
Silk Test Workbench 19.5

Getting Started with Visual Tests

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 1992-2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2018-10-23

ii

Contents

Silk Test Workbench Visual Test Tutorial ...4
Introducing the GUI ... 4

Silk Test Workbench Main Screen ..4
Start Screen ... 5
Visual Navigator ... 6

Recording a Visual Test: Introduction ..8
Starting the Sample Web Application ...8
Recording a Visual Test for the Sample Web Application .. 9
Saving and Naming the Visual Test ..10
Reviewing the Recorded Test Steps ...10
Playing Back the Recorded Visual Test ..12

Analyzing Results: Introduction ...12
Using the Result Window Tabs ...13
Using the Result Window Toolbar .. 13
Using the Properties Pane ... 14
Using the Screen Preview .. 14

Enhancing the Visual Test: Introduction .. 15
Updating From the Screen Preview ..16
Inserting a Verification ..16
Creating a Local Variable to Store Application Data .. 17
Storing Application Data to the Local Variable ... 18
Playing Back and Analyzing the Enhanced Visual Test ..18

Executing a Visual Test Within a Visual Test: Introduction .. 19
Modular Testing .. 19
Recording the Second Visual Test ... 20
Inserting One Visual Test Within Another ...21

Responding to Playback Errors: Introduction .. 21
Playing Back the Modular Test ... 21
Debugging Errors ... 22
Tracking Variables During Playback ... 23
Reviewing the Result ..23

Using ActiveData ...24
Reviewing the ActiveData File ..24
Creating the ActiveData Test Asset ..25
Creating Repetition Logic for ActiveData Files ... 25
Defining the Steps to Repeat ... 26
Mapping ActiveData to Literal Data ..27
Playing Back and Analyzing the ActiveData Visual Test ...28

Playing Back Scripts From Visual Tests .. 28
Creating a Script to Generate Random Numbers .. 29
Defining the Script Input Parameters ..30
Defining the Script Output Parameters ...31
Setting Up the Visual Test to Use Script Data ... 31
Using Script Data in the Visual Test .. 32
Playing Back and Reviewing Test Results ..32

Contents | 3

Silk Test Workbench Visual Test Tutorial
Welcome to the Silk Test Workbench Visual Test tutorial, a self-paced guide that demonstrates how to use
Silk Test Workbench's visual, storyboard-based interface to create powerful and flexible functional tests. In
this tutorial, you will learn the basic steps required to create a visual test, play back the visual test, and
then analyze the results of the playback. Additionally, you will learn how to use a number of features that
allow you to quickly update and enhance a recorded visual test.

This tutorial uses the Silk Test sample Web application, http://demo.borland.com/InsuranceWebExtJS/, to
create a real world scenario in which you practice using Silk Test Workbench to create repeatable tests.

The lessons in this tutorial are designed to be completed in sequence as each lesson is based on the
output of previous lessons.

Introducing the GUI
This section introduces the GUI including the Main Screen, Start Screen, and Visual Navigator. This
section is optional. If you are already familiar with the basic elements of the development environment,
proceed to the next section.

Silk Test Workbench Main Screen
Silk Test Workbench's main screen is the starting point for all test activities. With the exception of the menu
bar, the user maintains control over all of the items that are displayed on the desktop.

All other Silk Test Workbench windows, including the Start Screen, Visual Navigator, and Asset Browser,
display as child windows in the Silk Test Workbench Main Screen.

The Silk Test Workbench Main Screen contains the following:

• Menu bar
• Toolbars
• Main asset viewing area
• Status bar

The following graphic shows these elements in the Silk Test Workbench Main Screen. The main asset
viewing area shows a visual test in the Visual Navigator, the Asset Browser in the background, and the
Start Screen, which is minimized.

4 | Silk Test Workbench Visual Test Tutorial

http://demo.borland.com/InsuranceWebExtJS/

Start Screen
The Start Screen is your launching point into the functionality of Silk Test Workbench, enabling you to
quickly begin creating test solutions for all your applications.

To enable you to quickly start testing your applications with minimal effort, the Start Screen includes the
following areas:

Area Description

Start Enables you to record or open visual tests, .NET scripts, and keyword-driven tests with a
single click.

Assets Enables you to open recently used visual tests, .NET scripts, and keyword-driven tests
with a single click. The recent assets list is updated in real time so any changes or
updates will move the current asset to the top of the list. You can play back an asset or
view eventual results of previous executions of the asset by clicking on the
corresponding icons to the right of the asset.

Note: The Start Screen settings under Tools > Options > Start Screen allow
you to control how many items display in the recent assets list.

Silk Test Workbench Visual Test Tutorial | 5

Area Description

What's New Lists new features and enhancements that are included in the current version of Silk Test
Workbench. Also lists available updates for Silk Test Workbench.

Note: If you have opted not to display the start screen when you start Silk Test
Workbench, you can check for available updates by clicking Help > Check for
Product Update.

Get Started Provides quick links to commonly used tasks and useful help topics to get you quickly
productive.

Resources Provides links to information that is related to Silk Test Workbench, for example to the
support knowledge base, the Silk Test community, and so on.

News &
Community

Provides links to the latest forum entries and blog posts on the Silk Test community.

Flags Displays the test steps in visual tests and results that are flagged and assigned for
follow-up. Use the Flags pane to collaborate with other testers and other users of the
test projects in the database, by exchanging information about test suites and test
projects.

By default, flags are grouped by the date they were created and the asset they appear
in. To quickly view information about a flag, move your pointer over a flag. A ToolTip
displays containing the flag description, modification data, the project, and the ID to
whom the flag is assigned. You can change how flags are displayed by modifying the
Start Screen Flag options under Tools > Options > Start Screen > Flags.

Double-click a flag in the Flags pane to open its associated visual test or result.

Note: The Flags pane is only visible in the Start Screen if at least one flag is
assigned to you or if at least one flag is filtered by the settings to be shown for
you.

Click Close Window in the upper-right corner of the Start Screen to close the Start Screen.

Tip: You can always access the Start Screen from the main screen by clicking Start Screen in the
toolbar. You can also press Ctrl+Alt+S, or choose View > Start Screen at any time to display it.

Note: The user interface works with standard Windows small and large font sizes. Using a custom
font size may result in the inaccurate display of text in the user interface.

Visual Navigator
The Visual Navigator graphically represents the elements of a visual test and allows you to interact with
each element through a point-and-click interface. When viewed in the Visual Navigator, a visual test is
represented by information displayed in four panes that collectively provide a comprehensive view of each
step in a visual test.

6 | Silk Test Workbench Visual Test Tutorial

The four panes include:

Test Steps Lists each step of a visual test in clear non-technical language.

Screen Preview Displays a snapshot of the application under test as it appears when a step executes
during playback of a visual test.

Properties Displays the properties of a step in a visual test.

Storyboard Displays the flow of a visual test through the use of thumbnail images, which represent
the logical groups of steps in a visual test.

Note:

Silk Test Workbench takes snapshots under the following circumstances:

• Before every automation test step during recording.

Note: For SAP applications, snapshots occur when the screen changes rather than before
every automation test step.

• When executing a Using step in a visual test, a snapshot of the result.
• When a playback error occurs.

Silk Test Workbench Visual Test Tutorial | 7

The Screen Preview, Storyboard, and Properties panes are synchronized with the Test Steps pane and
display information specific to a selected step in the Test Steps pane. In this way, you can easily view all
aspects of a step by selecting a step in the Test Steps pane, and then viewing information about the step
in the other panes.

In addition to viewing a visual test, the Visual Navigator also allows you to enhance or update an existing
visual test by using the Screen Preview and Properties panes. For example, in the Properties pane, after
recording a visual test, you can change the literal value of a recorded property by replacing it with a
variable. Additionally, to quickly update a visual test when changes occur in the application under test, you
can update previously captured screens using the Update Screen feature of the Screen Preview.

The Visual Navigator also displays the playback result of a visual test using the same panes as those
used for a visual test. For a result, the panes have additional functionality and appear in the Result
window, which contains toolbar options and several tabs that display different views of result content.
Examples of additional functionality specific to a result include the ability to see the pass or fail status of
each step in the Test Steps pane. Additionally, in the Screen Preview, you can see a comparison of the
differences between the screens captured during recording and screens captured during playback, and
then update the existing visual test without accessing the test application.

