
Silk Test 19.0

Silk Test Classic: Testing Flex
Applications

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 1992-2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2018-06-06

ii

Contents

Overview of Apache Flex Support .. 4
Sample Applications .. 5
Enabling Your Apache Flex Application for Testing 6

Loading Automation Packages at Run Time ... 6
Limitations for Testing Apache Flex ...6
Using the Flex Automation Launcher for Run-Time Loading ...7
Compiling Automation Packages Prior to Run Time ... 7
Modifying the Configuration File of the Compiler .. 8

Testing Flex Applications .. 10
Configuring the Security Settings for Your Local Flash Player .. 10
Starting the Component Explorer ..10
Creating a New Project ... 10
Configuring an Apache Flex Application ... 11
Recording a Test Case for the Sample Apache Flex Application 12
Replaying a Test Case .. 13

Silk4J Quick Tour ... 14
Importing Silk4J Sample Scripts ... 14
Running a Sample Silk4J Test Case ... 14

Contents | 3

Overview of Apache Flex Support
The tasks described in this tutorial are supported only for the Open Agent.

Silk Test Classic provides built-in support for testing Apache Flex applications using the 4Test scripting
language.

Silk Test Classic supports Apache Flex applications using Internet Explorer, Mozilla Firefox, or the
standalone Flash Player, and Adobe AIR applications built with Apache Flex 4 or later.

Silk Test Classic also supports multiple application domains in Apache Flex 3.x and 4.x applications, which
enables you to test sub-applications. Silk Test Classic recognizes each sub-application in the locator
hierarchy tree as an application tree with the relevant application domain context. At the root level in the
locator attribute table, Apache Flex 4.x sub-applications use the SparkApplication class. Apache Flex
3.x sub-applications use the FlexApplication class.

You can also test Apache Flex applications with the other Silk Test clients:

• The Silk4J Eclipse plug-in supports testing Apache Flex applications using the Java programming
language.

• The Silk4NET Visual Studio plug-in supports testing Apache Flex applications using the C# and Visual
Basic .NET programming languages.

• Silk Test Workbench supports testing Apache Flex applications using the Visual Basic .NET
programming language.

For additional information about the supported versions for Apache Flex and potential known issues, refer
to the Release Notes.

4 | Overview of Apache Flex Support

https://www.microfocus.com/documentation/silk-test/190/en/silktest-190-releasenotes-en.pdf

Sample Applications
Silk Test Classic provides several sample Apache Flex test applications. You can use these sample
applications to record tests with any Silk Test client.

You can access the Apache Flex sample applications at http://demo.borland.com/flex/SilkTest19.0/
index.html.

The chapter Silk4J Quick Tour uses the Component Explorer sample application to walk you through
testing an Apache Flex application. However, if you prefer, you can use your own Apache Flex application
to perform these steps. If you use your own application, follow the steps in the Enabling Your Apache Flex
Application for Testing chapter before you begin the Silk4J Quick Tour.

Sample Applications | 5

http://demo.borland.com/flex/SilkTest19.0/index.html
http://demo.borland.com/flex/SilkTest19.0/index.html

Enabling Your Apache Flex Application for
Testing

This section describes how you can use the Apache Flex Automation API to prepare your Apache Flex
application for automation testing using Silk Test Classic. Apache Flex developers are the target audience
for this document.

For additional information about which version of Apache Flex to use and which browsers and operating
environments are supported for testing, refer to the Release Notes.

To enable your Apache Flex application for testing, you must include the following components in your
application:

• Adobe Flex Automation Package
• Silk Test Automation Package

You can load these packages at run time or prior to run time by pre-compiling your application. When you
load the automation packages at run time, your application is not modified. However, this method is difficult
to use in applications that are tested in a Web browser. For details about these limitations, see Limitations.
In contrast, pre-compiling your application modifies your application and increases the file size, which
means that you must create two builds, one for testing and one for release. However, this method works for
all applications.

For additional information about the differences between the run time and pre-compiled approaches, refer
to the guideline at http://download.macromedia.com/pub/documentation/en/flex/2/at_api.pdf.

Note: If you are using an Apache Flex sample application, you do not need to perform these steps.
The sample applications have already been enabled for testing.

