view area of the main SilkPerformer window, right-click the Profiles node
and select Edit Active Profile.

2. The Profile - [Profile1] - Simulation dialog opens at the Simulation tab (Replay category).

3. Scroll down to and select the Citrix icon. The Citrix General settings tab opens.

4. In the Options section of the General tab, specify a timeout value in the Synchronization timeout
field. You may have to increase this value if your Citrix server is slow.

5. The Force window position option (enabled by default) automatically moves replayed windows to
the coordinates specified in CitrixWaitForWindowCreation functions.

6. The Disconnect on transaction end option (disabled by default) disconnects the client after
each transaction, even init transactions.

7. In the Logging section of the General tab, the Log screen before each user action option
(enabled by default) enables onscreen display of user input (datastring values) for the moment before
values are actually input into screens (for example, a user might enter a string value into a spreadsheet
cell. The value is not actually input until the user pushes Enter. With this option enabled, in the node
just preceding the click of the Enter key, the string value appears onscreen as floating red text). This

Silk Performer Workbench 20.0 | 353

option requires significant processing and disk storage as it dictates that each user action generate a
screengrab. With this option disabled you do not see all user input updates.

8. The Dump window region on unsuccessful screen synchronization option specifies that
screengrabs be generated for all unsuccessful screen synchronizations. These bitmaps, when captured
and saved to the current result directory (for example, RecentTryScript) of your Silk Performer
installation, can be compared to corresponding recorded synchronizations to assist in debugging efforts.
For example, a difference of a single pixel is enough to cause a screen synchronization error. Such a
difference might best be detectable visually, by comparing recorded screengrabs with screengrabs
captured when synchronization errors occur.

9. The grabbing, reading, compressing, and writing of screengrabs for TrueLogs involves significant
processing resources and can lead to slow replay. The Use RAM disk option (disabled by default)
enables faster TrueLog replay by making use of a RAM disk or solid state drive (SSD), rather than
writing files to a conventional hard disk. Use the drop list to select the letter of a drive with high read/
write rates. Note that this option does not install a RAM disk, but you may use the RAM disk of your
choice.

10.Click OK to save your changes, or click Default to restore the default settings.

Configuring Simulation Settings

1. In the Project menu tree, right-click the Profiles node and select Edit Active Profile.

2. The Profile - [Profile1] - Simulation dialog opens at the Simulation tab (Replay category).

3. Scroll down to and select the Citrix icon.

4. Select the Simulation tab.

5. In the Mouse section of the Simulation tab, specify virtual user mouse behavior (in milliseconds) such
as the length of time that mouse clicks remain pressed, the length of time between the clicks of a
double click, and mouse speed. Note that simulated mouse events move at constant speeds. They do
not simply jump across the screen.

6. In the Keyboard section of the Simulation tab, specify virtual user keyboard behavior (in milliseconds)
such as the length of time that keys remain pressed, the length of time between keystrokes when
entering strings (for example, CitrixKeyString functions), and key repeat time (irepeat parameters
of CitrixKeyString functions).

7. In the Think times section of the Simulation tab, specify virtual user think time behavior (in
milliseconds) for delay after successful synchronizations, and delay after each user action. This is a
virtual simulation of user reaction time that helps to stabilize replay.

8. Click OK to save your changes, or click Default to restore the default settings.

Configuring Client Settings

1. In the Project menu tree, right-click the Profiles node and select Edit Active Profile.

2. The Profile - [Profile1] - Simulation dialog box opens at the Simulation tab (Replay category).

3. Scroll down to and select the Citrix icon.

4. Select the Citrix client tab.

5. Select the network protocol upon which your client will run (TCP/IP or TCP/IP + HTTP). When you
specify TCP/IP + HTTP, load balancing is done with the HTTP protocol, using post commands. When
you specify TCP/IP, UDP is used. No other network protocols are supported.

6. Check the Use data compression checkbox to enable data compression (enabled by default).

7. Check the Use disk cache for bitmaps checkbox to enable the caching of bitmaps on your hard disk
(disabled by default).

8. Check the Queue mouse movements and keystrokes checkbox to queue mouse movements and
keystrokes for a specified period of time before they are sent to the server (disabled by default).

354 | Silk Performer Workbench 20.0

9. SpeedScreen latency reduction enables local echo of mouse and keyboard actions (disabled by
default). Local echo means that you do not have to wait for round trips to the server to see the results
of your input. Specify Off, On, or Auto.

10.Specify an encryption level for the client. Options include, Use server default, Basic, 128 Bit
for Login Only, 40 Bit, 56 Bit, and 128 Bit.

11.Click OK to save your changes, or click Default to restore default settings.

Enabling Citrix Replay on Agents

1. From the Silk Performer menu bar, select Tools > System Configuration Manager . The System
Configuration Manager dialog box appears.

2. (applicable to all Citrix XenApp client versions) Click the Applications tab. Click the Silk Performer icon.
Enter Account and Password credentials for a user account on the agent workstation that has
permission to execute Citrix sessions.

3. To record a Citrix published application that is accessed using the settings defined on the Citrix
Recorder Connect dialog box, perform the following:

a) Expand the Profiles node on the Project menu tree and right-click the active profile. Select Edit
Profile.

b) Scroll down to and click Citrix.
c) Click the Citrix client tab.
d) From the Network protocol list box , select TCP/IP + HTTP.

To record a Citrix published application utilizing an ICA file: In the [WFClient] section of the ICA file,
change TcpBrowserAddress= to HttpBrowserAddress=.

System Settings for OCR

To enable optical character recognition (OCR) for parsing and verification functions in TrueLog Explorer,
you must generate a font database using Silk Performer system settings.

Optical character recognition relies on font (or pattern) databases to recognize fonts and text styles in
bitmaps. The default set of fonts covers most scenarios, however in some situations you may want to add
additional fonts or font styles. A new database should be generated whenever new fonts are added or
removed from the system.

Including too many fonts in the database can slow down processing and lead to contradictory reading, so it
is recommended that you only include those fonts that are used in the bitmaps from which you will be
capturing text strings.

Configuring System Settings for OCR

1. Within Silk Performer, go to Settings/System.../ and select the Citrix icon.

2. On the OCR tab, use the Add >> and Add All buttons to move those fonts that you wish to have used
for OCR from the System Fonts list box to the Chosen Fonts list box.

3. Use the Remove All and << Remove buttons to delete unnecessary fonts from the Chosen Fonts list
box.

4. In the Sizes field, specify the font size range that should be used (for example, 8-20).

5. Define which font styles should be included by selecting the Italic, Bold, and Underlined check
boxes. Make sure you select the Underlined check box if you want to verify menu entries.

6. Click Generate Font Database.

7. The Build Font Base dialog box opens. Click OK to confirm that you want to replace the existing font
database with a new database.

Note: If you encounter problems while generating the font database, it is likely a data execution
prevention issue. To resolve the issue, please see the section below.

Silk Performer Workbench 20.0 | 355

8. Click OK on the Silk Performer System Settings dialog box to accept the changes.

Testing Best Practices
While GUI-based testing presents a number of challenges, it can be rewarding as it offers the opportunity
to closely simulate a real user experience. GUI-based testing through Silk Performer involves applying load
to applications by simulating the terminal services protocol.

At least two physical computers should be used to perform Citrix tests: one computer runs the terminal
services environment and the application under test (AUT); the other computer runs Silk Performer and the
Citrix client software.

The load generator computer simulates a large number of users by mass producing the terminal services
network protocol. The terminal services server (system under test) simulates multiple MS Windows-based
desktop sessions simultaneously. This server also hosts the GUI application that is placed under load.

We recommend that you place an isolated network (LAN) between the load generator and the system
under test. This allows for network throughput analysis. An isolated network is also less vulnerable to
external influence, thereby reducing errors and misleading network throughput results.

Test Preparation

• User Interface (UI) design - Take advantage of any opportunity to influence the UI design of the
application. A solid, consistent UI allows you to create reusable sub-routines. In turn, you can write less
test code, and consequently have less code to maintain.

• Test plan - A thoughtful test plan is a prerequisite of successful GUI-based load testing. In your test plan
you should define your goals, objectives, test runs, critical metrics, and others.

• Use cases - Use cases are step-by-step scenarios that you plan to test. Use cases represent typical
user-to-application interaction, for example starting an application, opening a project, editing settings,
and others. Your use cases guide you through the recording process.

• Application expert - Even when equipped with well documented use cases you may not be able to make
sense of all of an application’s workflow. It is helpful to have access to someone who has expert
knowledge of the application under test, for example a business process owner.

• Screen resolution - The higher the screen resolution, the higher the system requirements are per
terminal session. We recommend you use a screen resolution of no more than 800x600 for record and
replay. This approach allows for compatibility with older computers, which you then have the opportunity
of including in your load tests.

• Remote users - If your application is to be available to remote users, consider simulating a slow network
during some of your load tests. Slow network connections can have a major impact on the performance
of applications, therefore additional tests with simulated network congestion may help improve your test
results. You can use the network emulation functionality of Silk Performer for this purpose.

Defining Your Goals

The first thing to do when planning your load test is to define your goals. While testers often assume that
their goals are clear to all involved parties, they often are not. It is important that the quality assurance
team and management work toward the same goals.

When writing up goals, first consider your highest-level goals:

1. Discover the baseline performance of your application
2. Optimize/tune your application
3. Determine if the application under test is ready for production

Once you have established your high-level goals, you need to break them down into clear, measurable
objectives, covering issues such as how you plan to accomplish your goals, how you plan to measure your
goals, and what results will be considered acceptable.

Here is an example of how you might break down your testing goals:

Goal #1: Discover and document the baseline performance of your application

356 | Silk Performer Workbench 20.0

• Use Silk Performer to measure the response times of critical application functions.
• Place timer functions around window/screen synchronizations (WaitFor events). These measurements

will show up in the final report.

Critical timers:

• Measure how much time it takes from when the OK button is clicked on the Login window until the
Welcome window appears.

• Measure how much time it takes from when the Query results button is clicked until the populated list is
displayed.

Goal #2: Optimize/tune the application

• Optimize/tune the application for 5 days.
• Document all changes and their impact on the performance of the application under test.

Goal #3: Determine if the application under test is ready for production

• The application is ready for production if the following condition is met: All response times are under 5
seconds (Silk Performer provides metrics for each window and screen sync).

With a list of measurable objectives, your test results define a definite point at which the application will be
ready for production. This also eliminates the risk of endlessly optimizing the application as tuning it to the
defined goal is adequate.

Creating Use Cases

A use case is a typical task that a user undertakes when working with the application under test. A use
case must use the features of the application that require testing. It is essential that you only test features
that are important and working properly. This is not the time to perform functional testing, which should
already have been completed. Testing is a long process: the longer the use cases, the more time that will
be required for testing.

When stepping through a use case, write down all significant screen events. For example, when entering a
formula in Microsoft Excel you should document the changing of cells due to formula processing. Such
events will translate into screen synchronizations that will be important during script development. Text
synchronizations can be used for text-based screen synchronizations.

Document use cases to a detailed level. You need to document every mouse click, key stroke, and
expected result. While this may be tedious initially, it makes things easier when you begin recording your
test cases.

The following example, a test that simply locates an existing instance of Microsoft Word and opens a
document, displays the level of detail that a use case should have. The square brackets (“[]”) indicate an
event.

In the “Microsoft Word” window, navigate to the File menu and select Open….
[The “Open” dialog box opens]
Select ‘Test.doc.’
Click Open.
[The “Open” dialog box closes]
[The “Microsoft Word” window has focus once again]

Note that the exact titles of the windows are documented in the above example. This becomes important
later during script development as such information is needed to keep the script in sync with the
application. Once you have a well documented use case, it is easy to script the application

There are several ways to write use cases. You can use XML notation, numbered notation, or another
format that you are familiar with.

XML Use Case Example
<Task Name=”Open a document”>
 In the “Microsoft Word” window, navigate to the File menu and select

Silk Performer Workbench 20.0 | 357

Open….
 [The “Open” dialog box displays]
 Select ‘Test.doc.’
 Click Open.
 [The “Open” dialog box closes]
 [The “Microsoft Word” window has focus once again]
</Task>

Numbered Use Case Example
100.01 – Open a document
 In the “Microsoft Word” window, navigate to the File menu and select
Open….
 [The “Open” dialog box displays]
 Select ‘Test.doc.’
 Click Open.
 [The “Open” dialog box closes]
 [The “Microsoft Word” window has focus once again]
100.02
 …

Ensuring a Stable Environment

Before you start recording, make sure that there will be no additional changes to the UI of the application
under test, at least until your tests are complete. This requires good communication with the development
team. If the UI changes after you record your test scripts, your scripts will likely be unusable.

Also, make sure that you have the ability to back up and restore any databases that are used in your
testing. Because changes to database content often lead to differences in UI content, for example more or
different items in lists, different query results, and other, databases need to be returned to a baseline state
before the start of each test cycle.

Troubleshooting
Once you have documented your use cases, recording or coding your test scripts should be a relatively
simple task. With Silk Performer you have both the record/playback option and the option of coding your
test scripts manually. Each approach has its advantages and disadvantages. The most efficient way to
create test scripts with Silk Performer is to combine the two approaches, as follows:

1. With Silk Performer, record the scenario you have outlined in your use case description.

2. Use TrueLog Explorer to visually customize your script (this is where the “Text synchronization” feature
comes into play).

3. For more complex scripting, edit the generated BDL script manually.

Manually editing a script is also the best option for inserting the content of your use case into your test
script (in the form of comments). See the example below, which uses numbered notation format:

100.001 In the “Microsoft Word” window, navigate the menu to File, Open….
100.002 [The “Open” dialog window shows]
100.003 Select Test.doc.
100.004 Click Open.
100.005 [The “Open” dialog window goes away]
100.006[The “Microsoft Word” window has focus again]

4. You can now copy/paste these contents into your BDL script as follows:.

// 100.001 In “Microsoft Word" window,
 hwndWordMainWindow := CitrixSearchWindow(“*Microsoft
 Word”, MATCH_Wildcard);
 CitrixWindowBringToTop(hwndWordMainWindow);

// navigate the menu to File, Open….
 CitrixKey(KEY_Alt);
 CitrixKeyString("f");
 CitrixKeyString("o");

358 | Silk Performer Workbench 20.0

// 100.002 [The “Open” dialog window shows]
 hwndOpenDialog := CitrixWaitForWindowCreation(“Open”,
 Match_Exact);

// 100.003 Select Test.doc.
 CitrixMouseClick(150, 100, hwndOpenDialog, MOUSE_
 ButtonLeft);

// 100.004 Click Open
 CitrixMouseClick(300, 200, hwndOpenDialog, MOUSE_
 ButtonLeft);

// 100.005 [The “Open” dialog window goes away]
 CitrixWaitForWindow(hwndOpenDialog, EVENT_Destroy);

// 100.006 [The “Microsoft Word” window has focus again]
 CitrixWaitForWindow(hwndWordMainWindow, EVENT_Activate);

If the script fails, these comments will help you determine where the script failed in reference to the use
case.

Recording Tips

When recording a terminal services script, you must be aware that unplanned events can change the
position and size of target windows during replay, causing test runs to fail. Here are some general tips that
will help you avoid the effort of finding and fixing such replay errors.

Try launching the application via the Windows Run command. Launching the application via a desktop icon
or mouse click may also work, but consider if you will be moving the application to a different server, or if
the GUI will vary between users, in which case a desktop icon might appear in a different location. It is
therefore recommended that you type the path to the application’s EXE file in the Windows Run command
window.

Keyboard Shortcuts

Mouse clicks require x/y coordinates, a window reference, and the target window must have focus. While
GUI testing technologies for tracking mouse clicks have become increasingly reliable, Windows remains a
dynamically changing environment, so you must build scripts that can tolerate minor inconsistencies. One
way to do this is to use keyboard shortcuts. For shortcuts, the only requirement is window focus.

Note: The Windows Logo key is not supported, as it moves the focus away from the Citrix Recorder.

Almost all menu systems in Windows applications have Alt key combinations that can be used to initiate
specific menu commands. To record use of an Alt key shortcut, first give your application focus, then press
the Alt key, this gives the menu system focus. Notice that many of the menu items have one of their letters
underlined. This indicates which Alt key commands are available for specific menu items. Press
appropriate letter keys to gain access to sub-menus until you reach the menu item that you want to initiate.
In some cases, a menu item itself will have a key combination. For example, to open a document in
Microsoft Word use the Ctrl+O combination. This shortcut does not require that the menu have focus.

Maximizing Windows

If keyboard shortcuts are not available and you must use the mouse, you can reduce the chance of
triggering inaccurate mouse clicks by maximizing the window that you are working with. This places the
window in a fixed position each time it is used and, in turn, makes mouse clicks more accurate. As a
general rule, if a window allows for maximization, it is recommended that you take advantage of it.

Note: Alt-Space, X is the Windows keyboard combination for maximizing an active window

When a window does not allow for maximization, during the recording session, move the window to the
upper left-hand corner of the desktop before clicking. When recording, the recorder may not be able to pick

Silk Performer Workbench 20.0 | 359

up on the window handle that you have in the foreground, so having the coordinates relative to the desktop
is a must.

Keeping the System Clean

To eliminate unexpected events during terminal services sessions, ensure that you keep your Windows
desktop as uncluttered as possible. Imagine, for example, that while your script is replaying, a Windows
network message appears. Your script will break because the subsequent mouse click will go to the
Windows network message window instead of your intended application window.

Ensure Correct Focus

Before clicking a window, ensure that the window you intend to click exists and has focus. Here is a sample
BDL function that helps automate this process:

function MyCitrixWaitForWindowCreationAndActivation(sCaption:string;
 nMatch : number optional;
 nStyle : number optional;
 nX : number optional;
 nY : number optional;
 nWidth : number optional;
 nHeight : number optional
) : number
var
 hwndNewWindow : number; // hwnd of the new window created
 nRTT:number;
begin
 //
 // Check if window exists
 //
 hwndNewWindow := CitrixSearchWindow(sCaption, nMatch);
 hwndNewWindow := 0;
 //
 // If window doesn’t exist, wait for creation
 //
 if (hwndNewWindow < 1) then
 hwndNewWindow := CitrixWaitForWindowCreation(sCaption, nMatch,
 nStyle, nX, nY, nWidth, nHeight);
 end;
 //
 // Check if window is already active, wait if it’s not active
 //
 MyCitrixWaitForWindowActivate(hwndNewWindow);
 MyCitrixWaitForWindowCreationAndActivation:=hwndNewWindow;

end MyCitrixWaitForWindowCreationAndActivation;

Using Parameters

If you input the same information more than once, the system under test caches the data in memory rather
than repeating the same work. For this reason it is important that you vary input/request data so that the
work is as realistic as possible. For example, use different user accounts that have different data ranges.
This can be accomplished using a CSV (comma separated values) file as input for a test.

Adding Verifications

Verifications are checks that are added to code to check if the responses that are received from the server
are correct. When performing GUI based testing, verifications are automatically added to your script via
window synchronizations, however it is recommended that you add additional verifications to your code.

360 | Silk Performer Workbench 20.0

Adding Timers

Custom timers are critically important for tracking an application’s response times. Without custom timers,
you cannot determine your end user’s overall experience with an application. Metrics can help determine
which aspects of your application are performing well and which are not.

Before you begin adding custom timers to your test script, identify the critical areas of your application and
determine where your MeasureStart and MeasureStop calls should be placed. For this effort it is good
practice to review the log in TrueLog Explorer.

Here is an example of using timers in a Silk Performer script:

//
// Submit a work order.
//
CitrixMouseClick(27, 31, hwndWorkOrder, MOUSE_ButtonLeft);

//
// Start the response time clock.
//
MeasureStart("202.01: Work Order Submission.");

//
// Wait for the "Order Submission Complete" dialog box.
//
MyCitrixWaitForWindowCreationAndActivation(
 "Order Submission Complete",
 MATCH_Exact
);

//
// Stop the response time clock.
//
MeasureStop("202.01: Work Order Submission ");

Debugging Scripts

Windows may fail to be activated and screen synchronizations may fail when Silk Performer Citrix replay
encounters different values during replay than were captured during recording. Sometimes the causes of
synchronization problems are not apparent. They may be due to a change in screen position of only a
single pixel.

More common than screen synchronization failures are windows not being activated during replay. In such
cases the screenshots associated with the corresponding user actions may explain the fault.

Note: Sometimes there is no user fault and a window is activated only sporadically. In such cases you
must remove the associated CitrixWaitForWindow function.

Silk Performer Citrix replay captures screengrabs when errors occur (the default setting) and writes the
bitmaps to disk. By default, the recorder writes screenshots to the screenshots directory in the project
directory. Replay stores screenshots in the current used result directory. Visual comparison of record and
replay screens is best achieved using bitmap viewing programs.

The Silk Performer Dump window region of unsuccessful screen synchronizations Citrix option must
be activated (the default) to have bitmaps captured and saved.

Troubleshooting Scripts

You may encounter timeout errors or other execution failures during load test execution. Here are some tips
for avoiding, finding, and fixing such errors.

Using TrueLog Explorer

Test runs often fail due to the appearance of unexpected dialogs, causing scripts to lose focus on the
windows they are working on. It is therefore recommended that you enable the TrueLog On Error feature in

Silk Performer Workbench 20.0 | 361

Silk Performer before you execute tests. Then, if an error occurs, you will be able to visually track it down in
TrueLog Explorer.

Clearing Terminal Server Sessions

After a failed test execution, ensure that you reset all terminal server sessions before you execute the test
again, otherwise your script will likely fail.

Handling Application Errors

During tests, your application is likely to throw errors due to generated load. Adding event handlers to your
script that can handle and report such errors is very helpful.

Here is an example of an event handler that continuously watches for a window with the name Program
Error Intercepted and executes an ALT-C to close any such window that appears. The event handler also
generates an error message whenever such an error occurs.

dclevent
 handler Handler1 <EVENT_CITRIXINTERRUPT>
 var
 nInterrupt, nWindow : number;
 nStyle : number;
 sWindowCaption : string;
 begin
 CitrixGetActInterrupt(nInterrupt, nWindow);
 ErrorAdd(FACILITY_CITRIXENGINE, 47, SEVERITY_INFORMATIONAL);
 print(string(nWindow));
 CitrixGetWindowCaption(nWindow, sWindowCaption);
 if sWindowCaption = "Program Error Intercepted" then
 CitrixKey(67, MOD_Alt); // 'c'
 end;
 ErrorRemove(FACILITY_CITRIXENGINE, 47);
 end Handler1;

Avoiding Think Times

While it may be tempting to use Wait() or ThinkTime statements to avoid having scripts overrun
applications under test, this practice is not recommended for two reasons:

• When load generation increases, application processing speed may slow considerably. The wait
statement may eventually be too short and the problem of overrunning the application will again present
itself.

• If you are measuring the response times of window, text, or screen synchronizations, the time in the
Wait() statement will artificially bloat response times.

The solution is to use synchronizations.

Re-recording Portions of a Script

Sometimes changes in application behavior result in portions of a recorded script becoming obsolete. Re-
recording a portion of a use case is an option, but beware that the recorder may not be able to track the
handles of the existing windows, resulting in incorrect window handle numbers. These issues can make the
process of integrating newly recorded script with an original script quite tedious. When a use case is small,
it is recommended that you re-record the entire use case. Otherwise, follow the process outlined below to
integrate a new script with an outdated script:

1. Comment out the section of code that is to be re-recorded.
2. Match the location of the code section requiring replacement with the corresponding section in the use

case.
3. Bring a terminal services session up to the corresponding point in the use case.
4. Begin recording the open terminal services session.

362 | Silk Performer Workbench 20.0

5. Perform the actions of the use case that require replacement.
6. Stop the recorder (a script from the recording is then produced).
7. Replace the window handle variables in the newly recorded script with the respective handles of the

original script. You may use functions such as CitrixSearchWindow() to locate correct window
handles.

8. Copy the edited code into the original script.

Handling Citrix Dialog Boxes

Depending on how you connect to Citrix terminal services sessions and your licensing setup, you may see
one or both of the following dialog boxes:

• ICA Seamless Host Agent
• Citrix License Warning Notice

These dialog boxes are informational and may or may not appear when you initially log into terminal
services sessions. Following are two ways of handling these dialog boxes.

Handling Citrix dialog boxes (Solution #1)

This solution creates an interrupt that handles the dialog boxes if they appear:

transaction TMain
 var
 begin
 CitrixInit(800, 600);
 CitrixAddInterrupt(INTERRUPT_WindowCreate, "ICA Seamless Host Agent",
MATCH_Exact);
 CitrixConnect("lab74", "labadmin", "labpass", "testlab1", COLOR_16bit);
 CitrixWaitForLogon();
 hWnd4 := CitrixWaitForWindowCreation("", MATCH_Exact, 0x96840000, -2,
572, 804, 30);
 CitrixWaitForWindowCreation("Program Manager");
 CitrixMouseClick(36, 17, hWnd4, MOUSE_ButtonLeft, MOD_None, -1, 0);
 hWnd11 := CitrixWaitForWindowCreation("", MATCH_Exact, 0x96400000, 2,
313, 163, 263);
 CitrixMouseClick(62, 247, hWnd11, MOUSE_ButtonLeft);
 CitrixWaitForWindow(hWnd11, EVENT_Destroy);
 hWnd12 := CitrixWaitForWindowCreation("Shut Down Windows", MATCH_Exact,
0x94C808CC, 191, 136, 417, 192);
 CitrixWaitForWindow(hWnd12, EVENT_Activate);
 CitrixMouseClick(203, 170, hWnd12, MOUSE_ButtonLeft);
 CitrixWaitForDisconnect();
 end TMain;

dclevent
 handler Handler1 <EVENT_CITRIXINTERRUPT>
 var
 nInterrupt, nWindow : number;
 nStyle : number;
 begin
 CitrixGetActInterrupt(nInterrupt, nWindow);

 ErrorAdd(FACILITY_CITRIXENGINE, 47, SEVERITY_INFORMATIONAL);
 print(string(nWindow));
 if CitrixGetWindowStyle(nWindow, nStyle) and (nStyle <> 0xB4000000) then
 CitrixWaitForWindow(nWindow, EVENT_Activate);
 CitrixMouseClick(201, 202, nWindow, MOUSE_ButtonLeft);
 CitrixWaitForWindow(nWindow, EVENT_Destroy);
 end;
 ErrorRemove(FACILITY_CITRIXENGINE, 47);

 end Handler1;

Silk Performer Workbench 20.0 | 363

Handling Citrix dialog boxes (Solution #2)

This sample code loops for 30 seconds, waiting for the Citrix dialog boxes to appear. If the dialog boxes
appear, this code closes them.

function MyCitrixStartup(nMaxWait: number optional): boolean
 var
 hwndICAHandle : number;
 hwndFoundLicenseWarning : number;
 nCount : number;
 begin
 hwndICAHandle:=-1;
 hwndFoundLicenseWarning:=-1;
 nCount:=0;

 if (nMaxWait = 0) then
 nMaxWait:=10;
 // if no wait time was passed,
 // use 10 tries (seconds) as a default
 end;

 MeasureStart("MyCitrixStartup");

 //
 // loop until we've handled the conditions or we've tried
 //

 while ((nCount < nMaxWait) and ((hwndICAHandle <=0) or
 (hwndFoundLicenseWarning <=0))) do

 //
 // Just a little feedback, every 10 tries
 //
 if ((nCount MOD 10) =0) then
 print(string(nCount) + ")MyCitrixStartup "
 + " vUser:" + string(GetUserId())
 + " hwndICAHandle=" + string(hwndICAHandle)
 + " hwndFoundLicenseWarning="
 + string(hwndFoundLicenseWarning),
 OPT_DISPLAY_ERRORS , TEXT_GREEN);
 end;
 //
 // if we haven't handled this window yet
 //
 if (hwndICAHandle <=0)
then
 hwndICAHandle := CitrixWaitForWindowCreation
 ("ICA Seamless Host Agent", MATCH_Exact, 0x94C800C4,
 0, 0, 0, 0, false, 1, true);

 if (hwndICAHandle > 0) then
 if (CitrixWindowBringToTop(hwndICAHandle)) then
 CitrixKey(KEY_ENTER); // press ok to close the dialog
 CitrixWaitForWindow(hwndICAHandle, EVENT_Destroy);
 // wait for the close
 end; // end waiting for window to top
 end; // end if we have a valid handle
 end; // if window has not been found yet

 if (hwndFoundLicenseWarning <=0)
then
 hwndFoundLicenseWarning := CitrixWaitForWindowCreation
 ("Citrix License Warning Notice", MATCH_Exact, 0x94C800C4,
 0, 0, 0, 0, false, 1, true);

364 | Silk Performer Workbench 20.0

 if (hwndFoundLicenseWarning > 0) then
 if (CitrixWindowBringToTop(hwndFoundLicenseWarning)) then
 CitrixKey(KEY_ENTER); // Press ok
 CitrixWaitForWindow(hwndFoundLicenseWarning,
 EVENT_Destroy);
 // wait for it to go away
 end; // end waiting for window to top
 end; // end if we have a valid handle
 end; // if window has not been found yet

 nCount :=nCount+1;
 Wait 1.0;
 end; // while nCount

 MeasureStop("MyCitrixStartup");
 //
 // return true if we handled any one of these conditions
 //

 MyCitrixStartup2 := (hwndFoundLicenseWarning > 0)
 or (hwndICAHandle > 0) ;

 print("MyCitrixStartup "
 + " vUser:" + string(GetUserId())
 + " Waited " + string(nCount) + " of " + string(nMaxWait)
 + " hwndICAHandle=" + string(hwndICAHandle)
 + " hwndFoundLicenseWarning=" + string(hwndFoundLicenseWarning),
 OPT_DISPLAY_ERRORS , TEXT_GREEN);

end MyCitrixStartup;

.NET Support
Silk Performer's .NET support includes the testing of Web Services, .NET Remoting objects, NUnit, and
more.

.NET Framework Support
Silk Performer ships with a .NET Framework that allows you to test Web Services and .NET components.
This framework includes a set of Benchmark Description Language (BDL) API functions and an Add-On for
Visual Studio .NET.

Refer to the Silk Performer .NET Framework Developer Guide for detailed information on Silk
Performer .NET Framework support.

Using .NET Framework Functions Within .NET
For best results using .NET test code with Silk Performer, call BDL functions from within .NET code.
The .NET assembly perfdotnetfw.dll that comes with Silk Performer implements the Silk
Performer.Bdl class, where most BDL functions are implemented.

1. Add a reference to perfdotnetfw.dll in your .NET project.

This DLL can be found in the Silk Performer installation directory.

2. Import the Silk Performer namespace (see the necessary code below, depending on your
implementation language).

using Silk Performer; // C#
imports Silk Performer // VB.NET

3. Use the static functions in your .NET Code.

Silk Performer Workbench 20.0 | 365

For example:

Bdl.Print("This is a message from within a .NET Assembly");

The functions that are defined by the BDL class can only be used if the .NET assembly runs in a virtual
user. This is because perfrun.exe functions (virtual user process) will be called.

Sample Bdf Script

dcltrans
 transaction TMain
 var
hObject, hObject2 : number;
hReturn : number;
 begin
 DotNetSetString(hObject, "ConstrValue1");
 hObject := DotNetLoadObject("bin\\Release\\TestDriver.dll",
"TestDriver.TestClass");
 hObject2 := DotNetLoadObject("bin\\Release\\TestDriver.dll",
"TestDriver.ParamClass");
 DotNetSetFloat(hObject, 1.23);
 DotNetSetInt(hObject, 123);
 DotNetCallMethod(hObject,"TestMethod");
 DotNetGetObject(hObject, hReturnValue);
 DotNetFreeObject(hObject);
 DotNetFreeObject(hObject2);
 DotNetFreeObject(hReturn);
 end TMain;

Sample .NET Code (C#)

using System;
using Silk Performer;
namespace TestDriver
{
 public class TestClass
{

public TestClass(string sConstrValue)
{
Bdl.Print("Constructor called with param" + sConstrValue);
}

public TestClass()
{
Bdl.Print("Default Constructor called!");
}

public ParamClass TestMethod(double fParam, int nParam)
{
return new ParamClass(fParam, nParam);
}
}

 public class ParamClass
{
public double mfMember;
public int mnMember;

public ParamClass(double fParam, int nParam)
{
mfMember = fParam;
mnMember = nParam;
}

public ParamClass()

366 | Silk Performer Workbench 20.0

{
mfMember = 0.0;
mnMember = 0;
}
}
}

.NET Configuration Files
Microsoft .NET Framework allows for the specification of configuration files for Windows-, Web- and
Internet Explorer-based .NET applications. These configuration files contain settings that affect the .NET
runtime environment (e.g., assembly binding and .NET Remoting settings).

When running a .NET test driver with Silk Performer .NET Framework, a configuration file called
perfrun.exe.config is created automatically with settings that are required for loading the Silk
Performer Framework Assembly and allowing the routing of HTTP traffic over the Silk Performer Web
Engine.

You have two options for delivering custom configurations through such configuration files:

• Load a configuration file at runtime into your .NET test driver.
• Create a app.config file in your project directory that contains configuration keys that will be merged into

the automatically generated perfrun.exe.config file.

Configuration at Runtime

The .NET Class Library provides a class that allows you to configure specific .NET Remoting settings that
are loaded from configuration files. If for example you have the following configuration file schema:

<configuration>
<system.runtime.remoting>
<application>
 <channels>
 <channel ref="http" port="2000" />
 </channels>
 <client url="http://remoteserver:2000">
 <activated type="RemoteDll.RemoteClass1, RemoteDll"/>
 <activated type="RemoteDll.RemoteClass2, RemoteDll"/>
 </client>
</application>
</system.runtime.remoting>
</configuration>

…and you store this in a file in your project directory and add it to your data file section you can use the
following code to load it at runtime (most likely in the method that corresponds to your init transaction):

RemotingConfiguration.Configure(Bdl.GetDataFilePath("vuser.config"));

Other settings that can be configured in the application configuration file can be changed through other
classes of the .NET Framework, for example, System.AppDomain. For a detailed description of the classes
that allow for modification of the .NET Runtime Environment, see the MSDN Online Reference.

Own Configuration File

When running a test using the Silk Performer .NET Framework, Silk Performer automatically generates a
configuration file that is used to initialize the .NET runtime that is hosted in the virtual user process. This
file is called perfrun.exe.config and is stored to the Silk Performer installation directory. The file has a
schema like the following:

<configuration>
<system.net>

Silk Performer Workbench 20.0 | 367

...
</system.net>
<runtime>
...
</runtime>
</configuration>

When generating this configuration file, Silk Performer looks for an app.config file in your project
directory. If there is such a file, the content of the file is merged just after the runtime node. This means that
you can define any required configuration XML elements in your app.config file. But you must ensure
that the file doesn't have the root configuration tag or one of the tags generated by Silk Performer
(system.net or runtime).

Here is a sample configuration file for .NET Remoting components:

<system.runtime.remoting>
<application>
<channels>
 <channel ref="http" port="2000" />
</channels>
<client url="http://remoteserver:2000">
 <activated type="RemoteDll.RemoteClass1, RemoteDll"/>
 <activated type="RemoteDll.RemoteClass2, RemoteDll"/>
</client>
</application>
</system.runtime.remoting>

Testing Web Services and .NET Remoting Objects with .NET
Framework
With the .NET Framework and Silk Performer's Visual Studio .NET Add-On, you can easily test Web
services and .NET Remoting objects.

The Framework offers the following options for testing Web services/.NET Remoting objects:

• Writing your test code in Microsoft Visual Studio using a popular .NET Language (C# or VB.NET)
• Making use of Microsoft Visual Studio's Web Service Client Proxy Generation Wizard
• Coding your Web service calls in your .NET test driver
• Running a load test using your .NET test driver
• HTTP traffic that is generated by .NET to call Web service/.NET Remoting methods is redirected over

the Silk Performer Web engine, enabling the advantages of Silk Performer's Web engine (modem
simulation, IP-address multiplexing, etc.).

• Exploring HTTP traffic (SOAP, XML, and binary) with TrueLog Explorer

Testing Web Services

1. Create a Silk Performer .NET project.

Create a project either from within Silk Performer (Project type: Web Services/.NET) or create a
new .NET project by launching the Silk Performer Project Wizard from Visual Studio .NET (File > New >
Project).

2. Create a WebService client proxy.

Use the Visual Studio .NET Web Service Client Proxy Wizard to generate a client proxy class:

a) Call Add Web Reference.
b) Insert the URL to your Web service in the Address field.
c) Click Add Reference. A proxy class is then generated with the name of your WebService.

Namespace is the name of the Web server where the service is hosted. If your URL is, for example,
http://localhost/MyWebService/Service1.asmx then the full name of your proxy class would be
localhost.Service1.

368 | Silk Performer Workbench 20.0

3. Code your WebService calls.

Instantiate an object of your proxy class and then make calls to the service in one of your transactions.
A good design decision would be to define the proxy as a member variable of your test class, instantiate
it in your init transaction and make calls in your main transaction.

Example (C#):

using System;
using Silk Performer;
namespace SPProject1
{
[VirtualUser("VUser")]
public class VUser
{
public localhost.Service1 mService;

public VUser()
{
}

[Transaction(ETransactionType.TRANSTYPE_INIT)]
public void TInit()
{
mService = new localhost.Service1();
}

[Transaction(ETransactionType.TRANSTYPE_MAIN)]
public void TMain()
{
int nRetParam = mService.ServiceCall1("Testparam");
Bdl.Print("Return value of ServiceCall1: " +
nRetParam.ToString());
mService.ServiceCall2(nRetParam);
}

[Transaction(ETransactionType.TRANSTYPE_END)]
public void TEnd()
{
}
}
}

4. Run a TryScript.

Initiate a Try Script run by calling Silk Performer/Try Script or by pressing the F8 key.The return value is
output into the Virtual User Output Window via the Bdl.Print method.

In the TrueLog, two nodes in the main transaction represent the SOAP HTTP traffic that was
responsible for the Web service calls. By default all HTTP traffic is redirected over the Silk Performer
Web Engine; therefore output is available in the TrueLog. You can turn off redirection or enable it for
specific Web service client proxy classes using the Web Settings dialog.

5. Continue working in Silk Performer.

When you have finished implementing your .NET test driver, you can continue working in Silk Performer
and running load tests. With Silk Performer you can run load tests with multiple users distributed over
multiple agents. Take advantage of the Web engine features (modem simulation, IP-address
multiplexing, etc.) by testing how Web service calls perform when they are called over a slow modem
and how your Web server performs when numerous users make service calls simultaneously.

Testing .NET Remoting Objects

1. Reference remote object assembly.

To test .NET Remoting objects you must reference the .NET assembly that defines the objects that are
remoted. To do this, add a reference to the DLL that defines the classes.

Silk Performer Workbench 20.0 | 369

2. Configure your test driver to be a remoting client.

You must tell .NET which classes are remoted. The easiest way to do this is to make the configuration in
a .config file. For detailed information about .config files that define a remoting client configuration, see
MSDN.

Here is an example file:

<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel ref="http" port="2000" />
 </channels>
 <client url="http://remoteserver:2000">
 <activated type="RemoteDll.RemoteClass1, RemoteDll" />
 <activated type="RemoteDll.RemoteClass2, RemoteDll" />
 </client>
 </application>
 </system.runtime.remoting>
 </configuration>

This configuration file must be loaded at runtime (ideally in the Init transaction of your test driver). To
make sure that this file is available on all agents when running load tests, add it to the project-
dependent files (Menu: Silk Performer/Add Dependencies). You can get the correct path using the
Bdl.GetDataFilePath method.

Here is example code that configures remoting and instantiates a remote object:

using System;
using Silk Performer;
using System.Runtime.Remoting;
using RemoteDll;
namespace SPProject1
{
[VirtualUser("VUser")]
public class VUser
{
public VUser()
{
}

[Transaction(ETransactionType.TRANSTYPE_INIT)]
public void TInit()
{
 RemotingConfiguration.Configure(Bdl.GetDataFilePath("vuser.config"));
 }

[Transaction(ETransactionType.TRANSTYPE_MAIN)]
public void TMain()
{ // .NET Runtime knows that objects of type RemoteDll.RemoteClass1 are
remoted
 RemoteClass1 rm1 = new RemoteClass1();
 rm1.SomeMethod("param");
}

[Transaction(ETransactionType.TRANSTYPE_END)]
public void TEnd()
{
}
}
}

As HTTP was configured as the transporting protocol, you can view the traffic generated for the .NET
remoting calls via TrueLog Explorer.

370 | Silk Performer Workbench 20.0

Testing SOAP Web Services for .NET
A Web service is an available service on the Web that can be invoked and from which results can be
returned. Although other standards exist, the widely accepted standard for Web services, which has been
adopted by the W3C, is SOAP (Simple Object Access Protocol).

This section explains the basics of SOAP-based Web services and details how you can test them.

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol that is used for the exchange
of information in decentralized, distributed application environments. You can transmit SOAP messages in
any way that the applications require, as long as both the client and the server use the same method. The
current specification describes only a single transport protocol binding, which is HTTP.

SOAP perfectly fits into the world of Internet applications and promises to improve Internet inter-operability
for application services in the future. In essence, SOAP packages method calls into XML strings and
delivers them to component instances through HTTP.

SOAP XML documents are structured around root elements, child elements with values, and other
specifications. First an XML document containing a request (a method to be invoked and the parameters)
is sent out. The server responds with a corresponding XML document that contains the results.

SOAP is not based on Microsoft technology. It is an open standard drafted by UserLand, Ariba, Commerce
One, Compaq, Developmentor, HP, IBM, IONA, Lotus, Microsoft, and SAP. SOAP 1.1 was presented to the
W3C in May 2000 as an official Internet standard. Microsoft is one of the greatest advocates of SOAP and
has incorporated SOAP as a standard interface in the .NET architecture.

A SOAP stack, an implementation of the SOAP standard on the client side, is comprised of libraries and
classes that offer helper functions. A significant Web service testing challenge is that there are a number of
SOAP stack implementations that are not compatible with one another. So although SOAP is intended to
be both platform- and technology-independent, it is not. Web services written in .NET are however always
compatible with .NET clients—they use the same SOAP stack, or library. When testing a .NET Web service
however, you need to confirm if the service is compatible with other SOAP stack implementations, for
example Java SOAP stack, to avoid interoperability issues.

SOAP client requests are encapsulated within HTTP POST or M-POST packages. The following example
is taken from the Internet draft-specification.

Sample Call

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml;
charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"
<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The first four lines of code are standard HTTP. POST is the HTTP verb which is required
for all HTTP messages. The Content-Type and Content-Length fields are required
for all HTTP messages that contain payloads. The content-type text/xml indicates

Silk Performer Workbench 20.0 | 371

that the payload is an XML message to the server or a firewall capable of scanning
application headers.

The additional HTTP header SOAPAction is mandatory for HTTP based SOAP
messages, and you can use it to indicate the intent of a SOAP HTTP request. The value
is a URI that identifies the intent. The content of a SOAPAction header field can be
used by servers, for example firewalls, to appropriately filter SOAP request messages in
HTTP. An empty string ("") as the header-field value indicates that the intent of the
SOAP message is provided by the HTTP Request-URI. No value means that there is no
indication on the intent of the message.

The XML code is straightforward. The elements Envelope and Body offer a generic
payload-packaging mechanism. The element GetLastTradePrice contains an
element called symbol, which contains a stock-ticker symbol. The purpose of this
request is to get the last trading price of a specific stock, in this case Disney (DIS).

The program that sends this message only needs to understand how to frame a request in a SOAP-
complient XML message and how to send it through HTTP. In the following example, the program knows
how to format a request for a stock price. The HTTP server that receives the message knows that it is a
SOAP message because it recognizes the HTTP header SOAPAction. The server then processes the
message.

SOAP defines two types of messages, calls and responses, to allow clients to request remote procedures
and to allow servers to respond to such a request. The previous example is an example of a call. The
following example comes as a response in answer to the call.

Sample Response
HTTP/1.1 200 OK
Content-Type: text/xml;
charset="utf-8"
Content-Length: nnnn
<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some-URI">
 <Price>34.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The first three lines of code are standard HTTP. The first line indicates a response code
to the previous POST request, the second and third line indicate the content type and
the fourth line the lenght of the response.

XML headers enclose the actual SOAP payloads. The XML element
GetLastTradePriceResponse contains a response to the request for a trading price.
The child element is Price, which indicates the value that is returned to the request.

Testing SOAP Over HTTP-Based Web Services

Silk Performer offers three options for testing SOAP over HTTP based services:

• Recording/replaying HTTP traffic
• .NET Explorer in combination with Silk Performer .Net Framework
• Java Explorer in combination with Silk Performer Java Framework

Your environment and prerequisites will determine which of these options is best for your needs.

372 | Silk Performer Workbench 20.0

Recording and Replaying HTTP Traffic

Recording the SOAP protocol over HTTP is as straightforward as recording any Web application that runs
in a browser. The application that you record is the application that executes the SOAP Web Service calls.
This can either be a client application or a part of the Web application itself.

Creating a New XML/SOAP Project

When you want to record and replay HTTP traffic to test SOAP over HTTP-based Web services, you first
need to create a new Silk Performer project of the Web Services > XML/SOAP type.

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Web Services > XML/SOAP. This application type automatically
configures its profile settings so that SOAPAction HTTP-headers, that are used by SOAP-based
applications when calling Web services, are to be recovered.

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Creating the Recording Profile

When you want to record and replay HTTP traffic to test SOAP over HTTP-based Web services, you need
to create a recording profile for the client application that you want to record.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Click Settings. The System Settings - Recorder dialog box appears.

3. In the System group box, click Recorder. The Recording Profiles page opens.

4. Click Add to add a new recording profile to the list. The Recording Profile dialog box opens.

5. Type a name for the recording profile in the Profile name text box.

For example Internet Explorer.

6. Click Browse ... next to the Application path text box and select the path to the application executable.

For example C:\Program Files\Internet Explorer\Explorer.exe.

7. Define the Working directory.

For example C:\Program Files\Internet Explorer.

8. Define the Program arguments.

For example about:blank.

9. Select the application type from the Application Type list box.

For example MS Internet Explorer.

10.In the Protocol selection area, check the check box that corresponds to the protocol that you want to
use. For example, check the Web check box.

11.To configure the recording profile for WinSock recording click Web Settings, which enables you to
select the method that the Recorder is to use to capture Web and TCP/IP-based traffic.

12.Click OK.

Silk Performer Workbench 20.0 | 373

Recording a Script

Record a script with your created recording profile. Interact with your client application and the recorder will
record all SOAP requests that are executed over HTTP/HTTPS. When you are finished, close the
application and save the recorded script.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Select one of the listed browsers from the Recording Profile list, depending on the browser you want to
use for recording.

3. In the URL field, enter the URL that is to be recorded.

4. Click Start recording. The Silk Performer Recorder dialog opens in minimized form, and the client
application starts.

5. To see a report of the actions that happen during recording, maximize the Recorder dialog by clicking
the Change GUI size button. The maximized Recorder opens at the Actions page.

6. Interact with your client application. The recorder records all SOAP requests that are executed over
HTTP/HTTPS.

7. To end recording, click the Stop Recording button.

8. Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

Script Customization

Each SOAP request that is recorded includes a WebHeaderAdd and a WebUrlPostBin API call.

You can either customize the input parameter of each Web Service call by manually changing the script or
you can use the more convenient method of performing customizations within TrueLog Explorer. To do this,
run a Try Script. Then use the XML control to customize the XML nodes that represent the input
parameters.

Sample SOAP Request

WebHeaderAdd("SOAPAction", "\"http://tempuri.org/Login\"");
WebUrlPostBin(
 "http://localhost/MessageWebService/MessageService.asmx",
 "<?xml version=\"1.0\" encoding=\"utf-8\"?>"
 "<soap:Envelope xmlns:soap=\"http://schemas.xmlsoap.org/soap/
envelope/
\"
 "xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
 "xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\">"
 "<soap:Body>"
 "<Login xmlns=\"http://tempuri.org/\">"
 "<sUsername>myuser</sUsername>"
 "<sPassword>mypass</sPassword>"
 "</Login>"
 "</soap:Body>"
 "</soap:Envelope>", STRING_COMPLETE, "text/xml;
charset=utf-8");

Replaying a Script

Once you have finished script customization, you can replay your script, either in another Try Script run, as
part of baseline identification, or in a test.

Select how you want to replay your script. The following options are available:

• Start a Try Script run.
• Replay the script as part of a baseline identification.

374 | Silk Performer Workbench 20.0

• Replay the script in a test.

As the Web service calls are performed along with Web API functions, you receive the same measures
you receive when testing any Web application, including detailed protocol-specific statistics.

Silk Performer .NET Explorer

This section offers a brief overview of how you can use .NET Explorer to test Web services with Silk
Performer. .NET Explorer is a tool that allows you to create test cases through a point and click
interface. .NET Explorer provides support for the following .NET technologies:

• SOAP Web services
• .NET Remoting
• .NET Components (other classes)

You can use the .NET Explorer to create test scenarios. You can then use the test scenarios to run
component testing in .NET Explorer or you can export the test scenarios to Silk Performer for testing.

You can also use .NET Explorer to generate test drivers, in either C# or VB.NET, that contain all test logic
defined for test scenarios. You can export the test drivers to Visual Studio .NET where you can make
further customizations and where you can execute TryScript runs directly in Visual Studio .NET. Once you
have completed the customization, you can execute tests with Silk Performer.

.NET Explorer requires permanent projects. This was not the case with previous versions as it was
possible to save current projects at any time. When you launch .NET Explorer you are prompted to either
create a new project or open an existing project by choosing from a recent file list or by browsing for a .NET
Explorer project file, of type .NEF.

For additional details on .NET Explorer, refer to the .NET Explorer Help.

Requirements

The only requirement for testing a SOAP-based Web service is a description of the exposed methods of
the Web service. You can find such descriptions in Web Service Description Language (WSDL) files, which
are normally generated when you browse a Web-service end point or you specify special HTTP GET
parameters for retrieving such files.

In the case of an ASP.NET Web service, appending ?WSDL to the URL end point of the Web service will
return the WSDL file for the Web service. Other SOAP-stack implementations may use the same approach
or offer WSDL files under separate URLs.

Loading a WSDL File

.NET Explorer offers the Load File Wizard that guides you through the steps required to load a WSDL file
and invoke Web-service methods. To activate the wizard in .NET Explorer, click Start Here on the toolbar.

You can also load WSDL files, or .NET assemblies that contain .NET Remoting or other .NET classes,
through the address bar of your browser. Specify the URL or path to the WSDL file and click Load.

Microsoft .NET Framework offers classes that load WSDL files and generate client proxies for Web
services that are defined in WSDL files. .NET Explorer uses this functionality to generate C# or VB.NET
code for Web-service proxies and compile the code into temporary .NET assemblies that are displayed as
Web Service Proxies in .NET Explorer > Loaded Components > References.

As .NET Explorer uses Microsoft .NET Framework to generate proxies, .NET Explorer shares the
drawbacks and limitations of Microsoft .NET Framework. The most significant problem when generating
proxies is that not all SOAP stack implementations produced by other vendors comply with the W3C
standard. This can lead to problems when you attempt to load WSDL files. You can avoid these problems
by manually editing the WSDL files so that they are recognized by Microsoft .NET Framework. To edit the
WSDL files you must be familiar to WSDL. For additional information, refer to http://www.w3.org.

.NET Explorer shows a Web-service proxy class, derived from
System.Web.Services.Protocols.SoapHttpClientProtocol, in the References menu tree

Silk Performer Workbench 20.0 | 375

http://www.w3.org

below the Web Service Proxies tree node. Normally, when you write C# or VB.NET code, you must
instantiate an instance of the proxy class and call methods on the proxy. .NET Explorer eliminates the need
for this by automatically instantiating an instance of the proxy class. You cannot create an instance of a
proxy class by calling the constructor. .NET Explorer treats Web services like static objects offering static
methods.

If the methods of a Web service take complex objects as parameters, then the classes of those parameters
are defined in the WSDL file and loaded by .NET Explorer. Such classes are not Web-service proxy
classes. They are simple classes with members and are listed under the Other Classes tree node in the
Class menu tree.

You can set several connection-related properties by double-clicking a proxy class in the menu tree and
opening the connection wizard in the Input Data Properties pane. These properties are set to the
corresponding properties of the internal proxy instance.

When you export a project to either Visual Studio .NET or directly to Silk Performer as a .NET project, the
base class of the Web-service proxy is replaced by SilkPerformer.SPSoapHttpClientProtocol.
The reason for this is that by exchanging the base class, the Silk Performer .NET Framework is able to
generate more detailed timers for Web-service calls that are routed through the Silk Performer Web engine.
If you don't want this behavior you can export a project to Visual Studio .NET and either change the base
class back manually or use the Web Service dialog box from the Silk Performer menu and deselect the
option for routing the proxy class.

You can now either load the WSDL file of the Web service you want to test or select a WSDL file from the
list box.

Calling a Web Service

After you have successfully loaded a WSDL file you can explore the methods that the Web service offers
by expanding the tree node of the Web-service proxy class.

By clicking one of the methods you will see the required input parameters and input header information for
the Web-service call. You can customize your input data by either exchanging the default static values for
the primitive types or by using global, local, or rendom variables. For additional information, refer to
the .NET Explorer Help and the Silk Performer Help.

If a method is called for the first time on a Web service, the internal instance of the proxy class is
instantiated. There is a property on the proxy class that holds a cookie container. This property is initialized
with a new cookie container so that it can call Web services that handle cookies.

.NET Explorer then sets all the defined values for the SOAP headers to the corresponding member fields of
the proxy class. Then a parameter list with all the values that are defined for the input parameters is
created. Using this list, the method on the Web-service proxy object is invoked.

Microsoft .NET Framework includes a hooking mechanism that allows .NET Explorer to capture traffic that
is passed between the .NET Explorer client and the Web server. You can view the trafic in the Show
Traffic dialog box after the method call. You can invoke the dialog box on each Web service and each .NET
Remoting call.

This feature is also used to generate BDL Web scripts with a WebPagePost for each Web-service call
captured in the traffic moving from the client to the server.

The returned values and SOAP header information are displayed when the method calls return
successfully. When exceptions occur, the exception text is displayed in a message box. Currently you
cannot add method calls to test scenarios that throw errors because .NET Explorer requires information
about the returned values.

Final Steps

After calling a Web service you can store the returned values to variables and define verifications for those
values.

376 | Silk Performer Workbench 20.0

Once you have finished defining your test scenario you can either remain in .NET Explorer, and use your
test scenario for functional testing, or you can export the project to Visual Studio .NET or Silk Performer to
further customize the generated code and run regression tests.

You can only export to BDL Web projects when your test scenarios contain only Web-service calls,
because only WebPagePost statements are generated for each Web-service call. If you have calls other
than Web-service calls, for example calls to other .NET objects, those calls will not be included in Web
scripts and therefore your exported scripts may not behave as defined in .NET Explorer, as some method
calls will be missing.

Only export to BDL Web projects if you have only Web-service calls and if you only wish to test the SOAP
stack of your server, as there is no .NET client SOAP stack involved when executing scripts in Silk
Performer. The Silk Performer Web engine posts only those SOAP envelopes that have been used in .NET
Explorer.

If you also wish to test the .NET client side, you should export your project to a Silk Performer .NET project.
This type of project will compile generated .NET test code into a .NET assembly that can be called from a
BDL script, which will also be generated by .NET Explorer.

If you wish to make further customizations to .NET code generated by .NET Explorer you can export your
project to Visual Studio .NET. If you export your project you can alter generated test code and run a
TryScript within Visual Studio .NET. If you are finished with customizations you can export the project to
Silk Performer and proceed with testing.

Silk Performer .NET Framework

Silk Performer’s .NET Framework enables developers and QA personnel to coordinate their development
and testing efforts while allowing them to work entirely within their specialized environments: Developers
work exclusively in Visual Studio while QA staff work exclusively in Silk Performer—there is no need for
staff to learn new tools. Silk Performer’s .NET Framework thereby encourages efficiency and tighter
integration between QA and development. The Silk Performer .NET Framework (.NET Framework)
and .NET Add-On enable you to easily access Web services from within .NET. Microsoft Visual Studio
offers wizards that allow you to specify the URLs of Web services. Microsoft Visual Studio can also create
Web-service client proxies to invoke Web-service methods.

Creating a New Silk Performer .NET Project

To create a new Silk Performer .NET project, you can either create a new project of type Web Services
> .NET Explorer in Silk Performer or you can use one of the Silk Performer .NET project wizards in Visual
Studio .NET.

With both approaches you can choose one of the following three implementation languages:

• C#
• VB.NET
• C++

If you choose one of the .NET project wizards in Visual Studio .NET, the result is a new project with a
template class that defines three methods, which are the init, main, and end transactions of your Silk
Performer virtual user.

To develop a .NET test driver in another language, create an empty project using the language of your
choice and perform the following steps:

1. Add a reference to perfdotnetfw.dll.

This DLL is located in the Silk Performer installation directory.

2. Add a new class to your project.

3. Add the VirtualUser custom attribute to your class.

4. Add public member functions to your class to serve as your user transactions.

Silk Performer Workbench 20.0 | 377

5. Add the Transaction attribute to the functions you have created and pass the corresponding transaction
type.

• init
• main
• end

Creating a Web Service Client Proxy

Visual Studio .NET has a wizard that generates a Web-service-client proxy that allows you to call Web-
service methods.

You can start the wizard in Project > Add Web Reference.

1. To start the wizard, click Project > Add Web Reference.

2. In the corresponding text box, type the URL of your Web service and press Enter.

For example, http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL.

3. If the wizard can load the WSDL document from the URL, click Add Reference. The wizard generates
a proxy class in a namespace, which is the reverse of the name of the Web server that hosts the
service.

Explore projects to see which classes are generated. Each web service, and all complex data types used
by the Web-service methods, are represented as classes. So in the example URL above, there is
Service1, which is a Web service, and User, which is a complex parameter.

Instantiating a Client Proxy Object

You can declare a variable of a client proxy class as a public member of the .NET test driver to instantiate a
client-proxy object. The variable should be instantiated either in the constructor or in the init transaction.
The first part of the namespace where the class is generated, which is the default namespace, is the name
of your project.

Example

If you have created a project with the name DotNetProject you would use the following
variable declaration:

[VirtualUser("Vuser")]
public class Vuser
{
 public DotNetProject.com.borland.demo.Service1 mService;
 [Transaction(Etranstype.TRANSTYPE_INIT)]
 public void TInit()
 {
 mService = new DotNetProject.com.borland.demo.Service1();
 }
}

Calling a Web Service Method

All methods that are exposed by Web services are also available in proxy objects. The methods that are
shared by proxy objects use the same names as their corresponding WSDLs. Web-service method calls
should be placed in main transactions.

Example

[Transaction(Etranstype.TRANSTYPE_MAIN)]
public void TMain()
{
 string sReturn = mService.echoString("Test");

378 | Silk Performer Workbench 20.0

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL

 Bdl.Print(sReturn);
}

To customize your Web-service calls from a generated BDL script, you must allow the exchange of data
between BDL and .NET with usage of attributes or method parameters.

Example

[Transaction(Etranstype.TRANSTYPE_MAIN)]
[TestAttribute("EchoInput", "Test")]
public void TMain()
{
 string sReturn =
mService.echoString(Bdl.AttributeGet("EchoInput"));
 Bdl.Print(sReturn);
}

or

[Transaction(Etranstype.TRANSTYPE_MAIN)]
public void TMain(string sEcho)
{
 string sReturn = mService.echoString(sEcho);
 Bdl.Print(sReturn);
}

Routing Web-Service Traffic

The Silk Performer .NET Framework can route Web traffic generated by .NET components through the Silk
Performer Web engine. This means that the Web engine executes the actual Web requests, enabling you
to see exactly what is sent over the wire. You can also use features of the Silk Performer Web engine, like
modem simulation, IP multiplexing, network statistics, TrueLog, and others.

By default all network traffic is routed through the Web engine. You can switch the routing off and only
enable it for specific Web-service client-proxy classes. To switch the routing on for specific Web-service
client-proxy classes, you need to change the base class of the proxy classes from
SoapHttpClientProtocol to SilkPerformer.SPSoapHttpClientProtocol. Changing the base
class allows the Silk Performer .NET Framework to generate more detailed statistical information for each
Web-service call. We recommend that you enable this feature for all your Web-service proxy classes. You
can enable this feature by using the Web Service dialog box in Microsoft Visual Studio, which is accessible
through the Silk Performer menu.

For each Web-service call a node is created in the TrueLog with the SOAP envelope that was passed to
the Web service and returned to the client.

If detailed statistical information for Web-service calls is disabled, the .NET HTTP classes process all
requests.

Exploring Results

When Web-service-traffic routing is enabled, a TrueLog node is logged for each Web-service call that is
executed by the .NET test driver.

In the overview report of the Web-service method that is called, you will find statistical information.

External References

1. Session, Roger

SOAP. An overview of the Simple Object Access Protocol, March 2000

http://www.w3.org/TR/SOAP/

Silk Performer Workbench 20.0 | 379

http://www.w3.org/TR/SOAP/

2. W3C

Simple Object Access Protocol (SOAP) 1.1, December 2000

http://www.w3.org/TR/SOAP/
3. UN/CEFANT, OASIS

Enabling Electronic Business with ebXML, December 2000

http://www.ebxml.org/white_papers/whitepaper.htm
4. Geyer, Carol

ebXML Integrates SOAP Into Messaging Services Specification, March 2001

http://www.ebxml.org/white_papers/whitepaper.htm
5. Open Financial Exchange

Open Financial Exchange Specification 2.0, April 2000

http://www.ofx.net/

Setting Up Silk Performer .NET Projects

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select .NET > .NET Framework using Visual Studio .NET Add-On and
click Next. The Workflow - Model Script dialog box opens.

5. Select the .NET Language (C# or VB.NET) icon for the language you prefer and click OK. The Microsoft
Visual Studio Silk Performer Project Wizard opens.

6. Enter the name of the .NET Testclass in the Name of testclass text box. In the Silk Performer Project
text box, enter the name of the project that you created earlier in Silk Performer.

7. Click Finish.

The following in the files and code are generated in Microsoft Visual Studio:

• Each generated Testclass becomes a VirtualUser in the BDL script.
• The first transaction becomes the Init transaction in the BDL script.
• Files that are generated by the Wizard (code files and Silk Performer project/BDL scripts) are listed on

the Solution Explorer page.
• Handler/clean-up code can be inserted in the stopException method.
• Custom code for exception handling can be inserted in the testException method.
• ETransactionType.TRANSTYPE_MAIN becomes the Main transaction in the BDL script.
• ETransactionType.TRANSTYPE_END becomes the End transaction in the BDL script.

Sample Skeleton Code Generated by the Project Wizard (C#)

using System;
using Silk Performer;

namespace SPProject1
{
 [VirtualUser("VUser")]
 public class VUser
 {
 public VUser()

380 | Silk Performer Workbench 20.0

http://www.w3.org/TR/SOAP/
http://www.ebxml.org/white_papers/whitepaper.htm
http://www.ebxml.org/white_papers/whitepaper.htm
http://www.ofx.net/

 {
 }

 [Transaction(ETransactionType.TRANSTYPE_INIT)]
 public void TInit()
 {
 /* You can add multiple TestAttribute attributes to each
function defining parameters that can be accessed through
Bdl.AttributeGet

 Example of testcode: (Access bdl function through the
static functions of the Bdl class Bdl.MeasureStart(...);
 ...
 Bdl.MeasureStop(...);
 */
 }

 [Transaction(ETransactionType.TRANSTYPE_MAIN)]
 public void TMain()
 {
 }

 [Transaction(ETransactionType.TRANSTYPE_END)]
 public void TEnd()
 {
 }
 }
}

As you can see from the skeleton example above, there is a custom attribute called
VirtualUser that can be applied to classes. This causes the Add-On's BDL
Generation Engine to generate a virtual user definition. You can implement multiple
classes that have the VirtualUser attribute applied. The VirtualUser attribute
takes the name virtual user as a parameter.

The BDL Generation Engine then parses the methods of the Virtual User class for
methods that have a Transaction attribute applied to them. The Transaction
attribute takes as a first parameter the transaction type (Init, Main or End). You can
only have one Init and one End transaction, but multiple Main transactions.

The Main transaction type takes a second parameter that indicates the number of times
that the transaction is to be called during load tests (default: 1).

Running a Try Script Test

If you have implemented your .NET test code you can run a Try Script test from within Microsoft Visual
Studio .NET.

1. Choose one of the following:

• Press F8.
• Choose Silk Performer > TryScript.

The .NET Code is compiled to a .NET assembly.

A BDF script is generated by the BDL Generation Machine based on the meta information of the custom
attributes and the settings in the Options dialog.

The most recent BDF script is overwritten if there have been changes to the meta data of your assembly
(changed custom attributes, changed method order, changed generation options, etc.).

If the meta data has changed but you have altered the latest BDF file manually, you will be prompted to
specify whether or not you wish to have the file overwritten, in which case you will lose recent changes.

Silk Performer Workbench 20.0 | 381

This detection is achieved by comparing the last modified date of the BDF file with the timestamp
scripted in the BDF file.

2. If you have multiple virtual user classes (classes that have the VirtualUser attribute applied) you will be
prompted to specify which of the users is to be started. The test begins.

If you have the Automatic Start when running a Try Script option selected, TrueLog Explorer will
start, loaded with the TrueLog generated by the test.

Virtual user output is displayed in the Virtual User Output tool window.

Load test controller output is displayed in a separate pane of the Output tool window.

Once the load test is complete you can explore the other results files (log, output, report, and error) by
selecting them from the Silk Performer Results menu.

Custom Attributes

A custom attribute called VirtualUser can be applied to classes. This attribute instructs the Add-In’s
BDL generation engine to generate a virtual user definition. You can implement multiple classes that have
the VirtualUser attribute applied to them. The VirtualUser attribute takes the name virtual user
as a parameter.

Note: When a BDF file is modified manually, you are prompted to specify whether or not you want to
have the file overwritten.

The BDL generation engine parses the methods of the VirtualUser class for methods that have a
Transaction attribute applied to them. The Transaction attribute takes the transaction type, Init,
Main or End, as a first parameter. You can only have one Init and one End transaction, but multiple
Main transactions are allowed.

The Main transaction type takes a second parameter that indicates the number of times that the
transaction is to be called during a test (the default is 1).

Following are the available custom attributes and what the BDL generation engine scripts for them.

Attribute Class Applicable to Parameters Description

VirtualUser Class Name of the Virtual User
Group

(optional) IsUnitTest

Defines a Virtual User Group.

If you specify true, DotNetUnitTest methods will
be scripted instead of the standard DotNet
methods (e.g., DotNetUnitTestLoadObject).

Transaction Method Type (Init, Main, End)

If type is Main the number
of transaction iterations

(optional) Name

Defines a Transaction for the Virtual User Group.

The transaction implementation will call the
method of the .NET Object.

The first script call in the Init transaction is a
DotNetLoadObject loading the Object The last
script call in the end transaction is a
DotNetFreeObject.

Optionally you can define a name that should be
used in the generated BDL script for this
transaction. By default, the transaction name in
BDL is created by combining the VUser name
and the method name.

TestMethod Method This will script a call to the method in the current
transaction.

The current transaction is the previous method
with a Transaction attribute. So a method with
this attribute that has no prior method with a
Transaction attribute makes no sense.

382 | Silk Performer Workbench 20.0

Attribute Class Applicable to Parameters Description

TestAttribute Method Attribute Name

Attribute Value

(optional) Description

This can be applied multiple times to a method
that has either a Transaction or TestMethod
attribute.

An AttributeSetString function will be scripted
prior to the DotNetCallMethod that calls this
method. AttributeSetString will set an attribute
with the passed name and value. This is a way
how parameters can be passed from the script to
the .NET function. The .NET function can read
the attributes with Bdl.AttributeGet. Its meant
that people (QA) who will receive the finished
script only have to change the value passed to
the AttributeSetString to customize the script. So
there is no need for them to change the .NET
Code.

Allows you to define a description for the project
attribute. The description can be seen in Silk
Performer's project attribute wizard.

VirtualUserInitialize Method This method is called for classes that are loaded
via DotNetUnitTestLoadObject

VirtualUserCleanup Method This method is called for classes that are freed
via DotNetUnitTestFreeObject

TestCleanup Method This method is called after a method is called via
DotNetUnitTestCallMethod

TestInitialize Method This method is called before a method is called
via DotNetUnitTestCallMethod

TestIgnore Method Methods that have this attribute applied to them
will not be called via DotNetUnitTestCallMethod

TestException Method Type of exception

Additional log message

Normally, methods that throw exceptions are
considered failed. If you want a method to throw
an exception, you can use the TestException
attribute to tell Silk Performer that this method is
supposed to throw an exception.

Custom Attributes Code Sample

C# Test Code Sample

using System;
using SilkPerformer;

namespace SPProject1
{
 [VirtualUser("VUser")]
 public class VUser
 {
 public VUser()
{
 }
 [Transaction(ETransactionType.TRANSTYPE_INIT)]
 public void TInit()
 {
 }
 [Transaction(ETransactionType.TRANSTYPE_MAIN)]

Silk Performer Workbench 20.0 | 383

 public void TMain()
 {
 }
 [TestMethod]
 [TestAttribute("Attr1", "DefaultValue1")]
 public void TestMethod1()
 {
 string sAttrValue = Bdl.AttributeGet("Attr1");
 Bdl.Print(sAttrValue);
 }
 [Transaction(ETransactionType.TRANSTYPE_END)]
 public void TEnd()
 {
 }
 }
}

Generated BDF Script Example

benchmark DOTNETBenchmarkName

use "dotnetapi.bdh"

dcluser
 user

 VUser
 transactions
 VUser_TInit : begin;
 VUser_TMain : 1;
 VUser_TEnd : end;
var
 hVUser : number;

dcltrans
 transaction VUser_TInit
 begin
 hVUser:= DotNetLoadObject("\\SPProject1\\bin\\release\
\SPProject1.dll", "SPProject1.VUser");
 MeasureStart("TInit");
 DotNetCallMethod(hVUser, "TInit");
 MeasureStop("TInit");
 end VUser_TInit;

 transaction VUser_TMain
 begin
 MeasureStart("TMain");
 DotNetCallMethod(hVUser, "TMain");
 MeasureStop("TMain");
 AttributeSetString("Attr1", "DefaultValue1");
 MeasureStart("TestMethod1");
 DotNetCallMethod(hVUser, "TestMethod1");
 MeasureStop("TestMethod1");
 end VUser_TMain;

 transaction VUser_TEnd
 begin
 MeasureStart("TEnd");
 DotNetCallMethod(hVUser, "TEnd");
 MeasureStop("TEnd");

384 | Silk Performer Workbench 20.0

 DotNetFreeObject(hVUser);
 end VUser_TEnd;

Creating Silk Performer .NET Projects in Microsoft Visual Studio
When you create a Silk Performer .NET project from within Microsoft Visual Studio, ensure that the created
solution file (.sln) is placed in the same directory as the created project file (.csproj, .vbproj, etc). In
Microsoft Visual Studio’s Create Project wizard, there is a Create directory for Solution check box. Do
not select this option (i.e., leave it unchecked). Otherwise you may experience problems when opening the
project from Silk Performer’s Model Script dialog.

