
Silk Test 18.5

Testing Mobile Applications

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 1992-2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2017-10-19

ii

Contents

Testing Mobile Applications ..4
Android ..4

Prerequisites for Testing Mobile Applications on Android ...4
Testing Mobile Applications on Android ..4
Testing Hybrid Applications on Android ..5
Installing a USB Driver ... 6
Enabling USB-Debugging ...7
Recommended Settings for Android Devices ...7
Configuring the Android Emulator for Silk Test ...7
Tested Configurations for Parallel Test Execution ...9

iOS .. 11
Prerequisites for Testing Mobile Applications on iOS ...11
Testing Native Mobile Applications on a Physical iOS Device12
Testing Native Mobile Applications on an iOS Simulator ..13
Testing Mobile Web Applications on a Physical iOS Device14
Testing Mobile Web Applications on an iOS Simulator ...14
Testing Hybrid Applications on iOS .. 15
Preparing an iOS Device for Testing .. 16
Preparing an iOS App for Testing ...16
Installing the Silk Test Information Service on a Mac ...17
Preparing a Mac to Test Mobile Applications on iOS ... 17
Using a Personal Team Profile for Testing on Physical iOS Devices19
Editing the Properties of the Silk Test Information Service 20
Uninstalling the Silk Test Information Service from a Mac 21
Recommended Settings for iOS Devices ... 21
Running Existing Scripts on iOS Using XCUITest .. 21

Testing an Installed App .. 22
Recording Mobile Applications ..22
Selecting the Mobile Device for Test Replay ... 22
Using Devices from Mobile Center ..23
Using SauceLabs Devices .. 24
Editing Remote Locations ... 24
Connection String for a Mobile Device .. 25
Interacting with a Mobile Device ..28
Releasing a Mobile Device ..28

Releasing a Mobile Device After Recording ...28
Releasing a Mobile Device After Replay .. 29

Troubleshooting when Testing Mobile Applications ...29
How Can I Use Chrome for Android to Replay Tests? ..34

Limitations for Testing Mobile Web Applications ... 35
Limitations for Testing Native Mobile Applications .. 36
Clicking on Objects in a Mobile Website ... 37
Using Existing Mobile Web Tests .. 38

Contents | 3

Testing Mobile Applications
Silk Test enables you to automatically test your native mobile applications (apps) and mobile web
applications. Automatically testing your mobile applications with Silk Test provides the following benefits:

• It can significantly reduce the testing time of your mobile applications.
• You can create your tests once and then test your mobile applications on a large number of different

devices and platforms.
• You can ensure the reliability and performance that is required for enterprise mobile applications.
• It can increase the efficiency of QA team members and mobile application developers.
• Manual testing might not be efficient enough for an agile-focused development environment, given the

large number of mobile devices and platforms on which a mobile application needs to function.

Note: To test native mobile applications or hybrid applications with Silk Test, you require a native
mobile license. For additional information, see Licensing Information.

Note: Silk Test provides support for testing mobile apps on both Android and iOS devices.

For information on the supported operating system versions and the supported browsers for testing mobile
applications, refer to the Release Notes.

Android
Silk Test enables you to test a mobile application on an Android device or an Android emulator.

Prerequisites for Testing Mobile Applications on
Android
Before you can test a mobile application (app) on an Android device or on an Android emulator, ensure that
the following prerequisites are met:

• Ensure that Java is installed on the machine on which Silk Test is running, and that the path to Java is
added to the Path environment variable. Silk Test requires either a JRE or a JDK for mobile testing. If
Java is not installed, add C:\Program Files (x86)\Silk\SilkTest\ng\jre\bin to the Path.

• If you have created your own hybrid app by adding a web view to a native mobile app, add the following
code to the app to make your app testable with Silk Test:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

• Silk Test does not support showing a live view of the device screen for Android 4.4. Micro Focus
recommends using Android 5 or later.

Testing Mobile Applications on Android
To test a mobile application on a physical Android device or on an Android emulator, perform the following
tasks:

1. Ensure that you have met the prerequisites for testing mobile applications on Android.
For additional information, see Prerequisites for Testing Mobile Applications on Android.

2. If you want to test the mobile application on an Android emulator, configure the emulator settings for Silk
Test.
For additional information, see Configuring the Android Emulator for Silk Test.

4 | Testing Mobile Applications

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/185/en/silktest-185-releasenotes-en.pdf

3. Start the Android emulator or connect the device to the machine on which Silk Test is installed.

4. If you want to test the mobile application on a physical Android device that you are using for the first
time on this machine, install the appropriate Android USB Driver on the machine.

For additional information, see Installing a USB Driver.

5. If you want to test the mobile application on a physical Android device, enable USB-debugging on the
Android device.

For additional information, see Enabling USB-Debugging.

6. Create a Silk Test project for your mobile application.

7. Create a test for your mobile application.

8. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

9. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

10.To test a native mobile application or a Hybrid application:

Note: To test native mobile applications or hybrid applications with Silk Test, you require a native
mobile license. For additional information, see Licensing Information.

a) Select the Mobile tab.
b) Select the mobile device, on which you want to test the app, from the list.
c) Click Browse to select the app file or enter the full path to the app file into the Mobile app file text

field.

Silk Test supports HTTP and UNC formats for the path.

Silk Test installs the app on the mobile device or emulator.

11.Click OK.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

12.Use the Recording window to record the test against the mobile application.

For additional information, see Recording Mobile Applications.

13.When you have recorded all the actions, stop the recording.

14.Replay the test.

15.Analyze the test results.

Testing Hybrid Applications on Android
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk Test provides full browser support for testing debug hybrid apps that consist of a single web view,
which is embedded in a native container. A common example of such a hybrid app would be an Apache
Cordova application.

Testing Mobile Applications | 5

To prepare a non-debug hybrid app for testing, enable remote debugging in the app by adding the following
code to the app:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk Test fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk Test recognizes and handles the
controls in a web view as native mobile controls instead of browser controls. For example, the following
code clicks on a link when using browser support:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
false);
desktop.<DomLink> find("//INPUT[@id='email']").click();

With the fallback support enabled, the following code clicks on the same link:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
true);
desktop.<DomLink> find("//MobileTextField[@resource-id='email']").click();

Silk Test can detect web views that support Chrome remote debugging. Silk Test can detect web views with
either the package com.android.webview or the package com.google.android.webview, which are the
default packages on most Android devices.

Note: Silk Test supports testing hybrid apps on Android 4.4 or later. To test hybrid apps on Android,
Android System WebView version 51 or later is required.

The process for testing a hybrid app on Android is the same as the process for testing a mobile native
application. For additional information, see Testing Mobile Applications on Android.

Installing a USB Driver
To connect an Android device for the first time to your local machine to test your mobile applications, you
need to install the appropriate USB driver.

The device manufacturer might provide an executable with all the necessary drivers for the device. In this
case you can just install the executable on your local machine. If the manufacturer does not provide such
an executable, you can install a single USB driver for the device on the machine.

To install the Android USB driver:

1. Download the appropriate driver for your device.

For example, for information on finding and installing a USB driver for a Google Nexus device, see
http://developer.android.com/tools/extras/oem-usb.html.

6 | Testing Mobile Applications

http://developer.android.com/tools/extras/oem-usb.html

2. Connect your Android device to a USB port on your local machine.

3. From your desktop or Windows Explorer, right-click Computer and select Manage.

4. In the left pane, select Device Manager.

5. In the right pane, locate and expand Other device.

6. Right-click the device name, for example Nexus 5x, and select Update Driver Software. The Hardware
Update Wizard opens.

7. Select Browse my computer for driver software and click Next.

8. Click Browse and navigate to the folder to which you have downloaded the USB driver.

9. Select the USB driver.

10.Click Next to install the driver.

Enabling USB-Debugging
To communicate with an Android device over the Android Debug Bridge (adb), enable USB debugging on
the device.

1. On the Android device, open the settings.

2. Tap Developer Settings.

The developer settings are hidden by default. If the developer settings are not included in the settings
menu of the device:

a) Depending on whether the device is a phone or a pad, scroll down and tap About phone or About
Pad.

b) Scroll down again and tap Build Number seven times.

3. In the Developer settings window, check USB-Debugging.

4. Set the USB mode of the device to Media device (MTP), which is the default setting.

For additional information, refer to the documentation of the device.

