
AOR Tutorial
This tutorial demonstrates some of the basic functions of the AOR utility.
It takes you through the process of configuring and using the AOR utility.
The code samples and class files necessary to run this tutorial are
provided for you.

All class files for this tutorial can be found in Program Files\Compu-
ware\Active Object Recognition\AORHelpers.

All Java source files for this tutorial can be found in Program
Files\Compuware\Active Object Recognition\AORHelpers\Source.

In this tutorial, use TestPartner to run a test against a demo application.
The demo application is a basic calculator written in Java. TestPartner
cannot initially identify the calculator’s controls properly. Use the AOR
Configuration utility to add various levels of support for the calculator’s
controls. After you add each type of support, test the application using
TestPartner. You should notice improved support for the demo applica-
tion.

Prerequisites For Using the AOR Utility
The AOR Configuration utility configures Java objects for testing. It
requires a knowledge of Java development. If you are using the AOR
utility, the following prerequisites apply:

� The AOR Configuration utility is designed for use by Java developers
and QA Analysts with Java development experience.

� The AOR Configuration utility may require some Java programming.

� If you do not have Java development experience, work with your
development team to implement custom Java testing support.
 1

� You must be familiar with your testing tool. TestPartner’s online tuto-
rial provides practical experience with using these two testing tools.

Starting the Demo Application
To start the demo application, follow these steps:

� Click Start>Programs>Compuware>TestPartner >Active Object
Recognition>AOR Demo.

The demo application is a basic calculator, written in Java. Leave this
demo application running for the duration of the tutorial unless you
receive a message requiring you to restart the application.

Setting Up the Tutorial
For this tutorial, you will use the testing tool to record against this
sample application, and identify some its controls.

1 Start TestPartner.

3 On the Identify dialog box, click Identify. A pointer appears.

2 Click the Identify button on the TestPartner toolbar.
2 AOR Tutorial

4 Use the pointer to point to a button in the demo application. In the
Identify dialog box, you will see that the type is not listed as a but-
ton. The testing tool does not properly support most of the controls
in this application. Depending on how the testing tool is configured
on your machine, the controls are interpreted as mouse clicks, bit-
map selects, or text selects.

For more information on using the Identify tool and running scripts, see
the TestPartner user documentation.

Building Basic Support
In this section, use the AOR utility to configure some basic settings and
add support for the controls in the demo application.

� Click Start>Programs>Compuware>TestPartner >Active Object
Recognition>AOR Configuration Utility to start the AOR Configu-
ration utility.

 The AOR utility main screen appears.

Creating a Bundle

A bundle is a container that stores configuration files and Java classes
used by the AOR utility. You must create a bundle in which to store new
classes and packages you create for this demo application.

 To create a new bundle:

1 Click Main JCI Settings in the AOR utility tree view.

2 Click New on the AOR utility toolbar.

3 In the Select a Bundle dialog box, select FOLDER_BUNDLE and
click OK. The Browse For Folder dialog box appears.

4 In the Browse For Folder dialog box, navigate to the installed loca-
tion of the TestPartner application. The name of the installed loca-
tion folder displays in the Folder field.

5 Place the cursor at the end of the installed folder name in the Folder
field and type a backslash (\) and a name for the new folder bundle.

6 Click OK.
 AOR Tutorial 3

7 The left pane of the AOR Configuration utility displays the new item
that has been added. The item shows the type of bundle created and
its location.

You have just created a bundle in which to store the configurations.
Now you will add packages to your bundle.

Building Support For a Control

When you identify the demo application in “Setting Up the Tutorial,”
the buttons are Java controls named calcbutton from the aordemo.calc
package. In this section, you will use the AOR utility to add support for
these buttons.

Note: To determine class and package names of controls in an application,
consult the following: the application’s developer, the API documen-
tation of the application under test, or TestPartner’s Property check.
Remember, class and package names are case sensitive.

To add support for the aordemo.calc package.