Memory Usage in .NET
When you run BDL scripts with .NET method calls, Silk Performer needs to host the Microsoft .NET
Common Language Runtime (.NET CLR). Hosting the .NET CLR and loading .NET objects requires
additional memory that is used for virtual user processes (containers).

Silk Performer allows you to specify whether each virtual user should run in its own application domain or if
all virtual users in a virtual user container should share an application domain. One application domain per
user means that all objects from individual virtual users are isolated from the objects of the other users in
the same virtual user container.

One application domain per virtual user container means that all objects exist in the same domain and may
influence one another. This setting can be changed via your project’s profile settings.

Each additional application domain requires additional memory and administrative overhead by the .NET
CLR.

Memory consumption (in MB) is listed below, based on the number of users running in a virtual user
process and the application domain setting. This is initial memory consumption when starting a load test
(for example, no .NET objects have been loaded).

1 VUser 2 VUser 3 VUser 4 VUser 10 VUser 20 VUser 50 VUser

No .NET
Calls
(normal BDL
Script)

1.668 1.760 1.836 1.904 2.352 3.124 5.484

App Domain/
User

5.268 6.644 6.828 6.940 7.916 9.364 13.868

App Domain/
Container

5.268 5.404 5.488 5.564 6.036 6.852 9.368

The next table shows memory consumption after loading a simple .NET object. The object defines three
methods, but no members.

1 VUser 2 VUser 3 VUser 4 VUser 10 VUser 20 VUser 50 VUser

App Domain/
User

5.680 7.404 7.816 8.296 11.000 15.300 28.664

App Domain/
Container

5.688 5.812 5.900 6.012 6.620 7.628 10.240

As you can see from the tables above, having one application domain per virtual user requires more
memory than does having one application domain per container. The default setting in the project file is
one application domain per user. The reason for this is that the objects created by a user cannot influence
the objects of other users. Ensure that you won’t run into problems if objects access global resources from
within their application domain.

Silk Performer Workbench 20.0 | 385

The initial amount of memory needed to host the .NET CLR is about 3.5 MB. The .NET CLR is hosted only
once per virtual user container -- this is not influenced by application domain setting.

Memory consumption when loading objects depends on the size of the objects. In the table above, the
example loaded object has no members. If you are loading objects with members, memory consumption
will be different.

To free up memory from objects that are no longer referenced, call DotNetFreeObject.

.NET Error Messages
The following issues may occur during .NET load tests.

Cannot Start .NET Language Runtime

Possible Cause Resolution

Silk Performer couldn't host the .NET Common Language
Runtime.

Make sure you have installed the .NET Common
Language Runtime.

Invalid Handle

Possible Cause Resolution

You passed an invalid .NET object handle to the DotNet
API function.

Object handles can be acquired by a call to
DotNetLoadObject or they can be received with
DotNetGetObject if the last called method returns an
object.

Loading Object Throws an Exception

Possible Cause Resolution

This error occurs if:

• Referenced assemblies cannot be loaded/found

• Your perfdotnetfw.dll has a different version
than the perfrun.exe

Ensure that the assembly files are in the location being
referenced and that the versions match for
perfdotnetfw.dll and perfrun.exe.

Object Does Not Implement This Public Method

Possible Cause Resolution

You attempted to call a method that is not a public
method of the .NET object.

Only public methods can be called with the
DotNetCallMethod function.

Method Execution Failed

Possible Cause Resolution

Method execution failed because of an unhandled
exception.

Examine the method that failed.

386 | Silk Performer Workbench 20.0

.NET Common Language Runtime Not Started

Possible Cause Resolution

This error occurs when you attempt to call a DotNet
function before the .NET CLR has been started.

Ensure that the .NET CLR starts before you call a DotNet
function.

Cannot Load mscoree.dll (.NET Runtime)

Possible Cause Resolution

Silk Performer couldn't host the .NET Common Language
Runtime.

Make sure you have installed the .NET Common
Language Runtime. The runtime can be installed from the
Microsoft Download Center.

Initialize .NET Application Domain Failed

Possible Cause Resolution

A .NET application domain couldn't be started. Check to see if your user has the privilege to run .NET
applications.

.NET Common Language Runtime Is Not Running

Possible Cause Resolution

This error occurs when you attempt to call a DotNet
function before the .NET CLR has been started.

Ensure that the .NET CLR starts before you call a DotNet
function.

.NET Assembly With the Given Name Could Not Be Found

Possible Cause Resolution

The assembly file passed as the first parameter to
DotNetLoadObject cannot be found.

If you passed a relative path, the path should be relative
to the project directory.

Perfrun.Exe.Config Could Not Be Written Successfully

Possible Cause Resolution

Before Silk Performer hosts the .NET CLR the file
perfrun.exe.config will be written to set
configuration settings for the loaded .NET objects.

Confirm that this file is write-enabled and that the
executing user has appropriate privileges.

Your .NET DLL References Wrong perfdotnetfw.dll

Possible Cause Resolution

Your perfdotnetfw.dll has a different version than
the perfrun.exe

Ensure that the version of your perdotnetfw.dll is
the same as the perfrun.exe.

Silk Performer Workbench 20.0 | 387

http://www.microsoft.com/downloads

Verification Failed

Possible Cause Resolution

This error is raised when a verification with one of the
verification functions provided by perfdotnetfw.dll
fails.

Examine the verification function that failed.

Exception Has Been Logged

Possible Cause Resolution

This error is raised when you log an exception with the
Bdl.LogException method provided by
perfdotnetfw.dll.

Examine the exception that was logged.

Could Not Find or Load a Specific Class

Possible Cause Resolution

The class with the name you passed as the second
parameter to DotNetLoadObject cannot be found in
the assembly.

Check the spelling and ensure that you defined the full
name (including namespace).

An Exception Was Thrown by a Type's Initializer (.cctor)

Possible Cause Resolution

Constructor of the object has thrown an exception. Examine the object constructor that threw the exception.

An Exception Was Thrown by the Called Method

Possible Cause Resolution

The method called with DotNetCallMethod has
thrown an exception.

Examine the method that threw the exception.

Invalid Number of Parameters

Possible Cause Resolution

You passed an invalid number of parameters to the
DotNetCallMethod function.

Check the parameters used by the
DotNetCallMethod function.

NUnit Integration
Silk Performer facilitates smooth integration of existing NUnit and Microsoft Unit test scripts into Silk
Performer for the support of remote-component testing under realistic concurrent-access server conditions.

Silk Performer provides an import tool that enables you to import existing NUnit assemblies and other .NET
assemblies. Methods may have parameters and return values; code for setting the in-parameters of these
functions is generated automatically.

Silk Performer’s Unit Import Tool offers you the option of selecting specific test case methods. It
automatically generates BDL stub code (a benchmark description file) that calls those selected test case
methods. Existing NUnit test classes can be called from Silk Performer without requiring modification of the
test classes.

388 | Silk Performer Workbench 20.0

Note: Silk Performer’s NUnit import utility supports NUnit versions 2.1.4 and higher.

Setting Up an NUnit or .NET Testing Silk Performer Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, expand Unit Testing and select NUnit or .NET Testing.

5. Click Next.

Note: If you need to add additional resources to the project, right-click the project icon in the
Project menu tree view. It is particularly important that all the user data files (.csv), random data
files (.rnd), and .idl files needed by Silk Performer are set up for your project.

The Workflow - Model Script dialog box appears.

Importing an NUnit or .NET Assembly

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. In the File field, specify the archive that is to be tested. The archive is automatically added to the profile
classpath. The available classes are then retrieved and displayed, sorted alphabetically in the Class
field.

3. From the Class list, select one of the available classes for testing.

When you do not specify a specific archive for testing, the Model Script dialog enables you to specify a
class that is available in the profile classpath. Type the fully qualified class name into the Class field.

The available constructors and methods are automatically retrieved and displayed.

4. From the Constructor list, select the appropriate constructor for instantiating the imported class.

If a constructor is not selected (entry <No Instance Required – Only Static Calls>), only
static methods will be displayed in the method list.

5. In the Methods area, select the methods that you want to call.

6. To filter the methods that are shown in the Methods area, perform the following steps:

a) Click the Advanced Settings button (the funnel icon above the Methods area).
b) Once you have customized filter settings, click OK to update the Methods area.

7. To change general NUnit settings including traffic redirection values such as routed web service proxy
classes, click the Active Profile Settings link. The Profile dialog opens to the General page for .NET
projects (NUnit and .NET Testing project types).

Note: Changes made to these settings may lead to different results. Selections made in the Class,
Constructor, and Methods fields will be updated with the new results.

8. Click OK.

Filter Options for NUnit Methods

This table lists the filters that are available in the Methods area when you import a test class.

NUnit Method Description

Parameterless Functions Only Ignore all functions that expect parameters

Silk Performer Workbench 20.0 | 389

NUnit Method Description

Unit Test Functions Only (selected by
default)

Ignore all functions that are not NUnit

Member Functions Only Ignore all non-member functions

Public Functions (selected by default) Include public functions

Protected Functions Include protected functions

Private Functions Include functions with private access

Package Functions Include functions with package access

Declared Functions Only Ignore functions from the base classes

Complex Functions (selected by
default)

Show functions that take complex parameters. In Java, complex parameters
are scripted by DotNetSetObject with NULL as the default value.

Autodetect Unit Test Functions
(selected by default)

Automatically detect and script functions. Functions must not have
parameters or return values.

Methods marked with [SetUp] and [TearDown] (for NUnit) respectively
[TestInitialize] and [TestCleanup] (for Microsoft Unit Tests)
are invoked prior to and following each method.

Example NUnit BDL Script

Script Example

The following script is generated by importing NUnit Money and selecting the three methods
BagMultiply, BagNegate, and BagSimpleAhdd.

transaction TInit
var
 sFileName : string;
begin
 DotNetSetOption(DOTNET_OPT_REDIRECT_CONSOLE, 1);
 // ==
 // Unit Test TestClass Information:
 // Used Framework: NUnit Test Framework
 // Initialize method: SetUp
 // Class contains 21 test methods!
 // ==
 GetDataFilePath("nunitmoneysample.dll", sFileName);
 ghTestObj := DotNetUnitTestLoadObject(sFileName,
"NUnit.Samples.Money.MoneyTest", "NUnit.Samples.Money.MoneyTest");
end TInit;

transaction TMain
begin
 // BagMultiply
 DotNetUnitTestCallMethod(ghTestObj, "BagMultiply", "BagMultiply");
 // BagNegate
 DotNetUnitTestCallMethod(ghTestObj, "BagNegate", "BagNegate");
 // BagSimpleAdd
 DotNetUnitTestCallMethod(ghTestObj, "BagSimpleAdd", "BagSimpleAdd");
end TMain;

transaction TEnd
begin
 DotNetUnitTestFreeObject(ghTestObj, "NUnit.Samples.Money.MoneyTest");
end TEnd;

390 | Silk Performer Workbench 20.0

DotNetUnitTestLoadObject loads the NUnit assembly and creates an instance of the test class. If the
test class has a global initialize function implemented (marked with TestFixtureSetup - ClassInitialize), this
function will be called right after the object is created.

DotNetUnitTestFreeObject in the TEnd transaction frees the reference to the test object. If the test
class has a global uninitialize function implemented (marked with TestFixtureTearDown -
ClassCleanup), this function will be called prior to release of the object.

DotNetUnitTestCallMethod calls the TestMethod in the same way that the NUnit Microsoft Unit Test
Engine does. If there is a SetUp - TestInitialize method implemented, it will be called before the
test method is called.

If there is a TearDown - TestCleanup method implemented, it will be called after the test method is
called.

Test methods that expect an exception to be thrown (those marked with ExpectedException) are only
considered successful when an exception is actually thrown.

When a test method writes information to the error or out console, the information can be viewed in the
TrueLog. A separate element is logged as child node of the DotNetUnitTestCallMethod.

The same applies for unexpected exceptions. Stack trace and exception messages are logged to the
TrueLog.

Timers

A new optional timer parameter has been introduced for the original DotNet API calls and the new
DotNetUnitTest API calls. When this parameter is specified, the execution times of the constructor, test
method, set up method, and tear down method are measured. For the example above you would receive
the following measures:

• For the constructor: NUnit.Sample.Money.MoneyTest
• For the methods: BagMultiply, BagNegate, BagSimpleAdd
• For the setup methods: BagMultiply_Setup, BagNegate_Setup, BagSimpleAdd_Setup

Silk Performer .NET Explorer
Silk Performer .NET Explorer, which was developed using .NET, and the Silk Performer .NET Framework
allow you to test Web Services, .NET Remoting objects, and other GUI-less .NET objects. .NET Explorer
allows you to define and execute complete test scenarios with different test cases without requiring manual
programming because tasks are completed visually by way of mouse-based operations. Test scripts are
visual and easy to understand, even for individuals who are unfamiliar with .NET programming languages.

Test scenarios created with .NET Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing and exported to Microsoft Visual Studio .NET for further customization.

For more information about .NET, visit http://msdn.microsoft.com/net.

Starting .NET Explorer

Perform one of the following steps to launch .NET Explorer:

• Click Start > All Programs > Silk > Silk Performer 20.0 > Development Tools > Silk Performer .NET
Explorer .

• Click Start > All Programs > Silk > Silk Performer 20.0 > Silk Performer Workbench and create a
new project with the application type .NET/.NET Explorer or Web Services/.NET Explorer.

By default, the executable file is located at C:\Program Files\Silk\Silk Performer
20.0\DotNET Explorer\NetExplorer.exe.

Refer to Silk Performer .NET Explorer Help for detailed information.

Silk Performer Workbench 20.0 | 391

http://msdn.microsoft.com/net

Using the .NET Explorer SilkEssential

Before you begin this task, create and save a .NET Explorer test scenario. Refer to Silk Performer .NET
Explorer Help for detailed information.

Silk Performer ships with a SilkEssential that allows you to hook .NET Explorer to produce a BDL script
with tested Web Services.

1. Create a new project based on the SilkEssential, as follows:

a) Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

b) In the Name text box, enter a name for your project.
c) Enter an optional project description in Description.
d) From the Application menu tree, expand Web Services and click .NET Explorer.
e) Click Next.

Note: If you need to add additional resources to the project, right-click the project icon in the
Project menu tree view. It is particularly important that all the user data files (.csv), random
data files (.rnd), and .idl files needed by Silk Performer are set up for your project.

2. Model the script.

3. While the recorder is running, start .NET Explorer.

4. Load a test scenario that you have defined in a previous.NET Explorer session.

5. Execute an animated run of the scenario. A BDL script is generated while the recorder and .NET
Explorer run.

6. Close .NET Explorer and the recorder.

7. Perform a Try Script run of the recorded BDL script.

8. Perform XML customization and verification in the TrueLog, as required.

Refer to TrueLog Explorer Help for detailed information.

Using the .NET Message Sample

This section includes concepts and tasks that describe the .NET message sample, which allows you to
experiment with the testing of .NET technologies using Silk Performer.

The message sample implements a message server that allows users to log in, view their message store,
and send messages to other users. The sample is comprised of the following .NET technologies:

• .NET Remoting
• Web services
• ASP.NET

.NET Message Sample Overview

The message sample implements a message server that allows users to log in, view their message store,
and send messages to other users. The sample is comprised of the following .NET technologies:

• .NET Remoting
• Web services
• ASP.NET

The sample contains the following components:

Component Description

MessageLib .NET library that defines the interfaces that are
implemented by the server library.

392 | Silk Performer Workbench 20.0

Component Description

MessageImpl Implementation of the MessageLib interfaces.

MessageServer A simple console application that hosts the .NET
Remoting objects that are implemented in
MessageImpl.

An object that implements IObjectManager which
can be activated at http://localhost:1999/
ObjectManager.rem. You can change this setting in
the config file.

MessageServerIIS The ObjectManager remoting object hosted by IIS.

MessageWebService This Web service exposes Web service methods for most
of the methods implemented in the MessageImpl. The
Web service does not host the objects of the
MessageImpl directly. The Web service communicates
with the .NET Remoting server.

MessageSimpleClient This simple client console application acquires the
IObjectManager from the server application and
calls methods on the object.

MessageWin32Client Win32 application that either connects to the .NET
Remoting server or to the Web service. It provides an
interface for logging in, checking messages, and sending
messages.

MessageWebClient ASP.NET application that connects to the Web service
and provides an interface for logging in, checking
messages, and sending messages.

Component Interaction Example

The .NET Remoting server hosts a Singleton SAO (Server Activated Object) that client
applications (Web Service, Win32 Client, Simple Client) can aquire by way of http://
localhost:1999/ObjectManager.rem.

MessageLib Interfaces

The MessageLib library defines several interfaces that are implemented by the MessageImpl library,
which is hosted on the .NET Remoting server. IObjectManager is the core interface that can be acquired
from the server. This interface offers access to other objects such as users, the message store, and
messages. A separate interface assembly is required because when a client application accesses a remote

Silk Performer Workbench 20.0 | 393

object, it requires the type information of the object it acquires. By implementing a library that only defines
the interfaces, the implementation remains on the server side. It would be possible to ship the
MessageImpl to the client, but that would imply that the implementation exists on both the client and the
server side, which is not the preferred approach.

Some methods return an integer value that indicates the success of the method call. 0 indicates a
successful call. Values other than 0 indicate errors. The method GetErrorMsg on the IObjectManager
interface returns an error description of the error code.

ObjectManager Interface

Login Method

int Login(string sUsername, string sPassword,
 ref IUser user)

This method executes a user login with a given password. If the login is successful, the user holds a valid
reference to the user’s object. If the login is not successful, check the return value.

Logout Method

int Logout(IUser user)

Logs out the user.

CreateUser Method

int CreateUser(string sUsername, string sPassword);

Creates a new user.

Note: This method does not login the user.

DeleteUser Method

int DeleteUser(IUser user);

Deletes the user. The user is no longer valid after this call.

GetErrorMsg Method

string GetErrorMsg(int errNo);

Returns a description for the error number.

IUser Interface

ChangePassword Method

int ChangePassword(string sOldPwd, string sNewPwd);

Changes the user password.

ChangeName Method

int ChangeName(string sNewName);

Changes the username.

GetMessageStore Method

IMessageStore GetMessageStore();

394 | Silk Performer Workbench 20.0

Returns the user’s message store.

SendMessage Method

int SendMessage(string sRecipient, string sMsgText);

Sends a message to another user.

Username Method

string Username

User’s name (read-only property).

IMessageStore Interface

GetMessage Method

int GetMessage(int nMsgId, ref IMessage msg);

Returns the message with the given message ID (1 based).

DeleteMessage Method

int DeleteMessage(int nMsgId);

Deletes the message with the given message ID (1 based).

Count Method

int Count

Number of messages in the store (read-only property)

IMessage Interface

Sender Method

string Sender

Sender (read-only property)

MessageText Method

string MessageText

Message text (read-only property).

Sample .NET Web Service

The sample Web service exposes most of the functions that are defined in the interfaces. When there is a
successful login, the user object is stored in the ASP.NET session object. As a result, it is possible to call
methods on the user object without passing a reference to the object back to the client of the Web service.
The session state information is held in the server memory and the session key is passed back to the client
in a cookie. So, if you are using a generated Web proxy client class, be sure to create a
CookieContainer object and assign it to the CookieContainer property of the proxy object.

Exposed functions include:

• Login

• Logout

• CreateUser

Silk Performer Workbench 20.0 | 395

• DeleteUser

• GetMessageCount

• GetMessage

• DeleteMessage

• SendMessage

• GetErrorMsg

The Web service defines a separate message class. The class contains two public members (Sender and
MessageText).

Working With the .NET Message Sample

This section explains how to install and configure the .NET message sample. Also included is a detailed
description of the clients and the server components. The section concludes with an explanation of how to
test the .NET message sample with Silk Performer.

Installing the .NET Message Sample

Note: If you only need to test the .NET Remoting component of the message sample, skip this task
and simply start the message server.

1. Create virtual directories for the Web service, Web client, and message server hosted on IIS by
performing the following steps:

a) Open the Internet Service Manager from the Administrative Tools folder.
b) Create three virtual directories: MessageWebService, MessageWebClient, and

MessageServerIIS.
c) Open the sample application directory and set the base directory to the MessageWebService,

MessageWebClient, and MessageServerIIS directories.

By default, the sample application directory is <public user documents>\Silk Performer
20.0\SampleApps\DOTNET\Message Sample.

d) Right-click the virtual directory entry in the tree and choose Properties. The Properties window
opens.

e) Click Create to create an application for the virtual directory.

If there is no Create button on the Properties page, this step has been executed automatically by
IIS during the creation of the virtual directory.

f) Repeat the preceding two steps ('d' and 'e') for both virtual directories.

2. To ensure that the binaries of the sample application are compiled against the latest version of the .NET
Framework, perform the following steps:

a) Open the MessageLib.sln solution in the <public user documents>\Silk Performer
20.0\SampleApps\DOTNET\Message Sample\MessageLib directory.

b) Perform either a release or debug build of the solution.
c) Copy the output files of the MessageImpl (either debug or release) project to the

MessageServerIIS\bin directory.

Configuring the .NET Message Sample

Configuring the IObjectManager Object Properties

By default the message server exposes the IObjectManager object on http://localhost:1999/
ObjectManager.rem. Proceed with this task only if you need to change the default setting.

1. Navigate to <public user documents>\Silk Performer 20.0\SampleApps\DOTNET
\Message Sample\MessageServer and double-click MessageServer.exe.config.

396 | Silk Performer Workbench 20.0

2. Enter the port number.

Ensure that the port is not already in use by another service on your machine.

3. To use a TCP channel instead of HTTP, change the ref attribute to TCP.

4. To change the URL of the object, edit the objectUri attribute.

If you change any of the these properties, ensure that you also change the configuration of the client
applications, as explained in the following tasks.

Configuring the Simple Client

If you changed the ObjectManagerURL value in MessageServer.exe.config, then you also need to
edit the simple client config file.

1. Navigate to <installation path>\Sample Apps\Message Sample\MessageSimpleClient.

2. Double-click MessageSimpleClient.exe.config.

3. Change the value of the key ObjectManagerURL to the required URL.

Configuring the Web Service

1. Navigate to <public user documents>\Silk Performer 20.0\SampleApps\DOTNET
\Message Sample\MessageWebService and double-click Web.config.

2. Change the value of the key ObjectManagerURL to the required URL.

You can now access the Web service at http://<server>/MessageWebService/
MessageService.asmx.

Configuring the Web Client

When the Web service is installed on a different machine than the Web client, or if you have selected a
different virtual directory name, you must specify the URL of the Web service in the file Global.asax.

1. Navigate to <public user documents>\Silk Performer 20.0\SampleApps\DOTNET
\Message Sample\MessageWebService and double-click Global.asax.cs.

2. Locate the Session_Start method.

3. Define your Web service’s URL.

4. Rebuild the application.

You can now access the Web client at http://<server>/MessageWebClient/Default.aspx.

Exploring the .NET Message Sample

This section guides you through the components of the message sample. The sample uses the message
server that is implemented by the console application. You can use the message server running in IIS by
changing the remoting URL in the configuration files of the client applications.

Starting the .NET Remoting Server

The .NET Remoting server hosts the ObjectManager object that is accessed by all client applications.
The server is a simple console application that runs when you press any key. Some of the methods of the
remoting objects print information to the console, such as which users have logged in or out, and who sent
messages to whom.

Note: The server holds all the information about the users and messages in memory. So if you stop
the server, the current state is lost. This means that each time you start the server you have an empty
environment with no users or messages.

Silk Performer Workbench 20.0 | 397

1. Navigate to <public user documents>\Silk Performer 20.0\SampleApps\DOTNET
\Message Sample\MessageServer.

2. Double-click MessageServer.exe.

The message server console window displays. The console window logs information about the methods
that are called during tests. Press any key to stop the server.

Running the Simple Client

The simple client connects to the .NET Remoting server, creates two users (User1 and User2) with
passwords (Pass1 and Pass2). The simple client also sends a message from User1 to User2.

1. Navigate to <public user documents>\Silk Performer 20.0\SampleApps\DOTNET
\Message Sample\MessageSimpleClient.

2. Double-click MessageSimpleClient.exe.

The message server console window opens. Two users are created and a message is sent from User1 to
User2.

Working With the Win32 Client

Before working with the Win32 client, run the simple client. The simple client automatically creates system
users with which the Win32 client can interact.

The Win32 client does not require any configuration outside the application.

The Win32 client can either connect directly to the ObjectManager object of the remoting server or it can
perform all the method calls through the Web service. The Web service forwards the method calls to the
ObjectManager object on the remoting server.

Once you connect to the Win32 client, you can either create a new user or log in as an existing user. You
can also delete the current user. Any messages sent to the active user are listed in the message store,
including any messages sent using the sample Win32 client or the simple client. You can delete messages
or send new messages to other users in the system.

The Last Error box shows the error text of the last error that occurred when a method was executed.

Note: When errors occur while calling methods on remote objects, you see error descriptions in the
Error Text box.

1. Navigate to <public user documents>\Silk Performer 20.0\SampleApps\DOTNET
\Message Sample\MessageWin32Client and double-click MessageWin32Client.exe. The
sample Win32 client starts.

2. Connect to either the Remoting server or the Web service.

• To log into the .NET Remoting message server, enter the server's URL (for example, http://
localhost:1999/ObjectManager.rem) in the Message Server field and click Connect.

• To log into the sample Web service, enter the Web service URL (for example, http://
localhost/MessageWebService/MessageService.asmx) in the Web Server field and click
Connect.

3. Login using one of the users that the simple client application created.

By default, the simple client application creates User1 with password Pass1 and User2 with password
Pass2.

4. Create a new user.

5. Login using the newly created login credentials.

6. Send a message to another user.

398 | Silk Performer Workbench 20.0

Note: User names are case-sensitive.

7. Review the server console output.

Logging information related to all methods that were called is listed there.

Be sure to log out after you finish your work.

Creating a New User

1. Enter unique Username and Password values.

2. Click Create User.

Sending a Message

1. Enter an existing username in the To User field.

2. Enter sample text in the Message field.

3. Click Send.

Working with the Web Client

Before you can use the Web client, you must configure the Web client by specifying the URL of the Web
service.

Before working with the Web client, run the simple client. The simple client automatically creates system
users with which the Web client can interact.

The Web client communicates with the Web service. The Web client allows you to login to the system and
create new users. When you login, you can view your message store, delete your messages, or send new
messages to other users in the system. Usernames are case-sensitive. If an error occurs while you are
executing a method, the error will be displayed in red.

1. Start your browser and load the URL http://localhost/MessageWebClient/default.aspx. A
login page is displayed.

2. Enter login credentials for an existing user account or create a new user account (see instructions in the
task below).

The first time you login, use User1 for the Username and Pass1 for the Password.

3. Click Login. When you log in you are redirected to the Your Message Store page where you can see
any messages that are in the active user's message store, including any messages that have been sent
using the sample Win32 client or the simple client.

You can send messages to other users in the system, same as you can with the sample Win32 client
(see instructions in the task below).

4. Review the server console output window.

The window displays information related to the activities you performed with the Web client, including
user creation, sent messages, and logins.

Be sure to log out after you finish your work.

Creating a New User

1. Enter unique Username and Password values.

2. Click Create User.

Sending a Message

1. Enter an existing username in the To User field.

Silk Performer Workbench 20.0 | 399

2. Enter sample text in the Message field.

3. Click Send.

Testing the .NET Message Sample

You have several options for testing the .NET message sample with Silk Performer:

• Hook into the Win32 client application and record Web traffic.
• Record a Web session with the Web client.
• Use .NET Explorer to test the Web service and generate a Silk Performer .NET project.
• Create a new .NET Framework project and write a .NET test driver that either tests the Web service or

the .NET Remoting server directly.

Hooking a Win32 Client Application

Before proceeding, start the message server.

1. Create a new Silk Performer project of type Web Services > XML/SOAP.

2. Add a new recording profile for MessageWin32Client.exe.

a) From the Silk Performer Application type list box, select Custom Application.
b) In the Protocol selection area, check the Web check box. The Silk Performer Recorder intercepts

all function calls and displays the results.

3. Begin recording a script.

4. Perform actions using MessageWin32Client (for example, connect, login, send, and logout).

5. End recording.

For each call made in the Win32 client application there is a WebUrlPostBin call and a SOAP
envelope.

6. Review the recorded script.

7. Execute a Try Script run using the recorded script.

Monitor details of the test run in the Server Console window.

Recording a Web-Client Session

.NET Explorer

Before proceeding, start the message server.

1. Create a new Silk Performer project of type Web Browser > Web business transaction.

2. Begin recording: http://localhost/MessageWebClient/Default.aspx.

3. Perform actions using the sample Web client (for example, connect, login, send, and logout).

4. End script recording.

5. Review the recorded script.

6. Execute a Try Script run using the recorded script.

Monitor details of the test run in the Server Console window.

Testing a .NET Web Service

Before proceeding, start the message server.

Note: This scenario is stored within your Silk Performer installation. You can access it at <public
user documents>\Silk Performer 20.0\SampleApps\DOTNET\Message Sample
\NetExplorer_TestingWebService.

1. Launch Silk Performer and create a new project.

400 | Silk Performer Workbench 20.0

2. Load the WSDL from the Web service: http://localhost/MessageWebService/
MessageService.asmx?WSDL

3. Invoke the login method using User1 and Pass1 as input values.

You can also use random variables or global variables mapped to attributes (see .NET Explorer Help for
details).

4. Send a message with some text from User1.

5. Logout the current user and login as User2 (username: User2; password: Pass2).

6. Invoke GetMessageCount and store the result in a variable called mCount.

7. Call GetMessage with the message count variable as input. You will receive the last message that was
sent.

8. Add the remaining logout method call.

9. Execute an animated run.

The failed verification can be ignored (or you can remove the default verification of the
GetMessageCount call).

10.Export a Silk Performer .NET project or a Visual Studio .NET project (exported projects can be found at
<public user documents>\Silk Performer 20.0\SampleApps\DOTNET\Message Sample
\NetExplorerExportedProject).

11.Execute a Try Script run via Silk Performer or Visual Studio .NET.

12.Explore the TrueLog. You will see a node for each Web service call.

Creating a .NET Framework Project

Before proceeding, start the message server.

For full details about the Silk Performer .NET Framework, see .NET Framework Help.

1. Create a new Silk Performer project of type .NET > .NET Framework using Visual Studio .NET Add-
On.

2. Use the Model Script dialog to bring up Visual Studio .NET.

3. Code a .NET test driver.

4. A sample test driver implementation that tests the .NET remoting server and the Web service can be
found at <public user documents>\Silk Performer 20.0\SampleApps\DOTNET\Message
Sample\SPVNetTestDriver.

5. Open the project in Visual Studio .NET and execute a Try Script run.

6. After the run, review the TrueLog and open the user's WRT file.

The sample sends a message from User1 to User2 (where User1 is connected to the remoting server
and User2 is connected to the Web service).

.NET Explorer Samples

This section includes topics that explain how to access the .NET Remoting and Web service samples that
ship with .NET Explorer. It also includes a list of helpful Web resources.

.NET Remoting Support

RemotingLib implements one remotable object (MarshalByRefObject) and defines an interface. The
interface is available at <public user documents>\Silk Performer 20.0\SampleApps\DOTNET
\RemotingSamples\RemotingLib.

RemServerConsole is the server application that hosts the remotable object and implements one object
that implements the defined interface of RemotingLib. It is available at <public user documents>
\Silk Performer 20.0\SampleApps\DOTNET\RemotingSamples\RemServerConsole.

Silk Performer Workbench 20.0 | 401

All source code is available. Code is already compiled into a debug version.

.NET Remoting Testing

1. Start the remoting server application via .NET Explorer. Choose Help > Start Remoting Sample.

2. Manually start RemServConsole.exe, which is available at <public user documents>\Silk
Performer 20.0\SampleApps\DOTNET\RemotingSamples\RemServerConsole\bin\debug
\RemServConsole.exe.

3. Load RemotingLib.dll, which is available at <public user documents>\Silk Performer
20.0\SampleApps\DOTNET\RemotingSamples\RemServerConsole\bin\debug
\RemotingLib.dll.

4. Create an instance of the class RemoteObject. Right-click RemoteObject and choose Create
Remote Object. You will be prompted for the activation URL. Enter tcp://localhost:2000.

5. Connect to the remoted interface.

6. Invoke a method of the RemoteInterface interface. The first time you do this you will be prompted for
the activation URL. The activation URL is either tcp://localhost:2000/RemoteInterface.rem
or tcp://localhost:2000/RemoteInterfaceSCall.rem (single call object).

.NET Component Testing Overview

netexptestdll.dll implements base classes that can be tested. This file is available at <public
user documents>\Silk Performer 20.0\SampleApps\DOTNET\netexptestdll\bin\debug
\netexptestdll.dll.

You can instantiate one of the loaded objects via the context menu on the class or by invoking a
constructor. Following that, store the created object in a variable and call methods on the created object.

Sample Web Services

Several sample Web services are available for testing with .NET Explorer.

• The .NET sample Web service SampleService.asmx offers simple method calls.
• Testing ASP.NET Data Types (DataTypes.asmx) is a sample Web service provided by Microsoft that

allows you to test different data types that are provided by the ASP.NET Framework.
• Order Web service (OrderService.asmx) is a sample Web service that allows you to simulate the

ordering of books and DVDs.
• Other free accessible Web services are available at http://www.xmethods.net and http://

www.mssoapinterop.org.

Order Web Service

The sample Order Web service offers a number of methods and is available for testing with .NET Explorer
at http://demo.borland.com/OrderWebService/OrderService.asmx. The following methods are available:

• SearchArticles: Searches for articles by a name pattern.
• GetArticleByName: Searches for an article by the full name.
• GetArticleById: Searches for an article by its ID.
• CreateUser: Creates a new user in the database.
• Login: Logs in an existing user. The return value is the user ID that is needed for other method calls

(store this return value in a global variable).
• Logout: Logs the user out of the system.
• CreateOrder: Creates a new order for the currently logged in user.
• AddOrderItem: Adds an item to the order.
• GetOrder*: Returns information about an order.

402 | Silk Performer Workbench 20.0

http://www.xmethods.net
http://www.mssoapinterop.org
http://www.mssoapinterop.org
http://demo.borland.com/OrderWebService/OrderService.asmx

All order related methods take the userid as a header parameter. This is why you should store the user
ID that is returned by the Login method in a global variable and use the variable as input for all order-
related methods.

Some of the methods may throw SOAP exceptions (for example, if you are not logged in and try to create
an order).

Web References

Here are some additional online resources that can assist you with the testing of Web services and getting
the most from .NET Explorer.

• (Web service) http://demo.borland.com
• (Web service) http://www.mssoapinterop.org/asmx/simple.asmx
• (Web service) http://www.mssoapinterop.org/asmx/simpleB.asmx
• (.NET resource) http://msdn.microsoft.com/net

GUI-Level Testing Support

When to Use GUI-Level Testing

Suppose you have an application that implements a traditional client/server architecture. You want to test
what happens when multiple instances of the client application access the server simultaneously. An
example would be a proprietary time-tracking system that stores the working hours of employees on a
server. However, you cannot use any of the existing Silk Performer application types for testing, because
the application uses an exotic protocol to communicate between client and server. In such instances, you
may want to use GUI-level testing. With GUI-level testing, you can find out how many employees can
concurrently access the server and use the time-tracking system without overloading the server.

How GUI-Level Testing Works

As shown in the graphic below, the process begins with the Silk Performer Controller. When you start a
load test, the Silk Performer Controller connects to an agent running on a Microsoft Windows Server
operating system and has Remote Desktop Service (formerly known as Terminal Services) running. The
Silk Performer agent then creates runtimes and within the runtimes the virtual users are created. Each
virtual user creates a new session on the agent machine and starts Silk Test within this session. Silk Test
then performs the previously recorded steps on the application, or in other words: Silk Test drives the
application. The application accesses the server and generates the load, while the virtual users measure
the response times.

Sometimes you cannot run more than one instance of an application on a machine or within a single
session. This is why each virtual user creates a new session on the agent machine. With this approach,
Silk Performer creates several instances of your application, all of which access the system under test
simultaneously.

Setting Up a GUI-Level Testing Environment

1. Set up at least one agent machine that has one of the Microsoft Windows Server editions installed on it.
2. Install Silk Performer Agent on the machine.
3. Install Silk Test.
4. Install your client application.
5. Use Silk Test to model one or more test cases using the application.
6. Create a Silk Performer GUI-level testing project that uses the Silk Test project to run the defined test

cases against the system under test.

Once you have performed all these steps, you can start the load test in Silk Performer.

Silk Performer Workbench 20.0 | 403

http://demo.borland.com
http://www.mssoapinterop.org/asmx/simple.asmx
http://www.mssoapinterop.org/asmx/simpleB.asmx
http://msdn.microsoft.com/net

Note: You can use the following Silk Test clients for GUI-level testing: Silk Test Classic, Silk4J, and
Silk4NET. Make sure that you meet all requirements when you use Silk4J and Silk4NET for GUI-level
testing. See Requirements for GUI-Level Testing with Silk4J and Silk4NET for details.

Why is it Called GUI-Level Testing?

Silk Test performs testing directly on the graphical user interface, or in other words, on the GUI-level. With
this approach you can watch how Silk Test performs the recorded test steps, for example mouse clicks and
keyboard entries, if you connected to one of the sessions on the agent machine.

GUI-Level Testing Functions

Refer to the Silk Performer BDL Reference for full details on the BDL functions that are offered by Silk
Performer.

Note: Silk Test can be started in local host mode. With this approach, virtual users use a console
session rather than a separate Windows session.

Note: GUI-level testing only works on Windows Server edition platforms. Windows Home or
Professional editions can only be used as agents for a single GUI-level testing VUser.

Single Session GUI-Level Testing

For tests against web applications using Google Chrome or Mozilla Firefox, Silk Performer allows you to
run all virtual users within a single Windows session. The benefits are that no remote desktop licenses are
required and that resource consumption per virtual user is considerably lower compared to the
conventional GUI-level testing approach.

404 | Silk Performer Workbench 20.0

Configuring Windows for GUI-Level Testing
Before you can execute GUI-level tests, you must configure your Windows operating system. Additionally,
Silk Test needs to be installed on the agent computer (refer to the Silk Test Help for details).

Configuring Windows 2008 R2 for GUI-Level Testing

Before you can perform this task, make sure that the Remote Desktop Services server role is installed.

1. Enable Remote Desktop Protocol (RDP).

RDP is disabled by default.

a) Open Windows Control Panel > System and Security > System.
b) Click the Remote Settings link.
c) Check the checkbox Allow connections from computers running any version of Remote

Desktop (less secure).
d) Click OK.

2. Allow RDP users to launch applications remotely.

a) Navigate to Administrative Tools > Remote Desktop Services > RemoteApp Manager.
b) Click Change next to RD Session Host Server Settings.
c) In the Access to unlisted programs group box, check the checkbox Allow users to start both

listed and unlisted programs on initial connection.
d) Click OK.

3. Allow RDP users to run multiple sessions.

a) Navigate to Administrative Tools > Remote Desktop Services > Remote Desktop Session Host
Configuration.

b) Double-click Restrict each user to a single session. The Properties dialog box displays.
c) Uncheck the checkbox Restrict each user to a single session.
d) Click OK.

4. Configure Remote Desktop settings.

Silk Performer Workbench 20.0 | 405

a) Navigate to Administrative Tools > Remote Desktop Services > Remote Desktop Session Host
Configuration.

b) Right-click Remote Desktop Protocol-TCP (RDP-Tcp) in the Connections list and click
Properties.

c) Click the Log on Settings tab and make sure that Always prompt for password is disabled.
d) Click the Sessions tab and make sure that Override user settings is selected and that End a

disconnected session is set to 1 minute. Make sure that all other settings are disabled or left
blank.

e) Click the Environment tab and make sure that Run initial program specified by user profile and
Remote Desktop Connection or client is enabled.

f) Click the Remote Control tab and make sure that Use remote control with default user settings
is enabled.

g) Click the Network Adapter tab and make sure that All Network adapters configured with this
protocol is selected in the Network adapter list.

h) Click OK.

5. User Account Control (UAC) is enabled by default, but is not required for GUI-level testing. If you want to
leave UAC turned on, the agent must run under a user account.

To configure UAC settings:

a) Navigate to Control Panel > User Accounts > User Accounts > Change User Account Control
Settings.

b) Modify the UAC notification level as desired.
c) Click OK.

6. Using the Windows user and group administration functionality, select the local users that can execute
GUI-level tests. Ensure that this user is a member of the Administrators and/or Remote Desktop
Users group.

Configuring Windows 2012 - 2019 for GUI-Level Testing

Before you can perform this task, make sure that Remote Desktop Services is enabled and that you are
logged in with a domain user with administrative privileges on the machine.

1. Set a time limit for disconnected users.

Note: The time limit can be set on two levels: either through a Windows group policy or through
the Remote Desktop Services Collection. The group policy setting has priority over the Remote
Desktop Services Collection setting.

Group Policy:

a) Start the Windows Local Group Policy Editor and navigate to Local Computer Policy >
Computer Configuration > Administrative Templates > Windows Components > Remote
Desktop Services > Remote Desktop Session Host > Session Time Limits.

b) Double-click Set time limit for disconnected sessions.
c) Click Enabled.
d) For End a disconnected session, select 1 minute.

Remote Desktop Services Collection:

a) Start the Windows Server Manager and navigate to Remote Desktop Services > Collections >
<name of the collection>. In the Properties area, select Edit Properties from the Tasks menu.

b) On the Session Collection dialog, select Session.
c) For End a disconnected session, select 1 minute.
d) Click OK.

2. Allow RDP users to run multiple sessions and launch all programs.

a) Start the Windows Local Group Policy Editor and navigate to Local Computer Policy >
Computer Configuration > Administrative Templates > Windows Components > Remote
Desktop Services > Remote Desktop Session Host > Connections.

406 | Silk Performer Workbench 20.0

b) Double-click Restrict Remote Desktop Services users to a single Remote Desktop Services
session.

c) Click the Disabled option.
d) Click OK.
e) Double-click Allow remote start of unlisted programs.
f) Click the Enabled option.
g) Click OK.

3. User Account Control (UAC) is enabled by default, but is not required for GUI-level testing. If you want to
leave UAC turned on, the agent must run under a user account.

To configure UAC settings:

a) Navigate to Control Panel > User Accounts > User Accounts > Change User Account Control
Settings.

b) Modify the UAC notification level as desired.
c) Click OK.

4. Add users to the Remote Desktop Users group.

a) In Server Manager > Tools > Computer Management > Local Users and Groups > Groups,
double-click the Remote Desktop Users group and add the local users that shall be able to execute
GUI-level tests.

b) In case the GUI-level test users require administrative privileges during test execution, you can add
them to the Administrators group here.

Obtaining More Licenses for Windows Server Edition

Windows Server Edition offers multiple licenses for remote desktop sessions, which means that you can
connect multiple times during a single session.

Windows Server Edition offers two free licenses for remote desktop sessions. Windows Home and
Professional editions can only be used as agents for a single GUI-level testing VUser.

1. Navigate to Start > ... > Control Panel > Add or Remove Programs .

2. Click the Add/Remove Windows Components button.

3. Within the Windows Components Wizard, scroll to and check the Terminal Server check box.

4. Click Next to enable application mode for your Windows system.

Note: A license server is required for application mode. Contact Microsoft for information about
obtaining a license server.

5. Restart your computer.

GUI-Level Test Execution

Modeling GUI-Level Tests - Keyword-driven

1. Click File in the menu and click New Project. In the tree, click GUI-Level Testing and Silk Test. Enter
a Name and a Description and click Next.

2. In the File field, specify the Silk Test asset you want to use for a performance test. Silk Performer
automatically detects the file type and enables the appropriate button below.

3. Click Import Keyword-Driven test.

4. In the Tests area, select the keyword-driven tests you want to import.

5. Specify the Import Options:

• Ignore parameters: Does not include any of the parameters that are part of the keyword-driven test.
• Script parameters as static strings: The parameters are directly added to the script, which means

that they are static strings within the script.

Silk Performer Workbench 20.0 | 407

• Script parameters as values from CSV file: The parameters are stored within a .csv file and
referenced in the script. The .csv file is added to the project and displays within the Project tree.

6. Specify the Row selection order:

• Random: Adds the BDL function FileGetRndRow to the script.
• Sequential - machine-wide: Adds the BDL function FileGetNextRow to the script.
• Sequential - test-wide: Adds the BDL function FileGetNextUniqueRow to the script.

7. Select a Web Browser from the drop-down list. This list is only enabled when the file that is to be
imported is based on a Silk Test web project. Silk Test web projects can make use of the single-session
concept for GUI-level testing.

8. Enable Use project attributes for session login to let Silk Performer use credentials from the Project
Attributes to login into sessions. To edit the project attributes, click Project > Project Attributes . The
credentials will be added to the TInit transaction of your script.

Note: Silk Test web projects can make use of the single-session concept for GUI-level testing, thus
login credentials are not required at all. Nevertheless, for further script customization it might be
useful to enable Use project attributes for session login.

9. Click OK and save the .bdf file.

Silk Performer imports the test assets and generates an appropriate .bdl stub.

Modeling GUI-Level Tests - Silk4J

1. Click File in the menu and click New Project. In the tree, click GUI-Level Testing and Silk Test. Enter
a Name and a Description and click Next.

2. In the File field, specify the Silk Test asset you want to use for a performance test. Silk Performer
automatically detects the file type and enables the appropriate button below.

3. Click Import Silk4J test.

4. In the File field, specify the archive that is to be tested. The archive is automatically added to the profile
classpath. The available classes are then retrieved and displayed, sorted alphabetically in the Class
field.

5. From the Class list, select one of the available classes for testing.

When you do not specify a specific archive for testing, the wizard enables you to specify a class that is
available in the profile classpath. Type the fully qualified class name into the Class field, for example
java.lang.String.

The available constructors and methods are automatically retrieved and displayed.

6. In the Methods area, select the methods that you want to call.

7. To filter the methods that are shown in the Methods area, perform the following steps:

a) Click the Advanced Settings button (the funnel icon above the Methods area).
b) Once you have customized filter settings, click OK to update the Methods area.

8. To change general Java settings including the Java version, Java home directory, or JVM DLL, click the
Active Profile Settings link. The Profile Settings dialog opens to the Java/General page for Java
projects (JUnit project type).

Note: Changes made to these settings (for example Java Classpath) may lead to different results.
Selections made in the Class, Constructor, and Methods fields will be updated with the new
results.

Note: If you change the Java version, Java home directory, or JVM DLL, you must restart Silk
Performer for the changes to take effect.

9. Select a Web Browser from the drop-down list. This list is only enabled when the file that is to be
imported is based on a Silk Test web project. Silk Test web projects can make use of the single-session
concept for GUI-level testing.

408 | Silk Performer Workbench 20.0

10.Enable Use project attributes for session login to let Silk Performer use credentials from the Project
Attributes to login into sessions. To edit the project attributes, click Project > Project Attributes . The
credentials will be added to the TInit transaction of your script.

Note: Silk Test web projects can make use of the single-session concept for GUI-level testing, thus
login credentials are not required at all. Nevertheless, for further script customization it might be
useful to enable Use project attributes for session login.

11.Click OK and save the .bdf file.

Silk Performer imports the test assets and generates an appropriate .bdl stub.

Modeling GUI-Level Tests - Silk4NET

1. Click File in the menu and click New Project. In the tree, click GUI-Level Testing and Silk Test. Enter
a Name and a Description and click Next.

2. In the File field, specify the Silk Test asset you want to use for a performance test. Silk Performer
automatically detects the file type and enables the appropriate button below.

3. Click Import Silk4NET test.

4. In the File field, specify the archive that is to be tested. The available classes are retrieved and
displayed, sorted alphabetically in the Class field.

5. From the Class list, select one of the available classes for testing. Type the fully qualified class name
into the Class field. The available methods are automatically retrieved and displayed.

6. In the Methods area, select the methods that you want to call.

7. To filter the methods that are shown in the Methods area, perform the following steps:

a) Click the Advanced Settings button (the funnel icon above the Methods area).
b) Once you have customized filter settings, click OK to update the Methods area.

8. To change general .NET settings, click the Active Profile Settings link. The Profile Settings dialog
opens to the .NET/General page.

9. Select a Web Browser from the drop-down list. This list is only enabled when the file that is to be
imported is based on a Silk Test web project. Silk Test web projects can make use of the single-session
concept for GUI-level testing.

10.Enable Use project attributes for session login to let Silk Performer use credentials from the Project
Attributes to login into sessions. To edit the project attributes, click Project > Project Attributes . The
credentials will be added to the TInit transaction of your script.

Note: Silk Test web projects can make use of the single-session concept for GUI-level testing, thus
login credentials are not required at all. Nevertheless, for further script customization it might be
useful to enable Use project attributes for session login.

11.Click OK and save the .bdf file.

Silk Performer imports the test assets and generates an appropriate .bdl stub.

Modeling GUI-Level Tests - Silk Test Classic

1. Click File in the menu and click New Project. In the tree, click GUI-Level Testing and Silk Test. Enter
a Name and a Description and click Next.

2. In the File field, specify the Silk Test asset you want to use for a performance test. Silk Performer
automatically detects the file type and enables the appropriate button below.

3. Click Import Silk Test Classic test.

4. If the test case file you want to import is located within a Silk Test package file (.stp), select Open a Silk
Test package file and specify the file in the Silk Test Package field.

5. If you want to import a test case file, select Open a Silk Test script file and specify the file in the
Script File field.

Silk Performer Workbench 20.0 | 409

6. Select a specific Testcase from the list.

7. (optional) You can add Silk Test Classic test data to the selected test case, if required. Enter test data
into the Test Data field using the format "<test case name>",<test data> (For example,
"test", 10).

8. Click Add. The selected test case appears below in the Testcase field.

9. Add more test cases to your project as required by repeating this procedure.

10.Select a Web Browser from the drop-down list. This list is only enabled when the file that is to be
imported is based on a Silk Test web project. Silk Test web projects can make use of the single-session
concept for GUI-level testing.

11.Enable Use project attributes for session login to let Silk Performer use credentials from the Project
Attributes to login into sessions. To edit the project attributes, click Project > Project Attributes . The
credentials will be added to the TInit transaction of your script.

Note: Silk Test web projects can make use of the single-session concept for GUI-level testing, thus
login credentials are not required at all. Nevertheless, for further script customization it might be
useful to enable Use project attributes for session login.

12.Click OK and save the .bdf file.

Silk Performer imports the test assets and generates an appropriate .bdl stub.

Exporting Silk Test Tests to Silk Performer

Before you start the export, make sure that Silk Performer is installed on your computer.

1. You can export your Silk Test test from Eclipse and Visual Studio:

• Start Eclipse and open or create a Silk4J test.
• Start Visual Studio and open or create a Silk4NET test.

2. Use the Export as Performance Tests feature:

• In Eclipse, click the Silk Test icon in the toolbar and click Export as Performance Tests.
• In Visual Studio, click Silk4NET in the menu and click Export as Performance Tests.

Silk Performer launches and the Model Script dialog displays. Set the required options and complete the
import process. Silk Performer then creates a .bdf file and adds all necessary files to the project.

User Credentials for GUI-Level Testing

User credentials for GUI-level testing can be specified in the following areas:

• Profile settings
• Project attributes (username and password project attributes are automatically defined when you create

a GUI-level testing project)
• Plain text specified in the BDL script
• Imported from data files

Note: Ensure that the user accounts used for GUI-level testing are members of the Remote Desktop
Users Windows group on the remote agent.

If you want each VUser to connect using different login credentials, specify the credentials using project
attributes or use script customization through data files.

If you want each VUser to connect with identical login credentials, specify the credentials using profile
settings or with plain text in the BDL script.

Note: User credentials specified in profile settings are used only when the other options listed above
are not used. When no user credentials are specified in any of the areas listed above, Silk Performer

410 | Silk Performer Workbench 20.0

connects to the console session without using the remote desktop protocol. In such instances you can
only run one VUser per agent.

Timers in GUI-Level Testing

Timers are central to GUI-level load testing. You can add timers to your Silk Test Classic, Silk4J, and
Silk4NET scripts which will be reported to Silk Performer’s test results. Refer to the Silk Test Help for
detailed information about creating timers within Silk Test scripts.

Silk Performer automatically generates names for Silk Test timers that do not have names.

When executing keyword-driven tests, the execution time for each keyword is logged automatically.

GUI-Level Testing Result Files

You can find the most recent Try Script TrueLog files in the RecentTryScriptTest directory within your
Silk Performer project directory. During GUI-level testing, temporary Silk Test TrueLog files with the
extension .xlgs are written. After each Silk Test test case execution, the results of the Silk Test .xlgs
and the results of the Silk Performer .xlgs files are merged into the Silk Performer .xlgs files (per
VUser) and the temporary .xlgs files are deleted.

The RecentTryScriptTest directory within your Silk Performer project directory also includes Silk
Test .xlgs result files. These are the files that are displayed in Silk Test when you initiate the Explore Silk
Test results command.

Exploring Silk Test Results

1. Within Silk Performer, right-click a virtual user profile.

2. Select Explore Silk Test Results from the context menu. Silk Test launches, allowing you to analyze the
corresponding Silk Test .res result file.

You can also select Explore TrueLog from the context menu to view a Try Script’s TrueLog in TrueLog
Explorer.

Click the Results tab to view test results directly in Silk Performer.

Requirements for GUI-Level Testing with Silk4J and Silk4NET
Make sure to meet the following requirement when you use Silk4J for GUI-Level testing:

• You must have Silk Test 15.0 or higher installed.

Make sure to meet the following requirements when you use Silk4NET for GUI-Level testing:

• You must have Silk Test 15.0 or higher installed.
• You must have Test Agent from the .NET Framework installed.
• You need the same version of MSTest that was used to build the test file.

Note: Silk Performer will always use the latest MSTest version that is installed on the test machine.
If the version you used for building the test file differs from the latest version that is installed on the
test machine, the Silk4NET information in the TrueLog file will be missing.

GUI-Level Testing Scalability Scenarios

System Test Environment

• Silk Performer 2008
• Silk Test 2008
• 4 GB RAM
• BroadCom 57xx Gigabit Controller

Silk Performer Workbench 20.0 | 411

• Dual (2 x 2.4 GHz) processors
• 167 GB free space hard disk

Note: The results below should be used as a guideline only and your results may differ depending on
the application under test and the available resources of specific Silk Performer agent machines.

Test Scenarios

Executing a 1 VUser test over a 10 minute period

• 40k of Memory for Performer.exe

• 7.2k of Memory for the PerfRun.exe (Silk Performer replay engine)

During the test, the VUser will launch a terminal service session which in turns then launches the following processes
(this scenario is true for every VUser running a test).

• Windows terminal services = 6.3k

• Partner.exe (Silk Test) = 21k

• Agent.exe (Silk Test Agent) = 8k

• Perfsm.exe (Silk Performer Session Manager) = 1.09k

• Testapp.exe (application under test) = 6.5k (this is the only real variable within the terminal service session in
a load test scenario)

Executing a 5 VUser increasing workload test over a 10 minute period, with VUser per process set to 1

• CPU% = anywhere between 1% to 51% depending on which state the Silk Test process was in while executing
inside the terminal service - mostly around 25% utilization

• Memory = consistently around 48% to 50% throughout duration of test

• Responsiveness = 100% consistently

• PerfRun.exe = 7.2k of Memory

Executing a 5 VUser increasing workload test over a 10 minute period, with VUser per process set to 5

• CPU% = anywhere between 1% to 51% depending on which state the Silk Test process was in while executing
inside the terminal service - mostly around 25% utilization

• Memory = constantly around 46% to 48% throughout duration of test

• Responsiveness = 100% constantly

• PerfRun.exe (single) = 10.5 k consistently throughout the test

Executing a 10 VUser increasing workload test over a 10 minute period, with VUser per process set to
Automatic Calculation (resulting in 10 PerfRun.exe files being launched)

• CPU% = anywhere between 1% to 63% depending on which state the Silk Test process was in while executing
inside the terminal service, mostly around 23% or 41% utilization

• Memory = constantly around 62% throughout duration of test

• Responsiveness = 100% constantly

• PerfRun.exe (each) = 7.5 k consistently throughout the test

Executing a 20 VUser increasing workload test over a 10 minute period, with VUser per process set to 20

• CPU% = anywhere between 17% to 45% depending on which state the Silk Test process was in while executing
inside the terminal service, mostly around 25% or 38% utilization

• Memory = constantly around 76% throughout duration of test

• Responsiveness = 100% constantly

• PerfRun.exe (each) = 15 k consistently throughout the test

412 | Silk Performer Workbench 20.0

Executing a 25 VUser increasing workload test over a 15 minute period, with VUser per process set to 25

• CPU% = anywhere between 22% to 45% depending on which state the Silk Test process was in while executing
inside the terminal service, mostly around 25% or 38% utilization

• Memory = constantly around 83% throughout duration of test (when all VUsers were running)

• Responsiveness = 100% constantly

• PerfRun.exe (one) = 15 k consistently throughout the test

Executing a 36 VUser increasing workload test over a 18 minute period, with VUser per process set to 18 (for
example, two PerfRun.exe files executing all 36 VUsers)

• CPU% = anywhere between 22% to 45% depending on which state the Silk Test process was in while executing
inside the terminal service, mostly around 25% or 38% utilization

• Memory = constantly around 98% to 100% throughout duration of test (when all VUsers were running)

• Responsiveness = 100% constantly

• PerfRun.exe (each) = 19 k consistently throughout the test

Note: The above values were calculated with no logging enabled (no TrueLog, no vuser.log, etc.,
files being generated) as this would add to the resource consumption of the load test . To summarize,
it can be said that both CPU and memory are the limiting scalability factors when executing a GUI-
level load test . However, if you specify the setting VUser per process to as high a value as
possible (although never higher than 25 VUsers per process) then this will significantly reduce both
the CPU and the memory utilization of the load test . It is also worth noting that the greater the
memory footprint of the application under test, then the less VUsers you will be able to scale
successfully during the test.

Additional Information
Additional information on executing the load test on machines which use Multiple Processors:

As long as you have more replay engines (PerfRun.exe) running than you have CPUs available on the
machine, the current implementation of GUI-level support in Silk Performer does not have any limitations
regarding the number of processors that can be used on a Silk Performer agent installation. During a load
test scenario, each Silk Performer replay engine (PerfRun.exe) will be bound to a particular processor in
a round robin method, for example: PerfRun.exe1 to CPU1, PerfRun.exe2 to CPU2, PerfRun.exe3
to CPU3, perfRun.exe4 to CPU4, and so on.

Troubleshooting GUI-Level Testing Issues
When troubleshooting GUI-Level issues it is important to note that there are three separate components
(Silk Performer, Silk Test, and Windows/Terminal Services/Remote Desktop Services) that play integrated
roles during the execution of GUI-Level tests; each of these components should be considered when
attempting to isolate the root causes of errors.

Step 1: Windows test-environment configuration

Note: For resolutions to issues outlined in this section, please visit the Micro Focus Knowledge Base
and enter the referenced Resolution ID.

The first thing to consider is that Silk Performer can only execute multiple GUI-level virtual users on
Microsoft Windows operating systems that have Terminal Services/Remote Desktop Services installed,
licensed and configured. If you attempt to execute more than one GUI-level virtual user from a Microsoft
Windows machine you will encounter the following error message: StInitSession(GUI-Level
Testing Replay: 10 - Virtual user information, Silk Test Connection timeout
reached.

Resolution ID: 17256, 17231

The next, and perhaps most important, step is to configure Windows Terminal Services/Remote Desktop
Services to allow each Silk Performer virtual user to execute a Silk Test test case within a separate terminal

Silk Performer Workbench 20.0 | 413

http://community.microfocus.com/borland/test/silk_performer_-_application_performance_testing/w/knowledge_base/

session. Therefore it is of the vital importance that each of the settings below be configured exactly as
specified in the resolution listed below.

Resolution ID: 17255

Please note that failure to configure Windows Terminal Services/Remote Desktop Services as
recommended above can result in error messages such as GUI-Level Testing Replay: 10 -
Virtual user information, RDP not connected.

Resolution ID: 20117

Once you have configured Terminal Services/Remote Desktop Services, the final configuration check is to
ensure that you are using the correct version of Silk Test (for test case generation) and that you have the
correct Silk Performer licenses available for a GUI-level load testing.

Resolution ID: 17168, 17148

Step 2: Proxy Server Configuration

In some situations, when recording a Silk Performer script via the Silk Test interface, the resulting BDF file
contains no Silk Performer functions. To resolve this issue, perform the following:

1. Launch Internet Explorer and navigate to Tools > Internet Options.
2. Select the Connections tab.
3. Click LAN settings. The Local Area Network (LAN) Settings dialog box opens.
4. Check the Use a proxy server for your LAN check box.
5. In the Address field, type localhost.
6. In the Port field, type 8080.
7. Click OK.

Step 3: Silk Test configuration and test-case generation

Note: For resolutions to issues outlined in this section, please visit the Micro Focus Knowledge Base
and enter the referenced Resolution ID.

When using Silk Test to generate a test case for execution in Silk Performer it is important that you
consider that the test case will eventually be executed by Silk Performer within a Terminal Services/Remote
Desktop Services/Remote Desktop Services environment. This means that certain considerations need to
be made, such as ensuring that a full version of Silk Test is installed on the Silk Performer Agent otherwise
Silk Performer will report the error message GUI-Level Testing Replay: 7 - Application
could not be launched.

Resolution ID: 17181

Ensure that any directory paths that have been configured for Silk Test are still available when the Silk Test
project is exported to Silk Performer; otherwise the Silk Performer runtime engine may be unable to can
locate the directory path used to launch the application under test. Failure to set a global path can result in
an error message such as Error: Directory XXXX does not exist".

Resolution ID: 17204

Finally, before exporting the Silk Test project to Silk Performer it is imperative that you export the project
using the correct settings. Otherwise you may see the following error: GUI-Level Testing Replay:11
SilkTest reported. Project failed to open. The resolution below describes both the
consequences of not doing this and the correct way to export a project from Silk Test.

Resolution ID: 17200

414 | Silk Performer Workbench 20.0

http://community.microfocus.com/borland/test/silk_performer_-_application_performance_testing/w/knowledge_base/

Step 4: Silk Performer configuration and common GUI-level replay errors

Note: For resolutions to issues outlined in this section, please visit the Micro Focus Knowledge Base
and enter the referenced Resolution ID.

The final component to look at when troubleshooting GUI-level issues is Silk Performer. The first thing an
end user should consider before they replay a GUI-level BDF script in Silk Performer is that there are major
differences between executing a Silk Test testcase within Silk Performer using a normal console session
and executing a Silk Test test case using a terminal server session. The major differences between running
a BDF script as a console session and terminal server session are detailed in the following resolution.

Resolution ID: 17258

Failure to understand the differences between the types of sessions that can be executed in Silk Performer
and failure to instruct Silk Performer that you wish to execute a terminal server session can lead to the
common replay error GUI-Level Testing Replay: 10 - Virtual user information, More
than 1 user per Session is not allowed. Refer to the resolution listed below to learn how to
avoid this error during replay in Silk Performer.

Resolution ID: 17257

Other errors that commonly occur during replay are related to the Terminal Services/Remote Desktop
Services session in which the Silk Test test case runs. For example is it important to consider that when a
Silk Test test case is initially recorded it is often within an operating system environment that uses different
user credentials than the environments in which the Silk Test test case will be executed within the terminal
server environment. This can result in unexpected windows being generated during replay within the
terminal server session and as a result the Silk Test agent will report an error message during replay within
Silk Performer such as Log Error: *** Error: Window 'window name' was not found. The
following resolution provides a good example of one such error and explains how you can avoid it.

Resolution ID: 17236

Before you execute an actual GUI-level test it is important to consider that there are limitations in regards to
the number of virtual users that can be executed within a Terminal Server environment. The resolution
below outlines the typical number of GUI-level virtual users that can be executed from a single Silk
Performer installation.

Resolution ID: 17202

Jacada Support
This section explains Silk Performer support for the testing of Jacada applications, including project setup
and Java configuration issues.

Jacada is a J2EE-based solution that covers both the agent desktop and the back end. Jacada is mainly
used to wrap applications and present a Web UI to clients.

Creating Jacada Projects

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. In the Type menu tree, select Application Server/Component Models > Jacada.

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Silk Performer Workbench 20.0 | 415

http://community.microfocus.com/borland/test/silk_performer_-_application_performance_testing/w/knowledge_base/

Configuring Jacada Recording Profiles

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. In the Application list, select the listed recording profile and click Edit. The Recording Profile dialog
box opens.

4. In the Protocol selection area, check the Web check box, if it is not already selected.

5. Click Web Settings. The Web Settings dialog box opens.

6. Click the WinSock option button, then click OK.

7. In the Java API list box, check the Jacada check box.

8. Click OK to close the Recording Profile dialog box.

9. On the System Settings dialog box, click the Proxies tab to edit the recording proxy configuration. The
Proxies page opens.

10.In the Proxies list box, select the SOCKS protocol and click Edit. The Proxy Settings dialog box opens.

11.In the Suppress recording (only forward data) area, type 1100-1200 in the Within port range text
box to suppress the recording of forward data.

12.Click OK to close the Proxy Settings dialog box.

13.Click OK to close the System Settings dialog box.

Configuring Java Profile Settings for Jacada

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click Java.

4. From the Jacada server on which you want to test your Jacada application, copy the file clbase.jar
to your local working directory.

The default location of clbase.jar on the Jacada server is \classes\cst\.

5. Click File to locate clbase.jar on your local machine and add it to the Classpath.

6. Click OK to save your profile settings.

Recording Jacada Applications
Record your Jacada application like a standard Web application.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. In the URL text box, enter the URL of the Jacada application that you want to test.
Example: http://my.jacada.server:9999

3. Click Start recording to begin recording the session.

4. Perform the required interactions with the application under test.

5. When recording is complete, close the application, close the recorder, and save the test script.

6. To confirm that your test script runs as expected, execute a Try Script run in animated mode; you will
then be able to view the results of the test run in TrueLog Explorer.

416 | Silk Performer Workbench 20.0

Structure of a Jacada BDL Script
When recording a Jacada application with Silk Performer, the resulting BDL script contains a mix of both
Web/HTTP as well as Jacada protocol entries. The script is structured into HTTP traffic and user
interactions:

• HTTP traffic

• JacCreateUser(…)

• JacConnectUsing…(…)

• User Interactions

• JacDestroy(…)

Jacada Functions

A number of functions are provided to handle Jacada function calls from within Silk Performer. These
functions are one-to-one wrappers of Jacada's own API. Refer to Jacada documentation for detailed
information.

Following is a sample of Jacada user interactions:

• Enter Data

• JacSetTextData(...)

• JacSetTableData(...)

• Screen Transition

• JacSendWindowData(...)

• JacSendCommand(...)

• JacChangeCellValue(...)

• Verifications

• JacCheckScreen(...)

• JacCheckFieldValue(...)

• JacCheckTableCell(...)

Java Support
Silk Performer's Java support includes the testing of Enterprise JavaBeans (EJB), RMI objects, JUnit, and
more.

Java Framework Support
As a powerful extension to Silk Performer’s Benchmark Description Language, the Java Framework
enables you to implement user behavior in Java. When testing an existing Java application you do not need
to spend much time creating test scripts. The only effort required is embedding existing Java source code
into the framework. Refer to the Java Framework Developer Guide for detailed information.

To generate a benchmark executable and run a test with the help of the Java framework, two source files
are typically required:

• Java class that implements the behavior of a virtual user
• Silk Performer test script that invokes Java method calls

Both source files need to have the same name, with extensions indicating the file types (.bdf for the Silk
Performer test script and .java for the Java source file).

With Silk Performer it is possible to call Java functions on any Java object from a BDL context with any
number and type of parameter and return parameter. When a Java function returns a complex object, a

Silk Performer Workbench 20.0 | 417

handle for the Java object is returned in its place. The handle can be passed to other function calls as an
input parameter, or public methods may be invoked on the object. There is also support for static methods,
cast operations, and exception handling.

Creating Java Projects

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Java/Java Framework.

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

If you need to add additional resources to the project, right-click the project icon in the menu tree. It is
particularly important that all the user data files (.csv), random data files (.rnd), and .idl files needed
by Silk Performer are set up for the project.

Generating Java Framework Files

1. Click File > New > Java Framework Scripts (.bdf/.java) . The New Java Framework Script dialog
box opens.

2. Type a name for your Java class.

3. Click OK. A Java file containing a class with the specified name is generated and opened along with a
BDL file, which is used to test the Java class.

4. If you save your files, you are asked whether you want to add them to your project.

Generating Java Files Without a BDL File

1. Select File > New... > Java Script (.java) from the main menu bar. The New Java Script dialog
appears.

2. Enter a name for your Java class.

3. Click OK. A Java file containing a class with the given name is generated and opened.

4. When saving a new Java file for the first time, you are asked if you want to add the file to the current
project. Click Yes.

There are two other ways you can add Java files to your project:

• Right-click the Scripts subnode of the project and select Add Existing Script... to open the Select
Script(s) dialog. Change the File of type list box selection to Java files (*.java). Select your
file, which will be added to the project when you click Open.

• Right-click in Java file view to open the context menu. Click Add to Project to add the file to the
project.

Compiling Java Files

1. Select Settings > Active Profile .

2. Select the Java icon in the left-hand scroll window. The General page appears.

3. Click the folder icon next to the Java home text box to select the directory where the Java SDK is
installed.

418 | Silk Performer Workbench 20.0

4. Add any required entries to the classpath in the Classpath text box.

Note: Alternatively, you can use the JavaSetOption function with the appropriate option number
to set the Java version, home directory, and classpath.

5. Click OK.

6. Perform manual compilation using one of the following methods:

• Open a Java file and press F7.
• Open a Java file and right-click in the view to open the context menu. Select the Compile command.
• Right-click a Java file on the Project page to open the context menu. Select the Compile command.

Initiating Try Scripts, finding baselines, and running tests will also automatically launch compilation for all
Java and BDL files.

During compilation, all output from the Java Compiler is redirected to the Compiler page. Resulting class
files are generated in the current project directory.

