
Silk Test 19.5

Silk4J User Guide

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 1992-2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2018-10-23

ii

Contents

Welcome to Silk4J 19.5 ..10
Licensing Information ..11
Silk4J .. 12

Do I Need Administrator Privileges to Run Silk4J? ... 12
Best Practices for Using Silk4J .. 12
Automation Under Special Conditions (Missing Peripherals) ..13
Silk Test Product Suite .. 14

What's New in Silk4J ..16
UI Automation Support ..16
Cross-Platform Resulting .. 16
Usability Enhancements ..16
Technology Updates ..17

New Microsoft Windows Versions .. 17
New Mozilla Firefox Versions ..17
New Google Chrome Versions ... 17
New Microsoft Edge Version .. 17
New Apple Safari Version ...17
New Android Version ..17
New iOS Version .. 18
New macOS Version .. 18
Java 11 Support ... 18
New Eclipse Version ...18
New Java SWT Versions .. 18

Silk4J Quick Start Tutorial ...19
Creating a Silk4J Project ...19
Recording a Test for the Insurance Company Web Application .. 20
Replaying the Test for the Insurance Company Web Application21

Working with Silk4J Projects .. 22
Creating a Silk4J Project ...22
Importing a Silk4J Project ... 23

Creating Tests ...24
Creating a Test for a Web Application ... 24
Creating a Test for a Standard Application ..25
Creating a Test for a Mobile Web Application ... 25
Creating a Test for a Mobile Native Application ...26
Recording a Test on Microsoft Edge ... 27
Recording a Test on Mozilla Firefox .. 28
Recording a Test on Google Chrome ..29
Creating a Test Case Manually ... 30
Best Practices for Creating Test Scripts ..30
Actions Available During Recording .. 31
Adding a Verification to a Script while Recording ..32
Adding a Locator or an Object Map Item to a Test Method Using the Locator Spy32
Including Custom Attributes in a Test ..33
Characters Excluded from Recording and Replaying ... 34

Replaying Tests .. 35
Replaying Tests from Eclipse .. 35
Replaying a Test from the Command Line .. 35
Replaying Tests with Apache Ant ..36

Troubleshooting when Replaying Tests with Ant .. 38

Contents | 3

Replaying Tests from a Continuous Integration Server ... 38
Running Tests in Docker Containers ... 38

Silk Test Image Environment Variables .. 40
Example: Running Tests on Google Chrome ... 40
Example: Using docker-compose ...42
Limitations when Running Tests in Docker Containers .. 43
Troubleshooting when Running Tests in Docker Containers 44

Replaying Silk4J Tests from Silk Central ...44
Triggering Tests on Silk Central from a Continuous Integration Server45
Replaying Tests in a Specific Order .. 45
Running Tests in Parallel ...46
How Does Silk4J Synchronize Tests? ...48
Enabling the Playback Status Dialog Box ... 49

Analyzing Test Results .. 51
Analyzing Test Results .. 51
HTML Reports ...51
Visual Execution Logs with TrueLog ... 51

Enabling TrueLog ... 52
Changing the Location of the TrueLog ... 52
TrueLog Sections ..52
Capturing the Contents of a Web Page ..53
Why is TrueLog Not Displaying Non-ASCII Characters Correctly? 53

Silk Test Open Agent ... 54
Starting the Silk Test Open Agent ... 54
Stopping the Open Agent After Test Execution ...54
Agent Options ... 54
Configuring the Connections Between the Silk4J Components ..63

Configuring the Port to Connect to the Information Service64
Configuring the Port to Connect to the Open Agent ...65
Editing the Properties of the Silk Test Information Service 66
Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

... 67
Remote Testing with the Open Agent ..68

Testing with a Remote Open Agent ..68
Configuring the Open Agent to Run Remotely in a NAT Environment 68

Base State ... 69
Modifying the Base State from the User Interface ...69
Modifying the Base State in a Script ... 71
Running the Base State .. 72

Application Configuration ... 74
Modifying an Application Configuration ...75
Select Application Dialog Box ... 75
Editing Remote Locations ... 76
Application Configuration Errors ... 77
Troubleshooting Application Configurations .. 78
Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)

.. 78
Creating a Test that Tests Multiple Applications ..79

Setting Script Options ... 80
Setting TrueLog Options ..80
Setting Recording Preferences ... 81
Setting Browser Recording Options .. 81
Setting Custom Attributes ... 83
Setting Classes to Ignore .. 84
Setting WPF Classes to Expose During Recording and Playback84

4 | Contents

Setting Synchronization Options ... 84
Setting Replay Options ... 85
Setting UI Automation Options ..86
Setting Advanced Options ...87

Setting Silk4J Preferences .. 88
Converting Projects to and from Silk4J .. 89

Converting a Java Project to a Silk4J Project ... 89
Converting a Silk4J Project to a Java Project ... 89

Testing Specific Environments ... 90
Active X/Visual Basic Applications .. 90

Dynamically Invoking ActiveX/Visual Basic Methods ... 90
Apache Flex Support ...91

Configuring Flex Applications to Run in Adobe Flash Player 91
Launching the Component Explorer ...92
Testing Apache Flex Applications ...92
Testing Apache Flex Custom Controls ... 92
Customizing Apache Flex Scripts ...102
Testing Multiple Flex Applications on the Same Web Page102
Adobe AIR Support .. 103
Overview of the Flex Select Method Using Name or Index 103
Selecting an Item in the FlexDataGrid Control ... 104
Enabling Your Flex Application for Testing ..104
Styles in Apache Flex Applications ...115
Configuring Flex Applications for Adobe Flash Player Security Restrictions116
Attributes for Apache Flex Applications ..116
Why Cannot Silk4J Recognize Apache Flex Controls? ..116

Java AWT/Swing Support .. 117
Attributes for Java AWT/Swing Applications ...117
Dynamically Invoking Java Methods ...117
Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)

... 119
Determining the priorLabel in the Java AWT/Swing Technology Domain119
Oracle Forms Support ..119

Java SWT and Eclipse RCP Support ...120
Java SWT Custom Attributes ... 121
Attributes for Java SWT Applications ... 121
Dynamically Invoking Java Methods ...121
Troubleshooting Java SWT and Eclipse Applications ...122

Testing Mobile Applications ...123
Android ... 123
iOS ... 129
Testing an Installed App ... 141
Recording Mobile Applications ... 141
Selecting the Mobile Device for Test Replay .. 142
Using Devices from Mobile Center ...143
Using SauceLabs Devices ..143
Connection String for a Mobile Device ... 144
Interacting with a Mobile Device ...147
Releasing a Mobile Device ...147
Troubleshooting when Testing Mobile Applications .. 148
Limitations for Testing Mobile Web Applications .. 154
Limitations for Testing Native Mobile Applications ..155
Dynamically Invoking Methods for Native Mobile Apps .. 157
Clicking on Objects in a Mobile Website .. 158
Using Existing Mobile Web Tests ... 158

Contents | 5

.NET Support .. 159
Windows Forms Support ..159
Windows Presentation Foundation (WPF) Support ..163
Silverlight Application Support ... 170
Visual COBOL Support .. 174

Rumba Support ...175
Enabling and Disabling Rumba .. 175
Locator Attributes for Identifying Rumba Controls ..175
Testing a Unix Display .. 176

SAP Support ... 176
Attributes for SAP Applications ...176
Dynamically Invoking SAP Methods ...177
Dynamically Invoking Methods on SAP Controls ... 178
Configuring Automation Security Settings for SAP ...178

Windows API-Based Application Support ... 178
Attributes for Windows API-based Client/Server Applications179
Determining the priorLabel in the Win32 Technology Domain 179
Testing Embedded Chrome Applications ... 179
Microsoft Foundation Class Support .. 180

Cross-Browser Testing .. 181
Selecting the Browser for Test Replay ..182
Test Objects for xBrowser ...183
Object Recognition for xBrowser Objects ...184
Page Synchronization for xBrowser ..184
Comparing API Playback and Native Playback for xBrowser 185
Setting Mouse Move Preferences .. 186
Browser Configuration Settings for xBrowser ...187
Configuring the Locator Generator for xBrowser ..188
Connection String for a Remote Desktop Browser ...189
Testing Browsers on a Remote Windows Machine .. 189
Testing Google Chrome or Mozilla Firefox on a Mac ..190
Setting Capabilities for WebDriver-Based Browsers .. 190
Testing with Apple Safari on a Mac .. 191
Testing with Google Chrome .. 196
Testing with Mozilla Firefox ...199
Testing with Microsoft Edge ..203
Responsive Web Design Testing ..204
Detecting Visual Breakpoints ... 205
Testing Additional Browser Versions .. 206
Cross-Browser Testing: Frequently Asked Questions .. 207
Starting a Browser from a Script .. 211
Finding Hidden Input Fields ..212
Attributes for Web Applications .. 212
Custom Attributes for Web Applications ... 212

Limitations for Testing on Microsoft Windows 10 .. 213
Supported Attribute Types ...213

Attributes for Apache Flex Applications ..213
Attributes for Java AWT/Swing Applications ...214
Attributes for Java SWT Applications ... 214
Attributes for SAP Applications ...214
Locator Attributes for Identifying Silverlight Controls ..215
Locator Attributes for Identifying Controls with UI Automation 216
Locator Attributes for Identifying Rumba Controls ..217
Attributes for Web Applications .. 217
Attributes for Windows Forms Applications .. 217
Attributes for Windows Presentation Foundation (WPF) Applications218

6 | Contents

Attributes for Windows API-based Client/Server Applications219
Dynamic Locator Attributes .. 219

Keyword-Driven Tests ..221
Advantages of Keyword-Driven Testing ...221
Keywords ...222
Creating a Keyword-Driven Test in Silk4J ... 223
Recording a Keyword-Driven Test in Silk4J ...223
Setting the Base State for a Keyword-Driven Test in Silk4J .. 225
Implementing a Keyword in Silk4J .. 225
Recording a Keyword in Silk4J ..226
Marking a Test Method in a Script as a Keyword .. 227
Editing a Keyword-Driven Test .. 227
Managing Keywords in a Test in Silk Central .. 228
Which Keywords Does Silk4J Recommend? .. 230
Using Parameters with Keywords ..231
Example: Keywords with Parameters ..231
Combining Keywords into Keyword Sequences ..233
Replaying Keyword-Driven Tests from Eclipse ..233
Replaying Keyword-Driven Tests Which Are Stored in Silk Central 234
Replaying Keyword-Driven Tests from the Command Line ... 234
Replaying Keyword-Driven Tests with Apache Ant ..235
Replaying a Keyword-Driven Test with Specific Variables ..237
Integrating Silk4J with Silk Central ..238
Implementing Silk Central Keywords in Silk4J .. 239
Uploading a Keyword Library to Silk Central ...239
Uploading a Keyword Library to Silk Central from the Command Line 241
Searching for a Keyword ... 243
Filtering Keywords ...243
Finding All References of a Keyword ... 243
Grouping Keywords ...244
Troubleshooting for Keyword-Driven Testing ... 244

Object Recognition .. 245
Locator Basic Concepts .. 245

Object Type and Search Scope ..245
Using Attributes to Identify an Object ... 246

Locator Syntax .. 246
Using Locators .. 248
Using Locators to Check if an Object Exists ... 249
Identifying Multiple Objects with One Locator ... 249
Locator Customization .. 250

Stable Identifiers ...250
Custom Attributes ...252

Troubleshooting Performance Issues for XPath .. 255
Locator Spy ... 255

Object Maps .. 257
Advantages of Using Object Maps ..257
Turning Object Maps Off and On ...258
Using Assets in Multiple Projects .. 258
Merging Object Maps During Action Recording ..259
Using Object Maps with Web Applications ..260
Renaming an Object Map Item ... 260
Modifying Object Maps ..261
Modifying a Locator in an Object Map ...262
Updating Object Maps from the Test Application .. 263
Copying an Object Map Item ...264

Contents | 7

Adding an Object Map Item ...264
Opening an Object Map from a Script ...265
Highlighting an Object Map Item in the Test Application ... 265
Finding Errors in an Object Map ... 266
Deleting an Object Map Item ...266
Initially Filling Object Maps ..267
Grouping Elements in Object Maps .. 267
Object Maps: Frequently Asked Questions ... 267

Can I Merge Multiple Object Maps Into a Single Map? .. 268
What Happens to an Object Map when I Delete a Test Script? 268
Can I Manually Create an Object Map for My Application Under Test? 268

Image Recognition Support .. 269
Image Click Recording .. 269
Image Recognition Methods ... 269
Image Assets .. 270

Creating an Image Asset ..270
Adding Multiple Images to the Same Image Asset ...271
Opening an Asset from a Script ... 272

Image Verifications ..272
Creating an Image Verification ... 272
Adding an Image Verification During Recording ...273

Using Assets in Multiple Projects .. 273
Enhancing Tests ..275

Recording Additional Actions Into an Existing Test ... 275
Calling Windows DLLs .. 275

Calling a Windows DLL from Within a Script ..275
DLL Function Declaration Syntax ...276
DLL Calling Example ..276
Passing Arguments to DLL Functions .. 277
Passing Arguments that Can Be Modified by the DLL Function278
Passing String Arguments to DLL Functions ..278
Aliasing a DLL Name ..279
Conventions for Calling DLL Functions .. 279

Custom Controls ... 280
Dynamic Invoke .. 280
Adding Code to the Application Under Test to Test Custom Controls 281
Testing Apache Flex Custom Controls ... 284
Managing Custom Controls ..284

Improving Object Recognition with Microsoft Accessibility ... 288
Using Accessibility ..288
Enabling Accessibility ...288

Overview of Silk4J Support of Unicode Content ... 289
UI Automation ... 289

Dynamically Invoking UI Automation Methods ... 290
Locator Attributes for Identifying Controls with UI Automation 292
Scrolling in UI Automation Controls ..293
Limitations when Using UI Automation ...293
Troubleshooting when Testing with UI Automation Support Enabled 294

Text Recognition Support .. 294
Grouping Silk4J Tests ... 296

Why Do I Get the Error: Category cannot be resolved to a type? 297
Inserting a Result Comment in a Script .. 297
Consuming Parameters from Silk Central ... 297
Configuration Testing with Silk Central Connect ... 297
Measuring Execution Time ..298
Slowing Down Tests .. 298

8 | Contents

Testing Applications in Multiple UI Sessions on a Single Machine 298
Using Selenium WebDriver ..300

Using Selenium with Existing Silk4J Scripts ... 300
Executing Selenium Scripts .. 300
Entering Special Keys Into A Text Field .. 302

Using Keyword-Driven Tests as Performance Tests305
Known Issues ... 306

General Issues .. 306
Mobile Web Applications ...308
Web Applications .. 308

Google Chrome .. 308
Internet Explorer ...309
Microsoft Edge ... 310
Mozilla Firefox .. 311

SAP Applications ...311
Oracle Forms .. 312
Silk4J ...313

Enabling or Disabling Usage Data Collection ... 314
Contacting Micro Focus .. 315

Information Needed by Micro Focus SupportLine ...315

Contents | 9

Welcome to Silk4J 19.5

Welcome to Silk4J 19.5

About Silk4J
Product Suite

What's new

Release Notes

Featured sections

Best Practices for Using Silk4J
Creating Tests
Testing Specific Environments

Tutorials and demonstrations

Quick Start Tutorial

Online resources

Micro Focus Home Page
Micro Focus Resource Page
Micro Focus Channel on YouTube
Online Documentation
Micro Focus SupportLine
Micro Focus Product Updates
Silk Test Knowledge Base
Silk Test Forum
Web-Based Training

Provide feedback

Contacting Micro Focus on page 315
Email us feedback regarding this Help
Suggest a feature

10 | Welcome to Silk4J 19.5

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/borland
https://www.microfocus.com/resources/
http://www.youtube.com/user/TheBorlandSoftware
https://www.microfocus.com/documentation/silk-test/silktest195/
https://supportline.microfocus.com
https://supportline.microfocus.com/login.aspx?aspneturl=/websync/productupdatessearch.aspx
http://community.microfocus.com/borland/test/silk_test/w/knowledge_base/
http://community.microfocus.com/borland/test/silk_test/f/29.aspx
https://www.microfocus.com/ondemand/course_category/silk-test/
mailto:DocsTeam@microfocus.com?subject=PRODUCT NAME Documentation Feedback
https://borland.uservoice.com/forums/163510-silk-test-feature-request

Licensing Information
Unless you are using a trial version, Silk Test requires a license.

Note: A Silk Test license is bound to a specific version of Silk Test. For example, Silk Test 19.5
requires a Silk Test 19.5 license.

The licensing model is based on the client that you are using and the applications that you want to be able
to test. The available licensing modes support the following application types:

Licensing Mode Application Type

Mobile Native • Mobile web applications.

• Android
• iOS

• Native mobile applications.

• Android
• iOS

Full • Web applications, including the following:

• Apache Flex
• Java-Applets

• Mobile web applications.

• Android
• iOS

• Apache Flex
• Java AWT/Swing, including Oracle Forms
• Java SWT and Eclipse RCP
• .NET, including Windows Forms and Windows

Presentation Foundation (WPF)
• Rumba
• Windows API-Based

Note: To upgrade your license to a Full license,
visit http://www.microfocus.com.

Premium All application types that are supported with a Full
license, plus SAP applications.

Note: To upgrade your license to a Premium
license, visit http://www.microfocus.com.

Mobile Native Add-On In addition to the technologies supported with a Full or
Premium license, the mobile native add-on license offers
support for testing native mobile applications on Android
and iOS.

Licensing Information | 11

http://www.microfocus.com
http://www.microfocus.com

Silk4J
Silk4J enables you to create functional tests using the Java programming language. Silk4J provides a Java
runtime library that includes test classes for all the classes that Silk4J supports for testing. This runtime
library is compatible with JUnit, which means you can leverage the JUnit infrastructure and run Silk4J tests.
You can also use all available Java libraries in your test cases.

Silk4J supports the testing of a broad set of application technologies.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

You can find sample scripts for Web application testing in the public Documents folder, under %PUBLIC%
\Documents\SilkTest\samples\Silk4J.

Note: If you have opted not to display the start screen when you start Silk4J, you can check for
available updates by clicking Help > Check for Product Update.

Note: To perform keyword-driven testing with Silk4J, your Eclipse platform is required to run on Java 7
or later.

Do I Need Administrator Privileges to Run Silk4J?
You require the following privileges to install or run Silk4J:

• To install Silk4J, you must have local administrator privileges.
• To install Silk4J on a Windows server, you must have domain-level administrator privileges.
• To run Silk4J, you require full access rights to the following folders, including all subfolders:

• C:\ProgramData\Silk\SilkTest.
• %APPDATA%\Roaming\Silk\SilkTest.
• %APPDATA%\Local\Silk\SilkTest.
• %TEMP%.

Best Practices for Using Silk4J
Depending on the application under test and the testing environment, you might face different challenges
while trying to perform functional or regression tests against your application. Micro Focus recommends
the following best practices:

• To optimally use the functionality that Silk4J provides, create an individual project for each application
that you want to test, except when testing multiple applications in the same test.

• If you have a large test framework in place, consider using the keyword-driven testing approach.
• Allocate at least 512MB of memory for Eclipse. To do so, set the xms value in the file eclipse.ini,

which is located in the Eclipse installation directory, to 512 or higher.
• Set the size of text and other items on the screen of the machine on which you are testing to the default

value. When using another setting than the default, you might experience coordinate offset issues
during record and replay.

• If you are using Microsoft Windows 7, you can change this setting under Start > Control Panel >
Appearance and Personalization > Display.

• If you are using Microsoft Windows 10, you can change this setting under Settings > System >
Display > Change the size of text, apps and other items.

12 | Silk4J

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• If you cannot record a test against your application because Silk4J cannot recognize the objects in the
application or because Silk4J recognizes all objects in the application as Control, you could try to use
the Microsoft UI Automation support by enabling the Enable UI Automation option in Silk4J. For
additional information, see UI Automation.

Automation Under Special Conditions (Missing
Peripherals)

Basic product orientation

Silk4J is a GUI testing product that tries to act like a human user in order to achieve meaningful test results
under automation conditions. A test performed by Silk4J should be as valuable as a test performed by a
human user while executing much faster. This means that Silk4J requires a testing environment that is as
similar as possible to the testing environment that a human user would require in order to perform the
same test.

Physical peripherals

Manually testing the UI of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk4J does not necessarily require physical input devices during test replay. What
Silk4J requires is the ability of the operating system to perform keystrokes and mouse clicks. The Silk4J
replay usually works as expected without any input devices connected. However, some device drivers
might block the Silk4J replay mechanisms if the physical input device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk4J does not directly support virtualization vendors, but can operate with any type of virtualization
solution as long as the virtual guest machine behaves like a physical machine. Standard peripherals are
usually provided as virtual devices, regardless of which physical devices are used with the machine that
runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen
rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Special cases

Application
launched
without any
window
(headless)

Such an application cannot be tested with Silk4J. Silk4J needs to hook to a target
application process in order to interact with it. Hooking is not possible for processes
that do not have a visible window. In such a case you can only run system commands.

Remote
desktops,

If Silk4J resides and operates within a remote desktop session, it will fully operate as
expected.

Silk4J | 13

terminal
services, and
remote
applications (all
vendors)

Note: You require a full user session and the remote viewing window needs to
be maximized. If the remote viewing window is not displayed for some reason,
for example network issues, Silk4J will continue to replay but might produce
unexpected results, depending on what remote viewing technology is used. For
example, a lost remote desktop session will negatively impact video rendering,
whereas other remote viewing solutions might show no impact at all once the
viewing window was lost.

If Silk4J is used to interact with the remote desktop, remote view, or remote app
window, only low-level techniques can be used, because Silk4J sees only a
screenshot of the remote machine. For some remote viewing solutions even low-level
operations may not be possible because of security restrictions. For example, it might
not be possible to send keystrokes to a remote application window.

Known
automation
obstacles

Silk4J requires an interactively-logged-on full-user session. Disable anything that
could lock the session, for example screen savers, hibernation, or sleep mode. If this
is not possible because of organizational policies you could workaround such issues
by adding keep alive actions, for example moving the mouse, in regular intervals or at
the end of each test case.

Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

Silk Test Product Suite
Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

• Silk Test Workbench – Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.

• Silk4NET – The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

• Silk4J – The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse
environment.

• Silk Test Classic – Silk Test Classic is the Silk Test client that enables you to create scripts based on
4Test.

• Silk Test Agents – The Silk Test agent is the software process that translates the commands in your
tests into GUI-specific commands. In other words, the agent drives and monitors the application you are
testing. One agent can run locally on the host machine. In a networked environment, any number of
agents can run on remote machines.

14 | Silk4J

The sizes of the individual boxes in the image above differ for visualization purposes and do not reflect the
included functionality.

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

Silk4J | 15

What's New in Silk4J
Silk4J supports the following new features:

UI Automation Support
Silk Test 19.5 offers Microsoft UI Automation (UI Automation) as a new fallback support.

To better recognize controls when recording against Windows-based applications that have implemented
the UI Automation provider interface, you can enable the UI Automation support on machines that run on
Microsoft Windows 8 or later. This provides fallback support for applications that are based on the following
technologies:

• WPF
• WinForms
• Oracle JavaFX*
• QT
• PowerBuilder
• Delphi
• Microsoft Office

* JavaFX applications are detected out-of-the-box, without the need to manually enable the UI Automation
support.

Cross-Platform Resulting
When running tests, Silk4J now creates an easily shareable HTML report that you can view in your favorite
browser.

The report includes summary information about the test run, as well as detailed information about the
executed actions.

By default, Silk4J writes both a TrueLog and an HTML report when running a test. You can select which
result formats Silk4J should generate under Silk4J > Edit Options > TrueLog > Select result format.

Usability Enhancements
This section lists usability enhancements that have been made in Silk Test 19.5.

Text recognition for WebDriver-based browsers

Silk4J now supports text recognition for WebDriver-based browsers.

Text recognition includes the following methods:

• textCapture

• textClick

• textExists

• textRectangle

16 | What's New in Silk4J

Dynamically invoking methods when testing native mobile apps

To call Appium WebDriver methods that are not exposed through the API of your Silk Test client, Silk Test
now enables dynamically invoking methods on mobile devices.

Technology Updates
This section lists the significant technology updates for Silk Test 19.5.

New Microsoft Windows Versions
You can now leverage your test set by simply executing all your existing functional, regression, and
localization tests on the Windows 10 October 2018 Update and on Windows Server 2019.

New Mozilla Firefox Versions
In addition to the versions of Mozilla Firefox, which have been tested with the previous version of Silk Test,
Silk Test has now been tested with the following new versions of Mozilla Firefox:

• Mozilla Firefox 61
• Mozilla Firefox 62
• Mozilla Firefox 63

Note: This list includes the new versions of Mozilla Firefox that have been tested with Silk Test 19.5
until the release date of Silk Test 19.5. Silk Test 19.5 should be able to support newer versions of
Mozilla Firefox, even if these versions have been released after the release date of Silk Test 19.5.

New Google Chrome Versions
In addition to the versions of Google Chrome, which have been tested with the previous version of Silk
Test, Silk Test has now been tested with the following versions of Google Chrome:

• Google Chrome 68
• Google Chrome 69
• Google Chrome 70

Note: This list includes the versions of Google Chrome that have been tested with Silk Test 19.5 until
the release date of Silk Test 19.5. Silk Test 19.5 should be able to test with newer versions of Google
Chrome, even if these versions have been released after the release date of Silk Test 19.5.

New Microsoft Edge Version
In addition to the versions of Microsoft Edge, which have been tested with the previous version of Silk Test,
Silk Test has been tested for recording and replay with Microsoft Edge 44.17763, the Microsoft Edge
version for the Windows 10 October 2018 Update.

New Apple Safari Version
In addition to the versions of Apple Safari, which have been tested with the previous version of Silk Test,
Silk Test has now been tested with Apple Safari 12.

New Android Version
In addition to the Android versions, which have been tested with the previous version of Silk Test, Silk Test
has now been tested with Android 9.

What's New in Silk4J | 17

New iOS Version
In addition to the iOS versions, which have been tested with the previous version of Silk Test, Silk Test has
now been tested with iOS 12.

New macOS Version
You can now leverage your test set by simply executing all your existing functional, regression, and
localization tests for Apple Safari or iOS on macOS Mojave (10.14).

Java 11 Support
Silk4J now supports testing applications that are based on Java 11.

New Eclipse Version
Silk4J now supports Eclipse Photon (4.8).

New Java SWT Versions
Silk Test now supports testing applications that are based on Java SWT 4.8 and 4.9.

18 | What's New in Silk4J

Silk4J Quick Start Tutorial
This tutorial provides a step-by-step introduction to using Silk4J to test a web application using dynamic
object recognition. Dynamic object recognition enables you to write test cases that use XPath queries to
find and identify objects.

Important: To successfully complete this tutorial you need basic knowledge of Java and JUnit.

For the sake of simplicity, this guide assumes that you have installed Silk4J and are using the sample
Insurance Company Web application, available from http://demo.borland.com/InsuranceWebExtJS/.

Note: You must have local administrator privileges to run Silk4J.

Creating a Silk4J Project
When you create a Silk4J project using the New Silk4J Project wizard, the wizard contains the same
options that are available when you create a Java project using the New Java Project wizard. Additionally,
the Silk4J wizard automatically makes the Java project a Silk4J project.

1. In the Eclipse workspace, perform one of the following steps:

• Click the drop-down arrow next to the Silk Test toolbar icon and choose New Silk4J Project.
• Right click in the Package Explorer and select New > Other. Expand the Silk4J folder and double-

click Silk4J Project.
• If you installed or updated Silk4J to an existing Eclipse location, choose File > New > Other .

Expand the Silk4J folder and double-click Silk4J Project.

The New Silk4J Project wizard opens.

2. In the Project Name text box, type a name for your project.
For example, type Tutorial.

3. If you want to perform keyword-driven testing or configuration testing with Silk Central and you have a
valid Silk Central license, check the Connect to Silk Central check box to configure the connection to
Silk Central for keyword-driven testing.

The Silk Central server is configured for all your projects, not only for the new project.

4. Click Next. The Select an application page opens.

5. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

6. To test a standard application, if you have not set an application configuration for the current project,
select the application from the list.

7. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance. For the tutorial, select Internet Explorer
and specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

Silk4J Quick Start Tutorial | 19

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

8. To test a native mobile application (app) if you have not set an application configuration for the current
project:

a) Select the mobile device, on which you want to test the app, from the list.
b) Click Browse to select the app file or enter the full path to the app file into the Mobile app file text

field.

Silk4J supports HTTP and UNC formats for the path.

Silk4J installs the app on the mobile device or emulator.

9. Click Finish. A new Silk4J project is created that includes the JRE system library and the
required .jar files, silktest-jtf-nodeps.jar and the junit.jar.

10.Select the type of test that you want to record:

• To bundle the recorded actions into one or more keywords, select Silk4J Keyword-Driven Test.
• To record the test without creating keywords, select Silk Test JUnit Test.

For the tutorial, select Silk Test JUnit Test.
11.Click Yes to start recording a new Silk4J test or click No to return to the Eclipse workspace.

For the tutorial, click No.

Recording a Test for the Insurance Company Web
Application

Before you can create a Silk4J test, you must have created a Silk4J project.

Record a new test that navigates to the Agent Lookup page in the Insurance Company web application,
http://demo.borland.com/InsuranceWebExtJS/. For a detailed version of how to record a test and how to
configure test applications for each technology type, see the Creating Tests section of the Silk4J User
Guide.

1. In the toolbar, click Record Actions.

2. Select the browser that you want to use.

3. Click Record. The application under test and the Silk Recorder open. Silk4J creates a base state and
starts recording.

4. In the Insurance Company Web site, perform the following steps:

a) From the Select a Service or login list box, select Auto Quote. The Automobile Instant Quote
page opens.

b) Type a zip code and email address in the appropriate text boxes, click an automobile type, and then
click Next.
For example, type 92121 as the zip code, jsmith@gmail.com as the email address and specify
Car as the automobile type.

c) Specify an age, click a gender and driving record type, and then click Next.
For example, type 42 as the age, specify the gender as Male and Good as the driving record type.

d) Specify a year, make, and model, click the financial info type, and then click Next.
For example, type 2010 as the year, specify Lexus and RX400 as the make and model, and Lease
as the financial info type.
A summary of the information you specified appears.

20 | Silk4J Quick Start Tutorial

http://demo.borland.com/InsuranceWebExtJS/

e) Point to the Zip Code that you specified and press Ctrl+Alt to add a verification to the script.

You can add a verification for any of the information that appears.

The Select Verification Type dialog box opens.
f) Select whether you want to create a verification of a property or an image verification.

For the tutorial, select Verify properties of the TestObject.
The Verify Properties dialog box opens.

g) Check the TextContents check box and then click OK. A verification action is added to the script for
the zip code text.

h) Click Home.

An action that corresponds with each step is recorded.

5. Click Stop. The Record Complete dialog box opens.

6. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

7. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

8. In the Test class text box, specify the name for the test class.
For example, type: AutoQuoteInput.

To use an existing class, click Select and select the class that you want to use.

9. In the Test method text box, specify a name for the test method.
For example, type autoQuote.

10.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Replaying the Test for the Insurance Company Web
Application

1. Expand the Tutorial project in the Package Explorer.

2. Right-click the AutoQuoteInput class and choose Run As > Silk4J Test . If multiple browsers that are
supported for replay are installed on the machine, the Select Browser dialog box opens.

3. Select the browser and click Run. When the test execution is complete, the Playback Complete dialog
box opens.

4. Click Explore Results to review the TrueLog for the completed test. In this example, the verification will
fail, because the Zip Code field in the test application is not cleaned.

Silk4J Quick Start Tutorial | 21

Working with Silk4J Projects
This section describes how you can use Silk4J projects.

A Silk4J project contains all the resources needed to test the functionality of your applications by using
Silk4J.

Note: To optimally use the functionality that Silk4J provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

Creating a Silk4J Project
When you create a Silk4J project using the New Silk4J Project wizard, the wizard contains the same
options that are available when you create a Java project using the New Java Project wizard. Additionally,
the Silk4J wizard automatically makes the Java project a Silk4J project.

1. In the Eclipse workspace, perform one of the following steps:

• Click the drop-down arrow next to the Silk Test toolbar icon and choose New Silk4J Project.
• Right click in the Package Explorer and select New > Other. Expand the Silk4J folder and double-

click Silk4J Project.
• If you installed or updated Silk4J to an existing Eclipse location, choose File > New > Other .

Expand the Silk4J folder and double-click Silk4J Project.

The New Silk4J Project wizard opens.

2. In the Project Name text box, type a name for your project.
For example, type Tutorial.

3. If you want to perform keyword-driven testing or configuration testing with Silk Central and you have a
valid Silk Central license, check the Connect to Silk Central check box to configure the connection to
Silk Central for keyword-driven testing.

The Silk Central server is configured for all your projects, not only for the new project.

4. Click Next. The Select an application page opens.

5. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

6. To test a standard application, if you have not set an application configuration for the current project,
select the application from the list.

7. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance. For the tutorial, select Internet Explorer
and specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

22 | Working with Silk4J Projects

http://demo.borland.com/InsuranceWebExtJS/

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

8. To test a native mobile application (app) if you have not set an application configuration for the current
project:

a) Select the mobile device, on which you want to test the app, from the list.
b) Click Browse to select the app file or enter the full path to the app file into the Mobile app file text

field.

Silk4J supports HTTP and UNC formats for the path.

Silk4J installs the app on the mobile device or emulator.

9. Click Finish. A new Silk4J project is created that includes the JRE system library and the
required .jar files, silktest-jtf-nodeps.jar and the junit.jar.

10.Select the type of test that you want to record:

• To bundle the recorded actions into one or more keywords, select Silk4J Keyword-Driven Test.
• To record the test without creating keywords, select Silk Test JUnit Test.

For the tutorial, select Silk Test JUnit Test.

11.Click Yes to start recording a new Silk4J test or click No to return to the Eclipse workspace.

For the tutorial, click No.

Importing a Silk4J Project
If you need to access Silk4J projects in a central repository, or from another machine, you can import the
projects into your Eclipse workspace.

1. In Eclipse, create a new workspace. For additional information, refer to the Eclipse documentation.

2. In the Eclipse menu, click File > Import. The Import dialog box opens.

3. In the tree, expand the General node.

4. Select Existing Projects into Workspace.

5. Click Next. The Import Projects dialog box opens.

6. Click Select root directory.

7. Click Browse to browse to the location of the project.

8. Click OK in the Browse For Folder dialog box.

9. In the Projects list box, check the projects that you want to import.

10.In the Import Projects dialog box, Click Finish.

The selected projects are imported into the Eclipse workspace.

Working with Silk4J Projects | 23

Creating Tests
Use Silk4J to create a test that uses XPath queries to find and identify objects. Typically, you use the New
Silk4J Test wizard to create a test. After you create the initial test method, you can add additional test
methods to an existing test class.

When you create a test, Silk4J automatically creates a base state for the application. An application's base
state is the known, stable state that you expect the application to be in before each test begins execution,
and the state the application can be returned to after each test has ended execution. For additional
information, see Base State.

Creating a Test for a Web Application
Before you can create a Silk4J test, you must have created a Silk4J project.

To record a test for a web application:

1. In the Package Explorer, select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. Select the browser that you want to use.

4. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

5. Optional: Select an Orientation for the browser window.

6. Click Record. The application under test and the Silk Recorder open. Silk4J creates a base state and
starts recording.

7. Optional: To record WebDriver locators instead of recording Silk4J locators, click WebDriver in the Silk
Recorder.

This feature is available when recording against one of the following browsers:

• Microsoft Edge
• Mozilla Firefox
• Google Chrome
• Apple Safari

For additional information, see Using Selenium WebDriver.

8. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

9. Click Stop. The Record Complete dialog box opens.

10.The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

11.Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

12.In the Test class text box, specify the name for the test class.
For example, type: AutoQuoteInput.

To use an existing class, click Select and select the class that you want to use.

13.In the Test method text box, specify a name for the test method.
For example, type autoQuote.

24 | Creating Tests

14.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Creating a Test for a Standard Application
Before you can create a Silk4J test, you must have created a Silk4J project.

To record a test for a standard application:

1. In the Package Explorer, select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. In the application under test, perform the actions that you want to test.
For example, you can choose menu commands such as File > New to test menu the menu command in
your application. For information about the actions available during recording, see Actions Available
During Recording.

4. Click Stop. The Record Complete dialog box opens.

5. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

6. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

7. In the Test class text box, specify the name for the test class.

8. In the Test method text box, specify a name for the test method.

9. Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Creating a Test for a Mobile Web Application
Before you can create a Silk4J test, you must have created a Silk4J project.

To record a new test for a mobile web application on a mobile device:

1. In the Package Explorer, select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. In the Select Browser dialog box, select the browser on the mobile device.

4. Click Record.

5. The Recording window opens and displays the screen of the mobile device. In the screen, perform the
actions that you want to record.

a) Click on the object with which you want to interact. Silk4J performs the default action for the object. If
there is no default action, or if you have to insert text, the Choose Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: To record a swipe or a gesture, click and drag the mouse cursor.
d) Optional: If the action has parameters, type the parameters into the parameter fields in the Choose

Action dialog box.

Silk4J automatically validates the parameters.
e) Click OK to close the Choose Action dialog box. Silk4J adds the action to the recorded actions and

replays it on the mobile device or emulator.

For additional information, see Interacting with a Mobile Device.

Creating Tests | 25

6. Click Stop. The Record Complete dialog box opens.

7. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

8. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

9. In the Test class text box, specify the name for the test class.

To use an existing class, click Select and select the class that you want to use.

10.In the Test method text box, specify a name for the test method.

11.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Creating a Test for a Mobile Native Application
Before you can create a Silk4J test, you must have created a Silk4J project.

To record a new test for a mobile native application (app) on a mobile device:

1. In the Package Explorer, select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. In the Select Mobile Device dialog box, perform the following actions:

a) Select the mobile device, on which you want to test the app, from the list.
b) Click Browse to select the app file or enter the full path to the app file into the Mobile app file text

field.

Silk4J supports HTTP and UNC formats for the path.

Silk4J installs the app on the mobile device or emulator.

4. Click Record.

5. The Recording window opens and displays the screen of the mobile device. In the screen, perform the
actions that you want to record.

a) Click on the object with which you want to interact. Silk4J performs the default action for the object. If
there is no default action, or if you have to insert text, the Choose Action dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: To record a swipe or a gesture, click and drag the mouse cursor.
d) Optional: If the action has parameters, type the parameters into the parameter fields in the Choose

Action dialog box.

Silk4J automatically validates the parameters.
e) Click OK to close the Choose Action dialog box. Silk4J adds the action to the recorded actions and

replays it on the mobile device or emulator.

For additional information, see Interacting with a Mobile Device.

6. Click Stop. The Record Complete dialog box opens.

7. The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

8. Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

9. In the Test class text box, specify the name for the test class.

To use an existing class, click Select and select the class that you want to use.

26 | Creating Tests

10.In the Test method text box, specify a name for the test method.

11.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Recording a Test on Microsoft Edge
Before you can record a Silk4J test, you must have created a Silk4J project.

When starting the interaction with a web application on Microsoft Edge, Silk4J closes any open instance of
Microsoft Edge and starts a new browser. This new browser uses a temporary profile without add-ons and
with an empty cache. This instance of Microsoft Edge is closed when shutting down the Open Agent or
when starting to test another application outside Microsoft Edge.

Note: You can currently not record keyword-driven tests on Microsoft Edge.

To record a new test for a web application on Microsoft Edge:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. In the Select Browser dialog box, select the browser that you want to use.

4. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

5. Optional: Select an Orientation for the browser window.

6. Optional: To record WebDriver locators instead of recording Silk4J locators, click WebDriver in the Silk
Recorder.

This feature is available when recording against one of the following browsers:

• Microsoft Edge
• Mozilla Firefox
• Google Chrome
• Apple Safari

For additional information, see Using Selenium WebDriver.

7. Click Record.

8. The Interactive Recording window opens and displays the web application. Perform the actions that
you want to record.

a) Click on the object with which you want to interact. Silk4J performs the default action for the object. If
there is no default action, or if you have to insert text or specify parameters, the Choose Action
dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4J automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk4J adds the action to the recorded actions and

replays it on the mobile device or emulator.

During recording, Silk4J displays the mouse position next to the recording window. You can toggle the
location to switch between displaying the absolute mouse position on the device display and the mouse
position in relation to the active object. For additional information about the actions available during
recording, see Actions Available During Recording.

9. Click Stop. The Record Complete dialog box opens.

10.The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

Creating Tests | 27

11.Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

12.In the Test class text box, specify the name for the test class.

To use an existing class, click Select and select the class that you want to use.

13.In the Test method text box, specify a name for the test method.

14.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Recording a Test on Mozilla Firefox
Before you can record a Silk4J test, you must have created a Silk4J project.

To record a new test for a web application on Mozilla Firefox:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. In the Select Browser dialog box, select the browser that you want to use.

4. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

5. Optional: Select an Orientation for the browser window.

6. Optional: To record WebDriver locators instead of recording Silk4J locators, click WebDriver in the Silk
Recorder.

This feature is available when recording against one of the following browsers:

• Microsoft Edge
• Mozilla Firefox
• Google Chrome
• Apple Safari

For additional information, see Using Selenium WebDriver.

7. Click Record.

8. The Interactive Recording window opens and displays the web application. Perform the actions that
you want to record.

a) Click on the object with which you want to interact. Silk4J performs the default action for the object. If
there is no default action, or if you have to insert text or specify parameters, the Choose Action
dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4J automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk4J adds the action to the recorded actions and

replays it on the mobile device or emulator.

During recording, Silk4J displays the mouse position next to the recording window. You can toggle the
location to switch between displaying the absolute mouse position on the device display and the mouse
position in relation to the active object. For additional information about the actions available during
recording, see Actions Available During Recording.

9. Click Stop. The Record Complete dialog box opens.

10.The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

28 | Creating Tests

11.Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

12.In the Test class text box, specify the name for the test class.

To use an existing class, click Select and select the class that you want to use.

13.In the Test method text box, specify a name for the test method.

14.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Recording a Test on Google Chrome
Silk4J supports recording a test on Google Chrome 50 or later. For previous versions of Google Chrome,
Silk4J supports only replaying test and recording locators.

Before you can record a Silk4J test, you must have created a Silk4J project.

Note: You cannot record tests on Google Chrome versions prior to version 50.

To record a new test for a web application on Google Chrome 50 or later:

1. Select the project to which you want to add the new test.

2. In the toolbar, click Record Actions.

3. In the Select Browser dialog box, select the browser that you want to use.

4. Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.

5. Optional: Select an Orientation for the browser window.

6. Optional: To record WebDriver locators instead of recording Silk4J locators, click WebDriver in the Silk
Recorder.
This feature is available when recording against one of the following browsers:

• Microsoft Edge
• Mozilla Firefox
• Google Chrome
• Apple Safari

For additional information, see Using Selenium WebDriver.

7. Click Record.

8. The Interactive Recording window opens and displays the web application. Perform the actions that
you want to record.

a) Click on the object with which you want to interact. Silk4J performs the default action for the object. If
there is no default action, or if you have to insert text or specify parameters, the Choose Action
dialog box opens.

b) Optional: To chose an action for an object, which might not be the default action, right-click on the
object. The Choose Action dialog box opens.

c) Optional: If the action has parameters, type the parameters into the parameter fields.

Silk4J automatically validates the parameters.
d) Click OK to close the Choose Action dialog box. Silk4J adds the action to the recorded actions and

replays it on the mobile device or emulator.

During recording, Silk4J displays the mouse position next to the recording window. You can toggle the
location to switch between displaying the absolute mouse position on the device display and the mouse
position in relation to the active object. For additional information about the actions available during
recording, see Actions Available During Recording.

Creating Tests | 29

9. Click Stop. The Record Complete dialog box opens.

10.The Source folder field is automatically populated with the source file location for the project that you
selected. To use a different source folder, click Select and navigate to the folder that you want to use.

11.Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

12.In the Test class text box, specify the name for the test class.

To use an existing class, click Select and select the class that you want to use.

13.In the Test method text box, specify a name for the test method.

14.Click OK.

Replay the test to ensure that it works as expected. You can modify the test to make changes if necessary.

Creating a Test Case Manually
Typically, you use the Base State wizard to create a test case for Silk4J. Use this procedure if you want to
manually create a test case.

1. Choose File > New > JUnit Test Case . The New JUnit Test Case dialog box opens.

2. Ensure the New JUnit 4 test option is selected. This option is selected by default.

3. In the Package text box, specify the package name.

By default, this text box lists the most recently used package. If you do not want to use the default
package, choose one of the following:

• If you have not created the package yet, type the package name into the text box.
• If you have created the package already, click Browse to navigate to the package location and then

select it.

4. In the Name text box, specify the name for the test case.

5. Click Finish. The new class file opens with code similar to the following:

package com.borland.demo;

public class DynamicObjectRecognitionDemo {

}

where com.borland.demo is the package that you specified and
DynamicObjectRecognitionDemo is the class that you specified.

Connect to the test application by creating a base state or using an attach method.

Best Practices for Creating Test Scripts
The way in which you write your test cases might have a great impact on the performance and stability of
your test set. During recording, Silk4J creates scripts that are as fast and stable as possible. However,
there might be circumstances that require you to manually create or edit test scripts. This topic provides
some general guidelines that might help you create test scripts that are maintainable, reusable, and lead to
stable tests.

• Name your tests consistently and ensure that test names are self-explaining. Try to make the names
correspond with the application under test and the tested functionality. For example, the test names
MyApp_SuccessfulLogin and MyApp_FailingLogin are far easier to understand for other users than
Untitled_42 and Untitled_43.

30 | Creating Tests

• Describe your test cases as thoroughly as possible in a comment. Without a good description of the test
case in natural language, someone who needs to change the implementing code might not be able to
comprehend what exactly the test is doing.

• Ensure that your application under test is at the proper state when the test case starts. Return the
application under test to the correct state before executing the actions in a test case.

• Ensure that your application under test is at a proper state when the test case finishes. If additional
tests depend on the outcome of the test, ensure that they can start. Return the application under test to
the correct state when the actions in a test case are executed.

• Whenever possible, ensure that your test cases are not depending on the results of other test cases.
When this is not possible, ensure that the test cases are executed in the right order.

• Add verifications to your tests, to test the correctness of your application under test as well as the
functional flow.

• Use keyword-driven testing to create highly reusable action sets. Bundle commonly used actions into
keywords, combine keywords that are often executed sequentially into keyword sequences, and execute
combinations of keywords and keyword sequences as keyword driven-tests.

• To keep your tests maintainable and reusable, prefer writing multiple simple test cases that are
combinable to writing complex test cases.

• To avoid redundancies in your test set, prefer updating existing test cases to adding new test cases.

Actions Available During Recording
During recording, you can perform the following actions in the Recording window:

Action Steps

Pause recording. Click Pause to bring the AUT into a specific state without recording the actions,
and then click Record to resume recording.

Change the sequence of the
recorded actions.

To change the sequence of the recorded actions in the Recording window,
select the actions that you want to move and drag them to the new location.

Select multiple actions. To select multiple actions, press Ctrl and click on the actions or press Shift
and click on the first and the last action that you want to select.

Replay recorded actions. To replay recorded actions from the Recording window, select the actions and
click Play. To select all recorded actions, click on Recorded Actions and then
click Play.

Remove a recorded action. To remove a falsely recorded action from the Recording window, hover the
mouse cursor over the action and click Delete.

Verify an image or a property of a
control.

Move the mouse cursor over the object that you want to verify and press Ctrl
+Alt.

Change the object map entry If you are recording against a web application or a mobile web app and if the
automatically generated object map entry for a recorded object is difficult to
read or contains special characters, you might want to change the object map
entry to something more readable. You can do this during recording by right-
clicking on the object and then expanding the Object identification area of the
Choose Action dialog. Then you can edit the object map entry in the Object
Map ID field. For example, the automatically generated object map entry for an
image in our demo application is http demo borland. If you look at the object
map, it is be difficult to understand what object this entry refers to. Changing the
object map entry to something like InsuranceWebHomePageBanner would
possibly provide more context. This functionality is available for all supported
desktop and mobile browsers except Internet Explorer.

Creating Tests | 31

Action Steps

Select a different locator If you are recording against a web application or a mobile web app and the
automatically generated locator for a recorded object does not meet your
requirements, you can click on the arrow in the Locator field and let Silk4J
generate alternative locator suggestions for you. All suggested locators
uniquely identify the object. This functionality is available for all supported
desktop and mobile browsers except Internet Explorer.

Adding a Verification to a Script while Recording
Do the following to add a verification to a script during recording:

1. Begin recording.

2. Move the mouse cursor over the object that you want to verify and press Ctrl+Alt.

When you are recording a mobile Web application, you can also click on the object and click Add
Verification.

This option temporarily suspends recording and displays the Select Verification Type dialog box.

3. Select Verify properties of the TestObject.

For information about adding an image verification to a script, see Adding an Image Verification During
Recording.

4. Click OK. The Verify Properties dialog box opens.

5. To select the property that you want to verify, check the corresponding check box.

6. Click OK. Silk4J adds the verification to the recorded script and you can continue recording.

Adding a Locator or an Object Map Item to a Test Method
Using the Locator Spy

Manually capture a locator or an object map item using the Locator Spy and copy the locator or the object
map item to the test method. For instance, you can identify the caption or the XPath locator string for GUI
objects using the Locator Spy. Then, copy the relevant locator strings and attributes into the test methods
in your scripts.

1. Open the test class that you want to modify.

2. In the Silk4J tool bar, click Locator Spy. The Locator Spy and the application under test open. If you
are testing a mobile application, a recording window opens, representing the screen of the mobile
device. You cannot perform actions in the recording window, but you can perform actions on the mobile
device or emulator and then refresh the recording window.

3. Optional: To bring the application under test into the appropriate state before recording a locator, click
Stop Recording Locator. The actions that you perform in the application under test are no longer
recorded. To continue with the recording of a locator, click Start Recording Locator.

4. If you are testing a web application on Microsoft Edge, Mozilla Firefox, Google Chrome, or Apple Safari,
select the Recording Mode:

• Select Record Silk Test Locators to record locators that you can use with Silk4J.
• Select Record WebDriver Locators to record locators that you can use with Selenium WebDriver.

Note: When recording WebDriver locators, a ">" in the object tree denotes switching from one
IFrame to another.

5. Optional: To display locators in the Locator column instead of object map items, uncheck the Show
object map identifiers check box.

32 | Creating Tests

This setting is not available when recording WebDriver locators. Object map item names associate a
logical name (an alias) with a control or a window, rather than the control or window's locator. By
default, object map item names are displayed.

Note: When you check or uncheck the check box, the change is not automatically reflected in the
locator details. To update an entry in the Locator Details table, you have to click on the entry.

6. Position the mouse over the object that you want to record. The related locator string or object map item
shows in the Selected Locator text box.

Note: If you are testing on a browser, the Selected Locator field displays the locator only when
you actually capture it.

7. Press Ctrl+Alt to capture the object.

Note: Press Ctrl+Shift to capture the object if you specified the alternative record break key
sequence on the General Recording Options page of the Script Options dialog box.

8. Optional: Click Show additional locator attributes to display any related attributes in the Locator
Attribute table.

9. Optional: You can replace a recorded locator attribute with another locator attribute from the Locator
Attribute table.

For example, your recorded locator might look like the following:

/BrowserApplication//BrowserWindow//input[@id='loginButton']

If you have a textContents Login listed in the Locator Attribute table, you can manually change
the locator to the following:

/BrowserApplication//BrowserWindow//input[@textContents='Login']

The new locator displays in the Selected Locator text box.

10.If you are recording WebDriver locators, select the locator type for the Selected Locator:

• XPath locator. Identifies the control by combining the name of the control class and a collection of
prioritized attributes into a unique locator. If the combined locator does not unequally identify the
control, Silk4J additionally adds an index to the locator or prefixes a parent UI control by using "//".

• Locate by id. Identifies the control by the id attribute.
• Locate by name. Identifies the control by the name attribute.
• Locate by link text. Only for hyperlinks.

11.To copy the locator, click Copy Locator to Clipboard.

In the Selected Locator text box, you can also mark the portion of the locator string that you want to
copy, and then you can right-click the marked text and click Copy.

12.In the script, position your cursor to the location to which you want to paste the recorded locator.

For example, position your cursor in the appropriate parameter of a Find method in the script.

The test method, into which you want to paste the locator, must use a method that can take a locator as
a parameter. Using the Locator Spy ensures that the locator is valid.

13.Copy the locator or the object map item to the test case or to the Clipboard.

14.Click Close.

Including Custom Attributes in a Test
You can include custom attributes in a test to make a test more stable. For example, in Java SWT, the
developer implementing the GUI can define an attribute, such as silkTestAutomationId, for a widget
that uniquely identifies the widget in the application. A tester using Silk4J can then add that attribute to the
list of custom attributes (in this case, silkTestAutomationId), and can identify controls by that unique
ID.

Creating Tests | 33

Using a unique ID is more reliable than other attributes like caption or index, since a caption will change
when you translate the application into another language, and the index will change whenever another
widget is added before the one you have defined already.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

To include custom attributes in a test, include the custom attributes directly in the test that you create.
For example, to find the first text box with the unique ID 'loginName' in your application, you can use
the following query:

myWindow.find(".//TextField[@silkTestAutomationId='loginName']")

Note: Attribute names are case sensitive, except for mobile applications, where the attribute
names are case insensitive. Attribute values are by default case insensitive, but you can change
the default setting like any other option. The locator attributes support the wildcards ? and *.

For example in a Web application, to add an attribute called "bcauid" type:

 <input type='button' bcauid='abc'
value='click me' />

Note: Attribute names are case sensitive, except for mobile applications, where the attribute
names are case insensitive. Attribute values are by default case insensitive, but you can change
the default setting like any other option. The locator attributes support the wildcards ? and *.

Characters Excluded from Recording and Replaying
The following characters are ignored by Silk Test during recording and replay:

Characters Control

... MenuItem

tab MenuItem

& All controls. The ampersand (&) is used as an accelerator
and therefore not recorded.

34 | Creating Tests

Replaying Tests
This section provides detailed information on the various ways to replay your Silk4J tests.

For example, you can run Silk4J tests from Eclipse or by using the command line.

Replaying Tests from Eclipse
1. Navigate to the test method or keyword-driven test that you want to replay.

2. Perform one of the following steps:

• Right-click a package name in the Package Explorer to replay all test methods or keyword-driven
tests in the package.

• Right-click a class name in the Package Explorer to replay all test methods in the class . Or,
alternatively, open the class in the source editor and right-click in the source editor.

• Right-click a keyword-driven test name in the Package Explorer to replay the keyword-driven test.
• Right-click a method name in the Package Explorer to replay a test for only that method. Or,

alternatively, open the class in the source editor and select a test method by clicking its name.

3. Choose Run As > Silk4J Test .

Note: Choosing Run As > JUnit Test is not supported as it will disable many Silk4J features.

4. If you are testing a web application, the Select Browser dialog box opens. Select the browser and click
Run.

Note: If multiple applications are configured for the current project, the Select Browser dialog box
is not displayed.

5. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

6. When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to review the TrueLog for the completed test.

Replaying a Test from the Command Line
You must update the PATH variable to reference your JDK location before performing this task. For
additional information, see JDK Installation for Microsoft Windows.

1. Include the following in the CLASSPATH:

• junit.jar.
• The org.hamcrest.core JAR file.
• silktest-jtf-nodeps.jar. This JAR is located in the ng\JTF subfolder of your Silk Test

installation directory, for example C:\Program Files (x86)\Silk\SilkTest\ng\JTF.

Note: Micro Focus recommends using %OPEN_AGENT_HOME% instead of the full path to the ng
directory, for example %OPEN_AGENT_HOME%\JTF, as this is more flexible and will even work if
Silk Test is not installed in the default location.

• The JAR or folder that contains your compiled tests.

set CLASSPATH=<eclipse_install_directory>\plugins
\org.junit4_4.3.1\junit.jar;<eclipse_install_directory>\plugins
\org.hamcrest.core_1.3.0.v201303031735.jar;%OPEN_AGENT_HOME%\JTF\silktest-
jtf-nodeps.jar;C:\myTests.jar

Replaying Tests | 35

http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html

2. Run the JUnit test method by typing:

java org.junit.runner.JUnitCore <test class name>

Note: For troubleshooting information, reference the JUnit documentation at: http://
junit.sourceforge.net/doc/faq/faq.htm#running_1.

3. To run several test classes with Silk4J and to create a TrueLog, use the SilkTestSuite class to run
the Silk4J tests.
For example, to run the two classes MyTestClass1 and MyTestClass2 with TrueLog enabled, type the
following code into your script:

package demo;
import org.junit.runner.RunWith;
import org.junit.runners.Suite.SuiteClasses;
import com.borland.silktest.jtf.SilkTestSuite;

@RunWith(SilkTestSuite.class)
@SuiteClasses({ MyTestClass1.class, MyTestClass2.class })
public class MyTestSuite {}

To run these test classes from the command line, type the following:

java org.junit.runner.JUnitCore demo.MyTestSuite

Replaying Tests with Apache Ant
To perform the actions described in this topic, ensure that Apache Ant is installed on your machine.

To replay tests with Apache Ant, for example to generate HTML reports of the test runs, use the
SilkTestSuite class. To replay keyword-driven tests with Apache Ant, use the KeywordTestSuite
class. For additional information on replaying keyword-driven tests with Apache Ant, see Replaying
Keyword-Driven Tests with Apache Ant.

1. To execute tests with Apache Ant, create a JUnit test suite with the @SuiteClasses annotation. For
example, if you want to execute the tests in the classes MyTestClass1 and MyTestClass2 , which are
located in the same Silk4J project, create the JUnit test suite MyTestSuite as follows:

@RunWith(SilkTestSuite.class)
@SuiteClasses({ MyTestClass1.class, MyTestClass2.class})
public class MyTestSuite {

}

2. Open the build.xml file of the Silk4J project, which includes the tests.

3. To execute the tests, add the following target to the build.xml file:

Note: The following code sample works only with Silk4J projects that are created with Silk Test
15.5 or later.

<target name="runTests" depends="compile">
 <condition property="agentRmiHost" value="">
 <not>
 <isset property="agentRmiHost" />
 </not>
 </condition>
 <condition property="silktest.configurationName" value="">
 <not>
 <isset property="silktest.configurationName" />
 </not>
 </condition>
 <mkdir dir="./reports"/>
 <junit printsummary="true" showoutput="true" fork="true">
 <sysproperty key="agentRmiHost" value="${agentRmiHost}" />
 <sysproperty key="silktest.configurationName" value="$

36 | Replaying Tests

http://junit.sourceforge.net/doc/faq/faq.htm#running_1
http://junit.sourceforge.net/doc/faq/faq.htm#running_1

{silktest.configurationName}" />
 <classpath>
 <fileset dir="${output}">
 <include name="**/*.jar" />
 </fileset>
 <fileset dir="${buildlib}">
 <include name="**/*.jar" />
 </fileset>
 </classpath>

 <test name="MyTestSuite" todir="./reports"/>
 </junit>
</target>

For additional information about the JUnit task, see https://ant.apache.org/manual/Tasks/junit.html.

4. Optional: To create XML reports for all tests, add the following code to the target:

<formatter type="xml" />

5. Optional: To create HTML reports out of the XML reports, add the following code to the target:

<junitreport todir="./reports">
 <fileset dir="./reports">
 <include name="TEST-*.xml" />
 </fileset>
 <report format="noframes" todir="./report/html" />
</junitreport>

For additional information about the JUnitReport task, see https://ant.apache.org/manual/Tasks/
junitreport.html.

The complete target should now look like the following:

<target name="runTests" depends="compile">

 <mkdir dir="./reports"/>
 <junit printsummary="true" showoutput="true" fork="true">
 <sysproperty key="agentRmiHost" value="${agentRmiHost}" />
 <sysproperty key="silktest.configurationName" value="$
{silktest.configurationName}" />
 <classpath>
 <fileset dir="${output}">
 <include name="**/*.jar" />
 </fileset>
 <fileset dir="${buildlib}">
 <include name="**/*.jar" />
 </fileset>
 </classpath>

 <formatter type="xml" />

 <test name="MyTestSuite" todir="./reports"/>
 </junit>
 <junitreport todir="./reports">
 <fileset dir="./reports">
 <include name="TEST-*.xml" />
 </fileset>
 <report format="noframes" todir="./report/html" />
 </junitreport>
</target>

6. To run the tests from Eclipse, perform the following actions:

a) In the Package Explorer, right-click the build.xml file.
b) Select Run As > Ant Build
c) In the Targets tab of the Edit Configuration dialog box, check runTests.

Replaying Tests | 37

https://ant.apache.org/manual/Tasks/junit.html
https://ant.apache.org/manual/Tasks/junitreport.html
https://ant.apache.org/manual/Tasks/junitreport.html

d) Click Run.

You can also execute the tests from the command line or from a CI server. For additional information, see
https://ant.apache.org/manual/running.html and Replaying Tests from a Continuous Integration Server in
the Silk4J Help.

Troubleshooting when Replaying Tests with Ant
When running Silk4J tests with Apache Ant, using the JUnit task with fork="yes" causes the tests to
hang. This is a known issue of Apache Ant (https://issues.apache.org/bugzilla/show_bug.cgi?id=27614).
You can use one of the following two workarounds:

• Do not use fork="yes".
• To use fork="yes", ensure that the Open Agent is launched before the tests are executed. This can

be done either manually or with the following Ant target:

<property environment="env" />
<target name="launchOpenAgent">
<echo message="OpenAgent launch as spawned process" />
<exec spawn="true" executable="${env.OPEN_AGENT_HOME}/agent/
openAgent.exe" />
<!-- give the agent time to start -->
<sleep seconds="30" />
</target>

Replaying Tests from a Continuous Integration Server
To run Silk4J tests from a continuous integration (CI) server, a CI server needs to be configured. This topic
uses Jenkins as an example.

1. Add a new job to the CI server to compile the Silk4J tests.

For additional information, refer to the documentation of the CI server.

2. Add a new job to the CI server to execute the Silk4J tests.

3. Replay the tests from the CI server by using an Apache Ant file. Running the tests with an Ant file
creates JUnit results, while running the tests from the command line does not.

Whenever your CI job is executed, it also triggers the execution of the specified Silk4J tests. On Jenkins,
the Ant output is displayed in the JUnit plug-in and the TrueLog file is saved.

Running Tests in Docker Containers
Docker is a container platform provider that enables you to package applications, including all their
dependencies, into virtual containers.

Silk4J supports the following scenarios for running tests from Docker containers:

• Running tests against a browser in a Docker container. The Open Agent and the test executor are
running on your local Windows machine.

• Running tests against a browser in a Docker container through an Open Agent that is running in another
Docker container. The browser and the Open Agent communicate with each other through a Docker
network. The test executor is running on your local Windows machine.

• Running tests entirely from Docker containers. The Open Agent, the test executor, and the browser run
in three separate Docker containers and communicate with each other through a Docker network.

38 | Replaying Tests

https://ant.apache.org/manual/running.html
https://issues.apache.org/bugzilla/show_bug.cgi?id=27614

Silk4J supports running tests for web applications in the following desktop browsers from Docker
containers:

• Microsoft Edge
• Mozilla Firefox
• Google Chrome
• Apple Safari

Running your Silk4J tests in Docker containers enables you to better integrate your Silk4J tests into your
existing CI workflow and provides the following advantages:

• You can run your tests on Windows, Linux, and macOS.
• You do not have to install Silk4J or any other required software, for example Java, on the machine on

which you want to run the tests.
• You do not need to update the browser version when using the images provided by Docker.
• You can run tests in the background while working on other things.
• You can use the command line to run the Docker image and the tests.

Silk4J provides a basic Docker image, named functionaltesting/silktest, which contains the Open Agent and
the capabilities to run Silk4J tests. You can download the image from the Docker Hub.

Replaying Tests | 39

https://hub.docker.com/

Note: The topics in this section assume familiarity with Docker. If you are new to Docker and you
would like to have additional information, refer to the Docker website.

Silk Test Image Environment Variables
The following table lists the environment variables that you can use to control how the Silk Test Docker
container runs.

Environment Variable Description

SILK_LICENSE_SERVER The host name or IP address of the Silk Meter license server.

SILK_SELENIUM_SERVER_PORT Optional: The listening port for the built-in Selenium server. If this
environment variable is not set, the Selenium support is turned
off.

For example:

SILK_SELENIUM_SERVER_PORT=4444

SILK_RMI_SERVER_PORT Optional: The listening port for the RMI server for the JTF. If this
environment variable is not set, a dynamic port is calculated.
Only set this if you need to interact with the Open Agent by using
the JTF outside the Docker container and you require a fixed port
for port forwarding.

For example:

SILK_RMI_SERVER_PORT=30000

SILK_LOG_FILE_PATH Optional: The path to the folder into which the test reports should
be generated.

For example:

SILK_LOG_FILE_PATH=/output

SILK_CONSOLE_LOG Optional: Specifies whether to write the log to the console in
addition to the Open Agent log file:

For example:

SILK_CONSOLE_LOG=true

SILK_LOG_LEVEL Optional: The log level.

For example:

SILK_LOG_LEVEL=DEBUG

Prefix each variable with -e, for example:

docker run -e SILK_LOG_FILE_PATH=/logs
 -v c:/temp/ChromeExample/logs:/logs
 -e SILK_SELENIUM_SERVER_PORT=4444
 -e SILK_RMI_SERVER_PORT=30000
 -e SILK_CONSOLE_LOG=true
 -e SILK_LOG_LEVEL=DEBUG
 -e SILK_LICENSE_SERVER=<license-server address>
 --name agent
 functionaltesting/silktest:latest

Example: Running Tests on Google Chrome
This topic provides an example of how you can use Docker containers to run a Silk4J test set on Google
Chrome on a Linux machine with Apache Ant. Before you can run the test set, you have to perform the
following tasks:

40 | Replaying Tests

https://www.docker.com/

• Install Docker on your machine.
• Prepare your Silk4J project for executing tests with Ant. For additional information, see Replaying Tests

with Apache Ant.
• Copy the project to your Linux machine, for example to /home/<user name>/projects/

InsuranceWeb.

To run the Silk4J test set on Google Chrome.

1. Pull the latest version of the involved images to your registry.

For our example, we need the following three images:

• The latest Silk Test image.

docker pull functionaltesting/silktest:latest

• The latest Google Chrome image.

docker pull selenium/standalone-chrome:latest

• The Ant container that should run the tests.

docker pull webratio/ant:latest

2. Create a virtual Docker network to enable the Docker containers to communicate with each other.

For our example, name the network my-network.

docker network create my-network

3. Start the Google Chrome Docker container.

docker run --network my-network --name chrome selenium/standalone-
chrome:latest

4. Start the Open Agent Docker container.

docker run -e SILK_LICENSE_SERVER=<license-server address>
 -e SILK_LOG_FILE_PATH=/logs
 -v /home/<user name>/projects/logs:/logs
 --network my-network
 --name agent
 functionaltesting/silktest:latest

For additional info on the available environment variables, see Silk Test Image Environment Variables.

5. Start the Ant Docker container to run the tests.

docker run -v /home/<user name>/projects/InsuranceWeb:/tmp/project
 --network my-network
 --name=test-runner
 -it webratio/ant:1.10.1 ant
 -DagentRmiHost=agent:22902
 -Dsilktest.configurationName="host=http://chrome:4444/wd/
hub;platformName=Linux - Chrome"
 -buildfile /tmp/project/build.xml runTests

6. View the test results under /home/<user name>/projects/logs.

7. Optional: To cleanup your test environment, execute the following commands:

• Stop the Open Agent Docker container.

docker stop agent

• Stop the Google Chrome Docker container.

docker stop chrome

• Remove the Open Agent Docker container.

docker rm agent

• Remove the Google Chrome Docker container.

docker rm chrome

• Remove the Ant Docker container.

docker rm test-runner

Replaying Tests | 41

• Remove the virtual network.

docker network rm my-network

Example: Using docker-compose
This topic provides an example of how you can use Docker containers to run a Silk4J test set on Google
Chrome on a Linux machine with Apache Ant. Before you can run the test set, you have to perform the
following tasks:

• Install Docker on your machine.
• Run the "Hello, World" program from the command line to verify that your basic Docker setup is

configured correctly:

docker run hello-world

• Prepare your Silk4J project for executing tests with Ant. For additional information, see Replaying Tests
with Apache Ant.

• Copy the project to your Linux machine, for example to /home/<user name>/projects/
InsuranceWeb.

To run the tests in the Silk4J project on Google Chrome.

1. Create the docker-compose .yml file.

version: '3'
services:
 chrome:
 image: selenium/standalone-chrome:latest
 environment:
 - JAVA_OPTS=-Dselenium.LOGGER.level=WARNING
 agent:
 image: functionaltesting/silktest:latest
 environment:
 - SILK_LICENSE_SERVER=lnz-lic1.microfocus.com
 - SILK_LOG_FILE_PATH=/logs
 depends_on:
 - chrome
 links:
 - chrome
 volumes:
 - /home/<user name>/projects/logs:/logs
 tests-runner:
 image: webratio/ant:1.10.1
 volumes:
 - /home/<user name>/InsuranceWeb:/tmp/project
 command: ["ant", "-DagentRmiHost=agent:22902", "-
Dsilktest.configurationName=host=http://chrome:4444/wd/
hub;platformName=Linux - GoogleChrome", "-buildfile", "/tmp/project/
build.xml", "runTests"]
 depends_on:
 - agent
 links:
 - agent

Note: In order for the agentRmiHost system property to work, your test script must create a
Desktop object by calling the constructor with no arguments. Additionally, in order for the
silktest.configurationName system property to work, your test script must create a
BrowserBaseState object by calling the constructor with no arguments.

2. Pull the latest version of the involved images to your registry.

docker-compose pull

3. Execute the tests and stop all containers when the first container, in this case the Ant container, stops.

docker-compose up --abort-on-container-exit

42 | Replaying Tests

4. View the test results under /home/<user name>/projects/logs.

5. Optional: Cleanup your test environment.

docker-compose down

You could combine the commands for pulling the latest versions, executing the tests, and cleaning up the
test environment into a single command.

docker-compose pull && docker-compose up --abort-on-container-exit && docker-
compose down

Limitations when Running Tests in Docker Containers
The following limitations apply when playing back tests in Docker containers:

• Image recognition, including imageClick, imageRect, imageExists, and image verifications, is not
supported on the desktop. These methods are only supported for the BrowserWindow class and for
the BrowserApplication class. For example, desktop .<BrowserWindow>
find("demo_borland_com.BrowserWindow").imageClick("LoginButton"); is
supported, while desktop .imageClick("LoginButton"); is not.

• The mouse methods and the keyboard input methods, for example mouseMove, typeKeys, and
click, are supported for all objects except the Desktop object.

• The getViewPortName and setViewPortName methods of the BrowserWindow class are not
supported.

• The following system functions are not supported:

• closeFile

• closeIniFile

• createRegistryKey

• createRegistryValue

• deleteRegistryKey

• deleteRegistryValue

• existsRegistryKey

• fileWriteLine

• getAgentVersion

• getClipboardText

• getCurrentDrive

• getCursorPosition

• getCursorType

• getFileInfo

• getFreeDiskSpace

• getIniFileValue

• getLocale

• getRegistryKeyNames

• getRegistryValue

• getRegistryValueNames

• openFile

• openIniFile

• readLine

• setClipboardText

• setCurrentDrive

• setEnvironmentVariable

• setFilePointer

• setIniFileValue

Replaying Tests | 43

• setRegistryValue

Troubleshooting when Running Tests in Docker
Containers

How can I see what a test running in a Docker container is currently doing?

To debug a test running against Google Chrome or Mozilla Firefox in a Docker container, you can use the
debug images for Google Chrome or Mozilla Firefox that are available from the Docker Hub. These will
enable you to view the text execution through a VNC connection.

Replaying Silk4J Tests from Silk Central
To access Silk4J tests from Silk Central, you need to store the Silk4J tests in a JAR file in a repository that
Silk Central can access through a source control profile.

To replay functional tests in Silk4J from Silk Central, for example keyword-driven tests:

1. In Silk Central, create a project from which the Silk4J tests will be executed.

2. Under Tests > Details View, create a new test container for the new project.

For additional information about Silk Central, refer to the Silk Central Help.

The test container is required to specify the source control profile for the Silk4J tests.

a) In the Tests tree, right-click on the node below which you want to add the new test container.
b) Click New Test Container. The New Test Container dialog box opens.
c) Type a name for the new test container into the Name field.

For example, type Keyword-Driven Tests
d) In the Source control profile field, select the source control profile in which the JAR file, which

contains the Silk4J tests, is located.
e) Click OK.

3. Create a new JUnit test in the new test container.

For additional information about Silk Central, refer to the Silk Central Help.

a) In the Test class field of the JUnit Test Properties dialog box, type the name of the test class.

Specify the fully-qualified name of the test suite class. For additional information, see Replaying
Keyword-Driven Tests from the Command Line.

b) In the Classpath field, specify the name of the JAR file that contains the tests.
c) For keyword-driven testing, also specify the paths to the following files, separated by semicolons.

• com.borland.silk.keyworddriven.engine.jar

• com.borland.silk.keyworddriven.jar

• silktest-jtf-nodeps.jar

These files are located in the Silk Test installation directory. For example, the Classpath field for the
keyword-driven tests in the JAR file tests.jar might look like the following:

tests.jar;C:\Program Files
(x86)\Silk\SilkTest\ng\KeywordDrivenTesting
\com.borland.silk.keyworddriven.engine.jar;C:\Program Files
(x86)\Silk\SilkTest\ng\KeywordDrivenTesting
\com.borland.silk.keyworddriven.jar;C:\Program Files
(x86)\Silk\SilkTest\ng\JTF\silktest-jtf-nodeps.jar

4. Click Finish.

5. Execute the tests.

For additional information about executing tests in Silk Central, refer to the Silk Central Help.

44 | Replaying Tests

https://hub.docker.com/
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Triggering Tests on Silk Central from a Continuous
Integration Server

To run Silk4J tests from a continuous integration server, the following infrastructure is required:

• A Silk Central server with the appropriate execution definitions.

Note: This topic focuses on the integration with Silk Central, but you could also use another test-
scheduling tool.

• A continuous integration (CI) server, for example Hudson or Jenkins. This topic uses Jenkins as an
example.

To replay functional tests from a CI server:

1. In Silk Central, retrieve the project ID and the execution plan ID of any execution plan that you want to
run from the CI server.

a) Select Execution Planning > Details View.
b) In the Execution Plans tree, select the project that contains the execution. The Project ID is

displayed in the Properties pane of the project.
c) In the Execution Plans tree, select the execution plan. The Execution Plan ID is displayed in the

Properties pane of the execution plan.

2. Install the SCTMExecutor plugin on the CI server. This plugin connects the CI server to your Silk
Central server.

3. Configure the SCTMExecutor plugin:

a) On Jenkins, navigate to the Silk Central Test Manager Configuration configuration in the global
Jenkins configuration page.

b) Type the address of the Silk Central service into the Service URL field.
For example, if the server name is sctm-server, type http://sctm-server:19120/services.

4. Extend your CI build job.

a) On Jenkins, select Silk Central Test Manager Execution from the Add build step list.
b) Type the ID of the execution plan into the Execution Plan ID field.

You can execute an arbitrary number of execution plans by separating the IDs with a comma.
c) Type the project ID of the Silk Central project into the SCTM Project ID field.

Whenever your CI build job is executed, it also triggers the execution of the specified Silk Central execution
plans.

Replaying Tests in a Specific Order
With Java 1.6 or prior, JUnit tests are executed in the order in which they are declared in the source file.

Note: With Java 1.7 or later, you cannot specify the order in which the JUnit tests are executed. This
is a JUnit limitation for test execution.

JUnit tests are executed differently, depending on the JUnit version. With a JUnit version prior to 4.11 the
tests are executed in no particular order, which may differ between test runs. With JUnit 4.11 or higher the
tests are executed in the same order for each test run, but the order is unpredictable.