Recording a Visual Test: Introduction
As you perform actions to create an insurance quote request in the sample Web application, Silk Test
Workbench records the actions as steps. Steps form the basis of a visual test. When you have completed
recording actions needed for a test, you can see the recorded test in the Visual Navigator. Steps display in
the Test Steps pane of the Visual Navigator.

Note: The sample application used in this tutorial is designed and optimized to run on Internet
Explorer. To ensure a user experience consistent with the lessons in the tutorial, Micro Focus does
not recommend running the tutorial sample application on one of the other supported browsers
instead of Internet Explorer.

Note: Before you record or playback web applications, disable all browser add-ons that are installed
in your system. To disable add-ons in Internet Explorer, click Tools > Internet Options, click the
Programs tab, click Manage add-ons, select an add-on and then click Disable.

Starting the Sample Web Application
For this tutorial, use the Silk Test sample Web application. This Web application is provided for
demonstration purposes.

Use the Silk Test sample Web application with Internet Explorer. To ensure a user experience consistent
with the lessons in the tutorial, we do not recommend running the sample Web application with one of the
other supported browsers instead of Internet Explorer.

1. To record DOM functions to make your test faster and more reliable, perform the following steps:

a) Click Tools > Options.
b) Click the plus sign (+) next to Record in the Options menu tree. The Record options display in the

right side panel.
c) Click xBrowser.
d) From the Record native user input list box, select No.
e) Click OK.

Note: Typically, when you test Web applications, you use native user input rather than DOM
functions. Native user input supports plug-ins, such as Flash and Java applets, and applications
that use AJAX, while high-level API recordings do not.

2. Before you record or playback Web applications, you must disable all browser add-ons. To ensure that
all browser add-ons are disabled, perform the following steps:

8 | Silk Test Workbench Visual Test Tutorial

a) In Internet Explorer choose Tools > Internet Options. The Internet Options dialog box opens.
b) Click the Programs tab and then click Manage add-ons. The Manage Add-ons dialog box opens.
c) In the list of add-ons, review the Status column and ensure that the status for each add-on is

Disabled.

If the Status column shows Enabled, select the add-on and then click Disable.
d) Click Close and then click OK.

3. To access the sample application remotely, click http://demo.borland.com/InsuranceWebExtJS. The
sample application Web page opens.

Recording a Visual Test for the Sample Web
Application
During recording, Silk Test Workbench records all interactions in the test application (except interaction
with Silk Test Workbench itself) until recording is stopped. After you have finished recording, you can
modify the visual test you have generated to add and remove steps.

1. To be able to edit the recorded controls at a later point in this tutorial, enable the capturing of browser
controls before recording the visual test.

a) In the Silk Test Workbench menu, select Tools > Options. The Options dialog box opens.
b) In the tree, select Record > Output > Visual test.
c) Set the value of Browser control capture to Yes.

Note: Enabling control capture during the recording of web applications might decrease the
performance of your visual tests. Micro Focus recommends disabling control captures when you
have completed the tasks described in this tutorial.

2. Choose File > New. The New Asset dialog box opens.

3. Select Visual test from the asset types list.

4. Check the Begin Recording check box to start recording immediately.

5. Click OK to save the visual test as an asset and begin recording. The Select Application dialog box
opens.

6. Select the Web tab.

7. Select Internet Explorer from the list.

8. In the Enter URL to navigate text box, type demo.borland.com/InsuranceWebExtJS/.

9. Click OK. Silk Test Workbench minimizes and the Recording window opens.

10.In the Insurance Company Web site, perform the following steps:

a) From the Select a Service or login list box, select Auto Quote. The Automobile Instant Quote
page opens.

b) Type a zip code and email address in the appropriate text boxes, click an automobile type, and then
click Next.
For example, type 92121 as the zip code, jsmith@gmail.com as the email address and specify
Car as the automobile type.

c) Specify an age, click a gender and driving record type, and then click Next.
For example, type 42 as the age, specify the gender as Male and Good as the driving record type.

d) Specify a year, make, and model, click the financial info type, and then click Next.
For example, type 2010 as the year, specify Lexus and RX400 as the make and model, and Lease
as the financial info type.
A summary of the information you specified appears.

e) Click Purchase.
The Purchase A Quote page opens.

f) Click Home near the top of the page to return to the home page where recording started.

Silk Test Workbench Visual Test Tutorial | 9

http://demo.borland.com/InsuranceWebExtJS/

11.Stop recording by pressing Alt+F10, clicking Stop in the Recording window, or clicking the Silk Test
Workbench taskbar icon. The Recording Complete dialog box opens. If the Do not show this
message again check box is checked in the Recording Complete dialog box, this dialog box does not
appear after recording is stopped. In this case, the visual test displays in the Test Steps pane.

Saving and Naming the Visual Test
Once you have recorded your test, the Recording Complete dialog box opens and then you can:

• Play back the recorded visual test.
• Review the recorded actions in the Visual Navigator.
• Save the visual test, and then review the recorded test in the Visual Navigator.

Since you have just recorded the visual test for the first time, save and name the test before playing it back
or reviewing the recorded actions.

1. From the Recording Complete dialog box, click Save.

Tip: When you create an asset without naming it, Silk Test Workbench assigns the temporary
name "Untitled_" followed by a sequential number.

Because the test has not been named yet, the Save As dialog box opens.

2. In the Name text box, change the name to AutoQuote.

3. In the Description text box, type Visual test tutorial.

4. Click OK. The visual test displays in the Visual Navigator.

Reviewing the Recorded Test Steps
Once you have recorded your visual test and saved it, the visual test displays in the Visual Navigator. The
four panes of the Visual Navigator provide a comprehensive view of the visual test.

Steps in the Test Steps pane represent the screens accessed during recording and the actions performed
while completing the quote in the Web application.

Your recorded steps should be similar to the steps in the following graphic.

10 | Silk Test Workbench Visual Test Tutorial

The columns in the Test Steps pane include:

Column Description

 (Number)* Represents the sequential order in which steps are recorded and played back.
Steps display in this sequential order by default.

Any steps that have breakpoints added for debugging display a breakpoint in the
column next to this column.

If you change the view from the default view (Steps and Screens) to the Screens
only or the Steps only view, the numbering scheme sequentially skips the steps
or screens to indicate the gap in the recording sequence.

 (Logic)* Displays icons representing the type of logic for the step, if the step contains
logic.

 (Step Type)* Displays icons representing the type of action being executed in the step.

Steps Describes the action being taken for the step.

 (Flag)* Displays the Assigned Flag icon.

Silk Test Workbench Visual Test Tutorial | 11

Column Description

The Assigned Flag icon indicates that the associated step is flagged to appear
in the Test Steps pane and optionally on the Start Screen of the assigned user.
Additionally, you can move your pointer over the icon to display a ToolTip
containing the flag description, modified date, and assigned date.

 (Step Description)* Displays a user-defined step description. This column does not display in the
default view, but can be shown by clicking Actions from the Test Steps pane
title bar and then View > Step Description.

To create a step description, select a step. In the Properties pane, update the
Step description property. A Step Description icon appears in this column
indicating that the step has a description. Either move your pointer over the icon
to display a ToolTip containing the description or select the step and read the
description in the Properties pane.

Tip: Different panes in the Visual Navigator are synchronized with the Test Steps pane. In the
preceding graphic, the recorded step that selects Auto Quote from the list box is selected in the Test
Steps pane. As a result:

• The Screen Preview shows the state of the application before Auto Quote is selected.
• The Properties pane shows the properties for the selected step.
• The thumbnail representing the group of steps related to selecting the Auto Quote list item is

highlighted in the Storyboard.

Scroll through the steps in the visual test and select various steps to view the updated information in the
other panes.

Playing Back the Recorded Visual Test
Once you have recorded and saved your visual test, you can play it back to verify that the visual test works.

1. Perform one of the following steps:

• Choose Actions > Playback.
• Click Playback on the toolbar.