Loading Automation Packages at Run Time
You can load automation support at run time using the Silk Test Flex Automation Launcher. This application
is compiled with the automation libraries and loads your application with the SWFLoader class. This
automatically enables your application for testing without compiling automation libraries into your SWF file.
The Silk Test Flex Automation Launcher is available in HTML and SWF file formats.

Limitations for Testing Apache Flex
When you load automation support at run time, the following limitations apply:

• The Silk Test Flex Automation Launcher automatically becomes the root application. If your application
must be the root application, you cannot load automation support with the Silk Test Flex Automation
Launcher. For other options, see Compiling Automation Packages Prior to Run Time.

• Applications that load external libraries, which means other SWF file libraries, require a special setting
for automated testing. A library that is loaded at run time, including run-time shared libraries (RSLs),
must be loaded into the ApplicationDomain of the loading application. If the SWF file used in the
application is loaded in a different application domain, automated testing record and playback will not
function properly. The following example shows a library that is loaded into the same
ApplicationDomain:

import flash.display.*;
import flash.net.URLRequest;
import flash.system.ApplicationDomain;
import flash.system.LoaderContext;

6 | Enabling Your Apache Flex Application for Testing

https://www.microfocus.com/documentation/silk-test/190/en/silktest-190-releasenotes-en.pdf
http://download.macromedia.com/pub/documentation/en/flex/2/at_api.pdf

var ldr:Loader = new Loader();
var urlReq:URLRequest = new
URLRequest("RuntimeClasses.swf");
var context:LoaderContext = new LoaderContext();
context.applicationDomain =
ApplicationDomain.currentDomain;
loader.load(request, context);

• Apache Flex controls are not recognized when embedding an Apache Flex application with an empty id
attribute.

Using the Flex Automation Launcher for Run-Time
Loading

For additional information about creating events and custom controls to support automated testing, see
Testing Flex Custom Controls.

1. Copy the content of the directory Silk\Silk Test\ng\AutomationSDK\Flex\<VERSION>
\FlexAutomationLauncher into the directory of the Apache Flex application that you are testing.

2. Open FlexAutomationLauncher.html in Windows Explorer and add the following parameter as a
suffix to the file path:

?automationurl=YourApplication.swf

where YourApplication.swf is the name of the .swf file for your Apache Flex application.

3. Add file:/// as a prefix to the file path.

For example, if your file URL includes a parameter, such as ?automationurl=explorer.swf, type
file:///C:/Program%20Files/Silk/SilkTest/ng/samples/Flex/3.2/
FlexControlExplorer32/FlexAutomationLauncher.html?automationurl=explorer.swf.

Compiling Automation Packages Prior to Run Time
You can pre-compile applications that you plan to test. The functional testing classes are embedded in the
application at compile time, and the application has no external dependencies for automated testing at run
time.

When you embed functional testing classes in your application SWF file at compile time, the size of the
SWF file increases. If the size of the SWF file is not important, use the same SWF file for functional testing
and deployment. If the size of the SWF file is important, generate two SWF files, one with functional testing
classes embedded and one without. Use the SWF file that does not include the embedded testing classes
for deployment.

When you pre-compile the Apache Flex application for testing, in the include-libraries compiler option,
reference the following files:

• automation.swc

• automation_agent.swc

• FlexTechDomain.swc

• automation_dmv.swc. Include if your application uses charts.
• automation_flasflexkit.swc. Include if your application uses embedded flash content.
• automation_spark.swc. Include if your application uses Apache Flex 4 controls.
• automation_air.swc. Include if your application is an AIR application.
• automation_airspark.swc. Include if your application is an AIR application and uses Apache Flex

4 controls.

Enabling Your Apache Flex Application for Testing | 7

http://documentation.microfocus.com:8080/help/topic/com.borland.silktest.classic.doc/STCLASSIC-BE491DC1-TESTING-FLEX-CUSTOM-CONTROLS.html

When you create the final release version of your Apache Flex application, you recompile the application
without the references to these SWC files. For more information about using the automation SWC files,
refer to the Apache Flex Release Notes.

If you do not deploy your application to a server, but instead request it by using the file protocol or run it
from within Adobe Flex Builder, you must include each SWF file in the local-trusted sandbox. This requires
additional configuration information. Add the additional configuration information by modifying the
configuration file of the compiler or by using a command-line option.