Depending on your testing environment you might be able to workaround this limitation.

Replaying Tests | 45

Examples for a workaround

If your test set does not include modules and suites, you could add the following lines to
the start of the source file:

import org.junit.FixMethodOrder;
import org.junit.runners.MethodSorters;
@FixMethodOrder(MethodSorters.JVM)

There are three possible values you can specify for the FixMethodOrder:

MethodSorters.JVM The order in which the
methods are returned by
the JVM, potentially a
different order for each test
run. Might break your test
set.

MethodSorters.DEFAULT Deterministic ordering
based upon the hashCode
of the method name.
Changing the order is
difficult because you have
to define method names
that lead to an appropriate
hashCode.

MethodSorters.NAME_ASCENDING The order is based upon the
lexicographic ordering of
the names of the tests. You
would have to rename your
tests so that the
alphabetical order of the
test names matches the
order in which you want the
tests to be executed.

You could also use a Java version prior to 1.7.

Running Tests in Parallel
You can use multiple JUnit processes to execute tests in parallel against multiple browsers or mobile
devices. For example, you can use this functionality when executing test from a continuous integration
server, or from Silk Central.

Silk Testby default supports parallel testing for the following browsers and platforms:

• Google Chrome.
• Mozilla Firefox.
• Web, native, and hybrid apps on the following platforms:

• Physical Android devices.
• Android Emulators.
• Physical iOS devices.

When using mixed scripts to add WebDriver functionality to an existing Silk4J script, use the
getWebDriver method to get a new driver. For additional information, see Using Selenium with Existing
Silk4J Scripts.

46 | Replaying Tests

Note: Using new RemoteWebDriver to get a new WebDriver object does not work for parallel
testing of mixed scripts.

To disable parallel test replay, set the environment variable SILKTEST_ENABLE_PARALLEL_TESTING to
false.

Note: Enabling parallel testing causes the Open Agent to handle each test-executing process
separately. Applications which have been tested in one Silk Test client cannot be tested from another
client, while the initial client is running. For example, you cannot test the same application alternating
between Silk4J and Silk4NET.

Note: You cannot execute multiple test runs on the same mobile device at the same time. Before
running tests in parallel, ensure that enough devices or emulators are available. Any test runs that get
no mobile device or emulator assigned will fail.

Each parallel test run starts as a separate java.exe, which corresponds to one browser or mobile device.
You can specify the browser or mobile device that you want to associate with a specific java.exe through
the connection string. For additional information, see Connection String for a Mobile Device or Connection
String for a Remote Desktop Browser .

The following image shows testing multiple browsers in parallel:

The following image shows testing multiple devices in parallel:

Multiple processes starting simultaneously might each try to start the Open Agent on the machine on which
Silk4J is running. Running the Open Agent multiple times on the same machine is not possible and will
cause Silk4J to throw an exception. To avoid this, ensure that the Open Agent is running before starting the
parallel test runs.

The test results are stored in multiple TrueLog files, one for each test run. To ensure that the TrueLog files
are not overwritten, you can add placeholders to the TrueLog file name. For additional information, see
Setting TrueLog Options.

Note: If you are experiencing high memory consumption during testing, ensure that test results are
saved in the compressed TLZ file format, and not in the XLG format. Silk4J does not support the
TrueLog API for parallel testing.

Replaying Tests | 47

How Does Silk4J Synchronize Tests?
Many unexpected test failures are related to synchronization issues. Weak synchronization during test
replay might generate false negative results, making it difficult to detect actual application problems.
Synchronization errors are timing issues that heavily depend on the test environment, making these errors
difficult to reproduce and solve. For example, a synchronization error that occurs in a specific test
environment might never be reproduced in the development environment. Weak synchronization is one of
the most common reasons for an automation project to get unmanageable with a growing set of automated
tests.

Silk4J provides automated test synchronization for all supported technologies, enabling you to build robust
and manageable test sets. During the replay of a test, Silk4J ensures that the test always waits until the
AUT is ready to perform the next action. For a verification step in a test, Silk4J ensures that any preceding
actions in the test are completed before performing the verification.

To adapt your tests to the specific behavior of your AUT, you can change the values of the following
synchronization timeouts:

Synchronization timeout
(OPT_SYNC_TIMEOUT)

The maximum time in milliseconds that Silk4J waits for
the AUT to become ready during playback. The default
value is 300000 milliseconds.

Object resolve timeout
(OBJ_WAIT_RESOLVE_OBJDEF)

The maximum time in milliseconds that the find method
searches for an object. The default value is 5000
milliseconds.

Note: To be able to successfully run tests under
load or on slow systems, for example a virtual
machine accessed through a slow connection,
Silk4J occasionally increases the internal timeout,
for example while the AUT is starting and when a
dialog or window appears. As soon as the AUT,
dialog, or window is completely started, Silk4J
reduces the timeout again to the value you have
specified for OPT_WAIT_RESOLVE_OBJDEF.

Object resolve retry interval
(OPT_WAIT_RESOLVE_OBJDEF_RETRY)

If Silk4J cannot immediately find an object, Silk4J will
retry to find the object until the object resolve timeout
expires. The object resolve retry interval specifies the
time in milliseconds that Silk4J waits before retrying to
find the object. The default value is 1000 milliseconds.

Object enabled timeout
(OPT_OBJECT_ENABLED_TIMEOUT)

The maximum time in milliseconds that Silk4J waits for an
object to become enabled during playback. The default
value is 1000 milliseconds.

Note: The timeouts do not overlap.

For detailed information about the automated synchronization that Silk4J provides specifically for Web
applications, see Page Synchronization for xBrowser. For detailed information about the synchronization
that Silk4J provides specifically for Ajax applications, see How to Synchronize Test Automation Scripts for
Ajax Applications.

In addition to the automated synchronization, Silk4J also enables you to manually add wait functions to
your scripts. Silk4J provides the following wait functions for manual synchronization:

48 | Replaying Tests

http://community.microfocus.com/borland/test/silk_test/b/weblog/archive/2012/06/15/how-to-synchronize-test-automation-scripts-for-ajax-applications.aspx
http://community.microfocus.com/borland/test/silk_test/b/weblog/archive/2012/06/15/how-to-synchronize-test-automation-scripts-for-ajax-applications.aspx

waitForObject Waits for an object that matches the specified locator. Works with an xPath
locator or an object map identifier.

waitForProperty Waits until the property specified by the propertyName parameter gets
the value specified by the expectedValue parameter or until the timeout
is reached.

waitForDisappearance Waits until the object does not exist or until the timeout is reached.

waitForChildDisappearance Waits until the child object specified by the locator parameter does not
exist or until the timeout is reached.

If a test randomly fails with an ObjectNotFoundException, increase the Object resolve timeout, for
example to 30 seconds. For very specific long running operations, for example a click on an object that
displays after a long calculation with a progress dialog, manually add the waitForObject method to the
test script, to wait until the object is found, or add the waitForDissapearance method to the test script,
to wait until the progress dialog is no longer displayed.

Automated synchronization example

Consider the following code sample, where Silk4J tries to click on a button with the
caption Ok:

PushButton button = _desktop.find("//PushButton[@caption='ok'");
button.Click();

To replay the actions in this code sample, Silk4J performs the following synchronization
actions:

1. Silk4J tries to find the button. If the Object resolve timeout runs out, Silk4J stops the
replay and throws an exception.

2. Silk4J waits until the application under test (AUT) is ready. If the Synchronization
timeout runs out before the AUT is ready, Silk4J stops the replay and throws an
exception.

3. Silk4J waits until the button is enabled. If the Object enabled timeout runs out before
the button is enabled, Silk4J stops the replay and throws an exception.

4. Silk4J clicks the button.
5. Silk4J waits until the application under test (AUT) is ready again.

Enabling the Playback Status Dialog Box
Enable the Playback Status dialog box to view the actions that are performed during the replay of a test.
This dialog box is very useful when replaying tests on another machine, for example on a remote Mac or on
a mobile device.

To enable the Playback Status dialog box:

1. Click Silk4J > Edit Options.

2. Click the Replay tab.

3. To enable the Playback Status dialog box, check the OPT_SHOW_PLAYBACK_STATUS_DIALOG
check box.

4. To display a video or screenshots of the application under test in the Playback Status dialog box, check
the OPT_PLAYBACK_STATUS_DIALOG_SCREENSHOTS check box.

5. Click OK.

Replaying Tests | 49

Note: If you are testing on a remote Mac or on a mobile device, ensure that the Mac or device does
not switch off the screen during testing, otherwise the Playback Status dialog box will not display
anything.

50 | Replaying Tests

Analyzing Test Results
To enable you to analyze your tests after executing them, for example to find out why and how a test has
failed, Silk4J generates test reports during test execution.

By default, Silk4J writes both a TrueLog and an HTML report when running a test. You can select which
result formats Silk4J should generate under Silk4J > Edit Options > TrueLog > Select result format.

Analyzing Test Results
After running a test, you can review the test results and analyze the success or failure of the test run.

1. Run a Silk4J test. When the execution is finished, the Playback Complete dialog box opens.
2. Click Explore Results to examine the results of the tests.
3. Click through the results.

Silk4J captures a screenshot whenever a test fails.

HTML Reports
By default, Silk4J creates an HTML report and a TrueLog report when running tests. Both report formats
include summary information about the test run and detailed information about the executed actions.

When a test run is finished, you can access the HTML report from the Playback Complete dialog.

By default, the HTML report is created in a sub-directory of the working directory of the process that
executed the Silk4J tests. You can change the location under Silk4J > Edit Options > TrueLog > TrueLog
location.

Visual Execution Logs with TrueLog
TrueLog is a powerful technology that simplifies root cause analysis of test case failures through visual
verification. The results of test runs can be examined in TrueLog Explorer. When an error occurs during a
test run, TrueLog enables you to easily locate the line in your script that generated the error so that the
issue can be resolved.

Note: TrueLog is supported only for one local or remote agent in a script. When you use multiple
agents, for example when testing an application on one machine, and that application writes data to a
database on another machine, a TrueLog is written only for the first agent that was used in the script.
When you are using a remote agent, the TrueLog file is also written on the remote machine.

For additional information about TrueLog Explorer, refer to the Silk TrueLog Explorer User Guide, located in
(in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Documentation or (in Microsoft Windows
10) Start > Silk.

You can enable TrueLog in Silk4J to create visual execution logs during the execution of Silk4J tests. The
TrueLog file is created in the working directory of the process that executed the Silk4J tests.

Note: To create a TrueLog during the execution of a Silk4J test, JUnit version 4.6 or later must be
used. If the JUnit version is lower than 4.6 and you try to create a TrueLog, Silk4J writes an error
message to the console, stating that the TrueLog could not be written.

The default setting is that screenshots are only created when an error occurs in the script, and only test
cases with errors are logged.

Analyzing Test Results | 51

Enabling TrueLog
To enable TrueLog:

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the TrueLog tab.

3. In the Basic Settings area, check the Enable TrueLog check box.

• Click All testcases to log activity for all test cases, both successful and failed. This is the default
setting.

• Click Testcases with errors to log activity for only those test cases with errors.

By default, the TrueLog file is created in the working directory of the process that executed the Silk4J tests.
To specify a different location for the TrueLog, click Silk4J > Edit Options to open the Script Options
dialog box and click Browse to the right of the TrueLog file field.

When the Silk4J test execution is complete, the Playback Complete dialog box opens, and you can
choose to review the TrueLog for the completed test.

Changing the Location of the TrueLog
By default, the TrueLog is created in the working directory of the process that executed the Silk4J tests.

To specify another location for the TrueLog:

1. In the menu, click Silk4J > Edit Options. The Script Options dialog box displays.

2. Select the TrueLog tab.

3. Click Browse to the right of the TrueLog location field.

When running a test in the current project, the TrueLog is saved to the specified location.

TrueLog Sections
You can add sections to TrueLogs to add structure to complex scripts and to logically divide scripts into
smaller named parts.

TrueLog sections can be nested and the same name can be used for multiple sections, which means the
names do not have to be unique.

To create a new section in a TrueLog file, use the following code:

openTrueLogSection("section_name")

To close the last TrueLog section that was opened, use the following code:

closeCurrentTrueLogSection()

Sections are automatically closed in the following cases:

• The test case ends.
• The test class ends.
• The test run ends.
• A keyword ends.
• An exception occurs.

The following code sample demonstrates the usage of TrueLog sections:

@Test
public void subSections() {
 Desktop desktop = new Desktop();
 desktop.openTrueLogSection("Section a");

52 | Analyzing Test Results

 desktop.logInfo("In section a");
 desktop.openTrueLogSection("Section b");
 desktop.logInfo("In section b");
 desktop.closeCurrentTrueLogSection();
 desktop.logInfo("In section a again");
}

For additional information on the supported methods, refer to the API documentation of your Silk Test
client.

Capturing the Contents of a Web Page
To capture a screenshot of the the part of the web page that is currently visible in the browser window, you
can use the captureBitmap method. You have to specify the absolute or relative file path to the location
and the name for the image file as a parameter. For example:

browserWindow.captureBitmap("C:\Temp\MyPage.png");

To capture a screenshot of the entire contents of a web page as a single image, you can use the
captureFullPageBitmap method. You have to specify the absolute or relative file path to the location
and the name for the image file as a parameter. For example:

browserWindow.captureFullPageBitmap("C:\Temp\MyPage.png");

Why is TrueLog Not Displaying Non-ASCII Characters
Correctly?
TrueLog Explorer is a MBCS-based application, meaning that to be displayed correctly, every string must
be encoded in MBCS format. When TrueLog Explorer visualizes and customizes data, many string
conversion operations may be involved before the data is displayed.

Sometimes when testing UTF-8 encoded Web sites, data containing characters cannot be converted to the
active Windows system code page. In such cases, TrueLog Explorer will replace the non-convertible
characters, which are the non-ASCII characters, with a configurable replacement character, which usually
is '?'.

To enable TrueLog Explorer to accurately display non-ASCII characters, set the system code page to the
appropriate language, for example Japanese.

Analyzing Test Results | 53

Silk Test Open Agent
The Silk Test Open Agent is the software process that translates the commands in your scripts into GUI-
specific commands. In other words, the Open Agent drives and monitors the application that you are
testing.

One Agent can run locally on the host machine. In a networked environment, any number of Agents can
replay tests on remote machines. However, you can record only on a local machine.

Starting the Silk Test Open Agent
Before you can create a test or run a sample script, the Silk Test Open Agent must be running. Typically,
the Agent starts when you launch the product. If you must manually start the Open Agent, perform this
step.

Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Open Agent or
(in Microsoft Windows 10) Start > Silk > Silk Test Open Agent. The Silk Test Open Agent icon
displays in the system tray.

Stopping the Open Agent After Test Execution
You can stop the Open Agent by using the command-line option -shutDown or from a script, to ensure that
the agent does not continue running after the end of the test execution. The following code sample shows
how you can stop the Open Agent from the command line:

openAgent.exe -shutDown

To stop the agent from a script:

1. Open or create a script that is executed when the test execution is finished.

For example, open an existing script that is used for cleanup after test execution.

2. Add the shutdown method to the script.

Note: The Open Agent will restart as soon as the agent is required by another script.

Agent Options
This section describes the options that can be manipulated with the getOption and setOption
methods.

Note: By default, you can set global options by choosing Silk4J > Edit Options in the menu.

To set or get agent options in a script, use the getOption or setOption methods. For instance, when
you type, Desktop.setOption(Commonoptions., the agent options display automatically in the active
editor window with the auto-completion and syntactical assistance technology. For instance, you might see
the following options in the active editor window:

54 | Silk Test Open Agent

An example for inserting an option into a script would be the following:

desktop.setOption(Commonoptions.ApplicationReadyTimeout, 100000);

Alternatively, you can use the agent option name in scripts. For instance, you can type:

desktop.setOption("OPT_APPREADY_TIMEOUT", 100000);

.NET Option Name Agent Option Name Constant
Type

Description

ApplicationReadyTime
out

OPT_APPREADY_TIMEOUT NUMBER Specifies the number of milliseconds
to wait for a newly launched
application to become ready. If the
application is not ready within the
specified timeout, Silk4J raises an
exception.

BitmapMatchCount OPT_BITMAP_MATCH_COUNT INTEGER Specifies the number of consecutive
snapshots that must be the same for
the bitmap to be considered stable.
Snapshots are taken up to the number
of seconds specified by
OPT_BITMAP_MATCH_TIMEOUT,
with a pause specified by
OPT_BITMAP_MATCH_INTERVAL
occurring between each snapshot.

By default, this is 0.

BitmapMatchInterval OPT_BITMAP_MATCH_INTERVAL REAL Specifies the time interval between
snapshots to use for ensuring the
stability of the bitmap image. The
snapshots are taken up to the time
specified by
OPT_BITMAP_MATCH_TIMEOUT.

By default, this is 0.1.

BitmapMatchTimeout OPT_BITMAP_MATCH_TIMEOUT REAL Specifies the total time allowed for a
bitmap image to become stable.

During the time period, Silk4J takes
multiple snapshots of the image,
waiting the number of seconds
specified with
OPT_BITMAP_MATCH_TIMEOUT

Silk Test Open Agent | 55

.NET Option Name Agent Option Name Constant
Type

Description

between snapshots. If the value
returned by
OPT_BITMAP_MATCH_TIMEOUT is
reached before the number of bitmaps
specified by
OPT_BITMAP_MATCH_COUNT
match, Silk4J stops taking snapshots
and raises the exception
E_BITMAP_NOT_STABLE.

By default, this is 5.

BitmapPixelTolerance OPT_BITMAP_PIXEL_TOLERANCE INTEGER Specifies the number of pixels of
difference below which two bitmaps
are considered to match. If the number
of pixels that are different is smaller
than the number specified with this
option, the bitmaps are considered
identical. The maximum tolerance is
32767 pixels.

By default, this is 0.

ButttonsToCloseWindo
ws

OPT_CLOSE_WINDOW_BUTTONS LIST OF
STRING

Specifies the buttons used to close
windows with the CloseSynchron
method.

ButttonsToConfirmDial
ogs

OPT_CLOSE_CONFIRM_BUTTON
S

LIST OF
STRING

Specifies the buttons used to close
confirmation dialog boxes that appear
when closing windows with the
CloseSynchron method.

CloseUnresponsiveAp
plications

OPT_KILL_HANGING_APPS BOOLEAN Specifies whether unresponsive
applications are closed. An application
is unresponsive if communication
between the Agent and the application
fails, e.g. times out. Set this option to
TRUE when testing applications that
cannot run multiple instances. By
default, this is FALSE.

CloseWindowTimeout OPT_CLOSE_WINDOW_TIMEOUT NUMBER Specifies the number of milliseconds
to wait before the next close strategy is
tried. The Agent executes four close
attempts before failing, so the total
time before a close fails is four times
the value you specify.

Compatibility OPT_COMPATIBILITY STRING Enables you to use the Silk4J behavior
of the specified Silk4J version for
specific features, when the behavior of
these features has changed in the
latest version.

Example strings:

• 12

56 | Silk Test Open Agent

.NET Option Name Agent Option Name Constant
Type

Description

• 11.1

• 13.0.1

By default, this option is not set.

EnsureObjectIsActive OPT_ENSURE_ACTIVE_OBJDEF BOOLEAN Ensures that the target object is active.
By default, this is FALSE.

EnableAccessibility OPT_ENABLE_ACCESSIBILITY BOOLEAN TRUE to enable Accessibility when
you are testing a Win32 application
and Silk4J cannot recognize objects.
Accessibility is designed to enhance
object recognition at the class level.

FALSE to disable Accessibility.

By default, this is FALSE.

Note: For Mozilla Firefox and
Google Chrome, Accessibility is
always activated and cannot be
deactivated.

EnableMobileWebview
FallbackSupport

OPT_ENABLE_MOBILE_WEBVIEW
_FALLBACK_SUPPORT

BOOLEAN Enables mobile native fallback support
for hybrid mobile applications that are
not testable with the default browser
support.

By default, this is FALSE.

EnableUiAutomationSu
pport

OPT_ENABLE_UI_AUTOMATION_S
UPPORT

NUMBER TRUE to enable Microsoft UI
Automation support instead of the
normal Win32 control recognition. This
option might be useful when you are
testing a Win32 application and Silk4J
cannot recognize objects.
AUTODETECT to automatically enable
Microsoft UI Automation support for
JavaFX.

By default, this is FALSE.

HangAppTimeOut OPT_HANG_APP_TIME_OUT NUMBER Specifies the Unresponsive
application timeout, which is the
timeout for pending playback actions.

The default value is 5000 milliseconds.

HighlightObjectDuring
Playback

OPT_REPLAY_HIGHLIGHT BOOLEAN Specifies whether the current object is
highlighted during playback.

By default, this is FALSE, which means
that objects are not highlighted by
default.

KeyboardEventDelay OPT_KEYBOARD_INPUT_DELAY NUMBER Sets the delay in milliseconds between
playback of keyboard strokes.

Silk Test Open Agent | 57

.NET Option Name Agent Option Name Constant
Type

Description

Be aware that the optimal number you
select can vary, depending on the
application that you are testing. For
example, if you are testing a Web
application, a setting of 1 millisecond
radically slows down the browser.
However, setting this to 0 (zero) may
cause basic application testing to fail.

KeysToCloseDialogs OPT_CLOSE_DIALOG_KEYS LIST OF
STRING

Specifies the keystroke sequence to
close dialog boxes that open after
trying to close a window with the
CloseSynchron method. Examples
include: <ESC>, <Alt+F4>.

LocatorAttributesCase
Sensitive

OPT_LOCATOR_ATTRIBUTES_CA
SE_SENSITIVE

BOOLEAN Set to Yes to add case-sensitivity to
locator attribute names, or to No to
match the locator names case
insensitive. The names of locator
attributes for mobile Web applications
are always case insensitive, and this
option is ignored when recording or
replaying mobile Web applications.

MenuItemsToCloseWin
dows

OPT_CLOSE_WINDOW_MENUS LIST OF
STRING

Specifies the menu items used to
close windows with the
CloseSynchron method. Examples
include: "File/Exit*", "File/Quit*".

MouseEventDelay OPT_MOUSE_INPUT_DELAY NUMBER Specifies the delay in milliseconds
used before each mouse event.

ObjectResolveRetryInt
erval

OPT_WAIT_RESOLVE_OBJDEF_R
ETRY

NUMBER Specifies the time in milliseconds to
wait before re-trying to find an object
that could not be immediately resolved
during playback. When the
ObjectResolveTimeout runs out, no
further retries are attempted.

ObjectResolveTimeout OPT_WAIT_RESOLVE_OBJDEF NUMBER Specifies the time in milliseconds to
wait for an object to be resolved during
playback. As soon as the object is
resolved, Silk4J can recognize it.

PlaybackMode OPT_REPLAY_MODE NUMBER Defines how controls are replayed.
Use low level to replay each control
using the mouse and keyboard. Use
high level to use the API to replay each
control. All controls have a default
playback mode assigned. When the
default replay mode is selected, each
control uses its default playback mode.
The default mode delivers the most
reliable results. Selecting low or high
level playback overrides the playback

58 | Silk Test Open Agent

.NET Option Name Agent Option Name Constant
Type

Description

mode of all controls with the playback
mode selected.

Possible values include 0, 1 and 2. 0 is
default, 1 is high level, 2 is low level.
By default, this is 0.

PostReplayDelay OPT_POST_REPLAY_DELAY NUMBER Specifies the time in milliseconds to
wait after invoking a function or setting
a property.

RemoveFocusOnCapt
ureText

OPT_REMOVE_FOCUS_ON_CAPT
URE_TEXT

BOOLEAN Set to Yes to take the focus off the
application under test during a text
capture. By default, this is set to No,
leaving the focus on the application
under test. A text capture is performed
during recording and replay by the
following methods:

• TextClick

• TextCapture

• TextExists

• TextRect

SyncTimeout OPT_SYNC_TIMEOUT NUMBER Specifies the maximum time in
milliseconds for an object to be ready.

Note: When you upgrade from a Silk
Test version prior to Silk Test 13.0,
and you had set the
OPT_XBROWSER_SYNC_TIMEOUT
option, the Options dialog box will
display the default value of the
OPT_SYNC_TIMEOUT, although
your timeout is still set to the value
you have defined.

TransparentClasses OPT_TRANSPARENT_CLASSES LIST OF
STRING

To simplify the object hierarchy and to
shorten the length of the lines of code
in your test scripts and functions, you
can suppress the controls for certain
unnecessary classes in the following
technologies:

• Win32.

• Java AWT/Swing.

• Java SWT/Eclipse.

• Windows Presentation Foundation
(WPF).

Specify the names of any classes that
you want to ignore during recording
and playback.

Silk Test Open Agent | 59

.NET Option Name Agent Option Name Constant
Type

Description

OPT_WPF_CHECK_DISPATCHER_
FOR_IDLE

BOOLEAN For some WPF applications the Silk
Test synchronization might not work
due to how certain controls are
implemented, resulting in Silk4J not
recognising when the WPF application
is idle. Setting this option to FALSE
disables the WPF synchronization and
prevents Silk4J from checking the
WPF dispatcher, which is the thread
that controls the WPF application. Set
this option to FALSE to solve
synchronization issues with certain
WPF applications. By default, this is
TRUE.

WPFCustomClasses OPT_WPF_CUSTOM_CLASSES LIST OF
STRING

Specify the names of any WPF
classes that you want to expose during
recording and playback. For example,
if a custom class called MyGrid derives
from the WPF Grid class, the objects
of the MyGrid custom class are not
available for recording and playback.
Grid objects are not available for
recording and playback because the
Grid class is not relevant for
functional testing since it exists only for
layout purposes. As a result, Grid
objects are not exposed by default. In
order to use custom classes that are
based on classes that are not relevant
to functional testing, add the custom
class, in this case MyGrid, to the
OPT_WPF_CUSTOM_CLASSES
option. Then you can record, playback,
find, verify properties, and perform any
other supported actions for the
specified classes.

WPFPrefillItems OPT_WPF_PREFILL_ITEMS BOOLEAN Defines whether items in a
WPFItemsControl, like
WPFComboBox or WPFListBox,
are pre-filled during recording and
playback. WPF itself lazily loads items
for certain controls, so these items are
not available for Silk4J if they are not
scrolled into view. Turn pre-filling on,
which is the default setting, to
additionally access items that are not
accessible without scrolling them into
view. However, some applications have
problems when the items are pre-filled
by Silk4J in the background, and these

60 | Silk Test Open Agent

.NET Option Name Agent Option Name Constant
Type

Description

applications can therefore crash. In
this case turn pre-filling off.

XbrowserEnableIframe
Support

OPT_XBROWSER_ENABLE_IFRA
ME_SUPPORT

BOOLEAN Specifies whether to enable iframe and
frame support for browsers. If you are
not interested in the content of the
iframes in a web application, disabling
the iframe support might improve
replay performance. For example,
disabling the iframe support might
significantly improve replay
performance for web pages with many
adds and when testing in a mobile
browser. This option is ignored by
Internet Explorer. This option is
enabled by default.

XBrowserExcludeIFra
mes

OPT_XBROWSER_EXCLUDE_IFR
AMES

STRING Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are considered during testing.
Wildcards are allowed, for example the
entry "src:*advertising*" would exclude
<IFRAME src=http://my.domain/
advertising-banner.html>. This option
is ignored by Internet Explorer. If the
list is empty, all iframes and frames are
considered during testing. Separate
multiple entries with a comma.

XBrowserFindHiddenIn
putFields

OPT_XBROWSER_FIND_HIDDEN_
INPUT_FIELDS

BOOLEAN Specifies whether to display hidden
input fields, which are HTML fields for
which the tag includes
type="hidden". The default value
is TRUE.

XBrowserIncludeIFram
es

OPT_XBROWSER_INCLUDE_IFRA
MES

STRING Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are excluded. Wildcards are allowed,
for example the entry "name:*form"
would include <IFRAME name="user-
form" src=…>. This option is ignored
by Internet Explorer. If the list is empty,
all iframes and frames are considered
during testing. Separate multiple
entries with a comma.

XBrowserSynchronizati
onMode

OPT_XBROWSER_SYNC_MODE STRING Configures the supported
synchronization mode for HTML or
AJAX. Using the HTML mode ensures
that all HTML documents are in an
interactive state. With this mode, you

Silk Test Open Agent | 61

.NET Option Name Agent Option Name Constant
Type

Description

can test simple Web pages. If more
complex scenarios with Java script are
used, it might be necessary to
manually script synchronization
functions, such as WaitForObject,
WaitForProperty,
WaitForDisappearance, or
WaitForChildDisappearance.
Using the AJAX mode eliminates the
need to manually script
synchronization functions. By default,
this value is set to AJAX.

XBrowserSynchronizati
onTimeout

OPT_XBROWSER_SYNC_TIMEOU
T

NUMBER Specifies the maximum time in
milliseconds for an object to be ready.

Note: Deprecated. Use the
option OPT_SYNC_TIMEOUT
instead.

XBrowserSynchronizati
onURLExcludes

OPT_XBROWSER_SYNC_EXCLUD
E_URLS

STRING Specifies the URL for the service or
Web page that you want to exclude
during page synchronization. Some
AJAX frameworks or browser
applications use special HTTP
requests, which are permanently open
in order to retrieve asynchronous data
from the server. These requests may
let the synchronization hang until the
specified synchronization timeout
expires. To prevent this situation, either
use the HTML synchronization mode
or specify the URL of the problematic
request in the Synchronization
exclude list setting.

Type the entire URL or a fragment of
the URL, such as http://test.com/
timeService or timeService.

Separate entries by comma, for
example:

desktop.setOption(Commono
ptions.XBrowserSynchroniz
ationURLExcludes,
{ "fpdownload.macromedia.
com",
"fpdownload.adobe.com",
"download.microsoft.com"
});

62 | Silk Test Open Agent

Configuring the Connections Between the Silk4J
Components

To enable connecting to a remote machine through a firewall or to enable connecting to a remote machine
securely by using HTTPS, you can configure the ports through which Silk4J communicates with the
information service and the Open Agent.

When the Open Agent starts, a random available port is assigned to Silk4J and to the application that you
are testing. The port numbers are registered on the Silk Test information service (information service).

The information service provides the following information to Silk4J:

• The number of the port Silk4J can use to connect to the Open Agent. Communication runs directly
between Silk4J and the agent. You might need to configure this port for remote agent scenarios, for
example to avoid firewall conflicts.

• The browsers that are available on the machine on which the information service is installed.
• The mobile devices that are connected to the machine on which the information service is installed.
• The emulators that are available on the machine on which the information service is installed.
• The mobile browsers that are available on the previously mentioned mobile devices and emulators.

By default, the Open Agent communicates with the information service on port 22901. You can configure
additional ports for the information service as alternate ports that work when the default port is not
available. By default, the information service uses ports 2966, 11998, and 11999 as alternate ports.

Typically, you do not have to configure port numbers manually. However, if you want to test on a remote
machine and there is a port number conflict or an issue with a firewall between the machine on which
Silk4J is installed and the test machine, you can configure the port number for the communication between
Silk4J and the Open Agent on the remote machine or the port number for the communication between
Silk4J and the information service on the remote machine. If you have multiple remote machines on which
you want to test, you can use different port numbers for each remote machine or you can use the same
available port numbers for all remote machines.

The following image shows the communication between Silk4J, the information service and the Open
Agent.

Silk Test Open Agent | 63

Configuring the Port to Connect to the Information
Service
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

By default, the port that is used to connect Silk4J with the information service over a secure HTTPS
connection is port 48561. When you can use the default port, you can type hostname without the port
number for ease of use. If you do specify a port number, ensure that it matches the value for the default

64 | Silk Test Open Agent

port of the information service or one of the additional information service ports. Otherwise, communication
will fail.

If necessary, you can change the port number that all clients use to connect to the information service.

1. Navigate to the infoservice.properties.sample file and open it.

• In a Microsoft Windows system, this file is located in C:\ProgramData\Silk\Silk Test\conf,
where “C:\ProgramData” is equivalent to the content of the ALLUSERSPROFILE environment
variable, which is set by default on Windows systems.

• On macOS, this file is located in /Users/<user>/.silk/silktest/conf.

This file contains commented text and sample alternate port settings.

2. Specify whether Silk4J should communicate with the information service over a secure connection
through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

3. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk4J should communicate with the information
service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

4. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk4J should communicate with the
information service as the infoservice.default.port.

The default port is 22901.

5. Save the file as infoservice.properties.

6. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Configuring the Port to Connect to the Open Agent
Before you begin this task, stop the Silk Test Open Agent.

Typically, you do not have to configure port numbers manually. The information service handles port
configuration automatically. Use the default port of the information service to connect to the Open Agent.
Then, the information service forwards communication to the port that the Open Agent uses. However, you
can configure the information service port settings to avoid problems with a firewall by forcing
communication on a specific port.

If necessary, change the port number that the Silk Test client or the application that you want to test uses to
connect to the Open Agent.

1. Navigate to the agent.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\SilkTest\conf, which is typically C:\Users
\<user name>\AppData\Silk\SilkTest\conf where <user name> equals the current user
name.

2. Change the value for the appropriate port.

Typically, you configure port settings to resolve a port conflict.

Note: Each port number must be unique. Ensure that the port numbers for the Agent differ from
the information service port settings.

Port numbers can be any number from 1 to 65535.

Port settings include:

Silk Test Open Agent | 65

• agent.vtadapter.port – Controls communication between Silk Test Workbench and the Open
Agent when running tests.

• agent.xpmodule.port – Controls communication between Silk Test Classic and the Agent when
running tests.

• agent.autcommunication.port – Controls communication between the Open Agent and the
application that you are testing.

• agent.rmi.port – Controls communication with the Open Agent and Silk4J.
• agent.ntfadapter.port – Controls communication with the Open Agent and Silk4NET.
• agent.heartbeat.port – Required to test with an Open Agent that is installed on a remote

machine.

Note: The ports for Apache Flex testing are not controlled by this configuration file. The assigned
port for Flex application testing is 6000 and increases by 1 for each Flex application that is tested.
You cannot configure the starting port for Flex testing.

3. Save the file as agent.properties.

4. Restart the Open Agent, the Silk Test client, and the application that you want to test.

Editing the Properties of the Silk Test Information
Service
Use the infoservice.properties file to specify the port for the Silk Test Information Service, whether
to use a secure connection through HTTPS, or the capabilities that are applied each time Silk Test
executes a test on the machine on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.

• On a Windows machine, navigate to %PROGRAMDATA%\Silk\SilkTest\conf, for example C:
\ProgramData\Silk\SilkTest\conf.

• On macOS, navigate to ~/.silk/silktest/conf/.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify whether Silk4J should communicate with the information service over a secure connection
through HTTPS.

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

4. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk4J should communicate with the information
service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

5. Optional: To redirect all HTTP requests to the HTTPS port, if you have specified that you want to use a
secure connection through HTTPS, set infoservice.http-to-https.enabled to true.

The default value is false.

6. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk4J should communicate with the
information service as the infoservice.default.port.

The default port is 22901.

7. Optional: To replace the certificates that are used by Silk Test for the HTTPS connection with your own
certificates, see Replacing the Certificates that are Used for the HTTPS Connection to the Information
Service.

66 | Silk Test Open Agent

8. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

Replacing the Certificates that are Used for the HTTPS
Connection to the Information Service
When using a secure connection through HTTPS between Silk4J and the information service, the following
self-signed certificate files are used:

• The keystore certificate file is used for the information service HTTPS server.
• The following certificate files are used for the machine on which the Silk4J client is running:

• cacerts

• cacerts.p12

• cacerts.pem

You can use OpenSSL and the Java keytool executable to replace these files with your own certificate files.

1. Ensure that OpenSSL and a JDK are installed on your machine.

2. Start the Java keytool executable from the bin folder of your JDK installation folder.

3. Create a private and public key pair in your private keystore file on the information service HTTPS
server:

keytool -genkey -alias jetty -keyalg RSA -keypass Borland -storepass
Borland -keystore keystore -validity 1095

4. When prompted to type a first and last name, type * as a wildcard for the host.

5. Export the information from your private keystore to a temporary certificate file named server.cer:

keytool -export -alias jetty -storepass Borland -file server.cer -keystore
keystore

This temporary certificate file is required to generate the certificate files for the machine on which the
Silk4J client is running.

6. Create a certificate file named cacerts from the server.cer file.

keytool -import -v -trustcacerts -alias jetty -file server.cer -keystore
cacerts -keypass Borland -storepass Borland

7. Import the information from the cacerts file into the temporary certificate file cacerts.p12.

keytool -importkeystore -srckeystore cacerts -destkeystore cacerts.p12 -
srcstoretype JKS -deststoretype PKCS12 -srcstorepass Borland -deststorepass
Borland

8. Create the public keystore file cacerts.pem in the PKCS12 keystore format from the temporary
certificate file cacerts.p12

openssl pkcs12 -in cacerts.p12 -out cacerts.pem -clcerts -nokeys

9. Deploy the files keystore, cacerts, cacerts.p12, and cacerts.pem to the configuration folder:

• On a Windows machine, deploy the files to %PROGRAMDATA%\Silk\SilkTest\conf, for example
C:\ProgramData\Silk\SilkTest\conf.

Silk Test Open Agent | 67

• On macOS, deploy the files to ~/.silk/silktest/conf/.

Remote Testing with the Open Agent
You can install Silk4J on a remote machine and test an application on this remote location from the Silk4J
that is installed on your local machine.

Note: If you want to test mobile applications on a mobile device that is connected to a remote
machine or on an Emulator or Simulator on a remote machine, or web applications on Apple Safari or
on a remote Microsoft Edge, you have to use a remote Silk Test information service instead of a
remote Open Agent.

Testing with a Remote Open Agent
To replay tests against an application on a remote machine with Silk4J, perform the following actions:

1. Create a test against the application on the local machine.

2. Install the Open Agent on the remote machine.

For additional information, refer to the Silk Test Installation Guide.

3. Start the Open Agent on the remote machine.

4. In the test script, specify the remote machine as a new desktop.

For example, add the following line to the script:

private Desktop desktop = new Desktop("<IP address or network name of
remote machine>");

Configuring the Open Agent to Run Remotely in a NAT
Environment

To remotely run the Open Agent in a network address translation (NAT) environment, for example a virtual
machine (VM), configure the agent to include a VM argument.

1. Navigate to the agent.properties.sample file and open it.

By default, this file is located at: %APPDATA%\Silk\SilkTest\conf, which is typically C:
\Documents and Settings\<user name>\Application Data\Silk\SilkTest\conf.

2. Add the following property:

java.rmi.server.hostname=<external IP of VM>

3. Save the file as agent.properties .

68 | Silk Test Open Agent

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-installguide-en.pdf

Base State
An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

When you create a class for an application, Silk4J automatically creates a base state.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk4J automatically ensures that your application is at its base state during the following stages:

• Before a test runs
• During the execution of a test
• After a test completes successfully

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

You can edit the base state in the following ways:

• Through the user interface, for example if you want to specify how to start the AUT during both
recording and replay.

• In a script, for example if you only want to start the AUT in the specified way when replaying the tests in
the script.

Modifying the Base State from the User Interface
You can edit the base state from the user interface to specify how Silk4J starts an application under test
(AUT) during recording and replay. You can specify the executable location of the AUT, the working
directory, the URL and the connection string for a web application, and so on. For example, if you want to
execute tests on a production web site, which have already been executed on a staging web site, you can
simply change the URL in the base state and the tests are executed against the new web site.

Note: To specify how Silk4J starts an application under test (AUT) only for specific tests during replay,
edit the base state in the script that contains the tests. For additional information, see Modifying the
Base State in a Script.

To edit the base state through the user interface:

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

2. Click Edit to the right of the application configuration that you want to change.

3. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

You can also click Change to open the Select Application dialog box and then select the browser that
you want to use.

4. To specify an executable, type the full path to the executable into the Executable field.

Note: If you are testing a web application, and you want to specify an executable for the browser,
select the custom browser type.

Base State | 69

For example, to start Mozilla Firefox, type C:\Program Files (x86)\Mozilla Firefox
\firefox.exe.

5. To specify command line arguments, type the arguments into the Command Line Arguments field.

Note: If you are testing a web application, and you want to start a browser with command line
arguments, select the custom browser type.

For example, to start Mozilla Firefox with the profile myProfile, type -p myProfile.

6. If you are testing an application which depends on a supplemental directory, specify the path to the
directory in the Working directory filed.

For example, if you use a batch file to start a Java application, the batch file may reference a JAR file
that relies on a relative path. In this case, specify a working directory to reconcile the relative path.

7. If you are testing a desktop application, specify the main window of the application in the Locator field.
For example, the locator might look like /Shell[@caption='Swt Test Application'].

8. If you are testing a desktop application and you want to use an executable pattern, type the executable
name and file path of the desktop application that you want to test into the Executable Pattern text box.
For example, you might type *\calc.exe to specify the Calculator.

9. If you are testing a desktop application and you want to use a command line pattern in combination with
the executable file, type the command line pattern into the Command Line Pattern text box.

Using the command line is especially useful for Java applications because most Java programs run by
using javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\javaw.exe is used, which matches any Java process. Use the
command line pattern in such cases to ensure that only the application that you want is enabled for
testing. For example, if the command line of the application ends with com.example.MyMainClass you
might want to use *com.example.MyMainClass as the command line pattern.

10.If you are testing a web application, type the address of the web application into the Navigate to URL
text box.

11.Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as the
screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

12.Optional: Select an Orientation for the browser window.

13.Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.

14.If you are testing a web application or a mobile native application on a remote location, for example on a
mobile device that is connected to a Mac, and you want to edit the remote location, click Change to
open the Select Application dialog box and then click Edit Remote Locations.

15.If you are testing a mobile application or a web application on Apple Safari, type the connection string
into the Connection String text box.

For additional information, see Connection String.

16.To edit the capabilities for a WebDriver-based browser, you can use the Connection String text box.
For example, to start Google Chrome with a maximized browser window, type the following into the
Connection String text box:

chromeOptions={"args":["--start-maximized"]}

For additional information, see Setting Options and Capabilities for Web-Driver Based Browsers.

17.If you are testing a mobile native application, specify the name of the mobile application that you want to
test in the Mobile app text box.

18.Click OK.

19.If the application under test usually takes a long time to start, increase the application ready timeout in
the replay options.

70 | Base State

Executing the base state starts the application if it is not already running. If the application is already
running, Silk4J does not start another instance of the application.

If your test includes multiple application configurations and you are modifying an application or Web page
other than the object associated with the base state, you can turn off the base state. This indicates that the
base state will not be used for recording or replaying the modifications. Therefore, you must record the
steps to launch the application or Web page within your test. For instance, if you want to test a Web page,
start Internet Explorer within your test.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

Modifying the Base State in a Script
You can edit the base state in a script to specify how Silk4J starts an application under test (AUT) during
replay. You can specify the executable location of the AUT, the working directory, the URL and the
connection string for a web application, and so on. For example, if you want to execute tests on a
production web site, which have already been executed on a staging web site, you can simply change the
URL in the base state and the tests are executed against the new web site.

Note: To specify how Silk4J starts an application under test (AUT) during recording and replay, edit
the base state from the user interface. For additional information, see Modifying the Base State.

To edit the base state in a script:

1. Open the script.

2. Change the baseState method.

You can add your code between creating the base state and executing it:

// Go to web page 'demo.borland.com/InsuranceWebExtJS'
BrowserBaseState baseState = new BrowserBaseState();
// <-- Insert your changes here!
baseState.execute();

3. Use the following code to specify the executable name and file path of the application that you want to
test:

baseState.setExecutable(executable);

For example, to specify the Calculator, type the following:

baseState.setExecutable("C:\\Windows\\SysWOW64\\calc.exe");

To specify Mozilla Firefox, type the following:

baseState.setExecutable("C:\\Program Files (x86)\\Mozilla Firefox\
\firefox.exe");

4. Use the following code to specify command line arguments:

baseState.setCommandLineArguments(commandLineArguments);

For example, to start Mozilla Firefox with the profile myProfile, type the following:

baseState.setCommandLineArguments("-p myProfile");

5. You can use the following code to specify a different working directory:

baseState.setWorkingDirectory(workingDirectory);

6. If you want to use an executable pattern, use the following code:

baseState.setExecutablePattern(executablePattern);

For example, if you want to specify an executable pattern for the Calculator, type:

baseState.setExecutablePattern("*\\calc.exe");

Base State | 71

7. If you want to use a command line pattern in combination with the executable file, use the following
code:

baseState.setCommandLinePattern(commandLinePattern);

Using the command line is especially useful for Java applications because most Java programs run by
using javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\javaw.exe is used, which matches any Java process. Use the
command line pattern in such cases to ensure that only the application that you want is enabled for
testing.

For example, if the command line of the application ends with com.example.MyMainClass you might
want to use *com.example.MyMainClass as the command line pattern:

baseState.setCommandLinePattern("*com.example.MyMainClass");

8. If you are testing a web application or a mobile web application, and you have not set an application
configuration for the current project, specify one of the installed browsers or mobile browsers.
For example, to specify Google Chrome, type the following:

baseState.setBrowserType(BrowserType.GoogleChrome);

9. If you are testing a web application or a mobile web application, and you have not set an application
configuration for the current project, specify the address of the web application that you want to test:

baseState.setUrl(url);

For example, type the following:

baseState.setUrl("demo.borland.com/InsuranceWebExtJS/");

10.If you want to test a web application on a desktop browser, you can specify the height and width of the
browser window:

baseState.setViewportHeight(viewportHeight);
baseState.setViewportWidth(viewportWidth);

11.If you want to test a web application or a mobile native application on a remote location, specify the
connection string:

new MobileBaseState(connectionString);

For information on the connection string, see Connection String for a Remote Desktop Browser or
Connection String for a Mobile Device.

12.To edit the capabilities for Mozilla Firefox or Google Chrome , you can also use the connection string.
For example, to set the download folder for Mozilla Firefox, type the following:

baseState.setConnectionString(
 "moz:firefoxOptions="
 + "{"
 + " \"prefs\": {"
 + " \"browser.download.dir\":\"C:\\\\Download\\\\\""
 + " }"
 + "};");

For additional information, see Setting Options and Capabilities for Web-Driver Based Browsers.

Running the Base State
Before starting to record a test against an application, you can execute the base state to bring all
applications, against which you want to record, to the appropriate state for recording.

To run the base state:

Click Silk4J > Run Base State.

Depending on the type of the application, Silk4J performs the following actions:

72 | Base State

• Executes the application configurations of all applications, for which an application configuration is
defined in the current project.

• For desktop applications, Silk4J opens the application from the specified installation directory. If the
specified path to the directory includes the %ProgramFiles% environment variable, and Silk4J cannot
find the application in the Program Files directory, Silk4J additionally searches in the Program
Files (x86) directory. If the specified path to the directory includes the %ProgramFiles(x86)%
environment variable, Silk4J first searches in the Program Files (x86) directory, and if the
application is not found, Silk4J additionally searches the Program Files directory.

• For web applications, Silk4J opens the web application in the specified browser and to the specified
URL.

• For mobile web applications, Silk4J opens the specified browser on the specified mobile device or
Emulator to the specified URL.

• For mobile native applications, Silk4J opens the specified app on the specified mobile device or
Emulator. If the specified app is not installed on the specified mobile device or Emulator, Silk4J installs
and then opens the app.

Base State | 73

Application Configuration
An application configuration defines how Silk4J connects to the application that you want to test. Silk4J
automatically creates an application configuration when you create the base state. However, at times, you
might need to modify, remove, or add an additional application configuration. For example, if you are testing
an application that modifies a database and you use a database viewer tool to verify the database
contents, you must add an additional application configuration for the database viewer tool.

• For a Windows application, an application configuration includes the following:

• Executable pattern

All processes that match this pattern are enabled for testing. For example, the executable pattern for
Internet Explorer is *\IEXPLORE.EXE. All processes whose executable is named IEXPLORE.EXE
and that are located in any arbitrary directory are enabled.

• Command line pattern

The command line pattern is an additional pattern that is used to constrain the process that is
enabled for testing by matching parts of the command line arguments (the part after the executable
name). An application configuration that contains a command line pattern enables only processes for
testing that match both the executable pattern and the command line pattern. If no command-line
pattern is defined, all processes with the specified executable pattern are enabled. Using the
command line is especially useful for Java applications because most Java programs run by using
javaw.exe. This means that when you create an application configuration for a typical Java
application, the executable pattern, *\javaw.exe is used, which matches any Java process. Use
the command line pattern in such cases to ensure that only the application that you want is enabled
for testing. For example, if the command line of the application ends with
com.example.MyMainClass you might want to use *com.example.MyMainClass as the command
line pattern.

• For a web application in a desktop browser on the local machine, an application configuration includes
only the browser type.

Note: To start a browser with command line arguments or to specify a working directory or a
specific executable for the browser, select the custom browser type. For additional information, see
Modifying the Base State.

• For a web application in Apple Safari or in Microsoft Edge on a remote machine, an application
configuration includes the following:

• Browser type.
• Connection string.

• For a web application in a mobile browser, an application configuration includes the following:

• Browser type.
• Connection string.

• For a native mobile application, an application configuration includes the following:

• Connection string.
• Simple application name. If multiple applications on the mobile device have the same name, the fully

qualified name of the application is used.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

74 | Application Configuration

Modifying an Application Configuration
An application configuration defines how Silk4J connects to the application that you want to test. Silk4J
automatically creates an application configuration when you create the base state. However, at times, you
might need to modify, remove, or add an additional application configuration. For example, if you are testing
an application that modifies a database and you use a database viewer tool to verify the database
contents, you must add an additional application configuration for the database viewer tool.

1. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

2. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

3. To remove an application configuration, click Remove next to the appropriate application configuration.

4. To edit an application configuration, click Edit.

5. If you are testing a desktop application, type the executable name and file path of the desktop
application that you want to test into the Executable Pattern text box.

For example, you might type *\calc.exe to specify the Calculator.

6. If you are testing a desktop application and you want to use a command line pattern in combination with
the executable file, type the command line pattern into the Command Line Pattern text box.

7. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

You can also click Change to open the Select Application dialog box and then select the browser that
you want to use.

8. If you are testing a web application, type the web address for the web page to launch when a test
begins into the URL to navigate text box.

9. To detect any visual breakpoints for a web application, click Analyze.

For additional information, see Detecting Visual Breakpoints.

10.Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as the
screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

11.Optional: Select an Orientation for the browser window.

12.If you are testing a mobile application or a web application on Apple Safari, type the connection string
into the Connection String text box.

For additional information, see Connection String for a Mobile Device.

13.Click OK.

Select Application Dialog Box
Use the Select Application dialog box to select the application that you want to test, to associate an
application with an object map, or to add an application configuration to a test. Application types are listed
in tabs on the dialog box. Select the tab for the application type you want to use.

Application Configuration | 75

Windows Lists all Microsoft Windows applications that are running on the system. Select an item from
the list and click OK.

Use the Hide processes without caption check box to filter out applications that have no
caption.

Web Lists all available browsers, including mobile browsers on any connected mobile devices and
Apple Safari on a Mac. Specify the web page to open in the Enter URL to navigate text box.
If an instance of the selected browser is already running, you can click Use URL from
running browser to record against the URL currently displayed in the running browser
instance. If you want to test a web application on a desktop browser with a predefined browser
size, select the browser size from the Browser size list. When selecting a browser size, you
can also select an Orientation for the selected browser.

Note: Do not add more than one browser application configuration when testing a web
application with a defined base state.

Mobile Lists all available mobile devices and all running Android emulators, including devices
connected to a remote location. Select this tab to test mobile native applications. You can
select to test the mobile application (app) that is currently running on the selected mobile
device, or you can browse for or manually specify the name or file of the app that you want to
test.

Editing Remote Locations
You can use the Remote Locations dialog box to add any browsers and mobile devices on a remote
location to the set of applications that you can test.

1. Click Silk4J > Edit Remote Locations. The Remote Locations dialog box appears.
2. To add an additional remote location, perform the following actions:

a) Click on the arrow to the right of Add Location to specify whether you want to add a remote location
which is using the Silk Test Information Service, or Silk Central.

Note: You can only configure one Silk Central as a remote location. If you have already
configured the integration with Silk Central, Silk Central is listed in the remote locations list.

b) Click Add Location. The Add Location dialog box appears.
c) Type the URL of the remote location and the port through which Silk4J connects to the information

service on the remote machine into the Host field.
The default port is 22901.

d) Optional: Edit the name of the remote location in the Name field.
3. To edit an existing remote location, click Edit.
4. To remove a remote location, click Remove.
5. Optional: To reduce the amount of browsers and devices in the Select Application dialog, click Do not

show devices and browsers from this location. The installed browsers and connected devices of the
remote location will no longer be displayed in the Select Application dialog. By default, all installed
browsers and connected devices of all remote locations are displayed in the Select Application dialog.

6. By default, remote locations are saved to %APPDATA%\Silk\SilkTest\conf
\remoteLocations.xml. To change the file in which the remote locations are saved, for example to
share the file with other team members, perform the following actions:
a) Click Sharing Options. The Sharing Options dialog box appears.
b) Click Save to shared file.
c) Click Browse to select the file.
You could also set the full path to the remote locations in a file named
remoteLocationsFileLocation.properties, for example if you want to use a file that is located

76 | Application Configuration

in a repository. For example, to use the remote locations that are specified in the file
remoteLocations.xml, under C:\mySources, create a file with the name
remoteLocationsFileLocation.properties in the folder %APPDATA%\Silk\SilkTest\conf
\ and type fileLocation=C\:\\mySources\\remoteLocations.xml into the file.

7. To load a set of already configured remote locations from a shared file, for example to use remote
locations that have been specified by another team member, perform the following actions:

a) Click Sharing Options. The Sharing Options dialog box appears.
b) Click Load from shared file.
c) Click Browse to select the file.

8. Click OK.

When you have added a remote location, the browsers that are installed on the remote location, including
Apple Safari on a Mac, are available in the Web tab of the Select Application dialog box, and the mobile
devices that are connected to the remote location are available in the Mobile tab of the Select Application
dialog box.

Application Configuration Errors
When the program cannot attach to an application, the following error message opens:
Failed to attach to application <Application Name>. For additional information, refer to the Help.

In this case, one or more of the issues listed in the following table may have caused the failure:

Issue Reason Solution

Time out • The system is too slow.

• The size of the memory of the
system is too small.

Use a faster system or try to reduce
the memory usage on your current
system.

User Account Control (UAC) fails You have no administrator rights on
the system.

Log in with a user account that has
administrator rights.

Command-line pattern The command-line pattern is too
specific. This issue occurs especially
for Java. The replay may not work as
intended.

Remove ambiguous commands from
the pattern.

• The Select Browser dialog box
does not display when running a
test against a Web application.

• Multiple browser instances are
started when running a test
against a Web application.

• When running a test against a
Web application with a browser
instance open, Silk4J might stop
working.

A base state and multiple browser
application configurations are defined
for the test case.

Remove all browser application
configurations except one from the
test case.

Playback error when running a test No application configuration is
defined for the test.

The following exception might be
displayed:

No application
configuration present.

• When running a keyword-driven
test, ensure that a keyword which
executes the base state is
included in the test.

Application Configuration | 77

Issue Reason Solution

• Ensure that an application
configuration is configured for the
current project.

Troubleshooting Application Configurations

Why is my application not displayed in the Select Application dialog box

• Uncheck the Hide processes without caption check box. This check box is checked by default and
prevents applications without a caption from being displayed in the dialog box.

• Run Silk4J with elevated privileges.

1. Close Silk4J.
2. Stop the Open Agent.
3. Run Silk4J as an administrator.

• Use the Task Manager to check if the application is running under a different user account.
• Ensure that the application is not started with the runas command or a similar command.

Configuring Silk4J to Launch an Application that Uses the
Java Network Launching Protocol (JNLP)

Applications that start using the Java Network Launching Protocol (JNLP) require additional configuration
in Silk4J. Because these applications are started from the Web, you must manually configure the
application configuration to start the actual application and launch the "Web Start". Otherwise, the test will
fail on playback unless the application is already running.

1. If the test fails, because Silk4J cannot start the application, edit the application configuration.

2. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

3. Edit the base state to ensure that the Web Start launches during playback.

a) Click Edit.
b) In the Executable Pattern text box, type the absolute path for the javaws.exe.

For example, you might type:

%ProgramFiles%\Java\jre6\bin\javaws.exe

c) In the Command Line Pattern text box, type the command line pattern that includes the URL to the
Web Start.

"<url-to-jnlp-file>"

For example, for the SwingSet3 application, type:

"http://download.java.net/javadesktop/swingset3/SwingSet3.jnlp"

d) Click OK.

4. Click OK. The test uses the base state to start the web-start application and the application
configuration executable pattern to attach to javaw.exe to execute the test.

When you run the test, a warning states that the application configuration EXE file does not match the base
state EXE file. You can disregard the message because the test executes as expected.

78 | Application Configuration

Creating a Test that Tests Multiple Applications
You can test multiple applications with a single test script. To create such a test script, you need to add an
application configuration for each application that you want to test to the project in which the script resides.

1. Record or manually script a test for the primary application that you want to test.

2. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

3. To add an additional application configuration, click Add application configuration.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

The Select Application dialog box opens. Select the tab and then the application that you want to test
and click OK.

4. Click OK.

5. Record or manually script additional actions into the script using the new application configuration.

Note: Do not add more than one browser application configuration when testing a web application
with a defined base state.

Application Configuration | 79

Setting Script Options
Specify script options for recording, browser and custom attributes, classes to ignore, synchronization, and
the replay mode.

Setting TrueLog Options
You can enable TrueLog reports and HTML reports to capture bitmaps and to log information for test runs
with Silk4J.

Logging bitmaps and controls might adversely affect the performance of Silk4J. Because capturing bitmaps
and logging information can result in large TrueLog files, you may want to log test cases with errors only
and then adjust the TrueLog options for test cases where more information is needed.

The results of test runs can be examined in the TrueLog Explorer, in the case of TrueLog reports, or in a
browser, in the case of HTML reports. For additional information on the TrueLog Explorer, refer to the Silk
TrueLog Explorer Help for Silk Test.

Note: To reduce the size of TrueLog files with Silk Test 17.5 or later, the file format for TrueLog files
has changed from .xlg to the compressed .tlz file format. Files with a .xlg suffix are
automatically appended with a .tlz suffix. To parse result data from a .tlz file, you can unzip
the .tlz file and parse the data from the included .xlg file.

To enable creating result data and to customize the information that Silk4J collects, perform the following
steps:

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the TrueLog tab.

3. In the Basic Settings area, check the Enable TrueLog check box.

• Click All testcases to log activity for all test cases, both successful and failed. This is the default
setting.

• Click Testcases with errors to log activity for only those test cases with errors.

4. Select the result format:

• Select TrueLog Report (.tlz) to generate visual execution logs that can be viewed in TrueLog
Explorer.

• Select HTML Report to generate an HTML-based report that can be viewed in a browser.
• Select Both to generate both a TrueLog report and an HTML-based report.

5. In the TrueLog location field, type the name of and optionally the path to the TrueLog file, or click
Browse and select the file.

The path is relative to the machine on which the agent is running. The default path is the path of the
Silk4J project folder, and the default name is the name of the suite class, with a .tlz suffix. To ensure
that TrueLog files are not overwritten, for example when you perform parallel testing, you can add
placeholders to the TrueLog file name. These placeholders are replaced with the appropriate data at
execution time. The HTML report is created in a sub-directory of the specified TrueLog location.

Note: The path is validated at execution time. Tests that are executed by Silk Central set this value
to the Silk Central results directory to enable the screenshots to be shown in the result view.

6. Select the Screenshot mode.

Default is On Error.

7. Optional: Set the Delay.

80 | Setting Script Options

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-truelogexplorer-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-truelogexplorer-en.pdf

This delay gives the operating system time to draw the application window before a bitmap is taken. You
can try to add a delay if your application is not drawn properly in the captured bitmaps.

8. Click OK.

Setting Recording Preferences
Set the shortcut key combination to pause recording and specify whether absolute values and mouse move
actions are recorded.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4J > Edit Options.

2. Click the Recording tab.

3. To set Ctrl+Shift as the shortcut key combination to use to pause recording, check the
OPT_ALTERNATE_RECORD_BREAK check box.

By default, Ctrl+Alt is the shortcut key combination.

Note: For SAP applications, you must set Ctrl+Shift as the shortcut key combination.

4. To record absolute values for scroll events, check the OPT_RECORD_SCROLLBAR_ABSOLUT check
box.

5. To record mouse move actions for web applications, Win32 applications, and Windows Forms
applications, check the OPT_RECORD_MOUSEMOVES check box. You cannot record mouse move
actions for child technology domains of the xBrowser technology domain, for example Apache Flex and
Swing.

6. If you record mouse move actions, in the OPT_RECORD_MOUSEMOVE_DELAY text box, specify how
many milliseconds the mouse has to be motionless before a MouseMove is recorded.

By default this value is set to 200.

7. To record text clicks instead of Click actions on objects where TextClick actions usually are
preferable to Click actions, check the OPT_RECORD_TEXT_CLICK check box.

8. To record image clicks instead of Click actions on objects where ImageClick actions usually are
preferable to Click actions, check the OPT_RECORD_IMAGE_CLICK check box.

9. To define whether you want to record object map entries or XPath locators, select the appropriate
recording mode from the OPT_RECORD_OBJECTMAPS_MODE list:

• Object map entries for new and existing objects. This is the default mode.
• XPath locators for new and existing objects.
• XPath locators for new objects only. For objects that already exist in an object map, the object

map entry is reused. Choosing this setting enables you to create object maps for the main controls
of an AUT, and to persist these object maps while creating additional tests against the AUT.

10.To resize the application under test (AUT) when a recording session starts, check the
OPT_RESIZE_APPLICATION_BEFORE_RECORDING check box.

This check box is checked by default, enabling the Silk Recorder to display next to the AUT. When this
check box is unchecked, the AUT and the Silk Recorder might overlap.

11.Click OK.

Setting Browser Recording Options
Specify browser attributes to ignore while recording and whether to record native user input instead of
DOM functions.

Setting Script Options | 81

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the Browser tab.

3. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you do not want to record attributes named height, add the height attribute name to
the grid.

Separate attribute names with a comma.

4. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.
For example, if you do not want to record attributes assigned the value of x-auto, add x-auto to the
grid.

Separate attribute values with a comma.

5. To record native user input instead of DOM functions, check the
OPT_XBROWSER_RECORD_LOWLEVEL check box.

For example, to record Click instead of DomClick and TypeKeys instead of SetText, check this
check box.

If your application uses a plug-in or AJAX, use native user input. If your application does not use a plug-
in or AJAX, we recommend using high-level DOM functions, which do not require the browser to be
focused or active during playback. As a result, tests that use DOM functions are faster and more
reliable.

6. To set the maximum length for locator attribute values, type the length into the field in the Maximum
attribute value length section.

If the actual length exceeds that limit the value is truncated and a wild card (*) is appended. By default
this value is set to 20 characters.

7. To automatically search for an unobstructed click spot on the specified target element, check the
OPT_XBROWSER_ENABLE_SMART_CLICK_POSITION check box.

8. To force Mozilla Firefox to open external links in a new tab instead of a new window, check
OPT_FIREFOX_SINGLE_WINDOW_MODE.

Note: This option only works with Mozilla Firefox 52 or later.

9. To disable iframe and frame support for browsers, uncheck
OPT_XBROWSER_ENABLE_IFRAME_SUPPORT.

If you are not interested in the content of the iframes in a web application, disabling the iframe support
might improve replay performance. For example, disabling the iframe support might significantly improve
replay performance for web pages with many adds and when testing in a mobile browser. This option is
ignored by Internet Explorer. This option is enabled by default.

10.In the Whitelist for iframe support, specify attributes of iframes and frames that should be considered
during testing.

Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are excluded. Wildcards are allowed, for example the entry
"name:*form" would include <IFRAME name="user-form" src=…>. This option is ignored by Internet
Explorer. If the list is empty, all iframes and frames are considered during testing. Separate multiple
entries with a comma.

11.In the Blacklist for iframe support, specify attributes of iframes and frames that should be excluded
during testing.

Every entry in the list defines an attribute name and the corresponding value. All iframes and frames
that do not match at least one of the entries are considered during testing. Wildcards are allowed, for
example the entry "src:*advertising*" would exclude <IFRAME src=http://my.domain/advertising-
banner.html>. This option is ignored by Internet Explorer. If the list is empty, all iframes and frames are
considered during testing. Separate multiple entries with a comma.

82 | Setting Script Options

12.Click OK.

Setting Custom Attributes
Silk4J includes a sophisticated locator generator mechanism that guarantees locators are unique at the
time of recording and are easy to maintain. Depending on your application and the frameworks that you
use, you might want to modify the default settings to achieve the best results. You can use any property
that is available in the respective technology as a custom attribute given that they are either numbers
(integers, doubles), strings, item identifiers, or enumeration values.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

For the technology domains listed in the list box on the Custom Attributes tab, you can also retrieve
arbitrary properties (such as a WPFButton that defines myCustomProperty) and then use those properties
as custom attributes. To achieve optimal results, add a custom automation ID to the elements that you want
to interact with in your test. In Web applications, you can add an attribute to the element that you want to
interact with, such as <div myAutomationId= "my unique element name" />. Or, in Java SWT,
the developer implementing the GUI can define an attribute (for example testAutomationId) for a
widget that uniquely identifies the widget in the application. A tester can then add that attribute to the list of
custom attributes (in this case, testAutomationId), and can identify controls by that unique ID. This
approach can eliminate the maintenance associated with locator changes.

If multiple objects share the same attribute value, such as a caption, Silk4J tries to make the locator unique
by combining multiple available attributes with the "and" operation and thus further narrowing down the list
of matching objects to a single object. Should that fail, an index is appended. Meaning the locator looks for
the nth control with the caption xyz.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, loginName to two
different text fields, both fields will return when you call the loginName attribute.

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the Custom Attributes tab.

3. From the Select a tech domain list box, select the technology domain for the application that you are
testing.

Note: You cannot set custom attributes for Flex or Windows API-based client/server (Win32)
applications.

4. Add the attributes that you want to use to the list.

If custom attributes are available, the locator generator uses these attributes before any other attribute.
The order of the list also represents the priority in which the attributes are used by the locator generator.
If the attributes that you specify are not available for the objects that you select, Silk4J uses the default
attributes for the application that you are testing.

Separate attribute names with a comma.

Note: To include custom attributes in a web application, add them to the html tag. For example
type, <input type='button' bcauid='abc' value='click me' /> to add an attribute
called bcauid.

Note: To include custom attributes in a Java SWT control, use the
org.swt.widgets.Widget.setData(String key, Object value) method.

Note: To include custom attributes in a Swing control, use the
putClientProperty("propertyName", "propertyValue") method.

Setting Script Options | 83

5. Click OK.

Setting Classes to Ignore
To simplify the object hierarchy and to shorten the length of the lines of code in your test scripts and
functions, you can suppress the controls for certain unnecessary classes in the following technologies:

• Win32.
• Java AWT/Swing.
• Java SWT/Eclipse.
• Windows Presentation Foundation (WPF).

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the Transparent Classes tab.

3. In the Transparent classes grid, type the name of the class that you want to ignore during recording
and playback.

Separate class names with a comma.

4. Click OK.

Setting WPF Classes to Expose During Recording and
Playback

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the WPF tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.

4. Click OK.

Setting Synchronization Options
Specify the synchronization and timeout values for web applications.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the Synchronization tab.

3. To specify the synchronization algorithm for the ready state of a web application, from the
OPT_XBROWSER_SYNC_MODE list box, choose an option.

84 | Setting Script Options

The synchronization algorithm configures the waiting period for the ready state of an invoke call. By
default, this value is set to AJAX.

4. In the Synchronization exclude list text box, type the entire URL or a fragment of the URL for any
service or web page that you want to exclude.

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently
open in order to retrieve asynchronous data from the server. These requests may let the
synchronization hang until the specified synchronization timeout expires. To prevent this situation, either
use the HTML synchronization mode or specify the URL of the problematic request in the
Synchronization exclude list setting.

For example, if your web application uses a widget that displays the server time by polling data from the
client, permanent traffic is sent to the server for this widget. To exclude this service from the
synchronization, determine what the service URL is and enter it in the exclusion list.

For example, you might type:

• http://example.com/syncsample/timeService
• timeService
• UICallBackServiceHandler

Separate multiple entries with a comma.

Note: If your application uses only one service, and you want to disable that service for testing,
you must use the HTML synchronization mode rather than adding the service URL to the exclusion
list.

Tip: Micro Focus recommends adding a substring of an URL to the exclude list, instead of the
entire URL. For example, add /syncsample to the exclude list instead of http://
example.com/syncsample/timeService. Excluding the entire URL might not work because
the browser might return only a relative URL to Silk4J. For example, if the browser returns only /
syncsample/timeService and you have added http://example.com/syncsample/
timeService to the exclude list, Silk4J does not exclude the returned URL.

5. To specify the maximum time, in milliseconds, to wait for an object to be ready, type a value in the
OPT_SYNC_TIMEOUT text box.

By default, this value is set to 300000.

6. To specify the time, in milliseconds, to wait for an object to be resolved during replay, type a value in the
OPT_WAIT_RESOLVE_OBJDEF text box.

By default, this value is set to 5000.

7. To specify the time, in milliseconds, to wait before the agent attempts to resolve an object again, type a
value in the OPT_WAIT_RESOLVE_OBJDEF_RETRY text box.

By default, this value is set to 500.

8. Click OK.

Setting Replay Options
Specify whether you want to ensure that the object that you want to test is active and whether to override
the default replay mode. The replay mode defines whether controls are replayed with the mouse and
keyboard or with the API. Use the default mode to deliver the most reliable results. When you select
another mode, all controls use the selected mode.

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the Replay tab. The Replay Options page displays.

3. If the application under test usually takes a long time to start, increase the time to wait for the
application by increasing the value in the OPT_APPREADY_TIMEOUT text box.

Setting Script Options | 85

4. From the OPT_REPLAY_MODE list box, select one of the following options:

• Default – Use this mode for the most reliable results. By default, each control uses either the mouse
and keyboard (low level) or API (high level) modes. With the default mode, each control uses the
best method for the control type.

• High level – Use this mode to replay each control using the API of the target technology. For
example for Rumba controls, the Rumba RDE API is used to replay the controls.

• Low level – Use this mode to replay each control using the mouse and keyboard.

5. To ensure that the object that you want to test is active, check the OPT_ENSURE_ACTIVE_OBJDEF
check box.

6. To change the time to wait for an object to become enabled during playback, type the new time into the
field in the Object enabled timeout section.

The time is specified in milliseconds. The default value is 1000.

7. To enable the Playback Status dialog box, check the OPT_SHOW_PLAYBACK_STATUS_DIALOG
check box.

You can use the Playback Status dialog box to see the actions that are performed during the replay of
a test on a remote location, for example when executing a test against a mobile application on a remote
device.

8. To display a video or screenshots of the application under test in the Playback Status dialog box, check
the OPT_PLAYBACK_STATUS_DIALOG_SCREENSHOTS check box.

9. To edit the prefix that specifies that an asset is located in the current project, edit the text for the Asset
namespace option in the OPT_ASSET_NAMESPACE text box.

10.Click OK.

Setting UI Automation Options
Enable UI Automation support and specify which attributes and values to exclude from locators to allow
Silk4J to better identify objects in applications that have implemented UI Automation provider interfaces, for
example applications that are based on JavaFX or QT.

Note: All the following settings are optional. Change these settings if they will improve the quality of
your test methods.

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the UI Automation tab.

3. Set Enable Microsoft UI Automation Support to True to enable Microsoft UI Automation support
instead of the normal Win32 control recognition.

Note: If you are testing against a Java FX application, you do not have to enable the UI
Automation support, as Silk4J enables this out-of-the-box for Java FX applications.

Note: The UI Automation support overrides the standard technology-domain-specific support.
When you are finished interacting with the controls that require UI Automation support, disable the
UI Automation support again to resume working with standard controls.

4. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.
For example, if you want to ignore the attribute name automationid, because multiple controls in your
AUT have an attribute with this name, add the automationid attribute name to the list.

Separate attribute names with a comma.

5. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.
For example, the value JavaFX* is added to the list by default, because all JavaFX controls include an
attribute value of the form JavaFX<number>.

Separate attribute names with a comma.

6. Click OK.

86 | Setting Script Options

Setting Advanced Options
Set advanced options to enable fallback support, to specify whether locator attribute names should be case
sensitive, and so on.

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click the Advanced tab. The Advanced Options page displays.

3. To test an embedded Chrome application, specify the executable and the port as a value pair in the
Enable embedded Chrome support field.
For example, myApp.exe=9222.

To specify multiple embedded Chrome applications, separate the value pairs with a comma.

4. Enable OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to enable the mobile native
fallback support for hybrid mobile applications that are not testable with the default browser support.

5. Enable OPT_ENABLE_ACCESSIBILITY to enable Microsoft Accessibility in addition to the normal
Win32 control recognition.

6. Enable OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT to remove the focus from the window before
capturing a text.

A text capture is performed during recording and replay by the following methods:

• TextClick

• TextCapture

• TextExists

• TextRect

7. Enable OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE to set locator attribute names to be case
sensitive. The names of locator attributes for mobile web applications are always case insensitive, and
this option is ignored when recording or replaying mobile web applications.

8. Set the default accuracy level for new image assets by selecting a value from 1 (low accuracy) to 10
(high accuracy) from the OPT_IMAGE_ASSET_DEFAULT_ACCURACY list box.

9. Set the default accuracy level for new image verification assets by selecting a value from 1 (low
accuracy) to 10 (high accuracy) from the OPT_IMAGE_VERIFICATION_DEFAULT_ACCURACY list
box.

10.Click OK.

Setting Script Options | 87

Setting Silk4J Preferences
Silk4J requires Java Runtime Environment (JRE) version 1.6 or higher.

By default Silk4J checks the JRE version each time you start Silk4J, and displays an error message if the
JRE version is incompatible with Silk4J.

1. To turn off the error message, choose Window > Preferences > Silk4J .

2. Select the Silk4J branch and uncheck the Show error message if the JRE version is incompatible
check box.

3. Click OK.

88 | Setting Silk4J Preferences

Converting Projects to and from Silk4J
A Silk4J project has the following additional characteristic as compared to a standard Java project:

• A dependency to the Silk4J library and the JUnit library.

Converting a Java Project to a Silk4J Project
If you have an existing Java project that you want to use with Silk4J, follow this procedure.

1. In the Package Explorer, right-click the Java project that you want to convert to a Silk4J project. The
project context menu appears.

2. Choose Silk4J Tools > Make Silk4J Project .

The Silk4J library is added to the project. If the project does not contain a dependency to the JUnit
library, this library is also added to the project.

Converting a Silk4J Project to a Java Project
1. In the Package Explorer, right-click the Silk4J project that you want to convert to a Java project. The

project context menu appears.

2. Choose Silk4J Tools > Remove Silk4J Capability .

The Silk4J library is removed from the project.

Note: The dependency to the JUnit library remains in place since it is likely that this project will
continue to use JUnit.

Converting Projects to and from Silk4J | 89

Testing Specific Environments
Silk4J supports testing several types of environments.

Active X/Visual Basic Applications
Silk4J provides support for testing ActiveX/Visual Basic applications.

Check the Release Notes for the most up-to-date information about supported versions, any known issues,
and workarounds.

Dynamically Invoking ActiveX/Visual Basic Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point)

90 | Testing Specific Environments

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Apache Flex Support
Silk4J provides built-in support for testing Apache Flex applications using Internet Explorer and the
Standalone Flash Player, and Adobe AIR applications built with Apache Flex 4 or later.

Silk4J also supports multiple application domains in Apache Flex 3.x and 4.x applications, which enables
you to test sub-applications. Silk4J recognizes each sub-application in the locator hierarchy tree as an
application tree with the relevant application domain context. At the root level in the locator attribute table,
Apache Flex 4.x sub-applications use the SparkApplication class. Apache Flex 3.x sub-applications
use the FlexApplication class.