Switching between 32-bit and 64-bit Java

1. In the menu, click Settings > Active Profile.

2. Click the Java icon and then the Advanced tab.

3. Select 32-bit Java (default) or 64-bit Java.

4. If you use 64-bit Java, specify an Execution timeout for the communication between the Silk
Performer runtime and the JVM.

The specified Java architecture determines whether your Java test code is running in-process or out of
process. This results in the following behavior:

• 32-bit Java is enabled: When you execute a test, the jvm.dll and the required .jar files are loaded
dynamically into the perfrun.exe. Note that this increases the memory usage of the perfrun.exe.
Also be aware that during the early phase of a load test, the memory usage might be volatile. This can
be misunderstood as a memory leak, but is in fact expected due to the Java garbage collector at work.
By default, up to 50 virtual users share the same JVM, which helps reduce memory usage. However,
this feature requires that your Java test code is thread-save (especially the static variables).

• 64-bit Java is enabled: When you execute a test, the Java test code is running in a separate process - it
is not loaded into the perfrun.exe.

You can also use the BDL function JavaSetOption to switch between 32-bit and 64-bit Java. Note that
the settings defined in the BDL script override the options defined in the profile settings.

Testing SOAP Web Services for Java
A Web service is an available service on the Web that can be invoked and from which results can be
returned. Although other standards exist, the widely accepted standard for Web services, which has been
adopted by the W3C, is SOAP (Simple Object Access Protocol).

This chapter explains the basics of SOAP-based Web Services and details how they can be tested.

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol that is used for the exchange
of information in decentralized, distributed application environments. You can transmit SOAP messages in
any way that the applications require, as long as both the client and the server use the same method. The
current specification describes only a single transport protocol binding, which is HTTP.

SOAP perfectly fits into the world of Internet applications and promises to improve Internet inter-operability
for application services in the future. In essence, SOAP packages method calls into XML strings and
delivers them to component instances through HTTP.

Silk Performer Workbench 20.0 | 419

SOAP XML documents are structured around root elements, child elements with values, and other
specifications. First an XML document containing a request (a method to be invoked and the parameters)
is sent out. The server responds with a corresponding XML document that contains the results.

SOAP is not based on Microsoft technology. It is an open standard drafted by UserLand, Ariba, Commerce
One, Compaq, Developmentor, HP, IBM, IONA, Lotus, Microsoft, and SAP. SOAP 1.1 was presented to the
W3C in May 2000 as an official Internet standard. Microsoft is one of the greatest advocates of SOAP and
has incorporated SOAP as a standard interface in the .NET architecture.

A SOAP stack, an implementation of the SOAP standard on the client side, is comprised of libraries and
classes that offer helper functions. A significant Web service testing challenge is that there are a number of
SOAP stack implementations that are not compatible with one another. So although SOAP is intended to
be both platform- and technology-independent, it is not. Web services written in .NET are however always
compatible with .NET clients—they use the same SOAP stack, or library. When testing a .NET Web service
however, you need to confirm if the service is compatible with other SOAP stack implementations, for
example Java SOAP stack, to avoid interoperability issues.

SOAP client requests are encapsulated within HTTP POST or M-POST packages. The following example
is taken from the Internet draft-specification.

Sample Call

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml;
charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"
<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The first four lines of code are standard HTTP. POST is the HTTP verb which is required
for all HTTP messages. The Content-Type and Content-Length fields are required
for all HTTP messages that contain payloads. The content-type text/xml indicates
that the payload is an XML message to the server or a firewall capable of scanning
application headers.

The additional HTTP header SOAPAction is mandatory for HTTP based SOAP
messages, and you can use it to indicate the intent of a SOAP HTTP request. The value
is a URI that identifies the intent. The content of a SOAPAction header field can be
used by servers, for example firewalls, to appropriately filter SOAP request messages in
HTTP. An empty string ("") as the header-field value indicates that the intent of the
SOAP message is provided by the HTTP Request-URI. No value means that there is no
indication on the intent of the message.

The XML code is straightforward. The elements Envelope and Body offer a generic
payload-packaging mechanism. The element GetLastTradePrice contains an
element called symbol, which contains a stock-ticker symbol. The purpose of this
request is to get the last trading price of a specific stock, in this case Disney (DIS).

The program that sends this message only needs to understand how to frame a request in a SOAP-
complient XML message and how to send it through HTTP. In the following example, the program knows

420 | Silk Performer Workbench 20.0

how to format a request for a stock price. The HTTP server that receives the message knows that it is a
SOAP message because it recognizes the HTTP header SOAPAction. The server then processes the
message.

SOAP defines two types of messages, calls and responses, to allow clients to request remote procedures
and to allow servers to respond to such a request. The previous example is an example of a call. The
following example comes as a response in answer to the call.

Sample Response

HTTP/1.1 200 OK
Content-Type: text/xml;
charset="utf-8"
Content-Length: nnnn
<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"/>
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some-URI">
 <Price>34.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The first three lines of code are standard HTTP. The first line indicates a response code
to the previous POST request, the second and third line indicate the content type and
the fourth line the lenght of the response.

XML headers enclose the actual SOAP payloads. The XML element
GetLastTradePriceResponse contains a response to the request for a trading price.
The child element is Price, which indicates the value that is returned to the request.

Java Explorer

Java Explorer allows users to create test cases using point and click operations. Java Explorer provides
support for the following technologies:

• SOAP Web Services
• RMI
• EJB
• General GUI-less Java objects

Java Explorer can be used to export complete Silk Performer projects that make use of the Silk Performer
Java Framework. Java Explorer itself can only run previously defined test scenarios in animated mode.
With exported projects however, Silk Performer can perform real tests with multiple virtual users.

Note: Java Explorer currently uses the Axis SOAP stack (http://www.apache.org) to generate Web
Service client proxy classes.

Java Framework

With the Java Framework, Silk Performer offers a powerful means of simulating virtual users whose
behavior is defined with the Java programming language. Arbitrary Java classes can be instantiated within
the framework and methods defined within classes may be invoked.

The behavior of virtual users running in the Java framework can be scripted manually using Silk Performer
or another Java IDE. A more convenient method however is to use Java Explorer to define virtual user
behavior through its point and click interface.

Silk Performer Workbench 20.0 | 421

http://www.apache.org

Testing SOAP Over HTTP-Based Web Services

Silk Performer offers three options for testing SOAP over HTTP based services:

• Recording/replaying HTTP traffic
• .NET Explorer in combination with Silk Performer .Net Framework
• Java Explorer in combination with Silk Performer Java Framework

Your environment and prerequisites will determine which of these options is best for your needs.

Recording and Replaying HTTP Traffic

Recording the SOAP protocol over HTTP is as straightforward as recording any Web application that runs
in a browser. The application that you record is the application that executes the SOAP Web Service calls.
This can either be a client application or a part of the Web application itself.

Creating a New XML/SOAP Project

When you want to record and replay HTTP traffic to test SOAP over HTTP-based Web services, you first
need to create a new Silk Performer project of the Web Services > XML/SOAP type.

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Web Services > XML/SOAP. This application type automatically
configures its profile settings so that SOAPAction HTTP-headers, that are used by SOAP-based
applications when calling Web services, are to be recovered.

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Creating the Recording Profile

When you want to record and replay HTTP traffic to test SOAP over HTTP-based Web services, you need
to create a recording profile for the client application that you want to record.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Click Settings. The System Settings - Recorder dialog box appears.

3. In the System group box, click Recorder. The Recording Profiles page opens.

4. Click Add to add a new recording profile to the list. The Recording Profile dialog box opens.

5. Type a name for the recording profile in the Profile name text box.

For example Internet Explorer.

6. Click Browse ... next to the Application path text box and select the path to the application executable.

For example C:\Program Files\Internet Explorer\Explorer.exe.

7. Define the Working directory.

For example C:\Program Files\Internet Explorer.

8. Define the Program arguments.

For example about:blank.

9. Select the application type from the Application Type list box.

For example MS Internet Explorer.

422 | Silk Performer Workbench 20.0

10.In the Protocol selection area, check the check box that corresponds to the protocol that you want to
use. For example, check the Web check box.

11.To configure the recording profile for WinSock recording click Web Settings, which enables you to
select the method that the Recorder is to use to capture Web and TCP/IP-based traffic.

12.Click OK.

Recording a Script

Record a script with your created recording profile. Interact with your client application and the recorder will
record all SOAP requests that are executed over HTTP/HTTPS. When you are finished, close the
application and save the recorded script.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Select one of the listed browsers from the Recording Profile list, depending on the browser you want to
use for recording.

3. In the URL field, enter the URL that is to be recorded.

4. Click Start recording. The Silk Performer Recorder dialog opens in minimized form, and the client
application starts.

5. To see a report of the actions that happen during recording, maximize the Recorder dialog by clicking
the Change GUI size button. The maximized Recorder opens at the Actions page.

6. Interact with your client application. The recorder records all SOAP requests that are executed over
HTTP/HTTPS.

7. To end recording, click the Stop Recording button.

8. Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

Script Customization

Each SOAP request that is recorded includes a WebHeaderAdd and a WebUrlPostBin API call.

You can either customize the input parameter of each Web Service call by manually changing the script or
you can use the more convenient method of performing customizations within TrueLog Explorer. To do this,
run a Try Script. Then use the XML control to customize the XML nodes that represent the input
parameters.

Sample SOAP Request

WebHeaderAdd("SOAPAction", "\"http://tempuri.org/Login\"");
WebUrlPostBin(
 "http://localhost/MessageWebService/MessageService.asmx",
 "<?xml version=\"1.0\" encoding=\"utf-8\"?>"
 "<soap:Envelope xmlns:soap=\"http://schemas.xmlsoap.org/soap/
envelope/
\"
 "xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
 "xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\">"
 "<soap:Body>"
 "<Login xmlns=\"http://tempuri.org/\">"
 "<sUsername>myuser</sUsername>"
 "<sPassword>mypass</sPassword>"
 "</Login>"
 "</soap:Body>"
 "</soap:Envelope>", STRING_COMPLETE, "text/xml;
charset=utf-8");

Silk Performer Workbench 20.0 | 423

Replaying a Script

Once you have finished script customization, you can replay your script, either in another Try Script run, as
part of baseline identification, or in a test.

Select how you want to replay your script. The following options are available:

• Start a Try Script run.
• Replay the script as part of a baseline identification.
• Replay the script in a test.

As the Web service calls are performed along with Web API functions, you receive the same measures
you receive when testing any Web application, including detailed protocol-specific statistics.

External References

1. Session, Roger

SOAP. An overview of the Simple Object Access Protocol, March 2000

http://www.w3.org/TR/SOAP/
2. W3C

Simple Object Access Protocol (SOAP) 1.1, December 2000

http://www.w3.org/TR/SOAP/
3. UN/CEFANT, OASIS

Enabling Electronic Business with ebXML, December 2000

http://www.ebxml.org/white_papers/whitepaper.htm
4. Geyer, Carol

ebXML Integrates SOAP Into Messaging Services Specification, March 2001

http://www.ebxml.org/white_papers/whitepaper.htm
5. Open Financial Exchange

Open Financial Exchange Specification 2.0, April 2000

http://www.ofx.net/

Java Over HTTP Support
This section explains Silk Performer support for the testing of applications that rely on Java over HTTP.

Java Over HTTP Overview

Some applications make use of Java Object Serialization to transfer objects between client and server over
the HTTP protocol. This communication, based on the exchange of serialized Java objects, uses data in
binary format. Therefore Java Object Serialization is effectively object representation in binary format.

JAVA Object Serialization has been used by many applications for many years. For full details, see the
Java specification for object serialization.

A popular framework that enables the use of Java over HTTP as a remoting technology is Spring
Framework and its HTTP Invoker.

Java Over HTTP Project Setup and Testing

Prerequisites

For testing Java over HTTP applications, Java Development Kit 1.6 or later is required.

Transformation is enabled for HTTP requests and responses that have the HTTP header Content-Type
set to "application/octet-stream" or "application/x-java-serialized-object". If you

424 | Silk Performer Workbench 20.0

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.ebxml.org/white_papers/whitepaper.htm
http://www.ebxml.org/white_papers/whitepaper.htm
http://www.ofx.net/
http://download.oracle.com/javase/6/docs/platform/serialization/spec/serialTOC.html

need to transform data with a different HTTP Content-Type header, see Transformation of Custom Content-
Types.

Setting Up a Java Over HTTP Project

When outlining your project, be sure to select the Java over HTTP application type (Web browser/
Java over HTTP on the Outline Project dialog).

By selecting the Java over HTTP application type, several profile settings are automatically configured
for you on the tab Profile > Web Protocol Level > Transformation:

• The Java over HTTP transformation DLL is selected in the Type drop list.
• Transform HTTP Requests is enabled
• Transform HTTP Responses is enabled
• Enable Java Virtual Machine usage is enabled. This setting is required because Java over

HTTP requires a running JVM for accurate transformation of serialized/externalizable Java objects. This
setting also causes transformed binary Java traffic to appear in readable XML representation.

Modeling a Script

Using the JVM requires the configuration of Java over HTTP application-specific custom JAR files that
contain the classes that are necessary for deserialization and transformation into correct XML
representation. For this reason, when modeling a Java over HTTP script, the Model Script dialog includes
an Add Custom JAR File(s) button. Click this button to browse to and Add any custom JAR files that are
specific to the application under test. Added JAR files are displayed within the Project tree Data Files
node.

Note: If your application is based on Spring Framework HTTP Invoker, you must add spring.jar to
the classpath.

These required JAR files (or individual .class files) are located on the server to be tested. These files
must be prepared manually and copied from the server to the Silk Performer controller machine.

Note: It is recommended that JAR files be placed in the Project folder.

Clicking Settings on the Model Script dialog links you directly to the current user profile, Java Settings
tab. Use this to change Java settings for the currently selected user profile.

Note: Do not enable Use system classpath on the Java Settings tab. JAR files set in the system
classpath may overrule manually configured JAR files.

Generating a Script from a Capture File

While recording a user transaction, the Silk Performer recorder creates a so-called Silk Performer capture
file, which contains the entire traffic of the recorded session. After saving, the capture file is opened in the
Workbench for further analysis and processing. Before generating a script from the captured traffic, you
can configure recording rules and other settings, which are applied during the script generation process.

If any errors occur, click the buttons in the Resolve Problems area to resolve them. Then, click Generate
Script to generate a script from the capture file.

On 64-bit operating systems, both a 32-bit and 64-bit Java installation are required. The 32-bit installation
is used for replaying scripts, the 64-bit installation is used for generating scripts. If a 64-bit installation is not
available, you can force Silk Performer to use a 32-bit process for script generation by setting the following
registry key to 1: HKEY_LOCAL_MACHINE\SOFTWARE\Silk\SilkPerformer\<version>
\Force32BitCaptureAnalyzer.

Attention: Using the 32-bit script generator can cause issues with large capture files.

Silk Performer Workbench 20.0 | 425

Replaying a Script

If your Java configurations are incorrect (for example, if JAR files are missing), XML responses (only visible
in TrueLog Explorer) will not be generated in an easily readable format. Also warnings or errors will be
written to the Virtual User Output pane. Typically, errors and warnings indicate whether or not they were
caused by requests (client to server) or responses (server to client).

Customizing Java Over HTTP Scripts

Do not change the overall structure of XML objects within Java over HTTP scripts. It is okay to parse values
or insert verification functions, but deleting or rearranging Java over HTTP XML elements will destroy a
call. Also do not change the order of elements within arrays.

Customizing Java Over HTTP Scripts

You can use either Silk Performer or TrueLog Explorer (Response tab) to customize Java over HTTP
scripts.

Customizing Input Data Using Silk Performer

1. Search for the original value in the script, this is typically an XML node value.

2. Select the string you want to customize.

3. Right click and chose Customize Selected String.

4. Follow the steps outlined by the string customization wizard.

Note: Do not change the overall structure of XML objects within Java over HTTP scripts. It is okay to
customize input, parse values and insert verification functions, but deleting or rearranging Java over
HTTP XML elements can destroy a call. Also, do not change the order of elements within arrays.

Customizing Input Data Using TrueLog Explorer

1. Run a Try Script.

2. Open the resulting TrueLog (XLG) file.

To do this, from within TrueLog Explorer, click Open TrueLog, open the related project folder, and
double click the XLG file.

3. Expand the TrueLog node in the tree menu and select a request.

4. Select the Request tab.

5. Select the XML node value you want to customize.

Tip: Right-click in the rendered XML view and choose Find to search for an XML node value. The
global find option is not able to search rendered XML view.

6. Right click and choose Customize Selected String.

7. Follow the steps outlined by the string customization wizard.

Adding Verification and Parsing Statements

This section explains how to use TrueLog Explorer to add verification statements using both rendered XML
view and plain-text source view.

Adding Verification Statements Using Rendered XML View

1. Run a Try Script.

2. Open the resulting TrueLog (XLG) file.

To do this, from within TrueLog Explorer, click Open TrueLog, open the related project folder, and
double click the XLG file.

426 | Silk Performer Workbench 20.0

3. Expand the TrueLog node in the tree menu and select a request.

4. Select the Response tab.

Note: XML can only be rendered when an appropriate content type is sent from the server. Use
plain-text source view for unsupported content types.

5. (Optional) If you are sure that an unknown application type (for example, octet-stream) can be rendered
as XML, you may do the following to render it:

a) Run regedit.
b) Select HKEY_CURRENT_USER\Software\Silk\TrueLog Explorer\...\TreatAsXmlAlways
c) Add application/octet-stream to the list of values. Use a semi-colon (;) as a separator.
d) Restart TrueLog Explorer.

6. Right-click an XML node value and choose Verify Element Value… or Parse Element Value….

Tip: Right-click in the rendered XML view and choose Find to search for an XML node value. The
global find option is not able to search rendered XML view.

7. Follow the steps outlined by the wizard.

Adding Verification Statements Using Plain-Text View

1. Run a Try Script.

2. Open the resulting TrueLog (XLG) file.

To do this, from within TrueLog Explorer, click Open TrueLog, open the related project folder, and
double click the XLG file.

3. Expand the TrueLog node in the tree menu and select a request.

4. Select the Response tab.

5. Search for and select the value to be verified.

6. Right-click an XML node value and choose Verify Element Value… or Parse Element Value….

7. Follow the steps outlined by the wizard.

JUnit Integration
Silk Performer facilitates smooth integration of existing JUnit test scripts (version 3.8.x and 4.x) into Silk
Performer for the support of remote-component testing under realistic concurrent-access server conditions.

Silk Performer provides an import tool that enables you to import existing JUnit test classes and other Java
classes. Tested Java methods may have parameters and return values; code for setting the in-parameters
of these functions is generated automatically. By definition, JUnit test methods cannot have parameters.

Silk Performer’s Unit Test Import tool offers you the option of selecting specific test methods. It
automatically generates BDL stub code (a benchmark description file) that calls those selected test
methods. Existing JUnit test classes can be called from Silk Performer without requiring modification of the
test classes.

Prerequisites

JUnit 4.x testing requires Java version 1.5 or higher.

The respective JUnit libraries must be available in the classpath of the Java settings of the active profile.

Setting Up a New JUnit Silk Performer Project

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

Silk Performer Workbench 20.0 | 427

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, expand Unit Testing and select JUnit.

5. Click Next.

Note: If you need to add additional resources to the project, right-click the project icon in the
Project menu tree view. It is particularly important that all the user data files (.csv), random data
files (.rnd), and .idl files needed by Silk Performer are set up for your project.

The Workflow - Model Script dialog box appears.

Importing a JUnit or Java Test Class

Modify your Java profile settings accordingly before importing JUnit 4.x module tests.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. In the File field, specify the archive that is to be tested. The archive is automatically added to the profile
classpath. The available classes are then retrieved and displayed, sorted alphabetically in the Class
field.

3. From the Class list, select one of the available classes for testing.

When you do not specify a specific archive for testing, the wizard enables you to specify a class that is
available in the profile classpath. Type the fully qualified class name into the Class field, for example
java.lang.String.

The available constructors and methods are automatically retrieved and displayed.

4. From the Constructor list, select the appropriate constructor for instantiating the imported class.

If a constructor is not selected (entry <No Instance Required – Only Static Calls>), only
static methods will be displayed in the method list.

5. In the Methods area, select the methods that you want to call.

6. To filter the methods that are shown in the Methods area, perform the following steps:

a) Click the Advanced Settings button (the funnel icon above the Methods area).
b) Once you have customized filter settings, click OK to update the Methods area.

7. To change general Java settings including the Java version, Java home directory, or JVM DLL, click the
Active Profile Settings link. The Profile Settings dialog opens to the Java/General page for Java
projects (JUnit project type).

Note: Changes made to these settings (for example Java Classpath) may lead to different results.
Selections made in the Class, Constructor, and Methods fields will be updated with the new
results.

Note: If you change the Java version, Java home directory, or JVM DLL, you must restart Silk
Performer for the changes to take effect.

8. Click OK.

Java Profile Settings

The JUnit or Java test class you want to import and all third-party libraries needed by the test class must
be available in the profile classpath. Silk Performer automatically adds all archives entered in the File field
to the profile classpath. Also, all test classes compiled in Silk Performer are compiled to the project
directory, which is also automatically included in the profile classpath.

Filter Options for JUnit Methods

This table lists the filters that are available in the Methods area when you import a test class.

428 | Silk Performer Workbench 20.0

JUnit Method Description

Parameterless Functions Only Ignore all functions that expect parameters

Unit Test Functions Only (selected by default
for JUnit import)

Ignore all functions that are not JUnit

Member Functions Only Ignore all non-member functions

Public Functions (selected by default) Include public functions

Protected Functions Include protected functions

Private Functions Include functions with private access

Package Functions Include functions with package access

Declared Functions Only Ignore functions from the base classes

Complex Functions (selected by default) Show functions that take complex parameters. In Java, complex
parameters are scripted by JavaSetObject with NULL as the default
value.

Autodetect Unit Test Functions (selected by
default)

Automatically detect and script JUnit functions according to the
following rules:

• JUnit 3.8.x scripts are derived from
junit.framework.TestCase class.

• JUnit 3.8.x functions must not have parameters or return values.

• setUp() and tearDown() are invoked prior to and following each
JUnit 3.8.x method.

• JUnit 4.x scripts no longer require to be derived from
junit.framework.TestCase class.

• JUnit 4.x functions are recognized by the @Test annotation and
added to the script, unless the @Ignore annotation is used.

• Methods having @BeforeClass and @AfterClass
annotation are invoked once per test class.

• Methods having @BeforeClass and @After annotation are
invoked prior to and following each JUnit 4.x method.

Example BDL Script for JUnit 3.8.x (legacy)

Script Example

The following script is generated by importing a sample JUnit 3.8.x test case and selecting the three
methods testRound, testSqrt, and testMax:

Note: The following script is a legacy script, which is generated within older Silk Performer versions.
For Silk Performer 19.5 and newer, a JUnit import creates a slightly different script, which is
documented in Example BDL Script for JUnit .

transaction TInit
var
 hPerf : number;
begin
 JavaCreateJavaVM();
 JavaSetString(JAVA_STATIC_METHOD, "TestCaseName");
 ghTestObj := JavaLoadObject("JUTestClass", "JUTestClass.<init>");
end TInit;

transaction TMain
begin

Silk Performer Workbench 20.0 | 429

 JUnitCallMethod(ghTestObj, "testRound", "testRound");
 JUnitCallMethod(ghTestObj, "testSqrt", "testSqrt");
 JUnitCallMethod(ghTestObj, "testMax", "testMax");
end TMain;

transaction TEnd
begin
 JavaFreeObject(ghTestObj);
end TEnd;

JavaLoadObject in the TInit transaction instantiates the JUnit test class, JUTestClass.

JUnitCallMethod in the TMain transaction calls one of the three test methods in the same way that a
JUnit test runner would. First the setUp() method is invoked, then the test method itself (e.g.,
testSqrt()), finally the tearDown() method is invoked.

Timers

When an optional timer parameter is specified for a Java method call, the execution times of the
constructor, test method, setup method, and teardown method are measured. For the example in this topic,
you receive the following measures:

• For the constructor: JUTestClass.<init>
• For the methods: testRound, testSqrt, testMax
• For the set up methods: testRound_setup, testSqrt_setup, testMax_setup
• For the tear down methods: testRound_tearDown, testSqrt_tearDown, testMax_tearDown

Example BDL Script for JUnit 4.x (legacy)

Script Example

The following sample JUnit test script contains several annotations for test setup and teardown and is
generated by importing a sample JUnit 4.x test case and selecting the methods doFoo and doFoo2.

Note: The following script is a legacy script, which is generated within older Silk Performer versions.
For Silk Performer 19.5 and newer, a JUnit import creates a slightly different script, which is
documented in Example BDL Script for JUnit .

var
 ghTestObj :number;
dcluser
 user
 JavaUser
 transactions
 TInit :begin;
 TMain :1;
 TEnd :end;

dclfunc
 function JUnit4Before
 begin
 // @Before
 JavaCallMethod(ghTestObj, "myBefore", "myBefore");
 end JUnit4Before;

 function JUnit4After
 begin
 // @After
 JavaCallMethod(ghTestObj, "myAfter", "myAfter");
 end JUnit4After;

 function JUnit4CallFunc(hJavaObj :number; sName :string; sTimerName :string

430 | Silk Performer Workbench 20.0

optional; sExceptionBuffer :string optional) : boolean
 begin
 JUnit4Before();
 // @Test
 JUnit4CallFunc := JavaCallMethod(hJavaObj, sName, sTimerName);
 if not StrIsNull(sExceptionBuffer) then
 JavaGetLastException(hJavaObj, sExceptionBuffer);
 end;
 JUnit4After();
 end JUnit4CallFunc;

dcltrans
 transaction TInit
 var
 hPerf : number;
 begin
 JavaCreateJavaVM();
 ghTestObj := JavaLoadObject("JU4ImporterTest", "JU4ImporterTest.<init>");
 // @BeforeClass
 JavaCallMethod(JAVA_STATIC_METHOD, "JU4ImporterTest.myBeforeClass",
"myBeforeClass");
 end TInit;

 transaction TMain
 var
 sBuffer :string;
 begin
 JUnit4CallFunc(ghTestObj, "doFoo", "doFoo");
 JUnit4CallFunc(ghTestObj, "doFoo2", "doFoo2");
 end TMain;

 transaction TEnd
 var
 sBuffer :string;
 begin
 // @AfterClass
 JavaCallMethod(JAVA_STATIC_METHOD, "JU4ImporterTest.myAfterClass",
"myAfterClass");
 JavaFreeObject(ghTestObj);
 end TEnd;

In the dclfunc section, the helper functions for test setup, teardown, and exception handling are defined.
These functions are used in the transactions.

JavaLoadObject in the TInit transaction instantiates the JUnit test class JU4ImporterTest. All JUnit
methods that use the @BeforeClass annotation are called in the TInit transaction.

JUnit4CallFunc in the TMain transaction calls all the test methods that were selected for the JUnit test
import. First, the methods that use the @Before annotation are invoked, and then the test method itself,
such as doFoo(), is invoked. Finally, the methods that use the @After annotation are invoked.

Timers

When an optional timer parameter is specified for a Java method call, the execution times of the
constructor, test method, setup method, and teardown method are measured. For the example in this topic,
you receive the following measures:

• Constructor – JU4ImporterTest.<init>
• For the methods – doFoo, doFoo2
• For the test setup – myBeforeClass, myBefore
• For the test teardown – myAfterClass, myAfter

Silk Performer Workbench 20.0 | 431

Example BDL Script for JUnit

Script Example

The following sample script is generated by importing a sample JUnit test case.

var
 hTestClass : number;

dcltrans
 transaction TInit
 begin
 // Load and start the JVM.
 JavaCreateJavaVM();

 // instantiate the java class
 hTestClass := JUnitLoadClass("com/microfocus/Test");
 end TInit;

 transaction THello
 begin
 JUnitExecuteTest(hTestClass, "doHello", "doHello_timer");
 JUnitExecuteTest(hTestClass, "", "Test_timer");
 end THello;

 transaction TEnd
 begin
 JavaFreeObject(hTestClass);
 end TEnd;

• JUnitLoadClass in the TInit transaction instantiates the Java object and returns a handle of the
runtime class. The handle is assigned to hTestClass.

• JavaFreeObject in the TEnd transaction releases the Java runtime class.
• JUnitExecuteTest in the THello transaction starts the JUnit test execution.

Exception Handling for JUnit 4.x and newer

JUnit 4.x and newer versions allow the definition of methods that throw exceptions. Throwing such
exceptions is validated by JUnit. Silk Performer imports JUnit methods that throw exceptions including the
validation of the thrown message.

//@Test(expected=java.lang.IllegalArgumentException)
 JavaRegisterException(500,"java.lang.IllegalArgumentException",
JAVA_OPTION_MATCH_SUBSTRING);
 ErrorAdd(FACILITY_NATIVE_JAVA, 500, SEVERITY_INFORMATIONAL);
 JUnit4CallFunc(ghTestObj, "doFoo", "doFoo", sBuffer);
 ErrorRemove(FACILITY_NATIVE_JAVA, 500);
 if (StrSearch(sBuffer, "java.lang.IllegalArgumentException",
STR_SEARCH_FIRST) = 0) then
 RepMessage("method did not throw:
java.lang.IllegalArgumentException", SEVERITY_ERROR);
 end;

The sample above tests a JUnit method that is expected to throw a
java.lang.IllegalArgumentException. The function JavaRegisterException assigns the BDL
error code 500 to the exception. The function ErrorAdd sets the error severity to informational because
the error is expected. After that, the JUnit method doFoo is invoked, where the parameter sBuffer
retrieves the error message. The ErrorRemove function sets the error handling back to its original state. It
also verifies that the expected exception occurred, and throws a BDL error if this is not the case.

Note: When modifying the BDL script manually, make sure that you do not map a Java exception to
different BDL error numbers, or vice versa.

432 | Silk Performer Workbench 20.0

Importing a JUnit Test Suite

Modify your Java profile settings accordingly before importing JUnit 4.x module tests.

1. Select Project > Import Unit Test > JUnit Test Class . The Import Unit Test - JUnit Test Class
dialog opens.

2. Cick the Advanced Settings button (the funnel icon above the Methods area). The Advanced
Settings dialog opens.

3. Perform the following steps:

a) Uncheck the Unit Test Functions Only check box.
b) Check the Declared Functions Only check box.
c) Uncheck the Member Functions Only check box.
d) Click OK.

4. In the File field, specify the archive that is to be tested. The archive is automatically added to the profile
classpath. The available classes are then retrieved and displayed, sorted alphabetically in the Class
field.

5. From the Class list, select one of the available classes for testing.

When you do not specify a specific archive for testing, the wizard enables you to specify a class that is
available in the profile classpath. Type the fully qualified class name into the Class field, for example
java.lang.String.

The available constructors and methods are automatically retrieved and displayed.

6. From the Constructor list, select the appropriate constructor for instantiating the imported class.

If a constructor is not selected (entry <No Instance Required – Only Static Calls>), only
static methods will be displayed in the method list.

7. In the Methods area, select the suite() method, then click OK.

Executing a JUnit Test Suite

When JUnit Import Tool (Project > Import Unit Test > JUnit Test Class) script code is used to invoke a
method that has a return value, the code used to retrieve the return value is scripted, but commented out.

If a Java method returns a junit.framework.Test method, additional commented-out code is scripted,
which allows the FRunTestSuite function from junit.bdh to execute the test suite. junit.bdh is
automatically added to the include section of the BDL script.

Uncomment the code for retrieving the return value.
For example:

transaction TMain
begin
 // junit.framework.Test suite()
 JavaCallMethod(JAVA_STATIC_METHOD, "JU4ImporterTestSimple.suite",
"suite");
 // hObj := JavaGetObject(JAVA_STATIC_METHOD);
 // use the following function to execute JUnit test suites
 // FRunTestSuite(hObj);
 // JavaFreeObject(hObj);
end TMain;

Java RMI Support
This section explains Silk Performer's support for the record and replay of Java Remote Method Invocation
(Java RMI) applications, including project setup and Java configuration issues. It also shows usage of
Product Manager, which is the sample Java RMI application that ships with Silk Performer.

Silk Performer Workbench 20.0 | 433

Java Remote Method Invocation (Java RMI) enables the programmer to create distributed Java technology-
based applications, in which the methods of remote Java objects can be invoked from other Java virtual
machines.

Creating Java RMI Projects

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. In the Type menu tree, select Java > Java RMI/EJB (recording).

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Configuring Java RMI Recording Profiles

1. From the Silk Performer menu bar, choose Settings > Active Profile.

2. Click Java and configure Java version, classpath settings, and classpath elements.

The recorder uses the JDK internally and the Silk Performer Java Framework uses the JDK for replay.

In the Version list box, select a JDK version that is later than version 1.2.

3. In the Silk Performer menu, click Settings > System .

4. Click the Recorder icon. The Recording Profiles page opens.

5. Click Add to define a recording profile for the application that you want to record. The Recording
Profile dialog box opens.

6. Type a name for the new recording profile in the Profile name text box.

7. Type the full path to the executable or startup script, that starts your Java RMI client, in the Application
path text box. Specify the working directory, followed by a path separator. Or browse for the executable,
in which case the working directory is inserted automatically.

8. Optional: If the executable that hosts the Java Virtual Machine (JVM) is located in another directory than
the application, check the Record executable is different from application path check box. In the
Record executable list box, select the executable.

9. In the Protocol selection area, check the Java APIs that you want to record in the Java API list box.

10.Click OK to close the Recording Profile dialog box.

11.Click OK to close the System Settings dialog box.

Configuring Java Profile Settings for the IBM JVM

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. In the Application list, select the listed recording profile and click Edit. The Recording Profile dialog
box opens.

4. Click Java Settings and select the Manual option button.

5. Click OK to close the Java Settings dialog box.

6. Customize the startup script.

a) Open the startup-script file, for example startMyApp.cmd, in an editor.
b) Rename the startup-script file, for example to startMyAppForRecording.cmd.

434 | Silk Performer Workbench 20.0

c) Insert a call to perfPrepareJavaRecording.cmd in the Silk Performer home directory. For
example call C:\Program Files\Silk\Silk Performer
20.0\perfPrepareJavaRecording.cmd.

d) In the startup-script file, replace java my.rmi.application <parameters> with java
%PERFREC_OPTIONS% my.rmi.application <parameters>, where my.rmi.application
is an example. Thus you add the command-line parameter %PERFREC_OPTIONS% to the java
execution.

Recording Java RMI Applications

Record your Java RMI application like a standard Web application.

Important: When you record applets, use a JVM by Sun Microsystems instead of one provided by
Microsoft.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. In the Recording Profile list box, select the profile for the application that you plan to test, for example
My Rmi Application. If a profile has not yet been set up for the application you want to use, click
Settings to the right of the list box to set one up.

3. Click Start recording to begin recording the session.

4. Perform the required interactions with the application under test.

5. When recording is complete, close the application, close the recorder, and save the test script.

6. To confirm that your test script runs as expected, execute a Try Script run in animated mode; you will
then be able to view the results of the test run in TrueLog Explorer.

Java RMI Recording Results

When you record a Java RMI application, Silk Performer generates two result files, x.java and x.bdf.

The Java source file x.java contains the recorded actions. This file is compiled automatically from within
Silk Performer. You have to specify the classpath needed to compile this file in Settings > Active Profile >
Java.

The file x.bdf contains the BDL stub code that launches the Java virtual user.

Replaying a Java RMI Application

1. Remove the recorded API calls JavaSetOption(JAVA_CLASSPATH) and
JavaSetOption(JAVA_CMDLINE_OPTIONS) from the BDL script.

2. Obtain the JAR and CLASS files from the server. Use the recorded comments in the recorded Java
source code to find the JAR and CLASS files.

The comments look as described in the following example.

// ###ClassPath###
// ###Applet CodeBase###
// ###Applet parameters queried by the Applet###
 // codebase=...
 // archives=...
 // code=...

3. Copy these files to your local machine.

4. Add the path to these files to the classpaths in Settings > System > Java.

Java RMI Sample Application

The sample application that ships with Silk Performer to demonstrate how to record and replay Java RMI
applications is called Product Manager.

Silk Performer Workbench 20.0 | 435

To launch Product Manager, navigate to <public user documents>\Silk Performer
20.0\SampleApps\RMILdap\Web, and click ProductManager - DemoVersion.htm.

Recording and Replaying the Sample Application

1. Create a new Java RMI project.

2. Modify the existing Internet Explorer recording profile. See Modifying the Internet Explorer Profile.

3. Specify the script generation details in Settings > Active Profile > Record > Script > Java.

4. Go to Settings > Active Profile > Record > Java, and add the JAR file ProductManager.jar from
the Silk Performer samples directory, <public user documents>\Silk Performer
20.0\SampleApps\RMILdap\Web\ProductManager.jar, to the classpath.

5. Start the RMI and LDAP servers. To start the servers, open the Product Manager sample HTML page,
<public user documents>\Silk Performer 20.0\SampleApps\RMILdap\readme.htm,
and follow the instructions in the Starting up servers section.

6. Click Model Script in the workflow bar.

7. Type the location of the RMI sample-application HTML page in the Command line text box. The default
path of the HTML page is <public user documents>\Silk Performer 20.0\SampleApps
\RMILdap\Web\ProductManager - DemoVersion.htm.

8. Click OK to launch the applet. The applet loads and the recorder starts to record the JNDI and RMI
activities of the applet. You can now perform searches for products, change products, add new
products, and so on.

9. Click OK when you have performed all the desired actions. The Save As dialog box opens.

10.Specify a valid Java identifier for the script name and click Save to save the recorded script.

11.Click Yes twice to close the recorder and to confirm the closing.

12.Comment out or delete the recorded API calls JavaSetOption(JAVA_CLASSPATH, ... and
JavaSetOption(JAVA_CMDLINE_OPTIONS,

You can now replay the recorded script. Click Try Script on the workflow bar for a try run of the script.

Modifying the Internet Explorer Profile

1. Click Model Script on the Silk Performer workflow bar.

2. Click Settings next to the Recording Profile list box.

3. Select Internet Explorer from the recording profiles.

4. Click Edit.

5. Uncheck the Web check box.

6. Check the Java RMI and Java JNDI check boxes.

This sample uses the Java Naming and Directory Interface (JNDI) for the bootstrapping of remote object
references.

Eclipse Plug-In
Silk Performer is packaged with a plug-in for Eclipse, the popular Java IDE that is based on plug-in
technology. The plug-in enables Eclipse users to be supported with Silk Performer load testing features.

The structure of the Silk Performer test class supports Java developers in creating test cases for Silk
Performer. The test class implements the ITestClass interface that is packaged with the Eclipse plug-in.
It contains a Silk Performer object that represents the interface to Silk Performer’s Java Framework.

The test class includes two basic methods:

• testInit - This method initializes the interface. It is called at the beginning of test runs.
• testEnd - This method closes the interface. It is called at the end of Try Script runs and load tests.

436 | Silk Performer Workbench 20.0

Between testInit and testEnd there may be one or more test methods invoked by a running load test.
Each method that has a signature void testXY() throws Silk Performer Exception.

Example:

public void testMyMethod() throws
 silk.performer.SilkPerformerException

Using the JavaSetOption BDL Function

For debugging Java framework projects, some debug parameters must be set as command line arguments.
This is done by the Eclipse plug-in automatically when you run a Try Script.

In most cases, running and debugging Try Script tests without modifications is possible. However, when
you override the default value of a JVM option in a BDL script using JavaSetOption, additional
configuration is required to enable debugging in Eclipse.

You must also define an Eclipse debug Remote Java application configuration. After these options are set,
you can then launch a Try Script run. Afterwards, you must start the Eclipse debug configuration to start a
debugging session.

Eclipse Project Restrictions

There are restrictions on concurrent use of Eclipse and Silk Performer. Projects are locked from use by
Eclipse while Silk Performer works on them. If you attempt to open a project from Eclipse that is currently in
use by Silk Performer, you will receive an error message. You must close Silk Performer to pass project
control back to Eclipse.

Installing the Eclipse Plug-In

You can download the Eclipse Plug-In from the product updates site.

The Eclipse SDK and Silk Performer must be installed on your computer. Make sure to run Silk Performer
at least once before you start the installation.

1. Use the standard procedure for installing Eclipse plug-ins from the Eclipse SDK (Help > Install New
Software).

If you are not sure how to install plug-ins in Eclipse, refer to the Eclipse documentation.

2. When asked for the site to add, specify the site that contains your Silk Performer Extras folder.

The Extras folder is located in the Silk Performer installation folder.

3. Browse to and select the Eclipse Plug-in directory in your Silk Performer Extras directory (.../
Extras/eclipseplugin/).

4. Make sure that the Group items by category check box is not checked.

5. Once the Silk Performer Eclipse Plug-in is listed, click the plus sign of the new local site to expand its
contents.

6. Check the check box of the plug-in feature (Silk Performer Feature) and then click Install. The Install
dialog opens.

7. Click Next. A license description appears on the Install dialog.

8. If you agree to the terms of the license agreement, check the I accept the terms of the license
agreement check box and then click Finish.

9. Click Yes to restart the Eclipse Workbench. When the Eclipse Workbench is restarted, a Silk Performer
menu entry appears in the Eclipse Workbench.

Silk Performer Workbench 20.0 | 437

http://supportline.microfocus.com/websync/productupdatessearch.aspx

Eclipse Plug-In does not work on Microsoft Windows 8 and Microsoft Windows Server 2012

Problem:

The Silk Performer Eclipse Plug-In does not work on Microsoft Windows 8 and Microsoft Windows Server
2012

.

Resolution:

On Microsoft Windows 8 and Microsoft Windows Server 2012, run Eclipse in compatibility mode. To do this,
perform the following steps:

1. Right-click eclipse.exe and select Properties.
2. On the Properties dialog box, select the Compatibility tab.
3. In the Compatibility mode section, check Run this program in compatibility mode for: and select

Windows 7.

Configuring Eclipse Plug-In Settings

1. In Eclipse, select Window > Preferences . The Preferences dialog opens.

2. Select the Silk Performer node on the menu tree to display Silk Performer settings.

3. Confirm that the installation directory of your Silk Performer installation is listed in the Install directory
text box. If it is not listed, click Browse to browse for and select your Silk Performer installation directory.

4. Edit the Default project name as required.

5. Edit the Default test class name as required.

6. (experienced users only) Edit the default Timeout for connecting to Java debugger setting as
required.

This is the amount of time allowed (in milliseconds) for connecting to a Silk Performer process during
tests.

7. (experienced users only) Edit the default Shutdown after finish delay setting as required.

This is the amount of time (in milliseconds) that Eclipse waits before retrieving results after the
completion of Silk Performer tests.

8. Select a Log level to specify when logs are to be written.

Selecting None results in no log files being written. Selecting Errors results in log files being written
only when errors are encountered. Selecting Debug results in all activity being logged.

9. In the menu tree, expand Java and select the Installed JREs node. The Installed JREs page opens
and lists the Java runtimes that are used by Eclipse on your local system.

10.Confirm the Location and Type settings for your Java runtime environment.

11.To add a Java runtime profile, perform the following steps:

a) Click the Add button. The Add/Edit JRE dialog opens.
b) Click [...] to browse to and select the directory that contains your JDK installation (specifically, your

Java compiler), then click OK. The fields on the Add/Edit JRE dialog are automatically populated
with values derived from your JDK installation.

Note: You must select a JDK (version 1.5 or higher), rather than a JRE, because Silk Performer
attempts to recompile Java files in its test classes.

c) Click Finish to save your settings.

12.To edit an existing Java runtime profile, perform the following steps:

a) Click the Edit button. The Add/Edit JRE dialog opens.
b) Click [...] to browse to and select the directory that contains your JDK installation (specifically, your

Java compiler), then click OK. The fields on the Add/Edit JRE dialog are automatically populated
with values derived from your JDK installation.

438 | Silk Performer Workbench 20.0

Note: You must select a JDK (version 1.5 or higher), rather than a JRE, because Silk Performer
attempts to recompile Java files in its test classes.

c) Click Finish to save your settings.

13.On the Installed JREs page, click OK to save your settings.

Projects

Setting Up a New Eclipse Project

1. Within a Silk Performer-enabled Eclipse workbench, select File > New > Project . The New Project
wizard opens.

2. Expand the Silk Performer node in the menu tree.

3. Select the Java Project node and then click Next. The New SilkPerformer load testing capable Java
project page opens.

4. Edit the name of your new project as required.

5. Edit the Test class name (the name of the initial test class template) as required.

6. Click Finish. The plug-in generates the test class template in your Eclipse workspace and links the test
classes to a test case in your Silk Performer project.

A class path links the new test class into Silk Performer’s workspace so that it works with both the Eclipse
editor and Silk Performer. Behind each test class is BDF stub code. This code is generated each time a
test class is compiled, so any changes you make to BDF stub code will be overwritten the next time the test
class is compiled.

Importing Projects

Another way of linking your Eclipse and Silk Performer workspaces is to import an existing Silk Performer
project into your Eclipse workspace.

A Silk Performer Java Framework project that has been created using the Silk Performer Eclipse Plug-In
fulfills the required Eclipse notation, used by Eclipse Plug-In projects. A Silk Performer Java Framework
project that has been created with Silk Performer or Silk Performer Java Explorer does not fulfill the
required Eclipse notation.

When importing a Silk Performer Java Framework project into Eclipse, the result differs as follows:

Project created with Silk Performer Eclipse Plug-In Project created with Silk Performer or Silk Performer
Java Explorer

Running and debugging try script tests without
modifications is possible

Limited execution and debugging functionality available

Automatic bdf stubfile generation for changes to the test
class or test methods

No automatic bdf stubfile generation

New test methods can be added to project No introduction of new test methods possible

Changing existing test class and test method names is
possible

Changing existing test class and test method names is
not possible

Note: Modifications to Java test code are possible for either imported project type.

Before you can import a Silk Performer Java Framework project that has been created with Silk Performer
or Silk Performer Java Explorer into Eclipse, the test class must have the same name as the bdf file, for
example TestClass.java and TestClass.bdf.

Tip: Java Explorer allows you to specify the test class and the script file name. Refer to Silk Performer
Java Explorer Help for detailed information.

Silk Performer Workbench 20.0 | 439

You can customize a Silk Performer Java Framework project that has been created with Silk Performer or
Silk Performer Java Explorer manually so that it fulfills the required Eclipse notation used by the Silk
Performer Eclipse Plug-In.

Importing a Silk Performer Project into Eclipse

1. Select File > Import . The Import dialog box opens.

2. Expand the Other node in the menu tree.

3. Select Import Existing Silk Performer Java Project.

4. Click Next to view all available Silk Performer projects in your Silk Performer projects directory.

5. Check the check boxes of the projects that you want to import.

6. Click Finish. The selected project, settings, and classpaths are imported into your Eclipse workspace.

Customizing a Silk Performer Project to Use the Required Eclipse Notation

Before you begin this task, import your Silk Performer project into Eclipse.

You can customize a Silk Performer Java Framework project that has been created with Silk Performer or
Silk Performer Java Explorer manually so that it fulfills the required Eclipse notation used by the Silk
Performer Eclipse Plug-In.

1. Open the test class in Eclipse and modify it according to the following rules:

a) The test class must implement the silk.performer.ITestClass interface.
b) The method for test initialization must be named testInit and take a single parameter of type Silk

Performer.
c) The method for test finalization must be named testEnd.
d) All test methods must start with the prefix test and may not have any parameters.

2. Save your changes.

Configuring Silk Performer Project Properties from Eclipse

1. In Eclipse, select Project > Properties .

2. Select the Silk Performer Project Properties node in the menu tree. At the top of the Silk Performer
Project Properties dialog box, the path to the targeted Silk Performer project is displayed.

3. If required, edit the Name that has been specified for the project when opened in Silk Performer.

4. Edit the Description that has been defined for the project, as required.

5. You can define Silk Performer project attributes for the project (Name, value Type, Value, Default value,
Description).

See Project Attributes for full details regarding configuring Silk Performer project settings.

6. Click Apply to apply your changes.

7. Click OK.

Note: Silk Performer project attributes can also be accessed directly by selecting Project
Attributes from Eclipse’s Silk Performer menu.

Configuring Silk Performer System Settings in Eclipse

1. In Eclipse, select Silk Performer 20.0 > System Settings .

2. Set the configuration options as needed.

3. Click OK to save your changes.

440 | Silk Performer Workbench 20.0

Configuring Silk Performer Project Settings in Eclipse

Note: When Eclipse controls a Silk Performer project, all Java settings defined in Silk Performer are
overruled by the settings you defined in Eclipse.

1. In Eclipse select Silk Performer 20.0 > Profile Settings . You will be directed to the General page for
your project profile Java settings, where you can view the Java home and classpaths that have been set
up for your newly created project.

2. Set the profile options as needed.

3. Click OK to save your changes.

Redirecting Java Build Paths

There are restrictions for classpaths of Eclipse projects that are used within Silk Performer. To enable the
distribution of libraries during a test, all libraries must be located either in the Silk Performer project
directory (<my documents>\Silk Performer 20.0\Projects) or they must be available on a UNC
path.

1. Right-click a Silk Performer-enabled project in Eclipse’s Package Explorer and select Build Path >
Configure Build Path from the context menu.

2. Click the Libraries tab. All of the user libraries that are required for running tests are displayed.

3. Click Add Library. The Add Library page opens.

4. Select User Library from the list and click Next.

5. Click User Libraries. The User Libraries page opens.

6. Click New. The New User Library dialog opens.

7. Specify a name for the new library and click OK. The User Libraries page opens.

8. Click Add JARs.

9. Browse to and select one or more Java libraries that are available to your local system.

Press the Shift or Ctrl keys to select multiple libraries.

10.Click Open to add the JAR files to your new user library. The User Libraries page opens.

11.Click OK. The Add Library page opens.

12.Click Finish. These settings are migrated to the classpaths of both your Silk Performer Workbench
project and your Silk Performer-enabled Eclipse project.

Adding a Silk Performer Test Class to an Eclipse Project

You can generate multiple Java classes for the testing of Silk Performer-enabled Eclipse projects.

Note: Silk Performer can handle user-defined JAR libraries. It can only launch classes that are within
the root package of Java projects within Silk Performer. Only external libraries such as JARs can be
used.

1. In the Eclipse SDK, choose File > New > Other . The New dialog box opens.

2. Choose Silk Performer > Silk Performer Test Class from the menu tree and then click Next. The New
Silk Performer Test Class dialog box opens.

3. Edit the Project name and Test class values as required.

4. Click [...]. The Silk Performer Enabled Projects dialog box opens.

5. Select the Silk Performer-enabled Eclipse project to which you want to append this new test class
template and then click OK.

6. Click Finish. The test class template is appended to your Eclipse project.

Try Script Runs

Silk Performer Workbench 20.0 | 441

Executing Try Script Runs for Test Classes

1. In Eclipse’s Package Explorer menu tree, select the test class for which you want to run a Try Script.

2. Select Silk Performer 20.0 > Try Script . Eclipse automatically switches to the Debug perspective and
initiates a Try Script run. The bottom pane of the Debug page includes Silk Performer views that monitor
the status of the test.

3. If your test class generates errors or leads to a failed test, edit your test class in the Eclipse Editor.

4. If your Try Script run is successful, you can view the results of the test in the Silk Performer log files and
result files, including TrueLog files.

Defining a Launch Configuration for Silk Performer Try Scripts

1. In Eclipse main toolbar, select Run > Debug Configurations . The Debug Configurations dialog
opens.

2. Select the Silk Performer Try Script node in the menu tree.

3. Click the New button on the toolbar. The Create, manage, and run configurations page opens and
the currently active Silk Performer project and its first test class are pre-selected.

4. Click [...] next to the Project box. The Silk Performer Enabled Projects dialog opens.

5. Select the Silk Performer-enabled project that you want to associate with this launch configuration.

6. Click OK.

7. Select the Test class that you want to launch with this launch configuration.

8. (optional) Edit the parameters of any pre-defined project attributes in the Project Attributes section of
the page.

9. Click Apply to apply your changes.

10.Click Debug to run a Try Script run based on your launch configuration settings.

Running Baseline Tests

Once you are satisfied with the Try Script results generated by your TestClass, it is time to pass your test
project from Eclipse to Silk Performer and run a baseline test.

1. In Eclipse, select Silk Performer 20.0 > Open in Silk Performer . Silk Performer workbench launches
with your Eclipse project loaded in the Project menu tree. All TestClasses are appended to the project
under the Scripts node.

2. Define and run a baseline test.

Results

Following a successful test or Try Script run, you can choose to view a Virtual User Report file, a Virtual
User Log file, a Virtual User Output file, a Virtual User Error File, or a TrueLog.

Viewing Virtual User Reports

In Eclipse, select Silk Performer 20.0 > Virtual User Report File .

The report is then displayed in Eclipse’s Silk Performer Report File Viewer tab. This view displays virtual-
user status messages that are passed from the latest Try Script test.

Viewing Virtual User Log Files

In Eclipse, select Silk Performer 20.0 > Virtual User Log File .

The log file of the most recent test run is displayed.

442 | Silk Performer Workbench 20.0

Viewing Virtual User Output Files

In Eclipse, select Silk Performer 20.0 > Virtual User Output File .

The output file of the TestClass code for the most recent test run is displayed.

Viewing Virtual User Error Files

In Eclipse, select Silk Performer 20.0 > Virtual User Error File .

The error file of the most recent test run is displayed.

Viewing TrueLogs

In Eclipse, select Silk Performer 20.0 > Show TrueLog . The TrueLog file of the most recent Try Script
run is then displayed in TrueLog Explorer.

Silk Performer Java Explorer
Silk Performer Java Explorer, which was developed using Java, and the Silk Performer Java Framework
allow you to test Web Services, Enterprise JavaBeans (EJB), RMI objects, and other GUI-less Java
objects. Java Explorer allows you to define and execute complete test scenarios with different test cases
without requiring manual programming because tasks are completed visually by way of mouse-based
operations. Test scripts are visual and easy to understand, even for individuals who are unfamiliar with Java
programming languages.

Test scenarios created with Java Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing.

Note: Java Explorer is compatible only with JDK versions 1.2 and higher (v1.4 or higher is
recommended).

For information about Java, visit the following Web sites:

• http://java.sun.com
• http://www.javaworld.com
• http://www-106.ibm.com/developerworks/java/

Starting Silk Performer Java Explorer

Perform one of the following steps to launch Java Explorer:

• Click Start > All Programs > Silk > Silk Performer 20.0 > Development Tools > Silk Performer Java
Explorer .

• Click Start > All Programs > Silk > Silk Performer 20.0 > Silk Performer Workbench and create a
new project with the Java/Java Explorer or Web Services/Java Explorer application type.

OnWeb Mainframe-to-Web Testing Support
Silk Performer supports the testing of Micro Focus OnWeb Web-based applications that interact with
mainframe systems. OnWeb Web-based applications can easily be tested using standard Silk Performer
Web-application recording, scripting, and playback features. When creating a script to test an OnWeb
application, choose Web business transaction (HTML/HTTP) as the application type to be
recorded. Beyond that, the testing of Micro Focus OnWeb Web-based applications is identical to that of
standard Web applications. Silk Performer automatically handles any dynamic values that need to be
parameterized. Additionally, using .NET Explorer and Java Explorer, OnWeb Web services can be tested in
the same way that standard SOAP Web services are tested.

Silk Performer Workbench 20.0 | 443

http://java.sun.com
http://www.javaworld.com
http://www-106.ibm.com/developerworks/java/

About Micro Focus OnWeb

Micro Focus OnWeb offers a comprehensive development and deployment platform that transforms your
host applications into Web applications. OnWeb aggregates and composes data from multiple screens
across multiple host systems and presents them as Web pages.

OnWeb® and its wide array of application connectors can help you bring together both host systems and
enterprise applications to create standards-based Web-enabled composite applications, leveraging your
existing IT investment and helping you move towards a service-oriented architecture (SOA).

Oracle Forms / Oracle Applications Support
This section explains how to use Silk Performer to run load tests against Oracle Forms and Oracle
Applications. It briefly outlines possible server configurations and discusses how they can be tested. It also
provides guidelines for customizing scripts, including verification functions.

Basic Concepts
This section explains Silk Performer's support for testing Oracle Forms and Oracle Applications, including a
technology overview, project setup, and configuration issues.

The following versions are supported:

• Oracle Forms 6i, 9i, 10g, 11g, 12c
• Oracle EBS 11i, 12.x
• Oracle Fusion 10g, 11g, 12c

Architecture

Oracle Web Forms allows you to run your existing Oracle Forms applications in a browser. In previous
versions, the user interface and complete client/business logic where executed on the client machine in the
Oracle Forms runtime. The move to Web technology split these components: There is still an Oracle Forms
runtime that performs the client/business logic on an application server. However, the runtime has been
separated from the user interface by sending/ receiving user interface actions to an applet that runs in a
browser.

The following illustration offers a basic overview of the architecture:

444 | Silk Performer Workbench 20.0

When a client connects to an Oracle Forms server a HTTP-listener process returns the initial HTML page
that contains information regarding the hosting of the applet. If a Java Virtual Machine (JVM) has not yet
been installed, this page redirects your browser to download a JVM.

The applet connects to a listener process during initialization. This listener spawns a new process that
hosts the runtime engine for the client. The client applet and the runtime engine then have a direct
connection, via HTTP, HTTPS, or Socket mode.

Note: Socket mode is not available for Oracle Forms 6i patch 4, 10g, 11g, and 12c.

Oracle Forms 9i has introduced a test interface that can be used to retrieve all messages during recording
and send those messages to the server during replay.

Oracle Forms Client Types

The Oracle Forms Web client is a Java applet hosted within a browser. Oracle Forms 11g or later uses the
standard Java Virtual Machine (JVM), while for version 10g or earlier, Oracle provides its own JVM, which
is called JInitiator.

A JVM or JInitiator is installed automatically when you access an Oracle Forms Web application for the first
time. There are different versions of JInitiator, where the version numbers reflect the Java Runtime
Environment version numbers that are used, for example JInitiator 1.1.8 uses Java Runtime Environment
1.1.8).

For detailed information on Oracle Forms and Oracle Applications, visit the Oracle Technology Network.

Oracle Forms/Oracle Applications Versions

There are different versions of Oracle Forms and, depending on the version you use, Silk Performer utilizes
different approaches for recording. The following table illustrates the supported Oracle client versions and
which Java version they use:

Oracle client version Java version in Oracle client Java version in Silk Performer
profile settings

Oracle Forms 6 JInitiator 1.1.x Java 1.4

Oracle Forms 9i JInitiator 1.3.x Java 1.4

Oracle Forms 10g JInitiator 1.3.x Java 1.4

Oracle Forms 11g JVM 1.6 Java 1.6

Oracle Forms 12c JVM 1.7 Java 1.7

Oracle Applications 11i (operates on
Oracle Forms 6i)

JInitiator 1.1.x Java 1.4

Oracle Applications 12i (operates on
Oracle Forms 10g)

JVM 1.6 Java 1.6

Installation and Requirements
Oracle Forms applications require a Java Runtime Environment (JRE) on the client side. Silk Performer's
record/replay mechanism also requires a JRE to test Oracle Forms applications.

Configuring Oracle Forms Client Software

Oracle Forms clients run in Web browsers as applets. By default, a Web browser will download and install
a JRE when loading an Oracle Forms application for the first time. For Oracle Forms 10g or earlier,
Oracle's JRE for Oracle Forms is named JInitiator. Using JInitiator is not mandatory. Once a JRE has been
installed, Silk Performer is set up to record Oracle Forms applications.

Silk Performer Workbench 20.0 | 445

http://www.oracle.com/technetwork/index.html

Configuring Oracle Applications Server Software

Silk Performer Recorder modifies the HTML page hosting the Oracle Forms applet. It will set the parameter
record=names so you will get readable names instead of IDs in your script. If this does not work
automatically, proceed as follows:

1. On your Oracle Applications server, locate the file formsweb.cfg and open it with a text editor.

2. Append the text record=names to this file and save it.

3. Restart the Oracle Applications server.

Silk Performer is now able to record names instead of IDs.

Managing Oracle Forms/Oracle Applications Load Tests
This section explains the tasks that must be completed to prepare for, run, and analyze the results of an
Oracle Forms/Oracle Applications load test.

Outlining Oracle Forms/Oracle Applications Projects

Before you begin testing an Oracle Forms application, ensure the following:

• The Oracle Forms client can be started on the recording machine.
• Know which version of Oracle Forms you are testing. Currently supported versions are Oracle Forms 6i,

9i, 10g, 11g, 12c and Oracle EBS 11i, 12.x.

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select the application type that matches your Oracle Forms/Oracle
Applications version (Application Server/Component Models > Oracle > Oracle Forms <version>,
or ERP/CRM > Oracle > Oracle Applications <version>).

5. Click Next.

Note: If you need to add additional resources to the project, right-click the project icon in the
Project menu tree view. It is particularly important that all the user data files (.csv), random data
files (.rnd), and .idl files needed by Silk Performer are set up for your project.

The Workflow - Model Script dialog box appears.

Recording Oracle Forms/Oracle Applications Test Scripts
Record an Oracle Forms/Oracle Applications test script with Silk Performer Recorder before customizing it.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Select the default Oracle Forms recording profile. If you want to modify the settings of a custom
recording profile, click Settings.

3. In the URL text box, enter the URL of your Oracle Forms application.

4. Click Start recording to begin recording the session.

5. To see a report of the actions that happen during recording, maximize the Recorder dialog by clicking
the Change GUI size button. The maximized Recorder opens at the Actions page.

6. Using the client application, conduct the kind of interaction with the target server that you want to
simulate in your test. The interaction is captured and recorded by the Recorder. A report of your actions
and of the data downloaded appears on the Actions page.

446 | Silk Performer Workbench 20.0

7. Insert transactions and timers into the test script during the recording phase. You can create as many
transactions and timers as you want. To insert a transaction, click the New Transaction button. A
transaction represents a piece of work that can be assigned to a virtual user.

8. In the ensuing dialog, enter a name for the transaction and click OK. The new transaction appears in
the Actions log.

9. To insert a timer, click the New Timer Session button. A timer is a user-defined measurement period in
a test. You should create timers for each component of a transaction for which you want to analyze
performance. In the ensuing dialog, enter a name for the timer and click OK.

10.To insert a timer, click the New Timer Session button. A timer is a user-defined measurement period in
a test. You should create timers for each component of a transaction for which you want to analyze
performance. In the ensuing dialog, enter a name for the timer and click OK.

11.To end recording, click the Stop Recording button.

12.Enter a name for the .bdf file and save it. The Capture File page displays. Click Generate Script to
generate a script out of the capture file.

Recording Concepts
Oracle Forms applications are recorded by recording your browser and using a special Java Recording API
that captures the messages that are sent between the client and server.

Recording Profile Settings

When choosing one of the Oracle Forms or Oracle Applications project types in your recording profile
settings, a new recording profile is created for your project based on the active browser. You cannot modify
the settings for this temporary recording profile. If you want to record using different settings, click Copy to
create a custom recording profile based on the selected profile.

Oracle Forms 6 can operate on two different communication channels: HTTP/ HTTPS or Socket mode.
When you select Oracle Forms 6, both channels are covered. If you encounter any problems during
recording, select the correct Java Recording API in your recording profile (you must first determine which
communication channel you are using).

Oracle Applications 12i will detect the communication channel (HTTP/ HTTPS or Socket mode)
automatically.

Setting the Oracle Forms Log Level

The log level defines which messages and TrueLogs are captured when recording an Oracle Forms
application.

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. Select Record in the shortcut list and click the Oracle Forms icon.

4. Click the Logging tab.

Here you can specify that additional properties have their values logged during recording.

5. From the Log level list box, select the log level for virtual user logging:

• None - TrueLogs will be generated, though no Oracle Messages will be logged and no detailed
information about controls in the log file will be written.

• Error - In addition to the None log level, errors that occur during recording are logged.
• Normal - In addition to the Error log level, Oracle messages are logged to the TrueLog and the log

file.

Silk Performer Workbench 20.0 | 447

• Debug - In addition to the Normal log level, detailed information about control messages is logged,
for example in the In Body and Out Body tab in TrueLog Explorer. This information is helpful for
customizing and debugging your script when comparing it with Try Script runs. This option should
also be used when you encounter a problem during replay and you must send your log files to Micro
Focus SupportLine for analysis.

Additional properties to be logged in the TrueLog for each control in your application can also be
defined. Such properties are Oracle Forms internal properties that must be defined using their internal
names. In most cases you will not need to use this feature, as default properties (name, value) are
logged for each control. The OraForms.bdh file contains a complete list of all internal properties, most
of which are not used by controls and so will generally be ignored if you define them.

6. Click OK to save your settings.

Oracle Java Recording API

The Java Recording API is comprised of two elements:

• HTTP recording rules
• Instructions regarding which Java classes implement recording logic

HTTP recording rules are necessary to prevent the recording of certain HTTP/ HTTPS traffic when HTTP/
HTTPS is the transport protocol of the client/server communication channel. Not all HTTP/HTTPS traffic is
ignored-only the traffic that sends/receives messages is ignored.

This means that if your Oracle Forms application is embedded in a normal HTML file with embedded
objects or frames, the calls that request those pages will be scripted and therefore they will be requested
during replay.

In terms of scripting the necessary OraForms API calls, all communication between the applet and the
server is handled by the Java Recorder.

Java Environment Settings

As recording and replay of Oracle Forms applications is achieved through a Java implementation, it is
necessary to configure your Java environment in Silk Performer, using the Profile settings dialog. You must
define your Java home directory (Settings > Active Profile > Java > General > Java home).

Files Generated During Recording
When recording an application, a script, a text log and a TrueLog are generated.

Script

The script contains the OraFormsInit method call in the init transaction. OraFormsInit defines the
server, port, servlet URL and version of your Oracle Forms application. Not all parameters will necessarily
be scripted with values as required parameters vary based on version and connection type.

OraFormsInit initializes the internal Oracle Forms replay engine (the actual connect is achieved with
OraFormsConnect) and therefore should be one of the first calls in the main transaction.

Wherever a new form window is activated the recorder scripts a OraFormsSetWindow, indicating that the
new window is now the active window. OraFormsSetWindow has a special meaning in TrueLogs, which
will be discussed later in this chapter.

All of the subsequent method calls until the next OraFormsSetWindow are executed on controls of the
current window.

OraFormsDestroy is scripted in the end transaction to shut down the replay engine.

Recording Text Log
The recording text log contains information about the HTTP traffic.

448 | Silk Performer Workbench 20.0

Most of the HTTP information that would normally be logged for a Web application is disabled. If you are
interested in detailed HTTP logs, enable this setting in your profile.

The relevant elements of the log are the Oracle Forms messages that are logged when you have a log
level of Normal or Debug. Messages from and to the server are logged in the following format:

Sample Message Description

===> Direction: ===> (to server), <== (from server)

Block# 1 -------------------- Block #: A block contains a message sent to the server
and the server's response to the message. Both parts are
terminated by a terminal message.

MSGTYPE: UPDATE The type of message. Options include: -CREATE,
UPDATE, GET, DESTROY, TERMINAL

CLASS: 1/1 The class of control that handles the message

ID: 1 The unique control identifier that handles the message

RESPONSE: 0 Status message

PROPERTIES:

TYPE:PROP_TYPE_INTEGER Name:INITIAL_VERSION
Value:90290

TYPE:PROP_TYPE_POINT
Name:INITIAL_RESOLUTION
Value:java.awt.Point[x=96,y=96]

TYPE:PROP_TYPE_POINT Name:INITIAL_DISP_SIZE
Value: java.awt.Point[x=1280,y=1024]

...

A list of properties. Each property has a type, name, and
value.

When the log level is set to Debug, log information required for troubleshooting is logged to the log file. If
you encounter any problems and need to contact Micro Focus SupportLine, please provide a log file
utilizing the log level Debug.

Record TrueLogs

Record TrueLogs contain the same information as replay TrueLogs. This allows you to compare record and
replay differences after you have executed your first TryScript.

Oracle Forms HTTPS Support

Silk Performer enables you to record Oracle Forms applications that use secure connections via HTTPS.
To record an Oracle Forms application over HTTPS you must add the Silk Performer certificate to your
JVM’s truststore database:

Enabling Oracle Forms HTTPS Support Using a JVM

Silk Performer enables you to record Oracle Forms applications that use secure connections via HTTPS.
To record an Oracle Forms application over HTTPS you must add the Silk Performer certificate to your
JVM’s truststore database:

1. Open the Java Control Panel on your system.

2. Select the Security tab.

3. Click Import to locate and import the Silk Performer certificate IRCAcert.pem. This file is located in
your Silk Performer installation directory.

Silk Performer Workbench 20.0 | 449

4. Close the Java Control Panel.

Note: Remember to start a new browser session before recording your Oracle Forms application.

You can now record your application.

Enabling Oracle Forms HTTPS Support Using JInitiator

Silk Performer enables you to record Oracle Forms applications that use secure connections via HTTPS.
To record an Oracle Forms application over HTTPS you must add the Silk Performer certificate to your
JVM’s truststore database:

1. Open the file certdb.txt with a text editor. This file is located in the directory \Lib\security\ of
your JInitiator’s home directory.

2. Open the Silk Performer certificate file IRCAcert.pem with a text editor. This file is located in your Silk
Performer installation directory.

3. Copy the content of the Silk Performer certificate file and append it to the content of the certdb.txt
file.

4. Save and close the certdb.txt file.

Note: Remember to start a new browser session before recording your Oracle Forms application.

You can now record your application.

Oracle Forms / Oracle Applications TrueLogs
TrueLog Explorer is a powerful tool that not only offers a convenient means of exploring Oracle Forms
applications. It also enables you to add verifications for control values and customize input values for
controls that are modified during recording.

Working With Oracle Forms Applications - Overview

Oracle Forms, previously called “SQL*Forms”, is part of Oracle’s Internet Developer Suite (iDS). It is a 4GL
Rapid Application Development (RAD) environment that allows forms to be deployed across the Web via
Oracle’s Internet Application Server (iAS) Forms Services.

Because Oracle Forms is based on Java technology, before you can record and replay Oracle Forms
transactions, you must configure Java Virtual Machine using Silk Performer profile settings. The Java Just-
In-Time Compiler must also be disabled while recording Oracle Forms 6i or higher.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

Oracle Forms TrueLog Structure

This section explains the Oracle Forms TrueLog structure and the Form Controls window.

Working With Web Calls

In addition to Oracle Forms API calls, Web calls that download HTTP content are also included in
TrueLogs. The first call in each main transaction is the Web call that downloads the initial page of the
Oracle Forms application under test.

The TrueLog Explorer feature set varies based on the protocol of the open TrueLog. Because Oracle
Forms is a mixed protocol that often incorporates Web calls in scripts, TrueLog Explorer enables you to
alternate between a tabular data-based representation view for binary Oracle Forms applets and a
rendered HTML view for HTML pages. The Web-based protocol is significant because it enables you to
customize session handling, insert verification functions, parse values out of HTML, and run searches on
HTML included in Oracle Forms scripts.