1 In the AOR Configuration utility tree, expand the bundle you just
created so that Packages and Helpers appear.

2 Select Packages under the bundle you just created.
4 AOR Tutorial

3 Click New on the toolbar. A new package appears in the AOR utility
tree with the temporary name New_Package.

4 Type the name aordemo.calc for the package.

Modifying General Component Settings

You can use the AOR utility to change the behavior of the testing tool
when it detects calcbutton.

In this section, you modify support for the buttons so they appear as
buttons to TestPartner. As you modify components, click Save on the
toolbar.

1 In the AOR utility tree view, select the aordemo.calc package you
just created and click New. A new component appears in the AOR
utility tree view with the temporary name New_Component. Type
the name CalcButton for the new component.

Note: Component names are case sensitive. Type the component name
exactly as shown.
 AOR Tutorial 5

2 Double-click the CalcButton component. The Component Configu-
ration Properties window appears in the right pane.

3 In the General section, click anywhere in the Component Type
field.

4 Click the arrow to the right of the field and select Button from the
list.

5 Click anywhere on the Enumerate Component field.

6 Click the arrow to the right of the field and select No.
6 AOR Tutorial

Modifying Advanced Component Settings

Scroll down to the Advanced section and follow these steps:

1 Click anywhere on the Record Options field.

2 Click the arrow to the right of the field and select the following
options:

� Left Mousebutton Click
� Left Mousebutton Doubleclick

Clear all other check boxes.

3 Click anywhere on the Playback Options field.

4 Click the arrow to the right of the field and select Testing Applica-
tion.

5 Click Save and Apply on the AOR utility toolbar.

Recording and Playing Back

Now that the testing tool knows that CalcButtons are Buttons, it can
now identify, record, and play them back.

1 In TestPartner, create a new script.

2 Click Scripts>Record to begin recording the script.

3 In the demo application, click 9 x 3 =. The result should be 27.

4 Stop recording by double-clicking the TestPartner icon in the Win-
dows taskbar.

5 Play back the script. The script should play back successfully.

The script recorded all the buttons by index, and not by the label that is
on the button.

Recording the Button Text

Now add the ability to record each button by name.

1 Double-click the CalcButton component in the AOR utility tree, if it
is not already open. The Component Configuration Properties Win-
dow appears in the right pane.

2 Scroll down to the Methods section. These configurations will over-
ride the methods that the testing tool uses to retrieve information
about a particular control.
 AOR Tutorial 7

3 In the Title Method Name field, enter getFaceText. This is the
method that the testing tool uses to retrieve the title/label of this
control.

4 Click Save and Apply on the AOR utility toolbar.

5 Follow the steps in “Recording and Playing Back” on page 7. The but-
tons of the demo application calculator should now record and play
back using the captions.

Building Advanced Support
The calculator application is now fully supported by the testing tool. In
this section, you will build advanced support for this application using
the table aordemo.calc.CalcGrid. This table contains the calculator’s
buttons.

Use the AOR utility to change the behavior of the testing tool when it
detects the CalcGrid:

1 In the AOR utility tree view, select the package you created and click
New.

2 A new component appears in the AOR utility tree with a temporary
name. Enter the name CalcGrid for the new component.

3 Double-click CalcGrid on the AOR utility tree view. The Component
Configuration Properties window appears in the right pane for the
CalcGrid component.

4 In the General section, click anywhere in the Component Type
field.

5 Click the arrow to the right of the field and select Grid or Table.

6 In the General section, click anywhere on the Enumerate Compo-
nent field.

7 Click the arrow to the right of the field and select Yes.

8 Click anywhere on the Helper Performs Enumeration field.

9 Click the arrow to the right of the field and select Yes.

10 Click Save and Apply on the AOR utility toolbar.

11 Follow the steps in “Recording and Playing Back” on page 7. The but-
tons of the demo application calculator should now record and play
back using the captions.
8 AOR Tutorial

The testing tool should identify the main window, the calculator
window, and the grid, instead of the buttons.