Modifying the Configuration File of the Compiler
For additional information about creating events and custom controls to support automated testing, refer to
Testing Flex Custom Controls in the Silk Test Classic Help.

1. Include the libraries automation.swc, automation_agent.swc, and FlexTechDomain.swc in the
configuration file of the compiler by adding the following code to the configuration file:

<include-libraries>
...
<library>/libs/automation.swc</library>
<library>/libs/automation_agent.swc</library>
<library>pathinfo/FlexTechDomain.swc</library>
</include-libraries>

Note: If your application uses charts, you must also add the automation_charts.swc file to the
include-libraries compiler option.

2. Specify the location of the automation.swc, automation_agent.swc, and
FlexTechDomain.swc libraries using the include-libraries compiler option with the command-line
compiler

The configuration files are located at:

Product File Location

Apache Flex SDK <flex_installation_directory>/
frameworks/flex-config.xml

Apache Flex Data Services <flex_installation_directory>/flex/
WEB-INF/flex/flex-config.xml

The following example adds the files automation.swc and automation_ agent.swc to the
application:

mxmlc -include-libraries+=../frameworks/libs/
automation.swc;../frameworks/libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc
MyApp.mxml

Note: Explicitly setting the include-libraries option on the command line overwrites, rather than
appends, the existing libraries. If you add the automation.swc and automation_agent.swc
files using the include-libraries option on the command line, ensure that you use the += operator.
This appends rather than overwrites the existing libraries that are included.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive .swf files are loaded, a memory leak occurs and the application eventually runs out of
memory. The Flex Component Explorer sample application is affected by this issue. The
workaround is to not compile the application .swf files that Explorer loads with automation libraries.
For example, compile only the Explorer main application with automation libraries. Another

8 | Enabling Your Apache Flex Application for Testing

alternative is to use the module loader instead of swfloader. For more information about using the
Flex Automation API, refer to the Apache Flex Release Notes.

Enabling Your Apache Flex Application for Testing | 9

Testing Flex Applications
This section guides you through the steps of testing an Apache Flex application. The procedures in this
section use the Component Explorer sample application. However, if you have another Flex application that
you prefer to use, enable your Apache Flex application for testing and then follow the steps in this section.
The target audience for this chapter are Quality Assurance testers.

For information about supported versions of Apache Flex and the supported browsers and operating
environments for testing, refer to the Release Notes.

Configuring the Security Settings for Your Local Flash
Player

Before you launch an Apache Flex application that runs as a local application for the first time, you must
configure security settings for your local Flash Player. You must modify the Adobe specific security settings
to enable the local application access to the file system.

To configure the security settings for your local Flash player:

1. Open the Flex Security Settings page by clicking Flash Player Security Manager on http://
demo.borland.com/flex/SilkTest19.0/index.html.

2. Click Always allow.
3. From the Edit Locations list box, select Add Location.
4. Click Browse for folder and navigate to the folder where your local application is installed.
5. Click Confirm and then close the browser.

Starting the Component Explorer
Compiled with the Adobe Automation SDK and the Silk Test specific automation implementation, the
Component Explorer is pre-configured for testing.

To start the Component Explorer in Internet Explorer, open http://demo.borland.com/flex/SilkTest19.0/3.5/
Flex3TestApp_withAutomation/Flex3TestApp.html.

Creating a New Project
To test the sample Apache Flex application, begin by creating a new project.

To create a project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. the Create Project dialog box appears.

2. Type a unique name for the project into the Project Name field.
If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.
Project files with a .vtp (Verify Test Project) extension, projectname.vtp, and a
projectname.ini are created in the directory that you specify in the Save in text box.

3. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname.ini to this location and copies the extension .ini files, which

10 | Testing Flex Applications

https://www.microfocus.com/documentation/silk-test/190/en/silktest-190-releasenotes-en.pdf
http://demo.borland.com/flex/SilkTest19.0/index.html
http://demo.borland.com/flex/SilkTest19.0/index.html
http://demo.borland.com/flex/SilkTest19.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html
http://demo.borland.com/flex/SilkTest19.0/3.5/Flex3TestApp_withAutomation/Flex3TestApp.html

are appexpex.ini, axext.ini, domex.ini, and javaex.ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you
want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

Silk Test Classic creates your project and displays nodes on the Files and Global tabs for the files and
resources that are associated with this project.