Recommended Settings for Android Devices
To optimize testing with Silk Test, configure the following settings on the Android device that you want to
test:

• Enable USB-debugging on the Android device. For additional information, see Enabling USB-Debugging
• An Android device must be connected as a media device to the machine on which the Open Agent is

running. The USB mode of the Android device must be set to Media device (MTP).
• An Android device or emulator must not be screen-locked during testing. To keep the device awake

while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

Configuring the Android Emulator for Silk Test
Note: When using an Android emulator, an additional adb server is running in addition to the one that
is used by Silk Test. If the running adb servers have different versions, the connection between the
Open Agent and the device might become unstable or even break. To avoid version mismatch errors,
specify the path to the Android SDK directory by setting the environment variable
SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the
environment variable is not set, Silk Test uses the adb version that is shipped with Silk Test.

When you want to test mobile applications on an Android emulator with Silk Test, you have to configure the
emulator for testing:

Testing Mobile Applications | 7

1. Install the latest version of the Android SDK.

For information on how to install and configure the Android SDK, see Get the Android SDK.

2. Install Android Studio 2.

Tip: You can skip installing Android Studio 2 and use the emulator provided with the Android SDK.
However, Micro Focus recommends installing Android Studio 2 for improved emulator
performance. The remaining steps in this topic require Android Studio 2 to be installed.

3. From Android Studio 2, start the AVD Manager.
4. Click Create Virtual Device.

5. Select a virtual device.

6. Click Next.
7. Download and select a system image of Android that includes Google APIs.

8. Click Next.
9. Configure the virtual device according to your requirements.

10.Click Show Advanced Settings.

11.Adjust the RAM size and the heap space used by the emulator to an amount that is manageable by
your machine.

Tip: Micro Focus recommends using at least 1 GB RAM and 256 MB heap space.

12.Select Auto from the list in the Emulated Performance area.

8 | Testing Mobile Applications

http://developer.android.com/sdk/index.html

13.Click Finish.

Tested Configurations for Parallel Test Execution
With Silk Test, you can run automated tests on multiple Android devices in parallel. The amount of Android
devices that you are able to use in parallel depends on the available hardware. Micro Focus has
successfully tested the following hardware configurations:

Configuration with a single test machine

Using a single test machine directly connected to the Android devices through USB, we tested up to 8
physical Android devices in parallel.

The test machine was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Configuration with two test machines

Testing Mobile Applications | 9

Here we are using two test machines, one with Silk Test installed and another, which is configured as a
remote location for the first machine and has the Silk Test Information Service installed. Using such a
configuration, we tested up to 10 physical Android devices in parallel.

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was a Dell Precision T1700 with the following hardware specifications:

• Intel® Core™ i7 - 4770 CPU @ 3.40 GHz
• 4 cores (8 threads)
• 16 GB RAM

Configuration with a Windows machine and a Mac

Here we are using two test machines, a Windows machine with Silk Test installed and a Mac, which is
configured as a remote location for the first machine and has the Silk Test Information Service installed.
Using such a configuration, we tested up to 10 physical Android devices in parallel.

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was an Apple Mac Mini with the following hardware specifications:

• Intel® Core™ i5 - 4782U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 16 GB RAM

10 | Testing Mobile Applications

iOS
Silk Test enables you to test a mobile application on an iOS device or an iOS Simulator.

Because of significant changes by Apple in iOS 9.3 in comparison to the previous versions of iOS, Silk Test
supports testing mobile applications on iOS 9.3 or later. For a list of the supported iOS versions, refer to
the Release Notes.

Note: Testing mobile applications on iOS 11 requires Xcode 9. When using Xcode 9 on a Mac, testing
on physical devices and Simulators with iOS versions prior to iOS 11 that are connected to or running
on this Mac is not supported. Use Xcode 8.3 to test physical devices and Simulators with iOS 9.3 and
iOS 10.

Tip: To test on iOS versions prior to iOS 9.3, you can use Silk Test 17.5. The following table shows
the major changes when testing on iOS with Silk Test 18.5 in comparison to Silk Test 17.5:

Silk Test 18.5 Silk Test 17.5

Supports iOS 9.3, iOS 10, and iOS 11. Supports iOS 8.1, 8.2, 8.3, 8.4, 9.0, 9.1, 9.2, and 9.3

Supports Xcode 8.3 and Xcode 9. Supports Xcode 6 and Xcode 7.

Supports testing multiple physical iOS devices in the
same user session.

Tip: If you have created multiple user sessions
to test with Silk Test 17.5, Micro Focus
recommends removing all user sessions except
one.

Requires multiple user sessions on a Mac to test
multiple physical iOS devices.

Prerequisites for Testing Mobile Applications on iOS
Before you can test a mobile application (app) on an iOS device or on an iOS Simulator, ensure that the
following prerequisites are met:

• The current version of the Silk Test information service is installed on the Mac. For additional
information, see Installing the Silk Test Infoservice on a Mac.

• If you want to test your application on a physical iOS device, ensure the following:

• The device is connected to the Mac.
• The device has a supported version of iOS. For a list of the supported iOS versions, refer to the

Release Notes.
• If you want to test your application on an iOS Simulator, ensure the following:

• The iOS Simulator image is installed on the Mac.
• The iOS Simulator image has a supported version of iOS. For a list of the supported iOS versions,

refer to the Release Notes.
• If you want to test your application on an physical iOS device, ensure that the same time zone is set on

the device and the Mac.
• A supported version of Xcode is installed on the Mac.
• Silk Test is installed on a Windows machine.
• The Mac is located in the same network as the Windows machine and is added as a remote location to

the Windows machine.
• To test a native mobile app on an iOS device, ensure that the .ipa file of your app has been signed

with a developer account. For additional information, see Preparing an iOS App for Testing.
• To test a native mobile app on an iOS Simulator, ensure that the app has been zipped. For additional

information, see Testing Native Mobile Applications on an iOS Simulator.

Testing Mobile Applications | 11

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/185/en/silktest-185-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/185/en/silktest-185-releasenotes-en.pdf
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/185/en/silktest-185-releasenotes-en.pdf

• To test a native mobile app on both an iOS device and an iOS Simulator, ensure that both the
signed .ipa file and the zipped .app directory are located in the same folder.

• To test a native mobile app, ensure that the ID of the iOS device is associated with the developer profile
which was used to sign the app.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

• The Mac should not switch off the screen during testing, otherwise the Playback Status dialog box will
not display anything.

• To test a mobile application on an iOS Simulator, deactivate the display sleep on the Mac during testing.
• To test a native mobile app on a physical iOS device, enable the UI automation on the device. For

additional information, see Preparing an iOS Device for Testing.
• To test a mobile web application with Apple Safari on a physical iOS device, activate the Web

Inspector. For additional information, see Preparing an iOS Device for Testing.
• Micro Focus recommends using iOS devices which have a Lightning connector. Silk Test does not

support showing a live view of the device screen for iOS devices that are not connected to a Mac
through a Lightning cable.

Testing Native Mobile Applications on a Physical iOS
Device

Note: To test native mobile applications or hybrid applications with Silk Test, you require a native
mobile license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

To test a native mobile application (app) or a hybrid application on a physical iOS device, perform the
following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the app for testing.

For additional information, see Preparing an iOS App for Testing.

3. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

4. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

5. Create a Silk Test project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the mobile device, on which you want to test the app, from the list.

10.Click Browse to select the app file or enter the full path to the app file into the Mobile app file text field.

Silk Test supports HTTP and UNC formats for the path.

Silk Test installs the app on the mobile device.

12 | Testing Mobile Applications

11.Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > General > Passcode Lock.

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that both the
signed .ipa file and the zipped .app directory are located in the same folder.

Testing Native Mobile Applications on an iOS
Simulator

Note: To test native mobile applications or hybrid applications with Silk Test, you require a native
mobile license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

To test a native mobile application (app) or a hybrid application on an iOS Simulator, perform the following
tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

2. In the Xcode project of the app, compile the app for the iOS Simulator.

You can compile the app either from the Xcode UI or from the command line. For example, to compile
the app through the command line for an iOS Simulator with iOS 10.0, execute the following command:

xcodebuild -sdk iphonesimulator10.0

3. Zip up the .app directory of the app into a .zip file.

By default, the .app directory is located in the directory ~/Library/Developer/Xcode/
DerivedData. You can click File > Project Settings in Xcode to see into which location the directory
is stored.

4. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: You can only test on one iOS Simulator that is installed on a Mac. Multiple Silk Test users
cannot simultaneously test on multiple iOS Simulators that are installed on the same Mac.

5. Create a Silk Test project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the iOS Simulator from the list.

10.Click Browse to select the zipped app file or enter the full path to the zipped app file into the Mobile
app file text field.

Silk Test supports HTTP and UNC formats for the path.

Silk Test installs the app on the iOS Simulator.

11.Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > General > Passcode Lock.