The Playback dialog box opens. This dialog box lets you determine how the result is saved.

2. In the Result description text box, type Initial test results for the recorded test.

3. Click OK.

4. If multiple browsers that are supported for replay are installed on the machine, the Select Browser
dialog box opens. Select the browser and click Run.

Each result is identified with a unique test run number.

Silk Test Workbench minimizes and the visual test plays back. During playback, the actions you performed
while recording the visual test are played back on the screen against the sample application. When
playback completes successfully, the Playback Complete dialog box opens.

Analyzing Results: Introduction
After playing back a visual test, Silk Test Workbench generates a test result. A test result contains
information about the playback of the visual test. Information such as the name of the visual test, the run
number, the date and time each step executed, the pass or fail status of each step, and other important
information.

12 | Silk Test Workbench Visual Test Tutorial

Using the Result Window Tabs
To quickly view test result information, the Result window contains five tabs which function as filters that
organize and display specific types of result information.

1. Click Go to Result on the Playback Complete dialog box.

The Result window opens to the Summary tab by default. The Summary tab provides an overview of
the test run including information such as whether the playback was successful or not, the latest run
number, the number of verifications that passed or failed, the start time and end time of the test, and
other basic information about the result of the test run.

2. Click the Details tab.

The Details tab displays the result of every step using the four panes of the Visual Navigator:

Test Steps Lists information about the playback result of each step in the visual test.

Screen Preview Displays the Web application screens captured during playback.

Properties Displays the properties of a step.

Storyboard Provides a graphical outline and overview of a result.

Note: The Passed, Failed, and Flags tabs also display result information using the Visual
Navigator. The only difference is that these tabs display specific types of steps, whereas, the
Details tab displays every step.

3. Select any step.

Silk Test Workbench updates the other panes with information specific to the selected step. In the
Screen Preview, the screen captured during playback is compared against the screen captured when
the visual test was first recorded. In the Properties pane, the properties of the selected step are listed.
And in the Storyboard, the group of steps in which the step occurs is highlighted.

Tip: To view the entire name of the step, you might have to expand the Steps column or move
your pointer over the step to display a ToolTip containing the entire name.

Using the Result Window Toolbar
The Result window toolbar provides several options for customizing the display and type of content found
in a result.

1. Click Advanced View on the Results toolbar. Silk Test Workbench displays additional columns in the
Test Steps pane and additional properties in the Properties pane.

2. In the Test Steps pane, scroll to the right to view the additional columns.

These columns provide specific information about each step such as, the time in milliseconds it took for
the step to run, the user name of the person who ran the test, and other specific details.

3. In the Properties pane, the Result property category lists the corresponding properties of each column
in the Test Steps pane. Scroll down to view the entire list.

4. Click the View drop-down arrow and select Steps Only. Silk Test Workbench filters out all the screens,
so you can quickly see only the steps.

5. Click the View drop-down arrow and select Steps and Screens. Silk Test Workbench displays all the
screens and steps of the result.

The Result window toolbar contains additional options for customizing the display and type of content
found in a result.

Silk Test Workbench Visual Test Tutorial | 13

Using the Properties Pane
The Properties pane displays properties of a step that describe the basic characteristics of the step
including the name of the step, the execution status, the details about the playback performance, and other
information.

1. Click the step Enter '42'.

This step performs the action of typing the value '42' into the Age text box.

The Properties pane updates and displays the properties of the selected step.

2. Click the Categorized icon if it is not already selected.

The properties are grouped into the following main categories:

Result Contains properties that correspond to the columns in the Test Steps pane. Properties
such as the name of the step, the date and time the step was executed, and the time it
took to run the step.

Extended
properties

Contains additional playback details such as the locator name Silk Test Workbench
uses to identify the control or the value of the text entered by an Enter action step.
Extended properties are helpful to view the contents of variables or expressions when
they are used in action steps. For example, an Enter step that uses the variable
textVar as its value displays the contents of textVar in the Extended properties category.

3. Expand the Extended properties node. The Text property and Locator property appear with their
respective values listed. The Text property value is '42', which is the value entered in the Age text box
for this step.

4. Click the Show/Hide Step Properties of Visual Test Before Playback icon. The Visual test details
node appears and lists all of the original properties of the step as they exist in the visual test.

Using the Screen Preview
The Screen Preview displays a captured image of the test application for each step in the Test Steps
pane that interacts with a control. The captured image can show the full desktop, the application window, or
only the active window. Captured images represent the state of the application before its associated step is
executed.

1. In the Test Steps pane, select the step that contains the year of the car. Enter 2010. In the Screen
Preview, the screen captured during playback appears next to the screen captured during the recording
of the visual test. The control for this step, the browser window, is highlighted by a black box.

14 | Silk Test Workbench Visual Test Tutorial

2. In the Screen Preview, click Actions > Show Differences > Off. The Visual test screen closes and the
Playback screen opens.

3. Click Actions > Zoom > 75%, then use the scroll bars to position the page so that it displays the year
clearly.

4. Switch to the visual test. In the Test Steps pane, click Actions > Visual test Window.

Enhancing the Visual Test: Introduction
Enhancing a visual test includes making updates to the existing visual test to ensure that it works with
newer versions of the test application. For example, to handle and verify varying conditions in the test
application you can insert test logic. Additionally, to increase the readability of a visual test or to remind
yourself or others about important aspects of the test, you can insert a flag, message box, or step
description.

These are just some of the ways in which you can use Silk Test Workbench to enhance existing visual test
to create more powerful, robust, and flexible tests.

Silk Test Workbench Visual Test Tutorial | 15

Updating From the Screen Preview
When Silk Test Workbench records a visual test, it captures screens from the test application in addition to
the associated controls for each screen. In the Screen Preview, Silk Test Workbench displays each
captured screen and highlights the control that is identified by a given step in the visual test. From the
Screen Preview, you can update a step by identifying a different control in the captured screen without
accessing the test application.

In this lesson, you will select a different button from the captured screen in the Screen Preview using Silk
Test Workbench's Insert Control From Screen Preview feature.

1. In the Test Steps pane of the AutoQuote visual test, select the step before the <<End>> step.

The step text is similar to the following: Click 'Home' at 40, 5.

The Screen Preview displays the Purchase A Quote page and highlights the Home button.

2. In the Screen Preview, click Actions > Zoom > 75%, then use the scroll bars to position the screen so
that the Contact Us button is clearly visible.

3. In the Properties pane, click the Locator text box. The locator selection buttons display in the value
area of the locator.

4. In the Properties pane, click Identify from the screen preview.

Note: If the button is disabled, you have not enabled browser control capturing before recording
the visual test.

The pointer moves to the Screen Preview.

5. Move the pointer over the Contact Us button and then click the Contact Us button.

When you click the button, the Locator property in the Properties pane changes to display the new
locator name for the button, and the step text in the Test Steps pane changes to the following: Click
'Contact Us' at 40,5.

6. Click Save.

The next time you play back the visual test, Silk Test Workbench clicks the Contact Us button instead of
the Home button.

Inserting a Verification
A verification is test logic that evaluates a user-defined condition, and then sends a pass/fail message and,
optionally, a flag to the playback result of a visual test.

In this lesson, you will insert a verification to ensure that the quote uses the correct vehicle model.

1. Ensure that you are viewing both steps and screens by clicking View > Test Steps > Steps and
Screens.

2. Select the step that reads click 'rx400' at 91,11.

3. In the Screen Preview, click Actions > Zoom > 75%, then use the scroll bars to position the screen so
that the Model is clearly visible.

4. Perform one of the following steps:

• Click Create Verification Type Logic on the toolbar.
• Choose Insert > Test Logic > Verification.

The Welcome page of the Test Logic Designer wizard opens.

5. Click Next. The Select a Logic Type page opens.

6. Click The property of a control, and then click Next. The Define a property-based condition page
opens.

16 | Silk Test Workbench Visual Test Tutorial

7. Click Identify from the screen preview. The pointer moves to the Screen Preview.

8. Select the Model combo box. The Define a property-based condition page displays the name of the
selected control and the properties of the control. The control name displays as:

webBrowser.browserWindow.modelCombo

9. In the Select a property grid, scroll to Text and select it.

10.Ensure that Select the condition is set to Is Equat to.