Creating a Helper Class
Helper classes are classes you create to work with the predefined classes to
implement customized testing support. In this section, you will add
support to record table select by position and by cell name. To accom-
plish this, you will create a helper class. A helper class is a standard Java
class that extends com.compuware.jci.HelperBase.

Required: When a change is made to a helper file, you must remove and re-
add the helper class to AOR utility, and then restart the Java appli-
cation.

Create a helper that imports com.compuware.jci package and extends
HelperBase (see AORHelperTemplate.java). At this point, no methods
have been overridden. The enumeration, record, and playback functions
for this control have not been changed. To provide new functionality or
to change how the testing tool responds to this control, you must
override one of the functions in the HelperBase. Each method is
documented in the AOR utility online help topic “Developing Helper
Classes”.

Changing the Record Behavior

Begin by changing the record behavior of CalcGrid. You must override
getItemProperties (see AORHelperLearn.java). This method receives the
following two objects:

� CalcGrid object
� JCIProperties object

It returns the following boolean values:

� True for success
� False for failure.

This method is called by the testing tool during the record process to get
more information about the control in question. TestPartner requires
more information about what the user clicked on at a given location. It
will set the x and y variable of the mouse click on that control in the
JCIProperties object.

The CalcGrid component has associated methods called getRow(y) and
getColumn(x) that convert the given x and y coordinates to a cell
position within the table.
 AOR Tutorial 9

1 Use the x and y mouse positions to extract the row and column from
the table.

2 Set the row and column properties in the JCIProperties object to the
ones retrieved.

TestPartner uses this information to record a table by position.

Associating Text With the Cell

You should associate the text with the cell by calling the getCell method
passing in the row and column. Then call the appropriate method to get
the text from the component in that cell. For example, you could use the
method getFaceText to get the text from the component CalcButton.

Earlier in the tutorial, you learned how to get the caption using the AOR
utility. Now you must get the caption using Java code in the helper. To
accomplish this, call the getFaceText method on the component
retrieved previously. Use the invokeMethod method to call getFaceText
using reflection.

Compile the code or use the pre-compiled class, AORHelper-
Learn.class, included with the tutorial.

Add the helper to the AOR utility and the CalcGrid component:

1 In the AOR utility tree view, select Helpers under the bundle created
earlier in “Creating a Bundle” on page 3.

2 Click Add on the AOR utility toolbar.

3 Select the file you just created, or the pre-compiled class, and click
Open.

4 Select the CalcGrid component.

5 Click Edit. The Component Configuration Properties window
appears in the right pane.

6 In the Helper Class field of the Advanced section, type the fully
qualified class name of the helper you added.

7 Click anywhere on the Record Options field.

8 Click the arrow to the right of the field and select the following
options:

� Left Mousebutton Doubleclick
� Left MouseButton Click
� Use ItemProperties

9 Click Save and Apply on the AOR utility toolbar.
10 AOR Tutorial

10 Open a new script and record the 9 x 3 operation as before. You
should see TableSelect commands with the proper cell names. Use
your testing tool to learn the table by position. Refer to your applica-
tion’s documentation for more information.

You will use this script for the rest of the tutorial.

Adding Support to Playback

In this section, you will add support to play back the script you just
recorded using AORHelperReplay.java. First, override onReplay. This
method receives and returns the same parameters as getItemProperties
does in the above section.

The type of component you are working with will affect what the testing
tool passes you in the JCIProperties object. For a Grid or Table, the testing
tool passes a row and column to this method, or a cell name and column.

When the testing tool passes a cell name and column, search for the first
match in the given column by obtaining the number of rows and cycling
through each cell. Use the same process you did for overriding getItem-
Properties in “Changing the Record Behavior” on page 9. Once you have
a match, get the cell bounds of the component in that cell, call a
doMouseClick method in JCIReplayAgent, and compile the code or use
AORHelperReplay.class, the pre-compiled class that is provided.