Testing Mobile Applications | 13

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that both the
signed .ipa file and the zipped .app directory are located in the same folder.

Testing Mobile Web Applications on a Physical iOS
Device
For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing mobile web applications,
see Limitations for Testing Mobile Web Applications.

To test a mobile web application on a physical iOS device, perform the following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

3. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

4. Create a Silk Test project for your mobile application.

5. Create a test for your mobile application.

6. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

7. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

8. Click OK.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > General > Passcode Lock.

9. When you have recorded all actions, stop recording.

10.Replay the test.

11.Analyze the test results.

Testing Mobile Web Applications on an iOS Simulator
For information on the known limitations when testing mobile web applications, see Limitations for Testing
Mobile Web Applications.

To test a mobile web application on an iOS Simulator, perform the following tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

14 | Testing Mobile Applications

2. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk Test is installed.
For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

3. Create a Silk Test project for your mobile application.

4. Create a test for your mobile application.

5. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

6. To test a mobile web application:
a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

7. Click OK.
An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > General > Passcode Lock.

8. When you have recorded all actions, stop recording.

9. Replay the test.

10.Analyze the test results.

Testing Hybrid Applications on iOS
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk Test provides full browser support for testing debug hybrid apps that consist of a single web view,
which is embedded in a native container. A common example of such a hybrid app would be an Apache
Cordova application.

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk Test fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk Test recognizes and handles the
controls in a web view as native mobile controls instead of browser controls. For example, the following
code clicks on a link when using browser support:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
false);
desktop.<DomLink> find("//INPUT[@id='email']").click();

Testing Mobile Applications | 15

With the fallback support enabled, the following code clicks on the same link:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
true);
desktop.<DomLink> find("//MobileTextField[@resource-id='email']").click();

The process for testing a hybrid app on iOS is the same as the process for testing a mobile native
application. For additional information, see Testing Native Mobile Applications on a Physical iOS Device or
Testing Native Mobile Applications on an iOS Simulator.

Before testing a hybrid app on an iOS device, ensure that the Web Inspector is activated on the device.

Preparing an iOS Device for Testing
Note: To test native mobile applications or hybrid applications with Silk Test, you require a native
mobile license. For additional information, see Licensing Information.

To prepare the iOS device to test mobile applications:

1. Start Xcode on the Mac.

2. Connect the iOS device to the Mac.

3. On the iOS device, click Settings > Developer.

Tip: If the Developer menu is not displayed on the iOS device, restart the device and the Mac.

4. Activate Enable UI Automation.

5. To test a mobile web application on Apple Safari, click Settings > Safari > Advanced.

6. Activate the Web Inspector.

7. If you want to test on an iOS Simulator, enable Rotate Device Automatically.

a) On the Mac, start the iOS Simulator.
b) With Xcode 9 or later, expand the Hardware menu.

With prior versions of Xcode, expand the Debug menu.
c) Check Rotate Device Automatically.

8. If you want to test on an iOS Simulator with Xcode 9 or later, disable Show Device Bezels.

a) On the Mac, start the iOS Simulator.
b) Expand the Window menu.
c) Uncheck Show Device Bezels.

Preparing an iOS App for Testing
To be able to test a specific iOS app on a specific iOS device with Silk Test, consider the following:

• Test automation is only possible with iOS apps that can be installed manually on specific iOS devices.
To be able to sign an iOS app, you require a membership in the Apple Developer Program. For
additional information, see Choosing a Membership. To test without having a membership in the Apple
Developer Program, see Using a Personal Team Profile for Testing on Physical iOS Devices.

Note: You cannot automatically test iOS apps that are created for publication in the App Store, as
well as apps that can be installed manually on any iOS device.

• Before you can install and execute an iOS app on a specific iOS device, you have to register the iOS
device with your Apple Developer account.

• You have to use Xcode to create an IPA file of the iOS app, which you can then install on the iOS
device. To create IPA files for testing on a specific iOS device, members of the Apple Developer
Program can use the Archive mechanism of Xcode, by using one of the following two options:

• If you are a member of the Apple Developer Enterprise Program, you can use the Save for Ad Hoc
Deployment option.

16 | Testing Mobile Applications

https://developer.apple.com/support/compare-memberships/

• If you are a member of the Apple Developer Program, but not of the Apple Developer Enterprise
Program, you can use the Save for Development Deployment option.

For additional information, see Exporting Your App for Testing (iOS, tvOS, watchOS).

To be able to test a specific iOS app on an iOS Simulator with Silk Test, use Xcode to create a ZIP file of
the iOS app, which you can then install on the iOS Simulator. For additional information, refer to the Xcode
documentation.

Installing the Silk Test Information Service on a Mac
Note: To install the information service on a Mac, you require administrative privileges on the Mac.

To create and execute tests against Apple Safari on a Mac, or against mobile applications on an iOS or
Android device that is connected to a Mac, install the Silk Test information service (information service) on
the Mac, and then use the Remote Locations dialog box to connect a Windows machine, on which Silk
Test is installed, to the Mac.

To install the information service on a Mac:

1. Ensure that a Java JDK is installed on the Mac.

2. If you want to test mobile applications on an iOS device, ensure that Xcode is installed on the Mac.

3. Access the information service setup file, SilkTestInformationService<Version>-<Build
Number>.pkg.

• If you have downloaded the information service setup file while installing Silk Test, open the folder
macOS in the Silk Test installation directory, for example C:\Program Files (x86)\Silk
\SilkTest.

• If you have not downloaded the information service setup file while installing Silk Test, you can
download the setup file from Micro Focus SupportLine.

4. Copy the file SilkTestInformationService<Version>-<Build Number>.pkg to the Mac.

5. Execute SilkTestInformationService<Version>-<Build Number>.pkg to install the
information service.

6. Follow the instructions in the installation wizard.

7. When asked for the password, provide the password of the currently signed in Mac user.

8. When Apple Safari opens and a message box asks whether to trust the SafariDriver, click Trust.

Note: You can only install the SafariDriver if you are directly logged in to the Mac, and not
connected through a remote connection.

To complete the installation, the installer logs the current Mac user out. To verify that the information
service was installed correctly, log in to the Mac and click on the Silk Test icon in the top-right corner of the
screen to see the available devices and browsers.

Tip: If the Silk Test icon does not appear, restart the Mac.

Preparing a Mac to Test Mobile Applications on iOS
Note: To test native mobile applications or hybrid applications with Silk Test, you require a native
mobile license. For additional information, see Licensing Information.

To test mobile applications on iOS, you require a Mac to which you can connect the iOS device, or on
which the iOS Simulator is running. This Mac requires Xcode to be installed. For additional information on
the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing Mobile Applications
on iOS.

Testing Mobile Applications | 17

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html
http://productlink.microfocus.com/index.asp?mode=support&prod=NE01

To execute iOS tests on a physical iOS device, follow the instructions in the Silk Test Configuration
Assistant to configure the WebDriverAgentRunner Xcode project. To open the Configuration
Assistant, click on the Silk Test icon in the status menus and select Configuration Assistant.

If for any reason you want to manually build the WebDriverAgentRunner Xcode project, perform the
following actions:

1. Start Xcode on the Mac.

2. Select Xcode > Preferences.

3. In the Preferences window, select your account.

a) Select the Accounts tab.
b) Choose your Apple ID.
c) Choose your Team.
d) Click View Details.

4. Access the Apple Member Center and retrieve your development team.

5. In a terminal, navigate to ~/.silk/silktest/conf/.

6. Rename the xcconfig file template silktest.xcconfig.sample to silktest.xcconfig.

18 | Testing Mobile Applications

7. Add your development team to the silktest.xcconfig file.

DEVELOPMENT_TEAM = <your development team>

8. Execute the following commands in a terminal on the Mac to verify that you have prepared the
WebDriverAgentRunner project correctly:

a) Determine the unique device id (udid) of your physical iOS device:

idevice_id -l

b) Navigate to the WebDriverAgentRunner project:

cd /Application/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-
driver/WebDriverAgent

c) Test that the WebDriverAgent can be built:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner
–xcconfig ~/.silk/silktest/conf/silktest.xcconfig -destination
'id=<udid>' test

Replace the <udid> with the unique device id that you have determined previously.

Tip: If the xcodebuild command fails, follow the instructions in the error message.
Additionally, open the Preferences window of the WebDriverAgentRunner project and
ensure that the Automatically manage signing check box in the General tab is not checked.

9. Optional: In the infoservice.properties file, you can specify the port for the Silk Test Information
Service or capabilities which are used during all test runs on the Mac.

For additional information, see Editing the Properties of the Silk Test Information Service.