11.Change the Expected value to use the updated Text property by typing RX400 in the Expected value
text box.

12.Click Next. The Build the Verification page opens. From this page, you can define the pass or fail
message to send to the playback result. At the top of the page, the condition that Silk Test Workbench
verifies should be as follows:

If "webBrowser.browserWindow.modelCombo"."Text" Is Equal to "RX400"

This condition defines the logic for the verification. The condition compares the model type to the type
selected.

13.Replace the default pass text description to The model type is correct, and the default failed
text description to The model type is NOT correct.

14.Click Next. The Summary page opens.

A verification step is inserted after the selected step. The step text for the verification step is similar to
the following:

Verify "webBrowser.browserWindow.modelCombo"."Text" Is Equal to "RX400"

15.After reviewing the verification, click Finish.

You have successfully enhanced the recorded visual test by inserting test logic that verifies the value of a
property in the sample application.

Creating a Local Variable to Store Application Data
Variables enhance visual tests by providing the ability to store data values for use in other parts of the test
or in other visual tests or scripts. Data can also be output to other types of files.

In this lesson, you will store variable text in the control that displays the email address so it can be used in
a later lesson of the tutorial. To do this, you must first create a local variable to store the text.

1. In the Test Steps pane, click Actions > Insert > Variable > Add Local. The Add Local Variable dialog
box opens.

2. In the Variable name text box, type strEmailAddress.

3. From the Type list, select Text.

Leave the Initial value text box empty for this lesson, since a value will be stored to the variable in a
subsequent lesson.

The Text type stores the variable value as a text, or string data type.

4. Click OK. The new variable is saved for the visual test. Once the variable is created, you can see it and
edit its definition from the <<Start>> step.

5. To view the strEmailAddress variable, select the <<Start>> step in the Test Steps pane.

Tip: The <<Start>> step is always the first step in any visual test.

Properties for the step display in the Properties pane. With the <<Start>> step selected,
strEmailAddress displays in the Variables category defined as a Text variable.

The value area for the variable types indicate the number of variables of the type that are currently defined.
In this lesson, one Text variable has been created, so the value area for the item shows that one item is
associated with this test.

Silk Test Workbench Visual Test Tutorial | 17

Now that you have created the local variable to store the quote email address, store the email address text
from the application to the variable.

Storing Application Data to the Local Variable
The sample application displays a unique email address on the Get Instant Auto Quote page page. The
text on this page containing the email address is the property value of a control on the page.

In this lesson, you will store this text to the local variable strEmailAddress created in the previous exercise.

1. In the Test Steps pane, select the step that shows the email address value.

The step text should look similar to the following: Enter 'jsmith@gmail.com'

When the step is selected, the captured screen for the Get Instant Auto Quote page page displays in
the Screen Preview.

2. In the Test Steps pane, click Actions > Insert > Property from Control.

This inserts a step into the visual test just after the selected step. The step text should be similar to the
following: Get the ''" property of the control

This step will be used to store the email address text from the Get Instant Auto Quote page to the
local variable by editing the step properties. You will edit the step properties to specify the control to be
used, the property of the control, and the variable to store the property value. The variable is
strEmailAddress, which you created in the previous exercise.

3. In the Screen Preview, click Actions > Zoom > 50%, and then use the scroll bars to position the
screen so that the email address text is clearly visible.

4. In the Properties pane, click the Locator text box. The locator selection buttons display in the value
area of the locator.

5. Click Identify from the screen preview. The pointer moves to the Screen Preview.

6. Move the pointer over the E-Mail text on the page.

Ensure the highlighted box appears around the text on the page, then click the highlighted area to
identify the control.

Silk Test Workbench updates the Locator information in the Properties pane with the following value:
webBrowser.browserWindow.autoquoteEMail.

7. In the Properties pane, click the Property text box, and then select Text from the list for its value.

8. Click (Select a local variable...) and then select strEmailAddress from the list.

Now that you have successfully identified the control, the property of the control containing the desired
value, and the variable in which to store the property value, the step text should read as follows: Put
the 'Text' property of the control into variable 'strEmailAddress'

The Local variable name value in both the Properties pane and the step text changes to
strEmailAddress.

To confirm that the test captures the property value and stores it properly, play back the test and review the
result.

Playing Back and Analyzing the Enhanced Visual Test
Now that you have made several enhancements to the recorded test, play back the visual test and analyze
the result.

1. Perform one of the following steps:

• Choose Actions > Playback.
• Click Playback on the toolbar.

The Playback dialog box opens.

18 | Silk Test Workbench Visual Test Tutorial

2. In the Result description text box, type Enhanced test results for the recorded visual
test.

3. Click OK.

4. If multiple browsers that are supported for replay are installed on the machine, the Select Browser
dialog box opens. Select the browser and click Run. Silk Test Workbench plays back the enhanced test.

5. Click Go to Result on the Playback Complete dialog box.

The Result window opens to the Summary tab by default.

The Summary tab shows that the visual test passed, which means it played back successfully without
any errors, or failed verifications.

6. Click the Passed (1) tab.

The number in parentheses indicates the total number of verifications that passed. The Test Steps
pane displays the verification step and the Result Detail column displays the pass text description of
the verification.

7. Click the Details tab to display the result of every step.

8. In the Test Steps pane of the Result window, scroll down to the step that shows the result of storing the
email address to a variable. The step text is similar to the following: Put the 'Text' property of
the control into variable 'strEmailAddress'.

9. The contents of the strEmailAddress variable displays in the Result Detail column. To view the entire
contents of the Text property value, move your cursor over the Result Detail column for the step. A
ToolTip appears displaying the entire contents of the property.

Congratulations! You have successfully created a visual test that reliably tests the sample application. In
the next lesson, you will learn about several advanced testing concepts and features such as how to
quickly and easily execute a visual test within another visual test.

Executing a Visual Test Within a Visual Test: Introduction
In this tutorial, you created a single visual test that performs every action required to receive an auto
insurance quote from the web application. A single visual test is useful when implementing a basic test
case against a simple application. However, most software testing requires a more rigorous approach that
involves testing every aspect of an application. An additional requirement is the ability to rapidly update
existing visual tests whenever the test application changes.

To provide an efficient means for solving these testing challenges, Silk Test Workbench supports modular
testing, in which you can "chunk" common sets of actions of a particular testing solution into a single test,
and then reuse the visual test in other visual tests that require the same set of actions.

Modular Testing
Before creating visual tests, scripts, and other Silk Test Workbench assets to build application testing
solutions, it is a good practice to plan a testing strategy.

It is not necessary to include all the parts of a specific test solution in a single visual test or script and is not
usually beneficial to do so.

Typically, the most efficient testing approach is a modular approach. Think of your application testing in
terms of distinct series of transaction units.

For example, testing an online ordering system might include the following distinct transaction units:

• Log on to the online system
• Create a customer profile
• Place orders

Silk Test Workbench Visual Test Tutorial | 19

• Log off the online system

If one test is created to handle all of these distinct units and there are ten different scenarios that use this
test, you would need to record ten different tests to handle the scenarios. If any change occurs to the
application, for example if an extra field is added to the logon window, ten different tests would require a
change to accommodate data input to the new field.

Rather than creating one visual test or script that tests all of these transaction units, and then recreating it
ten times for each scenario, it may be more beneficial to create separate tests as test "modules" that
handle each one of these transaction units. If a separate test is created for each of the separate transaction
units and reused for each of the test scenarios, then only the test that handles the logon transaction unit
would require change.

Now that you understand the basics of modular testing, you are ready to create a second test and add it to
the test you created in the previous lessons.

Recording the Second Visual Test
In this section of the lesson, you record a second visual test for the tutorial and learn an alternate way to
create a visual test asset.

1. Choose File > New. The New Asset dialog box opens.

2. Select Visual test from the asset types list, and then type a name for the visual test asset in the Asset
name text box.
For this tutorial, type AddAccount for the name.