Supported Controls

For a complete list of the record and playback controls available for Apache Flex testing, view a list of the
supported Flex classes in the com.borland.silktest.jtf.flex package in the API Reference.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Apache Flex. The Silk
Test Automation SDK supports the same components in the same manner that the Automation API
for Apache Flex supports them. For instance, the typekey statement in the Flex Automation API
does not support all keys. You can use the input text statement to resolve this issue. For more
information about using the Flex Automation API, see the Apache Flex Release Notes.

Configuring Flex Applications to Run in Adobe Flash
Player
To run an Apache Flex application in Flash Player, one or both of the following must be true:

• The developer who creates the Flex application must compile the application as an EXE file. When a
user launches the application, it will open in Flash Player. Install Windows Flash Player from http://
www.adobe.com/support/flashplayer/downloads.html.

• The user must have Windows Flash Player Projector installed. When a user opens a Flex .SWF file, he
can configure it to open in Flash Player. Windows Flash Projector is not installed when Flash Player is
installed unless you install the Apache Flex developer suite. Install Windows Flash Projector from http://
www.adobe.com/support/flashplayer/downloads.html.

1. For Microsoft Windows 7 and Microsoft Windows Server 2008 R2, configure Flash Player to run as
administrator. Perform the following steps:

a) Right-click the Adobe Flash Player program shortcut or the FlashPlayer.exe file, then click
Properties.

b) In the Properties dialog box, click the Compatibility tab.
c) Check the Run this program as an administrator check box and then click OK.

2. Start the .SWF file in Flash Player from the command prompt (cmd.exe) by typing:
"<Application_Install_Directory>\ApplicationName.swf"

By default, the <SilkTest_Install_Directory> is located at Program Files\Silk\Silk Test.

Testing Specific Environments | 91

http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html

Launching the Component Explorer
Silk Test provides a sample Apache Flex application, the Component Explorer. Compiled with the Adobe
Automation SDK and the Silk Test specific automation implementation, the Component Explorer is pre-
configured for testing.

In Internet Explorer, open http://demo.borland.com/flex/SilkTest19.5/index.html. The application
launches in your default browser.

Testing Apache Flex Applications
Silk Test provides built-in support for testing Apache Flex applications. Silk Test also provides several
sample Apache Flex applications. You can access the sample applications at http://demo.borland.com/flex/
SilkTest19.5/index.html.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Before you can test your own Apache Flex application, your Apache Flex developers must perform the
following steps:

• Enabling your Apache Flex application for testing
• Creating testable Apache Flex applications
• Coding Apache Flex containers
• Implementing automation support for custom controls

To test your own Apache Flex application, follow these steps:

• Configuring security settings for your local Flash Player
• Recording a test
• Playing back a test
• Customizing Apache Flex scripts
• Testing a custom Apache Flex control

Note: Loading an Apache Flex application and initializing the Flex automation framework may take
some time depending on the machine on which you are testing and the complexity of your Apache
Flex application. Set the Window timeout value to a higher value to enable your application to fully
load.

Testing Apache Flex Custom Controls
Silk4J supports testing Apache Flex custom controls. However, by default, Silk4J cannot record and
playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk4J does not expose. The developer of the custom control can also add methods and
properties to the custom control specifically for making the control easier to test. A user can then call
those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

92 | Testing Specific Environments

http://demo.borland.com/flex/SilkTest19.5/index.html
http://demo.borland.com/flex/SilkTest19.5/index.html
http://demo.borland.com/flex/SilkTest19.5/index.html
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• No specific class name is included in the locator, for example Silk4J records //FlexBox rather
than //FlexSpinner.

• Only limited recording support.
• Silk4J cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk4J treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk4J API
• Silk4J uses the specific class name in the locator, for example Silk4J records //FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Dynamically Invoking Flex Methods
You can call methods, retrieve properties, and set properties on controls that Silk4J does not expose by
using the dynamic invoke feature. This feature is useful for working with custom controls and for working
with controls that Silk4J supports without customization.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

Note: Typically, most properties are read-only and cannot be set.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods that the Flex API defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point)

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

Testing Specific Environments | 93

• All methods that have no return value return null.

Defining a Custom Control in the Test Application
Typically, the test application already contains custom controls, which were added during development of
the application. If your test application already includes custom controls, you can proceed to Testing a Flex
Custom Control Using Dynamic Invoke or to Testing a Custom Control Using Automation Support.

This procedure shows how a Flex application developer can create a spinner custom control in Flex. The
spinner custom control that we create in this topic is used in several topics to illustrate the process of
implementing and testing a custom control.

The spinner custom control includes two buttons and a textfield, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and click Up to increment
the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

1. In the test application, define the layout of the control.
For example, for the spinner control type:

<?xml version="1.0" encoding="utf-8"?>
<customcontrols:SpinnerClass xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:controls="mx.controls.*" xmlns:customcontrols="customcontrols.*">
 <controls:Button id="downButton" label="Down" />
 <controls:TextInput id="text" enabled="false" />
 <controls:Button id="upButton" label="Up"/>
</customcontrols:SpinnerClass>

2. Define the implementation of the custom control.
For example, for the spinner control type:

package customcontrols
{
 import flash.events.MouseEvent;

 import mx.containers.HBox;
 import mx.controls.Button;
 import mx.controls.TextInput;
 import mx.core.UIComponent;
 import mx.events.FlexEvent;

 [Event(name="increment", type="customcontrols.SpinnerEvent")]
 [Event(name="decrement", type="customcontrols.SpinnerEvent")]

 public class SpinnerClass extends HBox
 {
 public var downButton : Button;
 public var upButton : Button;
 public var text : TextInput;
 public var ssss: SpinnerAutomationDelegate;
 private var _lowerBound : int = 0;
 private var _upperBound : int = 5;

 private var _value : int = 0;
 private var _stepSize : int = 1;

 public function SpinnerClass() {
 addEventListener(FlexEvent.CREATION_COMPLETE,

94 | Testing Specific Environments

creationCompleteHandler);
 }

 private function creationCompleteHandler(event:FlexEvent) : void {
 downButton.addEventListener(MouseEvent.CLICK,
downButtonClickHandler);
 upButton.addEventListener(MouseEvent.CLICK,
upButtonClickHandler);
 updateText();
 }

 private function downButtonClickHandler(event : MouseEvent) : void {
 if(Value - stepSize >= lowerBound) {
 Value = Value - stepSize;
 }
 else {
 Value = upperBound - stepSize + Value - lowerBound + 1;
 }

 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.DECREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function upButtonClickHandler(event : MouseEvent) : void {
 if(cValue <= upperBound - stepSize) {
 Value = Value + stepSize;
 }
 else {
 Value = lowerBound + Value + stepSize - upperBound - 1;
 }

 var spinnerEvent : SpinnerEvent = new
SpinnerEvent(SpinnerEvent.INCREMENT);
 spinnerEvent.steps = _stepSize;
 dispatchEvent(spinnerEvent);
 }

 private function updateText() : void {
 if(text != null) {
 text.text = _value.toString();
 }
 }

 public function get Value() : int {
 return _value;
 }

 public function set Value(v : int) : void {
 _value = v;
 if(v < lowerBound) {
 _value = lowerBound;
 }
 else if(v > upperBound) {
 _value = upperBound;
 }
 updateText();

 }

 public function get stepSize() : int {
 return _stepSize;
 }

Testing Specific Environments | 95

 public function set stepSize(v : int) : void {
 _stepSize = v;
 }

 public function get lowerBound() : int {
 return _lowerBound;
 }

 public function set lowerBound(v : int) : void {
 _lowerBound = v;
 if(Value < lowerBound) {
 Value = lowerBound;
 }
 }

 public function get upperBound() : int {
 return _upperBound;
 }

 public function set upperBound(v : int) : void {
 _upperBound = v;
 if(Value > upperBound) {
 Value = upperBound;
 }
 }
 }
}

3. Define the events that the control uses.
For example, for the spinner control type:

package customcontrols
{
 import flash.events.Event;

 public class SpinnerEvent extends Event
 {
 public static const INCREMENT : String = "increment";
 public static const DECREMENT : String = "decrement";

 private var _steps : int;

 public function SpinnerEvent(eventName : String) {
 super(eventName);
 }

 public function set steps(value:int) : void {
 _steps = value;
 }

 public function get steps() : int {
 return _steps;
 }

 }
}

The next step is to implement automation support for the test application.

Testing a Flex Custom Control Using Dynamic Invoke
Silk4J provides record and playback support for custom controls using dynamic invoke to interact with the
custom control during replay. Use this low-effort approach when you want to access properties and
methods of the custom control in the test application that Silk4J does not expose. The developer of the

96 | Testing Specific Environments

custom control can also add methods and properties to the custom control specifically for making the
control easier to test.

1. To retrieve a list of supported dynamic methods for a control, use the getDynamicMethodList
method.

2. Call dynamic methods on objects with the invoke method.

3. To retrieve a list of supported dynamic properties for a control, use the getPropertyList method.

4. Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method.

Example

The following example tests a spinner custom control that includes two buttons and a
textfield, as shown in the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and
click Up to increment the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

To set the spinner's value to 4, type the following:

FlexBox spinner = _desktop.<FlexBox>find("//
FlexBox[@className=customcontrols.Spinner]");
spinner.setProperty("Value", 4);

Testing a Custom Control Using Automation Support
You can create specific automation support for the custom control. This additional automation support
provides recording support and more powerful play-back support. To create automation support, the test
application must be modified and the Open Agent must be extended.

Before you can test a custom control in Silk4J, perform the following steps:

• Define the custom control in the test application
• Implement automation support

After the test application has been modified and includes automation support, perform the following steps:

1. Create a Java class for the custom control in order to test the custom control in your tests.

For example, the spinner control class must have the following content:

package customcontrols;

import com.borland.silktest.jtf.Desktop;
import com.borland.silktest.jtf.common.JtfObjectHandle;
import com.borland.silktest.jtf.flex.FlexBox;

/**
 * Implementation of the FlexSpinner Custom Control.
 */
public class FlexSpinner extends FlexBox {

 protected FlexSpinner(JtfObjectHandle handle, Desktop desktop) {
 super(handle, desktop);
 }

Testing Specific Environments | 97

 @Override
 protected String getCustomTypeName() {
 return "FlexSpinner";
 }

 public Integer getLowerBound() {
 return (Integer) getProperty("lowerBound");
 }

 public Integer getUpperBound() {
 return (Integer) getProperty("upperBound");
 }

 public Integer getValue() {
 return (Integer) getProperty("Value");
 }

 public void setValue(Integer Value) {
 setProperty("Value", Value);
 }

 public Integer getStepSize() {
 return (Integer) getProperty("stepSize");
 }

 public void increment(Integer steps) {
 invoke("Increment", steps);
 }

 public void decrement(Integer steps) {
 invoke("Decrement", steps);
 }

}

2. Add this Java class to the Silk4J test project that contains your tests.

Tip: To use the same custom control in multiple Silk4J projects, we recommend that you create a
separate project that contains the custom control and reference it from your Silk4J test projects.

3. Add the following line to the <Silk Test installation directory>\ng\agent\plugins
\com.borland.silktest.jtf.agent.customcontrols_<version>\config
\classMapping.properties file:

FlexSpinner=customcontrols.FlexSpinner

The code to the left of the equals sign must be the name of custom control as defined in the XML file.
The code to the right of the equals sign must be the fully qualified name of the Java class for the custom
control.

Now you have full record and playback support when using the custom control in Silk4J.

Examples

The following example shows how increment the spinner's value by 3 by using the
"Increment" method that has been implemented in the automation delegate:

desktop.<FlexSpinner>find("//FlexSpinner[@caption='index:
1']").increment(3);

This example shows how to set the value of the spinner to 3.

desktop.<FlexSpinner>find("//FlexSpinner[@caption='index:
1']").setValue(3);

98 | Testing Specific Environments

Implementing Automation Support for a Custom Control

Before you can test a custom control, implement automation support (the automation delegate) in
ActionScript for the custom control and compile that into the test application.

The following procedure uses a custom Flex spinner control to demonstrate how to implement automation
support for a custom control. The spinner custom control includes two buttons and a textfield, as shown in
the following graphic.

The user can click Down to decrement the value that is displayed in the textfield and click Up to increment
the value in the textfield.

The custom control offers a public "Value" property that can be set and retrieved.

1. Implement automation support (the automation delegate) in ActionScript for the custom control.
For further information about implementing an automation delegate, see the Adobe Live Documentation
at http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html.
In this example, the automation delegate adds support for the methods "increment", "decrement". The
example code for the automation delegate looks like this:

package customcontrols
{
 import flash.display.DisplayObject;
 import mx.automation.Automation;
 import customcontrols.SpinnerEvent;
 import mx.automation.delegates.containers.BoxAutomationImpl;
 import flash.events.Event;
 import mx.automation.IAutomationObjectHelper;
 import mx.events.FlexEvent;
 import flash.events.IEventDispatcher;
 import mx.preloaders.DownloadProgressBar;
 import flash.events.MouseEvent;
 import mx.core.EventPriority;

 [Mixin]
 public class SpinnerAutomationDelegate extends BoxAutomationImpl
 {

 public static function init(root:DisplayObject) : void {
 // register delegate for the automation
 Automation.registerDelegateClass(Spinner,
SpinnerAutomationDelegate);
 }

 public function SpinnerAutomationDelegate(obj:Spinner) {
 super(obj);
 // listen to the events of interest (for recording)
 obj.addEventListener(SpinnerEvent.DECREMENT, decrementHandler);
 obj.addEventListener(SpinnerEvent.INCREMENT, incrementHandler);
 }

 protected function decrementHandler(event : SpinnerEvent) : void {
 recordAutomatableEvent(event);
 }

 protected function incrementHandler(event : SpinnerEvent) : void {
 recordAutomatableEvent(event);
 }

 protected function get spinner() : Spinner {

Testing Specific Environments | 99

http://livedocs.adobe.com/flex/3/html/help.html?content=functest_components2_14.html

 return uiComponent as Spinner;
 }

 //----------------------------------
 // override functions
 //----------------------------------

 override public function get automationValue():Array {
 return [spinner.Value.toString()];
 }

 private function replayClicks(button : IEventDispatcher, steps :
int) : Boolean {
 var helper : IAutomationObjectHelper =
Automation.automationObjectHelper;
 var result : Boolean;
 for(var i:int; i < steps; i++) {
 helper.replayClick(button);
 }
 return result;
 }

 override public function
replayAutomatableEvent(event:Event):Boolean {

 if(event is SpinnerEvent) {
 var spinnerEvent : SpinnerEvent = event as SpinnerEvent;
 if(event.type == SpinnerEvent.INCREMENT) {
 return replayClicks(spinner.upButton,
spinnerEvent.steps);
 }
 else if(event.type == SpinnerEvent.DECREMENT) {
 return replayClicks(spinner.downButton,
spinnerEvent.steps);
 }
 else {
 return false;
 }

 }
 else {
 return super.replayAutomatableEvent(event);
 }
 }

 // do not expose the child controls (i.e the buttons and the
textfield) as individual controls
 override public function get numAutomationChildren():int {
 return 0;
 }

 }
}

2. To introduce the automation delegate to the Open Agent, create an XML file that describes the custom
control.

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

The XML file for the spinner custom control looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation>
 <ClassInfo Name="FlexSpinner" Extends="FlexBox">

100 | Testing Specific Environments

 <Implementation
 Class="customcontrols.Spinner" />
 <Events>
 <Event Name="Decrement">
 <Implementation
 Class="customcontrols.SpinnerEvent"
 Type="decrement" />
 <Property Name="steps">
 <PropertyType Type="integer" />
 </Property>
 </Event>
 <Event Name="Increment">
 <Implementation
 Class="customcontrols.SpinnerEvent"
 Type="increment" />
 <Property Name="steps">
 <PropertyType Type="integer" />
 </Property>
 </Event>
 </Events>
 <Properties>
 <Property Name="lowerBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="upperBound" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 <!-- expose read and write access for the Value property -->
 <Property Name="Value" accessType="both">
 <PropertyType Type="integer" />
 </Property>
 <Property Name="stepSize" accessType="read">
 <PropertyType Type="integer" />
 </Property>
 </Properties>
 </ClassInfo>
</TypeInformation>

3. Include the XML file for the custom control in the folder that includes all the XML files that describe all
classes and their methods and properties for the supported Flex controls.

Silk Test contains several XML files that describe all classes and their methods and properties for the
supported Flex controls. Those XML files are located in the <<Silk Test_install_directory>
\ng\agent\plugins\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Open Agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

To test the Flex Spinner sample control, you must copy the CustomControls.xml file into this folder. If the
Open Agent is currently running, restart it after you copy the file into the folder.

Flex Class Definition File

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test contains several XML files that describe all classes/events/properties for the common Flex
common and specialized controls. Those XML files are located in the <Silk
Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

Testing Specific Environments | 101

If you provide your own XML file, you must copy your XML file into this folder. When the Silk Test agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

<TypeInformation>

<ClassInfo>

<Implementation />

<Events>

<Event />

…

</Events>

<Properties>

<Property />

…

</Properties>

</ClassInfo>

</TypeInformation>

Customizing Apache Flex Scripts
You can manually customize your Flex scripts. You can insert verifications manually using the Verify
function on Flex object properties. Each Flex object has a list of properties that you can verify. For a list of
the properties available for verification, view a list of the supported Flex classes in the
com.borland.silktest.jtf.flex package in the API Reference.

1. Record a test for your Flex application.

2. Open the script file that you want to customize.

3. Manually type the code that you want to add.

Testing Multiple Flex Applications on the Same Web
Page
When multiple Flex applications exist on the same Web page, Silk4J uses the Flex application ID or the
application size property to determine which application to test. If multiple applications exist on the same
page, but they are different sizes, Silk4J uses the size property to determine on which application to
perform any actions and no additional steps are necessary.

Silk4J uses JavaScript to find the Flex application ID to determine on which application to perform any
actions if:

• Multiple Flex applications exist on a single Web page
• Those applications are the same size

Note: In this situation, if JavaScript is not enabled on the browser machine, an error occurs when a
script runs.

102 | Testing Specific Environments

1. Enable JavaScript.

2. In Internet Explorer, perform the following steps:

a) Choose Tools > Internet Options.
b) Click the Security tab.
c) Click Custom level.
d) In the Scripting section, under Active Scripting, click Enable and click OK.

3. Follow the steps in Testing Apache Flex Applications.

Note: If a frame exists on the Web page and the applications are the same size, this method will
not work.

Adobe AIR Support
Silk4J supports testing with Adobe AIR for applications that are compiled with the Flex 4 compiler. For
details about supported versions, check the Release Notes for the latest information.

Silk Test provides a sample Adobe AIR application. You can access the sample application at http://
demo.borland.com/flex/SilkTest19.5/index.html and then click the Adobe AIR application that you want to
use. You can select the application with or without automation. In order to execute the AIR application, you
must install the Adobe AIR Runtime.

Overview of the Flex Select Method Using Name or
Index
You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk4J records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexAdvancedDataGrid

• FlexOLAPDataGrid

• FlexComboBox

The default setting is ItemBasedSelection (Select event), which uses the name control. To use the index,
you must adapt the AutomationEnvironment to use the IndexBasedSelection (SelectIndex event). To
change the behavior for one of these classes, you must modify the FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml file using the following code. Those XML files are located in
the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_< version>\config
\automationEnvironment folder. Make the following adaptations in the corresponding xml file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.
Setting the EnableIndexBasedSelection= to false in the code or removing the Boolean returns
recording to using the name (FlexList::Select events).

Testing Specific Environments | 103

http://demo.borland.com/flex/SilkTest19.5/index.html
http://demo.borland.com/flex/SilkTest19.5/index.html

Note: You must re-start your application, which automatically re-starts the Silk Test Agent, in order for
these changes to become active.

Selecting an Item in the FlexDataGrid Control
Select an item in the FlexDataGrid control using the index value or the content value.

1. To select an item in the FlexDataGrid control using the index value, use the SelectIndex method.
For example, type FlexDataGrid.SelectIndex(1).

2. To select an item in the FlexDataGrid control using the content value, use the Select method.

Identify the row that you want to select with the required formatted string. Items must be separated by a
pipe (" | "). At least one Item must be enclosed by two stars ("*"). This identifies the item where the click
will be performed.

The syntax is: FlexDataGrid.Select("*Item1* | Item2 | Item3")

Enabling Your Flex Application for Testing
To enable your Flex application for testing, your Apache Flex developers must include the following
components in the Flex application:

• Apache Flex Automation Package
• Silk Test Automation Package

Apache Flex Automation Package

The Flex automation package provides developers with the ability to create Flex applications that use the
Automation API. You can download the Flex automation package from Adobe's website, http://
www.adobe.com. The package includes:

• Automation libraries – the automation.swc and automation_agent.swc libraries are the implementations
of the delegates for the Flex framework components. The automation_agent.swc file and its associated
resource bundle are the generic agent mechanism. An agent, such as the Silk Test Agent, builds on top
of these libraries.

• Samples

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, the typekey statement in the Flex Automation API does not
support all keys. You can use the input text statement to resolve this issue. For more information
about using the Flex Automation API, see the Apache Flex Release Notes.

Silk Test Automation Package

Silk Test's Open Agent uses the Apache Flex automation agent libraries. The FlexTechDomain.swc file
contains the Silk Test specific implementation.

You can enable your application for testing using either of the following methods:

• Linking automation packages to your Flex application
• Run-time loading

Linking Automation Packages to Your Flex Application
You must precompile Flex applications that you plan to test. The functional testing classes are embedded
in the application at compile time, and the application has no external dependencies for automated testing
at run time.

When you embed functional testing classes in your application SWF file at compile time, the size of the
SWF file increases. If the size of the SWF file is not important, use the same SWF file for functional testing

104 | Testing Specific Environments

http://www.adobe.com
http://www.adobe.com

and deployment. If the size of the SWF file is important, generate two SWF files, one with functional testing
classes embedded and one without. Use the SWF file that does not include the embedded testing classes
for deployment.

When you precompile the Flex application for testing, in the include-libraries compiler option, reference the
following files:

• automation.swc
• automation_agent.swc
• FlexTechDomain.swc
• automation_charts.swc (include only if your application uses charts and Flex 2.0)
• automation_dmv.swc (include if your application uses charts and Flex > 3.x)
• automation_flasflexkit.swc (include if your application uses embedded flash content)
• automation_spark.swc (include if your application uses the new Flex 4.x controls)
• automation_air.swc (include if your application is an AIR application)
• automation_airspark.swc (include if your application is an AIR application and uses new Flex 4.x

controls)

When you create the final release version of your Flex application, you recompile the application without
the references to these SWC files. For more information about using the automation SWC files, see the
Apache Flex Release Notes.

If you do not deploy your application to a server, but instead request it by using the file protocol or run it
from within Apache Flex Builder, you must include each SWF file in the local-trusted sandbox. This requires
additional configuration information. Add the additional configuration information by modifying the
compiler's configuration file or using a command-line option.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache FlexRelease Notes.

Precompiling the Flex Application for Testing
You can enable your application for testing by precompiling your application for testing or by using run-time
loading.

1. Include the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries in the compiler’s
configuration file by adding the following code to the configuration file:

<include-libraries>

...

<library>/libs/automation.swc</library>

<library>/libs/automation_agent.swc</library>

<library>pathinfo/FlexTechDomain.swc</library>

</include-libraries>

Note: If your application uses charts, you must also add the automation_charts.swc file.

Testing Specific Environments | 105

2. Specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the include-libraries compiler option with the command-line compiler.
The configuration files are located at:

Apache Flex 2 SDK – <flex_installation_directory>/frameworks/flex-config.xml

Apache Flex Data Services – <flex_installation_directory>/flex/WEB-INF/flex/flex-config.xml

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: Explicitly setting the include-libraries option on the command line overwrites, rather than
appends, the existing libraries. If you add the automation.swc and automation_agent.swc files
using the include-libraries option on the command line, ensure that you use the += operator. This
appends rather than overwrites the existing libraries that are included.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround
is to not compile the application SWF files that Explorer loads with automation libraries. For
example, compile only the Explorer main application with automation libraries. Another alternative
is to use the module loader instead of swfloader. For more information about using the Flex
Automation API, see the Apache FlexRelease Notes.

Run-Time Loading
You can load Flex automation support at run time using the Silk Test Flex Automation Launcher. This
application is compiled with the automation libraries and loads your application with the SWFLoader class.
This automatically enables your application for testing without compiling automation libraries into your SWF
file. The Silk Test Flex Automation Launcher is available in HTML and SWF file formats.

Limitations

• The Flex Automation Launcher Application automatically becomes the root application. If your
application must be the root application, you cannot load automation support with the Silk Test Flex
Automation Launcher.

• Testing applications that load external libraries – Applications that load other SWF file libraries require a
special setting for automated testing. A library that is loaded at run time (including run-time shared
libraries (RSLs) must be loaded into the ApplicationDomain of the loading application. If the SWF file
used in the application is loaded in a different application domain, automated testing record and
playback will not function properly. The following example shows a library that is loaded into the same
ApplicationDomain:

import flash.display.*;

import flash.net.URLRequest;

import flash.system.ApplicationDomain;

import flash.system.LoaderContext;

var ldr:Loader = new Loader();

var urlReq:URLRequest = new URLRequest("RuntimeClasses.swf");

106 | Testing Specific Environments

var context:LoaderContext = new LoaderContext();

context.applicationDomain = ApplicationDomain.currentDomain;

loader.load(request, context);

Loading at Run-Time

1. Copy the content of the Silk\Silk Test\ng\AutomationSDK\Flex\<version>
\FlexAutomationLauncher directory into the directory of the Flex application that you are testing.

2. Open FlexAutomationLauncher.html in Windows Explorer and add the following parameter as a
suffix to the file path:

?automationurl=YourApplication.swf

where YourApplication.swf is the name of the SWF file for your Flex application.

3. Add file:/// as a prefix to the file path.
For example, if your file URL includes a parameter, such as: ?automationurl=explorer.swf,
type: .

file:///C:/Program%20Files/Silk/Silk Test/ng/sampleapplications/Flex/3.2/
FlexControlExplorer32/FlexAutomationLauncher.html?automationurl=explorer.swf

Using the Command Line to Add Configuration Information
To specify the location of the automation.swc, automation_agent.swc, and FlexTechDomain.swc libraries
using the command-line compiler, use the include-libraries compiler option.

The following example adds the automation.swc and automation_agent.swc files to the application:

mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/
libs/
automation_agent.swc;pathinfo/FlexTechDomain.swc MyApp.mxml

Note: If your application uses charts, you must also add the automation_charts.swc file to the
include-libraries compiler option.

Explicitly setting the include-libraries option on the command line overwrites, rather than appends, the
existing libraries. If you add the automation.swc and automation_agent.swc files using the include-
libraries option on the command line, ensure that you use the += operator. This appends rather than
overwrites the existing libraries that are included.

To add automated testing support to a Flex Builder project, you must also add the automation.swc and
automation_agent.swc files to the include-libraries compiler option.

Passing Parameters into a Flex Application
You can pass parameters into a Flex application using the following procedures.

Passing Parameters into a Flex Application Before Runtime

You can pass parameters into a Flex application before runtime using automation libraries.

1. Compile your application with the appropriate automation libraries.

2. Use the standard Flex mechanism for the parameter as you typically would.

Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

Before you begin this task, prepare your application for run-time loading.

Testing Specific Environments | 107

1. Open the FlexAutomationLauncher.html file or create a file using
FlexAutomationLauncher.html as an example.

2. Navigate to the following section:

<script language="JavaScript" type="text/javascript">

 AC_FL_RunContent(eef

 "src", "FlexAutomationLauncher",

 "width", "100%",

 "height", "100%",

 "align", "middle",

 "id", "FlexAutomationLauncher",

 "quality", "high",

 "bgcolor", "white",

 "name", "FlexAutomationLauncher",

 "allowScriptAccess","sameDomain",

 "type", "application/x-shockwave-flash",

 "pluginspage", "http://www.adobe.com/go/getflashplayer",

 "flashvars", "yourParameter=yourParameterValue"+
"&automationurl=YourApplication.swf"

);

 </script>

Note: Do not change the "FlexAutomationLauncher" value for "src", "id", or "name."

3. Add your own parameter to "yourParameter=yourParameterValue".

4. Pass the name of the Flex application that you want to test as value for the "&
automationurl=YourApplication.swf" value.

5. Save the file.

Creating Testable Flex Applications
As a Flex developer, you can employ techniques to make Flex applications as "test friendly" as possible.
These include:

• Providing Meaningful Identification of Objects
• Avoiding Duplication of Objects

Providing Meaningful Identification of Objects

To create "test friendly" applications, ensure that objects are identifiable in scripts. You can set the value of
the ID property for all controls that are tested, and ensure that you use a meaningful string for that ID
property.

To provide meaningful identification of objects:

108 | Testing Specific Environments

• Give all testable MXML components an ID to ensure that the test script has a unique identifier to use
when referring to that Flex control.

• Make these identifiers as human-readable as possible to make it easier for the user to identify that
object in the testing script. For example, set the id property of a Panel container inside a TabNavigator
to submit_panel rather than panel1 or p1.

When working with Silk4J, an object is automatically given a name depending on certain tags, for instance,
id, childIndex. If there is no value for the id property, Silk4J uses other properties, such as the childIndex
property. Assigning a value to the id property makes the testing scripts easier to read.

Avoiding Duplication of Objects

Automation agents rely on the fact that some properties of object instances will not be changed during run
time. If you change the Flex component property that is used by Silk4J as the object name at run time,
unexpected results can occur. For example, if you create a Button control without an automationName
property, and you do not initially set the value of its label property, and then later set the value of the label
property, problems might occur. In this case, Silk4J uses the value of the label property of Button controls
to identify an object if the automationName property is not set. If you later set the value of the label
property, or change the value of an existing label, Silk4J identifies the object as a new object and does not
reference the existing object.

To avoid duplicating objects:

• Understand what properties are used to identify objects in the agent and avoid changing those
properties at run time.

• Set unique, human-readable id or automationName properties for all objects that are included in the
recorded script.

Custom Attributes for Apache Flex Applications

Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"
click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk4J. If the automationName attribute is not specified, Silk4J maps the
property ID to the locator attribute caption.

Flex AutomationName and AutomationIndex Properties

The Flex Automation API introduces the automationName and automationIndex properties. If you
provide the automationName, Silk4J uses this value for the recorded window declaration's name.
Providing a meaningful name makes it easier for Silk4J to identify that object. As a best practice, set the
value of the automationName property for all objects that are part of the application's test.

Testing Specific Environments | 109

Use the automationIndex property to assign a unique index value to an object. For instance, if two
objects share the same name, assign an index value to distinguish between the two objects.

Note: The Silk Test Flex Automation SDK is based on the Automation API for Flex. The Silk Test
Automation SDK supports the same components in the same manner that the Automation API for
Flex supports them. For instance, when an application is compiled with automation code and
successive SWF files are loaded, a memory leak occurs and the application runs out of memory
eventually. The Flex Control Explorer sample application is affected by this issue. The workaround is
to not compile the application SWF files that Explorer loads with automation libraries. For example,
compile only the Explorer main application with automation libraries. Another alternative is to use the
module loader instead of swfloader. For more information about using the Flex Automation API, see
the Apache Flex Release Notes.

Flex Class Definition File

The class definition file contains information about all instrumented Flex components. This file (or files)
provides information about the components that can send events during recording and accept events for
replay. The class definition file also includes the definitions for the supported properties.

Silk Test contains several XML files that describe all classes/events/properties for the common Flex
common and specialized controls. Those XML files are located in the <Silk
Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

If you provide your own XML file, you must copy your XML file into this folder. When the Silk Test agent
starts and initializes support for Apache Flex, it reads the contents of this directory.

The XML file has the following basic structure:

<TypeInformation>

<ClassInfo>

<Implementation />

<Events>

<Event />

…

</Events>

<Properties>

<Property />

…

</Properties>

</ClassInfo>

</TypeInformation>

Setting the Flex automationName Property

The automationName property defines the name of a component as it appears in tests. The default value
of this property varies depending on the type of component. For example, the automationName for a
Button control is the label of the Button control. Sometimes, the automationName is the same as the id
property for the control, but this is not always the case.

110 | Testing Specific Environments

For some components, Flex sets the value of the automationName property to a recognizable attribute of
that component. This helps testers recognize the component in their tests. Because testers typically do not
have access to the underlying source code of the application, having a control's visible property define that
control can be useful. For example, a Button labeled "Process Form Now" appears in the test as
FlexButton("Process Form Now").

If you implement a new component, or derive from an existing component, you might want to override the
default value of the automationName property. For example, UIComponent sets the value of the
automationName to the component's id property by default. However, some components use their own
methods for setting the value. For example, in the Flex Store sample application, containers are used to
create the product thumbnails. A container's default automationName would not be very useful because it
is the same as the container's id property. So, in Flex Store, the custom component that generates a
product thumbnail explicitly sets the automationName to the product name to make testing the
application easier.

Example

The following example from the CatalogPanel.mxml custom component sets the value
of the automationName property to the name of the item as it appears in the catalog.
This is more recognizable than the default automation name.

thumbs[i].automationName = catalog[i].name;

Example

The following example sets the automationName property of the ComboBox control to
"Credit Card List"; rather than using the id property, the testing tool typically uses
"Credit Card List" to identify the ComboBox in its scripts:

<?xml version="1.0"?>
<!-- at/SimpleComboBox.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 [Bindable]
 public var cards: Array = [
 {label:"Visa", data:1},
 {label:"MasterCard", data:2},
 {label:"American Express", data:3}
];

 [Bindable]
 public var selectedItem:Object;
]
]>
 </mx:Script>
 <mx:Panel title="ComboBox Control Example">
 <mx:ComboBox id="cb1" dataProvider="{cards}"
 width="150"
 close="selectedItem=ComboBox(event.target).selectedItem"
 automationName="Credit Card List"
 />
 <mx:VBox width="250">
 <mx:Text width="200" color="blue" text="Select a type of
credit card." />
 <mx:Label text="You selected: {selectedItem.label}"/>
 <mx:Label text="Data: {selectedItem.data}"/>
 </mx:VBox>
 </mx:Panel>
</mx:Application>

Testing Specific Environments | 111

Setting the value of the automationName property ensures that the object name will
not change at run time. This helps to eliminate unexpected results.

If you set the value of the automationName property, tests use that value rather than
the default value. For example, by default, Silk4J uses a Button control's label property
as the name of the Button in the script. If the label changes, the script can break. You
can prevent this from happening by explicitly setting the value of the automationName
property.

Buttons that have no label, but have an icon, are recorded by their index number. In this
case, ensure that you set the automationName property to something meaningful so
that the tester can recognize the Button in the script. After the value of the
automationName property is set, do not change the value during the component's life
cycle. For item renderers, use the automationValue property rather than the
automationName property. To use the automationValue property, override the
createAutomationIDPart() method and return a new value that you assign to the
automationName property, as the following example shows:

<mx:List xmlns:mx="http://www.adobe.com/2006/mxml">
 <mx:Script>
 <![CDATA[
 import mx.automation.IAutomationObject;
 override public function
 createAutomationIDPart(item:IAutomationObject):Object {
 var id:Object = super.createAutomationIDPart(item);
 id["automationName"] = id["automationIndex"];
 return id;
 }
]]>
 </mx:Script>
</mx:List>

Use this technique to add index values to the children of any container or list-like
control. There is no method for a child to specify an index for itself.

Setting the Flex Select Method to Use Name or Index

You can record Flex Select methods using the Name or Index of the control that you select. By default,
Silk Test records Select methods using the name of the control. However, you can change your
environment to record Select events using the index for the control, or you can switch between the name
and index for recording.

1. Determine which class you want to modify to use the Index.

You can record Select events using the index for the following controls:

• FlexList

• FlexTree

• FlexDataGrid

• FlexOLAPDataGrid

• FlexComboBox

• FlexAdvancedDataGrid

2. Determine which XML file is related to the class that you want to modify.

The XML files related to the preceding controls include: FlexCommonControls.xml,
AdvancedDataGrid.xml, or OLAPDataGrid.xml.

3. Navigate to the XML files that are related to the class that you want to modify.

The XML files are located in the <Silk Test_install_directory>\ng\agent\plugins
\com.borland.fastxd.techdomain.flex.agent_<version>\config
\automationEnvironment folder.

112 | Testing Specific Environments

4. Make the following adaptations in the corresponding XML file.

<ClassInfo Extends="FlexList" Name="FlexControlName"
EnableIndexBasedSelection=”true” >

…

</ClassInfo>

For instance, you might use "FlexList" as the " FlexControlName" and modify the
FlexCommonControls.xml file.

With this adaption the IndexBasedSelection is used for recording FlexList::SelectIndex events.

Note: Setting the EnableIndexBasedSelection= to false in the code or removing the
boolean returns recording to using the name (FlexList::Select events).

5. Re-start your Flex application and the Open Agent in order for these changes to become active.

Coding Flex Containers
Containers differ from other kinds of controls because they are used both to record user interactions (such
as when a user moves to the next pane in an Accordion container) and to provide unique locations for
controls in the testing scripts.

Adding and Removing Containers from the Automation Hierarchy

In general, the automated testing feature reduces the amount of detail about nested containers in its
scripts. It removes containers that have no impact on the results of the test or on the identification of the
controls from the script. This applies to containers that are used exclusively for layout, such as the HBox,
VBox, and Canvas containers, except when they are being used in multiple-view navigator containers, such
as the ViewStack, TabNavigator, or Accordion containers. In these cases, they are added to the automation
hierarchy to provide navigation.

Many composite components use containers, such as Canvas or VBox, to organize their children. These
containers do not have any visible impact on the application. As a result, you typically exclude these
containers from testing because there is no user interaction and no visual need for their operations to be
recordable. By excluding a container from testing, the related test script is less cluttered and easier to read.

To exclude a container from being recorded (but not exclude its children), set the container's
showInAutomationHierarchy property to false. This property is defined by the UIComponent class,
so all containers that are a subclass of UIComponent have this property. Children of containers that are
not visible in the hierarchy appear as children of the next highest visible parent.

The default value of the showInAutomationHierarchy property depends on the type of container. For
containers such as Panel, Accordion, Application, DividedBox, and Form, the default value is true; for
other containers, such as Canvas, HBox, VBox, and FormItem, the default value is false.

The following example forces the VBox containers to be included in the test script's hierarchy:

<?xml version="1.0"?>
<!-- at/NestedButton.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Panel title="ComboBox Control Example">
<mx:HBox id="hb">
<mx:VBox id="vb1" showInAutomationHierarchy="true">
<mx:Canvas id="c1">
<mx:Button id="b1" automationName="Nested Button 1" label="Click Me" />
</mx:Canvas>
</mx:VBox>
<mx:VBox id="vb2" showInAutomationHierarchy="true">
<mx:Canvas id="c2">
<mx:Button id="b2" automationName="Nested Button 2" label="Click Me 2" />
</mx:Canvas>
</mx:VBox>

Testing Specific Environments | 113

</mx:HBox>
</mx:Panel>
</mx:Application>

Multiview Containers

Avoid using the same label on multiple tabs in multiview containers, such as the TabNavigator and
Accordion containers. Although it is possible to use the same labels, this is generally not an acceptable UI
design practice and can cause problems with control identification in your testing environment.

Flex Automation Testing Workflow
The Silk4J workflow for testing Flex applications includes:

• Automated Testing Initialization
• Automated Testing Recording
• Automated Testing Playback

Flex Automated Testing Initialization

When the user launches the Flex application, the following initialization events occur:

1. The automation initialization code associates component delegate classes with component classes.
2. The component delegate classes implement the IAutomationObject interface.
3. An instance for the AutomationManager is created in the mixin init() method. (The

AutomationManager is a mixin.)
4. The SystemManager initializes the application. Component instances and their corresponding delegate

instances are created. Delegate instances add event listeners for events of interest.
5. The Silk4J FlexTechDomain is a mixin. In the FlexTechDomain init() method, the FlexTechDomain

registers for the SystemManager.APPLICATION_COMPLETE event. When the event is received, it
creates a FlexTechDomain instance.

6. The FlexTechDomain instance connects via a TCP/IP socket to the Silk Test Agent on the same
machine that registers for record/playback functionality.

7. The FlexTechDomain requests information about the automation environment. This information is stored
in XML files and is forwarded from the Silk Test Agent to the FlexTechDomain.

Flex Automated Testing Recording

When the user records a new test in Silk4J for a Flex application, the following events occur:

1. Silk4J calls the Silk Test Agent to start recording. The Agent forwards this command to the
FlexTechDomain instance.

2. FlexTechDomain notifies AutomationManager to start recording by calling beginRecording(). The
AutomationManager adds a listener for the AutomationRecordEvent.RECORD event from the
SystemManager.

3. The user interacts with the application. For example, suppose the user clicks a Button control.
4. The ButtonDelegate.clickEventHandler() method dispatches an AutomationRecordEvent

event with the click event and Button instance as properties.
5. The AutomationManager record event handler determines which properties of the click event to store

based on the XML environment information. It converts the values into proper type or format. It
dispatches the record event.

6. The FlexTechDomain event handler receives the event. It calls the
AutomationManager.createID() method to create the AutomationID object of the button. This
object provides a structure for object identification. The AutomationID structure is an array of
AutomationIDParts. An AutomationIDPart is created by using IAutomationObject. (The UIComponent.id,
automationName, automationValue, childIndex, and label properties of the Button control are read and
stored in the object. The label property is used because the XML information specifies that this property
can be used for identification for the Button.)

114 | Testing Specific Environments

7. FlexTechDomain uses the AutomationManager.getParent() method to get the logical parent of
Button. The AutomationIDPart objects of parent controls are collected at each level up to the application
level.

8. All the AutomationIDParts are included as part of the AutomationID object.
9. The FlexTechDomain sends the information in a call to Silk4J.
10.When the user stops recording, the FlexTechDomain.endRecording() method is called.

Flex Automated Testing Playback

When the user clicks the Playback button in Silk4J, the following events occur:

1. For each script call, Silk4J contacts the Silk Test Agent and sends the information for the script call to
be executed. This information includes the complete window declaration, the event name, and
parameters.

2. The Silk Test Agent forwards that information to the FlexTechDomain.
3. The FlexTechDomain uses AutomaionManager.resolveIDToSingleObject with the window

declaration information. The AutomationManager returns the resolved object based on the descriptive
information (automationName, automationIndex, id, and so on).

4. Once the Flex control is resolved, FlexTechDomain calls
AutomationManager.replayAutomatableEvent() to replay the event.

5. The AutomationManager.replayAutomatableEvent() method invokes the
IAutomationObject.replayAutomatableEvent() method on the delegate class. The delegate
uses the IAutomationObjectHelper.replayMouseEvent() method (or one of the other replay
methods, such as replayKeyboardEvent()) to play back the event.

6. If there are verifications in your script, FlexTechDomain invokes
AutomationManager.getProperties() to access the values that must be verified.

Styles in Apache Flex Applications
For applications developed in Apache Flex 3.x, Silk4J does not distinguish between styles and properties.
As a result, styles are exposed as properties. However, with Apache Flex 4.x, all new Flex controls, which
are prefixed with Spark, such as SparkButton, do not expose styles as properties. As a result, the
GetProperty() and GetPropertyList() methods for Flex 4.x controls do not return styles, such as
color or fontSize, but only properties, such as text and name.

The GetStyle(string styleName) method returns values of styles as a string. To find out which
styles exist, refer to the Adobe help located at: http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/package-detail.html.

If the style is not set, a StyleNotSetException occurs during playback.

For the Flex 3.x controls, such as FlexTree, you can use GetProperty() to retrieve styles. Or, you can
use GetStyle(). Both the GetProperty() and GetStyle() methods work with Flex 3.x controls.

Calculating the Color Style

In Flex, the color is represented as number. It can be calculated using the following formula:

red*65536 + green*256 + blue

Example

In the following example, the script verifies whether the font size is 12. The number
16711680 calculates as 255*65536 + 0*256 + 0. This represents the color red, which
the script verifies for the background color.

Assert.That(control.GetStyle("fontSize"), [Is].EqualTo("12"))
Assert.That(label.GetStyle("backgroundColor"),
[Is].EqualTo("16711680"))

Testing Specific Environments | 115

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

Configuring Flex Applications for Adobe Flash Player
Security Restrictions
The security model in Adobe Flash Player 10 has changed from earlier versions. When you record tests
that use Flash Player, recording works as expected. However, when you play back tests, unexpected
results occur when high-level clicks are used in certain situations. For instance, a File Reference dialog
box cannot be opened programmatically and when you attempt to play back this scenario, the test fails
because of security restrictions.

To work around the security restrictions, you can perform a low-level click on the button that opens the
dialog box. To create a low-level click, add a parameter to the click method.

For example, instead of using SparkButton.click(), use
SparkButton.click(MouseButton.LEFT). A click() without parameters is a high-level click and a
click with parameters (such as the button) is replayed as a low-level click.

1. Record the steps that use Flash Player.

2. Navigate to the click method and add a parameter.
For example, to open the Open File dialog box, specify:

SparkButton("@caption='Open File Dialog…'").click(MouseButton.LEFT)

When you play back the test, it works as expected.

Attributes for Apache Flex Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Flex applications include:

• automationName
• caption (similar to automationName)
• automationClassName (e.g. FlexButton)
• className (the full qualified name of the implementation class, e.g. mx.controls.Button)
• automationIndex (the index of the control in the view of the FlexAutomation, e.g. index:1)
• index (similar to automationIndex but without the prefix, e.g. 1)
• id (the id of the control)
• windowId (similar to id)
• label (the label of the control)
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Why Cannot Silk4J Recognize Apache Flex Controls?
If Silk4J cannot recognize the controls of an Apache Flex application, which you are accessing through a
Web server, you can try the following things:

• Compile your Apache Flex application with the Adobe automation libraries and the appropriate
FlexTechDomain.swc for the Apache Flex version.

116 | Testing Specific Environments

• Use runtime loading.
• Apache Flex controls are not recognized when embedding an Apache Flex application with an empty id

attribute.

Java AWT/Swing Support
Silk4J provides built-in support for testing applications or applets that use the Java AWT/Swing controls.
When you configure an application or applet that uses Java AWT/Swing, Silk4J automatically provides
support for testing standard AWT/Swing controls.

Note: You can also test Java SWT controls embedded in Java AWT/Swing applications or applets as
well as Java AWT/Swing controls embedded in Java SWT applications.

Note: Image click recording is not supported for applications or applets that use the Java AWT/Swing
controls.

Sample Applications

Silk Test provides a sample Swing test application. Download and install the sample applications from
http://supportline.microfocus.com/websync/SilkTest.aspx. After you have installed the sample applications,
click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Sample Applications > Java Swing
> Swing Test Application or (in Microsoft Windows 10) Start > Silk.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the controls available for Java AWT/Swing testing, view a list of the supported Swing
classes in the API Reference:

• com.borland.silktest.jtf.swing - contains Java Swing specific classes
• com.borland.silktest.jtf.common.types - contains data types

Attributes for Java AWT/Swing Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java AWT/Swing include:

• caption
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName
• Swing only: All custom object definition attributes set in the widget with

putClientProperty("propertyName", "propertyValue")

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not

Testing Specific Environments | 117

http://supportline.microfocus.com/websync/SilkTest.aspx
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods of the SWT, AWT, or Swing widget
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum type, java.sql.ClientInfoStatus you
can use the string values of REASON_UNKNOWN, REASON_UNKNOWN_PROPERTY,
REASON_VALUE_INVALID, or REASON_VALUE_TRUNCATED

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

118 | Testing Specific Environments

• All methods that have no return value return null.

Configuring Silk4J to Launch an Application that Uses
the Java Network Launching Protocol (JNLP)
Applications that start using the Java Network Launching Protocol (JNLP) require additional configuration
in Silk4J. Because these applications are started from the Web, you must manually configure the
application configuration to start the actual application and launch the "Web Start". Otherwise, the test will
fail on playback unless the application is already running.

1. If the test fails, because Silk4J cannot start the application, edit the application configuration.

2. Click the drop-down arrow next to the Silk Test toolbar icon and choose Edit Application
Configurations. The Edit Application Configurations dialog box opens and lists the existing
application configurations.

3. Edit the base state to ensure that the Web Start launches during playback.

a) Click Edit.
b) In the Executable Pattern text box, type the absolute path for the javaws.exe.

For example, you might type:

%ProgramFiles%\Java\jre6\bin\javaws.exe

c) In the Command Line Pattern text box, type the command line pattern that includes the URL to the
Web Start.

"<url-to-jnlp-file>"

For example, for the SwingSet3 application, type:

"http://download.java.net/javadesktop/swingset3/SwingSet3.jnlp"

d) Click OK.

4. Click OK. The test uses the base state to start the web-start application and the application
configuration executable pattern to attach to javaw.exe to execute the test.

When you run the test, a warning states that the application configuration EXE file does not match the base
state EXE file. You can disregard the message because the test executes as expected.

Determining the priorLabel in the Java AWT/Swing
Technology Domain
To determine the priorLabel in the Java AWT/Swing technology domain, all labels and groups in the same
window as the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• If a parent of the control is a JViewPort or a ScrollPane, the algorithm works as if the parent is the
window that contains the control, and nothing outside is considered relevant.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, and one is to the left and the other above the

control, the left one is preferred.
• If no label is eligible, the caption of the closest group is used.

Oracle Forms Support
This functionality is supported only if you are using the Open Agent.

Silk4J provides built-in support for testing applications that are based on Oracle Forms.

Testing Specific Environments | 119

Note: For some controls, Silk4J provides only low-level recording support.

For information on the supported versions and browsers for Oracle Forms, refer to the Release Notes. For
a complete list of the controls available for Oracle Forms, view a list of the supported Oracle Forms classes
in the API Reference.

Prerequisites for Testing Oracle Forms
To test an application that is built with Oracle Forms, the following prerequisites need to be fulfilled:

• The next-generation Java Plug-In needs to be enabled. This setting is enabled by default. You can
change the setting in the Java Control Panel. For additional information on the next-generation Java
Plug-In, refer to the Java documentation.

• To prevent Java security dialogs from displaying during a test run, the Applet needs to be signed.
• Micro Focus recommends enabling the Names property. When this property is enabled, the Oracle

Forms runtime exposes the internal name, which is the name that the developer of the control has
specified for the control, as the Name property of the control. Otherwise, the Name property will hold a
calculated value, which usually consists of the class name of the control plus an index. This enables
Silk4J to generate stable locators for controls.

Attributes for Oracle Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Oracle Forms include:

• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a
form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Java SWT and Eclipse RCP Support
Silk Test provides built-in support for testing applications that use widgets from the Standard Widget Toolkit
(SWT) controls. When you configure a Java SWT/RCP application, Silk Test automatically provides support
for testing standard Java SWT/RCP controls.

Silk Test supports:

• Testing Java SWT controls embedded in Java AWT/Swing applications as well as Java AWT/Swing
controls embedded in Java SWT applications.

• Testing Java SWT applications.
• Any Eclipse-based application that uses SWT widgets for rendering. Silk Test supports both Eclipse

IDE-based applications and RCP-based applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the widgets available for SWT testing, see Java SWT Class Reference.

120 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Java SWT Custom Attributes
You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk4J can then add that
attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can identify
controls by that unique ID. Using a custom attribute is more reliable than other attributes like caption or
index, since a caption will change when you translate the application into another language, and the index
will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Attributes for Java SWT Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java SWT include:

• caption
• all custom object definition attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking Java Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Testing Specific Environments | 121

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods of the SWT, AWT, or Swing widget
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum type, java.sql.ClientInfoStatus you
can use the string values of REASON_UNKNOWN, REASON_UNKNOWN_PROPERTY,
REASON_VALUE_INVALID, or REASON_VALUE_TRUNCATED

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Troubleshooting Java SWT and Eclipse Applications

Some SWTTree methods do not replay with low-level playback

When using low-level playback, some SWTTree methods, for example expand and collapse, do not
replay.

122 | Testing Specific Environments

To solve this problem, set the replay mode to Default. For additional information, see Setting Replay
Options.

Selecting a non-visible node in an SWTTree

When using low-level playback, Silk4J cannot interact with non-visible nodes in an SWTTree.

To solve this problem, set the replay mode to Default. For additional information, see Setting Replay
Options.

Testing Mobile Applications
Silk4J enables you to automatically test your native mobile applications (apps) and mobile web
applications. Automatically testing your mobile applications with Silk4J provides the following benefits:

• It can significantly reduce the testing time of your mobile applications.
• You can create your tests once and then test your mobile applications on a large number of different

devices and platforms.
• You can ensure the reliability and performance that is required for enterprise mobile applications.
• It can increase the efficiency of QA team members and mobile application developers.
• Manual testing might not be efficient enough for an agile-focused development environment, given the

large number of mobile devices and platforms on which a mobile application needs to function.

Note: To test native mobile applications or hybrid applications with Silk4J, you require a native mobile
license. For additional information, see Licensing Information.

Note: Silk4J provides support for testing mobile apps on both Android and iOS devices.

For information on the supported operating system versions and the supported browsers for testing mobile
applications, refer to the Release Notes.

Android
Silk4J enables you to test a mobile application on an Android device or an Android emulator.

Prerequisites for Testing Mobile Applications on Android
Before you can test a mobile application (app) on an Android device or on an Android emulator, ensure that
the following prerequisites are met:

• If you have created your own hybrid app by adding a web view to a native mobile app, add the following
code to the app to make your app testable with Silk4J:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

• Silk4J does not support showing a live view of the device screen for Android 4.4. Micro Focus
recommends using Android 5 or later.

Testing Mobile Applications on Android
To test a mobile application on a physical Android device or on an Android emulator, perform the following
tasks:

1. Ensure that you have met the prerequisites for testing mobile applications on Android.

For additional information, see Prerequisites for Testing Mobile Applications on Android.

2. If you want to test the mobile application on an Android emulator, configure the emulator settings for
Silk4J.

For additional information, see Configuring the Android Emulator for Silk Test.

Testing Specific Environments | 123

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

3. Start the Android emulator or connect the device to the machine on which Silk4J is installed.

4. If you want to test the mobile application on a physical Android device that you are using for the first
time on this machine, install the appropriate Android USB Driver on the machine.

For additional information, see Installing a USB Driver.

5. If you want to test the mobile application on a physical Android device, enable USB-debugging on the
Android device.

For additional information, see Enabling USB-Debugging.

6. Create a Silk4J project for your mobile application.

7. Create a test for your mobile application.

8. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

9. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

10.To test a native mobile application or a Hybrid application:

Note: To test native mobile applications or hybrid applications with Silk4J, you require a native
mobile license. For additional information, see Licensing Information.

a) Select the Mobile tab.
b) Select the mobile device, on which you want to test the app, from the list.
c) Click Browse to select the app file or enter the full path to the app file into the Mobile app file text

field.

Silk4J supports HTTP and UNC formats for the path.

Silk4J installs the app on the mobile device or emulator.

11.Click Finish.

An Android device or emulator must not be screen-locked during testing. To keep the device awake
while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

12.Use the Recording window to record the test against the mobile application.

For additional information, see Recording Mobile Applications.

13.When you have recorded all the actions, stop the recording.

14.Replay the test.

15.Analyze the test results.

Testing Hybrid Applications on Android
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk4J provides full browser support for testing debug hybrid apps that consist of a single web view, which
is embedded in a native container. A common example of such a hybrid app would be an Apache Cordova
application.

124 | Testing Specific Environments

To prepare a non-debug hybrid app for testing, enable remote debugging in the app by adding the following
code to the app:

WebView.setWebContentsDebuggingEnabled(true);
webView.getSettings().setJavaScriptEnabled(true);

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk4J fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk4J recognizes and handles the controls
in a web view as native mobile controls instead of browser controls. For example, the following code clicks
on a link when using browser support:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
false);
desktop.<DomLink> find("//INPUT[@id='email']").click();

With the fallback support enabled, the following code clicks on the same link:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
true);
desktop.<DomLink> find("//MobileTextField[@resource-id='email']").click();

Silk4J can detect web views that support Chrome remote debugging. Silk4J can detect web views with
either the package com.android.webview or the package com.google.android.webview, which are the
default packages on most Android devices.

Note: Silk4J supports testing hybrid apps on Android 4.4 or later. To test hybrid apps on Android,
Android System WebView version 51 or later is required.

The process for testing a hybrid app on Android is the same as the process for testing a mobile native
application. For additional information, see Testing Mobile Applications on Android.

Installing a USB Driver
To connect an Android device for the first time to your local machine to test your mobile applications, you
need to install the appropriate USB driver.

The device manufacturer might provide an executable with all the necessary drivers for the device. In this
case you can just install the executable on your local machine. If the manufacturer does not provide such
an executable, you can install a single USB driver for the device on the machine.

To install the Android USB driver:

1. Download the appropriate driver for your device.

For example, for information on finding and installing a USB driver for a Google Nexus device, see
http://developer.android.com/tools/extras/oem-usb.html.

Testing Specific Environments | 125

http://developer.android.com/tools/extras/oem-usb.html

2. Connect your Android device to a USB port on your local machine.

3. From your desktop or Windows Explorer, right-click Computer and select Manage.

4. In the left pane, select Device Manager.

5. In the right pane, locate and expand Other device.

6. Right-click the device name, for example Nexus 5x, and select Update Driver Software. The Hardware
Update Wizard opens.

7. Select Browse my computer for driver software and click Next.

8. Click Browse and navigate to the folder to which you have downloaded the USB driver.

9. Select the USB driver.

10.Click Next to install the driver.

Enabling USB-Debugging
To communicate with an Android device over the Android Debug Bridge (adb), enable USB debugging on
the device.

1. On the Android device, open the settings.

2. Tap Developer Settings.

The developer settings are hidden by default. If the developer settings are not included in the settings
menu of the device:

a) Depending on whether the device is a phone or a pad, scroll down and tap About phone or About
Pad.

b) Scroll down again and tap Build Number seven times.

3. In the Developer settings window, check USB-Debugging.

4. Set the USB mode of the device to Media device (MTP), which is the default setting.

For additional information, refer to the documentation of the device.

Recommended Settings for Android Devices
To optimize testing with Silk4J, configure the following settings on the Android device that you want to test:

• Enable USB-debugging on the Android device. For additional information, see Enabling USB-Debugging
• An Android device must be connected as a media device to the machine on which the Open Agent is

running. The USB mode of the Android device must be set to Media device (MTP).
• An Android device or emulator must not be screen-locked during testing. To keep the device awake

while it is connected to a machine, open the settings and tap Developer Options. Then check Stay
awake or Stay awake while charging.

Configuring the Android Emulator for Silk4J
Note: When using an Android emulator, an additional adb server is running in addition to the one that
is used by Silk4J. If the running adb servers have different versions, the connection between the
Open Agent and the device might become unstable or even break. To avoid version mismatch errors,
specify the path to the Android SDK directory by setting the environment variable
SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the
environment variable is not set, Silk4J uses the adb version that is shipped with Silk4J.

When you want to test mobile applications on an Android emulator with Silk4J, you have to configure the
emulator for testing:

1. Install the latest version of the Android SDK.

For information on how to install and configure the Android SDK, see Get the Android SDK.

126 | Testing Specific Environments

http://developer.android.com/sdk/index.html

2. Install Android Studio 2.

Tip: You can skip installing Android Studio 2 and use the emulator provided with the Android SDK.
However, Micro Focus recommends installing Android Studio 2 for improved emulator
performance. The remaining steps in this topic require Android Studio 2 to be installed.

3. From Android Studio 2, start the AVD Manager.

4. Click Create Virtual Device.

5. Select a virtual device.

6. Click Next.

7. Download and select a system image of Android that includes Google APIs.

8. Click Next.

9. Configure the virtual device according to your requirements.

10.Click Show Advanced Settings.

11.Adjust the RAM size and the heap space used by the emulator to an amount that is manageable by
your machine.

Tip: Micro Focus recommends using at least 1 GB RAM and 256 MB heap space.

12.Select Auto from the list in the Emulated Performance area.

13.Click Finish.

Testing Specific Environments | 127

Tested Configurations for Parallel Test Execution
With Silk4J, you can run automated tests on multiple Android devices in parallel. The amount of Android
devices that you are able to use in parallel depends on the available hardware. Micro Focus has
successfully tested the following hardware configurations:

Configuration with a single test machine

Using a single test machine directly connected to the Android devices through USB, we tested up to 8
physical Android devices in parallel.

The test machine was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Configuration with two test machines

Here we are using two test machines, one with Silk4J installed and another, which is configured as a
remote location for the first machine and has the Silk Test Information Service installed. Using such a
configuration, we tested up to 10 physical Android devices in parallel.

128 | Testing Specific Environments

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was a Dell Precision T1700 with the following hardware specifications:

• Intel® Core™ i7 - 4770 CPU @ 3.40 GHz
• 4 cores (8 threads)
• 16 GB RAM

Configuration with a Windows machine and a Mac

Here we are using two test machines, a Windows machine with Silk4J installed and a Mac, which is
configured as a remote location for the first machine and has the Silk Test Information Service installed.
Using such a configuration, we tested up to 10 physical Android devices in parallel.

Test machine 1 was a Lenovo ThinkPad T450 with the following hardware specifications:

• Intel® Core™ i7 - 5600U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 8 GB RAM

Test machine 2 was an Apple Mac Mini with the following hardware specifications:

• Intel® Core™ i5 - 4782U CPU @ 2.60 GHz
• 2 cores (4 threads)
• 16 GB RAM

iOS
Silk4J enables you to test a mobile application on an iOS device or an iOS Simulator.

Testing Specific Environments | 129

Because of significant changes by Apple in iOS 9.3 in comparison to the previous versions of iOS, Silk Test
supports testing mobile applications on iOS 9.3 or later. For a list of the supported iOS versions, refer to
the Release Notes.

Note: Testing mobile applications on iOS 11 requires Xcode 9. When using Xcode 9 on a Mac, testing
on physical devices and Simulators with iOS versions prior to iOS 11 that are connected to or running
on this Mac is not supported. Use Xcode 8.3 to test physical devices and Simulators with iOS 9.3 and
iOS 10.

Tip: To test on iOS versions prior to iOS 9.3, you can use Silk Test 17.5. The following table shows
the major changes when testing on iOS with Silk Test 19.5 in comparison to Silk Test 17.5:

Silk Test 19.5 Silk Test 17.5

Supports iOS 9.3, iOS 10, and iOS 11. Supports iOS 8.1, 8.2, 8.3, 8.4, 9.0, 9.1, 9.2, and 9.3

Supports Xcode 8.3 and Xcode 9. Supports Xcode 6 and Xcode 7.

Supports testing multiple physical iOS devices in the
same user session.

Tip: If you have created multiple user sessions
to test with Silk Test 17.5, Micro Focus
recommends removing all user sessions except
one.

Requires multiple user sessions on a Mac to test
multiple physical iOS devices.

Prerequisites for Testing Mobile Applications on iOS
Before you can test a mobile application (app) on an iOS device or on an iOS Simulator, ensure that the
following prerequisites are met:

• The current version of the Silk Test information service is installed on the Mac. For additional
information, see Installing the Silk Test Infoservice on a Mac.

• If you want to test your application on a physical iOS device, ensure the following:

• The device is connected to the Mac.
• The device has a supported version of iOS. For a list of the supported iOS versions, refer to the

Release Notes.
• If you want to test your application on an iOS Simulator, ensure the following:

• The iOS Simulator image is installed on the Mac.
• The iOS Simulator image has a supported version of iOS. For a list of the supported iOS versions,

refer to the Release Notes.
• If you want to test your application on an physical iOS device, ensure that the same time zone is set on

the device and the Mac.
• A supported version of Xcode is installed on the Mac.
• Silk4J is installed on a Windows machine.
• The Mac is located in the same network as the Windows machine and is added as a remote location to

the Windows machine.
• To test a native mobile app on an iOS device, ensure that the .ipa file of your app has been signed

with a developer account. For additional information, see Preparing an iOS App for Testing.
• To test a native mobile app on an iOS Simulator, ensure that the app has been zipped. For additional

information, see Testing Native Mobile Applications on an iOS Simulator.
• To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the signed .ipa

file and the zipped .app directory have the same name, except for the file extension, and are located in
the same folder.

• To test a native mobile app, ensure that the ID of the iOS device is associated with the developer profile
which was used to sign the app.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

130 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• The Mac should not switch off the screen during testing, otherwise the Playback Status dialog box will
not display anything.

• To test a mobile application on an iOS Simulator, deactivate the display sleep on the Mac during testing.
• To test a native mobile app on a physical iOS device, enable the UI automation on the device. For

additional information, see Preparing an iOS Device for Testing.
• To test a mobile web application with Apple Safari on a physical iOS device, activate the Web

Inspector. For additional information, see Preparing an iOS Device for Testing.
• Micro Focus recommends using iOS devices which have a Lightning connector. Silk4J does not support

showing a live view of the device screen for iOS devices that are not connected to a Mac through a
Lightning cable.

Testing Native Mobile Applications on a Physical iOS Device
Note: To test native mobile applications or hybrid applications with Silk4J, you require a native mobile
license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

To test a native mobile application (app) or a hybrid application on a physical iOS device, perform the
following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the app for testing.

For additional information, see Preparing an iOS App for Testing.

3. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

4. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

5. Create a Silk4J project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the mobile device, on which you want to test the app, from the list.

10.Click Browse to select the app file or enter the full path to the app file into the Mobile app file text field.

Silk4J supports HTTP and UNC formats for the path.

Silk4J installs the app on the mobile device.

11.Click Finish.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Testing Specific Environments | 131

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the
signed .ipa file and the zipped .app directory have the same name, except for the file extension,
and are located in the same folder.

Testing Native Mobile Applications on an iOS Simulator
Note: To test native mobile applications or hybrid applications with Silk4J, you require a native mobile
license. For additional information, see Licensing Information.

For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing native mobile
applications, see Limitations for Testing Mobile Native Applications.

To test a native mobile application (app) or a hybrid application on an iOS Simulator, perform the following
tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

2. In the Xcode project of the app, compile the app for the iOS Simulator.

You can compile the app either from the Xcode UI or from the command line. For example, to compile
the app through the command line for an iOS Simulator with iOS 10.0, execute the following command:

xcodebuild -sdk iphonesimulator10.0

3. Zip up the .app directory of the app into a .zip file.

By default, the .app directory is located in the directory ~/Library/Developer/Xcode/
DerivedData. You can click File > Project Settings in Xcode to see into which location the directory
is stored.

4. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk4J is installed.

For additional information, see Editing Remote Locations.

Note: You can only test on one iOS Simulator that is installed on a Mac. Multiple Silk4J users
cannot simultaneously test on multiple iOS Simulators that are installed on the same Mac.

5. Create a Silk4J project for your mobile application.

6. Create a test for your mobile application.

7. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

8. Select the Mobile tab.

9. Select the iOS Simulator from the list.

10.Click Browse to select the zipped app file or enter the full path to the zipped app file into the Mobile
app file text field.

Silk4J supports HTTP and UNC formats for the path.

Silk4J installs the app on the iOS Simulator.

11.Click Finish.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

12.When you have recorded all actions, stop recording.

13.Replay the test.

14.Analyze the test results.

Note: To test a native mobile app on both an iOS device and an iOS Simulator, ensure that the
signed .ipa file and the zipped .app directory have the same name, except for the file extension,
and are located in the same folder.

132 | Testing Specific Environments

Testing Mobile Web Applications on a Physical iOS Device
For information on the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing
Mobile Applications on iOS. For information on the known limitations when testing mobile web applications,
see Limitations for Testing Mobile Web Applications.

To test a mobile web application on a physical iOS device, perform the following tasks:

1. Prepare the iOS device for testing.

For additional information, see Preparing an iOS Device for Testing.

2. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

3. Add the Mac, to which the iOS device is connected, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

4. Create a Silk4J project for your mobile application.

5. Create a test for your mobile application.

6. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

7. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

8. Click Finish.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

9. When you have recorded all actions, stop recording.

10.Replay the test.

11.Analyze the test results.

Testing Mobile Web Applications on an iOS Simulator
For information on the known limitations when testing mobile web applications, see Limitations for Testing
Mobile Web Applications.

To test a mobile web application on an iOS Simulator, perform the following tasks:

1. Prepare the Mac for testing. For additional information, see Preparing a Mac for Testing Mobile
Applications on iOS.

2. Add the Mac, on which the iOS Simulator is installed, as a remote location to the Windows machine on
which Silk Test is installed.

For additional information, see Editing Remote Locations.

Note: At any given point in time, you can test on multiple physical iOS devices that are connected
to the Mac, but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1
or later, you are no longer required to use multiple user sessions on a Mac to test mobile
applications on iOS.

3. Create a Silk4J project for your mobile application.

Testing Specific Environments | 133

4. Create a test for your mobile application.

5. Record the actions that you want to execute in the test. When you start the Recording window, the
Select Application dialog box opens.

6. To test a mobile web application:

a) Select the Web tab.
b) Select the mobile browser that you want to use.
c) Specify the web page to open in the Enter URL to navigate text box.

7. Click Finish.

An iOS device or Simulator must not fall into sleep mode during testing. To turn the screen lock and
password off, select Settings > Touch ID & Code.

8. When you have recorded all actions, stop recording.

9. Replay the test.

10.Analyze the test results.

Testing Hybrid Applications on iOS
Hybrid applications (apps) are apps that are run on the device, like native applications, but are written with
web technologies, for example HTML5, CSS, and JavaScript.

Silk4J provides full browser support for testing debug hybrid apps that consist of a single web view, which
is embedded in a native container. A common example of such a hybrid app would be an Apache Cordova
application.

To test non-debug hybrid apps without remote debugging enabled or hybrid apps that include more than
one web view, enable the Silk4J fallback support by setting the option
OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT to TRUE. For additional information, see
Setting Advanced Options. With the fallback support enabled, Silk4J recognizes and handles the controls
in a web view as native mobile controls instead of browser controls. For example, the following code clicks
on a link when using browser support:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
false);
desktop.<DomLink> find("//INPUT[@id='email']").click();

With the fallback support enabled, the following code clicks on the same link:

desktop.setOption(CommonOptions.OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT,
true);
desktop.<DomLink> find("//MobileTextField[@resource-id='email']").click();

The process for testing a hybrid app on iOS is the same as the process for testing a mobile native
application. For additional information, see Testing Native Mobile Applications on a Physical iOS Device or
Testing Native Mobile Applications on an iOS Simulator.

134 | Testing Specific Environments

Before testing a hybrid app on an iOS device, ensure that the Web Inspector is activated on the device.
For additional information, see Preparing an iOS Device for Testing.

Preparing an iOS Device for Testing
Note: To test native mobile applications or hybrid applications with Silk4J, you require a native mobile
license. For additional information, see Licensing Information.

To prepare the iOS device to test mobile applications:

1. Start Xcode on the Mac.

2. Connect the iOS device to the Mac.

3. On the iOS device, click Settings > Developer.

Tip: If the Developer menu is not displayed on the iOS device, restart the device and the Mac.

4. Activate Enable UI Automation.

5. To test a mobile web application on Apple Safari, click Settings > Safari > Advanced.

6. Activate the Web Inspector.

7. If you want to test on an iOS Simulator, enable Rotate Device Automatically.

You can enable this setting by using the Silk Test Configuration Assistant or by enabling it manually.
To open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant. To enable the setting manually, perform the following actions:

a) On the Mac, start the iOS Simulator.
b) With Xcode 9 or later, expand the Hardware menu.

With prior versions of Xcode, expand the Debug menu.
c) Check Rotate Device Automatically.

Preparing an iOS App for Testing
To be able to test a specific iOS app on a specific iOS device with Silk4J, consider the following:

• Test automation is only possible with iOS apps that can be installed manually on specific iOS devices.
To be able to sign an iOS app, you require a membership in the Apple Developer Program. For
additional information, see Choosing a Membership. To test without having a membership in the Apple
Developer Program, see Using a Personal Team Profile for Testing on Physical iOS Devices.

Note: You cannot automatically test iOS apps that are created for publication in the App Store, as
well as apps that can be installed manually on any iOS device.

• Before you can install and execute an iOS app on a specific iOS device, you have to register the iOS
device with your Apple Developer account.

• You have to use Xcode to create an IPA file of the iOS app, which you can then install on the iOS
device. To create IPA files for testing on a specific iOS device, members of the Apple Developer
Program can use the Archive mechanism of Xcode, by using one of the following two options:

• If you are a member of the Apple Developer Enterprise Program, you can use the Save for Ad Hoc
Deployment option.

• If you are a member of the Apple Developer Program, but not of the Apple Developer Enterprise
Program, you can use the Save for Development Deployment option.

For additional information, see Exporting Your App for Testing (iOS, tvOS, watchOS).

To be able to test a specific iOS app on an iOS Simulator with Silk4J, use Xcode to create a ZIP file of the
iOS app, which you can then install on the iOS Simulator. For additional information, refer to the Xcode
documentation.

Testing Specific Environments | 135

https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html

Installing the Silk Test Information Service on a Mac
Note: To install the information service on a Mac, you require administrative privileges on the Mac.

To create and execute tests against Apple Safari on a Mac, or against mobile applications on an iOS or
Android device that is connected to a Mac, install the Silk Test information service (information service) on
the Mac, and then use the Remote Locations dialog box to connect a Windows machine, on which Silk4J
is installed, to the Mac.

To install the information service on a Mac:

1. Ensure that a Java JDK is installed on the Mac.

2. If you want to test mobile applications on an iOS device, ensure that Xcode is installed on the Mac.

3. Access the information service setup file, SilkTestInformationService<Version>-<Build
Number>.pkg.

• If you have downloaded the information service setup file while installing Silk Test, open the folder
macOS in the Silk Test installation directory, for example C:\Program Files (x86)\Silk
\SilkTest.

• If you have not downloaded the information service setup file while installing Silk Test, you can
download the setup file from Micro Focus SupportLine.

4. Copy the file SilkTestInformationService<Version>-<Build Number>.pkg to the Mac.

5. Execute SilkTestInformationService<Version>-<Build Number>.pkg to install the
information service.

6. Follow the instructions in the installation wizard.

7. When asked for the password, provide the password of the currently signed in Mac user.

8. When Apple Safari opens and a message box asks whether to trust the SafariDriver, click Trust.

Note: You can only install the SafariDriver if you are directly logged in to the Mac, and not
connected through a remote connection.

9. To complete the installation, the installer logs the current Mac user out. To verify that the information
service was installed correctly, log in to the Mac.

10.If you are installing the information service on a Mac with macOS Mojave (10.14) or later, you might
have to enable additional automation permissions for Silk Test after logging in to the Mac.

If permissions need to be granted, Silk Test will automatically show request permission dialogs.

a) Click OK to acknowledge the information dialog.
b) Click OK in all sub-sequent request permission dialogs.

Important: If you do not enable these permissions for Silk Test, you will not be able to test web
applications against Google Chrome or mobile applications on an iOS device or on a Simulator on
this Mac. If by mistake you have clicked Don't Allow in one of the permission dialogs, open a
terminal on the Mac and type the following command:

sudo tccutil reset AppleEvents

Then restart the Mac and accept the permission dialogs by clicking OK.

11.Click on the Silk Test icon in the top-right corner of the screen to see the available devices and
browsers.

Tip: If the Silk Test icon does not appear, restart the Mac.

Preparing a Mac to Test Mobile Applications on iOS
Note: To test native mobile applications or hybrid applications with Silk4J, you require a native mobile
license. For additional information, see Licensing Information.

136 | Testing Specific Environments

http://productlink.microfocus.com/index.asp?mode=support&prod=NE01

To test mobile applications on iOS, you require a Mac to which you can connect the iOS device, or on
which the iOS Simulator is running. This Mac requires Xcode to be installed. For additional information on
the prerequisites for testing mobile applications on iOS, see Prerequisites for Testing Mobile Applications
on iOS.

To execute iOS tests on a physical iOS device, follow the instructions in the Silk Test Configuration
Assistant to configure the WebDriverAgentRunner Xcode project. To open the Configuration
Assistant, click on the Silk Test icon in the status menus and select Configuration Assistant.