Using a Personal Team Profile for Testing on Physical
iOS Devices
If you have no membership in the Apple Developer Program, you can use a personal team profile to test an
application on a physical iOS device:

1. On the Mac, navigate to /Application/Silk/Mobile/common/Appium/node_modules/
appium-xcuitestdriver/WebDriverAgent.

2. Open WebDriverAgent.xcodeproj project in Xcode.

3. From the TARGETS list, select the WebDriverAgentLib target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

4. From the TARGETS list, select the WebDriverAgentRunner target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

5. If Xcode fails to create a provisioning profile for the WebDriverAgentRunner target, manually change
the bundle id for the target.

a) Click the Build Settings tab.
b) Change the Product Bundle Identifier to something that Xcode accepts.

For example, if the Product Bundle Identifier is com.facebook.WebDriverAgentRunner, change it to
io.appium.WebDriverAgentRunner or io.borland.WebDriverAgentRunner.

c) Click the General tab.

The target should now have a provisioning profile.

Testing Mobile Applications | 19

6. Save the WebDriverAgent.xcodeproj project.

7. To verify that everything works as expected, build the project:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test IPHONEOS_DEPLOYMENT_TARGET=10.3

Although the WebDriverAgentRunner is successfully installed on the device, an error message like the
following might appear in the console or the Appium log files:
2017-01-24 09:02:18.358 xcodebuild[30385:339674] Error Domain=com.apple.platform.iphoneos
Code=-12 "Unable to launch com.apple.test.WebDriverAgentRunner-Runner"
UserInfo={NSLocalizedDescription=Unable to launch com.apple.test.WebDriverAgentRunner-Runner,
NSUnderlyingError=0x7fa839cadc60 {Error Domain=DTXMessage Code=1 "(null)"
UserInfo={DTXExceptionKey=The operation couldn't be completed. Unable to launch
com.apple.test.WebDriverAgentRunner-Runner because it has an invalid code signature, inadequate
entitlements or its profile has not been explicitly trusted by the user. : Failed to launch process with bundle
identifier 'com.apple.test.WebDriverAgentRunner-Runner'}}} 2017-01-24 09:02:18.358
xcodebuild[30385:339674] Error Domain=IDETestOperationsObserverErrorDomain Code=5 "Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted"
UserInfo={NSLocalizedDescription=Early unexpected exit, operation never finished bootstrapping - no
restart will be attempted} Testing failed: Test target WebDriverAgentRunner encountered an error (Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted)
The problem is that the developer is not trusted on the device. If you manually try to run the
WebDriverAgentRunner app on the device, you will see an Untrusted Developer message.

To solve this issue on the device, go to Settings > General > Profiles or Settings > General > Device
Management, depending on the device type and the iOS version. Then trust the developer and allow the
WebDriverAgentRunner app to be run.

Editing the Properties of the Silk Test Information
Service
You can use the infoservice.properties file to specify the port for the Silk Test Information Service
or various capabilities. These capabilities are applied each time Silk Test executes a test on the machine
on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.
For example, on a Mac, navigate to ~/.silk/silktest/conf/. On a Windows machine, navigate to
C:\ProgramData\Silk\SilkTest\conf.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify a port that is not in use.

The default port for the Silk Test Information Service is 22901.

4. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

20 | Testing Mobile Applications

Uninstalling the Silk Test Information Service from a
Mac
To uninstall the Silk Test information service (information service) from a Mac, for example if you no longer
want to execute tests against Apple Safari on the Mac:

1. Create a new shell file, for example uninstallInfoService.sh.

2. Type the following code into the new file:

#!/bin/sh

if launchctl list | grep com.borland.infoservice ; then
 launchctl unload /Library/LaunchAgents/com.borland.infoservice.plist
 echo "unloading Launch Daemon"
fi

if [-d "/Applications/Silk"]
then
 sudo rm -rf /Applications/Silk
fi

if [-f "/Library/LaunchAgents/com.borland.infoservice.plist"]
then
 sudo rm /Library/LaunchAgents/com.borland.infoservice.plist
fi

if [-f "/usr/local/bin/ideviceinstaller"]
then
 sudo rm /usr/local/bin/ideviceinstaller
fi

exit 0

3. In the command line, type chmod +x uninstallInfoService.sh to make the shell file executable.

4. Execute the shell file from the command line.

Recommended Settings for iOS Devices
To optimize testing with Silk Test, configure the following settings on the iOS device that you want to test:

• To make the testing reflect the actions an actual user would perform, disable AutoFill and remembering
passwords for Apple Safari. Tap Settings > Safari > Passwords & AutoFill and turn off the Names
and Passwords setting.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

Running Existing Scripts on iOS Using XCUITest
Attention: Prior Silk Test versions used Instruments to automate iOS devices. With iOS 9.3, Apple
has replaced the support for Instruments with support for the XCUITest framework, causing Silk Test
to also no longer support Instruments. Because of this change, existing iOS test scripts might break
when executed from the current version of Silk Test.

• The behavior of the classname attribute in XCUITest is different to the behavior in Instruments. In most
cases, Silk Test will automatically handle this change. However, if an existing test script breaks because
of such a classname attribute, you will have to record a new locator for the corresponding object.

• The object hierarchy has changed.

Testing Mobile Applications | 21

Testing an Installed App
To test a native mobile app that is already installed on a device, an Emulator, or a Simulator, specify the
app in the connection string.

1. Open an existing project that tests a native mobile app.

2. Open the Edit Application Configuration dialog box.

3. Replace the existing app in the connection string with one of the following:

• If you want to test an iOS app, replace the app with the bundleId, for example replace
app=MyApp.ipa with bundleId=silktest.InsuranceMobile.

• If you want to test an Android app, replace the app with the appActivity and the appPackage. For
example, replace app=MyApp.apk with
appActivity=.LoginActivity;appPackage=silktest.insurancemobile.

For additional information, see Connection String.

Recording Mobile Applications
Once you have established the connection between Silk Test and a mobile device or an emulator, you can
record the actions that are performed on the device. To record mobile applications, Silk Test uses a
Recording window that provides the following functionality:

• Displays the screen of the mobile device or Android emulator which you are testing.
• When you perform an action in the Recording window, the same action is performed on the mobile

device.
• When you interact with a control on the screen, the Recording window preselects the default action.

• If the default action is a Click, and you left-click on the control, the action is executed. You can
perform a right-click to show a list of the available actions against the control. You can then select the
action that you want to perform and click OK.

• If the default action is not a Click, a list of all the available actions against the control displays, and
you can select the action that you want to perform or simply accept the preselected action by clicking
OK.

When you have selected an action from the list, you can type values for the parameters of the selected
action into the parameter fields. Silk Test automatically validates the parameters.

• During recording, Silk Test displays the mouse position next to the recording window. You can toggle the
location to switch between displaying the absolute mouse position on the device display and the mouse
position in relation to the active object.

• When you pause the recording, you can perform actions in the screen which are not recorded to bring
the device into a state from which you want to continue recording.

• When you stop recording, a script is generated with your recorded actions, and you can proceed with
replaying the test.

Selecting the Mobile Device for Test Replay
You can define the mobile device that is used for the replay of a test in the following ways:

• If you execute a script from the command line or from a Continuous Integration (CI) server, specify the
connection string in the application configuration of the script.

22 | Testing Mobile Applications

• If you execute a test from Silk Central, specify the mobile device in the Mobile Device Selection area
of the Deployment tab of the execution definition in Silk Central instead of specifying a connection
string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Using Devices from Mobile Center
Mobile Center is a mobility gateway that enables you to manage the testing of your mobile devices.

To access the devices that are managed through the Mobile Center from Silk Test, perform the following
actions:

1. Integrate Silk Test with Silk Central.

For additional information, see Integrating Silk Test with Silk Central.

2. Configure Silk Central to use Mobile Center.

Note: While installing Mobile Center, ensure that the appropriate Android SDK version is used.
Ensure that the same version is used in Silk Test by setting the environment variable
SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. For additional information, refer to the Silk Central Help.

3. To test on iOS, ensure that the following IPA files are signed:

• HP4M-Agent.ipa
• HPMC-AgentLauncher.ipa
• WebDriverAgentRunner-Runner.ipa

Note: Silk Test does not support testing iOS simulators through Mobile Center.

In the Select Applications dialog, you can now select the Mobile Center device on which you want to test.

Testing Mobile Applications | 23

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Note: You cannot test a mobile device with both Silk Test and Mobile Center at the same time. Restart
a mobile device that you have tested with Silk Test, if you want to continue testing the device from
Mobile Center.