450 | Silk Performer Workbench 20.0

1. Choose Edit > TrueLog Type .
2. Select Web (default).

Node Information

Each Oracle Forms node stores information about the current state of all controls of the active window. If
you select a OraFormsSetWindow node that represents a window's first appearance, you will see all the
controls and initial values as they existed when the form was initially created.

If you select a subnode, you will see the state and values of all controls as they existed after the action you
selected was fulfilled. For example, if you select an OraFormsEditSet you will see the state of the
controls after this action was fulfilled.

If a window is reactivated (meaning that an alternate window was activated in the meantime) and you
select the OraFormsSetWindow of the reactivated window, you will see the status of the controls as they
were after the reactivation (which in most cases is the same status they had when the window was
deactivated).

Verification Checks with TrueLog Explorer

TrueLog Explorer enables you to insert content-verification functions into test scripts to verify the accuracy
of content that is returned by application servers during testing.

TrueLog Explorer offers wizards that add verification functions to your scripts to verify control values at any
time during an application's life cycle. To add a verification function, right-click in the Value column of a
control that you wish to verify and select the relevant context menu.

When you identify the content that you want to verify, all required verification functions can be generated
and automatically inserted into your test script. To identify content that is to be verified (within rendered
HTML, HTML source code, SQL commands, Oracle Forms, or elsewhere), select and right-click it.

Verifications can be applied visually inTrueLog Explorer Rendered and Source views using any of the
following methods:

• Script menu
• Add Verifications dialog box
• Context menus within Rendered, Source, and Form Controls views
• workflow bar

Parsing Functions Overview

Parsing functions are typically used for the following tasks:

• Replacing static session IDs in scripts with dynamic session IDs that maintain state information.
• Building enhanced content verifications into scripts that can not be achieved with verification functions

alone. For example, a parsing function might verify that a value in column 2 of row 3 of a database table
is equal to the sum of the values in column 2 of row 1 and column 2 of row 2. This can be achieved by
generating parsing functions that parse out the three values and compare them in a script.

• Conditionally executing part of a testing script that is dependent on data returned from a server. For
example, an HTTP request returns an HTML page that includes the following results: <nnn> items
found. Different actions need to be executed against the value <nnn>. Say the transaction is designed
to:

• Exit if <nnn> = 0.
• Link to a details page if <nnn> = 1.
• Link to the next page if <nnn> is greater than 1.

To accomplish this, the value <nnn> must be parsed from the HTML page, and scripted actions must be
run based on the parsed values.

TrueLog Explorer allows you to insert parsing functions visually in Rendered and Source views. TrueLog
Explorer automatically generates parsing functions in scripts, so no manual writing of code is required.

Silk Performer Workbench 20.0 | 451

TrueLog Explorer offers wizards that add parsing functions to your scripts to parse control values at any
time during an application's life cycle. To add a parsing function, right-click in the Value column of a control
that you wish to parse and select the relevant context menu.

Input Data Customizable Functions

TrueLog Explorer offers a wizard that enables you to customize the input values of controls that have been
changed by the user during recording. Input values can be customized at the same position where input
originally occurred during recording. Here is a list of the functions that can be customized:

Function Description

OraFormsEditSet Customizes the value of a text control.

OraFormsRadioSet Specifies whether a radio button is to be selected.

OraFormsCheckboxSet Specifies whether a check box is to be selected.

OraFormsListSelect Specifies which element of a list box is to be selected.

OraFormsPopListSelect Specifies which element of a pop-up list box is to be
selected.

OraFormsLogon Customizes logon credentials on the Logon dialog.

OraFormsLovFind Customizes the search pattern on a List Of Values dialog.

OraFormsLovSelect Customizes the selection on a List Of Values dialog.

OraFormsEditorDialogOK Customizes a text control value in an editor dialog.

In Body / Out Body Pages

The data that is communicated between Silk Performer and an Oracle Forms server can be tracked on the
In Body and Out Body pages. During Oracle Forms replay, the In Body page displays the data that is
received by Silk Performer from the Oracle Forms server. The Out Body page displays the data that is sent
by Silk Performer to the Oracle Forms server.

Note: These messages are only available when you set the logging options in the Profile Settings
dialog to Debug.

Messages can be ignored during data customization (except when customizing GET messages). However
if a problem arises and Customer Care is contacted, this information will be required for analysis. You may
notice major differences between record and replay TrueLogs. All messages are likely to be included, but
they may not be logged at the corresponding nodes; they may be logged one node earlier or later.

Each message block (OraForms call) that is communicated between Silk Performer and the Oracle Forms
server is comprised of one or more of the following messages types:

Item Description

Create Indicates that a new UI element must be created. Each UI
object to be created is given a class, properties, and an
ID.

Example: The server tells the client to create a text box of
a given type, with a given name, and a given ID, at a
given location.

Destroy Indicates that a UI element must be destroyed.

Example: When a window is closed, all of the controls on
the window must be destroyed.

Update Indicates what an element within the applet should look
like (for example, position, focus, and selection status).

452 | Silk Performer Workbench 20.0

Item Description

Example: The client tells the server where the mouse
cursor should be positioned. The server then responds by
changing the mouse cursor position within the applet’s
interface.

Get Indicates internal communication between the client and
server. Get messages are not visible in the UI.

Example: The server asks the client what the ID of a
certain control is. Get messages are typically terminated
with Terminal 3 messages.

Terminal Indicates the end of a communication round trip. Each
message block is terminated with a terminal message.
Three terminal types are available:

• Terminal 1
• Terminal 2
• Terminal 3

The most common message block type involves the client sending an update message to the server and
ending the communication with a Terminal 1 message. The server then typically responds with a create or
destroy message that is terminated by a terminal 1 message.

Example In Body/Out Body message block:

With a mouse click function, the client sends an update message to the server with
some properties. One of the properties is the mouse cursor location. Another property is
that the mouse should be in the pressed-down state. The round trip of the
communication is then closed with a Terminal message. The server then responds,
indicating that the cursor has been repositioned and set to the pressed-down state.

 MSGTYPE: UPDATE
 CLASS: 0/0
 ID: 2824
 TITLE: N/A
 RESPONSE: 0
 PROPERTIES:
 TYPE: PROP_TYPE_INTEGER
 Name: MENU_MENUUPDATE/367
 Value: 2855

 MSGTYPE: DESTROY
 CLASS: 0/0
 ID: 2855
 TITLE: N/A
 RESPONSE: 0
 PROPERTIES:

 MSGTYPE: GET
 CLASS: 0/0
 ID: 1644
 TITLE: N/A
 RESPONSE: 0
 PROPERTIES:
 TYPE: PROP_TYPE_VOID
 Name: VALUE/131
 Value: null

 MSGTYPE: TERMINAL
 CLASS: 0/0
 ID: 0

Silk Performer Workbench 20.0 | 453

 TITLE: N/A
 RESPONSE: 3
 PROPERTIES:

Replay Concepts
Silk Performer emulates multiple Oracle Forms clients distributed across multiple Silk Performer agents.
Silk Performer's Oracle Forms clients are driven by a Java Runtime that is hosted by Silk Performer during
replay.

Setting Oracle Forms Options

Oracle Forms-specific settings allow you to modify how Silk Performer interacts with Oracle Forms clients
during replay.

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list, click the Oracle Forms icon.

4. On the General page, select a Connection mode setting that reflects which type of connection the
Oracle Forms server accepts.

Oracle Forms clients can communicate with servers via Sockets, HTTP, or HTTPS.

Note: This setting can be overridden by the OraFormsSetConnectMode(connectMode) BDL
function call.

• Click the Socket mode option button when the Oracle Forms server is set up for socket mode.
• Click the HTTP mode option button for Oracle Forms servers that are configured for HTTP

connections.
• Click the HTTPS mode option button for Oracle Forms servers that are configured for secure HTTP

connections.

5. In the Connection timeout text box, specify a timeout period (in seconds) to specify how long emulated
clients should attempt to establish communication with the server before they report an exception.

6. To configure additional runtime settings, you can optionally have the virtual user send a heartbeat
message to the server at a specified interval. This is useful when the Oracle Forms client is not
communicating with the server for a long period of time, for example during a long think time period.
Check the Enable heartbeat with frequency of check box and enter an interval (in seconds) in the sec
field.

7. Check the Automatically wait for application timers check box to direct the replay engine to wait for
application timers to expire after each function call.

8. The Application timer and window timeout text box specifies the maximum wait time for expiration of
application timers and appearance of windows. Enter a timeout setting (in seconds).

The replay engine waits for timers to expire after each function call. The function
OraFormsWaitForTimer can be used to make an application wait for timers to expire. Maximum wait
time is specified by this setting. The function OraFormsWaitForWindow may be used to have an
application wait for windows to appear. This setting specifies the maximum wait time for window
appearance.

9. Oracle Forms servers can allow certain client releases. Use the Oracle Forms setting to specify the
Oracle Forms client version.

Oracle Forms clients send the required version when connecting to the Oracle Forms server. Create
profiles and change this setting when testing applications deployed on different server versions.

454 | Silk Performer Workbench 20.0

Note: This setting can be overridden by the BDL function call
OraFormsSetInt("INITAL_VERSION", theVersion).

10.Click the Logging tab.
Here you can specify that additional properties have their values logged during replay.

11.From the Log level list box, select the log level for virtual user logging:

• None - TrueLogs will be generated, though no Oracle Messages will be logged and no detailed
information about controls in the log file will be written.

• Error - In addition to the None log level, errors that occur during replay are logged.
• Normal - In addition to the Error log level, Oracle messages are logged to the TrueLog and the log

file.
• Debug - In addition to the Normal log level, detailed information about control messages is logged,

for example in the In Body and Out Body tab in TrueLog Explorer. This information is helpful for
customizing and debugging your script when comparing it with Try Script runs. This option should
also be used when you encounter a problem during replay and you must send your log files to Micro
Focus SupportLine for analysis.

Additional properties to be logged in the TrueLog for each control in your application can also be
defined. Such properties are Oracle Forms internal properties that must be defined using their internal
names. In most cases you will not need to use this feature, as default properties (name, value) are
logged for each control. The OraForms.bdh file contains a complete list of all internal properties, most
of which are not used by controls and so will generally be ignored if you define them.

12.In the Additional properties text box, you can specify other properties for which virtual users are to log
values.

• Click Add to open the Additional Properties dialog box and add a property that is to have its value
logged during replay.

• Click Edit to open the Additional Properties dialog box and edit the selected property.
• Click Remove to remove a selected property. Click Yes on the deletion confirmation dialog. No

further values will be logged for this property.

13.Click the Measuring tab.
Here you can specify a custom measurement level. By default, all available performance metrics are
collected during test runs.

14.Check the Enable all timers and counters for all controls check box to enable all timers and counters
for all actions on controls during replay.

Alternatively, uncheck the Enable all timers and counters for all controls check box and select a
specific control from the Control list box and select the specific timer/counter types that you want to
have applied to that control:

• Enable timers - Measure how long it takes to complete an action on the selected control.
• Count round trips - Count the round trips for each action on the selected control.
• Count bytes - Count the bytes sent and received for each action on the selected control.
• Count messages - Count the messages sent and received for each action on the selected control.

Note: Alternatively, you can click the Apply to All Controls button to apply your timer/counter
settings to all controls.

15.Click OK to save your settings.

Oracle Forms Client Sessions

When executing a recorded Oracle Forms script, a client session begins with the OraFormsConnect
function call and ends with OraFormsDisconnect or OraFormsDestroy.

Example
transaction TInit
begin

Silk Performer Workbench 20.0 | 455

 WebSetBrowser(WEB_BROWSER_MSIE8);
 WebModifyHttpHeader("Accept-Language", "en,de-at;q=0.5");
 OraFormsInit("http://lnz-vmoraf11:8888/forms/lservlet", " lnz-
vmoraf11", 9000,
 ORA_FORMS_11G);
end TInit;

transaction TShutdown
begin
 OraFormsDestroy();
end TShutdown;

transaction TMain
var
begin
 OraFormsSetString("DEFAULT_LOCAL_TZ", "Europe/Berlin");
 OraFormsConnect(
 "server module=healthyliving.fmx userid=hl/hl@ORCL_ SERVER
sso_userid="
 "output_dir=C:\\orant\\forms11\\demos\\temp");

 // New window activated: MAIN
 ThinkTime(3.7);
 OraFormsSetWindow("MAIN");
 OraFormsEditSet("EDIT_CONTROL_0", "USER",
ORA_EDIT_SEND_DIRTY); // Supplier Name
 OraFormsDisconnect();
end TMain;

The above session begins with the OraFormsConnect call and ends with the end of
the transaction (OraFormsDisconnect). Therefore each iteration of the transaction
can be considered an Oracle Forms client session.

Results

Once a Silk Performer test is complete, Performance Explorer is used to analyze how the Oracle Forms
application performed during the test run. Silk Performer automatically collects a configurable number of
timers and counters for each function call, depending on which performance metrics you specified to be
collected during test runs.

By default, Silk Performer collects the following counters for each function call:
• bytes sent
• bytes received
• messages received
• messages sent
• roundtrips
These counters are found in Performance Explorer as follows:

456 | Silk Performer Workbench 20.0

In addition to counters, Silk Performer offers timers, which measure how long it takes for a function call to
complete its tasks. These timers are found in Performance Explorer as follows:

Graphs can be assembled by dragging counters and timers into graphs.

Connection Handling

Oracle Forms connections are established with OraFormsConnect and are closed with
OraFormsDisconnect. Recorded scripts include OraFormsConnect at the beginning of the TMain
transaction and OraFormsDisconnect as the last Oracle Forms call in TMain. OraFormsDisconnect
must be called to ensure that the server connection is closed, otherwise the server runtime process that
handles the client will continue to run.

OraForms.bdh implements event handlers that call OraFormsDisconnect when server errors cause
virtual user process exits.

In scenarios in which you have a login procedure and multiple main transactions that perform actions that
you want to test, you must ensure that you have established connections at the beginning of transactions.
As connections may close due to severe errors, subsequent transactions must re-establish connections.

The suggested means of handling this issue is to create a BDL function that contains the script code that
establishes the connection to the Oracle Forms application. The function can use the
OraFormsIsConnected method to query if a connection is already established. This function should be
called at the beginning of each Oracle Forms transaction that requires a connection to the application.

Example

After recording, your script should resemble the following:

var
 gsSSessionID : string;

dclrand

dcltrans
 transaction TInit
 begin
 OraFormsInit("http://lnz-vmoraf11:8888/forms/lservlet",
"lnz-vmoraf11", 9000, ORA_FORMS_11G);
 //WebSetUserBehavior(WEB_USERBEHAVIOR_FIRST_TIME);
 //WebSetDocumentCache(true, WEB_CACHE_CHECK_SESSION);
 end TInit;

Silk Performer Workbench 20.0 | 457

 transaction TShutdown
 begin
 OraFormsDestroy();
 end TShutdown;

 transaction TMain
 begin
 WebSetBrowser(WEB_BROWSER_MSIE8);
 WebModifyHttpHeader("Accept-Language", "de-at");
 WebPageUrl("http://lnz-vmoraf11:8888/forms/frmservlet",
"iOrganizer", FORMS_FRMSERVLET001);

 WebSetBrowser(WEB_BROWSER_CUSTOM);
 WebSetUserAgent("Java1.6.0.21");
 WebSetHttpVersion("HTTP/1.1");
 WebModifyHttpHeader("Accept-Language", NULL, WEB_MODIFY_
OPT_Remove);
 WebUrl("http://lnz-vmoraf11:8888/forms/java/f90all_
jinit.jar", 29.61);
 WebUrl("http://lnz-vmoraf11:8888/forms/jars/
iorganizer.jar", 0.42);
 WebUrl("http://lnz-vmoraf11:8888/forms/iorg_images/
iorganizer.gif", 0.45);
 WebUrl("http://lnz-vmoraf11:8888/forms/images/blue.gif",
0.43);
 WebUrl("http://lnz-vmoraf11:8888/forms/java/oracle/forms/
registry/Registry.dat", 0.08);
 WebUrl("http://lnz-vmoraf11:8888/forms/iorg_registry/
iorg_registry.dat", 6.58);

 // Connect - with connection properties
 OraFormsSetInt("INITIAL_VERSION", 1111003);
 OraFormsSetPoint("INITIAL_RESOLUTION", 96, 96);
 OraFormsSetPoint("INITIAL_DISP_SIZE", 1280, 1024);
 OraFormsSetInt("INITIAL_COLOR_DEPTH", 256);
 OraFormsSetString("FONT_NAME", "Dialog");
 OraFormsSetInt("FONT_SIZE", 900);
 OraFormsSetByte("FONT_STYLE", 0);
 OraFormsSetByte("FONT_WEIGHT", 0);
 OraFormsSetPoint("INITIAL_SCALE_INFO", 8, 20);
 OraFormsSetBoolean("WINSYS_REQUIREDVA_LIST", false);
 OraFormsSetString("DEFAULT_LOCAL_TZ", "Europe/Berlin");
 OraFormsConnect("server escapeParams=true
module=iorganizer.fmx userid= debug=no host= port= usesdi=yes
record=names",
 "http://lnz-vmoraf11:8888/forms/lservlet?ifcfs=/forms/
frmservlet?config=iorg&ifsessid=formsapp.4&acceptLanguage=de-
at",
 "http://lnz-vmoraf11:8888/forms/frmservlet?config=iorg");
 OraFormsGetSessionId(gsSSessionID);
 WebCookieSet(gsSSessionID, "http://lnz-vmoraf11:8888/forms/
java/");

 // ---
 // New window activated: 10
 OraFormsSetWindow("10");
 ThinkTime(6.6);

 …
end TMain

458 | Silk Performer Workbench 20.0

After customization, your script should appear as follows:

var
 gsSSessionID : string;

dclfunc
 function DoConnect
 begin
 WebSetBrowser(WEB_BROWSER_MSIE8);
 WebModifyHttpHeader("Accept-Language", "de-at");
 WebPageUrl("http://lnz-vmoraf11:8888/forms/frmservlet",
"iOrganizer", FORMS_FRMSERVLET001);

 WebSetBrowser(WEB_BROWSER_CUSTOM);
 WebSetUserAgent("Java1.6.0.21");
 WebSetHttpVersion("HTTP/1.1");
 WebModifyHttpHeader("Accept-Language", NULL, WEB_MODIFY_
OPT_Remove);
 WebUrl("http://lnz-vmoraf11:8888/forms/java/f90all_
jinit.jar", 29.61);
 WebUrl("http://lnz-vmoraf11:8888/forms/jars/
iorganizer.jar", 0.42);
 WebUrl("http://lnz-vmoraf11:8888/forms/iorg_images/
iorganizer.gif", 0.45);
 WebUrl("http://lnz-vmoraf11:8888/forms/images/blue.gif",
0.43);
 WebUrl("http://lnz-vmoraf11:8888/forms/java/oracle/forms/
registry/Registry.dat", 0.08);
 WebUrl("http://lnz-vmoraf11:8888/forms/iorg_registry/
iorg_registry.dat", 6.58);

 // Connect - with connection properties
 OraFormsSetInt("INITIAL_VERSION", 1111003);
 OraFormsSetPoint("INITIAL_RESOLUTION", 96, 96);
 OraFormsSetPoint("INITIAL_DISP_SIZE", 1280, 1024);
 OraFormsSetInt("INITIAL_COLOR_DEPTH", 256);
 OraFormsSetString("FONT_NAME", "Dialog");
 OraFormsSetInt("FONT_SIZE", 900);
 OraFormsSetByte("FONT_STYLE", 0);
 OraFormsSetByte("FONT_WEIGHT", 0);
 OraFormsSetPoint("INITIAL_SCALE_INFO", 8, 20);
 OraFormsSetBoolean("WINSYS_REQUIREDVA_LIST", false);
 OraFormsSetString("DEFAULT_LOCAL_TZ", "Europe/Berlin");
 OraFormsConnect("server escapeParams=true
module=iorganizer.fmx userid= debug=no host= port= usesdi=yes
record=names",
 "http://lnz-vmoraf11:8888/forms/lservlet?ifcfs=/forms/
frmservlet?config=iorg&ifsessid=formsapp.4&acceptLanguage=de-
at",
 "http://lnz-vmoraf11:8888/forms/frmservlet?config=iorg");
 OraFormsGetSessionId(gsSSessionID);
 WebCookieSet(gsSSessionID, "http://lnz-vmoraf11:8888/forms/
java/");

 end DoConnect;

dcltrans
 transaction TInit
 begin
 OraFormsInit("http://lnz-vmoraf11:8888/forms/lservlet",
"lnz-vmoraf11", 9000, ORA_FORMS_11G);
 //WebSetUserBehavior(WEB_USERBEHAVIOR_FIRST_TIME);
 //WebSetDocumentCache(true, WEB_CACHE_CHECK_SESSION);
 end TInit;

Silk Performer Workbench 20.0 | 459

 transaction TShutdown
 begin
 OraFormsDestroy();
 end TShutdown;

 transaction TMain
 begin
 DoConnect();

 // ---
 // New window activated: 10
 OraFormsSetWindow("10");
 ThinkTime(6.6);
 …
 end Tmain

 transaction TsecondMain
 begin
 DoConnect();

 // ---
 // New window activated: 10
 OraFormsSetWindow("10");
 ThinkTime(6.6);
 …
 end TsecondMain;

With this approach, if you run a load test with a user that executes multiple main
transactions you will not experience problems with subsequent transactions if an active
transaction fails and disconnects from the server.

Oracle Forms Performance Monitoring
Use Performance Explorer to retrieve performance metrics from Oracle Forms Dynamic Monitoring System
(DMS). Performance Explorer can monitor the DMS performance Web page that is provided through the
Oracle Forms HTTP server when the DMS module is installed.

For full details on Oracle Forms performance monitoring, please see Performance Explorer Help.

Root Cause Analysis
Errors that happen during a Try Script, baseline or load test-run can easily be analyzed with the log files
that are written during the run - especially with the TrueLog.

TrueLog Analysis

The most common error that occurs is: OraForms: 5 - Handler not found.

This error is thrown if the control (handler) that is referenced as the first parameter of a failing OraForms
API call cannot be found, for example a button that should be pressed is not on the form.

By having a look at the preceding calls - prior to the one that throws the error - it is often easy to see why
the control is not there. Oracle Forms applications often send a WINSYS_BEEP message if an error occurs,
for example when entering invalid data. Some applications also update the status bar message. Moving
through the preceding calls and looking at the Info tab will show you if there was a WINSYS_BEEP or a
status bar update.

Very often, the server updates the status bar message in case of an error. Check the preceding calls, prior
to the one that throws the error, if there is any information about a changed status bar message. Whenever
the status bar message changes, an informational log entry will be logged.

460 | Silk Performer Workbench 20.0

Log File Analysis

The log files (recording and replay) contain different information depending on the log level defined in the
profile settings. Whenever you have a problem and need to contact technical support, switch the log level
to Debug and try to record/replay the script again and send those files. The Debug log level contains
special development information that allows Technical Support to analyze the problem quicker.

The log file contains the Oracle Forms messages that are sent between the server and the client.
Additionally, in debug log-mode all client side events will be logged, for example value changed, mouse
down, and more.

OraForms Errors

Below is a list of the OraForms errors that can be thrown by the OraForms API calls.

ID Message Description

1 Logon dialog not found OraFormsLogon and OraFormsLogonCancel can
throw this error if the Logon dialog is not the current active
dialog. It is most likely that the OraFormsConnect failed
because the logon dialog should be the first dialog after a
successful connect.

2 Window not found OraForms-CloseWindow, -WindowMove, -
WindowResize and -WindowUpdate will throw this
error if the window with the passed window name/ID has not
yet been created. Similar to the 5 - handler not
found error message.

3 Unsupported property Can be thrown by multiple OraForms calls when the calls
are querying handlers for special properties that should be
set but are not. This error is not likely to happen under
normal circumstances.

4 Focus handler not found OraFormsSetFocus throws this error if the handler with
the passed handler name/id was not found. Similar to the 5
- handler not found error message.

5 Handler not found This method can be thrown by any OraForms API call that
takes a handler name/ID as first parameter. The first
thing that every API call verifies is if the handler with the
passed name/ID has already been created. If not, the
operation cannot be executed on that handler. There are
multiple reasons why a handler is not present during replay
although it was during recording.

The most common case is that an error was raised on the
server, for example because of invalid user input. This invalid
input has caused the application to not display dialogs or
other windows that would normally appear when entering
valid data like it does during recording.

6 The button to be pressed does not exist OraFormsMessageBoxButton throws this error if an
invalid button number was passed to the method. Valid
buttons are: ORA_ ALERT_YES, ORA_ALERT_NO,
ORA_ALERT_CANCEL.

7 Menu item was not found OraFormsMenuItem throws this error if the menu item
passed by its full name was not found. The menu item is
searched in the assigned menu of the passed window
name/ID.

8 Tab page not found OraFormsTabSelect throws this error if there is no tab
page with the passed name or passed index.

Silk Performer Workbench 20.0 | 461

ID Message Description

9 Unrecognized dialog button OraFormsCloseDialog throws this error if an invalid
button number was passed to the method. Valid buttons are:
ORA_DIALOG_OK and ORA_ DIALOG_CANCEL.

10 The function cannot be applied for this
handler

Several OraForms API calls throw this error if the method
was called on a handler of a type that does not allow to
execute that kind of function,for example
OraFormsTabSelect on a non-tab control handler.

11 The LOV row does not exist OraFormsLovSelect throws this error if there is no entry
in the current list of values dialog that matches the passed
name or passed row index.

12 The list item does not exist OraFormsListSelect and
OraFormsListActivated throw this error if the list
handler referenced in the first parameter does not contain a
list element with the passed value or index.

13 Handler is of invalid class Several OraForms API calls throw this error if the method
was called on a handler of a type that does not allow to
execute that kind of function, for example
OraFormsTabSelect on a non-tab control handler.

14 A value for this property is not set All OraFormsGetProp{Type} methods throw this error
if the requested property has not been set on the passed
handler.

15 Array index is out of bound OraFormsGetPropStringArray and
OraFormsGetPropByteArray throw this error if the
passed element index is out of the array boundaries of this
property. Use OraFormsGetPropStringArrayLen
and OraFormsGetPropByteArrayLen to get the
number of elements in the array. The index is 0-based.

16 Verification failed Every verification function throws this error if the defined
verification fails.

17 Received version too old If the server returns the error VERSION_TOO_OLD during
the connect phase, this error is thrown. This means that the
version number of the client is too old to work with the
version on the server. Use a different version number for the
client by customizing the OraFormsSetInt for the
property INITIAL_VERSION or the version number in the
profile settings.

18 Received version too new If the server returns the error VERSION_TOO_NEW during
the connect phase, this error is thrown. This means that the
version number of the client is too new to work with the
version on the server. Use a different version number for the
client by customizing the OraFormsSetInt for the
property INITIAL_VERSION or the version number in the
profile settings.

19 Alert dialog Whenever an alert dialog is created, this error is thrown. The
default severity of this error is INFORMATIONAL as alert
dialogs are often used as the normal way to display a
message to a user.

20 Statusbar changed Whenever the server updates the status bar text, this error is
raised with the new text of the status bar. The default severity
is INFORMATIONAL as a status bar update is normally a
way to inform the user about server side actions, but it could

462 | Silk Performer Workbench 20.0

ID Message Description

also be an error message. Therefore, when doing root cause
analysis of errors check for status bar changes.

21 Runtime error, see log file for stack trace If there are internal replay runtime errors, this error is logged
with a detailed stack trace in the replay log file. In case of
such an error, contact technical support and send all
recorded and replayed files.

22 WINSYS_BEEP This error is logged if the server sends a WINSYS_BEEP
message. Oracle Forms applications send a WINSYS_
BEEP to indicate that the last action caused some problems
on the server, for example invalid user input. It is likely that a
WINSYS_BEEP is followed by other errors like Handler
not found. The reason for this is because a recorded
session without errors could cause errors during replay if the
script is customized with invalid input values, or if a script
that should be customized is not customized, for example
using different values each time a test is run.

23 OraFormsSetConnectMode overrides
the profile's connection setting

This is just a warning indicating that the setting in the profile
is overruled by the scripted
OraFormsSetConnectMode.

24 Profile setting INITIAL_ VERSION
overridden by function OraFormsSetInt

This is just a warning indicating that the setting in the profile
is overruled by the scripted OraFormsSetInt
("INITIAL_ VERSION", version).

25 Verification succeeded Whenever verification succeeds, a success log entry is
created.

26 Handler already destroyed or not created yet It is possible that the client applet sends messages from
special handlers (controls) that are already officially
destroyed by a destroy message from the server. This is not
a real error and can only occur during recording. Therefore, a
warning is logged.

27 Tree item was not found All OraFormsTree API calls throw this error if the
referenced tree item was not found in the tree.

Tips and Tricks
Explains issues that need to be considered when testing Oracle Forms applications with Silk Performer.

Oracle Forms Memory Usage

Oracle Forms Replay Engine uses Silk Performer’s Java Framework to send/receive Oracle Forms
messages. Therefore each virtual user container (PerfRun) requires additional memory, as the Java
Runtime must be hosted once per runtime process – not once per user executed in the runtime.

The initial footprint of the Java Runtime Environment depends on the JDK that is used for replay. The JDK
must be defined in the profile settings of the Oracle Forms project. On average, 10 MB’s is required to host
a Java Runtime. Additionally, each virtual user requires memory for Oracle Forms processing. The amount
of required memory varies based on the following variables:

• Length of executed scripts
• Number of hosted controls
• Oracle Forms log level
• TrueLog On Error (enabled/disabled)

Significant memory is required for a log level that is higher than “Error.” “Normal” and “Debug” log levels log
all Oracle Forms messages in the replay log and in the TrueLog’s In/Out Body section. This log information
is helpful for error analysis, but requires significant additional overhead (the amount of memory required
varies based on the length of scripts and the number of controls).

Silk Performer Workbench 20.0 | 463

Latest Available JDK Version

The JDK needs to be configured in your profile settings. You should use the latest available JDK version for
the following reasons:

• Performance: Newer versions perform better, allowing you to simulate more users on one machine.
• Stability: There might be stability issues when using older JDK versions, such as encountering

deprecated functions. Those deprecated functions might result in unpredicted results during a load test.

There is no impact in using a different JDK version than the Oracle Forms client applet is using. During
recording, the selected JDK is only used within the Silk Performer Recorder process, not by the applet.
During replay it is used in the virtual user runtime.

Virtual Memory Size of a JVM

A Java Virtual Machine can be configured with minimum and maximum heap sizes. When the maximum
heap size is reached, out of memory exceptions are thrown. During recording, a lot of memory is
consumed. The amount varies based on the log level and the length of recorded transactions.

It is likely that you will run into a memory problem when using a default maximum heap size of only 16 MB.
The Java runtime allows you to change the default values by defining two special runtime parameters:

• -Xmsn for defining the minimum heap size (for example: -Xms10m)
• -Xmxn for defining the maximum heap size (for example: -Xmx128m)

If you run into a memory problem during recording, please define the runtime parameter -Xmx with a high
enough memory value in the runtime settings of your Oracle Forms applet viewer. In most cases, this can
be set using the JInitiator configuration dialog.

Java VM JITter

When recording Oracle Forms 6i on either HTTP or Sockets, it is recommended that you disable Java
JITting in the Java runtime settings. This is because the JITting library of the Java Virtual Machine
(symcjit.dll) may crash your browser.

Note: Disable JITting whenever your browser crashes during recording.

Option #1

Define -DJAVA.COMPILER=NONE in the Java runtime settings of the Oracle JInitiator Properties dialog.
This must be done using the JInitiator control panel, which is installed with JInitiator (available in the
Windows Control Panel). To do this:

1. Launch the JInitiator Control Panel.
2. Add -DJAVA.COMPILER=NONE in the Java Run Time Parameters text field.
3. Click Apply.

Option #2

Use the check box on the Oracle JInitiator Properties dialog to disable the Just In Time Compiler (only
available since version 1.1.8.x). To do this:

1. Launch the JInitiator Control Panel.
2. Select the Advanced tab.
3. Deselect the Enable Just In Time Compiler check box.
4. Click Apply.

464 | Silk Performer Workbench 20.0

Option #3

Define an environment variable: SET JAVA_COMPILER=NONE.

Recording Oracle Forms on Sockets

The communication channel between the Java applet on the client and the Oracle Forms server can either
be via HTTP/HTTPS or raw TCP/IP sockets. To accurately record an Oracle Forms script when the
application you want to record uses sockets, there is a setting that you must change in Silk Performer's
System Settings.

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Click the Proxies tab.

4. Select the SOCKS proxy entry and click the Edit button. The Proxy Settings dialog appears.

5. In the Suppress recording (only forward data) field, enter the port that your Oracle Forms application
uses for communication with the applet.

6. Click OK. If you fail to suppress the port, Silk Performer will record on both the Oracle Forms level and
the TCP/IP level. This will generate a script with mixed OraForms and WebTcp calls.

Note: Disable the socks port of your application when your application uses raw socket
communication.

Problems with Oracle Forms 6 Recording

When recording an Oracle Forms 6 application using the Oracle Forms 6 project type, Silk Performer
listens on both transport channels: HTTP/HTTPS and Sockets.

Some applications that operate on the Socket layer have been known to crash Internet Explorer while both
channels are being recorded. This is why Silk Performer allows you to specify the transport channel that is
of interest to you.

This setting is defined in the Recording Profile dialog box.

1. In the Silk Performer menu, click Settings > System .

2. Click the Recorder icon. The Recording Profiles page opens.

3. Change the Java API to the protocol that you wish to record.

Now when you begin recording, do not select the preconfigured Oracle Forms 6i application type, use
Internet Explorer as you have already changed its recording profile configuration.

Problems with Oracle Forms 6 Recording Using Additional Java Beans

Implementing Java Beans can extend Oracle Forms applications with new GUI-Elements or Client-Side
functionality. Those Java extensions will be downloaded by the client applet at startup.

When recording Oracle Forms 6, Silk Performer's Recorder will hook the main Java Archive containing the
applet classes. The Java extensions either derive from classes or implement an interface that is contained
within this archive. The Java Runtime, depending on some configuration settings, will verify class
signatures when loading those Java Beans. As the main archive has been modified, those verifications will
fail and the applet will no longer start.

To disable this verification process it is necessary to define an additional Java runtime parameter in the
JInitiator Runtime Parameter settings. Define the parameter -noverify in your JInitiator settings.

Silk Performer Workbench 20.0 | 465

Oracle Applications 12i Support

Prerequisite for Recording

Important: Before recording Oracle Applications 12i you must disable ports 9000-9005.

Customized Recorded Scripts

Before you can replay a recorded Oracle Applications 12i script you need to customize the script.

The parameter icx_ticket contains session information for Oracle Applications 12i. The Silk Performer
Recorder generates code to automatically parse the value of icx_ticket:

WebParseDataBoundEx(gsIcxTicket, STRING_COMPLETE, "icx_ticket='", 1, "'",
WEB_FLAG_IGNORE_WHITE_SPACE, 1);
WebPageParseUrl("IMG SRC", "IMG SRC=\"", "or", WEB_FLAG_IGNORE_WHITE_SPACE);
WebPageUrl("http://myserver.com:8005/OA_HTML/runforms.jsp", "Oracle
Applications R12",
OA_HTML_RUNFORMS_JSP003);

The WebParseDataBoundEx function tells the Silk Performer runtime to parse the value of icx_ticket
from the next HTML page call into the gsIcxTicket variable.

In this example, the next HTML page call is http://myserver.com:8005/OA_HTML/runforms.jsp.

This page takes input parameters from the form OA_HTML_RUNFORMS_JSP003. If this form already
contains a recorded value for icx_ticket, the value has to be set to an empty value.

OA_HTML_RUNFORMS_JSP003:
 "icx_ticket" := "", // hvg4LnVEVjLLFU-e1pNr6Q...
 "resp_app" := "PER",
 "resp_key" := "VU_HRMS_MANAGER",
 "secgrp_key" := "STANDARD",
 "start_func" := "PERWSGEB",
 "other_params" := "";

For all subsequent usages of the icx_ticket parameter, the value stored in the icx_ticket variable
must be used instead of the recorded value.

Note:

The Silk Performer Recorder scripts customized code for the OraFormsConnect function by default.
Verify that the customization has been performed correctly.

OraFormsConnect(
 "server module=/data/oracle/ebs/application/apps/apps_st/appl/fnd/12.0.0/
forms/US/FNDSCSGN
 fndnam=APPS record=names config='VIS' icx_ticket='" + gsICXTicket + "'
resp='PER/VU_HRMS_MANAGER'
 secgrp='STANDARD' start_func='PERWSGEB' other_params=''", "http://myserver:
8005",
 "http://myserver.com:8005/forms/frmservlet?
&lookAndFeel=ORACLE&colorScheme=KHAKI&
serverApp=OracleApplications3&lang="US"&env=NLS_LANG='AMERICAN_AMERICA'+FORMS_
USER_DATE_FORMAT=
'DD-MON-RRRR'+FORMS_USER_DATETIME_FORMAT='DD-MON-RRRR+HH24%3AM"
"I
%3ASS'+NLS_DATE_LANGUAGE='AMERICAN'+NLS_SORT='BINARY'+NLS_NUMERIC_CHARACTERS='
.,'&
form_params=+config='VIS'+icx_ticket="'.hr7lGQhSIG3iAMWb9LkuVQ..'"+resp='PER
%2FVU_HRMS_MANAGER'+
secgrp='STANDARD'+start_func='PERWSGEB'+other_params=''&encoding="UTF-8");

466 | Silk Performer Workbench 20.0

Customizing Oracle Applications 12i Session Information

Ensure that the icx_ticket parameter has been customized correctly.

1. Perform a trial run of the script by clicking the Try Script button on the Workflow Bar.

Note: TrueLog generation must be enabled in Silk Performer

2. Open the resulting Try Script TrueLog with TrueLog Explorer. Typically, an HTML page (appearing soon
after login) will show errors.
Example error:

3. Click the Analyze Test button on the Workflow Bar.

4. Select Compare your test run on the Workflow - Analyze Test wizard page.

5. Close the Step through Truelog dialog.

6. Select the TrueLog node that corresponds to the recorded application’s login page.

7. Right-click the node and select Synchronize Truelogs from the context menu.

8. Select Edit > Truelog Type > Web from the TrueLog Explorer menu bar.

9. Click the Differences tab.

10.Right-click any rows that show differences between the recorded TrueLog and the replay TrueLog that
also occur in the script and therefore likely contain session information (highlighted in yellow) that
should be customized.

11.Run another Try Script run in Silk Performer to verify that your session information customizations have
been successful.

Adding a New Java Bean to a System Classpath

Oracle Forms applications can be pushed using Java Beans components. Java Beans, in this context, are
Java archives that contain applications that can be run inside Oracle Forms applets. Examples of such
applications are calendars and clocks.

Silk Performer Workbench 20.0 | 467

There are requirements for testing Oracle Forms applications that make use of Java Beans. Ensure that
the Java archives containing the Java Beans are also in the system classpath. To add a new Java Bean to
a system classpath, follow these steps:

1. Navigate to Start > Control Panel > System.

2. Select the Advanced tab.

3. Click Environment Variables. This launches the Environment Variables dialog box where you can
edit the environment variables.

4. Select the CLASSPATH variable in the System variables box and click Edit.

5. In the Edit System Variable dialog box, update the Variable name and Variable value to add the Java
archive that contains the Java Bean.

6. Click OK.

7. Restart the Oracle Forms server.

SAP Support
This section explains Silk Performer support for testing of SAP applications, including project setup and
SAP configuration. It also provides tips for customizing scripts and including verification functions.

SAP eCATT Support
SAP eCATT has been integrated with Silk Performer. SAP’s eCATT facility allows you to create test scripts
in SAP using the scripting language of your choice. eCATT allows you to use external test tools (for
example, Silk Performer) while utilizing eCATT as a repository for your test scripts. eCATT also serves as a
basic test management solution for triggering script executions. Not only can both internal and external
scripts be executed individually, they can also be combined and executed in sequence.

eCATT offers import arguments, a mechanism for calling scripts with special input values. Scripts can not
only receive input values, scripts can also set output values when they are executed; scripts can be
executed in sequence, using input values derived from the output values of earlier script executions.

For full details regarding Silk Performer’s integration with SAP eCATT, refer to the SAPGUI Tutorial. For
more information regarding eCATT, consult the SAP documentation.

Configuring a SAP eCATT Connection

Connection details for Silk Performer’s communication with SAP eCATT must be specified in Silk Performer
system settings. There are two options for connecting to SAP: You can either specify a SAPLOGONID or
you can specify AS Host, RFC Type, and SystemNr settings. With either option you must specify client,
language, username, and password details. Note that when you select a SAPLOGONID, the AS Host, RFC
Type, and SystemNr fields are grayed out.

1. Navigate to Settings > System .

2. On the System Settings – Workbench dialog, select the SAPGUI group icon.

3. The eCATT Connection page is selected by default. From the SAPLogon list box, select your SAP
login ID.

Note: This box is preconfigured with all available SAP login IDs.

4. In the AS Host field, enter the combined router/application-server string (for example, H/
195.61.176.22/H/194.117.106.130/S/3297/H/cpce801).

5. In the RFC Type field, enter either 3 (for R/3) or 2 (for R/2).

6. In the System NR field, enter the SAP system number.

7. In the Client field, enter the internal client ID number from the SAP server (this is the value that must be
entered on the SAP login screen).

468 | Silk Performer Workbench 20.0

8. From the Language list box, select your language preference. The values EN (English) and DE
(German) are preconfigured, though you can specify any other language abbreviation string if that
language is installed on the SAP system.

9. In the Username field, enter your SAP eCATT username.

10.In the Password field, enter your SAP eCATT password.

11.Once you have completed this dialog, click Test Connection to confirm that you have specified
accurate connection details.

12.Click OK to save your settings.

Configuring eCATT Extended Results

To enable the viewing of Silk Performer result files from within SAP GUI, you can specify a UNC path to a
public file share in which extended Silk Performer test results can be stored and accessed by users (for
example, \\fileserver\ecattresults). Silk Performer will use the specified directory to store the
results of Silk Performer test executions initiated via SAP eCATT. Users can easily access test results by
clicking a link in the SAP eCATT GUI.

1. Navigate to Settings > System .

2. On the System Settings – Workbench dialog, select the SAPGUI group icon.

3. Click the eCATT Results tab.

4. Check the Use SAP extended results check box.

5. In the SAP extended results root directory field, browse to and select the directory that is to be used
for SAP extended results.

6. Click OK to save your settings.

SAPGUI Support
This section provides guidelines for customizing scripts (including verification functions) so that they can be
run in distributed multi-user environments. For detailed instructions on how to use Silk Performer to test
SAP systems via the SAPGUI interface, refer to the SAPGUI Tutorial.

Basic Concepts

SAP has a test interface that can be used by tool vendors to test SAP systems. This test interface offers
the ability to listen to events as well as to execute user actions. Silk Performer uses this interface to record
new scripts and for script execution.

This section provides an overview of how to use Silk Performer to test SAP systems via the SAPGUI
interface and outlines possible server configurations and discusses how they can be tested.

SAPGUI Scripting

SAPGUI scripting must be installed on the client. It can be selected during the SAPGUI client setup
process. Once it has been installed on the client, SAPGUI scripting must be enabled on both the client and
the server.

Note: The SAP security parameter sapgui/user_scripting_disable_recording blocks
access to key events on the SAP server that Silk Performer needs access to in order to facilitate
replay and recording. Enabling the parameter sapgui/user_scripting_disable_recording
results in replay failure. To allow replay, you must disable this parameter.

During recording

The SAPLogon process initializes the SAPGUI scripting API. This allows the recorder to attach to a COM
object that offers full access to the SAP DOM where each component (control) within SAPGUI can be
accessed. This COM interface also offers an event mechanism that notifies subscribers of changes in the
GUI (for example, button presses, text edits) and server roundtrips (Start/End Request).

Silk Performer Workbench 20.0 | 469

The Silk Performer Recorder is a subscriber of this event interface, so it receives notice of all changes that
are made by the user in the SAPGUI user interface. Depending on recording profile settings, Silk Performer
Recorder is either set for low-level scripting of API calls for each change event, or high-level scripting for
API calls in which certain change events are merged with high-level calls (for example, SapGuiLogon).

During replay

When executing a SAPGUI load test, the SAPGUI user interface is automatically switched to invisible
mode. There is a setting in the profile settings that allows you to execute a GUI-less TryScript run. This
setting however, has no effect in load test scenarios as it does not make sense to show the UI when
executing multiple users on a machine, because too many windows would be displayed; additional
resource consumption would be required if each window has to render itself.

As each VUser has access to the full SAP DOM, it is possible to generate TrueLogs with rich control
information.

SAP Patch Levels

Silk Performer’s SAPGUI record/replay technology is based on the SAPGUI scripting API, which needs to
be enabled on the server and client side.

SAPGUI scripting API is not available in all versions of SAPGUI client – you should therefore check your
Patch Level.

Patch Levels on the Server

The components on the server also require a certain patch level. Following is an overview about the
required patch levels:

Software Component Release Package Name Kernel Patch Level

SAP_APPL 31I SAPKH31I96 Kernel 3.1I level 650

SAP_APPL 40B SAPKH40B71 Kernel 4.0B level 903

SAP_APPL 45B SAPKH45B49 Kernel 4.5B level 753

SAP_BASIS 46B SAPKB46B37 Kernel 4.6D level 948

SAP_BASIS 46C SAPKB46C29 Kernel 4.6D level 948

SAP_BASIS 46D SAPKB46D17 Kernel 4.6D level 948

SAP_BASIS 610 SAPKB61012 Kernel 6.10 level 360

Note: On the client side, SAPGUI client 620 is required with a minimum patch level of 44.

Checking the SAP Patch Level

SAPGUI scripting is not supported by all versions of SAP. Therefore it is necessary to check if your
installation offers this kind of support. You can do this by checking your current Patch Level. The Patch
Level needs to be at least 66.

1. Start your SAPGUI logon window which is normally accessible through Start > Programs > SAP Front
End > SAPLogon > About SAP Logon. The SAP Version Information dialog box appears.

2. Check that your Patch Level is at least 66.

Checking the SAP Patch Level on the Server

1. Logon to your SAP system.

2. Select System > Status.

470 | Silk Performer Workbench 20.0

3. Click the Other Kernel Information button. The Kernel Information dialog opens.

4. Check the value of the field Sup. Pkg. lvl.

Check your value and Kernel Release version with the table in SAP Patch Levels.

If your Patch Version is lower than the required one update your system. Refer to the SAP OSS note
#480149 for detailed instructions.

Checking SAP R/3 Support Packages

1. Logon to your SAP system.

2. Run the SPAM transaction.

3. In the Directory section, select All Support Packages, and click the Display button.

4. If you have SAP_BASIS, 4.6C installed, verify that SAPKB46C29 is installed.

You will see a green circle if it is installed. If you do not have the OCS package installed, download it
from www.sap.com and install it. For more information, refer to the SAP OSS note #480149.

Enabling SAPGUI Scripting on the Server

Silk Performer’s SAPGUI record/replay technology is based on the SAPGUI scripting API, which needs to
be enabled on the server and client side. SAP servers of version 620 and higher offer SAPGUI scripting
support. Earlier versions require certain patch levels.

A user with administrative privileges needs to change the sapgui/user_scripting parameter in order
to enable scripting. The value needs to be changed to TRUE.

1. Logon to your SAP server.

2. Run transaction RZ11. Specify the parameter name sapgui/user_scripting and click Display.

If Parameter name is unknown appears in the status bar, this indicates that you are missing the
current support package. Check your installed packages.

3. Change the value to TRUE.

4. Click Save.

5. Restart the application server, since this change only takes effect when you log onto the system.

Enabling SAPGUI Scripting API on the Client

All clients that are either used for recording, replay or monitoring must have a SAPGUI client with SAPGUI
scripting installed. You have to select this option in the SAPGUI Setup.

After the installation you need to make sure that SAPGUI scripting is enabled:

1. Start your SAPLogon and go to the logon screen of one of your servers.

2. Open the Options dialog in your SAP client.

3. Select the Scripting tab, check Enable Scripting, and disable both sub options. This prevents warning
messages when Silk Performer interacts with SAPGUI scripting GUI.

If the installation status of the Scripting tab does not display Scripting is installed, you must
install SAPGUI scripting by choosing the option in the SAPGUI client setup process.

SAPGUI Application Architecture

The SAPGUI application object, which is instantiated once per virtual user in test scenarios, can have
infinite SAP connections. A connection can be opened with either SapGuiOpenConnection or
SapGuiOpenConnectionByName. One connection should be opened by each virtual user that you want
to simulate at the beginning of your test. When opening a new connection, an SAP session is created as
well. A connection can hold up to 6 sessions, which can be created with SapGuiCreateSession.

Silk Performer Workbench 20.0 | 471

http://www.sap.com

When the last session on a connection is closed, the connection itself is closed and destroyed.

An SAP session holds the information about all control elements on the main window of the session.
Additionally, a session info object can be accessed for specific data about the current transaction or
performance related data.

An SAP session usually has a main window as its child. This window is the starting point for all user
interaction with the current session.

Object IDs

Each object within a SAPGUI application is identified by a unique ID, which contains the ID information of
the complete object hierarchy, beginning with the application object itself. The IDs of the objects in the
hierarchy are separated by forward slashes ("/") where the application object itself begins with a forward
slash.

Object ID Description

SAP Application The application's ID is /app.

SAP Connection A connection's partial ID is con[X], where X is the
index of the connection. The index is required when there
are multiple objects with the same base ID. The index is
0-based.

Example: /app/con[0]

SAP Session The session's partial ID is ses[X], where X is the index
of the session within the current connection.

Example: /app/con[0]/ses[0]

SAP Window or Dialog The window's partial ID is wnd[X], where X is the index
of the window within the current session.

Example: /app/con[0]/ses[0]/wnd[0]

SAP User Area The ID of the user area is usr. As there is only one user
area per window, there is no need for an index here.

Example: /app/con[0]/ses[0]/wnd[0]/usr

SAP Title Bar The ID of the title bar is titl. It is a child of a window or
dialog.

Example: /app/con[0]/ses[0]/wnd[0]/titl

SAP Tool Bar The partial ID is tbar[X]. There can be up to two tool
bars on a window and therefore the index is needed.

472 | Silk Performer Workbench 20.0

Object ID Description

Example: /app/con[0]/ses[0]/wnd[0]/
tbar[0]

SAP Status Bar The ID of the status bar is sbar. As there is only one
status bar per window, there is no need for an index here.

Example: /app/con[0]/ses[0]/wnd[0]/sbar

Other Controls Certain control types have special ID prefixes (for
example, lbl for labels and txt for text controls).
Following the prefix, controls have a programmatical
name (for example, RSYST-BCODE).

Controls that are listed in a table format can have multi-
dimensional indices, similar to the indices shown above
for sessions, connections, etc.

A multi-dimensional index is defined as
controlid[X,Y].

Examples:

/app/con[0]/ses[0]/wnd[0]/usr/
txtRSYST-BCODE

/app/con[0]/ses[0]/wnd[0]/usr/
sub:SAPMSYST:0020/txtINFO-
TABTDLINE[0,0]

/app/con[0]/ses[0]/wnd[0]/tbar[0]/
btn[0]

Object Access with Silk Performer

To make object access easier, Silk Performer API calls do not require full object IDs for controls. Instead,
the relative object ID of the current window can be used for most API calls.

For example, pressing the button /app/con[0]/ses[0]/wnd[0]/tbar[0]/btn[0] can be done with
SapGuiPressButton ("tbar[0]/btn[0]");.

To do this, Silk Performer requires the information about the current window, session, and connection. For
this purpose there are three methods that allow you to set the current context:

• SapGuiSetActiveConnection

• SapGuiSetActiveSession

• SapGuiSetActiveWindow

When you record a script you see one of the three above mentioned functions scripted wherever the
context has changed.

A typical script looks like this:

gsConnID := SapGuiOpenConnection("CONNECTSTRING");
SapGuiSetActiveConnection(gsConnID);
SapGuiSetActiveSession("ses[0]");
SapGuiSetActiveWindow("wnd[0]");
SapGuiPressButton("/tbar[0]/btn[0]");

This makes scripts easier to read and customize.

Silk Performer Workbench 20.0 | 473

Accessing Object Properties

Each object has properties that can be accessed from a Silk Performer script during execution. To get a full
list of all properties of each object type, do the following:

1. Open a tool that allows you to view type libraries (for example, OLEView, which comes with Microsoft
Visual Studio).

2. Open the file <SAPINSTALLDIR>\FrontEnd\SAPGui\sapfewse.ocx. <SAPINSTALLDIR> is
usually located in C:\Program Files\SAP.

3. Explore the different COM classes for their properties. COM classes have meaningful names so that it is
easy to find the correct COM objects for your requested object type, for example GUITextField for
text controls.

4. Special controls such as trees and grids can be explored by opening the corresponding dll, located in
<SAPINSTALLDIR>\FrontEnd\Controls\Scripting. For example, open
GridViewScripting.dll to get the information for grid controls.

Silk Performer offers methods to Get/Set properties, and even for invoking methods. If a method call or a
GetProperty access returns another object, the object can be accessed with additional Get/Set/
Invoke calls by passing the constant SAPGUI_ACTIVEOBJECT as the object identifier.

Accessing Low-Level Properties

The functions SapGuiInvokeMethod, SapGuiSetProperty, and SapGuiGetProperty can be used
to access the low-level properties of any control on the active screen. This makes it possible to, for
example, confirm that a text control is read-only, or to determine the background color of a label.

The SAPGUI scripting API that is used for SAPGUI testing is a large COM library that allows Silk Performer
to access controls and perform actions. This same COM library can be used with the above mentioned API
calls. To access the list of methods and properties that individual controls offer, you must inspect the type
library of the SAPGUI scripting API. For this you need a tool that facilitates the inspection of type libraries
(for example the Ole32View tool that comes with Microsoft Visual Studio). With the tool, open the
sapfewse.ocx file, which can be found in the SAPGUI installation directory under \FrontEnd\SapGui.
The image below shows the properties that can be accessed on a label control:

474 | Silk Performer Workbench 20.0

To get the name of a control for which you know the control's ID, use the following call:

SapGuiGetProperty("/usr/lbl[1,2]", "Name", sOutValue);
Print("The control has the following name:" + sOutValue);

Most properties return a simple data type such as a string, number, or boolean parameter. Some
properties return other objects, for example the Parent property returns the parent control of the current
control. When a property returns another control, the control is temporarily cached and can be accessed
via the constant SAPGUI_ACTIVEOBJECT. Here is a code example for retrieving the name of a parent
property:

SapGuiGetProperty("/usr/lbl[1,2]", "Parent");
SapGuiGetProperty(SAPGUI_ACTIVEOBJECT, "Name", sOutValue);
Print("The parent control has the following name:" + sOutValue);

Differences Between 620 and 640 Clients

SAP introduced new properties and methods with its SAPGUI 640 client. With 640 you can, for example,
get the background color of a label or checkbox. So, when you develop a script on 640 you must ensure
that your agents also run on 640 and that the same patch level is used. Otherwise you may request
properties that are not available on the agent and generate an error.

Property Overview

SAP is comprised of components that have the following properties (ComClass GuiComponent):

• 'Name' - Name of the control
• 'Type' - The control type in text format (for example GuiButton, GuiTextField)
• 'TypeAsNumber' - All types have internal numbers (for example 30=GuiLabel, 31=GuiTextField)

Silk Performer Workbench 20.0 | 475

• 'ContainerType' - A Boolean property that defines whether or not a control is a container. Containers
contain other controls as children (for example a toolbar is a container that contains toolbar buttons).

• 'Id' - The unique ID of a control
• 'Parent' - When a control is contained in a container this property returns the parent control

Visual components, such as controls, have additional properties (ComClass GuiVComponent):

• 'Text' - The main text of a control (for example the text in a text control or the text on a button)
• 'Left', 'Top', 'Width', 'Height', 'ScreenLeft', 'ScreenTop' - Number values offering details about screen

coordinates and coordinates within a parent container
• 'Changeable', 'Modified' - Boolean parameters that indicate the current state of a control (is the control

changeable or read-only; has the control been modified, etc)

Each control type may have additional properties which can be seen in the COM type library via your type
library inspection tool.

Installation and Requirements

To use Silk Performer's support for SAPGUI, SAPGUI scripting must be installed and enabled on the client
and the server side.

Enabling SAPGUI Scripting on the Server

Silk Performer’s SAPGUI record/replay technology is based on the SAPGUI scripting API, which needs to
be enabled on the server and client side. SAP servers of version 620 and higher offer SAPGUI scripting
support. Earlier versions require certain patch levels.

A user with administrative privileges needs to change the sapgui/user_scripting parameter in order
to enable scripting. The value needs to be changed to TRUE.

1. Logon to your SAP server.

2. Run transaction RZ11. Specify the parameter name sapgui/user_scripting and click Display.

If Parameter name is unknown appears in the status bar, this indicates that you are missing the
current support package. Check your installed packages.

3. Change the value to TRUE.

4. Click Save.

5. Restart the application server, since this change only takes effect when you log onto the system.

Enabling SAPGUI Scripting API on the Client

All clients that are either used for recording, replay or monitoring must have a SAPGUI client with SAPGUI
scripting installed. You have to select this option in the SAPGUI Setup.

After the installation you need to make sure that SAPGUI scripting is enabled:

1. Start your SAPLogon and go to the logon screen of one of your servers.

2. Open the Options dialog in your SAP client.

3. Select the Scripting tab, check Enable Scripting, and disable both sub options. This prevents warning
messages when Silk Performer interacts with SAPGUI scripting GUI.

If the installation status of the Scripting tab does not display Scripting is installed, you must
install SAPGUI scripting by choosing the option in the SAPGUI client setup process.

Recording and Replay Concepts

The following sections explain the workflow for recording, replaying and customizing scripts, as well as
result analysis.

476 | Silk Performer Workbench 20.0

SAP Profile Settings

Recording Settings

Settings specific for recording can be changed on the recording tab of your profile settings:

• Script logon as single function - If enabled, the logon procedure will be scripted as SapGuiLogon
API call. If disabled, multiple API calls like setting username, password and pressing ENTER will be
scripted.

• Script low level functions - Instead of high level API functions, like for example SapGuiSetText, low
level API functions will be scripted, such as SapGuiInvokeMethod, SapGuiSetProperty, …

• Script timers - Most of the SAPGUI API functions take an optional timer parameter. If this parameter is
defined, measures for this will be generated during replay. If this option is enabled, SAPGUI Recorder
will automatically script appropriate timer names for each function.

• Attach to existing SAP session - If enabled, SAPGUI Recorder will attach to an existing SAPGUI
session without recording the SapGuiOpenConnection statement.

• Record window title verification - If enabled, SAPGUI Recorder will script the
SapGuiSetActiveWindow with the window title in order to be verified during replay.

Common Settings

The following settings are common settings for both recording and replaying:

• Log level - Defines the level of logging. For troubleshooting, use Debug, otherwise use Normal. When
running large load tests logging should be Disabled in order to reduce memory consumption.

• Capture screenshots - If enabled, screenshots will be captured for every new window that is activated.
This option is only available if Show SAPGUI during single runs is enabled when replaying the script.

• Capture screenshots for every action - If enabled, screenshots will be captured for every user action
that causes a roundtrip to the SAP server. This option is only available if Capture screenshots is
enabled.

• Log control information in TrueLog - If enabled, control information about every control on the active
window will be logged to the TrueLog. This allows you to use the customization feature in TrueLog
Explorer. This option should be disabled when running load tests as it implies additional resource
consumption.

• Log control information for single run in TrueLog - Same as Log control information in TrueLog,
but only for try script and verification runs.

• Log control information on error - If enabled, control information about every control on the active
window will be logged to the TrueLog in case of an error during replay. This allows you to troubleshoot
your replay problem by getting the current state of all controls on the screen where the error happened.
It is recommended to use this option during a load test rather than Log control information in
TrueLog.

Default Profile Settings

When recording an SAP application using the default profile settings (capture screenshots and log control
information), the SAP client may appear slower than usual. This is due to the extra overhead required for
taking screenshots and logging control information for all controls on each SAP window. This option should
not be changed however as you will lose the many benefits that the TrueLog provides. However if you
experience timing problems, switch off the options in this order:

• Capture screenshots for every action
• Capture screenshots
• Log control information in TrueLog

Replay Settings

Settings specific for replaying can be changed on the replay tab of your profile settings:

Silk Performer Workbench 20.0 | 477

• Replay timeout - Defines the timeout during replay. If there is no response from the server within this
timeout period an error will be thrown.

• Show SAPGUI during single runs - If enabled, the SAPGUI client will be shown during replay. This
option should only be used for a Try-Script run. During a load test it should be turned of.

• Enable client-side scripting - SAPGUI scripting needs to be enabled on every client machine via the
Options menu in the SAPGUI client application. When running a test on multiple agents it would imply
that this setting need to be changed manually on every machine before starting the load test. By
enabling this option, Silk Performer is changing the setting automatically on every agent before starting
the load test.

• Use new SAP Visual Design - SAPGUI can be run in two visual modes, the old or the new visual
design mode. The setting normally needs to be changed with the SAP Configuration Tool. By enabling/
disabling this option, Silk Performer does this change automatically before starting the load test. This
option allows you to test the different behavior in terms of resource consumption when using either the
old or new visual design.

Timers and Counters

The Measuring tab contains settings for replay measuring. You can either Enable all timers and counters
for all controls, or select those that are of interest to you. Timers will only be created for method calls that
have the optional timer parameter specified.

For a description about those timers, see SAP Results.

Password for SapGuiLogon

Values in password fields cannot be retrieved via the SAPGUI scripting API. Silk Performer's Recorder
therefore is not able to script values entered into password fields as it can on the logon screen.

SapGuiLogon is generated with asterisks in the password parameter. You must customize this value
manually in the script or by using TrueLog Explorer after a TryScript run.

When running a TryScript or even a load test with an uncustomized password field of the SapGuiLogon
method, the actual logon will not be executed. Instead, an error of severity process exit is thrown,
because if you run a load test in which you forget to customize the password parameter, the user will be
locked out after 3 attempts. To prevent this, Silk Performer stops script execution when the password
parameter is not customized.

Setting SAPGUI Options

Silk Performer offers a tutorial that walks you through the process of testing SAPGUI applications. The
tutorial is available at Start > All Programs > Silk > Silk Performer 20.0 > Documentation > Tutorials >
SAP .

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the SAPGUI icon. On the General page you can define options for how the
SAP Recorder records and replays scripts.

5. Login to SAP systems involves several user interactions. With the Script logon as a single function
option enabled, the recorder only scripts one function that performs all the required login actions.

6. Check the Script low level functions check box to use a basic set of scripting functions instead of
object-specific functions.

478 | Silk Performer Workbench 20.0

7. Check the Script timers check box to script timers automatically.

These timers are used to measure SAP API calls.

8. Check the Attach to existing SAP session check box to have the recorder attach to an existing
session rather than create a new session.

9. Check the Record window title verification check box to record SapGuiSetActiveWindow functions
in such a way that title verifications are automatically performed on activated windows during test runs.

10.In the shortcut list on the left, click the Replay button. The Replay category is displayed.

11.In the Replay timeout text box, specify a timeout period (in seconds) for automatic shutdown of
SAPFewgsrv (when not otherwise closed at the end of test runs).

12.Check the Show SAPGUI during single runs check box to display the R/3 client during test runs.

GUI display is only an option for Try Script executions. This setting is ignored for baseline tests and load
tests.

13.Check the Enable client-side scripting check box to enable SAP client-side scripting via the registry.

This option disables warnings that raise pop-up windows when new users start.

14.Check the Use new SAP Visual Design check box to enable SAP Visual Design for the SAP client.

15.Click the Logging tab to specify additional log levels.

Note: These settings affect performance and resource utilization.

16.From the Log level list box, select a log level for virtual user logging:

• Disable - Virtual user logging is disabled.
• Normal - Default logging.
• Debug - Detailed information is logged, such as additional session information and errors.

17.Check the Capture screenshots check box to generate screenshots for each activated window.

Note: Screenshot capture is only enabled for Try Script executions. This setting is ignored for
baseline tests and load tests.

18.Check the Capture screenshots for every action check box to have each action performed by the
script documented with a screenshot.

Note: Screenshot capture is only enabled for Try Script executions. This setting is ignored for
baseline tests and load tests.

19.Check the Log control information in TrueLog check box to have additional control information written
to the TrueLog.

20.Check the Log control information for single run in TrueLog check box to have additional control
information written to the TrueLog only for try script and verification tests.

21.Check the Log control information on error check box to enable writing of control information to
TrueLogs in the case of errors.

Note:

For large load-tests, it is also recommended that you uncheck Log control information in
TrueLog and only select Log control information on error. These settings greatly improve
overall performance, as not all information on each screen is logged. In the case of errors, control
state is logged on the nodes that cause the errors; this allows you to troubleshoot problems, as
you can see the full state of the active window.

22.Check the Highlight controls check box to have controls highlighted as they are accessed by the
script.

23.Click the Measuring tab to specify a custom measurement level.

By default, all available performance metrics are collected during test runs.

24.Check the Enable all timers and counters for all controls check box to enable all timers and counters
for all actions on controls during replay.Or, select a specific control from the Control list box and select
the specific counter types that you want to have applied to that control:

Silk Performer Workbench 20.0 | 479

• Count round-trips - The number of round-trips for the action on the control.
• Count response time - The time it takes a function to return requested data.
• Count Interpretation time - The time it takes to interpret a request.
• Count flushes - The number of flushes per action.

Note: Alternatively, you can click the Apply to All Controls button to apply your counter settings
to all controls.

25.Click OK to save your settings.

Files Generated During Recording

Script

The script contains the SapGuiOpenConnection statement as the first statement in the TMain
transaction, unless you have not selected the Attach to existing SAP Session option.

The complete logon sequence, from SapGuiOpenConnection to SapGuiLogon, should be moved to the
Tinit transaction when performing large load tests.

When high-level scripting is enabled, the recorder scripts high-level API functions for most control
interactions. For all others (where there are no high-level API calls) the low-level functions
SapGuiInvokeMethod and SapGuiSetProperty are scripted.

Recording Text Logs

Text logs contain detailed information about SAPGUI events and controls when the log level is set to
Debug. The additional information in this log is helpful for troubleshooting. If you experience a problem and
need to contact technical support, switch the log level to Debug before recording. This also applies to the
replay text log file.

Record TrueLogs

Record TrueLogs contain the same information as replay TrueLogs. This allows you to use TrueLog
Explorer's Compare view after you execute a TryScript.

SAP Results

Depending on the measure settings in the active profile, measures are generated for those method calls
that have the optional timer parameter defined.

Measures are generated for those method calls that force a roundtrip to the SAP server.

Note: Not all API calls force a roundtrip.

The following measures will be generated during a roundtrip:

Round Trips

Before SAPGUI sends data to the server, it locks the user interface. In many cases it will not unlock the
interface once data arrives from the server, but instead will send a new request to the server immediately.
Controls in particular use this technology to load the data they need for visualization. The count of these
token switches between SAPGUI and the server is offered with this measure.

Flushes

Counts the number of flushes in the automation queue during server communication.

480 | Silk Performer Workbench 20.0

Interpretation Times

The interpretation time begins after the data has arrived from the server. It comprises the parsing of the
data and distribution to the SAPGUI elements.

Response Times

This is the time that is spent on network communication from the moment data is sent to the server to the
moment the server response arrives.

An overall counter for the roundtrips is shown in the Monitor window during a test and can also be
monitored in Performance Explorer as one of the Silk Performer Controller/Agent measures.

SAP Performance Monitoring

Use Performance Explorer to monitor performance and reliability metrics of a SAP system. Performance
Explorer is shipped with two monitors specially designed for monitoring SAP installations.

1. On the Real-Time Monitoring tab, in the Monitor group, click System. The Data Source wizard
opens.

2. Click the Select from predefined Data Sources option button.

3. Expand the Application Server folder and the SAP folder.

4. Depending on the type of SAPGUI monitor that you want to use, select the appropriate monitor type.

The following types of SAPGUI monitors are available:

• SAPGUI Monitoring (ST02): Monitors buffer related metrics. SAP transaction ST02 is executed when
running this monitor.

• SAPGUI Monitoring (ST03N): Monitors application specific metrics. SAP transaction ´ST03n is
executed when running this monitor.

• SAPGUI Monitoring (ST04): Monitors database related metrics. SAP transaction ST04 is executed
when running this monitor.

• SAPGUI Monitoring (ST07): Monitors user distribution on the SAP system. SAP transaction ST07 is
executed when running this monitor.

• SAPGUI OS-Monitoring (ST06): Monitors operating system specific metrics. SAP transaction ST06
is executed when running this monitor.

5. Click Next.

The Connection parameters page opens.

6. In the Hostname text box, specify the host of the machine to be monitored

This value is for display purposes only. It is not used in the monitor itself.

7. Click Next. The Attributes Configuration page opens.

8. Define the following monitoring-specific attributes:

• ConnectionString – Complete connection string to the SAP server. If you are not sure, record the
logon sequence with Silk Performer. The connection string is the first parameter of
SapGuiOpenConnection.

• Username – SAP username with access rights to the monitoring transaction.
• Password – Password for the SAP user.
• ClientNum – Client number for the logon procedure, such as 850.
• Language – Language to use for logon, such as EN.
• Entity – The data entity that should be monitored, such as Dialog, RFC, or Background.

Note: The Entity attribute does not have to be provided for the SAP OS-Monitor.

• TimeFrame – SAP provides the average values of the past interval that you define.

Silk Performer Workbench 20.0 | 481

Note: The Timeframe attribute does not have to be provided for the SAP OS-Monitor.

• Server - (ST03N only)The server that should be monitored. Its the name of the tree node that is to
be selected in ST03N. Total will return measures from the overall SAP System

9. Click OK. The Select displayed measures page opens.

10.Check the check boxes for those measures that you want to include in the initial monitor view and then
click Finish.

A connection to the specified host is established, and an initial view that contains the measures you
selected is displayed.

SAPGUI TrueLogs

TrueLog Explorer is a powerful tool that not only offers a convenient means of exploring SAPGUI
applications, it also enables you to add verifications for control values and customize input values for
controls that are modified during recording.

SAPGUI TrueLog Structure

SAPGUI TrueLogs have a similar structure to Oracle Forms TrueLogs. Each SapGuiSetActiveWindow
call results in a new top-level node. A SapGuiSetActiveWindow call is scripted for each window that is
activated during a recording session. All actions that are performed on windows (for example, control edits,
list entry selections) are shown as sub-nodes grouped by a virtual SapGuiRoundtrip node.