If for any reason you want to manually build the WebDriverAgentRunner Xcode project, perform the
following actions:

1. Start Xcode on the Mac.

2. Select Xcode > Preferences.

3. In the Preferences window, select your account.

a) Select the Accounts tab.
b) Choose your Apple ID.
c) Choose your Team.
d) Click View Details.

Testing Specific Environments | 137

4. Access the Apple Member Center and retrieve your development team.

5. In a terminal, navigate to ~/.silk/silktest/conf/.

6. Rename the xcconfig file template silktest.xcconfig.sample to silktest.xcconfig.

7. Add your development team to the silktest.xcconfig file.

DEVELOPMENT_TEAM = <your development team>

8. Execute the following commands in a terminal on the Mac to verify that you have prepared the
WebDriverAgentRunner project correctly:

a) Determine the unique device id (udid) of your physical iOS device:

idevice_id -l

b) Navigate to the WebDriverAgentRunner project:

cd /Application/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-
driver/WebDriverAgent

c) Test that the WebDriverAgent can be built:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner
–xcconfig ~/.silk/silktest/conf/silktest.xcconfig -destination
'id=<udid>' test

Replace the <udid> with the unique device id that you have determined previously.

Tip: If the xcodebuild command fails, follow the instructions in the error message.
Additionally, open the Preferences window of the WebDriverAgentRunner project and
ensure that the Automatically manage signing check box in the General tab is not checked.

9. Optional: In the infoservice.properties file, you can specify the port for the Silk Test Information
Service or capabilities which are used during all test runs on the Mac.

For additional information, see Editing the Properties of the Silk Test Information Service.

Using a Personal Team Profile for Testing on Physical iOS Devices
If you have no membership in the Apple Developer Program, you can use a personal team profile to test an
application on a physical iOS device:

1. On the Mac, navigate to /Application/Silk/Mobile/common/Appium/node_modules/
appium-xcuitestdriver/WebDriverAgent.

2. Open WebDriverAgent.xcodeproj project in Xcode.

3. From the TARGETS list, select the WebDriverAgentLib target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

4. From the TARGETS list, select the WebDriverAgentRunner target:

a) Click the General tab.
b) Select Automatically manage signing.
c) Select your development team.

The Signing Certificate is automatically selected.

5. If Xcode fails to create a provisioning profile for the WebDriverAgentRunner target, manually change
the bundle id for the target.

a) Click the Build Settings tab.
b) Change the Product Bundle Identifier to something that Xcode accepts.

For example, if the Product Bundle Identifier is com.facebook.WebDriverAgentRunner, change it to
io.appium.WebDriverAgentRunner or io.borland.WebDriverAgentRunner.

c) Click the General tab.

138 | Testing Specific Environments

The target should now have a provisioning profile.

6. Save the WebDriverAgent.xcodeproj project.

7. To verify that everything works as expected, build the project:

xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test IPHONEOS_DEPLOYMENT_TARGET=10.3

8. To avoid problems during the reinstallation of the WebDriverAgent apps, permanently install an
additional app that uses the same provisioning profile, on the device. For example, install the
IntegrationApp of the WebDriverAgent Xcode project:

a) From the TARGETS list, select the IntegrationApp target.
b) Click the General tab.
c) Select Automatically manage signing.
d) Select your development team.

9. If Xcode fails to create a provisioning profile for the IntegrationApp target, manually change the
bundle id for the target in the same way as described above for the WebDriverAgentRunner target.

10.After successfully configuring the IntegrationApp target, install and run the IntegrationApp on
the physical iOS device:

a) Select the target and the iOS device.
b) Click Play.

Although the apps are successfully installed on the device, an error message like the following might
appear in the console or the Appium log files:
2017-01-24 09:02:18.358 xcodebuild[30385:339674] Error Domain=com.apple.platform.iphoneos
Code=-12 "Unable to launch com.apple.test.WebDriverAgentRunner-Runner"
UserInfo={NSLocalizedDescription=Unable to launch com.apple.test.WebDriverAgentRunner-Runner,
NSUnderlyingError=0x7fa839cadc60 {Error Domain=DTXMessage Code=1 "(null)"
UserInfo={DTXExceptionKey=The operation couldn't be completed. Unable to launch
com.apple.test.WebDriverAgentRunner-Runner because it has an invalid code signature, inadequate
entitlements or its profile has not been explicitly trusted by the user. : Failed to launch process with bundle
identifier 'com.apple.test.WebDriverAgentRunner-Runner'}}} 2017-01-24 09:02:18.358
xcodebuild[30385:339674] Error Domain=IDETestOperationsObserverErrorDomain Code=5 "Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted"
UserInfo={NSLocalizedDescription=Early unexpected exit, operation never finished bootstrapping - no
restart will be attempted} Testing failed: Test target WebDriverAgentRunner encountered an error (Early
unexpected exit, operation never finished bootstrapping - no restart will be attempted)
The problem is that the developer is not trusted on the device. If you manually try to run the apps on the
device, you will see an Untrusted Developer message.

To solve this issue on the device, go to Settings > General > Profiles or Settings > General > Device
Management, depending on the device type and the iOS version. Then trust the developer and allow the
apps to be run.

Editing the Properties of the Silk Test Information Service
Use the infoservice.properties file to specify the port for the Silk Test Information Service, whether
to use a secure connection through HTTPS, or the capabilities that are applied each time Silk Test
executes a test on the machine on which the Silk Test Information Service is running.

1. Navigate to the directory in which the infoservice.properties.sample file is located.

• On a Windows machine, navigate to %PROGRAMDATA%\Silk\SilkTest\conf, for example C:
\ProgramData\Silk\SilkTest\conf.

• On macOS, navigate to ~/.silk/silktest/conf/.

2. Rename the file infoservice.properties.sample to infoservice.properties.

3. Specify whether Silk4J should communicate with the information service over a secure connection
through HTTPS.

Testing Specific Environments | 139

• To use a secure connection through HTTPS, set infoservice.https.enabled to true. This is
the default setting.

• To disable using a secure connection through HTTPS, set infoservice.https.enabled to
false.

4. Optional: If you have specified that you want to use a secure connection through HTTPS, you can
specify a different port that is not in use through which Silk4J should communicate with the information
service as the infoservice.default.https.port.

The default HTTPS port is 48561. Port numbers can be any number from 1 to 65535.

5. Optional: To redirect all HTTP requests to the HTTPS port, if you have specified that you want to use a
secure connection through HTTPS, set infoservice.http-to-https.enabled to true.

The default value is false.

6. Optional: If you have specified that you do not want to use a secure connection through HTTPS, you
can specify a different port that is not in use through which Silk4J should communicate with the
information service as the infoservice.default.port.

The default port is 22901.

7. Optional: To replace the certificates that are used by Silk Test for the HTTPS connection with your own
certificates, see Replacing the Certificates that are Used for the HTTPS Connection to the Information
Service.

8. To specify capabilities, add the following line to the infoservice.properties file:

customCapabilities=<custom capability_1>;<custom_capability_2>;...

Example: Running an iOS Simulator in a Specified Language

To always run a specific iOS Simulator on a Mac in the same language, for example
Japanese, specify the custom capabilities language and locale. To do so, add the
following line to the infoservice.properties file:

customCapabilities=language=ja;locale=ja_JP

Uninstalling the Silk Test Information Service from a Mac
To uninstall the Silk Test information service (information service) from a Mac, for example if you no longer
want to execute tests against Apple Safari on the Mac:

1. Create a new shell file, for example uninstallInfoService.sh.

2. Type the following code into the new file:

#!/bin/sh

if launchctl list | grep com.borland.infoservice ; then
 launchctl unload /Library/LaunchAgents/com.borland.infoservice.plist
 echo "unloading Launch Daemon"
fi

if [-d "/Applications/Silk"]
then
 sudo rm -rf /Applications/Silk
fi

if [-f "/Library/LaunchAgents/com.borland.infoservice.plist"]
then
 sudo rm /Library/LaunchAgents/com.borland.infoservice.plist
fi

if [-f "/usr/local/bin/ideviceinstaller"]
then
 sudo rm /usr/local/bin/ideviceinstaller

140 | Testing Specific Environments

fi

exit 0

3. In the command line, type chmod +x uninstallInfoService.sh to make the shell file executable.

4. Execute the shell file from the command line.

Recommended Settings for iOS Devices
To optimize testing with Silk4J, configure the following settings on the iOS device that you want to test:

• To make the testing reflect the actions an actual user would perform, disable AutoFill and remembering
passwords for Apple Safari. Tap Settings > Safari > Passwords & AutoFill and turn off the Names
and Passwords setting.

• The iOS device must not fall into sleep mode during testing. To turn the screen lock and password off,
select Settings > General > Passcode Lock.

Running Existing Scripts on iOS Using XCUITest
Attention: Prior Silk4J versions used Instruments to automate iOS devices. With iOS 9.3, Apple has
replaced the support for Instruments with support for the XCUITest framework, causing Silk4J to also
no longer support Instruments. Because of this change, existing iOS test scripts might break when
executed from the current version of Silk4J.

• The behavior of the classname attribute in XCUITest is different to the behavior in Instruments. In most
cases, Silk4J will automatically handle this change. However, if an existing test script breaks because of
such a classname attribute, you will have to record a new locator for the corresponding object.

• The object hierarchy has changed.

Testing an Installed App
To test a native mobile app that is already installed on a device, an Emulator, or a Simulator, specify the
app in the connection string.

1. Open an existing project that tests a native mobile app.

2. Open the Edit Application Configuration dialog box.

3. Replace the existing app in the connection string with one of the following:

• If you want to test an iOS app, replace the app with the bundleId, for example replace
app=MyApp.ipa with bundleId=silktest.InsuranceMobile.

• If you want to test an Android app, replace the app with the appActivity and the appPackage. For
example, replace app=MyApp.apk with
appActivity=.LoginActivity;appPackage=silktest.insurancemobile.

For additional information, see Connection String.

Recording Mobile Applications
Once you have established the connection between Silk4J and a mobile device or an emulator, you can
record the actions that are performed on the device. To record mobile applications, Silk4J uses a
Recording window that provides the following functionality:

• Displays the screen of the mobile device or Android emulator which you are testing.
• When you perform an action in the Recording window, the same action is performed on the mobile

device.
• When you interact with a control on the screen, the Recording window preselects the default action.

Testing Specific Environments | 141

• If the default action is a Click, and you left-click on the control, the action is executed. You can
perform a right-click to show a list of the available actions against the control. You can then select the
action that you want to perform and click OK.

• If the default action is not a Click, a list of all the available actions against the control displays, and
you can select the action that you want to perform or simply accept the preselected action by clicking
OK.

When you have selected an action from the list, you can type values for the parameters of the selected
action into the parameter fields. Silk4J automatically validates the parameters.

• During recording, Silk4J displays the mouse position next to the recording window. You can toggle the
location to switch between displaying the absolute mouse position on the device display and the mouse
position in relation to the active object.

• When you pause the recording, you can perform actions in the screen which are not recorded to bring
the device into a state from which you want to continue recording.

• When you stop recording, a script is generated with your recorded actions, and you can proceed with
replaying the test.

Selecting the Mobile Device for Test Replay
You can define the mobile device that is used for the replay of a test in the following ways:

• If you execute a test from the UI of Silk4J and the Select Mobile Device dialog box displays, the mobile
device, Android Emulator, or iOS Simulator that is selected in the dialog box is used, and Silk4J ignores
which mobile device is set in the test script.

• If the Select Mobile Device dialog box is disabled, because the Don't show again check box is
checked, the application configurations in the individual test scripts determine the mobile device that is
used to execute the tests.

Note: To re-enable the Select Mobile Device dialog box, click Silk4J > Edit Application
Configurations and check the Show 'Select Mobile Device' dialog before record and playback
check box

• If you execute a script from the command line or from a Continuous Integration (CI) server, specify the
connection string in the application configuration of the script.

To overwrite the mobile device that is specified in the application configuration, use the
silktest.configurationName environment variable.

• If you execute a test from Silk Central, specify the mobile device in the Mobile Device Selection area
of the Deployment tab of the execution definition in Silk Central instead of specifying a connection
string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

142 | Testing Specific Environments

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Using Devices from Mobile Center
Mobile Center is a mobility gateway that enables you to manage the testing of your mobile devices.

To access the devices that are managed through the Mobile Center from Silk4J, perform the following
actions:

1. Integrate Silk4J with Silk Central.

For additional information, see Integrating Silk4J with Silk Central.

2. Configure Silk Central to use Mobile Center.

Note: While installing Mobile Center, ensure that the appropriate Android SDK version is used.
Ensure that the same version is used in Silk4J by setting the environment variable
SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. For additional information, refer to the Silk Central Help.

3. To test on iOS, ensure that the following IPA files are signed:

• HP4M-Agent.ipa
• HPMC-AgentLauncher.ipa
• WebDriverAgentRunner-Runner.ipa

Note: Silk4J does not support testing iOS simulators through Mobile Center.

In the Select Applications dialog, you can now select the Mobile Center device on which you want to test.

Note: You cannot test a mobile device with both Silk4J and Mobile Center at the same time. Restart a
mobile device that you have tested with Silk4J, if you want to continue testing the device from Mobile
Center.

Note: When testing on a device that is managed through the Mobile Center, Silk4J does not support
using the methods typeKeys or setText to type key codes like ENTER. Additionally, Silk4J does
not support pressing the Home button on iOS devices.

Note: When testing on an Android Emulator, disable the GPU HW Acceleration.

Using SauceLabs Devices
SauceLabs provides an automated testing platform, enabling you to test on various mobile devices and
mobile platform versions without having to purchase and maintain your own infrastructure.

To access SauceLabs devices through Silk Central, perform the following actions:

1. Ensure that Silk4J is integrated with Silk Central.

Testing Specific Environments | 143

For additional information, see Integrating Silk4J with Silk Central.

2. Ensure that Silk Central is configured to use SauceLabs.

For additional information, refer to the Silk Central Help.

In the Select Applications dialog, you can now select the SauceLabs device on which you want to test.

Connection String for a Mobile Device
The connection string specifies which mobile device is used for testing. When performing mobile testing,
Silk4J uses the connection string to connect to the mobile device. The connection string is typically part of
the application configuration. You can set the connection string when you configure your application under
test. To change the connection string, you can use the Edit Application Configuration dialog box.

Note: If you execute a test from Silk Central, specify the mobile device in the Mobile Device
Selection area of the Deployment tab of the execution definition in Silk Central instead of specifying
a connection string. For additional information, refer to the Silk Central Help.

You can use the connection string to specify a specific mobile device, or you can filter a subset of the
available devices, for example if you have a device pool. The first matching device is used for replay. If not
specified otherwise, mobile devices are matched by using the following rules, with declining priority:

• Matching mobile devices connected to the local machine are preferred over mobile devices connected
to remote locations.

• If the browser type is specified in the connection string, newer browser versions are preferred over older
versions.

• Newer platforms are preferred over older platforms.
• A physical device is preferred to an Emulator or Simulator.
• A device with a device name that is alphabetically later is preferred. For example, a device named

"iphone 6" is preferred to a device named "iphone 5".

The following components are available for the connection string:

Component Description

deviceName The name of the mobile device. When testing on a physical mobile device, the device ID can be
used instead. Supports wildcards. Case-insensitive.

platformName Android or iOS. Required.

deviceId Optional: The ID of the mobile device. Can be used instead of the device name, when testing on
a physical mobile device. Supports wildcards. Case-insensitive.

platformVersion Optional: The Android or iOS version. Specify the version to test only on mobile devices that
have a specific Android or iOS version. Supports wildcards. Case-insensitive.

browserVersion Optional: Can be used in combination with the browser type to test only on the specified browser
version. Supports wildcards. Case-insensitive.

host Optional: If not set, any specified remote location can be used as the host. Supports wildcards.
Case-insensitive.

• app
• appActivity
• appPackage

Required for testing native mobile applications on Android. Either the full path to the app, or a
combination of appActivity and appPackage. For example app=MyApp.apk or
appActivity=.LoginActivity;appPackage=silktest.insurancemobile

• app
• bundleId

Required for testing native mobile applications on iOS. Either the full path to the app or the
bundleId. For example app=MyApp.ipa or bundleId=silktest.InsuranceMobile

noReset Optional: Can be set when testing native mobile applications. Is only valid if the app is specified.
True if the app should not be reinstalled before testing. False if the app should be reinstalled
before testing. The default value is False.

144 | Testing Specific Environments

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

Component Description

isSimulator Optional: Used to specify that the test should only be executed on an iOS Simulator. The device
name can be used instead.

isPhysicalDevice Optional: Used to specify that the test should only be executed on a physical device. The device
name can be used instead.

When using a pool of devices and to find out which device is actually used for testing, you can use the
return value of the generateConnectionString method of MobileDevice class.

Testing a mobile web application on a mobile device or on an Android Emulator

When testing a mobile web application on a mobile device or on an Android Emulator, the connection string
consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The browser version. This can only be used in combination with setting the browser type
4. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

Example: Connection string for any available Android device

"platformName=Android"

Example: Connection string for a browser on an Android device that is connected
to the local machine

To test a mobile browser on an Android device that is connected to the local machine,
the connection string should look similar to the following:

"deviceName=MotoG3;platformName=Android;host=localhost"

or

"platformName=Android;deviceId=11111111;host=localhost"

Example: Connection string for a browser on an Android device that is connected
to a remote machine

To test a mobile browser on a remote Android device, the connection string should look
similar to the following:

"deviceName=MotoG3;platformName=Android;host=10.0.0.1"

"deviceName=MotoG3;platformName=Android;host=MyRemoteLocation*"

Example: Connection string for a browser on an iOS device that is connected to a
Mac

To test a mobile browser on a remote iOS device, the connection string would look like
the following:

"deviceName=myiPhone6;platformName=iOS;host=10.0.0.1"

Testing Specific Environments | 145

Testing a native mobile application on a mobile device or on an Android Emulator

When testing a native mobile application on a mobile device or on an Android Emulator, the connection
string consists of the following parts:

1. The mobile device name, for example MotoG3, or the device ID, for example 11111111.

Note: If the device name is unique, Micro Focus recommends to use the device name in the
connection string, because the device ID is less readable.

2. The platform name.
3. The IP address or the host name of a specific remote machine, for example 10.0.0.1. You can also use

the name of a remote location that is specified in the Edit Remote Locations dialog box as the host
name, for example MyRemoteLocation. When using the remote location name, you can also use
wildcards. To test an Android device that is connected to the local machine, specify the IP address or
the host name of the local machine.

4. The name of the file of the app that you want to test, or the URL of the file, if the file is located on a web
server. For example C:/MyApp.apk or MyApp.ipa.

• Android apps are always .apk files.
• iOS apps on a real device are always .ipa files.
• iOS apps on a Simulator are either a zipped file or a directory with the name app.

Example: Connection string for an app on an Android device that is connected to
a remote machine

To test the app MyApp.apk on an Android device that is connected to a remote
machine, the connection string would look like the following:

"platformName=Android;deviceName=MotoG3;host=http://
10.0.0.1;app=MyApp.apk"

Example: Connection string for an app on an iOS device that is connected to a
Mac

To test the app MyApp.ipa on an iOS device that is connected to a remote machine,
the connection string would look like the following:

"platformName=iOS;deviceName=MyiPhone;host=http://
10.0.0.1;app=MyApp.ipa"

Testing a mobile web application on an iOS Simulator

When testing a mobile web application on an iOS Simulator, the connection string consists of the following
parts:

1. The platform name, which is iOS.
2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the Mac, on which the iOS Simulator is running.

Example: Connection string for a browser on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;isSimulator=true"

146 | Testing Specific Environments

Testing a native mobile application on an iOS Simulator

When testing a native mobile application on an iOS Simulator on a Mac, the connection string consists of
the following parts:

1. The platform name, which is iOS.
2. The platform version, for example 10.0.
3. The mobile device name, for example iPhone6.
4. The IP address or the host name of the remote machine, for example 10.0.0.1.
5. The name of the app that you want to test, for example MyApp.ipa.

Example: Connection string for an app on an iOS Simulator on a Mac

"platformName=iOS;platformVersion=10.0;deviceName=iPhone6;host=1
0.0.0.1;app=MyApp.ipa;isSimulator=true"

Interacting with a Mobile Device
To interact with a mobile device and to perform an action like a swipe in the application under test:

1. In the Recording window, click Show Mobile Device Actions. All the actions that you can perform
against the mobile device are listed.

2. Select the action that you want to perform from the list.

3. To record a swipe on an Android device or emulator, move the mouse while holding down the left mouse
button.

4. Continue with the recording of your test.

Releasing a Mobile Device
When recording or playing back a test against a mobile device, the Open Agent instance takes ownership
of the device. By doing so, the Open Agent is preventing other Silk Test users from using the device. To
enable other Silk Test users to use the device after you have finished recording or replaying tests on the
device, Silk Test automatically releases the device when the Silk Test client is closed, when an unattended
test process finishes, or when the Open Agent is closed. You can also manually release the device.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Recording
Release a mobile device after recording to enable other Silk Test users to test on the device.

To release a mobile device after you have finished recording, perform one of the following actions:

• Stop the Open Agent from the System Tray.
• Close Silk4J. The device is only released by this action when parallel testing is enabled.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Releasing a Mobile Device After Replay
Release a mobile device after replay to enable other Silk Test users to test on the device.

To manually release a mobile device after replaying is complete, you can also perform one of the following:

Testing Specific Environments | 147

• If you have tested a mobile web application, use the close method or the closeSynchron method of
the BrowserApplication class. For additional information on these methods, refer to the API
documentation.

webBrowser.close();

• If you have tested a mobile native application, use the closeApp method of the MobileDevice class.

For example, type the following:

MobileDevice mobileDevice = desktop.find("//MobileDevice");
mobileDevice.closeApp();

• Add the desktop.detachAll() statement to the test script.

A mobile device is automatically released if one of the following conditions is met:

• The Open Agent is closed.
• The test process stops during unattended testing. The device is only released by this action when

parallel testing is enabled.
• Silk4J is closed. The device is only released by this action when parallel testing is enabled.

Note: Releasing a mobile device will close the application under test (AUT) on the mobile device.

Troubleshooting when Testing Mobile Applications

Why does the Select Application dialog not display my mobile devices?

If Silk4J does not recognize a mobile device or emulator, the Mobile tab in the Select Application dialog
does not display the device or emulator. Additionally, the Web tab of the Select Application dialog does
not display the mobile browsers that are installed on the device or emulator.

Silk4J might not recognize a mobile device or emulator for one of the following reasons:

Reason Solution

The emulator is not running. Start the emulator.

The Android Debug Bridge (adb) does not recognize the
mobile device.

To check if the mobile device is recognized by adb:

1. Navigate to the Android Debug Bridge (adb) in the
Android SDK installation folder. If the Android SDK is
not installed, navigate to C:\Program Files
(x86)\Silk\SilkTest\ng\Mobile
\windows\AndroidTools\platform-tools
to use the adb that is installed with Silk4J.

2. Hold Shift and right-click into the File Explorer
window.

3. Select Open command window here.

4. In the command window, type adb devices to get
a list of all attached devices.

5. If your device is not listed, check if USB-debugging is
enabled on the device and if the appropriate USB
driver is installed.

6. If you get an error, for example adb server is
out of date, ensure that the adb version in C:
\Program Files (x86)\Silk\SilkTest
\ng\Mobile\windows\AndroidTools
\platform-tools is the same as the adb version
of your local Android SDK. For additional information,

148 | Testing Specific Environments

Reason Solution

see What can I do if the connection between the
Open Agent and my device is unstable?.

The version of the operating system of the device is not
supported by Silk4J.

For information on the supported mobile operating
system versions, refer to the Release Notes.

The USB driver for the device is not installed on the local
machine.

Install the USB driver for the device on the local machine.
For additional information, see Installing a USB Driver.

USB-debugging is not enabled on the device. Enable USB-debugging on the device. For additional
information, see Enabling USB-Debugging.

Note: If all previous solutions do not work, you could try to restart the device.

Why does Silk4J search for a URL in Chrome for Android instead of navigating to the URL?

Chrome for Android might in some cases interpret typing an URL into the address bar as a search. As a
workaround you can manually add a command to your script to navigate to the URL.

What do I do if the adb server does not start correctly?

When the Android Debug Bridge (adb) server starts, it binds to local TCP port 5037 and listens for
commands sent from adb clients. All adb clients use port 5037 to communicate with the adb server. The
adb server locates emulator and device instances by scanning odd-numbered ports in the range 5555 to
5585, which is the range used by emulators and devices. Adb does not allow changing those ports. If you
encounter a problem while starting adb, check if one of the ports in this range is already in use by another
program.

For additional information, see http://developer.android.com/tools/help/adb.html.

What can I do if the connection between the Open Agent and my device is unstable?

If you have installed the Android SDK or another tool that uses the Android Debug Bridge (adb), an
additional adb server might be running in addition to the one that is used by Silk4J. If the running adb
servers have different versions, the connection between the Open Agent and the device might become
unstable or even break.

To avoid version mismatch errors, specify the path to the Android SDK directory by setting the environment
variable SILK_ANDROID_HOME, for example to C:\Users\<user>\AppData\Local\Android
\android-sdk. If the information service was running during this change, use the Windows Service
Manager to restart the Silk Test information service with the updated environment variable. If the variable is
not set, Silk4J uses the adb version that is shipped with Silk4J.

Why do I get the error: Failed to allocate memory: 8?

This error displays if you are trying to start up the emulator and the system cannot allocate enough
memory. You can try the following:

1. Lower the RAM size in the memory options of the emulator.
2. Lower the RAM size of Intel HAXM. To lower the RAM size, run the IntelHaxm.exe again and choose

change.
3. Open the Task Manager and check if there is enough free memory available. If not, try to free up

additional memory by closing a few programs.

Testing Specific Environments | 149

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
http://developer.android.com/tools/help/adb.html

Why do I get the error "Silk Test cannot start the app that you have specified" during testing on an
iOS device?

This error might display for one or more of the following reasons:

Reason Solution

The iOS device is not in developer mode. You can enable the developer mode in one of the
following two ways:

• Connect the device to a Mac on which Xcode is
installed, and start the app that you want to test on
the device.

• Add your provisioning profiles to the device.

1. Open Xcode.

2. Select Window > Devices.

3. Right-click on the iOS device.

4. Select Show Provisioning Profiles.

5. Add your provisioning profiles.

You have recently updated the iOS version of the device. 1. Open Xcode.

2. Select Window > Devices.

3. Wait unitl Xcode has processed the symbol files.

UI automation is not enabled on the iOS device. 1. Select Settings > Developer.

2. Activate Enable UI Automation.

The Web Inspector is not activated on the iOS device,
while you are trying to test a mobile web application.

1. Click Settings > Safari > Advanced.

2. Activate the Web Inspector.

The app that you want to test was not built for the iOS
version of the iOS device on which you are testing.

Use Xcode to build the app for the iOS version of the
device.

The Software Update dialog box is currently open on the
iOS device.

Close the dialog box and disable automatic software
updates:

1. Select Settings > App and iTunes Stores >
AUTOMATIC DOWNLOADS.

2. Deactivate Updates.

Why does my Android device display only the Back button in the dynamic hardware controls?

If the Android or the Android Emulator is screen-locked when you start testing, the device or Emulator
might display only the button Back in the dynamic hardware controls.

To solve this issue, stop the Open Agent, restart the device, and change the device settings to no longer
lock the screen.

Why does my Android device or emulator no longer display a keyboard?

To support unicode characters, Silk4J replaces the standard keyboard with a custom keyboard. When
testing is finished, the original keyboard is restored. If an error occurs during testing, the custom keyboard
might still be active and cannot be replaced.

To solve this issue, manually reset the keyboard under Settings > Language & input > Current
Keyboard.

150 | Testing Specific Environments

Why does my device not respond during testing?

If the device, emulator, or Simulator is screen-locked when you start testing, and Silk4J is unable to unlock
the screen, the device, emulator, or Simulator might stop responding to any actions.

To solve this issue, stop the Open Agent and change the device settings to no longer lock the screen.

Why can I not install the Information Service on a Mac?

When the Allow apps downloaded from setting in the General tab of the Security & Privacy system
preferences pane is set to Mac App Store and identified developers, which is the default value, the
following error message appears when opening the Information Service setup:
"SilkTestInformationService<version>.pkg" can't be opened because it is from an unidentified developer.

To solve this issue, use one of the following:

• Right-click the setup file and select Open. A warning message will appear, but you will still be able to
open the file.

• Set the Allow apps downloaded from setting to Anywhere.
• After attempting to open the file, navigate to the General tab of the Security & Privacy system

preferences pane and click Open Anyway.

Why is the Recording window black when recording an Android app?

Android apps that require a higher level of security, for example apps that handle financial transactions,
might have the FLAG_SECURE flag set, which prevents Silk4J from capturing the app. Silk4J relies on
screenshots or on a video of the Android device during recording and will display a black screen of the
device in the Recording window, if the Android app that you are testing has this flag set. To test such an
app with Silk Test, you have to contact the app development team, and ask them to un-set the
FLAG_SECURE flag during testing.

Why does Silk4J not show a video when testing on an Android emulator?

If the emulator is using the graphic card of your computer for better rendering, the video capturing of Silk4J
might not work. To solve this, emulate the graphics in software:

1. Open the Android Virtual Device Manager.
2. Click Edit in the Actions column of the emulator.
3. Select Software from the list in the Emulated Performance area of the Virtual Device Configuration

dialog.

What can I do if Silk4J does not show a video when testing in a cloud environment?

When testing in a cloud environment, showing a video might not work when recording or replaying a test,
for example because required ports are not open.

To solve this issue, you can specify a list of WebDriver host URLs in the infoservice.properties file.
For information on how to access this properties file, see Editing the Properties of the Silk Test Information
Service. Add the option infoservice.disableScreencastHosts to the file, by typing the following:

infoservice.disableScreencastHosts=<URL_1>,<URL_2>, ...

For example:

infoservice.disableScreencastHosts=http://my-webdriver-server-url.com:
80/wd/hub

You can specify URL patterns like *my-webdriver-server-url.com by using asterisks (*) as wildcards.

Silk4J will show a series of screenshots instead of a video when recording and replaying on the specified
hosts.

Testing Specific Environments | 151

https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#FLAG_SECURE

How can I change the installed version of Xcode?

If the version of Xcode that you are using is not supported by Silk4J, for example when you upgrade to the
latest version of Xcode, an error message might appear when testing on iOS.

To replace the installed version of Xcode with a supported version, download a supported Xcode version
from https://developer.apple.com/download/more/, and replace the unsupported version with the
downloaded version. For information about the supported Xcode versions, refer to the Release Notes.

What can I do if my Mac runs out of disk space?

Silk4J uses Instruments to automate iOS devices. This tool creates large log files in the /Library/
Caches/com.apple.dt.instruments directory, which might fill up disk space on the Mac. To solve this
issue, Micro Focus recommends regularly deleting these log files, either manually or by using a cronjob.
For example, to delete the files each day at the same time, you could do the following:

1. Type sudo crontab -e into a Terminal. This opens an editor in which you can edit the crontab for
root.

2. Add the following line to the crontab:

0 2 1 * * find /Library/Caches/com.apple.dt.instruments -mtime +10 -delete

3. Save the crontab.

In this example, all log files that are older than ten days will be deleted each day at 2 AM from the directory.

Why does my test fail with the error message "Unable to sign WebDriver Agent for testing "?

When testing on a physical iOS device, this error usually means that during the build process the
WebDriverAgent app could not be signed or that there is a problem with the provisioning profile.

You can check the actual problem with the following commands, which have to be executed at the Mac
machine to which the device is connected:

cd /Applications/Silk/Mobile/common/Appium/node_modules/appium-xcuitest-driver
xcodebuild -project WebDriverAgent.xcodeproj -scheme WebDriverAgentRunner -
destination 'id=<udid>' test

Verify that the folder Resources exists under /Applications/Silk/Mobile/common/Appium/
node_modules/appium-xcuitest-driver and that the folder contains the file
WebDriverAgent.bundle. If not, create this folder and an empty WebDriverAgent.bundle file, for
example by using the following command:

mkdir -p Resources/WebDriverAgent.bundle

What can I do to prevent the Developer Tools Access from requesting to take control of another
process?

When starting the execution of a test on iOS, a message box stating the following might appear:
Developer Tools Access needs to take control of another process for debugging to continue. Type your
password to allow this.

To avoid getting this message, execute the following command in a Terminal:

sudo /usr/sbin/DevToolsSecurity --enable

Why are the rectangles wrong while testing a mobile web application on an iPad?

If the rectangles around controls are offset when testing a mobile web application on an iPad, you might
have multiple browser tabs open and the Tab bar might be displayed. To fix this issue, close all tabs except
one.

Why can I no longer record or replay tests on my device after updating Silk4J?

When updating to a new version of Silk4J, some Appium apps on any physical mobile devices that have
already been used for mobile testing with the previous version of Silk4J are updated automatically. If for

152 | Testing Specific Environments

https://developer.apple.com/download/more/
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

any reason these apps are not automatically updated, you might experience difficulties when trying to
record or replay tests on the device.

If you are experiencing such issues on a specific Android device after updating Silk4J, manually uninstall
the following apps from the device:

• Appium Android Input Manager
• Appium Settings
• io.appium.uiautomator2.server
• io.appium.uiautomator2.server.test
• Unlock

If you are experiencing such issues on a specific iOS device after updating Silk4J, manually uninstall the
WebDriverAgentRunner from the device.

Why can I not record a mobile application?

Silk4J uses Appium to test mobile applications. Some network proxy settings set in Appium might interfere
with recording Silk4J. You could try to deactivate the network proxy settings on the mobile device or
Emulator.

Why can I not test on my Android device?

Some Android devices might have additional settings that prevent Silk4J from testing mobile applications
on the device. For example, the Xiaomi Mi Mix 2 has the same prerequisites for testing as every other
device, but these are not enough. To prepare the Xiaomi Mi Mix 2 for testing, perform the following actions:

1. Enable the developer mode on the device.
2. Navigate to Settings > Additional settings > Developer options.
3. Enable USB debugging.
4. Enable Stay awake.
5. Enable Install via USB.
6. Enable USB debugging (Security settings).
7. Disable Turn on MIUI optimizations.

How Can I Use Chrome for Android to Replay Tests?
By default you can use the Select Browser dialog box to select the browser during replay.

If you execute a script from the command line or from a Continuous Integration (CI) server, you can specify
the connection string in the application configuration of the script. To overwrite the browser that is specified
in the application configuration, use the silktest.configurationName environment variable.

You can also use the property browsertype of the BrowserApplication class to set the type of the
browser that is used during replay. However, the browsertype does not include an explicit value for
Chrome for Android.

To specify that you want to use Chrome for Android as the browser, on which a test is replayed, set the
browsertype to GoogleChrome and specify Android as the platform. When Android is specified, Silk4J
uses Chrome for Android instead of Google Chrome on a desktop machine to execute the test.

Examples

The following code sample shows how you can set the base state for a test to use
Chrome for Android on a Nexus 7 by using the silktest.configurationName:

SET
silktest.configurationName="platformName=Android;deviceName=Nexu
s 7;host=10.0.0.1 - Chrome"

Testing Specific Environments | 153

The following code sample shows how you can set the base state for a test to use
Chrome for Android by using the browsertype :

BrowserBaseState baseState = new
BrowserBaseState(BrowserType.GoogleChrome, "demo.borland.com/
InsuranceWebExtJS/");
baseState.setConnectionString("platformName=Android");
baseState.execute(desktop);

Limitations for Testing Mobile Web Applications
The support for playing back tests and recording locators on mobile browsers is not as complete as the
support for the other supported browsers. The known limitations for playing back tests and recording
locators for mobile web applications are:

• The following classes, interfaces, methods, and properties are currently not supported for mobile web
applications:

• BrowserApplication class.

• closeOtherTabs method
• closeTab method
• existsTab method
• getActiveTab method
• getSelectedTab method
• getSelectedTabIndex method
• getSelectedTabName method
• getTabCount method
• imageClick method
• openTab method
• selectTab method

• DomElement class.

• domDoubleClick method
• domMouseMove method
• getDomAttributeList method

• IKeyable interface.

• pressKeys method
• releaseKeys method

• Silk4J does not support testing HTML frames and iFrames with Apple Safari on iOS, including text
recognition in HTML frames and iFrames.

Text recognition includes the following methods:

• textCapture

• textClick

• textExists

• textRectangle

• Recording in landscape mode is not supported for emulators that include virtual buttons in the system
bar. Such emulators do not correctly detect rotation and render the system bar in landscape mode to
the right of the screen, instead of the lower part of the screen. However, you can record against such an
emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk4J does not support properties in XPath expressions.

154 | Testing Specific Environments

• If you are testing a mobile web application on Android, Silk4J does not support zooming.
• The following JavaScript alert-handling methods of the BrowserWindow class do not work when

testing on the Original Android Stock (AOSP) Browser:

• acceptAlert method
• dismissAlert method
• getAlertText method
• isAlertPresent method

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac.

• Before starting to test a mobile web application, ensure that no browser tab is open.

Tip: On iPads you can disable tabs in Apple Safari. Navigate to Settings > Safari and disable
Show Tab Bar to do so.

• While testing a mobile web application, you can only have one browser tab open.
• Silk4J does not support testing mobile web applications that are opened by a native mobile application.

Limitations for Testing Native Mobile Applications
The known limitations for playing back tests and recording locators on native mobile applications (apps)
are:

• The following classes, interfaces, methods, and properties are currently not supported for native mobile
applications:

• IKeyable interface.

• pressKeys method
• releaseKeys method

• MobileDevice class.

• When testing a native mobile application on iOS, the setLocation method is not supported.
• When testing a native mobile application on an Android version prior to Android 6.0, you have to

enable Allow mock locations to use the setLocation method. To do so, open the settings of
the Android device or emulator and tap Developer Options.

• When testing a native mobile application on Android 6.0 or later, you have to set the app to
Appium Settings to use the setLocation method. To do so, open the settings of the Android
device or emulator and tap Developer Options > Select mock location app. Then choose
Appium Settings.

Note: The Appium Settings entry is only available if you have already executed a test with
Appium on the Android device or emulator.

• When testing on iOS, the getValue method of the XCUIElementTypeSwitch class returns the
strings false or true depending on the checked state, instead of returning the strings 0 and 1.

• Recording in landscape mode is not supported for Android emulators that include virtual buttons in the
system bar. Such emulators do not correctly detect rotation and render the system bar in landscape
mode to the right of the screen, instead of the lower part of the screen. However, you can record against
such an emulator in portrait mode.

• Only HTML attributes in the HTML DOM are supported in XPath expressions for mobile applications.
Silk4J does not support properties in XPath expressions.

• At any given point in time, you can test on multiple physical iOS devices that are connected to the Mac,
but only on one iOS Simulator that is running on the Mac. With Silk Test 17.5 Hotfix 1 or later, you are
no longer required to use multiple user sessions on a Mac to test mobile applications on iOS.

• Silk4J does not support text recognition when testing native mobile applications on both Android and
iOS.

Text recognition includes the following methods:

Testing Specific Environments | 155

• textCapture

• textClick

• textExists

• textRectangle

• Silk4J does not support testing native mobile applications with multiple web views.
• When testing on iOS, the state of the isVisible property is always true, even if the element is not

visible.
• When testing on iOS, a swipe action with multiple steps swipes to a point, releases the mouse pointer

and then swipes to the next point. On prior versions of iOS, the action does not release the mouse
pointer between the swipes.

• When testing on iOS, Silk4J does not support any multi-touch actions except pinch.
• When testing on iOS, Silk4J does not support the pinchIn method.
• When testing on iOS, you can only accept or dismiss alert dialog boxes. If no Cancel button is available

and Silk4J cannot dismiss the dialog, the default action is to accept the dialog.
• When testing on Android, Silk4J does not provide automated synchronization for controls of the

Animation class.
• When testing toasts on Android, the following limitations apply:

• During recording, Silk4J always displays the rectangle for the toast in the lowest quarter of the
Recording window, independent of the actual position of the toast.

• During recording and replay, the detection of a toast by Silk4J always has a duration of five seconds,
even if the toast appears in a shorter time period.

• When testing on iOS, Silk4J does not provide automated synchronization for controls that call the
UIView.animate function or the UIView.animateWithDuration function.

You can workaround this issue by increasing the speed of the animation in the app delegate:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {
 // Speed animations up (recommended)
 window!.layer.speed = 100;
 }
}

Micro Focus does not recommend disabling such animations completely, as this might change the
applications behavior. However, if speeding up the animation does not resolve the synchronization
issue, you could completely disable animations in the app delegate as follows:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
 //...
 if NSProcessInfo.processInfo().environment["automationName"] == "Silk
Test" {
 UIView.setAnimationsEnabled(false)
 }
}

• When testing on iOS, the following additional limitations apply:

• You might experience performance decreases while recording and replaying tests.
• Due to internal changes in iOS, the locators of some controls might have changed, and some of your

existing tests might break.
• Text fields that are not in focus might not be recognized as text fields. To ensure that text fields are

recognized correctly, set the focus on the text fields, for example by clicking on a text field before
trying to interact with it.

156 | Testing Specific Environments

https://developer.android.com/reference/android/view/animation/Animation.html

Dynamically Invoking Methods for Native Mobile Apps
Dynamic invoke enables you to directly call methods of the underlying Appium WebDriver for a mobile
native app. This is useful whenever an Appium WebDriver method is not exposed through the Silk4J API.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Supported Methods

• When testing a native mobile application on Android, Silk4J supports the methods available in the
AndroidDriver class of the Appium Java-client API.

• When testing a native mobile application on iOS, Silk4J supports the methods available in the
IOSDriver class of the Appium Java-client API.

Supported Parameter Types

The following parameter types are supported:

• Primitive types (boolean, integer, long, double, string)

Both primitive types, such as int, and object types, such as java.lang.Integer are supported.
Primitive types are widened if necessary, allowing, for example, to pass an int where a long is
expected.

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the enum ScreenOrientation, you can use the string
values LANDSCAPE or PORTRAIT.

• Lists

Allows calling methods with list, array, or var-arg parameters. Conversion to an array type is done
automatically, provided the elements of the list are assignable to the target array type.

Returned Values

The following values are returned for methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Example

The following code sample contains some common examples for using dynamic invoke.

// Java code
MobileDevice device = desktop.find("//MobileDevice");

// Getting the page source
String pageSource = (String) device.invoke("getPageSource");

// Resetting an app
device.invoke("resetApp");

// Changing the device orientation
device.invoke("rotate", "LANDSCAPE");
device.invoke("rotate", "PORTRAIT");

// Dynamic invoke on MobileObject (calls get redirected to the
underlying web element for WebDriver)

Testing Specific Environments | 157

http://appium.github.io/java-client/
http://appium.github.io/java-client/

device.<MobileObject> find("//MobileObject[@caption='CheckBox
2']").invoke("click");

Clicking on Objects in a Mobile Website
When clicking on an object during the recording and replay of an automated test, a mobile website
presents the following challenges in comparison to a desktop website:

• Varying zoom factors and device pixel ratios.
• Varying screen sizes for different mobile devices.
• Varying font and graphic sizes between mobile devices, usually smaller in comparison to a website in a

desktop browser.
• Varying pixel size and resolution for different mobile devices.

Silk4J enables you to surpass these challenges and to click the appropriate object on a mobile website.

When recording a test on a mobile device, Silk4J does not record coordinates when recording a Click.
However, for cross-browser testing, coordinates are allowed during replay. You can also manually add
coordinates to a Click. Silk4J interprets these coordinates as the HTML coordinates of the object. To click
on the appropriate object inside the BrowserWindow, during the replay of a test on a mobile device, Silk4J
applies the current zoom factor to the HTML coordinates of the object. The device pixel coordinates are the
HTML coordinates of the object, multiplied with the current zoom factor.

If the object is not visible in the currently displayed section of the mobile website, Silk4J scrolls to the
appropriate location in the website.

Example

The following code shows how you can test a DomButton with a fixed size of 100 x 20
px in your HTML page.

DomButton domButton = desktop.find("locator for the button");
domButton.click(MouseButton.LEFT, new Point(50, 10));

During replay on a different mobile device or with a different zoom factor, the
DomButton might for example have an actual width of 10px on the device screen.
Silk4J clicks in the middle of the element when using the code above, independent of
the current zoom factor, because Silk4J interprets the coordinates as HTML coordinates
and applies the current zoom factor.

Using Existing Mobile Web Tests
Silk Test 17.0 or later uses a different approach to mobile web testing than previous versions of Silk Test.
This change might result in your old mobile web tests no longer working on Silk Test 17.0 or later. This
topic describes some of the changes that were introduced with Silk Test 17.0 and provides guidance on
changing existing mobile web tests with Silk Test 17.0 or later.

The following changes for mobile web testing were introduced with Silk Test 17.0:

• With previous versions of Silk Test, you were able to test on iOS devices that were connected by USB to
a Windows machine. With Silk Test 17.0 or later, you can only test on iOS devices that are connected to
an OSX machine (Mac).

• If you have tested mobile web applications on an Android device with a previous version of Silk Test,
you have to manually remove the proxy from the Android device to test a web application with Silk Test
17.0 or later. Silk Test 17.0 or later no longer requires a proxy, and if the proxy is set, the message
Unable to connect to the proxy server displays on the device.

158 | Testing Specific Environments

.NET Support
Silk Test provides built-in support for testing .NET applications including:

• Windows Forms (Win Forms) applications
• Windows Presentation Foundation (WPF) applications
• Microsoft Silverlight applications

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Windows Forms Support
Silk4J provides built-in support for testing .NET standalone and No-Touch Windows Forms (Win Forms)
applications. However, side-by-side execution is supported only on standalone applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Object Recognition

The name that was given to an element in the application is used as automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute.

Supported Controls

For a complete list of the record and replay controls available for Win Forms testing, see Windows Forms
Class Reference.

Attributes for Windows Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows Forms applications include:

• automationid
• caption
• windowid
• priorlabel (For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.)

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Custom Attributes for Windows Forms Applications
Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk4J automatically will use this property for identification in the locator. Windows Forms application
locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Dynamically Invoking Windows Forms Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not

Testing Specific Environments | 159

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The invoke Method

For a Windows Forms or a WPF control, you can use the invoke method to call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the invoke Method

For an object of the Silk4J type DataGrid, you can call all methods that MSDN defines
for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//Java code
boolean isExpanded = (Boolean) dataGrid.invoke("IsExpanded", 3);

Second Example for the invoke Method

To invoke the static method String.compare(String s1, String s2) inside the
AUT, use the following code:

//Java code
int result = (Integer)
mainWindow.invoke("System.String.Compare", "a", "b");

Third Example for the invoke Method

This example shows how you can dynamically invoke the user-generated method
GetContents.

You can write code which you can use to interact with a control in the application under
test (AUT), in this example an UltraGrid. Instead of creating complex dynamic invoke
calls to retrieve the contents of the UltraGrid, you can generate a new method
GetContents and then just dynamically invoke the new method.

160 | Testing Specific Environments

In Visual Studio, the following code in the AUT defines the GetContents method as a
method of the UltraGridUtil class:

//C# code, because this is code in the AUT
namespace UltraGridExtensions {
 public class UltraGridUtil {
 /// <summary>
 /// Retrieves the contents of an UltraGrid as nested list
 /// </summary>
 /// <param name="grid"></param>
 /// <returns></returns>
 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }
 return result;
 }
 }
}

The code for the UltraGridUtil class needs to be added to the AUT. You can do this
in the following ways:

• The application developer can compile the code for the class into the AUT. The
assembly needs to be already loaded.

• You can create a new assembly that is loaded into the AUT during test execution.

To load the assembly, you can use the following code:

FormsWindow.LoadAssembly(String assemblyFileName)

You can load the assembly by using the full path, for example:

mainWindow.LoadAssembly("C:/temp/ultraGridExtensions.dll")

When the code for the UltraGridUtil class is in the AUT, you can add the following code
to your test script to invoke the GetContents method:

List<List<String>> contents =
mainWindow.invoke("UltraGridExtensions.UltraGridUtil.GetContents
", ultraGrid);

The mainWindow object, on which the invoke method is called, only identifies the
AUT and can be replaced by any other object in the AUT.

The invokeMethods Method

For a Windows Forms or a WPF control, you can use the invokeMethods method to invoke a sequence
of nested methods. You can call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Testing Specific Environments | 161

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the invokeMethods method generates a
relatively complex script, because you have to pass five methods with their
corresponding parameters to the invokeMethods method:

WPFControl dataGrid = mainWindow.find("//
WPFControl[@automationId='Custom Data Grid']");

// Get text contents of third cell in first row.
int rowIndex = 0;
int columnIndex = 2;

List<String> methodNames = Arrays.asList("Rows", "get_Item",
"Cells", "get_Item", "Text");
List<List<Object>> parameters = Arrays.asList(new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>());

String cellText = (String) dataGrid.invokeMethods(methodNames,
parameters);

A better approach in such a case is to add code to the application under test and then
to use the invokeMethods method. For this example, add the getCellText method
to the AUT:

// C# code, if the AUT is implemented in C#.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

' VB code, if the AUT is implemented in VB.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

To get the text contents of the cell, dynamically invoke the GetCellText method from
your test script:

String cellText = (String) mainWindow.invoke("GetCellText",
dataGrid, rowIndex, columnIndex);

For additional information, see Adding Code to the Application Under Test to Test
Custom Controls.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods and properties that the MSDN defines for the control.

162 | Testing Specific Environments

• If the control is a custom control that is derived from a standard control, all methods and properties from
the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point
and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

• Other controls

Control parameters can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Windows Presentation Foundation (WPF) Support
Silk4J provides built-in support for testing Windows Presentation Foundation (WPF) applications. Silk4J
supports standalone WPF applications and can record and play back controls embedded in .NET version
3.5 or later.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the controls available for WPF testing, see WPF Class Reference.

All supported WPF classes for Silk4J WPF support start with the prefix WPF, such as WPFWindow and
WPFListBox.

Supported methods and properties for WPF controls depend on the actual implementation and runtime
state. The methods and properties may differ from the list that is defined for the corresponding class. To
determine the methods and properties that are supported in a specific situation, use the following code:

• GetPropertyList()

• GetDynamicMethodList()

For additional information abut WPF, refer to MSDN.

Attributes for Windows Presentation Foundation (WPF) Applications
Supported attributes for WPF applications include:

Testing Specific Environments | 163

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
http://msdn.microsoft.com

• automationId
• caption
• className
• name
• All dynamic locator attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify
the control in the application
code.

//WPFButton[@name='okButton']"

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk4J recognizes.

//WPFButton[@className='MyCustomButton']"

164 | Testing Specific Environments

During recording, Silk4J creates a locator for a WPF control by using the automationId, name, caption, or
className attributes in the order that they are listed in the preceding table. For example, if a control has a
automationId and a name, Silk4J uses the automationId when creating the locator.

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Custom Attributes for WPF Applications
WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>
 </Grid>
</Window>

Silk4J automatically uses this property for identification in the locator. WPF application locators look like the
following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

Classes that Derive from the WPFItemsControl Class
Silk4J can interact with classes that derive from WPFItemsControl, such as WPFListBox,
WPFTreeView, and WPFMenu, in two ways:

• Working with the control

Most controls contain methods and properties for typical use cases. The items are identified by text or
index.

• Working with individual items, such as WPFListBoxItem, WPFTreeViewItem, or WPFMenuItem

For advanced use cases, use individual items. For example, use individual items for opening the context
menu on a specific item in a list box, or clicking a certain position relative to an item.

Custom WPF Controls
Generally, Silk4J provides record and playback support for all standard WPF controls.

Silk4J handles custom controls based on the way the custom control is implemented. You can implement
custom controls by using the following approaches:

• Deriving classes from UserControl

This is a typical way to create compound controls. Silk4J recognizes these user controls as
WPFUserControl and provides full support for the contained controls.

• Deriving classes from standard WPF controls, such as ListBox

Silk4J treats these controls as an instance of the standard WPF control that they derive from. Record,
playback, and recognition of children may not work if the user control behavior differs significantly from
its base class implementation.

• Using standard controls that use templates to change their visual appearance

Low-level replay might not work in certain cases. Switch to high-level playback mode in such cases. To
change the replay mode, use the Script Options dialog box and change the OPT_REPLAY_MODE
option.

Testing Specific Environments | 165

Silk4J filters out certain controls that are typically not relevant for functional testing. For example, controls
that are used for layout purposes are not included. However, if a custom control derives from an excluded
class, specify the name of the related WPF class to expose the filtered controls during recording and
playback.

Dynamically Invoking WPF Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

The invoke Method

For a Windows Forms or a WPF control, you can use the invoke method to call the following methods:

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

First Example for the invoke Method

For an object of the Silk4J type DataGrid, you can call all methods that MSDN defines
for the type System.Windows.Forms.DataGrid.

To call the method IsExpanded of the System.Windows.Forms.DataGrid class,
use the following code:

//Java code
boolean isExpanded = (Boolean) dataGrid.invoke("IsExpanded", 3);

Second Example for the invoke Method

To invoke the static method String.compare(String s1, String s2) inside the
AUT, use the following code:

//Java code
int result = (Integer)
mainWindow.invoke("System.String.Compare", "a", "b");

166 | Testing Specific Environments

Third Example for the invoke Method

This example shows how you can dynamically invoke the user-generated method
GetContents.

You can write code which you can use to interact with a control in the application under
test (AUT), in this example an UltraGrid. Instead of creating complex dynamic invoke
calls to retrieve the contents of the UltraGrid, you can generate a new method
GetContents and then just dynamically invoke the new method.

In Visual Studio, the following code in the AUT defines the GetContents method as a
method of the UltraGridUtil class:

//C# code, because this is code in the AUT
namespace UltraGridExtensions {
 public class UltraGridUtil {
 /// <summary>
 /// Retrieves the contents of an UltraGrid as nested list
 /// </summary>
 /// <param name="grid"></param>
 /// <returns></returns>
 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }
 return result;
 }
 }
}

The code for the UltraGridUtil class needs to be added to the AUT. You can do this
in the following ways:

• The application developer can compile the code for the class into the AUT. The
assembly needs to be already loaded.

• You can create a new assembly that is loaded into the AUT during test execution.

To load the assembly, you can use the following code:

FormsWindow.LoadAssembly(String assemblyFileName)

You can load the assembly by using the full path, for example:

mainWindow.LoadAssembly("C:/temp/ultraGridExtensions.dll")

When the code for the UltraGridUtil class is in the AUT, you can add the following code
to your test script to invoke the GetContents method:

List<List<String>> contents =
mainWindow.invoke("UltraGridExtensions.UltraGridUtil.GetContents
", ultraGrid);

The mainWindow object, on which the invoke method is called, only identifies the
AUT and can be replaced by any other object in the AUT.

The invokeMethods Method

For a Windows Forms or a WPF control, you can use the invokeMethods method to invoke a sequence
of nested methods. You can call the following methods:

Testing Specific Environments | 167

• Public methods that the MSDN defines for the control.
• Public static methods that the MSDN defines.
• User-defined public static methods of any type.

Example: Getting the Text Contents of a Cell in a Custom Data Grid

To get the text contents of a cell of a custom data grid from the Infragistics library, you
can use the following C# code in the AUT:

string cellText =
dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

The following C# code sample gets the text contents of the third cell in the first row:

string cellText = dataGrid.Rows[0].Cells[2];

Scripting the same example by using the invokeMethods method generates a
relatively complex script, because you have to pass five methods with their
corresponding parameters to the invokeMethods method:

WPFControl dataGrid = mainWindow.find("//
WPFControl[@automationId='Custom Data Grid']");

// Get text contents of third cell in first row.
int rowIndex = 0;
int columnIndex = 2;

List<String> methodNames = Arrays.asList("Rows", "get_Item",
"Cells", "get_Item", "Text");
List<List<Object>> parameters = Arrays.asList(new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>(), Arrays.<Object>asList(rowIndex), new
ArrayList<Object>());

String cellText = (String) dataGrid.invokeMethods(methodNames,
parameters);

A better approach in such a case is to add code to the application under test and then
to use the invokeMethods method. For this example, add the getCellText method
to the AUT:

// C# code, if the AUT is implemented in C#.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

' VB code, if the AUT is implemented in VB.
public static string
GetCellText(Infragistics.Win.UltraWinGrid.UltraGrid dataGrid,
int rowIndex, int columnIndex) {
 return dataGrid.Rows[rowIndex].Cells[columnIndex].Text;

To get the text contents of the cell, dynamically invoke the GetCellText method from
your test script:

String cellText = (String) mainWindow.invoke("GetCellText",
dataGrid, rowIndex, columnIndex);

For additional information, see Adding Code to the Application Under Test to Test
Custom Controls.

Supported Methods and Properties

The following methods and properties can be called:

168 | Testing Specific Environments

• Methods and properties that Silk4J supports for the control.
• All public methods and properties that the MSDN defines for the control.
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point
and Rect).

• Enum types

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects

.NET struct and object parameters must be passed as a list. The elements in the list must match one
constructor for the .NET object in the test application. For example, if the method expects a parameter
of the .NET type System.Windows.Vector, you can pass a list with two integers. This works
because the System.Windows.Vector type has a constructor with two integer arguments.

• WPF controls

WPF control parameters can be passed as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.
• A string for all other types

Call ToString on returned .NET objects to retrieve the string representation

Example

For example, when an application developer creates a custom calculator control that
offers the following methods and the following property:

public void Reset()
public int Add(int number1, int number2)
public System.Windows.Vector StrechVector(System.Windows.Vector
vector, double
factor)
public String Description { get;}

The tester can call the methods directly from his test. For example:

customControl.invoke("Reset");
int sum = customControl.invoke("Add", 1, 2);
// the vector can be passed as list of integer
List<Integer> vector = new ArrayList<Integer>();
vector.add(3);
vector.add(4);
// returns "6;8" because this is the string representation of
the .NET object
String strechedVector = customControl.invoke("StrechVector",
vector, 2.0);
String description = customControl.getProperty("Description");

Testing Specific Environments | 169

Setting WPF Classes to Expose During Recording and Playback
Silk4J filters out certain controls that are typically not relevant for functional testing. For example, controls
that are used for layout purposes are not included. However, if a custom control derives from an excluded
class, specify the name of the related WPF class to expose the filtered controls during recording and
playback.

Specify the names of any WPF classes that you want to expose during recording and playback. For
example, if a custom class called MyGrid derives from the WPF Grid class, the objects of the MyGrid
custom class are not available for recording and playback. Grid objects are not available for recording and
playback because the Grid class is not relevant for functional testing since it exists only for layout
purposes. As a result, Grid objects are not exposed by default. In order to use custom classes that are
based on classes that are not relevant to functional testing, add the custom class, in this case MyGrid, to
the OPT_WPF_CUSTOM_CLASSES option. Then you can record, playback, find, verify properties, and
perform any other supported actions for the specified classes.

1. Click Silk4J > Edit Options.

2. Click the WPF tab.

3. In the Custom WPF class names grid, type the name of the class that you want to expose during
recording and playback.

Separate class names with a comma.

4. Click OK.

Setting Pre-Fill During Recording and Replaying
Defines whether items in a WPFItemsControl, like WPFComboBox or WPFListBox, are pre-filled during
recording and playback. WPF itself lazily loads items for certain controls, so these items are not available
for Silk4J if they are not scrolled into view. Turn pre-filling on, which is the default setting, to additionally
access items that are not accessible without scrolling them into view. However, some applications have
problems when the items are pre-filled by Silk4J in the background, and these applications can therefore
crash. In this case turn pre-filling off.

1. Click Silk4J > Edit Options.

2. Click the WPF tab.

3. In the Pre-fill items area, check the OPT_WPF_PREFILL_ITEMS check box.

4. Click OK.

Silverlight Application Support
Microsoft Silverlight (Silverlight) is an application framework for writing and running rich internet
applications, with features and purposes similar to those of Adobe Flash. The run-time environment for
Silverlight is available as a plug-in for most web browsers.

Silk4J provides built-in support for testing Silverlight applications. Silk4J supports Silverlight applications
that run in a browser as well as out-of-browser and can record and play back controls in .NET version 3.5
or later.

The following applications, that are based on Silverlight, are supported:

• Silverlight applications that run in Internet Explorer.
• Out-of-Browser Silverlight applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

Silk4J includes record and replay support for Silverlight controls.

170 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

For a complete list of the controls available for Silverlight testing, see the Silverlight Class Reference.

Note: With Silk Test 14.0 or later, Silk4J recognizes only Silverlight controls that are available for
interaction and visible on the screen. This change might change the behavior of tests that were
recorded with a Silk Test version prior to Silk Test 14.0. To run such tests with Silk Test 14.0 or later,
remove all invisible or not yet available Silverlight controls from the tests.

Prerequisites

The support for testing Silverlight applications in Microsoft Windows XP requires the installation of Service
Pack 3 and the Update for Windows XP with the Microsoft User Interface Automation that is provided in
Windows 7. You can download the update from http://www.microsoft.com/download/en/details.aspx?
id=13821.

Note: The Microsoft User Interface Automation needs to be installed for the Silverlight support. If you
are using a Windows operating system and the Silverlight support does not work, you can install the
update with the Microsoft User Interface Automation, which is appropriate for your operating system,
from http://support.microsoft.com/kb/971513.

Locator Attributes for Identifying Silverlight Controls
Supported locator attributes for Silverlight controls include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="Ok"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk4J
recognizes.

//
SLButton[@className='MyCusto
mButton']

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Testing Specific Environments | 171

http://www.microsoft.com/download/en/details.aspx?id=13821
http://www.microsoft.com/download/en/details.aspx?id=13821
http://support.microsoft.com/kb/971513

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk4J creates a locator for a Silverlight control by using the automationId, name, caption,
or className attributes in the order that they are listed in the preceding table. For example, if a control has
an automationId and a name, Silk4J uses the automationId, if it is unique, when creating the locator.

The following table shows how an application developer can define a Silverlight button with the text "Ok" in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="Ok"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Dynamically Invoking Silverlight Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types.

Silk4J types include primitive types, for example boolean, int, and string, lists, and other types, for
example Point and Rect.

• Enum types.

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

172 | Testing Specific Environments

• .NET structs and objects.

Pass .NET struct and object parameters as a list. The elements in the list must match one constructor
for the .NET object in the test application. For example, if the method expects a parameter of the .NET
type System.Windows.Vector, you can pass a list with two integers. This works because the
System.Windows.Vector type has a constructor with two integer arguments.

• Other controls.

Control parameters can be passed as TestObject.

Supported Methods and Properties

The following methods and properties can be called:

• All public methods and properties that the MSDN defines for the AutomationElement class. For
additional information, see http://msdn.microsoft.com/en-us/library/
system.windows.automation.automationelement.aspx.

• All methods and properties that MSUIA exposes. The available methods and properties are grouped in
"patterns". Pattern is a MSUIA specific term. Every control implements certain patterns. For an overview
of patterns in general and all available patterns see http://msdn.microsoft.com/en-us/library/
ms752362.aspx. A custom control developer can provide testing support for the custom control by
implementing a set of MSUIA patterns.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types.
• All methods that have no return value return null.
• A string for all other types.

To retrieve this string representation, call the ToString method on returned .NET objects in the
application under test.

Example

A TabItem in Silverlight, which is an item in a TabControl.

tabItem.invoke("SelectionItemPattern.Select");
mySilverligtObject.getProperty("IsPassword");

Scrolling in Silverlight
Silk4J provides two different sets of scrolling-related methods and properties, depending on the Silverlight
control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk4J exists because the controls in Silk4J implement scrolling in those two ways.

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk4J does not expose scrollbar objects.

Testing Specific Environments | 173

http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional information,
refer to the Silverlight documentation. The final position is related to the position of the object, which is
defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.SLVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.SLVerticalScrollBar().ScrollToMaximum()

Troubleshooting when Testing Silverlight Applications

Silk4J cannot see inside the Silverlight application and no green rectangles are drawn during
recording

The following reasons may cause Silk4J to be unable to see inside the Silverlight application:

Reason Solution

You use a Silverlight version prior to 3. Use Silverlight 3 (Silverlight Runtime 4) or Silverlight 4
(Silverlight Runtime 4).

Your Silverlight application is running in windowless
mode.

Silk4J does not support Silverlight applications that run in
windowless mode. To test such an application, you need
to change the Web site where your Silverlight application
is running. Therefore you need to set the windowless
parameter in the object tag of the HTML or ASPX file, in
which the Silverlight application is hosted, to false.

The following sample code sets the windowless
parameter to false:

<object ...>
 <param name="windowless"
value="false"/>
 ...
</object>

Visual COBOL Support
Silk4J supports recording and replaying tests against Visual COBOL applications. You can also use the
Silk4J APIs from .NET COBOL to script automated tests for the following Visual COBOL applications:

174 | Testing Specific Environments

• Dialog system applications.
• CGI applications.
• Cobol Win32 applications.
• .NET COBOL - WPF and Windows Forms applications.
• COBOL JVM - Swing applications.
• Non-COBOL front-end applications calling back-end COBOL.

Note: For some controls, Silk4J provides only low-level recording support.

For information on the supported versions of Visual COBOL, refer to the Release Notes.

Rumba Support
Rumba is the world's premier Windows desktop terminal emulation solution. Silk Test provides built-in
support for recording and replaying Rumba.

When testing with Rumba, please consider the following:

• The Rumba version must be compatible to the Silk Test version. Versions of Rumba prior to version 8.1
are not supported.

• All controls that surround the green screen in Rumba are using basic WPF functionality (or Win32).
• The supported Rumba desktop types are:

• Mainframe Display
• AS400 Display
• Unix Display

For a complete list of the record and replay controls available for Rumba testing, see the Rumba Class
Reference.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Enabling and Disabling Rumba
Rumba is the world's premier Windows desktop terminal emulation solution. Rumba provides connectivity
solutions to mainframes, mid-range, UNIX, Linux, and HP servers.

Enabling Support

Before you can record and replay Rumba scripts, you need to enable support:

1. Install Rumba desktop client software version 8.1 or later.
2. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Administration > Rumba plugin

> Enable Silk Test Rumba plugin or (in Microsoft Windows 10) Start > Silk > Enable Silk Test
Rumba plugin.

Disabling Support

Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Administration > Rumba plugin >
Disable Silk Test Rumba plugin or (in Microsoft Windows 10) Start > Silk > Disable Silk Test Rumba
plugin.

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

Testing Specific Environments | 175

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

caption The text that the control displays.

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Testing a Unix Display
Unix displays in Rumba are completely text-based, and provide no UI controls except the main RUMBA
screen control. To replay a test on a Unix display, you can use the sendKeys method to send keys to the
Unix display. Silk4J does not support recording on a Unix display.

SAP Support
Silk4J provides built-in support for testing SAP client/server applications based on the Windows-based GUI
module.

Note: You can only test SAP applications with Silk4J if you have a Premium license for Silk4J. For
additional information on the licensing modes, see Licensing Information.

Note: If you use SAP NetWeaver with Internet Explorer or Firefox, Silk4J tests the application using
the xBrowser technology domain.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Supported Controls

For a complete list of the record and replay controls available for SAP testing, see the SAP Class
Reference.

For a list of supported attributes, see Attributes for SAP Applications.

Attributes for SAP Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for SAP include:

• automationId
• caption

176 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamically Invoking SAP Methods
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Methods and Properties

The following methods and properties can be called:

• Methods and properties that Silk4J supports for the control.
• All public methods that the SAP automation interface defines
• If the control is a custom control that is derived from a standard control, all methods and properties from

the standard control can be called.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types

Silk4J types includes primitive types (such as boolean, int, string), lists, and other types (such as Point
and Rect).

• UI controls

UI controls can be passed or returned as TestObject.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types. These types are listed in the Supported Parameter Types
section.

• All methods that have no return value return null.

Testing Specific Environments | 177

Dynamically Invoking Methods on SAP Controls
When Silk4J cannot record actions against an SAP control, you can record the actions with the recorder
that is available in SAP and then dynamically invoke the recorded methods in a Silk4J script. By doing so,
you can replay actions against SAP controls that you cannot record.

1. To record the actions that you want to perform against the control, use the SAP GUI Scripting tool that
is available in SAP.

For additional information on the SAP GUI Scripting tool, refer to the SAP documentation.

2. Open the recorded actions from the location to which the SAP GUI Scripting tool has saved them and
see what methods were recorded.

3. In Silk4J, dynamically invoke the recorded methods from your script.

Examples

For example, if you want to replay pressing a special control in the SAP UI, which is
labeled Test and which is a combination of a button and a list box, and selecting the
sub-menu subsub2 of the control, you can record the action with the recorder that is
available in SAP. The resulting code will look like the following:

session.findById("wnd[0]/usr/cntlCONTAINER/shellcont/
shell").pressContextButton "TEST"
session.findById("wnd[0]/usr/cntlCONTAINER/shellcont/
shell").selectContextMenuItem "subsub2"

Now you can use the following code to dynamically invoke the methods
pressContextButton and selectContextMenuItem in your script in Silk4J:

.SapToolbarControl("shell
ToolbarControl").invoke("pressContextButton", "TEST")
.SapToolbarControl("shell
ToolbarControl").invoke("selectContextMenuItem", "subsub2")

Replaying this code will press the control in the SAP UI and select the sub-menu.

Configuring Automation Security Settings for SAP
Before you launch an SAP application, you must configure the security warning settings. Otherwise, a
security warning, A script is trying to attach to the GUI, displays each time a test plays
back an SAP application.

1. In Windows Control Panel, choose SAP Configuration. The SAP Configuration dialog box opens.

2. In the Design Selection tab, uncheck the Notify When a Script Attaches to a Running SAP GUI.

Windows API-Based Application Support
Silk4J provides built-in support for testing Microsoft Windows API-based applications. Several objects exist
in Microsoft applications that Silk4J can better recognize if you enable Accessibility. For example, without
enabling Accessibility Silk4J records only basic information about the menu bar in Microsoft Word and the
tabs that appear in Internet Explorer versions later than version 7.0. However, with Accessibility enabled,
Silk4J fully recognizes those objects. You can also improve Silk4J object recognition by defining a new
window, if necessary.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

178 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Supported Controls

For a complete list of the record and replay controls available for Windows-based testing, see Win32 Class
Reference.

Attributes for Windows API-based Client/Server
Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows API-based client/server applications include:

• caption
• windowid
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text box, the caption of the closest label at the left side or above the control is used.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Determining the priorLabel in the Win32 Technology
Domain
To determine the priorLabel in the Win32 technology domain, all labels and groups in the same window as
the target control are considered. The decision is then made based upon the following criteria:

• Only labels either above or to the left of the control, and groups surrounding the control, are considered
as candidates for a priorLabel.

• In the simplest case, the label closest to the control is used as the priorLabel.
• If two labels have the same distance to the control, the priorLabel is determined based upon the

following criteria:

• If one label is to the left and the other above the control, the left one is preferred.
• If both levels are to the left of the control, the upper one is preferred.
• If both levels are above the control, the left one is preferred.

• If the closest control is a group control, first all labels within the group are considered according to the
rules specified above. If no labels within the group are eligible, then the caption of the group is used as
the priorLabel.

Testing Embedded Chrome Applications
An embedded Chrome application is a desktop application with an embedded web browser engine that is
based on the Chromium core. Such applications enable you to add web browser capabilities to a desktop
application. You can create such an app by using for example the Chromium Embedded Framework (CEF)
or the Electron framework.

Silk4J provides full support for testing embedded Chrome applications that allow remote debugging
through the --remote-debugging-port command line argument. Silk4J does not support testing
embedded Chrome applications that are based on Java, for example Java AWT and Swing applications.

Testing Specific Environments | 179

To test an embedded Chrome application with Silk4J, you have to set the debugging ports for the
executable of the application. Start the application from the command line and set the remote debugging
port.

• Silk4J checks if the -remote-debugging-port argument is set in the command line arguments of
the embedded Chrome application. If the argument is set, Silk4J automatically sets the Enable
embedded Chrome support field to the appropriate executable and debugging port.

• If the -remote-debugging-port argument is not set in the command line arguments of the
embedded Chrome application, you have to manually specify the executable and the port in the Enable
embedded Chrome support field:

1. In the Silk4J UI, select Edit Options.
2. In the Options dialog, select the Advanced tab.
3. In the Enable embedded Chrome support option, specify the executable and the port as a comma-

separated value pair:

<application name>.exe=<port number>

Note: You cannot test embedded Chrome applications that do not allow remote debugging with
Silk4J.

Note: Silk4J does not support testing non-browser menus of Electron apps.

Example

For example, you can start the application myApp from the command line as follows:

myApp.exe --remote-debugging-port=9222

You can then specify the executable and port in the Enable embedded Chrome
support option as follows:

myApp.exe=9222

Microsoft Foundation Class Support
The class ID of a Microsoft Foundation Class (MFC) control might change over time and therefore cannot
be used to generate a stable locator. To avoid generating unstable locators, Silk4J uses the following
attributes for the locators:

• The MFC class name, if the Windows class name of the MFC control starts with Afx:.
• The Windows class name, if the Windows class name of the MFC control does not start with Afx:.

Silk4J only supports MFC version 140, and only supports the following combinations:

• Release, x86, MBCS
• Release, x86, Unicode
• Debug, x86, MBCS
• Debug, x86, Unicode
• Release, x64, MBCS
• Release, x64, Unicode
• Debug, x64, MBCS
• Debug, x64, Unicode

Note: To execute existing tests with MFC control locators that have been generated with Silk4J 18.5
or prior, set the OPT_COMPATIBILITY option in the affected test scripts to version 18.5.0 or prior:

'VB .NET code
Agent.SetOption("OPT_COMPATIBILITY", "18.5.0")

180 | Testing Specific Environments

Cross-Browser Testing
With Silk4J, you can easily verify the functionality of even the most advanced web application across a
variety of browsers, with a single, portable test script. Silk4J provides leading support for effective and
maintainable cross-browser testing with modern web technologies.

One of the main challenges in test automation is to create and maintain test cost effectively. As different
browsers behave differently, web application validation is hard to carry out productively. Silk4J enables you
to focus on writing tests, as it handles the following three areas of cross-browser testing:

Built-in
synchronization

This enables you to create scripts that run on all supported browsers, without the
need to manually synchronize against asynchronous events, which are typical of
highly dynamic web applications such as AJAX, or HTML5. Silk4J supports
synchronization modes for HTML or AJAX as well as all major web environments
including Apache Flex, Microsoft Silverlight, and HTML5/AJAX. For additional
information, see Page Synchronization for xBrowser.

Unified object model Silk4J enables you to create and maintain a test which runs across a wide range
of different browsers. A unified object model across all browsers gives you the
ability to focus on a single browser when you create or maintain a test. Silk4J
ensures that the object you interact with is accessible in the same way on all the
other browsers, which saves time and enables you to focus on testing rather than
on finding workarounds for different browsers.

Out-of-the-box
recording of a cross-
browser script

Record a script once and replay it in all the other browsers, without any
modifications. This significantly reduces the time and effort it takes to create and
maintain test scripts. Nothing is simulated - testing is carried out across real
browsers, which ensures that the test behaves exactly as it does for your end
user.

With Silk4J, you can replay tests against web applications that use:

• Internet Explorer.
• Mozilla Firefox, both on Microsoft Windows and on macOS.
• Google Chrome, both on Microsoft Windows and on macOS.
• Microsoft Edge.
• Chrome for Android on an Android device.
• Apple Safari, both on macOS and on an iOS device.
• Embedded browser controls.

Note: You can record tests for web applications using one of the following browsers:

• Internet Explorer.
• Microsoft Edge.
• Mozilla Firefox, both on Microsoft Windows and on macOS.
• Google Chrome 50 or later, both on Microsoft Windows and on macOS.
• A mobile browser on a mobile device.

When recording a script for cross-browser testing, Micro Focus recommends using Google Chrome,
Mozilla Firefox, or Microsoft Edge, as a script recorded with Silk4J against Internet Explorer might
slightly differ in comparison to a script recorded on one of the other browsers.