3. Check the Begin Recording check box to start recording immediately.

4. Click OK to save the visual test as an asset and begin recording. The Configure Test dialog box opens.

5. Select the Web tab.

6. Select Internet Explorer from the list.

7. From the Home page of the sample application, click Sign Up in the Login section. The Create A New
Account page opens.

8. Provide the following information in the appropriate fields.

Press the Tab key to move from one field to the next.

Field Name Value

First Name Pat

Last Name Smith

Birthday February 12, 1990

Note: Click the down arrow next to the month and year in the calendar control to
change the month and year and then select 12 on the calendar.

E-Mail Address smith@test.com

Mailing Address 1212 Test Way

City San Diego

State CA

Postal Code 92121

Password test

9. Click Sign Up.

10.Click Continue. The contact information is displayed.

11.Click Home near the top of the page to return to the home page where recording started.

12.Click Log Out.

20 | Silk Test Workbench Visual Test Tutorial

13.Press Alt+F10 to complete recording. The Recording Complete dialog box opens.

14.Click Save. The visual test opens in the Visual Navigator.

Inserting One Visual Test Within Another
In this section of the lesson, you will learn how to insert the second visual test, which adds a user account,
in the original visual test before the steps that perform the request for an auto quote.

Executing visual tests within visual tests is a powerful method for efficiently testing the same basic steps in
multiple visual tests.

Tip: When inserting a visual test within another visual test, it is important to ensure that any test
applications are in the correct initial playback state.

1. From the Recent list in the Start Screen, click AutoQuote to open it.

AutoQuote is the first visual test that you created in this tutorial.

2. In the Test Steps pane, select the <<Start>> step.

3. Click Actions > Insert > Visual test. The Browse for Visual test dialog box opens.

4. From the Select an asset list, select the visual test named AddAccount and then click OK.

Tip: If there are many visual tests in the Select an asset list, type AddAccount into the Name
Filter text field and then click on the visual test.

Silk Test Workbench inserts a step before the selected step. The inserted step calls the selected visual
test. The step text is as follows:
Playback visual test 'AddAccount'

Tip: During playback, when the preceding step executes, the original visual test plays back to
completion before the inserted visual test plays back.

In the next lesson, you will learn how to playback this modular visual test, and respond to a playback error.

Responding to Playback Errors: Introduction
Errors encountered during playback can be caused by a variety of factors, such as changes in the test
application and improper visual test step flow. Quickly diagnosing and fixing these errors using the
debugging features minimizes visual test maintenance and allows for a more efficient team testing effort.

First, begin this lesson by playing back the modular test you created in the previous lesson.

Playing Back the Modular Test
In the previous lesson, you created a modular test by inserting one visual test, AddAccount, into another
visual test, AutoQuote.

In this section of the lesson, you will play back the modular test and encounter an error during playback.

1. With the AutoQuote visual test open, click Playback on the toolbar. The Playback dialog box opens.

2. In the Result description text box, type Responding to errors in a modular test.

3. Click OK.

4. If multiple supported browsers are installed on the machine, the Select Browser dialog box opens.
Select the browser and click Run.

During playback, the test stops on the Create A New Account page and an error message opens.

This error occurs because the database requires a unique email address for each customer record.
Since you have already entered the email address during the recording of the AddAccount visual test,
the email address already exists in the database and the test fails.

Silk Test Workbench Visual Test Tutorial | 21

Now that you have encountered a playback error, you are ready to debug the test.

Debugging Errors
After Silk Test Workbench encounters a playback error, the Silk Test Workbench Playback Error dialog box
opens and provides the option to enter Debug mode. In Debug mode, playback is suspended, which allows
you to diagnose and fix any playback errors using the Silk Test Workbench debugging features.

In this section of the lesson, you will learn how to debug the error that occurred during playback of the
modular test in the previous section.

1. From the Playback Error dialog box, click Debug.

In Debug mode, playback is suspended. This allows you to fix the error by either editing the properties
of the step incurring the error, deleting the step, disabling the step, or copying and pasting a step from
another visual test before resuming playback.

Silk Test Workbench enters Debug mode and displays the AddAccount visual test with the step
incurring the error highlighted in yellow.

2. Choose Edit > Enable/Disable to disable the step Select button 'id=signup:continue'.

By disabling this step, you prevent the error from occurring the next time you play back the test.

The step text turns grey and italicized indicating that it is disabled.

3. Click Playback on the toolbar. The Playback Error dialog box opens.

4. Click Debug.

5. Choose Edit > Enable/Disable to disable the step Select button 'id=logout-form:logout'.

This error occurs because the test is looking for the Log Out button on the Home page, but since the
Sign Up Continue step is disabled, the button does not display on the page. We will fix this error later in
this tutorial.

6. Choose Debug from the menu.

The following Step commands that appear at the top of the menu allow you to control the step
execution:

Step Into
(F8)

Executes playback one step at a time. Step Into is useful to trace through each step,
and steps into other visual tests or scripts that are inserted into the visual test being
played back. Each inserted visual test or script is also executed one step or line at a
time.

Step Into is useful for detailed analysis of a test, and lets you see the effect of each
step on variable usage and test application interaction.

Step Over
(Shift +
F8)

Executes an entire visual test or script inserted into another visual test as if it were a
single step. Use Step Over when playback is in debug mode for a step that plays back
a visual test or script. This plays back the inserted visual test or script in its entirety.
Once the inserted visual test or script plays back in its entirety, playback suspends in
debug mode at the next step in the original visual test.

Using Step Over at a step other than one that plays back another visual test or script
has the same effect as using Step Into. Only the next step executes before playback
suspends and re-enters debug mode.

Step Out
(Ctrl +
Shift +
F8)

Executes all remaining steps in a visual test or script being played back from another
visual test, then suspends playback at the next step in the original visual test.

Use Step Out when playback is suspended at a step in a visual test or code line that
has been inserted in another visual test, and you want to playback the remaining visual
test or script and return to the original visual test. When playback executes the
remainder of the inserted script or visual test, it suspends and re-enters debug mode at
the next sequential line in the original visual test.

22 | Silk Test Workbench Visual Test Tutorial

Run To
Cursor
(Ctrl +
F8)

Allows you to select a step where you want playback suspended. This allows you to
"step over" selected sections of a visual test or script.

Use Run To Cursor to playback the visual test or script and stop playback at a point
just before a run-time error occurs. This lets you stop playback at a specific line or
statement without having to insert breakpoints. Once playback stops, you can continue
using one of the other debug options.

Run From
Cursor

Plays back the visual test from the currently selected test step.

7. Choose Step Out.

This command executes the remaining steps in the AddAccount visual test, and then suspends
playback in the next step of the AutoQuote visual test.

After selecting Step Out, Silk Test Workbench displays the home page, which is the last step in
AddAccount, and suspends playback. Silk Test Workbench then opens AutoQuote in Debug mode and
highlights the next step.

Next, you learn how to monitor the values of variables used in the visual test.

Tracking Variables During Playback
In Debug mode, you can track the playback values of both local and reserved variables using the Local
Variables window.

In this section of the lesson, you will learn how to use the Local Variables window to view the value of the
local variable you created in a previous lesson.

1. Choose Debug > Local Variables. The Local Variables window opens.

2. Expand the Local and visual test variables node.

The local variable you created in a previous lesson, strEmailAddress, appears. During playback, the
value for this variable will appear in the Value column once the step using the variable executes. The
result looks like the following graphic:

Note: If you want to see the variable values in the Local Variables window but your test does not
have any errors, insert a breakpoint in the visual test. To insert a breakpoint, select the step
following the variable step, choose Debug > Set/Clear Breakpoint and then playback the test.

3. To see how the Run to Cursor debugging works, select the step Click 'Lexus' at 24,9 and then
choose Debug > Run to Cursor. Silk Test Workbench plays back the remaining steps until the step
Click 'Lexus' at 24,9, and then displays the AutoQuote visual test.

Now you are ready to complete the playback of the modular test and review the test results.

Reviewing the Result
Review the results of the visual test after you have finished debugging the visual test.

1. Click Playback on the toolbar to complete playback of the AutoQuote visual test. The Playback
Complete dialog box opens.