Node Information

TrueLog Explorer supports the visualization of SAPGUI requests and responses in the same way it
supports the visualization of HTTP client requests and HTTP/HTML server responses.

The three panes that are displayed with SAPGUI TrueLogs are:

• TrueLog menu tree – Lists all SAPGUI API calls included in the test run.
• Content pane (upper-right pane) – Displays the state of the GUI at each API node. The End Request

and Start Request pages enable you to view both the initial and final states of each SAPGUI server
request. These views enable you to see how the server request has affected the GUI display, such as
the display of a new dialog box or error message.

It is possible that when a window is destroyed or when a new window is created due to the action of a
selected API node (for example, a button click) that the End Request pane will show a screenshot of
the next activated window. This can be confusing as control information in the tree and the screenshot
will not match. This only happens on the last node of a window.

Note: TrueLog screenshots are captured only during Try Script runs, not full load tests.

• Information pane (lower-right pane) – Displays data regarding the most recent test run. The pages in
this pane that are active and applicable to SAPGUI TrueLogs are Info, BDL, and Controls. The
Controls page offers a convenient means of viewing and working with all customizable controls in their
hierarchical order that are included on each GUI screen.

482 | Silk Performer Workbench 20.0

Under each SapGuiSetActiveWindow node is a virtual node that does not reflect an API call. Those
nodes are called SapGuiRoundtrip and contain all API calls that have been sent to the server in a single
roundtrip. Only the last API call under the SapGuiRoundtrip node forces a roundtrip. This API call also
generates the measures that have been selected in the profile settings with the timer name specified as the
last parameter for the call.

When you have Capture Screenshots enabled, a screenshot is captured with each newly activated
window. Screenshots are displayed in TrueLog Explorer when you click a SapGuiSetActiveWindow
node or a sub node.

When you also have Capture Screenshots for every action enabled, a screenshot is taken before and
after each roundtrip. These screenshots are displayed in TrueLog Explorer when you click a
SapGuiRoundtrip node or a sub-action node.

When the Log control information in TrueLog option is enabled, information about each control on each
window is logged. When a control changes its value at a certain API node, the changes are reflected in the
TrueLog and the controls are displayed in a tree hierarchy.

Control Information

Depending on profile settings, controls are either logged for all windows (Log control information in
TrueLog) or only logged in the case of errors (Log control information on error).

The following control information is logged for each control:

• Internal unique sequence number
• Absolute and relative object/control ID
• Current value of the object
• Type of object
• Sequence number of parent control
• Screen coordinates of the control

The unique internal sequence number is for internal use only. It makes it possible to build a hierarchical
view of the controls.

Silk Performer Workbench 20.0 | 483

The current value of each object depends on the control type. For text controls, the Text property is used.
Other controls have properties that reflect other value types.

Verification and Parsing Functions

Verifications and parsing are possible with most control types. TrueLog Explorer offers standard verification
and parsing wizards for SAPGUI TrueLogs. All you need to do to access a wizard, is right-click a control in
a screenshot or on the control tree. Via a context menu you can then launch the verification and parsing
wizards.

Verification and parsing functions are scripted after the currently selected API node in the tree. Replay
errors can result when verification and parsing functions are inserted after the last API call of a window. For
example, if a currently selected API node is a button press on a Close button, the current window and all
the controls of that window will be destroyed by this action. A verification/parsing function scripted after this
call will therefore fail with a Handler not found error during replay. For this reason TrueLog Explorer
prompts you to confirm that you wish to add verification/ parsing functions that are inserted on the last
nodes of windows.

TrueLog Explorer allows you to add content checks to verify whether the content that is to be sent by
servers is in fact received by clients under real-world conditions. For any SAPGUI function call in which
input data is inserted, you can insert a return value verification function. Verification functions can be
inserted from either Source view or the Controls menu tree.

By comparing replay test runs with record test runs, TrueLog Explorer allows you to confirm visually
whether or not text, graphics, field data, and more are downloaded and displayed by clients while SAPGUI
applications are under heavy load. This comparison allows you to detect a class of errors that other
SAPGUI traffic simulation tools are not able to detect: Errors that occur only under load that are not
detected with standard test scripts.

Content verification functions remain useful after system deployment as they can be employed in ongoing
performance management.

Input Data Customization

API calls that simulate user input can be customized in TrueLog Explorer. Such API calls include
SapGuiSetText and SapGuiLogon. TrueLog Explorer's Step-through-TrueLog dialog allows you to
step through all customizable calls.

TrueLog Explorer's Parameter Wizard can be used to customize input data with:

• Constant values
• Random values from multiple sources
• Multi-column data file support
• Values from previously parsed values

Settings for Large Load Tests
Explains issues you should consider when running large load tests.

Suggested Profile Settings

Control Information

When running large load tests it is recommended that you disable the Log control information in
TrueLog setting. This improves the overall performance of each executed virtual user. With this option
enabled, all controls of each window iteration are logged to the TrueLog, which is resource (CPU) intensive.

By instead enabling Log control information on error, you still gain the benefit of seeing each control of
the windows on which errors occur.

484 | Silk Performer Workbench 20.0

Screenshots

Screenshots are only captured when SAPGUI is run in visible mode. This behavior can be enabled/
disabled via the Show SAPGUI during single runs profile setting. When running load tests, this setting is
automatically disabled regardless of profile settings. This ensures that screenshots will not be taken during
load tests and thereby impact the overall performance of virtual users.

When errors occur, you can however see control information in a TrueLog On Error file if either the Log
control information on error or Log control information in TrueLog option is enabled. Control
information is displayed in a tree structure, which enables you to see which controls led to errors and the
screen coordinates of those controls. To visually see where controls are located, open corresponding
record and replay TrueLogs in compare mode and synchronize them. You can then compare the state of a
control when an application was recorded with the state of that same control when the script was replayed.

Connection Handling

It is not recommended that you place SapGuiOpenConnection calls in main transactions, otherwise each
user opens a new connection with each transaction iteration. Because the SAPGUI scripting API performs
connection closes asynchronously, this leads to the problem that your load test agents will open too many
connections to the SAP server simultaneously. Errors will then result if you exceed the maximum
connection limit.

Unless you are interested in load testing the establishment of new connections, it is recommended that you
move logon procedures to INIT transactions. Furthermore, main transactions should always end at the
same location where they begin, which is likely to be the screen after a successful logon.

Likewise, logout sequences should be moved out of main transactions and into end transactions.

A fully customized script should resemble the following:

dcluser
 user
 VUser
 transactions
 TInit : begin;
 TMain : 1;
 TEnd : end;
var
 gsConnID : string;

dcltrans
 transaction TInit
 begin
 // Connecting to SAP
 gsConnID := SapGuiOpenConnection("CONNECTSTRING");
 SapGuiSetActiveConnection(gsConnID);
 SapGuiSetActiveSession("ses[0]");
 SapGuiSetActiveWindow("wnd[0]");
 // Logon to SAP System
 // Before running a test you have to customize the password
 parameter!
 SapGuiIgnoreError(SAPENGINE_STATUSBAR_CHANGED, SEVERITY_SUCCESS);
 SapGuiLogon("username", "password", "000", "", "SapGuiLogon");
 end TInit;

 transaction TMain
var
 begin
 SapGuiSetActiveWindow("wnd[0]", "SAP Easy Access", SAP GUI_MATCH_
 ExactNoCase);
...
...
...
 // The VUser should now be again back on the window after a

Silk Performer Workbench 20.0 | 485

 successful logon
 end TMain;

 transaction TEnd;
 begin
 SapGuiPressButton("tbar[0]/btn[15]", "SapGuiPressButton\\btn[15]");
 // Log Off
 SapGuiSetActiveWindow("wnd[1]", "Log Off", SAP GUI_MATCH_
 ExactNoCase);
 // Yes
 SapGuiPressButton("usr/btnSPOP-OPTION1", "SapGuiPressButton\\Yes");
 end TEnd;

Logon

When running load tests it is recommended that you use a different SAP user for each virtual user. This
can be managed by creating users with user names that have sequence numbers appended to them, for
example SAPUSER1-SAPUSER99.

In scripts, it is then possible to customize the username parameter of SapGuiLogon in the following way:

SapGuiLogon("SAPUSER" + string(GetUserId()), "PASSWORD", "000", "");

By default SapGuiLogon enters passed parameters to corresponding text fields on the logon screen and
then presses the Enter key.

When you attempt to login a user who is already logged in, SAP opens a dialog that tells you that the user
is already logged in. Three options are then offered for proceeding:

• Continue and cancel other logged in users
• Continue and do not cancel other logged in users
• Do not log in the new user

By default SapGuiLogon chooses the second option: logging into the system without canceling other
sessions of the same user. Changing the option SAPGUI_OPT_LOGON_BEHAVIOR with
SapGuiSetOption allows you to customize this behavior:

SapGuiSetOption(SAPGUI_OPT_LOGON_BEHAVIOR, nValue)

Where nValue can be one of 4 values:

0 Do not Handle Multi-Logon automatically

This means that the dialog will not handled automatically; it will be treated as a normal new window. You
can then handle the window manually.

1 No multiple Logon

This means that the option Do not logon is selected.

2 Multiple Logon (default)

This means that the option Continue and do not cancel other logged on users is selected.

3 Logon-Kill other sessions

This means that the option Continue and cancel other logged on users is selected.

Tips and Tricks
Explains issues that need to be considered when testing SAPGUI applications with Silk Performer.

Memory Usage for SAPGUI Load Testing

The general rule of thumb for SAPGUI load tests is that you can run 50 virtual users on a 1 GB RAM and 1
GHz computer.

486 | Silk Performer Workbench 20.0

It is possible to execute more than 50 users on a computer if you have more power and more RAM, but the
increase is not linear nor can this rule be applied to all operating systems.

The real bottleneck for SAPGUI testing is neither RAM nor CPU; it is the number of system-wide GUI
resources.

The exact number of possible virtual users per computer is difficult to estimate; it depends on the scripts
that are executed. If the virtual users execute transactions that contain lots of controls on the screen, it is
more likely that the system runs out of GUI resources faster than with another script.

Therefore you should do some test runs to determine the exact number of users that you can simulate. Do
this by executing an increasing workload. When the limit is reached you will see users that are either:

• Not able to open a new SAP connection
• Run into timeouts

Checking for Unexpected Windows

Sometimes it is possible that additional windows and dialogs that did not appear during recording appear
during replay. For example, a multiple user login alert displays when logging in with the same user
multiple times.

To create an error-free script, it is necessary to check whether a new window is available before scripting
such functions as SapGuiSetActiveWindow, otherwise an error will occur.

The Multiple Logon dialog is normally handled automatically by SapGuiLogon. The following script
shows you how to handle this situation correctly:

if(SapGuiVerifyWindowAvailability("wnd[1]", null, false,
SEVERITY_INFORMATIONAL)) then
SapGuiSetActiveWindow("wnd[1]");
SapGuiSelectRadioButton("");
SapGuiPressButton("");
end;

In addition to SapGuiVerifyWindowAvailabiltity, it is also possible to use
SapGuiVerifyObjectAvailability with an absolute object ID. For example:

SapGuiVerifyObjectAvailability(gsConnId + "/ses[0]/
wnd[1]", true, SEVERITY_INFORMATIONAL)

The reason we use SEVERITY_INFORMATIONAL is that we do not want to receive an error if the object/
window is not present, we only want to perform an action if the object is there. No error should be logged if
the object is not there.

SapGuiVerifyWindowAvailability has an additional parameter with which the window title can be
verified. This can be useful when you expect one of multiple possible dialogs where the user can proceed
in one of several ways. The function can be used to simply verify if a dialog with a certain title is available.

Browsing Through Grids and Tables

Below are some examples of functions used for accessing the data in grid and table controls.

Grid Control

A grid control has columns and rows. A cell is identified by its row index and column name. To get the value
of a cell you must specify the row index and the column name. The following sample shows you how to
access all cells in a grid by iterating through all columns and rows.

SapGuiGridGetColumnCount("CTRLID", iColCount);
SapGuiGridGetRowCount("CTRLID ", iRowCount);
for rowix:=0 to iRowCount-1 do
for colix:=1 to iColCount do
SapGuiGridGetColumnName("CTRLID ", colix, colName);
SapGuiGridGetCellData("CTRLID ", rowix, colix,

Silk Performer Workbench 20.0 | 487

cellValue);
end;
end;

Row indices are 0-based. Therefore, you iterate from rowix 0 to row count -1.

Table Control

The table control is similar to the grid control. A cell is identified by its row and column index. Both indices
are 0-based. The following sample shows you how to access all cells in the table by iterating through all
columns and rows.

SapGuiTableGetColumnCount("CTRLID", iColCount);
SapGuiTableGetRowCount("CTRLID ", iRowCount);
for rowix:=0 to iRowCount do
for colix:=1 to iColCount do
cellValue := SapGuiTableGetText("CTRLID ", rowix,
colix);
end;
end;

Accessing Control Properties

The SAPGUI scripting interface offers the ability to access all controls on the current window. Each control
has different properties that can be accessed with SapGuiGetProperty. As SAPGUI scripting is based
on COM technology, there are many COM libraries that implement those COM objects. Those libraries also
include type information for each control type.

To get a list of properties and methods of the different control types, you can view those libraries with a tool
that allows COM type library inspection. OLEView32 is a tool that comes with Microsoft Visual Studio that
can be used for this purpose.

The following libraries can be found in the SAP install directory (usually: C:\Program Files\SAP
\Frontend):

• SAPGUI\sapfewse.ocx

This contains the basic controls (for example, text, button)
• Controls\Scripting*.dll

This contains extended controls such as trees and grids

All object properties can be accessed with SapGuiGetProperty. For example:

SapGuiGetProperty("TXTCTRLID", "text", sTextValue);

When a property returns another SAPGUI object or SAPGUI collection, the returned object is stored
internally and can be accessed with the constant value SAPGUI_ACTIVEOBJECT for any SapGui API call
for the control ID parameter. For example:

SapGuiPressButton(SAP GUI_ACTIVEOBJECT);

Invoking Control Methods

Methods on SAP controls can be invoked using SapGuiInvokeMethod. The basic information about
methods that are offered by controls can be viewed in the COM type library. OLEView32 is a tool that
comes with Microsoft Visual Studio that can be used for this purpose.

To press a button, you can either use the high-level SapGuiPressButton method or you can invoke the
pressButton method on the button control, like this:

SapGuiInvokeMethod("BUTTONCTRLID", "pressButton");

When a method call returns another SAPGUI object or SAPGUI collection, the returned object is stored
internally and can be accessed with the constant value SAPGUI_ACTIVEOBJECT for any SAPGUI API call
for the control ID parameter.

488 | Silk Performer Workbench 20.0

Siebel Support
This section explains how to use Silk Performer to load test Siebel 8.x CRM applications. It covers the
testing of Siebel thin client (Web client) installations that utilize front ends comprised of HTML and applets
running within a Web browser (for example, Internet Explorer).

This chapter explains how with the Silk Performer Web Recorder:

• There is no need for session info customization.
• There is no need to manually insert parsing functions for database keys.
• Scripts work correctly, even with transactions that insert new records into databases.
• Scripts are prepared for easy randomization.

Also covered are:

• Best practices for properly preparing recording sessions
• Basic architecture of Siebel thin client installations

This section is intended for experienced users who are knowledgeable about load testing Web (HTTP/
HTML based) applications with Silk Performer.

Siebel CRM Application Architecture
This topic contains an overview of the Siebel client. The figure below illustrates the architecture of a typical
Siebel deployment.

This section covers the portion of the above figure that is highlighted in blue: the Web client (thin client).
This is the default deployment for Siebel CRM installations.

The Web client is an HTTP-, HTML-, Java-applet based application that does not require a client-side
software installation.

The load testing of Siebel thin client installations is achieved by recording and replaying HTTP traffic
generated by browsers and Java applets.

Dedicated Web clients and mobile Web clients can also be tested using Silk Performer, although those
topics are not covered in this section.

HTTP Traffic

To understand recorded scripts, it is helpful to distinguish between two types of HTTP traffic:

• HTTP traffic generated by browsers
• HTTP traffic generated by Java applets

Silk Performer Workbench 20.0 | 489

HTTP traffic generated by browsers is similar to HTTP traffic generated by typical Web applications (for
example, HTML and pictures).

HTTP traffic generated by Java applets consists primarily of POST requests sent to servers. The bodies of
HTTP requests have the MIME type application/x-www-form-urlencoded, which is the same MIME
type used for form submissions in HTML based applications. HTTP response bodies however are in a
proprietary Siebel format.

The first example below shows the body of a typical Java applet HTTP request.

HTTP Request Body from a Java Applet

SWERPC=1&SWECount=5&SWECmd=InvokeMethod&SWEMethod=GetPreference&
SWEInputPropSet=%400%600%603%600%60GetPreference
%603%60%60pCategory%60SWE%3AListAppletLayout%60pPrefName
%60%60SWEJSXInfo%60false%60

BDL Form Definition for a HTTP Request Body from a Java Applet

This example shows the corresponding BDL form definition that is generated by the
Web Recorder for this HTTP request.

SALES_START_SWE018 <ENCODE_CUSTOM> :
 "SWERPC" := "1",
 "SWECount" := "5",
 "SWECmd" := "InvokeMethod",
 "SWEMethod" := "GetPreference",
 "SWEInputPropSet" :=
"@0`0`3`0`GetPreference`3``pCategory` SWE:"

"ListAppletLayout`pPrefName``SWEJSXInfo`false`";

Setting Up Your Project
Note: The Siebel Web client does not require an explicit software installation on the client computer.
The client runs within a Web browser. Your browser may however prompt you for security reasons to
confirm that the Siebel Java applet should be downloaded and installed. To avoid unnecessary
security warnings in the future, add the name of the Siebel Web server to your browser's list of trusted
sites.

1. Select File > New Project to create your project.

2. Select ERP/CRM > Siebel > Siebel Web Client

3. Click Next. The Recorder is displayed, ready to begin recording your interactions with the Siebel
application.

4. (optional) If the Siebel installation under test uses load balancing through varying server names or
requires additional context management, go to Settings > Active Profile > Web > Recording and
adjust Web context management settings.

Scripts that use the host name standardhost in place of a real host name can be replayed against
different servers by changing the host name at Settings > Active Profile > Internet > Hosts. The recorder
can generate such scripts only if the host name is changed before recording takes place.

Configuring TrueLog Explorer

To ensure best results on the Differences pane within TrueLog Explorer you must add some characters to
both the Compare tags and Compare tags HTML lists.

1. Within TrueLog Explorer, go to Settings > Options > Compare Tags.

490 | Silk Performer Workbench 20.0

2. Enter the following values into the table rows:

1. & (ampersand)
2. * (asterisk)
3. ` (reverse single quote)
4. @ (at)

3. Go to Settings > Options > Compare Tags HTML and enter the same table row values there.

Dynamic Information in Web Client HTTP Traffic
This section explains that HTTP traffic generated by Siebel Web clients incorporates dynamic information
that must be addressed to ensure successful and accurate replay.

Error Detection

Failure to handle dynamic data does not always generate error messages during script replay. This is
because the Siebel Web Server does not use HTTP error status codes to indicate errors. Instead, it sends
error notifications to the applet, which in turn displays an error message indicating the condition.

This may lead to a false impression of successful replay when in fact load generated on the database tier
of the application was different, more than likely less, than it should have been.

The example below shows an HTTP response body sent from a server to a Java applet that describes an
error condition. Such a response is returned with the HTTP status code 200 OK, falsely suggesting that
the HTTP request was handled successfully.

Error Condition Response Sent from Server to Applet

@0`0`3`2``0`UC`1`SWECount`10`Status`Error`0`1`Errors`0`2`0`Level
0`0`ErrMsg`An error happened during restoring the context for
requested location`ErrCode`27631`0`0`Notifications`0`

Application Level Error Detection in Recorded Scripts

Silk Performer scripts can detect such application level errors. The Web Recorder
generates scripts that contain such checks by adding the lines highlighted in the
example below:

use "WebAPI.bdh"
use "SiebelWeb.bdh"

// ...

 transaction TInit
 begin
 WebSetBrowser(WEB_BROWSER_MSIE55);
 WebFormDefineEncodeCustom("base=ENCODE_FORM;"
 " +'@'; -'!()$,'; -'''");
 SiebelWebInit();
 end TInit;

Session IDs

Siebel Web Server uses session IDs to track user sessions. Servers can be configured to send session IDs
either in cookies or in URLs (form fields or query strings; this is the default configuration).

The example below shows an HTTP response header with a Set-Cookie header for a session ID.
Session IDs in cookies are handled automatically by Silk Performer.

Silk Performer Workbench 20.0 | 491

Siebel Session ID in a Cookie

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 12 Mar 2002 17:26:01 GMT
Content-Language: en
Cache-Control: no-cache
Content-Type: text/html;charset=windows-1252
Content-Length: 3043
Set-Cookie: _sn=!1.428.556d.3c8e3a29; Version=1; Path=/sales

Siebel Session ID in a URL

This example shows a fragment of an HTML frameset with a frame that incorporates a
session ID in a URL.

<frameset>
 <frame name="_sweclient">
 <frame name="_swe" src="http://lab61/sales/start.swe?
 SWEFrame=top._swe&SWECount=1&
 _sn=!1.6c0.447b.3ceccd1b
 &SWECmd=GetCachedFrame">
</frameset>

The Silk Performer Web Recorder generates scripts that accurately handle such
session IDs.

Fragments of a Recorded Script with Session IDs

This example shows fragments of a recorded script that handles the above session ID
using the following techniques:

• A variable gsSid is declared to hold the session ID.
• A parsing function WebParseDataBoundEx is inserted before the function call

WebPageLink for parsing of the session ID, which is included in the server response
of the WebPageLink function (see example above).

• The parsed result can be used wherever it is required. In this example, it is required
for a form submission.

• Informational comments enhance readability.

var
 gsSid : string; // !1.6c0.447b.3ceccd1b

// ...

WebParseDataBoundEx(gsSid, sizeof(gsSid), "&_sn=", 1,
 "&", WEB_FLAG_IGNORE_WHITE_SPACE);
WebPageLink("replace", "Siebel Sales (#2)", 1, "_sweapp");

WebPageForm("http://lab61/sales/start.swe",
 SALES_START_SWE003, "Unnamed page (#2)");

// ...

dclform
 SALES_START_SWE003 <ENCODE_CUSTOM> :
 "SWERPC" := "1",
 "SWECount" := "1",
 "_sn" := gsSid,// value: "!1.6c0.447b.3ceccd1b"
 "SWEJSXInfo" := "false",
 "SWECmd" := "InvokeMethod",

492 | Silk Performer Workbench 20.0

 "SWEService" := "SWE Command Manager",
 "SWEMethod" := "PrepareGlobalMenu";

Time Stamps

HTTP communication between Java applets and the Siebel Web Server includes timestamps, which are
strings that tell the number of milliseconds since Jan 1, 1970. Proper replays must include correct
timestamps. The Silk Performer kernel API (file kernel.bdh) provides the function GetTimeStamp(),
which is used to obtain accurate timestamp strings.

The Web Recorder recognizes timestamps and generates scripts that use them.

HTTP Request Body with Timestamp

This example shows the body of a Java applet HTTP request that incorporates a
timestamp.

SWEUserName=undisclosed&SWEPassword=undisclosed&SWEForm=SWEEntry
Form&SWENeedContext=false&SWECount=0&SWECmd=ExecuteLogin&SWETime
Stamp=1023377037797

Corresponding BDL Form with Timestamp

This example shows the corresponding BDL form generated by the Web Recorder. The
value of the timestamp has been replaced by a call to the function GetTimeStamp().

dclform
 SWEENTRYFORM002:
 "SWEUserName" := "undisclosed", // changed
 "SWEPassword" := "undisclosed", // changed
 "SWEForm" := "SWEEntryForm", // added
 "SWENeedContext" := "false", // added
 "SWECount" := "0", // added
 "SWECmd" := "ExecuteLogin", // added
 "SWETimeStamp" := GetTimeStamp(); // added, value:
"1023377037797"

URL Encoding

According to HTTP specifications, unsafe characters included in transmitted data with the MIME type
application/x-www-form-urlencoded must be encoded (escaped). This is achieved by replacing
unsafe characters with hexadecimal equivalents and preceding them with percent (%) symbols.

Silk Performer provides four standard encoding types: ENCODE_FORM, ENCODE_ESCAPE,
ENCODE_BLANKS and ENCODE_NONE. These encoding types differ in terms of the characters they
escape.

Siebel Web client Java applets apply a unique encoding type that differs from the standard Silk Performer
encoding types. For this reason, Silk Performer provides a new encoding type, ENCODE_CUSTOM, which
can be configured using the function WebFormDefineEncodeCustom.

Siebel uses an encoding type that differs from the standard encoding type ENCODE_FORM in the following
respects:

• Characters not escaped: !()$,'
• Characters escaped: @

The Silk Performer Web Recorder detects when an HTTP request applies this special encoding type, and
then generates a script using the following techniques:

Silk Performer Workbench 20.0 | 493

• Function WebFormDefineEncodeCustom() is used to define the encoding type ENCODE_CUSTOM in
the TInit transaction.

• The encoding type ENCODE_CUSTOM is used in form definitions.

Fragments of a Recorded Script that utilizes ENCODE_CUSTOM

This example shows fragments of a recorded script that utilizes these techniques.

dcltrans
 transaction TInit
 begin
 WebSetBrowser(WEB_BROWSER_MSIE55);
 WebFormDefineEncodeCustom("base=ENCODE_FORM;"
 " +'@'; -'!()$,'");
 end TInit;

// ...

dclform
 SALES_START_SWE011 <ENCODE_CUSTOM> :
 "SWERPC" := "1",
 "SWECount" := "4",
 "SWECmd" := "InvokeMethod",
 "SWEMethod" := "GetPreference",
 "SWEInputPropSet" :=
"@0`0`3`0`GetPreference`3``pCategory`"

"Behavior`pPrefName``SWEJSXInfo`false`";

User Input

Generally, it is desirable if user input recorded during recording sessions can be easily identified and
changed (for example, randomized) in recorded scripts.

This is especially true for Siebel Web client scripts because Java applets often send values for all input
fields to the server. If a new database record is created (for example, for a new customer) and the record is
subsequently edited or viewed, input (for example, customer name) may appear multiple times in recorded
scripts.

The Silk Performer Web Recorder:

• Detects user input by assuming that form field values are user input when one of the following is true:

• Values are enclosed in $ symbols
• Values are enclosed in underscores(_)
• Values begin with the character sequence i.

• Generates a variable for each user input and uses that variable in a script, in place of the original value.

Fragments of a Recorded Script that Includes User Input

var
 gsInputNewName : string init "$NewName$";
 gsInputNewSite : string init "_NewSite_";
 gsInputiHttp_x_com : string init "i.http://x.com";

// ...

dclform
 SALES_START_SWE020 <ENCODE_CUSTOM> :
 "SWEMethod" := "GetQuickPickInfo",
 "SWEViewId" := "",
 "SWEView" := "Account List View",

494 | Silk Performer Workbench 20.0

 "SWEApplet" := "Account List Applet",
 "SWEField" := "s_1_2_46_0",
 "SWERow" := "0",
 "SWEReqRowId" := "1",
 "s_1_2_38_0" := "N",
 "s_1_2_39_0" := gsInputNewName, // value: "$NewName$"
 "s_1_2_40_0" := gsInputNewSite, // value: "_NewSite_"
 "s_1_2_41_0" := "(999) 999-9123",
 "s_1_2_37_0" := gsInputiHttp_x_com,
 // value: "i.http://x.com"
 "s_1_2_49_0" := "",
 "s_1_2_46_0" := "",
 "s_1_2_44_0" := "",
 "SWEBCVals" :=
"@0`0`0`1``3``2`0`FieldValues`3``FieldArray"
 "`4*Name8*Location17*Main Phone Number"
 "`ValueArray`14*" + gsInputNewName +
 "14*" + gsInputNewSite +
"10*9999999123`";

Choose input values during recording based on these descriptions so that the Web
Recorder will detect them.

Dynamic Data

Siebel HTTP traffic includes a variety of dynamic data that are sent to servers within HTTP requests. Such
data can be parsed from previous server responses and substituted into scripts in place of hard-coded
values.

This includes:

• Existing database record values
• Row IDs

Siebel uses database keys to identify records in databases. Such keys are present in HTTP traffic
emanating from both browsers and applets. Database keys are also known as Row IDs. Accurate handling
of row IDs and other dynamic data is essential for successful replay.

Row IDs and other dynamic data can be included in HTML documents (see first example below) or in
responses to HTTP requests from Java applets (see second example below).

Dynamic data are always contained in value arrays (lists of values for single rows to be displayed in the
Siebel GUI).

Value Array in JavaScript Code, within a HTML Document

<script>
 row = new top._swescript.JSSRecord();
 row.id = "1-9Q1";
 row.valueArray = ["Foo","Bar","1234567890","","Active",
 "http://www.foo.com/bar","","","USD",
 "11/26/2002","","USD","11/26/2002",
 "","","","","N","N","","1-9Q1"];
 S_BC1.Rec(row);
</script>

Value Array in an Applet Response

@0`0`3`2``0`UC`1`Status`Completed`SWEC`10`0`24`Notifications`0`2
`0``0`OP`bn`bc`S_BC1`7`0``0`type`SWEIRowSelection`OP`g`br`0`cr`6
`bc`S_BC1`size`7`ArgsArray`20*Account Entry
Applet1*1`7`0``0`type`SWEIRowSelection`OP`g`br`0`cr`6`bc`S_BC1`s

Silk Performer Workbench 20.0 | 495

ize`7`ArgsArray`19*Account List
Applet1*11*01*01*01*01*01*0`7`0``0`type`SWEIPrivFlds`OP`g`br`0`c
r`6`bc`S_BC1`size`7`ArgsArray`19*Account List
Applet11**BlankLine11*?11**BlankLine21*?9**HTML URL1*?15**HTML
RecNavNxt1*?
`7`0``0`type`SWEICanInvokeMethod`OP`g`br`0`cr`6`bc`S_BC1`size`7`
ArgsArray`19*Account List
Applet1*01*11*11*01*21*11*31*01*41*11*51*11*61*11*71*11*81*11*91
*12*101*02*111*02*121*12*131*02*141*12*151*12*161*12*171*12*181*
12*191*12*201*12*211*12*221*12*231*12*241*12*251*02*261*12*271*1
2*281*02*291*02*301*02*311*02*321*02*331*02*341*12*351*12*361*1`
7`1``0`OP`iw`index`7`br`0`cr`6`bc`S_BC1`size`7`ar`0`1`0`FieldVal
ues`0`ValueArray`3*Foo3*Bar10*12345678900*6*Active22*http://
www.foo.com/
bar0*0*3*USD10*11/26/20020*3*USD10*11/26/20020*0*0*0*1*N1*N0*5*1
-9N9`8`0``0`OP`dw`index`7`br`0`cr`6`bc`S_BC1`nr`1`size`7`ar`0`8`
0``0`value`0`OP`sc`br`0`cr`6`bc`S_BC1`size`7`ar`0`state`n`8`0``0
`value`1`OP`sc`br`0`cr`6`bc`S_BC1`size`7`ar`0`state`n`8`0``0`val
ue`7`OP`sc`br`0`cr`6`bc`S_BC1`size`7`ar`0`state`cr`8`0``0`value`
1`OP`sc`br`0`cr`6`bc`S_BC1`size`7`ar`0`state`nrk`8`0``0`value`13
`OP`sc`br`0`cr`6`bc`S_BC1`size`7`ar`0`state`nr`6`0``0`OP`nd`br`0
`cr`6`bc`S_BC1`size`7`ar`0`2`0``0`OP`en`bc`S_BC1`0`3`

Dynamic information typically appears in the dclform section of scripts.

When required, the Web Recorder automatically generates a parsing function
(WebParseDataBoundEx) and substitutes parsed values wherever they appear in
scripts. Parsing functions parse for complete value arrays in HTML and applet
responses. The Recorder uses an appropriate tokenizing function SiebelTokenHtml
or SiebelTokenApplet to retrieve individual tokens from parsed value arrays.

Script Fragment Utilizing Parsing Functions

This example shows fragments of a recorded script that utilizes the following
techniques:

• Variables are declared for the value array (gsRowValArray and gsRowValArray_001).
• Parsing functions WebParseDataBoundEx are inserted to parse the value arrays,

which are included in the server response of the subsequent function (see examples
above).

The parsed result can be used wherever it is required. In this example, individual tokens
of the parsed values occur in various locations in form definitions. Informational
comments are used to enhance readability.

var
 gsRowValArray : string; // =
["Foo","Bar","1234567890","","Active",
 // "http://www.foo.com/
bar","","","USD",
 //
"11/26/2002","","USD","11/26/2002",
 //
"","","","","N","N","","1-9Q1"];
 gsRowValArray_001 : string; //
3*Foo3*Bar10*12345678900*6*Active
 // 22*http://www.foo.com/bar
 //
0*0*3*USD10*11/26/20020*3*USD10*11/26/2002
 // 0*0*0*0*1*N1*N0*5*1-9N9

// ...

496 | Silk Performer Workbench 20.0

 WebParseDataBoundEx(gsRowValArray, sizeof(gsRowValArray),
 "row.valueArray", 2, "S_",
WEB_FLAG_IGNORE_WHITE_SPACE, 1);
// function call where parsing function is in effect

 WebParseDataBoundEx(gsRowValArray_001,
sizeof(gsRowValArray_001),
 "ValueArray`", 1, "`",
WEB_FLAG_IGNORE_WHITE_SPACE, 1);
// function call where parsing function is in effect

// ...

dclform

// ...

SALES_ENU_START_SWE016 <ENCODE_CUSTOM> :
 "SWEMethod" := "Drilldown",
 "SWEView" := "Account List View",
 "SWEApplet" := "Account List Applet",
 "SWEReqRowId":= "1",
 "s_1_2_40_0" := SiebelTokenHtml(gsRowValArray, 0), //
value: "Foo"
 "s_1_2_41_0" := SiebelTokenHtml(gsRowValArray, 1), //
value: "Bar"
 "s_1_2_42_0" := "(123) 456-7890",
 "s_1_2_51_0" := "",
 "s_1_2_47_0" := SiebelTokenHtml(gsRowValArray, 4), //
value: "Active"
 "s_1_2_45_0" := SiebelTokenHtml(gsRowValArray, 5),
 //value:"http://www.foo.com/bar"
 "SWECmd" := "InvokeMethod",
 "SWERowId" := SiebelTokenHtml(gsRowValArray, 20), // value:
"1-9Q1"
 "SWETS" := GetTimeStamp(); // value: "1038305654969"

// ...

SALES_ENU_START_SWE022 <ENCODE_CUSTOM> :
 "SWEMethod" := "Drilldown",
 "SWEView" := "Account List View",
 "SWEApplet" := "Account List Applet",
 "SWEReqRowId":= "1",
 "s_1_2_40_0" := SiebelTokenApplet(gsRowValArray_001,
0), // value: "Foo"
 "s_1_2_41_0" := SiebelTokenApplet(gsRowValArray_001,
1), // value: "Bar"
 "s_1_2_42_0" := "(123) 456-7890",
 "s_1_2_51_0" := "",
 "s_1_2_47_0" := SiebelTokenApplet(gsRowValArray_001, 4), //
value: "Active"
 "s_1_2_45_0" := SiebelTokenApplet(gsRowValArray_001,5),
 // value: "http://
www.foo.com/bar"
 "SWECmd" := "InvokeMethod",
 "SWERowId" := SiebelTokenApplet(gsRowValArray_001, 20), //
value: "1-9N9"
 "SWETS" := GetTimeStamp(); // value: "1038305711331"

Silk Performer Workbench 20.0 | 497

Reformatting Functions

The Siebel Web client reformats phone numbers and date/time values that are sent by the server or
entered by users. Therefore the format of such values in client-sent HTTP request bodies is different from
the format that is used in server-sent HTTP response bodies.

Phone Number in Server-Response Body

10*987140255510*78140110000*0*0*22*main.contact@MyCompany.com5*1
-FIH

Phone Number in Recorded Script, Reformatted by the Siebel Web Client

"s_1_1_25_0" := "(987) 140-2555";

Without modification, the format used in request bodies would also be used in recorded
scripts, making it impossible to replace such values with parsed values.

Reformatting Function for Phone Numbers

To allow such reformatted strings to be replaced with parsed values, the Silk Performer
Web recorder records an appropriate reformatting function that mimics the Siebel Web
client's reformatting and records actual values in the same format that is used in server
responses.
"s_1_1_25_0" := SiebelPhone("9871402555");

Using a Parsed Value as a Parameter of a Reformatting Function

Unless a value is an input value, values can generally be replaced with parsed values in
a second step. The Recorder actually records a parsed value instead of a hard-coded
string.
"s_1_1_25_0" := SiebelPhone(SiebelTokenApplet(gsParsed, 5));

The following reformatting functions are available and are automatically recorded as
required:

• SiebelPhone
• SiebelDate
• SiebelTime
• SiebelDateTime
• SiebelDecodeJsString
• SiebelParam

Meaningful Timer Names

The Recorder extracts meaningful timer names from form fields. This makes it easier for human readers to
interpret scripts, TrueLogs, and performance reports.

Meaningful Timer Names

Here is an example of an intuitive timer name.

WebPageForm("http://standardhost/sales_enu/start.swe",
 SALES_ENU_START_SWE022,
 "Account List Applet: InvokeMethod: Drilldown");

// ...

dclform

498 | Silk Performer Workbench 20.0

// ...

SALES_ENU_START_SWE022 <ENCODE_CUSTOM> :
 "SWEMethod" := "Drilldown",
 "SWEView" := "Account List View",
 "SWEApplet" := "Account List Applet",
// more form fields
 "SWECmd" := "InvokeMethod",
 "SWERowId" := SiebelTokenApplet(gsRowValArray_001, 20),
 "SWERowIds" := "",
 "SWEP" := "",
 "SWETS" := GetTimeStamp(); // value: "1038305711331"

Best Practices
This topic explains the common pitfalls, offers hints, and explains best practices for successfully testing
Siebel Web clients.

Read-Only Transactions

A read-only transaction is a transaction in which new records aren't inserted and data is not altered.
Recorded scripts for read-only transactions run without modification.

Such scripts may however contain parsing functions for value arrays. Parsing functions may, for example,
parse the value array of the third record in a table. If during replay this table contains fewer than 3 records,
no value array can be parsed and the result may be replay errors. Such situations can be avoided by
adjusting the occurrence parameter of parsing functions so that existing value arrays are parsed.

The better solution however is to ensure that each table in a database contains adequate records during
load tests, thereby avoiding the problem altogether.

Read/Write/Update Transactions

A writing transaction is a transaction that inserts new records or changes the values of existing records.

Required Script Customizations

Scripts for writing transactions require only minimal customization to ensure successful replay. This is
because value arrays for new records can be parsed from server responses.

When modifications are required for successful replay, it is generally because many tables in Siebel do not
allow duplicate records. The circumstances by which Siebel considers records to be duplicates vary
between tables. In most instances, a certain combination of record fields must be different for Siebel to
consider a record unique.

For successful replay, these fields must be changed, even with Try Script runs. This can be done easily
when the Web Recorder creates these values as variables.

For Try Script runs, it is sufficient to manually change these values directly in scripts. For tests however,
data files must be prepared and scripts must be customized in such a way that each virtual user inserts
records with unique value combinations.

Be Aware of Empty Tables

HTTP traffic generated by the insertion of records into empty tables differs significantly from HTTP traffic
generated by inserting records into tables that are already populated with one or more records. For this
reason, scripts that record the insertion of records into empty tables can not later be used during replay
sessions once tables have been populated - and vice versa.

To avoid such problems, ensure that you do not insert records into empty tables during recording sessions.
Also ensure that tables are not emptied before or during load tests.

Silk Performer Workbench 20.0 | 499

Note that the following scenarios are not affected by these constraints:

• Creating new records in tables that include other records (for example, accounts).
• Creating new records in a table associated with the records just created (for example, creating new

notes for new accounts). While the notes table for newly created accounts is empty, the notes table of
newly created accounts during script replay is also empty, so such scripts will not cause problems.

Microsoft Silverlight Support

Prerequisites

Transformation is enabled for HTTP requests and responses that have the HTTP header Content-Type
set to "application/soap+msbin1" or "application/msbin1". If you need to transform data with
a different HTTP Content-Type header, see Transformation of Custom Content-Types.

Setting up a Microsoft Silverlight Project

The workflow for testing Microsoft Silverlight browser-based applications with Silk Performer is the same as
the workflow used for testing Web-based applications, with the following exception:

• On the Outline Project - Workflow dialog, you must select Silverlight under the Web browser
node.

Terminal Emulation Support
Silk Performer’s support for terminal emulation applications enables the recording of terminal-emulator
traffic based on the Telnet protocol (“green screen” applications). Supported terminal types include VT100
and VT200 (UNIX, IBM AS400) and IBM mainframes accessed via TN3270(E) & TN5250.

A prerequisite for recording terminal-emulator traffic is an installed terminal-emulator for accessing host
applications, while the recorder records the telnet traffic which results. Many such emulators are available
on the market (for example, Rumba).

Note: For additional details regarding Silk Performer support for terminal emulation applications,
please see Miscellaneous Tutorials, a PDF that accompanies your Silk Performer installation
at Documentation > Tutorials.

Script Customization

For terminal-emulation script customization details, please see TrueLog Explorer Help.

Testing IBM Mainframe Protocols

The Host Screen Info page of terminal emulation TrueLogs offers controls for all fields and statuses that
appear in recorded and replayed screens. These controls offer easy access to field-value and value-status
parsing/verification functions.

IBM terminals rely on EBCDIC code pages that vary based on locality. Silk Performer chooses an EBCDIC
code page among the code pages installed on the system. If national language characters are not
displayed correctly it is possible to change the code page during project configuration.

IBM code pages control translation of human-readable ASCII input data (for example, search parameters)
into and out of binary hexadecimal representation. This translation process facilitates script customization.

Creating a Terminal Emulation Project

1. Click Start here on the Silk Performer workflow bar.

500 | Silk Performer Workbench 20.0

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, expand the Terminal Emulation application type node and select the
terminal emulation type you need.

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Configuring Terminal Emulation Profile Settings

1. In Silk Performer, expand the Profiles node in the Project tree.

2. Right-click the profile that you want to configure and choose Edit Profile.

Tip: Alternatively, you can choose Settings > Active Profile from the menu bar.

The Profile - [<profile name>] dialog box opens, and the Replay category is displayed in the shortcut
list on the left.

3. In the shortcut list on the left, click the Record button. The Record category is displayed.

4. In the shortcut list, click the Terminal Client icon.

5. Click the Telnet tab.

6. In the Telnet settings area, specify one of the following Telnet detection modes:

• Click the Always assume Telnet-mode option button to instruct the recorder to assume that each
connection is a Telnet connection. Use this option for troubleshooting purposes only.

• Click the Auto-detect Telnet-mode option button to instruct the recorder to automatically detect
Telnet on each new connection (default).

• Click the Never assume Telnet-mode option button to instruct the recorder to assume that no
connections are Telnet connections. Use this option for troubleshooting purposes only.

7. In the Command prompt string text box, specify a command-prompt string that the recorder uses to
script WebTcpipRecvPacketsUntilData functions wherever possible.

This string increases the effectiveness of recorded scripts for dynamic content.

8. In the Terminal properties section, select one of the following items from the Log level list box:

• None

• Error

• Normal

• Debug

9. Ensure that the specific terminal type you are testing is displayed in the Terminal type list box. This
setting was configured automatically when you selected the application type for the project.

When correctly specified, the recorder scripts the appropriate terminal-type initialization functions and
renders the screens to the TrueLog.

10.In the Configuration string text box, initialize the terminal emulator with a custom configuration string.

For available options, refer to your terminal emulator documentation.

11.Specify the following Screen values to indicate the appearance of the terminal screen to the recorder:

• Type a value in the rows text box to indicate the height of the terminal screen. An empty value lets
Silk Performer detect the height during session initialization.

• Type a value in the columns text box to indicate the width of the terminal screen. An empty value
lets Silk Performer detect the width during session initialization.

Silk Performer Workbench 20.0 | 501

• Check the Colors check box to specify the default color to use on the terminal screen.

The supplied values overrule the default values that Silk Performer may detect. If your terminal
application uses a custom screen size, make sure to set these values before you record a script in order
to replay the script without errors.

12.In the Host code page text box, specify the code page that the server uses.

The code page is used for various data conversions, and all available code pages have been installed
with the system. If the required code page is not listed, you can install it. Ensure that the selected code
page is also available on each agent computer. To review all installed code pages, or to enable a
specific code page, go to Start > Control Panel > Regional and Language Options > Advanced .
Only the host code pages that are listed and enabled with a checkmark are available.

13.Click the Advanced tab and check the Record basic functions check box to prevent the recorder from
scripting synchronized receive-functions, such as WebTcpipScreenRecvPacketsUntilCursor and
WebTelnetScreenRecvRecordsUntilStatus.

If this option is enabled, scripted receive functions do not rely on rendered screen content. This option is
enabled by default when a terminal type is not specified.

14.Click OK to save your settings.

Setting Up a Terminal Emulation Recording Profile

1. From the Settings menu, select System.

2. Click the Recorder button.

3. Click the Add button.

4. On the Recording Profile dialog, give the profile a name in the Profile name field.

5. Click Browse and select the .exe file of the terminal emulator on your local system.

Note: All other settings on this dialog are standard for all TCP/IP-based applications.

6. If you are using RUMBA as your terminal emulator, check the Record executable is different from
application path check box.

7. Enter WDDspPag.exe in the Record executable field.

8. Check the TCP/IP check box (note that Silk Performer TCP/IP-level API facilitates terminal-emulation
application support).

9. Click Web Settings. The Web Settings dialog box opens.

10.From the WinSock list box, select ws2_32.dll.

11.Click OK to close the Web Settings dialog box.

12.Click OK to close the Recording Profile dialog box.

The new profile now appears on the Recording Profiles page.

Recording Terminal Emulation Applications

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. From the Recording Profile menu tree, select your terminal-emulation recording profile.

3. Enter the location of your terminal-emulation application in the Command line field.

4. Click Start recording. The Silk Performer Recorder dialog opens in minimized form, and the client
application starts.

5. Using the client application, conduct the kind of interaction with the target server that you want to
simulate in your test. The interaction is captured and recorded by the Recorder. A report of your actions
and of the data downloaded appears on the Actions page.

6. When recording is complete, close the application, close the recorder, and save the test script.

502 | Silk Performer Workbench 20.0

7. To confirm that your test script runs as expected, execute a Try Script run in animated mode; you will
then be able to view the results of the test run in TrueLog Explorer.

Terminal Emulation Session Customization

Session customization of terminal emulation application test scripts is normally not required. If session
customizations are required, they must be partly performed manually. However, TrueLog Explorer can be
used to insert parsing functions into test scripts.

In some cases the synchronization between replay and a host application may not work well, for example if
the requested screen is not complete but the cursor position already assumes a completed screen. A
recorded cursor synchronization function in the script will be satisfied with the first portion of the screen
and continue executing the script out of synchronization, which may lead to replay errors. In such a case
you would have to replace the recorded synchronization function(s) manually with a more suitable
synchronization function in the script (for example, WebTcpipRecvPacketsUntilData or
WebTelnetRecvPacketsUntilData).

TCP/IP Based Protocol Support
This section explains how to develop load test scripts for applications that use legacy or custom TCP/IP
based protocols. It explores the challenges that are commonly encountered in this type of testing: dealing
with dynamic server responses, translating between character code tables, string manipulation of binary
data, and more.

Three protocols are examined in detail: Telnet, TN3270e, and a custom TCP/IP based protocol. Using
recorded scripts from actual load test projects as examples, you will be guided through the process of
recording an application, analyzing traffic, configuring recording rules, and customizing a script.

Overview
Note: The following protocols are directly supported by Silk Performer and do not require the types of
customizations that are described in this section. Protocols not listed below, including so called legacy
systems, do require script customization:

• TN3270
• TN5250
• VT100
• VT200+

All of the protocols discussed in this section are based on TCP/IP. With Silk Performer, you can record
protocols at the TCP level and customize the resulting scripts using WebTcpip functions. With Silk
Performer enhanced TCP/IP support, TrueLog Explorer, and rule-based recording, the process is
straightforward.

This section has two objectives:

• To take you through the process of analyzing recorded custom TCP/IP traffic and give you the generic
tools and methodology you need to customize such traffic.

• To analyze two protocols in-depth: Telnet and TN3270e.

Memory Usage of TCP/IP Virtual Users

Each virtual user running in its own process requires approximately 1.6 MB system memory.

Running more than one user per process results in the following memory consumption:

• 25 vusers: Approx. 0.2 MB per vuser
• 50 vusers: Approx. 0.1 MB per vuser

Silk Performer Workbench 20.0 | 503

Script Customization
This section covers the challenges that are typically faced when customizing TCP-based load test scripts:
dynamically receiving and verifying server responses, character conversion, and string manipulation of
binary data.

Character Conversion

Following is a sampling of TCP/IP traffic recorded by Silk Performer:

WebTcpipSendBin(hWeb0,
 "\h00000000007DD7D311D57CA2899392F0" // ·····}×Ó·Õ|¢···ð
 "\hF0F14011D74CA2899392F0F0F140FFEF", 32); // ðñ@·×L¢···ððñ@·ï
WebTcpipRecvExact(hWeb0, NULL, 645);

Customization of such a script may at first appear daunting. The server responses (not shown in the
example) look much like the client request. They do not include a single readable character.

The reality is that customization of such a script is fairly simple. The server is an IBM mainframe that uses
the EBCDIC (Extended Binary Coded Decimal Interchange Code) character set rather than the more
familiar ASCII character set. There is a simple one-to-one mapping between these two character sets,
which can be implemented as a Silk Performer function.

Other possible causes for traffic that contains unreadable strings:

Reason Consequence

Traffic uses a character set other than ASCII. Character mapping functions can easily be implemented
in Silk Performer BDL language.

Traffic is encrypted with a custom encryption algorithm
(for example, one that does not rely on SSL, which is
automatically supported by Silk Performer).

The encryption/decryption routines should be re-
implemented in BDL, or made accessible to Silk
Performer using a DLL or a Silk Performer framework (for
example, Java Framework).

Traffic does not contain any strings, only numbers sent as
binaries.

In such instances you do not have to worry about strings.

Dynamically Receiving Server Responses

Full control of client requests can be easily achieved however anticipating appropriate server responses
can be challenging. Most significantly, virtual users must know when server responses are complete so
that they can proceed with subsequent requests, or raise errors if server responses contain errors or aren't
complete.

The Silk Performer recorder doesn't know in advance about the semantics of the TCP based protocols it
records. Therefore, all server responses are recorded as follows:

WebTcpipRecvExact(hWeb0, NULL, 26);

During replay, the virtual user expects to receive exactly 26 bytes from the server. It then continues on with
the next statement in the script. If the server sends more then 26 bytes, the bytes are received by the next
WebTcpipRecvExact statement (making all further script execution unpredictable). If the server sends
fewer bytes, WebTcpipRecvExact will report a timeout error.

Therefore this line can remain unchanged only if the number of response bytes won't change under any
circumstances. If response length cannot be guaranteed, scripts must be customized so that they can
handle server responses of varying length.

Appropriate customization depends on the semantics of the protocol. Three common scenarios are
reflected by Silk Performer API functions, which simplify the customization process.

504 | Silk Performer Workbench 20.0

Case I: Packet Length Contained in the Packet

The length of request and response data may be encoded into packets at a defined position (typically in the
packet header). The Silk Performer function WebTcpipRecvProto and its sibling,
WebTcpipRecvProtoEx, can adequately handle such situations. They allow for definition of the position
and length of packet-length information in response data. For example, the following BDL code line will be
used if the length of the response data remains a two-byte sequence in the first two bytes (for example,
position 0) of the server response:

WebTcpipRecvProto(hWeb, 0, 2, TCP_FLAG_INCLUDE_PROTO,
sData, sizeof(sData), nReceived);

Case II: Termination Byte Sequence

In this scenario data packets are terminated by a constant byte sequence. The corresponding Silk
Performer function is WebTcpipRecvUntil. If, for example, the end sequence is defined by the two-byte
sequence 0xFF00, the following line would be appropriate:

WebTcpipRecvUntil(hWeb, sResp, sizeof(sResp), nRecv,
 "\hff00", 2);

Case III: No Information on Response Packet Size

This is the most challenging of the three scenarios. You can use a combination of the functions
WebTcpipRecv, which receives a buffer of unknown length from the server, and WebTcpipSelect, which
checks whether or not a subsequent WebTcpipRecv operation on the provided connection handle will
block or succeed immediately.

Rule Based Recording

An advanced feature offered by Silk Performer is rule-based recording. You can configure the TCP/IP
recorder to be aware of the semantics of proprietary TCP/IP protocols. In particular, the recorder can be
configured for two of the scenarios discussed earlier (Packet length contained in the packet and
termination byte sequence).

As a result, the recorder can automatically generate correct WebTcpipRecvProto(Ex) and
WebTcpipRecvUntil functions so that further customization for this part of the script isn't required.

When configuring recording rules, you write a configuration file encoding the recording rules in XML and
save them to the project's Documents folder (project specific rules) or in the public or the user’s
RecordingRules directory (global rules). Recording rule files carry the file extension .xrl.

Rule-based recording exists for TCP/IP and HTTP, however only recording rules for TCP/IP are discussed
in this section.

String Manipulation of Binary Data

Request Parameterization

Example code contained in a recording of a TCP session:

WebTcpipSendBin(hWeb0, "\h0000104F0000005065746572FFFF",
14); // ···O···Peter

The actual business data sent here, the data that should be parameterized, is "Peter" = 0x50 65 74
65 72, but that will not work here. "\h0000104F000000" + sName + "\hFFFF" will not yield the
results you might expect. The problem is caused by the zero (0x00) bytes in this string, which Silk
Performer (like C) uses for string termination. Therefore all bytes after the first zero byte in a string are
ignored when performing such string concatenation.

Silk Performer Workbench 20.0 | 505

For manipulation of binary data that may contain zero bytes, you should use the function SetMem. Using
the function library detailed below, the above request can be broken into the following lines:

ResetRequestData();
AppendRequestData("\h0000104f000000", 7);
AppendRequestData(sName); // e.g., "Peter"
AppendRequestData("\hFFFF");
SendTcpipRequest(hSend);

The function library is included using an include file (*.bdh). It uses two global variables for the request
data and request data length. The function AppendRequestData appends a string (which may contain
zero bytes) to the request buffer, and SendTcpipRequest sends the request data using an open TCP
connection.

Here are the contents of the include file, which consists of three functions:

const
 BUFSIZE := 10000; // maximal size for request data
var
 // global variables for Request data contents and length
 gsRequestData : string(BUFSIZE);
 gnRequestLen : number init 0;

dclfunc
 // start a new request string
 function ResetRequestData
 begin
 gnRequestLen := 0;
 end ResetRequestData;

 // append data (of length nLen) to the request string
 // if nLen=0, use strlen(sData) instead
 function AppendRequestData(sData: string;
 nLen: number optional): number
 begin
 if nLen = 0 then nLen := strlen(sData); end;
 if nLen + gnRequestLen <= BUFSIZE then
 // append sData to gsRequestData
 SetMem(gsRequestData, gnRequestLen + 1, sData, nLen);
 // the request length has grown by nLen bytes:
 gnRequestLen := gnRequestLen + nLen;
 else
 RepMessage("Request buffer too small!",
 SEVERITY_ERROR);
 end;
 AppendRequestData := gnRequestLen;
 end AppendRequestData;

 // Send the request buffer
 // (TCP-connection identified by hTcp)
 function SendTcpipRequest (hTcp: number): boolean
 begin
 SendTcpipRequest :=
 WebTcpipSendBin(hTcp, gsRequestData, gnRequestLen);
 end SendTcpipRequest;

Searching in Response Data

When zero bytes are contained in response data, it makes it difficult to search for strings. The reason is
that the StrSearch and StrSearchDelimited functions search in a source string only until they hit the
first zero byte, which is interpreted as the string terminator.

506 | Silk Performer Workbench 20.0

Silk Performer offers the function BinSearch, which works on binary data exactly as StrSearch does on
strings. You can search for a string (or a sequence of binary data) in response data as follows:

nPos := BinSearch(sResponseData, nResponseLength, sSearch);

There is no binary counterpart for the StrSearchDelimited function. If you only want to search for
strings (as opposed to binary data containing zero bytes), a workaround is to introduce a function that first
eliminates all zero bytes from the response data by mapping them (for example, to the byte 0xFF).

Here is a simple version of such a function. Note that it works only if sLeftVal, sRightVal and the
string you are searching are strings (meaing, they don't contain zero bytes).

function BinSearchDelimited(sSource : string;
 nSrcLength: number;
 sLeftVal : string;
 sRightVal : string)
 :string(BUFSIZE)
var
 i : number;
begin
 // eliminate zero bytes in the source string
 for i:=1 to nSrcLength do
 if ord(sSource[i]) = 0 then
 sSource[i] := chr(255);
 end;
 end;
 StrSearchDelimited(BinSearchDelimited, BUFSIZE, sSource,
 sLeftVal, 1, sRightVal, 1,
 STR_SEARCH_FIRST);
end BinSearchDelimited;

Session IDs

Since many TCP/IP based protocols rely on TCP/IP connections between server and client to remain open
and active during sessions, they don't contain session IDs. Therefore the problems that can arise when
customizing test scripts for stateless protocols such as HTML often don't exist.

There are of course exceptions to this rule, so pay attention to session IDs. The TCP support in TrueLog
Explorer can be helpful in this regard.

Finding Information

Standard protocols are typically defined in Requests for Comments (RFCs). You'll find samples of these at
http://www.rfc-editor.org/rfcxx00.html. [RFC854], [RFC2355] and others are relevant to the examples
included in the following topics.

Telnet, TN3270e, and Custom Protocols
The following topics apply the theories discussed in the preceding topics to specific real-world examples.

Telnet Protocol

The introduction of RFC 854, the Telnet protocol specification, states: "The purpose of the TELNET
Protocol is to provide a general, bi-directional, eight-bit byte oriented communications facility. Its primary
goal is to facilitate the interfacing of terminal devices and terminal-oriented processes."

A Telnet session consists of two main parts:

• A connection is established, and session details and options are negotiated between client and server.

Silk Performer Workbench 20.0 | 507

http://www.rfc-editor.org/rfcxx00.html

• The application launches. From that point forward, generated traffic is user-driven.

The following Silk Performer Telnet script comes from a project in which a script was recorded and
customized from a Telnet session with VT220 terminal emulation. The client (the terminal emulation
software) is NT based and the server application resides on a Unix box.

Part I: Establishing a Connection

Here is the first part of the Telnet session recording:

WebTcpipConnect(hWeb0, "myserver", 23);

WebTcpipRecvExact(hWeb0, NULL, 3);
WebTcpipSendBin(hWeb0, "\hFFFC24", 3); // ·ü$

WebTcpipRecvExact(hWeb0, NULL, 3);
WebTcpipSendBin(hWeb0, "\hFFFB18", 3); // ·û·

WebTcpipRecvExact(hWeb0, NULL, 6);
WebTcpipSendBin(hWeb0, "\hFFFA18005654323230FFF0", 11);
 // ·ú··VT220·ð

WebTcpipRecvExact(hWeb0, NULL, 3);
WebTcpipSendBin(hWeb0, "\hFFFC20", 3); // ·ü

WebTcpipRecvExact(hWeb0, NULL, 60);

There is only one readable string in the inline comments: VT220, the terminal type. This is a first hint at the
semantics of this Telnet traffic; server and client are negotiating terminal type and various other session
settings.

In terms of script customization, nothing needs to be changed here. Silk Performer virtual users should
negotiate session settings exactly as the terminal emulation software has done here.

Nevertheless, an analysis of the record.log file, along with the information from RFC 854 (the Telnet
protocol specification), reveals how the conversation was achieved. The first part of the log is translated
into TELNET codes in the following table:

Server-to-Client Client-to-Server

FF FD 24 (IAC DO ENVIRONMENT VARIABLES)

FF FC 24 (IAC WON'T ENVIRONMENT VARIABLES)

FF FD 18 (IAC DO TERMINAL-TYPE)

FF FB 18 (IAC WILL TERMINAL-TYPE)

FF FA 18 01 FF F0 (IAC SB TERMINAL-TYPE SEND IAC
SE)

FF FA 18 00 56 54 32 32 30 FF F0 (IAC SB TERMINAL-
TYPE IS "VT220" IAC SE)

FF FD 20 (IAC DO TERMINAL-SPEED)

FF FC 20 (IAC WON'T TERMINAL-SPEED)

… …

Each command begins with the "Interpret as Command" (IAC) escape character 0xFF. Server and client
agree on a terminal type (VT220) and a number of other session settings. Telnet session settings that can
be negotiated between client and server include terminal speed, echo, "suppress go ahead," window size,
remote flow control, and more.

508 | Silk Performer Workbench 20.0

Part II: User Interaction

The second part of the script contains the user interaction. The script generated from the recording session
looks like this:

// …
 // login: send username
 WebTcpipSend(hWeb0, "t");
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipSend(hWeb0, "e");
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipSend(hWeb0, "s");
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipSend(hWeb0, "t");
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipSend(hWeb0, "u");
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipSend(hWeb0, "se");
 WebTcpipRecvExact(hWeb0, NULL, 2);
 WebTcpipSend(hWeb0, "r");
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipSend(hWeb0, "\r");
 WebTcpipRecvExact(hWeb0, NULL, 2);
 WebTcpipRecvExact(hWeb0, NULL, 10);
 // login: send password
 WebTcpipSend(hWeb0, "password\r");
 WebTcpipRecvExact(hWeb0, NULL, 2);
 WebTcpipRecvExact(hWeb0, NULL, 230);
 WebTcpipRecvExact(hWeb0, NULL, 47);
 WebTcpipRecvExact(hWeb0, NULL, 58);
 WebTcpipRecvExact(hWeb0, NULL, 40);
 WebTcpipRecvExact(hWeb0, NULL, 594);
 WebTcpipRecvExact(hWeb0, NULL, 340);
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipRecvExact(hWeb0, NULL, 188);
 WebTcpipRecvExact(hWeb0, NULL, 147);
 // Choose "1" from main menu and hit RETURN
 ThinkTime(7.0);
 WebTcpipSend(hWeb0, "1");
 WebTcpipRecvExact(hWeb0, NULL, 1);
 WebTcpipSend(hWeb0, "\r");
 WebTcpipRecvExact(hWeb0, NULL, 2);
 WebTcpipRecvExact(hWeb0, NULL, 7);
 WebTcpipRecvExact(hWeb0, NULL, 21);
 WebTcpipRecvExact(hWeb0, NULL, 691);
 // …

As you can see from the inline comments, this part of the script contains a login process (account name
and password), followed by the selection of an item from a main menu (by hitting the 1 and <RETURN>
keys).

If you leave a recorded script unchanged, it will typically play back without problems. However changes do
have to be applied to scripts for data parameterization, and response verification.

Each keystroke is sent to the server as a single byte (without header or footer). The log file reveals that the
server sends back the same byte as an echo:

WebTcpipSend(hWeb0, "s");
WebTcpipRecvExact(hWeb0, NULL, 1);
TcpipServerToClient(#432, 1 bytes)
{
 s
}

Silk Performer Workbench 20.0 | 509

Looking back at the recorded script, you'll find that the sending of the password, as opposed to the sending
of the user login name, doesn't trigger a sequence of echoes. This is because the password isn't supposed
to appear on the terminal screen.

Note that the communication is full duplex. This means that both server and client can send
simultaneously; they don't have to wait for each other. In the above example, you can see the result of this
in the lines:

WebTcpipSend(hWeb0, "se");
WebTcpipRecvExact(hWeb0, NULL, 2);

Here, because of rapid typing during the recording session, the echo s came back only after the e
keystroke had been sent to the server.

Once the password is sent, a number of WebTcpipRecvExact statements follow in the above code. In the
recording's log file, one of these statements looks like this:

TcpipServerToClientBin(#432, 59 bytes)
{
 00000000 [8;19H·[;7m+--- 1B 5B 38 3B 31 39 48 1B 5B 3B 37 6D 2B 2D 2D 2D
 00000010 ---Hinweis: Kein 2D 2D 2D 48 69 6E 77 65 69 73 3A 20 4B 65 69 6E
 00000020 Kunde gefunden- 20 4B 75 6E 64 65 20 67 65 66 75 6E 64 65 6E 2D
 00000030 ------+·[m· 2D 2D 2D 2D 2D 2D 2B 1B 5B 6D 0A
}

The server response contains plain text as well as meta information, such as text position and format (note
that in German, "Hinweis: Kein Kunde gefunden" means "Message: No customer found").

In this Telnet example, determining when the server response is complete is challenging. First, the packet
length is not included in the response data (Case I). Second, there is no termination byte sequence (Case
II). Therefore this example represents Case III: No information on response packet size from section
“Dynamically Receiving Server Responses”.

Note: In other Telnet based projects, you may find terminator strings in server response data (for
example, the command prompt character). This depends entirely on the application under test.

To solve this problem generically, a TelnetReceive-Response function that accepts incoming server
responses of unspecified length in a loop is written. The loop is terminated when the client waits for a new
response packet for more than a specified number of seconds. The corresponding function code is
included later in this section.

Looking at the same part of the script after customization, the structure is more visible, and the server
responses are handled by the new function. Note that complete strings can be sent to the server, as
opposed to sending each key stroke as a single packet. You consequently don't have to wait for each echo
character individually, because they can be read asynchronously (due to the full-duplex nature of the Telnet
protocol) after sending the complete request.

// Login: Send Username
WebTcpipSend(hWeb0, "testuser\r");
TelnetReceiveResponse(hWeb0, 1.0, "Login: Username");

// Login: Send Password
WebTcpipSend(hWeb0, "password\r");
TelnetReceiveResponse(hWeb0, 5.0, "Login: Passwort");

// Choose "1" from main menu and hit RETURN
WebTcpipSend(hWeb0, "1\r");
TelnetReceiveResponse(hWeb0, 5.0, "Choose 1 from menu");

The TelnetReceiveResponse function eliminates the need to wait for incoming server data for
appropriate periods of time. It takes three parameters:

hWeb0: Is the handle of the open TCP connection

510 | Silk Performer Workbench 20.0

fTimeout: Defines how to decide when the server response is complete: If after fTimeout seconds, no
further server response is available, the function returns.

sAction: This string is used for appropriate naming of the custom timer, and can be used for logging and
debugging purposes.

Example

function TelnetReceiveResponse(hWeb0: number;
 fTimeout: float;
 sAction: string): number
var
 sData: string(4096);
 nRecv: number;
 nRecvSum: number;
 fTime: float;

begin
 gsResponse := "";
 nRecvSum := 0;

 MeasureStart(sAction);

 while WebTcpipSelect(hWeb0, fTimeout) do
 if NOT WebTcpipRecv(hWeb0, sData, sizeof(sData), nRecv)
 then
 exit;
 end;
 if nRecv = 0 then
 exit;
 end;
 SetMem(gsResponse, nRecvSum + 1, sData, nRecv);
 nRecvSum := nRecvSum + nRecv;
 end;

 MeasureStop(sAction);
 MeasureGet(sAction, MEASURE_TIMER_RESPONSETIME,
 MEASURE_KIND_LAST, fTime);

 if fTime > fTimeout then
 fTime := fTime - fTimeout;
 end;
 MeasureIncFloat("RespTime: " + sAction, fTime, "sec",
 MEASURE_USAGE_TIMER);

 TelnetReceiveResponse := nRecvSum;

end TelnetReceiveResponse;

The function works as follows: It waits until a server response is ready to be read in
under fTimeout seconds (WebTcpipSelect). As soon as a server response is
available, it is received and appended to the global string variable gsResponse. The
loop terminates when the server response is empty, when the timeout is exceeded, or if
WebTcpipRecv fails for any reason.

This loop structure is necessary because often a Telnet server will send a line of
characters, nothing will happen for a couple of seconds, and then suddenly more lines
come in.

Some care must be taken when looking at these time measurements. Because of the
nature of the timeout, the time measurements usually include a final timeout period of
fTimeout seconds. This has to be subtracted from the measured time to get the true
roundtrip time measurement. This corrected time measurement is made available as a

Silk Performer Workbench 20.0 | 511

custom measurement with the name "RespTime: " + sAction and the dimension
seconds.

TN3270e Protocol

The TN3270e protocol is a method of emulating 3270 terminal and printer devices using Telnet. It is used
by terminal emulation software such as Rumba® and Hummingbird's HostExplorer® for direct connections
to mainframes.

Similar to Telnet, a typical TN3270e session consists of two main parts:

• A connection is established; session details and options are negotiated.
• The application starts, and from that point forward generated traffic is user-driven.

Part I: Establishing a Connection

The first part of a typical recorded script of a TN3270e session looks like this:

WebTcpipConnect(hWeb0, "10.19.111.201", 7230);
WebTcpipRecvExact(hWeb0, NULL, 3);
WebTcpipSendBin(hWeb0, "\hFFFB28", 3); // ·û(
WebTcpipRecvExact(hWeb0, NULL, 7);
WebTcpipSendBin(hWeb0,
 "\hFFFA28020749424D2D333237382D342D"
 // ·ú(··IBM-3278-4-
 "\h45FFF0", 19); // E·ð
WebTcpipRecvExact(hWeb0, NULL, 28);
WebTcpipSendBin(hWeb0, "\hFFFA2803070004FFF0", 9);
 // ·ú(·····ð
WebTcpipRecvExact(hWeb0, NULL, 9);
WebTcpipRecvExact(hWeb0, NULL, 347);

This looks similar to the first part of the Telnet session from the previous section because the TN3270e
protocol is based on the Telnet protocol. Again, nothing needs to be changed here. Because this is a
stateful, connection-oriented protocol, session handling is not an issue.

The traffic from the first part of the session is translated into TELNET code in the following table:

Server-to-Client Client-to-Server

FF FD 28 (IAC DO TN3270E)

FF FB 28 (IAC WILL TN3270E)

FF FA 28 08 02 FF F0 (IAC SB TN3270E SEND
DEVICE-TYPE IAC SE)

FF FA 28 02 07 49 42 4D 2D 33 32 37 38 2D 34 2D 45
FF F0 (IAC SB TN3270E DEVICE-TYPE REQUEST
"IBM-3278-4-E" IAC SE)

FF FA 28 02 04 49 42 4D 2D 33 32 37 38 2D 34 2D 45
01 54 39 35 49 54 51 4D 55 FF F0 (IAC SB TN3270E
DEVICE-TYPE IS "IBM-3278-4-E" CONNECT
"T95ITQMU" IAC SE)

FF FA 28 03 07 00 04 FF F0 (IAC SB TN3270E
FUNCTIONS REQUEST [BIND-IMAGE SYSREQ] IAC
SE)

FF FA 28 03 04 00 04 FF F0 (IAC SB TN3270E
FUNCTIONS IS [BIND-IMAGE SYSREQ] IAC SE)

In summary, server and client agree on a protocol, a device type (IBM-3278-4-E), and on whether or not to
use certain protocol features. Note that the terminal name (T95ITQMU) is assigned by the server, not the

512 | Silk Performer Workbench 20.0

client. This is because the server system holds a database that handles the mapping of client IP addresses
to terminal names.