Note: When testing on a device that is managed through the Mobile Center, Silk Test does not
support using the methods typeKeys or setText to type key codes like ENTER. Additionally, Silk
Test does not support pressing the Home button on iOS devices.

Note: When testing on an Android Emulator, disable the GPU HW Acceleration.

Using SauceLabs Devices
SauceLabs provides an automated testing platform, enabling you to test on various mobile devices and
mobile platform versions without having to purchase and maintain your own infrastructure.

To access SauceLabs devices through Silk Central, perform the following actions:

1. Ensure that Silk Test is integrated with Silk Central.

For additional information, see Integrating Silk Test with Silk Central.

2. Ensure that Silk Central is configured to use SauceLabs.

For additional information, refer to the Silk Central Help.

In the Select Applications dialog, you can now select the SauceLabs device on which you want to test.

Editing Remote Locations
You can use the Remote Locations dialog box to add any browsers and mobile devices on a remote
location to the set of applications that you can test.

1. Open the Remote Locations dialog box.

• If you are using Silk Test Workbench, click Tools > Edit Remote Locations.
• If you are using Silk4J, click Silk4J > Edit Remote Locations.
• If you are using Silk4NET, click Silk4NET > Edit Remote Locations.
• If you are using Silk Test Classic, click Options > Edit Remote Locations.

2. To add an additional remote location, perform the following actions:

a) Click on the arrow to the right of Add Location to specify whether you want to add a remote location
which is using the Silk Test Information Service, or Silk Central.

Note: You can only configure one Silk Central as a remote location. If you have already
configured the integration with Silk Central, Silk Central is listed in the remote locations list.

b) Click Add Location. The Add Location dialog box appears.
c) Type the URL of the remote location and the port through which Silk Test connects to the information

service on the remote machine into the Host field.

The default port is 22901.
d) Optional: Edit the name of the remote location in the Name field.

3. To edit an existing remote location, click Edit.

4. To remove a remote location, click Remove.

5. Optional: To reduce the amount of browsers and devices in the Select Application dialog, click Do not
show devices and browsers from this location. The installed browsers and connected devices of the
remote location will no longer be displayed in the Select Application dialog. By default, all installed
browsers and connected devices of all remote locations are displayed in the Select Application dialog.

24 | Testing Mobile Applications

6. Click OK.

When you have added a remote location, the browsers that are installed on the remote location, including
Apple Safari on a Mac, are available in the Web tab of the Select Application dialog box, and the mobile
devices that are connected to the remote location are available in the Mobile tab of the Select Application
dialog box.

Connection String for a Mobile Device
The connection string specifies which mobile device is used for testing. When performing mobile testing,
Silk Test uses the connection string to connect to the mobile device. The connection string is typically part
of the application configuration. You can set the connection string when you configure your application
under test. To change the connection string, you can use the Edit Application Configuration dialog box.

Note: If you execute a test from Silk Central, specify the mobile device in the Mobile Device
Selection area of the Deployment tab of the execution definition in Silk Central instead of specifying
a connection string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

The following components are available for the connection string:

Component Description

deviceName The name of the mobile device. When testing on a physical mobile device, the device ID can be
used instead. Supports wildcards. Case-insensitive.

platformName Android or iOS. Required.

deviceId Optional: The ID of the mobile device. Can be used instead of the device name, when testing on
a physical mobile device. Supports wildcards. Case-insensitive.

platformVersion Optional: The Android or iOS version. Specify the version to test only on mobile devices that
have a specific Android or iOS version. Supports wildcards. Case-insensitive.

browserVersion Optional: Can be used in combination with the browser type to test only on the specified browser
version. Supports wildcards. Case-insensitive.

host Optional: If not set, any specified remote location can be used as the host. Supports wildcards.
Case-insensitive.

• app
• appActivity
• appPackage

Required for testing native mobile applications on Android. Either the full path to the app, or a
combination of appActivity and appPackage. For example app=MyApp.apk or
appActivity=.LoginActivity;appPackage=silktest.insurancemobile

• app
• bundleId

Required for testing native mobile applications on iOS. Either the full path to the app or the
bundleId. For example app=MyApp.ipa or bundleId=silktest.InsuranceMobile

Testing Mobile Applications | 25

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Component Description

noReset Optional: Can be set when testing native mobile applications. Is only valid if the app is specified.
True if the app should not be reinstalled before testing. False if the app should be reinstalled
before testing. The default value is False.

isSimulator Optional: Used to specify that the test should only be executed on an iOS Simulator. The device
name can be used instead.

isPhysicalDevice Optional: Used to specify that the test should only be executed on a physical device. The device
name can be used instead.

When using a pool of devices and to find out which device is actually used for testing, you can use the
return value of the generateConnectionString method of MobileDevice class.

Testing a mobile web application on a mobile device or on an Android Emulator

When testing a mobile web application on a mobile device or on an Android Emulator, the connection string
consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The browser version. This can only be used in combination with setting the browser type
4. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

Example: Connection string for any available Android device

"platformName=Android"

Example: Connection string for a browser on an Android device that is connected
to the local machine

To test a mobile browser on an Android device that is connected to the local machine,
the connection string should look similar to the following:

"deviceName=MotoG3;platformName=Android;host=localhost"

or

"platformName=Android;deviceId=11111111;host=localhost"

Example: Connection string for a browser on an Android device that is connected
to a remote machine

To test a mobile browser on a remote Android device, the connection string should look
similar to the following:

"deviceName=MotoG3;platformName=Android;host=10.0.0.1"

"deviceName=MotoG3;platformName=Android;host=MyRemoteLocation*"

26 | Testing Mobile Applications

Example: Connection string for a browser on an iOS device that is connected to a
Mac

To test a mobile browser on a remote iOS device, the connection string would look like
the following:

"deviceName=myiPhone6;platformName=iOS;host=10.0.0.1"

Testing a native mobile application on a mobile device or on an Android Emulator

When testing a native mobile application on a mobile device or on an Android Emulator, the connection
string consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

4. The name of the file of the app that you want to test, or the URL of the file, if the file is located on a web
server. For example C:/MyApp.apk or MyApp.ipa.

• Android apps are always .apk files.
• iOS apps on a real device are always .ipa files.
• iOS apps on a Simulator are either a zipped file or a directory with the name app.

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS device that is connected to a
Mac

To test the app MyApp.ipa on an iOS device that is connected to a remote machine,
the connection string would look like the following:

"platformName=iOS;deviceName=MyiPhone;host=http://
10.0.0.1;app=MyApp.ipa"

Testing a mobile web application on an iOS Simulator

When testing a mobile web application on an iOS Simulator, the connection string consists of the following
parts:

1. The platform name, which is iOS.
2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the Mac, on which the iOS Simulator is running.

Testing Mobile Applications | 27

Example: Connection string for a browser on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;isSimulator=true"

Testing a native mobile application on an iOS Simulator

When testing a native mobile application on an iOS Simulator on a Mac, the connection string consists of
the following parts:

1. The platform name, which is iOS.
2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the remote machine, for example 10.0.0.1.
5. The name of the app that you want to test, for example MyApp.ipa.

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Interacting with a Mobile Device
To interact with a mobile device and to perform an action like a swipe in the application under test:

1. In the Recording window, click Show Mobile Device Actions. All the actions that you can perform
against the mobile device are listed.

2. Select the action that you want to perform from the list.

3. To record a swipe on an Android device or emulator, move the mouse while holding down the left mouse
button.

4. Continue with the recording of your test.

Releasing a Mobile Device
When recording or playing back a test against a mobile device, the Open Agent instance takes ownership
of the device. By doing so, the Open Agent is preventing other Silk Test users from using the device. To
enable other Silk Test users to use the device after you have finished recording or replaying tests on the
device, Silk Test automatically releases the device when the Silk Test client is closed, when an unattended
test process finishes, or when the Open Agent is closed. You can also manually release the device.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Recording
Release a mobile device after recording to enable other Silk Test users to test on the device.

To release a mobile device after you have finished recording, perform one of the following actions:

• Stop the Open Agent from the System Tray.
• Close Silk Test. The device is only released by this action when parallel testing is enabled.

28 | Testing Mobile Applications

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Replay
Release a mobile device after replay to enable other Silk Test users to test on the device.

To manually release a mobile device after replaying is complete, you can also perform one of the following:

• If you have tested a mobile web application, use the Close method or the CloseSynchron method of
the BrowserApplication class. For additional information on these methods, refer to the API
documentation.

webBrowser.close();

• If you have tested a mobile native application, use the CloseApp method of the MobileDevice class.

For example, type the following:

MobileDevice mobileDevice = desktop.find("//MobileDevice");
mobileDevice.closeApp();

• Add the desktop.detachAll() statement to the test script.