Silk Test Workbench Visual Test Tutorial | 23

2. Click Go to Result. The AutoQuote result appears with the Summary tab displayed by default.

The Summary tab displays the overall details of the test run. Note that the Visual tests or .NET
Scripts (number of times each ran) field lists AutoQuote(1) and the inserted visual test,
AddAccount(1).

3. Click the Details tab.

4. In the Test Steps pane, scroll down to the steps in blue text.

By reviewing the Result and Result Detail columns, you can quickly find information about any errors
that occurred during playback.

Note: To view all steps in the Test Steps pane, make sure you have Steps and Screen selected.
Click Actions > View > Steps and Screens. The Failed tab does not display steps containing
playback errors. It only displays failed verifications.

You have learned how to diagnose and debug playback errors.

Using ActiveData
To effectively mimic application use, application testing often involves performing the same action or set of
actions repeatedly using different sets of data. For example, the previous lesson included recording a test
that created a customer record. To create ten customer records, you can record ten different tests, each
with its own set of customer data. However, with Silk Test Workbench you can enhance this original test to
run repeatedly for ten iterations and use a different set of data for each iteration.

With ActiveData testing, you can use data in external files as input to the test application, and then repeat
selected steps using different data for each iteration.

In this lesson, you will learn how to:

• Create an ActiveData asset and associate it with a visual test
• Create repetition logic that repeats selected steps a specified number of times, using different data for

each repetition
• Define how to use the ActiveData file in the visual test
• Define the steps to be repeated
• Map ActiveData in a data file to literal data in a visual test

In the previous lesson, you recorded a visual test that entered customer information for Pat Smith into the
customer database. Each time that visual test plays back, Silk Test Workbench uses the literal data values
that were captured during the initial recording.

In this lesson, you replace the literal data values used to input customer information for Pat Smith with
ActiveData, so that when Silk Test Workbench plays back the visual test, different customers contained in
the external file are used.

Before creating ActiveData for the visual test, review the ActiveData file.

Reviewing the ActiveData File
When creating an ActiveData asset, you can either select an existing data file or create a new file to
contain the data used by the asset. In this tutorial, you will use an existing file named customers.csv, a
comma-separated file containing customer information. This file is located in the Examples folder of your
Silk Test Workbench installation directory.

Each column of the customers.csv file corresponds to a field used to enter a customer into the database,
with the exception of the Age column, which will be used in a later lesson in this tutorial.

When using ActiveData for this test, Silk Test Workbench plays back the test and repeats the steps that
enter customer information, each time using data for a different customer, until each customer in the file is
entered into the database.

24 | Silk Test Workbench Visual Test Tutorial

Tip: In the ActiveData file, password values are encoded text.

The ActiveData file contains the following columns:

• First Name
• Last Name
• Birthday
• Email Address
• Mailing Address
• City
• State
• Postal Code
• Password
• Age (used in a subsequent lesson)

Next, create the ActiveData test asset and associate it with the visual test.

Creating the ActiveData Test Asset
Before using a data file in ActiveData testing, you must create an ActiveData asset that uses the file, and
then associate the ActiveData asset with the visual test.

1. In the Recent list on the Start Screen, double-click the visual test named AddAccount to open it. The
AddAccount visual test opens in the Visual Navigator.

2. In the Test Steps pane, click Actions > Insert > ActiveData > New. The ActiveData asset setup
window opens.

3. In the Name text box, name the ActiveData asset by typing customers.

4. Click Browse to search for the customers.csv file to associate with the AddAccount ActiveData
asset. The Choose ActiveData Asset dialog box opens.

5. Navigate to the sample file location and select the sample ActiveData file, customers.csv.

By default, the location is: C:\Program Files\Silk\Silk Test\examples\customers.csv.

6. Click Open. The path and file name appear in the File text box of the General tab.

7. In the ActiveData asset setup window, click the Options tab.

8. Check the Use first row as header check box.

Tip: Click the Details tab to view the contents of the ActiveData file.

This setting treats the first row of data in the ActiveData file as a header row, not as data.

9. Click Save and close to create the ActiveData asset and associate it with the AddAccount visual test.

In a visual test, information about any associated ActiveData assets is stored in the Properties pane of the
<<Start>> step. To review each ActiveData asset associated with the visual test , select the <<Start>>
step and review the ActiveData property in the Properties pane.

Now that the ActiveData asset has been created and associated with the visual test, you are ready to
create the repetition logic that will use the active data in the test.

Creating Repetition Logic for ActiveData Files
In visual tests, ActiveData typically involves repeating a series of steps, and substituting literal data for
ActiveData for each repetition.

In this lesson, we will substitute the literal data that adds a customer to the database with data from the
ActiveData file customers.csv, which contains ten customer records. For each repetition, data from a

Silk Test Workbench Visual Test Tutorial | 25

customer record in the ActiveData file will be used to enter data in the fields on the Create a New Account
page of the InsuranceCo Web site.

1. Make sure the AddAccount visual test displays in the Visual Navigator.

2. Click Create Repetition Type Logic on the Silk Test Workbench toolbar. The Test Logic Designer
wizard appears with the Welcome page displayed.

3. Click Next. The Select a Logic Type page opens.

4. Click Repeating a sequence of steps using data from an ActiveData file, and then click Next. The
Define the ActiveData asset to use page opens.

5. Since only one ActiveData asset (customers) has been associated with the visual test, it should appear
in the ActiveData asset list. If not, select it from the list.

6. Optional: From the Sheet name list, select the sheet to be used from the data file.

By default, the sheet that is specified in the ActiveData asset is used.

7. In the Start row text box, leave the default value at 1.

8. Check the End at last row containing data check box.

9. Click Get all rows in sequence.

You have now defined how the data file will be used in the repetition logic, and how many repetitions will
occur.

• The first row of the Active data file will be used first when the repetition logic executes.
• The repeat will continue using each row until the last row is used.
• Since all rows of data will be used in the repetition logic in sequential order and there are 10 rows of

data in the ActiveData file, the steps to add a customer to the database will be repeated 10 times.
For each repetition, a different row of customer data from the ActiveData file will be used as input.

10.Click Next. The Build the Repeat page opens.

Now that you have defined how the ActiveData will be used, you are ready to determine the steps in the
visual test that will be repeated.

Defining the Steps to Repeat
When determining the steps in repetition logic to repeat, consider all the actions that require repetition, not
just the steps where literal data is substituted.

For this lesson, there are several steps where literal data will be substituted, but the entire process of
accessing the Create a New Account page of the InsuranceCo Web site must be repeated in order for
each customer in the ActiveData file to be entered. Therefore, all steps in the actual test process must also
be repeated, including steps that access the page and return the test to the Home page.

1. In the Build the Repeat page, click the Do step link. The Select Steps dialog box opens.

2. Select the step that begins interaction with the InsuranceCo Web site. This is the step immediately after
the <<Start>> step.

Because the visual test contains all the steps required in the process of adding a customer, all the steps
must be repeated.

3. Click OK. The Select Steps dialog box closes and the text for the selected step appears in the Do step
link.

4. In the Build the Repeat page, click the To step link. The Select Steps dialog box opens.

5. Select the step that ends interaction with the InsuranceCo Web site. This is the step immediately before
the <<End>> step.

6. Click OK. The Select Steps dialog box closes and the text for the selected step appears in the To step
link.

7. Click Next. The Summary page of the Test Logic Designer opens. This page displays the test logic
you have defined for the visual test.

26 | Silk Test Workbench Visual Test Tutorial

8. Click Finish to insert the test logic into the test steps of your visual test.

In the visual test, Silk Test Workbench inserts a step after the <<Start>> step that starts the repetition
logic. The step text should be as follows:Repeat using activedata 'customers'

Silk Test Workbench also inserts a step before the <<End>> step that ends the repetition logic. The
step text should be as follows:
End Repeat

All steps between the newly inserted repetition logic steps now appear as indented steps nested
between the repetition logic steps. The final part of using ActiveData in the visual test is to map data in
the ActiveData file to the literal data in the visual test.