Part II: User Interaction

The second part of the script contains the user interaction. The following request-response pair example
represents an interaction where the user enters an account number (238729) into a text field and then hits
the RETURN key:

WebTcpipSendBin(hWeb0,
 "\h00000000007DC6C61140C4F311C640F2"
 // ·····}ÆÆ·@Äó·Æ@ò
 "\hF3F8F7F2F9FFEF", 23); // óø÷òù·ï
WebTcpipRecvExact(hWeb0, NULL, 199);

Knowing that the traffic is encoded in EBCDIC (rather than ASCII), the account number can be found in the
request string using an EBCDIC code table: 238729 is represented as the binary byte sequence 0xF2 F3
F8 F7 F2 F9 in EBCDIC. This is the part that is relevant to customization; the rest may be left
unchanged.

Here's an account of the other parts of this message. The first five bytes represent the TN3270e message
header (RFC 2355):

Field Length Value in our example

Data type 1 byte 0x00 3270-DATA

Request flag 1 byte 0x00 ERR-COND-CLEARED

Response flag 1 byte 0x00 NO-RESPONSE

Sequence number 2 bytes 0x0000 Sequence numbers may or
may not be used. In this
case, they aren't.

Each client request is terminated by a two-byte sequence: 0xFF EF.

The remainder of the request data (bytes #6 - #21 in this example) is application data containing screen
positions, key codes, and text.

The server response can be analyzed in the corresponding log or TrueLog files from the recording session.
In this example, the response is a 199-byte data block beginning with five zero bytes (0x00) and ending
with 0xFF EF, just like the request data. The data content in between is similar to the request data: cursor
positions, formatting, and text content (encoded in EBCDIC).

A simple customization of the script extract above using the function library would look like this:

ResetRequestData();
AppendRequestData("\h00000000007DC6C61140C4F311C640",
 15);
AppendRequestData(ASC2EBCDIC(sAccountNr) + "\hFFEF");
SendTcpipRequest(hWeb0);
WebTcpipRecvUntil(hWeb, sResp, sizeof(sResp), nRecv,
 "\hFFEF", 2);

Here a string variable sAccountNr has been introduced for the account number (where 238729 was used
during recording). The function ASC2EBCDIC that converts between ASCII and EBCDIC is explained in the
following section.

Finally, the inflexible WebTcpipRecvExact has been replaced with WebTcpipRecvUntil, which is
appropriate here because the trailing byte sequence is known. The response data is stored in the string
variable sResp, and nRecv contains the number of received bytes.

Silk Performer Workbench 20.0 | 513

For logging and verification purposes, the server response should be translated from EBCDIC to ASCII.
For example:

Writeln("Response: " + EBCDIC2ASC(sResp, nRecv));

When necessary, single response data (such as a new ID that's needed as input data for subsequent
requests) can be extracted from this response using the StrSearchDelimited function.

Taking customization a step further, it's good practice to replace the WebTcpipRecvUntil call in the
script above with a MyWebTcpipRecv function that encapsulates all the necessary actions on server
responses:

• Call WebTcpipRecvUntil with the appropriate end byte sequence.
• Convert the response from EBCDIC to ASCII.
• Log the response to the output file (in ASCII).
• Do generic error checking on the response by searching for common error messages.
• Make the response data available as a return value or global variable for further verification or data

extraction.

In the Silk Performer script, each client request should be followed by a call to this new function, replacing
the WebTcpipRecvExact function calls from the recording session.

EBCDIC to ASCII Character Code Conversion

EBCDIC (Extended Binary Coded Decimal Interchange Code) is the data alphabet used in all IBM
computers, except personal computers. A conversion routine that translates server responses from the
EBCDIC character set to ASCII is easy to implement.

The function EBCDIC2ASC uses the code map defined by the array as EBCDIC_2_ASCII, which maps
each EBCDIC character to its ASCII equivalent. The function ASC2EBCDIC, which is required for
translating client requests from ASCII to EBCDIC, works in a similar manner.

var
 asEBCDIC_2_ASCII : array[256] of string(1) INIT
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", " ", " ", " ", " ", " ",
" ",
" ", "j", "k", "l", "m", "n", "o", "p", "q", "r", " ", " ", " ", " ", " ",
" ",
" ", "~", "s", "t", "u", "v", "w", "x", "y", "z", " ", " ", " ", " ", " ",
" ",
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ",
" ",
" ", "A", "B", "C", "D", "E", "F", "G", "H", "I", " ", " ", " ", " ", " ",
" ",
" ", "J", "K", "L", "M", "N", "O", "P", "Q", "R", " ", " ", " ", " ", " ",
" ",
" ", " ", "S", "T", "U", "V", "W", "X", "Y", "Z", " ", " ", " ", " ", " ",
" ",

514 | Silk Performer Workbench 20.0

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", " ", " ", " ", " ", " ",
" ";

function EBCDIC2ASC(pEBCDIC: string; pMaxLen: number optional)
 var
 i: number;
 begin
 //
 if pMaxLen = 0 then
 pMaxLen := Strlen(pEBCDIC);
 // writeln("length of string : " + string(pMaxLen));
 end;
 //
 // writeln("EBCDIC STRING " + pEBCDIC);
 //
 for i := 1 to pMaxLen do
 //
 //writeln("Ordinal Value:" + String(ord(pEBCDIC[i])));
 //write("Value From Array:" + asASCII_2_EBCDIC[ord(pEBCDIC[i]) + 1]);
 write(asEBCDIC_2_ASCII[ord(pEBCDIC[i]) + 1]);
 //writeln;
 //
 end;
 writeln;
 end EBCDIC2ASC;

The table below is the standard EBCDIC table for the 2780/3780 Protocol code map (taken from
[EBCDIC_CTI]). As an example, to decode the EBCDIC byte 0x83, choose row 8 and column 3. You'll find
that 0x83 maps to the letter c in ASCII.

[EBCDIC_UNI] is a reference that presents the specifications of the UTF-EBCDIC - EBCDIC Friendly
Unicode (or UCS) Transformation Format.

Silk Performer Workbench 20.0 | 515

Issues with "Keep Alive" Mechanisms

The following test script sequence was taken from a TN3270e traffic recording:

WebTcpipRecvExact(hWeb0, NULL, 3);
WebTcpipSendBin(hWeb0, "\hFFFB06", 3); // IAC WILL TIMING-MARK
WebTcpipRecvExact(hWeb0, NULL, 3);
WebTcpipSendBin(hWeb0, "\hFFFC06", 3); // IAC WON'T TIMING-MARK

In this example, the server challenges the client with a three-byte code (first line of the code above)
whenever the client is inactive for a period of time. The client responds with three-byte sequence of its own.
Such "ping pong" activity, initiated by the server, can serve as a control mechanism for detecting whether
or not a client is still active.

These lines cause problems during replay because they aren't predictable or reproducible. To address such
a situation, rather than incorporating the appropriate intelligence into a Silk Performer script, which would
be a daunting task, simply disable this feature on the server.

Some background info from RFC 860 (Telnet timing mark option):

"It is sometimes useful for a user or process at one end of a TELNET connection to be sure that previously
transmitted data has been completely processed, printed, discarded, or otherwise disposed of. This option
provides a mechanism for doing this. In addition, even if the option request (DO TIMING-MARK) is refused
(by WON'T TIMING-MARK) the requester is at least assured that the refuser has received (if not
processed) all previous data."

IP Spoofing

For successful replay of such a script with parallel virtual users, each user must use a unique IP address.

Enable the Client IP address multiplexing option in Silk Performer at Settings > Active Profile >
Internet > Optimization and configure enough IP addresses on Silk Performer agents so that each virtual
user can have a unique IP address ("IP Spoofing"). IP addresses can also be configured using the Silk
Performer System Configuration Manager at Tools > System Configuration Manager > IP Address
Manager.

Recording Rule Configuration Files

The Silk Performer recorder can be configured to generate correct WebTcpipRecvUntil calls for the
TN3270e protocol automatically using a recording rule configuration file.

Two different rules must be specified: in the first part of the session where the session parameters are
negotiated, 0xFF F0 is used as the termination sequence, while 0xFF EF serves as the termination
sequence in the 3270-DATA part of the session.

These two parts can be distinguished by checking the first byte of the response data. In the first part, it is
equal to 0xFF (Telnet code IAC - "Interpret as Command"), while it is equal to 0x00 (Code 3270-DATA,
compared to the TN3270e response header above) in the second part.

The resulting recording rule XML file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<RecordingRuleSet>
 <TcpRuleRecvUntil>
 <Name>Telnet session start</Name>
 <Identify>
 <TermData>ÿð</TermData>
 <IgnoreWhiteSpaces>false</IgnoreWhiteSpaces>
 </Identify>
 <Conditions>
 <CompareData>
 <Data>ÿ</Data>
 <ApplyTo>Left</ApplyTo>
 <Offset>0</Offset>
 </CompareData>

516 | Silk Performer Workbench 20.0

 </Conditions>
 </TcpRuleRecvUntil>
 <TcpRuleRecvUntil>
 <Name>3270-DATA</Name>
 <Identify>
 <TermData>ÿï</TermData>
 <IgnoreWhiteSpaces>false</IgnoreWhiteSpaces>
 </Identify>
 <Conditions>
 <CompareData>
 <Data>�</Data>
 <ApplyTo>Left</ApplyTo>
 <Offset>0</Offset>
 </CompareData>
 </Conditions>
 </TcpRuleRecvUntil>
</RecordingRuleSet>

Custom TCP/IP Based Protocols

The following example comes from an application that used an entirely custom TCP/IP based protocol. In
this protocol, both the client request and server response data obey a set of predefined message telegram
structures consisting of fixed-length fields. Some of the fields are binary (and may therefore contain zero
bytes) and some are string type.

Here is a typical request-response pair from the recorded traffic:

WebTcpipConnect(hWeb0, "10.9.96.81", 3311);
WebTcpipSendBin(hWeb0,
"\h00000280000000000000000000000000" // ················
"\h000100000000000000004F4B36302020" // ··········OK60
...
"\h303030302B3030303030303030303030" // 0000+00000000000
"\h30303030000000000000000000000000" // 0000············
, 640);
WebTcpipRecvExact(hWeb0, NULL, 80);
WebTcpipShutdown(hWeb0);

Here is the server response from the record log. Based on the third argument of the
WebTcpipRecvExact function in the above script, we already know that it contains 80 bytes:

00 00 00 00 ···P············ 00 00 00 50 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 10 ··········OK60 00 01 00 00 00 00 00 00 00 00 4F 4B 36 30 20 20
00 00 00 20 ··U60OKS1 SILK 20 20 00 00 55 36 30 4F 4B 53 31 20 53 49 4C 4B
00 00 00 30 01 ············ 30 31 20 20 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 40 ················ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Note: The first four bytes (0x00 00 00 50) are a representation of a four-byte integer (a long
variable) with the decimal value 80 (5 * 16 = 80). Note that the length of the entire packet is 80
bytes, hence the 4 initial bytes are included in the "packet size" variable. If available, consult protocol
documentation regarding the custom application under test. Otherwise you will have to experiment to
discover such protocol behavior on your own.

Note: The client request telegram contains the same information. The first four bytes are 0x00 00
02 80, equal to 2*256 + 8*16 = 640. This is the number of bytes sent to the server.

Here is the script after customization. Note that:

• An added pair of MeasureStart/MeasureStop functions has been added to measure the time for the
request.

• The request has been split into several pieces for parameterization, using the function library.
• The WebTcpipRecvExact function has been replaced by a call to WebTcpipRecvProto.

Silk Performer Workbench 20.0 | 517

Here is the result:

ResetRequestData();
AppendRequestData("\h00000280000000000000000000000000"
 "\h00010000000000000000", 26);
AppendRequestData("OK60 ");
AppendRequestData("\h0000", 2);
AppendRequestData(sUser + sPassword);
// ... (some more lines not displayed here)

MeasureStart("Write Journal");
WebTcpipConnect(hWeb0, "10.9.96.81", 3311);
SendTcpipRequest(hWeb0);
WebTcpipRecvProto(hWeb0, 0, 4, TCP_FLAG_INCLUDE_PROTO,
 sResponse, sizeof(sResponse), nReceived);
// ... (response verification not displayed here)
WebTcpipShutdown(hWeb0);
MeasureStop("Write Journal");

Recording Rule Configuration Files

The following recording rule XML file configures the Silk Performer recorder so that it generates the correct
WebTcpipRecvProto calls in place of WebTcpipRecvExact. The settings in the Identify node map
to the arguments of WebTcpipRecvProto in the script extract above.

<?xml version="1.0" encoding="UTF-8"?>
<RecordingRuleSet>
 <TcpRuleRecvProto>
 <Name>My custom TCP protocol</Name>
 <Identify>
 <LengthOffset>0</LengthOffset>
 <LengthLen>4</LengthLen>
 <OptionFlags>ProtoIncluded</OptionFlags>
 </Identify>
 </TcpRuleRecvProto>
</RecordingRuleSet>

Recorder Settings
Silk Performer offers two mechanisms for recording TCP/IP based protocol traffic. Socksifying such an
application is the most commonly accepted approach. There are however some scenarios in which using a
TCP proxy recorder is the better solution:

• Using the TCP proxy mechanism, Silk Performer doesn't have to run on the same machine as the client
application. This works if for example both client and server are Unix applications. Just configure them
in such a way that they connect to each other using the Silk Performer proxy residing on a Windows
box.

• Sometimes, there are numerous client application processes all connected to the same server. In such
instances it may be quicker to set up a TCP proxy than to it is to search NT's task manager for all
processes that are generating traffic.

• Configuration is easy if you only need to record on one or a small number of TCP ports.

"Socksifying" an Application

If you know the path of the client application executable that's connecting to the server, you can set up a
recording profile for the application in Silk Performer at Settings > System > Recorder > Recording
Profiles > Add.

TCP Proxy Recorder

An alternative solution involves using a TCP/IP proxy recorder. As a prerequisite, you must be able to
control the server name and TCP port number the client application connects to. Typically, these settings

518 | Silk Performer Workbench 20.0

can be found in the registry or in a configuration file. Then, you can configure Silk Performer and the client
application so that traffic is explicitly routed over the Silk Performer recorder.

Assuming that the client connects to MYSERVER on port 5012, you would change these settings to
LOCALHOST and port 49152 (or any other unused TCP port) in the registry or appropriate configuration
file. In Silk Performer, choose Settings > System > Recorder > Proxies > Add. Add a new proxy, and
configure it as a TCP proxy listening on port 49152, connecting to the remote host MYSERVER on port
5012.

In this way, the following scenario is configured:

The client application doesn't notice a difference in performance when the recorder is running. This is in
contrast to the scenario in which the client is connected directly to the server.

Load Testing PeopleSoft
This section explains how to use Silk Performer to load test PeopleSoft applications. It explains how to use
the PeopleSoft SilkEssential package to record and customize PeopleSoft scripts for realistic simulation of
virtual users.

Specifying the PeopleSoft Project Type

1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. In the Type menu tree, select ERP/CRM > PeopleSoft.

5. Click Next to create a project based on your settings.

Script Modeling
Script modeling for PeopleSoft transactions is straightforward. Recorded scripts work without any required
modification, however by following a few standard customization steps after recording, you can get more
out of recorded scripts. Recorded scripts are designed to make the process quick and easy.

Recording

Before recording, make sure that the project has been created based on the PeopleSoft project type.
Record user interactions in a single BDL transaction. Ensure that the transaction begins with the sign-in
process and ends with the sign-out process. Do not use the back button of your browser as this is generally
problematic for highly state-dependent web applications such as PeopleSoft.

Silk Performer Workbench 20.0 | 519

PeopleSoft scripts have a standard structure. Apart from the sign-in and sign-out processes, there are
basically two types of user interaction involved:

• Navigation in the menu tree
• Work in the work area

Inclusion of PeopleSoft API Functions

The recorded script contains a use statement for PeopleSoft8Api.bdh, a BDH file that contains
PeopleSoft specific API functions. It also contains PeopleSoftInit(), the initialization function call in
the TInit transaction (see the example below).

This initializes the PeopleSoft framework contained in several BDH files of the PeopleSoft SilkEssential
package. It also enables global verification rules to catch PeopleSoft specific application-level errors. This
is especially useful when used in conjunction with the TrueLog On Error option.

In addition, it enables global parsing rules for the parsing of dynamic form names. Parsed form names are
available in the global variable gsFormMain.

Example: Initializing PeopleSoft API functions

benchmark SilkPerformerRecorder

use "WebAPI.bdh"
use "PeopleSoftApi.bdh"

dcluser
 user
 VUser
 transactions
 TInit : begin;
 TMain : 1;

var
 // ...

dclrand

dcltrans
 transaction TInit
 begin
 WebSetBrowser(WEB_BROWSER_MSIE6);
 WebModifyHttpHeader("Accept-Language", "en-us");
 WebSetStandardHost("crm.ps.my.company.com");
 PeopleSoftInit();
 //GetLoginInfoPS("LoginPS.csv", gsUserId, gsPassword);
 //WebSetUserBehavior(WEB_USERBEHAVIOR_FIRST_TIME);
 //WebSetDocumentCache(true, WEB_CACHE_CHECK_SESSION);
 end TInit;

Wrapper Functions

The BDH files contain wrapper functions for all page-level API functions. These wrapper functions call the
original API functions and perform some additional tasks.

The following wrapper functions are defined:

Wrapper function Wrapped original function

WebPageUrlPS WebPageUrl

520 | Silk Performer Workbench 20.0

Wrapper function Wrapped original function

WebPageLinkPS WebPageLink

WebPageSubmitPS WebPageSubmit

WebPageSubmitBinPS WebPageSubmitBin

WebPageFormPS WebPageForm

WebPageFileUploadPS WebPageFileUpload

Sign-In and Sign-Out

Recorded scripts should begin with the sign-in process and end with the sign-out process, as shown in the
example below. The BDH files define and the recorder records, the functions HomepagePS, SignInPS and
SignOutPS.

Example: Recorded sign-in and sign-out processes
var
 gsHomepageUrl : string init "http://standardhost/psp/ps/
?cmd=login";

transaction TMain
begin
 HomepagePS(gsHomepageUrl, "PeopleSoft 8 Sign-in");
 ThinkTime(6.0);
 SignInPS("login", LOGIN002, "EMPLOYEE"); // Form 1

 // more function calls ...
 SignOutPS(gsSignoutUrl, "PeopleSoft 8 Sign-in");
end TMain;

These function calls do not require customization. the SignInPS function parses the sign-out URL to the
gsSignoutUrl variable, and the recorded script uses the variable in the SignOutPS function call. The
recorder records the URL of the homepage into a variable for easy customization.

Navigation in the Menu Tree

Navigation in the menu tree is recorded by a WebPageLinkPS call that uses a custom hyperlink from a
WebPageParseUrl call of a previous API call.

Example: Recorded navigation in the menu tree

This process does not require any modification:

WebPageParseUrl("JavaScript Link in page EMPLOYEE",
 "DEFINITION\",\"", "\"",
 WEB_FLAG_IGNORE_WHITE_SPACE);
WebPageLinkPS("Home", "EMPLOYEE"); // Link 1

WebPageLinkPS("JavaScript Link in page EMPLOYEE",
 "CR_PRODUCT_DEFINITION", 3);

Interaction in the Work Area

User interaction in the work area is recorded by a WebPageSubmitPS call. The form relies on the form
field attribute USE_HTML_VAL, and thus ensures proper context management without customization.

The form name may change dynamically. While the form name is usually main or win (depending on the
PeopleSoft version), it may, depending on server load, become main1, main2, win1, win2, and so on.

Silk Performer Workbench 20.0 | 521

Because of this, the recorder records a WebPageSubmitPS(NULL, ...) function call that references the
form by ordinal number rather than form name.

However, the BDH files implement global parsing for the dynamic form name during script execution, so the
actual form name of the current page is always available in the global variable gsFormMain.

Example: User interaction within the work area

WebPageSubmitPS(NULL, MAIN005, "Product Definition", 4); // Form 4

The above example shows a WebPageSubmitPS function, which references the dynamic form by its
ordinal number on the page.

The next example shows a typical submitted form. There is no need for customization of session or state
management here because of the USE_HTML_VAL attributes. The only customization that may be required
is the randomization of input values.

Example: Submitted form
MAIN008:
"ICType" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "Panel"
"ICElementNum" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "0"
"ICStateNum" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "5"
"ICAction" := "#ICSearch",
 // hidden, changed(!)
"ICXPos" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "0"
"ICYPos" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "0"
"ICFocus" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: ""
"ICChanged" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "-1"
"RBF_PRD_DF_SRCH_SETID" := "" <USE_HTML_VAL> ,
 // unchanged, value: ""
"RBF_PRD_DF_SRCH_PRODUCT_ID" := "" <USE_HTML_VAL> ;
 // unchanged, value: "NEXT"

Script Customization

The PeopleSoft SilkEssential package contains some utility functions that can be accessed through manual
script enhancement to get more from recorded scripts. This section describes these optional steps.

Customizing Think Times

The recorder of Silk Performer records think times as they occur during recording. Often however, this is
not what is required. The PeopleSoftApi.bdh file provides a substitute for the ThinkTime API function
that is called ThinkTimePS.

function ThinkTimePS(fTime : float optional;
 bForceThinkTime : boolean optional);

To customize the script, click Edit in the menu and click Replace. In the Replace dialog box, replace all
ThinkTime function calls with ThinkTimePS function calls.

The behaviour of the ThinkTimePS function depends on the value of the bForceThinkTime parameter.
When bForceThinkTime is set to false (the default value), ThinkTimePS ignores the value of the fTime
parameter and calls the ThinkTime API function with the value of the ThinkTimePS project attribute. The

522 | Silk Performer Workbench 20.0

behaviour follows the usual thinktime-related profile settings (for example stresstest, random think time,
exponential/uniform distribution, think time limited to x seconds, and so on).

When bForceThinkTime is set to true, ThinkTimePS calls the ThinkTime API function with the value
of the parameter fTime and the OPT_THINKTIME_EXACT option. This results in a think time that is exactly
as specified, regardless of profile settings and project attributes.

There are two project attributes available for customizing the behaviour of the ThinkTimePS function.
Click Project in the menu and click Project Attributes to access these attributes:

• ThinkTimePS (float): Think time value used by ThinkTimePS when bForceThinkTime is false. Unit:
Seconds; Preset: 10.0

• ForceThinkTime (boolean): Allows for global override of the bForceThinkTime parameter of the
ThinkTimePS function. Preset: false

Uniquely Seed Randomness

To improve the randomness of script execution, it can be advantageous to uniquely seed the random
number generator for each virtual user. This is done by changing the value of the
UniquelySeedRandomness project attribute to true.

Customizing Timer Names

For easier results analysis, it is desirable to have timer names that can be sorted based on their
occurrence in scripts and amended with additional information. To accomplish this, the wrapper functions
amend original timer names with additional information.

Project attributes can be used to include any combination of the following items in amended timer names:

• Agent name
• Transaction name
• Modem emulation speed
• Page counter for the current transaction

The WebPage*PS wrapper functions keep track of internal page numbers, which are prepended to timer
names when this option is selected in the project attributes. While page numbers are automatically reset to
0 at the end of each transaction, you can manually reset the page counter at any time by calling the
ResetPageCount function.

You may also call the IncPageCount function to manually increment the internal page counter. This is
useful for keeping a consistent page counter after an unbalanced if statement.

The WebPage*PS wrapper functions also allow you to specify a specific value for the page counter. This
value may be passed as the parameter where the frame name is passed in the original wrapped functions.

Note: Wrapper functions do not allow you to pass a frame name. This rule is also obeyed by the
recorder. You may pass the special value PAGE_NUMBER_KEEP to reuse the current page counter,
rather than increment it.

Targeting a Different Server

Recorded scripts contain a call to WebSetStandardHost in the TInit transaction.

Example: Call to WebSetStandardHost as recorded
transaction TInit
begin
 // ...
 WebSetStandardHost("crm.ps.my.company.com");
 // ...
 PeopleSoftInit();
end TInit;

Silk Performer Workbench 20.0 | 523

There are three options for targeting a different server:

1. Edit the recorded WebSetStandardHost function call.
2. Delete the recorded WebSetStandardHost function call and specify a standard host in the profile

settings.
3. Specify a different standardhost in project attributes. These project attributes will be evaluated in the

PeopleSoftInit() function call and will therefore override the recorded WebSetStandardHost
function call.

Enable Server-Side Tracing

PeopleSoft offers the option to enable detailed server-side tracing for individual login session. Scripts
should be recorded without tracing being enabled, because this would enable tracing for all virtual users.

Instead, server-side tracing can be enabled on a virtual user basis by inserting a call to the
EnableTracingPS function in the TInit transaction, as shown in the sample below. The form used for
login must be passed to this function. It is important to note that tracing should only be enabled for
individual virtual users. Enabling tracing for all virtual users would impose significant overhead on servers
and could skew test results.

Enabling tracing for one virtual user
transaction TInit
begin
 // ...
 PeopleSoftInit();
 if GetUserId() = 1 then
 EnableTracingPS(LOGIN001);
 end;
end TInit;

dclform
 LOGIN001:
 "httpPort" := "" <USE_HTML_VAL> ,
 "timezoneOffset" := "-60",
 "userid" := gsUserId,
 "pwd" := gsPassword,
 "Submit" := "" <USE_HTML_VAL> ;

Tracing options can be modified by editing the Tracing.csv file, which is available in the Data Files
node of the project tree view.

Randomizing Table Row Selection

PeopleSoft pages often contain tables, for example lists of search results. Clicking an item within such a
table returns a form where the ICAction field is set to #ICRowX, where X denotes the ordinal number of
the selected row.

Example: Form submitted while selecting an item in a table
dclform
 MAIN003:
 "ICType" := "" <USE_HTML_VAL> ,
 "ICElementNum" := "" <USE_HTML_VAL> ,
 "ICStateNum" := "" <USE_HTML_VAL> ,
 "ICAction" := "#ICRow9", // hidden, changed(!)
 "ICXPos" := "" <USE_HTML_VAL> ,
 "ICYPos" := "" <USE_HTML_VAL> ,
 "ICFocus" := "" <USE_HTML_VAL> ,
 "ICChanged" := "" <USE_HTML_VAL> ,
// ...

524 | Silk Performer Workbench 20.0

To accurately randomize or customize such forms, you must determine the number of table rows.

There are four functions that assist with this:

• GetMaxRowNr returns the maximum valid row number (for example in a table with 47 rows the
maximum valid row number is 46, since row numbers are zero-based). If the current page does not
contain a table, it returns -1.

• GetRowCount returns the number of rows on the current page. If the current page does not contain a
table, it returns 0.

• GetRndRowStr returns a valid, random row string.
• FindICRow(sStringToFind : string) : string returns the row string of the first row that

contains the given text.

In the example below the GetRndRowStr function is used to randomize the selection of an item in a table.

Example: Randomizing the selection of an item in a table
dclform
 MAIN003:
// ..
 "ICStateNum" := "" <USE_HTML_VAL> ,
 "ICAction" := GetRndRowStr(),
 "ICXPos" := "" <USE_HTML_VAL> ,
// ...

Application-Level Errors
PeopleSoft does not use HTTP response status codes to indicate application-level errors. Instead, it
returns HTML with status code 200 Success, even when the HTML contains error messages.

There are two error message types:

• Error messages embedded in HTML.
• Error messages in the parameters of JavaScript functions (Alert) that display dialog boxes.

Additionally, not all messages that are displayed with an Alert function are error messages. Some
messages are simply informational, for example: Record has been saved.

If severe errors occur, transactions should not be continued.

Using the PeopleSoft SilkEssential package, recorded scripts are automatically able to handle application-
level errors. When severe errors occur, errors of SEVERITY_TRANS_EXIT severity are raised and virtual
users gracefully terminate their transactions by signing out. It is strongly recommended to enable the
Trulog On Error option to fully benefit from this feature.

Customizing Error Messages in HTML

Lists of specific error messages are contained in the AppErrors.csv and AlertSeverities.csv files,
which can be edited by double-clicking them in the Data Files section of the project tree view. These lists
are based on significant consulting experience and meet the needs of most users. If however you feel that
certain error messages are missing, or you wish to add additional error messages, you can customize
these files.

Customizing Error Messages in HTML

The AppErrors.csv file contains error messages that cause errors to be raised when they occur in HTTP
responses. Each row defines one error message across three columns:

• Severity: Specifies the severity of error that is to be raised. Values in this column must begin with S, I,
W, E, or T (signifying the severities Success, Informational, Warning, Error, or Transaction
Exit).

Silk Performer Workbench 20.0 | 525

• Data or Html: Specifies whether the entire HTTP response should be searched for the error message
(API function WebVerifyData), or whether only the visible HTML content should be searched for the
error message (API function WebVerifyHtml). Values in this column must begin with either D or H.

• Error String: The text of the error message. If you want to catch a set of error messages that have a
common substring, it is good practice to enter only one entry where the Error String is the common
substring. Example: If you have 100 different error messages, which all begin with Microsoft SQL
error:, it is sufficient to have one list entry with the Error String "Microsoft SQL error:.

The AppErrors.csv file can be edited to meet your needs.

Customizing Alerts

Alerts are pop-up windows that are implemented by a JavaScript function called Alert. This function is
called from the onload section of HTML pages.

Example: Alert in an HTML response
<body·class='PSPAGE'··onload="
 processing_main(0,3000);
 setKeyEventHandler_main();
 self.scroll(0,0);
 setEventHandlers_main('ICFirstAnchor_main',
 ·'ICLastAnchor_main',·false);
 setupTimeout();
alert('Highlighted·fields·are·required.·(15,30)
>

The error detection mechanism detects any alert contained in a HTML response and treats it as being an
error of SEVERITY_TRANS_EXIT severity. Known alerts that are to be ignored or reported with another
severity can be specified in the AlertSeverities.csv file.

Each known alert message is represented by a single row in the AlertSeverities.csv file, across two
columns:

• Severity: Specifies the severity of error that is to be raised. Values in this column must begin with N, S, I,
W, E, or T (signifying the severities None (=ignore), Success, Informational, Warning, Error
or Transaction Exit).

• Alert String: The text of the alert string (or fragment thereof).

Alert messages are reported with the actual alert text, prefixed with the gsAlertMsgPrefix global
variable. This variable contains an empty string by default, but can be assigned any value at anytime during
script execution to meet your reporting needs.

Parameterization
The recorder can create variables for certain strings that appear in scripts. This makes script customization
and randomization easier.

Sign-In Data

The user names and passwords that are used for sign-in are created as variables at the top of a script. The
recorder also records a commented call to the GetLoginInfoPS function in the TInit transaction. The
GetLoginInfoPS function retrieves values for the gsUserId and gsPassword variables from the
LoginPS.csv file, which can be edited by double-clicking it in the Data Files section of the project tree
view.

Customization of login data is done by uncommenting the recorded GetLoginInfoPS function call and
populating the LoginPS.csv file with valid user accounts from your PeopleSoft application.

526 | Silk Performer Workbench 20.0

Example: Sign-in data created as variables

var
 gsUserId : string init "Admin";
 gsPassword : string init "Secret";
 // ...

 transaction TInit
 begin
 // ...
 PeopleSoftInit();
 //GetLoginInfoPS("LoginPS.csv", gsUserId, gsPassword);
 // ...
 end TInit;

 transaction TMain
 begin

 // ...

 SignInPS("login", LOGIN001, "EMPLOYEE"); // Form 1

 // ...

 end TMain;

dclform

 // ...

 LOGIN001:
 "httpPort" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: ""
 "timezoneOffset" := "-120",
 // hidden, changed(!)
 "userid" := gsUserId,
 // changed, value: "Admin"
 "pwd" := gsPassword,
 // changed, value: "Secret"
 "Submit" := "" <USE_HTML_VAL> ;
 // unchanged, value: "Sign In"

Input Values

Form field values that begin and end with underscores, or begin with inp., are treated as input values.
The recorder generates variables at the top of a script for these values. this makes randomization of input
values easier.

Example: Variables created for input values

var
 gsInput_NewProduct : string init "_New Product_";
 gsInput_inp_Customer : string init "inp.Customer";

 // ...

dclform

 // ...

 MAIN009:
 "ICType" := "" <USE_HTML_VAL> ,

Silk Performer Workbench 20.0 | 527

 // hidden, unchanged, value: "Panel"
 "ICElementNum" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "0"
 "ICStateNum" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "6"
 "ICAction" := "#ICSave",
 // hidden, changed(!)
 "ICXPos" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "0"
 "ICYPos" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "0"
 "ICFocus" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: ""
 "ICChanged" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: "0"
 "ICFind" := "" <USE_HTML_VAL> ,
 // hidden, unchanged, value: ""
 "PROD_ITEM_DESCR" := gsInput_NewProduct,
 // changed, value: "_New Product_"
 "PROD_ITEM_EFF_STATUS" := "A",
 // added
 "RBF_ARRA_WRK_PROD_ATTR_CATEGORY" := "",
 // added
 "PRD_KIT_ARR_FLG1" := "" <USE_HTML_VAL> ,
 // unchanged, value: "S"
 "DESCR$0" := "" <USE_HTML_VAL> ,
 // unchanged, value: ""
 "RBF_ARRA_PRD_VW_DESCR$0" := "" <USE_HTML_VAL> ,
 // unchanged, value: ""
 "RBF_PROD_ARGMT_RAISE_PCT$0" := "" <USE_HTML_VAL> ,
 // unchanged, value: ""
 "RBF_PROD_ARGMT_REDUCTION_PCT$0" := "" <USE_HTML_VAL> ,
 // unchanged, value: ""

HLS Support
HTTP Live Streaming (HLS) is an HTTP-based communications protocol for media streams. HLS has been
widely adopted for video and audio delivery across the industry around the world. No matter if embedded
in a web page or consumed through a standalone video player, Silk Performer automatically detects HLS
traffic during recording and simulates a video player consuming HLS data during playback.

Silk Performer provides the BDL functions HlsInit and HlsPlay to load test audio and video delivery
systems in on-demand or live streaming scenarios.

Silk Performer provides comprehensive statistics and metrics for streams and reliably detects stoppages
due to bandwidth constraints or server issues.

Load Testing in Specific Environments
Silk Performer supports testing within a variety of computing environments.

Silk Performer CloudBurst

Overview
Silk Performer CloudBurst offers an affordable and flexible approach to confirming whether the system
under test meets your performance requirements. CloudBurst enables you to rent virtual infrastructure,
virtual users, or a combination of the two for as long as you need them.

528 | Silk Performer Workbench 20.0

With CloudBurst you can run load tests without permanent licenses. You are charged on a per-use basis,
up to a number of concurrently executed virtual users within a 24-hour testing period.

The CloudBurst virtual infrastructure is made available to you in the form of pre-configured, ready-to-use
cloud agents, which can be deployed across multiple geographical regions. You can even combine pay-per-
usage CloudBurst virtual agents with other agents you may have access to in your on-premise testing
infrastructure (using a permanent Silk Performer license), all within the same load test.

If you choose to run tests with workload that requires additional virtual users beyond what your permanent
Silk Performer license offers, you can use your CloudBurst license to deliver the additional virtual users on
a pay-per-use basis.

CloudBurst Infrastructure

Cloud computing and Silk Performer CloudBurst extend the capabilities of traditional load testing. Silk
Performer CloudBurst allows you to deploy agents in the cloud and let them load test all your applications,
no matter if they are hosted on-premise or in the cloud. In addition, you can use a CloudBurst VPN to test
your internal (non-Internet-facing) applications.

The diagrams below illustrate the basic concept behind CloudBurst. The first diagram shows how the cloud
is used as a platform for Silk Performer agents that run tests against an Internet-facing application (the
System Under Test).

The second diagram shows a hybrid scenario: Besides the agents that reside in the cloud, additional local
agents, which reside in the local intranet, are used. This allows you to set up a number of agents that
access your System Under Test from various locations. With the help of CloudBurst, you can define a
broad range of regions, which provides you with comprehensive performance data.

Furthermore, such a combined setup provides you with the best possible test results: While cloud agents
provide a realistic simulation of end-users through the Internet (and also help to detect performance
issues), the local agents can be used for conventional performance testing and for identifying performance
issues and bottlenecks.

Silk Performer Workbench 20.0 | 529

Advantages of Using CloudBurst

Load testing with cloud agents offers a number of advantages:

• Availability: Cloud agents are available within minutes. You save time, because no setup or
maintenance work is required, as it is with physical machines.

• Scalability: The number of cloud agents is scalable. No matter if you need hundreds or just two of them
- you can increase or decrease their number at any time. By default, Silk Performer offers a certain
amount of cloud agents. If you require more cloud agents, get in touch with support.

• Deployment: Cloud agents can be deployed easily and quickly. You can choose your cloud agents from
a variety of regions across the globe.

• Maintenance Cost: With CloudBurst, you save maintenance cost: You only pay for the time your cloud
agents are actually running.

• Cloud Agent Manager: All cloud-related settings can be managed easily with a single intuitive tool: the
Cloud Agent Manager.

CloudBurst Offerings

Silk Performer CloudBurst is available in two forms:

Silk Performer CloudBurst SaaS is an online, self-service offering that does not require you to speak with
a sales representative. To take advantage of this service, register on the Micro Focus Build Portal. You can
purchase Micro Focus Credits using your credit card. Once you have filled your pre-paid account with Micro
Focus Credits, you can use the credits to purchase the virtual infrastructure and/or virtual users you need
to successfully run your performance tests.

Before you launch virtual agents or consume virtual user resources from CloudBurst for your load tests,
Silk Performer will confirm your approval that your CloudBurst account can be debited.

Terms and conditions of CloudBurst SaaS are available on the Micro Focus Build Portal.

Silk Performer CloudBurst Enterprise is designed for enterprise customers and requires that you contact
a sales representative. CloudBurst Enterprise offers the same functionality as CloudBurst SaaS, however
different terms and conditions apply. Silk Performer CloudBurst Enterprise is available as prepaid model
similar to the self-service model in CloudBurst SaaS and as pay-as-you-go model, where you are charged
monthly according to your Micro Focus Credits consumption.

530 | Silk Performer Workbench 20.0

https://build.microfocuscloud.com/
https://build.microfocuscloud.com/

Working with CloudBurst

Cloud Agent Manager

To start the Cloud Agent Manager, click Tools in the Silk Performer menu and click Cloud Agent
Manager. Then, login to an existing account or register.

The Cloud Agent Manager is an easy to use tool for managing all your CloudBurst tasks. It provides the
following features:

• Reserve Addresses: Reserve IP addresses for your cloud agents. This ensures that your cloud agents
keep the same IP addresses, which prevents you from regularly recurring work like specifying IP
address exceptions for your firewall.

Note: IP addresses are perpetually reserved for 24-hour time periods until you release the IP
addresses.

• Release Addresses: Release IP addresses you have had reserved.
• Start Agents: Start cloud agents to use them in a load test. On the Start Agents dialog, you can

specify the number of agents per region as well as how and when the agents are supposed to be shut
down.

• Stop Agents: Manually stop agents when you no longer need them. On the Manage your Cloud
Agents dialog, you can also see when the agents are automatically shut down, if an automatic
shutdown behavior had been specified.

• Configure VPN: Configure a CloudBurst VPN to enable testing a machine that is part of your secured
company network.

• Refresh: Refreshing the displayed data is useful as it may take some time before agents you start
become available in the cloud.

• Logout: You can find the logout button on the bottom right of the window.

Close the window to exit the Cloud Agent Manager. The list of available agents on the Workload
Configuration dialog box is updated automatically.

CloudBurst Connectivity Requirements

Controller

To use CloudBurst, a controller machine must be connected to the Internet by one of the following
methods:

• direct connection
• HTTP Proxy (no authentication)
• HTTP Proxy (basic authentication)
• HTTP Proxy (NTLM authentication)
• HTTP Proxy (Kerberos authentication)

If a proxy server is present, the server must allow the HTTP CONNECT method to port 443.

Cloud Agents

A cloud agent is a virtual image. Communication between the controller and cloud agents is conducted
over an HTTPS connection. The cloud agent allows for unrestricted outbound traffic. Inbound traffic is
limited to port 443 and the HTTPS protocol.

Downloading Results from Cloud Agents

When a load test is completed, Silk Performer automatically downloads all results from your cloud agents.
However, when the connection to the cloud agents is lost, the following applies:

Silk Performer Workbench 20.0 | 531

• If the connection is lost during the execution of a load test, the controller tries to retrieve the results
when the load test is completed. However, these results are not merged with the rest of the results. In
such a case, Silk Performer will notify you with a message that results from disconnected agents are
available in the results folder.

• If the connection is lost during the download process, Silk Performer will try to restart the download
process and will add the results to the rest of the results. Usually, as a user, you will not notice any
difference.

• You can also manually download results: In the Cloud Agent Manager, right-click an agent and click
Retrieve Results. A dialog opens, containing a list of all the results. Specify a target folder and
download the results to your machine.

Configuring Java for Cloud Agents

If you want to use Java-related technology on cloud agents, you might have to define the path to the java
runtime environment (JRE). The 64-bit JRE is located in C:\Program Files\Java\JRE. The 32-bit JRE
will be found automatically.

CloudBurst VPN
Company networks are usually protected by one or more firewalls, which typically block any unknown
incoming traffic. If you intend to use cloud agents to test an application on a server environment that is part
of your company network, you have the following options:

• Make the system under test accessible from the internet by configuring the company firewall for port
forwarding or DMZ operation. Your IT department will help you with this task. Note that due to restrictive
company policies, this option might be difficult to implement.

• Configure a CloudBurst VPN, a virtual private network between the cloud agents and a routing device
within the company network, which allows the agents to access the system under test in the company
network via proven and secure VPN technologies. The routing device forwards the incoming traffic
between the system under test and the cloud agents.

To learn how to correctly configure a CloudBurst VPN, see Configuring a CloudBurst VPN.

Note: CloudBurst VPN is based on the UDP (User Datagram Protocol). It works through firewalls,
which allow to establish UDP communication initiated from the router appliance (on-premise).
Furthermore, operation through an HTTP proxy is not supported.

Basic Concept Behind CloudBurst VPN

Note: This topic is supposed to help you understanding the basic concept behind CloudBurst VPN. To
learn how to actually configure a CloudBurst VPN, see Configuring a CloudBurst VPN.

The basic steps to configure a CloudBurst VPN are:

1. Open the CAM (Cloud Agent Manager)
2. Add a VPN configuration
3. Download the VPN router appliance and install it on the routing device
4. Start one or more cloud agents. Once the VPN is operational running cloud agents will automatically

join it. Note that you can start agents any time, before or after the VPN configuration

The following paragraph explains what happens in the background when a VPN is configured. Take a look
at the graphic below to get a better idea of the concept behind the process:

1. When you open the CAM and start cloud agents, the CAM connects to the Silk Performer CloudBurst
Service and requests cloud agents to be launched.

2. The CloudBurst Service updates the CAM about all cloud agents and their status.
3. When you add a VPN configuration, the CAM connects to the CloudBurst Service, which tells the Cloud

Agents to act as VPN Servers.
4. When you download the VPN router appliance and install it on the routing device (Router), the device

acts as VPN Client.

532 | Silk Performer Workbench 20.0

5. The VPN Client/Router requests the VPN details from the CloudBurst Service along with the list of
available cloud agents.

6. The VPN Client/Router connects to the Cloud Agents/VPN Servers.
7. The Cloud Agents/VPN Servers connect to the specified DNS Server to check if the company network

can be reached.
8. When you start a load test, the Cloud Agents can use the connection through the Firewall and through

the VPN Client/Router to put load onto the System Under Test (SUT).

Configuring a CloudBurst VPN

1. In the main menu, click Tools > Cloud Agent Manager.

2. Login to your CloudBurst account with your user name and password.

3. Click Start Agents, enter the desired amount of agents per region, and click Start. The Status column
displays Starting. When the agents are started, the column displays Ready.

4. Click Configure VPN and click Add.

5. Enter a Name for your VPN configuration.

6. Enter the hostname of your System Under Test (SUT) and click Get network settings. The Cloud
Agent Manager (CAM) then tries to resolve the IP address of the SUT. Based on that IP address, all
company network settings are filled in automatically.

7. If the SUT cannot be reached, an information dialog box displays. This is generally the case when your
machine and the SUT are not in the same subnet and when your machine is not allowed to access the
subnet of the SUT. In such a case, fill in the company settings manually.

Note: If you have problems finding out the correct settings, contact your system or network
administrator.

8. Make sure that Activate VPN immediately is checked and click OK. The State column displays
Preparing VPN.

9. When the State column displays Waiting for router, click the link download router image. This will
download an appliance for the virtual machine software VirtualBox.

10.Transfer the appliance to the routing device.

Note: The router appliance must be located in the same network segment as the System Under
Test (SUT). If this is not possible, contact TechSupport for further instructions.

11.If you have not installed VirtualBox on the routing device, download the setup file from the VirtualBox
website (https://www.virtualbox.org/) and install it.

12.Start VirtualBox, import the appliance and start it.

Note: Make sure to assign new MAC addresses to all network cards before you import the
appliance.

13.Enter your CloudBurst credentials. A Linux operating system starts in Virtual Box. This makes the
routing device a VPN client.

Once the Linux operating system runs, the Cloud Agent Manager (CAM) displays that the connection to the
router is established. Your CloudBurst VPN is set up.

VPN Router Appliance

During the process of configuring a CloudBurst VPN, you have to download the VPN router appliance and
transfer it to the routing device. The VPN router appliance is a Linux appliance for the virtualization
software VirtualBox. Hence, make sure that VirtualBox is installed on the router beforehand.

Then, import the appliance in VirtualBox and start it. VirtualBox will start a Linux operating system. Once
Linux is running, the routing device acts as VPN client. The VPN client is then part of the CloudBurst VPN
and routes all incoming traffic from the cloud agents to the specified subnet within the company network.

Silk Performer Workbench 20.0 | 533

https://www.virtualbox.org/

Note: The router appliance must be located in the same network segment as the System Under Test
(SUT). If this is not possible, contact TechSupport for further instructions.

Micro Focus Credits
Micro Focus Credits are a virtual currency that can be used to purchase CloudBurst testing services,
available from the Micro Focus Build Portal. The billing process follows a pre-paid model: You first purchase
Micro Focus Credits and then decide how and when you want to spend them.

The price per Micro Focus Credit depends on how many credits you buy at one time. There are several
credit packages to choose from.

Note that Silk Performer CloudBurst provides an invitation system: On the Micro Focus Build Portal, you
can invite other CloudBurst users to join your CloudBurst account. This allows the other CloudBurst users
to make use of the Micro Focus Credits that are purchased for your account.

CloudBurst Load Test Fees

The amount of Micro Focus Credits required to purchase a CloudBurst test is comprised of infrastructure
rental fees and virtual user license fees.

Infrastructure Rental Fees

There are three types of infrastructure rental fees:

• active infrastructure rental fee
• passive infrastructure rental fee
• fee for IP address reservation

Infrastructure rental fees are paid for each hour following the start of a cloud agent. Each started hour is
charged as a full hour. For example: If an agent runs for 50 minutes, you are charged for 1 hour. If the
agent runs for 1 hour and 5 minutes, you are charged for 2 hours.

The infrastructure rental fee is comprised of a passive and an active fee. The passive fee is charged for the
time an agent runs, the active fee is charged for the time the running agent is used to execute a load test.
During the execution of a load test, both the passive and the active fee are charged. For example: You start
a load test with a simulation time of 2 hours. When the load test is complete, you prepare for a second load
test, which takes you 1 hour. In the meantime, you leave the agent running. Then you start the second load
test with a simulation time of 30 minutes. For this scenario, you are charged a 4-hour passive fee and a 3-
hour active fee. Note: The 30 minutes are calculated as a full hour.

Note: If you run out of Micro Focus Credits while using the CloudBurst infrastructure, you will be
notified by email 24 hours before your agents are shut down automatically.

Reserving IP addresses for your cloud agents also causes infrastructure rental fees. The current rate for
reservation displays in the Cloud Agent Manager. Reserving IP addresses prevents you from regularly
recurring work like specifying IP address exceptions for your firewall.

Note: IP addresses are perpetually reserved for 24-hour time periods until you release the IP
addresses.

Virtual User License Fees

Virtual user license fees are calculated based on the maximum number of concurrently active virtual users
consumed within a 24-hour testing period. The fee per active virtual user is largely dependent on the
application type under test. For example: If you start a load test with 100 virtual users, you are charged a
100 virtual users license fee for the 24-hour testing period. When the load test is complete, you start
another load test with 150 virtual users. Now you are charged a fee for the 50 additional virtual users. For
the next load test, you configure to use 120 virtual users. This test will not cause an additional fee, since
the already debited fees cover up to 150 virtual users. This is true if you execute all three load tests from
this example within the 24-hour testing period.

534 | Silk Performer Workbench 20.0

https://build.microfocuscloud.com/
https://build.microfocuscloud.com/

For more information about current rates, visit the Micro Focus website.

Spanning Testing Periods

The 24-hour testing period model allows you to run a load test, analyze the results, and rerun the load test
multiple times with adjusted settings. Within the 24-hour testing period, you can optimize the settings of
your load test and rerun the test without paying for each additional test run.

If a test, which is started within one 24-hour testing period, would extend into the next testing period, a new
24-hour testing period is automatically created with the start of the load test.

Note: The maximum simulation time for CloudBurst load tests is 24 hours.

Estimating and Debiting Micro Focus Credits

Estimating Micro Focus Credits Consumption

Before you start a load test, Silk Performer displays an estimate of how many Micro Focus Credits you will
likely be charged by the end of the load test. The estimate takes all virtual user license fees that are
covered in the current testing period into account. However, it does not include any unforeseen charges
that may be related to changes in simulation time or concurrently executed load tests.

If you use the dynamic workload model, which requires you to stop tests manually, the infrastructure rental
fee estimate will be equal to the required Micro Focus Credits per started hour.

Debiting Micro Focus Credits

When a test is complete, Silk Performer calculates the amount of Micro Focus Credits that is to be debited
from your account. This calculation takes into account the actual simulation time, which is used to calculate
the active infrastructure rental fee, and the testing period boundary for virtual user license fees.

A detailed balance sheet is available from the Silk Performer Load Test Summary page, which is
displayed following each test.

Developing Performance Tests in Visual Studio
The Silk Performer Visual Studio extension allows you to develop performance tests in Microsoft Visual
Studio. It offers functionality to record web technologies, supporting both the protocol-level as well as the
browser-driven approach. The recording functionality of the Visual Studio extension resembles the one of
the Silk Performer Workbench and includes capturing web traffic and user interactions. The captured
information can be converted into a C# class including methods, each representing a user transaction.

The Visual Studio extension offers a comprehensive C# binding for all kernel, web, and browser API
functions. Thus, it combines the rich development feature set of Visual Studio, including all debugging
features, with the powerful load testing capabilities of Silk Performer, including capture file recording and
TrueLog analysis.

Tests created with the Visual Studio extension can be executed either within Visual Studio for trial runs, or
within Silk Performer for concurrency and load testing scenarios. When exporting C# projects to Silk
Performer, a short BDL script stub is generated, containing calls into the compiled C# code (assembly).

To learn how to install the Visual Studio extension, refer to the Installation Guide.

The C# Binding
Currently, Silk Performer supports all kernel, web, and browser BDL functions for C# binding. In Visual
Studio you can access these functions by calling their equivalent static C# class methods, such as
Kernel.MeasureStart(), Web.PageUrl(), or Browser.Click().

Silk Performer Workbench 20.0 | 535

In other words: For each built-in Silk Performer .bdh file, you will find a corresponding C# class in the
PerfRunDotNet assembly. And for each API function defined in that .bdh file, there is an equivalent static
method in the corresponding C# class.

C# script structure

A C# class that is intended to be used for load testing in Silk Performer contains a VirtualUser attribute
and a CodePage attribute. VirtualUser specifies a UserName and a ScriptName property. CodePage
specifies the codepage of the recording system. Methods with the Transaction attribute will be mapped
to transactions when exported to Silk Performer.

namespace SilkPerformerRecorder
{
 [VirtualUser(UserName = "VUser", ScriptName = "MyScript")]
 [CodePage(1252)]
 public class MyScript
 {
 [Transaction(ETransactionType.TRANSTYPE_INIT)]
 public void TInit()
 {
 }

 [Transaction(ETransactionType.TRANSTYPE_MAIN)]
 public void TMain()

Data Type Mapping

To pass parameters from .Net/C# to BDL and vice versa, some built-in data types have to be converted.

Strings

While Silk Performer and its BDL are based on the multi-byte character set (MBCS) encoding, the C#
language works with Unicode. Thus, every string has to be converted when passed between the two
worlds. The PerfRunDotNet assembly works with the BdlString class, which handles all these conversions.
Moreover, it also takes care about binary buffers. For convenience, the BdlString class is assignment
compatible with the C# string.

Sizespec and lenspec variables have been removed in the C# mapping, since C# strings typically know
their length.

Static parameter values

Some static integer values, like severity parameters, have been replaced by specific enums.

Forms

BDL forms are mapped to a BdlForm class in C#:

private static readonly BdlForm ZIP_SEARCH001 = new BdlForm()
 {
 Entries = new BdlFormEntries()
 {
 { "zip-search", "", Kernel.USE_HTML_VAL }, // hidden, unchanged,
value: "zip-search"
 { "zip-search:zipcode", "", Kernel.USE_HTML_VAL }, // unchanged,
value: ""
 { "javax.faces.ViewState", "", Kernel.USE_HTML_VAL }, // hidden,
unchanged, value: "j_id3:j_id4"
 { "zip-search:search-zipcode.x", "62" }, // added
 { "zip-search:search-zipcode.y", "4" } // added
 }
 };

536 | Silk Performer Workbench 20.0

Code page dependent replay

Due to Silk Performer being a MBCS-based application, the recorder automatically generates a codepage
attribute in the C# script, which gets carried over to the .bdf script stub. It also takes care about converting
all Unicode strings that cannot be represented in the system codepage into hex-byte arrays.

If the CodePage attribute is defined in a C# script, the following applies:

• All classes in the project must have the same codepage.
• Each string used in the C# script has to be convertible to MBCS strings using that codepage.
• The defined codepage is used to convert C# strings (Unicode) into MBCS strings, and also to interpret

the hex byte arrays generated by the recorder. Therefore the codepage attribute should always be set,
especially if the recorder generated hex byte arrays when encountering otherwise unprintable
characters.

• A compiletime-check makes sure that all strings work for the defined codepage.

If the CodePage attribute is not defined in a C# script, the system codepage is used during replay.

Licensing
The licensing of load tests with C# test scripts is similar to the licensing model that applies when using BDL
as scripting language. A single user run is always license-free. During a trial run, no license is being
checked out. When executing a load test using C# scripts, Silk Performer checks for the technologies used
in the scripts and maps them to equivalent feature license type web, standard, or premium. The mapping is
the same as with BDL.

If however a C# script is used for .Net testing rather than driving one of the supported Silk Performer
technologies, a standard license will be checked out.

Capture File Compatibility
Capture files created during a recording session in Visual Studio are fully compatible to capture files
created directly within the Silk Performer Workbench. Thus, you can add a capture file to a C# project - by
dragging it onto the Visual Studio project tree - and generate a C# script.

You can also reuse a capture file created in Visual Studio by adding it to a Silk Performer project manually
and then generating a BDL script out of it.

Advanced Topics
Note the following when working with the Visual Studio extension.

• If the C# code is compiled in debug mode and debug symbols are available, those are used to add
information about the current position in the C# script also to nodes in the replay TrueLog. In this case,
the current position in the C# script is shown in the Script tab of TrueLog Explorer instead of the current
position in the .bdf stub script.

• In Visual Studio you can create a C# or VB.Net project and code manually. Note however, that the
recorder only prints C# code. The recording feature is only available if a C# project is used.

Multibyte Support
Unicode is a list of all known characters. It includes all alphabets of all spoken and unspoken languages.
Each character has its own unique index in the Unicode list. The first 128 characters are known as ASCII
characters.

Silk Performer Workbench 20.0 | 537

When data is stored or computed, the Unicode list is not used to represent the characters. Instead, so-
called character encodings (or character sets) define how characters are represented on computers and
within files. Numerous character sets are used throughout the world.

Two of the more frequently-used character encodings that cover all Unicode characters are:

• UTF-8: Requires 1-4 Bytes per character; this character set is widely used for international Web sites
and international text representation. Strings in the Linux kernel and Java are encoded in UTF-8.

• UTF-16: Requires 2 or 4 Bytes per character; this encoding is mainly used for string representation in
the Windows NT kernel (Win NT and newer).

Most character sets do not define a representation for all characters in the Unicode list. Rather, they define
a subset of characters that are used in a specific regional area of the world. These are commonly referred
to as code pages (cp):

• ASCII: Single Byte encoding: 1 Byte per character
• Latin-1 (Windows Codepage 1252): Single Byte encoding: 1 Byte per character
• Shift-JIS (Windows Codepage 932): Double Byte encoding: 1 or 2 Bytes per character
• EUC-JP (Windows Codepage): Includes 3 Japanese char sets: 1, 2, or 3 Bytes per character

When developing applications for Windows, programmers can choose between Unicode (UTF-16) string
representation or Multi-Byte-Character-Set (MBCS) string representation. MBCS representation refers to a
geographic region-dependent code page encoding (for example, Shift-JIS for Japan; Latin-1 for the
Americas and most European countries). This affects all GUI elements, as all data needs to be displayed in
the same string representation that has been selected for the application.

Multibyte Support in Silk Performer
Silk Performer is a MBCS-based application, meaning that to be displayed correctly, every string must be
encoded in MBCS format. Because Silk Performer, and particularly TrueLog Explorer, visualize and
customize data that originates from Web servers with different encodings (UTF-8, EUC-JP, ISO-8859-1,
and so on), many string conversion operations may be involved before data can be displayed.

Sometimes when testing UTF-8 encoded Web sites, data containing characters cannot be converted to the
active Windows system codepage. In such cases, Silk Performer’s Web Recorder scripts all non-
convertible strings into hex format. If the data is only displayed, TrueLog Explorer will replace the non-
convertible characters with a configurable replacement character (usually '?').

Example

On an English Windows system with Japanese local settings (system codepage is Shift-JIS) a UTF-8
application is recorded. For some reason a link name on a particular Web page contains a Korean
character. Silk Performer’s Web Recorder attempts to convert the string from UTF-8 to Shift-JIS to make it
readable in the script. The conversion fails because of the Korean character, which does not occur in the
Shift-JIS code page. The Web Recorder then uses hex notation for the link name in the script.

Codepage Check
One of the most important things to know about Silk Performer's multibyte support is that the system
codepage of the recording machine must match the system codepage of the replay machine. This is

538 | Silk Performer Workbench 20.0

necessary for the replay engine to correctly interpret the byte sequences in the script as characters and
strings.

Therefore the Silk Performer Recorder scripts the @codepage annotation into the script along with the
currently active system codepage. Whenever this annotation is present in a script the Silk Performer
runtime system checks if the system codepage of the machine matches the one specified in the script. If
they do not match the runtime stops and an error message displays. However, you can add a second
parameter to the @codepage annotation with the value false. In this case an information displays but the
execution continues.

Syntax
@codepage(in codepage : number,
 in abortOnMismatch : boolean optional := true)

Example
@codepage(123) // aborts the execution when the codepages do not
match

@codepage(123, false) // an information indicates the mismatch, but the
execution continues

API Functions That Require Additional Encoding
Regardless of the character encoding that a Web site uses, Silk Performer can only visualize multi-byte
character set (MBCS) strings. However, several API functions require the encoding of some string
parameters in the encoding that the server expects. Silk Performer's Web Recorder scripts
SetEncoding(), ToEncoding(), and FromEncoding() functions at appropriate locations so that
replay engines can know the required encoding. Typically, parameters that require an appropriate
encoding, such as link names, if they refer to data that needs interpreting. Parameters that are not a part of
client-server communication, such as timer names, do not require conversion.

The SetEncoding() function sets an encoding for all subsequent ToEncoding() and
FromEncoding() functions. The encoding itself is passed as the name of the encoding as it appears in
the charset specification of the Web page, such as UTF-8, SHIFT_JIS, WINDOWS-1252, WINDOWS-1255,
or EUC-JP.

ToEncoding() converts the string that is passed as a parameter, which is encoded in the system
codepage (MBCS), to the encoding specified by the last SetEncoding() function.

FromEncoding() converts the string that is passed as a parameter, which is encoded in the encoding
specified by the last SetEncoding() call, to the system codepage (MBCS).

Copying Strings into Silk Performer
When copying strings into Silk Performer, the paste operation checks if the data:

• Needs to be converted to the MBCS (system codepage)
• Can be converted to the MBCS
• Cannot be converted and so needs to be opened with Silk Performer’s Unicode Text/Hex Editor

If copied data is, for example, UTF-8 encoded and the paste operation fails to convert it to the system
codepage, Silk Performer launches its Unicode Text/Hex Editor. The tool is a Unicode application and is
therefore able to display any string, regardless if the characters exist in the system codepage. The editor
can also display the hex notation of strings in order to paste them into a BDL script.

Silk Performer Workbench 20.0 | 539

Network Emulation

Network Emulation Settings

Whenever a client and a server need to communicate, a connection between the two is established through
one or more networks. This network connection is used to send and receive data, which typically is split
into data packets.

The connection between client and server can comprise various networks with vastly diverse
characteristics. This can result in a delayed transfer of data packets (latency), in a loss of data packets
(packet drop rate), or in a reduced transfer rate of one of the networks (bandwidth).

Silk Performer allows you to emulate complex network connections by configuring a range of settings and
parameters:

• The Latency is the time that is required for a data packet to travel from one endpoint of the network
connection to the other. It depends on various factors, such as the physical speed limit of the network
medium (fiber, wire, over-the-air), the bandwidth restrictions and the distance between the two
endpoints. The latency of a network connection can vary over time. This variation is called jitter. For
typical web load testing scenarios jitter is of less importance as network emulation parameter.
Emulating jitter is not supported by Silk Performer.

• The Bandwidth is defined as the data transfer rate, bit rate or throughput. It is measured in bits per
second (bit/s or bps), kbps, Mbps, or Gbps.

• The Packet drop rate: Occasionally data packets can get lost on the way from the sender to the
receiver. The main reason for dropped packets is an overloaded network or network device. The TCP/IP
(Transmission Control Protocol/Internet Protocol) has a built-in detection of dropped packets and
guarantees that sent packets are delivered even if some get lost and need to be retransmitted. A high
packet drop rate involves high administration effort on the TCP/IP level and thus has a significant effect
on the data throughput.

Silk Performer offers presets (preconfigured settings) for a variety of wired and wireless network technology
standards. You can adjust all settings to your needs to simulate specific network conditions.

The Network Emulation Driver

Silk Performer can emulate bandwidth limitation out of the box. For latency and packet drop emulation a
dedicated network emulation driver is required. By default, the driver is not installed with Silk Performer. To
use the full network emulation functionality, make sure to install the driver during Silk Performer setup on
your agents.

Important: Enable Use Network Emulation Driver in the profile settings only if the network
emulation driver is installed on your agents. You can then adjust the Latency and Packet Drop
settings to your needs. If the driver is not installed and you enable this option, an error will occur
during load test execution.

Note the following specifics:

• The network emulation driver is not compatible with all network adapters. In such a case, machines or
network interfaces might no longer be accessible and the network might slow down.

• The network emulation driver is currently not supported for Windows 10.
• Network emulation is not supported for CloudBurst.

Windows Vista and Windows 7
Silk Performer is fully compliant with Microsoft User Account Control (UAC) guidelines. It has been
designed such that it does not require administrative privileges at any point in its workflow, beginning with
project definition and continuing through to test analysis. Even activities such as recording and the
launching of remote agent processes can be done with standard user privileges.

540 | Silk Performer Workbench 20.0

The System Configuration Manager however, due to its system administration functions, does require
elevation into administrator mode in accordance with UAC guidelines.

UAC Overview

With Windows Vista and Windows 7, Microsoft encourages use of standard user accounts for daily work
rather than administrator accounts. Several changes have been made to Silk Performer privilege
management to accommodate this change, though these changes are undetectable to users because they
do not affect Silk Performer workflow.

Microsoft encourages users to follow their privilege-management paradigm with UAC. UAC informs users
when an application leaves the standard user account privileges path and requires higher-level privileges,
even when the user account already has the required privileges. For this reason, even administrators are
prompted when performing tasks that require administrator privileges. Another consequence of UAC is that
software developers are encouraged to write Windows applications that require as few privileges as
possible for normal operation.

UAC on Agent Machines

Silk Performer agent processes can be run without administrative privileges. There are exceptions to this
however (for example, if an executed script contains an action that requires administrative privileges). In
some situations it may be useful or even necessary to launch an agent process under a particular
administrator user account. By default however, agent processes are launched under the built-in SYSTEM
account.

On machines running a Windows operating system that supports UAC, an administrator account does not
automatically hold administrator privileges. Administrator accounts gain new privileges by prompting the
user for elevation, which the user may then grant explicitly. By default there is one exception to this
behavior: the built-in administrator account does not require manual elevation.

To start an agent process on a UAC-enabled machine, you have the following options:

• Use the SYSTEM account (default)
• Use the built-in administrator account and meet one of the following requirements:

• Turn off UAC
• Disable security policy User Account Control: Run all administrators in Admin

Approval Mode. This can be configured using the Windows Local Security Policy tool
(secpol.msc).

• Use a non-built-in administrator account and meet one of the following requirements:

• Executed script does not require administrator privileges
• Executed script does not perform administrative actions

Note: UAC functionality is relevant to the Advanced tab at System Settings > Agents. It is also
relevant to SysConfManager > Applications > User Credentials.

Silk Performer Plug-Ins
Silk Performer offers a plug-in interface which extends Silk Performer’s compatibility to third-party
technologies, enabling coordination and control of third-party technologies from within the Silk Performer
environment.

The controls that are available for plug-ins vary based on the functionality offered by each plug-in. By
default, each plug-in offers the following attributes through the Silk Performer System Settings dialog:

On the General page:

• plug-in name, version, and description details

Silk Performer Workbench 20.0 | 541

• enabling/disabling of the plug-in
• a list of features supported by the plug-in

On the Attributes page:

• name, description, datatype, and value for each available attribute

Depending on available plug-in functionality, other tabs and configurable attributes may also be available.

Silk Performer offers a plug-in framework for third-party diagnostics tools. The framework enables third-
party tool vendors to integrate into one or more of the following tools:

• Silk Performer

The Silk Performer plug-in can be used to modify profile settings so that the runtime sends an additional
HTTP header tag with each page request. The same functionality is available through the
WebSetHttpTag BDL function.

• TrueLog Explorer

When a user selects an API node, TrueLog Explorer passes the plug-in header and body, including the
additional HTTP tag. TrueLog Explorer’s lower-right window includes an additional tab for each enabled
plug-in. The plug-in tabs are Internet Explorer controls, so plug-ins can present anything that can be
expressed through HTML.

Plug-ins can use the HTTP tag to identify traces and present complete component break-downs for
each web page call.

• Performance Explorer

Plug-ins that implement the PerfExp plug-in interface can be called from the (OVR) Overview Report/
Ranking section. Overview reports show plug-in related icons for each ranking measurement for which
the plug-in can provide in-depth information.

Plug-In Initialization and Configuration
All available plug-ins are installed to the following directory during Silk Performer setup: C:\Program
Files\Silk\Silk Performer 20.0\Plugins.

When Silk Performer is launched, it checks for installed plug-ins. All installed plug-ins are then loaded,
verified, and initialized.

Plug-ins can be enabled, disabled, or configured by users via Silk Performer’s System Settings dialog.
The System Settings dialog adds a new icon in the left-hand pane for each available plug-in. On the
General page, basic information (including description, version, and supported features) and the ability to
enable/disable the plug-in is provided for each installed plug-in. Each plug-in is also provided an Attributes
tab that lists all attributes associated with the plug-in. Some plug-ins may include additional tabs related to
available functionality.

Plug-ins are disabled by default and must be enabled before use.

Message Output
A new tab is inserted into Silk Performer’s Output window for each installed and enabled plug-in.

Silk Performer outputs all messages from plug-ins into these tabs. Output tabs are removed when plug-ins
are disabled.

Output pages display the following information:

• Timestamp (HH:MM:SS).
• Severity ("Error," "Warning," or "Info").
• Numerical message code.
• The text of the message. Messages are displayed in the color that corresponds to their severity (Error =

red; Warning = orange; Info = magenta).

542 | Silk Performer Workbench 20.0

AppDynamics Plug-In
The AppDynamics plug-In is installed along with Silk Performer setup. It is disabled by default.

AppDynamics focuses on monitoring performance at the Business Transaction level. Business transactions
mirror end user activity and are defined as a category of user requests.

The current Silk Performer - AppDynamics integration supports automatic naming of such transactions
based on Silk Performer timer names.

After successful configuration, an API call from Silk Performer such as the following:

BrowserNavigate("http://myserver.mydomain.com/login", "LoginPage");

Appears as the following business transaction in AppDynamics:

SilkPerformer.LoginPage

Configuring AppDynamics Plug-In Settings

1. In Silk Performer, select Settings > System Settings.

2. Select the AppDynamics Plug-In group icon.

3. On the General page, check the Enable plug-in check box.

4. Configure name/value pairs on the Attributes page as required. The default Tag value is
AppDynamicsTag.

Note:

A number of integration settings are dependent on the Tag attribute retaining the value
AppDynamicsTag. If you change this default value, you will need to change additional settings, as
explained below.

5. Click OK to save your settings.

Configuring Automatic Transaction Naming in AppDynamics

1. In the leftmost AppDynamics navigation pane, click Configure > Instrumentation.

2. Select the Use Custom Configuration for this tier option button.

3. Scroll down to the custom rules section of the page.

4. Click + to add a custom match rule.

5. On the Transaction Match Criteria page, select Servlet from the drop-down list.

6. Specify the name of the custom rule. This name will become the first part of the generated transaction
name.

For URI select Is Not Empty.

Select Check for parameter existence and type AppDynamicsTag, to match what as you configured
in Silk Performer, into the Parameter Name field.