Note: Before you record or playback web applications, disable all browser add-ons that are installed
in your system. To disable add-ons in Internet Explorer, click Tools > Internet Options, click the
Programs tab, click Manage add-ons, select an add-on and then click Disable.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Testing Specific Environments | 181

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Sample Applications

To access the Silk Test sample web applications, go to:

• http://demo.borland.com/InsuranceWebExtJS/
• http://demo.borland.com/gmopost
• http://demo.borland.com/gmoajax

Selecting the Browser for Test Replay
You can define the browser that is used for the replay of a test in the following ways:

• If you execute a test from the UI of Silk4J and the Select Browser dialog box displays, the browser
selected in the dialog box is used, and Silk4J ignores which browser is set in the test script.

• If the Select Browser dialog box is disabled, because the Don't show again is checked, the application
configurations in the individual test scripts determine the browser that is used to execute the tests.

Note: To re-enable the Select Browser dialog box, click Silk4J > Edit Application
Configurations and check the Show 'Select Browser' dialog before record and playback
check box

• If you execute a script from the command line or from a Continuous Integration (CI) server, specify the
connection string in the application configuration of the script.

To overwrite the browser that is specified in the application configuration, use the
silktest.configurationName environment variable.

• If you execute a test from Silk Central, create a configuration suite with a configuration for each browser
that you want to test. Then specify the appropriate configuration name. For additional information, refer
to the Silk Central Help.

Examples of setting the browser by using the silktest.configurationName
environment variable

• To use Internet Explorer as the browser, type:

SET silktest.configurationName=InternetExplorer

• To use Microsoft Edge as the browser, type:

SET silktest.configurationName=Edge

• To use Mozilla Firefox as the browser, type:

SET silktest.configurationName=Firefox

• To use Google Chrome as the browser, type:

SET silktest.configurationName=GoogleChrome

• To use Apple Safari on a Mac as the browser, type:

SET silktest.configurationName=host=10.0.0.1 - Safari

In this example, the host is the Mac, on which you want to test Apple Safari. The host
needs to be connected as a remote location to the machine on which Silk4J is
running. For additional information, see Editing Remote Locations.

• To use Google Chrome on an Android device as the browser, use a connection
string. For example, if the device ID is 11111111 and the device is connected to the
remote machine with the IP address 10.0.0.1, type:

SET
silktest.configurationName="platformName=Android;deviceName=Mo
toG3;deviceId=11111111;host=10.0.0.1 - Chrome"

182 | Testing Specific Environments

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/gmopost
http://demo.borland.com/gmoajax
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

• To use Apple Safari on an iOS device as the browser, use a connection string. For
example, if the device ID is 11111111 and the device is connected to the remote
machine with the IP address 10.0.0.1, type:

SET
silktest.configurationName="platformName=iOS;deviceName=iPad
mini;deviceId=11111111;host=10.0.0.1"

Additionally, you have to specify the browser in the application configuration.

Tip: For all examples, you can also set the browser by setting
the Java System property -Dsilktest.configurationName instead
of setting the environment variable silktest.configurationName.
For example, to use Apple Safari on a Mac as the browser, you
can also type:

-Dsilktest.configurationName=host=10.0.0.1 -
Safari

To execute the tests from the command line, type:

java -cp ".…\junit.jar;….
\org.hamcrest.core_1.3.0.v201303031735.jar;C:
\Program Files (x86)\Silk\SilkTest\ng\JTF
\silktest-jtf-nodeps.jar;….\mytests\bin" -
Dsilktest.configurationName="host=10.0.0.1 -
Safari" org.junit.runner.JUnitCore Tests

Tip: Open the Select Browser dialog box, for example by
starting to replay or record from the Silk4J UI, to see a list of the
browsers that are currently available on your system.

Test Objects for xBrowser
Silk4J uses the following classes to model a web application:

Class Description

BrowserApplication Exposes the main window of a web browser and provides
methods for tabbing.

BrowserObject Represents the base class for all objects that are
contained within a BrowserApplication.

BrowserWindow Provides access to tabs and embedded browser controls
and provides methods for navigating to different pages.

DomElement Exposes the DOM tree of a web application, including
frames, and provides access to all DOM attributes.
Specialized classes are available for several DOM
elements.

DomButton Represents the top-level container for a web page. It
exposes the DOM tree through DomElement.

DomCheckBox Represents all DOM elements that were specified using
the <input type='checkbox'> tag.

DomForm Represents all DOM elements that are specified using the
<form> tag.

DomLink Represents all DOM elements that were specified using
the <a> tag.

DomListBox Represents all DOM elements that were specified using
the <select> tag.

Testing Specific Environments | 183

Class Description

DomRadioButton Represents all DOM elements that were specified using
the <input type='radio'> tag.

DomTable Represents all DOM elements that were specified using
the <table> tag.

DomTableRow Represents all DOM elements that were specified using
the <tr> tag.

DomTextField Represents all DOM elements that were specified using
one of the following tags:

• <input type='text'>

• <input type='password'>

• <input type='file'>

• <textarea>

Object Recognition for xBrowser Objects
The xBrowser technology domain supports dynamic object recognition.

Test cases use locator strings to find and identify objects. A typical locator includes a locator name and at
least one locator attribute, such as "//LocatorName[@locatorAttribute='value']".

Locator
Names

With other technology types, such as Java SWT, locator names are created using the
class name of the test object. With xBrowser, the tag name of the DOM element can also
be used as locator name. The following locators describe the same element:

1. Using the tag name: "//a[@href='http://www.microfocus.com']"
2. Using the class name: "//DomLink[@href='http://www.microfocus.com']"

To optimize replay speed, use tag names rather than class names.

Locator
Attributes

All DOM attributes can be used as locator string attributes. For example, the element
<button automationid='123'>Click Me</button> can be identified using the
locator "//button[@automationid='123']".

Recording
Locators

Silk4J uses a built-in locator generator when recording test cases and using the Identify
Object dialog box. You can configure the locator generator to improve the results for a
specific application.

Page Synchronization for xBrowser
Synchronization is performed automatically before and after every method call. A method call is not started
and does not end until the synchronization criteria is met.

Note: Any property access is not synchronized.

Synchronization Modes

Silk4J includes synchronization modes for HTML and AJAX.

Using the HTML mode ensures that all HTML documents are in an interactive state. With this mode, you
can test simple Web pages. If more complex scenarios with Java script are used, it might be necessary to
manually script synchronization functions, such as:

• WaitForObject

• WaitForProperty

184 | Testing Specific Environments

• WaitForDisappearance

• WaitForChildDisappearance

The AJAX mode synchronization waits for the browser to be in a kind of idle state, which is especially
useful for AJAX applications or pages that contain AJAX components. Using the AJAX mode eliminates the
need to manually script synchronization functions (such as wait for objects to appear or disappear, wait for
a specific property value, and so on), which eases the script creation process dramatically. This automatic
synchronization is also the base for a successful record and playback approach without manual script
adoptions.

Troubleshooting

Because of the true asynchronous nature of AJAX, generally there is no real idle state of the browser.
Therefore, in rare situations, Silk4J will not recognize an end of the invoked method call and throws a
timeout error after the specified timeout period. In these situations, it is necessary to set the
synchronization mode to HTML at least for the problematic call.

Note: Regardless of the page synchronization method that you use, in tests where a Flash object
retrieves data from a server and then performs calculations to render the data, you must manually add
a synchronization method to your test. Otherwise, Silk4J does not wait for the Flash object to
complete its calculations. For example, you might use Thread.sleep(millisecs).

Some AJAX frameworks or browser applications use special HTTP requests, which are permanently open
in order to retrieve asynchronous data from the server. These requests may let the synchronization hang
until the specified synchronization timeout expires. To prevent this situation, either use the HTML
synchronization mode or specify the URL of the problematic request in the Synchronization exclude list
setting.

Use a monitoring tool to determine if playback errors occur because of a synchronization issue. For
instance, you can use FindBugs, http://findbugs.sourceforge.net/, to determine if an AJAX call is affecting
playback. Then, add the problematic service to the Synchronization exclude list.

Note: If you exclude a URL, synchronization is turned off for each call that targets the URL that you
specified. Any synchronization that is needed for that URL must be called manually. For example, you
might need to manually add WaitForObject to a test. To avoid numerous manual calls, exclude
URLs for a concrete target, rather than for a top-level URL, if possible.

Configuring Page Synchronization Settings

You can configure page synchronization settings for each individual test or you can set global options that
apply to all tests in the Script Options dialog box.

To add the URL to the exclusion filter, specify the URL in the Synchronization exclude list in the Script
Options dialog box.

To configure individual settings for tests, record the test and then insert code to override the global
playback value. For example, to exclude the time service, you might type:

desktop.setOption(CommonOptions.OPT_XBROWSER_SYNC_EXCLUDE_URLS,
 Arrays.asList("timeService"));

• OPT_XBROWSER_SYNC_MODE

• OPT_XBROWSER_SYNC_EXCLUDE_URLS

• OPT_SYNC_TIMEOUT

Comparing API Playback and Native Playback for
xBrowser
Silk4J supports API playback and native playback for Web applications. If your application uses a plug-in or
AJAX, use native user input. If your application does not use a plug-in or AJAX, we recommend using API
playback.

Testing Specific Environments | 185

http://findbugs.sourceforge.net/

Advantages of native playback include:

• With native playback, the agent emulates user input by moving the mouse pointer over elements and
pressing the corresponding elements. As a result, playback works with most applications without any
modifications.

• Native playback supports plug-ins, such as Flash and Java applets, and applications that use AJAX,
while high-level API recordings do not.

Advantages of API playback include:

• With API playback, the Web page is driven directly by DOM events, such as onmouseover or
onclick.

• Scripts that use API playback do not require that the browser be in the foreground.
• Scripts that use API playback do not need to scroll an element into view before clicking it.
• Generally API scripts are more reliable since high-level user input is insensitive to pop-up windows and

user interaction during playback.
• API playback is faster than native playback.

You can use the Script Options dialog box to configure the types of functions to record and whether to use
native user input.

Differences Between API and Native Playback Functions

The DomElement class provides different functions for API playback and native playback.

The following table describes which functions use API playback and which use native playback.

API Playback Native Playback

Mouse Actions DomClick

DomDoubleClick

DomMouseMove

Click

DoubleClick

MoveMouse

PressMouse

ReleaseMouse

Keyboard Actions not available TypeKeys

Specialized Functions Select

SetText

etc.

not available

Setting Mouse Move Preferences
Specify whether mouse move actions are recorded for Web applications, Win32 applications, and Windows
Forms applications that use mouse move events. You cannot record mouse move events for child domains
of the xBrowser technology domain, for example Apache Flex and Swing.

1. Click Silk4J > Edit Options.

2. Click the plus sign (+) next to Record in the Options menu tree. The Record options display in the right
side panel.

3. Click Recording.

4. To record mouse move actions, check the OPT_RECORD_MOUSEMOVES option.

Silk4J will only record mouse move events that cause changes to the hovered element or its parent in
order to keep scripts short.

186 | Testing Specific Environments

5. If you record mouse move actions, in the Record mouse move delay text box, specify how many
milliseconds the mouse has to be motionless before a MoveMouse action is recorded

By default this value is set to 200.

Mouse move actions are only recorded if the mouse stands still for this time. A shorter delay will result
in more unexpected move mouse actions, a longer delay will require you to keep the mouse still to
record an action.

6. Click OK.

Browser Configuration Settings for xBrowser
Several browser settings help to sustain stable test executions. Although Silk4J works without changing
any settings, there are several reasons that you might want to change the browser settings.

Increase replay speed Use about:blank as home page instead of a slowly loading Web
page.

Avoid unexpected behavior of the
browser

• Disable pop up windows and warning dialog boxes.
• Disable auto-complete features.
• Disable password wizards.

Prevent malfunction of the
browser

Disable unnecessary third-party plugins.

The following sections describe where these settings are located in the corresponding browser.

Internet Explorer

The browser settings are located at Tools > Internet Options. The following table lists options that you
might want to adjust.

Tab Option Configuration Comments

General Home page Set to about:blank. Minimize start up time of new tabs.

General Tabs • Disable warning when closing multiple tabs.

• Enable to switch to new tabs when they are
created.

• Avoid unexpected dialog boxes.

• Links that open new tabs might
not replay correctly otherwise.

Privacy Pop-up
blocker

Disable pop up blocker. Make sure your Web site can open
new windows.

Content AutoComplete Turn off completely • Avoid unexpected dialog boxes.

• Avoid unexpected behavior when
typing keys.

Program
s

Manage add-
ons

Only enable add-ons that are absolutely required. • Third-party add-ons might contain
bugs.

• Possibly not compatible to Silk4J.

Advance
d

Settings • Disable Automatically check for Internet
Explorer updates.

• Enable Disable script debugging (Internet
Explorer).

• Enable Disable script debugging (Other).

• Disable Enable automatic crash recovery.

Avoid unexpected dialog boxes.

Testing Specific Environments | 187

Tab Option Configuration Comments

• Disable Display notification about every
script error.

• Disable all Warn ... settings

Note: Recording a Web application in Internet Explorer with a zoom level different to 100% might not
work as expected. Before recording actions against a Web application in Internet Explorer, set the
zoom level to 100%.

Mozilla Firefox

You do not have to change browser settings for Mozilla FirefoxSilk4J automatically starts Mozilla Firefox
with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Mozilla
Firefox. For additional information, see Stop automatic updates.

Google Chrome

You do not have to change browser settings for Google Chrome. Silk4J automatically starts Google
Chrome with the appropriate command-line parameters.

Note: To avoid unexpected behavior when testing web applications, disable auto updates for Google
Chrome. For additional information, see Turning Off Auto Updates in Google Chrome.

Configuring the Locator Generator for xBrowser
The Open Agent includes a sophisticated locator generator mechanism that guarantees locators are
unique at the time of recording and are easy to maintain. Depending on your application and the
frameworks that you use, you might want to modify the default settings to achieve the best results.

A well-defined locator relies on attributes that change infrequently and therefore requires less maintenance.
Using a custom attribute is more reliable than other attributes like caption or index, since a caption will
change when you translate the application into another language, and the index might change when
another object is added.

To achieve optimal results, add a custom automation ID to the elements that you want to interact with in
your test. In Web applications, you can add an attribute to the element that you want to interact with, such
as <div myAutomationId=”my unique element name” />. This approach can eliminate the
maintenance associated with locator changes.

1. Click Silk4J > Edit Options and then click the Custom Attributes tab.

2. If you use custom automation IDs, from the Select a TechDomain list box, select xBrowser and then
add the IDs to the list.

The custom attributes list contains attributes that are suitable for locators. If custom attributes are
available, the locator generator uses these attributes before any other attribute. The order of the list also
represents the priority in which the attributes are used by the locator generator. If the attributes that you
specify are not available for the objects that you select, Silk4J uses the default attributes for xBrowser.

3. Click the Browser tab.

4. In the Locator attribute name exclude list grid, type the attribute names to ignore while recording.

For example, use this list to specify attributes that change frequently, such as size, width, height, and
style. You can include the wildcards ‘*’ and ‘?’ in the Locator attribute name blacklist.

Separate attribute names with a comma.

5. In the Locator attribute value exclude list grid, type the attribute values to ignore while recording.

188 | Testing Specific Environments

https://support.mozilla.org/questions/1003777
http://dev.chromium.org/administrators/turning-off-auto-updates

Some AJAX frameworks generate attribute values that change every time the page is reloaded. Use this
list to ignore such values. You can also use wildcards in this list.

Separate attribute values with a comma.

6. Click OK.

You can now record or manually create a test case.

Connection String for a Remote Desktop Browser
The connection string specifies the remote desktop browser that is used for testing. When testing a web
application in a remote browser, Silk4J uses the connection string to connect to the remote location. The
connection string is typically part of the application configuration. You can set the connection string when
you configure the web application that you want to test. To change the connection string, you can use the
Edit Application Configuration dialog box.

When testing a web application in a remote browser, the connection string includes only the host, which
means the IP address or the host name of the remote machine, for example 10.0.0.1. To select the correct
browser, Silk4J uses the connection string in combination with the browser type, which you can also
specify in the Edit Application Configuration dialog box.

The host name is case-insensitive.

Note: Remote desktop browser testing is only supported for Microsoft Edge on a remote Microsoft
Windows machine, and for Apple Safari on a remote Mac.

Connection string example

"host=10.0.0.1"

Testing Browsers on a Remote Windows Machine
To test Microsoft Edge, Google Chrome, or Mozilla Firefox on a remote Windows machine, Silk4J needs to
be installed on the remote machine. Microsoft Edge does only run on a Microsoft Windows 10 machine.
Silk4J supports testing Mozilla Firefox 55 or prior on a remote Windows machine.

1. On the local machine, from which you want to test the browser, add the remote Windows machine as a
remote location.

For additional information, see Editing Remote Locations.

2. If the Silk Test information service is already running with administrator privileges on the remote
machine, disable the Silk Test information service.

a) Sign in to the remote machine as an administrator.
b) Open the Control Panel (icons view).
c) Click Administrative Tools.
d) Double-click Services.
e) Double click on the Silk Test information service.
f) If the service shows a status of running, click Stop and wait until the service status shows as

stopped.
g) Change the Startup type to Disabled.
h) Click OK.

3. Start the Silk Test information service with medium integrity level, which means without administrator
privileges.

a) Open a file explorer and navigate to %OPEN_AGENT_HOME%/InfoService.

For example, C:\Program Files (x86)\Silk\SilkTest\ng\InfoService.
b) Double-click infoservice_start.bat.

Testing Specific Environments | 189

4. You can now select the browser on the remote machine in the Select Application dialog box.

Note: Ensure that the Silk Test information service is running in a user session, and not in the
services session. The Silk Test information service requires UI interaction to be enabled. The services
session, which is session 0, does not enable UI interaction.

Testing Google Chrome or Mozilla Firefox on a Mac
To test Google Chrome or Mozilla Firefox on a remote macOS machine, the Silk Test information service
needs to be installed on the remote machine. For additional information, see Installing the Silk Test
Information Service on a Mac.

1. On the local machine, from which you want to test Google Chrome or Mozilla Firefox, add the remote
macOS machine as a remote location.

For additional information, see Editing Remote Locations.

2. You can now select Google Chrome or Mozilla Firefox on the remote macOS machine in the Select
Application dialog box.

Note: Ensure that the Silk Test information service is running in a user session, and not in the
services session. The Silk Test information service requires UI interaction to be enabled. The services
session, which is session 0, does not enable UI interaction.

For information on the prerequisites and limitations when testing on Google Chrome, refer to the topics in
the section Testing with Google Chrome. For information on the prerequisites and limitations when testing
on Mozilla Firefox, refer to the topics in the section Testing with Mozilla Firefox.

Setting Capabilities for WebDriver-Based Browsers
If you are testing a web application on a WebDriver-based browser, you can customize and configure the
browser session by setting the capabilities.

In Silk4J, you can specify WebDriver capabilities in the connection string for the following browser types:

• Google Chrome
• Mozilla Firefox

For information on the available options and capabilities for Mozilla Firefox 48 or later, see https://
github.com/mozilla/geckodriver. For information on the available options and capabilities for Google
Chrome, see Capabilities & ChromeOptions.

To set the capabilities in Silk4J:

1. Select the project which corresponds to the web application for which you want to change the
capabilities.

2. Edit the connection string in the base state of the project.

You can edit the connection string in the following ways:

• By using the Edit Application Configurations dialog, for example if you want to record actions
against a customized browser.

• In a script, if you only want to execute the tests in the script against the customized browser.

For additional information, see Base State.

3. Execute the script to start the browser with the specified options and capabilities.

Examples

You can add the following code to the base state in a script to automatically download
executables from Mozilla Firefox:

baseState.setConnectionString(
 "moz:firefoxOptions="

190 | Testing Specific Environments

https://github.com/mozilla/geckodriver
https://github.com/mozilla/geckodriver
https://sites.google.com/a/chromium.org/chromedriver/capabilities

 + "{"
 + " \"prefs\": {"
 + " \"browser.download.folderList\": 2,"
 + " \"browser.helperApps.neverAsk.saveToDisk\":
\"application/octet-stream\"
 + " }"
 + "};");

You can add the following code to the base state in a script to specify the download
folder for Mozilla Firefox:

baseState.setConnectionString("moz:firefoxOptions={\"prefs\":
{ \"browser.download.dir\" : \"C:/Download\"} };");

You can add the following code to the base state in a script to set a command line
argument for Mozilla Firefox:

baseState.setConnectionString("moz:firefoxOptions={\"args\":
[\"--devtools\"]};");

You can add the following code to test on Mozilla Firefox with a proxy server:

baseState.setConnectionString("moz:firefoxOptions={\"prefs\":
{ \"network.proxy.http\": \"" + PROXY_HOST + "\",
\"network.proxy.http_port\": " + PROXY_PORT + ",
\"network.proxy.type\": 1 }}");

You can add the following code to the base state in a script to automatically download
executables from Google Chrome to a specific folder:

baseState.setConnectionString(
 "chromeOptions="
 + "{"
 + " \"prefs\": {"
 + "
\"profile.default_content_setting_values.automatic_downloads\":
1,"
 + " \"download.default_directory\":\"c:\\\
\Download\","
 + " \"download.prompt_for_download\":false"
 + " }"
 + "};");

You can add the following code to the base state in a script to disable the password
manager from showing messages in Google Chrome:

baseState.setConnectionString(
 "chromeOptions="
 + "{"
 + " \"args\":[\"--disable-save-password-bubble\"],"
 + " \"prefs\": {"
 + " \"profile.password_manager_enabled\":
false,"
 + " \"credentials_enable_service\": false"
 + " }"
 + "};");

Testing with Apple Safari on a Mac
This section describes how you can enhance your cross-browser test set by testing Apple Safari on Mac
machines that are connected to a Windows machine on which Silk4J is installed.

Testing Specific Environments | 191

Prerequisites for Testing with Apple Safari on a Mac
Before you can test with Apple Safari on a Mac, ensure that the following prerequisites are met:

• The Mac is connected as a remote location to a Windows machine, on which Silk4J is installed. For
additional information, see Editing Remote Locations.

• If you are testing with Apple Safari 9, the SafariDriver, which is the WebDriver extension for Apple Safari
that inverts the traditional client/server relationship and communicates with the WebDriver client using
WebSockets, needs to be installed on the Mac. With Apple Safari 10.1, Safari features a built-in driver
implementation.

• Java JDK is installed on the Mac.
• The information service is installed on the Mac. To get the files that are required for the information

service, use the Silk Test installer. For additional information, see Installing the Silk Test Information
Service on a Mac.

• To run tests on Apple Safari, the user that has installed the information service needs to be logged in on
the Mac.

Tip: Micro Focus recommends to set the Mac to automatically log in the correct user during
startup. For additional information, see Set your Mac to automatically log in during startup.

• To run unattended tests against Apple Safari on a Mac, adjust the following energy-related settings in
the Energy Saver pane of the System Preferences:

• Set Turn display off after to Never.
• Check the Prevent computer from sleeping automatically when the display is off check box.

Note: You can use the Silk Test Configuration Assistant to easily configure such settings. To
open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant.

• To run unattended tests against Apple Safari on a Mac, disable the screen saver.

1. Navigate to System Preferences > Desktop & Screen Saver.
2. Click the Screen Saver tab.
3. Set Start screen saver to Never.

Note: You can use the Silk Test Configuration Assistant to easily configure such settings. To
open the Configuration Assistant on a Mac, click on the Silk Test icon in the status menus and
select Configuration Assistant.

• If you are testing with Apple Safari 10.1, enable the Safari developer menu. Choose Safari >
Preferences , click Advanced, and check Show develop menu in menu bar.

• If you are testing with Apple Safari 10.1, enable remote automation. In the Safari developer menu,
check Allow Remote Automation.

• When executing a test for the first time against Apple Safari 10.1, you need to provide a password.

Preparing Apple Safari for Testing
To test web applications on Apple Safari 10.1 or later, you can use the Silk Test Configuration Assistant
to easily configure Apple Safari. To open the Configuration Assistant on a Mac, click on the Silk Test icon
in the status menus and select Configuration Assistant. As an alternative, you can also perform the
following preparation steps in addition to fulfilling the requirements listed in Prerequisites for Testing with
Apple Safari on a Mac:

1. Enable remote automation in Apple Safari, by opening the Develop menu and checking Allow Remote
Automation.

The Develop menu is hidden by default. To open the menu:

a) In the Safari menu, choose Preferences.
b) In the Preferences window, select the Advanced tab.

192 | Testing Specific Environments

https://support.apple.com/en-us/HT201476

c) Check the Show Develop menu in menu bar check box.
d) Close the Preferences window.

2. When running a test for the first time on Apple Safari, a dialog box appears, stating that the browser
window is remotely controlled by an automated test. Click Continue Session.

For additional information on Apple Safari and Selenium WebDriver, see https://webkit.org/blog/6900/
webdriver-support-in-safari-10/.

Installing the Silk Test Information Service on a Mac
Note: To install the information service on a Mac, you require administrative privileges on the Mac.

To create and execute tests against Apple Safari on a Mac, or against mobile applications on an iOS or
Android device that is connected to a Mac, install the Silk Test information service (information service) on
the Mac, and then use the Remote Locations dialog box to connect a Windows machine, on which Silk4J
is installed, to the Mac.

To install the information service on a Mac:

1. Ensure that a Java JDK is installed on the Mac.

2. If you want to test mobile applications on an iOS device, ensure that Xcode is installed on the Mac.

3. Access the information service setup file, SilkTestInformationService<Version>-<Build
Number>.pkg.

• If you have downloaded the information service setup file while installing Silk Test, open the folder
macOS in the Silk Test installation directory, for example C:\Program Files (x86)\Silk
\SilkTest.

• If you have not downloaded the information service setup file while installing Silk Test, you can
download the setup file from Micro Focus SupportLine.

4. Copy the file SilkTestInformationService<Version>-<Build Number>.pkg to the Mac.

5. Execute SilkTestInformationService<Version>-<Build Number>.pkg to install the
information service.

6. Follow the instructions in the installation wizard.

7. When asked for the password, provide the password of the currently signed in Mac user.

8. When Apple Safari opens and a message box asks whether to trust the SafariDriver, click Trust.

Note: You can only install the SafariDriver if you are directly logged in to the Mac, and not
connected through a remote connection.

9. To complete the installation, the installer logs the current Mac user out. To verify that the information
service was installed correctly, log in to the Mac.

10.If you are installing the information service on a Mac with macOS Mojave (10.14) or later, you might
have to enable additional automation permissions for Silk Test after logging in to the Mac.

If permissions need to be granted, Silk Test will automatically show request permission dialogs.

a) Click OK to acknowledge the information dialog.
b) Click OK in all sub-sequent request permission dialogs.

Important: If you do not enable these permissions for Silk Test, you will not be able to test web
applications against Google Chrome or mobile applications on an iOS device or on a Simulator on
this Mac. If by mistake you have clicked Don't Allow in one of the permission dialogs, open a
terminal on the Mac and type the following command:

sudo tccutil reset AppleEvents

Then restart the Mac and accept the permission dialogs by clicking OK.

11.Click on the Silk Test icon in the top-right corner of the screen to see the available devices and
browsers.

Testing Specific Environments | 193

https://webkit.org/blog/6900/webdriver-support-in-safari-10/
https://webkit.org/blog/6900/webdriver-support-in-safari-10/
http://productlink.microfocus.com/index.asp?mode=support&prod=NE01

Tip: If the Silk Test icon does not appear, restart the Mac.

Limitations for Testing with Apple Safari
The following are the known limitations for testing with Apple Safari on a Mac:

• The following classes, interfaces, methods, and properties are currently not supported when testing web
applications with Apple Safari on a Mac:

• BrowserApplication class.

• clearCache method
• closeOtherTabs method
• closeTab method
• existsTab method
• getHorizontalScrollbar method
• getNextCloseWindow method
• getSelectedTab method
• getSelectedTabIndex method
• getSelectedTabName method
• getTabCount method
• getVerticalScrollbar method
• isActive method
• minimize method
• openContextMenu method
• openTab method
• restore method
• selectTab method
• setActive method
• windowState property

• BrowserWindow class.

• acceptAlert method
• dismissAlert method
• getAlertText method
• isAlertPresent method
• mouseMove method
• pressKeys method
• pressMouse method
• releaseKeys method
• releaseMouse method

• IMoveable class.

• getFocus method.
• Silk4J does not support the CMD key for the typeKeys method.
• Silk4J does not support testing Apache Flex.
• Silk4J does not support testing iframes with a JavaScript source on Apple Safari.
• To test secure web applications over HTTPS on Apple Safari, ensure that any required server

certificates are trusted.
• Silk4J does not provide native support for Apple Safari. You cannot test internal Apple Safari

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar. As a workaround, you can use API calls to navigate between web pages.

194 | Testing Specific Environments

• Silk4J does not support JavaScript dialog API functions for Apple Safari. As a workaround, you could
patch such functions so that they are ignored. For additional information, see https://groups.google.com/
forum/#!topic/selenium-developer-activity/qsovJw93g9c.

• Silk4J does not support tabbing on Apple Safari.
• To test a multi window application, disable the Apple Safari pup-up blocker. To do so, start Apple Safari

and navigate to Safari Preferences > Security > Block pop-up window.
• Silk4J does not support testing the dialog box for saving a password. To avoid this dialog box, start

Apple Safari, navigate to Safari Preferences > AutoFill, and check the User names and passwords
check box.

• Silk4J does not support properties in XPath expressions for Apple Safari. Only attributes are supported
in XPath expressions.

• Silk4J does not support testing web applications which include a Content-Security-Policy HTTP header.
• With Apple Safari 10.1, Silk4J does not support navigating back in the browser.
• With Apple Safari 10.1, Silk4J does not support using control keys in the typeKeys method.
• With Apple Safari 10.1, Silk4J only supports dom actions in Frames and IFrames.
• With Apple Safari 10.1, Silk4J does not support navigating with Frames and IFrames.
• With Apple Safari 10.1, Silk4J does not support direct scrolling during recording. As a workaround, you

could use the executeJavaScript method.

Running Multiple Apple Safari Tests at the Same Time
To execute a test on Apple Safari, you require a Mac that is connected to the Windows machine on which
Silk Testis installed. If multiple Apple Safari want to execute tests on Apple Safari, these tests can be
executed simultaneously on the same Mac.

Note: Each test that is executed against Apple Safari on the Mac opens an individual instance of
Apple Safari. Having too many instances of Apple Safari running simultaneously might reduce the
performance of the Mac.

Uninstalling the Silk Test Information Service from a Mac
To uninstall the Silk Test information service (information service) from a Mac, for example if you no longer
want to execute tests against Apple Safari on the Mac:

1. Create a new shell file, for example uninstallInfoService.sh.

2. Type the following code into the new file:

#!/bin/sh

if launchctl list | grep com.borland.infoservice ; then
 launchctl unload /Library/LaunchAgents/com.borland.infoservice.plist
 echo "unloading Launch Daemon"
fi

if [-d "/Applications/Silk"]
then
 sudo rm -rf /Applications/Silk
fi

if [-f "/Library/LaunchAgents/com.borland.infoservice.plist"]
then
 sudo rm /Library/LaunchAgents/com.borland.infoservice.plist
fi

if [-f "/usr/local/bin/ideviceinstaller"]
then
 sudo rm /usr/local/bin/ideviceinstaller
fi

exit 0

Testing Specific Environments | 195

https://groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c
https://groups.google.com/forum/#!topic/selenium-developer-activity/qsovJw93g9c

3. In the command line, type chmod +x uninstallInfoService.sh to make the shell file executable.

4. Execute the shell file from the command line.

Testing with Google Chrome
This section describes how you can enhance your cross-browser test set by testing with Google Chrome.

Silk4J supports recording actions and replaying tests on Google Chrome 50 or later, and supports
replaying tests and recording locators on Google Chrome versions prior to version 50.

• When starting to test on Google Chrome 50 or later, with no running instance of Google Chrome open,
Silk4J starts a new instance of Google Chrome. This new browser uses a temporary profile without add-
ons and with an empty cache.

• When starting to test on an instance of Google Chrome 50 or later, which is already running, Silk4J
restarts Google Chrome with the same command line arguments that were used when the instance was
initially started. This restart is required to enable the Silk4J automation support.

• When testing with Google Chrome 50 or later, the Google Chrome instance is closed when shutting
down the Open Agent or when starting to test another application outside Google Chrome.

Tip: If you want to execute an existing test script with Google Chrome 50 or later, Micro Focus
recommends that you use a base state or that you add a command to the test script to navigate to the
URL.

Example 1

If the running instance of Google Chrome 50 or later was initially started with the
command C:/Program Files (x86)/Google/Chrome/Application/
chrome.exe www.borland.com, Google Chrome opens to www.borland.com after
the restart.

Example 2

If the running instance of Google Chrome 50 or later was initially started with the
command C:/Program Files (x86)/Google/Chrome/Application/
chrome.exe, Google Chrome opens to about:blank after the restart.

Prerequisites for Replaying Tests with Google Chrome

Command-line parameters

When you use Google Chrome to replay a test or to record locators, Google Chrome is started with the
following command:

%LOCALAPPDATA%\Google\Chrome\Application\chrome.exe
 --enable-logging
 --log-level=1
 --disable-web-security
 --disable-hang-monitor
 --disable-prompt-on-repost
 --dom-automation
 --full-memory-crash-report
 --no-default-browser-check
 --no-first-run
 --homepage=about:blank
 --disable-web-resources
 --disable-preconnect
 --enable-logging
 --log-level=1
 --safebrowsing-disable-auto-update

196 | Testing Specific Environments

 --test-type=ui
 --noerrdialogs
 --metrics-recording-only
 --allow-file-access-from-files
 --disable-tab-closeable-state-watcher
 --allow-file-access
 --disable-sync
 --testing-channel=NamedTestingInterface:st_42

When you use the wizard to hook on to an application, these command-line parameters are automatically
added to the base state. If an instance of Google Chrome is already running when you start testing, without
the appropriate command-line parameters, Silk4J closes Google Chrome and tries to restart the browser
with the command-line parameters. If the browser cannot be restarted, an error message displays.

Note: The command-line parameter disable-web-security is required when you want to record
or replay cross-domain documents.

Note: To test a web application that is stored in the local file system, navigate to the chrome://
extensions in Google Chrome and check the Allow access to file URLs check box for the Silk
Test Chrome Extension.

Testing Google Chrome Extensions
You can use one of the following two approaches to test a Google Chrome extension (add-on) with Silk4J:

Install the
extension as a .crx
file when starting
Google Chrome

To test a Google Chrome extension that is installed as a .crx file, add the following
command line to the base state:

chrome.exe --load-extension=C:/myExtension/myExtension.crx

Note: You can only install a single extension in Google Chrome as a .crx file.
To install multiple extensions in Google Chrome, use a comma separated list
of .crx files. For example:

chrome.exe --load-extension=C:/myExtension/
myExtension.crx,C:/myExtension2/myExtension2.crx

For information on adding command line arguments to a browser, see Modifying the
Base State.

Add the extension
to a profile

Add the extension to a Google Chrome user data directory and use that profile for
testing. For additional information, see Testing Google Chrome with User Data
Directories.

Testing Google Chrome with User Data Directories
All changes that you make in Google Chrome, for example your home page, what toolbars you use, any
saved passwords, and your bookmarks, are all stored in a special folder, which is called a user data
directory.

With Silk4J, you can test Google Chrome user data directories by specifying the path to the user data
directory in the base state of the application under test. The following command line includes the path to
the profile:

chrome.exe "--user-data-dir=C:/Users/MyUser/AppData/Local/Google/Chrome/User
Data"

To set the profile directory for our sample web application, you can use the following code:

BrowserBaseState baseState = new BrowserBaseState(BrowserType.GoogleChrome,
"demo.borland.com\InsuranceWebExtJS");
String myProfileDir = "--user-data-dir=C:\\temp\\SilkTest \"--profile-
directory=my user\"";
baseState.setCommandLineArguments(myProfileDir);
desktop.executeBaseState(baseState);

Testing Specific Environments | 197

Note: When Google Chrome is started by Silk4J, an empty user data directory is used. This ensures
that the test starts at a clean state.

Limitations for Testing with Google Chrome
The following list lists the known limitations for playing back tests and recording locators with Google
Chrome on a local Windows machine:

• Silk Test does not support testing child technology domains of the xBrowser domain with Google
Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.

• Silk4J does not support recording a test in an HTTP Basic Authentication dialog.
• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4J does not support the getFocus method of the IMoveable class.
• Silk Test does not recognize opening the Print dialog box in Google Chrome by using the Google

Chrome menu. To add opening this dialog box in Google Chrome to a test, you have to send Ctrl+Shift
+P using the TypeKeys method. Internet Explorer does not recognize this shortcut, so you have to first
record your test in Internet Explorer, and then manually add pressing Ctrl+Shift+P to your test.

• Testing on multiple Google Chrome windows at the same time is only supported if the additional
windows are opened from the initial Google Chrome window by the AUT itself. If the additional Google
Chrome windows are opened manually, Silk4J does not recognize the elements on these Google
Chrome windows. For example, Silk4J recognizes the elements in a Google Chrome window that is
opened by clicking on a link or a button in the AUT during recording, but Silk4J does not recognize the
elements in a Google Chrome window that was opened by pressing CTRL+N during recording.

• With Google Chrome 49 or prior and when using Internet Explorer to replay a test, you can use the
following code to test executeJavaScript:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("function foo() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("foo();");

When replaying tests on Google Chrome, the scripts are not executed in the global context (window),
but in a closure. Everything is executed within a function. The first ExecuteJavaScript call in the
previous code sample will not work with Google Chrome, because the function foo is only available as
long as the ExecuteJavaScript call lasts.

To replay the same test on Google Chrome, you can use the following function expression:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo = function() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo();");

The previous code samples will work in Silk4J. The code for the other Silk Test clients is similar. For
additional information, refer to the documentation of the ExecuteJavaScript method in the Help of
your Silk Test client.

• Parallel testing on Google Chrome does not work if the user data directory for Google Chrome is set
through a group policy. As a workaround, ask your administrator to remove the registry key
HKEY_LOCAL_MACHINE\Software\Policies\Google\Chrome\UserDataDir or
HKEY_CURRENT_USER\Software\Policies\Google\Chrome\.

Limitations for Testing with Google Chrome on macOS
The following list lists the known limitations for playing back tests and recording locators with Google
Chrome on macOS:

198 | Testing Specific Environments

• Silk4J does not support the CMD key for the typeKeys method.
• Silk Test does not support testing child technology domains of the xBrowser domain with Google

Chrome. For example Apache Flex or Microsoft Silverlight are not supported with Google Chrome.
• Silk4J does not support recording a test in an HTTP Basic Authentication dialog.
• Silk Test does not provide native support for Google Chrome. You cannot test internal Google Chrome

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4J does not support the getFocus method of the IMoveable class.
• Testing on multiple Google Chrome windows at the same time is not supported on macOS.
• Attaching to an already opened Google Chrome window on macOS is not supported.
• With Google Chrome 49 or prior and when using Internet Explorer to replay a test, you can use the

following code to test executeJavaScript:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("function foo() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("foo();");

When replaying tests on Google Chrome, the scripts are not executed in the global context (window),
but in a closure. Everything is executed within a function. The first ExecuteJavaScript call in the
previous code sample will not work with Google Chrome, because the function foo is only available as
long as the ExecuteJavaScript call lasts.

To replay the same test on Google Chrome, you can use the following function expression:

// Java code
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo = function() { alert('Silk Test'); }");
desktop.<BrowserWindow> find("//BrowserWindow")
 .executeJavaScript("window.foo();");

The previous code samples will work in Silk4J. The code for the other Silk Test clients is similar. For
additional information, refer to the documentation of the ExecuteJavaScript method in the Help of
your Silk Test client.

Testing with Mozilla Firefox
This section describes how you can enhance your cross-browser test set by testing with Mozilla Firefox.

Silk4J supports recording actions and replaying tests on Mozilla Firefox.

• When starting to test on Mozilla Firefox, with no running instance of Mozilla Firefox open, Silk4J starts a
new instance of Mozilla Firefox. This new browser uses a temporary profile without add-ons and with an
empty cache.

• When starting to test on an instance of Mozilla Firefox which is already running, Silk4J restarts Mozilla
Firefox with the same command line arguments that were used when the instance was initially started.
This restart is required to enable the Silk4J automation support.

• The Mozilla Firefox instance is closed when shutting down the Open Agent or when starting to test
another application outside Mozilla Firefox.

Tip: If you want to execute an existing test script with Mozilla Firefox, Micro Focus recommends that
you use a base state or that you add a command to the test script to navigate to the URL.

While recording with Silk4J on Mozilla Firefox 52 or later, Mozilla Firefox opens external links in a new tab,
instead of a new window. Disable the OPT_FIREFOX_SINGLE_WINDOW_MODE option in the Browser
options to open external links in a new window.

Testing Specific Environments | 199

Example 1

If the running instance of Mozilla Firefox was initially started with the command C:/
program files/Mozilla/firefox.exe www.borland.com, Mozilla Firefox
opens to www.borland.com after the restart.

Example 2

If the running instance of Mozilla Firefox was initially started with the command C:/
program files/Mozilla/firefox.exe, Mozilla Firefox opens to about:blank after
the restart.

Testing Mozilla Firefox with Profiles
All changes that you make in Mozilla Firefox, for example your home page, what toolbars you use, any
saved passwords, and your bookmarks, are all stored in a special folder, which is called a profile.

To test Mozilla Firefox profiles, you can specify either the name of the profile or the path to the profile as
custom browser command line arguments in the Edit Application Configurations dialog box:

1. Select the project from which you want to test Mozilla Firefox profiles.
2. Click Edit Application Configuration in the menu. The Edit Application Configuration dialog box

appears.
3. Uncheck the Show 'Select Browser' dialog before record and playback check box.
4. Click Edit to edit the existing Browser: Firefox application configuration.
5. Select Custom as the browser type.
6. Type the path to the Mozilla Firefox executable into the Executable field. For example C:\Program

Files (x86)\Mozilla Firefox\firefox.exe.
7. Type the Firefox profile name or the path to the Firefox profile into the Command Line Arguments field.

For example -p myProfile or -profile C:/Temp

Using the name of
the profile

The following command line argument specifies the name of the profile:

-p myProfile

You can configure the named profile in the Profile Manager. To start the Profile
Manager, type firefox.exe -P into a command window.

200 | Testing Specific Environments

Using the path to
the profile

The following command line argument specifies the path to the profile:

-profile C:/<path to profile folder>

Note: If Mozilla Firefox is started by Silk4J, an empty profile is used. This ensures that the test starts
at a clean state. If the user manually starts Mozilla Firefox, the default profile is used.

Note: As profiles need to be deployed to the test machine are and have high memory consumption,
you might face some issues when testing profiles. If you only want to change a few browser settings,
you can use capabilities instead of profiles. For additional information, see Setting Capabilities for
Web-Driver Based Browsers.

Testing Mozilla Firefox Extensions
To test a Mozilla Firefox extension (add-on) with Silk4J, add the extension to a Mozilla Firefox profile and
use that profile for testing. For additional information, see Testing Mozilla Firefox with Profiles.

Limitations for Testing with Mozilla Firefox
The following limitations are known when testing web applications with Silk4J on Mozilla Firefox:

• Silk4J does not support Mozilla Firefox 47, 48, 49, 50, and 51. However, Silk4J supports Mozilla Firefox
47.0.1 and 47.0.2

• Testing on multiple Mozilla Firefox windows at the same time is only supported if the additional windows
are opened from the initial Mozilla Firefox window by the AUT itself. If the additional Mozilla Firefox
windows are opened manually, Silk4J does not recognize the elements on these Mozilla Firefox
windows. For example, Silk4J recognizes the elements in a Mozilla Firefox window that is opened by
clicking on a link or a button in the AUT during recording, but Silk4J does not recognize the elements in
a Mozilla Firefox window that was opened by pressing CTRL+N during recording.

• Silk4J does not support testing modal browser windows, which are windows that can be displayed with
the window.showmodaldialog command. These modal browser windows have been officially
deprecated, and are disabled with Google Chrome 37 or later, while they are planned to no longer be
supported in future versions of Mozilla Firefox. You can workaround this issue by using low-level
actions, for example native clicks with coordinates to click on an object or typekeys to fill out text fields.

• Silk4J does not support testing Silverlight with Mozilla Firefox.
• Silk4J does not support testing some browser dialogs, for example the About dialog, with Mozilla

Firefox.
• Silk4J does not support testing about:* pages with Mozilla Firefox.
• Silk4J does not support recording a click on the Print button in Mozilla Firefox. To click on this button

during replay, you can manually add a desktop click with coordinates to your test script. For example:

desktop.click(MouseButton.LEFT, printButton.getRect(true).getCenter());

• Silk Test does not provide native support for Mozilla Firefox. You cannot test internal Mozilla Firefox
functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4J does not support recording locators on JavaScript alert boxes with Mozilla Firefox. With Mozilla
Firefox version 58 or prior, you can use the following methods to handle Javascript alert boxes:

• acceptAlert

• dismissAlert

• getAlertText

• isAlertPresent

Note: You cannot use these methods with Mozilla Firefox 59 or later.

• Silk4J does not support Java applets for Mozilla Firefox 52 or later. Silk4J supports Java applets for
Mozilla Firefox 47.0.1 or prior with the following limitations:

Testing Specific Environments | 201

• Silk4J does not support the locator //AppletContainer.
• When the applet opens a modal dialog, a locator similar to //BrowserApplication//

BrowserWindow/JDialog[@caption='Information']//JButton[@caption='OK'] might
not work. You can use a locator like //JDialog[@caption='Information']//
JButton[@caption='OK'] instead.

• Silk4J does not support properties in XPath expressions for Mozilla Firefox. Only attributes are
supported in XPath expressions.

• Silk4J does not support the getFocus method of the IMoveable class.
• Silk Test does not support testing child technology domains of the xBrowser domain with Mozilla

Firefox. For example Apache Flex or Microsoft Silverlight are not supported with Mozilla Firefox.
• With Mozilla Firefox 52 or later, the following methods are not supported:

• pressKeys

• releaseKeys

• With Mozilla Firefox 52 or prior, the setViewportSize method of the BrowserWindow class is not
supported.

• With Mozilla Firefox 52 or later, native playback for the following is not supported:

• Double-click.
• Right and middle mouse button click.

• With Mozilla Firefox 52 or later, the domClick method is not supported on controls that open an alert.
• With Mozilla Firefox 55, uploading a file does not work. For additional information, see File upload no

longer works with geckodriver 0.18.0 and Firefox 55.

Limitations for Testing with Mozilla Firefox on macOS
The following limitations are known when testing web applications with Mozilla Firefox on macOS:

• Silk4J has been tested on macOS with Mozilla Firefox 54 or later.
• Testing on multiple Mozilla Firefox windows at the same time is only supported if the additional windows

are opened from the initial Mozilla Firefox window by the AUT itself. If the additional Mozilla Firefox
windows are opened manually, Silk4J does not recognize the elements on these Mozilla Firefox
windows. For example, Silk4J recognizes the elements in a Mozilla Firefox window that is opened by
clicking on a link or a button in the AUT during recording, but Silk4J does not recognize the elements in
a Mozilla Firefox window that was opened by pressing CTRL+N during recording.

• Silk4J does not support testing modal browser windows, which are windows that can be displayed with
the window.showmodaldialog command. These modal browser windows have been officially
deprecated, and are disabled with Google Chrome 37 or later, while they are planned to no longer be
supported in future versions of Mozilla Firefox. You can workaround this issue by using low-level
actions, for example native clicks with coordinates to click on an object or typekeys to fill out text fields.

• Silk4J does not support testing Silverlight with Mozilla Firefox.
• Silk4J does not support testing some browser dialogs, for example the About dialog, with Mozilla

Firefox.
• Silk4J does not support testing about:* pages with Mozilla Firefox.
• Silk4J does not support recording a click on the Print button in Mozilla Firefox. To click on this button

during replay, you can manually add a desktop click with coordinates to your test script. For example:

desktop.click(MouseButton.LEFT, printButton.getRect(true).getCenter());

• Silk Test does not provide native support for Mozilla Firefox. You cannot test internal Mozilla Firefox
functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar through Win32. As a workaround, you can use API calls to navigate between web
pages. Silk Test supports handling alerts and similar dialog boxes through the Alerts API.

• Silk4J does not support recording locators on JavaScript alert boxes with Mozilla Firefox. With Mozilla
Firefox version 58 or prior, you can use the following methods to handle Javascript alert boxes:

• acceptAlert

202 | Testing Specific Environments

https://github.com/mozilla/geckodriver/issues/858
https://github.com/mozilla/geckodriver/issues/858

• dismissAlert

• getAlertText

• isAlertPresent

Note: You cannot use these methods with Mozilla Firefox 59 or later.

• Silk4J does not support Java applets for Mozilla Firefox on macOS.
• Silk4J does not support properties in XPath expressions for Mozilla Firefox. Only attributes are

supported in XPath expressions.
• Silk4J does not support the getFocus method of the IMoveable class.
• Silk Test does not support testing child technology domains of the xBrowser domain with Mozilla

Firefox. For example Apache Flex or Microsoft Silverlight are not supported with Mozilla Firefox.
• The following methods are not supported:

• pressKeys

• releaseKeys

• Native playback for the following is not supported:

• Double-click.
• Right and middle mouse button click.

• The domClick method is not supported on controls that open an alert.
• With Mozilla Firefox 55, uploading a file does not work. For additional information, see File upload no

longer works with geckodriver 0.18.0 and Firefox 55.

Testing with Microsoft Edge
This section describes how you can enhance your cross-browser test set by testing with Microsoft Edge.

Limitations for Testing with Microsoft Edge
The following are the known limitations for testing with Microsoft Edge:

• The following classes, interfaces, methods, and properties are currently not supported when testing web
applications on Microsoft Edge:

• BrowserApplication class.

• clearCache method
• closeOtherTabs method
• closeTab method
• existsTab method
• getHorizontalScrollbar method
• getNextCloseWindow method
• getSelectedTab method
• getSelectedTabIndex method
• getSelectedTabName method
• getTabCount method
• getVerticalScrollbar method
• isActive method
• minimize method
• openContextMenu method
• openTab method
• restore method
• selectTab method

Testing Specific Environments | 203

https://github.com/mozilla/geckodriver/issues/858
https://github.com/mozilla/geckodriver/issues/858

• setActive method
• windowState method

• The following methods of the BrowserWindow class are not supported for Microsoft Edge versions
prior to build 38.14393, the Microsoft Edge version for Microsoft Windows 10 Anniversary Update.

• pressKeys method
• releaseKeys method

• Silk4J does not automatically bring the browser into the foreground when recording actions against
Microsoft Edge.

• When testing with Microsoft Edge, the rectangle for the BrowserApplication is not absolute.
• Silk4J does not support testing Apache Flex.
• Silk4J does not provide native support for Microsoft Edge. You cannot test internal Microsoft Edge

functionality. For example, in a test, you cannot change the currently displayed web page by adding text
to the navigation bar. As a workaround, you can use API calls to navigate between web pages.

• Silk4J does not support handling alerts and similar dialog boxes for Microsoft Edge.
• Image clicks are only supported for Microsoft Edge Threshold 2 (build 25.10586) or later. If you are

testing a web application on a prior version of Microsoft Edge, you can only use image verifications.
• Silk4J does not support tabbing on Microsoft Edge. Tabs are recognized as windows.
• When testing web applications on Microsoft Edge, Silk4J cannot locate meta-tags which include the

http-equiv attribute. For example, Silk4J cannot locate the following meta-tag:

<meta http-equiv="content-type" content="text/html; charset=utf-8">

• With Microsoft Edge, Silk4J does not support directly reading the currentStyle attribute of a DOM
element. You can use the getCssStyle method of the DomElement class to retrieve the computed
CSS style with the specified style name.

• When starting the interaction with a web application on Microsoft Edge, Silk4J closes any open instance
of Microsoft Edge and starts a new browser. This new browser uses a temporary profile without add-ons
and with an empty cache. This instance of Microsoft Edge is closed when shutting down the Open
Agent or when starting to test another application outside Microsoft Edge.

• With Microsoft Edge, Silk4J does not recognize the textContents attribute while recording actions or
locators. However, you can use the textContents attribute in object maps and when replaying a test
on Microsoft Edge.

• Silk4J does not support properties in XPath expressions for Microsoft Edge. Only attributes are
supported in XPath expressions.

• Silk4J does not support the getFocus method of the IMoveable class.
• Silk4J does not support testing web applications which include a Content-Security-Policy HTTP header.

Responsive Web Design Testing
Desktop web applications which are built based upon responsive web design might change their
appearance in response to the size of the screen or web browser in which these applications are displayed.
Choosing the appropriate size of the replay window might have significant impact on the stability of such
tests.

Silk4J enables you to specify the exact size of the browser window in the following situations:

• When you create a new project for a web application.
• When you record a new test.
• When you record actions into an existing test.
• When you replay a test against a web application.

You can use the following settings to specify the size of the browser window:

• The Browser size list contains a mix of predefined and custom browser window sizes, enabling you to
select the size on which you want to test.

204 | Testing Specific Environments

• The Orientation list enables you to select whether you want the browser window to use landscape or
portrait orientation.

• Click Edit Browser Sizes to add custom browser sizes to the Browser size list or to specify which
browser sizes are displayed in the list.

• To add a new custom browser size to the list, click Add Browser Size.
• To exclude a size from the list, uncheck the corresponding check box.
• To add the visual breakpoints of a specific web application to the Browser size list, click Detect

Visual Breakpoints.

When replaying a test against a web application from the command line or from Silk Central, you can
specify the size of the browser viewport by setting the silktest.browserViewportSize environment variable.
You can either specify the name of a browser from the Browser Size list or a specific size.

You can change the size of the browser directly in a test script, if import
com.microfocus.silktest.jtf.mobile.common.types.DisplayOrientation; is defined in
the test script:

BrowserWindow window = desktop.<BrowserWindow>find("//BrowserApplication//
BrowserWindow");
window.setViewportName("Google Pixel 2", DisplayOrientation.LANDSCAPE);
window.setViewportSize(800, 300);

Example: Setting the browser size for automated replay by using the name

The following code sample sets the browser size to SVGA (800, 600) by using the
SVGA entry of the Browser size list:

SET silktest.browserViewportSize=name=SVGA;orientation=landscape

Example: Setting the browser size for automated replay by using the width and
height

The following code sample sets the browser size to SVGA (800, 600) by using the
width and height parameters:

SET
silktest.browserViewportSize=width=800;height=600;orientation=la
ndscape

Detecting Visual Breakpoints
Before detecting the visual breakpoints in a responsive web application, ensure that Mozilla Firefox 56 or
later or Google Chrome 60 or later is installed on the machine on which Silk4J is running.

Many web applications that are implemented with responsive web design techniques change their layout in
response to the size of the browser or device in which they are displayed. The specific resolutions on which
the layout changes are called visual breakpoints.

Silk4J supports testing such applications by detecting the visual breakpoints, and by allowing you to resize
the recording window to the specific size of such a visual breakpoint.

Silk4J enables you to specify the exact size of the browser window in the following situations:

• When you create a new project for a web application.
• When you record a new test.
• When you record actions into an existing test.
• When you replay a test against a web application.

To find the visual breakpoints in a web application, and to display the corresponding resolutions in the
Browser size list, perform the following actions:

Testing Specific Environments | 205

1. Click Edit Browser Sizes. The Edit Browser Sizes dialog appears.

2. Click Detect Visual Breakpoints. If no URL for the web application is specified in an application
configuration or base state, the Visual Breakpoint Detection URL dialog appears.

3. If no URL for the web application has been specified in an application configuration or base state, the
Visual Breakpoint Detection URL dialog appears. Type the URL into the text field and click OK. Silk4J
detects all visual breakpoints for the web application and adds them to the Browser sizes list.

4. Click OK to close the Edit Browser Sizes dialog.

You can now select any of the visual breakpoints as the size of the browser window or mobile device for
testing.

Testing Additional Browser Versions
This topic describes how you can test on additional versions of WebDriver-based browsers, which are not
automatically included in your Silk4J version.

Note: Silk4J should be able to automatically support the newest version of a browser. However, if the
browser vendor has introduced changes which require an update to Silk4J, the procedure described
in this topic might not enable testing on the new browser version.

The functionality described in this topic is supported for the following browsers:

• Google Chrome
• Microsoft Edge
• Mozilla Firefox

1. Download the appropriate driver for the browser version that you want to test.

• For Google Chrome, you can download additional ChromeDriver versions from Downloads -
ChromeDriver.

• For Mozilla Firefox, you can download additional geckodriver versions from Releases - mozilla/
geckodriver.

• For Microsoft Edge, you can download additional Microsoft WebDriver versions from WebDriver -
Microsoft Edge.

2. In the Silk4J installation folder, navigate to the folder \ng\WebDrivers\.

3. Open the folder that corresponds to the operating system on which you want to use the new browser
version:

• For Microsoft Windows, open the folder Windows.
• For macOS, open the folder osx64.

4. Open the appropriate folder for the browser.

• For Google Chrome, open Chrome.
• For Mozilla Firefox, open Gecko.
• For Microsoft Edge, open Edge.

5. Create a new folder for the new driver version.
For example, if the driver is ChromeDriver 2.26, create the new folder 2.26.

6. Extract the downloaded driver into the new folder.

7. In the Silk4J installation folder, navigate to the folder \ng\WebDrivers\Common\Config\.

8. Open the appropriate folder for the browser.

• For Google Chrome, open Chrome.
• For Mozilla Firefox, open Gecko.
• For Microsoft Edge, open Edge.

9. Open the properties file in a text editor.
For example, for Google Chrome, open Chrome.properties.

206 | Testing Specific Environments

https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://developer.microsoft.com/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/microsoft-edge/tools/webdriver/

10.Add the new browser version and the new driver version as follows:

<browser version>=<driver version>

For example, if you want to test on Google Chrome 53, you require ChromeDriver 2.26 and you have to
add the following line to the Chrome.properties file:

53=2.26

11.Save the properties file.

Cross-Browser Testing: Frequently Asked Questions
This section includes questions that you might encounter when testing your Web application on various
browsers.

Dialog is Not Recognized During Replay
When recording a script, Silk4J recognizes some windows as Dialog. If you want to use such a script as a
cross-browser script, you have to replace Dialog with Window, because some browsers do not recognize
Dialog.

For example, the script might include the following line:

/BrowserApplication//Dialog//PushButton[@caption='OK']

Rewrite the line to enable cross-browser testing to:

/BrowserApplication//Window//PushButton[@caption='OK']

DomClick(x, y) Is Not Working Like Click(x, y)
If your application uses the onclick event and requires coordinates, the DomClick method does not
work. Try to use Click instead.

FileInputField.DomClick() Will Not Open the Dialog
Try to use Click instead.

How Can I Maximize the Browser Window when Starting to Test?
To maximize a browser inside a test script, for example when starting to test, you can use the maximize
method of the BrowserApplication class.

To maximize your browser, add the following to your test script:

desktop.<BrowserApplication> find("//
BrowserApplication").maximize();

How can I scroll in a browser?
Silk4J provides the following ways to scroll controls in a browser into view during replay:

executeJavaScript method
(DomElement)

Use the scrollIntoView method to scroll a specific DOM element
into the visible area of the browser window.

executeJavaScript method
(BrowserWindow)

Use the executeJavaScript method to scroll the entire page up or
down by a specified range.

Testing Specific Environments | 207

Examples

The following command scrolls one page down:

browserWindow.executeJavaScript("window.scrollBy(0,
window.innerHeight)");

The following command scrolls down 100 pixels:

browserWindow.executeJavaScript("window.scrollBy(0, 100)");

The following command scrolls up 100 pixels:

browserWindow.executeJavaScript("window.scrollBy(0, -100)");

How Can I See Which Browser I Am Currently Using?
The BrowserApplication class provides a property "browsertype" that returns the type of the
browser. You can add this property to a locator in order to define which browser it matches.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Examples

To get the browser type, type the following into the locator:

browserApplication.GetProperty("browsertype")

Additionally, the BrowserWindow provides a method GetUserAgent that returns the user agent string of
the current window.

How do I Verify the Font Type Used for the Text of an Element?
You can access all attributes of the currentStyle attribute of a DOM element by separating the attribute
name with a ":".

Internet Explorer 8 or earlier wDomElement.GetProperty("currentStyle:fontName")

All other browsers, for example
Internet Explorer 9 or later and
Mozilla Firefox

wDomElement.GetProperty("currentStyle:font-name")

I Configured innerText as a Custom Class Attribute, but it Is Not Used
in Locators
A maximum length for attributes used in locator strings exists. InnerText tends to be lengthy, so it might
not be used in the locator. If possible, use textContents instead.

I Need Some Functionality that Is Not Exposed by the xBrowser API.
What Can I Do?
You can use ExecuteJavaScript() to execute JavaScript code directly in your Web application. This
way you can build a workaround for nearly everything.

Link.Select Does Not Set the Focus for a Newly Opened Window in
Internet Explorer
This is a limitation that can be fixed by changing the Browser Configuration Settings. Set the option to
always activate a newly opened window.

208 | Testing Specific Environments

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

Logging Output of My Application Contains Wrong Timestamps
This might be a side effect of the synchronization. To avoid this problem, specify the HTML synchronization
mode.

My Test Script Hangs After Navigating to a New Page
This can happen if an AJAX application keeps the browser busy (open connections for Server Push /
ActiveX components). Try to set the HTML synchronization mode. Check the Page Synchronization for
xBrowser topic for other troubleshooting hints.

Recorded an Incorrect Locator
The attributes for the element might change if the mouse hovers over the element. Silk4J tries to track this
scenario, but it fails occasionally. Try to identify the affected attributes and configure Silk4J to ignore them.

Rectangles Around Elements in Internet Explorer are Misplaced
• Make sure the zoom factor is set to 100%. Otherwise, the rectangles are not placed correctly.
• Ensure that there is no notification bar displayed above the browser window. Silk4J cannot handle

notification bars.

The Move Mouse Setting Is Turned On but All Moves Are Not
Recorded. Why Not?
In order to not pollute the script with a lot of useless MoveMouse actions, Silk4J does the following:

• Only records a MoveMouse action if the mouse stands still for a specific time.
• Only records MoveMouse actions if it observes activity going on after an element was hovered over. In

some situations, you might need to add some manual actions to your script.
• Silk4J supports recording mouse moves only for Web applications, Win32 applications, and Windows

Forms applications. Silk4J does not support recording mouse moves for child technology domains of
the xBrowser technology domain, for example Apache Flex and Swing.

What is the Difference Between textContents, innerText, and
innerHtml?
• textContents is all text contained by an element and all its children that are for formatting purposes

only.
• innerText returns all text contained by an element and all its child elements.
• innerHtml returns all text, including html tags, that is contained by an element.

Consider the following html code.

<div id="mylinks">
 This is my link collection:

 Bye bye Borland
 Welcome to Micro Focus

</div>

The following table details the different properties that return.

Testing Specific Environments | 209

Code Returned Value

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("textContents")

This is my link collection:

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerText")

This is my link collection:Bye bye Borland
Welcome to Micro Focus

browser.DomElement("//
div[@id='mylinks']").GetProp
erty("innerHtml")

This is my link collection:

 Bye bye
Borland
 Welcome to
Micro Focus

Note: In Silk Test 13.5 or later, whitespace in texts, which are retrieved through the textContents
property of an element, is trimmed consistently across all supported browsers. For some browser
versions, this whitespace handling differs to Silk Test versions prior to Silk Test 13.5. You can re-
enable the old behavior by setting the OPT_COMPATIBILITY option to a version lower than 13.5.0.
For example, to set the option to Silk Test 13.0, type the following into your script:

desktop.setOption("OPT_COMPATIBILITY", "13.0.0");

What Should I Take Care Of When Creating Cross-Browser Scripts?
When you are creating cross-browser scripts, you might encounter one or more of the following issues:

• When recording a script for cross-browser testing, Micro Focus recommends using Google Chrome,
Mozilla Firefox, or Microsoft Edge, as a script recorded with Silk4J against Internet Explorer might
slightly differ in comparison to a script recorded on one of the other browsers.

• Different attribute values. For example, colors in Internet Explorer are returned as "# FF0000" and in
Mozilla Firefox as "rgb(255,0,0)".

• Different attribute names. For example, the font size attribute is called "fontSize" in Internet Explorer
8 or earlier and is called "font-size" in all other browsers, for example Internet Explorer 9 or later
and Mozilla Firefox.

• Some frameworks may render different DOM trees.

Which Locators are Best Suited for Stable Cross Browser Testing?
The built in locator generator attempts to create stable locators. However, it is difficult to generate quality
locators if no information is available. In this case, the locator generator uses hierarchical information and
indices, which results in fragile locators that are suitable for direct record and replay but ill-suited for stable,
daily execution. Furthermore, with cross browser testing, several AJAX frameworks might render different
DOM hierarchies for different browsers.

To avoid this issue, use custom IDs for the UI elements of your application.

Why Are the Class and the Style Attributes Not Used in the Locator?
These attributes are on the ignore list because they might change frequently in AJAX applications and
therefore result in unstable locators. However, in many situations these attributes can be used to identify
objects, so it might make sense to use them in your application.

Why Are Clicks Recorded Differently in Internet Explorer 10?
When you record a Click on a DomElement in Internet Explorer 10 and the DomElement is dismissed
after the Click, then the recording behavior might not be as expected. If another DomElement is located

210 | Testing Specific Environments

beneath the initial DomElement, Silk Test records a Click, a MouseMove, and a ReleaseMouse, instead
of recording a single Click.

A possible workaround for this unexpected recording behavior depends on the application under test.
Usually it is sufficient to delete the unnecessary MouseMove and ReleaseMouse events from the
recorded script.

Why Do I Get an Invalidated-Handle Error?
This topic describes what you can do when Silk4J displays the following error message: The handle for
this object has been invalidated.

This message indicates that something caused the object on which you called a method, for example
WaitForProperty, to disappear. For example, if something causes the browser to navigate to a new
page, during a method call in a Web application, all objects on the previous page are automatically
invalidated.

When testing a Web application, the reason for this problem might be the built-in synchronization. For
example, suppose that the application under test includes a shopping cart, and you have added an item to
this shopping cart. You are waiting for the next page to be loaded and for the shopping cart to change its
status to contains items. If the action, which adds the item, returns too soon, the shopping cart on the
first page will be waiting for the status to change while the new page is loaded, causing the shopping cart
of the first page to be invalidated. This behavior will result in an invalidated-handle error.

As a workaround, you should wait for an object that is only available on the second page before you verify
the status of the shopping cart. As soon as the object is available, you can verify the status of the shopping
cart, which is then correctly verified on the second page.

As a best practice for all applications, Micro Focus recommends creating a separate method for finding
controls that you use often within tests. For example:

public Dialog getSaveAsDialog(Desktop desktop) {
 return desktop.find("//Dialog[@caption = 'Save As']");
}

The Find and FindAll methods return a handle for each matching object, which is only valid as long as
the object in the application exists. For example, a handle to a dialog is invalid once the dialog is closed.
Any attempts to execute methods on this handle after the dialog closes will throw an
InvalidObjectHandleException. Similarly, handles for DOM objects on a Web page become invalid if
the Web page is reloaded. Since it is a common practice to design test methods to be independent of each
other and of order of execution, get new handles for the objects in each test method. In order not to
duplicate the XPath query, helper methods, like getSaveAsDialog, can be created. For example:

@Test
public void testSaveAsDialog() {
 // ... some code to open the 'Save As' dialog (e.g by clicking a menu
item) ...
 Dialog saveAsDialog = getSaveAsDialog(desktop);
 saveAsDialog.close();
 // ... some code to open the 'Save As' dialog again
 getSaveAsDialog(desktop).click(); // works as expected
 saveAsDialog.click(); // fails because an InvalidObjectHandleException is
thrown
}

The final line of code fails because it uses the object handle that no longer exists.

Starting a Browser from a Script
Instead of selecting a browser for replay at the start of a test, you might require to start a specific browser
out of the test script during replay.

Testing Specific Environments | 211

Using the BrowserBaseState class

Using the BrowserBaseState class to start a browser out of a test script ensures that the browser that is
specified by the Executable property is running and ready for testing. The base state additionally navigates
to the URL that is specified by the Url property and brings the browser to the front.

The following code sample uses the BrowserBaseState class to start Internet Explorer.

Using multiple instances of a browser

If you have more then one browser windows or tabs open, Silk4J handles each browser window or tab as a
distinct object with a unique locator. The locators are indexed, for example WebBrowser , WebBrowser[1] ,
WebBrowser[2] , and so on.

Finding Hidden Input Fields
Hidden input fields are HTML fields for which the tag includes type="hidden". To enable a find to
locate hidden input fields, you can use the OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS option.
The default value of the option is TRUE.

desktop.setOption(CommonOptions.OPT_XBROWSER_FIND_HIDDEN_INPUT_FIELDS, true);

Attributes for Web Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Web applications include:

• caption (supports wildcards ? and *)
• all DOM attributes (supports wildcards ? and *)

Note: Empty spaces are handled differently by each browser. As a result, the textContent and
innerText attributes have been normalized. Empty spaces are skipped or replaced by a single
space if an empty space is followed by another empty space. Empty spaces are detected spaces,
carriage returns, line feeds, and tabs. The matching of such values is normalized also. For example:

<a>abc
abc

Uses the following locator:

//A[@innerText='abc abc']

Custom Attributes for Web Applications
HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk4J.

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk4J allows you to configure the attribute that you want
to use as the default attribute for identification, even if the attribute is a custom attribute of the control class.
To set the custom attribute as the default identification attribute for a specific technology domain, click
Silk4J > Edit Options > Custom Attributes and select the technology domain.

212 | Testing Specific Environments

The application developer just needs to add the additional HTML attribute to the Web
element.

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk4J uses the custom attribute to construct a
unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

Limitations for Testing on Microsoft Windows 10
The following list lists the known limitations for testing on Microsoft Windows 10 (Windows 10):

• Silk Test does not support testing Universal Windows Platform (UWP) apps on Windows 10.

Supported Attribute Types
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. If necessary, you can change the attribute type in one of the following ways:

• Manually typing another attribute type and value.
• Specifying another preference for the default attribute type by changing the Preferred attribute list

values.

Attributes for Apache Flex Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Flex applications include:

• automationName
• caption (similar to automationName)
• automationClassName (e.g. FlexButton)
• className (the full qualified name of the implementation class, e.g. mx.controls.Button)
• automationIndex (the index of the control in the view of the FlexAutomation, e.g. index:1)
• index (similar to automationIndex but without the prefix, e.g. 1)

Testing Specific Environments | 213

• id (the id of the control)
• windowId (similar to id)
• label (the label of the control)
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Attributes for Java AWT/Swing Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java AWT/Swing include:

• caption
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text input field, the caption of the closest label at the left side or above the control is used.

• name
• accessibleName
• Swing only: All custom object definition attributes set in the widget with

putClientProperty("propertyName", "propertyValue")

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Java SWT Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Java SWT include:

• caption
• all custom object definition attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for SAP Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for SAP include:

• automationId
• caption

214 | Testing Specific Environments

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Locator Attributes for Identifying Silverlight Controls
Supported locator attributes for Silverlight controls include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify components within Silverlight scripts, you can specify the automationId, caption, className,
name or any dynamic locator attribute. The automationId can be set by the application developer. For
example, a locator with an automationId might look like //SLButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
SLButton[@automationId="okBu
tton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//SLButton[@caption="Ok"]

className The simple .NET class name (without namespace) of
the Silverlight control. Using the className attribute
can help to identify a custom control that is derived
from a standard Silverlight control that Silk4J
recognizes.

//
SLButton[@className='MyCusto
mButton']

name The name of a control. Can be provided by the
developer of the application under test.

//SLButton[@name="okButton"]

Attention: The name attribute in XAML code maps to the locator attribute automationId, not to the
locator attribute name.

During recording, Silk4J creates a locator for a Silverlight control by using the automationId, name, caption,
or className attributes in the order that they are listed in the preceding table. For example, if a control has
an automationId and a name, Silk4J uses the automationId, if it is unique, when creating the locator.

The following table shows how an application developer can define a Silverlight button with the text "Ok" in
the XAML code of the application:

XAML Code for the Object Locator to Find the Object from Silk Test

<Button>Ok</Button> //SLButton[@caption="Ok"]

<Button Name="okButton">Ok</Button> //SLButton[@automationId="okButton"]

Testing Specific Environments | 215

XAML Code for the Object Locator to Find the Object from Silk Test

<Button
AutomationProperties.AutomationId="okB
utton">Ok</Button>

//SLButton[@automationId="okButton"]

<Button
AutomationProperties.Name="okButton">O
k</Button>

//SLButton[@name="okButton"]

Locator Attributes for Identifying Controls with UI
Automation
The supported locator attributes for controls in Windows-based applications that have implemented UI
Automation provider interfaces include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify controls in Windows-based applications that have implemented UI Automation provider
interfaces within scripts, you can specify the automationId, caption, className, name or any dynamic
locator attribute. The automationId can be set by the application developer. For example, a locator with an
automationId might look like //UIAButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
UIAButton[@automationId="okB
utton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//UIAButton[@caption="Ok"]

className The class name (without namespace) of the UI
Automation control. Using the className attribute can
help to identify a custom control that is derived from a
standard UI Automation control that Silk4J recognizes.

//
UIAButton[@className='MyCust
omButton']

name The name of a control. Can be provided by the
developer of the application under test.

//
UIAButton[@name="okButton"]

During recording, Silk4J creates a locator for a UI Automation control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has an automationId and a name, Silk4J uses the automationId, if it is unique, when creating the
locator.

To find out which additional custom attributes you could use for the UI Automation controls in your AUT, you
can use the Verify Properties dialog box. To do so, hover the mouse cursor over a UI Automation control

216 | Testing Specific Environments

during recording, and click Ctrl+Alt. You can then see which properties are available for the control. For
example, for some applications, the attribute value is useful.

Locator Attributes for Identifying Rumba Controls
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests. Supported attributes include:

caption The text that the control displays.

priorlabel Since input fields on a form normally have a label explaining the purpose of the input,
the intention of priorlabel is to identify the text input field, RumbaTextField, by the
text of its adjacent label field, RumbaLabel. If no preceding label is found in the same
line of the text field, or if the label at the right side is closer to the text field than the left
one, a label on the right side of the text field is used.

StartRow This attribute is not recorded, but you can manually add it to the locator. Use
StartRow to identify the text input field, RumbaTextField, that starts at this row.

StartColumn This attribute is not recorded, but you can manually add it to the locator. Use
StartColumn to identify the text input field, RumbaTextField, that starts at this
column.

All dynamic
locator
attributes.

For additional information on dynamic locator attributes, see Dynamic Locator
Attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Web Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Web applications include:

• caption (supports wildcards ? and *)
• all DOM attributes (supports wildcards ? and *)

Note: Empty spaces are handled differently by each browser. As a result, the textContent and
innerText attributes have been normalized. Empty spaces are skipped or replaced by a single
space if an empty space is followed by another empty space. Empty spaces are detected spaces,
carriage returns, line feeds, and tabs. The matching of such values is normalized also. For example:

<a>abc
abc

Uses the following locator:

//A[@innerText='abc abc']

Attributes for Windows Forms Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows Forms applications include:

Testing Specific Environments | 217

• automationid
• caption
• windowid
• priorlabel (For controls that do not have a caption, the priorlabel is used as the caption automatically.

For controls with a caption, it may be easier to use the caption.)

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Attributes for Windows Presentation Foundation (WPF)
Applications
Supported attributes for WPF applications include:

• automationId
• caption
• className
• name
• All dynamic locator attributes.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

Object Recognition

To identify components within WPF scripts, you can specify the automationId, caption, className, or
name. The name that is given to an element in the application is used as the automationId attribute for the
locator if available. As a result, most objects can be uniquely identified using only this attribute. For
example, a locator with an automationId might look like: //
WPFButton[@automationId='okButton']".

If you define an automationId and any other attribute, only the automationId is used during replay. If there is
no automationId defined, the name is used to resolve the component. If neither a name nor an
automationId are defined, the caption value is used. If no caption is defined, the className is used. We
recommend using the automationId because it is the most useful property.