A mobile device is automatically released if one of the following conditions is met:

• The Open Agent is closed.
• The test process stops during unattended testing. The device is only released by this action when

parallel testing is enabled.
• Silk Test is closed. The device is only released by this action when parallel testing is enabled.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Troubleshooting when Testing Mobile Applications

Why does the Select Application dialog not display my mobile devices?

If Silk Test does not recognize a mobile device or emulator, the Mobile tab in the Select Application
dialog does not display the device or emulator. Additionally, the Web tab of the Select Application dialog
does not display the mobile browsers that are installed on the device or emulator.

Silk Test might not recognize a mobile device or emulator for one of the following reasons:

Reason Solution

The emulator is not running. Start the emulator.

The Android Debug Bridge (adb) does not recognize the
mobile device.

To check if the mobile device is recognized by adb:

1. Navigate to the Android Debug Bridge (adb) in the
Android SDK installation folder. If the Android SDK is
not installed, navigate to C:\Program Files
(x86)\Silk\SilkTest\ng\Mobile
\windows\AndroidTools\platform-tools
to use the adb that is installed with Silk Test.

2. Hold Shift and right-click into the File Explorer
window.

3. Select Open command window here.

4. In the command window, type adb devices to get
a list of all attached devices.

Testing Mobile Applications | 29

Reason Solution

5. If your device is not listed, check if USB-debugging is
enabled on the device and if the appropriate USB
driver is installed.

6. If you get an error, for example adb server is
out of date, ensure that the adb version in C:
\Program Files (x86)\Silk\SilkTest
\ng\Mobile\windows\AndroidTools
\platform-tools is the same as the adb version
of your local Android SDK. For additional information,
see What can I do if the connection between the
Open Agent and my device is unstable?.

The version of the operating system of the device is not
supported by Silk Test.

For information on the supported mobile operating
system versions, refer to the Release Notes.

The USB driver for the device is not installed on the local
machine.

Install the USB driver for the device on the local machine.
For additional information, see Installing a USB Driver.

USB-debugging is not enabled on the device. Enable USB-debugging on the device. For additional
information, see Enabling USB-Debugging.

Note: If all previous solutions do not work, you could try to restart the device.

Why does Silk Test search for a URL in Chrome for Android instead of navigating to the URL?

Chrome for Android might in some cases interpret typing an URL into the address bar as a search. As a
workaround you can manually add a command to your script to navigate to the URL.

What do I do if the adb server does not start correctly?

When the Android Debug Bridge (adb) server starts, it binds to local TCP port 5037 and listens for
commands sent from adb clients. All adb clients use port 5037 to communicate with the adb server. The
adb server locates emulator and device instances by scanning odd-numbered ports in the range 5555 to
5585, which is the range used by emulators and devices. Adb does not allow changing those ports. If you
encounter a problem while starting adb, check if one of the ports in this range is already in use by another
program.

For additional information, see http://developer.android.com/tools/help/adb.html.

What can I do if the connection between the Open Agent and my device is unstable?

If you have installed the Android SDK or another tool that uses the Android Debug Bridge (adb), an
additional adb server might be running in addition to the one that is used by Silk Test. If the running adb
servers have different versions, the connection between the Open Agent and the device might become
unstable or even break.

To avoid version mismatch errors, specify the path to the Android SDK directory by setting the environment
variable SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the variable is
not set, Silk Test uses the adb version that is shipped with Silk Test.

Why do I get the error: Failed to allocate memory: 8?

This error displays if you are trying to start up the emulator and the system cannot allocate enough
memory. You can try the following:

30 | Testing Mobile Applications

http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/185/en/silktest-185-releasenotes-en.pdf
http://developer.android.com/tools/help/adb.html

1. Lower the RAM size in the memory options of the emulator.
2. Lower the RAM size of Intel HAXM. To lower the RAM size, run the IntelHaxm.exe again and choose

change.
3. Open the Task Manager and check if there is enough free memory available. If not, try to free up

additional memory by closing a few programs.

Why do I get the error "Silk Test cannot start the app that you have specified" during testing on an
iOS device?

This error might display for one or more of the following reasons:

Reason Solution

The iOS device is not in developer mode. You can enable the developer mode in one of the
following two ways:

• Connect the device to a Mac on which Xcode is
installed, and start the app that you want to test on
the device.

• Add your provisioning profiles to the device.

1. Open Xcode.

2. Select Window > Devices.

3. Right-click on the iOS device.

4. Select Show Provisioning Profiles.

5. Add your provisioning profiles.

You have recently updated the iOS version of the device. 1. Open Xcode.

2. Select Window > Devices.

3. Wait unitl Xcode has processed the symbol files.

UI automation is not enabled on the iOS device. 1. Select Settings > Developer.

2. Activate Enable UI Automation.

The Web Inspector is not activated on the iOS device,
while you are trying to test a mobile web application.

1. Click Settings > Safari > Advanced.

2. Activate the Web Inspector.

The app that you want to test was not built for the iOS
version of the iOS device on which you are testing.

Use Xcode to build the app for the iOS version of the
device.

The Software Update dialog box is currently open on the
iOS device.

Close the dialog box and disable automatic software
updates:

1. Select Settings > App and iTunes Stores >
AUTOMATIC DOWNLOADS.

2. Deactivate Updates.

Why does my Android device display only the Back button in the dynamic hardware controls?

If the Android or the Android Emulator is screen-locked when you start testing, the device or Emulator
might display only the button Back in the dynamic hardware controls.

To solve this issue, stop the Open Agent, restart the device, and change the device settings to no longer
lock the screen.

Testing Mobile Applications | 31

Why does my Android device or emulator no longer display a keyboard?

To support unicode characters, Silk Test replaces the standard keyboard with a custom keyboard. When
testing is finished, the original keyboard is restored. If an error occurs during testing, the custom keyboard
might still be active and cannot be replaced.

To solve this issue, manually reset the keyboard under Settings > Language & input > Current
Keyboard.

Why does my device not respond during testing?

If the device, emulator, or Simulator is screen-locked when you start testing, and Silk Test is unable to
unlock the screen, the device, emulator, or Simulator might stop responding to any actions.

To solve this issue, stop the Open Agent and change the device settings to no longer lock the screen.

Why can I not install the Information Service on a Mac?

When the Allow apps downloaded from setting in the General tab of the Security & Privacy system
preferences pane is set to Mac App Store and identified developers, which is the default value, the
following error message appears when opening the Information Service setup:
"SilkTestInformationService<version>.pkg" can't be opened because it is from an unidentified developer.

To solve this issue, use one of the following:

• Right-click the setup file and select Open. A warning message will appear, but you will still be able to
open the file.

• Set the Allow apps downloaded from setting to Anywhere.
• After attempting to open the file, navigate to the General tab of the Security & Privacy system

preferences pane and click Open Anyway.

Why is the Recording window black when recording an Android app?

Android apps that require a higher level of security, for example apps that handle financial transactions,
might have the FLAG_SECURE flag set, which prevents Silk Test from capturing the app. Silk Test relies on
screenshots or on a video of the Android device during recording and will display a black screen of the
device in the Recording window, if the Android app that you are testing has this flag set. To test such an
app with Silk Test, you have to contact the app development team, and ask them to un-set the
FLAG_SECURE flag during testing.

Why does Silk Test not show a video when testing on an Android emulator?

If the emulator is using the graphic card of your computer for better rendering, the video capturing of Silk
Test might not work. To solve this, emulate the graphics in software:

1. Open the Android Virtual Device Manager.
2. Click Edit in the Actions column of the emulator.
3. Select Software from the list in the Emulated Performance area of the Virtual Device Configuration

dialog.

What can I do if Silk Test does not show a video when testing in a cloud environment?

When testing in a cloud environment, showing a video might not work when recording or replaying a test,
for example because required ports are not open.

To solve this issue, you can specify a list of WebDriver host URLs in the infoservice.properties file.
For information on how to access this properties file, see Editing the Properties of the Silk Test Information
Service. Add the option infoservice.disableScreencastHosts to the file, by typing the following:

infoservice.disableScreencastHosts=<URL_1>,<URL_2>, ...

32 | Testing Mobile Applications

https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#FLAG_SECURE

For example:

infoservice.disableScreencastHosts=http://my-webdriver-server-url.com:
80/wd/hub

You can specify URL patterns like *my-webdriver-server-url.com by using asterisks (*) as wildcards.

Silk Test will show a series of screenshots instead of a video when recording and replaying on the specified
hosts.

How can I change the installed version of Xcode?