Configuring an Apache Flex Application
Launch the Component Explorer before you perform this step.

Configure the Apache Flex application to set up the environment that Silk Test Classic will create each time
you record or replay a test case.

When you configure an application, Silk Test Classic automatically creates a base state for the application.
The base state of an application is the known, stable state that you expect the application to be in before
each test begins execution, and the state the application can be returned to after each test has ended
execution.

1. Click Configure Applications on the basic workflow bar.

If you do not see Configure Applications on the workflow bar, ensure that the default agent is set to
the Open Agent.

The Select Application dialog box opens.

2. Select the Web tab.

3. Select the browser that you want to use from the list of available browsers.

If you want to record a test against a web application, select a browser that is supported for recording.
To see which browsers are supported for recording, refer to the Release Notes.

4. Click Use URL from running browser.

5. Optional: Check the Create Base State check box to create a base state for the application under test.

By default, the Create Base State check box is checked for projects where a base state for the
application under test is not defined, and unchecked for projects where a base state is defined. An
application’s base state is the known, stable state that you expect the application to be in before each
test begins execution, and the state the application can be returned to after each test has ended
execution. When you configure an application and create a base state, Silk Test Classic adds an include
file based on the technology or browser type that you enable to the Use files location in the Runtime
Options dialog box.

6. Click OK.

• If you have checked the Create Base State check box, the Choose name and folder of the new
frame file page opens. Silk Test Classic configures the recovery system and names the
corresponding file frame.inc by default.

• If you have not checked the Create Base State check box, the dialog box closes and you can skip
the remaining steps.

7. Navigate to the location in which you want to save the frame file.

8. In the File name text box, type the name for the frame file that contains the default base state and
recovery system. Then, click Save. Silk Test Classic creates a base state for the application and opens
the include file.

Testing Flex Applications | 11

https://www.microfocus.com/documentation/silk-test/190/en/silktest-190-releasenotes-en.pdf

Recording a Test Case for the Sample Apache Flex
Application

A test case:

• Drives the application from the initial state to the state you want to test.
• Verifies that the actual state matches the expected (correct) state.
• Cleans up the application, in preparation for the next test case, by undoing the steps performed in the

first stage.

To record a test case:

1. Click Record Testcase on the basic workflow bar. If the workflow bar is not visible, click Workflows >
Basic to enable it. The Select Test Type dialog box opens.

2. Select 4Test Testcase.

3. Click OK. The Record Testcase dialog box opens.

4. Type the name of your test case into the Testcase name field.

Test case names are not case sensitive; they can have any length and they can consist of any
combination of alphabetic characters, numerals, and underscore characters.

5. From the Application State list box, select DefaultBaseState to have the built-in recovery system
restore the default base state before the test case begins executing.

• If you choose DefaultBaseState as the application state, the test case is recorded in the script file as
testcase testcase_name ().

• If you choose another application state, the test case is recorded as testcase testcase_name
() appstate appstate_name.

6. Click Start Recording. Silk Test Classic closes the Record Testcase dialog box and displays the Flex
Component Explorer application.

7. When the Recording window opens, record the following scenario using the Flex Component
Explorer application.

a) Click the arrow next to the Visual Components tree element to expand the list.
b) Click the arrow next to the General Controls tree element to expand the list.
c) Click the SimpleAlert tree element.
d) Point to the SimpleAlert tree element and press Ctrl+Alt to add a verification to the script.

You can add a verification for any of the information that displays.

The Verify Properties dialog box opens.
e) Check the Visible check box.
f) Click OK. A verification action is added to the script for the tree.
g) In the Alert Control Example section, click Click Me and then click OK in the Hello World message

box.
h) Click the arrow next to the General Controls tree element to hide the list.
i) Click the arrow next to the Visual Components tree element to hide the list.

8. In the Recording window, click Stop.

Silk Test Classic opens the Record Testcase dialog box, which contains the recorded 4Test code.