Change the CalcGrid component to use the new helper:

1 In the AOR utility tree view, select Helpers under the bundle created
earlier in “Creating a Bundle” on page 3.

2 Click Add on the AOR utility toolbar.

3 Select the file you just created, or the pre-compiled class, and click
Open.

4 Select the CalcGrid component.

5 Click Edit. The Component Configuration Properties Window
appears in the right pane.

6 In the Helper Class field of the Advanced option, enter AORHelper-
Replay.

7 Click anywhere on the Replay Options field.

8 Click the arrow to the right of the field and select JCI Helper.
Remember to deselect Testing Application.

9 Click Save and Apply on the AOR utility toolbar.

10 Play back the script from above.
 AOR Tutorial 11

Adding Support to Checks

Now add support for performing checks against tables. TestPartner will
call the method getContentProperties in the helper class, passing the
same parameters as in the previous two methods (see AORHelp-
erCheck.java).

1 Obtain the number of rows and columns in the table.

2 Save these in the JCIProperties object as rows.count and col-
umns.count.

3 Cycle through all the cells retrieving the text from each and set a
property in the JCIProperties object using the following format:

cell.row.column = cell text.

4 Compile the code or use the pre-compiled class, AORHelp-
erCheck.class, included with the tutorial.

Add the Helper Class

Add the helper class to the AOR utility and change the CalcGrid compo-
nent to use the new helper by following these steps:

1 In the AOR utility tree view, select Helpers under the bundle created
earlier in “Creating a Bundle” on page 3.

2 Click Add on the AOR utility toolbar.

3 Select the file you just created, or the pre-compiled class, and click
Open.

4 Select the CalcGrid component.

5 Click Edit and the Component Configuration Properties window
appears in the right pane.

6 In the Helper Class field of the Advanced section, enter AORHelp-
erCheck.

7 Click Save and Apply on the AOR utility toolbar.

8 Create a new content check in the testing tool. Click Identify.

9 Point to the table grid.

You have just created a content check to use within a script. You can use
this check for verification of the table. For example, you can verify that
the contents within that table remain the same.
12 AOR Tutorial

Using the Enumerator Function

In this section, you will add support to retrieve the value from the
Memory field (the green “M” on the demo application calculator). You
must add the label that contains the setting back into the enumeration.
Add a method to your helper class that overrides enumerate (see
AORHelperFinal.java). This method receives the object under test and a
JCIEnumerator object.

The JCIEnumerator object allows you to control the process of enumerat-
ing controls within a Java application. With this method you will check
to ensure that the first component is a java.awt.Label and then add it to
the enumeration by calling continueEnumeration passing in the
java.awt.Label. This enables the internal support for java.awt.Label to
handle the new control.

Compile the code or use the pre-compiled class, AORHelperFinal.class,
included with the tutorial.

Follow these steps to add the new helper class to the AOR utility and
change the CalcGrid component to use the new helper class:

1 In the AOR utility tree view, select Helpers under the bundle created
earlier in “Creating a Bundle” on page 3.

2 Click Add on the AOR utility toolbar.

3 Select the file you just created, or the pre-compiled class, and click
Open.

4 Select the CalcGrid component.

5 Click Edit and the Component Configuration Properties window
appears in the right pane.

6 In the Helper Class field of the Advanced option, enter AORHelp-
erCheck.

7 Click Save and Apply on the AOR utility toolbar.

You should see the Memory field during identification and in form
checks.

When you record and play back the script, you should get the same result
as you did from the script recorded previously. In this script however, the
controls are treated as a table instead of a collection of buttons.

You have now completed the AOR utility tutorial and should have an
understanding of the basic functions of the AOR utility. More informa-
tion about the AOR utility is available in the AOR utility online help.
 AOR Tutorial 13

14 AOR Tutorial

	AOR Tutorial
	Prerequisites For Using the AOR Utility
	Starting the Demo Application
	Setting Up the Tutorial
	Building Basic Support
	Creating a Bundle
	Building Support For a Control

	Building Advanced Support
	Creating a Helper Class
	Changing the Record Behavior
	Associating Text With the Cell
	Adding Support to Playback
	Adding Support to Checks
	Using the Enumerator Function