Attribute Type Description Example

automationId An ID that was provided by
the developer of the test
application.

//WPFButton[@automationId='okButton']"

name The name of a control. The
Visual Studio designer
automatically assigns a
name to every control that is
created with the designer.
The application developer
uses this name to identify
the control in the application
code.

//WPFButton[@name='okButton']"

218 | Testing Specific Environments

Attribute Type Description Example

caption The text that the control
displays. When testing a
localized application in
multiple languages, use the
automationId or name
attribute instead of the
caption.

//WPFButton[@automationId='Ok']"

className The simple .NET class
name (without namespace)
of the WPF control. Using
the class name attribute can
help to identify a custom
control that is derived from
a standard WPF control that
Silk4J recognizes.

//WPFButton[@className='MyCustomButton']"

During recording, Silk4J creates a locator for a WPF control by using the automationId, name, caption, or
className attributes in the order that they are listed in the preceding table. For example, if a control has a
automationId and a name, Silk4J uses the automationId when creating the locator.

The following example shows how an application developer can define a name and an automationId for a
WPF button in the XAML code of the application:

<Button Name="okButton" AutomationProperties.AutomationId="okButton"
Click="okButton_Click">Ok</Button>

Attributes for Windows API-based Client/Server
Applications
When a locator is constructed, the attribute type is automatically assigned based on the technology domain
that your application uses. The attribute type and value determines how the locator identifies objects within
your tests.

Supported attributes for Windows API-based client/server applications include:

• caption
• windowid
• priorlabel: Helps to identify text input fields by the text of its adjacent label field. Every input field of a

form usually has a label that explains the purpose of the input. For controls that do not have a caption,
the attribute priorlabel is automatically used in the locator. For the priorlabel value of a control, for
example a text box, the caption of the closest label at the left side or above the control is used.

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

Dynamic Locator Attributes
In a locator for identifying a control during replay you can use a pre-defined set of locator attributes, for
example caption and automationId, which depend on the technology domain. But you can also use every
property, including dynamic properties, of a control as locator attribute. A list of available properties for a
certain control can be retrieved with the GetPropertyList method. All returned properties can be used
for identifying a control with a locator.

Testing Specific Environments | 219

Note: You can use the GetProperty method to retrieve the actual value for a certain property of
interest. You can then use this value in your locator.

Example

If you want to identify the button that has the user input focus in a Silverlight application,
you can type:

browser.Find("//SLButton[@IsKeyboardFocused=true]")

or alternatively

Dim button = dialog.SLButton("@IsKeyboardFocused=true")

This works because Silk4J exposes a property called IsDefault for the Silverlight
button control.

Example

If you want to identify a button in a Silverlight application with the font size 12 you can
type:

Dim button = browser.Find("//SLButton[@FontSize=12]")

or alternatively

Dim button = browser.SLButton("@FontSize=12")

This works because the underlying control in the application under test, in this case the
Silverlight button, has a property called FontSize.

220 | Testing Specific Environments

Keyword-Driven Tests
Keyword-driven testing is a software testing methodology that separates test design from test development
and therefore allows the involvement of additional professional groups, for example business analysts, in
the test automation process. Silk Central and Silk Test support the keyword-driven testing methodology and
allow a very close collaboration between automation engineers and business analysts by having
automation engineers develop a maintainable automation framework consisting of shared assets in the
form of keywords in Silk Test. These keywords can then be used by business analysts either in Silk Test to
create new keyword-driven tests or in Silk Central to convert their existing manual test assets to automated
tests or to create new keyword-driven tests.

• A keyword-driven test is an executable collection of keywords. A keyword-driven test can be played back
just like any other test.

• A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle
often encountered combinations of keywords into a single keyword, enabling you to reduce
maintenance effort and to keep your tests well-arranged.

• A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET.

There are two phases required to create keyword-driven tests:

1. Designing the test.
2. Implementing the keywords.

For a complete list of the record and replay controls available for keyword-driven testing, see the
com.borland.silk.keyworddriven.annotations package in the API Reference.

Advantages of Keyword-Driven Testing
The advantages of using the keyword-driven testing methodology are the following:

• Keyword-driven testing separates test automation from test case design, which allows for better division
of labor and collaboration between test engineers implementing keywords and subject matter experts
designing test cases.

• Tests can be developed early, without requiring access to the application under test, and the keywords
can be implemented later.

• Tests can be developed without programming knowledge.

Keyword-Driven Tests | 221

• Keyword-driven tests require less maintenance in the long run. You need to maintain the keywords, and
all keyword-driven tests using these keywords are automatically updated.

• Test cases are concise.
• Test cases are easier to read and to understand for a non-technical audience.
• Test cases are easy to modify.
• New test cases can reuse existing keywords, which amongst else makes it easier to achieve a greater

test coverage.
• The internal complexity of the keyword implementation is not visible to a user that needs to create or

execute a keyword-driven test.

Keywords
A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET. In Silk4J,
a keyword is an annotated test method (@Keyword). Keywords are saved as keyword assets.

You can define keywords and keyword sequences during the creation of a keyword-driven test and you can
then implement them as test methods. You can also mark existing test methods as keywords with the
@Keyword annotation. In Java, keywords are defined with the following annotation:

@Keyword("keyword_name")

A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle
often encountered combinations of keywords into a single keyword, enabling you to reduce maintenance
effort and to keep your tests well-arranged.

A keyword or a keyword sequence can have a combined total of 20 input and output parameters. Any
parameter of the test method that implements the keyword is a parameter of the keyword. To specify a
different name for a parameter of a keyword, you can use the following:

// Java code
@Argument("parameter_name")

By default a parameter is an input parameter in Silk4J. To define an output parameter, use the class
OutParameter.

Note: To specify an output parameter for a keyword in the Keyword-Driven Test Editor, use the
following annotation:

${parameter_name}

In the Keyword-Driven Test Editor, you can use the same annotation to use an output parameter of
a keyword as an input parameter for other keywords.

Example

A test method that is marked as a keyword can look like the following:

// Java code
@Keyword("Login")
public void login(){
 ... // method implementation
}

or

// Java code
@Keyword(value="Login", description="Logs in with the given
name and password.")
public void login(@Argument("UserName") String userName,
 @Argument("Password") String password,
 @Argument("Success") OutParameter success) {

222 | Keyword-Driven Tests

 ... // method implementation
}

where the keyword logs into the application under test with a given user name and
password and returns whether the login was successful. To use the output parameter as
an input parameter for other keywords, set the value for the output parameter inside the
keyword.

Note: If you are viewing this help topic in PDF format, this code
sample might include line-breaks which are not allowed in
scripts. To use this code sample in a script, remove these line-
breaks.

• The keyword name parameter of the Keyword annotation is optional. You can use
the keyword name parameter to specify a different name than the method name. If
the parameter is not specified, the name of the method is used as the keyword
name.

• The Argument annotation is also optional. If a method is marked as a keyword, then
all arguments are automatically used as keyword arguments. You can use the
Argument annotation to specify a different name for the keyword argument, for
example UserName instead of userName.

Creating a Keyword-Driven Test in Silk4J
Use the Keyword-Driven Test Editor to combine new keywords and existing keywords into new keyword-
driven tests. New keywords need to be implemented as automated test methods in a later step.

1. Click Silk4J > New Keyword-Driven Test. The New Keyword-Driven Test dialog box opens.

2. Type a name for the new test into the Name field.

3. Select the project in which the new test should be included.

By default, if a project is active, the new test is created in the active project.

Note: To optimally use the functionality that Silk4J provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

4. Click Finish to save the keyword-driven test.

5. Click No to create an empty keyword-driven test. The Keyword-Driven Test Editor opens.

6. Perform one of the following actions:

• To add a new keyword, type a name for the keyword into the New Keyword field.
• To add an existing keyword, expand the list and select the keyword that you want to add.

7. Press Enter.

8. Repeat the previous two steps until the test includes all the keywords that you want to execute.

9. Click File > Save.

Continue with implementing the keywords or with executing the test, if all keywords are already
implemented.

Recording a Keyword-Driven Test in Silk4J
Before you can create a keyword-driven test in Silk4J, you have to select a project.

To record a single keyword, see Recording a Keyword.

To record a new keyword-driven test:

Keyword-Driven Tests | 223

1. Click Silk4J > New Keyword-Driven Test. The New Keyword-Driven Test dialog box opens.

2. Type a name for the new test into the Name field.

3. Select the project in which the new test should be included.

By default, if a project is active, the new test is created in the active project.

Note: To optimally use the functionality that Silk4J provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

4. Click Finish to save the keyword-driven test.

5. Click Yes to start recording the keyword-driven test. The Record Keyword-Driven Test dialog box
opens.

6. If you have not set an application configuration for the current project, select the tab that corresponds to
the type of application that you are testing:

• If you are testing a standard application that does not run in a browser, select the Windows tab.
• If you are testing a web application or a mobile web application, select the Web tab.
• If you are testing a native mobile application, select the Mobile tab.

7. To test a standard application, select the application from the list.

8. To test a web application or a mobile web application, if you have not set an application configuration for
the current project, select one of the installed browsers or mobile browsers from the list.

a) Specify the web page to open in the Enter URL to navigate text box. If an instance of the selected
browser is already running, you can click Use URL from running browser to record against the
URL currently displayed in the running browser instance. For the tutorial, select Internet Explorer
and specify http://demo.borland.com/InsuranceWebExtJS/ in the Enter URL to navigate text box.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

9. To test a native mobile application (app) if you have not set an application configuration for the current
project:

a) Select the mobile device, on which you want to test the app, from the list.
b) Click Browse to select the app file or enter the full path to the app file into the Mobile app file text

field.

Silk4J supports HTTP and UNC formats for the path.

Silk4J installs the app on the mobile device or emulator.

10.If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

11.Depending on the dialog that is open, perform one of the following:

• In the Select Application dialog box, click OK.
• In the Select Browser dialog box, click Record.

12.In the application under test, perform the actions that you want to include in the first keyword.

224 | Keyword-Driven Tests

http://demo.borland.com/InsuranceWebExtJS/

For information about the actions available during recording, see Actions Available During Recording.

13.To specify a name for the keyword, hover the mouse cursor over the keyword name in the Recording
window and click Edit.

Note: Silk4J automatically adds the keyword Start application to the start of the keyword-driven
test. In this keyword, the applications base state is executed to enable the test to replay correctly.
For additional information on the base state, see Base State.

14.Type a name for the keyword into the Keyword name field.

15.Click OK.

16.To record the actions for the next keyword, type a name for the new keyword into the New keyword
name field and click Add. Silk4J records any new actions into the new keyword.

17.Create new keywords and record the actions for the keywords until you have recorded the entire
keyword-driven test.

18.Click Stop. The Record Complete dialog box opens.

19.Optional: In the Package text box, specify the package name.
For example, type: com.example.

To use an existing package, click Select and select the package that you want to use.

20.In the Test class text box, specify the name for the test class.
For example, type: AutoQuoteInput.

To use an existing class, click Select and select the class that you want to use.

21.Click OK.

Silk4J creates the new keyword-driven test with all recorded keywords.

Setting the Base State for a Keyword-Driven Test in Silk4J
When you execute a keyword-driven test with Silk4J and the keyword-driven test calls a base state
keyword, Silk4J starts your AUT from the base state.

During the recording of a keyword-driven test, Silk4J searches in the current project for a base state
keyword, which is a keyword for which the isBaseState property is set to true.

• If a base state keyword exists in the current project, Silk4J inserts this keyword as the first keyword of
the keyword-driven test.

• If there is no base state keyword in the project, Silk4J creates a new base state keyword with the name
Start application and inserts it as the first keyword of the keyword-driven test.

To manually mark a keyword as a base state keyword, add the isBaseState property to the Keyword
annotation, and set the value of the property to true:

@Keyword(value = "Start application", isBaseState = true)
public void start_application() {
 // Base state implementation
}

Implementing a Keyword in Silk4J
Before implementing a keyword, define the keyword as part of a keyword-driven test.

To implement a keyword for reuse in keyword-driven tests:

1. Open a keyword-driven test that includes the keyword that you want to implement.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Select Keyword Location dialog box opens.

Keyword-Driven Tests | 225

3. Click Select to select the package and class to which you want to add the keyword implementation.

4. Optional: Define the package name for the new keyword implementation in the Package field.

5. Define the class name for the new keyword implementation in the Class field.

6. Click OK.

7. Perform one of the following actions:

• To record the keyword, click Yes.
• To create an empty keyword method, click No.

8. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

9. Click Record.

For additional information on recording, see Recording a Keyword.

If an implemented keyword is displayed as not implemented in the Keywords window, check Project >
Build Automatically in the Eclipse menu.

Recording a Keyword in Silk4J
You can only record actions for a keyword that already exists in a keyword-driven test, not for a keyword
that is completely new. To record a new keyword-driven test, see Recording a Keyword-Driven Test.

To record the actions for a new keyword:

1. Open a keyword-driven test that includes the keyword that you want to record.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Select Keyword Location dialog box opens.

3. Click Select to select the package and class to which you want to add the keyword implementation.

4. Optional: Define the package name for the new keyword implementation in the Package field.

5. Define the class name for the new keyword implementation in the Class field.

6. Click OK.

7. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

8. Click Record. The Recording window opens and Silk4J starts recording the actions for the keyword.

9. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, see Actions Available During Recording.

226 | Keyword-Driven Tests

10.Click Stop. The Record Complete dialog box opens.

The recorded actions are displayed in the context of the defined class.

Marking a Test Method in a Script as a Keyword
Mark an existing test method in a script as a keyword to reuse the method in keyword-driven tests.

1. Open the script which includes the test method that you want to mark as a keyword.

2. Add @keyword() to the start of the test method.

By default, the keyword name is the name of the test method.

3. Optional: You can set a different name for the keyword by adding @keyword("keywordName") to the
start of the test method.

You can now use the test method as a keyword in a keyword-driven test.

Examples

To mark the test method login as a new keyword with the name Login, type the
following before the start of the test method:

@Keyword("Login")

To mark the test method login as a new keyword with the name Login and with the two
input parameters UserName and PassWord, type the following:

@Keyword(value="Login", description="Logs in with the given
name and password.")
public void login(@Argument("UserName") String userName,
@Argument("PassWord") String password) {
 ... // method implementation
}

Note: If you are viewing this help topic in PDF format, this code
sample might include line-breaks which are not allowed in
scripts. To use this code sample in a script, remove these line-
breaks.

Editing a Keyword-Driven Test
Note: In Silk4J, you can edit and execute keyword-driven tests that are located in Silk4J, and you can
execute keyword-driven tests that are stored in Silk Central. To edit a keyword-driven test, which is
stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test Editor and click
Edit.

To edit a keyword-driven test:

1. Open the keyword-driven test in the Keyword-Driven Test Editor.

a) In the Package Explorer, expand the project in which the keyword-driven test resides.
b) Expand the Keyword Driven Tests folder.
c) Double-click the keyword-driven test that you want to edit.

2. To add a new keyword to the keyword-driven test:

a) Click into the New Keyword field.
b) Type a name for the new keyword.
c) Press Enter.

Keyword-Driven Tests | 227

3. To edit an existing keyword, click Open Keyword to the left of the keyword.

Note: Silk Central has the ownership of any keyword that has been created in Silk Central, which
means any changes that you make to such keywords are saved in Silk Central, not in Silk4J.

4. To copy a keyword into the keyword-driven test:

a) Select the keyword.

Tip: Use Ctrl+Click or Shift+Click on the row number column to select multiple keywords.

b) Press Ctrl+C.
c) Select the row above which you want to insert the keyword.
d) Press Ctrl+V.

5. To move a keyword to another location in the keyword-driven test, click on the keyword and drag it to the
new location, or:

a) Select the keyword.

Tip: Use Ctrl+Click or Shift+Click on the row number column to select multiple keywords.

b) Press Ctrl+X.
c) Select the row above which you want to insert the keyword.
d) Press Ctrl+V.

6. To remove the keyword from the keyword-driven test, click Delete Keyword to the left of the keyword.

The keyword is still available in the Keywords window and you can re-add it to the keyword-driven test
at any time.

7. To save your changes, click File > Save.

Managing Keywords in a Test in Silk Central
The Keywords page enables you to manage the keywords of the selected keyword-driven test. The
following actions are possible:

Task Steps

Opening a test or keyword
sequence in Silk Test

Click Open with Silk Test to open the selected test or keyword sequence in Silk
Test.

Adding a keyword 1. Click New Keyword at the bottom of the keywords list, or right-click a
keyword and select Insert Keyword Above from the context menu.

Note: You can let Silk Test recommend keywords based on their
usage. Toggle the recommendations on or off with Enable
Recommendations or Disable Recommendations in the context
menu. For additional information, see Which Keywords Does Silk4J
Recommend?.

2. Select a keyword from the list of available keywords or type a new name to
create a new keyword.

3. Click Save.

Alternatively, double click an existing keyword in the All Keywords pane on the
right or drag and drop it.

Tip: You can select multiple keywords with Ctrl+Click. When dropping
them, they will be sorted in the order that you selected them in.

228 | Keyword-Driven Tests

Task Steps

Deleting a keyword
Click in the Actions column of the keyword that you want to delete. Click
Save.

Changing the order of keywords Drag and drop a keyword to the desired position. Click Save.

Creating a keyword sequence (a
keyword consisting of other
keywords)

1. Select the keywords that you want to combine in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Right-click your selection and click Combine.

3. Specify a Name and Description for the new keyword sequence.

Extracting keywords from a
keyword sequence

Right-click a keyword sequence and click Extract keywords. The original
keyword sequence is then replaced by the keywords that it contained, but it is not
removed from the library. Click Save.

Copying and pasting keywords
into tests or keyword sequences

1. Select the keywords that you want to copy in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Press Ctrl+C to copy your selection, or Ctrl+X if you want to move the
keywords.

3. Open the test or keyword sequence that you want to copy the keywords to
and select the row above which the keywords will be inserted.

4. Press Ctrl+V.

Tip: You can also paste your selected keywords into Excel, and copy and
paste them from there into your tests or keyword sequences.

Defining parameters for a
keyword sequence

1. Click Parameters above the keywords list. The Parameters dialog box
appears.

2. Click Add Parameter.

3. Specify a Name for the new parameter. If the parameter is an outgoing
parameter (delivers a value, instead of requiring an input value), check the
Output checkbox.

4. Click OK.

5. Click Save.

Note: A keyword or a keyword sequence can have a combined total of 20
input and output parameters.

Editing a draft keyword 1. Click in the Actions column of the draft keyword that you want to edit.

2. Select a Group or specify a new group for the keyword.

3. Type a Description for the keyword. This information is valuable for the
engineer who will implement the keyword.

4. Click OK.

5. Optional: Click into a parameter field to add parameters for the keyword. If the
keyword is implemented with Silk Test, these parameters will appear in the
generated code stub.

6. Click Save.

Searching for a keyword Use the search field in the Keywords view to find a specific keyword. When you
enter alphanumeric characters, the list is dynamically updated with all existing
matches. Tips for searching:

• The search is case-insensitive: doAction will find doaction and
DOAction.

Keyword-Driven Tests | 229

Task Steps

• Enter only capital letters to perform a so-called CamelCase search: ECD will
find Enter Car Details, Enter Contact Details and
EnterContactDetails.

• Keyword and group names are considered: test will find all keywords that
contain test and all keywords in groups where the group name contains
test.

• ? replaces 0-1 characters: user?test will find userTest and
usersTest.

• * replaces 0-n characters: my*keyword will find myKeyword,
myNewKeyword and my_other_keyword.

• <string>. only searches in group names: group. will find all keywords
in groups where the group name contains group.

• .<string> only searches in keyword names: .keyword will find all
keywords that contain keyword.

• <string>.<string> searches for a keyword in a specific group:
group.word will find myKeyword in the group myGroup.

• Use quotes to search for an exact match: 'Keyword' will find Keyword
and MyKeyword, but not keyword.

Which Keywords Does Silk4J Recommend?
When you add keywords to a keyword-driven test or a keyword sequence in the Keyword-Driven Test
Editor, Silk4J recommends existing keywords which you might want to use as the next keyword in your
test. The recommended keywords are listed on top of the keywords list, and are indicated by a bar graph,
with the filled-out portion of the graph corresponding to how much Silk4J recommends the keyword.

Silk4J recommends the keywords based on the following:

• When you add the first keyword to a keyword-driven test or a keyword sequence, Silk4J searches for
similar keywords that are used as the first keyword in other keyword-driven tests or keyword sequences.
The keywords that are used most frequently are recommended higher.

• When you add additional keywords to a keyword-driven test or a keyword sequence, which already
includes other keywords, Silk4J recommends keywords as follows:

• If there are keywords before the position in the keyword-driven test or the keyword sequence, to
which you add a new keyword, Silk4J compares the preceding keywords with keyword combinations
in all other keyword-driven tests and keyword sequences and recommends the keywords that most
frequently follow the preceding combination of keywords.

• If there are no keywords before the position in the keyword-driven test or the keyword sequence, but
there are keywords after the current position, then Silk4J compares the succeeding keywords with
keyword combinations in all other keyword-driven tests and keyword sequences and recommends
the keywords that most frequently precede the succeeding combination of keywords.

• Additionally, Silk4J takes into account how similar the found keywords are. For example, if both the
name and group of two keywords match, then Silk4J recommends these keywords higher in comparison
to two keywords for which only the name matches.

• If you have established a connection with Silk Central, any keywords included in keyword-driven tests,
which belong to the keyword library that corresponds to the current project, are also considered.

230 | Keyword-Driven Tests

Using Parameters with Keywords
A keyword or a keyword sequence can have a combined total of 20 input and output parameters. This topic
describes how you can handle these parameters with Silk4J.

In the Keyword-Driven Test Editor, you can view any defined parameters for a keyword or a keyword
sequence and you can edit the parameter values.

In the Keywords window, you can see which parameters are assigned to a keyword or a keyword
sequence when you hover the mouse cursor over the keyword or keyword sequence.

Input parameters for simple keywords

You can define and use input parameters for keywords in the same way as for any other test method.

The following code sample shows how you can define the keyword setUserDetails with the two input
parameters userName and password:

@Keyword
public void setUserDetails(String userName, String password) {
 ...
}

Output parameters for simple keywords

You can define a return value or one or more output parameters for a keyword. You can also use a
combination of a return value and one ore more output parameters.

The following code sample shows how you can define the keyword getText that returns a string:

@Keyword
public String getText() {
 return "text";
}

The following code sample shows how you can define the keyword getUserDetails with the two output
parameters userName and password:

@Keyword
public void getUserDetails(OutParameter userName, OutParameter password) {
 userName.setValue("name");
 password.setValue("password");
}

Parameters for keyword sequences

You can define or edit the parameters for a keyword sequence in the Parameters dialog box, which you
can open if you click Parameters in the Keyword Sequence Editor.

Example: Keywords with Parameters
This topic provides an example of how you can use keywords with parameters. A keyword or a keyword
sequence can have a combined total of 20 input and output parameters.

As a first step, create a keyword-driven test which contains the keywords that you want to use. You can do
this by recording an entire keyword-driven test, or by creating a new keyword-driven test and by adding the
keywords in the keyword-driven test editor.

In this example, the keyword-driven test includes the following keywords:

Keyword-Driven Tests | 231

Start application This is the standard keyword that starts the AUT and sets the base state.

Login This keyword logs into the AUT with a specific user, identified by a user name and a
password.

GetCurrentUser This keyword returns the name of the user that is currently logged in to the AUT.

AssertEquals This keyword compares two values.

Logout This keyword logs the user out from the AUT.

The next step is to add the parameters to the keywords. To do this, open the test scripts of the keywords
and add the parameters to the methods.

To add the input parameters UserName and Password to the keyword Login, change

@Keyword("Login")
public void login() {
 ...
}

to

@Keyword("Login")
public void login(String UserName, String Password) {
 ...
}

To add the output parameter UserName to the keyword GetCurrentUser, change

@Keyword("GetCurrentUser")
public void getCurrentUser() {
 ...
}

to

@Keyword("GetCurrentUser")
public void getCurrentUser(OutParameter CurrentUser) {
 ...
}

The keyword-driven test in the Keyword-Driven Test Editor should look similar to the following:

Now you can specify actual values for the input parameters in the Keyword-Driven Test Editor. To retrieve
the value of the output parameter UserName of the keyword GetCurrentUser, provide a variable, for
example ${current user}. You can then pass the value that is stored in the variable to subsequent keywords.

232 | Keyword-Driven Tests

Combining Keywords into Keyword Sequences
Use the Keyword-Driven Test Editor to combine keywords, which you want to execute sequentially in
multiple keyword-driven tests, into a keyword sequence.

1. Open the keyword-driven test that includes the keywords that you want to combine.

2. In the Keyword-Driven Test Editor, press and hold down the Ctrl key and then click the keywords
that you want to combine.

3. Right-click on the selection and click Combine. The Combine Keywords dialog box opens.

4. Type a name for the new keyword sequence into the Name field.

5. Optional: Type a description for the new keyword sequence into the Description field.

6. Click Combine.

The new keyword sequence opens and is also displayed in the Keywords window. You can use the
keyword sequence in keyword-driven tests.

Note: Like any other keyword, you cannot execute a keyword sequence on its own, but only as part of
a keyword-driven test.

Replaying Keyword-Driven Tests from Eclipse

1. In the Project Explorer, navigate to the keyword-driven test asset that you want to replay.

2. Richt-click the asset name.

3. Choose Run As > Keyword-Driven Test.
4. Optional: To open the Run Configurations dialog box, choose Run As > Run Configurations.

5. Optional: In the Run Configurations dialog box, you can select a different test or project.

6. Optional: In the Global variables grid of the Run Configurations dialog box, you can set the values of
any variables that are used for the execution of the keyword-driven test. These values are used
whenever you execute the keyword-driven test asset.

a) Type a Variable Name and a Value for the variable into the corresponding fields.
b) Type Enter to add a new line to the grid.
c) Repeat the previous two steps until you have set the values of all the global variables that you want

to use.

When executing keyword-driven tests that are part of an automation framework and that are managed
in a test management tool, for example Silk Central, you can also add a new .properties file to a project
to set the values of global variables for the entire project. For additional information, see Replaying a
Keyword-Driven Test with Specific Variables.

7. Optional: To close the Run Configurations dialog box and to start the execution of the keyword-driven
test asset, click Run.

Keyword-Driven Tests | 233

8. If you are testing a web application, the Select Browser dialog box opens. Select the browser and click
Run.

Note: If multiple applications are configured for the current project, the Select Browser dialog box
is not displayed.

9. Click Run.

10.Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

11.When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to review the TrueLog for the completed test.

Replaying Keyword-Driven Tests Which Are Stored in Silk
Central

Replay a keyword-driven test that is stored in Silk Central to verify that the tested functionality is behaving
as expected.

1. In the Silk4J menu, click Silk4J > Show Keywords View.

2. In the Keywords view, double-click the keyword-driven test.

To update the Keywords view with any changes from Silk Central, click Refresh.

3. In the toolbar, click Run.

4. If you are testing a web application, the Select Browser dialog box opens. Select the browser and click
Run.

Note: If multiple applications are configured for the current project, the Select Browser dialog box
is not displayed.

5. Click Run.

6. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

7. When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to review the TrueLog for the completed test.

Replaying Keyword-Driven Tests from the Command Line
You must update the PATH variable to reference your JDK location before performing this task. For
additional information, see JDK Installation for Microsoft Windows.

To replay keyword-driven tests from the command line, for example when replaying the tests from a CI
server, use the KeywordTestSuite class.

1. To execute a keyword-driven test from the command line, create a JUnit test suite with the
@KeywordTests annotation. For example, if you want to execute the keyword-driven test My Keyword-
Driven Test, create the JUnit test suite MyTestSuite as follows:

@RunWith(KeywordTestSuite.class)
@KeywordTests({ "My Keyword-Driven Test" })
public class MyTestSuite {

}

2. Include the following in the CLASSPATH:

• junit.jar.
• The org.hamcrest.core JAR file.
• silktest-jtf-nodeps.jar.
• com.borland.silk.keyworddriven.engine.jar.

234 | Keyword-Driven Tests

http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html

• The JAR of folder that contains your keyword-driven tests.

set CLASSPATH=<eclipse_install_directory>\plugins
\org.junit_4.11.0.v201303080030\junit.jar;<eclipse_install_directory>
\plugins\org.hamcrest.core_1.3.0.v201303031735.jar;%OPEN_AGENT_HOME%\JTF
\silktest-jtf-nodeps.jar;%OPEN_AGENT_HOME%\KeywordDrivenTesting
\com.borland.silk.keyworddriven.engine.jar;C:\myTests.jar

3. Optional: Add a new .properties file to the project to set the values of any variables that are used for the
execution of the keyword-driven test.

For additional information, see Replaying a Keyword-Driven Test with Specific Variables.

4. Run the JUnit test method by typing java org.junit.runner.JUnitCore <Name>, where the
Name is the name of the JUnit test suite that you have created in the first step.

Note: For troubleshooting information, reference the JUnit documentation at: http://
junit.sourceforge.net/doc/faq/faq.htm#running_1.

Example

For example, to run the two keyword driven tests My Keyword Driven Test 1 and My
Keyword Driven Test 2, create the following class:

package demo;

import org.junit.runner.RunWith;

import com.borland.silktest.jtf.keyworddriven.KeywordTestSuite;
import com.borland.silktest.jtf.keyworddriven.KeywordTests;

@RunWith(KeywordTestSuite.class)
@KeywordTests({ "My Keyword Driven Test 1", "My Keyword Driven
Test 2" })
public class MyTestSuite {

}

To run the class from the command line, type the following:

java org.junit.runner.JUnitCore demo.KeywordTestSuite

To run the class from the command line, using global variables stored in the file c:\temp
\globalvariables.properties, type the following:

java -Dsilk.keyworddriven.engine.globalVariablesFile=c:\temp
\globalvariables.properties org.junit.runner.JUnitCore
demo.KeywordTestSuite

For additional information, see Replaying a Keyword-Driven Test with Specific Variables.

Replaying Keyword-Driven Tests with Apache Ant
To perform the actions described in this topic, ensure that Apache Ant is installed on your machine.

To replay keyword-driven tests with Apache Ant, for example to generate HTML reports of the test runs,
use the KeywordTestSuite class.

1. To execute a keyword-driven test with Apache Ant, create a JUnit test suite with the @KeywordTests
annotation. For example, if you want to execute the keyword-driven test My Keyword-Driven Test, create
the JUnit test suite MyTestSuite as follows:

@RunWith(KeywordTestSuite.class)
@KeywordTests({ "My Keyword-Driven Test" })
public class MyTestSuite {

Keyword-Driven Tests | 235

http://junit.sourceforge.net/doc/faq/faq.htm#running_1
http://junit.sourceforge.net/doc/faq/faq.htm#running_1

}

2. Open the build.xml file of the Silk4J project, which includes the keyword-driven test.
3. To execute the keyword-driven test, add the following target to the build.xml file:

<target name="runTests" depends="compile">
 <mkdir dir="./reports"/>
 <junit printsummary="true" showoutput="true" fork="true">
 <classpath>
 <fileset dir="${output}">
 <include name="**/*.jar" />
 </fileset>
 <fileset dir="${buildlib}">
 <include name="**/*.jar" />
 </fileset>
 <fileset dir="C:/Program Files (x86)/Silk/SilkTest/ng/
KeywordDrivenTesting">
 <include name="**/*.jar" />
 </fileset>
 </classpath>

 <test name="MyTestSuite" todir="./reports"/>
 </junit>
</target>

For additional information about the JUnit task, see https://ant.apache.org/manual/Tasks/junit.html.
4. Optional: To create XML reports for all tests, add the following code to the target:

<formatter type="xml" />

5. Optional: To create HTML reports out of the XML reports, add the following code to the target:

<junitreport todir="./reports">
 <fileset dir="./reports">
 <include name="TEST-*.xml" />
 </fileset>
 <report format="noframes" todir="./report/html" />
</junitreport>

For additional information about the JUnitReport task, see https://ant.apache.org/manual/Tasks/
junitreport.html.
The complete target should now look like the following:

<target name="runTests" depends="compile">
 <mkdir dir="./reports"/>
 <junit printsummary="true" showoutput="true" fork="true">
 <classpath>
 <fileset dir="${output}">
 <include name="**/*.jar" />
 </fileset>
 <fileset dir="${buildlib}">
 <include name="**/*.jar" />
 </fileset>
 <fileset dir="C:/Program Files (x86)/Silk/SilkTest/ng/
KeywordDrivenTesting">
 <include name="**/*.jar" />
 </fileset>
 </classpath>

 <formatter type="xml" />

 <test name="MyTestSuite" todir="./reports"/>
 </junit>
 <junitreport todir="./reports">
 <fileset dir="./reports">
 <include name="TEST-*.xml" />

236 | Keyword-Driven Tests

https://ant.apache.org/manual/Tasks/junit.html
https://ant.apache.org/manual/Tasks/junitreport.html
https://ant.apache.org/manual/Tasks/junitreport.html

 </fileset>
 <report format="noframes" todir="./report/html" />
 </junitreport>
</target>

6. To run the tests from Eclipse, perform the following actions:

a) In the Package Explorer, right-click the build.xml file.
b) Select Run As > Ant Build
c) In the Targets tab of the Edit Configuration dialog box, check runTests.
d) Click Run.

You can also execute the tests from the command line or from a CI server. For additional information, see
https://ant.apache.org/manual/running.html and Replaying Tests from a Continuous Integration Server in
the Silk4J Help.

Replaying a Keyword-Driven Test with Specific Variables
Before you can set the values of variables for the execution of a keyword-driven test, you have to create the
project.

To set the values of global variables for all executions of a keyword-driven test asset, where these
executions are triggered by you, use the Global variables grid of the Run Configurations dialog box. For
additional information, see Replaying Keyword-Driven Tests from Eclipse.

When executing keyword-driven tests that are part of an automation framework and that are managed in a
test management tool, for example Silk Central, you can set the values of any variables that are used for
the execution of the keyword-driven test in Silk4J. To set the values of global variables for the entire project,
which means that these values are used whenever a Silk4J user executes the keyword-driven test assets
in this project, perform the following actions:

1. In the Package Explorer, expand the project which includes the keyword-driven tests that you want to
execute based on the variables.

2. Right-click the folder src of the project and select New > File. The New File dialog box opens.

3. Type globalvariables.properties into the File name field.

4. Click Finish. The new properties file opens.

5. Add new lines to the file to specify the variables.

The format for a new variable is:

name=value

For example, to specify the two variables user and password, type the following:

user=John
password=john5673

For information about the format of a properties file and how you can enter UNICODE characters, for
example a space, see Properties File Format.

6. Save the globalvariables.properties file.

7. Open the keyword-driven test that you want to execute.

8. In theKeyword-Driven Test Editor, edit the parameters to use the new variables.

Use the following annotation:

${variable name}

For example, in the following keyword-driven test, the ${current user} parameter uses a global
variable:

Keyword-Driven Tests | 237

https://ant.apache.org/manual/running.html
http://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html

Whenever a keyword-driven test in the project is executed from Silk4J, the variables are used.

Integrating Silk4J with Silk Central
Integrate Silk4J and Silk Central to enable collaboration between technical and less-technical users.

When Silk4J and Silk Central are integrated and a library with the same name as the active Silk4J project
exists in Silk Central, the Keywords view under Silk4J > Show Keywords View displays all keywords from
the Silk Central library in addition to any keywords defined in the active Silk4J project.

Note: The Silk Central connection information is separately stored for every Silk4J user, which means
every Silk4J user that wants to work with keywords and keyword sequences from Silk Central must
integrate Silk4J with Silk Central.

Integrating Silk4J with Silk Central provides you with the following advantages:

• Test management and execution is handled by Silk Central.
• Keywords are stored in the Silk Central database (upload library) and are available to all projects in Silk

Central.
• Manual tests can be directly automated in Silk Central and the created keyword-driven tests can be

executed in Silk4J from Silk Central.

Note: In Silk4J, you can edit and execute keyword-driven tests that are located in Silk4J, and you can
execute keyword-driven tests that are stored in Silk Central. To edit a keyword-driven test, which is
stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test Editor and click
Edit.

1. From the Eclipse menu, select Silk4J > Silk Central Configuration. The Preferences dialog box
opens.

2. Type the URL of your Silk Central server into the URL field.

For example, if the Silk Central server name is sctm-server, and the port for Silk Central is 13450, type
http://sctm-server:13450.

3. Specify the web-service token for authentication.

You can generate a web-service token in the User Settings page of Silk Central, which you can access
by clicking on the user name in the Silk Central menu.

Note: To authenticate with your Silk Central user name and password, you could select User
name and password from the Authentication list. However, for security reasons, Micro Focus
recommends using a web-service token for authentication instead of sending your user name and
password over the network.

4. Type a valid user name and password into the corresponding fields.

5. Click Verify to verify if Silk4J can access the Silk Central server with the specified user.

6. Click OK.

238 | Keyword-Driven Tests

Implementing Silk Central Keywords in Silk4J
Before implementing Silk Central keywords, define the keywords as part of a keyword-driven test in Silk
Central.

To implement a Silk Central keyword in Silk4J:

1. Create a project in Silk4J with the same name as the keyword library in Silk Central, which includes the
keyword-driven test.

2. If the keyword library in Silk Central has no type assigned, click Silk4J > Upload Keyword Library to
set the library type.

3. Optional: To implement a specific keyword in Silk4J from Silk Central, open the Keywords tab of the
library in Silk Central and click Implement with Silk Test in the Actions column of the keyword.

4. In the Silk4J menu, click Silk4J > Show Keywords View.

5. In the Keywords view, double-click the keyword-driven test.

To update the Keywords view with any changes from Silk Central, click Refresh.

6. In the toolbar, click Record Actions.

7. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,

select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes

should be shown in the Browser size list.

8. Click Record.

For additional information on recording, see Recording a Keyword.

9. Record the actions for the first unimplemented keyword.

10.When you have recorded all the actions for the current keyword, click Next Keyword.

11.To switch between keywords in the Recording window, click Previous Keyword and Next Keyword.

12.Click Stop. The Record Complete dialog box opens.

Note: You cannot delete keywords or change the sequence of the keywords in a keyword-driven test
from Silk Central, as these tests are read only in Silk4J.

If an implemented keyword is displayed as not implemented in the Keywords window, check Project >
Build Automatically in the Eclipse menu.

Uploading a Keyword Library to Silk Central
To work with Silk Central, ensure that you have configured a valid Silk Central location. For additional
information, see Integrating Silk4J with Silk Central.

To automate manual tests in Silk Central, upload keywords that you have implemented in a Silk4J project
as a keyword library to Silk Central, where you can then use the keywords to automate manual tests.

1. In Silk4J, select the project in which the keyword-driven tests reside.

2. Ensure that a library with the same name exists in Silk Central (Tests > Libraries).

Keyword-Driven Tests | 239

3. In the toolbar, click Upload Keyword Library.

4. Optional: Provide a description of the changes to the keyword library.

5. Optional: Click Configure to configure the connection to Silk Central.

6. Optional: To see which libraries are available in the connected Silk Central instance, click on the link.

7. Click Upload.

Caution: If the keyword library in Silk Central is already assigned to a different automation tool or
another Silk Test client, you are asked if you really want to change the type of the keyword library.
Upload the library only if you are sure that you want to change the type.

Silk4J creates a keyword library out of all the keywords that are implemented in the project. Then Silk4J
saves the keyword library with the name library.zip into the output folder of the project. The library is
validated for consistency, and any changes which might break existing tests in Silk Central are listed in the
Upload Keyword Library to Silk Central dialog box. Finally, Silk4J uploads the library to Silk Central. You
can now use the keywords in Silk Central. Any keyword-driven tests in Silk Central, which use the
keywords that are included in the keyword library, automatically use the current implementation of the
keywords.

Uploading a keyword library from a project that was created in Silk Test 15.5

To upload keyword libraries from Silk4J projects that were created with Silk Test 15.5,
you need to edit the build.xml file of the project.

1. In the Package Explorer, expand the folder of the project from which you want to
upload the keyword library.

2. Open the build.xml file.
3. Add the keyword assets directory of the project to the JAR build step of the compile

target:

<fileset dir="Keyword Assets" includes="**/*.kwd"
erroronmissingdir="false" />

4. Add the following target for the keyword library:

<target name="build.keyword.library" depends="compile">
 <java
classname="com.borland.silk.kwd.library.docbuilder.DocBuilder"
 fork="true">
 <classpath refid="project.classpath" />

 <arg value="AutoQuote Silk4J Library" />
 <arg value="${output}" />
 <arg value="${output}/library.zip" />
 </java>
</target>

The new build.xml file should look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<project name="AutoQuote" default="compile">

 <property name="src" value="src" />
 <property name="bin" value="build" />
 <property name="output" value="output" />
 <property name="lib" value="lib" />
 <property name="buildlib" value="buildlib" />

 <path id="project.classpath">
 <fileset dir="${lib}" includes="*.jar"
excludes="*source*" />
 <fileset dir="${buildlib}" includes="*.jar"
excludes="*source*" />
 </path>

240 | Keyword-Driven Tests

 <target name="clean">
 <delete dir="${output}" />
 </target>

 <target name="compile" depends="clean">
 <mkdir dir="${output}" />

 <delete dir="${bin}" />
 <mkdir dir="${bin}" />

 <componentdef name="ecj"
classname="org.eclipse.jdt.core.JDTCompilerAdapter"
classpathref="project.classpath" />
 <javac srcdir="${src}" destdir="${bin}" debug="true"
source="1.7" target="1.7" encoding="utf-8"
includeantruntime="false">
 <classpath refid="project.classpath" />
 <ecj />
 </javac>

 <jar destfile="${output}/tests.jar" >
 <fileset dir="${bin}" includes="**/*.class" />
 <fileset dir="${src}" includes="**/*" excludes="**/
*.java" />
 <fileset dir="Object Maps" includes="**/*.objectmap"
erroronmissingdir="false" />
 <fileset dir="Image Assets" includes="**/*.imageasset"
erroronmissingdir="false" />
 <fileset dir="Verifications" includes="**/*.verification"
erroronmissingdir="false" />
 <fileset dir="Keyword Assets" includes="**/*.kwd"
erroronmissingdir="false" />
 </jar>

 <copy todir="${output}" overwrite="true">
 <fileset dir="${lib}" includes="*.jar"
excludes="*source*" />
 </copy>
 <delete dir="${bin}" />
 </target>

 <target name="build.keyword.library" depends="compile">
 <java
classname="com.borland.silk.kwd.library.docbuilder.DocBuilder"
fork="true">
 <classpath refid="project.classpath" />

 <arg value="AutoQuote Silk4J Library" />
 <arg value="${output}" />
 <arg value="${output}/library.zip" />
 </java>
 </target>
</project>

Uploading a Keyword Library to Silk Central from the
Command Line

Upload an external keyword library to Silk Central from a Java-based command line to integrate Silk
Central and your keyword-driven tests into your continuous integration build system, for example Jenkins.

Keyword-Driven Tests | 241

To upload your keyword library to Silk Central from a Java-based command line:

1. Select Help > Tools in Silk Central and download the Java Keyword Library Tool.
2. Call the command line tool that is contained in the downloaded jar file with the following arguments:

• java

• -jar com.borland.silk.keyworddriven.jar

• -upload

• Library name of the library in Silk Central to be updated, or created if it does not yet exist.
• Package name of the library package (zip archive) to be uploaded.
• Hostname:port of the Silk Central front-end server.
• Web-service token of the Silk Central user. Required for authentication. You can generate a

web-service token in the User Settings page of Silk Central, which you can access by clicking on
the user name in the Silk Central menu.

Note: For security reasons, Micro Focus recommends using a web-service token for
authentication instead of sending your user name and password over the network.

• Username of the Silk Central user. Not required when using a web-service token for authentication.
• Password of the Silk Central user. Not required when using a web-service token for authentication.
• Update information, describing the changes that were applied to the library, in quotes.
• [-allowUsedKeywordDeletion], an optional flag to allow the deletion of keywords that are used

in a test or keyword sequence. By default, an error is raised if used keywords are attempted to be
deleted.

The following example outlines the command line to upload a library to Silk Central with Java 9 or later:

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

Examples

The following example outlines the command line to upload a library to Silk Central with
Java 8 or prior by using a web-service token for authentication:

java -jar com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

To upload the same library with Java 8 or prior by using user name and password for
authentication, use a command like the following:

java -jar com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

The corresponding commands with Java 9 or later are:

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

java --add-modules=java.activation,java.xml.ws -jar
com.borland.silk.keyworddriven.jar -upload
"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

Note: When uploading a keyword-driven library with Java 9 or
later, ensure JAVA_HOME is defined on the execution servers
and points to a JDK with the corresponding Java version.

242 | Keyword-Driven Tests

Searching for a Keyword
Use the search field in the Keywords view to find a specific keyword. When you enter alphanumeric
characters, the list is dynamically updated with all existing matches. Tips for searching:

• The search is case-insensitive: doAction will find doaction and DOAction.
• Enter only capital letters to perform a so-called CamelCase search: ECD will find Enter Car

Details, Enter Contact Details and EnterContactDetails.
• Keyword and group names are considered: test will find all keywords that contain test and all

keywords in groups where the group name contains test.
• ? replaces 0-1 characters: user?test will find userTest and usersTest.
• * replaces 0-n characters: my*keyword will find myKeyword, myNewKeyword and

my_other_keyword.
• <string>. only searches in group names: group. will find all keywords in groups where the group

name contains group.
• .<string> only searches in keyword names: .keyword will find all keywords that contain keyword.
• <string>.<string> searches for a keyword in a specific group: group.word will find myKeyword in

the group myGroup.
• Use quotes to search for an exact match: 'Keyword' will find Keyword and MyKeyword, but not

keyword.

Filtering Keywords
To find a specific keyword in the current project, you can filter the keywords that are displayed in the
Keywords window. If an integration with Silk Central is configured, the result includes the relevant
keywords from Silk Central.

1. In the menu, click Silk4J > Show Keywords View to open the Keywords window.

2. In the Keywords window, type the name of the keyword that you are searching for into the search field.
The Keywords window lists all keywords in the current project with the given name.

3. Optional: To see in which keyword-driven tests and keyword sequences a keyword is used, hover the
mouse cursor over the keyword in the Keywords window and click Find Keyword Usages.

If an integration with Silk Central is configured, the result includes the relevant keywords from Silk
Central.

4. Optional: To edit a keyword, hover the mouse cursor over the keyword in the Keywords window and
click Go to implementation.

Finding All References of a Keyword
To find all keyword-driven tests and Java files in which a keyword is referenced:

1. In the Keyword-Driven Test Editor, click Open Keyword. The Java file, in which the keyword is
implemented, opens.

2. Right-click on the name of the method that implements the keyword.

3. Click References.

4. To find all references of the keyword in the workspace, click Workspace.

All keyword-driven tests and Java files in which the keyword is referenced are listed in the Search window.

Keyword-Driven Tests | 243

Grouping Keywords
To better structure the keywords in a library, you can group them.

This topic shows how you can add a keyword to a specific group These group names are also used by Silk
Central and your keywords are grouped accordingly.

To add a keyword to a specific group:

1. Open the implementation of the keyword.

a) Open the project in which the keyword is implemented.
b) Open the Keywords window.
c) In the Keywords window, select the keyword.
d) Click Go to implementation.

2. To add all methods in a class to the keyword group, add the keyword group before the start of the class.

For example, to add the group calculator to the keywords, type:

@KeywordGroup("Calculator")

In the Keywords window, the displayed keyword name now includes the group. For example, the keyword
Addition in the group Calculator is displayed as Calculator.Addition.

Troubleshooting for Keyword-Driven Testing

Why does the Keywords window falsely show a keyword as not implemented?

If an implemented keyword is displayed as not implemented in the Keywords window, check Project >
Build Automatically in the Eclipse menu.

Why do I get the error "No application configuration present" when trying to replay a keyword-
driven test?

If you get this error, your keyword-driven test does not include a Start application keyword as the first
keyword. Silk4J requires the Start application keyword to apply the application configuration of your project
to the keyword-driven test. When you record a new keyword-driven test, Silk4J automatically adds the Start
application keyword as the first keyword to the keyword-driven test. To workaround this issue, record a new
keyword-driven test against your application under test. Then open the keyword-driven test that throws the
error during execution and add the recorded Start application keyword as the first keyword to the test.

244 | Keyword-Driven Tests

Object Recognition
Silk4J identifies any control in the application under test (AUT) by combining the name of the control class
and a collection of prioritized attributes into a unique XPath locator. If the combined XPath locator does not
uniquely identify the control, Silk4J additionally adds an index to the locator. During recording, Silk4J allows
you to select an alternative locator for a control from the list in the Locator field of the Choose Action
dialog.

If you are recording WebDriver locators instead of Silk Test locators, Silk4J provides the following
alternatives to the XPath locator when identifying a control:

• Locate by id. Identifies the control by the id attribute.
• Locate by name. Identifies the control by the name attribute.
• Locate by link text. Only for hyperlinks.

Within Silk4J, literal references to identified objects are referred to as locators. Silk4J uses locators to find
and identify objects in the application under test (AUT). Locators are a subset of the XPath query language,
which is a common XML-based language defined by the World Wide Web Consortium, W3C.

Locator Basic Concepts
Silk4J supports a subset of the XPath query language. For additional information about XPath, see http://
www.w3.org/TR/xpath20/.

XPath expressions rely on the current context, the position of the object in the hierarchy on which the Find
method was invoked. All XPath expressions depend on this position, much like a file system. For example:

• "//Shell" finds all shells in any hierarchy starting from the current context.
• "Shell" finds all shells that are direct children of the current context.

Additionally, some XPath expressions are context sensitive. For example, myWindow.find(xPath) makes
myWindow the current context.

Dynamic object recognition uses a Find or FindAll functions to identify an object in a test case.

Object Type and Search Scope
A locator typically contains the type of object to identify and a search scope. The search scope is one of
the following:

• //
• /

Locators rely on the current object, which is the object for which the locator is specified. The current object
is located in the object hierarchy of the application's UI. All locators depend on the position of the current
object in this hierarchy, much like a file system.

XPath expressions rely on the current context, which is the position of the object in the hierarchy on which
the Find method was invoked. All XPath expressions depend on this position, much like a file system.

Note:

The object type in a locator for an HTML element is either the HTML tag name or the class name that
Silk4J uses for this object. For example, the locators //a and //DomLink, where DomLink is the

Object Recognition | 245

http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

name for hyperlinks in Silk4J, are equivalent. For all non-HTML based technologies only the Silk4J
class name can be used.

Example

• //a identifies hyperlink objects in any hierarchy relative to the current object.
• /a identifies hyperlink objects that are direct children of the current object.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Example

The following code sample identifies the first hyperlink in a browser. This example
assumes that a variable with the name browserWindow exists in the script that refers to
a running browser instance. Here the type is "a" and the current object is
browserWindow.

DomLink link = browserWindow.<DomLink>find("//a");

Using Attributes to Identify an Object
To identify an object based on its properties, you can use locator attributes. The locator attributes are
specified in square brackets after the type of the object.

Example

The following sample uses the textContents attribute to identify a hyperlink with the
text Home. If there are multiple hyperlinks with the same text, the locator identifies the
first one.

DomLink link = browserWindow.<DomLink>find(//
a[@textContents='Home']");

Locator Syntax
Silk4J supports a subset of the XPath query language to locate UI controls.

The following table lists the constructs that Silk4J supports.

Note: <a> is the HTML tag for hyperlinks on a Web page.

Supported Locator Construct Sample Description

// //a Identifies objects that are
descendants of the current object.

The example identifies hyperlinks on
a web page.

/ /a Identifies objects that are direct
children of the current object. Objects
located on lower hierarchy levels are
not recognized.

246 | Object Recognition

Supported Locator Construct Sample Description

The example identifies hyperlinks on
a web page that are direct children of
the current object.

Attribute Example 1: //
a[@textContents='Home']

Example 2: //
div[@textContents='Price:
* USD']

Identifies objects by a specific
attribute. You can use the wildcards *
and ?in the attribute value.

Example 1 identifies hyperlinks with
the text Home, Example 2 uses a wild
card to identify a div with a price.

Index Example 1: //a[3]

Example 2: //
a[@textContents='Home']
[2]

Identifies a specific occurrence of an
object if there are multiple ones.
Indices are 1-based in locators.

Example 1 identifies the third
hyperlink and Example 2 identifies
the second hyperlink with the text
Home.

Logical Operators:

• and

• or

• not

• =

• !=

Example 1: //
a[@textContents='Remove'
or
@textContents='Delete']

Example 2: //
a[@textContents!
='Remove']

Example 3: //
a[not(@textContents='Dele
te' or @id='lnkDelete')
and @href='*/delete']

Identifies objects by using logical
operators to combine attributes.

Example 1 identifies hyperlinks that
either have the caption Remove or
Delete, Example 2 identifies
hyperlinks with a text that is not
Remove, and Example 3 shows how
to combine different logical operators.

ancestor Example 1: //
input[@id='username']/
ancestor::form

Example 2: //
input[@id='username']/
ancestor::div[@className=
'container']

Identifies ancestors, for example
parent, grandparent, and so on, of an
object.

Example 1 finds the form element
that has a child input element with the
identifier username, Example 2 finds
the div with the class name container
that has a has a child input element
with the identifier username.

.. Example 1: //
input[@id='username']/
ancestor::form

Example 2: //
input[@id='username']/
ancestor::div[@className=
'container']

Identifies the parent of an object.

Example 1 identifies the parent of the
hyperlink with the text Edit and
Example 2 identifies a hyperlink with
the text Delete that has a sibling
hyperlink with the text Edit.

Object Recognition | 247

Supported Locator Construct Sample Description

following-sibling Example: //
td[@textContents='John']/
following-sibling::td[2]

Identifies siblings after the current
object.

The example identifies the table cell
which is located two cells to the right
of the table cell with the text John.

preceding-sibling Example: //
td[@textContents='John']/
preceding-sibling::td[2]

Identifies siblings before the current
object.

The example identifies the table cell
which is located two cells to the left of
the table cell with the text John.

* Example 1: //
*[@textContents='Home']

Example 2: /*/a

Identifies objects without considering
their types, like hyperlink, text field, or
button.

Example 1 identifies objects with the
given text content, regardless of their
type, and Example 2 identifies
hyperlinks that are second-level
descendants of the current object.

The following table lists the locator constructs that Silk4J does not support.

Unsupported Locator Construct Example

Comparing two attributes with each other. //a[@textContents = @id]

An attribute name on the right side is not supported. An
attribute name must be on the left side.

//a['abc' = @id]

Combining multiple locators with and or or. //a[@id = 'abc'] or ..//Checkbox

More than one set of attribute brackets. //a[@id = 'abc'] [@textContents =
'123']

(use //a [@id = 'abc' and @textContents
= '123'] instead)

More than one set of index brackets. //a[1][2]

Any construct that does not explicitly specify a class or
the class wildcard, such as including a wildcard as part of
a class name.

//[@id = 'abc']

(use //*[@id = 'abc'] instead)

"//*//a[@id='abc']"

Using Locators
Within Silk4J, literal references to identified objects are referred to as locators. For convenience, you can
use shortened forms for the locator strings in scripts. Silk4J automatically expands the syntax to use full
locator strings when you playback a script. When you manually code a script, you can omit the following
parts in the following order:

• The search scope, //.
• The object type name. Silk4J defaults to the class name.

248 | Object Recognition

• The surrounding square brackets of the attributes, [].

When you manually code a script, we recommend that you use the shortest form available.

Note: When you identify an object, the full locator string is captured by default.

The following locators are equivalent:

• The first example uses the full locator string.

_desktop.<DomLink>find("//BrowserApplication//BrowserWindow//
a[@textContents='Home']").select();

To confirm the full locator string, use the Locator Spy dialog box.
• The second example works when the browser window already exists.

browserWindow.<DomLink>find("//a[@textContents='Home']").select();

To find an object that has no real attributes for identification, use the index. For instance, to select the
second hyperlink on a Web page, you can type:

browserWindow.<DomLink>find("//DomLink[2]").select();

Additionally, to find the first object of its kind, which might be useful if the object has no real attributes, you
can type:

browserWindow.<DomLink>find("//DomLink").select();

Using Locators to Check if an Object Exists
You can use the Exists method to determine if an object exists in the application under test.

The following code checks if a hyperlink with the text Log out exists on a Web page:

if (browserWindow.exists("//a[@textContents='Log out']")) {
 // do something
}

Using the Find method

You can use the Find method and the FindOptions method to check if an object, which you want to use
later, exists.

The following code searches for a window and closes the window if the window is found:

Window mainWindow = _desktop.<Window>find("//Window[@caption='My Window']",
New FindOptions(False));
if (mainWindow){
 mainWindow.closeSynchron();
}

Identifying Multiple Objects with One Locator
You can use the FindAll method to identify all objects that match a locator rather that only identifying the
first object that matches the locator.

Example

The following code example uses the FindAll method to retrieve all hyperlinks of a
Web page:

List<DomLink> links = browserWindow.<DomLink>findAll("//a");

Object Recognition | 249

Locator Customization
This section describes how you can create stable locators that enable Silk4J to reliably recognize the
controls in your application under test (AUT).

Silk4J relies on the identifiers that the AUT exposes for its UI controls and is very flexible and powerful in
regards to identifying UI controls. Silk4J can use any declared properties for any UI control class and can
also create locators by using the hierarchy of UI controls. From the hierarchy, Silk4J chooses the most
appropriate items and properties to identify each UI control.

Silk4J can exclude dynamic numbers of controls along the UI control hierarchy, which makes the object
recognition in Silk4J very robust against changes in the AUT. Intermediate grouping controls that change
the hierarchy of the UI control tree, like formatting elements in Web pages, can be excluded from the object
recognition.

Some UI controls do not expose meaningful properties, based on which they can be identified uniquely.
Applications which include such controls are described as applications with bad testability. Hierarchies, and
especially dynamic hierarchies, provide a good means to create unique locators for such applications.
Applications with good testability should always provide a simple mechanism to identify UI controls
uniquely.

One of the simplest and most effective practices to make your AUT easier to test is to introduce stable
identifiers for controls and to expose these stable identifiers through the existing interfaces of the
application.

Stable Identifiers
A stable identifier for a UI control is an identifier that does not change between invocations of the control
and between different versions of the application, in which the UI control exists. A stable identifier needs to
be unique in the context of its usage, meaning that no other control with the same identifier is accessible at
the same time. This does not necessarily mean that you need to use GUID-style identifiers that are unique
in a global context. Identifiers for controls should be readable and provide meaningful names. Naming
conventions for these identifiers will make it much easier to associate the identifier to the actual control.

Example: Is the caption a good identifier for a control?

Very often test tools are using the caption as the default identifier for UI controls. The
caption is the text in the UI that is associated with the control. However, using the
caption to identify a UI control has the following drawbacks:
• The caption is not stable. Captions can change frequently during the development

process. For example, the UI of the AUT might be reviewed at the end of the
development process. This prevents introducing UI testing early in the development
process because the UI is not stable.

• The caption is not unique. For example, an application might include multiple buttons
with the caption OK.

• Many controls are not exposing a caption, so you need to use another property for
identification.

• Using captions for testing localized applications is cumbersome, as you need to
maintain a caption for a control in each language and you also have to maintain a
complex script logic where you dynamically can assign the appropriate caption for
each language.

Creating Stable Locators
One of the main advantages of Silk4J is the flexible and powerful object-recognition mechanism. By using
XPath notation to locate UI controls, Silk4J can reliably identify UI controls that do not have any suitable

250 | Object Recognition

attributes, as long as there are UI elements near the element of interest that have suitable attributes. The
XPath locators in Silk4J can use the entire UI control hierarchy or parts of it for identifying UI controls.
Especially modern AJAX toolkits, which dynamically generate very complex Document Object Models
(DOMs), do not provide suitable control attributes that can be used for locating UI controls.

In such a case, test tools that do not provide intelligent object-recognition mechanisms often need to use
index-based recognition techniques to identity UI controls. For example, identify the n-th control with icon
Expand. This often results in test scripts that are hard to maintain, as even minor changes in the
application can break the test script.

A good strategy to create stable locators for UI controls that do not provide useful attributes is to look for an
anchor element with a stable locator somewhere in the hierarchy. From that anchor element you can then
work your way to the element for which you want to create the locator.

Silk4J uses this strategy when creating locators, however there might be situations in which you have to
manually create a stable locator for a control.

Example: Locating Siblings of a Control
This topic describes how you can locate a control, which does not provide any meaningful attributes that
can be used in locators, when a stable locator for a sibling of the control is available.

Assume that you have already identified the control Item 0.0, which has the following stable locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

If you know that Item 0.0 has a following-sibling of the type a, you can use the following code to build a
stable locator for the sibling:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/following-
sibling::a

You can also use the sibling approach to identify text fields. Text fields often do not provide any meaningful
attributes that can be used in locators. By using the label of a text field, you could create a meaningful
locator for the text field, because the label is the best identifier for the text field from the perspective of a
tester. You can easily use the label as a part of the locator for a test field by using the sibling approach. For
example, if the text field is a preceding-sibling of a label with the text User Name, you can use the following
locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='User Name']/preceding-
sibling::input[@type='text']

Example: Locating the Expand Icon in a Dynamic GWT Tree
The Google Widget Toolkit (GWT) is a very popular and powerful toolkit, which is hard to test. The dynamic
tree control is a very commonly used UI control in GWT. To expand the tree, we need to identify the
Expand icon element.

You can find a sample dynamic GWT tree at http://samples.gwtproject.org/samples/Showcase/
Showcase.html#!CwTree.

The default locator generated by Silk4J is the following:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-debug-cwTree-dynamicTree-
root-child0']/DIV/DIV[1]//IMG[@border='0']

For the following reasons, this default locator is no reliable locator for identifying the Expand icon for the
control Item 0.0:

• The locator is complex and built on multiple hierarchies. A small change in the DOM structure, which is
dynamic with AJAX, can break the locator.

• The locator contains an index for some of the controls along the hierarchy. Index based locators are
generally weak as they find controls by their occurrence, for example finding the sixth expand icon in a
tree does not define the control well. An exception to that rule would be if the index is used to express
different data sets that you want to identify, for example the sixth data row in a grid.

Object Recognition | 251

http://samples.gwtproject.org/samples/Showcase/Showcase.html#!CwTree
http://samples.gwtproject.org/samples/Showcase/Showcase.html#!CwTree

Often a good strategy for finding better locators is to search for siblings of elements that you need to locate.
If you find siblings with better locators, XPath allows you to construct the locator by identifying those
siblings. In this case, the tree item Item 0.0 provides a better locator than the Expand icon. The locator of
the tree item Item 0.0 is a stable and simple locator as it uses the @textContents property of the control.

By default, Silk4J uses the property @id, but in GWT the @id is often not a stable property, because it
contains a value like ='gwt-uid-<nnn>', where <nnn> changes frequently, even for the same element
between different calls.

You can manually change the locator to use the @textContents property instead of the @id.

Original Locator:

/BrowserApplication//BrowserWindow//DIV[@id='gwt-uid-109']

Alternate Locator:

/BrowserApplication//BrowserWindow//DIV[@textContents='Item 0.0']

Or you can instruct Silk4J to avoid using @id='gwt-uid-<nnn>'. In this case Silk4J will automatically
record the stable locator. You can do this by adding the text pattern that is used in @id properties to the
locator attribute value blacklist. In this case, add gwt-uid* to the blacklist.

When inspecting the hierarchy of elements, you can see that the control Item 0.0 and the Expand icon
control have a joint root node, which is a DomTableRow control.

To build a stable locator for the Expand icon, you first need to locate Item 0.0 with the following locator:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']

Then you need to go up two levels in the element hierarchy to the DomTableRow element. You express this
with XPath by adding /../.. to the locator. Finally you need to search from DomTableRow for the
Expand icon. This is easy as the Expand icon is the only IMG control in the sub-tree. You express this with
XPath by adding //IMG to the locator. The final stable locator for the Expand icon looks like the following:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/../..//IMG

Or even better, use the XPath ancestor axis to locate the Expand icon:

/BrowserApplication//BrowserWindow//DIV[@textContent='Item 0.0']/
ancestor::tr//IMG

Custom Attributes
Many UI technologies provide a mechanism that allows them to extend the set of predefined attributes of
UI controls with custom attributes. These custom attributes can be used by the application developer to
introduce stable identifiers that uniquely identify the control. Silk4J can access custom attributes of UI
controls and can also use these custom attributes to identify UI controls.

Using special automation for the identification of UI controls has several advantages compared to using the
defined attributes like caption. Being able to establish stable identifiers in the application code and to
expose these identifiers through either custom attributes or defined automation properties leads to
understandable and maintainable test-automation scripts, allowing you to start with your test automation
early in the development process.

You can configure the attributes used for identification by using the flexible locator strategy of Silk4J.

Custom Attributes for Apache Flex Applications
Apache Flex applications use the predefined property automationName to specify a stable identifier for
the Apache Flex control as follows:

<?xml version="1.0" encoding="utf-8"?>
 <s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"

252 | Object Recognition

 xmlns:mx="library://ns.adobe.com/flex/mx" width="400" height="300">
 <fx:Script>
 …
 </fx:Script>
 <s:Button x="247" y="81" label="Button" id="button1" enabled="true"
click="button1_clickHandler(event)"
 automationName="AID_buttonRepeat"/>
 <s:Label x="128" y="123" width="315" height="18" id="label1"
verticalAlign="middle"
 text="awaiting your click" textAlign="center"/>
 </s:Group>

Apache Flex application locators look like the following:

…//SparkApplication//SparkButton[@caption='AID_buttonRepeat'

Attention: For Apache Flex applications, the automationName is always mapped to the locator
attribute caption in Silk4J. If the automationName attribute is not specified, Silk4J maps the
property ID to the locator attribute caption.

Java SWT Custom Attributes
You can add custom attributes to a test application to make a test more stable. For example, in Java SWT,
the developer implementing the GUI can define an attribute (for example, 'silkTestAutomationId')
for a widget that uniquely identifies the widget in the application. A tester using Silk4J can then add that
attribute to the list of custom attributes (in this case, 'silkTestAutomationId'), and can identify
controls by that unique ID. Using a custom attribute is more reliable than other attributes like caption or
index, since a caption will change when you translate the application into another language, and the index
will change whenever another widget is added before the one you have defined already.

If more than one object is assigned the same custom attribute value, all the objects with that value will
return when you call the custom attribute. For example, if you assign the unique ID, 'loginName' to two
different text fields, both fields will return when you call the 'loginName' attribute.

Java SWT Example

If you create a button in the application that you want to test using the following code:

Button myButton = Button(parent, SWT.NONE);

myButton.setData("SilkTestAutomationId", "myButtonId");

To add the attribute to your XPath query string in your test, you can use the following query:

Dim button =
desktop.PushButton("@SilkTestAutomationId='myButton'")

To enable a Java SWT application for testing custom attributes, the developers must include custom
attributes in the application. Include the attributes using the
org.swt.widgets.Widget.setData(String key, Object value) method.

Custom Attributes for Web Applications
HTML defines a common attribute ID that can represent a stable identifier. By definition, the ID uniquely
identifies an element within a document. Only one element with a specific ID can exist in a document.

However, in many cases, and especially with AJAX applications, the ID is used to dynamically identify the
associated server handler for the HTML element, meaning that the ID changes with each creation of the
Web document. In such a case the ID is not a stable identifier and is not suitable to identify UI controls in a
Web application.

A better alternative for Web applications is to introduce a new custom HTML attribute that is exclusively
used to expose UI control information to Silk4J.

Object Recognition | 253

Custom HTML attributes are ignored by browsers and by that do not change the behavior of the AUT. They
are accessible through the DOM of the browser. Silk4J allows you to configure the attribute that you want
to use as the default attribute for identification, even if the attribute is a custom attribute of the control class.
To set the custom attribute as the default identification attribute for a specific technology domain, click
Silk4J > Edit Options > Custom Attributes and select the technology domain.

The application developer just needs to add the additional HTML attribute to the Web
element.

Original HTML code:

<A HREF="http://abc.com/control=4543772788784322..."

HTML code with the new custom HTML attribute AUTOMATION_ID:

<A HREF="http://abc.com/control=4543772788784322..."
AUTOMATION_ID = "AID_Login" <IMG src="http://abc.com/xxx.gif"
width=16 height=16>

When configuring the custom attributes, Silk4J uses the custom attribute to construct a
unique locator whenever possible. Web locators look like the following:

…//DomLink[@AUTOMATION_ID='AID_Login'

Example: Changing ID

One example of a changing ID is the Google Widget Toolkit (GWT), where the ID often
holds a dynamic value which changes with every creation of the Web document:

ID = 'gwt-uid-<nnn>'

In this case <nnn> changes frequently.

Custom Attributes for Windows Forms Applications
Windows Forms applications use the predefined automation property automationId to specify a stable
identifier for the Windows forms control.

Silk4J automatically will use this property for identification in the locator. Windows Forms application
locators look like the following:

/FormsWindow//PushButton[@automationId='btnBasicControls']

Custom Attributes for WPF Applications
WPF applications use the predefined automation property AutomationProperties.AutomationId to
specify a stable identifier for the WPF control as follows:

<Window x:Class="Test.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Button AutomationProperties.AutomationId="AID_buttonA">The
Button</Button>
 </Grid>
</Window>

Silk4J automatically uses this property for identification in the locator. WPF application locators look like the
following:

/WPFWindow[@caption='MainWindow']//WPFButton[@automationId='AID_buttonA']

254 | Object Recognition

Troubleshooting Performance Issues for XPath
When testing applications with a complex object structure, for example complex web applications, you may
encounter performance issues, or issues related to the reliability of your scripts. This topic describes how
you can improve the performance of your scripts by using different locators than the ones that Silk4J has
automatically generated during recording.

Note: In general, we do not recommend using complex locators. Using complex locators might lead to
a loss of reliability for your tests. Small changes in the structure of the tested application can break
such a complex locator. Nevertheless, when the performance of your scripts is not satisfying, using
more specific locators might result in tests with better performance.

The following is a sample element tree for the application MyApplication:

Root
 Node id=1
 Leaf id=2
 Leaf id=3
 Leaf id=4
 Leaf id=5
 Node id=6
 Node id=7
 Leaf id=8
 Leaf id=9
 Node id=9
 Leaf id=10

You can use one or more of the following optimizations to improve the performance of your scripts:

• If you want to locate an element in a complex object structure , search for the element in a specific part
of the object structure, not in the entire object structure. For example, to find the element with the
identifier 4 in the sample tree, if you have a query like Root.Find("//Leaf[@id='4']"), replace it
with a query like Root.Find("/Node[@id='1']/Leaf[@id='4']"). The first query searches the
entire element tree of the application for leafs with the identifier 4. The first leaf found is then returned.
The second query searches only the first level nodes, which are the node with the identifier 1 and the
node with the identifier 6, for the node with the identifier 1, and then searches in the subtree of the node
with the identifier 1 for all leafs with the identifier 4.

• When you want to locate multiple items in the same hierarchy, first locate the hierarchy, and then locate
the items in a loop. If you have a query like Root.FindAll("/Node[@id='1']/Leaf"), replace it
with a loop like the following:

public void test() {
 TestObject node;
 int i;

 node = desktop.find("//Node[@id='1']");
 for (i=1; i<=4; i++)
 node.find("/Leaf[@id='"+i+"']");
}

Locator Spy
You can use the Locator Spy to record unique Silk Test locators or WebDriver locators for any control in
your application under test (AUT). From the Locator Spy, you can copy the locator for a control or any
attributes of the control into methods in your scripts. You can also use the Locator Spy to edit the
attributes of the locator for a control and you to validate these changes. Using the Locator Spy ensures
that the locator for a control is valid.

Object Recognition | 255

The object tree in the Locator Spy lists all the controls that are available in the AUT. You can use the
object tree to inspect the available controls and the control hierarchy of the AUT. When recording
WebDriver locators, a ">" in the object tree denotes switching from one IFrame to another.

Note: The locator attributes table of the Locator Spy displays all attributes that you can use in the
locator. For web applications, the table also includes any attributes that you have defined to be
ignored during recording.

256 | Object Recognition

Object Maps
An object map is a test asset that contains items that associate a logical name (an alias) with a control or a
window, rather than the control or window's locator. Once a control is registered in an object map asset, all
references to it in scripts are made by its alias, rather than by its actual locator name.

You can use object maps to store objects that you are using often in multiple scripts. Multiple tests can
reference a single object map item definition, which enables you to update that object map definition once
and have Silk4J update it in all tests that reference the object map definition.

In your scripts, you can mix object map identifiers and locators. This feature enables you to keep your
object maps relatively small and easier to manage. You can simply store the commonly used objects in
your object maps, and use locators to reference objects that are rarely used.

Tip: To optimally use the functionality that object maps provide, create an individual project in Silk4J
for each application that you want to test.

Example for object maps

The following construct shows a definition for a BrowserWindow where the locator is
used:

_desktop.BrowserApplication("cnn_com").BrowserWindow("//
BrowserWindow[1]")

The name of the object map asset is cnn_com. The locator that can be substituted by
an alias in the object map is the following:

"//BrowserWindow[1]"

The object map entry for the BrowserWindow is BrowserWindow.

The resulting definition of the BrowserWindow in the script is the following:

_desktop.BrowserApplication("cnn_com").BrowserWindow("BrowserWin
dow")

If the index in the locator changes, you can just change the alias in the object map,
instead of having to change every appearance of the locator in your test script. Silk4J
will update all tests that reference the object map definition.

Example for mixing object map identifiers and locators

The following sample code shows how you can mix object map identifiers and locators
to specify a rarely used child object of an object stored in an object map:

Window window = _desktop.find("MyApplication"); // object map
id - the application window is used often
MenuItem aboutMenuItem = _desktop.find("//
MenuItem[@caption='About']"); // locator - the About dialog is
only used once
aboutMenuItem.select();

Advantages of Using Object Maps
Object maps have the following advantages:

Object Maps | 257

• They simplify test maintenance by applying changes made to a locator for an object map item to all
tests that include the corresponding object map item.

• They ease the handling of locators in a large scale functional testing environment.
• They can be managed independent of individual scripts.
• They substitute complex locator names with descriptive names, which can make scripts easier to read.
• They eliminate dependence on locators, which may change if the test application is modified.

Turning Object Maps Off and On
You can configure Silk4J to use the locator name or the alias from the object map during recording.

To use the alias from the object map during recording:

1. Click Silk4J > Edit Options.

2. Click Recording.

3. To define whether you want to record object map entries or XPath locators, select the appropriate
recording mode from the OPT_RECORD_OBJECTMAPS_MODE list:

• Object map entries for new and existing objects. This is the default mode.
• XPath locators for new and existing objects.
• XPath locators for new objects only. For objects that already exist in an object map, the object

map entry is reused. Choosing this setting enables you to create object maps for the main controls
of an AUT, and to persist these object maps while creating additional tests against the AUT.

Note: In addition to the XPath attributes, Silk4J uses additional attributes of the element when
merging object maps during locator recording. However, attributes that might lead to ambiguous
usage of object map IDs in a recorded script are not used to map locators to existing object map
entries.

Note: When you enable the Record object maps setting, object map item names display in place of
locators throughout Silk4J. For instance, if you view the Application Configurations category in the
Properties pane, you will notice that the Locator box shows the object map item name rather than
the locator name.

Using Assets in Multiple Projects
In Silk4J, image assets, image verifications, and object maps are referred to as assets. If you want to use
assets outside of the scope of the project in which they are located, you need to add a direct project
dependency from the project in which you want to use the assets to the project in which the assets are
located. When you are playing back tests from Eclipse, all dependent projects are added to the classpath
for the test execution, and therefore Silk4J can find the assets in the dependent projects.

During replay, when an asset is used, Silk4J firstly searches in the current project for the asset. The current
project is the JAR file which contains the test code that is currently executed. If Silk4J does not find the
asset in the current project, Silk4J additionally searchesall other projects in the classpath.. If the asset is
still not found, Silk4J throws an error.