7. Select the Split Transactions using Request Data page and check the Split Transactions using
Request Data check box.

8. In the Apply a custom expression on HTTPServletRequest and use the result in Transaction
names field, add the following string:

${getHeader(AppDynamicsTag).substring(Int/3)}

9. Click Save.

Silk Performer Workbench 20.0 | 543

Verifying the Integration

1. Within Silk Performer, start your test. After a few minutes, AppDynamics displays the transaction names
in the Business Transactions List. When the test is complete, the Silk Performance Explorer Overview
Report appears.

2. Compare the results of the test shown in the overview report alongside the AppDynamics’ Business
Transactions list.

How Timers are Matched with Business Transactions
HTTP requests executed by Silk Performer's replay engine are extended by an additional HTTP header.
For example, the following API call:

BrowserFormSubmit("//FORM[@name='loginForm']", "Login");

The HTTP header AppDynamicsTag (the tag attribute you defined during Silk Performer/AppDynamics
plug-in configuration) contains the specified timer name NA=<TimerName> (for this example,
NA=<Login>.

AppDynamics automatic transaction naming parses the HTTP header by applying the above custom
expression “${getHeader(AppDynamicsTag).substring(Int/3)}” to the HTTPServletRequest
object and evaluates it to the following Java code:
request.getHeader(“AppDynamicsTag”).substring(3)

Note: The purpose of the substring method is to exclude the NA= portion of the HTTP header.

Requests containing the same AppDynamicsTag header are grouped into the same business transaction.
For example, all requests with an AppDynamicsTag: NA=Login header would be grouped into a Login
business transaction.

Advanced Configuration
The AppDynamics plug-in allows you to specify which tags are being set along with web requests in the
additional HTTP header. For a detailed description of the tags refer tot the explanation in the settings UI.

The Probability attribute is a floating point value between 0 and 1, specifying the percentage of virtual
users that should send the additional HTTP header.

Dynatrace AppMon Plug-In
The Dynatrace AppMon plug-in is installed with Silk Performer and disabled by default. To work with this
plugin you need Dynatrace AppMon Client to be installed on the controller machine. If enabled, the plug-in
modifies profile settings so that the runtime sends an additional HTTP header with each page request.

This HTTP header contains load test specific data which is thus made available to Dynatrace AppMon. The
Dynatrace AppMon plug-in also integrates with TrueLog Explorer: For the selected node in the TrueLog, the
plug-in tab in the lower right window allows direct access to the corresponding PurePath in Dynatrace.

Note: The additional HTTP header is only added during protocol-level testing and browser-driven
testing using Internet Explorer.

To configure the plugin:

1. In the Silk Performer menu, click Settings > System.
2. Click Dynatrace AppMon.
3. Check Enable plug-in.
4. Click the Attributes tab and configure Name/Value pairs as desired.

544 | Silk Performer Workbench 20.0

• The Dynatrace AppMon plugin requires the correct port to be configured to be able to communicate
with the AppMon client. In addition, the system profile value must match the Dynatrace AppMon
profile you want Silk Performer to work with.

• The tagging header name is expected to be x-dynatrace. Use dynatrace as header name only
for very early versions of Dynatrace Diagnostics. For more details refer to the Dynatrace AppMon
documentation.

• In the Tag Selection section you can choose the tags you want virtual users to send as part of the
additional HTTP header with each request.

Dynatrace SaaS and Managed Plug-In
The Dynatrace SaaS/Managed plug-in is installed with Silk Performer and disabled by default. If enabled,
the plug-in modifies profile settings so that the runtime sends an additional HTTP header with each page
request. Besides, the plug-in can

• configure request attributes in Dynatrace to extract the load test specific information contained in this
additional header, making it available for analysis in Dynatrace.

• inform Dynatrace about virtual user errors through the plug-in.
• add an annotation containing general load test information.
• configure request naming rules in Dynatrace based on the timer name parameters passed to Web* and

Browser* API calls.

Note: The additional HTTP header is only added during protocol-level testing and browser-driven
testing using Internet Explorer.

To configure the plugin:

1. In the Silk Performer menu, click Settings > System.
2. Click Dynatrace SaaS/Managed.
3. Check Enable plug-in.
4. Click the Attributes tab and configure Name/Value pairs as desired.

a. Set the base URL to your Dynatrace environment.
b. Generate an authentication token with the required permissions in Dynatrace and specify it in the

plug-in attributes.
c. Tag relevant components of your system under test in Dynatrace and specify the used tag as

application tag in the plug-in attributes.

Additionally, you can choose which configurations the plug-in should do for you and which tags to send
in the additional HTTP header.

Silk Central Integration
Silk Performer is fully integrated with Silk Central's test-planning and test-execution functionality. Silk
Performer projects can be integrated into Silk Central test plans and can be directly executed through Silk
Central. This feature allows for powerful test-result analysis and reporting, and it provides for tests that are
run automatically by Silk Central based on pre-configured schedules. This type of testing is called
unattended testing.

Silk Central projects can be downloaded to Silk Performer, where scripts and settings can be edited. Edited
projects can subsequently be uploaded to Silk Central to make them available for future test executions.

Note: The term Project is used differently in Silk Performer than it is in Silk Central. When uploaded to
Silk Central, a Silk Performer project becomes the core element of a Silk Central test definition. Silk
Central projects are higher-level entities that can include multiple test definitions, executions
definitions, and requirements.

Silk Performance Explorer can be used for in-depth analysis of test runs. Performance Explorer can be
launched directly from Silk Central's Executions unit by way of execution runs on the Runs page, either

Silk Performer Workbench 20.0 | 545

from Silk Performer or from Performance Explorer itself. For details regarding Performance Explorer's
integration with Silk Central, refer to the Performance Explorer Help .

The results of Silk Performer test runs can be uploaded to Silk Central and associated with test definitions.
To complete this task, Silk Performer searches its results directories and uploads the appropriate files to
Silk Central.

For additional information about Silk Central's integration with Silk Performer and Silk Performance
Explorer, refer to Silk Central Help and Silk Performance Explorer Help.

Configuring Silk Central Integration
1. In the Silk Performer menu, click Settings > System . The System Settings display.

2. Click the Silk Central tab.

3. In the URL field, specify the URL of the host on which Silk Central's front-end server is running. Make
sure to specify the full URL including the port and the Silk Central instance.

4. Click Use credentials and type valid credentials for Silk Central in the fields Username and Password.

5. Alternatively, click Use token and type or paste the web-service token into the field. To obtain the web-
service token, login to Silk Central and open the User Settings. Here you can also regenerate and
delete the token.

Note: A web-service token is similar to a password and should be protected as such. The token-
based authentication offers increased security and convenience, because your Silk Central
credentials will not be distributed outside Silk Central and the authentication will not break due to
password update policies.

Note: To use token-based authentication, both Silk Performer 19.5 (or newer) and Silk Central
19.5 (or newer) are required.

6. Click Test Connection to verify the URL and the credentials or the token.

7. Click OK.

These are now the default settings for all tasks that require a connection to Silk Central, which includes
opening projects from Silk Central, importing projects from Silk Central, and uploading projects to Silk
Central.

Opening Silk Performer Projects from Silk Central
Note: If Silk Central is using StarTeam for source-control integration, you need to install StarTeam
Microsoft SCC Integration on your computer.

1. Click File > Open Project from Silk Central . The dialog that displays shows the default settings for
connections to Silk Central.These default connection settings can be specified in the System Settings
on the Silk Central page.

2. If you are connecting for the first time, or if you do not want to use the default settings, specify the
settings as follows.

3. In the URL field, specify the URL of the host on which Silk Central's front-end server is running. Make
sure to specify the full URL including the port and the Silk Central instance.

4. Click Use credentials and type valid credentials for Silk Central in the fields Username and Password.

5. Alternatively, click Use token and type or paste the web-service token into the field. To obtain the web-
service token, login to Silk Central and open the User Settings. Here you can also regenerate and
delete the token.

Note: A web-service token is similar to a password and should be protected as such. The token-
based authentication offers increased security and convenience, because your Silk Central
credentials will not be distributed outside Silk Central and the authentication will not break due to
password update policies.

546 | Silk Performer Workbench 20.0

Note: To use token-based authentication, both Silk Performer 19.5 (or newer) and Silk Central
19.5 (or newer) are required.

6. Click Test Connection to verify the URL and the credentials or the token.

7. Optional: Click Set as Default to define the specified connection settings as the default settings for
future connections.

8. Optional: Click Internet Options to define Internet connection properties, such as proxy settings,
security settings, and browser connection settings.

If you perform this step, click OK on the Internet Properties dialog box to save the settings.

9. On the Open Project from Silk Central dialog box, click Next to view a list of the Silk Central projects
to which the active user has read access.

This list is the same list that is available in Silk Central's Projects's unit.

10.Select the Silk Central project to open and click Next.
Alternatively, you can double-click the project to open.

11.In the Project menu tree, open test containers and test folders as necessary and select the Silk
Performer test definition to open in Silk Performer.

If the Silk Performer test definition is located on a UNC path, click Finish. Otherwise, click Next to open
the Target Directory Selection dialog box and specify the location to which the project is copied.

If you are using source-control integration like Visual SourceSafe for Silk Central, you are presented
with a logon screen for your source-control client. Type valid user connection settings and click OK to
continue.

Silk Performer projects can also be opened directly from Silk Central by clicking Open Project on the Silk
Central Properties page in the Test Plan unit. For more information, refer to Silk Central Help.

For information regarding the configuration of source-control integration with Silk Central, refer to Silk
Central Help.

Checking Out and Editing Downloaded Projects
After you download a Silk Central project from Silk Central, the project appears in Silk Performer, where
you can edit it before uploading it back into Silk Central source control.

If you have configured source-control integration for your Silk Central installation, Silk Performer
automatically checks the Silk Performer project file out of the source-control database.

Note: In the Silk Performer menu tree, red check marks identify Silk Performer projects that have
been checked out by way of Silk Central source-control integration.

This integration is facilitated by Silk Performer by using Web Services to connect to Silk Central and
request source-control link information, such as the connection string, user name, and LTP project file
name.

Note: If Silk Central is using StarTeam for source-control integration, you need to install StarTeam
Microsoft SCC Integration on your computer.

1. After you complete and save the required changes to the Silk Performer project file, choose File >
Close Project .
Alternatively, you can right-click the Project menu tree and choose Check In (and Close Project).
A Message dialog box opens.

2. Click Yes to confirm that you want to check the edited files back into the source-control database. All
subsequent executions of this project through Silk Central use the updated project file.

Importing Projects from Silk Central
Importing a project involves downloading a copy of a project from Silk Central and working with it
independently of Silk Central. Changes that you make to an imported project do not effect Silk Central.

Silk Performer Workbench 20.0 | 547

Only a standard Web connection is necessary to import a Silk Central project. No source-control tool
connection or credentials are required.

Importing a file into Silk Performer enables you to perform attended test runs independently of Silk Central.
Attended test runs differ from tests that are run automatically based on predefined schedules in Silk
Central because they can be executed manually in Silk Performer. Test results can subsequently be
uploaded back to Silk Central and associated with a test definition.

Even if you have configured source code control integration with Silk Central, imported project files are not
checked out of your source control tool because they are saved locally to your hard disk as compressed
ZIP archives. Attended tests can also be initiated from the Silk Central side.

1. Choose File > Import Project from Silk Central . You are presented with the connection settings that
are specified on the System Settings - Workbench - Silk Central page.

2. Optional: If you are connecting for the first time, or if you do not want to use the default connection
settings, specify the following information:

• In the URL field, specify the URL of the host on which Silk Central's front-end server is running.
Make sure to specify the full URL including the port and the Silk Central instance.

Note: The port is usually port 80 if you are using an ISAPI Web server or port 19120 if you are
using Silk Central's standalone Web server.

• Type valid user credentials for your Silk Performer installation in the Username and Password fields.

3. Optional: Click Set as Default to define the specified connection settings as the default settings for
future connections.

4. Optional: Click Internet Options to define Internet connection properties, such as proxy settings,
security settings, and browser connection settings.

If you perform this step, click OK on the Internet Properties dialog box to save the settings.

5. On the Import Project from Silk Central dialog box, click Next to view a list of the Silk Central projects
to which the active user has read access.

This list is the same list that is available in Silk Central's Projects's unit.

6. Select the Silk Central project to import and click Next.

Alternatively, you can double-click the project to import.

7. In the Project menu tree, open test containers and test folders as necessary and select the Silk
Performer test definition to import to Silk Performer.

8. If you do not want to use the default target directory, type a different directory in the Target Directory
text box.

9. Click Finish.

Uploading Projects to Silk Central
Before uploading a Silk Performer project to Silk Central, ensure that you have properly configured the
project's workload through Silk Performer. Workload settings are subsequently specified along with
uploaded projects in the Silk Performer Test Properties portion of the Properties page in Silk Central’s
Tests unit.

1. In Silk Performer, open the project that you want to upload and choose File > Upload Project to Silk
Central .

If the project has previously been uploaded to Silk Central, the association with a Silk Central test is
already known and preselected. Click Next and go to step 3.

2. From the Projects list, select the Silk Central project to which you want to upload the Silk Performer
project and click Next.

You can select an existing test to replace or you can create a new test by right-clicking the appropriate
folder or container choosing New Child Test.

548 | Silk Performer Workbench 20.0

You can also create a new folder within an existing test container by right-clicking a container and
choosing New Child Test Folder.

Note: Newly created tests and folders are displayed with bold text to indicate that they have not yet
been written to the Silk Central database. If you click Cancel, the items you have created are not
saved.

3. Check the Enable Results Upload check box to select specific test run results to upload with the
project and then click Next.

If you do not want to upload test run results at this time, do not check the Enable Results Upload
check box. Instead, click Finish.

4. On the Select results page, check the appropriate check boxes in the Results list to select the results
that you want to upload along with the project and then click Next.

5. Specify version and build numbers for the assigned product to which the uploaded results belong.

6. Click Finish to upload the project to Silk Central. The newly uploaded items appear in Silk Central's test
and Project menu tree.

Uploading Test Results to Silk Central
1. Choose Results > Upload Results to Silk Central .

Alternatively, you can right-click a results node and choose Upload Results to Silk Central .

If the project has previously been uploaded to Silk Central, the association with a Silk Central test is
already known and preselected. Click Next and go to step 4.

2. From the Projects list, select the Silk Central project to which you want to upload the Silk Performer test
results and click Next.

3. From the menu tree, select the test to which you want to upload the results and click Next.

Alternatively you can right-click in the tree and choose various menu items to create a new test, child
test, test folder, or child test folder to which the results are saved.

4. On the Select results page, check the appropriate check boxes in the Results list to select the results
to upload along with the project.

5. Click Next.

6. On the Specify product information and result status page, specify the version and build numbers
for the assigned product to which the uploaded results belong.

7. Check the checkbox Enable automatic test result upload to let Silk Performer upload test results
automatically after each test run.

Note: You can click the Upload path link to start Silk Central and go directly to the selected test.
Check the Open Upload path on finish check box to automatically perform this action after
clicking Finish.

8. Click Finish to upload the results. A confirmation dialog box asks if you want to delete the local copies
of the uploaded results.

9. Click Yes.

Downloading Test Results from Silk Central
1. In Silk Performer, click the Results tab.

2. Click the Click here to add Silk Central results node in the Results menu tree.

To download results from another test definition, project, or Silk Central server, click Back to navigate
back through Silk Central's menu tree.

The Open results from Silk Central wizard opens. The corresponding Silk Central's test definition is
preselected. You can select multiple executions and download the results of multiple test executions.

Silk Performer Workbench 20.0 | 549

3. In the Test executions from the last <> day(s) text box, specify how many past days' worth of results
to retrieve.

4. Click Finish to download the results.

Silk Performance Manager Integration
This section describes how to integrate Silk Performer with Silk Performance Manager by creating client
monitors and infrastructure monitors and how to upload them to Silk Performance Manager.

Creating a Silk Performance Manager Client Monitor

1. Start the Silk Performer Monitor Workbench or switch to the Monitoring workflow bar by right-clicking the
workflow bar and clicking Show Monitoring Workflow Bar.

2. By clicking the respective buttons on the workflow bar, create a project, record a transaction, and
customize your script as usual.

3. Perform a Try Script run.

4. Click Upload Project on the workflow bar.

5. Click Upload project to Performance Manager.
6. On the subsequent dialog, specify all necessary settings and click OK.

Before a project is uploaded to Silk Performance Manager, Silk Performer automatically sets default
threshold values for all measures. The thresholds are calculated either from an existing baseline (if such
exists) or from the latest Try Script run.

Creating a Silk Performance Manager Infrastructure
Monitor
1. Click File > New Project or click Start here on the workflow bar if no project is open. The Workflow -

Outline Project dialog opens.

2. Enter a Name and optionally a Description.

3. From the list of application types, select Monitoring > Performance Manager - Infrastructure Monitor
and click Next. Performance Explorer opens and the Data Source Wizard displays.

4. Follow the wizard to select a data source. A monitor chart displays and the monitoring automatically
starts.

5. On the Real-Time Monitoring tab, in the Export group, click As Project.
6. Follow the Reuse Monitor Wizard to export the monitor chart.

7. Specify the settings on the Upload Project dialog and click OK.

Source Control Integration
Silk Performer's source control integration (SCC integration, also referred to as source code control
integration) enables you and other members of your organization to manage and share your Silk Performer
project files, test scripts, custom include files, and data files in a common repository (source control
system)—enabling file check-in, check-out, get-latest-version, and other functions typical of source control
systems.

Silk Performer’s source control integration is facilitated by commands on the Silk Performer File menu
(File > Source Control) and context menus in Silk Performer’s Project menu tree. All project nodes,
script nodes, custom include file nodes, and data file nodes in the Project menu tree offer SCC
commands.

550 | Silk Performer Workbench 20.0

In addition to offering commands that select all the files of complete projects (project file, custom include
files, data files, and scripts), a sub-set of SCC commands that select only the project file are also available
(you can easily check-in/check-out project files without overwriting associated script and data files).

Status icons in Silk Performer’s Project menu tree indicate the status of files under source control:

• Files that have been placed under source control and are currently checked out (the source control
version of the file is writable) are indicated with red checkmark icons.

• Files that have been placed under source control, but are currently NOT checked out (the source control
version of the file is read-only) are indicated with blue padlock icons.

Silk Performer supports StarTeam, Microsoft Visual SourceSafe, and PVCS. Source control integration
must be enabled in Silk Performer system settings (Settings > System > Source Control). You must
have StarTeam, PVCS, or Visual SourceSafe installed on your system before source control integration can
be enabled.

Integrating StarTeam SCC with Silk Performer
The integration consists of downloading the integration module and running the installation wizard.

Downloading the StarTeam SCC Integration Module

1. Navigate to the StarTeam product downloads area for the latest StarTeam Integration for SCC release at
http://supportline.microfocus.com/websync/StarTeam2009EA.aspx.

You may need to login or verify your email address.

2. Scroll down to the StarTeam 2008 R2 Integration for Microsoft SCC section near the bottom of the
page.

3. Locate and double-click the ST-SCC-Int-10.4.7-Win-EN.exe file.

4. Click Run or Save, depending on which browser you are using.

5. Specify the location where you want to save the SCC Integration files or executable file and then click
Save.

Follow the steps in the StarTeam SCC Integration Module wizard to install the SCC Integration module.

Running the StarTeam Microsoft SCC Integration Setup Wizard
Download the StarTeam SCC Integration Module before beginning this task.

1. Choose one of the following:

• Immediately after the download completes, click Launch on the Download Manager to launch the
installation wizard.

• At your convenience, navigate to the location where you saved the SCC Integration executable file,
scc_integration.exe, and double-click the file.

The SCC Integration InstallShield wizard opens.

2. Click Next. The Welcome page opens.

3. Click Next. The Software License Agreement page opens.

4. Click Yes to install the SCC Integration module. The User Information page opens.

5. Specify your Name and Company and then click Next.

The StarTeam SDK runtime is installed if needed.

The Choose Destination Location page opens.

6. Accept the default destination location or click Browse to specify another location and then click Next.
The Select Components page opens.

7. Select the SCC API Integration check box and then click Next. The Folder Selection page opens.

Silk Performer Workbench 20.0 | 551

http://supportline.microfocus.com/websync/StarTeam2009EA.aspx

8. Accept the default program folder location or specify another folder and then click Next. Setup adds
program icons to the folder that you specify.

9. Select the language for your installation from the list box and then click OK. The File Compare/Merge
page opens.

10.Click Next. The License Agreement page opens.

11.Specify whether you agree to accept the license terms and then click Next. The Choose Install Folder
page opens.

12.Accept the default location or click Choose to select another location and then click Next. The Choose
Shortcut Folder page opens.

13.Specify where you want to install the shortcut and then click Next. The Pre-Installation Summary page
opens.

14.Click Install.
15.Click Done. The Setup Complete page opens.

16.Specify whether you want to restart your computer now or later and then click Finish.

Important: It is critical that you set up and manage your projects using the StarTeam client. This
includes creating projects, adding files to a project, and removing files from a project.

Configuring Source Code Control Integration in Silk
Performer
Ensure that StarTeam, MS VSS, or PVCS is installed on your local system before beginning this task.

1. Select Settings > System . The System Settings dialog opens.

2. Select the Workbench group icon.

3. Click the Source Control tab (this tab is farthest to the right of the tab list; use the small right-pointing
arrow to access this tab).

4. Check the Enable Source Control integration check box. All SCC providers that are installed on your
local machine and supported by Silk Performer (i.e., StarTeam, VSS, or PVCS) are listed in the SCC
Provider list box.

5. Enter a username in the Username field.

The username you enter here will be suggested automatically as the default username value in future
operations, such as login dialogs.

Note: Custom include and user data files are configured independently from project and system
files for the SCC because Silk Performer may require that these files be stored separately in the
SCC (e.g., an organization might have a common repository for include files that are shared
amongst a group of developers. These developers might also be required to check in files from
their individual projects).

6. In the Custom user data files SCC path field, click [...] and select the location in the SCC database
where the custom user data files are to be saved.

7. At this point you will be required to log into your SCC system.

The username that you entered above will be entered into the login dialog automatically.

See StarTeam, MS VSS, and PVCS documentation for full details regarding the use of your source
control system.

a) Your SCC system will also likely require that you enter the password that corresponds to the
submitted username.

b) If not already selected, you may need to select the target SCC database.
c) Following that, browse the file structure of your SCC system and select the directory to which your

custom user data files are to be saved (you may also create a new directory for this purpose).

The SCC database path field is automatically populated with the database-path root of the source
control system you specified.

552 | Silk Performer Workbench 20.0

8. In the Custom include files SCC path field, click [...] and select the location in the SCC database
where the custom include files are to be saved.

9. Repeat step 7.

The SCC database path field is automatically populated with the database-path root of the source
control system you previously specified.

10.Click OK to exit the System Settings dialog. Source control integration is now complete. Source control
functions are now available from the File menu (File > Source Control).

Placing Projects and Files Under Source Control
Place a project and all its associated files under source control or place an individual file under source
control.

Placing a Complete Project Under Source Control
Note: System include files and data files cannot be placed under source control. Only custom include
files and data files can be placed under source control.

1. With a project loaded into Silk Performer, select the project node in the Project menu tree.

2. Choose one of the following:

• Select File > Source Control > Add to Source Control .
• Right-click the project node and select Add to Source Control from the context menu.

The Add To Source Control dialog opens. All scripts, include files, and data files associated with the
project are automatically selected for placement under source code control.

3. Uncheck any file type selections for file types that should not be placed under source control.

4. Ensure that source control paths have been configured for each project file type. As you have already
configured source control paths for custom include files and data files in Silk Performer’s system
settings, you should now only have to specify source control paths for project files and script files. If
required, log into your SCC and specify directories for your project and script files.
For example, with VSS, a Click here to specify link appears in the Source Control Project column of
the Add to Source Control dialog for any project file type for which a source control path has not been
specified.

5. Click Add to place the project’s files under source control.

Placing Individual Files Under Source Control
Note: System include files and data files cannot be placed under source control. Only custom include
files and data files can be placed under source control.

Note: Project files (.ltp), script files (.bdh), custom include files, and custom data files can be
independently placed under source code control.

1. In the Project menu tree, choose one of the following:

• Right-click a file and select Add to Source Control from the context menu.
• Right-click the Scripts, Data Files, or Include Files nodes and select Add to Source Control from

the context menu to select all files of those types for placement under source control.

The Add to Source Control dialog opens, showing the files upon which the operation is to be
performed.

Note: The remainder of this process is handled via dialogs provided by your SCC provider
(StarTeam, PVCS, or VSS). See StarTeam, MS VSS, and PVCS documentation for full details
regarding the use of your source control system.

2. Select the check boxes for the files that you want to place into source control.

Silk Performer Workbench 20.0 | 553

Note: If not already defined, a source control project path must be defined for each file that is to be
placed under source control. If a file marked for placement under source control does not yet have
a source control project path configured for it, you will be prompted to configure a path (the source
control project of the Silk Performer project file (*.ltp) is suggested by default).

Note: Files added to source control are written to the corresponding *.ltp file. Therefore, to add
files to source control, the corresponding *.ltp file must be checked out.

3. Click Add to place the file under source control. A blue padlock appears next to files in the Project
menu tree that are under source control and are currently checked in (read-only). This is the default
status of files that are newly placed under source control.

Checking In Files
1. In the Project menu tree, perform one of the following steps:

• To check in an individual file, right-click the file that is currently checked out, as indicated by a red
check mark, and choose Check In.

• To check in all the files of a specific type, right-click the Scripts, Data Files, or Include Files node
and choose Check In.

• To check in an entire project, right-click the project node and choose Check In.

The Check In dialog box opens, showing the local path where the file or project is currently saved.

2. Optional: Deselect any files that you do not want to check in.

3. Click Check In to check in the file or project. The status icon of the file appears as a blue padlock,
indicating that the source control version of the file or project is now read-only.

Checking Out Files
1. In the Project menu tree, choose one of the following:

• To check out an individual file, right-click the file that is currently checked in (indicated by a blue
padlock icon) that you want to check out.

• Right-click the Scripts, Data Files, or Include Files nodes to select all files of those types for check
out.

• To check out an entire project, right-click the project node.

2. Select Check Out from the context menu. The Check Out dialog opens, showing the local path to
where the file or project will be copied.

Note: If a single checked-in file is selected for check out, then only that file will be listed on the
Check Out dialog. If no file or a checked-out file is selected for check out, then all currently
checked-in files of the project will be listed on the Check Out dialog.

3. If required, deselect individual files that you do not want to check out.

4. Click the Check Out button to check out the files or project. The status icon of the files now appear as a
red checkmark, indicating that the source control version of the files or project are available and
writable.

Undoing File Check Out

1. In the Project menu tree, choose one of the following:

• To undo checkout of an individual file, right-click a file that is checked out (indicated by a red
checkmark icon).

• Right-click the Scripts, Data Files, or Include Files nodes to select all files of those types at once.
• To undo checkout of an entire project, right-click the project node.

2. Select Undo Checkout from the context menu. The Undo Checkout dialog opens, showing the local
path to where the file or project is located.

554 | Silk Performer Workbench 20.0

3. If required, deselect individual files that you do not want to check out.

4. Click the Undo button to undo the check out. The status icon of the file or project now appears as a blue
padlock, indicating that the source control version of the file is read-only.

Getting the Latest Version of a File from the Source
Control System
These instructions apply to the Get Latest Version command for individual scripts, include files, data files,
and entire projects.

Note: See StarTeam, MS VSS, or PVCS documentation for full details regarding use of your SCC’s
Get Latest Version command.

1. In the Project menu tree, choose one of the following:

• To get an individual file, right-click the file in the Project menu tree.
• Right-click the Scripts, Data Files, or Include Files nodes to select all files of those types.
• To get the latest version of an entire project, right-click the project node.

2. Select Get Latest Version from the context menu. The Get Latest Version dialog opens, showing the
local path where the file will be copied.

3. If required, deselect individual files that you do not want to get.

4. Click the Get button.

Note: Get Latest Version commands do not change the checked-in/checked-out status of files.
For example, if the Get Latest Version operation is performed on a file that is currently checked
out, the file remains checked out (if the file is open, you will be prompted as to whether or not you
want to have the file reloaded with the new version).

Project-File Only Source Control Commands
In addition to offering source control commands that operate on all the files of a complete project (project
file, custom include files, data files, and scripts), a sub-set of SCC commands that select only the project
file itself are available from the File menu (File > Source Control > Project File Only) and the project
node of the Project menu tree. These commands operate the same as their counterparts for associated
files do; the only difference is that they do not affect the associated files (scripts, custom include files, and
data files). Such functionality is useful if, for example, you want to check in a project file without overwriting
the associated script, custom include, and data files that are currently stored in the SCC.

The project-file only commands that are available from the File menu (File > Source Control > Project
File Only) and the project node of the Project menu tree include:

• Get Latest Version
• Check Out
• Check In
• Undo Checkout
• Add to Source Control

Removing Source Control from a Project
The Remove Source Control Linkage command is the reverse of the Add to Source Control command.
This command is useful when working with files (possibly received from a customer or support staff) for
which the associated source control system is not available.

Note: Source control linkage can be removed for complete projects only, not individual files.

Silk Performer Workbench 20.0 | 555

1. Choose one of the following:

• In the Project menu tree, right-click the project node of a project that is under source control and
select Remove Source Control Linkage.

• Select File > Source Control > Remove Source Control Linkage .

2. Click OK to confirm that you understand that all source control connection data for the project will be
lost.

Synchronizing the Source Control Status of a Project
Under certain conditions, Silk Performer may fall out of sync with source control systems due to the
corruption of linkage information. For example, if one were to close Silk Performer while Silk Performer is
loaded with a checked out file and then check in that same file via the SCC, Silk Performer would not be
aware that the file had been checked in.

Note: This function can be applied to complete projects only, not individual files.

1. Choose one of the following:

• In the Project menu tree, right-click the project node of a project that is under source control and
select Synchronize.

• Select File > Source Control > Synchronize .

2. Click OK to confirm that you understand that all source control connection data for the project will be
lost.

Source Control Known Issues and Workarounds
The following issues may occur when using source control.

SCC Client's Reconnect Functionality Is Not Supported
Issue Workaround

When Silk Performer projects and/or files are linked to a
defined SCC directory, and the directory is changed via
the SCC client, Silk Performer does not reconnect to the
new directory.

Remove the existing source control linkage then add the
affected projects/files to the new directory.

Note: It is generally not recommended to use SCC client functionality for maintaining linked Silk
Performer projects.

MS VSS 8.0 Requests Username/Password for Each File Check-in/
Check-out Operation
Issue Workaround

MS VSS 8.0 introduced a security setting that, when
activated, requests the user to enter their username and
password each time they check in or check out a file from
VSS. This request also appears in Silk Performer when
performing file operations with VSS.

Disable the MS VSS manual login.

Disabling the MS VSS Manual Login

Note: This procedure only works if the username in VSS is identical to the network username.

1. Open SourceSafe Administrator.

556 | Silk Performer Workbench 20.0

2. Open the database where your Silk Performer projects are saved.

3. Select Tools > Options .

4. Click the General tab.

5. Check the Use network name for automatic user login check box.

Importing, Uploading, and Emailing Projects
Silk Performer enables you to export, import, email, and upload projects.

Silk Performer offers the option of exporting entire test projects to a separate directory or an archive file.
Such exported project files can subsequently be imported into Silk Performer.

Exporting Projects
1. From the Silk Performer menu bar, select File > Export Project . The Export Project dialog appears.

2. In the Export location area, specify the location to which you want to export the current project.

If you want to export all the project files to a directory, specify the directory name. If you want to export
all the files to a ZIP archive, specify the archive name. Click [...] to the right of the field to locate the
directory or file where the project is to be exported.

3. Select the ZIP to single archive file option to export all files that belong to your current project to a ZIP
archive.

This is useful when you want to backup your project or when you want to send a copy of your project to
someone.

4. Select the Open in Windows Explorer after export check box to have the folder in the export location
open automatically in Windows Explorer after an export.

This provides you with quick access to the project file after the export, without having to navigate to find
the directory where the file is stored.

5. In the Options area, select the Include results files of all tests option to export the results of all tests
that belong to this project (the results of all TryScript tests, baseline tests, and actual tests).

If you disable this option, only the results of the most recent TryScript test will be exported.

6. Select the Protect ZIP file with password option to protect the export file (LTZ) with a password.

This is useful when your project contains confidential data (for example, user names and passwords for
the application you are testing). If you select this option, enter a password and confirm it.

7. Select the Include a system diagnostic report check box to include a diagnostic report with the
export.

This report lists the processors in the computer, the name and version of the operating system, and
information regarding the drives, memory, services, and drivers. Relevant information from the Windows
registry is also included.

8. Click OK. Silk Performer then exports the project and displays the progress of packing all relevant files
into a ZIP archive in a status bar.

Importing Projects
1. From the Silk Performer menu bar, select File > Import Project .

Note: If you have a project open, you will be prompted to close your project. Click Yes.

An Open dialog appears. Browse to and select the archive file that you want to import.

2. After selecting the archive file, click OK.

3. The Import Project dialog appears.

Silk Performer Workbench 20.0 | 557

4. In the Import target directory area, specify the location where you want to extract the project files.

a) If you have configured password protection, you will be prompted to enter your password. Enter your
password and confirm it.

5. Click OK. Silk Performer then extracts the archive file to the specified target directory and opens the
project.

Emailing Projects
1. From the Silk Performer menu bar, choose File > Email Project . The Email Project dialog box opens.

2. In the Email address field, specify the email address where your project is to be sent.

3. In the Options area, check the Include results files of all tests check box to attach the results of all
TryScript tests, baseline tests, and actual tests that belong to this project.

If you uncheck this check box, only the results of the most recent TryScript test are sent.

4. Check the Protect archive file with password check box to protect the contents of the email with a
password.

This feature is useful when your project contains confidential data, such as user names and passwords
for an application under test. If you check this check box, type a password and confirm it.

Note: Inform the recipient of the password in a phone call or separate email.

5. Check the Include a system diagnostic report check box to attach a system diagnostic report.

This report includes the following information:

• Computer processors
• OS name and version
• Information regarding the drives, memory, services, and drivers
• Relevant information from the Windows registry

6. Click OK. Silk Performer emails the project, using a status bar to display the progress of packing all
relevant files into a ZIP archive.

Troubleshooting
All customers whose products qualify for maintenance and all prospective customers who are evaluating
products are eligible for Technical Support.

Results Recovery Workflow
In environments with unreliable network connections such as the Internet, unforeseen exceptions can
happen. If the controller loses connection to an agent during a load test or while collecting results, Silk
Performer will try to re-establish the connection. However, this might not always be possible and would lead
to an incomplete results set.

For such a case, Silk Performer provides a recovery workflow. It allows you to recover results and build a
new set of valid data. Recovering results is not an ideal solution, but it prevents you from entirely losing the
already gathered data.

The recovery workflow varies, depending on the type of load test you have executed.

Recovering CloudBurst load tests

Assumed, you are executing a CloudBurst load test. For an unknown reason, the Workbench becomes
unresponsive and finally crashes. When you restart the Workbench, the recovery workflow dialog
automatically displays. Follow the recovery workflow and review the following fields, which are
automatically prefilled:

558 | Silk Performer Workbench 20.0

• Missing results: This folder contains the results that could not be completely transferred from the
agents to the controller. The transfer of these results was interrupted by the crash and therefore the
data was truncated.

• Transferred results: This folder contains the results that have been completely transferred from the
agents to the controller. The transfer of these results was successful and the data is complete and valid.

• Recovered results: This folder will contain the recovered results, once the recovery is completed. Silk
Performer will merge the missing results and the transferred results and generate the recovered results
out of it.

For CloudBurst load tests, these fields are automatically prefilled. Review the directories and adjust them if
necessary

Recovering on-premise load tests

For recovering an on-premise load test, we assume you are executing a load test with agents in your server
lab. For some reason the connection to several agents gets lost and cannot be re-established. Thus, the
load test ends with an incomplete results set. In this case, click Tools > Recover Load Test Results.

Follow the recovery workflow and specify all required directories. The directories are the same as
described above. However, the fields are not automatically prefilled. Before you specify a directory for the
missing results, make sure to create this directory on the controller and to create a subfolder for every lost
agent. Then, copy the results from the agents into the subfolders. Specify all three directories and start the
recovery workflow.

Recovering results

Silk Performer will execute several steps to recover the results. If an issue occurs during recovery, the
process stops and you can view a log file for more information. Depending on the issue, you can ignore it
and let the recovery process continue, or you can restart the process.

Once the recovery is completed, the new set of results displays in the Results tree.

Technical Support
All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products are eligible for technical support. Our highly trained customer care staff will
respond to your requests as quickly and professionally as possible.

If you have a question on recording Web traffic, load testing scenarios or any other product or
implementation issue, our highly trained technical support staff will respond to your requests as quickly and
professionally as possible.

To reach Micro Focus SupportLine, visit https://supportline.microfocus.com. First time users may be
required to register to the site.

Please have the following information ready when you call:

• Product name and version number
• Operating system name and version
• Exact wording of any error messages involved
• Customer ID found on your shipping receipt for Silk Performer or on an index card found in your

software box

Controller Agent Communication Troubleshooting
The following issues may occur when a controller computer attempts to connect to agent computers.

Silk Performer Workbench 20.0 | 559

https://supportline.microfocus.com

Load Test Controller - 3211: Could not connect agent control service

Possible Cause Resolution

The agent control service is not running. Start the agent control service.

A port mismatch occurs (the port that the agent control
service is listening to and the port at which the controller
wants to connect the agent control service are different).

Adjust the agent connection settings.

The agent is connected through a proxy and the proxy is
down.

Check the agent connection settings and restart the
proxy.

Load Test Controller - 3212: Could not authenticate the Agent Control
Service

Possible Cause Resolution

The agent requires a password and encryption is
enabled. The agent’s server certificate could not be found
or a required dynamic link library (.dll) is missing (for
example "ssleay32.dll"). However, note that the
agent control service does not report an error when it is
started, if this is the problem.

Your best option is to re-install the remote agent, because
missing certificates or dynamic link libraries are
indications that the agent was not installed correctly.

Load Test Controller - 3213: The agent control service could not create
the agent

Possible Cause Resolution

This is the same type of error as 3212, except that the
agent does not require a password.

See "Load Test Controller - 3212: Could not authenticate
the Agent Control” Service"

Load Test Controller - 3223: Agent connection lost

Possible Cause Resolution

This occurs when the connection is broken between the
controller and agent or when the underlying
communication units of the load test controller report
connection problems. Furthermore, connecting the agent
through a proxy might be the cause of the error if the
proxy itself is buggy.

There should be log files named
orbClient_<agentName>.log,
orbServer_<agentName>.log in the controller’s
or agent’s home directory, respectively, where logging
information related to the error can be found.

Load Test Controller - 3233: The agent's version does not match the
version of its controller

Possible Cause Resolution

The agent's version does not match the version of its
controller.

Install the correct remote agent version.

560 | Silk Performer Workbench 20.0

Load Test Controller - 3303: The local results directory could not be
created

Possible Cause Resolution

This is an access rights problem, that is, the user account
of the agent process does not have the necessary access
rights to create a directory; the parent directory of the
desired directory is probably a read-only version for all
accounts.

Grant the necessary access rights.

Load Test Controller - 3304: The local results directory could not be
cleared

Possible Cause Resolution

A file within the local results directory is still open and
being used by another process (most likely the
perfLtcAgent.exe and perfRun.exe). This is
usually a hint that either the agent or the runtime
processes did not shutdown at the end of a previous load
test, which should not happen.

Check for pending perfLtcAgent.exe or
perfRun.exe files and terminate them manually.

If this is not the case, check that other programs are not
using an open file from the local results directory. If none
of the above options solve the problem, reboot the remote
agent’s machine.

Load Test Controller - 3305: The local data directory could not be
created

Possible Cause Resolution

See "Load Test Controller - 3303: The local results
directory could not be created"

See "Load Test Controller - 3303: The local results
directory could not be created"

Load Test Controller - 3306: The local data directory could not be
cleared

Possible Cause Resolution

See "Load Test Controller - 3304: The local results
directory could not be cleared".

See "Load Test Controller - 3304: The local results
directory could not be cleared".

Load Test Controller - 3422: Command (connection) timed out

Possible Cause Resolution

Usually the controller has 30 seconds to:

• Connect to the remote agent control service

• Pass authentication information to the remote agent
control service (if required)

• Ask the agent control service to create the agent

• Connect to the agent

• Exchange version information with the remote agent

Specify a higher timeout in the system settings.

Silk Performer Workbench 20.0 | 561

Possible Cause Resolution

These tasks may take more time than the default timeout
of 30 seconds, especially if the agent is connected
through a proxy or if the connection is slow.

Silk Performer - 32: Access denied, authentication required

Possible Cause Resolution

The agent expects a password, but the controller did not
send a password, meaning the controller did not
authenticate itself.

Adjust the agent connection settings.

Silk Performer - 33: Authentication failed (wrong password)

Possible Cause Resolution

The agent expects a password but the password sent by
the controller is incorrect.

Adjust the agent connection settings.

Silk Performer - 25: Limit of concurrent instances exceeded

Possible Cause Resolution

Two agents cannot run simultaneously on the same
computer. Most likely, the agent is involved in a load test
started by another controller.

Wait for the other controller to finish its load test and then
try again.

If this is not the problem, the agent did not terminate
correctly at the end of a previous load test and you must
terminate the agent process manually.

System - 2: The system cannot find the file specified

Possible Cause Resolution

The agent executable (perfLtcAgent.exe) could not
be found or there is a different entry for the agent
executable in the performerLocal.ini file.

Check the performerLocal.ini file. If it is not there
or if the perfLtcAgent.exe is not present, then re-
install the agent.

Error Message Overview
Silk Performer system-related errors occur either during script compilation or during load test execution and
can cause load tests to fail. As they occur, Silk Performer reports system-level errors on the screen. Severe
system-level errors are reported to the Windows NT Event Log.

Silk Performer distinguishes among the following types of system-level errors:

• Compiler errors

• Lexical errors
• Semantic errors
• Syntax errors

• Internal errors
• System limitation errors
• Runtime errors

562 | Silk Performer Workbench 20.0

Each error message is identified by a sequential error number (unique within an error category) plus a
three-character code that indicates the category of error, followed by a string providing a detailed
description of the error.

Compiler Errors
If an error occurs during compilation, the Silk Performer compiler stops at the position where the error was
detected. The error message is displayed, and the line that caused the error is highlighted.

The compiler distinguishes among the following categories of errors:

• Lexical errors (LEX)
• Semantic errors (SEM)
• Syntax errors (SYN)

Lexical Errors

A lexical error (error type LEX) occurs if the compiler detects lexical symbols that are not allowed in
Benchmark Description Language.

Example

If a script contains an invalid character such as '{', compilation is aborted and an error
message is printed:

1 benchmark WebTest
2
3 dcluser
4 user {

Output
compile error LEX 13: not a lexical symbol of BDL
--- compilation was not successful ---

Semantic Errors

A semantic error (error type SEM) occurs if semantic conditions do not comply with the requirements of
Benchmark Description Language.

Example

If you use an undeclared variable ("i" in the example below), compilation is aborted and
an error message is displayed:

46 dcltrans
47 transaction TMain
48 var
49 artname : string(40);
50 artno, price : number;
51 result set c1;
52 begin
53 writeln; write("transaction TMain:"); writeln;
54 c1: SelArticle(out artno, price, artname);
56 write("rows found: "); write(rows(c1));
57 fetch c1 all;
58 for i:

Silk Performer Workbench 20.0 | 563

Output
compile error SEM 12: variable is not declared
--- compilation was not successful ---

Syntax Errors

A syntax error (error type SYN) occurs if the syntax of a test script does not agree with the syntax of
Benchmark Description Language.

Example

If you do not specify the keyword then within an if statement, an error message
appears:

 8 transaction TMain
 9 var
10 j : number init 1;
11 i : array [500] of number;
12 s : array [5] of string(10);
13 begin
14 if j=1
15 j:

Output
compile error SYN 38: 'then' expected
--- compilation was not successful ---

Internal Errors
Silk Performer can detect internal script errors (error type COM). Please contact Customer Care if you
encounter one.

System Limitation Errors
System limitation errors (error types RES) can occur while either compiling a script or running a load test .
If they occur during a test execution, they will cause the test to fail. These errors indicate that a system
limitation has been exceeded.

Runtime Errors
Only the Silk Performer simulator will produce runtime errors (error type RUN). Runtime errors indicate
programming errors in test scripts that cannot be recognized during compilation (for example, using array
indexes outside the scope of an array). If a runtime error occurs, an error message is printed on screen
and to a .rpt file.

Known Issues in Silk Performer
This list contains known issues in Silk Performer and provides work-arounds where available:

General Silk Performer Issues

564 | Silk Performer Workbench 20.0

Multi-byte character set support limitations

Problem:

The protocol / testing support of the Multi-Byte Character Set / UTF-8 / EUC-JP is limited to certain
application types.

Resolution:

The protocol / testing support of the Multi-Byte Character Set / UTF-8 / EUC-JP is limited to the following
application types:

• Web application testing, both protocol-level and browser-driven level
• SAPGUI testing
• Oracle Forms/Oracle Applications testing
• Citrix testing

.

How can I get Silk Performer "What's This" contextual Help to work on
Windows Vista or later?

Problem:

How can I get Silk Performer "What's This" contextual Help to work on Windows Vista or later Windows
versions?

Resolution:

In Silk Performer it is possible to get information about GUI functionality by right-clicking GUI controls and
choosing What's This?. This contextual help does not work on Windows Vista or later Windows versions.
This is a known issue related to the fact that the Windows Help program WinHlp32.exe is no longer
included with newer Windows versions. To resolve this, download the respective .exe file from the Microsoft
Download Center. For more information, see: http://support.microsoft.com/kb/917607.

The Silk Launcher Service is falsely removed when a previous version
of Silk Performer is removed

Problem:

If you have multiple versions of Silk Performer installed on your system and you remove a previous version
of Silk Performer, the Silk Launcher Service is falsely also removed.

Resolution:

Uninstall all Silk Performer versions from your system and reinstall the needed versions in ascending order.

GUI-level testing does not work if Silk Test is not installed in the
Program Files folder

Problem:

GUI-level testing does not work if Silk Test is not installed in the Program Files (Program Files
(x86)) folder.

Silk Performer Workbench 20.0 | 565

http://support.microsoft.com/kb/917607

Resolution:

None.

GUI-level scripts generated from Japanese libraries do not compile

Problem:

When importing Silk Test test cases with names that contain non-ASCII characters, the generated script
stubs cannot be compiled.

Resolution:

Either rename the test case in Silk Test so it does not use any non-ASCII characters, or rename the
generated transactions in the Silk Performer script accordingly.

The System Configuration Manager entry in the Tools menu is disabled

Problem:

If you have multiple versions of Silk Performer installed on your system and you uninstall a previous version
of Silk Performer, the System Configuration Manager entry in the Tools menu might be disabled.

Resolution:

Re-install the current Silk Performer version.

Reports created from recovered results show incorrect values

Problem:

The test summary, detailed, and region summary report created from recovered results show incorrect
values.

Resolution:

Due to limitations in the recovery process, not all values can be recovered completely. The following issues
can occur:

• The summary data is missing.
• The number of Active Users is incorrect.
• The Session Time and the Session Busy Time cannot be recovered, they always displayed as 0.
• The Average Action Time cannot be recovered, it always displays as -.
• The number of Errors is incorrect.

GUI-level testing with keyword-driven tests and Selenium is only
supported with Java 8

Problem:

GUI-level testing with keyword-driven tests and Selenium is only supported with Java 8.

Resolution:

This is a Selenium restriction. The only workaround is to use Java 8.

566 | Silk Performer Workbench 20.0

TrueLog Explorer Issues

On-access virus scanner software may cause TrueLog Explorer to
crash

Problem:

On-access virus scanner software may cause TrueLog Explorer to crash.

Resolution:

Virus scanner software may cause a variety of problems including TrueLog Explorer crashes or
performance degradation. We recommend disabling virus scanner software on the agent computers and on
the controller computer for the duration of load tests.

Visual script modifications fail if the related transaction is in an include
file

Problem:

Visual script modifications fail if the related transaction is in an include file.

Resolution:

Do not move transactions to BDH files.

Visual user data customization does not work for browser-level scripts

Problem:

Visual user data customization does not work for browser-level scripts

Resolution:

This behavior is by design, as TrueLog Explorer only considers forms submitted by WebPageSubmit calls
(page-based browser-level API), because the HTML form names are required to match HTML and BDL
forms. If you want to customize your script using TrueLog Explorer Visual User Data Customization, you
need to record a page-based browser-level API script.

SAPGUI Issues

Control position information cannot be retrieved correctly from SAP

Problem:

In rare instances, control position information can not be retrieved correctly from SAP. Therefore TrueLog
Explorer might not be able to display the selected control rectangle at the correct position on the
screenshot.

Resolution:

Use the control tree instead of the screenshot.

Silk Performer Workbench 20.0 | 567

Citrix Issues

Connecting to existing session during Citrix recording results in
unusable script

Problem:

Connecting to existing session during Citrix recording results in unusable script

Resolution:

When connecting to an existing Citrix session, the Citrix client does not recognize any windows and
therefore no synchronization functions are scripted. You should always record a new session.

Limitations for load testing with Citrix Receiver 4.4, 4.10 and newer

Problem:

The BDL function CitrixConnect does not work for Citrix load testing in Citrix Receiver 4.4, 4.10 and
newer. This is due to a defect in these Citrix versions.

Resolution:

Option 1: Use Citrix Receiver (LTSR) 4.9.7 or later.

Option 2: Use the latest Citrix Workspace-App.

Option 3: Use CitrixConnectIcaData or CitrixConnectIcaFile instead of CitrixConnect.

Citrix passthrough authentication is not enabled for custom tools

Problem

The Citrix passthrough authentication mode is not enabled for custom tools. Therefore, Silk Performer
cannot record or replay this authentication mode.

Resolution

Recording and replaying Citrix with enabled passthrough authentication is possible and no issues will
occur, however you are prompted to enter your credentials anyway. Be aware that though passthrough
authentication is enabled, it is in fact not working.

Citrix process is already running under a different user account

Problem

When executing a Citrix load test, the following error message displays: Citrix process is already
running under a different user account. This happens when the Citrix process
wfcrun32.exe is already running under a certain user account. For example: A Windows session is
already used by the user A. When a load test is started, an agent logs into the same Windows session as
user B. User B now attempts to start the process wfcrun32.exe, which does not work and causes the
error to display in Silk Performer.

Resolution

Close the running Windows session by logging out user A before you start the load test.

568 | Silk Performer Workbench 20.0

Oracle Forms Issues

After hooking into main Oracle Forms applet classes, JInitiator cannot
load additional jar files that rely on those classes

Problem

After hooking into main Oracle Forms applet classes, JInitiator cannot load additional jar files that rely on
those classes

Resolution

When recording Oracle Forms or Oracle Applications, define the following Java Runtime Options on the
JInitiator Properties Dialog: "-noverify -mx128m" NoVerify prevents these loading issues.
Additionally, the default Virtual Memory Size of JInitiator 1.1.7.x is between 16 and 64 MB. The option -
mx128m increases the virtual memory size to 128MB. This additional memory is needed as there is some
extra memory overhead caused by recording. If you run into an OutOfMemory error you can further
increase this value.

Browser crashes during recording of Oracle Forms

Problem

Browser crashes during recording of Oracle Forms.

Resolution

When recording Oracle Forms 6i it is recommended that you disable Java JIT (Just-In-Time compiling) in
the Java Runtime settings. This is because the JIT library of the Java Virtual Machine (symcjit.dll) may
crash your browser.

Java JIT can be disabled using one of the following options:

Option 1: Define - DJAVA.COMPILER=NONE in the Java runtime settings of the Oracle JInitiator
Properties dialog. This must be done using the JInitiator control panel, which is installed with JInitiator
(available in the Windows control panel).

1. Launch the JInitiator Control Panel.
2. Add DJAVA.COMPILER=NONE to the Java Run Time Parameters text field.
3. Click Apply.

Option 2: Use the check box on the Oracle JInitiator Properties dialog to disable the Just In Time Compiler
(only available since version 1.1.8.x).

1. Launch the JInitiator Control Panel.
2. Select the Advanced tab.
3. Uncheck the Enable Just In Time Compiler checkbox.
4. Click Apply.

Option 3: Define environment variable: JAVA_COMPILER=NONE.

1. Right-click My Computer and choose Properties.
2. Choose Advanced.
3. Choose Environment Variables.
4. Under System Variables click New.
5. For Variable Name enter JAVA_COMPILER.

Silk Performer Workbench 20.0 | 569

6. For Variable Value enter NONE.
7. Click OK to exit out of dialogs.

Oracle Forms cannot be recorded

Problem

When attempting to record Oracle Forms, a dialog appears, containing the following question: Do you
want to run this application? However, the Run button on this dialog cannot be clicked and
therefore the recording cannot be continued. This happens primarily under Windows 7.

Resolution

Navigate to the Essentials folder within your Silk Performer installation directory. Your path should
resemble this one: C:\Program Files (x86)\Silk\Silk Performer <version>\Essentials.
Locate the respective Oracle Forms Essentials file: OraForms<version>.sep. The .sep file contains the
file DeploymentRuleSet.jar. Extract the .sep file and copy DeploymentRuleSet.jar to the following
directory: C:\Windows\Sun\Java\Deployment. Restart Silk Performer. Now, when you start a
recording, the dialog no longer appears. DeploymentRuleSet.jar is available for Silk Performer 18.5
and newer versions.

Browser-Driven Load Testing Issues

ShowModalDialog and ShowModelessDialog not fully supported

Problem

The non-standard functions showModalDialog and showModelessDialog are not fully supported. The
browser-driven implementation of these functions is not fully compatible with the implementation of Internet
Explorer. In particular javascript-heavy pages that are loaded in such a dialog may not function correctly.

Resolution

Try to use a GUI-level testing approach in such situations.

Webbrowser control of primary BrowserWindow is terminated

Problem

Silk Performer's browser-driven approach relies on the webbrowser control of the primary (initial)
BrowserWindow through the entire scenario of a test. To implement a particular workflow, some
applications open a new child window and close the base window. If the closed window is the primary
(initial) BrowserWindow of the test scenario, the internal state of Silk Performer' s browser-driven engine is
undefined. This might result in unexpected application behavior during recording as well as during
playback.

Resolution

Add an additional BrowserWindow to your test - it will act as the new base window. The primary (initial)
BrowserWindow remains unused in your scenario. To add an additional window during recording, click File
> New Tab. Make sure to add the window right at the beginning of your recording. For existing scripts, add
a BrowserCreateWindow statement right before the first BrowserGetActiveWindow statement.

570 | Silk Performer Workbench 20.0

TrueLog Explorer displays the size of uncompressed data in browser-
driven tests
When receiving compressed data during a browser-driven test, the results displayed in TrueLog Explorer
and in the Virtual User Report can be misleading. TrueLog Explorer displays the size of the
uncompressed data for the measure Response data received in the Statistics tab, while the Virtual User
Report shows the value 0. Note that this is only the case for browser-driven tests and when compressed
data is transmitted during the test.

Java over HTTP Issues

Previous Java over HTTP scripts might not run successfully

Problem

Java over HTTP scripts recorded with a previous Silk Performer version might no longer run successfully.

Resolution

Due to the upgrade of the third-party component XStream, some Java over HTTP scripts that have been
recorded with previous versions of Silk Performer might no longer run successfully. In such a case, re-
record your scripts with the current Silk Performer version.

Silk Performer Workbench 20.0 | 571

Index
.NET

.NET support 365
creating projects 377, 380
importing test assemblies 389
projects 389
setting up projects 389
testing 104

.NET configuration files 367

.NET Explorer
.NET Remoting testing 402
additional resources 403
overview 391
starting 391
testing samples 401
testing Web services 375
Web service testing 402
with SilkEssential 392

.NET framework
overview 377

.NET Framework
.NET Framework support 365
configuration files 367, 368

custom attributes
code sample 383
generated BDF script example 384

error messages 386
functions 365
memory usage 385
Microsoft Visual Studio integration 385

.NET message sample
.NET Framework projects 401
.NET Remoting server 397
configuring 396
exploring components of 397
hooking a Win32 client application 400
IMessage interface 395
IMessageStore interface 395
installing 396
IObjectManager objects 396
IUser interface 394
MessageLib interfaces 393
ObjectManager interface 394
overview 392
recording a Web session 400

simple client
configuring 397
running 398

testing various components 400
Web client 397, 399
Web service 395, 397
Web service testing 400
Win32 client 398
working with 396

.NET projects
creating 377

.NET Remoting
starting the sample server 397

.NET Remoting objects

testing 368, 369
@codepage 538

A

access denied 562
action time 327
activating profiles 73
adding

agent computers 113
data files 111
profiles 73, 286
test scripts 111

Adobe Flex AMF3
data types 257
testing 257

Adobe Flex/AMF3
testing 246

agent
connection settings 48

Agent Assignment tab 209, 213
agent capacity

evaluate 226
agent clusters

creating 219, 222
agent computers 113
agent control service 560
agent settings

advanced 50
agents

password 56
advanced settings 49
assigning to tests 18, 212
assigning to user types 215
assigning workload 18, 212
balancing load 18, 212
capability complexity configuration 218
Cloud 55
computers 113
configuring 52
configuring project agents 113
configuring remote 53
connection lost 560
default capability values 218
default pool 47
direct connection to agent 52
HTTP firewalls 53
monitoring 233
monitoring during Web testing 290
multiple 186
multiple firewalls 54
pool settings 47
port settings 55
remote 52
removing computers 113
removing computers from pool 48
resource utilization 18, 212
setting default number of virtual users 218

572 | Index

settings 47
SOCKS firewalls 54
specific user account 49
version 560

agents, replay on
Citrix XenApp 355

AJAX
analyzing a test run 326
analyzing test scripts 325
browser configuration 318
common replay errors 324
comparing record/replay TrueLogs 328
configuring recording settings 328
creating a test script 319
defining a project 319
defining browser dimensions for recording 330
displaying a summary report 327
enabling summary reports 327
Finding errors in a TrueLog 327
identifying DOM elements 269
implications for automation and testing 269
Locator Spy 321
modeling a test script 320
overview 266
processing flow 268
project profile settings 328
replay settings 329
running multiple virtual users 319
sample Web 2.0 application 32, 271, 316
technology overview 262
testing benefits 8

Try Script runs
step-by-step replay 324

verification functions 322
viewing a summary report 326
viewing an overview page 328
viewing page statistics 327
visual analysis withTrueLog Explorer 325

AJAX synchronization
browser-driven Web testing 334
excluding URLs 334

AJAX Web applications 262
all day workload model 17, 205, 207, 289
AMF0 247
AMF3

testing 246
Animated check box 176
API functions, encoding 539
AppDynamics plugin

advanced configuration 544
configuring 543
matching timers to business transactions 544
transaction naming 543
verifying integration 544

application types
list of 60
memory footprints 24

apps
mobile devices 335
recording via mobile device 335
recording with a browser 337
recording with a mobile emulator 337

simulating transactions as virtual mobile device users
337

testing 335
architecture

Oracle Forms 444
arrays

AMF3 data types 258
ASCII 105, 500, 537
Assign Agents workflow button 18, 212
assigning workload to agents 18, 212
asynchronous communication

communication models 262
overview 262
testing on protocol level 263

attended test runs 548
authentication

browser 89, 90, 94
failed 562
required 562

autodetect unit test functions 389, 428
automatic monitoring 233

B

bandwidth
network emulation 540

baseline
setting baseline test as 201

baseline performance
calculating 16, 198
establishing 15, 198
report 200
testing 16, 202
testing with Eclipse plug-in 442

Baseline Reports 236
baseline summary page

viewing 202
baseline test

setting as baseline 201
batch file, executing 235
BDF files 111
BDL functions

Citrix XenApp 344
BDL scripts

code completion 36, 37
JUnit example 429, 430, 432
NUnit example 390

Benchmark Description Language
Java extension 417, 418
overview 110

best practices
Citrix XenApp 356

BlazeDS 247
BMC Remedy IT Service Management 338
browser

Web testing 286
browser-driven

advanced concepts 329
limitations for replay 334
native replay 317
recommended IE settings 332

browser-driven Web testing

Index | 573

AJAX
overview 266
processing flow 268
synchronization 334
technology overview 262

analyzing a test run 326
analyzing test scripts 325
applications 315
browser configuration 318
certificate errors 333
client certificates 333
common replay errors 324
comparing record/replay TrueLogs 328
configuring recording settings 328
creating a test script 319
defining a project 319
defining browser dimensions for recording 330
displaying a summary report 327
enabling summary reports 327
finding errors in a TrueLog 327
identifying DOM elements 269
implications for automation and testing 269
Locator Spy 321
modeling a test script 320
pop-up window in the sample Web 2.0 application 317
pop-up windows 315
prerequisites 332
project profile settings 328
record and replay traffic differs 332
replay settings 329
running multiple virtual users 319
sample Web 2.0 application 32, 271, 316
security certificates 333
starting remote agent with user account 332
testing benefits 8
troubleshooting 332

Try Script runs
step-by-step replay 324

unexpected browser behavior 318
verification functions 322
viewing a summary report 326
viewing an overview page 328
viewing page statistics 327
visual analysis withTrueLog Explorer 325

browsers
authentication 89, 90
emulation 88, 90, 287
recording 91
settings 86, 286
simulation 88, 287

ByteArray 260

C

calling
Web service methods 378
Web services 376

cannot find file 562
capabilities

capability complexity configuration 218
default values 218
setting default number of virtual users 218

capture file
filter domains 117
generating scripts from 116

capture files
traffic filters 116

certificate
adding to truststore 449
adding with JInitiator 450
adding with JVM 449
server and client certificates 115

certificate errors
browser-driven Web testing 333

certificates
client 56
missing 560

character encodings 537
CIDR 313
Citrix

project prerequisites 341
Citrix OCR 355
Citrix XenApp

BDL functions 344
best practices 356
client settings 354
creating test scripts 342, 344
creating use cases 357
customizing mouse events 351
customizing user data 350
debugging scripts 361
defining new projects 341, 342
defining Web interface projects 343
enabling replay on agents 355
general settings 353
generating a screen synchronization 346
generating OCR parsing function 348
generating OCR verification function 347
handling dialog boxes 363
maintaining environment stability 358
memory footprint 29
mouse and window options 102, 351
OCR settings 355
project and system settings 351
recording tips 359
recording use cases 358
replaying scripts 349
screen synchronization and verification 345
simulation settings 354
skipping time-outs during replay 350
step-by-step replay 350
synchronization options 346
synchronizing text 351
test preparation 356
testing support 341
troubleshooting scripts 361
TrueLogs 349
trying out generated scripts 348
using parameter wizard 350
verification and parsing via OCR 347
Web interface sessions 343

classpath
Java Beans 467

classpath settings 50, 106

574 | Index

client certificate
overview 115

client certificates
browser-driven Web testing 333
configuring for replay 57, 58
exporting 58
installing 57
overview 56
proxy 45
recording 57

client proxies
instantiating objects 378

client proxy objects
instantiating 378

client sessions
Oracle Forms 455

client settings
Citrix XenApp 354

client types
Oracle Forms 445

client-side monitoring 82
cloud

advantages of testing 530
infrastructure 529
number of vusers per agent 225

Cloud
remote agents 55

cloud agents
configuring java for 532
downloading results 531
java runtime environments 532

Cloudburst
connectivity requirements 531

CloudBurst
load testing with 528
Enterprise 530
load test fees 534
overview 528
Saas 530
working with 531

CloudBurst VPN
configuring 533
router appliance 533

VPN
configuring 533

code completion, BDL 36, 37
codepages

annotation 538
overview 537

command line
starting from 235

command prompts 96
compiler errors 563
compiling test scripts 111
complex functions 389, 428
component testing

Web Services 392
computation intervals 78
concurrent instances exceeded 562
condition

checkrange 168
comparedata 166

exists 170
finddata 166
loop 171
noblocksplit 169
regexpr 167
resultlen 169
scripting 170

condition evaluation environment
access to http request/response pairs 164
access to special strings 164

conditions
applyto 159
evaluation environment 164
ifnull 162
introduction 158
offset length 161
saving temporary variables 162
specifying data for 159
usedataavail 161

configuration options 32
configuring

Oracle Applications server 446
Oracle Forms client 445
remote agents 186
services 46

connection handling
Oracle Forms 457

connections
concurrent 86, 286
lost 560
timed out 561

contacting technical support 559
content-encoding

transformation 95
content-type

transformation 95
context-full functions 298
context-less functions 297
control settings 38
controller agent communication, troubleshooting 559
controller connection

troubleshooting 559
cookies 91, 285, 314
copying profiles 74
CORBA 241, 294
CORBA/IIOP

profile settings 73
recording 106
testing 104, 105
WChar/WString 105

CoudBurst VPN
basic concept 532
overview 532

creating
.NET projects in Microsoft Visual Studio 385
.NET projects 377, 380
agent clusters 219, 222
recording profiles 373, 422
Web service client proxies 378

creating a test script
for Web testing 272

creating projects

Index | 575

Java RMI 434
XML/SOAP 373, 422

Credits
estimating and debiting 535

CSV
files 111, 183

custom charts 240
custom DLLs 188
custom tables 240
customizing

GZIP compressed data 311
scripts 374, 423
test scripts 14, 178
user data 277
user-input data 277

customizing input data
Java over HTTP 426

customizing test scripts
Web testing 277

D
data execution prevention (DEP) settings 355
data files

adding 111
caching 112
compressing 112
editing CSV 183
including in tests 181, 182
overview 111
removing 112

Data Source Wizard 234, 291
data types

Adobe Flex AMF3 257
mapping external functions 189

data-driven testing 181
databases

ODBC 108, 109
Oracle OCI 110
profile settings 73
setting display options 74
testing 108–110
types available 60

dates
AMF3 data types 258

DB2 CLI
memory footprint 30

debugging scripts
Citrix XenApp 361

declared functions 389, 428
defining a project

for Web testing 272
defining new projects

Citrix XenApp 341
defining workload

Web testing 289
deleting profiles 74
detailed charts 240
diagnostics

AppDynamics 543
AppDynamics, configuring 543
AppDynamics, transaction naming 543

dialog boxes
support for HTML 317

dialog boxes, handling
Citrix XenApp 363

digest verification 92, 280
directories

local results error 561
settings 33, 34

DLLs
files 111
using custom DLLs in test scripts 188

domains
filter from capture files 117

double
AMF3 data types 257

downloading test results from Silk Central 549
dynamic think time 230
dynamic workload model 17, 205, 207, 289
dynatrace

Saas/Managed plug-in 545
Dynatrace AppMon Plug-In

overview 544
dynaTrace Diagnostics Plug-In

overview 541

E
EBCDIC code pages 500
eCATT 468, 469
Eclipse plug-in

adding test class 441
configuring settings 438
customizing required notation 440
importing 439, 440
installing 437
Java build paths 441
overview 436, 541
project properties 440
project settings 441
projects 439
required notation 440
restrictions 437
setting up 439
settings 438
system settings 440
try script runs 441
using Try Script 442
viewing test results 442
viewing TrueLog results 443
viewing virtual user error files 443
viewing virtual user log files 442
viewing virtual user output files 443
viewing virtual user report 442

editing
profiles 73
test scripts 311

editor
shortcuts 173

EJB
Java RMI Support 433

EJB (RMI over IIOP)
memory footprint 29

Email (SMTP/POP)
memory footprint 26

emailing projects 557, 558

576 | Index

empty scripts 173
emulation

network 540
emulation, browsers 90
enabling SAP scripting 470
encodings, character 537
encryption 74, 85
environment stability

Citrix XenApp 358
error handling

ODBC 108
settings 76
severity 76
SQLSTATE 108

error messages
2 562
25 562
32 562
3211 560
3212 560
3213 560
3223 560
3233 560
33 562
3303 561
3304 561
3305 561
3306 561
3422 561
compiler errors 563
controller agent communication 559
internal errors 564
lexical errors 563
OraForms 461
overview 562
runtime errors 564
semantic errors 563
syntax errors 564
system limitation errors 564
system-level errors 562

error messages for .NET 386
error replaying browser-driven script 332
errors

analyzing 460
viewing 239
viewing in Eclipse plug-in 443

EUC-JP 537
Event Log 562
exception handling 432
excluding URLs

from AJAX synchronization 334
EXE files 111
executing

GUI-level testing 407
exploring

results 379
exploring TrueLogs 176
exporting

agent-pool file 222
exporting projects 557
external functions

data-type mapping 189

declaration 188
passing parameters to 189
passing structured data types to 191
prototypes 189
script example 188

F

file not found 562
files

locking 39
filtering from capture files

general traffic 117
Firefox 58
firewalls

remote agents 54
Flash Remoting

memory footprint 25
Flex

testing 246
Flex AMF3

projects 247
testing 247

Flex/AMF3
context headers 253
customizing scripts 261
date values 256
messages 254
packet-oriented protocol 253
typed value examples 255
typed values 254
XML representation 253

Flex/AMF3 Adobe 247
Flex/AMF3 GraniteDS 247
font format 35
form attributes 298
framework integration 385
FromEncoding() 539
FTP

memory footprint 26
function calls 82
functions

declarations 179
parsing functions overview 451
rendezvous 186
user-defined 37

G

general traffic
filter 117

getting started 8
granite-config.xml

customizing 248
GraniteDS

content transformation error 248
GraniteDS Flex/AMF3

testing 246
graphs

Web testing 291
GUI

tour 9

Index | 577

GUI-level testing
configuring Windows 405
configuring Windows 2008 R2 405
configuring Windows 2016 406
configuring Windows 2019 406
executing 407
memory footprint 31
modeling scripts 409
obtaining licenses 407
overview 403
RDP 405
result files 411
scalability scenarios 411
setting options 97
timers 411
troubleshooting 413
UAC 405
user credentials 410

GUI-level tests
keyword-driven 407

GZIP compressed data
customizing 311

GZIP POST Data
customization 311

H

high resolution screen layout
enabling/disabling 59
overview 58
resetting defaults 59

host server settings 84
HTML

page and action timers 178
rendered 451

HTML dialog boxes
support for 317

HTML overview reports
templates 239

HTTP 45, 94
HTTP firewalls

remote agents 53
HTTP invoker 424
HTTP live streaming

HLS support 528
HTTP parsing rule

guided example 122
HTTP traffic

recording 373, 422
replaying 373, 422

HTTP-based Web services
testing SOAP 372, 422

HTTP/2
configuring 266
general information 264
server push 265
TrueLog Explorer 265