9. To add the recorded interactions to a script, click Paste to Editor in the Record Testcase window. If
you have interacted with objects in your application that have not been identified in your include files,
the Update Files dialog box opens.

10.Click Paste testcase and update window declaration(s) and then click OK.

11.Click File > Save.

12 | Testing Flex Applications

12.In the File name text box, type FlexTest and then click Save. The Add to Project dialog box opens,
asking you if you want to add the script file to the project.

13.Click Yes.

Replaying a Test Case
When you run a test case, Silk Test Classic interacts with the application by executing all the actions that
you have specified in the test case and testing whether all the features of the application performed as
expected.

To run a test case:

1. Set the test case that you want to run as the active window in Silk Test Classic.

2. Click Run Testcase on the Basic Workflow bar. Silk Test Classic displays the Run Testcase dialog box,
which lists all the test cases contained in the current script.

3. Select the test case that you have created.

4. Check the Animated Run Mode (Slow-Motion) check box, to wait one second after each script line is
executed.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box.

5. Click Run. Silk Test Classic runs the test case and generates a results file. The results file describes
whether the test passed or failed, and provides summary information.

Testing Flex Applications | 13

Silk4J Quick Tour
Silk4J provides a Java run time library that includes test classes for all the classes that Silk4J supports for
testing. This run time library is compatible with JUnit, which means you can leverage the JUnit
infrastructure and run and create tests using JUnit. You can also use all available Java libraries in your test
cases.

This quick tour describes how to use the Apache Flex sample scripts provided with Silk4J. Use the sample
script files in the sample application to view typical script configurations and test case execution.

For information on getting started with Silk4J, refer to the Silk4J Quick Start Tutorial.

Importing Silk4J Sample Scripts
Silk4J can use the sample Flex applications and provides several Apache Flex scripts that work with Silk4J.
Import the Apache Flex scripts to view how Silk4J works with Apache Flex.

1. In the Eclipse workspace, click File > Import. The Import wizard opens.

2. In the menu tree, click the plus sign (+) to expand the General folder and click Existing Projects into
Workspace.

3. Click Next. The Import Projects dialog box opens.

4. In the Select root directory field, click Browse. The Browse For Folder dialog box opens.

5. Navigate to the folder Documents and Settings\All Users\Shared Documents\Silk Test
\samples\Silk4J.

For Microsoft Windows Vista and Microsoft Windows 7 operating systems, the file location is Users
\Public\Documents\Silk Test\samples\Silk4J\.

6. Select the root directory for the sample and then click OK.

7. In the Projects section, select the project that you want to import and then click Finish. The sample
project shows in the Package Explorer view.

Running a Sample Silk4J Test Case
Before you run a test case, start the Open Agent.

Use the sample test cases that Silk4J provides to view script contents and test execution results.

For detailed procedures about creating Silk4J scripts, refer to the Silk4J User Guide.

1. Navigate to the Apache Flex sample project.

2. Choose one of the following:

• Right-click the package name to run all tests in the project. For example, right-click
com.borland.flex.store.

• Right-click the class name to run all tests for only that class. For example, right-click
FlexStoreTest.java in the com.borland.flex.store package.

3. Click Run As > JUnit Test. The test results display in the JUnit view as the test runs. If all tests pass,
the status bar is green. If one or more tests fail, the status bar is red. You can click a failed test to
display the stack trace in the Failure Trace area.

14 | Silk4J Quick Tour

https://www.microfocus.com/documentation/silk-test/190/en/silk4j-190-quickstartguide-en.pdf

	Contents
	Overview of Apache Flex Support
	Sample Applications
	Enabling Your Apache Flex Application for Testing
	Loading Automation Packages at Run Time
	Limitations for Testing Apache Flex
	Using the Flex Automation Launcher for Run-Time Loading
	Compiling Automation Packages Prior to Run Time
	Modifying the Configuration File of the Compiler

	Testing Flex Applications
	Configuring the Security Settings for Your Local Flash Player
	Starting the Component Explorer
	Creating a New Project
	Configuring an Apache Flex Application
	Recording a Test Case for the Sample Apache Flex Application
	Replaying a Test Case

	Silk4J Quick Tour
	Importing Silk4J Sample Scripts
	Running a Sample Silk4J Test Case