Mapping ActiveData to Literal Data
Before a visual test can use data in an ActiveData file, data in the applicable test steps must be mapped to
use data in columns of an ActiveData file.

1. Select the first step in the visual test that enters data into a field.

This should be the step that enters 'Pat' into the First Name text box on the Create a New Account
page of the InsuranceCo Web site, as originally recorded in the visual test.

Properties for the step appear in the Properties pane.

2. In the Properties pane, in the Parameters category, select the text parameter, which indicates the text
that was set to Pat.

3. Click Select in the value area and click ActiveData.

Tip: If customers is not in the ActiveData asset list, it has not been associated with the visual
test.

The Select an ActiveData Column dialog box opens. Use this dialog box to map the data from the
selected property in the test step to data from a column in the ActiveData file.

The ActiveData asset text box shows the ActiveData asset customers, which was associated with the
visual test. The column names from the customers ActiveData file display in the Columns list.

4. In the Columns list, select the First Name column.

This is the column in the file that contains first names, which you are mapping to substitute for the literal
data 'Pat'.

5. Click OK to close the dialog box and map the data.

Silk Test Workbench replaces the actual data in the test step with an expression that maps to the
selected data in the ActiveData file. The existing step text Enter 'Pat' now shows the name of the
ActiveData asset, the type of data being substituted, and the column name:

Enter '[[customers].Text("First Name")]'

6. Repeat steps 1 through 5 for all other test steps containing data to be substituted with data in an
ActiveData file associated with the visual test. Start with the next step, which is the step containing the
step text Enter 'Smith' text.

The following table shows:

• The text of each step in this visual test whose literal date is to be substituted with data from the
ActiveData file

• The name of the step property whose data is to be substituted
• The ActiveData column to select that contains the data that will be used in place of the literal data

Note: Steps updated using ActiveData that enter text into a password protected text box do not
show ActiveData information in the step text.

Silk Test Workbench Visual Test Tutorial | 27

Step Text Property ActiveData Column

Enter 'Smith' Text Last Name

Enter 'smith@test.com' Text Email Address

Enter '1212 Test Way' Text Mailing Address

Enter 'San Diego' Text City

Select list box item 'California' List Box Item State

Enter '92121' Text Postal Code

Enter 'test' Text Password

Now that this visual test has been set up to use data from an ActiveData file, play it back and review the
results.

Playing Back and Analyzing the ActiveData Visual Test
Now that the visual test that adds a customer has been enhanced to use customer records from an
ActiveData file, it can be played back. When the visual test plays back, the customer records from the
ActiveData file will actually be entered into the customer database.

1. Perform one of the following steps:

• Choose Actions > Playback.
• Click Playback on the toolbar.

The Playback dialog box opens.

2. In the Result description text box, type AddCustomers using ActiveData.

3. Click OK.

4. If multiple browsers that are supported for replay are installed on the machine, the Select Browser
dialog box opens. Select the browser and click Run. Silk Test Workbench plays back the enhanced test.

5. Click Go to Result on the Playback Complete dialog box.

The Result window opens to the Summary tab by default.

6. Click the Details tab to display the result of every step.

The Details tab displays the result of every step executed during playback. Use the scrollbar to scroll
though the executed steps.

There are more steps in the Test Steps pane of the Result window than there are actual steps in the
visual test. This is because each repetition includes its own set of executed steps.

Note: You can also use expressions to update the ActiveData in a visual test. The Expression
Designer enables you to use data from an ActiveData file column as input, and create an expression
that changes the value of the data. The updated data can then be saved back to the same column in
the same ActiveData file. For details, see Updating ActiveData in a Visual Test Using an Expression in
the online help.

Playing Back Scripts From Visual Tests
Scripts and visual tests are similar in that both assets automate manual user actions such as selecting
menu items and entering data in a test application. The difference between these two assets is how the
user actions are represented in the asset. A script uses a scripting language, Microsoft's Visual Basic
running in the Microsoft .NET framework, whereas, a visual test uses steps generated by the point-and-
click interface of the Visual Navigator.

With either asset you can create powerful and flexible automated tests that run independently of each
other. The choice of asset is dependent on your needs and preferences. You can also use each asset in

28 | Silk Test Workbench Visual Test Tutorial

conjunction with the other. For example, you can create a script that performs a specialized task, and then
insert a step in a visual test that plays back the script. In this way, you can leverage the power of the
scripting language used in scripts to supplement your visual tests.

When scripts are played back from a visual test, they are the equivalent of a function that you can call
whenever you need to perform a repetitive and specialized testing task. This approach is helpful in a team
testing environment, where an experienced tester can create a library of scripts that perform common
testing functions from which a novice developer can select from when creating a visual test.

Creating a Script to Generate Random Numbers
The first step is to create a script that generates a random number that you can use for the age of the user.

1. Choose File > New. The New Asset dialog box opens.

2. Select .NET Script from the asset types list, type function_randomAge in the Asset name text box
and click OK.

Tip: By naming your script "function" you can create an organized library of commonly used
testing tasks from which you can quickly select and insert into a visual test.

The script opens in the Code window.

3. Place your cursor on the line following Sub Main(), and type:

Dim rand As New Random()
Dim TSrandomAge As Integer = rand.Next(10000, 99999)
MsgBox(TSrandomAge)

4. Click Playback on the toolbar. The Playback dialog box opens.

5. Click OK. A message box opens and displays a randomly generated number between 10,000 and
99,999.

6. Click OK. The Playback Complete dialog box opens.

7. Click Go to .NET Script.

8. Replace the numeric range parameters (10000, 99999) with the parameters MinVal and MaxVal. You
can use these two parameters to set the range of the random number from the visual test that plays
back this script instead of having to open the script and change the values. Type the following:

Dim TSrandomAge As Integer = rand.Next(MinVal, MaxVal)

9. To verify the script works properly, assign the parameters the following values after Sub Main():

Dim MinVal=16
Dim MaxVal=105

Your script should look like the following code:

Public Sub Main()
 Dim rand As New Random()
 Dim MinVal=16
 Dim MaxVal=105
 Dim TSrandomAge As Integer = rand.Next(MinVal, MaxVal)

 MsgBox(TSrandomAge)
End Sub

10.Click Playback on the toolbar. The Playback dialog box opens.

11.Click OK. A message box appears and displays a randomly generated number between 16 and 105.

12.Click OK. The Playback Complete dialog box opens.

13.Click Go to .NET Script.

14.To set the MinVal and MaxVal parameters using input parameters, perform the following steps:

Silk Test Workbench Visual Test Tutorial | 29

a) Modify the Main() sub to include the input parameters that you want to create.

Public Sub Main(args As IDictionary(Of String, Object))
 Dim MinVal=args ("MinVal")
 Dim MaxVal=args ("MaxVal")

where "MinVal" and "MaxVal" are the names of the input parameters that we will create in the
next procedure.

b) Modify the Main() sub to include the output parameters that you want to create.

Public Sub Main(args As IDictionary(Of String, Object))

 args ("TSrandomAge")=TSrandomAge

where "TSrandomAge" is the names of the output parameters that we will create in the next
procedure.

c) Since the script will pass the age to the visual test, comment out the message box code by placing
an apostrophe in front of the statement.

'MsgBox(TSrandomAge)

The entire script should look like the following:

Public Module Main
 Dim _desktop As Desktop = Agent.Desktop

 Public Sub Main(args As IDictionary(Of String, Object))

 Dim rand As New Random()

 Dim MinVal= args("MinVal")
 Dim MaxVal= args("MaxVal")

 Dim TSrandomAge As Integer = rand.Next(MinVal, MaxVal)
 args ("TSrandomAge")=TSrandomAge
 'MsgBox(TSrandomAge)

 End Sub
End Module

Next, define the script input and output parameters used to pass the random age to the visual test.

Defining the Script Input Parameters
Scripts can receive data from a visual test in an input parameter, and, conversely, pass data to visual tests
in an output parameter. In this task, you will define two input parameters that set the range for the random
number created in the function_randomAge script.

1. In the Properties pane, right-click and choose Add Input Parameter. The Add Script Input
Parameter dialog box opens.

2. In the Name text box, type MinVal.
3. From the Type list, select Number (Double).
4. In the Default Value text box, type 16.