If assets with the same name exist in more than one project, and you do not want to use the asset that is
included in the current project, you can define which specific asset you want to use in any method that
uses the asset. To define which asset you want to use, add the asset namespace as a prefix to the asset
name when calling the method. The asset namespace defaults to the project name.

Note: When you start working with Silk4J, the asset namespace option is added to the
silk4j.settings file of every Silk4J project in your workspace that has been created with a
previous version of Silk4J.

258 | Object Maps

Example: Adding a project dependency

If the project ProjectA contains a test that calls the following code:

window.imageClick("imageAsset");

and the image asset imageAsset is located in project ProjectB, you need to add a direct
project dependency from ProjectA to ProjectB.

To add a project dependency in Eclipse, right-click the project and select Properties.
Select Java Build Path, click on the Projects tab, and add your project here.

Note: Using Project References instead of Java Build Path
does not work.

Example: Calling a specific asset

If ProjectA and ProjectB both contain an image asset with the name
anotherImageAsset, and you explicitly want to click the image asset from ProjectB, use
the following code:

window.imageClick("ProjectB:anotherImageAsset")

Merging Object Maps During Action Recording
When you record actions with Silk4J, Silk4J checks if existing object map entries can be reused. Silk4J
checks this directly during recording, when a new locator is generated. Silk4J checks if the object that is
currently recorded in the application under test exactly matches an existing object map entry, and if yes,
Silk4J reuses the object map identifier from the object map.

This behavior has the following benefits:
• Silk4J correctly reuses an object map identifier during recording, even if the locator in the object map

has changed.
• A recorded script cannot contain wrong object map identifiers, and therefore will never fail to play back

because of a wrong object map identifier.
• If you restructure your object map, for example by adding an additional level of hierarchy, the object map

identifiers are still reused.

Example

Silk4J records the following script when you click on the Products link in the Micro
Focus website, http://www.borland.com.

With _desktop.BrowserApplication("borland_com")
 With .BrowserWindow("BrowserWindow")
 .DomLink("Products").Click(MouseButton .Left, New Point
(47, 18))
 End With
End With

The recorded object map looks like this:

borland_com //BrowserApplication
 BrowserWindow //BrowserWindow
 Products //
A[@textContents='Products']

You could now manually restructure the object map to include the header section of the
Micro Focus website:

borland_com //BrowserApplication
 BrowserWindow //BrowserWindow

Object Maps | 259

http://www.borland.com

 header //
HEADER[@role='banner']
 Products //
A[@textContents='Products']

When you now record a click on the Products link the object map is reused correctly,
and the following script is recorded:

With _desktop.BrowserApplication("borland_com")
 With .BrowserWindow("BrowserWindow")
 .DomElement("header").DomLink("Products").Click(MouseButt
on .Left, New Point (47, 18))
 End With
End With

Note: When you record another object in the header section of
the Micro Focus website, for example the About link, Silk4J
adds the About object map entry as a child of
BrowserWindow, and not of header.

Using Object Maps with Web Applications
By default, when you record actions against a Web application, Silk4J creates an object map with the name
WebBrowser for native browser controls and an object map asset for every Web domain.

For common browser controls which are not specific for a Web domain, like the main window or the dialog
boxes for printing or settings, an additional object map is generated in the current project with the name
WebBrowser.

In the object map, you can edit the URL pattern by which the object map entries are grouped. When you
edit the pattern, Silk4J performs a syntactical validation of the pattern. You can use the wildcards * and ?
in the pattern.

Example

When you record some actions on http://www.borland.com and http://
www.microfocus.com and then open the printer dialog, the following three new object
map assets are added to the Asset Browser:

• WebBrowser
• borland_com
• microfocus_com

Note: Silk4J generates the new object map assets only for projects without an object map. If you
record actions against a Web application for which Silk4J already includes an object map that was
generated with a version of Silk4J prior to version 14.0, the additionally recorded entries are stored
into the existing object map, and there are no additional object map assets generated for the Web
domains.

Renaming an Object Map Item
You can manually rename items and locators in an object map.

Warning: Renaming an object map item affects every script that uses that item. For example, if you
rename the Cancel button object map item from CancelMe to Cancel, every script that uses
CancelMe must be changed manually to use Cancel.

260 | Object Maps

http://www.borland.com
http://www.microfocus.com
http://www.microfocus.com

Object map items must be unique. If you try to add a duplicate object map item, Silk4J notifies you that the
object must be unique.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip explains
the error. Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,]. Invalid locator
paths include: empty or incomplete locator paths.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the object map item that you want to rename.
• Right-click the object map that includes the object map item that you want to rename and choose

Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to rename.
For example, you might need to expand a node to locate the item that you want to rename.

4. Click the object that you want to rename and then click the object again.

5. Type the item name that you want to use and then press Enter.

If you use an invalid character, the item name displays in red.

The new name displays in the Item name list.

6. Press CTRL+S to save your changes

Note: All child nodes of any node in the object map tree are sorted alphabetically when you save the
object map.

If any existing scripts use the item name that you changed, you must manually change the scripts to use
the new item name.

Note: While recording against a web application or a mobile web app, you can directly change the
name of the object map entry in the Choose Action dialog. Right-click on the object and then expand
the Object identification area of the Choose Action dialog. Then you can edit the object map entry
in the Object Map ID field. This functionality is available if you are testing against one of the following
browsers:

• Microsoft Edge.
• Apple Safari.
• Mozilla Firefox 41 or later.
• Google Chrome 50 or later.
• A mobile browser.

Modifying Object Maps
An existing object map is able to reuse existing object map identifiers during recording, even if you have
added additional structural elements to the object map.

Example: Adding a DIV to an existing object map

Let us suppose you want to add a DIV element to bundle the email and login fields in
the following simple object map:

demo_borland_com //
BrowserApplication
 BrowserWindow //
BrowserWindow
 login-form email //
INPUT[@id='login-form:email']

Object Maps | 261

 login-form login //
INPUT[@id='login-form:login']

You can change the structure of the object map by adding the new DIV loginArea and
the object map will still be able to correctly reuse the object map identifiers during
recording.

demo_borland_com //
BrowserApplication
 BrowserWindow //
BrowserWindow

loginArea //'DIV[@id='
login']
 login-form email //
INPUT[@id='login-form:email']
 login-form login //
INPUT[@id='login-form:login']

Modifying a Locator in an Object Map
Locators are automatically associated with an object map item when you record a script. However, you
might want to modify a locator path to make it more generic. For example, if your test application
automatically assigns the date or time to a specific control, you might want to modify the locator for that
control to use a wildcard. Using a wildcard enables you to use the same locator for each test even though
each test inserts a different date or time.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the locator that you want to modify.
• Right-click the object map that includes the locator that you want to modify and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the locator that you want to modify.
For example, you might need to expand a node to locate the locator that you want to modify.

4. Click the locator path that you want to modify and then click the locator path again.

5. If you have a valid locator path, you can type the item name and locator path that you want to use and
then press Enter. To determine a valid locator path, use the Locator Spy dialog box as described in
the following steps:

a) In the Silk4J tool bar, click Locator Spy.
b) Position the mouse over the object that you want to record and press CTRL+ALT. Silk4J displays the

locator string in the Locator text field.
c) Select the locator that you want to use in the Locator Details table.
d) Copy and paste the locator into the object map.

6. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

7. Press CTRL+S to save your changes

If any existing scripts use the locator path that you modified, you must manually change the visual tests or
scripts to use the new locator path.

262 | Object Maps

Updating Object Maps from the Test Application
If items in the test application change, you can use the Object Map UI to update the locators for these
items.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to use.
• Right-click the object map that you want to use and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Click Update Locator. The Locator Spy displays and Silk4J opens the test application.

4. Position the mouse cursor over the object that you want to record and press CTRL+ALT. Silk4J displays
the locator string in the Locator text field.

5. Select the locator that you want to use in the Locator Details table.

6. Remove any attributes that you do not want to use from the locator that is displayed in the Locator text
field.

7. Click Validate Locator to validate that the locator works.

8. Click Paste Locator to Editor to update the locator in the object map.

9. Save the changed object map.

When you update an object map item from the AUT, you can change only the XPath representations of leaf
nodes in the object map tree. You cannot change the XPath representations of any parent nodes. When the
XPath representations of higher-level nodesin the object map tree are not consistent after the update, an
error message displays.

Example

For example, suppose you have an object map item with an object map ID that has the
following three hierarchy levels:

WebBrowser.Dialog.Cancel

The corresponding XPath representation of these hierarchy levels is the following:

 /BrowserApplication//Dialog//PushButton[@caption='Cancel']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //Dialog
• Third hierarchy level: //PushButton[@caption='Cancel']

You can use the following locator to update the object map item:

 /BrowserApplication//Dialog//PushButton[@id='123']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //Dialog
• Third hierarchy level: //PushButton[@id='123']

You cannot use the following locator cannot to update the object map item, because the
second level hierarchy nodes do not match:

 /BrowserApplication//BrowserWindow//PushButton[@id='9999999']

• First hierarchy level: /BrowserApplication
• Second hierarchy level: //BrowserWindow

Object Maps | 263

• Third hierarchy level: //PushButton[@id='9999999']

Copying an Object Map Item
You can copy and paste object map entries within or between object maps. For example, if the same
functionality exists in two separate test applications, you might copy a portion of one object map into
another object map.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that includes the object map item that you want to copy.
• Right-click the object map that includes the object map item that you want to copy and choose

Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to copy.
For example, you might need to expand a node to locate the item that you want to copy.

4. Choose one of the following:

• Right-click the object map item that you want to copy and choose Copy tree.
• Click the object map item that you want to copy and then press Ctrl+C.

5. In the object map hierarchy, navigate to the position where you want to paste the item that you copied.

For instance, to include an item on the first level of the hierarchy, click the first item name in the item list.
To position the copied item a level below a specific item, click the item that you want to position the
copied item below.

To copy and paste between object maps, you must exit the map where you copied the object map item
and open and edit the object map where you want to paste the object map item.

6. Choose one of the following:

• Right-click the position in the object map where you want to paste the copied object map item and
choose Paste.

• Click the position in the object map where you want to paste the copied object map item and then
press Ctrl+V.

The object map item displays in its new position in the hierarchy.

7. Press CTRL+S to save your changes

If any existing scripts use the object map item name that you moved, you must manually change the scripts
to use the new position in the hierarchy.

Adding an Object Map Item
Object map items are automatically created when you record a script. Occasionally, you might want to
manually add an object map item.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Double-click the object map to which you want to add the new item. The object map displays a hierarchy
of the object map items and the locator associated with each item.

3. In the object map hierarchy, right-click on the item below which you want to add the new object map
item.

264 | Object Maps

For instance, to include an item on the first level of the hierarchy, right-click on the first item name in the
item list. To position the new item a level below a specific item, right-click on the item below which you
want to position the new item.

4. Click Insert new. A new item is added to the hierarchy, as the first child of the current node.

5. If you have a valid locator path, you can type the item name and locator path that you want to use and
then press Enter. To determine a valid locator path, use the Locator Spy dialog box as described in
the following steps:

a) In the Silk4J tool bar, click Locator Spy.
b) Position the mouse over the object that you want to record and press CTRL+ALT. Silk4J displays the

locator string in the Locator text field.
c) Select the locator that you want to use in the Locator Details table.
d) Copy and paste the locator into the object map.

6. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

7. Press CTRL+S to save your changes

Note: All child nodes of any node in the object map tree are sorted alphabetically when you save the
object map.

Opening an Object Map from a Script
When you are editing a script, you can open an object map by right clicking on an object map entry in the
script and selecting Open Silk4JAsset. This will open the object map in the GUI.

Use Ctrl+Click and click on an object map entry and the object map entry will turn into a hyperlink.
Click it to open it.

Example

@Test
public void test() {
 Window mainWindow = desktop.<Window>find("Untitled -
Notepad");
 mainWindow.<TextField>find("TextField").typeKeys("hello");
}

In the previous code sample, right-click Untitled - Notepad to open the entry
Untitled - Notepad in the object map, or right-click TextField to open the entry
Untitled - Notepad.TextField in the object map.

Highlighting an Object Map Item in the Test Application
After you add or record an object map item, you can click Highlight to highlight the item in the test
application. You might want to highlight an item to confirm that it's the item that you want to modify in the
object map.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

Object Maps | 265

• Double-click the object map that you want to use.
• Right-click the object map that you want to use and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. In the object map hierarchy, select the object map item that you want to highlight in the test application.

Note: Ensure that only one instance of the test application is running. Running multiple instances
of the test application will cause an error because multiple objects will match the locator.

4. Click Highlight.

The Select Application dialog box might open if the test application has not been associated with the
object map. If this happens, select the application that you want to test and then click OK.

Silk4J opens the test application and displays a green box around the control that the object map item
represents.

Finding Errors in an Object Map
If you use an invalid character or locator, the item name or locator text displays in red and a tooltip explains
the error. Use the toolbar in the Object Map window to navigate to any errors.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to troubleshoot.
• Right-click the object map that you want to troubleshoot and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Look for any item name or locator text displayed in red.

4. If necessary, modify the item name or locator text to meet your needs.

If you use an invalid character or locator, the item name or locator text displays in red and a tooltip
explains the error.

Invalid characters for object map items include: \, /, <, >, ", :, *, ?, |, =, ., @, [,].

Invalid locator paths include: empty or incomplete locator paths.

5. Press CTRL+S to save your changes

Deleting an Object Map Item
You might want to delete an item from an object map if it no longer exists in the test application or for some
other reason.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Double-click the object map that includes the object map item that you want to delete. The object map
displays a hierarchy of the object map items and the locator associated with each item.

3. Navigate to the object map item that you want to delete.
For example, you might need to expand a node to locate the object map item that you want to delete.

4. Choose one of the following:

• Right-click the object map item that you want to delete and choose Delete, or choose Delete tree to
additionally delete all child items of the object map item.

• Click the object map item that you want to delete and then press DEL, or press CTRL+DEL to
additionally delete all child items of the object map item.

266 | Object Maps

After deleting an object map item, the focus moves to the next item in the object map.

5. Press CTRL+S to save your changes

If any existing scripts use the object map item or its children that you deleted, you must manually change
any references to that object map item in the scripts.

Initially Filling Object Maps
As a best practice, we recommend that you fill your object map and then review all object map items before
you record your tests.

To initially fill your object map with all available items in the AUT, you might create a test that clicks every
object and opens every window and dialog box in your test application. Then, you can review the object
map item for each object and make any necessary modifications before you record your functional tests.
After you have reviewed and modified the object map items you can delete the test that you have created
to fill the object map.

Tip: You can use the arrow keys to navigate between items in an object map.

Grouping Elements in Object Maps
When items in an object map have no consistent parent object, you can group these elements by adding a
new tree item with the locator ".", which is the locator for the current element in Xpath.

Warning: Grouping object map items affects every script that uses these items. Every script that uses
these items must be changed manually to use the new locators.

1. In the Package Explorer, click on the Object Maps folder of the project in which the object map that
you want to change is located.

2. Choose one of the following:

• Double-click the object map that you want to edit.
• Right-click the object map that you want to edit and choose Open.

The object map displays a hierarchy of the object map items and the locator associated with each item.

3. Right click on the tree item below which you want to add the new structuring item and choose Insert
New.

4. Double click the Item name field of the new object map item.

5. Type the item name that you want to use and then press Enter.

If you use an invalid character, the item name displays in red.

The new name displays in the Item name list.

6. Click the Locator path field of the new object map item and type . into the field.

7. Press Enter.

8. For every object map item that you want to relocate to a new location under the new item:

a) Right click on the item that you want to relocate and choose Cut tree.
b) Right click on the new structuring item and choose Paste.

9. Press CTRL+S to save your changes

Object Maps: Frequently Asked Questions
This section lists questions that you might encounter when using object maps with Silk4J.

Object Maps | 267

Can I Merge Multiple Object Maps Into a Single Map?
Although Micro Focus recommends recording into the same object map instead of merging existing object
maps, you can use a text editor to merge multiple object maps into a single map.

What Happens to an Object Map when I Delete a Test
Script?
When you delete a test script that includes object map entries, the associated object maps are not
changed. All object map entries are persisted.

Can I Manually Create an Object Map for My
Application Under Test?
Micro Focus recommends creating object maps during the recording of a test. However, you can also
create an empty object map and manually add object map entries to this map.

To create a new object map, select Silk4J > New Object Map from the menu.

268 | Object Maps

Image Recognition Support
You can use image recognition in the following situations:

• To conveniently interact with test applications that contain highly customized controls, which cannot be
identified using object recognition. You can use image clicks instead of coordinate-based clicks to click
on a specified image.

• To test graphical objects in the application under test, for example charts.
• To perform a check of the visible UI of the application under test.

If you want to click on a control that is otherwise not recognizable, you can use the imageClick method
with an image asset. If you want to verify that an otherwise not recognizable control exists in your
application under test, you can use the verifyAsset method with an image verification.

Image recognition methods are supported for all technology domains that are supported by Silk4J.

Note: Image recognition methods do not work with controls that are not visible on the screen. For
example, you cannot use image recognition for an image that is scrolled out of view.

Image Click Recording
Image click recording is disabled by default in favor of coordinate-based click recording, because image
click recording might generate a confusingly large number of images.

To enable image click recording, click Silk4J > Edit Options, select the Recording tab, and check the
check box in the Record image clicks section.

Note: When recording on a mobile browser, you do not have to enable image click recording.

When image click recording is enabled, Silk4J records ImageClick methods when object recognition or
text recognition is not possible. You can insert image clicks in your script for any control, even if the image
clicks are not recorded.

If you do not whish to record an ImageClick action, you can turn off image click recording and record
normal clicks or text clicks.

Note: The recorded images are not reused. Silk4J creates a new image asset for each image click
that you record.

Note: Image click recording is not supported for applications or applets that use the Java AWT/Swing
controls.

Image Recognition Methods
Silk4J provides the following methods for image recognition:

Method Description

imageClick Clicks in the middle of the image that is specified in an asset. Waits until
the image is found or the Object resolve timeout, which you can define in
the synchronization options, is over.

imageExists Returns whether the image that is specified in an asset exists.

Image Recognition Support | 269

Method Description

imageRectangle Returns the object-relative rectangle of the image that is specified in an
asset.

imageClickFile Clicks on the image that is specified in a file.

imageExistsFile Returns whether the image that is specified in a file exists.

imageRectangleFile Returns the object-relative rectangle of the image that is specified in a
file.

verifyAsset Executes a verification asset. Throws a VerificationFailedException if the
verification does not pass.

tryVerifyAsset Executes a verification asset and returns whether the verification passed.

Note: Image recognition methods do not work with controls that are not visible on the screen. For
example, you cannot use image recognition for an image that is scrolled out of view.

Image Assets
You can use image assets in the following situations:

• To conveniently interact with test applications that contain highly customized controls, which cannot be
identified using object recognition. You can use image clicks instead of coordinate-based clicks to click
on a specified image.

• To test graphical objects in the application under test, for example charts.

Image assets consist of an image with some additional information that is required by Silk4J to work with
the asset.

Silk4J provides the following methods for image assets:

Method Description

imageClick Clicks in the middle of the specified image asset. Waits until the image is
found or the Object resolve timeout, which you can define in the
synchronization options, is over.

imageExists Returns whether the specified image asset exists.

imageRectangle Returns the object-relative rectangle of the specified image asset.

Image assets must be located in the Image Assets folder of the project. The .imageasset files must be
embedded resources.

Creating an Image Asset
You can create image assets in one of the following ways:

• By inserting a new image asset into an existing script.
• During recording.
• From the menu.

To create a new image asset from the menu, perform the following steps:

1. In the menu, click Silk4J > New Image Asset.

2. Select the project, to which you want to add the new image asset, and type a meaningful name for the
asset into the Name field.

270 | Image Recognition Support

3. Click Finish. The image asset UI opens.

4. Select how you want to add an image to the asset.

• If you want to use an existing image, click Browse and select the image file.
• If you want to capture a new image from the UI of the application under test, select Capture. If you

are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

• If you want to capture a new image after a delay of three seconds, for example to expand a menu in
the application under test before the image is captured, select Capture with Pause.

5. If you have selected to capture a new image, select the area of the screen that you want to capture and
click Capture Selection.

6. Optional: Click Verify to check if Silk4J can find the image asset in the UI of the AUT.

If you are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

7. Optional: Check the Click position check box to select the location on which any clicks on the image
asset are performed.

The default location is the center of the image. Type the location into the x and y fields or select the
location on the image.

8. Specify the Accuracy Level.

The accuracy level defines how much the image to be verified is allowed to be different to the image in
the application under test, before Silk4J declares the images as different. This is helpful if you are
testing multiple systems or browsers with different screen resolutions. We recommend to choose a high
level of accuracy in order to prevent false positives. You can change the default accuracy level in the
options.

Note: When you set the Accuracy Level to less than five, the actual colors of the images are no
longer considered for the comparison. Only the grayscale representations of the images are
compared.

9. Save the image asset.

The new image asset is listed under the current project in the Package Explorer, and you can use it to
perform image clicks.

You can add multiple images to the same image asset.

Note: To add an image click while recording against a mobile browser, you can right-click in the
Recording window and select ImageClick from the action list.

Adding Multiple Images to the Same Image Asset
During testing, you will often need to test functionality on multiple environments and with different testing
configurations. In a different environment, the actual image might differ in such a degree from the image
that you have captured in the image asset, that image clicks might fail, although the image is existing. In
such a case, you can add multiple images to the same image asset.

To add an additional image to an image asset:

1. Double-click on the image asset to which you want to add an additional image. The image asset UI
opens.

2. Click on the plus sign in the lower part of the UI to add a new image to the image asset.

3. Save the image asset.

The new image is added to the asset. Each time an image click is called, and until a match is achieved,
Silk4J will compare the images in the asset with the images in the UI of the application under test. By
default, Silk4J compares the images in the order in which they have been added to the asset.

Image Recognition Support | 271

Note: To change the order in which Silk4J compares the images, click on an image in the lower part
of the image asset UI and drag the image to the position that you want. The order lowers from left to
right. The image that is compared first is the image in the left-most position.

Opening an Asset from a Script
When you are editing a script, you can open an asset by right clicking it and selecting Open Silk4JAsset.
This will open the asset in the GUI.

If the asset is a reference to a file on the system, for example, referenced by ImageClickFile, the file
will be opened by your system's default editor.

Use Ctrl+Click and click on an asset and the asset will turn into a hyperlink. Click it to open it.

Image Verifications
You can use an Image Verification to check if an image exists in the UI of the application under test (AUT)
or not.

Image verifications consist of an image with some additional information that is required by Silk4J to work
with the asset.

To execute an image verification, use the verifyAsset method.

Image verification assets must be located in the Verifications folder of the project.
The .verification files must be embedded resources.

An image verification fails when Silk4J cannot find the image in the AUT. In this case the script breaks
execution and throws a VerificationFailedException. To avoid this behavior, use the tryVerifyAsset
method.

If the locator for the image verification is not found in the AUT, Silk4J throws an
ObjectNotFoundException.

You can open a successful image verification in TrueLog Explorer by clicking Open Verification in the Info
tab of the verification step. You can open a failed image verification in TrueLog Explorer by clicking Show
Differences in the Info tab of the verification step. If a failed image verification would have been successful
if a lower accuracy level had been used, the accuracy level that would have succeeded is suggested.

Creating an Image Verification
You can create image verifications in one of the following ways:

• By using the menu.
• During recording.

To create a new image verification in the menu, perform the following steps:

1. Click Silk4J > New Image Verification.

2. Select the project, to which you want to add the new image verification, and type a meaningful name for
the verification into the Name field.

3. Click Finish. The image verification UI opens.

4. Click Identify to identify the image that you want to verify in the application under test.

5. Optional: If you want to recapture the same image from the application under test, because there is a
change in comparison to the image that you had initially captured, click Recapture.

If you are testing a Web application, you can select the browser on which you want to capture the image
from the Select Browser window.

272 | Image Recognition Support

6. Optional: You can click Verify to test if the image verification works. Silk4J searches for the image in the
UI of the AUT, top-down and left to right, and highlights the first matching image.

7. Optional: You can add an exclusion area to the image verification, which will not be considered when
Silk4J compares the image verification to the UI of the application under test (AUT).

8. Optional: You can set the option Client Area Only to define that only the part of the image that is
actually part of the AUT is considered when Silk4J compares the image verification to the UI of the AUT.

9. Specify the Accuracy Level.

The accuracy level defines how much the image to be verified is allowed to be different to the image in
the application under test, before Silk4J declares the images as different. This is helpful if you are
testing multiple systems or browsers with different screen resolutions. We recommend to choose a high
level of accuracy in order to prevent false positives. You can change the default accuracy level in the
options.

Note: When you set the Accuracy Level to less than five, the actual colors of the images are no
longer considered for the comparison. Only the grayscale representations of the images are
compared.

10.Save the image verification.

The new image verification is listed in the Package Explorer, and you can use it to check if the image
exists in the UI of your application under test.

Adding an Image Verification During Recording
You can add image verifications to your scripts to check if controls which are otherwise not recognizable
exist in the UI of the application under test. To add an image verification during the recording of a script,
perform the following steps:

1. Begin recording.

2. Move the mouse cursor over the image that you want to verify and click Ctrl + Alt. Silk4J asks you if you
want to verify a property or an image.

3. Select Create or Insert an Image Verification.

4. Perform one of the following steps:

• To create a new image verification in the image verification UI, select New from the list box.
• To insert an existing image verification asset, select the image verification asset from the list box.

5. Click OK.

• If you have chosen to create a new image verification, the image verification UI opens.
• If you have chosen to use an existing image verification, the image verification is added to your

script. You can skip the remaining steps in this topic.

6. To create a new image verification, click Verify in the image verification UI.

7. Move the mouse cursor over the image in the AUT and click CTRL+ALT. The image verification UI
displays the new image verification.

8. Click OK. The new image verification is added to the current project.

9. Continue recording.

Using Assets in Multiple Projects
In Silk4J, image assets, image verifications, and object maps are referred to as assets. If you want to use
assets outside of the scope of the project in which they are located, you need to add a direct project
dependency from the project in which you want to use the assets to the project in which the assets are
located. When you are playing back tests from Eclipse, all dependent projects are added to the classpath
for the test execution, and therefore Silk4J can find the assets in the dependent projects.

Image Recognition Support | 273

During replay, when an asset is used, Silk4J firstly searches in the current project for the asset. The current
project is the JAR file which contains the test code that is currently executed. If Silk4J does not find the
asset in the current project, Silk4J additionally searchesall other projects in the classpath.. If the asset is
still not found, Silk4J throws an error.

If assets with the same name exist in more than one project, and you do not want to use the asset that is
included in the current project, you can define which specific asset you want to use in any method that
uses the asset. To define which asset you want to use, add the asset namespace as a prefix to the asset
name when calling the method. The asset namespace defaults to the project name.

Note: When you start working with Silk4J, the asset namespace option is added to the
silk4j.settings file of every Silk4J project in your workspace that has been created with a
previous version of Silk4J.

Example: Adding a project dependency

If the project ProjectA contains a test that calls the following code:

window.imageClick("imageAsset");

and the image asset imageAsset is located in project ProjectB, you need to add a direct
project dependency from ProjectA to ProjectB.

To add a project dependency in Eclipse, right-click the project and select Properties.
Select Java Build Path, click on the Projects tab, and add your project here.

Note: Using Project References instead of Java Build Path
does not work.

Example: Calling a specific asset

If ProjectA and ProjectB both contain an image asset with the name
anotherImageAsset, and you explicitly want to click the image asset from ProjectB, use
the following code:

window.imageClick("ProjectB:anotherImageAsset")

274 | Image Recognition Support

Enhancing Tests
This section describes how you can enhance a test.

Recording Additional Actions Into an Existing Test
Once a test is created, you can open the test and record additional actions to any point in the test. This
allows you to update an existing test with additional actions.

1. Open an existing test script.

2. Select the location in the test script into which you want to record additional actions.

Note: Recorded actions are inserted after the selected location. The application under test (AUT)
does not return to the base state. Instead, the AUT opens to the scope in which the preceding
actions in the test script were recorded.

3. Click Record Actions.

Silk4J minimizes and the Recording window opens.

4. Record the additional actions that you want to perform against the AUT.

For information about the actions available during recording, see Actions Available During Recording.

5. To stop recording, click Stop in the Recording window.

Calling Windows DLLs
This section describes how you can call DLLs. You can call a DLL either within the process of the Open
Agent or in the application under test (AUT). This allows the reuse of existing native DLLs in test scripts.

DLL calls in the Open Agent are typically used to call global functions that do not interact with UI controls in
the AUT.

DLL calls in the AUT are typically used to call functions that interact with UI controls of the application. This
allows Silk4J to automatically synchronize the DLL call during playback.

Note: In 32-bit applications, you can call 32-bit DLLs, while in 64-bit applications you can call 64-bit
DLLs. The Open Agent can execute both 32-bit and 64-bit DLLs.

Note: You can only call DLLs with a C interface. Calling of .NET assemblies, which also have the file
extension .dll, is not supported.

Calling a Windows DLL from Within a Script
All classes and annotations that are related to DLL calling are located in the package
com.borland.silktest.jtf.dll.

A declaration for a DLL starts with an interface that has a Dll attribute. The syntax of the declaration is the
following:

@Dll("dllname.dll")
public interface DllInterfaceName {
 FunctionDeclaration
 [FunctionDeclaration]…
}

Enhancing Tests | 275

dllname The name of or the full path to the DLL file that contains the functions you want to
call from your Java scripts. Environment variables in the DLL path are
automatically resolved. You do not have to use double backslashes (\\) in the path,
single backslashes (\) are sufficient.

DllInterfaceName The identifier that is used to interact with the DLL in a script.

FunctionDeclaration A function declaration of a DLL function you want to call.

DLL Function Declaration Syntax
A function declaration for a DLL typically has the following form:

return-type function-name([arg-list])

For functions that do not have a return value, the declaration has the following form:

void function-name([arg-list])

return-type The data type of the return value.

function-name The name of the function.

arg-list A list of the arguments that are passed to the function.

The list is specified as follows:

data-type identifier

data-type The data type of the argument.

• To specify arguments that can be modified by a function or passed out
from a function, use the InOutArgument and the OutArgument
class.

• If you want the DLL function to set the value of the argument, use the
OutArgument class.

• If you want to pass a value into the function, and have the function
change the value and pass the new value out, use the
InOutArgument class.

identifier The name of the argument.

DLL Calling Example
This example writes the text hello world! into a field by calling the SendMessage DLL function from
user32.dll.

DLL Declaration:

@Dll("user32.dll")
public interface IUserDll32Functions {
 int SendMessageW(TestObject obj, int message, int wParam, Object lParam);
}

The following code shows how to call the declared DLL function in the AUT:

IUserDll32Functions user32Function =
DllCall.createInProcessDllCall(IUserDll32Functions.class, desktop);
TextField textField = desktop.find("//TextField");
user32Function.SendMessageW(textField, WindowsMessages.WM_SETTEXT, 0, "my
text");

276 | Enhancing Tests

Note: You can only call DLL functions in the AUT if the first parameter of the DLL function has the C
data type HWND.

The following code shows how to call the declared DLL functions in the process of the Open Agent:

IUserDll32Functions user32Function =
DllCall.createAgentDllCall(IUserDll32Functions.class, desktop);
TextField textField = desktop.find("//TextField");
user32Function.SendMessageW(textField, WindowsMessages.WM_SETTEXT, 0, "my
text");

Note: The example code uses the WindowsMessages class that contains useful constants for usage
with DLL functions that relate to Windows messaging.

Passing Arguments to DLL Functions
DLL functions are written in C, so the arguments that you pass to these functions must have the
appropriate C data types. The following data types are supported:

int Use this data type for arguments or return values with the following
data types:

• int
• INT
• long
• LONG
• DWORD
• BOOL
• WPARAM
• HWND

The Java type int works for all DLL arguments that have a 4-byte
value.

long Use this data type for arguments or return values with the C data
types long and int64. The Java type long works for all DLL
arguments that have an 8-byte value.

short Use this data type for arguments or return values with the C data
types short and WORD. The Java type short works for all DLL
arguments that have a 2-byte value.

boolean Use this data type for arguments or return values with the C data
type bool.

String Use this for arguments or return values that are Strings in C.

double Use this for arguments or return values with the C data type
double.

com.borland.silktest.jtf.Rect Use this for arguments with the C data type RECT. Rect cannot be
used as a return value.

com.borland.silktest.jtf.Point Use this for arguments with the C data type POINT. Point cannot be
used as a return value.

com.borland.silktest.jtf.TestObject Use this for arguments with the C data type HWND. TestObject
cannot be used as a return value, however you can declare DLL
functions that return a HWND with an Integer as the return type.

Note: The passed TestObject must implement the
com.borland.silktest.jtf.INativeWindow interface so that

Enhancing Tests | 277

Silk4J is able to determine the window handle for the
TestObject that should be passed into the DLL function.
Otherwise an exception is thrown when calling the DLL
function.

List Use this for arrays for user defined C structs. Lists cannot be used
as a return value.

Note: When you use a List as an in/out parameter, the list
that is passed in must be large enough to hold the returned
contents.

Note: A C struct can be represented by a List, where every
list element corresponds to a struct member. The first struct
member is represented by the first element in the list, the
second struct members is represented by the second
element in the list, and so on.

Note: Any argument that you pass to a DLL function must have one of the preceding Java data types.

Passing Arguments that Can Be Modified by the DLL
Function
An argument whose value will be modified by a DLL function needs to be passed either by using an
InOutArgument, if the value can be changed, or by using an OutArgument.

Example

This example uses the GetCursorPos function of the user32.dll in order to retrieve
the current cursor position.

DLL declaration:

@Dll("user32.dll")
public interface IUserDll32Functions {
 int GetCursorPos(OutArgument<Point> point);
}

Usage:

IUserDll32Functions user32Function =
DllCall.createAgentDllCall(IUserDll32Functions.class, desktop);

OutArgument<Point> point = new OutArgument<Point>(Point.class);
user32Function.GetCursorPos(point);

System.out.println("cursor position = " + point.getValue());

Passing String Arguments to DLL Functions
Strings that are passing into a DLL function or that are returned by a DLL function are treated by default as
Unicode Strings. If your DLL function requires ANSI String arguments, use the CharacterSet property of
the DllFunctionOptions attribute.

278 | Enhancing Tests

Example

@Dll("user32.dll")
public interface IUserDll32Functions {
 @FunctionOptions(characterSet=DllCharacterSet.Ansi)
 int SendMessageA(TestObject obj, int message, int wParam,
Object lParam);
}

Passing a String back from a DLL call as an OutArgument works per default if the String's size does not
exceed 256 characters length. If the String that should be passed back is longer than 256 characters, you
need to pass an InOurArgument with a String in that is long enough to hold the resulting String.

Example

Use the following code to create a String with 1024 blank characters:

char[] charArray = new char[1024];
Arrays.fill(charArray,' ');
String longEmptyString = new String(charArray);

Pass this InOutArgument as an argument into a DLL function and the DLL function will
pass back Strings of up to 1024 characters of length.

When passing a String back from a DLL call as a function return value, the DLL should implement a DLL
function called FreeDllMemory that accepts the C String pointer returned by the DLL function and that
frees the previously allocated memory. If no such function exists the memory will be leaked.

Aliasing a DLL Name
If a DLL function has the same name as a reserved word in Java, or the function does not have a name but
an ordinal number, you need to rename the function within your declaration and use the alias statement to
map the declared name to the actual name.

Example

For example, the goto statement is reserved by the Java compiler. Therefore, to call a
function named goto, you need to declare it with another name, and add an alias
statement, as shown here:

@Dll("mydll.dll")
public interface IMyDllFunctions {
 @FunctionOptions(alias="break")
 void MyBreak();
}

Conventions for Calling DLL Functions
The following calling conventions are supported when calling DLL functions:

• __stdcall
• __cdecl

The __stdcall calling convention is used by default when calling DLL functions. This calling convention is
used by all Windows API DLL functions.

You can change the calling convention for a DLL function by using the CallingConvention property of
the DllFunctionOptions annotation.

Enhancing Tests | 279

Example

The following code example declares a DLL function with the __decl calling convention:

@Dll("msvcrt.dll")
public interface IMsVisualCRuntime {
 @FunctionOptions(callingConvention=CallingConvention.Cdecl)
 double cos(double inputInRadians);
}

Custom Controls
Silk4J provides the following features to support you when you are working with custom controls:

• The dynamic invoke functionality of Silk4J enables you to directly call methods, retrieve properties, or
set properties on an actual instance of a control in the application under test (AUT).

• The class mapping functionality enables you to map the name of a custom control class to the name of
a standard Silk Test class. You can then use the functionality that is supported for the standard Silk Test
class in your test.

Silk4J supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

• You can add code to the AUT to test custom controls.
• The Manage Custom Controls dialog box enables you to specify a name for a custom control that can

be used in a locator and also enables you to write reusable code for the interaction with the custom
control.

Note: For custom controls, you can only record methods like click,textClick, and typeKeys with
Silk4J. You cannot record custom methods for custom controls except when you are testing Apache
Flex applications.

Dynamic Invoke
Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

280 | Enhancing Tests

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Note: You cannot dynamically invoke methods for DOM elements.

Frequently Asked Questions About Dynamic Invoke
This section includes a collection of questions that you might encounter when you are dynamically invoking
methods to test custom controls.

Which Methods Can I Call With the invoke Method?

To get a list of all the methods that you can call with the invoke method for a specific test object, you can
use the getDynamicMethodList. To view the list, you can for example print it to the console or view it in
the debugger.

Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?

The invoke method can only return simple data types. Complex types are returned as string. Silk4J uses
the ToString method to retrieve the string representation of the return value. To call the individual
methods and read properties of the complex object that is returned by the first method invocation, use
invokeMethods instead of invoke.

How Can I Simplify My Scripts When I Use Many Calls To invokeMethods?

When you extensively use invokeMethods in your scripts, the scripts might become complex because
you have to pass all method names as strings and all parameters as lists. To simplify such complex scripts,
create a static method that interacts with the actual control in the AUT instead of interacting with the control
through invokeMethods. For additional information, see Adding Code to the Application Under Test to
Test Custom Controls.

Adding Code to the Application Under Test to Test
Custom Controls
When you are testing Windows Forms applications or WPF applications, and you want to test complex
custom controls or custom controls that you cannot test by simply using the invoke and invokeMethods
methods, you can create a static method that interacts with the actual control in the application under test
(AUT) and you can add this code to the AUT.

The benefit for you from adding code to the AUT is that the code in the AUT can use regular method calls
for interacting with the control, instead of using the reflection-like style of calling methods with the dynamic
invoke methods. Therefore you can use code completion and IntelliSense when you are writing you code.
You can then call the code in the AUT with a simple invoke call, where you pass the control of interest as a
parameter.

You can add code to the AUT in the following ways:

• Compile the code into the AUT. The implementation is simple, but you will be changing the AUT,
which you might not want to do.

• Inject code to the AUT at runtime by using the LoadAssembly method in a test script. This requires
more effort than compiling the code into the AUT, but the injected code will be located close to the
test code. The LoadAssembly method is available for the classes WPFWindow and FormsWindow.

Enhancing Tests | 281

Example: Testing the UltraGrid Infragistics control

This example demonstrates how you can retrieve the content of an UltraGrid control.
The UltraGrid control is included in the NETAdvantage for Windows Forms
library which is provided by Infragistics. You can download a trial of the library from
http://www.infragistics.com/products/windows-forms/downloads.

To create the UltraGridUtil class, perform the following actions:

1. Open Microsoft Visual Studio and create a new class library project in C# or
VB .NET. Call the new project AUTExtensions.

Note: The class library should use the same .NET version
as the AUT.

2. Add references to the required dependencies to the project. For example, for
Infragistics version 12.2 you need to reference the following assemblies:

• Infragistics4.Shared.v12.2
• Infragistics4.Win.UltraWinGrid.v12.2
• Infragistics4.Win.v12.2

If you are not sure which version of Infragistics is used in your AUT you can use the
Process Explorer tool from Microsoft to see which assemblies are loaded in your
AUT.

a. In the AUTExtensions project, create the new class UltraGridUtil with the
following content:

' VB code
Public Class UltraGridUtil

 Public Shared Function GetContents(ultraGrid As
Infragistics.Win.UltraWinGrid.UltraGrid) As List(Of List(Of
String))
 Dim contents = New List(Of List(Of String))
 For Each row In ultraGrid.Rows
 Dim rowContents = New List(Of String)
 For Each cell In row.Cells
 rowContents.Add(cell.Text)
 Next
 contents.Add(rowContents)
 Next
 Return contents
 End Function

End Class

// C# code
using System.Collections.Generic;

namespace AUTExtensions {

 public class UltraGridUtil {

 public static List<List<string>>
GetContents(Infragistics.Win.UltraWinGrid.UltraGrid grid) {
 var result = new List<List<string>>();
 foreach (var row in grid.Rows) {
 var rowContent = new List<string>();
 foreach (var cell in row.Cells) {
 rowContent.Add(cell.Text);
 }
 result.Add(rowContent);
 }

282 | Enhancing Tests

http://www.infragistics.com/products/windows-forms/downloads

 return result;
 }

 }

}

Note: The Shared modifier makes the GetContents
method a static method.

3. Build the AUTExtensions project.
4. Load the assembly into the AUT during playback.

• Open an existing test script or create a new test script.
• Add code to the test script to load the assembly that you have built from the file

system. For example:

mainWindow.loadAssembly("C:/buildoutput/AUTExtensions.dll");

5. Call the static method of the injected code in order to get the contents of the
UltraGrid:

// Java code
Control ultraGrid = mainWindow.find("//
Control[@automationId='my grid']");
List<List<String>> contents = (List<List<String>>)
mainWindow.invoke("AUTExtensions.UltraGridUtil.GetContents",
ultraGrid);

Frequently Asked Questions About Adding Code to the AUT
This section includes a collection of questions that you might encounter when you are adding code to the
AUT to test custom controls.

Why is Code That I Have Injected Into the AUT With the LoadAssembly Method Not Updated in the
AUT?

If code in the AUT is not replaced by code that you have injected with the LoadAssembly method into the
AUT, the assembly might already be loaded in your AUT. Assemblies cannot be unloaded, so you have to
close and re-start your AUT.

Why Do the Input Argument Types Not Match When I Invoke a Method?

If you invoke a method and you get an error that says that the input argument types do not match, the
method that you want to invoke was found but the arguments are not correct. Make sure that you use the
correct data types in your script.

If you use the LoadAssembly method in your script to load an assembly into the AUT, another reason for
this error might be that your assembly is built against a different version of the third-party library than the
version that is used by the AUT. To fix this problem, change the referenced assembly in your project. If you
are not sure which version of the third-party library is used in your AUT, you can use the Process Explorer
tool from Microsoft.

How Do I Fix the Compile Error when an Assembly Can Not Be Copied?

When you have tried to add code to the AUT with the LoadAssembly method, you might get the following
compile error:
Could not copy '<assembly_name>.dll' to '<assembly_name>.dll'. The process cannot access the file.
The reason for this compile error is that the assembly is already loaded in the AUT and cannot be
overwritten.

To fix this compile error, close the AUT and compile your script again.

Enhancing Tests | 283

Testing Apache Flex Custom Controls
Silk4J supports testing Apache Flex custom controls. However, by default, Silk4J cannot record and
playback the individual sub-controls of the custom control.

For testing custom controls, the following options exist:

• Basic support

With basic support, you use dynamic invoke to interact with the custom control during replay. Use this
low-effort approach when you want to access properties and methods of the custom control in the test
application that Silk4J does not expose. The developer of the custom control can also add methods and
properties to the custom control specifically for making the control easier to test. A user can then call
those methods or properties using the dynamic invoke feature.

The advantages of basic support include:

• Dynamic invoke requires no code changes in the test application.
• Using dynamic invoke is sufficient for most testing needs.

The disadvantages of basic support include:

• No specific class name is included in the locator, for example Silk4J records //FlexBox rather
than //FlexSpinner.

• Only limited recording support.
• Silk4J cannot replay events.

For more details about dynamic invoke, including an example, see Dynamically Invoking Apache Flex
Methods.

• Advanced support

With advanced support, you create specific automation support for the custom control. This additional
automation support provides recording support and more powerful play-back support. The advantages
of advanced support include:

• High-level recording and playback support, including the recording and replaying of events.
• Silk4J treats the custom control exactly the same as any other built-in Apache Flex control.
• Seamless integration into Silk4J API
• Silk4J uses the specific class name in the locator, for example Silk4J records //FlexSpinner.

The disadvantages of advanced support include:

• Implementation effort is required. The test application must be modified and the Open Agent must be
extended.

Managing Custom Controls
You can create custom classes for custom controls for which Silk4J does not offer any dedicated support.
Creating custom classes offers the following advantages:

• Better locators for scripts.
• An easy way to write reusable code for the interaction with the custom control.

Example: Testing the UltraGrid Infragistics control

Suppose that a custom grid control is recognized by Silk4J as the generic class
Control. Using the custom control support of Silk4J has the following advantages:

284 | Enhancing Tests

Better object
recognition
because the
custom control
class name
can be used in
a locator.

Many objects might be recognized as Control.
The locator requires an index to identify the
specific object. For example, the object might be
identified by the locator //Control[13]. When
you create a custom class for this control, for
example the class UltraGrid, you can use the
locator //UltraGrid. By creating the custom
class, you do not require the high index, which
would be a fragile object identifier if the
application under test changed.

You can
implement
reusable
playback
actions for the
control in
scripts.

When you are using custom classes, you can
encapsulate the behavior for getting the contents
of a grid into a method by adding the following
code to your custom class, which is the class that
gets generated when you specify the custom
control in the user interface.

Typically, you can implement the methods in a
custom control class in one of the following ways:

• You can use methods like click, typeKeys,
textClick, and textCapture.

• You can dynamically invoke methods on the
object in the AUT.

• You can dynamically invoke methods that you
have added to the AUT. This is the approach
that is described in this example.

You can use the following code to call the static
method that is defined in the example in Adding
Code to the Application Under Test to Test
Custom Controls. The method GetContents is
added into the generated class UltraGrid.

// Java code
import
com.borland.silktest.jtf.Desktop;
import
com.borland.silktest.jtf.common.JtfO
bjectHandle;

public class UltraGrid extends
com.borland.silktest.jtf.Control {

 protected
UltraGrid(JtfObjectHandle handle,
Desktop desktop) {
 super(handle, desktop);
 }

 public List<List<String>>
getContents() {
 return (List<List<String>>)
invoke("AUTExtensions.UltraGridUtil.
GetContents", this);
 }
}

When you define a class as a custom control, you
can use the class in the same way in which you

Enhancing Tests | 285

can use any built-in class, for example the
Dialog class.

// Java code
UltraGrid ultraGrid =
mainWindow.find("//
UltraGrid[@automationId='my
grid']");
List<List<String>> contents =
ultraGrid.getContents();

Supporting a Custom Control
Silk4J supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

To create a custom class for a custom control for which Silk4J does not offer any dedicated support.

1. Click Silk4J > Manage Custom Controls. The Manage Custom Controls dialog box opens.

2. In the Silk4J Custom Controls Output Package field, type in a name or click Browse to select the
package that will contain the custom control.

3. Click on the tab of the technology domain for which you want to create a new custom class.

4. Click Add.

5. Click one of the following:

• Click Identify new custom control to directly select a custom control in your application with the
Identify Object dialog box.

• Click Add new custom control to manually add a custom control to the list.

A new row is added to the list of custom controls.

6. If you have chosen to manually add a custom control to the list:

a) In the Silk Test base class column, select an existing base class from which your class will derive.

This class should be the closest match to your type of custom control.
b) In the Silk Test class column, enter the name to use to refer to the class.

This is what will be seen in locators. For example: //UltraGrid instead of //Control[13].

Note: After you add a valid class, it will become available in the Silk Test base class list. You
can then reuse it as a base class.

c) In the Custom control class name column, enter the fully qualified class name of the class that is
being mapped.

For example: Infragistics.Win.UltraWinGrid.UltraGrid. For Win32 applications, you can
use the wildcards ? and * in the class name.

7. Only for Win32 applications: In the Use class declaration column, set the value to False to simply map
the name of a custom control class to the name of a standard Silk Test class.

When you map the custom control class to the standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. Set the value to True to additionally use the class
declaration of the custom control class.

8. Click OK.

9. Only for scripts:

286 | Enhancing Tests

a) Add custom methods and properties to your class for the custom control.
b) Use the custom methods and properties of your new class in your script.

Note: The custom methods and properties are not recorded.

Note: Do not rename the custom class or the base class in the script file. Changing the generated
classes in the script might result in unexpected behavior. Use the script only to add properties and
methods to your custom classes. Use the Manage Custom Controls dialog box to make any other
changes to the custom classes.

Custom Controls Options
Silk4J > Manage Custom Controls.

Silk4J supports managing custom controls over the UI for the following technology domains:

• Win32
• Windows Presentation Foundation (WPF)
• Windows Forms
• Java AWT/Swing
• Java SWT

In the Silk4J Custom Controls Output Package, define the package into which the new custom classes
should be generated.

When you map a custom control class to a standard Silk Test class, you can use the functionality
supported for the standard Silk Test class in your test. The following Custom Controls options are
available:

Option Description

Silk Test base class Select an existing base class to use that your class will derive from. This class
should be the closest match to your type of custom control.

Silk Test class Enter the name to use to refer to the class. This is what will be seen in locators.

Custom control class
name

Enter the fully qualified class name of the class that is being mapped. You can
use the wildcards ? and * in the class name.

Use class
declaration

This option is available only for Win32 applications. By default False, which
means the name of the custom control class is mapped to the name of the
standard Silk Test class. Set this setting to True to additionally use the class
declaration of the custom control class.

Note: After you add a valid class, it will become available in the Silk Test base class list. You can
then reuse it as a base class.

Example: Setting the options for the UltraGrid Infragistics control

To support the UltraGrid Infragistics control, use the following values:

Option Value

Silk Test base class Control

Silk Test class UltraGrid

Custom control class name Infragistics.Win.UltraWi
nGrid.UltraGrid

Enhancing Tests | 287

Improving Object Recognition with Microsoft Accessibility
You can use Microsoft Accessibility (Accessibility) to ease the recognition of objects at the class level.
There are several objects in Internet Explorer and in Microsoft applications that Silk4J can better recognize
if you enable Accessibility. For example, without enabling Accessibility Silk4J records only basic information
about the menu bar in Microsoft Word and the tabs that appear. However, with Accessibility enabled, Silk4J
fully recognizes those objects.

Example

Without using Accessibility, Silk4J cannot fully recognize a DirectUIHwnd control,
because there is no public information about this control. Internet Explorer uses two
DirectUIHwnd controls, one of which is a popup at the bottom of the browser window.
This popup usually shows the following:

• The dialog box asking if you want to make Internet Explorer your default browser.
• The download options Open, Save, and Cancel.

When you start a project in Silk4J and record locators against the DirectUIHwnd
popup, with accessibility disabled, you will see only a single control. If you enable
Accessibility you will get full recognition of the DirectUIHwnd control.

Using Accessibility
Win32 uses the Accessibility support for controls that are recognized as generic controls. When Win32
locates a control, it tries to get the accessible object along with all accessible children of the control.

Objects returned by Accessibility are either of the class AccessibleControl, Button or CheckBox.
Button and Checkbox are treated specifically because they support the normal set of methods and
properties defined for those classes. For all generic objects returned by Accessibility the class is
AccessibleControl.

Example

If an application has the following control hierarchy before Accessibility is enabled:

• Control

• Control
• Button

When Accessibility is enabled, the hierarchy changes to the following:

• Control

• Control

• Accessible Control
• Accessible Control

• Button
• Button

Enabling Accessibility
If you are testing a Win32 application and Silk4J cannot recognize objects, you should first enable
Accessibility. Accessibility is designed to enhance object recognition at the class level.

288 | Enhancing Tests

To enable Accessibility:

1. Click Silk4J > Edit Options. The Script Options dialog box opens.

2. Click Advanced.

3. Select the Use Microsoft Accessibility option. Accessibility is turned on.

Overview of Silk4J Support of Unicode Content
The Open Agent is Unicode-enabled, which means that the Open Agent is able to recognize double-byte
(wide) languages.

With Silk4J you can test applications that contain content in double-byte languages such as Chinese,
Korean, or Japanese (Kanji) characters, or any combination of these.

The Open Agent supports the following:

• Localized versions of Windows.
• International keyboards and native language Input Method Editors (IME).
• Passing international strings as parameters to test cases, methods, and so on, and comparing strings.
• Reading and writing text files in multiple formats: ANSI, Unicode, and UTF-8.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Before testing double-byte characters with Silk4J

Testing an internationalized application, particularly one that contains double-byte characters, is more
complicated than testing an application that contains strictly English single-byte characters. Testing an
internationalized application requires that you understand a variety of issues, from operating system
support, to language packs, to fonts, to working with IMEs and complex languages.

Before you begin testing your application using Silk4J, you must do the following:

• Meet the needs of your application under test (AUT) for any necessary localized OS, regional settings,
and required language packs.

• Install the fonts necessary to display your AUT.
• If you are testing an application that requires an IME for data input, install the appropriate IME.

UI Automation
Microsoft UI Automation (UI Automation) is a framework that enables you to access, identify, and
manipulate UI elements of any application by providing programmatic access to these user interface
elements. When testing against Windows-based applications that have implemented UI Automation
provider interfaces, you can use UI Automation to improve the object recognition for the controls in these
applications. In this Help, we will refer to such controls as UI Automation controls.

Note: Silk4J supports testing Windows-based applications that have implemented UI Automation on
machines with Microsoft Windows 8 or later.

UI Automation provides fallback support for applications that are based on the following technologies:

• Win32
• WPF
• WinForms
• Oracle JavaFX
• QT
• PowerBuilder

Enhancing Tests | 289

https://www.microfocus.com/documentation/silk-test/195/en/silktest-195-releasenotes-en.pdf

• Delphi
• Microsoft Office

For example, if you cannot record a test against your application because Silk4J cannot recognize the
objects in the application or because Silk4J recognizes all objects in the application as Control, you could
try to enable the UI Automation support.

To enable the UI Automation support during recording, stop recording, enable the option
OPT_ENABLE_UI_AUTOMATION_SUPPORT, and resume recording. For additional information, see
Setting UI Automation Options.

Note: The UI Automation support overrides the standard technology-domain-specific support. When
you are finished interacting with the controls that require UI Automation support, disable the UI
Automation support again to resume working with standard controls.

Note: If you are testing against a Java FX application, you do not have to enable the UI Automation
support, as Silk4J enables this out-of-the-box for Java FX applications.

To ensure that the methods supported for a UI Automation control cover the corresponding controls in all
supported technologies, the Silk4J API supports only a subset of the methods and properties available for
these controls. To call additional methods and properties that are not available in the Silk4J API for a
control, use dynamic invoke.

Dynamically Invoking UI Automation Methods
To ensure that the methods supported for a UI Automation control cover the corresponding controls in all
supported technologies, the Silk4J API supports only a subset of the methods and properties available for
these controls. To call additional methods and properties that are not available in the Silk4J API for a
control, use dynamic invoke.

Dynamic invoke enables you to directly call methods, retrieve properties, or set properties, on an actual
instance of a control in the application under test. You can also call methods and properties that are not
available in the Silk4J API for this control. Dynamic invoke is especially useful when you are working with
custom controls, where the required functionality for interacting with the control is not exposed through the
Silk4J API.

Call dynamic methods on objects with the invoke method. To retrieve a list of supported dynamic
methods for a control, use the getDynamicMethodList method.

Call multiple dynamic methods on objects with the invokeMethods method. To retrieve a list of supported
dynamic methods for a control, use the getDynamicMethodList method.

Retrieve dynamic properties with the getProperty method and set dynamic properties with the
setProperty method. To retrieve a list of supported dynamic properties for a control, use the
getPropertyList method.

For example, to call a method named SetTitle, which requires the title to be set as an input parameter of
type string, on an actual instance of a control in the application under test, type the following:

control.invoke("SetTitle","my new title");

Note: Typically, most properties are read-only and cannot be set.

Note: Reflection is used in most technology domains to call methods and retrieve properties.

Supported Parameter Types

The following parameter types are supported:

• All built-in Silk4J types.

290 | Enhancing Tests

Silk4J types include primitive types, for example boolean, int, and string, lists, and other types, for
example Point and Rect.

• Enum types.

Enum parameters must be passed as string. The string must match the name of an enum value. For
example, if the method expects a parameter of the .NET enum type System.Windows.Visiblity
you can use the string values of Visible, Hidden, or Collapsed.

• .NET structs and objects.

Pass .NET struct and object parameters as a list. The elements in the list must match one constructor
for the .NET object in the test application. For example, if the method expects a parameter of the .NET
type System.Windows.Vector, you can pass a list with two integers. This works because the
System.Windows.Vector type has a constructor with two integer arguments.

• Other controls.

Control parameters can be passed as TestObject.

Supported Methods and Properties

The following methods and properties can be called:

• All public methods and properties that the MSDN defines for the AutomationElement class. For
additional information, see http://msdn.microsoft.com/en-us/library/
system.windows.automation.automationelement.aspx.

• All methods and properties that MSUIA exposes. The available methods and properties are grouped in
"patterns". Pattern is a MSUIA specific term. Every control implements certain patterns. For an overview
of patterns in general and all available patterns see http://msdn.microsoft.com/en-us/library/
ms752362.aspx. A custom control developer can provide testing support for the custom control by
implementing a set of MSUIA patterns.

Returned Values

The following values are returned for properties and methods that have a return value:

• The correct value for all built-in Silk4J types.
• All methods that have no return value return null.
• A string for all other types.

To retrieve this string representation, call the ToString method on returned .NET objects in the
application under test.

Example

This example shows how you can call the scrolling methods of a UIADocument control
by using dynamic invoke. Silk4J does not expose these scrolling methods in the API, as
these methods are not available for the UIADocument control in all technologies that
have implemented UI Automation provider interfaces.

To see which methods and properties are available for the control, you could use code
similar to the following:

UIADocument textBox = mainWindow.<UIADocument>find("//
UIADocument");
List<String>propertyList = textBox.getPropertyList();
List<String> methodList = textBox.getDynamicMethodList();

For this example, the propertyList that is returned by the GetPropertyList method
includes the property ScrollPattern.VerticalScrollPercent. The methodList
that is returned by the GetDynamicMethodList method includes the method
ScrollPattern.ScrollVertical.

Enhancing Tests | 291

http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx
http://msdn.microsoft.com/en-us/library/ms752362.aspx

By using dynamic invoke, you can call the method ScrollPattern.ScrollVertical
as follows:

textBox.invoke("ScrollPattern.ScrollVertical",
ScrollAmount.SMALL_INCREMENT);

Alternatively, you can call the property ScrollPattern.VerticalScrollPercent
as follows:

textBox.getProperty("ScrollPattern.VerticalScrollPercent");

Locator Attributes for Identifying Controls with UI
Automation
The supported locator attributes for controls in Windows-based applications that have implemented UI
Automation provider interfaces include:

• automationId
• caption
• className
• name
• All dynamic locator attributes

Note: Attribute names are case sensitive, except for mobile applications, where the attribute names
are case insensitive. Attribute values are by default case insensitive, but you can change the default
setting like any other option. The locator attributes support the wildcards ? and *.

For additional information on dynamic locator attributes, see Dynamic Locator Attributes.

To identify controls in Windows-based applications that have implemented UI Automation provider
interfaces within scripts, you can specify the automationId, caption, className, name or any dynamic
locator attribute. The automationId can be set by the application developer. For example, a locator with an
automationId might look like //UIAButton[@automationId="okButton"].

We recommend using the automationId because it is typically the most useful and stable attribute.

Attribute Type Description Example

automationId An identifier that is provided by the developer of the
application under test. The Visual Studio designer
automatically assigns an automationId to every control
that is created with the designer. The application
developer uses this ID to identify the control in the
application code.

//
UIAButton[@automationId="okB
utton"]

caption The text that the control displays. When testing a
localized application in multiple languages, use the
automationId or name attribute instead of the caption.

//UIAButton[@caption="Ok"]

className The class name (without namespace) of the UI
Automation control. Using the className attribute can
help to identify a custom control that is derived from a
standard UI Automation control that Silk4J recognizes.

//
UIAButton[@className='MyCust
omButton']

name The name of a control. Can be provided by the
developer of the application under test.

//
UIAButton[@name="okButton"]

During recording, Silk4J creates a locator for a UI Automation control by using the automationId, name,
caption, or className attributes in the order that they are listed in the preceding table. For example, if a
control has an automationId and a name, Silk4J uses the automationId, if it is unique, when creating the
locator.

292 | Enhancing Tests

To find out which additional custom attributes you could use for the UI Automation controls in your AUT, you
can use the Verify Properties dialog box. To do so, hover the mouse cursor over a UI Automation control
during recording, and click Ctrl+Alt. You can then see which properties are available for the control. For
example, for some applications, the attribute value is useful.

Scrolling in UI Automation Controls
Silk4J provides two different sets of scrolling-related methods and properties, depending on the UI
Automation control.

• The first type of controls includes controls that can scroll by themselves and therefore do not expose the
scrollbars explicitly as children. For example combo boxes, panes, list boxes, tree controls, data grids,
auto complete boxes, and others.

• The second type of controls includes controls that cannot scroll by themselves but expose scrollbars as
children for scrolling. For example text fields.

This distinction in Silk4J exists because the UI Automation controls implement scrolling in those two ways.

Controls that support scrolling

In this case, scrolling-related methods and property are available for the control that contains the
scrollbars. Therefore, Silk4J does not expose scrollbar objects.

Examples

The following command scrolls a list box to the bottom:

listBox.SetVerticalScrollPercent(100)

The following command scrolls the list box down by one unit:

listBox.ScrollVertical(ScrollAmount.SmallIncrement)

Controls that do not support scrolling

In this case the scrollbars are exposed. No scrolling-related methods and properties are available for the
control itself. The horizontal and vertical scrollbar objects enable you to scroll in the control by specifying
the increment or decrement, or the final position, as a parameter in the corresponding API functions. The
increment or decrement can take the values of the ScrollAmount enumeration. For additional
information, refer to the MSUIA documentation. The final position is related to the position of the object,
which is defined by the application designer.

Examples

The following command scrolls a vertical scrollbar within a text box to position 15:

 textBox.UIAVerticalScrollBar().ScrollToPosition(15)

The following command scrolls a vertical scrollbar within a text box to the bottom:

 textBox.UIAVerticalScrollBar().ScrollToMaximum()

Limitations when Using UI Automation
The known limitations when using UI Automation are:

No support for IMEs while using UI Automation support

While the UI Automation support is enabled, Silk4J provides no support for using Input Method Editors
(IMEs).

Enhancing Tests | 293

Troubleshooting when Testing with UI Automation
Support Enabled

Why does a script with UI Automation controls that is recorded on Microsoft Windows 7 not replay
on Microsoft Windows 8 or later?

When you record a script that includes UI Automation controls on Microsoft Windows 7 or prior, and then
try to replay it on Microsoft Windows 8 or later, the replay might fail. That is because Microsoft has changed
the underlying automation, and the UI Automation behave differently between those Windows versions.

For example, some UI Automation controls in an application might have a value for the automationId
attribute on Microsoft Windows 7 and no value for the same attribute on Microsoft Windows 10.

In such a case, Micro Focus recommends recording the script again against the later Microsoft Windows
version.

Text Recognition Support
Text recognition methods enable you to conveniently interact with test applications that contain highly
customized controls, which cannot be identified using object recognition. You can use text clicks instead of
coordinate-based clicks to click on a specified text string within a control.

For example, you can simulate selecting the first cell in the second row of the following table:

Specifying the text of the cell results in the following code:

table.textClick("Brian Miller");

Text recognition methods are supported for the following technology domains:

• Win32.
• WPF.
• Windows Forms.
• Java SWT and Eclipse.
• Java AWT/Swing.

Note: For Java Applets, and for Swing applications with Java versions prior to version 1.6.10, text
recognition is supported out-of-the-box. For Swing applications with Java version 1.6.10 or later,
which do not support Direct3D, you have to add the following command-line element when starting
the application:

-Dsun.java2d.d3d=false

For example:

javaw.exe -Dsun.java2d.d3d=false -jar mySwingApplication.jar

Text recognition is not supported for Java Applets and Swing applications that support Direct3D.
• Internet Explorer.
• WebDriver-based browsers.

294 | Enhancing Tests

Note: Text recognition does not work with controls that are not visible on the screen. For example, you
cannot use text recognition for a text that is scrolled out of view.

Note: Text recognition might not work if the font that is used in the target text is not installed on the
machine on which the test is executed.

WebDriver-based browsers

The text recognition methods can be applied to BrowserWindow and DomElement objects.

Note: Text recognition does not work for text that is drawn in <canvas> elements.

Note: Text recognition does not work for content added by CSS pseudo-elements like ::before
and ::after.

Text recognition methods

Silk4J offers the following methods to drive testing through interacting with the text that the AUT renders on
the screen:

TextCapture Returns the text that is within a control. Also returns text from child controls.

TextClick Clicks on a specified text within a control. Waits until the text is found or the Object
resolve timeout, which you can define in the synchronization options, is over.

TextRectangle Returns the rectangle of a certain text within a control or a region of a control.

TextExists Determines whether a given text exists within a control or a region of a control.

The text recognition methods prefer whole word matches over partially matched words. Silk4J recognizes
occurrences of whole words previously than partially matched words, even if the partially matched words
are displayed before the whole word matches on the screen. If there is no whole word found, the partly
matched words will be used in the order in which they are displayed on the screen.

The methods TextClick, TextRectangle, and TextExists internally use TextCapture to grab the
visible text from the application and allow for further processing of that text. The underlying TextCapture
method is implemented in two different ways. Silk4J decides which implementation to use depending on
the type of the application under test.

• For native windows applications, including WPF, WinForms, and Java applications, but also Internet
Explorer, Silk4J hooks into the text rendering functions of the Windows API to extract the text that the
application draws on the screen.

• For Google Chrome, Mozilla Firefox, Microsoft Edge, and Apple Safari, Silk4J uses a JavaScript-based
approach to retrieve the text after it was rendered by the browser.

Note: Because of the different nature of these two implementations, Silk4J might return different text
for the same web application, depending on which browser is used.

Example

The user interface displays the text the hostname is the name of the host. The following
code clicks on host instead of hostname, although hostname is displayed before host on
the screen:

control.textClick("host");

The following code clicks on the substring host in the word hostname by specifying the
second occurrence:

control.textClick("host", 2);

Enhancing Tests | 295

Grouping Silk4J Tests
You can use the SilkTestCategories class to run Silk4J tests, write TrueLogs, and filter or group tests
with annotations. Define categories of test classes to group the Silk4J tests into these categories, and to
run only the tests that are included in a specified category or a subtype of that category. For additional
information, see Grouping tests using JUnit categories.

To include a Silk4J test in a category, use the @IncludeCategory annotation.

Using the category SilkTestCategories class enables you to write TrueLogs for the Silk4J tests
included in the category. You can also use the SilkTestSuite class to write TrueLogs. For additional
information, see Replaying a Test Method from the Command Line.

Example

The following example shows how you can execute the Silk4J tests that are included in
a category.

To import the Category class you will need to add a line similar to the following to the
start of your test script:

import org.junit.experimental.categories.Category;

Categories can be implemented as classes or as interfaces, for example:

public interface FastTests {}
 public interface SlowTests {}

You can flag an entire class with a category. In the following code sample, all methods in
the class are flagged with the category SlowTests:

@Category({ SlowTests.class})
public class A {
 @Test
 public void a() {
 ...
 }

 @Test
 public void b() {
 ...
 }
}

You can also flag individual methods in a class with a category. In the following code
sample, only the method d is flagged with the category FastTests:

public class B {
 @Test
 public void c() {
 ...
 }

 @Category(FastTests.class)
 @Test
 public void d() {
 ...
 }
}

296 | Enhancing Tests

https://weblogs.java.net/blog/johnsmart/archive/2010/04/25/grouping-tests-using-junit-categories-0

You can flag a class or method with multiple categories:

@Category({ SlowTests.class, FastTests.class })
public static class C {
 @Test
 public void e() {
 ...
 }
}

To run tests in a particular category, you need to set up a test suite:

@RunWith(SilkTestCategories.class)
@IncludeCategory(SlowTests.class)
@SuiteClasses({ A.class, C.class })
// Note: SilkTestCategories is a kind of Suite
public static class SlowTestSuite {}

Why Do I Get the Error: Category cannot be resolved to
a type?
If you want to use categories to group Silk4J tests, and you are faced with the error Category cannot
be resolved to a type, your test class does probably not import the Category class.

To import the Category class you will need to add a line similar to the following to the start of your test
script:

import org.junit.experimental.categories.Category;

Inserting a Result Comment in a Script
You can add result comments to a test script to provide supplemental information about the test. During the
execution of the test, the result comments are added to the TrueLog file of the test.

You can add different comment types for information, warnings, and errors. The following code sample
shows an example for each comment type:

desktop.logInfo("This is a comment!");
desktop.logWarning("This is a warning!");
desktop.logError("This is an error!");

Consuming Parameters from Silk Central
To enable Silk4J to use a parameter that has been set for a test in Silk Central, use the method
System.getProperty("myparam").

Configuration Testing with Silk Central Connect
To work with Silk Central, ensure that you have configured a valid Silk Central location. For additional
information, see Integrating Silk4J with Silk Central

To execute your automated tests on a variety of configurations, which are combinations of operating
systems and Web browsers, you can use Silk Central Connect. Silk Central Connect is a tool that
combines aspects of test execution management and configuration testing into an easy to use interface,
providing the following advantages:

Enhancing Tests | 297

• Simple execution of all your automated unit tests on a variety of configurations.
• Leverages the advantages of the Amazon Web Services, enabling you to easily access a variety of

configurations without any upfront investment.
• Tight integration between Silk Central Connect and Silk4J for easy test creation, maintenance, and

execution.
• Side-by-side result analysis, enabling you to see how all of your tests look like across the different

configurations.

For additional information about Silk Central Connect, refer to the Silk Central Connect Help.

For information about installing, deploying, and licensing Silk Central Connect, refer to the Silk Central
Installation Help.

For information about configuring your test environment, see Setting Up Execution Servers.

Measuring Execution Time
You can use methods and properties provided by the Timer class to measure the time that your tests
require to execute. For additional information, see Timer Class in the Javadoc.

Among other usages, these methods and properties are used for the timing of test executions that are
triggered from Silk Performer. For additional information on integrating Silk4J with Silk Performer, refer to
the Silk Performer Help.

Slowing Down Tests
Some applications under test might require extensive loading of application data in the UI, and might not be
finished on time with loading objects that are required for replaying a test. To successfully replay tests on
such an AUT, you can check for the existence of an object before performing an action on it, or you can add
sleeps before performing an action.

Note: Micro Focus does not recommend generally adding sleeps to tests, because in most cases
Silk4J will automatically detect if an object is available, and sleeps might severely reduce the
performance of tests.

1. To check if an object is available in the AUT, use the exists method.

For example, to wait for six seconds for the button INPUT to become available, add the following line to
your test script:

browserWindow.exists("//INPUT", 6000);

2. To add a sleep before performing an action on a control, use the sleep method.

For example, to sleep for six seconds, add the following line to your test script:

Utils.sleep(6000);

For additional information on these methods, see the Javadoc.

Testing Applications in Multiple UI Sessions on a Single
Machine

To test applications in multiple UI sessions on a single machine or to test multiple agents on a single
machine, connect to multiple Open Agent instances on the machine. Every agent runs in its own UI-
session. A UI session can be a Remote Desktop Protocol (RDP) connection or a Citrix-based connection.

1. Create the UI sessions.

298 | Enhancing Tests

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-379D7084-F970-46D1-AB91-04DE546A1993.html?cp=11_0_2_1_2_1_2
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/SCTM-D613FA9C-INSTALLATIONHELP-CON.html
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/SCTM-D613FA9C-INSTALLATIONHELP-CON.html
http://documentation.microfocus.com:8080/help/index.jsp?topic=%2Fcom.microfocus.sctm.doc%2FSCTM-8D632EEB-SETTINGUPEXECUTIONSERVERS-CON.html
http://documentation.microfocus.com:8080/help/topic/com.microfocus.silkperformer.doc/GUID-B1C1E2FF-7E91-4528-80FD-94B9F6244033.html

2. Open a command line window.

3. Navigate to the folder /ng/agent in the Silk Test installation directory.

For example, the default folder path might look like the following: C:\Program Files (x86)\Silk
\SilkTest\ng\agent.

4. In each UI session, execute the following command: openAgent.exe -infoServicePort=<port>.

Note: Use a unique port number, because this port will be used in your Silk4J script to identify the
Open Agent and the UI session in which the agent is running.

5. Change your Silk4J scripts to connect to the Open Agent instances.

To connect to an Open Agent instance, add the following line to the script:

Desktop desktopSession = new Desktop("hostname:port");

Where hostname is the name of the machine on which the agent is running, and port is the unique port
that you have specified.

The resulting objects are independent of each other and can be used either in one thread or in multiple
threads.

Note: If you want to launch an application in multiple UI sessions, you have to execute the base state
for each UI session.

Note: To use TrueLog when testing applications in multiple UI sessions on a remote machine, you
need to manually copy any generated TrueLog files from the remote machine to your local machine.

Example

Assume that the server machine that is hosting the UI sessions is named ui-srv. You
can create three UI sessions by using the ports 22903, 22904, and 22905.

In the first session, open the command line window, navigate to the agent directory,
and type the following:

openAgent.exe -infoServicePort=22903

Do the same for the other two sessions with the respective ports 22904 and 22905.

To connect to the Open Agent instances, add the following code to your script:

Desktop desktopSession1 = new Desktop("ui-srv:22903");
Desktop desktopSession2 = new Desktop("ui-srv:22904");
Desktop desktopSession3 = new Desktop("ui-srv:22905");

The following sample script prints a simple text to each of the three UI sessions:

public class TestMultiSession {
 Desktop d1 = new Desktop("ui-srv:22903");
 Desktop d2 = new Desktop("ui-srv:22904");
 Desktop d3 = new Desktop("ui-srv:22905");

 @Test
 public void test() {
 BaseState basestate = new BaseState();
 basestate.execute(d1);
 basestate.execute(d2);
 basestate.execute(d3);

 d1.<Window>find("//Window").typeKeys("Hello to session 1!");
 d2.<Window>find("//Window").typeKeys("Hello to session 2!");
 d3.<Window>find("//Window").typeKeys("Hello to session 3!");
 }
}

Enhancing Tests | 299

Using Selenium WebDriver
Selenium WebDriver is a powerful open-source automation tool, enabling automated web-application
testing on any browser using a WebDriver-compliant driver. By using Silk4J with WebDriver, you gain the
following main benefits:

• You can easily record new WebDriver scripts, instead of writing code.
• You can replay your existing WebDriver scripts with Silk4J, or even schedule them for execution with

Silk Central.
• You can generate TrueLog files for your WebDriver scripts. With TrueLog, Silk4J enables you to easily

locate the line in your script that generated an error.

Using Selenium with Existing Silk4J Scripts
Note: The functionality described in this topic requires Java 8 or later.

To add WebDriver functionality to an existing Silk4J script, you can create a mixed script. To create such a
mixed script, use the Open Agent as a Selenium server which is activated when a Silk4J base state is
executed.

1. Add the Silk Test Selenium Client Library to the project that contains the Silk4J script.
a) In the Package Explorer, right-click on the project node.
b) Select Silk4J Tools > Add WebDriver Capability.

2. Open the Silk4J script.
3. Retrieve the WebDriver ID of the browser instance that you want to refer to:

BrowserApplication browserApplication = desktop.find("//
BrowserApplication");
WebDriver driver = browserApplication.getWebDriver();

Note: If you want to test a hybrid application, use the following code:

BrowserWindow browserWindow = desktop.find("//BrowserWindow");
WebDriver driver = browserWindow.getWebDriver();

You can now use the RemoteWebDriver object in the same way as when you are using standalone
Selenium. For example:

driver.get("http://demo.borland.com/InsuranceWebExtJS/");
driver.findElementById("login-form:login");

When you execute the script, all Selenium and Silk4J actions, along with any screenshots and parameters,
are logged to the TrueLog.