HTTPS
recording Oracle Forms 449

httpscriptingrule
actions 149
addinitfunction 154

commentcookie 152
definepagename 151
dontusehtmlval 155
forcecontextless 155
mapfunctionname 153
noaddurl 154
nodynlinkparsing forcedynlinkparsing 151
nofuzzyformdetection forcefuzzyformdetection 150
nohtml forcehtml 150
noquerytoform forcequerytoform 155
ScriptCookieDomainAsRequestHost 152
structure 149
suppresscookie 152
suppresscustomurlname 152
suppressformname 152
suppressframename 152
suppresslinkname 152
suppressrecording 155

I

IBM mainframes 500
IDL files 111
IIOP 41, 75, 240
IIOP Corba

memory footprint 29
importing

.NET test assemblies 389
Java test classes 428
JUnit test classes 428
JUnit test suites 433
NUnit test assemblies 389
projects 557
projects from Silk Central 547

in body/out body
Oracle Forms 452

increasing workload model 17, 205, 206, 288
infrastructure

cloud 529
installing

.NET message sample 396
installing upgraded product version 22
integers

AMF3 data types 257
integrating

Java Framework 417, 418
Silk Central 545, 546

integration
Performance Manager 550

interfaces
defined in IDL file 106
server 41

internal errors 564
Internet 81, 84, 87
Internet application server(iAS) 450
Internet developer suite(iDS) 450
Internet Explorer

modifying profile 436
introduction 8
IP addresses

adding in System Configuration Wizard 193
multiple addresses per NIC 193

578 | Index

routing problems 194
setting dynamic user 194
setting up using script functions 194
simulation 193
solutions for routing problems 194
testing routing adaptations 196

J
Jacada

BDL script structure 417
configuring profile settings 416
configuring recording profiles 416
creating projects 415
Jacada support 415
memory footprint 29
recording 416
testing 415

Java
advanced system settings 51
API 44
build paths in Eclipse plug-in 441
classpath settings 50, 106
compiling Java files 418
component testing 443
configuration 50
creating projects 418
Eclipse-plug in settings 438
generating files 418
importing test classes 428
Java support 417
JIT compiler 107
just-in-time compiler 450
JVM 107
logging 107
profile settings 428
recorder method 44
testing 50, 106, 107
unit test import tool 427
virtual machine 450
virtual machine settings 51

Java Explorer
starting 443

Java Framework
Java Framework support 417
memory footprint 29

Java over HTTP
customizing input data 426
overview 424
project setup 424
verification statements 426, 427

Java RMI
creating projects 434
Java RMI Support 433
Product Manager 435
recording 435
recording profiles 434
replaying 435
results 435
sample application 435
sample recording 436
sample replaying 436

Java settings
remote agents 52, 56

Java version
for Oracle clients 445

JavaScript Web context management 300
JDK

latest version 464
Jolt 73
JSON

pretty format 279
understanding 278

JUnit
BDL script example 429, 430, 432
exception handling 432
executing test suites 433
filter options 428
importing test classes 428
methods 428
overview 427
projects 427
return values 433
setting up projects 427
test suites 433
timer parameters 429, 430

JVM
Java Settings 434
memory 464

JVM certificate
adding to truststore 449

K

keywords
SQL 74

L

LAN
adding to agent pool 47
removing from agent pool 48

latency
network emulation 540

Latin-1 537
layout

settings 34, 35
LDAP

memory footprint 26
lexical errors 563
licenses

Windows Server Edition 407
line numbers 35
listen port 45
load testing SOAP Web services

references 379, 424
load tests

managing 11, 59
overview 229

load-test resource management 216
loading

WSDL files 375
local data directory error 561
local results directory error 561
locking

files 39

Index | 579

source control integration 550
log files

analysis 461
hide passwords 78
overview 176
viewing 177
viewing in Eclipse plug-in 442

logging
Internet 81
Java 107
Oracle Forms 447
recording 82
settings 81

login 89

M
mainframes 500
managing

load tests 11, 59
managing multiple versions 59
measures

overview 242
media streams

HLS support 528
memory

JVM 464
memory footprints 24
memory usage for SAPGUI load testing 486
memory usage in .NET 385
message sample, .NET

overview 392
Micro Focus

overview 534
Micro Focus Credits

estimating and debiting 535
Microsoft Silverlight 500
Microsoft Vista support 540
Microsoft Visual SourceSafe

checking files into 554
checking out files 554
client reconnect functionality 556
configuring 552
disabling manual login 556
getting latest version 555
login requests 556
overview 550
placing files under source control 553
placing projects under source control 553
project-only commands 555
removing source control 555
synchronizing source control 556
undoing file check out 554

mobile
apps 335
recording apps 337
recording apps via mobile device 335
simulating transactions as virtual mobile device users

337
mobile apps

secure connection 115
testing 335

modeling test scripts 113

modems 197, 199
Monitor/Script Window 11
monitoring

automatic 233
client-side 82
configuring 20, 227, 228, 287, 288
servers 20, 227, 228, 287, 288
settings 79

monitoring projects
infrastructure monitor 550

monitoring tests
Web testing 290

mouse and window options
Citrix XenApp 102, 351

mouse events
Citrix XenApp 351

mouse move
inserting 322

Multi-Byte-Character-Set (MBCS) 537
multibyte support

@codepage 538
additional encoding 539
copying strings 539
example 538
overview 537, 538
replay engine requirements 539
system codepage 538

N

native replay
browser-driven 317

Netscape 41
network emulation

configure settings 84
driver 540
settings 540

network optimization settings 83
nodes

Oracle Forms 451
non-displayable characters

testing websites that use 330
NUnit

BDL script example 390
filter options 389
importing test assemblies 389
methods 389
overview 388
projects 389
setting up projects 389
timer parameters 390
unit test import tool 388

O

objects
AMF3 data types 259

OCI 41
OCR

Citrix XenApp 347, 348, 355
OCX files 111
ODBC

580 | Index

memory footprint 30
OLB files 111
Oracle

memory footprint 30
Oracle 11i

memory footprint 28
Oracle 12i 466, 467
Oracle Applications

configuring server 446
Oracle clients

supported Java versions 445
Oracle Forms

architecture 444
client sessions 455
client types 445
configuring client 445
connection handling 457
in body/out body 452
Java recording API 448
logging 447
message blocks 452
message types 452
nodes 451
profile settings 99, 447, 454
recorded script 448
recorded text log 448
recorded TrueLog 449
recording 465
recording concepts 447
recording over HTTPS 449
recording problems 465
replay concepts 454
script customization 457
Web calls 450

Oracle Forms Internet application server(iAS)
Internet developer suite(iDS) 450
rapid application development(RAD) 450
SQL*Forms 450

Oracle Forms performance
analyzing 456

Oracle Forms test scripts 446
Oracle OCI 110
OraForms errors 461
outlining

projects 12, 60, 212
recording settings 74

output files
overview 178
types 78
viewing 178
viewing in Eclipse plug-in 443

Output tab 542
Output Window 11
overview page

Web testing 276
overview reports

contents 240
template 78
Web testing 294, 295

P
pacing

overview 232

package functions 389, 428
packet drop

network emulation 540
page and action timers 178
page statistics

Web testing 275
parameter wizard

Citrix XenApp 350
Parameter Wizard

creating parameters with 181
editing multi-column data files 183
inserting a constant value 181
inserting a pre-existing parameter 183
inserting random values 182
values from multi-column data files 182

parameterless functions 389, 428
parameters

BDL external function calls 191
BDL external function declarations 190
C source code 190
passing to external functions 189
random variables 277

parsing functions
HTML context parsing 283
overview 282, 451
response data parsing 283

parsing functions and replacements
alwaysnewfunc attribute 137
commentotvar attribute 137
commenttofunc attribute 137
conditions attribute 135, 138
genbytesreadvar attribute 138
gendebugprint attribute 138
maxlblen attribute 136
onlyifcompleteresult attribute 136
replacein attribute 136
scripting 135
tokenizing of rule hits 138
varname attribute 136

parsing rules
customizing ShopIt with TrueLog Explorer 123
recording ShopIt without 122

passwords
remote agent 56
authentication 89
encryption 74
in log files 78
required 560

paths and queries
capture file

filtering paths and queries from 118
filtering 118

PEM files 111
PeopleSoft

application-level errors 525
creating project type 519
customize scripts 522
customizing alerts 526
customizing error messages 525
customizing think times 522
customizing timer names 523
enable server-side tracing 524

Index | 581

input value randomization 527
interaction in the work area 521
load testing 519
memory footprint 28
navigation in the menu tree 521
parameterization 526
randomize table row selection 524
recording user transactions 519
script modeling for 519
sign-in and sign-out processes 521
sign-in data 526
targeting a different server 523
uniquely seed randomness 523
use API functions 520
wrapper functions 520

performance
baseline 15, 16, 198, 202
monitoring 234, 235
scalability 23

Performance Explorer
region comparison reports 239
Web testing 293

performance levels
defining and assigning (proactively) 204
defining and assigning (reactively) 204
overview 203

Performance Manager
creating client monitors 550

Performance Monitor 79
performance trend reports 242
PKG files 111
plug-ins

Dynatrace AppMon 544
Eclipse 436
initializing 542
Output tab 542
overview 541
viewing results 442

pop-up window support
sample Web 2.0 application 32, 271, 316, 317

pop-up windows
browser-driven Web testing 315

POP3 45
port mismatch 560
port settings 45, 53, 55
POST data, customizing 311
prerequisites

browser-driven Web testing 332
Citrix 341
Citrix XenApp 342

print layout settings 35
private functions 389, 428
product

functionality 239
overview 239

profile settings
Java 428
Oracle Forms 99, 447, 454
projects 72

profiles
activating 73
adding 73, 286

copying 74
deleting 74
editing 73
renaming 73

project and system settings
Citrix XenApp 351

Project menu tree 11
projects

application types 60
checking into source control 554
checking out of source control 554
downloading from Silk Central 547
emailing 558
exporting 557
exporting, uploading, and emailing 557
Flex AMF3 247
getting latest version 555
importing 557
importing from Silk Central 547
importing into Eclipse plug-in 439
Java Framework 418
opening from Silk Central 546
Oracle Applications 12i 466, 467
outlining 12, 60, 212
profile settings 72
removing source control 555
source control commands 555
source control known issues 556
synchronizing source control 556
terminal emulation 501, 502
undoing file check out 554
uploading to Silk Central 548

Properties for Agent dialog
Capabilities tab 217

protected functions 389, 428
protocols

Oracle Forms 450
selecting 41
settings 74

proxies
activating 45
adding 45
host server settings 84
settings 87

proxy servers 560
proxyenginerule

actions 156
addappletparam 156
bypassblockinghttp 157
changeappletparam 156
detectprotoftp 156
detectprotosmtp 156
dontdetectprotohttp 157
dontmodifyrequestheader 157
dontmodifyresponseheader 157
removeappletparam 156
structure 155

public functions 389, 428
PVCS

checking files into 554
checking out files 554
client reconnect functionality 556

582 | Index

configuring 552
getting latest version 555
overview 550
placing files under source control 553
placing projects under source control 553
project-only commands 555
removing source control 555
synchronizing source control 556
undoing file check out 554

Q

queuing workload model 17, 205, 207, 289

R

Radius
memory footprint 28

random thinking time 15, 198
rapid application development(RAD) 450
raw measure data capturing

enabling 244
file size statistics 244
overview 242

RDP
GUI-level testing Windows 2008 R2 405

recorded script
Oracle Forms 448

recorded text log
Oracle Forms 448

recorded TrueLog
Oracle Forms 449

Recorder
overview 114
recording rules overview 40
settings 40

recording
browsers 91
CORBA/IIOP 106
HTTP traffic 373, 422
Jacada 416
logging 82
Oracle Applications 12i 466, 467
Oracle Forms 446, 448
rule-based 118
secure connection 115
server-traffic data 80
settings 74, 85
terminal emulation 502

recording a test script
for Web testing 273

recording concepts
Oracle Forms 447

recording profiles
adding 41
copying 42
creating 373, 422
editing 42
recording methods 43
removing 42

recording rules
adding 46

casesensitive attribute 133
condcontenttype attribute 134
condregexpr attribute 134
condresultlen attribute 134
conversion function 121
conversion\dll attribute 135
conversion\function attribute 135
creating a conversion DLL 127
creating a specific rule 125
data types 119
editing 47
example 119
files 118
finding rule hits 129
ForceTcp 150
general attributes of 120
guided HTTP parsing rule example 122
HTTP parsing rules 120
ignorewhitespaces attribute 133
lb\offset attribute 130
lb\regexpr attribute 130
lb\str attribute 129
rb\chartype attribute 131
rb\length attribute 132
rb\regexpr attribute 131
rb\str attribute 130
regexpr regexprtag attribute 132
searchin attribute 133
structuring HTTP parsing rules 121
transferring customization details 123
try the recording 125

recording SOAP
scripts 374, 423

recording tips
Citrix XenApp 359

recording use cases
Citrix XenApp 358

recovering
results 558

references
load testing SOAP Web services 379, 424

region comparison reports 239
Remedy

BMC IT Service Management 338
SilkEssential 340

Remedy Ars Web
memory footprint 26

remote agents
password 56
Cloud 55
configuring 52
configuring ports 53
direct connection to agent 52
HTTP firewalls 53
Java settings 52, 56
multiple firewalls 54
SOCKS firewalls 54

removing
agent computers 113
data files 112
test scripts 111

renaming profiles 73

Index | 583

rendered HTML 451
rendezvous functionality 186
replacement characters 538
replay

browser-emulation settings 90
browser-simulation settings 88, 287
HTTP body transformation settings 94
proxy settings 87
server-traffic data 80
using scripts 58
verification settings 92
within GUI 57

replay concepts
Oracle Forms 454

replaying
HTTP traffic 373, 422
Java RMI 435
scripts 374, 424
secure connection 115

replaying scripts
Citrix XenApp 349

reports
contents 177
files 177
performance trend 242
region comparison 239
templates 239

response data parsing 283
response time

setting thresholds 16, 203
thresholds 202
transactions 178

results
analyzing Oracle Forms performance 456
eCATT 469
exploring 379
GUI-level testing 411
Java RMI 435
settings 33, 39, 78

RMI
Java RMI Support 433

RND files 111
root cause analysis 239
routing

Web service traffic 379
rule-based recording

conditions 158
files 118
httpscriptingrule 149
proxyenginerule 155
troubleshooting 172

running
load tests 11, 59

running tests
Web testing 290

runtime errors 564

S

sample recording
Java RMI 436

sample replaying

Java RMI 436
sample scripts

working with 174
writing manually 173

SAP
monitoring 481
profile settings 477
results 480

SAP eCATT 468, 469
SAP functions

accessing low-level properties 474
checking patch level 470
checking R/3 support 471
enabling scripting 471, 476
patch levels 470

SAP NetWeaver (Web)
memory footprint 27

SAPGUI
application architecture 471
connection handling 485

control
grid and table 487
information 483
method 488
properties 488

input data 484
logon 486
logon password 478
memory footprint 27
memory usage 486

object
access 473
properties 474

object IDs 472
overview 469
profile settings 477, 484
properties 474
recording 480

scripting
client 471, 476
server 471, 476

testing 100, 478
TrueLog structure

nodes 482
unexpected windows 487
verification and parsing functions 484

SapGuiLogon
password 478

saving temporary variables
saveas 162
saveiffalse 162
saveiftrue 162
saveifunknown 162
savemode 162
savetag 163
savewhat 163

screen layout, high resolution
enabling/disabling 59
overview 58
resetting defaults 59

screen synchronization
Citrix XenApp 345, 346

584 | Index

script
Oracle Forms 448

script customization
Oracle Forms 457

scriptgen
action attribute 147
attributes varname varnameprefix isexternalvar 149
conversion\bdl attribute 141
expectbinarydata 141
lastoccurence 141
minrblen linlblen 140
overview 140, 147

scripts
customizing 374, 423
customizing to make robust 187
editing manually 311
GUI-level testing 409
Oracle Applications 12i 466
overview 110
recording SOAP 374, 423
rendezvous sample 186
replaying 374, 424
validating 176
Web form example 313

scripts, creating
Citrix XenApp 342, 344

secure connection
record and replay 115

security
settings 84

security certificates
browser-driven Web testing 333

semantic errors 563
serialization

functions 183
sample script 184

serializing
virtual users 183

server certificate
overview 115

server interfaces 41
server monitoring

overview 228
storing data 235
template 228

server performance
monitoring 234
report 235
storing data 235

services
configuring 46
system diagnostic report 557

session customization 503
session handling

customizing 286
session information 283
when to use 284

session information, Oracle Applications 12i 467
session time 230
SetEncoding() 539
settings

advanced agent 50

agent pool
configuring 47

agents 47
bandwidth 83
browsers 86, 286
error handling 76
host server 84
HTTP-body transformation 94
Java 50, 106, 107, 418
licensing 40
logging 81
modems 83
monitoring 79
network optimization 83
protocols 74
proxies 87
Recorder 40
recording 74, 85
result 39, 78
security 84
simulation 75
terminal client 96
time-series data 78
verification 92
workspace 39

settings, general
Citrix XenApp 353

Shift-JIS 537
Siebel

application architecture 489
dynamic data 495
dynamic information, HTTP traffic 491
error detection 491
meaningful timer names 498
overview 489
project setup 490
reformatting functions 498
session IDs 491
testing best practices 499
TrueLog Explorer configuration 490
url encoding 493
user input 494

Siebel 6
memory footprint 31

Siebel 7 Web client
memory footprint 28

Silk Central
creating agent clusters file 219
downloading test results from 549
exporting agent-pool file 222
importing projects from 547
integrating 545–547
integration 237
settings 33
uploading projects to 548
uploading test results to 549

Silk Test
memory footprint 31

Silk4J
importing test class 408
requirements for GUI-level testing 411

Silk4NET

Index | 585

importing a test class 409
requirements for GUI-level testing 411

SilkEssential 340, 392
Silverlight

memory footprint 25
simulation

browsers 88, 287
settings 75

simulation settings
Citrix XenApp 354

smart indention 37
SMTP

proxies 45
recording settings 85

SOAP
overview 371, 419
testing over HTTP-based Web services 372, 422
testing requirements 375
testing Web services for .NET 371
testing Web services for Java 419
traffic routing options 104
XML 28

SOCKS 44, 45, 87, 465
SOCKS firewalls

remote agents 54
source control integration

adding files 553
adding projects 553
checking in files 554
checking out files 554
configuring 552
disabling VSS manual login 556
getting latest version 555
integrating StarTeam 551
known issues 556
overview 550
project-only commands 555
removing 555
settings 33
synchronizing 556
undoing file check out 554

Spring framework 424
SQL

results 240
SQLSTATE 108

SQL*Forms 450
SSL 85
StarTeam

checking files into 554
checking out files 554
client reconnect functionality 556
configuring 552
downloading integration module 551
getting latest version 555
integrating 551
overview 550
placing files under source control 553
placing projects under source control 553
project-only commands 555
removing source control 555
running integration module 551
synchronizing source control 556

undoing file check out 554
static think time 230
steady state workload model 17, 205, 206, 289
step-by-step replay

Citrix XenApp 350
stress tests 76
strings

AMF3 data types 257
stringscriptingrule

search section 147
structure 146

structured data types
BDL external function calls 192
BDL external function declarations 192
C source code 191
passing to external functions 191

subnet masks 312
summary page

baseline test 199
load test 22, 238
try script 175

summary reports
Web testing 275

summary tables 177, 240
suppressed dialog boxes 39
synchronization

functions 185
sample script 185

synchronization options
Citrix XenApp 346

synchronizing
virtual users 185

synchronizing text
Citrix XenApp 351

syncing record/replay TrueLogs 276
syntax errors 564
System Configuration Manager 53, 55, 312
system limitation errors 564
system-level errors 562

T

tabs
in body/out body 452

TCP IP
protocol rules 141

TCP IP protocol rules
conditions 143, 145
genverify attribute of conditions 143
guided tcprulerecvproto example 144
guided tcprulerecvuntil example 145
identify\ignorewhitespaces attribute 145
identify\lengthadd attribute 143
identify\lengthfactor attribute 143
identify\lengthlen attribute 142
identify\lengthoffset attribute 142, 143
stromgscriptingrule 146
structure of 141
tcprulerecvproto 142
tcprulerecvuntil 144
termdata attribute 145
types of 141

586 | Index

TCP/IP
applications 41
browser-recording options 91
connection information 81
firewalls 53
proxies 45

TCP/IP applications
memory footprint 26

TCP/IP based protocols
'keep alive' mechanisms 516
character conversion 504
custom protocols 517
dynamically receiving server responses 504
EBCDIC to ASCII conversion 514
finding information 507
IP spoofing 516
memory usage per vuser 503
overview 503
recorder settings 518
recording profile setup 518
recording rule configuration 516
session IDs 507
string manipulation of binary data 505
TCP proxy recorder 518
Telnet 507
TN3270e protocol 512

technical support, contacting 559
Telnet 96
templates

assigning 239
for monitoring 79, 228

terminal client settings 96
terminal emulation

project profile settings 501
recording 502
recording profiles 502
session customization 503
testing 500–503
types available 60

test execution
launching from command line 235
monitoring 233
overview 229
performing 21, 229

test preparation
Citrix XenApp 356

test results
exploring 236
deleting 237
downloading from Silk Central 549
opening 237
overview 236
refreshing 237
uploading to Silk Central 549
verifying 238
viewing options 237
Web testing 292

test scripts
adding 111
compiling 111
customizing 14, 178
editing manually 311

modeling 113
overview 110
recording 12, 114
removing 111
visual analysis with TrueLog Explorer 274
Web form example 313
Web testing 274
writing 173

testing
.NET 104
.NET message sample 400
Adobe Flex AMF3 257
Adobe Flex/AMF3 246
BMC Remedy IT Service Management 338
browser-driven 315
configuring Windows 2008 R2 405
configuring Windows 2012 406
CORBA/IIOP 104–106
databases 108–110
Flex AMF3 247
GraniteDS Flex/AMF3 246
GUI-level 97, 403, 405–407, 409–411
IIOP 104, 105
Jacada 415
Java 50, 106, 107
Java over HTTP 424
mobile apps 335
Oracle Applications 12i 466, 467
SAP eCATT 468, 469
SAPGUI 100, 478
SOAP Web services for .NET 371
SOAP Web services for Java 419
terminal emulation 500–503
web applications 262

testing support
Citrix XenApp 341

testing Web services
final steps 376

tests
launching from command line 235
starting 21, 229

text log
Oracle Forms 448

think times 15, 74, 76, 198, 230
thresholds, response time 202
time to interact

including elements in the 323
Time to Interact

TTI 330
time-outs during replay

Citrix XenApp 350
time-series data

settings 78
timers

GUI-level testing 411
logging options 81

timestamps
overview 493

title verification 92, 280
TLB files 111
TN3270

memory footprint 27

Index | 587

TN5250
memory footprint 27

ToEncoding() 539
tour

user interface 9
traffic, capturing 80
traits

AMF3 data types 259
transaction response time 178
transactions

declarations 179
logging options 81

transformation
content-encoding 95
content-type 95

trend
performance trend reports 242

troubleshooting
browser-driven Web testing 332
GUI-level testing 413
source control integration 556

troubleshooting scripts
Citrix XenApp 361

TrueLog
analyzing test runs 275
comparing Web record and replay 276
finding errors in 275
Oracle Forms 449

TrueLog Explorer
analyzing visually 176
capturing traffic 80
customizing session IDs 14, 178
results 236
setting up 97
validating scripts 176
viewing errors 239
viewing Try Script results 443
XML 279

TrueLog On Error
Web testing 292

TrueLog structures
SAPGUI

nodes 482
TrueLogs

Citrix XenApp 349
error analysis 460

try agents
overview 19, 226
summary 227
trying out a test script 19, 226

Try Script
launch configuration 442
settings 174
using with Eclipse plug-in 442
validating 14, 175
viewing test results 442
viewing TrueLog files 443

Try Script runs
for Web testing 273

TryScripts
Citrix XenApp 348

TTI

Time to Interact 330
Tuxedo

memory footprint 30

U
UAC

GUI-level testing Windows 2008 R2 405
unable to replay browser-driven script 332
Unicode 105, 537
Unicode Text/Hex Editor 539
unit tests

functions 389, 428
JUnit filter options 428
NUnit filter options 389

UNIX 500
up time

agents 225
upgrading product version 22
uploading

projects 557
projects to Silk Central 547, 548
test results to Silk Central 549

use cases
Citrix XenApp 357

user account
run virtual users under a 49

user account control (UAC)
agent machines 540

user credentials, GUI-level testing 410
user data

customizing 277
user data, customizing

Citrix XenApp 350
user distribution 18, 212
user groups

customizing 180
user interface

overview 9
testing 403

user profiles
Web testing 286

user types
define 15, 197
defining 15, 197

UTF-16 537
UTF-8 537

V
variables

input attributes 277
verification and parsing functions

SAPGUI 484
verification checks

automatically generating during recording 280
digest verification 280
enabling during replay 281
overview 279
title verification 280

verification functions
visual 451

verification settings 92

588 | Index

verification statements
Java over HTTP 426, 427

verification workload model 18, 206, 208, 289
verifying content

Web testing 281
verifying test results 238
version mismatch 560
versions, managing multiple 59
viewing errors 239
Virtual User Output files 240
Virtual User Report files 240, 442
Virtual User Summary report 176, 177
virtual users

calculating 230
finding baseline 230
maximum amount 23
monitoring 234
number per cloud agent 225
rendezvous functionality 186
report content 177
serializing 183
serializing and synchronizing 183
synchronizing 185
user groups 180

Vista support 540
Visual Basic

memory footprint 30
visual root cause analysis 239
Visual SourceSafe

checking files into 554
checking out files 554
client reconnect functionality 556
configuring 552
disabling manual login 556
getting latest version 555
overview 550
placing files under source control 553
placing projects under source control 553
project-only commands 555
removing source control 555
synchronizing source control 556
undoing file check out 554

Visual Studio
developing performance tests in 535

Visual Studio .NET Add-On 29
Visual Studio extension

advanced topics 537
C# binding 535
capture file compatibility 537
licensing 537

visual verifications 451
VPN

basic concept 532
overview 532

VT100 500
VT100/VT200

memory footprint 27
VT200 500

W

WAN

adding to agent pool 47
removing from agent pool 48

WChar/WString 105
Web

application testing (AJAX) 262
context management 296–300, 302, 305, 307–309,

311
form data encoding 308
forms 178, 201, 313
settings 44

Web 2.0 testing
AJAX overview 266
AJAX processing flow 268
analyzing a test run 326
analyzing test scripts 325
browser configuration 318
common replay errors 324
comparing record/replay TrueLogs 328
configuring recording settings 328
creating a test script 319
defining a project 319
defining browser dimensions for recording 330
displaying a summary report 327
enabling summary reports 327
finding errors in a TrueLog 327
implications for automation and testing 269
Locator Spy 321
modeling a test script 320
project profile settings 328
replay settings 329
running multiple virtual users 319
sample AJAX-based application 32, 271, 316, 317
testing benefits 8

Try Script runs
step-by-step replay 324

verification functions 322
viewing a summary report 326
viewing an overview page 328
viewing page statistics 327
visual analysis withTrueLog Explorer 325

Web applications 262
Web browser driven (AJAX)

memory footprint 25
Web Business Transaction (HTML/HTTP)

memory footprint 24
web design

responsive 338
Web interface sessions

Citrix XenApp 343
Web low-level (HTTP)

memory footprint 24
Web service methods

calling 378
Web services

calling 376
creating client proxies 378
routing traffic 379
SOAP 371, 419
testing SOAP for .NET 371
testing SOAP for Java 419

Web Services
recording/replaying HTTP traffic 373, 422

Index | 589

simulating virtual users 421
testing 368
testing SOAP 372, 422

Web testing
adjusting workload 288
analyzing test runs 275
analyzing test scripts 274
browser types 286
comparing record and replay TrueLogs 276
content verification 281
creating a test script 272
customizing test scripts 277
customizing user data 277
defining a project 272
defining a workload 289
finding errors in TrueLog 275
identifying DOM elements 269
monitoring a specific agent 291
monitoring a virtual user 291
monitoring all agent computers 290
monitoring tests 290
monitoriong performance with a graph 291
overview page 276
overview reports 294, 295
page statistics 275
Performance Explorer 293
recording a test script 273
running tests 290
summary reports 275
syncing record/replay TrueLogs 276
technology overview 262
test results 292
TrueLog On Error 292
Try Script runs 273
user profiles 286
virtual user summary reports 275
visual analysis with TrueLog Explorer 274
workload models 288

WebDav
memory footprint 25

WebEngine
82 - Content transformation error 248

websocket
testing connections 264

Windows Codepage 537

Windows NT Event Log 562
Windows Server Edition licenses 407
Windows Vista 540
WinSock 44
workbench

monitoring tests from 233
settings 33

workflow bar
customizing 9

working with sample scripts 174
workload

agents
dynamic workload-assignment 216

assigning to agents 18, 212
configuring 206–208
defining 205
dynamic assignment to agents 216
models 17, 205
time names 210
Web testing 288

Workload Configuration dialog 209, 213
workload models

Web testing 288
workload settings

initializing 212
workspace settings 33, 39
wrong password 562
WSDL

loading files 375

X

XML
encoding requirements 118
pretty format 279
SOAP 28

XML/SOAP
creating projects 373, 422

XMLDocument 258

Z

ZLIB POST Data
customization 311

590 | Index

	Contents
	Silk Performer Workbench 20.0
	What's New in Silk Performer 20.0
	New Editor
	Dynatrace Integrations
	CloudBurst Enhancements
	Web on protocol-level Enhancements
	Other Enhancements
	Technology Updates

	Getting Started
	Introduction to Silk Performer
	Benefits of Using Silk Performer
	Tour of the UI
	Managing Your Load Testing: Start to Finish Overview
	Outlining Projects
	Outlining a Project

	Modeling Scripts
	Recording a Test Script

	Trying Out Scripts
	Trying Out a Test Script

	Customizing Scripts
	Defining User Types
	Defining a User Type

	Finding Baselines
	Finding a Baseline

	Viewing Baselines
	Setting Response Time Thresholds

	Adjusting Workload
	Workload Models

	Assigning Agents
	Assigning Agents to Workload

	Trying Out Agents
	Trying Out a Test Script On Agents

	Configuring Monitoring
	Defining Monitoring Options

	Running Tests
	Running a Load Test

	Exploring Results
	Load Test Summary

	Upgrading to Silk Performer 20.0
	Performance and Scalability Matrix
	Memory Footprints by Application Type
	Sample Web 2.0 Application

	Configuring Silk Performer
	System Settings
	Workbench Settings
	Configuring Directory Settings
	Configuring Layout Settings
	Configuring Print Layout Settings
	Code Completion
	User-Defined Functions, Variables, and Constants
	Configuring Control Settings
	Configuring Result Settings
	Configuring Workspace Settings
	Configuring Licensing Settings

	Recorder Settings
	Adding Recording Profiles
	Removing a Recording Profile
	Editing or Copying Recording Profiles
	Recording Methods for Recording Profiles
	Specifying the Recorder Method for Capturing Web and TCP/IP-Based Traffic
	Configuring Proxy Settings
	Configuring Services
	Adding a Recording Rule
	Editing a Recording Rule

	Agents Settings
	Agent Pool
	Configuring Agent Pool Settings
	Adding a Computer to the Agent Pool
	Agent Connection Properties
	Removing a Computer from the Agent Pool

	Advanced Agent Settings
	Using a Particular User Account for a Single Agent
	Using a Particular User Account for All Agents
	Distributing Virtual Users Over Multiple Windows Sessions

	Java Settings
	Configuring Java Version and Classpath Settings
	Configuring Advanced Java System Settings
	Remote Agent Java Settings

	Remote Agents
	Remote Agent Connection Scenarios
	Direct Connection to Remote Agent (default settings)
	Connecting Through TCP/IP Firewalls
	Connecting Through HTTP Firewalls
	Connecting Through SOCKS Firewalls
	Connecting Through Multiple Firewalls
	Connecting in the Cloud

	Specifying Port Settings for Remote Agents
	Specifying a Password for Remote Agents
	Configuring Remote Agent Java Settings

	Client Certificates
	Installing Client Certificates
	Using a Client Certificate for Recording
	Using a Client Certificate for Replay in the GUI
	Using a Client Certificate for Replay in a Script
	Exporting a Client Certificate from Internet Explorer
	Exporting a Client Certificate from Firefox

	Custom Screen Layouts
	Enabling/Disabling High Resolution Screen Layout
	Resetting Default Screen Layouts

	Managing Multiple Versions of Silk Performer

	Managing Load Tests
	Outlining Projects
	Outlining Projects
	Outlining a Project
	Available Application Types
	Web Browser
	Web business transaction (HTML/HTTP)
	Web browser-driven (AJAX)
	Web (Async)
	Web low-level (HTTP)
	Mobile devices
	Flex/AMF3 (Adobe)
	Flex/AMF3 (GraniteDS)
	HTTP Live Streaming (HLS)
	Java Over HTTP
	WebDAV (MS Outlook Web Access)
	Silverlight
	Oracle ADF

	Internet
	Email (SMTP/POP)
	Directory Server (LDAP)
	Radius
	FTP
	TCP/IP based applications
	Mixed Protocols

	Terminal Emulation
	TN3270
	TN5250
	VT100
	VT200+

	ERP/CRM
	SAP
	SAPGUI
	SAP NetWeaver (Web)

	PeopleSoft
	PeopleSoft8
	PeopleSoft9

	Clarify 8-10 (Tuxedo)
	Oracle
	Oracle Applications 11i
	Oracle Applications 12i

	Siebel
	Siebel 6/DB2
	Siebel 6/Oracle
	Siebel 6/SQL Server
	Siebel Web Client

	Remedy
	Remedy 7.5
	Remedy 7.5 Patch 04
	Remedy 7.6.02
	Remedy 7.6.03
	Remedy 7.6.04
	Remedy 7.6.04 SP1
	Remedy 7.6.04 SP3
	Remedy 7.6.04 SP4
	Remedy 7.6.04 SP5
	Remedy 7.7
	Remedy 8.0
	Remedy 8.1
	RemedyAR 8.1 SP1
	RemedyAR 8.8
	RemedyAR 9.0

	Web Services
	XML/SOAP
	.NET Explorer
	Java Explorer

	Database
	Oracle
	ODBC
	DB2 CLI

	Application Server/Component Models
	CORBA (IIOP)
	EJB (RMI over IIOP)
	EJB (Java Explorer)
	Tuxedo (ATMI)
	Tuxedo (JOLT)
	.NET Remoting
	Jacada
	Oracle
	Oracle Forms 10g
	Oracle Forms 11g
	Oracle Forms 12c
	Oracle Forms 6i
	Oracle Forms 9i

	Terminal Services
	Citrix
	Citrix Web Interface
	Citrix StoreFront/Netscaler Gateway

	.NET
	.NET Explorer
	.NET Framework Using Visual Studio .NET Add-On

	Java
	Java RMI/EJB (recording)
	Java Explorer
	Java Framework
	Java Message Service (JMS)

	Frameworks
	.NET Framework Using Visual Studio .NET Add-On
	Java

	Monitoring
	Silk Performance Manager - Infrastructure Monitor
	BDL Monitor for Performance Explorer

	Unit Testing
	JUnit
	Java Testing
	NUnit
	.NET Testing

	GUI-Level Testing
	Silk Test

	Legacy
	Legacy Web business transaction (HTML/HTTP)

	Samples
	Internet
	Recording Rule with Custom Conversion DLL
	Cookies
	Email
	Form-based File Upload
	FTP
	LDAP
	MAPI

	Java Framework
	JDBC
	RMI/IIOP
	RMI

	.NET
	.NET Remoting
	Web Services

	JMS
	ShopIt v6.0
	XML

	Project Profile Settings
	Profile Administration
	Adding a Profile
	Activating a Profile
	Editing a Profile
	Renaming a Profile
	Deleting a Profile
	Copying a Profile

	Recorder Settings
	Setting General Recording Options
	Setting Protocol-Specific Options

	Replay Settings
	Configuring Simulation Settings
	Configuring Error-Handling Settings

	Result-File Settings
	Setting General Result Options
	Setting Time-Series Data Options
	Setting Monitoring Options
	Setting TrueLog Traffic-Capturing Options
	Setting General Logging Options
	Setting Internet-Specific Logging Options
	Setting Hook Logging Options for the Recorder
	Enabling Real-Time Client-Side Monitoring

	Internet Settings
	Configuring Network Optimization Settings
	Configuring Network Emulation Settings
	Configuring Host Server Settings
	Configuring Security Settings
	Configuring Recording Settings

	Web (Protocol Level) Settings
	Configuring Browser Settings
	Proxy Settings
	Configuring Proxy Settings

	Configuring Browser-Simulation Settings
	Setting Browser-Authentication Options
	Setting Browser-Emulation Authentication Options
	Setting Browser-Recording Options
	Setting Verification Options
	Setting HTTP-Body Transformation Options
	Transformation of Custom Content Types and Encodings

	Setting Terminal Client Options
	Setting GUI-Level Testing Options
	Setting Oracle Forms Options
	Setting SAPGUI Options
	Configuring Citrix XenApp Options
	Setting .NET Options
	CORBA/IIOP Settings
	Setting CORBA/IIOP Replay Options
	Setting CORBA/IIOP WChar/WString Options
	Setting CORBA/IIOP Recording Options

	Java Settings
	Configuring Java Version and Classpath Settings
	Setting Advanced Java Options
	Setting Java Logging Options

	Database Settings
	Setting SQLSTATE-specific Error Handling
	Setting ODBC-specific Error Handling
	Setting High-Level ODBC Options
	Setting Database Recording Options

	Test Scripts
	Adding Test Scripts
	Compiling Test Scripts
	Removing Test Scripts

	Data Files
	Adding Data Files
	Removing Data Files
	Compressing Data Files
	Caching Data Files

	Agent Computers
	Configuring Project Agents
	Removing Agent Computers

	Modeling Scripts
	Recorded Test Scripts
	Recording a Test Script
	Secure Connections and Certificates
	Generating Scripts from Capture Files
	Traffic Filters
	Filtering General Traffic from Capture Files
	Filtering Domains from Capture Files
	Filtering Paths and Queries from Capture Files

	Rule-Based Recording
	Recording Rule Files
	Writing XML Files
	Recording Rule File Example
	Recording Rule Data Types

	General Attributes of Recording Rules
	HTTP Parsing Rules
	Structuring HTTP Parsing Rules
	Conversion Functions
	Guided HTTP Parsing Rule Example
	Recording ShopIt V 6.0 Without Parsing Rules
	Customizing ShopIt V 6.0 With TrueLog Explorer
	Transferring Customization Details to the Recorder
	Try the Recording Rule
	Create a More Specific Rule
	Creating a Conversion DLL

	Section Search - Finding Rule Hits
	Introduction
	LB\Str Attribute
	LB\RegExpr Attribute
	LB\Offset Attribute
	RB\Str Attribute
	RB\CharType Attribute
	RB\RegExpr Attribute
	RB\Length Attribute
	RegExpr and RegExprTag Attribute
	SearchIn Attribute
	CaseSensitive Attribute
	IgnoreWhiteSpaces Attribute
	CondContentType Attribute
	CondRegExpr Attribute
	CondResultLen Attribute
	Conditions Attribute
	Conversion\Dll Attribute
	Conversion\Function Attribute

	Scripting Parsing Functions and Replacements
	VarName Attribute
	OnlyIfCompleteResult Attribute
	MaxLbLen Attribute
	ReplaceIn Attribute
	AlwaysNewFunc Attribute
	CommentToVar Attribute
	CommentToFunc Attribute
	GenBytesReadVar Attribute
	GenDebugPrint Attribute
	Conditions Attribute
	Tokenizing of Rule Hits

	Section ScriptGen
	MinRbLen LinLbLen
	LastOccurence
	ExpectBinaryData
	Conversion\Bdl Attribute

	TCP/IP Protocol Rules
	Types of TCP/IP Protocol Rules
	Structure of TCP/IP Protocol Rules
	TcpRuleRecvProto
	Identify\LengthOffset Attribute
	Identify\LengthLen Attribute
	Identify\OptionFlags Attribute
	Identify\LengthFactor Attribute
	Identify\LengthAdd Attribute
	Conditions
	GenVerify Attribute Of Conditions

	Guided TcpRuleRecvProto Example
	TcpRuleRecvUntil
	Identify\TermData Attribute
	Identify\IgnoreWhiteSpaces Attribute
	Conditions

	Guided TcpRuleRecvUntil Example

	StringScriptingRule
	Structure
	Section Search
	Section ScriptGen
	Attribute Action
	Attributes VarName VarNamePrefix IsExternalVar

	HttpScriptingRule
	Structure
	HttpScriptingRule Actions
	ForceTcp
	NoHtml ForceHtml
	NoFuzzyFormDetection ForceFuzzyFormDetection
	NoDynLinkParsing ForceDynLinkParsing
	DefinePageName
	SuppressCookie CommentCookie
	ScriptCookieDomainAsRequestHost
	SuppressFrameName SuppressLinkName SuppressFormName SuppressCustomUrlName
	MapFunctionName
	AddInitFunction
	NoAddUrl
	SuppressRecording
	ForceContextless
	DontUseHtmlVal
	NoQueryToForm ForceQueryToForm

	ProxyEngineRule
	Structure
	ProxyEngineRule Actions
	AddAppletParam
	RemoveAppletParam ChangeAppletParam
	DetectProtoFtp DetectProtoSmtp
	DontModifyRequestHeader DontModifyResponseHeader
	DontDetectProtoHttp
	BypassBlockingHttp

	Conditions
	Introduction
	Specifying Data for Conditions
	ApplyTo
	Offset Length
	UseDataAvail
	IfNull

	Saving Temporary Variables
	SaveAs
	SaveIfTrue SaveIfUnknown SaveIfFalse
	SaveMode
	SaveTag
	SaveWhat

	Condition Evaluation Environment
	Access to Special Strings
	Access to HTTP request/response pairs

	CompareData Condition
	FindData Condition
	RegExpr Condition
	CheckRange Condition
	ResultLen Condition
	NoBlockSplit Condition
	Scripting Condition
	Exists Condition
	Loop Condition

	Troubleshooting

	Manually Written Test Scripts
	Writing Test Scripts Manually
	Editor Keyboard Shortcuts

	Sample Scripts
	Working From Sample Scripts

	Trying Out Scripts
	Try Script Overview
	Trying Out a Test Script
	Try Script Summary
	Visual Analysis with TrueLog Explorer
	Validating Scripts with TrueLog Explorer

	Log Files
	Viewing Log Files

	Viewing Report Files
	Report Contents

	Output Files
	Viewing Output Files

	Customizing Scripts
	Function and Transaction Declarations
	Inserting Function Declarations
	Inserting Transaction Declarations

	User Groups
	Customizing User Groups

	Creating Parameters with the Parameter Wizard
	Inserting a Constant Value Into a Script
	Inserting Random Values Into a Script
	Inserting Parameters with Values from Multi-Column Data Files
	Editing Multi-Column Data Files
	Inserting a Parameter into Your Test Script

	Serialization and Synchronization
	Serialization
	Synchronization
	Rendezvous Functionality
	Multiple Agents

	Check list for building robust scripts
	Custom DLLs
	External Function Declaration
	Function Prototypes
	Parameters in External Functions
	Structured Data Types in External Functions

	Client IP Address Simulation
	Multiple IP Addresses per NIC
	Adding IP Addresses in the System Configuration Wizard
	Setting Dynamic User IP Addresses Using Automatic Round-Robin
	Setting Dynamic User IP Addresses Using Script Functions
	Routing Problems Due to Client IP Address Simulation
	Solutions for Routing Problems Due to Client IP Address Simulation
	Testing Routing Adaptations

	Defining User Types
	Defining a User Type
	User Types

	Finding Baselines
	Finding a Baseline
	Baseline Tests
	Baseline Test Summary
	User Types
	Baseline Test Report
	Detailed Test Report Content
	Setting a Baseline Test as Baseline

	Viewing Baselines
	Baseline Summary
	Response Time Thresholds
	Setting Response Time Thresholds
	Performance Levels
	Defining and Assigning Performance Levels (Proactive Approach)
	Defining and Assigning Performance Levels (Reactive Approach)

	Adjusting Workload
	Workload Models
	Configuring Increasing Workload
	Configuring Steady State Workload
	Configuring Dynamic Workload
	Configuring All Day Workload
	Configuring Queuing Workload
	Configuring Verification Workload

	Workload Tab
	Time Names in Workload Context
	Initializing Workload Settings

	Assigning Agents
	Assigning Agents
	Assigning Agents to Workload
	Agent Assignment Tab

	Manually Assigning Agent Computers to User Types
	Dynamic Workload-Assignment
	Defining the Capabilities of Agents
	Properties for Agent - Capabilities Tab
	Replay Capabilities
	Capability Complexity Configuration

	Centralized Management of Load-Test Agent Clusters in Silk Central
	Creating a Silk Central Agent-Clusters File
	Exporting Agent Pool

	Assigning Workload to Cloud Agents
	Defining Number of VUsers per Cloud Agent
	Evaluating Agent VUser Capacity

	Trying Out Agents
	Trying Out a Test Script On Agents
	Try Agents Summary

	Configuring Monitoring
	Server Monitoring
	Defining Monitoring Options
	Setting Up a Template for Server Monitoring

	Running Load Tests
	Running Tests
	Running a Load Test
	Calculating Virtual Users
	Pacing
	Monitoring Load Tests
	Automatic Monitoring
	Monitoring All Agent Computers During Load Testing
	Monitoring a Specific Agent Computer During Load Testing
	Monitoring a Specific Virtual User During Load Testing
	Using a Graph to Monitor Server Performance
	Monitoring Performance for Multiple Servers
	Using a Report to Monitor Server Performance
	Storing Server-Monitoring Data

	Starting Silk Performer from the Command Line

	Exploring Test Results
	Results Overview
	Opening Results Files
	Deleting Locally Stored Results Files
	Refreshing Displayed Results

	Silk Central Integration
	Exploring Results
	Load Test Summary

	Verification Under Load
	Viewing Errors in TrueLog Explorer

	Performance Explorer
	Cloud-Based Region Summary Reports
	Assigning Overview Report Templates to Projects

	Reports
	Virtual User Report Files
	Virtual User Output Files
	Performance Explorer Reports
	Overview Report
	Built-In Measures

	Performance Trend Reports in Silk Central

	Raw Measure Data Capturing
	Enabling Raw Measure Data Capturing
	Raw Measure Data File Size Statistics

	Load Testing Specific Application Types
	Flex/AMF3 Support
	Flex/AMF3 Overview
	Flex/AMF3 Project Setup and Testing
	Understanding Flex/AMF3 Scripts
	Flex/AMF Packet-Oriented Protocol
	XML Representation of Binary AMF
	Context Headers
	Messages
	Typed Values
	Examples of Typed Values

	Date Values
	Out-dated AMF3 Data Types

	Customizing Flex/AMF3 Scripts

	Web Applications Support
	Web Application Communication Overview
	Understanding Synchronous and Asynchronous Communication
	Asynchronous Communication Models
	Testing Asynchronous Communication on the Protocol Level
	Testing WebSocket Connections
	HTTP/2 Support
	Server Push Support
	HTTP/2 in TrueLog Explorer
	Configuring HTTP/2

	Testing AJAX Applications
	AJAX Processing Flow
	Implications for Automation and Load Testing
	Identifying DOM Elements in Browser-Driven Testing

	Load Testing Web 2.0 Applications (Protocol-Level)
	Web Load Testing Overview
	Sample Web 2.0 Application

	Defining a Web Load Test Project
	Creating a Test Script
	Recording a Test Script
	Try Script Runs
	Trying Out Your Test Script

	Analyzing Test Scripts
	Visual Analysis with TrueLog Explorer
	Analyzing a Test Run

	Viewing a Virtual User Summary Report
	Finding Errors in a TrueLog
	Viewing Page Statistics
	Viewing an Overview Page

	Comparing Record and Replay TrueLogs
	Synchronizing Record and Replay TrueLogs

	Customizing Test Scripts
	User-Input Data Customization
	Customizing HTML User Data With a New Parameter
	AJAX and Script Customization
	Enabling Pretty-Formatted JSON and XML Viewing in TrueLog Explorer
	Enabling Pretty-Formatted JSON and XML Viewing in Silk Performer

	Verifications
	Automatically Generating Verifications During Recording
	Title Verification
	Digest Verification
	Enabling Verification Checks During Replay
	Inserting Content-Verification Functions

	Parsing Functions
	HTML Content Parsing
	Response Data Parsing

	Session Handling
	Customized Session Handling
	When to Use Customized Session Handling
	Customizing Session Handling

	User Profiles
	Adding a Profile
	Configuring Browser Settings
	Configuring Browser-Simulation Settings

	Configuring Monitoring
	Defining Monitoring Options

	Adjusting Workload
	Workload Models
	Defining Workload

	Running Load Tests
	Running a Load Test
	Monitoring Load Tests
	Monitoring Agent Computers During load Testing
	Monitoring a Specific Agent During load Testing
	Monitoring a Specific Virtual User During load Testing

	Using a Graph to Monitor Server Performance

	Exploring Test Results
	TrueLog On Error
	Viewing Errors in TrueLog Explorer

	Performance Explorer Overview
	Overview Report Measurements
	Viewing Overview Reports

	Silk Performer Web Context Management
	Value of Context Management
	Silk Performer Page-Level API
	Context-less Functions
	Context-full Functions
	How the Recorder Loses Context
	META Refresh HTML Tag
	JavaScript and Web Context Management

	Advanced Context Management Techniques
	WebPageAddURL
	Parsed URLs
	Changed Action URLs on Form Submission
	Modified Forms
	Form Data Encoding

	Web Context Management Settings
	Limitations to Web Context Management

	Manual Script Editing
	Customization of GZIP or ZLIB POST Data
	Enabling Customization of GZIP POST Data

	Setting Up Individual IP Addresses
	Web Forms
	Cookies

	Load Testing Web 2.0 Applications (Browser-Driven)
	Browser-Driven Load Testing Overview
	Support for Pop-Up Windows
	Sample Web 2.0 Application
	Pop-Up Window in the Sample Application
	Support for HTML Dialog Boxes
	Native Replay

	Web Browser Configuration Settings
	Running Multiple Virtual Users

	Creating a Test Script
	Defining a Browser-Driven Web Load Test Project
	Recording a Test Script
	Browser Application and Locator Spy Usage
	Locator Verification in Browser Application
	Inserting Mouse Move
	Inserting a Verification Function
	Including Elements in the TTI
	Try Script Runs
	Trying Out Your Test Script
	Using Step-by-Step Try Script Replay
	Common Replay Errors

	Analyzing Test Scripts
	Visual Analysis with TrueLog Explorer
	Analyzing a Test Run
	Viewing a Summary Report
	Displaying a Virtual User Summary Report
	Enabling Summary Reports
	Finding Errors in a TrueLog
	Viewing Page Statistics
	Viewing an Overview Page
	Comparing Record and Replay Truelogs

	Configuring Project Profile Settings
	Configuring Browser-Driven Recording Settings
	Configuring Browser-Driven Replay Settings

	Advanced Concepts for Browser-driven Tests
	Defining Browser Window Dimensions for Recording
	Testing Websites That Use Non-system Codepage Characters
	Time to Interact

	Troubleshooting Browser-Driven Load Testing Issues
	Browser-Driven Virtual Users on Remote Agents
	Recommended Internet Explorer settings on agents
	Handling Client Certificates
	Removing Certificate Errors
	Excluding URLs from AJAX Synchronization
	Limitations for Replay with Different Browsers

	Testing Apps for Mobile Devices
	Mobile Apps Overview
	Recording Mobile Apps Using Mobile Devices
	Recording Mobile Apps With a Browser
	Recording Mobile Apps With a Mobile Emulator
	Replaying Apps for Mobile Devices

	Responsive Web Design Testing
	BMC Remedy IT Service Management Support
	Citrix XenApp Support
	Defining Projects
	Configuring the Citrix client software
	Defining Your Citrix XenApp Project
	Creating a Citrix Plug-In Test Script
	Citrix Web Interface Sessions (NFuse)
	Defining a Citrix Web Interface Project
	Creating a Citrix Web Interface Test Script

	Citrix Script Functions

	Screen Synchronization and Verification
	Text and Screen Synchronizations
	Generating a Screen Region Synchronization During Recording
	Verification and Parsing via OCR
	Overview
	Generating an OCR Verification Function
	Generating an OCR Parsing Function

	Trying Out a Generated Script
	Citrix TrueLogs
	Silk Performer Citrix Player
	Step by Step Replay
	Skipping Time-Outs

	Customizing User Data
	Using the Parameter Wizard
	Customizing Mouse Events
	Synchronizing Text

	Project and System Settings
	Configuring Citrix XenApp Options
	Configuring General Settings
	Configuring Simulation Settings
	Configuring Client Settings
	Enabling Citrix Replay on Agents
	System Settings for OCR
	Configuring System Settings for OCR

	Testing Best Practices
	Test Preparation
	Creating Use Cases
	Ensuring a Stable Environment

	Troubleshooting
	Recording Tips
	Debugging Scripts
	Troubleshooting Scripts
	Handling Citrix Dialog Boxes

	.NET Support
	.NET Framework Support
	Using .NET Framework Functions Within .NET
	.NET Configuration Files
	Testing Web Services and .NET Remoting Objects with .NET Framework
	Testing Web Services
	Testing .NET Remoting Objects

	Testing SOAP Web Services for .NET
	Simple Object Access Protocol (SOAP)
	Testing SOAP Over HTTP-Based Web Services
	Recording and Replaying HTTP Traffic
	Creating a New XML/SOAP Project
	Creating the Recording Profile
	Recording a Script
	Script Customization
	Replaying a Script

	Silk Performer .NET Explorer
	Requirements
	Loading a WSDL File
	Calling a Web Service
	Final Steps

	Silk Performer .NET Framework
	Creating a New Silk Performer .NET Project
	Creating a Web Service Client Proxy
	Instantiating a Client Proxy Object
	Calling a Web Service Method
	Routing Web-Service Traffic
	Exploring Results

	External References

	Setting Up Silk Performer .NET Projects
	Running a Try Script Test
	Custom Attributes
	Custom Attributes Code Sample
	Generated BDF Script Example

	Creating Silk Performer .NET Projects in Microsoft Visual Studio
	Memory Usage in .NET
	.NET Error Messages
	Cannot Start .NET Language Runtime
	Invalid Handle
	Loading Object Throws an Exception
	Object Does Not Implement This Public Method
	Method Execution Failed
	.NET Common Language Runtime Not Started
	Cannot Load mscoree.dll (.NET Runtime)
	Initialize .NET Application Domain Failed
	.NET Common Language Runtime Is Not Running
	.NET Assembly With the Given Name Could Not Be Found
	Perfrun.Exe.Config Could Not Be Written Successfully
	Your .NET DLL References Wrong perfdotnetfw.dll
	Verification Failed
	Exception Has Been Logged
	Could Not Find or Load a Specific Class
	An Exception Was Thrown by a Type's Initializer (.cctor)
	An Exception Was Thrown by the Called Method
	Invalid Number of Parameters

	NUnit Integration
	Setting Up an NUnit or .NET Testing Silk Performer Project
	Importing an NUnit or .NET Assembly
	Filter Options for NUnit Methods
	Example NUnit BDL Script

	Silk Performer .NET Explorer
	Starting .NET Explorer
	Using the .NET Explorer SilkEssential
	Using the .NET Message Sample
	.NET Message Sample Overview
	MessageLib Interfaces
	ObjectManager Interface
	IUser Interface
	IMessageStore Interface
	IMessage Interface

	Sample .NET Web Service
	Working With the .NET Message Sample
	Installing the .NET Message Sample
	Configuring the .NET Message Sample
	Configuring the IObjectManager Object Properties
	Configuring the Simple Client
	Configuring the Web Service
	Configuring the Web Client

	Exploring the .NET Message Sample
	Starting the .NET Remoting Server
	Running the Simple Client
	Working With the Win32 Client
	Creating a New User
	Sending a Message

	Working with the Web Client
	Creating a New User
	Sending a Message

	Testing the .NET Message Sample
	Hooking a Win32 Client Application
	Recording a Web-Client Session
	Testing a .NET Web Service
	Creating a .NET Framework Project

	.NET Explorer Samples
	.NET Remoting Support
	.NET Remoting Testing
	.NET Component Testing Overview
	Sample Web Services
	Order Web Service
	Web References

	GUI-Level Testing Support
	Configuring Windows for GUI-Level Testing
	Configuring Windows 2008 R2 for GUI-Level Testing
	Configuring Windows 2012 - 2019 for GUI-Level Testing
	Obtaining More Licenses for Windows Server Edition

	GUI-Level Test Execution
	Modeling GUI-Level Tests - Keyword-driven
	Modeling GUI-Level Tests - Silk4J
	Modeling GUI-Level Tests - Silk4NET
	Modeling GUI-Level Tests - Silk Test Classic
	Exporting Silk Test Tests to Silk Performer
	User Credentials for GUI-Level Testing
	Timers in GUI-Level Testing
	GUI-Level Testing Result Files
	Exploring Silk Test Results

	Requirements for GUI-Level Testing with Silk4J and Silk4NET
	GUI-Level Testing Scalability Scenarios
	Troubleshooting GUI-Level Testing Issues

	Jacada Support
	Creating Jacada Projects
	Configuring Jacada Recording Profiles
	Configuring Java Profile Settings for Jacada
	Recording Jacada Applications
	Structure of a Jacada BDL Script

	Java Support
	Java Framework Support
	Creating Java Projects
	Generating Java Framework Files
	Generating Java Files Without a BDL File
	Compiling Java Files
	Switching between 32-bit and 64-bit Java

	Testing SOAP Web Services for Java
	Simple Object Access Protocol (SOAP)
	Java Explorer
	Java Framework

	Testing SOAP Over HTTP-Based Web Services
	Recording and Replaying HTTP Traffic
	Creating a New XML/SOAP Project
	Creating the Recording Profile
	Recording a Script
	Script Customization
	Replaying a Script

	External References

	Java Over HTTP Support
	Java Over HTTP Overview
	Java Over HTTP Project Setup and Testing
	Customizing Java Over HTTP Scripts
	Customizing Input Data Using Silk Performer
	Customizing Input Data Using TrueLog Explorer

	Adding Verification and Parsing Statements
	Adding Verification Statements Using Rendered XML View
	Adding Verification Statements Using Plain-Text View

	JUnit Integration
	Setting Up a New JUnit Silk Performer Project
	Importing a JUnit or Java Test Class
	Java Profile Settings
	Filter Options for JUnit Methods
	Example BDL Script for JUnit 3.8.x (legacy)
	Example BDL Script for JUnit 4.x (legacy)
	Example BDL Script for JUnit
	Exception Handling for JUnit 4.x and newer
	Importing a JUnit Test Suite
	Executing a JUnit Test Suite

	Java RMI Support
	Creating Java RMI Projects
	Configuring Java RMI Recording Profiles
	Configuring Java Profile Settings for the IBM JVM
	Recording Java RMI Applications
	Java RMI Recording Results
	Replaying a Java RMI Application
	Java RMI Sample Application
	Recording and Replaying the Sample Application
	Modifying the Internet Explorer Profile

	Eclipse Plug-In
	Eclipse Project Restrictions
	Installing the Eclipse Plug-In
	Eclipse Plug-In does not work on Microsoft Windows 8 and Microsoft Windows Server 2012

	Configuring Eclipse Plug-In Settings
	Projects
	Setting Up a New Eclipse Project
	Importing Projects
	Importing a Silk Performer Project into Eclipse
	Customizing a Silk Performer Project to Use the Required Eclipse Notation
	Configuring Silk Performer Project Properties from Eclipse
	Configuring Silk Performer System Settings in Eclipse
	Configuring Silk Performer Project Settings in Eclipse
	Redirecting Java Build Paths
	Adding a Silk Performer Test Class to an Eclipse Project

	Try Script Runs
	Executing Try Script Runs for Test Classes
	Defining a Launch Configuration for Silk Performer Try Scripts
	Running Baseline Tests

	Results
	Viewing Virtual User Reports
	Viewing Virtual User Log Files
	Viewing Virtual User Output Files
	Viewing Virtual User Error Files
	Viewing TrueLogs

	Silk Performer Java Explorer
	Starting Silk Performer Java Explorer

	OnWeb Mainframe-to-Web Testing Support
	Oracle Forms / Oracle Applications Support
	Basic Concepts
	Architecture
	Oracle Forms Client Types
	Oracle Forms/Oracle Applications Versions

	Installation and Requirements
	Configuring Oracle Forms Client Software
	Configuring Oracle Applications Server Software

	Managing Oracle Forms/Oracle Applications Load Tests
	Outlining Oracle Forms/Oracle Applications Projects
	Recording Oracle Forms/Oracle Applications Test Scripts

	Recording Concepts
	Recording Profile Settings
	Setting the Oracle Forms Log Level
	Oracle Java Recording API
	Java Environment Settings
	Files Generated During Recording
	Script
	Recording Text Log
	Record TrueLogs

	Oracle Forms HTTPS Support
	Enabling Oracle Forms HTTPS Support Using a JVM
	Enabling Oracle Forms HTTPS Support Using JInitiator

	Oracle Forms / Oracle Applications TrueLogs
	Working With Oracle Forms Applications - Overview
	Oracle Forms TrueLog Structure
	Working With Web Calls
	Node Information
	Verification Checks with TrueLog Explorer
	Parsing Functions Overview
	Input Data Customizable Functions
	In Body / Out Body Pages

	Replay Concepts
	Setting Oracle Forms Options
	Oracle Forms Client Sessions
	Results
	Connection Handling

	Oracle Forms Performance Monitoring
	Root Cause Analysis
	TrueLog Analysis
	Log File Analysis
	OraForms Errors

	Tips and Tricks
	Oracle Forms Memory Usage
	Latest Available JDK Version
	Virtual Memory Size of a JVM
	Java VM JITter
	Recording Oracle Forms on Sockets
	Problems with Oracle Forms 6 Recording
	Problems with Oracle Forms 6 Recording Using Additional Java Beans
	Oracle Applications 12i Support
	Customizing Oracle Applications 12i Session Information
	Adding a New Java Bean to a System Classpath

	SAP Support
	SAP eCATT Support
	Configuring a SAP eCATT Connection
	Configuring eCATT Extended Results

	SAPGUI Support
	Basic Concepts
	SAPGUI Scripting
	SAP Patch Levels
	Checking the SAP Patch Level
	Checking the SAP Patch Level on the Server
	Checking SAP R/3 Support Packages
	Enabling SAPGUI Scripting on the Server
	Enabling SAPGUI Scripting API on the Client

	SAPGUI Application Architecture
	Object IDs
	Object Access with Silk Performer
	Accessing Object Properties
	Accessing Low-Level Properties

	Installation and Requirements
	Enabling SAPGUI Scripting on the Server
	Enabling SAPGUI Scripting API on the Client

	Recording and Replay Concepts
	SAP Profile Settings
	Password for SapGuiLogon
	Setting SAPGUI Options
	Files Generated During Recording
	SAP Results
	SAP Performance Monitoring

	SAPGUI TrueLogs
	SAPGUI TrueLog Structure
	Node Information
	Control Information
	Verification and Parsing Functions
	Input Data Customization

	Settings for Large Load Tests
	Suggested Profile Settings
	Connection Handling
	Logon

	Tips and Tricks
	Memory Usage for SAPGUI Load Testing
	Checking for Unexpected Windows
	Browsing Through Grids and Tables
	Accessing Control Properties
	Invoking Control Methods

	Siebel Support
	Siebel CRM Application Architecture
	Setting Up Your Project
	Configuring TrueLog Explorer

	Dynamic Information in Web Client HTTP Traffic
	Error Detection
	Session IDs
	Time Stamps
	URL Encoding
	User Input
	Dynamic Data
	Reformatting Functions
	Meaningful Timer Names

	Best Practices

	Microsoft Silverlight Support
	Terminal Emulation Support
	Creating a Terminal Emulation Project
	Configuring Terminal Emulation Profile Settings
	Setting Up a Terminal Emulation Recording Profile
	Recording Terminal Emulation Applications
	Terminal Emulation Session Customization

	TCP/IP Based Protocol Support
	Overview
	Script Customization
	Character Conversion
	Dynamically Receiving Server Responses
	String Manipulation of Binary Data
	Session IDs
	Finding Information

	Telnet, TN3270e, and Custom Protocols
	Telnet Protocol
	TN3270e Protocol
	EBCDIC to ASCII Character Code Conversion
	Issues with "Keep Alive" Mechanisms
	IP Spoofing
	Recording Rule Configuration Files

	Custom TCP/IP Based Protocols

	Recorder Settings
	"Socksifying" an Application
	TCP Proxy Recorder

	Load Testing PeopleSoft
	Specifying the PeopleSoft Project Type
	Script Modeling
	Recording
	Inclusion of PeopleSoft API Functions
	Wrapper Functions
	Sign-In and Sign-Out
	Navigation in the Menu Tree
	Interaction in the Work Area

	Script Customization
	Customizing Think Times
	Uniquely Seed Randomness
	Customizing Timer Names
	Targeting a Different Server
	Enable Server-Side Tracing
	Randomizing Table Row Selection

	Application-Level Errors
	Customizing Error Messages in HTML
	Customizing Alerts

	Parameterization
	Sign-In Data
	Input Values

	HLS Support

	Load Testing in Specific Environments
	Silk Performer CloudBurst
	Overview
	CloudBurst Infrastructure
	Advantages of Using CloudBurst
	CloudBurst Offerings

	Working with CloudBurst
	Cloud Agent Manager
	CloudBurst Connectivity Requirements
	Downloading Results from Cloud Agents
	Configuring Java for Cloud Agents

	CloudBurst VPN
	Basic Concept Behind CloudBurst VPN
	Configuring a CloudBurst VPN
	VPN Router Appliance

	Micro Focus Credits
	CloudBurst Load Test Fees
	Estimating and Debiting Micro Focus Credits

	Developing Performance Tests in Visual Studio
	The C# Binding
	Licensing
	Capture File Compatibility
	Advanced Topics

	Multibyte Support
	Multibyte Support in Silk Performer
	Codepage Check
	API Functions That Require Additional Encoding
	Copying Strings into Silk Performer

	Network Emulation
	Windows Vista and Windows 7

	Silk Performer Plug-Ins
	Plug-In Initialization and Configuration
	Message Output
	AppDynamics Plug-In
	Configuring AppDynamics Plug-In Settings
	Configuring Automatic Transaction Naming in AppDynamics
	Verifying the Integration
	How Timers are Matched with Business Transactions
	Advanced Configuration

	Dynatrace AppMon Plug-In
	Dynatrace SaaS and Managed Plug-In

	Silk Central Integration
	Configuring Silk Central Integration
	Opening Silk Performer Projects from Silk Central
	Checking Out and Editing Downloaded Projects
	Importing Projects from Silk Central
	Uploading Projects to Silk Central
	Uploading Test Results to Silk Central
	Downloading Test Results from Silk Central

	Silk Performance Manager Integration
	Creating a Silk Performance Manager Client Monitor
	Creating a Silk Performance Manager Infrastructure Monitor

	Source Control Integration
	Integrating StarTeam SCC with Silk Performer
	Downloading the StarTeam SCC Integration Module
	Running the StarTeam Microsoft SCC Integration Setup Wizard

	Configuring Source Code Control Integration in Silk Performer
	Placing Projects and Files Under Source Control
	Placing a Complete Project Under Source Control
	Placing Individual Files Under Source Control

	Checking In Files
	Checking Out Files
	Undoing File Check Out

	Getting the Latest Version of a File from the Source Control System
	Project-File Only Source Control Commands
	Removing Source Control from a Project
	Synchronizing the Source Control Status of a Project
	Source Control Known Issues and Workarounds
	SCC Client's Reconnect Functionality Is Not Supported
	MS VSS 8.0 Requests Username/Password for Each File Check-in/Check-out Operation
	Disabling the MS VSS Manual Login

	Importing, Uploading, and Emailing Projects
	Exporting Projects
	Importing Projects
	Emailing Projects

	Troubleshooting
	Results Recovery Workflow
	Technical Support
	Controller Agent Communication Troubleshooting
	Load Test Controller - 3211: Could not connect agent control service
	Load Test Controller - 3212: Could not authenticate the Agent Control Service
	Load Test Controller - 3213: The agent control service could not create the agent
	Load Test Controller - 3223: Agent connection lost
	Load Test Controller - 3233: The agent's version does not match the version of its controller
	Load Test Controller - 3303: The local results directory could not be created
	Load Test Controller - 3304: The local results directory could not be cleared
	Load Test Controller - 3305: The local data directory could not be created
	Load Test Controller - 3306: The local data directory could not be cleared
	Load Test Controller - 3422: Command (connection) timed out
	Silk Performer - 32: Access denied, authentication required
	Silk Performer - 33: Authentication failed (wrong password)
	Silk Performer - 25: Limit of concurrent instances exceeded
	System - 2: The system cannot find the file specified

	Error Message Overview
	Compiler Errors
	Lexical Errors
	Semantic Errors
	Syntax Errors

	Internal Errors
	System Limitation Errors
	Runtime Errors

	Known Issues in Silk Performer
	General Silk Performer Issues
	Multi-byte character set support limitations
	How can I get Silk Performer "What's This" contextual Help to work on Windows Vista or later?
	The Silk Launcher Service is falsely removed when a previous version of Silk Performer is removed
	GUI-level testing does not work if Silk Test is not installed in the Program Files folder
	GUI-level scripts generated from Japanese libraries do not compile
	The System Configuration Manager entry in the Tools menu is disabled
	Reports created from recovered results show incorrect values
	GUI-level testing with keyword-driven tests and Selenium is only supported with Java 8

	TrueLog Explorer Issues
	On-access virus scanner software may cause TrueLog Explorer to crash
	Visual script modifications fail if the related transaction is in an include file
	Visual user data customization does not work for browser-level scripts

	SAPGUI Issues
	Control position information cannot be retrieved correctly from SAP

	Citrix Issues
	Connecting to existing session during Citrix recording results in unusable script
	Limitations for load testing with Citrix Receiver 4.4, 4.10 and newer
	Citrix passthrough authentication is not enabled for custom tools
	Citrix process is already running under a different user account

	Oracle Forms Issues
	After hooking into main Oracle Forms applet classes, JInitiator cannot load additional jar files that rely on those classes
	Browser crashes during recording of Oracle Forms
	Oracle Forms cannot be recorded

	Browser-Driven Load Testing Issues
	ShowModalDialog and ShowModelessDialog not fully supported
	Webbrowser control of primary BrowserWindow is terminated
	TrueLog Explorer displays the size of uncompressed data in browser-driven tests

	Java over HTTP Issues
	Previous Java over HTTP scripts might not run successfully