If the version of Xcode that you are using is not supported by Silk Test, for example when you upgrade to
the latest version of Xcode, an error message might appear when testing on iOS.

To replace the installed version of Xcode with a supported version, download a supported Xcode version
from https://developer.apple.com/download/more/, and replace the unsupported version with the
downloaded version. For information about the supported Xcode versions, refer to the Release Notes.

What can I do if my Mac runs out of disk space?

Silk Test uses Instruments to automate iOS devices. This tool creates large log files in the /Library/
Caches/com.apple.dt.instruments directory, which might fill up disk space on the Mac. To solve this
issue, Micro Focus recommends regularly deleting these log files, either manually or by using a cronjob.
For example, to delete the files each day at the same time, you could do the following:

1. Type sudo crontab -e into a Terminal. This opens an editor in which you can edit the crontab for
root.

2. Add the following line to the crontab:

0 2 1 * * find /Library/Caches/com.apple.dt.instruments -mtime +10 -delete

3. Save the crontab.

In this example, all log files that are older than ten days will be deleted each day at 2 AM from the directory.

Why does my test fail with the error message "Xcode build failed with code 65"?

When testing on a physical iOS device, this error usually means that during the build process the
WebDriverAgent app could not be signed or that there is a problem with the provisioning profile.

You can check the actual problem with the following commands, which have to be executed at the Mac
machine to which the device is connected:

cd /Applications/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-driver
xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test

Verify that the folder Resources exists under /Applications/Silk/Mobile/common/Appium/
node_modules/appium-xcuitest-driver and that the folder contains the file
WebDriverAgent.bundle. If not, create this folder and an empty WebDriverAgent.bundle file, for
example by using the following command:

mkdir -p Resources/WebDriverAgent.bundle

What can I do to prevent the Developer Tools Access from requesting to take control of another
process?

When starting the execution of a test on iOS, a message box stating the following might appear:
Developer Tools Access needs to take control of another process for debugging to continue. Type your
password to allow this.

To avoid getting this message, execute the following command in a Terminal:

sudo /usr/sbin/DevToolsSecurity --enable

Testing Mobile Applications | 33

https://developer.apple.com/download/more/
http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/185/en/silktest-185-releasenotes-en.pdf

Why are the rectangles wrong while testing a mobile web application on an iPad?

If the rectangles around controls are offset when testing a mobile web application on an iPad, you might
have multiple browser tabs open and the Tab bar might be displayed. To fix this issue, close all tabs except
one.

Why can I no longer record or replay tests on my device after updating Silk Test?

When updating to a new version of Silk Test, some Appium apps on any physical mobile devices that have
already been used for mobile testing with the previous version of Silk Test are updated automatically. If for
any reason these apps are not automatically updated, you might experience difficulties when trying to
record or replay tests on the device.

If you are experiencing such issues on a specific Android device after updating Silk Test, manually uninstall
the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.test
• Unlock

If you are experiencing such issues on a specific iOS device after updating Silk Test, manually uninstall the
WebDriverAgentRunner from the device.

How Can I Use Chrome for Android to Replay Tests?
By default you can use the Select Browser dialog box to select the browser during replay.

If you execute a script from the command line or from a Continuous Integration (CI) server, you can specify
the connection string in the application configuration of the script. To overwrite the browser that is specified
in the application configuration, use the silktest.configurationName environment variable.

You can also use the property browsertype of the BrowserApplication class to set the type of the
browser that is used during replay. However, the browsertype does not include an explicit value for
Chrome for Android.

To specify that you want to use Chrome for Android as the browser, on which a test is replayed, set the
browsertype to GoogleChrome and specify Android as the platform. When Android is specified, Silk Test
uses Chrome for Android instead of Google Chrome on a desktop machine to execute the test.

Examples

The following code sample shows how you can set the base state for a test to use
Chrome for Android on a Nexus 7 by using the silktest.configurationName:

SET
silktest.configurationName="platformName=Android;deviceName=Nexu
s 7;host=10.0.0.1 - Chrome"

The following Java code sample shows how you can set the base state for a test to use
Chrome for Android by using the browsertype :

BrowserBaseState baseState = new
BrowserBaseState(BrowserType.GoogleChrome, "demo.borland.com/
InsuranceWebExtJS/");
baseState.setConnectionString("platformName=Android");
baseState.execute(desktop);

34 | Testing Mobile Applications

Limitations for Testing Mobile Web Applications
The support for playing back tests and recording locators on mobile browsers is not as complete as the
support for the other supported browsers. The known limitations for playing back tests and recording
locators for mobile web applications are:

• The following classes, interfaces, methods, and properties are currently not supported for mobile web
applications:

• BrowserApplication class.

• CloseOtherTabs method
• CloseTab method
• ExistsTab method
• GetActiveTab method
• GetSelectedTab method
• GetSelectedTabIndex method
• GetSelectedTabName method
• GetTabCount method
• ImageClick method
• OpenTab method
• SelectTab method

• DomElement class.

• DomDoubleClick method
• DomMouseMove method
• GetDomAttributeList method

• IKeyable interface.

• PressKeys method
• ReleaseKeys method

• Silk Test does not support testing HTML frames and iFrames with Apple Safari on iOS.
• Recording in landscape mode is not supported for emulators that include virtual buttons in the system

bar. Such emulators do not correctly detect rotation and render the system bar in landscape mode to
the right of the screen, instead of the lower part of the screen. However, you can record against such an
emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk Test does not support properties in XPath expressions.

• If you are testing a mobile web application on Android, Silk Test does not support zooming.
• The following JavaScript alert-handling methods of the BrowserWindow class do not work when

testing on the Original Android Stock (AOSP) Browser:

• AcceptAlert method
• DismissAlert method
• GetAlertText method
• IsAlertPresent method

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac.

• Before starting to test a mobile web application, ensure that no browser tab is open.

Tip: On iPads you can disable tabs in Apple Safari. Navigate to Settings > Safari and disable
Show Tab Bar to do so.

Testing Mobile Applications | 35

• While testing a mobile web application, you can only have one browser tab open.
• Silk Test does not support testing mobile web applications that are opened by a native mobile

application.

Limitations for Testing Native Mobile Applications
The known limitations for playing back tests and recording locators on native mobile applications (apps)
are:

• The following classes, interfaces, methods, and properties are currently not supported for native mobile
applications:

• IKeyable interface.

• PressKeys method
• ReleaseKeys method

• MobileDevice class.

• When testing a native mobile application on iOS, the SetLocation method is not supported.
• When testing a native mobile application on an Android version prior to Android 6.0, you have to

enable Allow mock locations to use the SetLocation method. To do so, open the settings of
the Android device or emulator and tap Developer Options.

• When testing a native mobile application on Android 6.0 or later, you have to set the app to
Appium Settings to use the SetLocation method. To do so, open the settings of the Android
device or emulator and tap Developer Options > Select mock location app. Then choose
Appium Settings.

Note: The Appium Settings entry is only available if you have already executed a test with
Appium on the Android device or emulator.

• When testing on iOS, the Find method does not work in the following cases:

• If the path attribute is set.
• If an attribute value is empty.

• When testing on iOS, the getValue method of the XCUIElementTypeSwitch class returns the
strings false or true depending on the checked state, instead of returning the strings 0 and 1.

• Recording in landscape mode is not supported for Android emulators that include virtual buttons in the
system bar. Such emulators do not correctly detect rotation and render the system bar in landscape
mode to the right of the screen, instead of the lower part of the screen. However, you can record against
such an emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk Test does not support properties in XPath expressions.

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1 or later, you are
no longer required to use multiple user sessions on a Mac to test mobile applications on iOS.

• Silk Test does not support text recognition when testing native mobile applications on both Android and
iOS.

Text recognition includes the following methods:

• TextCapture

• TextClick

• TextExists

• TextRectangle

• Silk Test does not support testing native mobile applications with multiple web views.
• When testing on iOS, the state of the isVisible property is always true, even if the element is not

visible.

36 | Testing Mobile Applications

• When testing on iOS, a swipe action with multiple steps swipes to a point, releases the mouse pointer
and then swipes to the next point. On prior versions of iOS, the action does not release the mouse
pointer between the swipes.

• When testing on iOS, Silk Test does not support any multi-touch actions except pinch.
• When testing on iOS, Silk Test does not support the PinchIn method.
• When testing on iOS, you can only accept or dismiss alert dialog boxes. If no Cancel button is available

and Silk Test cannot dismiss the dialog, the default action is to accept the dialog.
• When testing on Android, Silk Test does not provide automated synchronization for controls of the

Animation class.
• When testing on iOS, Silk Test does not provide automated synchronization for controls that call the

UIView.animate function or the UIView.animateWithDuration function.