Executing Selenium Scripts
You can execute Selenium WebDriver scripts with Silk4J to use synchronization and to create a detailed
TrueLog during test execution. If a browser type is specified in the capabilities on a machine on which the
Open Agent is running, and you create a RemoteWebDriver and connect it to the Selenium server which
is running on the Open Agent, Silk4J automatically launches the corresponding browser. If the browser
type is not specified, the Open Agent tries to reuse an existing browser instance that has been launched in
advance for example by executing a Silk4J base state.

To generate a visual execution TrueLog file during the execution of a Selenium script, you can use the Silk
Test TrueLog API for Selenium WebDriver. This API is implemented as a REST interface, and the endpoint

300 | Using Selenium WebDriver

host and port used by this API are identical to the ones used by the Selenium server, for example http://
localhost:4444/silktest/truelog.

The REST API files are located in the Silk Test installation folder under \ng\TrueLogAPI\:

• The file SilkTestTrueLogService-doc.html contains the REST API documentation.
• The file SilkTestTrueLogService.yaml contains the REST API declaration.
• The file trueLogApiClient.jar contains a Java client for the REST API.

By importing the REST API declaration file into the Swagger Editor and then using the Generate Client
functionality of the editor, without making any changes to the declaration file, you can generate the client
API library for a vast amount of languages like Python, Ruby, JavaScript, C#, and others. You can then
download the TrueLog API in the selected programming language.

You can execute Selenium scripts with Silk4J against the following browsers:

• Google Chrome
• Microsoft Edge
• Mozilla Firefox
• Apple Safari

1. Start the Open Agent on the machine on which Silk4J is installed.

2. Start the browser against which you want to test your application.

• For Google Chrome, Microsoft Edge, and Mozilla Firefox, you can use the default capabilities from
WebDriver to start the browser. For example, you can start Google Chrome by using the java
bindings as shown in the following code:

RemoteWebDriver driver = new RemoteWebDriver(new URL("http://localhost:
4444/wd/hub"), DesiredCapabilities.chrome());

• For Apple Safari, you have to specify a custom browser name as a capability, as shown in the
following code:

DesiredCapabilities safari = new DesiredCapabilities();
 safari.setCapability("browserName", "SilkSafari");

3. Optional: Pass additional options as capabilities.

The custom Silk4J options are passed as a map and have the capability name silkTestOptions.

For example, the following code sample shows how you can activate the automatic synchronization for
Selenium, by setting the syncEnabled option:

Map<String, Object> options = new HashMap<>();
options.put("syncEnabled" , true);
capabilities.setCapability("silkTestOptions" , options);

The following options are allowed:

Option Type Description

commandLineArguments String Passes command line arguments to the browser that is
launched.

connectionString String Specifies a connection string to a browser running on a remote
machine.

startUrl String The URL that the browser navigates to when the browser is
launched.

syncEnabled boolean Turns the Silk Test AJAX synchronization on or off. The default
value is false.

trueLogEnabled boolean You can use this option to enable or disable Truelog. The default
value is true.

Using Selenium WebDriver | 301

http://swagger.io/swagger-editor/

Option Type Description

trueLogId String The identifier of the TrueLog session that is returned when
calling the StartTrueLog method of the TrueLog API. This
identifier is required if you want to specify the TrueLog that
should include the WebDriver actions for the Open Agent.

trueLogPath String The custom Truelog file path. By default, Truelogs are written to
the Silk Test log directory under %LOCALAPPDATA%\Silk
\SilkTest\logs.

trueLogScreenshotMode String Specifies when screenshots are added to Truelogs.

OnError A screenshot is added to the Truelog when an
error occurs.

always A screenshot is added to the Truelog for each
action.

4. Optional: To specify the port that is used by the Selenium server, perform the following:
a) Navigate to %APPDATA%\Silk\SilkTest\conf.
b) Create a new properties file with the name selenium.properties.
c) Type selenium.server.port=<port name> into the new file.

The following code sample turns on synchronization and starts Google Chrome with the Selenium Java
bindings:

DesiredCapabilities capabilities = DesiredCapabilities.chrome();
Map<String, Object> options = new HashMap<>();
options.put("syncEnabled", true);
capabilities.setCapability("silkTestOptions", options);
RemoteWebDriver driver = new RemoteWebDriver(new URL("http://localhost:
4444/wd/hub"), capabilities);

The following code sample specifies the TrueLog file for the Open Agent and starts Google Chrome with
the Selenium Java bindings:

TrueLogAPI truelogAPI = new TrueLogAPI();
truelogAPI.startTrueLog("C:/temp/myTrueLogFile.tlz");
String truelogId = truelogAPI.getTrueLogId();

DesiredCapabilities capabilities = DesiredCapabilities.chrome();
Map<String, Object> options = new HashMap<>();
options.put("trueLogId", trueLogId);
capabilities.setCapability("silkTestOptions", options);
RemoteWebDriver driver = new RemoteWebDriver(new URL("http://localhost:
4444/wd/hub"), capabilities);

You can now use the RemoteWebDriver object in the same way as when you are using standalone
Selenium. For example:

driver.get("http://demo.borland.com/InsuranceWebExtJS/");
driver.findElementById("login-form:login");

When you execute the script, all Selenium and Silk4J actions, along with any screenshots and parameters,
are logged to the TrueLog.

Entering Special Keys Into A Text Field
When testing web applications, Silk4J offers the following recording modes:

• Silk Test, which allows you to record Silk4J locators.
• WebDriver, which allows you to record WebDriver locators. This recording mode is not supported when

recording against Internet Explorer.

302 | Using Selenium WebDriver

In this topic, we will describe how you can enter special keys by adding code to a script that has been
recorded by using the WebDriver recording mode. For information on handling special keys when using
the Silk Test recording mode, you can refer to the API documentation of the typeKeys method.

When using the WebDriver recording mode, special keys need to be placed between angled brackets. For
example <back_space> or <enter>.

All special keys in the class org.openqa.selenium.Keys.java are allowed in Silk4J. The values of the keys
are case-insensitive.

Note: In all supported browsers except Mozilla Firefox, you can send multiple special keys or key
chords in a single call to the sendKeys method. However, to create cross-browser scripts that will
also work on Mozilla Firefox, Micro Focus recommends sending only a single string, special key, or
key chord at a time with each call to sendKeys.

Example

When using the sendKeys method on a text field during recording, the following sample
parameter values for the Keys parameter work on all browsers:

K
e
y
s
P
a
r
a
m
e
t
e
r

K
ey
s
P
ar
a
m
et
er
Ty
pe

Generated Java Code

h
e
l
l
o

Si
m
pl
e
str
in
g

driver.findElement(By.id("login-
form:email")).sendKeys("hello");

<
b
a
c
k
_
s
p
a
c
e
>

S
pe
ci
al
ch
ar
ac
ter

driver.findElement(By.id("login-
form:email")).sendKeys(Keys.BACK_SPACE)
;

<
c
o
n

C
ho
rd

driver.findElement(By.id("login-
form:email")).sendKeys(Keys.chord(Keys.
CONTROL, "a"));

Using Selenium WebDriver | 303

http://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/Keys.html

K
e
y
s
P
a
r
a
m
e
t
e
r

K
ey
s
P
ar
a
m
et
er
Ty
pe

Generated Java Code

t
r
o
l
+
a
>

For example, let us assume we have recorded the following actions.

As there are only single special characters or key chords in each call to the sendKeys
method, these actions replay on all supported browsers, including Mozilla Firefox.

The corresponding generated code, for example in Java, looks like the following:

driver.findElement(By.id("login-
form:email")).sendKeys("helloo");
driver.findElement(By.id("login-
form:email")).sendKeys(Keys.BACK_SPACE);
driver.findElement(By.id("login-form:email")).sendKeys("
hello");
driver.findElement(By.id("login-
form:email")).sendKeys(Keys.chord(Keys.CONTROL, "a"));
driver.findElement(By.id("login-
form:email")).sendKeys(Keys.BACK_SPACE);
driver.findElement(By.id("login-form:email")).sendKeys("bye");

304 | Using Selenium WebDriver

Using Keyword-Driven Tests as
Performance Tests

In addition to performing functional testing and regression testing with Silk4J, you can export your keyword-
driven tests to Silk Performer and use them for performance testing and load testing.

To export keyword-driven tests to Silk Performer, ensure that Silk Performer 18.0 or later is installed. Select
the Silk4J project that contains the keyword-driven tests and click Export as Performance Tests in the
Silk4J menu.

If you have already exported the keyword-driven tests in a Silk4J project to Silk Performer, and you want to
update the corresponding project in Silk Performer, perform the following actions.

1. Start Silk Performer.
2. Open the project that you want to update.
3. Open the Silk4J project.
4. Click Export as Performance Tests.
5. Confirm that you want to update the current Silk Performer project.

The reference to the library in the Data Files node of the Silk Performer project will be updated.

For additional information, refer to the Silk Performer documentation.

Using Keyword-Driven Tests as Performance Tests | 305

Known Issues
This section identifies any known issues with Silk4J and their resolutions.

General Issues

Object Map Takes a Long Time to Open

If you have a large object map asset it takes a long time to load when you are using .NET 4. Install .NET
4.5 to resolve this issue.

When a remote desktop or remote desktop connection (RDC) is minimized, Silk Test does not
function

When you connect through the remote desktop protocol (RDP) to a desktop, you take ownership of the
desktop by attaching to the desktop with your mouse and keyboard. If the desktop is minimized without
ownership of the desktop being released, any playback of mouse clicks or keystrokes is undefined.

As a workaround, you could use a VNC-based remote viewing tool. This would allow replay to continue
even if the client window is minimized.

The Open Agent does not start when the Check Point firewall is installed

When you have a Check Point firewall or a Check Point ZoneAlarm firewall installed on your system, the
Open Agent cannot be started, because the firewall interrupts the communication between the Agent and
the infoservice.

To start the Open Agent, you have to uninstall the Check Point firewall from your system.

The modifiers parameter in the domDoubleClick method is ignored

You cannot specify the modifier in the overloaded domDoubleClick method. The modifier will not be
double-clicked, although you have specified the parameter. The overloaded domDoubleClick method,
which allows you to specify the modifier, is deprecated. To specify the modifier, you can use the
doubleClick method, if you are using a client that supports an overloaded method with the modifiers
parameter, or the PressKeys and ReleaseKeys methods.

Silk Test does not support testing Metro-style apps

Silk Test does not support testing Metro-style apps on Microsoft Windows 8, Microsoft Windows 8.1, or
Microsoft Windows 10. Metro-style apps are also known as Windows 8 style, Modern UI style, Windows
Store style, or Universal Windows Platform (UWP) apps.

The built-in spell checking in Microsoft Windows 8 might interfere with the replay of tests

The built-in spell checking in Microsoft Windows 8 can be enabled in applications like Internet Explorer 10.

If a word was incorrectly spelled during recording, and you replay typing this word, the spell checker will
either mark it, or for commonly misspelled words will automatically fix it, which is the same behaviour a real
user would get. If your tests were created on an operating system that did not include the spell checking
feature, you might get unexpected results when replying the tests on Microsoft Windows 8. To disable the
spell checking, you can do the following:

1. Press Windows Key + C.

306 | Known Issues

2. On the Charm bar, click Settings.
3. Select More PC Settings.
4. Select General to see the Spelling selections.

Note: These are system-wide settings, not settings specific to Internet Explorer.

5. Set Autocorrect misspelled words to off.
6. Set Highlight misspelled words to off.

When a .NET application is started from DevPartner Studio (DPS), Silk Test might not recognize it

To resolve the issue, perform the following steps:

1. Go to the Silk Test installation folder (by default, it's located at: C:\Program Files\Silk
\SilkTest).

2. For Windows Forms applications, go to ng\agent\plugins
\com.borland.fastxd.techdomain.windowsforms.agent_<version number>.

3. For Windows Presentation Foundation (WPF) applications, go to ng\agent\plugins
\com.microfocus.silktest.techdomain.wpf.agent_<version number>.

4. In Notepad, open the file plugin.xml, and add the following line to the <loadparameters> section:

<param name="frameworkAssembly">mscoree.dll</param>

5. Log out of the computer, and then log back in. Silk Test works as expected with the application that was
started by DevPartner Studio.

The highlighting rectangle is out of place when recording clicks on an area of an image

When you record a click on a part of a complex image, for example an area map, the green highlighting
rectangle does not highlight the appropriate area of the image. However, the click will be executed correctly
during replay.

The Open Agent might not start if Windows Defender is enabled during the installation of Silk Test

If Windows Defender is enabled on your system during the Silk Test installation, you might not be able to
start the Open Agent after the installation is complete. Windows Defender might prevent the hotfix setup
from performing some required actions. As a workaround, disable Windows Defender during the Silk Test
installation.

The IME editor opens out of place when opened from specific locations

The IME editor opens on the top-left corner of the current screen instead of opening near the text field from
which it is opened.

This behavior occurs when opening the IME editor from the following locations:

• The Silk Recorder.
• The Keyword-Driven Test Editor.
• The Keywords view.

Cannot use Shift+Insert when the Numeric Lock key is active

Using the typeKeys method to paste the contents of the clipboard with Left Shift+Insert or Right Shift
+Insert does not work when the Numeric Lock (Num Lock) key is active.

You can workaround this issue by deactivating the Num Lock in your test script before calling the
typeKeys method.

Known Issues | 307

Mobile Web Applications

Silk4J does not support frames on Apple Safari

Silk4J does not support HTML frames and iframes on Apple Safari on iOS.

Chrome for Android 43 or later: Silk4J does not support zooming and scrolling at the same time

Recording a mobile web application on Chrome for Android 43 or later, while the mobile web application is
zoomed and the top-left corner is not visible on the screen, might not work as expected. If the green
rectangles for the controls in a mobile web application are not correctly displayed during recording, zoom-
out the mobile web application completely, scroll to the top-left corner of the mobile web application, and
refresh the Recording window.

Web Applications

Recording with a zoom level different to 100% might not work properly

Recording a Web application with a zoom level different to 100% might not work as expected. Before
recording actions against a Web application, set the zoom level in the browser to 100%.

Google Chrome

Locator recording in windows fails with Google Chrome

When you are testing a Web application in Google Chrome, locator recording in windows fails when
multiple windows are open during application configuration in the Google Chrome instance, in which the
application is running. If you close the other Google Chrome windows during application configuration, the
error will not appear.

Background applications in Google Chrome prevent automation support from loading

When you want to test a Web application with Google Chrome and the Continue running background
apps when Google Chrome is closed check box is checked, Silk Test cannot restart Google Chrome to
load the automation support.

Silk Test cannot record locators in modal dialogs when Windows Aero is disabled

If Windows Aero functionality is disabled, modal dialogs are not recognized and locators in such dialogs
cannot be selected. As a workaround, use the Locator Spy or the Identify Object dialog box to manually
create and verify locators while a modal dialog is displayed.

Silk Test does not display embedded PDFs

With Google Chrome 42 or later, Google Chrome by default blocks the NPAPI plug-in, which is used to
display embedded PDFs. Because of this, Silk Test does not display embedded PDFs in Google Chrome
42 or later, but instead downloads the embedded PDFs.

• If you are using Google Chrome 44 or prior, you can unblock the NPAPI plug-in in Google Chrome, by
typing the following into the address bar:

chrome://flags/#enable-npapi

• If you are using Google Chrome 45 or later, the NPAPI plug-in is completely removed from Google
Chrome, without an option to re-enable it, and all PDFs are downloaded.

308 | Known Issues

Connection timeouts when executing tests against Google Chrome 49 or prior

When executing tests against Google Chrome 49 or prior on a slow machine, you might experience
connection timeouts, causing the tests to fail. The following error message is displayed:
Error executing '*'. Communication with browser automation timed out.

To avoid such connection timeouts, ensure that the test machine has enough processing power. For
example, if you are testing on a slow virtual machine (VM), you could enhance the processing power by
adding an additional CPU core to the VM.

Setting the UserDataDir through the registry breaks the Google Chrome support when using
Google Chrome 66 or later

If the user data directory is set as a policy in the registry through the key HKEY_LOCAL_MACHINE
\Software\Policies\Google\Chrome\UserDataDir or the key HKEY_CURRENT_USER\Software
\Policies\Google\Chrome\UserDataDir, and you are testing a web application on Google Chrome
66 or later, the base state might fail with the following error message: Failed to start application
'GoogleChrome'. unknown error: DevToolsActivePort file doesn't exist . This is a
known issue in ChromeDriver: https://bugs.chromium.org/p/chromedriver/issues/detail?id=2513.

As a workaround, perform one of the following:

• Remove the registry key.

Note: This is the only way to enable parallel testing with Google Chrome if this issue occurs.

• Set the user data directory in Google Chrome to the same directory as in the registry key.

1. Open the Edit Browser Application Configuration dialog.
2. Select Google Chrome as the browser type.
3. Set the user data directory in the Connection String field: goog:chromeOptions={"args":

["--user-data-dir=<user data directory>"]}. For example, if the value in the registry is
C:/temp/chromeUserData, type goog:chromeOptions={"args":["--user-data-
dir=C:/temp/chromeUserData"]}.

Note: Parallel testing with Google Chrome will not work, even if you apply this workaround.

Internet Explorer

Using Google toolbar interferes with recording Web applications

Using the Google toolbar with Internet Explorer 8 interferes with recording locators for Web applications.

Turn off the Google toolbar before you record Web applications.

Microsoft Silverlight Applications

Some Microsoft Silverlight applications cause Internet Explorer to hang when interacting with Silk Test. On
32-bit platforms, refer to MS KB 2564958 (an update to Active Accessibility) to help prevent the issue.

Locators recorded with Silk Test versions prior to Silk Test 13.5 might no longer work in Internet
Explorer

In Silk Test 13.5, we have adapted the normalization of white spaces of the textContents attribute in
Internet Explorer. This change was made to improve the cross-browser capabilities of Silk Test, and might
affect locators which rely on the textContents attribute, and which are used in scripts that were
recorded with releases prior to Silk Test 13.5.

Known Issues | 309

https://bugs.chromium.org/p/chromedriver/issues/detail?id=2513

The Open Agent cannot have high elevation enabled when UAC is enabled on Microsoft Windows 8
or later and Internet Explorer 11

You cannot test a Web application in Internet Explorer 11 on Microsoft Windows 8 or later and have UAC
enabled and run both Internet Explorer and the Open Agent with high elevation.

Known issues with Input Method Editors (IMEs)

• Silk Test does not record half-width spaces for Japanese input in Internet Explorer 11.
• Silk Test does not record IME input in Internet Explorer 11 in compatibility mode.
• In Japanese IME mode, pressing Space will cause Silk Test to record the current IME candidate. Use

Convert to avoid this issue.

Internet Explorer might stop working while testing an Applet with a Java version higher that 1.7
update 71

Internet Explorer might stop working while testing an Applet with a Java version higher that 1.7 update 71
(7u71).

Internet Explorer does not respond during test execution

Internet Explorer 10 or later might become unresponsive during test execution because a thread in Internet
Explorer is suspended and creates a deadlock. The root cause of this problem is a new security feature in
Internet Explorer.

To solve this issue, disable the security feature.

1. Open the Registry Editor.
2. If the OverrideMemoryProtectionSetting entry does not exist in the key HKEY_CURRENT_USER

\SOFTWARE\Microsoft\Internet Explorer\Main, create the entry.
3. Set the value of the registry key HKEY_CURRENT_USER\SOFTWARE\Microsoft\Internet Explorer

\Main::OverrideMemoryProtectionSetting to 2.

The JavaScript alert-handling API methods do not work with an embedded Internet Explorer

The following JavaScript alert-handling methods of the BrowserWindow class do not work when testing
an embedded Internet Explorer:

• acceptAlert method
• dismissAlert method
• getAlertText method
• isAlertPresent method

Microsoft Edge

Windows opened out of Microsoft Edge are not supported

Windows which are opened as actual new Microsoft Edge windows, and not as tabs, are not supported.
Silk4J cannot close such windows correctly, and the agent is in an invalid state after closing such a window.

JavaScript alerts opened in an iframe or frame cannot be closed

Microsoft Edge cannot close the JavaScript alerts alert(), prompt(), and confirm(), if these alerts were
opened in an iframe or frame.

310 | Known Issues

Cannot open the native browser context menu

If a test includes a right click in Microsoft Edge, which opens the native browser context menu, the test will
hang. This issue does not occur with HTML menus opened by Microsoft Edge.

Cannot execute tests against Microsoft Edge with UAC disabled

When executing tests against Microsoft Edge with UAC disabled, the following error message displays:
Failed to start application 'Edge'. Unable to parse remote response: Unknown error

To solve this issue, enable UAC.

Why do I get the error "Cannot start Edge because the Windows Feature Microsoft WebDriver is not
installed"?

If your system uses the Windows 10 October 2018 Update or a later version of Microsoft Windows 10, and
the Windows Feature Microsoft WebDriver is not installed on your system, you might get the following error
when trying to test on Microsoft Edge:
Cannot start Edge because the Windows Feature Microsoft WebDriver is not installed. See the topic
Known Issues > Microsoft Edge in the Help.

To solve this issue, ensure that the Windows update on your system is working properly. If you using an
internal Windows Update server, perform the following actions:

1. Ask your IT administrator to add the Windows Feature Microsoft WebDriver to the Windows update
server.

2. Install the Windows Feature Microsoft WebDriver. For additional information on installing the feature,
refer to Microsoft WebDriver.

Mozilla Firefox

Calls into applications using Adobe FlashPlayer do not properly synchronize when using Mozilla
Firefox

When you are using Mozilla Firefox with a recent Adobe FlashPlayer version, some calls might not
synchronize properly. The following issues might occur:

• Mozilla Firefox might falsely recognize a running script as stalled and a confirmation dialog box might
appear asking whether you want to continue the execution of the script, even though the script is
running properly.

• Typing characters might not work because SetFocus is no longer working correctly.
• The Adobe automation might return an old value although the UI already shows a new value.

If you face one or more of these issues with applications using Adobe FlashPlayer, turn off the
ProtectedMode in Adobe FlashPlayer. For additional information, see http://forums.adobe.com/thread/
1018071 and read the information provided under Last Resort.

SAP Applications

HierarchyHeaderWidth and ColumnOrder Properties of the SAPTree Class are write only

Other than the automation documentation indicates, the HierarchyHeaderWidth and ColumnOrder
properties of the SAPTree class are write only and cannot be read.

Ensure that your scripts use write rather than read with these properties.

Known Issues | 311

https://developer.microsoft.com/microsoft-edge/tools/webdriver/
http://forums.adobe.com/thread/1018071
http://forums.adobe.com/thread/1018071

GetColumnIndexFromName() of the SapTree Class May Fail with an "unspecified error"

GetColumnIndexFromName() of the SapTree class may fail with an "unspecified error". This is a known
issue in SAP automation.

Check the SAP web site to see if the issue has been resolved.

Calling the Select() method of the SAPTree Class on a Context menu item may fail

Calling the Select() method of the SAPTree class on a Context menu item may fail.

Call SelectContextMenuItem on the parent control instead. This problem is a known issue in the SAP
automation.

The position property for a horizontal scrollbar always returns 1

The position property for a horizontal scrollbar always returns 1. This is a known issue in SAP automation.

Check the SAP web site to see if the issue has been resolved.

The SAPNetPlan class is not supported

This issue will be resolved in a future release.

Replay error occurs when executing an SAP script

In certain cases, if you record an SAP test and then replay it, the following error might occur: The data
necessary to complete this operation is not yet available. This means that Silk4J is
executing the recorded actions too fast.

To solve this issue, you can add sleeps to your test script or you can increase the post replay delay to
increase the time that Silk4J waits after invoking a function or setting a property. For additional information
about this option, see Agent Options. You could also change the script to use SAP automation to replay the
problematic action instead of using the xBrowser technology domain. For example, you could change the
action DomLink.Select to SapHTMLViewer.SapEvent.

The method getCurrentRow returns a wrong value with SAPGUI client 7.30

If you use SAPGUI client 7.30 and you call the method getCurrentRow, the method might falsely return
-1 instead of the row number.

The method resizeWorkingPane is not working correctly with SAPGUI client 7.30

If you use SAPGUI client 7.30 and you call the method resizeWorkingPaneEx, the method will not
resize the workingPane and calling getSapWindow().getWidth() will return a wrong value for the
window width.

Oracle Forms

Silk4J does not support testing Oracle Forms with a Java version higher than 1.7 update 60

Silk4J does not support testing Oracle Forms with a Java version higher than 1.7 update 60 (7u60).

312 | Known Issues

Silk4J

When you are using object maps, existing locators that do not start with a slash will no longer work

Locators that include only a class name and that do not start with a slash, for example PushButton, will
no longer work if object maps exist. This issue might result in breaking existing scripts that were created in
a Silk Test version prior to Silk Test 14.0. For the previous example the script will fail with the following
error:
Identifier 'PushButton' was not found in the Object Map.

More complex locators that include more than a class name, for example PushButton[@caption=OK]
will continue to work, even if object maps exist.

To fix this issue, add a // to the start of any such locator. For example, if the locator PushButton in the
following code does no longer work:

PushButton button = mainWindow.find("PushButton");

Change the code to:

PushButton button = mainWindow.find("//PushButton");

Known Issues | 313

Enabling or Disabling Usage Data
Collection

To help Micro Focus improve your overall testing experience, Micro Focus would like to collect some
information on how you use Micro Focus software and services. By accepting the terms of the License
Agreement while installing Silk4J, you allow Micro Focus to collect information about how you use Silk4J
and about the computer system on which Silk4J is installed. Micro Focus does not collect any personally
identifiable information, for example your name or address, or any of your data files, for example scripts or
passwords. By allowing Micro Focus to collect this information, you assist Micro Focus in identifying trends
and usage patters.

To enable or disable the collection of usage data by Micro Focus:

1. Click Silk4J > About Silk4J in the menu.

2. In the About dialog box, click Customer Feedback Options.

3. Select one of the following options:

• To enable usage data collection, click Yes, I am willing to participate.
• To disable usage data collection, click No, I would not like to participate.

4. Click OK.

314 | Enabling or Disabling Usage Data Collection

Contacting Micro Focus
Micro Focus is committed to providing world-class technical support and consulting services. Micro Focus
provides worldwide support, delivering timely, reliable service to ensure every customer's business
success.

All customers who are under a maintenance and support contract, as well as prospective customers who
are evaluating products, are eligible for customer support. Our highly trained staff respond to your requests
as quickly and professionally as possible.

Visit http://supportline.microfocus.com/assistedservices.asp to communicate directly with Micro Focus
SupportLine to resolve your issues, or email supportline@microfocus.com.

Visit Micro Focus SupportLine at http://supportline.microfocus.com for up-to-date support news and access
to other support information. First time users may be required to register to the site.

Information Needed by Micro Focus SupportLine
When contacting Micro Focus SupportLine, please include the following information if possible. The more
information you can give, the better Micro Focus SupportLine can help you.

• The name and version number of all products that you think might be causing an issue.
• Your computer make and model.
• System information such as operating system name and version, processors, and memory details.
• Any detailed description of the issue, including steps to reproduce the issue.
• Exact wording of any error messages involved.
• Your serial number.

To find out these numbers, look in the subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

Contacting Micro Focus | 315

http://supportline.microfocus.com/assistedservices.asp
http://supportline.microfocus.com

Index
.NET support

overview 159
Silverlight 170
Windows Forms overview 159
Windows Presentation Foundation (WPF) overview

163

A

Accessibility
enabling 87, 288
improving object recognition 288
using 288

action recording
merging object map entries 259

ActiveX
invoking methods 90
overview 90

add-ons
Google Chrome 197
Mozilla Firefox 201

adding
keywords 228

adding keywords
keyword-driven tests 227

adding multiple images
image assets 271

admin rights
installing 12
running 12

Adobe Flex
adding configuration information 107
Adobe Air support 103
automationName property 110
coding containers 113
containers 113
creating applications 108
FlexDataGrid control 104
invoking methods 93
loading at run-time 107
multiview containers 114
passing parameters 107
passing parameters at runtime 107
passing parameters before runtime 107
run-time loading 106
security settings 116
select method, overview 103
select method, setting 112
testing playback 115

advanced
options 87

agent options
Open Agent 54

agents
configuring ports, information service 64
options 54
overview 54

port numbers 63
starting 54

AJAX applications
browser recording options, setting 81
script hangs 209

analyzing
test results 51

analyzing results
tests 51

Android
configuring emulator 126
enabling USB-debugging 126
hybrid applications 124
installed apps, testing 141
installing USB drivers 125
invoking methods 157
mobile native applications, prerequisites 123
mobile web applications, prerequisites 123
native apps, creating tests 26
parallel testing, tested configurations 128
recommended settings 126
releasing devices 147
releasing devices, recording 147
releasing devices, replay 147
testing 123
troubleshooting 148
web applications, creating tests 25

Android emulator
configuring 126

Ant
replaying tests, troubleshooting 38
running keyword-driven tests 235
running tests 36

Apache Flex
Component Explorer 92
attributes 116, 213
automationIndex property 109
automationName property 109
class definition file 101, 110
controls are not recognized 116
custom controls 92, 284
custom controls, defining 94, 101, 110
custom controls, implementing 99
customizing scripts 102
enabling your application 104
Flash player settings 91
initializing, applications 114
invoking methods 93
invoking methods for custom controls 96
linking automation packages 104
overview 91
precompiling the application 105
recording, applications 114
select method, setting 112
styles 115
testing 92
testing multiple applications 102
workflow 114

316 | Index

Apache Flex applications
custom attributes 109, 252

API playback
comparing to, native playback 185

Apple Safari
connection string 189
information service, installing 136, 140, 193, 195
limitations 194
preparing 192
prerequisites 192
running multiple tests 195
support 181
testing 191

application configurations
adding 75
definition 74
errors 77
keyword-driven tests 225
modifying 75
removing 75
troubleshooting 78

assets
opening from a script 272

attribute types
Apache Flex 116, 213
Java AWT 117, 214
Java Swing 117, 214
Java SWT 121, 214
Oracle Forms 120
overview 213
SAP 176, 214
Silverlight 171, 215
UI Automation 216, 292
Web applications 212, 217
Windows 163, 218
Windows Forms 159, 217
xBrowser 212, 217

attribute values
finding with Locator Spy 32

B

base state
definition 69
executing 72
keyword-driven tests 225
modifying, script 71
modifying, user interface 69

basestate
about 69

best practices
scripts, creating 30

blacklists
UI Automation, locator attributes 86

browser
defining, playback 182
maximize 207

browser configuration settings
xBrowser 187

browser testing
replay, parallel 46

browser type

Chrome for Android, setting 153
viewing current 208
viewing current, GetProperty 208

browser window
specifying size 204

browsers
options, setting 81
starting, scripts 211

browsertype
Chrome for Android, setting 153
using 208

C

calling dlls
example 276
Java 275
scripts 275

capabilities
iOS 66, 139

capturing
web pages, full page 53

CEF
testing 179

Chrome
configuration settings 187
cross-browser scripts 210
extensions, testing 197
known issues 308
locators 210
prerequisites 196
recording tests 29
testing 196
user data directories, testing 197

Chrome for Android
browser type, setting 153
support 181

Chromium Embedded Framework
testing 179

class names
finding with Locator Spy 32

classes
exposing 84
ignoring 84

Click
mobile web 158

combining
keywords 228

command line
running keyword-driven tests 234
running tests 35

Component Explorer
Apache Flex 92

Configuration Assistant
automatic signing 136

configuration testing
Silk Central Connect 297

configuring ports
information service, clients 64
Open Agent 65

connection string
desktop browsers, local 190

Index | 317

desktop browsers, remote 189
mobile devices 144

contact information 315
continuous integration

uploading keyword libraries 241
continuous integration servers

running tests 38
running tests on Silk Central 45

creating
keyword-driven tests 223

creating stable locators
overview 250

creating tests
mobile native applications 26
mobile web applications 25
standard applications 25
web applications 24

creating visual execution logs
TrueLog 51
TrueLog Explorer 51

cross browser testing
Apple Safari 191
Apple Safari, limitations 194
current browser type, viewing 208
FAQs 207
Google Chrome 196
Microsoft Edge 203
Microsoft Edge, limitations 203
mouse move preferences, setting 186
Mozilla Firefox 199
object maps, using 260
object recognition 184
overview 181
recording locators 210
scrolling 207
test objects 183
wrong timestamps, logs 209

cross-browser testing
Apple Safari 191
Apple Safari, limitations 194
connection string 189
current browser type, viewing 208
FAQs 207
Google Chrome 196
Microsoft Edge 203
Microsoft Edge, limitations 203
mouse move preferences, setting 186
Mozilla Firefox 199
object maps, using 260
object recognition 184
overview 181
recording locators 210
remote locations, adding 76
scrolling 207
test objects 183
wrong timestamps, logs 209

current browser type
viewing 208

custom attributes
Apache Flex applications 109, 252
controls 252
including in tests 33

setting 83
Web applications 212, 253
Windows Forms applications 159, 254
WPF applications 165, 254

custom controls
adding code to AUT 281
adding code to AUT, FAQs 283
Apache Flex, defining 101, 110
Apache Flex, implementing 99
creating custom classes 286
dialog box 287
dynamic invoke, FAQs 281
dynamically invoking Apache Flex 96
Flex, defining 94
injected code is not used in AUT 283
invoke call returns unexpected string 281
managing 284
overview 280
supporting 286
testing (Apache Flex) 92, 284

custom properties
controls 252

Customer Care 315

D

debug
Docker 44

deleting
keywords 228

deleting scripts
object map items 268

device not connected
mobile 148

Dialog
not recognized 207

dlls
aliasing names 279
calling conventions 279
calling from Java 275
calling from within a script 275
example call 276
function declaration syntax 276
passing arguments that can be modified to functions

278
passing arguments to functions 277
passing string arguments to functions 278

Docker
environment variables 40
example 40
limitations 43
tests, running 38
troubleshooting 44

docker-compose
example 42

downloads 315
dynamic invoke

adding code to AUT, FAQs 283
Android 157
FAQs 281
input argument types do not match 283
iOS 157

318 | Index

mobile native 157
overview 280
simplify scripts 281
unexpected return value 281

dynamic locator attributes
about 219

dynamic object recognition
creating test 30

dynamically invoking methods
ActiveX 90
Apache Flex 93
Apache Flex custom controls 96
Java AWT 117, 121
Java Swing 117, 121
Java SWT 117, 121
SAP 177
SAP controls 178
Silverlight 172
UI Automation 290
Visual Basic 90
Windows Forms 159
Windows Presentation Foundation (WPF) 166

DynamicInvoke
ActiveX 90
Android 157
Apache Flex 93
iOS 157
Java AWT 117, 121
Java Swing 117, 121
SAP 177
Silverlight 172
UI Automation 290
Visual Basic 90
Windows Forms 159
Windows Presentation Foundation (WPF) 166

E
Eclipse

troubleshooting 122
Eclipse RCP

support 120
Edge

connection string 189
known issues 310
limitations 203
locators 210
recording tests 27
remote testing 189
testing 203

editing
remote locations 76

embedded Chrome
testing 179

Emulator
defining, playback 142

emulators
testing 123

enabling TrueLog
TrueLog Explorer 52

environment variables
Docker 40

exclude lists
UI Automation 86

excluded characters
recording 34
replay 34

executing keyword-driven tests
variables 237

exposing
WPF classes 84

extensions
Google Chrome 197
Mozilla Firefox 201

F

FAQs
adding code, AUT 283
cross-browser testing 207
dynamic invoke 281
object maps 267

filtering
keywords 243

find references
keywords 243

Firefox
configuration settings 187
cross-browser scripts 210
extensions, testing 201
limitations 201, 202
locators 210
profiles, testing 200
recording tests 28
testing 199

firewalls
port numbers 64
resolving conflicts 63

Flash player
opening applications in 91
security settings 116

Flex
adding configuration information 107
Adobe Air support 103
attributes 116, 213
automationIndex property 109
automationName property 109, 110
class definition file 101, 110
Component Explorer 92
containers 113
creating applications 108
custom controls 92, 284
custom controls, defining 94, 101, 110
custom controls, implementing 99
customizing scripts 102
enabling your application 104
Flash player settings 91
FlexDataGrid control 104
initializing, applications 114
invoking methods 93
invoking methods for custom controls 96
linking automation packages 104
loading at run-time 107
multiview containers 114
overview 91
passing parameters 107

Index | 319

passing parameters at runtime 107
passing parameters before runtime 107
precompiling the application 105
recording, applications 114
run-time loading 106
security settings 116
select method, overview 103
select method, setting 112
styles 115
testing 92
testing multiple applications 102
testing playback 115
workflow 114

Flex applications
creating tests 24

frequently asked questions
adding code, AUT 283
cross-browser testing 207
dynamic invoke 281
object maps 267

full screen
browser 207

G
Google Chrome

additional versions, testing 206
capabilities, setting 190
configuration settings 187
extensions, testing 197
full screen 207
known issues 308
limitations 198
limitations, macOS 198
macOS 190
options, setting 190
prerequisites 196
remote testing 189
support 181
testing 196
user data directories, testing 197

grouping
keywords 244
object map items 267

GWT
locating controls 251

H
hidden

input fields 212
HTML reports

about 51
enabling 80

HTTPS
certificates, replacing 67
information service 66, 139

hybrid applications
Android 124
iOS 134

I
identifiers

stable 250

identifying controls
dynamic locator attributes 219
Locator Spy 255

identifying objects
overview 245

ignoring
classes 84

image assets
creating 270
multiple images, adding 271
overview 270
using in other projects 258, 273

image checks
overview 272

image click recording
overview 269

image clicks
recording 269

image recognition
enabling 269
methods 269
overview 269

image verifications
adding during recording 273
creating 272
overview 272
using in other projects 258, 273

IMEs
UI Automation 293

implementing
keywords 228

importing
projects 23

improving object recognition
Accessibility 288

information service
certificates, replacing 67
configuring ports, clients 64
editing 66, 139
HTTPS 66, 139
Mac, installing 136, 140, 193, 195
ports, configure 63

initializing
Apache Flex applications 114

innerHTML
xBrowser 209

innerText
xBrowserf 209

input argument types do not match
dynamic invoke 283

input fields
finding 212

installed apps
Android, testing 141
iOS, testing 141

installing
information service, Mac 136, 140, 193, 195
privileges required 12

installing USB drivers
Android 125

integrations
configuring Silk Central location 238

320 | Index

Internet Explorer
configuration settings 187
cross-browser scripts 210
full screen 207
known issues 309
link.select focus issue 208
locators 210
misplaced rectangles 209
support 181

Internet Explorer 10
unexpected Click behavior 210

invalidated-handle error
troubleshooting 211

invoke
ActiveX 90
Android 157
iOS 157
Java AWT 117, 121
Java SWT 117, 121
SAP 177
Silverlight 172
Swing 117, 121
UI Automation 290
Visual Basic 90
Windows Forms 159
Windows Presentation Foundation (WPF) 166

Invoke method
callable methods 281

InvokeMethods
ActiveX 90
Android 157
Apache Flex 93
iOS 157
Java AWT 117, 121
Java Swing 117, 121
SAP 177
Silverlight 172
UI Automation 290
Visual Basic 90
Windows Forms 159
Windows Presentation Foundation (WPF) 166

iOS
apps, preparing for testing 135
devices, preparing 135
hybrid applications 134
information service, installing 136, 140, 193, 195
installed apps, testing 141
invoking methods 157
Mac, preparing 136
mobile native applications, prerequisites 130
mobile web applications, prerequisites 130
native app, Simulator 132
native app, testing 131
native apps, creating tests 26
recommended settings 141
releasing devices 147
releasing devices, recording 147
releasing devices, replay 147
testing 129
testing, no developer account 138
web app, Simulator 133
web app, testing 133

web applications, creating tests 25
iOS 9.3

existing scripts, executing 141

J

Java AWT
attribute types 117, 214
attributes 117, 214
custom attributes 33
invoking methods 117, 121
overview 117

Java AWT/Swing
priorLabel 119

Java FX
support 289

Java Network Launching Protocol (JNLP)
configuring applications 78, 119

Java Swing
attributes 117, 214
invoking methods 117, 121
overview 117

Java SWT
attribute types 121, 214
custom attributes 33, 83
invoking methods 117, 121
support 120
troubleshooting 122

Java SWT applications
creating tests 25

JNLP
configuring applications 78, 119

JUnit test case
creating 30

K

keyword libraries
uploading 241

keyword sequences
creating 233
parameters 231

keyword-driven
testing 221

keyword-driven test editor
recommended keywords 230

keyword-driven testing
advantages 221
keyword recommendations, algorithm 230
marking test methods 227
overview 221
parameters, example 231
troubleshooting 244

keyword-driven tests
adding keywords 227
application configurations 225
base state 225
creating 223
editing 227
executing from Silk Central 44
implementing keywords 225
implementing Silk Central keywords 239

Index | 321

keywords, searching 243
recording 223
removing keywords 227
replaying 233, 234
running from command line 234
running from Eclipse 35
running with Ant 235
specifying variables, execution 237
stopping 233
stopping during execution, Silk Central 234
uploading keywords, Silk Central 239

keywords
about 222
adding 228
combining 228, 233
deleting 228
filtering 243
find references 243
finding in project 243
grouping 244
implementing 225, 228
managing 228
marking test methods 227
nesting 228
opening 228
parameters 228, 231
parameters, example 231
recording 226
replacing 228
sequences 228
uploading to Silk Central 239

known issues
about 306
general issues 306
Google Chrome 308
Internet Explorer 309
Microsoft Edge 310
mobile web applications 308
Mozilla Firefox 311
Oracle Forms 312
SAP 311
Silk4J 313
web applications 308

L
libraries

uploading 241
licensing

available license types 11
limitations

Apple Safari 194
Docker 43
Google Chrome 198
Google Chrome, macOS 198
Microsoft Edge 203
mobile web applications 154
Mozilla Firefox 201, 202
native mobile applications 155
Windows 10 213

load testing
Silk Performer 305

LoadAssembly
assembly cannot be copied 283

locating controls
GWT example 251
siblings example 251

locator attributes
dynamic 219
excluded characters 34
recording options, setting 81
Rumba controls 175, 217
Silverlight controls 171, 215
UI Automation controls 216, 292
WPF controls 163, 218

locator generator
configuring for xBrowser 188

Locator Spy
adding locators to test methods 32
adding object map items to test methods 32
overview 255

locators
basic concepts 245
customizing 250
incorrect in xBrowser 209
mapping 257
modifying in object maps 262
object types 245
search scopes 245
supported constructs 246
supported subset 248
syntax 246
unsupported constructs 246
using attributes 246
xBrowser 210

M

Mac
Apple Safari, prerequisites 192
Apple Safari, testing 191
information service, installing 136, 140, 193, 195

managing
keywords 228

manually creating
object maps 268

maximize
browser 207

merging
object maps 268

MFC
support 180

Microsoft Accessibility
improving object recognition 288

Microsoft Edge
additional versions, testing 206
connection string 189
known issues 310
limitations 203
recording tests 27
remote testing 189
support 181
supported versions, new 17
testing 203

Microsoft Foundation Class
support 180

322 | Index

missing peripherals
test machines 13

mobile
troubleshooting 148

mobile applications
recording 141
testing 123

mobile apps
creating tests 26

mobile browsers
limitations 154

Mobile Center
enabling 143

mobile device
defining, playback 142

mobile devices
interacting with 147
performing actions against 147

mobile native applications
creating tests 26
limitations 155

mobile recording
about 141

mobile testing
Android 123
connection string 144
iOS 129
native app, iOS Simulator 132
overview 123
releasing devices 147
remote locations, adding 76
replay, parallel 46
web app, iOS 133
web app, iOS Simulator 133

mobile testing devices
native app, iOS 131

mobile web
Click 158
iOS 133
known issues 308
legacy tests 158

mobile web applications
Android, prerequisites 123
creating tests 25
iOS, prerequisites 130
limitations 154

mouse move actions
recording 81

mouse move preferences
setting, cross-browser testing 186

Mozilla Firefox
additional versions, testing 206
capabilities, setting 190
configuration settings 187
extensions, testing 201
full screen 207
known issues 311
limitations 201, 202
macOS 190
options, setting 190
profiles, testing 200
recording tests 28, 29

remote testing 189
support 181
supported versions, new 17
testing 199

MSUIA
invoking methods 290
object recognition, improving 289

multiple agents
single machine 298

multiple applications
single machine 298
testing 79

multiple images
adding, image assets 271

N

native mobile
invoking methods 157

native mobile applications
Android, prerequisites 123
iOS, prerequisites 130
limitations 155

native playback
comparing to, API playback 185

native user input
advantages 185

nesting
keywords 228

network address translation (NAT)
configuring 68

O

object map items
adding 264
copying 264
deleting 266
finding errors 266
grouping 267
highlighting 265
identifying 262, 265
locating in test application 265
modifying locators 262
renaming 260
updating from test application 263

object maps
adding items 264
advantages 257
benefits 257
best practices 267
copying items 264
deleting items 266
deleting, scripts 268
FAQs 267
grouping items 267
manually creating 268
merging 268
merging during action recording 259
modifying 261
opening from a script 265
overview 257

Index | 323

recording 258
renaming items 260
turning off 258
turning on 258
using in other projects 258, 273
web applications 260
xBrowser 260

object recognition
creating stable locators 250
custom attributes 252
Exists method 249
FindAll method 249
identifying multiple objects 249
improving with Accessibility 288
improving, UI Automation 289
overview 245
using attributes 246

object types
locators 245

objects
checking for existence 249
locating 245

Open Agent
configure ports, remote agent 63
configuring ports, information service 64
connection port, configuring 65
network address translation (NAT), configuring 68
options 54
overview 54
port numbers 63
starting 54
starting from script 54
stopping from script 54
testing, remote 68

opening
keywords 228

OPT_ALTERNATE_RECORD_BREAK
options 81

OPT_ASSET_NAMESPACE
option 85

OPT_ENABLE_ACCESSIBILITY
option 87

OPT_ENABLE_EMBEDDED_CHROME_SUPPORT
options 179

OPT_ENABLE_MOBILE_WEBVIEW_FALLBACK_SUPPORT
option 87

OPT_ENABLE_UI_AUTOMATION_SUPPORT
options 86

OPT_ENSURE_ACTIVE_OBJDEF
option 85

OPT_IMAGE_ASSET_DEFAULT_ACCURACY
option 87

OPT_IMAGE_VERIFICATION_DEFAULT_ACCURACY
option 87

OPT_LOCATOR_ATTRIBUTES_CASE_SENSITIVE
option 87

OPT_RECORD_MOUSEMOVE_DELAY
options 81

OPT_RECORD_MOUSEMOVES
options 81

OPT_RECORD_SCROLLBAR_ABSOLUT
options 81

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT
option 87

OPT_REPLAY_MODE
option 85

OPT_RESIZE_APPLICATION_BEFORE_RECORDING
options 81

OPT_WAIT_RESOLVE_OBJDEF
options, synchronization 84

OPT_WAIT_RESOLVE_OBJDEF_RETRY
options, synchronization 84

OPT_XBROWSER_RECORD_LOWLEVEL
options 81

OPT_XBROWSER_SYNC_EXCLUDE_URLS
options, synchronization 84

OPT_XBROWSER_SYNC_MODE
options, synchronization 84

OPT_XBROWSER_SYNC_TIMEOUT
options, synchronization 84

options
advanced 87
OPT_ENABLE_EMBEDDED_CHROME_SUPPORT

179
Playback Status dialog box, setting 49
synchronization, setting 84

Oracle Forms
about 119
attributes 120
known issues 312
prerequisites 120
supported Java versions 312
supported versions 119

ordering
tests 45

P

page synchronization
xBrowser 184

parallel replay
browsers 46
mobile tests 46

parallel testing
tested configurations, Android 128

parameters
handling, keywords 231
Silk Central 297

pause recording
shortcut key combination 81

performance testing
Silk Performer 305

playback
Playback Status dialog box, setting options 49
selecting browser 182
selecting device 142

ports
configuring, information service 64
Open Agent 63

pre-fill
setting during recording and replaying 170

preferences
turning off error messages 88

prerequisites

324 | Index

Android, mobile web applications 123
Android, native mobile applications 123
Apple Safari 192
Google Chrome 196
iOS, mobile web applications 130
iOS, native mobile applications 130

priorLabel
Java AWT/Swing technology domain 119
Win32 technology domain 179

privileges required
installing Silk Test 12
running Silk Test 12

product suite
components 14

Product Support 315
profiles

Mozilla Firefox 200
project dependencies

adding 258, 273
project properties

converting 89
projects

about 22
importing 23

Q

QT
support 289

Quick Start tutorial
introduction 19
tests, recording 20
tests, replaying 21

R

recognizing objects
xBrowser 184

recommendations
algorithm 230

recommended keywords
keyword-driven test editor 230

recording
actions into existing tests 275
adding image verifications 273
Apache Flex applications 114
available actions 31
keyword-driven tests 223
keywords 226
mobile applications 141
no image displayed 148
object maps 258
preferences 81
releasing devices 147
setting pre-fill 170

recording actions
existing tests 275

recording options
browser, setting 81

recording tests
Google Chrome 29
Microsoft Edge 27

Mozilla Firefox 28
releasing devices

mobile testing 147
recording 147
replay 147

remote agent
about 68

remote browser testing
connection string 189

remote locations
adding 76
editing 76

remote testing
Google Chrome 189
Microsoft Edge 189
Mozilla Firefox 189
Open Agent 68

removing keywords
keyword-driven tests 227

replacing
keywords 228

replay
Dialog not recognized 207
options 85
Playback Status dialog box, setting options 49
releasing devices 147
selecting browser 182
selecting device 142

replaying
setting pre-fill 170

replaying tests
remote machines 68

report types
selecting 80

resolving
categories 297

responsive web design
browser window, specifying size 204
visual breakpoints, detecting 205

result comments
adding to scripts 297

results
analyzing 51
HTML reports 51

Rumba
about 175
enabling and disabling support 175
locator attributes 175, 217
Unix display 176

Rumba locator attributes
identifying controls 175, 217

running existing scripts
iOS 9.3 141

running multiple tests
Apple Safari 195

running tests
continuous integration servers 38
Docker 38
Silk Central 44
stopping 35

Index | 325

S

Safari
connection string 189
limitations 194
preparing 192
prerequisites 192
running multiple tests 195
testing 191

SAP
attribute types 176, 214
custom attributes 83
invoking methods 177
known issues 311
overview 176
security settings 178

SAP controls
dynamically invoking methods 178

SauceLabs
enabling 143

screencast
not working 148

scripts
adding result comments 297
adding verifications while recording 32
creating, best practices 30
marking tests as keywords 227
object mapping 257
specifying options 80

scroll events
recording absolute values 81

scrolling
cross-browser testing 207

search scopes
locators 245

searching
keywords, keyword-driven tests 243

sections
TrueLog 52

secure connections
information service 66, 139

security settings
SAP 178

select application
dialog box 75

Select method
Apache Flex, setting 112

Selenium
about 300
mixed scripts, executing 300
scripts, executing 300

serial number 315
SetText

browser recording options, setting 81
setting

mouse move preferences, cross-browser testing 186
setting browser

playback 182
setting browser options

SetText 81
TypeKeys 81

setting mobile device

playback 142
settings

Playback Status dialog box 49
siblings

locating 251
Silk Central

configuring location 238
Mobile Center, enabling 143
parameters 297
running tests 44
running tests on continuous integration servers 45
SauceLabs, enabling 143
uploading keywords 239

Silk Central Connect
configuration testing 297

Silk Central keywords
implementing 239

Silk Performer
measure execution time 298

Silk4J
about 12
creating project 19, 22
known issues 313
quick start tutorial 19

Silk4J tests
grouping 296

Silverlight
attribute types 171, 215
invoking methods 172
locator attributes 171, 215
overview 170
scrolling 173
support 170
troubleshooting 174

Simulator
defining, playback 142
mobile web applications, testing 133
native app, testing 132
testing 131

sleep
adding to tests 298

slowing down
tests 298

special keys
recording, WebDriver mode 302

specifying options
scripts 80

specifying size
browser window 204

stable identifiers
about 250

stable locators
creating 250

standard applications
creating tests 25

starting browsers
replay 211

starting Open Agent
scripts 54

stopping
keyword-driven tests, Silk Central 234
running keyword-driven tests 233

326 | Index

tests 35
stopping Open Agent

scripts 54
styles

in Flex applications 115
supported Java versions

Oracle Forms 312
SupportLine 315
Swing

attributes 117, 214
configuring JNLP applications 78, 119
custom attributes 33
invoking methods 117, 121
overview 117

synchronization
about 48
changing settings 48
options, setting 84
wrong timestamps 209
xBrowser 184

T

test automation
obstacles 13
synchronization 48

test case
creating 30

test machines
missing peripherals 13

test methods
adding locators 32
adding object map items 32
marking as keywords 227

test results
analyzing 51

test scripts
creating, best practices 30

testing
best practices 12

testing Apple Safari
information service, installing 136, 140, 193, 195

testing custom controls
adding code to AUT 281

tests
analyzing results 51
creating 24
enhancing 275
ordering 45
recording actions 275
recording, Quick Start tutorial 20
replaying, Quick Start tutorial 21
running from command line 35
running from Eclipse 35
running with Ant 36
slowing down 298
stopping during execution 35

text click recording
overview 294

text recognition
overview 294

textContents

xBrowser 209
timestamps

wrong, cross-browser tests 209
transparent classes

setting 84
troubleshooting

application configurations 78
category cannot be resolved 297
Eclipse 122
invalidated-handle error 211
Java SWT 122
keyword-driven testing 244
mobile 148
running tests, Ant 38
Silverlight 174
UI Automation 294
XPath 255

TrueLog
change TrueLog location 52
configuring 80
creating visual execution logs 51
enabling 52, 80
replacement characters for non-ASCII 53
SilkTestCategories class 296
wrong non-ASCII characters 53

TrueLog Explorer
configuring 80
creating visual execution logs 51
enabling 80
enabling TrueLog 52

TrueLogs
sections 52

tutorial
quick start 19

TypeKeys
browser recording options, setting 81

U

UI Automation
attribute types 216, 292
exclude lists 86
invoking methods 290
limitations 293
locator attributes 216, 292
object recognition, improving 289
options, setting 86
scrolling 293
troubleshooting 294

unexpected Click behavior
Internet Explorer 210

Unicode content
support 289

Unix display
Rumba 176

upload app
Mac 123

uploading
keyword libraries 241
libraries 241

usage data collection
disabling 314

Index | 327

enabling 314
user data directories

Google Chrome 197

V

variables
executing keyword-driven tests 237

verification logic
adding to scripts while recording 32

verifications
adding to scripts 32

video
not displayed 148

virtual machines
network address translation (NAT), configuring 68

Visual Basic
invoking methods 90
overview 90

visual breakpoints
detecting 205

Visual COBOL
about 174
supported versions 174

W

web applications
creating tests 24
known issues 308

Web applications
custom attributes 33, 83, 212, 253
supported attributes 212, 217
xBrowser test objects 183

web pages
capturing, full page 53

WebDriver
about 300
special keys, recording 302

WebSync 315
welcome 10
Win32

priorLabel 179
Windows

attribute types 163, 218
Windows 10

limitations 213
Windows applications

creating tests 25
custom attributes 83

Windows Forms
attribute types 159, 217
custom attributes 83
invoking methods 159
overview 159

Windows Forms applications
custom attributes 159, 254

Windows Presentation Foundation (WPF)
custom controls 165
exposing classes 170
invoking methods 166
locator attributes 163, 218

overview 163
WPFItemsControl class 165

Windows-API
support 178

WinForms applications
custom attributes 159, 254

works order number 315
WPF

classes, exposing 84
custom attributes 33
custom controls 165
exposing classes 170
invoking methods 166
locator attributes 163, 218
WPFItemsControl class 165

WPF applications
custom attributes 83, 165, 254

WPF locator attributes
identifying controls 163, 218

writing TrueLogs
SilkTestCategories class 296

wrong timestamps
logs, cross-browser tests 209

X

xBrowser
Apple Safari 191
attribute types 212, 217
browser configuration settings 187
Chrome for Android, setting 153
class and style not in locators 210
configuring locator generator 188
cross-browser scripts 210
current browser type, viewing 208
custom attributes 83
Dialog not recognized 207
DomClick not working like Click 207
exposing functionality 208
FAQs 207
FieldInputField.DomClick not opening dialog 207
font type verification 208
Google Chrome 196
innerHTML 209
innerText 209
innerText not being used in locators 208
Internet Explorer misplaces rectangles 209
link.select focus issue 208
Microsoft Edge 203
mouse move preferences, setting 186
mouse move recording 209
Mozilla Firefox 199
navigating to new pages 209
object maps, using 260
object recognition 184
overview 181
page synchronization 184
playback, comparing API and native 185
recording an incorrect locator 209
recording locators 210
scrolling 207
test objects 183

328 | Index

textContents 209
wrong timestamps, logs 209

xBrowser testing
Apple Safari, limitations 194
current browser type, viewing 208

Microsoft Edge, limitations 203
XPath

creating query strings 255
troubleshooting 255

Index | 329

	Contents
	Welcome to Silk4J 19.5
	Licensing Information
	Silk4J
	Do I Need Administrator Privileges to Run Silk4J?
	Best Practices for Using Silk4J
	Automation Under Special Conditions (Missing Peripherals)
	Silk Test Product Suite

	What's New in Silk4J
	UI Automation Support
	Cross-Platform Resulting
	Usability Enhancements
	Technology Updates
	New Microsoft Windows Versions
	New Mozilla Firefox Versions
	New Google Chrome Versions
	New Microsoft Edge Version
	New Apple Safari Version
	New Android Version
	New iOS Version
	New macOS Version
	Java 11 Support
	New Eclipse Version
	New Java SWT Versions

	Silk4J Quick Start Tutorial
	Creating a Silk4J Project
	Recording a Test for the Insurance Company Web Application
	Replaying the Test for the Insurance Company Web Application

	Working with Silk4J Projects
	Creating a Silk4J Project
	Importing a Silk4J Project

	Creating Tests
	Creating a Test for a Web Application
	Creating a Test for a Standard Application
	Creating a Test for a Mobile Web Application
	Creating a Test for a Mobile Native Application
	Recording a Test on Microsoft Edge
	Recording a Test on Mozilla Firefox
	Recording a Test on Google Chrome
	Creating a Test Case Manually
	Best Practices for Creating Test Scripts
	Actions Available During Recording
	Adding a Verification to a Script while Recording
	Adding a Locator or an Object Map Item to a Test Method Using the Locator Spy
	Including Custom Attributes in a Test
	Characters Excluded from Recording and Replaying

	Replaying Tests
	Replaying Tests from Eclipse
	Replaying a Test from the Command Line
	Replaying Tests with Apache Ant
	Troubleshooting when Replaying Tests with Ant

	Replaying Tests from a Continuous Integration Server
	Running Tests in Docker Containers
	Silk Test Image Environment Variables
	Example: Running Tests on Google Chrome
	Example: Using docker-compose
	Limitations when Running Tests in Docker Containers
	Troubleshooting when Running Tests in Docker Containers

	Replaying Silk4J Tests from Silk Central
	Triggering Tests on Silk Central from a Continuous Integration Server
	Replaying Tests in a Specific Order
	Running Tests in Parallel
	How Does Silk4J Synchronize Tests?
	Enabling the Playback Status Dialog Box

	Analyzing Test Results
	Analyzing Test Results
	HTML Reports
	Visual Execution Logs with TrueLog
	Enabling TrueLog
	Changing the Location of the TrueLog
	TrueLog Sections
	Capturing the Contents of a Web Page
	Why is TrueLog Not Displaying Non-ASCII Characters Correctly?

	Silk Test Open Agent
	Starting the Silk Test Open Agent
	Stopping the Open Agent After Test Execution
	Agent Options
	Configuring the Connections Between the Silk4J Components
	Configuring the Port to Connect to the Information Service
	Configuring the Port to Connect to the Open Agent
	Editing the Properties of the Silk Test Information Service
	Replacing the Certificates that are Used for the HTTPS Connection to the Information Service

	Remote Testing with the Open Agent
	Testing with a Remote Open Agent

	Configuring the Open Agent to Run Remotely in a NAT Environment

	Base State
	Modifying the Base State from the User Interface
	Modifying the Base State in a Script
	Running the Base State

	Application Configuration
	Modifying an Application Configuration
	Select Application Dialog Box
	Editing Remote Locations
	Application Configuration Errors
	Troubleshooting Application Configurations
	Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)
	Creating a Test that Tests Multiple Applications

	Setting Script Options
	Setting TrueLog Options
	Setting Recording Preferences
	Setting Browser Recording Options
	Setting Custom Attributes
	Setting Classes to Ignore
	Setting WPF Classes to Expose During Recording and Playback
	Setting Synchronization Options
	Setting Replay Options
	Setting UI Automation Options
	Setting Advanced Options

	Setting Silk4J Preferences
	Converting Projects to and from Silk4J
	Converting a Java Project to a Silk4J Project
	Converting a Silk4J Project to a Java Project

	Testing Specific Environments
	Active X/Visual Basic Applications
	Dynamically Invoking ActiveX/Visual Basic Methods

	Apache Flex Support
	Configuring Flex Applications to Run in Adobe Flash Player
	Launching the Component Explorer
	Testing Apache Flex Applications
	Testing Apache Flex Custom Controls
	Dynamically Invoking Flex Methods
	Defining a Custom Control in the Test Application
	Testing a Flex Custom Control Using Dynamic Invoke
	Testing a Custom Control Using Automation Support
	Implementing Automation Support for a Custom Control
	Flex Class Definition File

	Customizing Apache Flex Scripts
	Testing Multiple Flex Applications on the Same Web Page
	Adobe AIR Support
	Overview of the Flex Select Method Using Name or Index
	Selecting an Item in the FlexDataGrid Control
	Enabling Your Flex Application for Testing
	Linking Automation Packages to Your Flex Application
	Precompiling the Flex Application for Testing
	Run-Time Loading
	Loading at Run-Time

	Using the Command Line to Add Configuration Information
	Passing Parameters into a Flex Application
	Passing Parameters into a Flex Application Before Runtime
	Passing Parameters into a Flex Application at Runtime Using the Flex Automation Launcher

	Creating Testable Flex Applications
	Custom Attributes for Apache Flex Applications
	Flex AutomationName and AutomationIndex Properties
	Flex Class Definition File
	Setting the Flex automationName Property
	Setting the Flex Select Method to Use Name or Index

	Coding Flex Containers
	Adding and Removing Containers from the Automation Hierarchy
	Multiview Containers

	Flex Automation Testing Workflow
	Flex Automated Testing Initialization
	Flex Automated Testing Recording
	Flex Automated Testing Playback

	Styles in Apache Flex Applications
	Configuring Flex Applications for Adobe Flash Player Security Restrictions
	Attributes for Apache Flex Applications
	Why Cannot Silk4J Recognize Apache Flex Controls?

	Java AWT/Swing Support
	Attributes for Java AWT/Swing Applications
	Dynamically Invoking Java Methods
	Configuring Silk4J to Launch an Application that Uses the Java Network Launching Protocol (JNLP)
	Determining the priorLabel in the Java AWT/Swing Technology Domain
	Oracle Forms Support
	Prerequisites for Testing Oracle Forms
	Attributes for Oracle Forms Applications

	Java SWT and Eclipse RCP Support
	Java SWT Custom Attributes
	Attributes for Java SWT Applications
	Dynamically Invoking Java Methods
	Troubleshooting Java SWT and Eclipse Applications

	Testing Mobile Applications
	Android
	Prerequisites for Testing Mobile Applications on Android
	Testing Mobile Applications on Android
	Testing Hybrid Applications on Android
	Installing a USB Driver
	Enabling USB-Debugging
	Recommended Settings for Android Devices
	Configuring the Android Emulator for Silk4J
	Tested Configurations for Parallel Test Execution

	iOS
	Prerequisites for Testing Mobile Applications on iOS
	Testing Native Mobile Applications on a Physical iOS Device
	Testing Native Mobile Applications on an iOS Simulator
	Testing Mobile Web Applications on a Physical iOS Device
	Testing Mobile Web Applications on an iOS Simulator
	Testing Hybrid Applications on iOS
	Preparing an iOS Device for Testing
	Preparing an iOS App for Testing
	Installing the Silk Test Information Service on a Mac
	Preparing a Mac to Test Mobile Applications on iOS
	Using a Personal Team Profile for Testing on Physical iOS Devices
	Editing the Properties of the Silk Test Information Service
	Uninstalling the Silk Test Information Service from a Mac
	Recommended Settings for iOS Devices
	Running Existing Scripts on iOS Using XCUITest

	Testing an Installed App
	Recording Mobile Applications
	Selecting the Mobile Device for Test Replay
	Using Devices from Mobile Center
	Using SauceLabs Devices
	Connection String for a Mobile Device
	Interacting with a Mobile Device
	Releasing a Mobile Device
	Releasing a Mobile Device After Recording
	Releasing a Mobile Device After Replay

	Troubleshooting when Testing Mobile Applications
	How Can I Use Chrome for Android to Replay Tests?

	Limitations for Testing Mobile Web Applications
	Limitations for Testing Native Mobile Applications
	Dynamically Invoking Methods for Native Mobile Apps
	Clicking on Objects in a Mobile Website
	Using Existing Mobile Web Tests

	.NET Support
	Windows Forms Support
	Attributes for Windows Forms Applications
	Custom Attributes for Windows Forms Applications
	Dynamically Invoking Windows Forms Methods

	Windows Presentation Foundation (WPF) Support
	Attributes for Windows Presentation Foundation (WPF) Applications
	Custom Attributes for WPF Applications
	Classes that Derive from the WPFItemsControl Class
	Custom WPF Controls
	Dynamically Invoking WPF Methods
	Setting WPF Classes to Expose During Recording and Playback
	Setting Pre-Fill During Recording and Replaying

	Silverlight Application Support
	Locator Attributes for Identifying Silverlight Controls
	Dynamically Invoking Silverlight Methods
	Scrolling in Silverlight
	Troubleshooting when Testing Silverlight Applications

	Visual COBOL Support

	Rumba Support
	Enabling and Disabling Rumba
	Locator Attributes for Identifying Rumba Controls
	Testing a Unix Display

	SAP Support
	Attributes for SAP Applications
	Dynamically Invoking SAP Methods
	Dynamically Invoking Methods on SAP Controls
	Configuring Automation Security Settings for SAP

	Windows API-Based Application Support
	Attributes for Windows API-based Client/Server Applications
	Determining the priorLabel in the Win32 Technology Domain
	Testing Embedded Chrome Applications
	Microsoft Foundation Class Support

	Cross-Browser Testing
	Selecting the Browser for Test Replay
	Test Objects for xBrowser
	Object Recognition for xBrowser Objects
	Page Synchronization for xBrowser
	Comparing API Playback and Native Playback for xBrowser
	Setting Mouse Move Preferences
	Browser Configuration Settings for xBrowser
	Configuring the Locator Generator for xBrowser
	Connection String for a Remote Desktop Browser
	Testing Browsers on a Remote Windows Machine
	Testing Google Chrome or Mozilla Firefox on a Mac
	Setting Capabilities for WebDriver-Based Browsers
	Testing with Apple Safari on a Mac
	Prerequisites for Testing with Apple Safari on a Mac
	Preparing Apple Safari for Testing
	Installing the Silk Test Information Service on a Mac
	Limitations for Testing with Apple Safari
	Running Multiple Apple Safari Tests at the Same Time
	Uninstalling the Silk Test Information Service from a Mac

	Testing with Google Chrome
	Prerequisites for Replaying Tests with Google Chrome
	Testing Google Chrome Extensions
	Testing Google Chrome with User Data Directories
	Limitations for Testing with Google Chrome
	Limitations for Testing with Google Chrome on macOS

	Testing with Mozilla Firefox
	Testing Mozilla Firefox with Profiles
	Testing Mozilla Firefox Extensions
	Limitations for Testing with Mozilla Firefox
	Limitations for Testing with Mozilla Firefox on macOS

	Testing with Microsoft Edge
	Limitations for Testing with Microsoft Edge

	Responsive Web Design Testing
	Detecting Visual Breakpoints
	Testing Additional Browser Versions
	Cross-Browser Testing: Frequently Asked Questions
	Dialog is Not Recognized During Replay
	DomClick(x, y) Is Not Working Like Click(x, y)
	FileInputField.DomClick() Will Not Open the Dialog
	How Can I Maximize the Browser Window when Starting to Test?
	How can I scroll in a browser?
	How Can I See Which Browser I Am Currently Using?
	How do I Verify the Font Type Used for the Text of an Element?
	I Configured innerText as a Custom Class Attribute, but it Is Not Used in Locators
	I Need Some Functionality that Is Not Exposed by the xBrowser API. What Can I Do?
	Link.Select Does Not Set the Focus for a Newly Opened Window in Internet Explorer
	Logging Output of My Application Contains Wrong Timestamps
	My Test Script Hangs After Navigating to a New Page
	Recorded an Incorrect Locator
	Rectangles Around Elements in Internet Explorer are Misplaced
	The Move Mouse Setting Is Turned On but All Moves Are Not Recorded. Why Not?
	What is the Difference Between textContents, innerText, and innerHtml?
	What Should I Take Care Of When Creating Cross-Browser Scripts?
	Which Locators are Best Suited for Stable Cross Browser Testing?
	Why Are the Class and the Style Attributes Not Used in the Locator?
	Why Are Clicks Recorded Differently in Internet Explorer 10?
	Why Do I Get an Invalidated-Handle Error?

	Starting a Browser from a Script
	Finding Hidden Input Fields
	Attributes for Web Applications
	Custom Attributes for Web Applications

	Limitations for Testing on Microsoft Windows 10
	Supported Attribute Types
	Attributes for Apache Flex Applications
	Attributes for Java AWT/Swing Applications
	Attributes for Java SWT Applications
	Attributes for SAP Applications
	Locator Attributes for Identifying Silverlight Controls
	Locator Attributes for Identifying Controls with UI Automation
	Locator Attributes for Identifying Rumba Controls
	Attributes for Web Applications
	Attributes for Windows Forms Applications
	Attributes for Windows Presentation Foundation (WPF) Applications
	Attributes for Windows API-based Client/Server Applications
	Dynamic Locator Attributes

	Keyword-Driven Tests
	Advantages of Keyword-Driven Testing
	Keywords
	Creating a Keyword-Driven Test in Silk4J
	Recording a Keyword-Driven Test in Silk4J
	Setting the Base State for a Keyword-Driven Test in Silk4J
	Implementing a Keyword in Silk4J
	Recording a Keyword in Silk4J
	Marking a Test Method in a Script as a Keyword
	Editing a Keyword-Driven Test
	Managing Keywords in a Test in Silk Central
	Which Keywords Does Silk4J Recommend?
	Using Parameters with Keywords
	Example: Keywords with Parameters
	Combining Keywords into Keyword Sequences
	Replaying Keyword-Driven Tests from Eclipse
	Replaying Keyword-Driven Tests Which Are Stored in Silk Central
	Replaying Keyword-Driven Tests from the Command Line
	Replaying Keyword-Driven Tests with Apache Ant
	Replaying a Keyword-Driven Test with Specific Variables
	Integrating Silk4J with Silk Central
	Implementing Silk Central Keywords in Silk4J
	Uploading a Keyword Library to Silk Central
	Uploading a Keyword Library to Silk Central from the Command Line
	Searching for a Keyword
	Filtering Keywords
	Finding All References of a Keyword
	Grouping Keywords
	Troubleshooting for Keyword-Driven Testing

	Object Recognition
	Locator Basic Concepts
	Object Type and Search Scope
	Using Attributes to Identify an Object

	Locator Syntax
	Using Locators
	Using Locators to Check if an Object Exists
	Identifying Multiple Objects with One Locator
	Locator Customization
	Stable Identifiers
	Creating Stable Locators
	Example: Locating Siblings of a Control
	Example: Locating the Expand Icon in a Dynamic GWT Tree

	Custom Attributes
	Custom Attributes for Apache Flex Applications
	Java SWT Custom Attributes
	Custom Attributes for Web Applications
	Custom Attributes for Windows Forms Applications
	Custom Attributes for WPF Applications

	Troubleshooting Performance Issues for XPath
	Locator Spy

	Object Maps
	Advantages of Using Object Maps
	Turning Object Maps Off and On
	Using Assets in Multiple Projects
	Merging Object Maps During Action Recording
	Using Object Maps with Web Applications
	Renaming an Object Map Item
	Modifying Object Maps
	Modifying a Locator in an Object Map
	Updating Object Maps from the Test Application
	Copying an Object Map Item
	Adding an Object Map Item
	Opening an Object Map from a Script
	Highlighting an Object Map Item in the Test Application
	Finding Errors in an Object Map
	Deleting an Object Map Item
	Initially Filling Object Maps
	Grouping Elements in Object Maps
	Object Maps: Frequently Asked Questions
	Can I Merge Multiple Object Maps Into a Single Map?
	What Happens to an Object Map when I Delete a Test Script?
	Can I Manually Create an Object Map for My Application Under Test?

	Image Recognition Support
	Image Click Recording
	Image Recognition Methods
	Image Assets
	Creating an Image Asset
	Adding Multiple Images to the Same Image Asset
	Opening an Asset from a Script

	Image Verifications
	Creating an Image Verification
	Adding an Image Verification During Recording

	Using Assets in Multiple Projects

	Enhancing Tests
	Recording Additional Actions Into an Existing Test
	Calling Windows DLLs
	Calling a Windows DLL from Within a Script
	DLL Function Declaration Syntax
	DLL Calling Example
	Passing Arguments to DLL Functions
	Passing Arguments that Can Be Modified by the DLL Function
	Passing String Arguments to DLL Functions
	Aliasing a DLL Name
	Conventions for Calling DLL Functions

	Custom Controls
	Dynamic Invoke
	Frequently Asked Questions About Dynamic Invoke
	Which Methods Can I Call With the invoke Method?
	Why Does an Invoke Call Return a Simple String when the Expected Return is a Complex Object?
	How Can I Simplify My Scripts When I Use Many Calls To invokeMethods?

	Adding Code to the Application Under Test to Test Custom Controls
	Frequently Asked Questions About Adding Code to the AUT
	Why is Code That I Have Injected Into the AUT With the LoadAssembly Method Not Updated in the AUT?
	Why Do the Input Argument Types Not Match When I Invoke a Method?
	How Do I Fix the Compile Error when an Assembly Can Not Be Copied?

	Testing Apache Flex Custom Controls
	Managing Custom Controls
	Supporting a Custom Control
	Custom Controls Options

	Improving Object Recognition with Microsoft Accessibility
	Using Accessibility
	Enabling Accessibility

	Overview of Silk4J Support of Unicode Content
	UI Automation
	Dynamically Invoking UI Automation Methods
	Locator Attributes for Identifying Controls with UI Automation
	Scrolling in UI Automation Controls
	Limitations when Using UI Automation
	Troubleshooting when Testing with UI Automation Support Enabled

	Text Recognition Support
	Grouping Silk4J Tests
	Why Do I Get the Error: Category cannot be resolved to a type?

	Inserting a Result Comment in a Script
	Consuming Parameters from Silk Central
	Configuration Testing with Silk Central Connect
	Measuring Execution Time
	Slowing Down Tests
	Testing Applications in Multiple UI Sessions on a Single Machine

	Using Selenium WebDriver
	Using Selenium with Existing Silk4J Scripts
	Executing Selenium Scripts
	Entering Special Keys Into A Text Field

	Using Keyword-Driven Tests as Performance Tests
	Known Issues
	General Issues
	Mobile Web Applications
	Web Applications
	Google Chrome
	Internet Explorer
	Microsoft Edge
	Mozilla Firefox

	SAP Applications
	Oracle Forms
	Silk4J

	Enabling or Disabling Usage Data Collection
	Contacting Micro Focus
	Information Needed by Micro Focus SupportLine