Optionally, you can set the default value in the visual test.

5. Click OK. The input parameter displays in the list of input parameters in the Properties pane.

6. In the Properties pane, right-click and choose Add Input Parameter. The Add Script Input
Parameter dialog box opens.

7. In the Name text box, type MaxVal.
8. From the Type list, select Number (Double).
9. In the Default Value text box, type 105.

Optionally, you can set the default value in the visual test.

30 | Silk Test Workbench Visual Test Tutorial

10.Click OK. The input parameter displays in the list of input parameters in the Properties pane.

Defining the Script Output Parameters
Scripts can receive data from a visual test in an input parameter, and, conversely, pass data to visual tests
in an output parameter. In this task, you will define a parameter that passes the random number created in
the function_randomAge script to the visual test.

1. In the Properties pane, right-click and choose Add Output Parameter. The Add Script Output
Parameter dialog box opens.

2. In the Name text box, type TSrandomAge.

3. From the Type list, select Number (Double).

4. Leave the Default Value text box empty.

5. Click OK. The output parameter displays in the list of output parameters in the Properties pane.

Define a local variable in the visual test to receive the output parameter.

Setting Up the Visual Test to Use Script Data
To set up a visual test to use script data, you must insert a step that plays back the script, create a local
variable to store the script data, and associate the local variable with the script output variable. Additionally,
to pass data from a visual test to a script, you must set the values of the script input variables.

1. Open the AutoQuote visual test.

2. Choose File > Save As. The Save As dialog box opens.

3. Since you will be modifying the AutoQuote visual test, rename it to AutoQuote_Modified to differentiate
it from the original test, and then click OK.

4. Select the step after the following step text:
Playback visual test 'AddAccount'

5. In the Test Steps pane, click Actions > Insert > .NET Script. The Browse for .NET Script dialog box
opens.

6. Select function_randomAge, and then click OK. Silk Test Workbench inserts a step that plays back
the script.

7. To add a local variable to store the script data, perform the following steps:

a) In the Test Steps pane, click Actions > Insert > Variable > Add Local. The Add Local Variable
dialog box opens.

b) In the Variable name text box, type VTrandomAge.
c) From the Type list, select Number (Double) and leave the Initial value set to 0.
d) Click OK. You can see the variable and edit its definition from the <<Start>> step.

8. Select the step for the script.

The step looks like:Playback .NET Script 'function_randomAge'.

9. In the Properties pane of the inserted script step, click in the value area of the Pass contents of
'TSrandomAge' into property and select the local variable VTrandomAge.

Since we added input parameters in the script, those values display in the Properties pane. However,
you can modify the input parameters used in the visual test by editing the values. These values are not
changed in the script.

Your visual test is now set up to use script data. Each time the AutoQuote_Modified visual test plays back,
the function_randomAge script is played back and passes a unique random number to the local variable,
VTrandomAge, in the visual test.

Now, modify the step that enters the age information to use the visual test local parameter containing the
random number generated in the function_randomAge script.

Silk Test Workbench Visual Test Tutorial | 31

Using Script Data in the Visual Test
In this section of the lesson, you will modify the step that enters the age information to use the visual test
local parameter containing the random number generated in the function_randomAge script.

1. Select the step that enters data in the Age text box. The step text is as follows:
Enter '42'

2. In the Properties pane, select the Text property.

3. Click the Select button, and then select Variable. The Select a Variable dialog box opens.

4. Select VTrandomAge, and then click OK. The step text displays as:Enter '[VTrandomAge]'

This step will now enter the value of the VTrandomAge local variable in the Age text box.

Playing Back and Reviewing Test Results
1. Perform one of the following steps:

• Choose Actions > Playback.
• Click Playback on the toolbar.

The Playback dialog box opens.

2. In the Result description text box, type Adding Customers using data passed from a
script.

3. Click OK.

4. If multiple browsers that are supported for replay are installed on the machine, the Select Browser
dialog box opens. Select the browser and click Run. Silk Test Workbench plays back the enhanced test
and creates 10 new customers using the random number passed from the script and the additional
customer information you defined in the visual test.

5. Click Go to Result on the Playback Complete dialog box.

The Result window opens to the Summary tab by default.

6. Click the Details tab to display the result of every step.

32 | Silk Test Workbench Visual Test Tutorial

Index
A
ActiveData

analyzing results, visual test 28
creating assets, tutorial 25
data files, reviewing 24
playing back, visual test 28
repetition logic, creating 25
repetition logic, defining steps 26
repetition logic, mapping data 27
tutorial 24

E
enhancing

visual tests, introduction 15
enhancing visual tests

adding verifications 16
local variables, storing data 18
playing back 18
updating from screen preview 16
variables, creating 17

errors
debugging 22
finding 21
overview 21
reviewing 23

G
GUI

main screen 4
overview 4

I
input parameters

defining 30

L
local variables

creating 17
storing data 18

M
main screen

GUI 4
modular testing

overview 19
modular tests

executing 19
inserting 21
overview 19
recording second test 20

O
output parameters

defining 31

P

playback errors
debugging 22
finding 21
overview 21
reviewing 23
tracking variables 23

playing back
visual tests 12

R

recording visual tests
overview 8
reviewing 10
sample application 9
saving 10

repetition logic
creating, ActiveData 25
ActiveData, defining steps 26
ActiveData, mapping to literal data 27

result window
properties pane 14
screen preview 14
tabs 13
toolbar 13

results
introduction 12
reviewing errors 23

S

sample application
recording, visual test 9
starting 8

Screen Preview
updating visual tests from 16

scripts
generating random numbers 29
input parameters 30
output parameters 31
sample application 8
using with visual tests 31, 32

start screen
overview 5

T

test results
introduction 12
properties pane 14
screen preview 14
tabs 13
toolbar 13

tests
modular 19

Index | 33

tutorials
ActiveData 24
generating random numbers 29
playing back 32

U

UI
overview 4

V

variables
debugging 23
local, creating 17
storing data 18

verifications
adding 16

Visual Navigator

overview 6
visual tests

adding verifications 16
embedded, executing 19
enhancing, introduction 15
inserting 21
local variables, creating 17
local variables, storing data 18
modular overview 19
naming 10
playing back 12
playing back enhanced tests 18
recording 8
recording second test 20
recording, sample application 9
reviewing 10
saving 10
updating 16
using with scripts 31, 32

34 | Index

	Contents
	Silk Test Workbench Visual Test Tutorial
	Introducing the GUI
	Silk Test Workbench Main Screen
	Start Screen
	Visual Navigator

	Recording a Visual Test: Introduction
	Starting the Sample Web Application
	Recording a Visual Test for the Sample Web Application
	Saving and Naming the Visual Test
	Reviewing the Recorded Test Steps
	Playing Back the Recorded Visual Test

	Analyzing Results: Introduction
	Using the Result Window Tabs
	Using the Result Window Toolbar
	Using the Properties Pane
	Using the Screen Preview

	Enhancing the Visual Test: Introduction
	Updating From the Screen Preview
	Inserting a Verification
	Creating a Local Variable to Store Application Data
	Storing Application Data to the Local Variable
	Playing Back and Analyzing the Enhanced Visual Test

	Executing a Visual Test Within a Visual Test: Introduction
	Modular Testing
	Recording the Second Visual Test
	Inserting One Visual Test Within Another

	Responding to Playback Errors: Introduction
	Playing Back the Modular Test
	Debugging Errors
	Tracking Variables During Playback
	Reviewing the Result

	Using ActiveData
	Reviewing the ActiveData File
	Creating the ActiveData Test Asset
	Creating Repetition Logic for ActiveData Files
	Defining the Steps to Repeat
	Mapping ActiveData to Literal Data
	Playing Back and Analyzing the ActiveData Visual Test

	Playing Back Scripts From Visual Tests
	Creating a Script to Generate Random Numbers
	Defining the Script Input Parameters
	Defining the Script Output Parameters
	Setting Up the Visual Test to Use Script Data
	Using Script Data in the Visual Test
	Playing Back and Reviewing Test Results