You can workaround this issue by increasing the speed of the animation in the app delegate:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {
 // Speed animations up (recommended)
 window!.layer.speed = 100;
 }
}

Micro Focus does not recommend disabling such animations completely, as this might change the
applications behavior. However, if speeding up the animation does not resolve the synchronization
issue, you could completely disable animations in the app delegate as follows:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {
 UIView.setAnimationsEnabled(false)
 }
}

• When testing on iOS, the following additional limitations apply:

• You might experience performance decreases while recording and replaying tests.
• Due to internal changes in iOS, the locators of some controls might have changed, and some of your

existing tests might break.
• Text fields that are not in focus might not be recognized as text fields. To ensure that text fields are

recognized correctly, set the focus on the text fields, for example by clicking on a text field before
trying to interact with it.

Clicking on Objects in a Mobile Website
When clicking on an object during the recording and replay of an automated test, a mobile website
presents the following challenges in comparison to a desktop website:

• Varying zoom factors and device pixel ratios.
• Varying screen sizes for different mobile devices.
• Varying font and graphic sizes between mobile devices, usually smaller in comparison to a website in a

desktop browser.
• Varying pixel size and resolution for different mobile devices.

Silk Test enables you to surpass these challenges and to click the appropriate object on a mobile website.

When recording a test on a mobile device, Silk Test does not record coordinates when recording a Click.
However, for cross-browser testing, coordinates are allowed during replay. You can also manually add

Testing Mobile Applications | 37

https://developer.android.com/reference/android/view/animation/Animation.html

coordinates to a Click. Silk Test interprets these coordinates as the HTML coordinates of the object. To
click on the appropriate object inside the BrowserWindow, during the replay of a test on a mobile device,
Silk Test applies the current zoom factor to the HTML coordinates of the object. The device pixel
coordinates are the HTML coordinates of the object, multiplied with the current zoom factor.

If the object is not visible in the currently displayed section of the mobile website, Silk Test scrolls to the
appropriate location in the website.

Example

The following code shows how you can test a DomButton with a fixed size of 100 x 20
px in your HTML page.

During replay on a different mobile device or with a different zoom factor, the
DomButton might for example have an actual width of 10px on the device screen. Silk
Test clicks in the middle of the element when using the code above, independent of the
current zoom factor, because Silk Test interprets the coordinates as HTML coordinates
and applies the current zoom factor.

Using Existing Mobile Web Tests
Silk Test 17.0 or later uses a different approach to mobile web testing than previous versions of Silk Test.
This change might result in your old mobile web tests no longer working on Silk Test 17.0 or later. This
topic describes some of the changes that were introduced with Silk Test 17.0 and provides guidance on
changing existing mobile web tests with Silk Test 17.0 or later.

The following changes for mobile web testing were introduced with Silk Test 17.0:

• With previous versions of Silk Test, you were able to test on iOS devices that were connected by USB to
a Windows machine. With Silk Test 17.0 or later, you can only test on iOS devices that are connected to
an OSX machine (Mac).

• If you have tested mobile web applications on an Android device with a previous version of Silk Test,
you have to manually remove the proxy from the Android device to test a web application with Silk Test
17.0 or later. Silk Test 17.0 or later no longer requires a proxy, and if the proxy is set, the message
Unable to connect to the proxy server displays on the device.

38 | Testing Mobile Applications

Index
A
Android

configuring emulator 7
enabling USB-debugging 7
hybrid applications 5
installed apps, testing 22
installing USB drivers 6
mobile native applications, prerequisites 4
mobile web applications, prerequisites 4
parallel testing, tested configurations 9
recommended settings 7
releasing devices 28
releasing devices, recording 28
releasing devices, replay 29
testing 4
troubleshooting 29

Android emulator
configuring 7

Apple Safari
information service, installing 17, 21

B
browser type

Chrome for Android, setting 34
browsertype

Chrome for Android, setting 34

C
capabilities

iOS 20
Chrome for Android

browser type, setting 34
Click

mobile web 37
Configuration Assistant

automatic signing 17
connection string

mobile devices 25
cross-browser testing

remote locations, adding 24

D
device not connected

mobile 29

E
editing

remote locations 24
Emulator

defining, playback 22
emulators

testing 4

H
hybrid applications

Android 5
iOS 15

I

information service
editing 20
Mac, installing 17, 21

installed apps
Android, testing 22
iOS, testing 22

installing
information service, Mac 17, 21

installing USB drivers
Android 6

iOS
apps, preparing for testing 16
devices, preparing 16
hybrid applications 15
information service, installing 17, 21
installed apps, testing 22
Mac, preparing 17
mobile native applications, prerequisites 11
mobile web applications, prerequisites 11
native app, Simulator 13
native app, testing 12
recommended settings 21
releasing devices 28
releasing devices, recording 28
releasing devices, replay 29
testing 11
testing, no developer account 19
web app, Simulator 14
web app, testing 14

iOS 10
existing scripts, executing 21

L

limitations
mobile web applications 35
native mobile applications 36

M

Mac
information service, installing 17, 21

mobile
troubleshooting 29

mobile applications
recording 22
testing 4

mobile browsers
limitations 35

Mobile Center
enabling 23

mobile device
defining, playback 22

mobile devices
interacting with 28
performing actions against 28

Index | 39

mobile native applications
limitations 36

mobile recording
about 22

mobile testing
Android 4
connection string 25
iOS 11
native app, iOS Simulator 13
overview 4
releasing devices 28
remote locations, adding 24
web app, iOS 14
web app, iOS Simulator 14

mobile testing devices
native app, iOS 12

mobile web
Click 37
iOS 14
legacy tests 38

mobile web applications
Android, prerequisites 4
iOS, prerequisites 11
limitations 35

N

native mobile applications
Android, prerequisites 4
iOS, prerequisites 11
limitations 36

P

parallel testing
tested configurations, Android 9

playback
selecting device 22

prerequisites
Android, mobile web applications 4
Android, native mobile applications 4
iOS, mobile web applications 11
iOS, native mobile applications 11

R

recording
mobile applications 22
no image displayed 29
releasing devices 28

releasing devices

mobile testing 28
recording 28
replay 29

remote locations
adding 24
editing 24

replay
releasing devices 29
selecting device 22

running existing scripts
iOS 10 21

S

SauceLabs
enabling 24

screencast
not working 29

setting mobile device
playback 22

Silk Central
Mobile Center, enabling 23
SauceLabs, enabling 24

Simulator
defining, playback 22
mobile web applications, testing 14
native app, testing 13
testing 12

T

testing Apple Safari
information service, installing 17, 21

troubleshooting
mobile 29

U

upload app
Mac 4

V

video
not displayed 29

X

xBrowser
Chrome for Android, setting 34

40 | Index

	Contents
	Testing Mobile Applications
	Android
	Prerequisites for Testing Mobile Applications on Android
	Testing Mobile Applications on Android
	Testing Hybrid Applications on Android
	Installing a USB Driver
	Enabling USB-Debugging
	Recommended Settings for Android Devices
	Configuring the Android Emulator for Silk Test
	Tested Configurations for Parallel Test Execution

	iOS
	Prerequisites for Testing Mobile Applications on iOS
	Testing Native Mobile Applications on a Physical iOS Device
	Testing Native Mobile Applications on an iOS Simulator
	Testing Mobile Web Applications on a Physical iOS Device
	Testing Mobile Web Applications on an iOS Simulator
	Testing Hybrid Applications on iOS
	Preparing an iOS Device for Testing
	Preparing an iOS App for Testing
	Installing the Silk Test Information Service on a Mac
	Preparing a Mac to Test Mobile Applications on iOS
	Using a Personal Team Profile for Testing on Physical iOS Devices
	Editing the Properties of the Silk Test Information Service
	Uninstalling the Silk Test Information Service from a Mac
	Recommended Settings for iOS Devices
	Running Existing Scripts on iOS Using XCUITest

	Testing an Installed App
	Recording Mobile Applications
	Selecting the Mobile Device for Test Replay
	Using Devices from Mobile Center
	Using SauceLabs Devices
	Editing Remote Locations
	Connection String for a Mobile Device
	Interacting with a Mobile Device
	Releasing a Mobile Device
	Releasing a Mobile Device After Recording
	Releasing a Mobile Device After Replay

	Troubleshooting when Testing Mobile Applications
	How Can I Use Chrome for Android to Replay Tests?

	Limitations for Testing Mobile Web Applications
	Limitations for Testing Native Mobile Applications
	Clicking on Objects in a Mobile Website
	Using Existing Mobile Web Tests

